Science.gov

Sample records for lowermost cretaceous bornholm

  1. The bivalve Anopaea (Inoceramidae) from the Upper Jurassic-lowermost Cretaceous of Mexico

    NASA Astrophysics Data System (ADS)

    Zell, Patrick; Crame, J. Alistair; Stinnesbeck, Wolfgang; Beckmann, Seija

    2015-07-01

    In Mexico, the Upper Jurassic to lowermost Cretaceous La Casita and coeval La Caja and La Pimienta formations are well-known for their abundant and well-preserved marine vertebrates and invertebrates. The latter include conspicuous inoceramid bivalves of the genus Anopaea not formally described previously from Mexico. Anopaea bassei (Lecolle de Cantú, 1967), Anopaea cf. stoliczkai (Holdhaus, 1913), Anopaea cf. callistoensis Crame and Kelly, 1995 and Anopaea sp. are rare constituents in distinctive Tithonian-lower Berriasian levels of the La Caja Formation and one Tithonian horizon of the La Pimienta Formation. Anopaea bassei was previously documented from the Tithonian of central Mexico and Cuba, while most other members of Anopaea described here are only known from southern high latitudes. The Mexican assemblage also includes taxa which closely resemble Anopaea stoliczkai from the Tithonian of India, Indonesia and the Antarctic Peninsula, and Anopaea callistoensis from the late Tithonian to ?early Berriasian of the Antarctic Peninsula. Our new data expand the palaeogeographical distribution of the high latitude Anopaea to the Gulf of Mexico region and substantiate faunal exchange, in the Late Jurassic-earliest Cretaceous, between Mexico and the Antarctic Realm.

  2. Subdivision and regional stratigraphy of the pre-Punta Gorda rocks (lowermost cretaceous-jurassic?) in South Florida

    USGS Publications Warehouse

    Applegate, A.V.; Winston, George O.; Palacas, James George

    1981-01-01

    In recent years several wells have been drilled in the South Florida Basin through carbonate and evaporite sequences to depths as much as 5,300 ft below the Punta Gorda Anhydrite. The deepest well penetrated igneous basement rocks to a total depth of 18, 670 ft. Correlation of anhydrite beds below the Punta Gorda has revealed several thick anhydrite units (200 to 400 ft) with regional persistence. The pre-Punta Gorda section is subdivided into four easily identifiable units listed in order of increasing age — Lehigh Acres (lowermost Comanchean), Pumpkin Bay (upper Coahuilan), Bone Island (lower Coahuilan), and Wood River (Jurassic?) Formations, all newly named in this report. In addition, the Lehigh Acres is divided into the West Felda Shale (base), Twelve Mile, and Able Members which are also named and defined in this report. Geochemical evidence indicates that the Lehigh Acres unit and the upper part of the Pumpkin Bay unit contain the most likely source beds for petroleum. Only two production tests have been carried out in the basin in strata below the oil-productive Sunniland Limestone. One was through casing in a Wood River dolomite zone. It reportedly produced water and some gas. The other was a drill stem test in an upper Pumpkin Bay dolomite zone which produced only water. In the Gulf Florida State Lease 826Y (Permit No. 275), a moderately porous, 350-ft-thick Pumpkin Bay dolomite zone was observed. As this well is west of the axis of the basin, better reservoir conditions presumably exist on the West Florida shelf than onshore.

  3. Petroleum geology and play assessment, Bornholm Area, Denmark

    SciTech Connect

    Joergensen, N.B.

    1988-01-01

    The Bornholm area is in the easternmost part of the Danish license area of northwest Europe, where it is part of the mobile border zone between the stable Fennoscandian shield and the subsiding Danish-Polish trough. The Bornholm area is dominated by a complicated pattern of grabens and uplift horst blocks, of which the island of Bornholm is one. The horst blocks are parallel with the general northwest-southeast trend of the border zone, but major grabens are perpendicular to this trend. The most prominent one is the Ronne graben, in which up to 2 km of Paleozoic and Mesozoic sediment are present. Cambrian-Silurian rocks are present over most of the Bornholm area, whereas substantial thicknesses of Mesozoic sediments are more or less restricted to the southwestern part. Devonian-Early Triassic rocks are not seen in outcrop but may be present in the deeper grabens. During the Late Cretaceous-early Tertiary Laramide orogeny, part of the area was uplifted as much as 1-2 km. Source rocks are probably lower Paleozoic, high-TOC, shelf mudstones, and possibly Upper Carboniferous coal measures, and Jurassic coal measures. Due to its proximity to the Fennoscandian shield, clastic sediment has been supplied to the Bornholm area throughout geologic history. A wide range of structural traps resulted from normal extension, strike-slip faulting, and inversion. Although the Bornholm area is virtually unexplored for hydrocarbons, the presence of surrounding, structurally related oil and gas provinces makes the area a logical target for exploration today.

  4. Petroleum geology and play assessment, Bornholm area, Denmark

    SciTech Connect

    Joergensen, N.B.

    1988-02-01

    The Bornholm area is dominated by a complicated pattern of grabens and uplift horst blocks, of which the island of Borhnolm is one. The horst blocks are parallel with the general northwest-southeast trend of the border zone, but major grabens arc perpendicular to this trend. The most prominent one is the Ronne graben, in which up to 2 km of Paleozoic and Mesozoic sediment are present. Cambrian-Silurian rocks are present over most of the Bornholm area, whereas substantial thicknesses of mesozoic sediments are more or less restricted to the southwestern part. Devonian-Early Triassic rocks are not seen in outcrop but may be present in the deeper grabens. During the Late Cretaceous-early Tertiary Laramide orogeny, part of the area was uplifted as much as 1-2 km. Source rocks are probably lower Paleozoic, high-TOC, shelf mudstones, and possibly Upper Carboniferous coal measures, and Jurassic coal measures. Due to its proximity to the Fennoscandian shield, clastic sediment has been supplied to the Bornholm area throughout geologic history. A wide range of structural traps resulted from normal extension, strike-slip faulting, and inversion. Although the Bornholm area is virtually unexplored for hydrocarbons, the presence of surrounding, structurally related oil and gas provinces makes the area a logical target for exploration today.

  5. Paleomagnetic results from the Cambrian and Ordovician sediments of Bornholm (Denmark) and Southern Sweden and paleogeographical implications for Baltica

    NASA Astrophysics Data System (ADS)

    Lewandowski, Marek; Abrahamsen, Niels

    2003-11-01

    If apparent polar wander paths (APWP) cross, the question arises how to prove the older magnetization to be primary and not just a younger overprint. This problem is typically met in areas affected by percolating mineralizing fluids and/or heating due to a younger regional igneous activity. The Permian magnetic overprint is the classical example. Earlier paleomagnetic studies over the Lowermost Cambrian Nekso Sandstone Fm (NSF) of Bornholm (Denmark) yielded a characteristic remanent magnetization (ChRM) similar to the Permian directions for Baltica. Since a possible reason could be a chemical overprint, we checked whether this phenomenon did take place on a regional scale. Some samples therefore were collected from other Lower Cambrian clastics of Bornholm and Southern Scandinavia. In result we show that the well-grouped and stable ChRM of the NSF contrasts with fairly chaotic, soft, and badly preserved magnetizations of the Balka, Hardeberga, Mickwitzia, and Lingulid sandstones of Bornholm and Southern Sweden, thus not indicating widespread paleomagnetic overprint. We demonstrate that the ChRM of the NSF is most probably of syndepositional/early diagenetic origin and its similarity to the Permian direction for Baltica is only casual. We propose a normal polarity and a near-equatorial position on the Southern Hemisphere for Baltica in the early Cambrian time, as well as a more complicated trend of the APWP for this paleocontinent than envisaged by other authors. Paleomagnetic results from the Arenigian limestones of the Laesaa Formation (Bornholm) that yield excellently defined but most probably only secondary components are also presented.

  6. The oldest accurate record of Scenopinidae in the Lowermost Eocene amber of France (Diptera: Brachycera).

    PubMed

    Garrouste, Romain; Azar, Dany; Nel, Andre

    2016-03-22

    Eocenotrichia magnifica gen. et sp. nov. (Diptera: Scenopinidae: Metatrichini) is described and illustrated from the Lowermost Eocene amber of Oise (France) and represents the oldest definitive window fly fossil. The present discovery in the Earliest Eocene supports the Late Cretaceous-Paleocene age currently proposed for the emergence of Metatrichini.

  7. Multiple seismic reflectors in Earth's lowermost mantle.

    PubMed

    Shang, Xuefeng; Shim, Sang-Heon; de Hoop, Maarten; van der Hilst, Robert

    2014-02-18

    The modern view of Earth's lowermost mantle considers a D″ region of enhanced (seismologically inferred) heterogeneity bounded by the core-mantle boundary and an interface some 150-300 km above it, with the latter often attributed to the postperovskite phase transition (in MgSiO3). Seismic exploration of Earth's deep interior suggests, however, that this view needs modification. So-called ScS and SKKS waves, which probe the lowermost mantle from above and below, respectively, reveal multiple reflectors beneath Central America and East Asia, two areas known for subduction of oceanic plates deep into Earth's mantle. This observation is inconsistent with expectations from a thermal response of a single isochemical postperovskite transition, but some of the newly observed structures can be explained with postperovskite transitions in differentiated slab materials. Our results imply that the lowermost mantle is more complex than hitherto thought and that interfaces and compositional heterogeneity occur beyond the D″ region sensu stricto.

  8. Lowermost mantle anisotropy beneath the southeastern Pacific

    NASA Astrophysics Data System (ADS)

    Deng, J.; Long, M. D.; Creasy, N.; Beck, S. L.; Wagner, L. S.; Tavera, H.

    2016-12-01

    Seismic anisotropy has been documented in many portions of the lowermost mantle, with particularly strong anisotropy thought to be present along the edges of Large Low Shear Velocity Provinces (LLSVPs). The region surrounding the Pacific LLSVP, however, has not been studied extensively in terms of its anisotropic structure. In this study we use seismic data from southern Peru and northern Bolivia to probe lowermost mantle anisotropy beneath the southeastern Pacific, including at the eastern edge of the Pacific LLSVP. Differential shear wave splitting measurements from phases that have similar raypaths in the upper mantle but different raypaths in the lowermost mantle can be used to constrain anisotropy in D". In this study, we measured splitting for 285 pairs of SKS/SKKS, PKS/SKS, and PKS/SKKS pairs for the same event-station combinations, using data from 93 broadband seismic stations of the PULSE and CAUGHT networks as well as two permanent stations. Most measurements are characterized by fast directions roughly parallel to the South American trench and 1 s delay times, consistent with previous studies of upper mantle anisotropy beneath Peru and Bolivia, indicating a strong upper mantle contribution to the splitting of PKS/SKS/SKKS phases. However, a minority of pairs exhibited strongly discrepant splitting between the phases, indicating a contribution from lowermost mantle anisotropy. We used measurements of splitting intensity, or the amount of energy on the transverse component, to objectively and quantitatively analyze these discrepancies. We find evidence for complex splitting patterns in the lowermost mantle, with discrepant and non-discrepant pairs sampling the same regions. While we do find evidence for some localized regions of lowermost mantle anisotropy beneath the southeastern Pacific, with some discrepancies in splitting intensity greater than 0.6, the geographical relationships between these regions and the edges of the Pacific LLSVP are less clear

  9. Mineralogy of the Earth's lowermost mantle

    NASA Astrophysics Data System (ADS)

    Murakami, M.; Hirose, K.; Sata, N.; Ohishi, Y.

    2004-12-01

    A recent discovery of post-perovskite phase (MgPP) in pure MgSiO3 composition suggests that a primary lower mantle mineral of MgSiO3-rich perovskite (MgPv) undergoes structural phase transition near the base of the mantle. However, the effects of other major elements in the mantle such as iron and aluminum on the stability of MgPP are not known yet. In addition, knowledge of the element partitioning between MgPP and coexisting phases is also of great importance because it strongly affects the geophysical and geochemical properties of the lowermost mantle. Here we report the post-perovskite phase transition in a natural primitive mantle composition and the phase chemistry of the lowermost mantle by a combination of in-situ x-ray diffraction measurements in a laser-heated diamond anvil cell and chemical analyses on recovered samples using transmission electron microscope (TEM). Nine separate experiments were conducted at pressures from 38 to 126 GPa and temperatures form 1950 to 2550 K along the typical temperature profile in the lower mantle. Starting material was a gel with a chemical composition of KLB-1 peridotite, which has a primitive mantle composition. The sample was covered with a thin film of gold for both sides that served as an internal pressure standard and a laser absorber. It was loaded into a rhenium gasket, together with insulation layers of NaCl except one experiment at 126 GPa in which the sample was sandwiched by pure KLB-1 gel layers. Heating was achieved by a focused multimode continuous wave Nd:YAG laser using the double-sided heating technique. We confirmed three-phase assemblage of MgPv + (Mg,Fe)O magnesiowustite (Mw) + CaSiO3-rich perovskite (CaPv) up to 92 GPa. At higher pressures above 115 GPa, the mineral assemblage changed to MgPP + Mw + CaPv, and MgPv was not observed. Minor modification of perovskite structure in MgPv proposed by Shim et al., (2001) was not found. Mw retains a rocksalt structure throughout the P-T conditions in the

  10. Modeling the cod larvae drift in the Bornholm Basin in summer 1994

    NASA Astrophysics Data System (ADS)

    Hinrichsen, H.-H.; Lehmann, A.; St. John, M.; Brügge, B.

    1997-12-01

    A combined 3-D physical oceanographic model and a field sampling program was performed in July and August 1994 to investigate the potential drift of larval Baltic cod from the center of spawning effort in the Bornholm Basin, Baltic Sea. The goal of this exercise was to predict the drift trajectories of cod larvae in the Bornholm Basin, thereby aiding in the development of future sampling programs as well as the identification of processes influencing larval retention/dispersion in the Bornholm Basin. Distributions of variables (T, S and larval distribution) were obtained utilizing a three-dimensional eddy-resolving baroclinic model of the Baltic Sea based on the Bryan-Cox-Semtner code. Larval drift was simulated by the incorporation of a passive tracer into the model utilized to represent individual cod larvae. Additionally, simulated Lagrangian drift trajectories are presented. For model purposes, initial fields of temperature, salinity and cod larvae concentration for the Bornholm Basin were constructed by objective analysis using observations taken during a research survey in early July, 1994. Outside the Bornholm Basin generalized hydrographic features of the Baltic Sea were utilized with the baroclinic model forced by wind data for the whole Baltic taken from the Europa-Modell (EM) of the German weather service, Offenbach. Verification of simulations was performed by comparison with field measurements of hydrographic variables and ADCP derived current measurements taken during the surveys. In general, most of the hydrographic features observed during the second research cruise are correctly simulated, with variations mainly attributed to the prescribed initial conditions outside the Bornholm Basin. Results from larval sampling during the second cruise could not entirely confirm the modeled larval distributions due to the low numbers of larvae captured. However, the modeled results based on the agreement of the flow fields and hydrographic properties with

  11. Early Cambrian wave-formed shoreline deposits: the Hardeberga Formation, Bornholm, Denmark

    NASA Astrophysics Data System (ADS)

    Clemmensen, Lars B.; Glad, Aslaug C.; Pedersen, Gunver K.

    2016-09-01

    During the early Cambrian, the Danish island Bornholm was situated on the northern edge of the continent Baltica with palaeolatitudes of about 35°S. An early Cambrian (Terreneuvian) transgression inundated large areas of Baltica including Bornholm creating shallow marine and coastline environments. During this period, wave-formed shoreline sediments (the Vik Member, Hardeberga Formation) were deposited on Bornholm and are presently exposed at Strøby quarry. The sediments consist of fine- and medium-grained quartz-cemented arenites in association with a few silt-rich mudstones. The presence of well-preserved subaqueous dunes and wave ripples indicates deposition in a wave-dominated upper shoreface (littoral zone) environment, and the presence of interference ripples indicates that the littoral zone environment experienced water level fluctuations due to tides and/or changing meteorological conditions. Discoidal structures (medusoids) are present in the quarry, but due to the relative poor preservation of their fine-scale structures it is difficult to determine if the discoids represent true medusae imprints or inorganic structures. The preservation of the shallow-water bedforms as well as the possible medusae imprints is related to either the formation of thin mud layers, formed during a period of calm water when winds blew offshore for a longer period, or to the growth of bacterial mats. The orientation of the wave-formed bedforms indicates a local palaeoshoreline trending NE-SW and facing a large ocean to the north.

  12. Early Cambrian wave-formed shoreline deposits: the Hardeberga Formation, Bornholm, Denmark

    NASA Astrophysics Data System (ADS)

    Clemmensen, Lars B.; Glad, Aslaug C.; Pedersen, Gunver K.

    2017-09-01

    During the early Cambrian, the Danish island Bornholm was situated on the northern edge of the continent Baltica with palaeolatitudes of about 35°S. An early Cambrian (Terreneuvian) transgression inundated large areas of Baltica including Bornholm creating shallow marine and coastline environments. During this period, wave-formed shoreline sediments (the Vik Member, Hardeberga Formation) were deposited on Bornholm and are presently exposed at Strøby quarry. The sediments consist of fine- and medium-grained quartz-cemented arenites in association with a few silt-rich mudstones. The presence of well-preserved subaqueous dunes and wave ripples indicates deposition in a wave-dominated upper shoreface (littoral zone) environment, and the presence of interference ripples indicates that the littoral zone environment experienced water level fluctuations due to tides and/or changing meteorological conditions. Discoidal structures (medusoids) are present in the quarry, but due to the relative poor preservation of their fine-scale structures it is difficult to determine if the discoids represent true medusae imprints or inorganic structures. The preservation of the shallow-water bedforms as well as the possible medusae imprints is related to either the formation of thin mud layers, formed during a period of calm water when winds blew offshore for a longer period, or to the growth of bacterial mats. The orientation of the wave-formed bedforms indicates a local palaeoshoreline trending NE-SW and facing a large ocean to the north.

  13. Mass and Ozone Fluxes from the Lowermost Stratosphere

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Olsen, Mark A.

    2004-01-01

    Net mass flux from the stratosphere to the troposphere can be computed from the heating rate along the 380K isentropic surface and the time rate of change of the mass of the lowermost stratosphere (the region between the tropopause and the 380K isentrope). Given this net mass flux and the cross tropopause diabatic mass flux, the residual adiabatic mass flux across the tropopause can also be estimated. These fluxes have been computed using meteorological fields from a free-running general circulation model (FVGCM) and two assimilation data sets, FVDAS, and UKMO. The data sets tend to agree that the annual average net mass flux for the Northern Hemisphere is about 1P10 kg/s. There is less agreement on the southern Hemisphere flux that might be half as large. For all three data sets, the adiabatic mass flux is computed to be from the upper troposphere into the lowermost stratosphere. This flux will dilute air entering from higher stratospheric altitudes. The mass fluxes are convolved with ozone mixing ratios from the Goddard 3D CTM (which uses the FVGCM) to estimate the cross-tropopause transport of ozone. A relatively large adiabatic flux of tropospheric ozone from the tropical upper troposphere into the extratropical lowermost stratosphere dilutes the stratospheric air in the lowermost stratosphere. Thus, a significant fraction of any measured ozone STE may not be ozone produced in the higher Stratosphere. The results also illustrate that the annual cycle of ozone concentration in the lowermost stratosphere has as much of a role as the transport in the seasonal ozone flux cycle. This implies that a simplified calculation of ozone STE mass from air mass and a mean ozone mixing ratio may have a large uncertainty.

  14. Strong, Multi-Scale Heterogeneity in Earth's Lowermost Mantle

    NASA Astrophysics Data System (ADS)

    Tkalčić, Hrvoje; Young, Mallory

    2014-05-01

    The ~300 km thick layer above the Earth's core mantle boundary remains largely an enigma and has proven to be far more than a simple dividing line; rather it is a complex region with a range of proposed phenomena such as thermal and compositional heterogeneity, partial melting and anisotropy. Characterizing the heterogeneity in the lowermost mantle will prove crucial to accurately understanding key geodynamical processes within our planet. Here we obtain compressional wave (P-wave) velocity images and uncertainty estimates for the lowermost mantle using old and newly collected travel time data sensitive to the lowermost mantle and core and collected by waveform cross-correlation. The images obtained by the inversion technique are void of explicit model parameterization and smoothing. To attest to the impressive capabilities of the transdimensional and hierarchical Bayesian inversion scheme, we design a comprehensive, all-embracing synthetic resolution test demonstrating the retrieval of velocity discontinuities, smooth velocity transitions, structures of varying scales and strengths. Subsequent spectral analyses reveal a power of heterogeneity three times larger than previous estimates and a multi-scale wavelength content in the P-wave velocity field of the lowermost mantle. The newly obtained P-wave tomographic images of the lowermost mantle are not dominated by harmonic degree 2 structure as is the case for tomographic images derived from S-wave data. Instead, the heterogeneity size is more uniformly distributed between about 500 and 6000 km. Inter alia, the resulting heterogeneity spectrum provides a bridge between the long-wavelength features of previous global models and the very short-scale dimensions of scatterers mapped in independent studies. Because the long scale features are less dominant in our model than in S-wave velocity maps, we cannot reasonably determine a correlation between them and the position of detected ultra-low velocity zones.

  15. Seismic anisotropy in the lowermost mantle near the Perm Anomaly

    NASA Astrophysics Data System (ADS)

    Long, Maureen D.; Lynner, Colton

    2015-09-01

    The lower mantle is dominated by two large structures with anomalously low shear wave velocities, known as Large Low-Shear Velocity Provinces (LLSVPs). Several studies have documented evidence for strong seismic anisotropy at the base of the mantle near the edges of the African LLSVP. Recent work has identified a smaller structure with similar low-shear wave velocities beneath Eurasia, dubbed the Perm Anomaly. Here we probe lowermost mantle anisotropy near the Perm Anomaly using the differential splitting of SKS and SKKS phases measured at stations in Europe. We find evidence for lowermost mantle anisotropy in the vicinity of the Perm Anomaly, with geographic trends hinting at lateral variations in anisotropy across the boundaries of the Perm Anomaly as well as across a previously unsampled portion of the African LLSVP border. Our observations suggest that deformation is concentrated at the boundaries of both the Perm Anomaly and the African LLSVP.

  16. Multiple seismic reflectors in Earth’s lowermost mantle

    PubMed Central

    Shang, Xuefeng; Shim, Sang-Heon; de Hoop, Maarten; van der Hilst, Robert

    2014-01-01

    The modern view of Earth’s lowermost mantle considers a D″ region of enhanced (seismologically inferred) heterogeneity bounded by the core–mantle boundary and an interface some 150–300 km above it, with the latter often attributed to the postperovskite phase transition (in MgSiO3). Seismic exploration of Earth’s deep interior suggests, however, that this view needs modification. So-called ScS and SKKS waves, which probe the lowermost mantle from above and below, respectively, reveal multiple reflectors beneath Central America and East Asia, two areas known for subduction of oceanic plates deep into Earth’s mantle. This observation is inconsistent with expectations from a thermal response of a single isochemical postperovskite transition, but some of the newly observed structures can be explained with postperovskite transitions in differentiated slab materials. Our results imply that the lowermost mantle is more complex than hitherto thought and that interfaces and compositional heterogeneity occur beyond the D″ region sensu stricto. PMID:24550266

  17. Water partitioning between bridgmanite and postperovskite in the lowermost mantle

    NASA Astrophysics Data System (ADS)

    Townsend, Joshua P.; Tsuchiya, Jun; Bina, Craig R.; Jacobsen, Steven D.

    2016-11-01

    The lowermost mantle appears to contain geochemically primitive reservoirs of volatile components including water, as evidenced by certain ocean island basalts (Hallis et al., 2015). We used ab initio lattice dynamics to calculate the water partition coefficient between bridgmanite and postperovskite using quasi-harmonic free energies to determine how water is distributed between nominally anhydrous minerals in the D″ region. In the absence of aluminum, hydrogen was incorporated into both phases by a simple substitution of Mg2+ ⇔ 2H+, and we found that water favors bridgmanite over postperovskite by a factor of about 5:1 at conditions where an average mantle geotherm intersects the phase boundary. In the Al-bearing system, hydrogen and aluminum were coupled as Si4+ ⇔Al3+ +H+ defects into both phases, and we found that water favors postperovskite over bridgmanite in the Al-bearing system by a factor of about 3:1 at ambient mantle conditions, and by about 8:1 at colder slab conditions. Our results indicate that aluminum controls the partitioning of water between bridgmanite and postperovskite, and that aluminous postperovskite may be a potential host for primordial water in the lowermost region of the mantle. The strong partitioning of water into aluminous postperovskite over bridgmanite provides a potential mechanism for dehydration melting in the lowermost mantle that could be a source for ocean island basalts in regions of upwelling.

  18. Vitrinite reflectance data for Cretaceous marine shales and coals in the Bighorn Basin, north-central Wyoming and south-central Montana

    USGS Publications Warehouse

    Pawlewicz, Mark J.; Finn, Thomas M.

    2012-01-01

    The Bighorn Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 10,400 square miles in north-central Wyoming and south-central Montana. The purpose of this report is to present new vitrinite reflectance data collected from Cretaceous marine shales and coals in the Bighorn Basin to better characterize the thermal maturity and petroleum potential of these rocks. Ninety-eight samples from Lower Cretaceous and lowermost Upper Cretaceous strata were collected from well cuttings from wells stored at the U.S. Geological Survey (USGS) Core Research Center in Lakewood, Colorado.

  19. Strong, Multi-Scale Heterogeneity in Earth's Lowermost Mantle.

    PubMed

    Tkalčić, Hrvoje; Young, Mallory; Muir, Jack B; Davies, D Rhodri; Mattesini, Maurizio

    2015-12-17

    The core mantle boundary (CMB) separates Earth's liquid iron outer core from the solid but slowly convecting mantle. The detailed structure and dynamics of the mantle within ~300 km of this interface remain enigmatic: it is a complex region, which exhibits thermal, compositional and phase-related heterogeneity, isolated pockets of partial melt and strong variations in seismic velocity and anisotropy. Nonetheless, characterising the structure of this region is crucial to a better understanding of the mantle's thermo-chemical evolution and the nature of core-mantle interactions. In this study, we examine the heterogeneity spectrum from a recent P-wave tomographic model, which is based upon trans-dimensional and hierarchical Bayesian imaging. Our tomographic technique avoids explicit model parameterization, smoothing and damping. Spectral analyses reveal a multi-scale wavelength content and a power of heterogeneity that is three times larger than previous estimates. Inter alia, the resulting heterogeneity spectrum gives a more complete picture of the lowermost mantle and provides a bridge between the long-wavelength features obtained in global S-wave models and the short-scale dimensions of seismic scatterers. The evidence that we present for strong, multi-scale lowermost mantle heterogeneity has important implications for the nature of lower mantle dynamics and prescribes complex boundary conditions for Earth's geodynamo.

  20. Uppermost Jurassic-lower cretaceous radiolarian chert from the Tanimbar Islands (Banda Arc), Indonesia

    NASA Astrophysics Data System (ADS)

    Jasin, Basir; Haile, Neville

    This paper describes and figures Mesozoic Radiolaria from cherts in Pulau Ungar, Tanimbar Islands, eastern Indonesia. Two assemblages of Radiolaria are recognised. The lower assemblage is indicative of upper Tithonian (uppermost Jurassic) to Berriasian (lowermost Cretaceous) and the upper assemblage is of upper Valanginian to Barremian age. These are the first precise ages obtained from the Ungar Formation, a unit including sandstones with apparently good petroleum reservoir characteristics.

  1. Timescales of transport from the troposphere into the lowermost stratosphere

    NASA Astrophysics Data System (ADS)

    Boenisch, Harald; Hoor, Peter; Wernli, Heini

    2010-05-01

    The lowermost stratosphere (LMS) as part of the extratropical UTLS can be divided into dynamically and chemically distinct regions. A layer of mixed tropospheric and stratospheric tracer characteristics in the proximity of the extratropical tropopause: the extratropical tropopause transition layer (ExTL). This chemically distinct layer roughly coincides with a layer of strongly enhanced thermal stratification: the tropopause inversion layer (TIL) (Birner, 2006). The LMS above the ExTL, also named the free LMS (Bönisch et al., 2009), is less coupled to the local extratropical troposphere. Simultaneous in-situ measurements of CO2 and SF6 have been used to calculate mean transport time from the troposphere to the measurement location in the free LMS (Bönisch et al., 2009) which is on the order of months. In this study, we will use backward trajectories driven by operational ECMWF analyses wind fields to investigate the TST timescales into the LMS using the LAGRANTO scheme (Wernli and Davies, 1997). We applied a statistical data set of trajectories, which were initialized on isentropes above the 2 PVU surface up to 450K and calculated backward over 270 days (9 month) for our analysis. The results will be compared with the results from mass balance studies based on in-situ observations (Hoor et al., 2005; Bönisch et al., 2009). Furthermore, a focus is on the role of timescales of TIL formation in the LMS. Birner, T.: Fine-scale structure of the extratropical tropopause region, Journal of Geophysical Research-Atmospheres, 111, Doi 10.1029/2005jd006301, 2006. Bönisch, H., Engel, A., Curtius, J., Birner, T., and Hoor, P.: Quantifying transport into the lowermost stratosphere using simultaneous in-situ measurements of sf6 and co2, Atmospheric Chemistry and Physics, 9, 5905-5919, 2009. Hoor, P., Gurk, C., Brunner, D., Hegglin, M. I., Wernli, H., and Fischer, H.: Seasonality and extent of extratropical tst derived from in-situ co measurements during spurt, Atmospheric

  2. Significant radiative impact of volcanic aerosol in the lowermost stratosphere.

    PubMed

    Andersson, Sandra M; Martinsson, Bengt G; Vernier, Jean-Paul; Friberg, Johan; Brenninkmeijer, Carl A M; Hermann, Markus; van Velthoven, Peter F J; Zahn, Andreas

    2015-07-09

    Despite their potential to slow global warming, until recently, the radiative forcing associated with volcanic aerosols in the lowermost stratosphere (LMS) had not been considered. Here we study volcanic aerosol changes in the stratosphere using lidar measurements from the NASA CALIPSO satellite and aircraft measurements from the IAGOS-CARIBIC observatory. Between 2008 and 2012 volcanism frequently affected the Northern Hemisphere stratosphere aerosol loadings, whereas the Southern Hemisphere generally had loadings close to background conditions. We show that half of the global stratospheric aerosol optical depth following the Kasatochi, Sarychev and Nabro eruptions is attributable to LMS aerosol. On average, 30% of the global stratospheric aerosol optical depth originated in the LMS during the period 2008-2011. On the basis of the two independent, high-resolution measurement methods, we show that the LMS makes an important contribution to the overall volcanic forcing.

  3. Significant radiative impact of volcanic aerosol in the lowermost stratosphere

    PubMed Central

    Andersson, Sandra M.; Martinsson, Bengt G.; Vernier, Jean-Paul; Friberg, Johan; Brenninkmeijer, Carl A. M.; Hermann, Markus; van Velthoven, Peter F. J.; Zahn, Andreas

    2015-01-01

    Despite their potential to slow global warming, until recently, the radiative forcing associated with volcanic aerosols in the lowermost stratosphere (LMS) had not been considered. Here we study volcanic aerosol changes in the stratosphere using lidar measurements from the NASA CALIPSO satellite and aircraft measurements from the IAGOS-CARIBIC observatory. Between 2008 and 2012 volcanism frequently affected the Northern Hemisphere stratosphere aerosol loadings, whereas the Southern Hemisphere generally had loadings close to background conditions. We show that half of the global stratospheric aerosol optical depth following the Kasatochi, Sarychev and Nabro eruptions is attributable to LMS aerosol. On average, 30% of the global stratospheric aerosol optical depth originated in the LMS during the period 2008–2011. On the basis of the two independent, high-resolution measurement methods, we show that the LMS makes an important contribution to the overall volcanic forcing. PMID:26158244

  4. Tracking Lowermost Mantle Chemistry with Ultra-Low Velocity Zones

    NASA Astrophysics Data System (ADS)

    Garnero, E. J.; Rost, S.; McNamara, A. K.; Thorne, M. S.

    2009-12-01

    For over 15 years, seismologists have identified patches of rock in the lowermost mantle against the core-mantle boundary (CMB) that have reductions in seismic wavespeeds of up to 10% and greater. A variety of seismic probes have been used, which include either diffraction (e.g., SPdiffKS, Pdiff, PKPab_diff) or reflection (PcP, ScP, ScS, PKKP) of seismic waves. These ultra-low velocity zones (ULVZs) have been detected in a variety of regions, though most prominently beneath the large low shear velocity provinces (LLSVPs) in the lowermost mantle. We have assembled an up to date map of all past ULVZ studies, and several interesting points can be made: (a) ULVZs are not found everywhere; (b) not all ULVZs are beneath LLSVPs; (c) some parts of LLSVPs (where studied) lack ULVZs; and (d) the ratio of the P-wave velocity reduction to the S-wave velocity reduction is not constant. While uncertainties in ULVZ modeling are sometimes significant, it is instructive to consider the implications of the above points. Points (a) through (d) all support the possibility that ULVZs, whether or not partially molten, are chemically distinct. High resolution convection calculations infer that ULVZs act as dynamic tracers: they predominantly are swept to the LLSVP margins, but can be stranded as piles migrate in the deep mantle. We will present a framework consistent with the above observations and dynamical predictions that involves at least three unique compositions: thermochemical piles that are imaged as LLSVPs, ULVZs, and the background mantle. Thus mapping ULVZs provide us with the opportunity of mapping the structure and dynamics of chemical heterogeneity in the deepest mantle.

  5. Observations of near-bottom currents in Bornholm Basin, Slupsk Furrow and Gdansk Deep

    NASA Astrophysics Data System (ADS)

    Bulczak, A. I.; Rak, D.; Schmidt, B.; Beldowski, J.

    2016-06-01

    Dense bottom currents are responsible for transport of the salty inflow waters from the North Sea driving ventilation and renewal of Baltic deep waters. This study characterises dense currents in three deep locations of the Baltic Proper: Bornholm Basin (BB), Gdansk Basin (GB) and Slupsk Furrow (SF). These locations are of fundamental importance for the transport and pollution associated with chemical munitions deposited in BB and GB after 2nd World War. Of further importance the sub-basins are situated along the pathway of dense inflowing water.Current velocities were measured in the majority of the water column during regular cruises of r/v Oceania and r/v Baltica in 2001-2012 (38 cruises) by 307 kHz vessel mounted (VM), downlooking ADCP. Additionally, the high-resolution CTD and oxygen profiles were collected. Three moorings measured current velocity profiles in SF and GB over the summer 2012. In addition, temperature, salinity, oxygen and turbidity were measured at about 1 m above the bottom in GB. The results showed that mean current speed across the Baltic Proper was around 12 cm s-1 and the stronger flow was characteristic to the regions located above the sills, in the Bornholm and Slupsk Channels, reaching on average about 20 cm s-1. The results suggest that these regions are important for the inflow of saline waters into the eastern Baltic and are the areas of intense vertical mixing. The VM ADCP observations indicate that the average near-bottom flow across the basin can reach 35±6 cm s-1. The mooring observations also showed similar near-bottom flow velocities. However, they showed that the increased speed of the near-bottom layer occurred frequently in SF and GB during short time periods lasting for about few to several days or 10-20% of time. The observations showed that the bottom mixed layer occupies at least 10% of the water column and the turbulent mixing induced by near-bottom currents is likely to produce sediment resuspension and transport

  6. Spatial and temporal habitat partitioning by zooplankton in the Bornholm Basin (central Baltic Sea)

    NASA Astrophysics Data System (ADS)

    Schulz, Jan; Peck, Myron A.; Barz, Kristina; Schmidt, Jörn Oliver; Hansen, Frank C.; Peters, Janna; Renz, Jasmin; Dickmann, Miriam; Mohrholz, Volker; Dutz, Jörg; Hirche, Hans-Jürgen

    2012-12-01

    The deep basins in the Baltic Sea such as the Bornholm Basin (BB) are subject to seasonal changes in the strength of physico-chemical stratification. These depth-related changes in key abiotic factors are strong drivers of habitat partitioning by the autochthonous zooplankton community. Species-specific ecophysiological preferences often result in both seasonal and inter-annual changes in vertical abundance that, when combined with depth-specific water currents, also lead to horizontal differences in spatial distribution. The present study documented the seasonal and depth-specific changes in the abundance and species composition of zooplankton in the BB based upon broad-scale survey data: 832 vertically-resolved (10 m) multinet samples collected at nine stations between March 2002 and May 2003. Changes in the zooplankton community were significantly correlated with changes in ambient hydrography. Each of five taxa (Bosmina coregoni maritima, Acartia spp., Pseudocalanus spp., Temora longicornis, Synchaeta spp.) contributed >10% to the zooplankton community composition. The appearance of cladocerans was mainly correlated with the phenology of thermocline development in the spring. The cladoceran B. coregoni maritima was a dominant member of this community during the warmest periods, preferring the surface waters above the thermocline. Copepods exhibited distinct, ontogenetic and seasonal changes in their distribution. The rotifers (Synchaeta sp.) were the most abundant zooplankton in May. Based on a multivariate approach and the evaluation of vertical distribution patterns, five major habitat utilisation modes were identified that were based, to a large extent, on the dynamics of thermal and haline stratification of the Baltic Sea. Our statistical analysis of one of the most thorough datasets collected on Baltic zooplankton in recent decades reveals some of the factors that make this stratified system highly dynamic with respect to the spatial overlap between

  7. A Glass Transition in the Lowermost Outer Core?

    NASA Astrophysics Data System (ADS)

    Cormier, V. F.

    2008-12-01

    New theories for the viscosity of metallic melts at core pressures and temperatures, together with observations of translational modes of oscillation of the Earth's solid inner core, have suggested that the viscosity of Earth's liquid outer core may approach 1011 Pa-sec near the inner core boundary. If the viscosity of the lowermost 450 km of the outer core (F region) were in this range, it may be in a glassy state, characterized by a frequency dependent shear modulus and increased viscoselastic attenuation. The amplitudes of compressional seismic waves reflected from the inner core boundary (PKiKP) and diffracted around its upper surface (PKP-C diff) can be used to explore the range of allowable non-zero shear modulus and viscoelastic attenuation consistent with seismic observations. The absolute amplitudes of partially reflected PKiKP in the 30-80° range are consistent with a shear modulus at the bottom of the F region as high as one-third of that in the crystallized inner core. The frequency dependent decay of PKP-Cdiff phase at distances greater than 155 ° is consistent with attenuation in a metallic slurry of viscosity on the order 1011 Pa-sec, with the effect of increased viscoelastic attenuation trading off with the effect of increased shear modulus. Confirmation of lateral variations of seismic velocities and attenuation in the F region would also support high viscosity in F. In modeling PKiKP absolute amplitudes, care must be taken in modeling the incident source spectrum, and tradeoffs exist in the shear modulus and density discontinuities at the inner core boundary. In modeling distance decay of PKP-Cdiff, the competing effects of inner core topography need to be assessed. With these caveats, seismic body waves cannot reject the hypothesis of a glassy region in the lowermost outer core. If a glassy F region exists, its effect on the observed flattening of the depth gradient in compressional wave velocity must be included in estimates of the depth

  8. Mid-Cretaceous alluvial-plain incision related to eustasy, southeastern Colorado Plateau

    USGS Publications Warehouse

    Aubrey, W.M.

    1989-01-01

    Eustatic effects on the deposition of ancient coastal and marine rocks are well known, but eustasy also can affect depositional patterns and processes well inland from the sea and play an important role in the development of nonmarine unconformities. In the southeastern part of the Colorado Plateau, fluvial rocks of the lowermost Cenomanian (lowermost Upper Cretaceous) Encinal Canyon Member at the base of the Dakota Sandstone fill paleovalleys incised into underlying formations. In the latter part of the Early Cretaceous, an epicontinental sea lay about 240 km east of the southeastern Colorado Plateau and was base level for streams in the plateau region. Near the end of the Early Cretaceous, sea level fell, base level was lowered, and streams incised valleys into alluvial deposits of the Burro Canyon Formation and into older formations. The resulting incised paleodrainage surface was preserved as the sub-Dakota unconformity when the succeeding sea-level rise, in earliest Late Cretaceous time, caused Dakota streams to aggrade and backfill the paleovalleys with alluvial sediments of the Encinal Canyon Member. -from Author

  9. Transport in the Subtropical Lowermost Stratosphere during CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Pittman, Jasna V.; Weinstock, elliot M.; Oglesby, Robert J.; Sayres, David S.; Smith, Jessica B.; Anderson, James G.; Cooper, Owen R.; Wofsy, Steven C.; Xueref, Irene; Gerbig, Cristoph; hide

    2007-01-01

    We use in situ measurements of water vapor (H2O), ozone (O3), carbon dioxide (CO2), carbon monoxide (CO), nitric oxide (NO), and total reactive nitrogen (NO(y)) obtained during the CRYSTAL-FACE campaign in July 2002 to study summertime transport in the subtropical lowermost stratosphere. We use an objective methodology to distinguish the latitudinal origin of the sampled air masses despite the influence of convection, and we calculate backward trajectories to elucidate their recent geographical history. The methodology consists of exploring the statistical behavior of the data by performing multivariate clustering and agglomerative hierarchical clustering calculations, and projecting cluster groups onto principal component space to identify air masses of like composition and hence presumed origin. The statistically derived cluster groups are then examined in physical space using tracer-tracer correlation plots. Interpretation of the principal component analysis suggests that the variability in the data is accounted for primarily by the mean age of air in the stratosphere, followed by the age of the convective influence, and lastly by the extent of convective influence, potentially related to the latitude of convective injection [Dessler and Sherwuud, 2004]. We find that high-latitude stratospheric air is the dominant source region during the beginning of the campaign while tropical air is the dominant source region during the rest of the campaign. Influence of convection from both local and non-local events is frequently observed. The identification of air mass origin is confirmed with backward trajectories, and the behavior of the trajectories is associated with the North American monsoon circulation.

  10. Transport in the Subtropical Lowermost Stratosphere during CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Pittman, Jasna V.; Weinstock, elliot M.; Oglesby, Robert J.; Sayres, David S.; Smith, Jessica B.; Anderson, James G.; Cooper, Owen R.; Wofsy, Steven C.; Xueref, Irene; Gerbig, Cristoph; Daube, Bruce C.; Richard, Erik C.; Ridley, Brian A.; Weinheimer, Andrew J.; Loewenstein, Max; Jost, Hans-Jurg; Lopez, Jimena P.; Mahoney, Michael J.; Thompson, Thomas L.; Hargrove, William W.; Hoffman, Forrest M.

    2007-01-01

    We use in situ measurements of water vapor (H2O), ozone (O3), carbon dioxide (CO2), carbon monoxide (CO), nitric oxide (NO), and total reactive nitrogen (NO(y)) obtained during the CRYSTAL-FACE campaign in July 2002 to study summertime transport in the subtropical lowermost stratosphere. We use an objective methodology to distinguish the latitudinal origin of the sampled air masses despite the influence of convection, and we calculate backward trajectories to elucidate their recent geographical history. The methodology consists of exploring the statistical behavior of the data by performing multivariate clustering and agglomerative hierarchical clustering calculations, and projecting cluster groups onto principal component space to identify air masses of like composition and hence presumed origin. The statistically derived cluster groups are then examined in physical space using tracer-tracer correlation plots. Interpretation of the principal component analysis suggests that the variability in the data is accounted for primarily by the mean age of air in the stratosphere, followed by the age of the convective influence, and lastly by the extent of convective influence, potentially related to the latitude of convective injection [Dessler and Sherwuud, 2004]. We find that high-latitude stratospheric air is the dominant source region during the beginning of the campaign while tropical air is the dominant source region during the rest of the campaign. Influence of convection from both local and non-local events is frequently observed. The identification of air mass origin is confirmed with backward trajectories, and the behavior of the trajectories is associated with the North American monsoon circulation.

  11. Geologic and biostratigraphic framework of the non-marine Cretaceous-Tertiary boundary interval in western North America

    USGS Publications Warehouse

    Nichols, D.J.

    1990-01-01

    Palynologically defined Cretaceous-Tertiary boundary sites in nonmarine rocks in western North America exhibit similar characteristics. All are marked by abrupt disappearance of the regional uppermost Cretaceous palynoflora at the level of an iridium anomaly; most also yeild shock-metamorphosed minerals. All are in coal-bearing, fluvial or paludal depositional settings, although the boundary horizon may be below, within, above, or at some stratigraphic distance from coal seams. At many sites the lowermost Tertiary beds contain assemblages overwhelmed by fern spores that, together with extinctions of some groups of angiosperms, are taken as evidence of regional devastation of terrestrial plant communities and subsequent recolonization by pioneer species. ?? 1990.

  12. Biostratigraphy of the Cretaceous/Tertiary boundary in the Sirwan Valley (Sulaimani Region, Kurdistan, NE Iraq)

    NASA Astrophysics Data System (ADS)

    Sharbazheri, Khalid Mahmood; Ghafor, Imad Mahmood; Muhammed, Qahtan Ahmad

    2009-10-01

    The Cretaceous/Tertiary (K/T) boundary sequence, which crops out in the studied area is located within the High Folded Zone, in the Sirwan Valley, northeastern Iraq. These units mainly consist of flysch and flysch-type successions of thick clastic beds of Tanjero/Kolosh Formations. A detailed lithostratigraphic study is achieved on the outcropping uppermost part of the Upper Cretaceous successions (upper part of Tanjero Formation) and the lowermost part of the Kolosh Formation. On the basis of the identified planktonic foraminiferal assemblages, five biozones are recorded from the uppermost part of Tanjero Formation and four biozones from the lower part of the Kolosh Formation (Lower Paleocene) in the Sirwan section. The biostratigraphic correlations based on planktonic foraminiferal zonations showed a comparison between the biostratigraphic zones established in this study and other equivalents of the commonly used planktonic zonal scheme around the Cretaceous/Tertiary boundary in and outside Iraq.

  13. The Lower Cretaceous Chinkeh Formation: A frontier-type play in the Liard basin of western Canada

    SciTech Connect

    Leckie, D.A. ); Potocki, D.J. ); Visser, K. )

    1991-08-01

    The Lower Cretaceous Liard basin in western Canada covers an area of 9,500 km{sup 2} (3,668 mi{sup 2}) but is relatively unexplored despite its size. The present-day expression of the basin, which formed during the latest Cretaceous to early Tertiary, trends north-south and is delineated by the outcrop of the coarse-clastic Upper Cretaceous Dunvegan Formation. The lowermost Cretaceous unit, herein named the Chinkeh Formation, is up to 32 m (105 ft) thick and unconformably overlies older Paleozoic strata. The Chinkeh Formation contains four major lithotypes: (1) conglomeratic breccia interpreted as debris-flow or talus deposits, (2) interbedded coal, carbonaceous as nonmarine valley fill or channel deposits, (3) conglomeratic lag related to marine deposits, (3) conglomeratic lag related to marine transgression, and (4) upward-coarsening sandstone interpreted as abandoned shoreline deposits. Cretaceous strata in the Liard basin have gave petroleum source-rock and reservoir potential, and hydrocarbons may be present in sandstone of the Chinkeh Formation. Potential play types include stratigraphic traps formed by incised-valley deposits and shallow-marine sandstone pinching out laterally into marine shales of the Garbutt Formation. A potential structural play may occur along the Bovie fault zone where reservoirs may abut against a shale seal on the eastern side of the fault. Potential source rocks include the lowermost Garbutt Formation and underlying Triassic Toad Garbutt formations. The Chinkeh Formation sandstone has porosity values of 8-18%.

  14. Phase transition in aluminous silica in the lowermost mantle

    NASA Astrophysics Data System (ADS)

    Tronnes, R. G.; Andrault, D.; Konopkova, Z.; Morgenroth, W.; Liermann, H.

    2012-12-01

    CaCl2-phase and via extra interstitial Al in seifertite. That would result in a ~1.5% density increase at the transition pressure for silica containing 5 wt% Al2O3. This value is similar to the estimated difference in density between peridotitic mantle and basaltic lithologies in the lowermost mantle. References: [1] Hirose et al. 2005, EPSL; [2] Murakami et al. 2003, GRL

  15. Palynological evidence of effects of the terminal Cretaceous event on terrestrial floras in western North America

    NASA Astrophysics Data System (ADS)

    Nichols, Douglas J.; Farley Fleming, R.; Frederiksen, Norman O.

    New and previously published palynomorph distribution data on 225 taxa from uppermost Cretaceous (K) and lowermost Tertiary (T) nonmarine strata from New Mexico to Arctic Canada and Alaska were used to evaluate the effects of the terminal Cretaceous event (TCE) on terrestrial plant life. Analyses considered presence/absence, relative abundance, species diversity, and endemism, and employed Q-mode cluster analysis. The latest Cretaceous palynoflora showed gradual, continuous variation in composition from paleolatitudes (pl) 45° to 85° N. Palynofloristic subprovinces are not easily distinguished empirically, but three are recognizable quantitatively. Abrupt disappearance of many distinctive species marked the K-T boundary, and the earliest Tertiary palynoflora was considerably reduced in diversity. However, most regionally distributed taxa, and many endemic taxa of the polar and midlatitude subprovinces, survived the TCE and three subprovinces are recognizable in the same geographic positions as in the latest Cretaceous. Relative abundances of pteridophytes and gymnosperms were slightly greater in the early Tertiary than in the latest Cretaceous, probably due in part to change in sedimentary regime, but thermophilic angiosperm taxa persisted at least as far north as pl 60° N. These data support the hypothesis that a short-lived but profound ecological crisis at the end of the Cretaceous resulted in major reorganization of the flora. The data are inconsistent with gradual climatic deterioration. Extinction was greater among angiosperms than among gymnosperms or pteridophytes, but whether or not the entire flora suffered a mass extinction remains debatable.

  16. Hydrology of the uppermost Cretaceous and the lowermost Paleocene rocks in the Hilight oil field, Campbell County, Wyoming

    USGS Publications Warehouse

    Lowry, Marlin E.

    1973-01-01

    The lithologic equivalents of the Fox Hills Sandstone, Lance Formation, and the Tullock member of the Fort Union Formation, as mapped on the east side of the Powder River Basin, can be recognized throughout the basin; however, the formations are in hydraulic connection and cannot be treated as separate aquifers. Recharge to the Lance-Fox Hills aquifer in the Hilight oil field is largely by vertical movement; there is no recharge from the Lance and Fox Hills outcrops on the east side of the basin to the formations in the Hilight area. At the and of the central Hilight water-flood project, the maximum possible drawdown resulting from the pumping of any one well at a distance of l0 miles from the pumped well, would be about 15 feet, if the projected pumping were evenly distributed among the project wells. Within a few years after pumping has ceased, water in the project wells will approach the levels present before pumping began. The only irreversible effect of pumping will be the compaction of shale, with attendant subsidence, because the water derived from the shale probably will not be replaced.

  17. Occurrence of Ice Supersaturations, Ice Clouds, and Ternary Aerosols in the Arctic Lowermost Stratosphere

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Selkirk, Henry; Pfister, Leonhard; Sachee, Glen; Podolske, James; Anderson, Bruce; Gore, Warren J. (Technical Monitor)

    2000-01-01

    Relative humidity, aerosol concentration, and ice crystals all have important impacts on chemistry and radiative transfer in the lowermost stratosphere. In this study, we have combined SOLVE measurements with meteorological analyses to investigate the statistics of humidity, aerosols, and clouds in the arctic lower stratosphere. First, we will present a statistical analysis of relative humidity with respect to ice in the lowermost stratosphere, used on the DC-8 in situ measurements. We will show examples of ice supersaturation well within the stratosphere. Generally, these cases were associated with extremely low temperatures near the tropopause. Next, we will discuss the climatological occurrence frequency of tropopause temperatures low enough for ice saturation even with typically low stratospheric water vapor mixing ratios. Really, we will examine case studies of ice clouds observed in the lowermost stratosphere during SOLVE. We will discuss the possible origin of these clouds (i.e., precipitation from higher type II PSCs, injection of tropospheric air into the lower stratosphere, etc.).

  18. Geochemical interpretation of the Precambrian basement and overlying Cambrian sandstone on Bornholm, Denmark: Implications for the weathering history

    NASA Astrophysics Data System (ADS)

    Zhou, Lingli; Friis, Henrik; Yang, Tian; Nielsen, Arne Thorshøj

    2017-08-01

    A geochemical study of the Precambrian basement granites from the Borggård borehole on Bornholm, Denmark, suggests that the granites were moderately weathered (Chemical Index of Alteration-CIA = 66-71) during subaerial exposure in a humid climate. The microcline is well preserved, whereas plagioclase was thoroughly altered to clay minerals (Plagioclase Index of Alteration-PIA = 93-99) which is likely due to its original Ca-rich composition. The primary Fe-Ti accessory minerals were oxidized to hematite and anatase. Evidence from REE distribution patterns and immobile element ratios, e.g. Zr/Hf and Nb/Ta, between the weathered basement granite from the Borggård borehole and regional granitoids on Bornholm, constrains the Svaneke Granite as the original basement lithology. A tau (τ) mass transport model (assuming immobile Ti) was applied to quantify the mass transfer during weathering of the basement granite. The results show a depletion of major elements in the following order: Na > Ca > Mg > Si; Al and Ti are immobile and stay constant; K shows sample dependent enrichment or depletion; Fe is slightly enriched. The Cambrian sandstone overlying the basement in the Borggård borehole, assigned to the Gadeby Member of the Nexø Formation, is feldspathic litharenite-litharenite in composition. Provenance indicators including (Gd/Yb)N, Zr/Hf and Nb/Ta ratios and petrological features indicate that source material was derived from both weathered and fresh basement granite of intermediate composition. The Gadeby Member equivalents in Germany, the basal lower Cambrian Adlergrund Konglomerat Member (AKM) in the offshore G-14 well north of Rügen, and the approximately coeval Lubmin Sandstein Formation (LSF) from the Loissin-1 borehole, mainland Germany, must have been sourced from a basement with compositions comparable to the intermediate group of the regional granitoids on Bornholm. The source materials for the AKM (CIA = 71-72, PIA = 94-96), the Gadeby Member in the

  19. Probing seismic anisotropy in the lowermost mantle beneath the Central Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Pisconti, Angelo; Thomas, Christine; Wookey, James

    2017-04-01

    The D" region, the lowermost part of the Earth's mantle, exhibits complex structures which have been related to slabs graveyard and birth place of uprising plumes all through the mantle. These structures are likely due to flow in the mantle and investigating the anisotropy can help to determine flow and mineralogy of the D". Azimuthal anisotropy, rather than simple vertical transverse isotropy, have been recently detected using either shear wave splitting or polarities from reflected waves from the D" discontinuity. In this work, we use both methods in order to better constrain anisotropy and deformation in the lowermost mantle beneath the Atlantic Ocean. We find a reflector in the lowermost mantle that shows a complex pattern in reflected wave polarities that in some cases travel out-of-plane. Applying ScS-S differential splitting method, we also detect a tilted fast polarization. Back projecting waves to their original bounce points, modelling out of plane waves, finding cross paths and modelling of anisotropy, will help us to better understand structure and flow of the lowermost mantle beneath the Atlantic Ocean.

  20. Magnetostratigraphy of the Lowermost Paleocene Fort Union Formation in the Williston Basin of North Dakota: Base of a Terrestrial Reference Section for Early Cenozoic Global Change

    NASA Astrophysics Data System (ADS)

    Peppe, D. J.; Evans, D. D.

    2006-05-01

    Within the North Dakota Little Missouri Badlands, a continuous succession of Cretaceous through lowermost Eocene age sediments exposes a nearly complete terrestrial Paleocene record. Using the K-T boundary as the basal datum, a ca.180 meter composite section of the lowermost Fort Union Formation has been constructed. Paleomagnetic samples that have been analyzed from this section demonstrate a series of geomagnetic reversals that can be correlated from C29r through C28n of the Geomagnetic Polarity Time Scale. Based on these paleomagnetic data, the mean sedimentation rates during the interval from the K-T boundary to the top of 28r are estimated to be ca. 100 m/Myr. These data have allowed us to calibrate the two tongues of the marine Cannonball Member to within C29n and C28r respectively, and identify a major change in the composition and dominant taxa in the megafloral record near the end of C28r. One potential implication of this result, pending further data analysis and correlations to fossil-bearing sections, is the temporal restriction of the Puercan-Torrejonian 1 North American Land Mammal "Ages" (NALMAs) by nearly a factor of two relative to previous estimates (i.e. from ca. 2 Myr to ca. 1 Myr). This would in turn suggest that post-extinction mammal speciation occurred twice as fast as previously supposed. The ultimate aim of this research is to develop a high-precision chronostratigraphic reference section for the Paleocene of the Rocky Mountain Region of North America using lithostratigraphy, magnetostratigraphy, pollen and megafloral biostratigraphy, chemostratigraphy, and chronostratigraphy, that can be used to determine the temporal extent of floral and faunal radiation after the Cretaceous-Paleogene extinctions, and to assess patterns of floral and faunal diversity and composition in response to numerous climatic changes. Furthermore, we hope to use this chronostratigraphic section for comparisons with contemporaneous sections worldwide, which will

  1. Lowermost mantle anisotropy and deformation along the boundary of the African LLSVP

    NASA Astrophysics Data System (ADS)

    Lynner, Colton; Long, Maureen D.

    2014-05-01

    Shear wave splitting of SK(K)S phases is often used to examine upper mantle anisotropy. In specific cases, however, splitting of these phases may reflect anisotropy in the lowermost mantle. Here we present SKS and SKKS splitting measurements for 233 event-station pairs at 34 seismic stations that sample D″ beneath Africa. Of these, 36 pairs show significantly different splitting between the two phases, which likely reflects a contribution from lowermost mantle anisotropy. The vast majority of discrepant pairs sample the boundary of the African large low shear velocity province (LLSVP), which dominates the lower mantle structure beneath this region. In general, we observe little or no splitting of phases that have passed through the LLSVP itself and significant splitting for phases that have sampled the boundary of the LLSVP. We infer that the D″ region just outside the LLSVP boundary is strongly deformed, while its interior remains undeformed (or weakly deformed).

  2. Is There Evidence of Convectively Injected Water Vapor in the Lowermost Stratosphere Over Boulder, Colorado?

    NASA Astrophysics Data System (ADS)

    Hurst, D. F.; Rosenlof, K. H.; Davis, S. M.; Hall, E. G.; Jordan, A. F.

    2014-12-01

    Anderson et al. (2012) reported the frequent presence of convectively injected water vapor in the lowermost stratosphere over North America during summertime, based on aircraft measurements. They asserted that enhanced catalytic ozone destruction within these wet stratospheric air parcels presents a concern for UV dosages in populated areas, especially if the frequency of deep convective events increases. Schwartz et al.(2013) analyzed 8 years of more widespread Aura Microwave Limb Sounder (MLS) measurements of lower stratospheric water vapor over North America and concluded that anomalously wet (>8 ppm) air parcels were present only 2.5% of the time during July and August. However, given the 3-km vertical resolution of MLS water vapor retrievals in the lowermost stratosphere, thin wet layers deposited by overshooting convection may be present but not readily detectable by MLS. Since 1980 the balloon-borne NOAA frost point hygrometer (FPH) has produced nearly 400 high quality water vapor profiles over Boulder, Colorado, at 5-m vertical resolution from the surface to the middle stratosphere. The 34-year record of high-resolution FPH profiles obtained over Boulder during summer months is evaluated for evidence of convectively injected water vapor in the lowermost stratosphere. A number of approaches are used to assess the contributions of deep convection to the Boulder stratospheric water vapor record. The results are compared to those based on MLS profiles over Boulder and the differences are discussed. Anderson, J. G., D. M. Wilmouth, J. B. Smith, and D. S. Sayres (2012), UV dosage levels in summer: Increased risk of ozone loss from convectively injected water vapor, Science, 337(6096), 835-839, doi:10.1126/science.1222978. Schwartz, M. J., W. G. Read, M. L. Santee, N. J. Livesey, L. Froidevaux, A. Lambert, and G. L. Manney (2013), Convectively injected water vapor in the North American summer lowermost stratosphere, Geophys. Res. Lett., 40, 2316-2321, doi:10

  3. Seasonal Variability of Middle Latitude Ozone in the Lowermost Stratosphere Derived from Probability Distribution Functions

    NASA Technical Reports Server (NTRS)

    Cerniglia, M. C.; Douglass, A. R.; Rood, R. B.; Sparling, L. C.; Nielsen, J. E.

    1999-01-01

    We present a study of the distribution of ozone in the lowermost stratosphere with the goal of understanding the relative contribution to the observations of air of either distinctly tropospheric or stratospheric origin. The air in the lowermost stratosphere is divided into two population groups based on Ertel's potential vorticity at 300 hPa. High [low] potential vorticity at 300 hPa suggests that the tropopause is low [high], and the identification of the two groups helps to account for dynamic variability. Conditional probability distribution functions are used to define the statistics of the mix from both observations and model simulations. Two data sources are chosen. First, several years of ozonesonde observations are used to exploit the high vertical resolution. Second, observations made by the Halogen Occultation Experiment [HALOE) on the Upper Atmosphere Research Satellite [UARS] are used to understand the impact on the results of the spatial limitations of the ozonesonde network. The conditional probability distribution functions are calculated at a series of potential temperature surfaces spanning the domain from the midlatitude tropopause to surfaces higher than the mean tropical tropopause [approximately 380K]. Despite the differences in spatial and temporal sampling, the probability distribution functions are similar for the two data sources. Comparisons with the model demonstrate that the model maintains a mix of air in the lowermost stratosphere similar to the observations. The model also simulates a realistic annual cycle. By using the model, possible mechanisms for the maintenance of mix of air in the lowermost stratosphere are revealed. The relevance of the results to the assessment of the environmental impact of aircraft effluence is discussed.

  4. Seasonal Variability of Middle Latitude Ozone in the Lowermost Stratosphere Derived from Probability Distribution Functions

    NASA Technical Reports Server (NTRS)

    Cerniglia, M. C.; Douglass, A. R.; Rood, R. B.; Sparling, L. C..; Nielsen, J. E.

    1999-01-01

    We present a study of the distribution of ozone in the lowermost stratosphere with the goal of understanding the relative contribution to the observations of air of either distinctly tropospheric or stratospheric origin. The air in the lowermost stratosphere is divided into two population groups based on Ertel's potential vorticity at 300 hPa. High [low] potential vorticity at 300 hPa suggests that the tropopause is low [high], and the identification of the two groups helps to account for dynamic variability. Conditional probability distribution functions are used to define the statistics of the mix from both observations and model simulations. Two data sources are chosen. First, several years of ozonesonde observations are used to exploit the high vertical resolution. Second, observations made by the Halogen Occultation Experiment [HALOE] on the Upper Atmosphere Research Satellite [UARS] are used to understand the impact on the results of the spatial limitations of the ozonesonde network. The conditional probability distribution functions are calculated at a series of potential temperature surfaces spanning the domain from the midlatitude tropopause to surfaces higher than the mean tropical tropopause [about 380K]. Despite the differences in spatial and temporal sampling, the probability distribution functions are similar for the two data sources. Comparisons with the model demonstrate that the model maintains a mix of air in the lowermost stratosphere similar to the observations. The model also simulates a realistic annual cycle. By using the model, possible mechanisms for the maintenance of mix of air in the lowermost stratosphere are revealed. The relevance of the results to the assessment of the environmental impact of aircraft effluence is discussed.

  5. Seasonal Variability of Middle Latitude Ozone in the Lowermost Stratosphere Derived from Probability Distribution Functions

    NASA Technical Reports Server (NTRS)

    Cerniglia, M. C.; Douglass, A. R.; Rood, R. B.; Sparling, L. C..; Nielsen, J. E.

    1999-01-01

    We present a study of the distribution of ozone in the lowermost stratosphere with the goal of understanding the relative contribution to the observations of air of either distinctly tropospheric or stratospheric origin. The air in the lowermost stratosphere is divided into two population groups based on Ertel's potential vorticity at 300 hPa. High [low] potential vorticity at 300 hPa suggests that the tropopause is low [high], and the identification of the two groups helps to account for dynamic variability. Conditional probability distribution functions are used to define the statistics of the mix from both observations and model simulations. Two data sources are chosen. First, several years of ozonesonde observations are used to exploit the high vertical resolution. Second, observations made by the Halogen Occultation Experiment [HALOE] on the Upper Atmosphere Research Satellite [UARS] are used to understand the impact on the results of the spatial limitations of the ozonesonde network. The conditional probability distribution functions are calculated at a series of potential temperature surfaces spanning the domain from the midlatitude tropopause to surfaces higher than the mean tropical tropopause [about 380K]. Despite the differences in spatial and temporal sampling, the probability distribution functions are similar for the two data sources. Comparisons with the model demonstrate that the model maintains a mix of air in the lowermost stratosphere similar to the observations. The model also simulates a realistic annual cycle. By using the model, possible mechanisms for the maintenance of mix of air in the lowermost stratosphere are revealed. The relevance of the results to the assessment of the environmental impact of aircraft effluence is discussed.

  6. Seasonal Variability of Middle Latitude Ozone in the Lowermost Stratosphere Derived from Probability Distribution Functions

    NASA Technical Reports Server (NTRS)

    Cerniglia, M. C.; Douglass, A. R.; Rood, R. B.; Sparling, L. C.; Nielsen, J. E.

    1999-01-01

    We present a study of the distribution of ozone in the lowermost stratosphere with the goal of understanding the relative contribution to the observations of air of either distinctly tropospheric or stratospheric origin. The air in the lowermost stratosphere is divided into two population groups based on Ertel's potential vorticity at 300 hPa. High [low] potential vorticity at 300 hPa suggests that the tropopause is low [high], and the identification of the two groups helps to account for dynamic variability. Conditional probability distribution functions are used to define the statistics of the mix from both observations and model simulations. Two data sources are chosen. First, several years of ozonesonde observations are used to exploit the high vertical resolution. Second, observations made by the Halogen Occultation Experiment [HALOE) on the Upper Atmosphere Research Satellite [UARS] are used to understand the impact on the results of the spatial limitations of the ozonesonde network. The conditional probability distribution functions are calculated at a series of potential temperature surfaces spanning the domain from the midlatitude tropopause to surfaces higher than the mean tropical tropopause [approximately 380K]. Despite the differences in spatial and temporal sampling, the probability distribution functions are similar for the two data sources. Comparisons with the model demonstrate that the model maintains a mix of air in the lowermost stratosphere similar to the observations. The model also simulates a realistic annual cycle. By using the model, possible mechanisms for the maintenance of mix of air in the lowermost stratosphere are revealed. The relevance of the results to the assessment of the environmental impact of aircraft effluence is discussed.

  7. Transport Timescales in the Lowermost Stratosphere: Observations and Results from ECHAM5/MESSy

    NASA Astrophysics Data System (ADS)

    Hoor, P.; Fischer, H.; Joeckel, P.; Lelieveld, J.; Brenninkmeijer, C.; Gurk, C.; Hegglin, M. I.; Brunner, D.; Krebsbach, M.; Schiller, C.; Bruehl, C.; Steil, B.

    2006-12-01

    We present a comparison of high resolution in-situ measurements in the lowermost stratosphere over Europe and model results obtained with the new chemistry circulation model ECHAM5/MESSy. Model calculations were performed using T42 spectral resolution and 90 vertical levels from the surface up to 80 km providing a vertical resolution of about 600 m in the extratropical lowermost stratosphere. The model was nudged in the troposphere up to 200 hPa using operational ECMWF data. We compare in particular CO, CO2, N2O and O3 data with in-situ observations from SPURT between 2001 and 2003 with corresponding model data interpolated in time and space. Trace gas profiles and correlations of in-situ observations and modelled data show a remarkable agreement. To deduce transport time scales we compare probability density functions of trace gases in different layers relative to the dynamical tropopause and on N2O-isopleths. To extend the data to a global scale and investigate transport time scales we will use NMVOC data from CARIBIC and compare them with model derived data. The CO2 seasonal cycle and its propagation in the stratosphere provides further information on transport timescales from the tropopause to the lowermost stratosphere. The good agreement between the model and the SPURT observations allows to investigate transport timescales in the UTLS region on global scales.

  8. Cretaceous polar climates

    SciTech Connect

    Ziegler, A.M.; Horrell, M.A.; Lottes, A.L.; Gierlowski, T.C.

    1988-01-01

    The Cretaceous, like most Phanerozooic periods, was characterized by ice-free poles. Some still argue that the glacier and sea ice were there, and that the tillites, etc, have been eroded or remain undiscovered. However, diverse floras, dense forests, coal-forming cypress swamps, and dinosaurs, crocodilians, and lungfish are known from areas that were certainly at 75/sup 0/-80/sup 0/ north and south paleolatitude in the Cretaceous, implying that the coastal basins did not experience hard freezes. No deep marine connections to the North Pole existed in the Cretaceous, so oceanic polar heat transport can be discounted. However, the five north-south trending epeiric or rift-related seaways that connected or nearly connected the Tethys to the Arctic would have dampened the seasonal temperature cycle, bringing maritime climates deep into the North American and Eurasian continents and, more importantly, would have served as an energy source and channel for winter storms, much as the Gulf Stream does today. Cyclones have a natural tendency to move poleward, because of the increase in the Coriolis Paramteter, and they transport both sensible and latent heat. The coastal regions of the relatively warm polar ocean in the Cretaceous would have received continuous precipitation during the winter because cyclones would be entering from as many as five directions. Coastal rainfall would also have been abundant in the summer but for a different reason; the land-sea temperature profile would reverse, with the warm land surface drawing in moisture, while clear ice-free conditions over the ocean would allow for solar warming.

  9. Cretaceous polar climates

    SciTech Connect

    Ziegler, A.M.; Horrell, M.A.; Lottes, A.L.; Gierlowski, T.C.

    1988-02-01

    The Cretaceous, like most Phanerozoic periods, was characterized by ice-free poles. Some still argue that the glaciers and sea ice were there, and that the tillites, etc, have been eroded or remain undiscovered. However, diverse floras, dense forests, and coal-forming cypress swamps, and dinosaurs, crocodilians, and lungfish are known from areas that were certainly at 75/degree/-80/degree/ north and south paleolatitude in the Cretaceous, implying that the coastal basins did not experience hard freezes. No deep marine connections to the North Pole existed in the Cretaceous, so oceanic polar heat transport can be discounted. However, the five north-south trending epeiric or rift-related seaways that connected or nearly connected the Tethys to the Arctic would have dampened the seasonal temperature cycle, bring maritime climates deep into the North American and Eurasian continents and, more importantly, would have served as an energy source and channel for winter storms, much as the Gulf Stream does today. Cyclones have a natural tendency to move poleward, because of the increase in the Coriolis Parameter, and they transport both sensible and latent heat. The coastal regions of the relatively warm polar ocean in the Cretaceous would have received continuous precipitation during the winter because cyclones would be entering from as many as five directions. Coastal rainfall would also have been abundant in the summer but for a different reason; the land-sea temperature profile would reverse, with the warm land surface drawing in moisture, while clear ice-free conditions over the ocean would allow for solar warming.

  10. Consequences of artificial deepwater ventilation in the Bornholm Basin for oxygen conditions, cod reproduction and benthic biomass - a model study

    NASA Astrophysics Data System (ADS)

    Stigebrandt, A.; Rosenberg, R.; Råman Vinnå, L.; Ödalen, M.

    2015-01-01

    We develop and use a circulation model to estimate hydrographical and ecological changes in the isolated basin water of the Bornholm Basin. By pumping well-oxygenated so-called winter water to the greatest depth, where it is forced to mix with the resident water, the rate of deepwater density reduction increases as well as the frequency of intrusions of new oxygen-rich deepwater. We show that pumping 1000 m3 s-1 should increase the rates of water exchange and oxygen supply by 2.5 and 3 times, respectively. The CRV (cod reproduction volume), the volume of water in the isolated basin meeting the requirements for successful cod reproduction (S > 11, O2 > 2 mL L-1), should every year be greater than 54 km3, which is an immense improvement, since it has been much less in certain years. Anoxic bottoms should no longer occur in the basin, and hypoxic events will become rare. This should permit extensive colonization of fauna on the earlier periodically anoxic bottoms. Increased biomass of benthic fauna should also mean increased food supply to economically valuable demersal fish like cod and flatfish. In addition, re-oxygenation of the sediments should lead to increased phosphorus retention by the sediments.

  11. Consequences of artificial deepwater ventilation in the Bornholm Basin for oxygen conditions, cod reproduction and benthic biomass - a model study

    NASA Astrophysics Data System (ADS)

    Stigebrandt, A.; Rosenberg, R.; Råman Vinnå, L.; Ödalen, M.

    2014-07-01

    We develop and use a circulation model to estimate hydrographical and ecological changes in the isolated basin water of the Bornholm Basin. By pumping well oxygenated so-called winter water, residing beneath the level of the summer thermocline, to the greatest depth of the basin, where it is forced to mix with the resident water, the rate of density reduction should increase and thereby the frequency of intrusions of new oxygen-rich deepwater. We show that pumping 1000 m3 s-1 should increase the rates of water exchange and oxygen supply by 2.5 and 3 times, respectively. The CRV (Cod Reproduction Volume), the volume of water in the isolated basin meeting the requirements for successful cod reproduction (S > 11, O2 > 2 mL L-1), should every year be greater than 54 km3, which is an immense improvement since it in certain years is currently much less. Anoxic bottoms should no longer occur in the basin and hypoxic events will become rare. This should permit extensive colonization of fauna on the earlier periodically anoxic bottoms. Increased biomass of benthic fauna should also mean increased food supply to economically valuable demersal fish like cod and flatfish. In addition, the bioturbation activity and re-oxygenation of the sediments should lead to increased phosphorus retention by the sediments.

  12. Three dimensional inner core anisotropy, lowermost mantle structure, and inner core rotation

    NASA Astrophysics Data System (ADS)

    Sun, Xinlei

    Three-dimensional anisotropy of Earth's inner core and the lowermost mantle structures are studied from PKP waves. Using a unique data set of PKP travel times at near antipodal distances, I examine the whole inner core anisotropy and the effect from lowermost mantle heterogeneities. The results show AB-DF residuals for polar paths are consistently larger than those of equatorial paths, and are mainly from DF residuals, thus confirmed AB-DF residuals are from inner core anisotropy. Assuming a uniform cylindrical anisotropy model, the average inner core anisotropy amplitude is ˜2.5%. The equatorial PKP differential travel times, however, can be caused by the lowermost mantle structure. Compressional waves that sample the lowermost mantle west of Central America show a rapid change in travel times of up to 4 s over a distance of 300 km and a change in waveforms. The PKP differential travel times correlate remarkably well with predictions from S-wave tomography. Our modeling suggests a sharp transition in the lowermost mantle from a broad slow region to a broad fast region with a narrow zone of slowest anomaly next to the boundary beneath the Cocos and the Caribbean Plate. The structure may be the result of ponding of ancient subducted Farallon slabs situated near the edge of a thermal and chemical upwelling. Depth and longitudinal dependence of the inner core anisotropy are also investigated. I adopt a pseudo-bending ray tracing method in spherical coordinates [koketsu1998] for PKP DF rays, and use B-spline interpolation in the inversion. Our results show clearly hemispherical and depth dependence of the inner core anisotropy, and suggest a distinct inner inner core (IIC), which is about half radius of the inner core. Further examination of this issue from the corrected residuals at near antipodal distances and from the residual changes vs. distance at equatorial directions show very consistent results, indicating the distinct anisotropy in the IIC is robust. Finally

  13. Brazilian continental cretaceous

    NASA Astrophysics Data System (ADS)

    Petri, Setembrino; Campanha, Vilma A.

    1981-04-01

    Cretaceous deposits in Brazil are very well developed, chiefly in continental facies and in thick sequences. Sedimentation occurred essentially in rift-valleys inland and along the coast. Three different sequences can be distinguished: (1) a lower clastic non-marine section, (2) a middle evaporitic section, (3) an upper marine section with non-marine regressive lithosomes. Continental deposits have been laid down chiefly between the latest Jurassic and Albian. The lower lithostratigraphic unit is represented by red shales with occasional evaporites and fresh-water limestones, dated by ostracods. A series of thick sandstone lithosomes accumulated in the inland rift-valleys. In the coastal basins these sequences are often incompletely preserved. Uplift in the beginning of the Aptian produced a widespread unconformity. In many of the inland rift-valleys sedimentation ceased at that time. A later transgression penetrated far into northeastern Brazil, but shortly after continental sedimentation continued, with the deposition of fluvial sandstones which once covered large areas of the country and which have been preserved in many places. The continental Cretaceous sediments have been laid down in fluvial and lacustrine environments, under warm climatic conditions which were dry from time to time. The fossil record is fairly rich, including besides plants and invertebrates, also reptiles and fishes. As faulting tectonism was rather strong, chiefly during the beginning of the Cretaceous, intercalations of igneous rocks are frequent in some places. Irregular uplift and erosion caused sediments belonging to the remainder of this period to be preserved only in tectonic basins scattered across the country.

  14. Cretaceous source rocks in Pakistan

    SciTech Connect

    Kari, I.B. )

    1993-02-01

    Pakistan is located at the converging boundaries of the Indian, Arabian, and Eurasian plates. Evolution of this tectonic setting has provided an array of environmental habitats for deposition of petroleum source rocks and development of structural forms. The potential Cretaceous source rocks in Central and South Indus Basin are spread over an area of about 300,000 km[sup 2]. With 2% cutoff on Total Organic Carbon, the average source rock thickness is 30-50 m, which is estimated to have generated more than 200 billion bbl of oil equivalent. To date, production of more than 30,000 bbl of oil and about 1200 million ft[sup 3] of gas per day can be directly attributed to Cretaceous source. This basin was an area of extensional tectonics during the Lower to Middle Cretaceous associated with slightly restricted circulation of the sea waters at the north-western margin of Indian Plate. Lower Cretaceous source rocks (Sembar Formation) were deposited while the basin was opening up and anoxia was prevailing. Similarly Middle to Upper Cretaceous clastics were deposited in setting favorable for preservation of organic matter. The time and depth of burial of the Cretaceous source material and optimum thermal regime have provided the requisite maturation level for generation of hydrocarbons in the basin. Central Indus basin is characterized by Cretaceous source rocks mature for gas generation. However, in South Indus Basin Cretaceous source rocks lie within the oil window in some parts and have gone past it in others.

  15. Reconstruction of climate and environmental changes in the Bornholm Basin during the last 6000 years, based on foraminiferal assemblages

    NASA Astrophysics Data System (ADS)

    Binczewska, Anna; Polovodova Asteman, Irina; Moros, Matthias; Sławińska, Joanna

    2016-04-01

    The Baltic Sea is the largest brackish sea in the world connected to the Atlantic Ocean through the narrow and shallow Danish Straits. The hydrography of the Baltic Sea is strongly dependent on inflows from the North Sea and its environmental conditions are influenced by meteorological and anthropogenic factors. To improve our understanding of the natural variability and forcing factors driving changes in the Baltic ecosystem, detailed analyses of palaeoecological archives are needed. Here we present a high-resolution study of foraminiferal assemblages together with sediment geochemistry (LOI, TOC, TIC, CNS) from a 8-m long gravity core (GC) and a 42-cm long multi core (MUC) taken in the Bornholm Basin in 2013. Both cores were investigated in order to reconstruct bottom water mass variability during the mid- and late Holocene. Cores were dated by AMS 14C (mostly on Macoma balthica shells), 210Pb and 137Cs. Age-model allowed us to place variability of foraminiferal assemblages in time and link them with the Holocene climate extremes and the Major Baltic Inflows (MBIs). High absolute abundances (ind./g wet sed.) of foraminifera are found within a core interval corresponding to the Dark Ages and the Medieval Warm Period (~AD 400-1200). The Little Ice Age is represented by rare to absent foraminiferal shells, while significant changes of foraminiferal abundances occur in the lower part of core(~ BC 2050-2995). The dominant species found in both cores are Cribroelphidium excavatum, C. excavatum f. clavatum, C. albiumbilicatum and C. incertum, all adapted to an ecologically unstable environment with high fluctuations of salinity and oxygen. The arenaceous species Reophax dentaliniformis strongly occurs at ~ AD 1450-1600, where calcareous species were rare. Presence of agglutinated foraminifera and prevailing small size of individuals in all studied material suggest bottom water undersaturation with respect to calcium carbonate. In the Baltic Sea, bottom waters

  16. Linking seismology, mineralogy and geodynamics with seismic anisotropy in the lowermost mantle

    NASA Astrophysics Data System (ADS)

    Nowacki, Andy; Walker, Andrew; Wookey, James; Walpole, Jack; Masters, Guy; Kendall, J.-Michael

    2013-04-01

    The core-mantle boundary (CMB) is the site of the largest change in properties in the Earth, where the liquid outer core and solid mantle meet. Forming the lower boundary layer in the convecting mantle, D″ (the lowermost mantle) may hold the key to understanding dynamics both above and below. One property of the region which holds much potential to advance this understanding is its seismic anisotropy, which may be caused by factors such as the alignment of anisotropic mineral grains in response to mantle flow. Anisotropy is widely observed in D″, yet not in the overlying mantle more than a few hundred kilometres above the CMB, as evidenced by numerous tomographic and waveform studies. Shear wave splitting is an unambiguous indicator of the presence of anisotropy and measurements thereof need not make any simplification regarding the kind of anisotropy. Such measurements therefore allow us to test the widest range of candidate processes which might cause D" anisotropy. Ultimately, if one cause such as mineral alignment is more likely than others, we can then use seismic anisotropy to directly infer flow in the lowermost mantle. In order to test candidate processes for D″ anisotropy, we construct a series of elastic models of the lowermost mantle. Each is based on a different assumption regarding the cause of lowermost mantle anisotropy, concentrating thus far on the development of lattice-preferred orientation in dislocation creep in lower mantle mineral phases such as perovskite, post-perovskite and (Mg,Fe)O (and mixtures thereof). In order to do this, for these phases we require mineral physical data regarding the single-crystal elasticity and deformation mechanisms. Whilst there exists some uncertainty in these parameters, we can nevertheless test what effect these have on our final models. We then use a steady-state mantle flow field retrieved from seismic, geodetic and mineral physical observables, and calculate the texturing along pathlines in the

  17. Exploring Earth's Lowermost Mantle With Core-Diffracted Waves From Linear Arrays

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.; Euler, G. G.; Fischer, K. M.

    2008-12-01

    We investigate lowermost mantle structure using the slowness and decay-rate frequency dependence of core diffracted waves from large earthquakes (mb>5.5) recorded by two broadband seismometer arrays, MOMA and FLED, to provide insights on processes occurring at the base of the mantle. MOMA (Missouri to Massachusetts) and FLED (Florida to Edmonton) were linear transects deployed in 1995-96 and 2001-02, respectively, with the common goal of obtaining seismic images of the Earth's deep interior. Exploiting core diffracted wave observables with the geometry of these arrays aids in establishing strong constraints on the radial velocity structure above the core-mantle interface in a manner analogous to surface wave observables constraining uppermost mantle structure. To estimate the frequency dependence of the slowness and decay rate caused by the diffraction process, we measure the relative arrival time and amplitude of both Pdiff and Sdiff arrivals for a series of frequency bands between 0.017 and 0.17 Hz and make corrections for bias introduced by ellipticity and velocity structure above the lowermost mantle. We present a new semi- automated technique using cluster analysis to remove low-quality waveforms and to accurately determine the slowness values. Comparison with 1D reflectivity and 3D SEM synthetics facilitates quantitative interpretation. Preliminary results confirm that there is measurable frequency dependence in the slowness and decay rate caused by diffraction for both Pdiff and Sdiff, indicative of significant radial velocity gradients. Variations in the frequency dependence are also observed with both geographic location and between Pdiff and Sdiff along the same azimuth suggesting lateral changes in Vp, Vs and Vp/Vs ratio and thus the physical state at the lowermost mantle.

  18. Seasonal Variability of Middle Latitude Ozone in the Lowermost Stratosphere Derived from Probability Distribution Functions

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.; Douglass, Anne R.; Cerniglia, Mark C.; Sparling, Lynn C.; Nielsen, J. Eric

    1999-01-01

    We present a study of the distribution of ozone in the lowermost stratosphere with the goal of characterizing the observed variability. The air in the lowermost stratosphere is divided into two population groups based on Ertel's potential vorticity at 300 hPa. High (low) potential vorticity at 300 hPa indicates that the tropopause is low (high), and the identification of these two groups is made to account for the dynamic variability. Conditional probability distribution functions are used to define the statistics of the ozone distribution from both observations and a three-dimensional model simulation using winds from the Goddard Earth Observing System Data Assimilation System for transport. Ozone data sets include ozonesonde observations from northern midlatitude stations (1991-96) and midlatitude observations made by the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite (UARS) (1994- 1998). The conditional probability distribution functions are calculated at a series of potential temperature surfaces spanning the domain from the midlatitude tropopause to surfaces higher than the mean tropical tropopause (approximately 380K). The probability distribution functions are similar for the two data sources, despite differences in horizontal and vertical resolution and spatial and temporal sampling. Comparisons with the model demonstrate that the model maintains a mix of air in the lowermost stratosphere similar to the observations. The model also simulates a realistic annual cycle. Results show that during summer, much of the observed variability is explained by the height of the tropopause. During the winter and spring, when the tropopause fluctuations are larger, less of the variability is explained by tropopause height. This suggests that more mixing occurs during these seasons. During all seasons, there is a transition zone near the tropopause that contains air characteristic of both the troposphere and the stratosphere. The

  19. Mesorbitolina (Cretaceous larger foraminifera) from the Yezo Group in Hokkaido, Japan and its stratigraphic and paleobiogeographic significance

    PubMed Central

    Iba, Yasuhiro; Sano, Shin-ichi

    2006-01-01

    In this paper, we describe an Aptian (Early Cretaceous) larger foraminiferal species Orbitolina (Mesorbitolina) parva from the limestone olistoliths in the lower part of the Yezo Group in the Yubari–Ashibetsu area, central Hokkaido and from limestone pebbles in the lowermost part of the Yezo Group in the Nakagawa area, northern Hokkaido. This is the first report of this species from the circum-North Pacific regions. Based on its occurrences, the shallow-marine carbonates, re-deposited in the lower part of the Yezo Group, are precisely assigned in age to the Late Aptian. Comparison of the lower part of the Yezo Group in central and northern Hokkaido indicates differences of the Aptian–Albian depositional history between the two areas. This study reveals that after Late Aptian, Mesogean key taxa (typical Cretaceous Tethyan biota) demised in the Northwest Pacific. PMID:25792785

  20. Testing geodynamic models of lowermost mantle flow with a regional shear wave splitting data set

    NASA Astrophysics Data System (ADS)

    Ford, H. A.; Long, M. D.

    2015-12-01

    Global flow models rely on a number of assumptions, including composition, temperature, viscosity, and deformation mechanism. In the upper mantle, flow models and their associated assumptions can be tested and refined with observations of seismic anisotropy, which is treated as a proxy for flow direction. Beneath the transition zone, direct observations of seismic anisotropy are scarce, except for in the lowermost ~250 km of the mantle. In this study, we utilize a comprehensive, previously published (Ford et al., 2015) shear wave splitting study in order to test a three-dimensional global geodynamic flow model (Walker et al., 2011). Our study focuses on a region of the lowermost mantle along the eastern edge of the African Superplume beneath the Afar region. We find that our observations are fit by a model which invokes slip along the (010) plane of post-perovskite with flow directed down and to the southwest. Critically, we demonstrate the ability of a regional data set to interrogate models of lower mantle flow.

  1. Strong, Multi-Scale Heterogeneity in Earth’s Lowermost Mantle

    PubMed Central

    Tkalčić, Hrvoje; Young, Mallory; Muir, Jack B.; Davies, D. Rhodri; Mattesini, Maurizio

    2015-01-01

    The core mantle boundary (CMB) separates Earth’s liquid iron outer core from the solid but slowly convecting mantle. The detailed structure and dynamics of the mantle within ~300 km of this interface remain enigmatic: it is a complex region, which exhibits thermal, compositional and phase-related heterogeneity, isolated pockets of partial melt and strong variations in seismic velocity and anisotropy. Nonetheless, characterising the structure of this region is crucial to a better understanding of the mantle’s thermo-chemical evolution and the nature of core-mantle interactions. In this study, we examine the heterogeneity spectrum from a recent P-wave tomographic model, which is based upon trans-dimensional and hierarchical Bayesian imaging. Our tomographic technique avoids explicit model parameterization, smoothing and damping. Spectral analyses reveal a multi-scale wavelength content and a power of heterogeneity that is three times larger than previous estimates. Inter alia, the resulting heterogeneity spectrum gives a more complete picture of the lowermost mantle and provides a bridge between the long-wavelength features obtained in global S-wave models and the short-scale dimensions of seismic scatterers. The evidence that we present for strong, multi-scale lowermost mantle heterogeneity has important implications for the nature of lower mantle dynamics and prescribes complex boundary conditions for Earth’s geodynamo. PMID:26674394

  2. Extreme alkali bicarbonate- and carbonate-rich fluid inclusions in granite pegmatite from the Precambrian Rønne granite, Bornholm Island, Denmark

    NASA Astrophysics Data System (ADS)

    Thomas, Rainer; Davidson, Paul; Schmidt, Christian

    2011-02-01

    Our study of fluid and melt inclusions in quartz and feldspar from granite pegmatite from the Precambrian Rønne granite, Bornholm Island, Denmark revealed extremely alkali bicarbonate- and carbonate-rich inclusions. The solid phases (daughter crystals) are mainly nahcolite [NaHCO3], zabuyelite [Li2CO3], and in rare cases potash [K2CO3] in addition to the volatile phases CO2 and aqueous carbonate/bicarbonate solution. Rare melt inclusions contain nahcolite, dawsonite [NaAl(CO3)(OH)2], and muscovite. In addition to fluid and melt inclusions, there are primary CO2-rich vapor inclusions, which mostly contain small nahcolite crystals. The identification of potash as a naturally occurring mineral would appear to be the first recorded instance. From the appearance of high concentrations of these carbonates and bicarbonates, we suggest that the mineral-forming media were water- and alkali carbonate-rich silicate melts or highly concentrated fluids. The coexistence of silicate melt inclusions with carbonate-rich fluid and nahcolite-rich vapor inclusions indicates a melt-melt-vapor equilibrium during the crystallization of the pegmatite. These results are supported by the results of hydrothermal diamond anvil cell experiments in the pseudoternary system H2O-NaHCO3-SiO2. Additionally, we show that boundary layer effects were insignificant in the Bornholm pegmatites and are not required for the origin of primary textures in compositionally simple pegmatites at least.

  3. Late Cretaceous - Cenozoic development of outer continental margin, southwestern Nova Scotia

    SciTech Connect

    Swift, S.A.

    1987-06-01

    The growth pattern for the outer continental margin of Nova Scotia during the Late Cretaceous and Cenozoic was studied using seismic stratigraphy and well data. Sediment accumulation was broadly controlled by temporal changes in relative sea level, but significant spatial and temporal changes in accumulation patterns were caused by changes in sediment supply rate, morphology, erosion by abyssal currents, and salt tectonics. A Jurassic-Early Cretaceous carbonate platform remained exposed until the Late Cretaceous and controlled the location and steepness of the paleoslope until the late Miocene. Local erosion of the outer shelf and slope in the late Paleocene-early Eocene produced chalky fans on the upper rise. The relationship between erosion of the shelf in the late Eocene and early Oligocene, and abyssal current erosion of the upper rise in the Oligocene, is unclear. Seaward extensions of Tertiary shelf-edge canyons are poorly defined except for the Eocene fans. In the Miocene, abyssal currents eroded a bench on the upper continental rise. Subsequently, sediments lapped onto and buried the paleoslope. The lower rise above horizon A/sup u/ (Oligocene) is composed of fans and olistostromes shed from halokinetic uplift of the upper rise. Current eroded unconformities are common in the rise sequence, but the only current deposit is a Pliocene interval (< 300 m) restricted to the lowermost rise. Pleistocene turbidity currents eroded the present canyon morphology. 15 figures, 2 tables.

  4. Lowermost mantle anisotropy near the eastern edge of the Pacific LLSVP: constraints from SKS-SKKS splitting intensity measurements

    NASA Astrophysics Data System (ADS)

    Deng, Jie; Long, Maureen D.; Creasy, Neala; Wagner, Lara; Beck, Susan; Zandt, George; Tavera, Hernando; Minaya, Estela

    2017-08-01

    Seismic anisotropy has been documented in many portions of the lowermost mantle, with particularly strong anisotropy thought to be present along the edges of large low shear velocity provinces (LLSVPs). The region surrounding the Pacific LLSVP, however, has not yet been studied extensively in terms of its anisotropic structure. In this study, we use seismic data from southern Peru, northern Bolivia and Easter Island to probe lowermost mantle anisotropy beneath the eastern Pacific Ocean, mostly relying on data from the Peru Lithosphere and Slab Experiment and Central Andean Uplift and Geodynamics of High Topography experiments. Differential shear wave splitting measurements from phases that have similar ray paths in the upper mantle but different ray paths in the lowermost mantle, such as SKS and SKKS, are used to constrain anisotropy in D″. We measured splitting for 215 same station-event SKS-SKKS pairs that sample the eastern Pacific LLSVP at the base of the mantle. We used measurements of splitting intensity(SI), a measure of the amount of energy on the transverse component, to objectively and quantitatively analyse any discrepancies between SKS and SKKS phases. While the overall splitting signal is dominated by the upper-mantle anisotropy, a minority of SKS-SKKS pairs (∼10 per cent) exhibit strongly discrepant splitting between the phases (i.e. the waveforms require a difference in SI of at least 0.4), indicating a likely contribution from lowermost mantle anisotropy. In order to enhance lower mantle signals, we also stacked waveforms within individual subregions and applied a waveform differencing technique to isolate the signal from the lowermost mantle. Our stacking procedure yields evidence for substantial splitting due to lowermost mantle anisotropy only for a specific region that likely straddles the edge of Pacific LLSVP. Our observations are consistent with the localization of deformation and anisotropy near the eastern boundary of the Pacific LLSVP

  5. Landscape distribution and ecology of Plio-Pleistocene avifaunal communities from Lowermost Bed II, Olduvai Gorge, Tanzania.

    PubMed

    Prassack, Kari A

    2014-05-01

    Plio-Pleistocene avifaunal communities are used to reconstruct Lowermost Bed II landscapes at the early hominin site of Olduvai Gorge, Tanzania. These deposits are laterally extensive, have strong chronostratigraphic control, and were excavated using a landscape archaeological approach. Such factors allow for horizontal spatial-correlation of avian communities across the paleolandscape over a geologically short time frame (approximately 65,000 years). Lowermost Bed II avifaunal communities point to an extensive freshwater wetland system across the extent of paleo-Lake Olduvai's eastern margin.

  6. Deformation and seismic anisotropy of silicate post-perovskite in the Earth's lowermost mantle

    NASA Astrophysics Data System (ADS)

    wu, X.; Lin, J.; Mao, Z.; Liu, J.; Kaercher, P. M.; Wenk, H.; Prakapenka, V.; Zhuravlev, K. K.

    2013-12-01

    The D' layer in the Earth's lowermost mantle with an average thickness of 250 km right above the core-mantle boundary plays a significant role in the geophysics, geochemistry, and geodynamics of the planet's interior. Seismic observations of the region have shown a number of enigmatic features including shear wave discontinuity and seismic wave anisotropy. The seismic anisotropy, in which the horizontally-polarized shear wave (VSH) travels faster than the vertically-polarized shear wave (VSV) by 1%~3% in areas below the circum Pacific, has been proposed to be a result of the lattice-preferred orientation of silicate post-perovskite (PPv) that is to be the most abundant phase in the D' layer [1]. Therefore, understanding the elasticity and deformation of the PPv phase is critical under relevant P-T conditions of the region. However, experimental results on the textures and the elastic anisotropy of PPv remain largely limited and controversial. Specifically, a number of slip systems of PPv, such as (010), (100), (110) and (001), have been proposed based on experimental and theoretical results [2-4]. Here we have studied the textures and deformation mechanism of iron-bearing PPv ((Mg0.75,Fe0.25)SiO3) at relevant P-T conditions of the lowermost mantle using synchrotron radiation radial x-ray diffraction in a membrane-driven laser-heated diamond anvil cell. The diffraction patterns were recorded from the laser-heated PPv sample during further compression between 130 GPa and 150 GPa. Analyses of the diffraction patterns and simulation results from viscoplastic self-consistent polycrystal plasticity code (VPSC) show that the development of active slip systems can be strongly influenced by experimental pressure-temperature-time conditions. At relevant P-T conditions of the lowermost mantle, our results demonstrate that the dominant slip systems of PPv should be (001)[100] and (001)[010]. Combined these results with the elasticity of PPv, we provide more constrains on the

  7. CMB topography and electrical conductivity as additional constraints for the lowermost mantle thermo-chemical structure

    NASA Astrophysics Data System (ADS)

    Deschamps, F.; Yin, Y.; Tackley, P. J.

    2013-12-01

    A variety of seismic observations, including tomographic models, indicate that the lowermost mantle is strongly heterogeneous. Seismic observations further support a thermo-chemical origin for the large scale heterogeneities. In particular, the large low-shear wave velocity provinces (LLSVP) observed by global tomographic images are better explained by a combination of thermal and chemical anomalies. Despite the accuracy of seismic information, uncertainties and trade-off still prevent the determination of a detailed lower mantle thermo-chemical structure. For instance, the nature of chemical heterogeneities and the exact role played by the post-perovskite phase transition are still debated. Additional constraints are needed to discriminate between the possible models of structure and dynamics of the lower mantle. Here, we consider two potential additional constraints, the electrical conductivity and the dynamic topography at the core-mantle boundary (CMB). Unlike density and seismic velocities, electrical conductivity increases with temperature. In addition, it strongly varies with the iron and silicate content. Using appropriate mineral physics data, we calculated a 3D distribution of electrical conductivity in lower mantle from the thermo-chemical structure inferred by probabilistic tomography, which maps iron and silicate excess in the LLSVP. In the lowermost mantle, we observe a belt of high conductivity, with maximum values around 20 S/m located in the LLSVP. Such a belt may trigger electric currents in the lowermost mantle and induce magnetic field variations with period of one year or more. It may thus be seen by global models of electrical conductivity. Unfortunately, such models do not sample yet regions deeper than 2000 km. A second, independent constraint we explored is the dynamic topography at the CMB. We used stagYY to calculate the dynamic topography associated with several models of thermo-chemical convection, and observe strong differences

  8. Poncho field - Cretaceous J sandstone stratigraphic traps - Denver basin, Colorado

    SciTech Connect

    Ethridge, F.G.; Ziegler, J.R.

    1983-08-01

    Distributary channel and delta destructional sandstones of Early Cretaceous age are important reservoirs for stratigraphic traps in the J sandstone at Poncho field, Adams and Arapahoe Counties, Colorado. Cores and logs from the field area reveal a lowermost, nonproductive, northeast-trending delta front sandstoe (J-3); a middle complex of southeast- and east-trending, productive distributary channel sandstones (J-2) that grade into tightly cemented delta fringe marine sediments to the southeast and northeast; and an upper, northeast trending, productive delta destructional sandstone (J-1). Vertical and lateral sequences of sedimentary structures, textures, trace fossil assemblages, and geometry and trend of sandstone bodies suggest that these units were part of a wave-dominated delta complex that prograded to the east and southeast from the area of Lonetree field. Thin section and SEM analyses reveal that the principal cements in both reservoir sandstones are quartz overgrowths, kaolinite, and chlorite, and that the bulk of the porosity is secondary and related to dissolution of carbonate cement and feldspar grains. Porosities and permeabilities are most variable and lowest in the nonproductive delta front sandstones, averaging 15% and 7 md; variable and intermediate in the productive distributary channel sandstones, averaging 16% and 28 md; and most uniform and highest in the overlying delta destructional sandstones, averaging 21% and 88 md.

  9. Temperature profile in the lowermost mantle from seismological and mineral physics joint modeling

    PubMed Central

    Kawai, Kenji; Tsuchiya, Taku

    2009-01-01

    The internal structure of the core-mantle boundary (CMB) region of the Earth plays a crucial role in controlling the dynamics and evolution of our planet. We have developed a comprehensive model based on the radial variations of shear velocity in the D″ layer (the base of the lower mantle) and the high-P,T elastic properties of major candidate minerals, including the effects of post-perovskite phase changes. This modeling shows a temperature profile in the lowermost mantle with a CMB temperature of 3,800 ± 200 K, which suggests that lateral temperature variations of 200–300 K can explain much of the large velocity heterogeneity observed in D″. A single-crossing phase transition model was found to be more favorable in reproducing the observed seismic wave velocity structure than a double-crossing phase transition model. PMID:20018735

  10. Origin of granulite terranes and the formation of the lowermost continental crust.

    PubMed

    Bohlen, S R; Mezger, K

    1989-04-21

    Differences in composition and pressures of equilibration between exposed, regional granulite terranes and suites of granulite xenoliths of crustal origin indicate that granulite terranes do not represent exhumed lowermost crust, as had been thought, but rather middle and lower-middle crustal levels. Application of well-calibrated barometers indicate that exposed granulites record equilibration pressures of 0.6 to 0.8 gigapascal (20 to 30 kilometers depth of burial), whereas granulite xenoliths, which also tend to be more mafic, record pressures of at least 1.0 to 1.5 gigapascals (35 to 50 kilometers depth of burial). Thickening of the crust by the crystallization of mafic magmas at the crust-mantle boundary may account for both the formation of regional granulite terranes at shallower depths and the formation of deep-seated mafic crust represented by many xenolith suites.

  11. Origin of granulite terranes and the formation of the lowermost continental crust

    USGS Publications Warehouse

    Bohlen, S.R.; Mezger, K.

    1989-01-01

    Differences in composition and pressures of equilibration between exposed, regional granulite terranes and suites of granulite xenoliths of crustal origin indicate that granulite terranes do not represent exhumed lowermost crust, as had been thought, but rather middle and lower-middle crustal levels. Application of well-calibrated barometers indicate that exposed granulites record equilibration pressures of 0.6 to 0.8 gigapascal (20 to 30 kilometers depth of burial), whereas granulite xenoliths, which also tend to be more mafic, record pressures of at least 1.0 to 1.5 gigapascals (35 to 50 kilometers depth of burial). Thickening of the crust by the crystalliztion of mafic magmas at the crust-mantle boundary may account for both the formation of regional granulite terranes at shallower depths and the formation of deep-seated mafic crust represented by many xenolith suites.

  12. A satellite observation system simulation experiment for carbon monoxide in the lowermost troposphere

    NASA Astrophysics Data System (ADS)

    Edwards, David P.; Arellano, Avelino F.; Deeter, Merritt N.

    2009-07-01

    We demonstrate the feasibility of using observing system simulation experiment (OSSE) studies to help define quantitative trace gas measurement requirements for satellite missions and to evaluate the expected performance of proposed observing strategies. The 2007 U.S. National Research Council Decadal Survey calls for a geostationary (GEO) satellite mission for atmospheric composition and air quality applications (Geostationary Coastal and Air Pollution Events Mission (GEO-CAPE)). The requirement includes a multispectral (near-infrared and thermal infrared) measurement of carbon monoxide (CO) at high spatiotemporal resolution with information on lowermost troposphere concentration. We present an OSSE to assess the improvement in surface CO characterization that would result from the addition of a GEO-CAPE CO measurement to current low Earth orbit (LEO) thermal infrared-only measurements. We construct instrument simulators for these two measurement scenarios and study the case of July 2004 when wildfires in Alaska and Canada led to significant CO pollution over the contiguous United States. Compared to a control experiment, an ensemble-based data assimilation of simulated satellite observations in a global model leads to improvements in both the surface CO distributions and the time evolution of CO profiles at locations affected by wildfire plumes and by urban emissions. In all cases, an experiment with the GEO-CAPE CO measurement scenario (overall model skill of 0.84) performed considerably better than the experiment with the current LEO/thermal infrared measurement (skill of 0.58) and the control (skill of 0.07). This demonstrates the advantages of increased sampling from GEO and enhanced measurement sensitivity to the lowermost troposphere with a multispectral retrieval.

  13. An overview of the Cretaceous stratigraphy and facies development of the Yazd Block, western Central Iran

    NASA Astrophysics Data System (ADS)

    Wilmsen, Markus; Fürsich, Franz Theodor; Majidifard, Mahmoud Reza

    2015-04-01

    The Cretaceous successions of the Yazd Block, the western of three structural blocks of the Central-East Iranian Microcontinent (CEIM), have been studied using an integrated approach of litho-, bio- and sequence stratigraphy associated with litho-, bio- and microfacies analyses. The Cretaceous System of that area is in excess of 5 km thick and a generalized relative sea-level curve can be inferred from the facies and thickness development. This curve can be subdivided into two transgressive-regressive megacycles (TRMs), separated by a major tectonic unconformity in the Upper Turonian. TRM 1 comprises the Early Cretaceous to Middle Turonian, TRM 2 the Coniacian to Maastrichtian. TRM 1 starts with up to 1500-m-thick conglomerates and sandstones covering Palaeozoic-Triassic basement rocks, metasediments, or Upper Jurassic-lowermost Cretaceous granites. The basal tectonic unconformity, related to the Late Cimmerian event (Jurassic-Cretaceous boundary interval), shows a pronounced palaeo-relief that is levelled by the basal siliciclastic formations. Sparse biostratigraphic data from calcareous intercalations in the upper part of these strata indicate a Hauterivian to Barremian age. The Aptian facies development is marked by the onlap of thick-bedded, micritic carbonates with abundant orbitolinid foraminifera and rudists representing a large-scale shallow-marine carbonate platform system that fringed the Yazd Block in the north and west. These platforms are up to 1000 m thick and drowned during the middle to Late Aptian, followed by up to 1500-m-thick basinal marly sediments of Late Aptian to mid-Late Albian ages, representing the maximum relative sea-level during TRM 1. During the latest Albian-Middle Turonian, a gradual shallowing is indicated by progradation of shallow-water skeletal limestones separated by marl tongues, representing a carbonate ramp system. Strata of TRM 2 overlie older units along a regional angular unconformity and indicate tectonic stability and

  14. Effects of Isotropic and Anisotropic Structure in the Lowermost Mantle on High-Frequency Body Waveforms

    NASA Astrophysics Data System (ADS)

    Parisi, L.; Ferreira, A. M. G.; Ritsema, J.

    2015-12-01

    It has been observed that vertically (SV) and horizontally (SH) polarised S waves crossing the lowermost mantle sometimes are split by a few seconds The splitting of such waves is often interpreted in terms of seismic anisotropy in the D" region. Here we investigate systematically the effects of elastic, anelastic, isotropic and anisotropic structure on shear-wave splitting, including 3-D variations in some of these physical properties. Taking advantage of accurate waveform modeling techniques such as Gemini and the Spectral Element Method we generate three-component theoretical waveforms in a wide set of 1-D and 3-D, isotropic and radially anisotropic earth models, accurate down to a wave period of T~5.6s. Our numerical simulations in isotropic earth models show that the contamination of S waves by other phases can generate an apparent splitting between SH and SV waves. In particular, in the case of very shallow sources, the sS phase can interfere with the direct S phase, resulting in split SH and SV pulses when the SH and SV (or sSH and sSV) waves have different polarity or a substantial amplitude difference. In the case of deep earthquake sources, a positive shear velocity jump at the top of the D" can cause the triplication of S waves and the ScSH and ScSV phases can have different polarity. Thus, when the triplicated S wave is combined with the ScS phase, the resulting SH-ScSH and SV-ScSV phases may seem split. On the other hand, in the absence of a sharp vertical variation in the shear wave velocity, the difference in polarity between ScSH and ScSV can make the SH pulse larger than SV and thus also lead to apparent splitting between these phases. This effect depends on the thickness of the D" and the Vs gradient within it. S waveforms simulated in radially anisotropic models reveal that a radial anisotropy of ξ=1.07 in the D" seems to be necessary to explain the 2-3s of splitting observed in waveforms recorded in Tanzania from an event in the Banda Sea

  15. High-Resolution Imaging of Structure and Dynamics of the Lowermost Mantle

    NASA Astrophysics Data System (ADS)

    Zhao, Chunpeng

    This research investigates Earth structure in the core-mantle boundary (CMB) region, where the solid rocky mantle meets the molten iron alloy core. At long wavelengths, the lower mantle is characterized by two nearly antipodal large low shear velocity provinces (LLSVPs), one beneath the Pacific Ocean the other beneath Africa and the southern Atlantic Ocean. However, fine-scale LLSVP structure as well as its relationship with plate tectonics, mantle convection, hotspot volcanism, and Earth's outer core remains poorly understood. The recent dramatic increase in seismic data coverage due to the EarthScope experiment presents an unprecedented opportunity to utilize large concentrated datasets of seismic data to improve resolution of lowermost mantle structures. I developed an algorithm that identifies anomalously broadened seismic waveforms to locate sharp contrasts in shear velocity properties across the margins of the LLSVP beneath the Pacific. The result suggests that a nearly vertical mantle plume underlies Hawaii that originates from a peak of a chemically distinct reservoir at the base of the mantle, some 600-900 km above the CMB. Additionally, acute horizontal Vs variations across and within the northern margin of the LLSVP beneath the central Pacific Ocean are inferred from forward modeling of differential travel times between S (and Sdiff) and SKS, and also between ScS and S. I developed a new approach to expand the geographic detection of ultra-low velocity zones (ULVZs) with a new ScS stacking approach that simultaneously utilizes the pre- and post-cursor wavefield. Strong lateral variations in ULVZ thicknesses and properties are found across the LLSVP margins, where ULVZs are thicker and stronger within the LLSVP than outside of it, consistent with convection model predictions. Differential travel times, amplitude ratios, and waveshapes of core waves SKKS and SKS are used to investigate CMB topography and outermost core velocity structure. 1D and 2D

  16. Vegetation and plant food reconstruction of lowermost Bed II, Olduvai Gorge, using modern analogs.

    PubMed

    Copeland, Sandi R

    2007-08-01

    Vegetation and plant foods for hominins of lowermost Bed II, Olduvai Gorge were modeled by examining vegetation in modern habitats in northern Tanzania (Lake Manyara, Ngorongoro, Serengeti) that are analogous to the paleolandscape in terms of climate, land forms, and soil types, as indicated by previous paleoenvironmental studies of Olduvai. Plant species in the modern habitats were identified in a series of sample plots, and those known to be eaten by modern humans, chimpanzees, or baboons were considered potentially edible for early hominins. Within the 50-80 kyr deposition of lowermost Bed II, periods of drier climate were characterized by low lake stands and a broad eastern lacustrine plain containing a mosaic of springs, marsh, woodland, and edaphic grassland. Based on results of this study, plant food diversity in each of those habitats was relatively low, but the mosaic nature of the area meant that hominins could reach several different habitat types within short distances, with access to potential plant foods including marsh plants, grass grains, roots, shrub fruits, edible parts from palms, leafy herbaceous plants, and Acacia pods, flowers, and gum. Based on Manyara analogs, a greater variety of plant foods, such as tree fruits (e.g., Ficus, Trichilia) and the roots and fruits of shrubs (e.g., Cordia, Salvadora) would be expected further east along the rivers in the lacustrine terrace and alluvial fans. Interfluves of the alluvial fans were probably less wooded and offered relatively fewer varieties of plant foods, but there is sparse paleoenvironmental evidence for the character of Olduvai's alluvial fans, making the choice of appropriate modern analogs difficult. In the western side of the basin, based on modern analogs in the Serengeti, riverine habitats provided the greatest variety of edible plant food species (e.g., Acacia, Grewia, Justicia). If the interfluves were grassland, then a large variety of potentially edible grasses and forbs were present

  17. Long-term Temperature Measurements of the Upper Troposphere and Lowermost Stratosphere with MOZAIC and IAGOS

    NASA Astrophysics Data System (ADS)

    Berkes, Florian; Neis, Patrick; Rohs, Susanne; Smit, Herman; Schultz, Martin; Konopka, Paul; Nédélec, Phillipe; Boulanger, Damien; Petzold, Andreas

    2016-04-01

    An important component of numerical weather prediction models is the assimilation of in-situ temperature measurements on a global scale. The sources of temperature data are retrievals from various satellite instruments, and in-situ radiosonde and commercial aircrafts measurements. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System) operates a global-scale monitoring system for meteorological and atmospheric trace gases at high spatial resolution by instrumented passenger aircrafts. We will present in-situ airborne temperature measurements at cruise level by IAGOS/MOZAIC since 1994. The temperature measurements are obtained through a Pt100 built into a VAISALA capacity hygrometer, and they are independed, which means the measurements are not assimilated in numerical weather prediction models. The accuracy is better than the in-general installed temperature sensors on commercial aircrafts. We will show an intercomparison between the ERA-Interim temperature data against the Pt100 measurements for different atmospheric layers (upper troposphere, tropopause, lowermost stratosphere) and focus on the northern and mid-latitude regions.

  18. Anticorrelated seismic velocity anomalies from post-perovskite in the lowermost mantle

    USGS Publications Warehouse

    Hutko, Alexander R.; Lay, T.; Revenaugh, Justin; Garnero, E.J.

    2008-01-01

    Earth's lowermost mantle has thermal, chemical, and mineralogical complexities that require precise seismological characterization. Stacking, migration, and modeling of over 10,000 P and S waves that traverse the deep mantle under the Cocos plate resolve structures above the core-mantle boundary. A small -0.07 ?? 0.15% decrease of P wave velocity (Vp) is accompanied by a 1.5 ?? 0.5% increase in S wave velocity (Vs) near a depth of 2570 km. Bulk-sound velocity [Vb = (V p2 - 4/3Vs2)1/2] decreases by -1.0 ?? 0.5% at this depth. Transition of the primary lower-mantle mineral, (Mg1-x-y FexAly)(Si,Al) O3 perovskite, to denser post-perovskite is expected to have a negligible effect on the bulk modulus while increasing the shear modulus by ???6%, resulting in local anticorrelation of Vb and Vs anomalies; this behavior explains the data well.

  19. Anticorrelated seismic velocity anomalies from post-perovskite in the lowermost mantle.

    PubMed

    Hutko, Alexander R; Lay, Thorne; Revenaugh, Justin; Garnero, Edward J

    2008-05-23

    Earth's lowermost mantle has thermal, chemical, and mineralogical complexities that require precise seismological characterization. Stacking, migration, and modeling of over 10,000 P and S waves that traverse the deep mantle under the Cocos plate resolve structures above the core-mantle boundary. A small -0.07 +/- 0.15% decrease of P wave velocity (Vp) is accompanied by a 1.5 +/- 0.5% increase in S wave velocity (V(s)) near a depth of 2570 km. Bulk-sound velocity [Vb = (Vp2 - 4/3Vs2)1/2] decreases by -1.0 +/- 0.5% at this depth. Transition of the primary lower-mantle mineral, (Mg(1-x-y) Fe(x)Al(y))(Si,Al)O3 perovskite, to denser post-perovskite is expected to have a negligible effect on the bulk modulus while increasing the shear modulus by approximately 6%, resulting in local anticorrelation of Vb and Vs anomalies; this behavior explains the data well.

  20. High-resolution tomography of CMB and lowermost mantle coupled by geodynamics

    NASA Astrophysics Data System (ADS)

    Soldati, G.; Boschi, L.; Forte, A. M.

    2009-12-01

    Despite the fast advances of seismic tomography in the last decades provided us with very clear and reliable images of the Earth’s mantle,seismically and/or geodynamically inferred models of core-mantle boundary topography are still poorly correlated both in pattern and amplitude. A major cause for these discrepancies is the difficulty to separate, in travel-time anomalies, the contribution of CMB topography from that of lowermost-mantle and D" heterogeneities. As an attempt to reconcile the contrasting views of the Earth's CMB, we propose an innovative approach to mapping CMB topography from seismic travel-time inversions: instead of treating mantle velocity and CMB topography as independent parameters, as has been done so far (e.g., Soldati et al., 2003), we plan to account for their coupling by mantle flow, as formulated by e.g. Forte & Peltier (1991). In practice, we shall invert direct P waves, and core-sensitive phases, with coefficients of mantle (and, possibly, core) velocity structure as the only free parameters. CMB undulations will not be treated as free parameters, but accounted for via a modification of the tomographic matrix based on the estimated physical relationship between them and mantle velocities. For the first time, the resulting tomographic maps of CMB topography will be, by construction, physically sound, while explaining the inverted seismic data.

  1. Impact of Aircraft Emissions on NO(x) in the Lowermost Stratosphere at Northern Midlatitudes

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Koike, M.; Ikeda, H.; Anderson, B. E.; Brunke, K. E.; Zhao, Y.; Kita, K.; Sugita, T.; Singh, H. B.; Liu, S. C.

    1999-01-01

    Airborne measurements of NO(x) total reactive nitrogen (NO(y)), O3 and condensation nuclei (CN) were made within air traffic corridors over the U.S. and North Atlantic regions (35-60 deg N) in the fall of 1997. NO(x) and NO(y) data obtained in the lowermost stratosphere (LS) were examined using the calculated increase in NO(y) ((delta)NO(y)) along five-day back trajectories as a parameter to identify possible effects of aircraft on reactive nitrogen. It is very likely that aircraft emissions had a significant impact on the NO(x) levels in the LS inasmuch as the NO(s), mixing ratios at 8.5-12 km were significantly correlated with the independent parameters of aircraft emissions, i.e., (delta)NO(y) levels and CN values. In order to estimate quantitatively the impact of aircraft emissions on NO(x), and CN, the background levels of CN and NO(x) at O3 = 100-200 ppbv were derived from the correlations of these quantities with (delta)NO(y)). On average, the aircraft emissions are estimated to have increased the NO(x) and CN values by 130 pptv and 400 STP,cc, respectively, which corresponds to 70 -/+ 30 % and 30 -/+ 20 % of the observed median values.

  2. A simulation of groundwater discharge and nitrate delivery to chesapeake bay from the lowermost delmarva peninsula, USA

    USGS Publications Warehouse

    Sanford, W.E.; Pope, J.P.

    2007-01-01

    A groundwater model has been developed for the lowermost Delmarva Peninsula, USA, that simulates saltwater intrusion into local confined aquifers and nitrate delivery to the Chesapeake Bay from the surficial aquifer. A flow path and groundwater-age analysis was performed using the model to estimate the timing of nitrate delivery to the bay over the next several decades. The simulated mean and median residence times of groundwater in the lowermost peninsula are 30 and 15 years, respectively. Current and future nitrate concentrations in coastal groundwater discharge were simulated based on local well data that include nitrate concentrations and groundwater age. A simulated future-trends analysis indicates that nitrate that has been applied to agricultural regions over the last few decades will continue to discharge into the bay for several decades to come. This study highlights the importance of considering the groundwater lag time that affects the mean transport time from diffuse contamination sources.

  3. The feasibility of inverting for flow in the lowermost mantle (Invited)

    NASA Astrophysics Data System (ADS)

    Nowacki, A.; Walpole, J.; Wookey, J. M.; Walker, A.; Forte, A. M.; Masters, G.; Kendall, J. M.

    2013-12-01

    At the core-mantle boundary (CMB), the largest change in physical properties occurs within the Earth. Furthermore, up to a few hundred kilometres above the CMB--the region known as D″--the largest lateral variations in seismic wave speed are observed outside the upper mantle. Observations of shear wave splitting in D″ shows that these variations are dependent not only on position, but also wave propagation direction and polarisation; that is, strong seismic anisotropy is a pervasive feature of D″, just as in the upper mantle (UM). Similarly to the UM, it is frequently argued that alignment of anisotropic minerals due to flow is the cause of this. Were this the case, this anisotropy could be used to retrieve the recent strain history of the lowermost mantle. Recent modelling of mineral alignment in D″ [1,2] has shown that quite simple models of mantle flow do not produce simple anisotropy, hence one must make use of the most information about the type and orientation of anisotropy possible. Global inversion for radial anisotropy permits complete coverage of the CMB but so far has relied on core-diffracted waves (Sdiff) which are challenging to accurately interpret [3]. The assumption of radial anisotropy may also be too restrictive [4]. Shear wave splitting studies do not impose any assumed type of anisotropy but have been traditionally limited in their geographical scope. We present the results of a consistent analysis of core-reflected shear waves (ScS) for shear wave splitting, producing near-global coverage [5] of D″. Over 12,000 individual measurements are made, from ~470 events. Along well-studied paths such as beneath the Caribbean, our results agree excellently with previous work. Elsewhere, a full range of fast orientations are observed, indicating that simple SV-SH comparisons may not accurately reflect the elasticity present. We compare these results to candidate models of D″ anisotropy assuming a simple flow model derived from geophysical

  4. Particulate sulfur in the upper troposphere and lowermost stratosphere - sources and climate forcing

    NASA Astrophysics Data System (ADS)

    Martinsson, Bengt G.; Friberg, Johan; Sandvik, Oscar S.; Hermann, Markus; van Velthoven, Peter F. J.; Zahn, Andreas

    2017-09-01

    This study is based on fine-mode aerosol samples collected in the upper troposphere (UT) and the lowermost stratosphere (LMS) of the Northern Hemisphere extratropics during monthly intercontinental flights at 8.8-12 km altitude of the IAGOS-CARIBIC platform in the time period 1999-2014. The samples were analyzed for a large number of chemical elements using the accelerator-based methods PIXE (particle-induced X-ray emission) and PESA (particle elastic scattering analysis). Here the particulate sulfur concentrations, obtained by PIXE analysis, are investigated. In addition, the satellite-borne lidar aboard CALIPSO is used to study the stratospheric aerosol load. A steep gradient in particulate sulfur concentration extends several kilometers into the LMS, as a result of increasing dilution towards the tropopause of stratospheric, particulate sulfur-rich air. The stratospheric air is diluted with tropospheric air, forming the extratropical transition layer (ExTL). Observed concentrations are related to the distance to the dynamical tropopause. A linear regression methodology handled seasonal variation and impact from volcanism. This was used to convert each data point into stand-alone estimates of a concentration profile and column concentration of particulate sulfur in a 3 km altitude band above the tropopause. We find distinct responses to volcanic eruptions, and that this layer in the LMS has a significant contribution to the stratospheric aerosol optical depth and thus to its radiative forcing. Further, the origin of UT particulate sulfur shows strong seasonal variation. We find that tropospheric sources dominate during the fall as a result of downward transport of the Asian tropopause aerosol layer (ATAL) formed in the Asian monsoon, whereas transport down from the Junge layer is the main source of UT particulate sulfur in the first half of the year. In this latter part of the year, the stratosphere is the clearly dominating source of particulate sulfur in the UT

  5. Elastic and anelastic structure of the lowermost mantle beneath the Western Pacific from waveform inversion

    NASA Astrophysics Data System (ADS)

    Konishi, Kensuke; Fuji, Nobuaki; Deschamps, Frédéric

    2017-03-01

    We investigate the elastic and anelastic structure of the lowermost mantle at the western edge of the Pacific large low shear velocity province (LLSVP) by inverting a collection of S and ScS waveforms. The transverse component data were obtained from F-net for 31 deep earthquakes beneath Tonga and Fiji, filtered between 12.5 and 200 s. We observe a regional variation of S and ScS arrival times and amplitude ratios, according to which we divide our region of interest into three subregions. For each of these subregions, we then perform 1-D (depth-dependent) waveform inversions simultaneously for radial profiles of shear wave velocity (VS) and seismic quality factor (Q). Models for all three subregions show low VS and low Q structures from 2000 km depth down to the core-mantle boundary. We further find that VS and Q in the central subregion, sampling the Caroline plume, are substantially lower than in the surrounding regions, whatever the depth. In the central subregion, VS-anomalies with respect to PREM (dVS) and Q are about -2.5 per cent and 216 at a depth of 2850 km, and -0.6 per cent and 263 at a depth of 2000 km. By contrast, in the two other regions, dVS and Q are -2.2 per cent and 261 at a depth of 2850 km, and -0.3 per cent and 291 at a depth of 2000 km. At depths greater than ˜2500 km, these differences may indicate lateral variations in temperature of ˜100 K within the Pacific LLSVP. At shallower depths, they may be due to the temperature difference between the Caroline plume and its surroundings, and possibly to a small fraction of iron-rich material entrained by the plume.

  6. A strongly negative shear velocity gradient and lateral variability in the lowermost mantle beneath the Pacific

    NASA Astrophysics Data System (ADS)

    Ritsema, Jeroen; Garnero, Edward; Lay, Thorne

    1997-01-01

    A new approach for constraining the seismic shear velocity structure above the core-mantle boundary is introduced, whereby SH-SKS differential travel times, amplitude ratios of SV/SKS, and Sdiff waveshapes are simultaneously modeled. This procedure is applied to the lower mantle beneath the central Pacific using da.ta from numerous deep-focus southwest Pacific earthquakes recorded in North America. We analyze 90 broadband and 248 digitized analog recordings for this source-receiver geometry. SH-SKS times are highly variable and up to 10 s larger than standard reference model predictions, indicating the presence of laterally varying low shear velocities in the study area. The travel times, however, do not constrain the depth extent or velocity gradient of the low-velocity region. SV/SKS amplitude ratios and SH waveforms are sensitive to the radial shear velocity profile, and when analyzed simultaneously with SH-SKS times, rnveal up to 3% shear velocity reductions restricted to the lowermost 190±50 km of the mantle. Our preferred model for the central-eastern Pacific region (Ml) has a strong negative gradient (with 0.5% reduction in velocity relative to the preliminary reference Earth model (PREM) at 2700 km depth and 3% reduction at 2891 km depth) and slight velocity reductions from 2000 to 2700 km depth (0-0.5% lower than PREM). Significant small-scale (100-500 km) shear velocity heterogeneity (0.5%-1%) is required to explain scatter in the differential times and amplitude ratios.

  7. On the importance of lowermost mantle melt in the long term evolution of the Earth

    NASA Astrophysics Data System (ADS)

    Labrosse, S.; Hernlund, J. W.; Coltice, N.

    2011-12-01

    The thermal evolution of the Earth is usually modeled using its global energy balance and a scaling law for the heat transfer by mantle convection where the heat flow q depends on the mantle potential temperature T and its viscosity η as q=AT1+βη-β, with typical fluid dynamics models giving β≈1/3. The present small ratio of heat production to heat loss (Urey ratio) implies a large secular cooling rate and, because of the feedback from temperature dependent viscosity, backward calculations from the present time lead to a completely molten Earth about 1 Gyr ago. Starting with Christensen (1985), values of β smaller than 1/3 have been proposed to solve this problem by reducing the strength of the feedback loop between core temperature and surface heat flow. However, a self-consistent theory of mantle convection is still lacking to justify unconventional β values. We propose an entirely different approach recognizing that the lowermost mantle, which presently shows evidence of partial melting (ULVZs), was likely largely molten in its hotter past. Coupling a parameterized model of mantle convection using standard scalings for the solid upper part to a crystallizing basal magma ocean (BMO) enriched in radioactive elements and the core cuts the feedback loop very efficiently by introducing two independent potential temperatures. Backward integration of the model makes the core and the BMO hotter in the past while keeping the solid mantle temperature reasonable. A thermal catastrophe may in fact have happened, but only deep in the Earth!

  8. Paleomagnetism of Jurassic and Cretaceous rocks in central Patagonia: a key to constrain the timing of rotations during the breakup of southwestern Gondwana?

    NASA Astrophysics Data System (ADS)

    Geuna, Silvana E.; Somoza, Rubén; Vizán, Haroldo; Figari, Eduardo G.; Rinaldi, Carlos A.

    2000-08-01

    A paleomagnetic study in Jurassic and Cretaceous rocks from the Cañadón Asfalto basin, central Patagonia, indicates the occurrence of about 25-30° clockwise rotation in Upper Jurassic-lowermost Cretaceous rocks, whereas the overlying mid-Cretaceous rocks do not show evidence of rotation. This constrains the tectonic rotation to be related to a major regional unconformity in Patagonia, which in turn seems to be close in time with the early opening of the South Atlantic Ocean. The sense and probably the timing of this rotation are similar to those of other paleomagnetically detected rotations in different areas of southwestern Gondwana, suggesting a possible relationship between these and major tectonic processes related with fragmentation of the supercontinent. On the other hand, the mid-Cretaceous rocks in the region yield a paleopole located at Lat. 87° South, Long. 159° East, A95=3.8°. This pole position is consistent with coeval high-quality paleopoles of other plates when transferred to South American coordinates, implying it is an accurate determination of the Aptian (circa 116 Ma) geomagnetic field in South America.

  9. The Cretaceous-Tertiary boundary biotic crisis in the Basque country

    NASA Technical Reports Server (NTRS)

    Lamolda, M. A.

    1988-01-01

    The Zumaya section has been selected as a classic locality for the study of the Cretaceous-Tertiary (K-T) boundary due to its richness in microfaune, macrofaune, and nannoflora. The sections present similar good conditions for the study of the K-T boundary. The sedimentary rocks of the Uppermost Maastrichtian from the Basque Country are purple or pink marls and marls-tones. Above it is found a clayed bed, 40 to 29 cm thick, grey or dark grey in its basal part, of Lowermost Danian age. Above there is alternation of micritic grey-pink limestones and thin clay beds of Dano-Montian age. The average sedimentation is 7 to 8 times higher during the Upper Maastrichtian than in the Dano-Montian. The macrofauna underwent a decrease since the Campanian and was not found in the last 11 m of the Zumaya section; it was associated with changes in paleoceanographic conditions and primary productivity of the oceans. The microfossil assemblages in the K-T transition allows the recognition of several phases of a complex crisis between two well established planktonic ecosystems. In the Mayaroensis Zone there is a stable ecosystem with 45 to 47 planktonic foraminifera species. The disappearance of A. mayaroensis starts a degradation of the ecosystem. The number of planktonic foraminiera species decreases between 20 and 45 percent. The next phase of the crisis was the result of main extinction events in the planktonic calcareous ecosystem. There are several cretaceous planktonic foraminifera species, probably reworked, whose numbers decrease upward. The next and last phase of the biotic crisis shows a diversification of the ecosystem; the number of planktonic foraminifera is 2 to 3 times higher than before and it is noted the first appearance of Tertiary nannoflora species, while Cretaceous species decrease and persisting species are still the main ones.

  10. Reactive Nitrogen Distribution and Partitioning in the North American Troposphere and Lowermost Stratosphere

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; Salas, L.; Herlth, D.; Kolyer, R.; Czech, E.; Avery, M.; Crawford, J. H.; Pierce, B.; Sachse, G. W.; Blake, D. R.; hide

    2007-01-01

    A comprehensive group of reactive nitrogen species (NO, NO2, HNO3, HO2NO2, PANs, alkyl nitrates, and aerosol-NO3) were measured in the troposphere and lowermost stratosphere over North America and the Atlantic during July/August 2004 (INTEX-A) from the NASA DC-8 platform (0.1-12 km). Less reactive nitrogen species (HCN and CH3CN), that are also unique tracers of biomass combustion, were also measured along with a host of other gaseous (CO, VOC, OVOC, halocarbon) and aerosol tracers. Clean background air as well as air with influences from biogenic emissions, anthropogenic pollution, biomass combustion, and stratosphere was sampled both over continental U. S., Atlantic and Pacific. The North American upper troposphere was found to be greatly influenced by both lightning NO(x) and surface pollution lofted via convection and contained elevated concentrations of PAN, ozone, hydrocarbons, and NO(x). Under polluted conditions PAN was a dominant carrier of reactive nitrogen in the upper troposphere while nitric acid dominated in the lower troposphere. Peroxynitric acid (HO2NO2) was present in sizable concentrations always peaking at around 8 km. Aerosol nitrate appeared to be mostly contained in large soil based particles in the lower troposphere. Plumes from Alaskan fires contained large amounts of PAN and very little enhancement in ozone. Observational data suggest that lightning was a far greater contributor to NO(x) in the upper troposphere than previously believed. NO(x) and NO(y) reservoir appeared to be in steady state only in the middle troposphere where NO(x)/NO(y) was independent of air mass age. A first comparison of observed data with simulations from four 3-D models shows significant differences between observations and models as well as among models. These uncertainties likely propagate themselves in satellites derived NOx data. Observed data are interpreted to suggest that soil sinks of HCN/CH3CN are at best very small. We investigate the partitioning and

  11. Constraining lowermost mantle structure with PcP/P amplitude ratios from large aperture arrays

    NASA Astrophysics Data System (ADS)

    Ventosa, S.; Romanowicz, B. A.

    2015-12-01

    Observations of weak short-period teleseismic body waves help to resolve lowermost mantle structure at short wavelengths, which is essential for understanding mantle dynamics and the interactions between the mantle and core. Their limited amount and uneven distribution are however major obstacles to solve for volumetric structure of the D" region, topography of the core-mantle boundary (CMB) and D" discontinuity, and the trade-offs among them. While PcP-P differential travel times provide important information, there are trade-offs between velocity structure and core-mantle boundary topography, which PcP/P amplitude ratios can help resolve, as long as lateral variations in attenuation and biases due to focusing are small or can be corrected for. Dense broadband seismic networks help to improve signal-to-noise ratio (SNR) of the target phases and signal-to-interference ratio (SIR) of other mantle phases when the slowness difference is large enough. To improve SIR and SNR of teleseismic PcP data, we have introduced the slant-stacklet transform to define coherent-guided filters able to separate and enhance signals according to their slowness, time of arrival and frequency content. We thus obtain optimal PcP/P amplitude ratios in the least-square sense using two short sliding windows to match the P signal with a candidate PcP signal. This method allows us to dramatically increase the amount of high-quality observations of short-period PcP/P amplitude ratios by allowing for smaller events and wider epicentral distance and depth ranges.We present the results of measurement of PcP/P amplitude ratios, sampling regions around the Pacific using dense arrays in North America and Japan. We observe that short-period P waves traveling through slabs are strongly affected by focusing, in agreement with the bias we have observed and corrected for due to mantle heterogeneities on PcP-P travel time differences. In Central America, this bias is by far the stronger anomaly we observe

  12. Anisotropy in the lowermost mantle beneath the circum-Pacific: observations and modelling

    NASA Astrophysics Data System (ADS)

    Walpole, J.; Wookey, J. M.; Nowacki, A.; Walker, A.; Kendall, J. M.; Masters, G.; Forte, A. M.

    2014-12-01

    The lowermost 300 km of mantle (D'') acts as the lower boundary layer to mantle convection. Numerous observations find that this layer is anisotropic, unlike the bulk of the lower mantle above, which is isotropic. The causal mechanism for this anisotropy remains elusive, though its organisation is likely to be imposed by deformation associated with mantle convection. The subduction of the Tethys ocean (since 180 Ma) is predicted to have deposited slab material in D'' in circum-Pacific regions, making these regions cold, encouraging the phase transformation in the MgSiO3 polymorph bridgmanite to a post-perovskite (ppv) structure. These regions are probably rich in ppv. Here we present new observations of anisotropy from shear wave splitting of ScS phases recorded in the epicentral distance range 50-85 degrees. These observations are corrected for anisotropy in the upper mantle beneath source and receiver. Due to the layout of events and receivers we primarily sample D'' beneath the landward side of the circum-Pacific. A detailed pattern of anisotropy is revealed. Anisotropy predominantly leads to SH fast wave propagation with an inferred average strength of 0.9%. This is consistent with many previous observations. However, we do not limit our observations to the SH/SV system. Many observations show non SH/SV fast polarisation. We interpret these data for tilted transverse isotropy (TTI) style anisotropy. We resolve non-radial anisotropy at unprecedented global scale, in turn placing new constraints on the D'' flow field. We test the ability of the flow model TX2008 (Simmons et al., 2009) to fit our observations. This is achieved by modelling the development of a lattice preferred orientation texture of a ppv layer subject to this flow field using a visco-plastic self consistent theory (Walker et al., 2011). Due to uncertainty in the slip system of ppv three candidate glide planes are trialled: (100)/{110}, (010), and (001). The seismic anisotropy of these models is

  13. The limits of ray theory when measuring shear wave splitting in the lowermost mantle with ScS waves

    NASA Astrophysics Data System (ADS)

    Nowacki, Andy; Wookey, James

    2016-12-01

    Observations of shear wave splitting provide unambiguous evidence of the presence of anisotropy in the Earth's lowermost mantle, a region known as D″. Much recent work has attempted to use these observations to place constraints on strain above the core-mantle boundary (CMB), as this may help map flow throughout the mantle. Previously, this interpretation has relied on the assumption that waves can be modelled as infinite-frequency rays, or that the Earth is radially symmetric. Due to computational constraints it has not been possible to test these approximations until now. We use fully 3-D, generally anisotropic simulations of ScS waves at the frequencies of the observations to show that ray methods are sometimes inadequate to interpret the signals seen. We test simple, uniform models, and for a D″ layer as thin as 50 km, significant splitting may be produced, and we find that recovered fast orientations usually reflect the imposed fast orientation above the CMB. Ray theory in these cases provides useful results, though there are occasional, notable differences between forward methods. Isotropic models do not generate apparent splitting. We also test more complex models, including ones based on our current understanding of mineral plasticity and elasticity in D″. The results show that variations of anisotropy over even several hundred kilometres cause the ray-theoretical and finite-frequency calculations to differ greatly. Importantly, models with extreme mineral alignment in D″ yield splitting times not dissimilar to observations (δt ≤ 3 s), suggesting that anisotropy in the lowermost mantle is probably much stronger than previously thought-potentially ˜10 per cent shear wave anisotropy or more. We show that if the base of the mantle is as complicated as we believe, future studies of lowermost mantle anisotropy will have to incorporate finite-frequency effects to fully interpret observations of shear wave splitting.

  14. The vertical flow in the lowermost mantle beneath the Pacific from inversion of seismic waveforms for anisotropic structure

    NASA Astrophysics Data System (ADS)

    Kawai, Kenji; Geller, Robert J.

    2010-08-01

    It is impractical to directly constrain the elastic constants of a transversely isotropic (TI) medium using travel-time data. In contrast, as we show in this paper, the elastic constants can be determined straightforwardly by inversion of body-wave waveform data. We invert the horizontal components of observed seismic waveforms of S and ScS phases (as well as any other phases arriving in the time window) to determine the radial profile of TI shear wave velocity in the lowermost mantle beneath the Pacific. We find that the radial (SV) component is faster than the transverse (SH) component in the depth range from about 200-400 km above the core-mantle boundary (CMB). The major mineralogical components above the D″ discontinuity in this depth range are Mg-perovskite (pv) and ferropericlase (fp). The observed anisotropy can be interpreted as due to lattice preferred orientation (LPO) of either pv, fp, or both in the lowermost mantle induced by vertical flow due to thermal buoyancy, which might be related to the origin of the Hawaiian hotspot (although other possibilities such as a chemically distinct layer, LPO of post-perovskite (ppv), or LPO in counter-flow in and around a chemically dense pile cannot be excluded). We show that resolution of the velocity of SV shear waves very close to the CMB is inherently limited due to the boundary condition of zero tangential traction at the CMB; shear wave splitting studies thus cannot be used to investigate the anisotropy of the lowermost mantle.

  15. Probabilistic joint inversion of lowermost mantle P-wave velocities and core mantle boundary topography using differential travel times and hierarchical Hamiltonian Monte-Carlo sampling

    NASA Astrophysics Data System (ADS)

    Muir, J. B.; Tkalcic, H.

    2015-12-01

    The body wave velocities of the lowermost mantle and the topography of the core mantle boundary are intimately linked, due to physical considerations of temperature and buoyancy, and due to the difficulty of independently resolving their structure. We present a hierarchical Bayesian joint inversion of the P-wave velocity perturbations in the lowermost 300 km of the mantle and the topographic perturbations of the core mantle boundary, using a novel dataset, consisting of PcP - P, PKPab - PKPbc and P4KP - PcP differential travel times. This dataset is both free of the effects of the inner core and largely independent of upper mantle heterogeneity, allowing us to concentrate on the core mantle boundary / lowermost mantle region. We employ a hybrid hierarchical Hamiltonian Monte Carlo (HMC) / Gibbs sampler, to our knowledge thus far unused in global seismology, to generate the posterior parameter distributions arising from Bayesian analysis, using Monte Carlo simulation. The full hierarchical Bayesian approach, using the HMC/Gibbs allows the highly correlated and noise dependent probability surface of the model space to be efficiently traversed. After confirming the efficacy of our sampler on a synthetic dataset, we invert for the lowermost mantle and core mantle boundary. After including corrections to the differential travel time data to account for upper mantle structure, we find a root mean square P-wave velocity perturbation in the lowermost mantle of 1.26% and a root mean square topographic perturbation of the core mantle boundary of 6.04 km.

  16. Preliminary identification of fullerenes in the lowermost Jurassic strata, Queen Charlotte Islands, British Columbia

    NASA Astrophysics Data System (ADS)

    Perry, Randall S.; Haggart, James W.; Ward, Peter D.

    2004-02-01

    The Triassic-Jurassic (TJ) mass extinction (~200 mya) event is one of the most severe in geologic history. It is also one of the most poorly understood. Few geologic sections containing the TJ boundary interval have been identified globally, and most of those are poorly preserved; the paucity of suitable stratigraphic sections has prevented corroborative geochemical studies of this interval. Recently, fullerene molecules (C60 to C200) have been shown to be present in the mass extinction boundary intervals of the Permian-Triassic (PT) event (~251.4 mya), as well as the well-known "dinosaur" extinction event of the Cretaceous-Tertiary (KT) (~65 mya). The presence of fullerenes in both these extinction intervals has been used to invoke an extraterrestrial impact cause for the extinctions. Preliminary results of laser desorption mass spectrometry (LDMS) of selected samples from the Kennecott Point TJ boundary section, Queen Charlotte Islands, British Columbia, suggest that fullerenes (C60 to ~C200) are present in the section, stratigraphically above the extinction interval (as defined by paleontological and isotopic data), but not actually within the interval itself. The presence of fullerenes may not be diagnostic of an impact event.

  17. Lowermost Mantle Velocity Estimations Beneath the Central North Atlantic Area from Pdif Observed at Balkan, East Mediterranean, and American Stations

    NASA Astrophysics Data System (ADS)

    Ivan, Marian; Ghica, Daniela Veronica; Gosar, Andrej; Hatzidimitriou, Panagiotis; Hofstetter, Rami; Polat, Gulten; Wang, Rongjiang

    2015-02-01

    Lowermost mantle velocity in the area 15°S-70°N latitude/60°W-5° W longitude is estimated using two groups of observations, complementary to each other. There are 894 Pdif observations at stations in the Balkan and Eastern Mediterranean areas from 15 major earthquakes in Central and South America. Another 218 Pdif observations are associated with four earthquakes in Greece/Turkey and one event in Africa, recorded by American stations. A Pdif slowness tomographic approach of the structures immediately above the core-to-mantle boundary (CMB) is used, incorporating corrections for ellipticity, station elevation and velocity perturbations along the ray path. A low-velocity zone above CMB with a large geographical extent, approximately in the area (35-65°N) × (40-20°W), appears to have the velocity perturbations exceeding the value actually assumed by some global models. Most likely, it is extended beneath western Africa. A high-velocity area is observed west of the low-velocity zone. The results suggest that both Cape Verde and Azorean islands are located near transition areas from low-to-high velocity values in the lowermost mantle.

  18. Probing the subtropical lowermost stratosphere and the tropical upper troposphere and tropopause layer for inorganic bromine

    NASA Astrophysics Data System (ADS)

    Werner, Bodo; Stutz, Jochen; Spolaor, Max; Scalone, Lisa; Raecke, Rasmus; Festa, James; Fedele Colosimo, Santo; Cheung, Ross; Tsai, Catalina; Hossaini, Ryan; Chipperfield, Martyn P.; Taverna, Giorgio S.; Feng, Wuhu; Elkins, James W.; Fahey, David W.; Gao, Ru-Shan; Hintsa, Erik J.; Thornberry, Troy D.; Moore, Free Lee; Navarro, Maria A.; Atlas, Elliot; Daube, Bruce C.; Pittman, Jasna; Wofsy, Steve; Pfeilsticker, Klaus

    2017-01-01

    We report measurements of CH4 (measured in situ by the Harvard University Picarro Cavity Ringdown Spectrometer (HUPCRS) and NOAA Unmanned Aircraft System Chromatograph for Atmospheric Trace Species (UCATS) instruments), O3 (measured in situ by the NOAA dual-beam ultraviolet (UV) photometer), NO2, BrO (remotely detected by spectroscopic UV-visible (UV-vis) limb observations; see the companion paper of Stutz et al., 2016), and of some key brominated source gases in whole-air samples of the Global Hawk Whole Air Sampler (GWAS) instrument within the subtropical lowermost stratosphere (LS) and the tropical upper troposphere (UT) and tropopause layer (TTL). The measurements were performed within the framework of the NASA-ATTREX (National Aeronautics and Space Administration - Airborne Tropical Tropopause Experiment) project from aboard the Global Hawk (GH) during six deployments over the eastern Pacific in early 2013. These measurements are compared with TOMCAT/SLIMCAT (Toulouse Off-line Model of Chemistry And Transport/Single Layer Isentropic Model of Chemistry And Transport) 3-D model simulations, aiming at improvements of our understanding of the bromine budget and photochemistry in the LS, UT, and TTL.Changes in local O3 (and NO2 and BrO) due to transport processes are separated from photochemical processes in intercomparisons of measured and modeled CH4 and O3. After excellent agreement is achieved among measured and simulated CH4 and O3, measured and modeled [NO2] are found to closely agree with ≤ 15 ppt in the TTL (which is the detection limit) and within a typical range of 70 to 170 ppt in the subtropical LS during the daytime. Measured [BrO] ranges between 3 and 9 ppt in the subtropical LS. In the TTL, [BrO] reaches 0.5 ± 0.5 ppt at the bottom (150 hPa/355 K/14 km) and up to about 5 ppt at the top (70 hPa/425 K/18.5 km; see Fueglistaler et al., 2009 for the definition of the TTL used), in overall good agreement with the model simulations. Depending on the

  19. Volcanic influence on background sulfurous and carbonaceous aerosol in the Lowermost Stratosphere

    NASA Astrophysics Data System (ADS)

    Friberg, J.; Martinsson, B. G.; Andersson, S. M.; Brenninkmeijer, C. A. M.; Hermann, M.; van Velthoven, P. F. J.; Zahn, A.

    2012-04-01

    Previous measurements in the upper troposphere (UT) and the lowermost stratosphere (LS) have indicated the presence of a carbonaceous component in the aerosol (Murphy et al.,1998; Nguyen et al., 2008; Martinsson et al., 2009). Here the occurrence of carbonaceous and sulfurous particles around the tropopause is investigated. The data were taken from the CARIBIC (Civil Aircraft for Regular Investigation of the atmosphere Based on an Instrument Container) platform, where instruments onboard a Lufthansa passenger aircraft on inter-continental flights are used for examination of the atmospheric composition in the UT/LS at 8-12 km altitude (Brenninkmeijer et al., 2007). CARIBIC undertakes aerosol sampling for chemical characterization, as well as measurements of particle number concentrations and mixing ratios of a large number of trace gases including O3, CO, NO/NOy, Hg, water (gaseous and condensed), greenhouse gases and halogenated hydrocarbons. The CARIBIC dataset also contains data on meteorological conditions. 500 aerosol samples were collected during 150 flights with a sampling time of 100 minutes by an impaction technique (Nguyen et al., 2006). Specimen are then analyzed by quantitative multi-elemental analysis by PIXE (Particle-Induced X-ray Emission) and PESA (Particle Elastic Scattering Analysis) to obtain elemental concentrations for sulfur, iron, titanium, potassium, hydrogen, carbon, nitrogen and oxygen among others (Nguyen and Martinsson, 2007). The present study is based on samples collected in the LS from May 2005- August 2008. Concentrations of particulate carbon and sulfur in the LS is shown to follow seasonal cycles, correlated with ozone concentrations, with increasing concentrations from the tropopause through the LS. This indicates downward transport from the so-called stratospheric over-world (SOV) as an important source for these species. Sulfuric acid particles are formed in the stratosphere from carbonyl sulfide (OCS) via photochemical

  20. On the Heterogeneity of the Lowermost Mantle from PcP-P and ScS-S Differential Travel Times

    NASA Astrophysics Data System (ADS)

    Bartlett, C.; Tkalcic, H.; Young, M. K.

    2011-12-01

    There has been an ongoing debate about the nature of heterogeneities in the lowermost mantle. Different P and S-wave tomography models can be compared to obtain an ad hoc picture of the nature of heterogeneities (e.g. thermal versus chemical), but because such models are normally derived from different datasets and using different assumptions, such a comparison is a nuisance. Here we use existing data from deep and large magnitude earthquakes to analyze and compare differential travel times of PcP-P and ScS-S waves. This type of analysis is the most direct probe of the nature of heterogeneities in the lowermost mantle because the PcP and ScS waves sample the core-mantle boundary (CMB) region in the same way. The predicted PcP-P and ScS-S travel time differential is subtracted from the observed travel time difference, and that residual can then be plotted onto a map to show where parts of the CMB produce slower or faster PcP or ScS. By then comparing the PcP-P and ScS-S travel time residuals as well as their lateral gradients, we can infer what may be the nature of heterogeneity in a given area of the lowermost mantle. The goal is to expand the data set by Tkalcic and Romanowicz (2002) by using seismic stations and earthquakes in areas not initially used. Because of the ten-year difference between the initial data set, we are able to utilize the new data recorded at the newer seismic stations, in particular in Australia and Antarctica. In this study, over 480 measurements were made. Although more observational work still needs to be done in finding events that produce good PcP-P and ScS-S, we are beginning to fill in the "holes" of the existing spatial coverage. Events in locations such as the Mediterranean Sea add to the velocity model particularly in the northern Atlantic Ocean. In the new data set, the largest negative PcP-P residuals are located along the coast of Antarctica and between Alaska and Russia. These larger negative residuals indicate significantly

  1. New paleomagnetic data from Bornholm granitoids testing whether the East-European Craton rotated during the 1.50-1.45 Ga Danopolonian orogeny

    NASA Astrophysics Data System (ADS)

    Lubnina, N.; Bogdanova, S.; Cecys, A.

    2009-04-01

    According to the palaeogeographic reconstructions, the East-European Craton (EEC) was part of the Palaeo- to Mesoproterozoic supercontinent Nuna / Columbia (Hoffman, 1997; Rogers and Santosh, 2002). Particularly important was the period between 1.5 and 1.3 Ga, when incipient break-up of this supercontinent occurred (Condie, 2002) but the EEC ("Baltica") still remained in close connection with other continental blocks. During the entire Mesoproterozoic, however, the EEC featured different geodynamic regimes in its presently western and eastern parts. In the west, these were convergent, while rifting prevailed in the east (Bogdanova et al., 2008). Previously, paleomagnetic studies of the Mesoproterozoic Ladoga Lake mafic rocks in NE Russia and the Dalarna mafic dykes in Sweden have disclosed a regular trend from the older Dalarna dykes to the younger dolerites of Lake Ladoga, suggesting an anticlockwise rotation of about 20 degrees. That rotation could either have affected the entire EEC as a result of the Danopolonian orogeny at ca. 1.50-1.45 Ga or have been associated with local block-displacement events in the Pasha-Ladoga graben (Lubnina et al., 2005, 2007). In the present study, we have tested these alternative possibilities by carrying out new paleomagnetic studies of Mesoproterozoic granitoids from the Danish island of Bornholm in the South Baltic Sea, which is a key area of the Danopolonian orogeny. On SW Bornholm, the 1.46 Ga Ronne granodiorites, which are cut by NNW trending thin dolerite dykes have been sampled in the Klippelokke quarry. Remanence measurements were performed using a 2G cryogenic magnetometer at the Palaeomagnetic Laboratory of the Department of Geology, Lund University, Sweden. Conventional progressive thermal or alternating field (AF) demagnetizations were applied to all specimens. During the stepwise thermal and AF demagnetization experiments, two components of NRM were isolated in the majority of the granitoid specimens. The low

  2. Jurassic/Cretaceous carbonate platform and reef dynamics of the Northern Calcareous Alps

    NASA Astrophysics Data System (ADS)

    Rasser, M. W.; Fenninger, A.

    2003-04-01

    Upper Jurassic to Lower Cretaceous carbonate platforms of the Northern Calcareous Alps are interpreted as steeply bordered, isolated Bahamian-type platforms, which are interfingered with bathypelagic basin sediments. This facies differentiation and the Upper Jurassic onset of carbonate platform development was caused by tectonic events at the Oxfordian/Kimmeridgian boundary. Gravitational sliding caused a structural relief within radiolarite basins that enabled the first shallow-water development in the Northern Calcareous Alps since the drowning of Upper Triassic carbonate platforms. Shallow water sedimentation takes place from the Kimmeridgian to the lower-most Cretaceous. This presentation provides an overview of the Upper Jurassic to Lower Cretaceous carbonate platforms of the Northern Calcareous Alps, which are investigated in the course of a project funded by the Austrian Science Foundation. The main topics of this project, which are presented and discussed herein, are: (1) basin - platform transitions, (2) platform geometries, (3) shallow-water carbonate facies dynamics, (4) palecology of reefal structures. Two crucial problems will be discussed in detail: (1) the platform geometry and (2) the framework problem. Our results raise doubts on the traditional interpretation of platform geometry. We suggest that Kimmeridgian carbonate platforms may have represented carbonate ramp structures without steep slopes, but not Bahamian-type platforms. Only the Tithonian - Berriasian platforms represented isolated settings with steep slopes. The so-called framework problem means that the interior of most modern coral reefs represents more a pile of reef rubble than an in-situ framework. This is because reefs are periodically destroyed by heavy storms and reef recovery leads only to a thin cover of living framework. In fact, in-situ coral reef frameworks are rare among the Alpine platforms in question, but accumulations of fragmented framework-builders bound by

  3. A new genus of fossil Mymaridae (Hymenoptera) from Cretaceous amber and key to Cretaceous mymarid genera.

    PubMed

    Poinar, George; Huber, John T

    2011-01-01

    Myanmymar aresconoidesgen n., sp. n. is described from one female in Burmese amber, dated as about 100 my. It is similar to Arescon on wing features but is unique among Mymaridae in having distinctly segmented palpi. It is the fifth mymarid genus definitely referable to the Cretaceous period. A key to Cretaceous mymarid genera is presented and the features of Myanmymar are compared with the other Cretaceous and extant mymarid genera.

  4. Impact of different Asian source regions on the composition of the Asian monsoon anticyclone and on the extratropical lowermost stratosphere

    NASA Astrophysics Data System (ADS)

    Vogel, B.; Günther, G.; Müller, R.; Grooß, J.-U.; Riese, M.

    2015-04-01

    The impact of different boundary layer source regions in Asia on the chemical composition of the Asian monsoon anticyclone, considering its intraseasonal variability in 2012, is analysed by CLaMS simulations using artificial emission tracers. Our simulations show that the Asian monsoon anticyclone is highly variable in location and shape and oscillates between 2 states: first a symmetric anticyclone and second, an asymmetric anticyclone either elongated or split in two smaller anticyclones. A maximum in the distribution of air originating from Indian/Chinese boundary layer sources is usually found in the core of the symmetric anticyclone, in contrast the asymmetric state is characterised by a double peak structure in the horizontal distribution of air originating from India and China. The simulated horizontal distribution of artificial emission tracers for India/China is in agreement with patterns found in satellite measurements of O3 and CO by the Aura Microwave Limb Sounder (MLS). The contribution of different boundary source regions to the Asian monsoon anticyclone strongly depends on its intraseasonal variability and is therefore more complex than hitherto believed, but in general the highest contributions are from North India and Southeast Asia at 380 K. In the early (June to mid-July) and late (mid-August to October) period of the monsoon 2012, contributions of emissions from Southeast Asia are highest and in the intervening period (≈ mid-July to mid-August) emissions from North India have the largest impact. Further, our simulations confirm that the thermal tropopause above the anticyclone constitutes a vertical transport barrier. Enhanced contributions of emission tracers for Asia are found at the northern flank of the Asian monsoon anticyclone between double tropopauses indicating an isentropic transport from the anticyclone into the lowermost stratosphere. After the breakup of the anticyclone, significant contributions of air masses originating in India

  5. Sedimentological and geochemical characteristics of the uppermost Permian and lowermost Triassic of the Abadeh section of Iran

    NASA Astrophysics Data System (ADS)

    Heydari, E.; Ghazi, M.; Hassanzadeh, J.

    2003-04-01

    The uppermost Permian strata of the Abadeh section in Iran consist of 56 m of skeletal limestone (Abadehian) that grades upward into 18 m of grey, bioturbated, fossiliferous lime mudstone (Julfian), which in turn grades upward to 18 m of red, nodular wackestone containing an abundant pelagic fauna (Dorashamian). The overlying lowermost Triassic begins with a1 m thick layer consisting of calcite crystals which grades upward to 0.5 m of bioturbated wackestone. This is followed by a 1.5 m thick layer of ooid-peloid grainstone. The remainder of the lowermost Triassic is composed of 100+ m of grey, bioturbated to nodular lime mudstone. The lithofacies succession of the uppermost Permian is interpreted to represent deposition under increasing water depth, related to a rising of relative sea level, which lead to drowning of the carbonate platform to below storm wave base. Sedimentological characteristics, lithology, wide distribution, and slow sedimentation rates indicate that strata immediately below the Permian Triassic (P-T) boundary (Dorashamian interval) were deposited in deep, oxygenated waters. The lowermost Triassic grainstone strata were deposited in shallow waters, indicating a rapid and major drop in relative sea level at the end of Permian time in this area. This is followed by a relative sea-level rise during the earliest Triassic. Our study indicates that shallow and moderately deep waters during the latest Permian and earliest Triassic were well oxygenated in the open ocean setting of the central Tethys Sea in Iran. The study also demonstrates major changes in geochemical compositions of the strata. Sr concentrations decrease from a value of 3000 ppm in the Abadehian strata to about 500 ppm at the P-T boundary. The δ18O compositions show wide fluctuations in the Abadehian and Julfian intervals, but exhibit a gradual decrease from -5.5 ppm PDB at five meters below the boundary to -7.0 ppm PDB at the P-T boundary. The δ13C are relatively uniform at a value

  6. Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe

    NASA Astrophysics Data System (ADS)

    Cuesta, J.; Eremenko, M.; Liu, X.; Dufour, G.; Cai, Z.; Hoepfner, M.; von Clarmann, T.; Sellitto, P.; Foret, G.; Gaubert, B.; Beekmann, M.; Orphal, J. J.; Chance, K.; Spurr, R. J.; Flaud, J.

    2013-12-01

    Lowermost tropospheric ozone is a major factor determining air quality, which directly affects human health in megacities and causes damages to ecosystems. Monitoring tropospheric ozone is a key societal issue which can be addressed at the regional scale by spaceborne observation. However, current satellite retrievals of tropospheric ozone using uncoupled either ultraviolet (UV) or thermal infrared (TIR) observations show limited sensitivity to ozone at the lowermost troposphere (LMT, up to 3 km asl of altitude above sea level), which is the major concern for air quality. In this framework, we have developed a new multispectral approach for observing lowermost tropospheric ozone from space by synergism of atmospheric TIR radiances observed by IASI and earth UV reflectances measured by GOME-2. Both instruments are onboard the series of MetOp satellites (in orbit since 2006 and expected until 2022) and their scanning capabilities offer global coverage every day, with a relatively fine ground pixel resolution (12-km-diameter pixels spaced by 25 km for IASI at nadir). Our technique uses altitude-dependent Tikhonov-Phillips-type constraints, which optimize sensitivity to lower tropospheric ozone. It integrates the VLIDORT and KOPRA radiative transfer codes for simulating UV reflectance and TIR radiance, respectively. We have used our method to analyze real observations over Europe during an ozone pollution episode in the summer of 2009. The results show that the multispectral synergism of IASI (TIR) and GOME-2 (UV) enables the observation of the spatial distribution of ozone plumes in the LMT, in good agreement with the CHIMERE regional chemistry-transport model. In this case study, when high ozone concentrations extend vertically above 3 km asl, they are similarly observed over land by both the multispectral and IASI retrievals. On the other hand, ozone plumes located below 3 km asl are only clearly depicted by the multispectral retrieval (both over land and over ocean

  7. Benthic foraminifera at the Cretaceous-Tertiary boundary around the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Alegret, Laia; Molina, Eustoquio; Thomas, Ellen

    2001-10-01

    Cretaceous-Tertiary (K-T) boundary sections in northeastern Mexico contain marly formations separated by a controversial clastic unit. Benthic foraminifera in seven sections indicate middle and lower bathyal depths of deposition for the marls, with the exception of the upper bathyal northernmost section. Mixed neritic-bathyal faunas were present in the clastic unit, indicating redeposition in the deep basin by mass-wasting processes resulting from the K-T bolide impact in the Gulf of Mexico. Benthic foraminifera in the Mexican sections, and at other deep-sea locations, were not subject to major extinction at the time of impact, but there were temporary changes in assemblage composition. Benthic faunas indicate well- oxygenated bottom waters and mesotrophic conditions during the late Maastrichtian and increased food supply during the latest Maastrichtian. The food supply decreased drastically just after the K-T boundary, possibly because of the collapse of surface productivity. Cretaceous and early Paleogene benthic foraminifera, however, did not exhibit the benthic-pelagic coupling of present-day faunas, as documented by the lack of significant extinction at the K-T collapse of surface productivity. Much of the food supplied to the benthic faunas along this continental margin might have been refractory material transported from land or shallow coastal regions. The decrease in food supply at the K-T boundary might be associated with the processes of mass wasting, which removed surface, food-rich sediment. Benthic faunas show a staggered pattern of faunal recovery in the lowermost Paleogene, consistent with a staged recovery of the vertical organic flux but also with a gradual buildup of organic matter in the sediment.

  8. Upper Cretaceous Brachycythere (Ostr., Crust.) from Iran

    NASA Astrophysics Data System (ADS)

    Emami, V.

    Five new species of Brachycythere (Crustacea, Ostracoda) are described and figured from the Gurpi Formation (Campanian, Upper Cretaceous). The new species are B. reymenti. B. ilamensis, B. iranensis, B. labioforma, B. posterotruncata and « Brachycythereå sp.nov.?

  9. Early Cretaceous angiosperms and beetle evolution

    PubMed Central

    Wang, Bo; Zhang, Haichun; Jarzembowski, Edmund A.

    2013-01-01

    The Coleoptera (beetles) constitute almost one–fourth of all known life-forms on earth. They are also among the most important pollinators of flowering plants, especially basal angiosperms. Beetle fossils are abundant, almost spanning the entire Early Cretaceous, and thus provide important clues to explore the co-evolutionary processes between beetles and angiosperms. We review the fossil record of some Early Cretaceous polyphagan beetles including Tenebrionoidea, Scarabaeoidea, Curculionoidea, and Chrysomeloidea. Both the fossil record and molecular analyses reveal that these four groups had already diversified during or before the Early Cretaceous, clearly before the initial rise of angiosperms to widespread floristic dominance. These four beetle groups are important pollinators of basal angiosperms today, suggesting that their ecological association with angiosperms probably formed as early as in the Early Cretaceous. With the description of additional well-preserved fossils and improvements in phylogenetic analyses, our knowledge of Mesozoic beetle–angiosperm mutualisms will greatly increase during the near future. PMID:24062759

  10. Early Cretaceous angiosperms and beetle evolution.

    PubMed

    Wang, Bo; Zhang, Haichun; Jarzembowski, Edmund A

    2013-09-12

    The Coleoptera (beetles) constitute almost one-fourth of all known life-forms on earth. They are also among the most important pollinators of flowering plants, especially basal angiosperms. Beetle fossils are abundant, almost spanning the entire Early Cretaceous, and thus provide important clues to explore the co-evolutionary processes between beetles and angiosperms. We review the fossil record of some Early Cretaceous polyphagan beetles including Tenebrionoidea, Scarabaeoidea, Curculionoidea, and Chrysomeloidea. Both the fossil record and molecular analyses reveal that these four groups had already diversified during or before the Early Cretaceous, clearly before the initial rise of angiosperms to widespread floristic dominance. These four beetle groups are important pollinators of basal angiosperms today, suggesting that their ecological association with angiosperms probably formed as early as in the Early Cretaceous. With the description of additional well-preserved fossils and improvements in phylogenetic analyses, our knowledge of Mesozoic beetle-angiosperm mutualisms will greatly increase during the near future.

  11. Biostratigraphy of Echinoid spines, Cretaceous of Texas

    SciTech Connect

    Kirkland, P.L.

    1984-04-01

    Echinoid (sea urchin) spines from Cretaceous strata have widely varying morphology. They are common, and most are small enough to be recovered from well cuttings. Many forms have restricted ranges; consequently, echinoid spine have substantial biostratigraphic utility. There have been established 115 form taxa of echinoid spines and 14 form taxa of ophiuroid-asteroid spines for the Cretaceous of Texas. The specimens used for establishing the form taxa were processed from 533 outcrop samples (78 localities) from 30 Cretaceous formations, each with a well-defined age based on faunal zones of ammonites and Foraminifera. A dichotomous key in 9 parts and a catalog of scanning electron micrographs (87 plates) have been set up to assist identification of the form taxa. Range charts for the echinoid and ophiuroid-asteroid form taxa have utility through the Cretaceous of much of the Gulf Coastal area. The most precise zonation has been possible for the Albian.

  12. Anisotropy in the lowermost mantle beneath the Indian Ocean Geoid Low from ScS splitting measurements

    NASA Astrophysics Data System (ADS)

    Padma Rao, B.; Ravi Kumar, M.; Singh, Arun

    2017-02-01

    The Indian Ocean Geoid Low (IOGL) to the south of Indian subcontinent is the world's largest geoid anomaly. In this study, we investigate the seismic anisotropy of the lowermost mantle beneath the IOGL by analyzing splitting of high-quality ScS phases corrected for source and receiver side upper mantle anisotropy. Results reveal significant anisotropy (˜1.01%) in the D'' layer. The observed fast axis polarization azimuths in the ray coordinate system indicate a TTI (transverse isotropy with a tilted axis of symmetry) style of anisotropy. Lattice Preferred Orientation (LPO) deformation of the palaeo-subducted slabs experiencing high shear strain is a plausible explanation for the observed anisotropy beneath the IOGL.

  13. Change in triceps muscle intracompartmental pressure with repositioning and padding of the lowermost thoracic limb of the horse.

    PubMed

    White, N A; Suarez, M

    1986-10-01

    Triceps intracompartmental pressure was measured in the lowermost limb of the recumbent horse during the initial period of recumbency during elective surgical procedures in 11 horses. Intramuscular pressure, using an IM catheter, was measured with the thoracic limbs in 4 different positions, including (I) table-contact limb unadvanced-unsupported free limb, (II) table-contact limb unadvanced-supported free limb, (III) table-contact limb advanced cranially, unsupported free limb, and (IV) table-contact limb advanced cranially, supported free limb. Pressure was measured in the 4 positions with and without padding. The highest pressure was measured in position I without padding. The lowest pressure was measured with position IV with padding and was significantly lower than all pressures in other positions (P less than 0.05). Foam mattress padding significantly decreased muscle pressure in each position.

  14. Sound velocity measurements of CaSiO3 perovskite to 133 GPa and implications for lowermost mantle seismic anomalies

    NASA Astrophysics Data System (ADS)

    Kudo, Yuki; Hirose, Kei; Murakami, Motohiko; Asahara, Yuki; Ozawa, Haruka; Ohishi, Yasuo; Hirao, Naohisa

    2012-10-01

    We report the measurements of aggregate shear velocity (VS) of CaSiO3 perovskite (CaPv) at high pressure (P) between 32 and 133 GPa and room temperature (T) on the basis of Brillouin spectroscopy. The sample had a tetragonal perovskite structure throughout the experiments. The measured P-VS data show the shear modulus and its pressure derivative at ambient condition to be G0=115.8 GPa and G'=1.20, respectively. The zero-pressure shear velocity is determined to be VS0=5.23 km/s, in good agreement with the previous estimate inferred from the ultrasonic measurements on Ca(Si,Ti)O3 perovskite at 1 bar. Our experimental results are broadly consistent with the earlier calculations on tetragonal CaPv but exhibit lower velocity at equivalent pressure. Such tetragonal CaPv is present in cold subducting slabs and possibly in wide areas of the lowermost mantle. While primitive mantle includes certain amount of CaPv, a depleted peridotite (former harzburgite) layer in subducted oceanic lithosphere is deficient in CaPv and enriched in ferropericlase in the lower mantle. Such harzburgite exhibits 0.9% faster VS and 0.7% slower bulk sound velocity (VΦ) at the lowermost mantle P-T conditions if CaPv is present in the tetragonal form in the surrounding mantle. The observed fast VS and slow VΦ anomalies in the D" layer underneath the circum-Pacific region might be attributed in large part in the presence of subducted harzburgitic materials.

  15. Dinosaurs and the Cretaceous Terrestrial Revolution

    PubMed Central

    Lloyd, Graeme T; Davis, Katie E; Pisani, Davide; Tarver, James E; Ruta, Marcello; Sakamoto, Manabu; Hone, David W.E; Jennings, Rachel; Benton, Michael J

    2008-01-01

    The observed diversity of dinosaurs reached its highest peak during the mid- and Late Cretaceous, the 50 Myr that preceded their extinction, and yet this explosion of dinosaur diversity may be explained largely by sampling bias. It has long been debated whether dinosaurs were part of the Cretaceous Terrestrial Revolution (KTR), from 125–80 Myr ago, when flowering plants, herbivorous and social insects, squamates, birds and mammals all underwent a rapid expansion. Although an apparent explosion of dinosaur diversity occurred in the mid-Cretaceous, coinciding with the emergence of new groups (e.g. neoceratopsians, ankylosaurid ankylosaurs, hadrosaurids and pachycephalosaurs), results from the first quantitative study of diversification applied to a new supertree of dinosaurs show that this apparent burst in dinosaurian diversity in the last 18 Myr of the Cretaceous is a sampling artefact. Indeed, major diversification shifts occurred largely in the first one-third of the group's history. Despite the appearance of new clades of medium to large herbivores and carnivores later in dinosaur history, these new originations do not correspond to significant diversification shifts. Instead, the overall geometry of the Cretaceous part of the dinosaur tree does not depart from the null hypothesis of an equal rates model of lineage branching. Furthermore, we conclude that dinosaurs did not experience a progressive decline at the end of the Cretaceous, nor was their evolution driven directly by the KTR. PMID:18647715

  16. Dinosaurs and the Cretaceous Terrestrial Revolution.

    PubMed

    Lloyd, Graeme T; Davis, Katie E; Pisani, Davide; Tarver, James E; Ruta, Marcello; Sakamoto, Manabu; Hone, David W E; Jennings, Rachel; Benton, Michael J

    2008-11-07

    The observed diversity of dinosaurs reached its highest peak during the mid- and Late Cretaceous, the 50 Myr that preceded their extinction, and yet this explosion of dinosaur diversity may be explained largely by sampling bias. It has long been debated whether dinosaurs were part of the Cretaceous Terrestrial Revolution (KTR), from 125-80 Myr ago, when flowering plants, herbivorous and social insects, squamates, birds and mammals all underwent a rapid expansion. Although an apparent explosion of dinosaur diversity occurred in the mid-Cretaceous, coinciding with the emergence of new groups (e.g. neoceratopsians, ankylosaurid ankylosaurs, hadrosaurids and pachycephalosaurs), results from the first quantitative study of diversification applied to a new supertree of dinosaurs show that this apparent burst in dinosaurian diversity in the last 18 Myr of the Cretaceous is a sampling artefact. Indeed, major diversification shifts occurred largely in the first one-third of the group's history. Despite the appearance of new clades of medium to large herbivores and carnivores later in dinosaur history, these new originations do not correspond to significant diversification shifts. Instead, the overall geometry of the Cretaceous part of the dinosaur tree does not depart from the null hypothesis of an equal rates model of lineage branching. Furthermore, we conclude that dinosaurs did not experience a progressive decline at the end of the Cretaceous, nor was their evolution driven directly by the KTR.

  17. Step-wise extinctions at the Cretaceous-Tertiary boundary and their climatic implications

    NASA Technical Reports Server (NTRS)

    Maurrasse, Florentin J-M. R.

    1988-01-01

    A comparative study of planktonic foraminifera and radiolarian assemblages from the Cretaceous-Tertiary (K-T) boundary section of the Beloc Formation in the southern Peninsula of Haiti, and the lowermost Danian sequence of the Micara Formation in southern Cuba reveals a remarkable pattern of step-wise extinctions. This pattern is consistent in both places despite the widely different lithologies of the two formations. Because of a step-wise extinction and the delayed disappearance of taxa known to be more representative of cooler water realms, it is inferred that a cooling trend which characterized the close of the Maastrichtian and the onset of the Tertiary had the major adverse effect on the existing biota. Although repetitive lithologic and faunal fluctuations throughout the Maastrichtian sediments found at Deep Sea Drilling Project (DSDP) site 146/149 in the Caribbean Sea indicate variations reminiscent of known climatically induced cycles in the Cenozoic, rapid biotic succession appears to have taken place during a crisis period of a duration greater than 2 mission years. Widespread and abundant volcanic activities recorded in the Caribbean area during the crisis period gives further credence to earlier contention that intense volcanism may have played a major role in exhacerbating pre-existing climatic conditions during that time.

  18. The Cretaceous/Paleogene Transition on the East Tasman Plateau, Southwestern Pacific

    NASA Technical Reports Server (NTRS)

    Schellenberg, Stephen A.; Brinkhuis, Henk; Stickley, Catherine E.; Fuller, Michael; Kyte, Frank T.; Williams, Graham L.

    2004-01-01

    Ocean Drilling Program Leg 189 recovered a potentially complete shallow marine record of the Cretaceous-Paleogene boundary (KPB) at Site 1172 on the East Tasman Plateau. Here we present high-resolution (cm-scale) data from micropaleontology, geochemistry, sedimentology, and paleomagnetism that provide no evidence for a complete KPB, but instead suggest a boundary-spanning hiatus of at least 0.8 Ma. We interpret this hiatus to represent the sequence boundary between the uppermost Maastrichtian Tal.1 and lowermost Danian Ta1.2/ Da- 1 3rd-order sequence stratigraphic cycles. Microfloral assemblages indicate generally shallow paleodepths, restricted circulation, and eutrophic conditions through the section. Paleodepths progressively shallow through the late Maastrichtian, while more oceanic and warmer conditions dominate the early Danian. The Site 1172 KPB section is broadly comparable to other southern highlatitude sections in Antarctica and New Zealand, but appears to record a shallower and more restricted environment that permitted a eustatically-driven hiatus across the KPB mass extinction event.

  19. Fluviomarine sequences in the Lower Cretaceous of the west Netherlands basin

    SciTech Connect

    Van Der Zwan, K. ); Den Hartog Jager, D.; De Klerk, C. )

    1993-09-01

    The Lower Cretaceous of the West Netherlands Basin contains fluvial deposits of the Delfland Group, overlain by shallow marine sediments of the Rijnland Group. Sequence stratigraphy was applied to both succession, to study the nature of the transgression and to identify possible reservoir-seal pairs. A total of six depositional sequences has been identified using extensive new biostratigraphy and sedimentology. Three of the sequences contain fluvial sediments only, two are mixed fluvial and marine, and one is fully marine. The typical thickness per sequence is 200-400 m. Characteristic for the fluvial sequences is an overall fining-upward pattern. The sequence boundaries have been correlated on logs and on regional seismic. Each of the main depositional settings displays a characteristic seismic facies, which has been used to reconstruct the sedimentological facies distribution. The results demonstrate that the source direction of the Delfland Group was predominantly southeast, controlled by the tectonic grain. Strong thickness variations within the lowermost sequence indicate syndepositional rifting, which confined the main channel systems. The major intervening flood-plain shales correspond to base-level highstands, which implies they can be correlated regionally and may act as intraformational seals. The marine transgression entered the basin from the north during the late Valanginian. By the early Barremian, it covered the entire basin. Retrograding barrier sands from the transgressive systems tract are the best reservoirs within the marine succession. In both fluvial and marine settings, the use of sequence stratigraphy has enabled recognition of several types stratigraphic traps.

  20. Quantifying the Impact of the North American Monsoon and Deep Midlatitude Convection on the Subtropical Lowermost Stratosphere using in Situ Measurements

    NASA Technical Reports Server (NTRS)

    Weinstock, E. M.; Pittman, J. V.; Sayres, D. S.; Smith, J. B.; Anderson, J. G.; Wofsy, S. C.; Xueref, I.; Gerbig, C.; Daube, B. C.; Pfister, L.; hide

    2007-01-01

    The chemical composition of the lowermost stratosphere exhibits both spatial and temporal variability depending upon the relative strength of (1) isentropic transport from the tropical tropopause layer (TTL), (2) diabatic descent from the midlatitude and northern midlatitude stratosphere followed by equatorward isentropic transport, and (3) diabatic ascent from the troposphere through convection. In situ measurements made in the lowermost stratosphere over Florida illustrate the additional impact of equatorward flow around the monsoon anticyclone. This flow carries, along with older stratospheric air, the distinct signature of deep midlatitude convection. We use simultaneous in situ measurements of water vapor (H2O), ozone (O3), total odd nitrogen (NOy), carbon dioxide (CO2), and carbon monoxide (CO) in the framework of a simple box model to quantify the composition of the air sampled in the lowermost stratosphere during the mission on the basis of tracer mixing ratios ascribed to the source regions for these transport pathways. The results show that in the summer, convection has a significant impact on the composition of air in the lowermost stratosphere, being the dominant source of water vapor up to the 380 K isentrope. The implications of these results extend from the potential for heterogeneous ozone loss resulting from the increased frequency and lifetime of cirrus near the local tropopause, to air with increased water vapor that as part of the equatorward flow associated with the North American monsoon can become part of the general circulation.

  1. Quantifying the Impact of the North American Monsoon and Deep Midlatitude Convection on the Subtropical Lowermost Stratosphere using in Situ Measurements

    NASA Technical Reports Server (NTRS)

    Weinstock, E. M.; Pittman, J. V.; Sayres, D. S.; Smith, J. B.; Anderson, J. G.; Wofsy, S. C.; Xueref, I.; Gerbig, C.; Daube, B. C.; Pfister, L.; Richard, E. C.; Ridley, B. A.; Weinheimer, A. J.; Jost, H.-J.; Lopez, J. P.; Lowenstein, M.; Thompson, T. L.

    2007-01-01

    The chemical composition of the lowermost stratosphere exhibits both spatial and temporal variability depending upon the relative strength of (1) isentropic transport from the tropical tropopause layer (TTL), (2) diabatic descent from the midlatitude and northern midlatitude stratosphere followed by equatorward isentropic transport, and (3) diabatic ascent from the troposphere through convection. In situ measurements made in the lowermost stratosphere over Florida illustrate the additional impact of equatorward flow around the monsoon anticyclone. This flow carries, along with older stratospheric air, the distinct signature of deep midlatitude convection. We use simultaneous in situ measurements of water vapor (H2O), ozone (O3), total odd nitrogen (NOy), carbon dioxide (CO2), and carbon monoxide (CO) in the framework of a simple box model to quantify the composition of the air sampled in the lowermost stratosphere during the mission on the basis of tracer mixing ratios ascribed to the source regions for these transport pathways. The results show that in the summer, convection has a significant impact on the composition of air in the lowermost stratosphere, being the dominant source of water vapor up to the 380 K isentrope. The implications of these results extend from the potential for heterogeneous ozone loss resulting from the increased frequency and lifetime of cirrus near the local tropopause, to air with increased water vapor that as part of the equatorward flow associated with the North American monsoon can become part of the general circulation.

  2. Constraining the Geological Time Scale for the Upper Cretaceous in the Edmonton Group: Western Canadian Sedimentary Basin

    NASA Astrophysics Data System (ADS)

    Heredia, B.; Gaylor, J. R.; Hilgen, F.; Kuiper, K.; Mezger, K.; Wijbrans, J. R.; Quidelleur, X.; Huesing, S.

    2011-12-01

    The Cretaceous period records evidence of sea-level changes, remarkably cyclic sedimentation, major perturbations in carbon cycles during anoxic events, and large scale igneous activity. Astronomically-tuned time scales are only partially consistent with recalculated Ar-Ar constraints for the Cretaceous-Paleogene (K-Pg) boundary, but differ in number and tuning of 405-kyr eccentricity related cycles. The exposures of Upper Cretaceous strata along the Red Deer River (Western Canadian Sedimentary Basin) offer a unique opportunity to examine aspects of marine, tectonic, and climatic influenced sediments. The uppermost part of the Knudsen Farm section is a well-preserved continuous section, mainly composed by climatically controlled alternations of silt and organic rich horizons, in which altered volcanic ash layers have been deposited. In this section, the K-Pg boundary has been placed at the base of a prominent coal layer (Nevis coal), approx. 24 m from the base of the c29r. We present a compilation of paleomagnetic data, chemical, colour and magnetic susceptibility proxies, and Ar-Ar, K-Ar and U-Pb (CA-TIMS) for the uppermost part of the Maastrichtian, including the base of the c29r to the K-Pg boundary and up to the lowermost Danian. High-resolution radioisotopic ages and the multi-proxy lithological and geochemical datasets are used to develop a cyclostratigraphic reconstruction of this interval, thus permitting the synchronisation of rock clocks close to the K-Pg boundary. This research is funded by the European Community's Seventh Framework Program (FP7/2007-2013) under grant agreement no [215458].

  3. Late Cretaceous- Cenozoic history of deciduousness and the terminal Cretaceous event.

    USGS Publications Warehouse

    Wolfe, J.A.

    1987-01-01

    Deciduousness in mesic, broad-leaved plants occurred in disturbed, middle-latitude environments during the Late Cretaceous. Only in polar environments in the Late Cretaceous was the deciduous element dominant, although of low diversity. The terminal Cretaceous event resulted in wide-spread selection for plants of deciduous habit and diversification of deciduous taxa, thus leaving a lasting imprint on Northern Hemisphere vegetation. Various environmental factors have played important roles in subsequent diversification of mesic, broad-leaved deciduous taxa and in origination and decline of broad-leaved deciduous forests. Low diversity and rarity of mesic deciduous plants in the post-Cretaceous of the Southern Hemisphere indicate that the inferred 'impact winter' of the terminal Cretaceous event had little effect on Southern Hemisphere vegetation and climate. -Author

  4. Cretaceous shelf-sea chalk deposits

    SciTech Connect

    Hattin, D.E.

    1988-01-01

    The word ''chalk'' is linked etymologically to the Cretaceous, but chalky facies neither dominate that system nor are confined to it. As used commonly, the term ''chalk'' refers to a variety of marine limestone that is white to light gray very fine grained, soft and friable, porous, and composed predominantly of calcitic skeletal remains, especially those derived from coccolithophores. No simple definition suffices to embrace all Cretaceous chalks, which include sandy, marly, shelly, phospatic, glauconitic, dolomitic, pyritic and organic-rich lithotypes. Most of the world's exposed Cretaceous chalk deposits were formed at shelf depths rather than in the deep sea. Cretaceous shelf-sea chalks are developed most extensively in northern Europe, the U.S. Gulf Coastal Plain and Western Interior, and the Middle East, with lesser occurrences alo in Australia. Most Cretaceous shelf-sea chalks formed in the temperature zones, and in relatively deep water. Cretaceous chalks deposited on well-oxygenated sea floors are bioturbated and massive where deficient in terrigenous detritus, or bioturbated and rhythmically interbedded with argillaceous units where influx of terrigenous detritus varied systematically with climate changes. Accumulation of sufficient pelagic mud to form vast deposits of Cretaceous shelf-sea chalk required (1) sustained high productivity of calareous plankton, (2) extensive development of stable shelf and continental platform environments, (3) highstands of seal level, (4) deficiency of aragonitic skeletal material in chalk-forming sediments, and (5) low rates of terrigenous detrital influx. These conditions were met at different times in different places, even within the same general region.

  5. The Cretaceous-Paleogene boundary in the Brazos River area (Texas): new sections and revised interpretations

    NASA Astrophysics Data System (ADS)

    Hart, M.; Leighton, A.; Yancey, T.; Miller, B.; Smart, C.; Twitchett, R.

    2012-04-01

    The Brazos River area of Texas is famous for outcrops of the K/Pg transition and lowermost Paleocene strata. A number of new, un-described sections have been investigated and they provide biostratigraphical and sedimentological information on the events preceding, during and following the Chixculub impact event. The mudstones of the Corsicana Formation (Maastrichtian) contain a number of very thin volcanic ashes, including the yellow/white gypsum-rich horizon incorrectly regarded by some workers as evidence of a pre-K/Pg boundary impact. The mudstones of the Corsicana Mudstone Fm (uppermost Maastrichtian) were significantly eroded by the end-Cretaceous tsunami and the surficial unconsolidated muds as well as a thickness of lithified mudstone eroded and put into suspension, thereby providing the reworked Cretaceous assemblages of microfossils recorded by a number of authors. Erosional relief on the 75-100 m deep sea floor is visible in Cottonmouth Creek and the new River Bank South section as a series of ridges and erosional troughs, trending NW-SE. Trough lows are in-filled with mud-matrix mass flow deposits containing large blocks of Maastrichtian mudstones and transported concretions. These are overlain with granular shell-rich sediments containing spherules, fish teeth, bone fragments and re-worked foraminifera and hummocky cross-stratified storm sands with mudstone inter-beds. Sea floor ridges remained exposed to open marine waters and were colonized with a thin oyster pavement before burial by Kincaid Formation mudstones and siltstones. A return to quiet water conditions during the earliest Paleocene is recorded in a new 3-6 m section of foraminifera-rich mudstones, siltstones and sandstones bounded above and below with zones of carbonate and pyrite concretions, best seen in the River bank South section. The foraminiferal sand unit contains steinkerns and phosphatic concretions indicative of a condensed deposit. The P1a/P1b zonal boundary lies near the top of

  6. The mammalian Cretaceous cochlear revolution.

    PubMed

    Manley, Geoffrey A

    2016-12-19

    The hearing organs of amniote vertebrates show large differences in their size and structure between the species' groups. In spite of this, their performance in terms of hearing sensitivity and the frequency selectivity of auditory-nerve units shows unexpectedly small differences. The only substantial difference is that therian, defined as live-bearing, mammalian groups are able to hear ultrasonic frequencies (above 15-20 kHz), whereas in contrast monotreme (egg laying) mammals and all non-mammalian amniotes cannot. This review compares the structure and physiology of the cochleae of the main groups and asks the question as to why the many structural differences seen in therian mammals arose, yet did not result in greater differences in physiology. The likely answers to this question are found in the history of the mammals during the Cretaceous period that ended 65 million years ago. During that period, the therian cochlea lost its lagenar macula, leading to a fall in endolymph calcium levels. This likely resulted in a small revolution and an auditory crisis that was compensated for by a subsequent series of structural and physiological adaptations. The end result was a system of equivalent performance to that independently evolved in other amniotes but with the additional - and of course "unforeseen" - advantage that ultrasonic-frequency responses became an available option. That option was not always availed of, but in most groups of therian mammals it did evolve and is used for communication and orientation based on improved sound localization, with micro-bats and toothed whales relying on it for prey capture.

  7. Observing lowermost tropospheric ozone pollution with a new multispectral synergic approach of IASI infrared and GOME-2 ultraviolet satellite measurements

    NASA Astrophysics Data System (ADS)

    Cuesta, Juan; Foret, Gilles; Dufour, Gaëlle; Eremenko, Maxim; Coman, Adriana; Gaubert, Benjamin; Beekmann, Matthias; Liu, Xiong; Cai, Zhaonan; Von Clarmann, Thomas; Spurr, Robert; Flaud, Jean-Marie

    2014-05-01

    Tropospheric ozone is currently one of the air pollutants posing greatest threats to human health and ecosystems. Monitoring ozone pollution at the regional, continental and global scale is a crucial societal issue. Only spaceborne remote sensing is capable of observing tropospheric ozone at such scales. The spatio-temporal coverage of new satellite-based instruments, such as IASI or GOME-2, offer a great potential for monitoring air quality by synergism with regional chemistry-transport models, for both inter-validation and full data assimilation. However, current spaceborne observations using single-band either UV or IR measurements show limited sensitivity to ozone in the atmospheric boundary layer, which is the major concern for air quality. Very recently, we have developed an innovative multispectral approach, so-called IASI+GOME-2, which combines IASI and GOME-2 observations, respectively in the IR and UV. This unique multispectral approach has allowed the observation of ozone plumes in the lowermost troposphere (LMT, below 3 km of altitude) over Europe, for the first time from space. Our first analyses are focused on typical ozone pollution events during the summer of 2009 over Europe. During these events, LMT ozone plumes at different regions are produced photo-chemically in the boundary layer, transported upwards to the free troposphere and also downwards from the stratosphere. We have analysed them using IASI+GOME-2 observations, in comparison with single-band methods (IASI, GOME-2 and OMI). Only IASI+GOME-2 depicts ozone plumes located below 3 km of altitude (both over land and ocean). Indeed, the multispectral sensitivity in the LMT is greater by 40% and it peaks at 2 to 2.5 km of altitude over land, thus at least 0.8 to 1 km below that for all single-band methods. Over Europe during the summer of 2009, IASI+GOME-2 shows 1% mean bias and 21% precision for direct comparisons with ozonesondes and also good agreement with CHIMERE model simulations

  8. Early colonization of metazoans in the deep-water: Evidences from the lowermost Cambrian black shales of South China

    NASA Astrophysics Data System (ADS)

    Zhu, M.-Y.; Yang, A.-H.; Zhang, J.-M.; Li, G.-X.; Yang, X.-L.

    2003-04-01

    Diversity of metazoans is high in the deep-water of the present ocean. But it is unknown that when the metazoans began to colonize in the deep-water and what kinds of metazoans first colonized in the deep-water since origin and radiation of metazoans during the Precambrian-Cambrian transition interval. Up to the present, colonization of the deep-sea began in the Ordovician. Although it is suggested that animals were penetrated into the intermediate water depth during the Precambrian, evidences support such suggestion are based on the problematic Ediacaran-grade fossils. However, almost fossil materials that support the Cambrian Explosion hypothesis were discovered from the lowermost Cambrian shallow-water deposits. The abundant earliest Cambrian mineralized small shelly fossils (SSF) are globally from the shallow-water deposits, and the well-known Chengjiang fauna that may records most complete features of metazoans in the ocean after the Cambrian Explosion, occurs as well in the shallow basin near an old land on the Yangtze Platform. In order to understand ecology of the Cambrian Explosion time interval and how happened of the onshore-offshore trends of metazoans, we focused our attention on collecting fossils in the lowermost Cambrian deposits under the varied facies on the Yangtze Platformm during recent years. Investigations of the shallow-water carbonate facies and the oxygen-depleted deep-water black shale facies revealed additional biological and ecological information that are not recorded in the Chengjiang fauna in the siliclastic shallow-water facies. Here we report our discovery of a particular fossil association from more than 10 sections in the deep-water black shales (Qiongzhusian) in the out shelf and slope area of the Yangtze Platform. The fossil association is composed of pelagic and sessile organisms, including abundant sponges, 3 types of bivalved arthropods, 3 types of tubular animals and few problematic organisms. The fossils have either

  9. Stratospheric cooling and downward planetary-wave propagation in the lowermost stratosphere during the 2010-11 winter

    NASA Astrophysics Data System (ADS)

    Nishii, K.; Nakamura, H.; Orsolini, Y. J.

    2012-04-01

    Dynamical cooling in the polar stratosphere is induced by weakening of E-P flux convergence (i.e. anomalous divergence) in the stratosphere. As the E-P flux convergence is mainly contributed to by upward planetary-wave (PW) propagation from the troposphere, the intensity of its propagation is well correlated with the E-P flux convergence and the polar stratospheric temperature. Recent studies (Orsolini et al. 2009, QJRMS; Nishii et al. 2010, GRL) pointed out that a tropospheric blocking high over the western Pacific, whose anomalous circulation is projected strongly onto the Western Pacific (WP) teleconnection pattern, tends to weaken the upward PW propagation and thus lower the polar stratospheric temperature. In this study, we present a possibility that downward PW propagation in the lowermost stratosphere can also cause the E-P flux divergence in the polar stratosphere and thereby the stratospheric cooling. On the basis of prominent downward events of the 100-hPa E-P flux averaged over the mid- to high-latitudes in the northern hemisphere, we performed a lag composite analysis for each of the terms of the transformed Eulerian mean (TEM) equation. In the composite time evolution, downward E-P flux in the lowermost stratosphere and the E-P flux divergence aloft are evident around the reference date, followed by persistent cooling of the polar stratosphere for more than two weeks. About one week before the reference date, enhanced upward E-P flux and its convergence lead to the deceleration of upper-stratospheric zonal winds and thus the weakening of their vertical shear , which may result in the formation of a turning surface for upward-propagating PWs. Our results are overall consistent with Harnik (2009, JGR), who showed that a short pulse of upward-propagating PWs forms a turning surface in the upper stratosphere, where the PWs that subsequently propagate upward can be reflected back. By taking above results into consideration, we analyzed the prolonged cold

  10. Early cretaceous dinosaurs from the sahara.

    PubMed

    Sereno, P C; Wilson, J A; Larsson, H C; Dutheil, D B; Sues, H D

    1994-10-14

    A major question in Mesozoic biogeography is how the land-based dinosaurian radiation responded to fragmentation of Pangaea. A rich fossil record has been uncovered on northern continents that spans the Cretaceous, when continental isolation reached its peak. In contrast, dinosaur remains on southern continents are scarce. The discovery of dinosaurian skeletons from Lower Cretaceous beds in the southern Sahara shows that several lineages of tetanuran theropods and broad-toothed sauropods had a cosmopolitan distribution across Pangaea before the onset of continental fragmentation. The distinct dinosaurian faunas of Africa, South America, and Asiamerica arose during the Cretaceous by differential survival of once widespread lineages on land masses that were becoming increasingly isolated from one another.

  11. Global Cretaceous plate tectonics and paleogeography

    SciTech Connect

    Barron, E.J.; Beeson, D.; Chen, P.; Dingle, R.V.; Frakes, L.A; Funnell, B.M.; Kauffman, E.G.; Petri, S.; Reyment, R.A.; Riccardi, A.C.

    1985-01-01

    The International Geologic Correlation Program (IGCP) Project 191, The Cretaceous Paleoclimatic Atlas Project has compiled 89 Cretaceous paleogeographic maps representing ten regions or continents. The map resolution varies from stage by stage (e.g. North America, Europe, USSR, Australia) to four maps (e.g. China, Southern South America) to a compilation of localities (Antarctica). The paleogeography is plotted here on global plate tectonic reconstructions for each stage. The reconstructions include continental positions and latitude. In addition, the oceanic plates are reconstructed including bathymetry based on a thermal age-depth relationship. The compiled paleogeography and plate tectonic base maps represent the most comprehensive framework for plotting and analyzing sedimentologic, geochemical and paleontologic data with respect to geography and latitude for the Cretaceous time period.

  12. The last dicynodont: an Australian Cretaceous relict.

    PubMed Central

    Thulborn, Tony; Turner, Susan

    2003-01-01

    Some long-forgotten fossil evidence reveals that a dicynodont (mammal-like reptile of the infraorder Dicynodontia) inhabited Australia as recently as the Early Cretaceous, ca. 110 Myr after the supposed extinction of dicynodonts in the Late Triassic. This remarkably late occurrence more than doubles the known duration of dicynodont history (from ca. 63 Myr to ca. 170 Myr) and betrays the profound impact of geographical isolation on Australian terrestrial faunas through the Mesozoic. Australia's late-surviving dicynodont may be envisaged as a counterpart of the ceratopians (horned dinosaurs) in Cretaceous tetrapod faunas of Asia and North America. PMID:12803915

  13. An opilioacarid mite in Cretaceous Burmese amber

    NASA Astrophysics Data System (ADS)

    Dunlop, Jason A.; de Oliveira Bernardi, Leopoldo Ferreira

    2014-09-01

    A fossil opilioacarid mite (Parasitiformes: Opilioacarida) in Burmese amber is described as ? Opilioacarus groehni sp. nov. This ca. 99 Ma record (Upper Cretaceous: Cenomanian) represents only the third fossil example of this putatively basal mite lineage, the others originating from Eocene Baltic amber (ca. 44-49 Ma). Our new record is not only the oldest record of Opilioacarida, but it is also one of the oldest examples of the entire Parasitiformes clade. The presence of Opilioacarida—potentially Opiloacarus—in the Cretaceous of SE Asia suggests that some modern genus groups were formerly more widely distributed across the northern hemisphere, raising questions about previously suggested Gondwanan origins for these mites.

  14. Integrated stratigraphic studies of Paleocene-lowermost Eocene sequences, New Jersey Coastal Plain: Evidence for glacioeustatic control

    NASA Astrophysics Data System (ADS)

    Harris, Ashley D.; Miller, Kenneth G.; Browning, James V.; Sugarman, Peter J.; Olsson, Richard K.; Cramer, Benjamin S.; Wright, James D.

    2010-08-01

    We describe seven Paleocene to lowermost Eocene sequences in core holes at Island Beach, Bass River, Ancora, Millville, and Sea Girt, NJ (Ocean Drilling Program Leg 150X, 174AX) and analyze benthic foraminiferal assemblages to assess paleodepth changes within sequences. These sequences are referred to as Pa0, Pa1a, Pa1b, Pa2a, Pa2b, Pa3a, and Pa3b. Paleocene sequence boundaries are identified by unconformities and variations in benthic foraminiferal biofacies. We used Q-mode factor analysis and paleoslope modeling to identify three distinct middle-outer neritic benthic foraminiferal assemblages and their associated water depths. Paleodepths during the early Paleocene and deposition of Pa0, Pa1a, and Pa2b were ˜80 m with ˜20 m changes across sequence boundaries. A long-term shallowing occurred through the late Paleocene where paleodepths were ˜50-70 m in Pa3a. This trend drastically changes in the earliest Eocene where the paleodepths of sequence Pa3b were ˜120-150 m. New Jersey Paleocene sequence boundaries correlate with those in other regions and with δ18O increases in the deep sea, suggesting Paleocene eustatic lowerings were associated with ice-growth events.

  15. An ophiolithic provenance for a freshwater influenced Upper Cretaceous succession (Gosau-Group, Austria) inferred by trace elements

    NASA Astrophysics Data System (ADS)

    Hofer, Gerald; Wagreich, Michael

    2010-05-01

    The interplay of Late Cretaceous basin subsidence and sea-level oscillations produced a freshwater-marine succession within the Gosau Group in the basement of the Vienna Basin (Austria). Cored sections (courtesy of OMV AG) have been investigated for the boreholes Markgrafneusiedl T1 and recently for Glinzendorf T1 and Gänserndorf T3 of the Glinzendorf syncline. These sediments are supposed to correlate to similar strata of the Grünbach Formation in the outcrop area of Grünbach-Neue Welt (Lower Austria, Northern Calcareous Alps) and yield a Santonian to early Campanian age Fine grained samples were taken from the Upper Cretaceous borehole sections and were geochemically analysed (bulk rock). A lowermost succession of the borehole Markgrafneusiedl T1 from around 4100 to 4020 m interpreted as limnic deposits with relatively low carbon (-3.2 per mill VPDB) and oxygen (-5.0 per mill VPDB) isotopies is followed by marine sediments at around 3900 to 3400 m. This marine middle section has relatively higher carbon (-0.8 per mill VPDB) and oxygen (-5.1 per mill VPDB) isotope ratios. At the top between 3275 and 3200 m a limnic interval is likely again. Boron contents rise from 88 ppm on average in the non-marine parts to values up to 133 ppm in the marine intercept. Differences of the provenance of the marine and limnic parts were investigated by using concentrations and ratios of trace elements with the aim to correlate the drilling sections of the different boreholes. Non-marine successions of the Markgrafneusiedl T1 cores show higher chromium and nickel contents up to 250 ppm respectively 400 ppm while the marine intermediate is characterised by only about 110 ppm chromium and 60 ppm nickel concentrations. In addition to that the lowermost freshwater influenced samples are enriched in Cr/V-ratio relative to the Y/Ni-ratio and therefore trend to an ultramafic source. Summing up the observation of the trace elements lead to the conclusion that the provenance of the limnic

  16. New P-wave Velocity Images of the Lowermost Mantle from a Bayesian Inversion of PKP, PcP, and P4KP Differential Travel Times

    NASA Astrophysics Data System (ADS)

    Young, M.; Tkalcic, H.; Bodin, T.; Sambridge, M.; Tanaka, S.; Rawlinson, N.

    2012-12-01

    Determining the scale-length, magnitude, and distribution of chemical and thermal heterogeneities in the lowermost mantle is crucial to understanding whole mantle dynamics, and yet it remains a much debated and ongoing challenge in geophysics. Common shortcomings of current seismically-derived lowermost mantle models are often the result of a lack of access to and scrutiny in performing travel time measurements from waveform data, consequently incomplete raypath coverage, arbitrary model parameterization, inaccurate uncertainty estimates, and an inadequate definition of the misfit function in the optimization framework. In response, we present a new approach to global tomography where apart from improving the existing ray path coverage using only high quality cross-correlated waveform, the problem is addressed within a Bayesian framework and explicit regularization of model parameters is not required. Our results show that velocity heterogeneities exist on a variety of scales, with anomalies between 600 and 2900 km in lateral extent dominating the lowermost mantle heterogeneity pattern. This provides an important link between the very short-scale imaging achieved through scattering experiments and the long wave-length maps resulting from more traditional tomographic approaches. We also show that the power of heterogeneity in the lowermost mantle has an rms P-wave velocity variation of 0.88%, which is significantly larger than previous global-scale estimates, is fully justified by the data. Comparison of our P-wave velocity model with high-resolution S-wave velocity models refutes a purely thermal origin of mantle heterogeneity. The pattern of correlation between our model and S-wave models, combined with the characteristic scale-length and amplitude of heterogeneity revealed by this study, will help to significantly refine allowable models of thermo-chemical convection in the lowermost mantle. We obtain high resolution images of the lowermost mantle P-wave velocity

  17. Contributions of different boundary layer sources in Asia to the Asian monsoon anticyclone and associated transport pathways to the lowermost stratosphere over northern Europe in 2012

    NASA Astrophysics Data System (ADS)

    Vogel, Bärbel; Günther, Gebhard; Müller, Rolf; Grooß, Jens-Uwe; Bozem, Heiko; Hoor, Peter; Krämer, Martina; Müller, Stefan; Zahn, Andreas; Riese, Martin

    2015-04-01

    The impact of different boundary layer sources in Asia to the chemical composition of the air in the Asian monsoon anticyclone in 2012 is analysed by CLaMS model simulations using artificial emission tracers. Our simulations show that the Asian monsoon anticyclone is highly variable in location and shape. The model behaviour is in agreement with satellite measurements of O3 and CO (MLS). The contribution of different boundary sources regions to the Asian monsoon anticyclone is more complex than hitherto believed, but in general the highest contribution are from North India and Southeast Asia at 380 K. In the early (~ June/July) and late period (Sep/Oct) of the monsoon 2012, contributions of emissions from Southeast Asia are highest and in the intervening period (~ August) emissions from North India have the largest impact. Further, long-range transport of air masses from the Asian monsoon anticyclone to the extratropical lowermost stratosphere occurs by eastward migrating smaller anticyclones and filaments separated at the northeastern flank of the anticyclone transporting within approximately 8-14 days water vapour and pollutants into the lowermost stratosphere over northern Europe. Remnants of this long-range transport processes were measured during the TACTS/ESMVal campaign and could be reproduced by our simulations. In addition, emissions from Southeast Asia can be uplifted at the edge of the anticyclone by deep convection and afterwards are entrained into the circulation around the Asian monsoon anticyclone. Moreover, they also experienced diabatic upward transport in the tropics and subsequently isentropic transport polewards occurs at around 380 K with the result that the extratropical lowermost stratosphere is flooded end of September with air masses originating in Southeast Asia. Our simulations demonstrate that emissions from Asia and Southeast Asia have a significant impact on the chemical compositions of the lowermost stratosphere of the northern

  18. Lithostratigraphy, biostratigraphy and chemostratigraphy of Upper Cretaceous and Paleogene sediments from southern Tanzania: Tanzania Drilling Project Sites 27-35

    NASA Astrophysics Data System (ADS)

    Jimènez Berrocoso, Àlvaro; Huber, Brian T.; MacLeod, Kenneth G.; Petrizzo, Maria Rose; Lees, Jacqueline A.; Wendler, Ines; Coxall, Helen; Mweneinda, Amina K.; Falzoni, Francesca; Birch, Heather; Singano, Joyce M.; Haynes, Shannon; Cotton, Laura; Wendler, Jens; Bown, Paul R.; Robinson, Stuart A.; Gould, Jeremy

    2012-07-01

    The 2008 Tanzania Drilling Project (TDP) expedition recovered common planktonic foraminifera (PF), calcareous nannofossils (CN) and calcareous dinoflagellates with extraordinary shell preservation at multiple Cenomanian-Campanian sites that will be used for paleoclimatic, paleoceanographic, and biostratigraphic studies. New cores confirm the existence of a more expanded and continuous Upper Cretaceous sequence than had previously been documented in the Lindi and Kilwa regions of southeastern coastal Tanzania. This TDP expedition cored 684.02 m at eight Upper Cretaceous sites (TDP Sites 28-35) and a thin Paleocene section (TDP Site 27). TDP Sites 29, 30, 31 and 34 together span the lowermost Turonian to Coniacian (PF Whiteinella archaeocretacea to Dicarinella concavata Zones and CN Zones UC6a-9b), with TDP Site 31 being the most biostratigraphically complete Turonian section found during TDP drilling. A discontinuous section from the Santonian-upper Campanian (PF D. asymetrica to Radotruncana calcarata Zones and CN Zones UC12-16) was collectively recovered at TDP Sites 28, 32 and 35, while thin sequences of the lower Cenomanian (PF Thalmanninella globotruncanoides Zone and CN subzones UC3a-b) and middle Paleocene (Selandian; PF Zone P3a and CN Zone NP5) were cored in TDP Sites 33 and 27, respectively. Records of δ13Corg and δ13Ccarb from bulk sediments generated for all the Cretaceous sites show largely stable values through the sections. Only a few parallel δ13Corg and δ13Ccarb shifts have been found and they are interpreted to reflect local processes. The δ18Ocarb record, however, is consistent with Late Cretaceous cooling trends from the Turonian into the Campanian. Lithologies of these sites include thick intervals of claystones and siltstones with locally abundant, finely-laminated fabrics, irregular occurrences of thin sandstone layers, and sporadic bioclastic debris (e.g., inoceramids, ammonites). Minor lithologies represent much thinner units of up to

  19. Impact of different Asian source regions on the composition of the Asian monsoon anticyclone and of the extratropical lowermost stratosphere

    NASA Astrophysics Data System (ADS)

    Vogel, B.; Günther, G.; Müller, R.; Grooß, J.-U.; Riese, M.

    2015-12-01

    anticyclone. Air masses originating in Southeast Asia are found both within and outside of the Asian monsoon anticyclone because these air masses experience, in addition to transport within the anticyclone, upward transport at the southeastern flank of the anticyclone and in the tropics. Subsequently, isentropic poleward transport of these air masses occurs at around 380 K with the result that the extratropical lowermost stratosphere in the Northern Hemisphere is flooded by the end of September with air masses originating in Southeast Asia. Even after the breakup of the anticyclonic circulation (around the end of September), significant contributions of air masses originating in India/China are still found in the upper troposphere over Asia. Our results demonstrate that emissions from India, China, and Southeast Asia have a significant impact on the chemical composition of the lowermost stratosphere of the Northern Hemisphere, in particular at the end of the monsoon season in September/October 2012.

  20. Transformation of plastids in soil-shaded lowermost hypocotyl segments of bean (Phaseolus vulgaris) during a 60-day cultivation period.

    PubMed

    Kakuszi, Andrea; Solymosi, Katalin; Böddi, Béla

    2017-04-01

    The maintenance but substantial transformation of plastids was found in lowermost hypocotyl segments of soil-grown bean plants (Phaseolus vulgaris cv. Magnum) during a 60-day cultivation period. Although the plants were grown under natural light-dark cycles, this hypocotyl segment was under full coverage of the soil in 5-7 cm depth, thus it was never exposed to light. The 4-day-old plants were fully etiolated: amyloplasts, occasionally prolamellar bodies, protochlorophyllide (Pchlide) and protochlorophyll (Pchl) were found in the hypocotyls of these young seedlings. The 633 and 654 nm bands in the 77 K fluorescence emission spectra indicated the presence of Pchlide and Pchl pigments. During aging, both the Pchlide and Pchl contents increased, however, the Pchl to Pchlide ratio gradually increased. In parallel, the contribution of the 654 nm form decreased and in the spectra of the 60-day-old samples, the main band shifted to 631 nm, and a new form appeared with an emission maximum at 641 nm. The photoactivity had been lost; bleaching took place at continuous illumination. The inner membranes of the plastids disappeared, the amount of starch storing amyloplasts decreased. These data may indicate the general importance of plastids for plant cell metabolism, which can be the reason for their maintenance. Also the general heterogeneity of plastid forms can be concluded: in tissues not exposed to light, Pchl accumulating plastids develop and are maintained even for a long period. © 2016 Scandinavian Plant Physiology Society.

  1. Crustal structure of the eastern Qinling orogenic belt and implication for reactivation since the Cretaceous

    NASA Astrophysics Data System (ADS)

    Guo, Zhen; Chen, Y. John

    2016-06-01

    A high resolution crustal model of the eastern Qinling belt and central North China Craton (central NCC) is obtained along a N-S trending profile (corridor) by joint inversion of surface wave and receiver function. The NCC is one of the oldest cratons on Earth and the Qinling belt is the suture zone between the NCC and South China block (SCB). The Qinling belt is characterized by low crustal velocity (< 3.6 km/s) as well as low bulk Vp/Vs ratio (1.66-1.8), suggesting that the mid- to lower crust is predominantly felsic in composition, which could be the consequence of removal of mafic root by delamination in the past. The quartz-rich hence mechanically weak crust beneath the Qinling belt could be responsible for the strain focusing and significant reactivation since the Cretaceous. Beneath the central NCC, a 10 km thick high-velocity layer (3.9-4.1 km/s) is observed just above the Moho, consistent with the regional high bulk Vp/Vs ratio (> 1.8). The forward gravity modeling supports the presence of a high-density layer (3.05 g/cm3) at the base of the crust beneath the central NCC. We propose that the high velocity in the lowermost crust beneath the central NCC is most likely due to the repeated mafic underplating, which also results in high crustal Vp/Vs ratio and is responsible for the rapid crustal uplift during the late Mesozoic.

  2. Nitrogen geochemistry of a Cretaceous-Tertiary boundary site in New Zealand

    NASA Technical Reports Server (NTRS)

    Gilmour, Iain; Boyd, Stuart R.

    1988-01-01

    Nitrogen in the basal layer of the K-T boundary clay at Woodside Creek, New Zealand, has an abundance of 1100 ppm, a 20-fold enrichment over Cretaceous and Tertiary values. The enrichment parallels that for Ir and elemental carbon (soot); all decrease over the next 6 mm of the boundary clay. The C/N ratio, assuming the nitrogen to be associated with organic rather than elemental carbon, is approximately 5 for the basal layer compared to 20 to 30 for the remainder of the boundary clay. The correlation between N and Ir abundances appears to persist above the boundary, implying that the N is intimately associated with the primary fallout and remained with it during the secondary redeposition processes that kept the Ir abundance relatively high into the lowermost Tertiary. Apparently the basal layer of the boundary clay represents the accumulation of a substantial quantity of N with an isotopic composition approximately 10 percent heavier than background delta value of N-15 values. If the boundary clay represents an altered impact glass from a meteorite impact than it probably denotes a time period of less than 1 year. Therefore, the changes in nitrogen geochemistry apparently occurred over a very short period of time. The high abundance of N and the correspondingly low C/N ratio may reflect enhanced preservation of organic material as a result of the rapid sweepout and burial of plankton by impact ejecta, with little or no bacterial degradation. It is conceivable that the shift in delta value of N-15 may represent an influx of nitrogen from a different source deposited contemporaneously with the impact ejecta. An interesting possibility is that it may be derived from nitrate, produced from the combustion of atmospheric nitrogen.

  3. Shocked cobbles in Lower Cretaceous Duwon Formation, South Korea: their classification and possible formation mechanisms

    NASA Astrophysics Data System (ADS)

    Lim, Hyoun Soo; Chae, Yong-Un; Kim, Kyung Soo; Kim, Cheng-Bin; Huh, Min

    2016-04-01

    Shocked cobbles are the cobbles having shock-induced deformation structures on the surfaces. The most distinctive macroscopic features are the subparallel fractures and the pervasive surface craters, with or without radial fractures. Until now, these shocked cobbles have been reported mainly in Europe, America, and Africa, but never been found or reported in Korea. Shocked cobbles have recently found in the Lower Cretaceous Duwon Formation in South Korea, which was the second report in Asia. The Duwon Formation consists mainly of conglomerates, gravelly sandstones and intercalated mudstone and shale layers. The shocked cobbles are commonly found in the lowermost clast-supported conglomerate layers, and they show various deformation features, such as pockmarked (circular or elliptical) cobbles, cratered (Hertzian or bowl-shaped) cobbles with or without radial fractures, cobbles showing subparallel fractures, and strongly squashed or heavily dissected cobbles. In general, these deformation structures are considered to have resulted from pressure dissolution by overburden, tectonic compression, and seismic or meteorite impacts. However, the exact formation mechanism is not clearly understood, and still in debate. The shocked cobbles found in the Duwon Formation have similar features to those of previously reported shocked cobbles, especially to Triassic Buntsandstein conglomerates in northeastern Spain. Based on the degree of deformation, the Duwon shocked cobbles can be divided into four types, which are (1) faint contact marks, (2) pitted marks without any fractures, (3) pitted marks with radial or sub-parallel fractures affected by pits, and (4) intensive fractures and heavily dissected fragments. The possible mechanisms for the Duwon shocked cobbles are thought to be crushing process by shear stress and pressure solution.

  4. Cretaceous palaeoenvironmental changes inferred from foraminifera communities in the Northern Calcareous Alps (Austria)

    NASA Astrophysics Data System (ADS)

    Wolfgring, Erik; Wagreich, Michael

    2014-05-01

    The outcrop at Postalm (Northern Calcareous Alps) exhibits the development of a marine environment from a comparatively shallow shelf to bathyal environment. Cyclic marly limestones with marl intercalations display an almost complete Santonian to Maastrichtian succession. Within this succession a well defined interval, the R. calcarata total range zone has already undergone detailed stratigraphic investigation. The implementation of a cyclostratigraphic model, providing the exact duration of precession cycles (i.e. 19,6 ka), was followed by a high resolution assessment of foraminifera and nannoplankton communities of this interval (Wagreich et al., 2012). Over 300 bed-by-bed samples have been taken alongside the outcrop to give a "per-cycle" resolution. As foraminifera data suggest the outcrop covers an interval ranging from the uppermost Santonian Dicarinella asymetrica to the Maastrichtian Gansserina gansseri Zone (nannofossil zones CC17 to CC22) and indicates several changes in palaeoenvironment. The lowermost part of the section (uppermost Santonian) displays a comparatively shallow shelf environment yielding high percentage of benthic foraminifera. Highly diverse foraminifera communities can be identified. Planktic and shallow water benthic species are present in equal numbers. Furthermore, bivalves, sponges and echinoderms are highly abundant in the lower parts of the section. A distinct deepening can be observed from the basal Campanian to the Maastrichtian. Changes in foraminifera communities are evident. The upper parts of the section display foraminifera packstone yielding predominantly planktic foraminifera. Benthic foraminifera are present in almost every sample in varying numbers but never exceeding a 10 percent share of the total foraminifera community. The taxonomic composition of benthic foraminifera communities shows a high amount of infaunal agglutinating species in the stratigraphically younger sections of the outcrop. The uppermost part of the

  5. Migration of a Late Cretaceous fish.

    PubMed

    Carpenter, Scott J; Erickson, J Mark; Holland, F D

    2003-05-01

    Late Cretaceous sediments from the Western Interior of North America yield exceptionally well preserved fossils that serve as proxies for the rapidly changing climate preceding the Cretaceous/Tertiary boundary (about 67-65 Myr ago). Here we reconstruct the ontogenetic history of a Maastrichtian-age fish, Vorhisia vulpes, by using the carbon, oxygen and strontium isotope ratios of four aragonite otoliths collected from the Fox Hills Formation of South Dakota. Individuals of V. vulpes spawned in brackish water (about 70-80% seawater) and during their first year migrated to open marine waters of the Western Interior Seaway, where they remained for 3 years before returning to the estuary, presumably to spawn and die. The mean delta(18)O from the marine growth phase of V. vulpes yields a seawater temperature of 18 degrees C, which is consistent with leaf physiognomy and general-circulation-model temperature estimates for the Western Interior during the latest Maastrichtian.

  6. Early Cretaceous lineages of monocot flowering plants

    PubMed Central

    Bremer, Kåre

    2000-01-01

    The phylogeny of flowering plants is now rapidly being disclosed by analysis of DNA sequence data, and currently, many Cretaceous fossils of flowering plants are being described. Combining molecular phylogenies with reference fossils of known minimum age makes it possible to date the nodes of the phylogenetic tree. The dating may be done by counting inferred changes in sequenced genes along the branches of the phylogeny and calculating change rates by using the reference fossils. Plastid DNA rbcL sequences and eight reference fossils indicate that ≈14 of the extant monocot lineages may have diverged from each other during the Early Cretaceous >100 million years B.P. The lineages are very different in size and geographical distribution and provide perspective on flowering plant evolution. PMID:10759567

  7. South Atlantic paleobathymetry since early Cretaceous.

    PubMed

    Pérez-Díaz, Lucía; Eagles, Graeme

    2017-09-18

    We present early Cretaceous to present paleobathymetric reconstructions and quantitative uncertainty estimates for the South Atlantic, offering a strong basis for studies of paleocirculation, paleoclimate and paleobiogeography. Circulation in an initially salty and anoxic ocean, restricted by the topography of the Falkland Plateau, Rio Grande Ridge and Walvis Rise, favoured deposition of thick evaporites in shallow water of the Brazilian-Angolan margins. This ceased as seafloor spreading propagated northwards, opening an equatorial gateway to shallow and intermediate circulation. This gateway, together with subsiding volcano-tectonic barriers would have played a key role in Late Cretaceous climate changes. Later deepening and widening of the South Atlantic, together with gateway opening at Drake Passage would lead, by mid-Miocene (∼15 Ma) to the establishment of modern-style thermohaline circulation.

  8. Shocked cobbles in Lower Cretaceous Duwon Formation, South Korea: A first report in Asia and their possible mechanisms

    NASA Astrophysics Data System (ADS)

    Chae, Y. U.; Kim, K. S.; Kim, C. B.; Son, M.; Lim, H. S.

    2015-12-01

    Shocked cobbles are the cobbles having shock-induced deformation structures on the surfaces. The most distinctive macroscopic features are the subparallel fractures and the pervasive surface craters, with or without radial fractures. Until now, these shocked cobbles have been reported mainly in Europe (Spain and UK) and N. America (USA and Canada), but never been found or reported in Asia. Shocked cobbles have recently found in the Lower Cretaceous Duwon Formation in South Korea, which was the first report in Asia. The Duwon Formation consists mainly of conglomerates, gravelly sandstones and intercalated mudstone and shale layers. The shocked cobbles are commonly found in the lowermost clast-supported conglomerate layers, and they show various deformation features, such as pockmarked (circular or elliptical) cobbles, cratered (Hertzian or bowl-shaped) cobbles with or without radial fractures, cobbles showing subparallel fractures, and strongly squashed or heavily dissected cobbles. In general, these deformation structures are considered to have resulted from pressure dissolution by overburden, tectonic compression, and seismic or meteorite impacts. However, the exact formation mechanism is not clearly understood, and still in debate. The shocked cobbles found in the Duwon Formation have similar features to those of previously reported shocked cobbles, especially to Triassic Buntsandstein conglomerates in northeastern Spain. Based on the macroscopic and microscopic observations, the impact shock is thought to be the best explanation for the deformation features of the Duwon Formation. However, we think that further studies are still needed to clarify the formation mechanism in detail.

  9. Palaeontology: pterosaur embryo from the Early Cretaceous.

    PubMed

    Wang, Xiaolin; Zhou, Zhonghe

    2004-06-10

    Dinosaur embryos have been discovered all over the world, but so far no pterosaur embryos have been reported. Here we describe a Chinese fossil from the Early Cretaceous period containing an embryo that is unambiguously a pterosaur. The embryonic skeleton, which is exquisitely preserved in its egg, is associated with eggshell fragments, wing membranes and skin imprints. This discovery confirms that pterosaurs were egg-layers and sheds new light on our understanding of pterosaur development.

  10. Anomalous paleointensity variation in the Late Cretaceous

    NASA Astrophysics Data System (ADS)

    Chang, B.; Doh, S.; Yu, Y.; Kim, W.

    2010-12-01

    A successive paleointensity variation of the Late Cretaceous (~73.1 Ma) was obtained from the six consecutive lava flows at Jeon-gok Volcanic Complex (JVC) in Korea. A total of 283 samples were collected vertically from the bottom of the flow exposures. For the paleointensity determination, over 200 samples were subjected to the Thellier-type IZZI method with systematic alteration checks. Seventy-nine samples passed conventional reliable criteria, yielding a success rate of 38.7%. The paleofield carrier was found as a magnetite, based on the thermomagnetic analysis. Additional rock magnetic experiments revealed a predominance of single-domain magnetite with partial contribution from superparamagnetic grains. Temporally, the estimated paleointensities (2.7-51.1 μT) displayed distinctive half-sinusoidal fluctuation. The corresponding virtual axial dipole moments range from 4.7 to 90.1 ZAm2 (Z = 1021). Such enormous paleointensity variation with extremely low to high intensity might indicate the period of the geomagnetic field transition or excursion in the Late Cretaceous. Perhaps this ancient geomagnetic field intensity fluctuation reflects the geomagnetic secular variation in late Cretaceous.

  11. Fine Scale Structure of Low and Ultra-Low Velocity Patches in the Lowermost Mantle: Some Case Studies

    NASA Astrophysics Data System (ADS)

    Yuan, K.; Romanowicz, B. A.; French, S.

    2015-12-01

    The lowermost part of the mantle, which is roughly halfway to the center of the earth, plays a key role as a thermal and chemical boundary layer between the solid, silicate mantle and fluid, iron outer core. Constraining the seismic velocity structure in this region provides important insights on mantle dynamics, and core-mantle interactions. Recently, global shear wave velocity tomography has confirmed the presence of broad plume conduits extending vertically through the lower mantle in the vicinity of major hotspots (SEMUCB-WM1, French and Romanowicz, 2015). These conduits are rooted in D" in patches of strongly reduced shear velocity, at least some of which, such as Hawaii, appear to contain known ultra low velocity zones (e.g. Cottaar and Romanowicz, 2012). We seek to determine whether these patches generally contain ULVZs, and to contrast them with less extreme structures such as the PERM anomaly (Lekic et al., 2012). Because global tomography cannot resolve such fine scale structure, we apply forward modeling of higher frequency (10-20s) Sdiff waveforms in 3D complex structures using the Spectral Element Method. We focus on Iceland, Hawaii and the PERM anomaly, and Sdiff observations at USArray and/or dense broadband arrays in Europe. In all three cases, Sdiff waveforms are clearly distorted by these anomalies, with either a complex coda and/or evidence for amplitude focusing. As a start, we design simple cylindrical models of shear velocity reduction, and contrast the best fitting ones at each location considered in terms of diameter, height above the core-mantle boundary and strength of velocity reduction. We refine previously obtained models for Hawaii and the Perm Anomaly. For Iceland, the waveforms show a strong azimuthally dependent post-cursor, with maximum travel time delay of ~20s and focusing effects. The preliminary best fitting model shows a structure of 700km in diameter, ~15% reduction in shear wave velocity, extending ~40 km above the core

  12. Dynamical effects of increases in viscosity and thermal conductivity in the lowermost 1000 km of the mantle.

    NASA Astrophysics Data System (ADS)

    Naliboff, J. B.; Kellogg, L. H.

    2005-12-01

    We explore whether increases in thermal conductivity and viscosity could create a stagnant layer in the lower mantle that acts as a reservoir for material feeding deep-rooted plumes with distinct geochemical signatures from mid-ocean ridge basalts. Changes in the spin state of iron in the lowermost mantle may increase (Sherman 1991, Badro et al. 2003,2004) or decrease (Lin et al. 2005) the radiative heat transfer and should increase the viscosity (Badro et al. 2003). We use a finite-element model of mantle convection with variable viscosity and thermal conductivity to simulate aspects of this transition. The models include passive tracer particles to track the stability of material originating in lower mantle. We examine the stability of different candidate reservoirs by calculating the configurational entropy of the passive tracer particles through time using the method of Goltz and Bose (2002). As stirring takes place, the configurational entropy increases with time, until it reaches a peak and levels off. Models with a lower overall mixing rate require more time before the peak in configurational entropy occurs. The rate of increase of configurational entropy, and the time required to reach the configurational entropy peak, can serve as a quantitative measure of the mixing between different mantle reservoirs. We also model noble gas compositions of different regions in order to determine whether elevated viscosity and thermal conductivity can produce the distinct noble gas isotopic compositions observed in OIB and MORB. Previous calculations show that large increases in viscosity and thermal conductivity at the mantle mid-point fail to isolate reservoirs in the lower mantle. Material crosses the interface and mixing takes place between regions with varying viscosity and thermal conductivity. These models therefore do not produce the distinct, long-lived, isolated reservoirs in the mantle required by neon and xenon studies. To isolate parts of the mantle for most

  13. Cretaceous gastropods: contrasts between tethys and the temperate provinces.

    USGS Publications Warehouse

    Sohl, N.F.

    1987-01-01

    During the Cretaceous Period, gastropod faunas show considerable differences in their evolution between the Tethyan Realm (tropical) and the Temperate Realms to the north and south. Like Holocene faunas, prosobranch, gastropods constitute the dominant part of Cretaceous marine snail faunas. Entomotaeneata and opisthobranchs usually form all of the remainder. In Tethyan faunas the Archaeogastropoda form a consistent high proportion of total taxa but less than the Mesogastropoda throughout the period. In contrast, the Temperate faunas beginning in Albian times show a decline in percentages of archaeogastropod taxa and a significant increase in the Neogastropoda, until they constitute over 50 percent of the taxa in some faunas. The neogastropods never attain high diversity in the Cretaceous of the Tethyan Realm and are judged to be of Temperate Realm origin. Cretaceous Tethyan gastropod faunas are closely allied to those of the 'corallien facies' of the Jurassic and begin the period evolutionarily mature and well diversified. Three categories of Tethyan gastropods are analyzed. The first group consists of those of Jurassic ancestry. The second group orginates mainly during the Barremian and Aptian, reaches a climax in diversification during middle Cretaceous time, and usually declines during the latest Cretaceous. The third group originates late in the Cretaceous and consists of taxa that manage to either survive the Cretaceous-Tertiary crisis or give rise to forms of prominence among Tertiary warm water faunas. Temperate Realm gastropod faunas are less diverse than those of Tethys during the Early Cretaceous. They show a steady increase in diversity, primarily among the Mesogastropoda and Neogastropoda. This trend culminates in latest Cretaceous times when the gastropod assemblages of the clastic provinces of the inner shelf contain an abundance of taxa outstripping that of any other part of the Cretaceous of either realm. Extinction at the Cretaceous

  14. Significance of Tocopherols during Cretaceous Oae

    NASA Astrophysics Data System (ADS)

    Brassell, S. C.

    2013-12-01

    Most biomarker studies of Cretaceous OAE have tended to focus on investigations of hydrocarbon constituents, which means that evidence of environmental conditions contained in the distributions and abundance of more polar components has rarely been utilized with the notable exception of GDGTs as paleotemperature proxies. One group of functionalized lipids, tocopherols, fulfills various critical functions in plants and bacteria, including optimization of photosynthetic activity and macronutrient homeostasis in cyanobacteria. These compounds are often prevalent constituents of immature Cretaceous sediments rich in organic matter (OM) in those instances where analytical protocols have assessed their presence. They occur in Cenomanian-Turonian (OAE2), early Aptian (OAE1a), Valanginian, and other Cretaceous sediments, and their concentrations can exceed 2-5 mg/g dry sediment. One possible explanation for the abundance of tocopherols is that environmental conditions prevailing during OAE led to enhanced biochemical production of these components by phytoplankton, given their key biophysiochemical role of protecting lipids and membranes against oxidative stress. High concentrations of tocopherols (>250 mg/g dry weight) have been reported in haptophytes and marine green algae, and their production in cyanobacteria increases under high light intensity. Hence, environmental conditions during Cretaceous OAE may have been conducive to production of copious amounts of tocopherols by phytoplankton in response to environment stresses. Previous work in contemporary systems has suggested that the propensity of tocopherols to autooxidation would make their survival in sediments unlikely. However, this scenario and interpretation is clearly not applicable during Cretaceous episodes of enhanced OM sequestration and/or dysoxia. Since tocopherols serve to protect plant cells from oxidative damage it seems plausible that they might fulfill a similar function in settling, particulate, and

  15. Cretaceous stratigraphic sequences of north-central California suggest a discontinuity in the Late Cretaceous forearc basin

    SciTech Connect

    Haggart, J.W.

    1986-10-01

    The Cretaceous sedimentary succession preserved east of Redding, at the northern end of California's Great Valley, indicates that marine deposition was widespread in the region for only two periods during the Late Cretaceous. If it is assumed that there was minimal Cenozoic offset between the northern Sierra Nevada and eastern Klamath Mountains terranes, Cretaceous sedimentation in this region was most likely restricted to a narrow trough and was not a continuation of the wide, Cretaceous forearc basin of central California. The dissimilar depositional histories of the Redding basin and the Hornbrook basin of north-central California suggest that the basins were not linked continuously during the Late Cretaceous. A thick section of Cretaceous strata beneath the southwestern Modoc Plateau is considered unlikely.

  16. A possible model for the lithospheric thinning of North China Craton: Evidence from the Yanshanian (Jura-Cretaceous) magmatism and tectonism

    NASA Astrophysics Data System (ADS)

    Deng, Jinfu; Su, Shangguo; Niu, Yaoling; Liu, Cui; Zhao, Guochun; Zhao, Xingguo; Zhou, Su; Wu, Zongxu

    2007-06-01

    It is well known that the North China Craton was largely formed in the Archean, and was reactivated and transformed during the Jura-Cretaceous (Yanshanian) time into an orogenic belt, which is believed to be related to the lithospheric thinning. Recent debate is centered on the mechanisms and processes of the lithospheric thinning. There are two prevailing models for the lithosphere thinning: (1) thermal erosion or/and chemical metasomatism allowed the lower part of the lithospheric mantle to be transformed into asthenosphere, (2) delamination of the lithospheric mantle, and perhaps also the lowermost crust. In this paper, we attempt to explain how the buoyant cratonic lithosphere may be transformed into a denser one, allowing delamination to take place on the basis of field observation, tectonic analysis and petrologic data on igneous rocks formed during the Yanshanian. We recognize four episodes of contractional deformation that resulted in significant crustal shortening and vertical thickening. The counter-clockwise Pressure-Temperature-time path of the tectonomagmatic events suggests that the underplating basaltic magma may have heated and weakened the existing cold and strong crust. This crustal change in rheology may have facilitated the contractional deformation and crustal thickening. Petrologic data of the contemporary igneous rocks and the lower crustal xenoliths suggest that the crust had reached ˜ 50-65 km in thickness. It suggests that input of large amount of asthenosphere-derived mafic magmas is required to cause crustal melting. Thus, a large amount of eclogite may be formed at the lowermost crust following the transient thickening events. The dense eclogite may trigger the lithosphere delamination.

  17. Upper Cretaceous planktonic stratigraphy of the Göynük composite section, western Tethys (Bolu province, Turkey)

    NASA Astrophysics Data System (ADS)

    Wolfgring, Erik; Liu, Shasha; Wagreich, Michael; Böhm, Katharina; Omer Yilmaz, Ismail

    2017-04-01

    Upper Cretaceous strata exposed at Göynük (Mudurnu-Göynük basin, Bolu Province, Northwestern Anatolia, Turkey) provide a composite geological record from the Upper Santonian to the Maastrichtian. Deposits in this area originate from the Sakarya continent, therefore, a western Tethyan palaeogeographic setting with a palaeolatitude of a bit less than 30 degrees north can be reconstructed. Grey shales and clayey marls are exposed at Göynük and do frequently show volcanic intercalations in the oldest parts of the section, while the uppermost layers depict a more complete deeper-marine record. The pelagic palaeoenvironment, microfossil indicators point towards a distal slope setting, at the Göynük section comprises rich low-latitude planktonic foraminiferal and calcareous nannoplankton assemblages. Benthic foraminifera are scarce, however, some biostratigraphically indicative taxa were recovered. The three sections sampled for this study reveal a composite record from the Campanian Contusotruncana plummerae planktonic foraminifera Zone to the Maastrichtian Racemiguembelina fruticosa planktonic foraminifera Zone. The oldest sub section („GK-section") yields the „mid" Campanian Contusotruncana plummerae or Globotruncana ventricosa Zones and is followed by the „GC-section". The oldest strata in latter record the C. plummerae Zone, the Radotruncana calcarata Zone, Globotruncanita havanensis as well as the Globotruncana aegyptiaca Zone and are overlain by the youngest section examined in this study ("GS -section"). In the latter, we recognize the G. aegyptiaca Zone in the lowermost part, the upper Campanian/lower Maastrichtian Gansserina gansseri Zone, and the Maastrichtian Racemiguembelina fruticosa Zone. Nannofossil standard zones UC15b to UC18 are recorded within the composite section. The planktonic foraminiferal assemblages assessed in the Göynük area feature a well preserved, diverse plankton record that can be correlated to other western Tethyan

  18. New depositional models for Cretaceous source rocks

    SciTech Connect

    Kauffman, E.G.; Villamil, T. )

    1993-02-01

    The Cretaceous marks one of the greatest periods of source rock development in geologic history, especially in coastal and epi-continental marine basins where the number, duration, and geographic extent of Corg-rich intervals exceeds that of oceanic basins. Large-scale factors regulating Cretaceous source rocks include sealevel, sedimentation rate/type, paleoclimate and marine thermal gradients, paleoceanography (circulation, stratification, chemistry, upwelling, nutrient supply), and surface water productivity. Marine dispositional settings favored as models for Corg concentration include silled and tectonically depressed basins, intersection of OMZ's with shallow continental seas, coastal upwelling, highly stratified shallow seas, and oceanic anoxic events (OAE's). All of these settings are thought to be characterized by stagnant, anoxic/highly dysoxic water masses above the sediment-water interface, and highly stressed benthic environments. This seemingly supported by fine lamination, spare bioturbation, high pyrite and Corg content of most source rocks. But high-resolution (cm-scale) sedimentologic, paleobiologic, and geochemical analyses of Jurassic-Cretaceous source rocks reveal, instead, dynamic benthic environments with active currents, episodically crowded with diverse life in event communities, and persistently characterized by longer term, low diversity resident benthic communities. These characteristics indicate rapidly fluctuating, predominantly dysoxic to oxic waters at and above the sediment-water interface for most Corg-rich black shales. A new model for source rock generation is proposed which retains the redox boundary at or near the sediment-water interface over large areas of seafloor, in part aided by extensive development of benthic microbial mats which may contribute up to 30% of the Corg to marine source rocks.

  19. Intercomparison of in situ and remote sensing aerosol measurements in the lowermost stratosphere during varying volcanic influence

    NASA Astrophysics Data System (ADS)

    Sandvik, Oscar S.; Martinsson, Bengt G.; Friberg, Johan; Hermann, Markus; van Velthoven, Peter J. F.; Zahn, Andreas

    2017-04-01

    In this study two aerosol measurement platforms have been compared. Aerosol optical depth (AOD) per meter in the lowermost stratosphere was obtained with the "In-service Aircraft for a Global Observing System - Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container" (IAGOS-CARIBIC) platform and with the "Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation" (CALIPSO) satellite. The in situ measurements were taken from the IAGOS-CARIBIC platform, where sampling of aerosol and trace gases was undertaken in the altitude range 9 - 12 km from a passenger aircraft, usually on four intercontinental flights a month (Brenninkmeijer et al., 2007). Here we use impactor samples that were analyzed for elemental concentrations with Particle-Induced X-ray Emission (PIXE) and Particle Elastic Scattering Analysis (PESA) (Nguyen et al., 2006; Martinsson et al., 2014). The comparison was based on the sulfurous aerosol, which is the main component of the aerosol in the stratosphere. From the amount of sulfur, the AOD per meter could be estimated, assuming standard stratospheric aerosol composition (75% sulfuric acid and 25% water) and stratospheric background particle size distribution (Jäger and Deshler, 2002). The CALIPSO measurements were taken with a polarization-sensitive lidar with a high vertical resolution, of 30 m at most, using laser wavelengths of 532 nm and 1064 nm. In this study level 1b data was used to calculate AOD per meter. Clouds were removed based on depolarization ratio (Vernier et al., 2009). The results from the two measurement platforms were compared with each other for time periods after the volcanic eruptions of Sarychev (2009) and Nabro (2011) as well as the period from autumn 2013 to early spring of 2014 which had small volcanic influence. The measurements in this study were taken between 40°N and 75°N. Vertical profiles of AOD per meter were created for data above the tropopause. In this study the

  20. DNA sequence from Cretaceous period bone fragments.

    PubMed

    Woodward, S R; Weyand, N J; Bunnell, M

    1994-11-18

    DNA was extracted from 80-million-year-old bone fragments found in strata of the Upper Cretaceous Blackhawk Formation in the roof of an underground coal mine in eastern Utah. This DNA was used as the template in a polymerase chain reaction that amplified and sequenced a portion of the gene encoding mitochondrial cytochrome b. These sequences differ from all other cytochrome b sequences investigated, including those in the GenBank and European Molecular Biology Laboratory databases. DNA isolated from these bone fragments and the resulting gene sequences demonstrate that small fragments of DNA may survive in bone for millions of years.

  1. Cretaceous - Tertiary Hoploparia species: Occurrence, paleobiogeography and predation context

    NASA Astrophysics Data System (ADS)

    El-Shazly, Soheir

    2015-12-01

    The study of Hoploparia species in 25 localities in Northern and Southern Hemispheres from Early Cretaceous to Early Miocene reveals the appearance of 51 species in Early Cretaceous, mostly in Northern Hemisphere, 46 species from Late Cretaceous (42 and 4 carryover from the Early Cretaceous), 7 species from Danian (4 plus 3 carryover from the Late Cretaceous), 7 species from Eocene (6 plus one from the Early Cretaceous), 2 species from Lower Oligocene and the last recorded species Hoploparia persisted in the Early Miocene of Antarctica. The oldest Hoploparia was recorded from Europe and distributed through the Northern and Southern Hemispheres with the facilitation of the Indo-Madagascar sea-way and Hispanic corridor. The tolerance for temperature and water depth as well as the morphological changes in genus Hoploparia in the Late Cretaceous and Tertiary periods, helped some species to survive the K/T event. Drill-hole predation in Hoploparia longimana (Sowerby, 1826) was recorded for the first time from the Lower Cretaceous (Albian) of Egypt.

  2. New dinosaurs link southern landmasses in the Mid-Cretaceous.

    PubMed

    Sereno, Paul C; Wilson, Jeffrey A; Conrad, Jack L

    2004-07-07

    Abelisauroid predators have been recorded almost exclusively from South America, India and Madagascar, a distribution thought to document persistent land connections exclusive of Africa. Here, we report fossils from three stratigraphic levels in the Cretaceous of Niger that provide definitive evidence that abelisauroid dinosaurs and their immediate antecedents were also present on Africa. The fossils include an immediate abelisauroid antecedent of Early Cretaceous age (ca. 130-110 Myr ago), early members of the two abelisauroid subgroups (Noasauridae, Abelisauridae) of Mid-Cretaceous age (ca. 110 Myr ago) and a hornless abelisaurid skull of early Late Cretaceous age (ca. 95 Myr ago). Together, these fossils fill in the early history of the abelisauroid radiation and provide key evidence for continued faunal exchange among Gondwanan landmasses until the end of the Early Cretaceous (ca. 100 Myr ago).

  3. Low ecological disparity in Early Cretaceous birds

    PubMed Central

    Mitchell, Jonathan S.; Makovicky, Peter J.

    2014-01-01

    Ecological divergence is thought to be coupled with evolutionary radiations, yet the strength of this coupling is unclear. When birds diversified ecologically has received much less attention than their hotly debated crown divergence time. Here, we quantify how accurately skeletal morphology can predict ecology in living and extinct birds, and show that the earliest known assemblage of birds (= pygostylians) from the Jehol Biota (≈ 125 Ma) was substantially impoverished ecologically. The Jehol avifauna has few representatives of highly preservable ecomorphs (e.g. aquatic forms) and a notable lack of ecomorphological overlap with the pterosaur assemblage (e.g. no large or aerially foraging pygostylians). Comparisons of the Jehol functional diversity with modern and subfossil avian assemblages show that taphonomic bias alone cannot explain the ecomorphological impoverishment. However, evolutionary simulations suggest that the constrained ecological diversity of the Early Cretaceous pygostylians is consistent with what is expected from a relatively young radiation. Regardless of the proximate biological explanation, the anomalously low functional diversity of the Jehol birds is evidence both for ecological vacancies in Cretaceous ecosystems, which were subsequently filled by the radiation of crown Aves, and for discordance between taxonomic richness and ecological diversity in the best-known Mesozoic ecosystem. PMID:24870044

  4. How did the Cretaceous world end?

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Factors related to evidence of a major impact on the earth by an extraterrestrial body, at about the time of the close of the Cretaceous period, have been the center of discussion at a number of recent symposia. An example is the one entitled ‘Terminal Cretaceous Extinction: A Comparative Assessment of Causes,’ held at the annual meeting of the American Association for the Advancement of Science, Washington, D.C., in January 1982. Another was simply ‘Terrestrial Impacts and C-T Extinctions,’ held at the Thirteenth Lunar and Planetary Science Conference, Houston, Tex., March 1982.The possibility that an impact may have caused global-scale extinctions of terrestrial and marine life was the main reason for organizing the conferences, but the focus that emerged was on the geochemistry and geophysics of the impacts themselves. A possibility is that the impact occurred in an ocean, resulting in some rather major consequences, including oceanic temperature changes of several degrees Centigrade, an earthquake that would rate magnitude 12 on the Richter scale, and a tsunami, initially about 5 km high, that would have traversed the globe, inundating all low-lying continental areas on the earth within 27 hours.

  5. Cretaceous-Palaeogene experiments in Biogeochemical Resilience

    NASA Astrophysics Data System (ADS)

    Penman, D. E.; Henehan, M. J.; Hull, P. M.; Planavsky, N.; Schmidt, D. N.; Rae, J. W. B.; Thomas, E.; Huber, B. T.

    2015-12-01

    Human activity is altering biogeochemical cycles in the ocean. While ultimately anthropogenic forcings may be brought under control, it is still unclear whether tipping points may exist beyond which human-induced changes to biogeochemical cycles become irreversible. We use the Late Cretaceous and the Cretaceous-Palaeogene (K-Pg) boundary interval as an informative case study. Over this interval, two carbon cycle perturbations (gradual flood basalt volcanism and abrupt bolide impact) occurred within a short time window, allowing us to investigate the resilience of biogeochemical cycles to different pressures applied to the same initial boundary conditions on very different time scales. We demonstrate that relatively gradual emission of CO2 from the Deccan large igneous province was efficiently mitigated within the limits of existing biogeochemical processes. However, the rapid extinction of pelagic calcifying organisms at the K-Pg boundary due to the Chicxulub bolide impact had more profound effects, and caused lasting (> 1 million years) changes to biogeochemical cycles. By combining sedimentological observations with boron isotope-based pH reconstructions over these events, we document two potentially useful partial analogues for best and worst case scenarios for anthropogenic global change. We suggest that if current ocean acidification results in the mass extinction of marine pelagic calcifiers, we may cause profound changes to the Earth system that will persist for 100,000s to millions of years.

  6. Cretaceous African life captured in amber

    PubMed Central

    Schmidt, Alexander R.; Perrichot, Vincent; Svojtka, Matthias; Anderson, Ken B.; Belete, Kebede H.; Bussert, Robert; Dörfelt, Heinrich; Jancke, Saskia; Mohr, Barbara; Mohrmann, Eva; Nascimbene, Paul C.; Nel, André; Nel, Patricia; Ragazzi, Eugenio; Roghi, Guido; Saupe, Erin E.; Schmidt, Kerstin; Schneider, Harald; Selden, Paul A.; Vávra, Norbert

    2010-01-01

    Amber is of great paleontological importance because it preserves a diverse array of organisms and associated remains from different habitats in and close to the amber-producing forests. Therefore, the discovery of amber inclusions is important not only for tracing the evolutionary history of lineages with otherwise poor fossil records, but also for elucidating the composition, diversity, and ecology of terrestrial paleoecosystems. Here, we report a unique find of African amber with inclusions, from the Cretaceous of Ethiopia. Ancient arthropods belonging to the ants, wasps, thrips, zorapterans, and spiders are the earliest African records of these ecologically important groups and constitute significant discoveries providing insight into the temporal and geographical origins of these lineages. Together with diverse microscopic inclusions, these findings reveal the interactions of plants, fungi and arthropods during an epoch of major change in terrestrial ecosystems, which was caused by the initial radiation of the angiosperms. Because of its age, paleogeographic location and the exceptional preservation of the inclusions, this fossil resin broadens our understanding of the ecology of Cretaceous woodlands. PMID:20368427

  7. The Darwin Rise: A Cretaceous superswell?

    NASA Astrophysics Data System (ADS)

    McNutt, M. K.; Winterer, E. L.; Sager, W. W.; Natland, J. H.; Ito, G.

    1990-07-01

    The Japanese Guyots, Wake Guyots, and Mid-Pacific Mountains are part of a broad area of Cretaceous volcanism in the western Pacific termed the “Darwin Rise.” Based on Seabeam bathymetric data we classify these drowned volcanic islands as: type “A,” those that advanced to the atoll stage before final submergence; type “B,” those that drowned at the barrier reef stage; and type “V,” those with little or no reef material on their volcanic summits. Widespread evidence for karst topography extending to depths of 200 m on the summits of A and B guyots sheds new light on events leading to the synchronous extinction of reefs on the Darwin Rise in the mid-Cretaceous. We propose that after the formation of the reefs on the A and B guyots, the entire region was elevated at approximately the Aptian-Albian boundary (113 Ma) to form a superswell similar to that existing now in French Polynesia. The type V guyots formed on this anomalously shallow lithosphere. The demise of the reefs was the direct result of the rise of this superswell, although climate factors may have prevented reef recolonization following its later subsidence.

  8. Cretaceous African life captured in amber.

    PubMed

    Schmidt, Alexander R; Perrichot, Vincent; Svojtka, Matthias; Anderson, Ken B; Belete, Kebede H; Bussert, Robert; Dörfelt, Heinrich; Jancke, Saskia; Mohr, Barbara; Mohrmann, Eva; Nascimbene, Paul C; Nel, André; Nel, Patricia; Ragazzi, Eugenio; Roghi, Guido; Saupe, Erin E; Schmidt, Kerstin; Schneider, Harald; Selden, Paul A; Vávra, Norbert

    2010-04-20

    Amber is of great paleontological importance because it preserves a diverse array of organisms and associated remains from different habitats in and close to the amber-producing forests. Therefore, the discovery of amber inclusions is important not only for tracing the evolutionary history of lineages with otherwise poor fossil records, but also for elucidating the composition, diversity, and ecology of terrestrial paleoecosystems. Here, we report a unique find of African amber with inclusions, from the Cretaceous of Ethiopia. Ancient arthropods belonging to the ants, wasps, thrips, zorapterans, and spiders are the earliest African records of these ecologically important groups and constitute significant discoveries providing insight into the temporal and geographical origins of these lineages. Together with diverse microscopic inclusions, these findings reveal the interactions of plants, fungi and arthropods during an epoch of major change in terrestrial ecosystems, which was caused by the initial radiation of the angiosperms. Because of its age, paleogeographic location and the exceptional preservation of the inclusions, this fossil resin broadens our understanding of the ecology of Cretaceous woodlands.

  9. Low ecological disparity in Early Cretaceous birds.

    PubMed

    Mitchell, Jonathan S; Makovicky, Peter J

    2014-07-22

    Ecological divergence is thought to be coupled with evolutionary radiations, yet the strength of this coupling is unclear. When birds diversified ecologically has received much less attention than their hotly debated crown divergence time. Here, we quantify how accurately skeletal morphology can predict ecology in living and extinct birds, and show that the earliest known assemblage of birds (=pygostylians) from the Jehol Biota (≈125 Ma) was substantially impoverished ecologically. The Jehol avifauna has few representatives of highly preservable ecomorphs (e.g. aquatic forms) and a notable lack of ecomorphological overlap with the pterosaur assemblage (e.g. no large or aerially foraging pygostylians). Comparisons of the Jehol functional diversity with modern and subfossil avian assemblages show that taphonomic bias alone cannot explain the ecomorphological impoverishment. However, evolutionary simulations suggest that the constrained ecological diversity of the Early Cretaceous pygostylians is consistent with what is expected from a relatively young radiation. Regardless of the proximate biological explanation, the anomalously low functional diversity of the Jehol birds is evidence both for ecological vacancies in Cretaceous ecosystems, which were subsequently filled by the radiation of crown Aves, and for discordance between taxonomic richness and ecological diversity in the best-known Mesozoic ecosystem.

  10. Late Cretaceous restructuring of terrestrial communities facilitated the end-Cretaceous mass extinction in North America

    NASA Astrophysics Data System (ADS)

    Mitchell, Jonathan S.; Roopnarine, Peter D.; Angielczyk, Kenneth D.

    2012-11-01

    The sudden environmental catastrophe in the wake of the end-Cretaceous asteroid impact had drastic effects that rippled through animal communities. To explore how these effects may have been exacerbated by prior ecological changes, we used a food-web model to simulate the effects of primary productivity disruptions, such as those predicted to result from an asteroid impact, on ten Campanian and seven Maastrichtian terrestrial localities in North America. Our analysis documents that a shift in trophic structure between Campanian and Maastrichtian communities in North America led Maastrichtian communities to experience more secondary extinction at lower levels of primary production shutdown and possess a lower collapse threshold than Campanian communities. Of particular note is the fact that changes in dinosaur richness had a negative impact on the robustness of Maastrichtian ecosystems against environmental perturbations. Therefore, earlier ecological restructuring may have exacerbated the impact and severity of the end-Cretaceous extinction, at least in North America.

  11. Late Cretaceous restructuring of terrestrial communities facilitated the end-Cretaceous mass extinction in North America

    PubMed Central

    Roopnarine, Peter D.; Angielczyk, Kenneth D.

    2012-01-01

    The sudden environmental catastrophe in the wake of the end-Cretaceous asteroid impact had drastic effects that rippled through animal communities. To explore how these effects may have been exacerbated by prior ecological changes, we used a food-web model to simulate the effects of primary productivity disruptions, such as those predicted to result from an asteroid impact, on ten Campanian and seven Maastrichtian terrestrial localities in North America. Our analysis documents that a shift in trophic structure between Campanian and Maastrichtian communities in North America led Maastrichtian communities to experience more secondary extinction at lower levels of primary production shutdown and possess a lower collapse threshold than Campanian communities. Of particular note is the fact that changes in dinosaur richness had a negative impact on the robustness of Maastrichtian ecosystems against environmental perturbations. Therefore, earlier ecological restructuring may have exacerbated the impact and severity of the end-Cretaceous extinction, at least in North America. PMID:23112149

  12. Late Cretaceous restructuring of terrestrial communities facilitated the end-Cretaceous mass extinction in North America.

    PubMed

    Mitchell, Jonathan S; Roopnarine, Peter D; Angielczyk, Kenneth D

    2012-11-13

    The sudden environmental catastrophe in the wake of the end-Cretaceous asteroid impact had drastic effects that rippled through animal communities. To explore how these effects may have been exacerbated by prior ecological changes, we used a food-web model to simulate the effects of primary productivity disruptions, such as those predicted to result from an asteroid impact, on ten Campanian and seven Maastrichtian terrestrial localities in North America. Our analysis documents that a shift in trophic structure between Campanian and Maastrichtian communities in North America led Maastrichtian communities to experience more secondary extinction at lower levels of primary production shutdown and possess a lower collapse threshold than Campanian communities. Of particular note is the fact that changes in dinosaur richness had a negative impact on the robustness of Maastrichtian ecosystems against environmental perturbations. Therefore, earlier ecological restructuring may have exacerbated the impact and severity of the end-Cretaceous extinction, at least in North America.

  13. Thermochronology of mid-Cretaceous dioritic granulites adjacent "Big Bend" in Australia-Pacific plate boundary, northern South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Sagar, M.; Seward, D.; Heizler, M. T.; Palin, J. M.; Toy, V. G.; Tulloch, A. J.

    2012-12-01

    The Western Fiordland Orthogneiss (WFO), situated south-east of the Australian-Pacific plate boundary (Alpine Fault), southern South Island, New Zealand is the largest suite of plutonic rocks intruded into the Pacific margin of Gondwana during the final stages of arc plutonism preceding break-up of the supercontinent in the Late Cretaceous. Dextral motion of c. 480 km along the Alpine Fault during the Cenozoic has offset originally contiguous Pacific Gondwana margin rocks in northern and southern South Island. The Glenroy Complex in northern South Island, west of the Alpine Fault is dominated by two-pyroxene+hornblende granulite facies monzodioritic gneisses. U-Pb zircon geochronological and geochemical data indicate the Glenroy Complex was emplaced between 128-122 Ma and is a correlative of the WFO. The Glenroy Complex forms the lower-most block bounded by an east-dipping set of imbricate thrusts that developed during the late Cenozoic to the west of the largest S-shaped restraining bend ("Big Bend") in the Alpine Fault. New 40Ar/39Ar and fission-track thermochronological data, combined with previous geological field-mapping, demonstrate that the Glenroy Complex cooled rapidly (c. 30° C/Ma) after emplacement and granulite facies metamorphism (c. 850°C) at c. 120 Ma, through c. 550 °C by c. 110-100 Ma. The average cooling rate during the Late Cretaceous-Cenozoic was relatively slow, and initial exposure in the late Early Miocene (c. 16 Ma) was followed by reburial to c. 3-4 km (c. 80-100 °C) before final exhumation post-Pliocene. This thermal history is similar to the WFO, which cooled rapidly through c. 350 °C during mid-Cretaceous continental extension, followed by slow cooling during the Late Cretaceous and Cenozoic until development of the Australian-Pacific boundary through New Zealand facilitated rapid, exhumation-related cooling from c. 240 °C at c. 20 Ma and final exhumation post-10 Ma (Davids, 1999). However, the Glenroy Complex cooled at a faster

  14. New Australian sauropods shed light on Cretaceous dinosaur palaeobiogeography

    PubMed Central

    Poropat, Stephen F.; Mannion, Philip D.; Upchurch, Paul; Hocknull, Scott A.; Kear, Benjamin P.; Kundrát, Martin; Tischler, Travis R.; Sloan, Trish; Sinapius, George H. K.; Elliott, Judy A.; Elliott, David A.

    2016-01-01

    Australian dinosaurs have played a rare but controversial role in the debate surrounding the effect of Gondwanan break-up on Cretaceous dinosaur distribution. Major spatiotemporal gaps in the Gondwanan Cretaceous fossil record, coupled with taxon incompleteness, have hindered research on this effect, especially in Australia. Here we report on two new sauropod specimens from the early Late Cretaceous of Queensland, Australia, that have important implications for Cretaceous dinosaur palaeobiogeography. Savannasaurus elliottorum gen. et sp. nov. comprises one of the most complete Cretaceous sauropod skeletons ever found in Australia, whereas a new specimen of Diamantinasaurus matildae includes the first ever cranial remains of an Australian sauropod. The results of a new phylogenetic analysis, in which both Savannasaurus and Diamantinasaurus are recovered within Titanosauria, were used as the basis for a quantitative palaeobiogeographical analysis of macronarian sauropods. Titanosaurs achieved a worldwide distribution by at least 125 million years ago, suggesting that mid-Cretaceous Australian sauropods represent remnants of clades which were widespread during the Early Cretaceous. These lineages would have entered Australasia via dispersal from South America, presumably across Antarctica. High latitude sauropod dispersal might have been facilitated by Albian–Turonian warming that lifted a palaeoclimatic dispersal barrier between Antarctica and South America. PMID:27763598

  15. Climate-mediated diversification of turtles in the Cretaceous

    PubMed Central

    Nicholson, David B.; Holroyd, Patricia A.; Benson, Roger B. J.; Barrett, Paul M.

    2015-01-01

    Chelonians are ectothermic, with an extensive fossil record preserved in diverse palaeoenvironmental settings: consequently, they represent excellent models for investigating organismal response to long-term environmental change. We present the first Mesozoic chelonian taxic richness curve, subsampled to remove geological/collection biases, and demonstrate that their palaeolatitudinal distributions were climate mediated. At the Jurassic/Cretaceous transition, marine taxa exhibit minimal diversity change, whereas non-marine diversity increases. A Late Cretaceous peak in ‘global' non-marine subsampled richness coincides with high palaeolatitude occurrences and the Cretaceous thermal maximum (CTM): however, this peak also records increased geographic sampling and is not recovered in continental-scale diversity patterns. Nevertheless, a model-detrended richness series (insensitive to geographic sampling) also recovers a Late Cretaceous peak, suggesting genuine geographic range expansion among non-marine turtles during the CTM. Increased Late Cretaceous diversity derives from intensive North American sampling, but subsampling indicates that Early Cretaceous European/Asian diversity may have exceeded that of Late Cretaceous North America. PMID:26234913

  16. Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution.

    PubMed

    Feild, Taylor S; Brodribb, Timothy J; Iglesias, Ari; Chatelet, David S; Baresch, Andres; Upchurch, Garland R; Gomez, Bernard; Mohr, Barbara A R; Coiffard, Clement; Kvacek, Jiri; Jaramillo, Carlos

    2011-05-17

    The flowering plants that dominate modern vegetation possess leaf gas exchange potentials that far exceed those of all other living or extinct plants. The great divide in maximal ability to exchange CO(2) for water between leaves of nonangiosperms and angiosperms forms the mechanistic foundation for speculation about how angiosperms drove sweeping ecological and biogeochemical change during the Cretaceous. However, there is no empirical evidence that angiosperms evolved highly photosynthetically active leaves during the Cretaceous. Using vein density (D(V)) measurements of fossil angiosperm leaves, we show that the leaf hydraulic capacities of angiosperms escalated several-fold during the Cretaceous. During the first 30 million years of angiosperm leaf evolution, angiosperm leaves exhibited uniformly low vein D(V) that overlapped the D(V) range of dominant Early Cretaceous ferns and gymnosperms. Fossil angiosperm vein densities reveal a subsequent biphasic increase in D(V). During the first mid-Cretaceous surge, angiosperm D(V) first surpassed the upper bound of D(V) limits for nonangiosperms. However, the upper limits of D(V) typical of modern megathermal rainforest trees first appear during a second wave of increased D(V) during the Cretaceous-Tertiary transition. Thus, our findings provide fossil evidence for the hypothesis that significant ecosystem change brought about by angiosperms lagged behind the Early Cretaceous taxonomic diversification of angiosperms.

  17. Ecological Aspects of the Cretaceous Flowering Plant Radiation

    NASA Astrophysics Data System (ADS)

    Wing, Scott L.; Boucher, Lisa D.

    The first flowering plant fossils occur as rare, undiverse pollen grains in the Early Cretaceous (Valanginian-Hauterivian). Angiosperms diversified slowly during the Barremian-Aptian but rapidly during the Albian-Cenomanian. By the end of the Cretaceous, at least half of the living angiosperm orders were present, and angiosperms were greater than 70% of terrestrial plant species globally. The rapid diversification of the group, and its dominance in modern vegetation, has led to the idea that the Cretaceous radiation of angiosperms also represents their rise to vegetational dominance. Paleoecological data cast a different light on the Cretaceous radiation of angiosperms. Analyses of sedimentary environments indicate that angiosperms not only originated in unstable habitats but remained centered there through most of the Cretaceous. Morphology of leaves, seeds, and wood is consistent with the status of most Cretaceous angiosperms as herbs to small trees with early successional strategy. The diversification of flowering plants in the Cretaceous represents the evolution of a highly speciose clade of weeds but not necessarily a major change in global vegetation.

  18. Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution

    PubMed Central

    Feild, Taylor S.; Brodribb, Timothy J.; Iglesias, Ari; Chatelet, David S.; Baresch, Andres; Upchurch, Garland R.; Gomez, Bernard; Mohr, Barbara A. R.; Coiffard, Clement; Kvacek, Jiri; Jaramillo, Carlos

    2011-01-01

    The flowering plants that dominate modern vegetation possess leaf gas exchange potentials that far exceed those of all other living or extinct plants. The great divide in maximal ability to exchange CO2 for water between leaves of nonangiosperms and angiosperms forms the mechanistic foundation for speculation about how angiosperms drove sweeping ecological and biogeochemical change during the Cretaceous. However, there is no empirical evidence that angiosperms evolved highly photosynthetically active leaves during the Cretaceous. Using vein density (DV) measurements of fossil angiosperm leaves, we show that the leaf hydraulic capacities of angiosperms escalated several-fold during the Cretaceous. During the first 30 million years of angiosperm leaf evolution, angiosperm leaves exhibited uniformly low vein DV that overlapped the DV range of dominant Early Cretaceous ferns and gymnosperms. Fossil angiosperm vein densities reveal a subsequent biphasic increase in DV. During the first mid-Cretaceous surge, angiosperm DV first surpassed the upper bound of DV limits for nonangiosperms. However, the upper limits of DV typical of modern megathermal rainforest trees first appear during a second wave of increased DV during the Cretaceous-Tertiary transition. Thus, our findings provide fossil evidence for the hypothesis that significant ecosystem change brought about by angiosperms lagged behind the Early Cretaceous taxonomic diversification of angiosperms. PMID:21536892

  19. Cretaceous-Tertiary findings, paradigms and problems

    NASA Technical Reports Server (NTRS)

    Officer, C. B.; Drake, C. L.

    1988-01-01

    The asteroid hypothesis has stimulated numerous studies of the paleontological record at Cretaceous/Tertiary time as well as of geological indicators of environmental crisis preserved in the rock record. Both extinctions and geological anomalies often occur at times that do not appear to be synchronous or instantaneous. The record includes paleontological indicators of dinosaurs, terrestrial flora, marine planktonic organisms, and shallow water marine macrofauna and geological phenomena include occurrences of iridium and other platinum metals, trace elements, clay mineralogy, shocked minerals, soot, microspherules, and isotopes of osmium, strontium and carbon. These findings are reviewed in the context of the alternate hypotheses of an exogenic cause, involving either a single asteroid impact or multiple commentary impacts, and an endogenic cause, involving intense global volcanism and major sea level regression.

  20. Cretaceous-Tertiary findings, paradigms and problems

    NASA Astrophysics Data System (ADS)

    Officer, C. B.; Drake, C. L.

    The asteroid hypothesis has stimulated numerous studies of the paleontological record at Cretaceous/Tertiary time as well as of geological indicators of environmental crisis preserved in the rock record. Both extinctions and geological anomalies often occur at times that do not appear to be synchronous or instantaneous. The record includes paleontological indicators of dinosaurs, terrestrial flora, marine planktonic organisms, and shallow water marine macrofauna and geological phenomena include occurrences of iridium and other platinum metals, trace elements, clay mineralogy, shocked minerals, soot, microspherules, and isotopes of osmium, strontium and carbon. These findings are reviewed in the context of the alternate hypotheses of an exogenic cause, involving either a single asteroid impact or multiple commentary impacts, and an endogenic cause, involving intense global volcanism and major sea level regression.

  1. Cretaceous Footprints Found on Goddard Campus

    NASA Image and Video Library

    2017-09-27

    About 110 million light years away, the bright, barred spiral galaxy NGC3259 was just forming stars in dark bands of dust and gas. On Earth, a plant-eating dinosaur left footprints in the Cretaceous mud of what would later become the grounds of NASA’s Goddard Space Flight Center in Greenbelt, Md. Local dinosaur hunter Ray Stanford points out the impression to Goddard officials and members of local media. To read more go to: www.nasa.gov/centers/goddard/news/features/2012/nodosaur.... Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Cretaceous Footprints Found on Goddard Campus

    NASA Image and Video Library

    2017-09-27

    About 110 million light years away, the bright, barred spiral galaxy NGC3259 was just forming stars in dark bands of dust and gas. On Earth, a plant-eating dinosaur left footprints in the Cretaceous mud of what would later become the grounds of NASA’s Goddard Space Flight Center in Greenbelt, Md. Local dinosaur hunter Ray Stanford speaks to local press and Goddard officials about this discovery. To read more go to: www.nasa.gov/centers/goddard/news/features/2012/nodosaur.... Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Cretaceous Footprints Found on Goddard Campus

    NASA Image and Video Library

    2017-09-27

    About 110 million light years away, the bright, barred spiral galaxy NGC3259 was just forming stars in dark bands of dust and gas. On Earth, a plant-eating dinosaur left footprints in the Cretaceous mud of what would later become the grounds of NASA’s Goddard Space Flight Center in Greenbelt, Md. Local dinosaur hunter Ray Stanford reviews a fossil found at the site. To read more go to: www.nasa.gov/centers/goddard/news/features/2012/nodosaur.... Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Latest Cretaceous sedimentation on Peninsular Ranges block

    SciTech Connect

    Abbott, P.L.

    1986-04-01

    The Peninsular Ranges block is dominated by a Late Jurassic-middle Cretaceous batholithic belt that extends from the Santa Ana Mountains in southern California southward through the state of Baja California. From paleomagnetic evidence, the block appears to have moved north about 11/sup 0/ with respect to the North American craton since the Late Cretaceous. The Campanian-Maestrichtian sedimentary record along the western side of the block shows that sedimentation occurred contemporaneously with faulting. Dominantly coarse sediments were stripped off the batholithic complex, carried westward relatively short distances, and deposited in alluvial-fan, fluvial, fan-delta, and shelf environments as well as in submarine fans built into local, fault-created basins. The Peninsular Ranges block apparently moved northward in response to oblique subduction of the Farallon plate; it seemingly rode along on a reasonably even keel as transcurrent faulting wrenched pieces off its western side. The steady keel allowed the sedimentary record to reflect eustatic changes. Along the west side of the Peninsular Ranges block, the Campanian column typically has a retrogradational sequence lower in the section that is overlain by a progradational sequence. This pattern holds for the Santa Ana Mountains, San Diego, California, and Descanso, Salsipuedes, and El Rosario, Baja California. Eustatic sea level changes left a dominant imprint on the entire stratigraphic column, although local facies may be distinctly different because basins were created by contemporaneous faulting. The fault basins may have had a borderland-style topography, judging from their relatively small size, discontinuous and sporadic development, and apparently linear margins.

  5. Geography of cretaceous extinctions: Data base development

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1991-01-01

    Data bases built from the source literature are plagued by problems of data quality. Unless the data acquisition is done by experts, working slowly, the data base may contain so much garbage that true signals and patterns cannot be detected. On the other hand, high quality data bases develop so slowly that satisfactory statistical analysis may never be possible due to the small sample sizes. Results of a test are presented of the opposite strategy: rapid data acquisition by non-experts with minimal control on data quality. A published list of 186 species and genera of fossil invertibrates of the latest Cretaceous Age (Maestrichtian) were located through a random search of the paleobiological and geological literature. The geographic location for each faunal list was then transformed electronically to Maestrichtian latitude and longitude and the lists were further digested to identify the genera occurring in each ten-degree, latitude-longitude block. The geographical lists were clustered using the Otsuka similarity coefficient and a standard unweight-pair-group method. The resulting clusters are remarkably consistent geographically, indicating that a strong biogeographic signal is visible despite low-quality data. A further test evaluated the geographic pattern of end-Cretaceaous extinctions. All genera in the data base were compared with Sepkoski's compendium of time ranges of genera to determine which of the reported genera survived the Cretaceous mass extinction. In turn, extinction rates for the ten-degree, latitude-longitude blocks were mapped. The resulting distribution is readily interpretable as a robust pattern of the geography of the mass extinction. The study demonstrates that a low-quality data base, built rapidly, can provide a basis for meaningful analysis of past biotic events.

  6. Lower Cretaceous lacustrine deposits and paleosol development

    SciTech Connect

    Mantzios, C.; Vondra, C.F.

    1987-05-01

    The Little Sheep Mudstone Member of the Lower Cretaceous Cloverly Formation in the Big Horn basin, Wyoming, is predominantly a montmorillonite-rich lacustrine deposit. It is informally subdivided into lower and upper units. The lower unit is a playa-lake deposit rich in bentonite derived from the alteration of volcanic ash which had its origin to the west. Horizons of silcretes and septarian nodules are common. The latter show irregular lenticular cracks and are filled with coarse calcite and barite crystals. They formed by desiccation of a clay-gel during dry periods. Silcretes are diagenetic products that formed due to the lowering of silica solubility along with decreasing of the pH value. Desiccation cracks on the playa surface were filled with chalcedony which later underwent replacement by calcite. The upper unit is a perennial saline lake deposit similar to that accumulating in Lake Magadi of the Eastern Rift Valley, Kenya, Chert nodules covered with calcium carbonate form stratigraphically persistent horizons. This chert is the product of the magadiite-kenyaite-chert transformation of Hay. Lenticular devitrified tuffs occurring at various stratigraphic positions up to 3 m thick were deposited in depressions or swales. Locally the tuffs show evidence of mass movement. Pedogenic features in both units indicate paleosol development. Tree trunks, plant roots, burrows, clay-rich zones, and organic-rich A and more iron-rich B master horizons are recognized. These paleosols resemble modern-day Vertisols. The lower unit is not as extensive areally as the upper unit which is present throughout the Big Horn basin, indicating that extensive lakes occurred during the Early Cretaceous in the Sevier foreland basin.

  7. Cretaceous Vertebrate Tracksites - Korean Cretaceous Dinosaur Coast World Heritage Nomination Site

    NASA Astrophysics Data System (ADS)

    Huh, M.; Woo, K. S.; Lim, J. D.; Paik, I. S.

    2009-04-01

    South Korea is one of the best known regions in the world for Cretaceous fossil footprints, which are also world-renowned. Korea has produced more scientifically named bird tracks (ichnotaxa) than any other region in the world. It has also produced the world's largest pterosaur tracks. Dinosaur tracksites also have the highest frequency of vertebrate track-bearing levels currently known in any stratigraphic sequence. Among the areas that have the best track records, and the greatest scientific significance with best documentation, Korea ranks very highly. Objective analysis of important individual tracksites and tracksite regions must be based on multiple criteria including: size of site, number of tracks, trackways and track bearing levels, number of valid named ichnotaxa including types, number of scientific publications, quality of preservation. The unique and distinctive dinosaur tracksites are known as one of the world's most important dinosaur track localities. In particular, the dinosaur track sites in southern coastal area of Korea are very unique. In the sites, we have excavated over 10,000 dinosaur tracks. The Hwasun sites show diverse gaits with unusual walking patterns and postures in some tracks. The pterosaur tracks are the most immense in the world. The longest pterosaur trackway yet known from any track sites suggests that pterosaurs were competent terrestrial locomotors. This ichnofauna contains the first pterosaur tracks reported from Asia. The Haenam Uhangri pterosaur assigns to a new genus Haenamichnus which accomodates the new ichnospecies, Haenamichnus uhangriensis. At least 12 track types have been reported from the Haman and Jindong Formations (probably late Lower Cretaceous). These include the types of bird tracks assigned to Koreanornis, Jindongornipes, Ignotornis and Goseongornipes. In addition the bird tracks Hwangsanipes, Uhangrichnus, the pterosaur track Haenamichnus and the dinosaur tracks, Brontopodus, Caririchnium, Minisauripus and

  8. Late Cretaceous stratigraphy of the Upper Magdalena Basin in the Payandé-Chaparral segment (western Girardot Sub-Basin), Colombia

    NASA Astrophysics Data System (ADS)

    Barrio, C. A.; Coffield, D. Q.

    1992-02-01

    The Cretaceous section on the western margin of the Girardot Sub-Basin, Upper Magdalena Valley, is composed of the Lower Sandstone (Hauterivian-Barremian?), Tetuán Limestone (pre-Aptian?), and Bambuca Shale (pre-Aptian?), and the following formations: Caballos (Aptian-Albian), Villeta (Albian-Campanian), Monserrate (Campanian-Maastrichtian), and Guaduas (Maastrichtian-Paleocene). The Lower Sandstone is composed of quartz arenites with abundant calcareous cement; the Tetuúan Limestone is a succession of fossiliferous limestones and calcareous shales; the the Bambuca Shale is composed of black shales that grade upward to micritic limestones and calcarenites. The Caballos Formation comprises three members: a lower member of quartz arenites, a middle member of black shales and limestones, and an upper member of crossbedded, coarsening-upward quartz arenites. The Villeta Formation is a sequence of shales intercalated with micritic limestones and calcarenites. Two levels of chert (Upper and Lower Chert) are differentiated within the Villeta Formation throughout the study area, with a sandstone unit (El Cobre Sandstone) to the north. The Monserrate Formation is composed of quartz arenites, with abundant crossbedding, and locally of limestone breccias and coarse-grained fossiliferous packstones. The Guaduas Formation is a monotonous succession of red shales and lithic sandstones. Our data suggest three major transgressive-regressive cycles in the Girardot Sub-Basin. The first cycle (Hauterivian?-lower Aptian) is represented by the Lower Sandstone-Tetuán-Bambuca-lower Caballos succession, the second cycle (Aptian-Albian) by the middle-upper Caballos members, and the third cycle (Albian-Paleocene) by the lower Villeta-Monserrate-Guaduas succession. Previous studies proposed a eustatic control during deposition of the Upper Cretaceous in the Upper Magdalena Valley. The lowermost transgressive-regressive cycle was not previously differentiated in the study area, and this

  9. Sequence stratigraphy of the Upper Cretaceous (Cenomanian and Turonian) Tuscaloosa Group in the subsurface of the eastern Gulf Coastal plain area

    SciTech Connect

    Mancini, E.A.; Tew, B.H.; Mink, R.M. )

    1990-05-01

    In the subsurface of the eastern Gulf Coastal plain area, the Tuscaloosa Group consists of approximately 1,000 ft of nonmarine, marginal marine, and marine terrigenous clastic sediments. Based on regional stratigraphical, sedimentological, petrophysical, and paleontological data, three unconformity bounded depositional sequences reflecting relative changes in sea level and coastal onlap during the Late Cretaceous (Cenomanian and Turonian) are recognized for these strata. The depositional sequences probably correspond to the UZA-2.3, UZA-2.4, and UZA-2.5 global sequences. The lowermost depositional sequence is underlain by undifferentiated Lower Cretaceous terrigenous clastic deposits and consists of a basal type 2 unconformity, shelf-margin deposits (marginal marine sandstones), transgressive and condensed section deposits (marine shelf to strandplain sandstones and claystones), and progradational regressive highstand deposits (strandplain to lagoonal sandstones and claystones). This sequence indicates that relative sea level rose in the middle Cenomanian and then fell during the late Cenomanian. The uppermost sequence consists of a basal type 2 unconformity, transgressive deposits (marine shelf sandstones), condensed section deposits (marine shelf claystones), and progradational regressive highstand deposits (marginal marine sandstones and claystones). This sequence reflects major sea level rise beginning in the late Cenomanian and continuing into the Turonian, followed by sea level fall in the Turonian. Within these depositional sequences, petroleum reservoirs occur principally in lowstand and transgressive deposits, but can occur in progradational regressive highstand deposits. Condensed section claystones are rich in herbaceous and algal organic matter and have the potential to be petroleum source rocks if buried under conditions favorable for hydrocarbon generation.

  10. Dinosaur morphological diversity and the end-Cretaceous extinction.

    PubMed

    Brusatte, Stephen L; Butler, Richard J; Prieto-Márquez, Albert; Norell, Mark A

    2012-05-01

    The extinction of non-avian dinosaurs 65 million years ago is a perpetual topic of fascination, and lasting debate has focused on whether dinosaur biodiversity was in decline before end-Cretaceous volcanism and bolide impact. Here we calculate the morphological disparity (anatomical variability) exhibited by seven major dinosaur subgroups during the latest Cretaceous, at both global and regional scales. Our results demonstrate both geographic and clade-specific heterogeneity. Large-bodied bulk-feeding herbivores (ceratopsids and hadrosauroids) and some North American taxa declined in disparity during the final two stages of the Cretaceous, whereas carnivorous dinosaurs, mid-sized herbivores, and some Asian taxa did not. Late Cretaceous dinosaur evolution, therefore, was complex: there was no universal biodiversity trend and the intensively studied North American record may reveal primarily local patterns. At least some dinosaur groups, however, did endure long-term declines in morphological variability before their extinction.

  11. Correlation of the basal Cretaceous beds of the Southeastern States

    USGS Publications Warehouse

    Cooke, Wythe

    1926-01-01

    The basal Cretaceous deposits that fringe the inner margin of the Coastal Plain from eastern Alabama to central North Carolina, where they are overlapped by Miocene sands, have been commonly classified as of Lower Cretaceous age and correlated roughly with the Patuxent formation of the Potomac group of Maryland and Virginia. In this paper the evidence on which this early correlation was based is reviewed, later evidence is considered, and the conclusion is reached that all the basal Cretaceous deposits in the area under consideration are of Upper Cretaceous age. Acknowledgments are gratefully made of the helpful criticism of the manuscript by L. W. Stephenson and of his generous assistance in the preparation of the correlation table.

  12. Colombian late cretaceous tropical planktonic foraminifera: Redressing the imbalance

    SciTech Connect

    McCarthy, L.D.

    1993-02-01

    Recent work involving Late Cretaceous planktonic foraminifera has concentrated on European and other areas in the Northern Hemisphere. Many of the biostratigraphical and evolutionary models reflect this geographical restriction and ignore earlier studies from tropical areas. In 1955 Rolando Gandolfi described many new species and subspecies from Colombia and provided a different view of the evolutionary development of planktonic foraminifera. A re-examination of the Gandolfi type collection using Scanning Electron Micrography (Environmental Chamber technique) integrated with Colombian well samples from onshore Guajira area, Middle and Upper Magdalena Valley and Putumayo Basin has given a new view into the evolutionary development of Late Cretaceous planktonic foraminifera. This has enabled a modified globigerine Late Cretaceous biostratigraphy to be constructed for Colombia. This work redresses the imbalance between studies of tropical and northern high latitude Late Cretaceous planktonic foraminifera and provides an insight into the paleoenvironmental and paleoclimatological factors influencing the Colombian region at the time.

  13. Molecular evidence for pre-Cretaceous angiosperm origins

    NASA Astrophysics Data System (ADS)

    Martin, William; Gierl, Alfons; Saedler, Heinz

    1989-05-01

    FLOWERING plants or angiosperms have dominated the Earth's flora since at least the late Cretaceous1 and were already highly diversified by Barremian times, about 120 million years (Myr) ago. However, because of the paucity of fossilized angiosperm reproductive structures from lower Cretaceous sediments2,3 and the absence of generally recognized angiosperm fossils from pre-Cretaceous strata4,5, their origins and early evolution remain obscure. Similarly, attempts to understand pre-Cretaceous angiosperm evolution4-11 have been impaired by difficulties in defining and interpreting angiospermous characters in fossil specimens8,12. We report here molecular evidence suggesting that angiosperm ancestors underwent diversification more than 300 Myr ago.

  14. Late Cretaceous base level lowering in Campanian and Maastrichtian depositional sequences, Kure Beach, North Carolina

    USGS Publications Warehouse

    Harris, W.B.; ,

    2006-01-01

    Campanian through Maastrichtian mixed carbonate and siliciclastic sediments in a 422 m continuous core drilled at Kure Beach, NC provide a record of sea-level change. Based on lithology and stratigraphy, depositional sequences are defined, and calcareous nannofossil zones and 87Sr/86Sr ratios and corresponding ages using the LOWESS Table determined. Campanian and Maastrichtian sediments comprise six depositional sequences. The oldest is Tar Heel 1 and contains calcareous nannofossils that indicate assignment to the upper part of Zones CC18a, CC18c and the lower part of CC19. 87Sr/86 Sr ratios indicate ages from 83.2 to 80.0 Ma or lower Campanian. Tar Heel II contains calcareous nannofossils that indicate assignment to the upper part of Zone CC 19 and CC20. 87Sr/86Sr ratios indicate ages from 78.0 to 76.3 Ma or middle Campanian. Donoho Creek I and II are thin and contain calcareous nannofossils referable to upper Zone CC21 and Zone CC22, and to CC23, respectively. The top of Donoho Creek II marks the Campanian-Maastrichtian boundary. Donoho Creek I 87Sr/86Sr ratios cluster into two groups, and provide ages from 78.0 to 76.2 Ma and 73.7 to 72.3 Ma, respectively. 87Sr/86Sr ratios in Donoho Creek II indicate ages from 71.4 to 69.6 Ma. Two Maastrichtian sequences are present; the lowermost Peedee I contains calcareous nannofossils that place it in Zones CC25a and CC25b. 87Sr/86Sr r ratios indicate an age from 69.3 to 66.9 Ma or late Maastrichtian. Peedee II is assigned to calcareous nannofossil Zone CC26a. 87Sr/86Sr ratios indicate ages from 66.4 to 65.2 Ma or late Maastrichtian. The four Campanian sequences correlate to three depositional sequences in New Jersey; the sequence boundary between upper Campanian Donoho Creek I and Donoho Creek II is not recognized in New Jersey. This boundary is interpreted to result from Gulf Stream impingement and subsequent erosion on the outer shelf. The two Maastrichtian sequences recognized in the Kure Beach core correlate to the two

  15. Diagenetic Patterns of the Cretaceous Baseline Sandstone, Southern Nevada: Implications for Controls on Iron-Oxide Cementation and Coloration

    NASA Astrophysics Data System (ADS)

    Duncan, C. J.; Chan, M. A.

    2015-12-01

    The Cretaceous Baseline Sandstone of the Sevier foreland basin deposits in southern Nevada exhibits intense diagenetic iron-oxide coloration and bleaching, and contains abundant cemented masses. The Baseline Formation is ~1 km thick with three alluvial to fluvial members: the basal White (Kbw) Member, overlain by coeval Red (Kbr) and Overton Conglomerate (Kbo) Members. Iron-oxide diagenetic features occur in two broad classes: 1) bedding parallel coloration facies of diffuse to banded red, pink, purple, white, to yellow colors; and 2) concretionary facies of heavily cemented horizons, pods/lenses, spherical to spheroidal concretions, boxworks, pipes, and irregular concretion forms. A distinctive geometry is the occurrence of large (~1 m diameter) spherical "beach ball" concretions within the Kbr. Preliminary mapping of diagenetic features shows that concretionary facies are more common within a ~125 m interval near the bottom of Kbw, and within the lower ~125 m of Kbr. Intense coloration changes are present throughout Kbw but occur only in the lowermost ~150 m of Kbr. In the Kbw, concretionary forms commonly occur in stratigraphic intervals of fine-grained sandstone, siltstone, and mudstone lithologies, whereas cemented masses are much less common in stratigraphic intervals composed of medium-grained sandstone and conglomerate lithologies. Additionally, both Kbw and Kbr Members exhibit rare examples of wood fragments in the center of iron-oxide concretions, suggesting the importance of organics as nucleation sites for precipitation. The distribution of complex and overprinted diagenetic patterns indicates nested scales of processes involving iron-oxide dissolution, mobilization, and precipitation. Overall stratigraphic architecture influenced formation-scale patterns, but specific lithologies and textures influenced the type and distribution of diagenetic facies at outcrop scales, and organic content encouraged cementation at grain-scales.

  16. Stratigraphy and paleogeography of the Cretaceous in Arabian Peninsula

    SciTech Connect

    Alsharhan, A.S.; Nairn, A.E.M.

    1986-05-01

    The Cretaceous of the Arabian Peninsula is divided into three major units by regional unconformities: Lower Cretaceous Thamama Group (Berriasian-middle Aptian), middle Cretaceous Wasia Group (Albian-Turonian), and Upper Cretaceous Aruma Group (Coniacian-Maestrichtian). The profusion of named stratigraphic units in the area reflects not only the lithologic variation resulting from facies changes, but also terminologies adopted by different companies. The authors provide a stratigraphic nomenclature defining standard type sections and indicate synonymies, which follow the recommendation of 10th Geological Liaison Meeting and hence are acceptable to operators in the area. The sedimentologic history of the area was presented in a series of paleogeographic maps, which they relate to the regional tectonic framework. The maps show a predominantly carbonate shelf ramp bordering a land area to the north and west. The principal change in depositional environment occurs during the Upper Cretaceous, as a result of tectonic activity. Less significant changes are attributed to eustatic sea level fluctuations, on which tilting caused by tectonic movement may be superposed during the Lower and middle Cretaceous. The major producing horizons lie below the regional unconformities; secondary porosity in the shelf reefal buildups was developed during subaerial exposure in the Shuaiba Formation (early-middle Aptian), in the Mishrif Formation (late Cenomanian), and in the Simsima Formation (Maestrichtian).

  17. A Late Cretaceous ceratopsian dinosaur from Europe with Asian affinities.

    PubMed

    Osi, Attila; Butler, Richard J; Weishampel, David B

    2010-05-27

    Ceratopsians (horned dinosaurs) represent a highly diverse and abundant radiation of non-avian dinosaurs known primarily from the Cretaceous period (65-145 million years ago). This radiation has been considered to be geographically limited to Asia and western North America, with only controversial remains reported from other continents. Here we describe new ceratopsian cranial material from the Late Cretaceous of Iharkút, Hungary, from a coronosaurian ceratopsian, Ajkaceratops kozmai. Ajkaceratops is most similar to 'bagaceratopsids' such as Bagaceratops and Magnirostris, previously known only from Late Cretaceous east Asia. The new material unambiguously demonstrates that ceratopsians occupied Late Cretaceous Europe and, when considered with the recent discovery of possible leptoceratopsid teeth from Sweden, indicates that the clade may have reached Europe on at least two independent occasions. European Late Cretaceous dinosaur faunas have been characterized as consisting of a mix of endemic 'relictual' taxa and 'Gondwanan' taxa, with typical Asian and North American groups largely absent. Ajkaceratops demonstrates that this prevailing biogeographical hypothesis is overly simplified and requires reassessment. Iharkút was part of the western Tethyan archipelago, a tectonically complex series of island chains between Africa and Europe, and the occurrence of a coronosaurian ceratopsian in this locality may represent an early Late Cretaceous 'island-hopping' dispersal across the Tethys Ocean.

  18. Fire and the spread of flowering plants in the Cretaceous.

    PubMed

    Bond, William J; Scott, Andrew C

    2010-12-01

    We suggest that the spread of angiosperms in the Cretaceous was facilitated by novel fire regimes. Angiosperms were capable of high productivity and therefore accumulated flammable biomass ('fuel') more rapidly than their predecessors. They were capable of rapid reproduction, allowing populations to spread despite frequent disturbance. We evaluate the evidence for physical conditions conducive to fires in the Cretaceous. These included high temperatures, seasonally dry climate and higher atmospheric oxygen than current levels. We evaluate novel properties of angiosperms that contributed to rapid biomass accumulation, and to their ability to thrive in frequently disturbed environments. We also review direct evidence for Cretaceous fires. Charcoal mesofossils are common in Cretaceous deposits of the Northern Hemisphere. Inertinite, the charcoal component of coal, is common throughout the Cretaceous and into the Palaeocene, but declined steeply from the Eocene when angiosperm-dominated forests became widespread. Direct and indirect evidence is consistent with angiosperms initiating novel fire regimes, promoting angiosperm spread in the Cretaceous. Several traits are consistent with frequent surface fires. We suggest that forest was slow to develop until the Eocene, when fire activity dropped to very low levels. The causes and consequences of fires in the deep past warrant greater attention.

  19. Understanding Intrabasinal Organic Carbon Records: A New Carbon Isotope Record for the Early Cretaceous Abu Dhabi, UAE

    NASA Astrophysics Data System (ADS)

    Al-Suwaidi, A. H.

    2014-12-01

    The Aptian-Albian (~125-100 Ma, Early Cretaceous) is considered to be an interval of elevated greenhouse gases, intensified hydrologic cycle, limited polar ice, and elevated high latitude temperatures, with evidence for Oceanic Anoxic Events (OAE) as recorded by organic matter and carbonate δ13C perturbations in both the marine and continental realm (Jenkyns et al., 2004; Poulsen, 2004; Robinson & Hesselbo, 2004 and Ufnar et al., 2004). In this study four cores from Aptian­-Albian marine sediments from a single offshore basin in Abu Dhabi, UAE were examined petrographically and samples were collected to generate a high resolution organic carbon δ13C chemostratigraphic profile. The cores represent sediments from the Early Cretaceous upper most Thamama and lowermost Wasia Group and represent interbedded shale and limestone units from the Arabian Shelf. Three of the cores, cores A­-C, show a 3‰ negative excursion in δ13Corg with values of -28‰ occurring with a concurrent increase in organic carbon, likely indicative of Aptian OAE 1a. These cores also show a transition from more oxic to euxinic waters as recorded in the pyrite framboid mean diameter. The remaining core, D, shows relatively isotopically light average δ13Corg values of -26‰, with an intervening positive isotope excursion and values of -23‰, and may represent a different event either earlier or later in the sequence, but due to limited biostratigraphic data could not easily be correlated using C-Isotopes alone with the other three cores. The four cores come from different localities within a single basin and highlight issues pertaining to correlating cores across a single basin for the same time interval, as well as variability in organic matter burial and oxygenation within a single basin, and may provide a useful case study specifically related to separating regional signals from global carbon isotope signals for the Aptian-Albian, and understanding how ancient Mesozoic basins are affected

  20. Palaeoclimatic changes during the Upper Cretaceous of eastern Denmark: a study based on the Stevns-2 chalk core

    NASA Astrophysics Data System (ADS)

    Boussaha, M.; Stemmerik, L.; Thibault, N.

    2013-12-01

    The Stevns-2 core located in eastern Denmark penetrated close to 350 m of upper Campanian-Maastrichtian sediments of the upper Chalk Group (Stemmerik et al., 2006). The calcareous nannofossil biozonation spans the time interval from the UC16aBP from the upper Campanian to the NNT1 in the lowermost Danian. Carbon and Oxygen isotopes trends records climatic events occurring in the upper Cretaceous: (1) the Late Campanian warm climatic optimum, (2) the early Maastrichtian cooling event, (3) the mid-Maastrichtian warming event, and (4) the late Maastrichtian cooling event, also observed in the nearby Stevns-1 core (Thibault et al., 2011) . These climatic variations match closely those observed in the nearby Stevns-1 core and in the Atlantic, Pacific and Tethyan realms (Thibault & GARDIN, 2006; Thibault et al., 2011). Changes occurring in the number of observed Inoceramids prisms per meter of core section, in the abundance of calcareous nannofossils and in the visible trace fossils abundances seem to be linked to climatic changes as expressed in the δ18O of the bulk sediment. In addition to the sedimentological data show that the distribution of facies through time from: (1) cyclic marl alternating with mudstone-wackestone chalk and conglomerates, to (2) bioturbated white mudstone and wackestone chalk, then to (3) flint alternating with mudstone and wackestone chalk, ending with (5) bryozoans wackestone and packstone, and the sedimentation rate changes varying from 1.4 cm/kyr to 13.4 cm/kyr. Here we show how changes in the sedimentology of the chalk and abundances of different fossil group are influenced by global and regional mechanisms. Isotopic results mainly reflect global paleoclimatic changes, whereas the sedimentological record is mostly influenced by (1) local variations in paleoproductivity, (2) deep-water paleocurrents influencing the chalk deposition and the shape of the sea-floor, (3) and (4) the geodynamic activity and paleotopography of the Late

  1. Composition and depositional environment of concretionary strata of early Cenomanian (early Late Cretaceous) age, Johnson County, Wyoming

    USGS Publications Warehouse

    Merewether, E.A.; Gautier, Donald L.

    2000-01-01

    Unusual, concretion-bearing mudrocks of early Late Cretaceous age, which were deposited in an early Cenomanian epeiric sea, have been recognized at outcrops in eastern Wyoming and in adjoining areas of Montana, South Dakota, Nebraska, and Colorado. In Johnson County, Wyo., on the western flank of the Powder River Basin, these strata are in the lower part of the Belle Fourche Member of the Frontier Formation. At a core hole in south-central Johnson County, they are informally named Unit 2. These strata are about 34 m (110 ft) thick and consist mainly of medium- to dark-gray, noncalcareous, silty shale and clayey or sandy siltstone; and light-gray to grayish-red bentonite. The shale and siltstone are either bioturbated or interlaminated; the laminae are discontinuous, parallel, and even or wavy. Several ichnogenera of deposit feeders are common in the unit but filter feeders are sparse. The unit also contains marine and continental palynomorphs and, near the top, a few arenaceous foraminifers. No invertebrate macrofossils have been found in these rocks. Unit 2 conformably overlies lower Cenomanian shale in the lowermost Belle Fourche Member, informally named Unit 3, and is conformably overlain by lower and middle Cenomanian shale, siltstone, and sandstone within the member, which are informally named Unit 1. The mineral and chemical composition of the three Cenomanian units is comparable and similar to that of shale and siltstone in the Upper Cretaceous Pierre Shale, except that these units contain more SiO2 and less CaO, carbonate carbon, and manganese. Silica is generally more abundant and CaO is generally less abundant in river water than in seawater. The composition of Unit 2 contrasts significantly with that of the underlying and overlying units. Unit 2 contains no pyrite and dolomite and much less sulfur than Units 1 and 3. Sulfate is generally less abundant in river water than in seawater. Unit 2 also includes sideritic and calcitic concretions, whereas Units

  2. Groundwater from Lower Cretaceous rocks in Kansas

    USGS Publications Warehouse

    Keene, Katherine M.; Bayne, Charles Knight

    1976-01-01

    Sandstones in Lower Cretaceous rocks contain supplies, of water that may be adequate to meet increasing present and future demands for supplemental municipal and domestic use in central and western Kansas. An estimated 70 to 80 million acre-feet (86,000 to 99,000 cubic hectometers) of water containing less than 1,000 milligrams per liter dissolved solids may be acceptable for use at the present (1976). An additional 10 to 15 million acre-feet (12,000 to 18,000 cubic hectometers) containing 1,000 to 3,000 milligrams per liter dissolved solids is estimated to be available for use in the future with appropriate desalinization. Lower Cretaceous rocks crop out from Washington County on the north to Comanche County on-the south. The rocks dip from a structural high in the southwest part of the State to structural lows in the northwest and north-central part. Depth below land surface increases generally northwestward to about 2,600 feet (790 meters); thickness of the rocks increases westward, nearly zero to about 850 feet (260 meters). The rocks consist chiefly of marine to nonmarine shale and silt- stone interbedded with coastal to deltaic sandstone. The interbedded sandstone, which composes about one-third of the rocks, consists of one or more lenses that thicken westward to about 400 feet (120 meters) in the central part of western Kansas. The yield of water to individual wells is related to areal extent, thickness, and interconnection of the sand lenses and to grain size and cementation of the sand. Large amounts of water may be pumped by wells where loosely cemented sand lenses are interconnected. Wells commonly yield adequate supplies for domestic and stock use; reported yields from municipal and irrigation wells range from about 100 to 2,000 gallons per minute (6 to 125 liters per second). Recharge to the Lower Cretaceous-rocks occurs in the area of outcrop and from hydraulically connected saturated Cenozoic rocks, especially in the southern part of the State

  3. Late Cretaceous Volcaniclastics in NW Turkey

    NASA Astrophysics Data System (ADS)

    Boehm, Katharina; Wolfgring, Erik; Omer Yilmaz, Ismail; Tüysüz, Okan; Wagreich, Michael

    2015-04-01

    On the southwestern coast of the Black Sea, in the western Pontides Upper Cretaceous tuff layers are present. The tuffs are intercalated with limestones, marls and turbidites and were investigated with focus on their geochemistry, to get new insights to the arrangement of terranes and ocean basins at this time. In the region two Upper Cretaceous volcanic units can be distinguished, separated by distinct red pelagic limestone successions, belonging to the Unaz Formation. The lower volcanic unit is named Dereköy Formation and is Turonian to Santonian in age. It is thought to be deposited within extension structures, contemporaneously with rifting in the western Black Sea basin. The upper volcanic unit is called Cambu Formation. According to biostratigraphic data it is deposited throughout Campanian, when spreading in the western Black Sea basin started. Interpreted as submarine deposits, element mobility has to be taken into account when interpreting geochemical ICP-MS data of the volcaniclastics. Multiple discrimination diagrams with suitable proxies elucidate the type of volcanism and contribute to reconstruction of the tectonic setting. The classified rock types range from basaltic to rhyodacitic in both volcanic formations. Basically degree of differentiation and alkalinity are the parameters looked at, when determining rock types of the volcanic eruption. Further volcanic series are specified as calc-alkaline to shoshonitic. Moreover, a volcanic arc setting seems to be the most likely case, following several discrimination diagrams, as well as normalized multi-element plots. This tectonic setting can be discussed in connection with paleo-tectonic reconstructions. Most cited in literature nowadays are models favoring a northward subduction of the northern branch of Neotethys, creating an extensional setting north of the Pontides. This kind of back arc extension is interpreted as the reason of a southward drift of the Istanbul continental fragment from Eurasia

  4. Inferences on the Cretaceous Superchron geodynamo

    NASA Astrophysics Data System (ADS)

    Cottrell, R. D.; Tarduno, J. A.; Smirnov, A. V.

    2002-12-01

    Superchrons provide an opportunity to view the geomagnetic field in its extreme, when reversals are rare, or absent altogether. They represent robust features that are useful for the affirmation of theoretical and numerical models of the geodynamo. However, to gain a complete picture of the geodynamo, we must move beyond polarity to characterize the morphology, secular variation and intensity of the field. Unfortunately, geologic and associated experimental alteration often prohibits the simultaneous definition of paleofield directions and intensities. Recently we developed a method for the measurement of paleointensity that utilizes single plagioclase crystals separated from basaltic lava flows. These crystals, which contain sub-micron sized titanomagnetite and magnetite inclusions, are less susceptible to alteration during the laboratory heatings required by paleointensity analysis. This method provides a means to obtain high resolution paleointensity data from sequences of basalt flows, which can in turn be used to characterize secular variation. Paleomagnetic and paleointensity data collected using this approach from lavas of the Rajmahal Traps (113-116 Ma) and the high Arctic (~95 Ma) indicate that the time-averaged Cretaceous Normal Polarity Superchron field was remarkably strong and stable. When compared with global results available at lower latitudes, these data define a time-averaged field that is overwhelmingly dominated by the axial dipole (octupole components are insignificant). Superchrons may reflect times when the nature of core-boundary heat flux allows the geodynamo to operate at peak efficiency.

  5. Marsupial brood care in Cretaceous tanaidaceans.

    PubMed

    Sánchez-García, Alba; Delclòs, Xavier; Engel, Michael S; Bird, Graham J; Perrichot, Vincent; Peñalver, Enrique

    2017-06-29

    Parental care in animal evolution has long fascinated biologists, but tracing this complex of behavioural repertoires is challenging, as these transitory states often leave no corporeal traces as fossils. Among modern invertebrates, the tanaidaceans (Malacostraca: Peracarida), a lineage of marsupial crustaceans, show an interesting variety of brooding strategies. Here we report on fossil tanaidaceans from the Cretaceous of Spain and France that provide conclusive evidence for marsupial care of brood-offspring. Two exceptionally preserved female specimens of Alavatanais carabe and A. margulisae from Late Albian Peñacerrada I amber (Spain) possess four pairs of rudimentary oostegites, indicating formation of a marsupium. From Recent data, given the taxonomic distribution of a marsupium of four pairs of oostegites, we hypothesize that this may be plesiomorphic for the Tanaidomorpha. We also report on a peculiar tanaidacean specimen referable to the fossil family Alavatanaidae, Daenerytanais maieuticus gen. et sp. nov., from Early Cenomanian La Buzinie amber (France), preserved with its marsupial pouch and content. Our discoveries provide early evidence of the peracarid reproductive strategy, as seen in modern Tanaidacea, and argue that this form of parental care may have played a role in the diversification of the lineage during this period.

  6. Cretaceous Footprints Found on Goddard Campus

    NASA Image and Video Library

    2017-09-27

    About 110 million light years away, the bright, barred spiral galaxy NGC3259 was just forming stars in dark bands of dust and gas. On Earth, a plant-eating dinosaur left footprints in the Cretaceous mud of what would later become the grounds of NASA’s Goddard Space Flight Center in Greenbelt, Md. A model of a Nodosaur dinosaur sits inside what is believed to be the fossil of a Nodosaur footprint. The footprint was found by Ray Stanford a local dinosaur hunter. To read more go to: www.nasa.gov/centers/goddard/news/features/2012/nodosaur.... Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Water transport to the lowermost mantle driven by δ-AlOOH - Phase H (MgSiO4H2) solid solution

    NASA Astrophysics Data System (ADS)

    Ohira, I.; Ohtani, E.; Kamada, S.; Hirao, N.; Suzuki, A.

    2016-12-01

    A volume of water is released in the upper mantle, whereas a part of water stored in hydrous minerals in subducting plates is transported into the transition zone and the lower mantle. New hydrous phase, δ-AlOOH - Phase H (MgSiO4H2) solid solution, is the only hydrous phase to supply the lower mantle with water. This preferentially contains AlOOH component and can coexist with Bridgmanite and MgSiO3 post-perovskite up to the lowermost mantle P-T conditions [1, 2]. Very recent study demonstrated the formation of the solid solution in Fe-bearing complex system (MORB + H2O) at the top of the lower mantle P-T conditions [3]. However, the formation process of this hydrous solid solution in Fe-bearing complex systems such as hydrous MORB had been investigated under limited P-T conditions. Here, we show the stability of this solid solution formed in complex systems, hydrous peridotite and MORB systems. Phase equilibrium experiments were conducted under the lower mantle P-T conditions using in situ synchrotron XRD system with a double sided laser-heated diamond anvil cell at BL10XU SPring-8, Japan. δ-AlOOH - Phase H solid solution formed in a hydrous peridotite system was stable only below 60 GPa, which is significantly close to the stability limit of pure-MgSiO4H2 Phase H [4]. By contrast, the solid solution formed in a hydrous MORB system was stable up to at least 70 GPa. We conclude that the stability of this solid solution strongly depends on Al2O3 contents in bulk compositions. Although Al-poor solid solution formed in a hydrous peridotite containing 3 wt.% Al2O3 in bulk decomposes and releases water at mid-lower mantle, Al-rich solid solution formed in a hydrous MORB containing 15 wt.% Al2O3 can play an important role in the water transport to the lowermost mantle. [1] Ohira et al. (2014) Earth Planet. Sci. Lett. 401, 12-17. [2] Walter et al. (2015) Chem. Geol. 418, 16-29. [3] Liu et al. (2016) Goldschmidt Conference 2016. 04d-09. [4] Ohtani et al. (2014) Geophys

  8. Regional variation of PKP C-diff slowness observed by high-dense network -implication for lateral velocity variation of the lowermost outer core

    NASA Astrophysics Data System (ADS)

    Ohtaki, T.; Kawakatsu, H.

    2004-12-01

    Clear core phases are observed at a recently deployed Japanese seismic network (Hi-net) for two intermediate depth events which occurred beneath S. Bolivia on 2001/06/29 and beneath Argentina on 2002/09/24. The epicentral distances are between 144 and 161 degrees, and between 150 and 164 degrees, respectively. The differential travel times of PKP(BC) or PKP(Cdiff) minus PKP(DF) for the S. Bolivia event suit calculated results using by the previous model of Kaneshima et al. (1994). The differential travel time residuals for the Argentina event show positive value, and become larger as the epicentral distance becomes large. Although the above results suggest that there is anomalous structure in the inner or outer core along the ray paths for the Argentina event, it is unclear which T(DF) or T(BC or Cdiff) is anomalous. Hi-net is a dense short-period seismic network which consists of about 700 stations in almost whole extent of Japan. Close look at core phases can be carried out using data from Hi-net. We checked the slowness of PKP(DF) and PKP(Cdiff) for the events. We select data whose epicentral distance is greater than 153 degree. The slowness of PKP(DF) and PKP(Cdiff) for the S. Bolivia event, and that of PKP(DF) for the Argentina event are almost same as those of PREM. However, the slowness of PKP(Cdiff) for the Argentina event is 7 percent larger than that of PREM. Thus we can conclude that the large slowness of PKP(Cdiff) is a main cause of the large differential residuals. This result suggests that a low velocity anomaly exists in the lowermost outer core which the PKP(Cdiff) for the Argentina event samples, and that the velocity structure in the inner core along the rays for the two events and in the outer core along the rays for the Argentina event sample is close to the normal, although the influence of the heterogeneous structure beneath stations and D_h cannot be ruled out yet. The central points of the diffracted rays on the inner core boundary are

  9. Mammal disparity decreases during the Cretaceous angiosperm radiation.

    PubMed

    Grossnickle, David M; Polly, P David

    2013-11-22

    Fossil discoveries over the past 30 years have radically transformed traditional views of Mesozoic mammal evolution. In addition, recent research provides a more detailed account of the Cretaceous diversification of flowering plants. Here, we examine patterns of morphological disparity and functional morphology associated with diet in early mammals. Two analyses were performed: (i) an examination of diversity based on functional dental type rather than higher-level taxonomy, and (ii) a morphometric analysis of jaws, which made use of modern analogues, to assess changes in mammalian morphological and dietary disparity. Results demonstrate a decline in diversity of molar types during the mid-Cretaceous as abundances of triconodonts, symmetrodonts, docodonts and eupantotherians diminished. Multituberculates experience a turnover in functional molar types during the mid-Cretaceous and a shift towards plant-dominated diets during the late Late Cretaceous. Although therians undergo a taxonomic expansion coinciding with the angiosperm radiation, they display small body sizes and a low level of morphological disparity, suggesting an evolutionary shift favouring small insectivores. It is concluded that during the mid-Cretaceous, the period of rapid angiosperm radiation, mammals experienced both a decrease in morphological disparity and a functional shift in dietary morphology that were probably related to changing ecosystems.

  10. Potential cretaceous play in the Rharb basin of northern Morocco

    SciTech Connect

    Jobidon, G.P. )

    1993-09-01

    The autochthonous Cretaceous in the Rharb basin of northern Morocco is located underneath a cover of neogene sediments and of the Prerif nappe olistostrome, which was emplaced during the Tortonian 7 m.y. The presence of infranappe Cretaceous sediments is documented in a few onshore wells in the Rharb basin and in the adjacent Prerif Rides area, as well as in the Rif Mountains. Their presence in the deeper portion of the Rharb basin is difficult to detail because of poor seismic resolution data beneath dispersive prerif nappe. A recent study of offshore seismic data acquired by PCIAC in 1987 indicates that the infranappe interval can be more than 1500 m thick in some of the offshore Kenitra area. These sediments have seismic signatures that would correspond to Middle Cretaceous transgressions, culminating with a Turonian highstand. Their deposition systems were located on the northern and western flanks of the Meseta and were followed by a hiatus lasting until the Miocene. Regional studies of gravity and magnetic data provide and additional understanding of the Rif province, its evolution, and the possible presence of autochthonous Cretaceous sediments below the prerif nappe cover. The infranappe of Rharb basin has a good potential to develop into a major hydrocarbon play with the presence of middle Cretaceous reservoir rocks, Turonian-Cenomanian black shale source rocks, as well as the timely combination of trap formation, source rock maturation, and hydrocarbon migration.

  11. Rates of morphological evolution are heterogeneous in Early Cretaceous birds.

    PubMed

    Wang, Min; Lloyd, Graeme T

    2016-04-13

    The Early Cretaceous is a critical interval in the early history of birds. Exceptional fossils indicate that important evolutionary novelties such as a pygostyle and a keeled sternum had already arisen in Early Cretaceous taxa, bridging much of the morphological gap between Archaeopteryx and crown birds. However, detailed features of basal bird evolution remain obscure because of both the small sample of fossil taxa previously considered and a lack of quantitative studies assessing rates of morphological evolution. Here we apply a recently available phylogenetic method and associated sensitivity tests to a large data matrix of morphological characters to quantify rates of morphological evolution in Early Cretaceous birds. Our results reveal that although rates were highly heterogeneous between different Early Cretaceous avian lineages, consistent patterns of significantly high or low rates were harder to pinpoint. Nevertheless, evidence for accelerated evolutionary rates is strongest at the point when Ornithuromorpha (the clade comprises all extant birds and descendants from their most recent common ancestors) split from Enantiornithes (a diverse clade that went extinct at the end-Cretaceous), consistent with the hypothesis that this key split opened up new niches and ultimately led to greater diversity for these two dominant clades of Mesozoic birds. © 2016 The Author(s).

  12. Mammal disparity decreases during the Cretaceous angiosperm radiation

    PubMed Central

    Grossnickle, David M.; Polly, P. David

    2013-01-01

    Fossil discoveries over the past 30 years have radically transformed traditional views of Mesozoic mammal evolution. In addition, recent research provides a more detailed account of the Cretaceous diversification of flowering plants. Here, we examine patterns of morphological disparity and functional morphology associated with diet in early mammals. Two analyses were performed: (i) an examination of diversity based on functional dental type rather than higher-level taxonomy, and (ii) a morphometric analysis of jaws, which made use of modern analogues, to assess changes in mammalian morphological and dietary disparity. Results demonstrate a decline in diversity of molar types during the mid-Cretaceous as abundances of triconodonts, symmetrodonts, docodonts and eupantotherians diminished. Multituberculates experience a turnover in functional molar types during the mid-Cretaceous and a shift towards plant-dominated diets during the late Late Cretaceous. Although therians undergo a taxonomic expansion coinciding with the angiosperm radiation, they display small body sizes and a low level of morphological disparity, suggesting an evolutionary shift favouring small insectivores. It is concluded that during the mid-Cretaceous, the period of rapid angiosperm radiation, mammals experienced both a decrease in morphological disparity and a functional shift in dietary morphology that were probably related to changing ecosystems. PMID:24089340

  13. Rates of morphological evolution are heterogeneous in Early Cretaceous birds

    PubMed Central

    Lloyd, Graeme T.

    2016-01-01

    The Early Cretaceous is a critical interval in the early history of birds. Exceptional fossils indicate that important evolutionary novelties such as a pygostyle and a keeled sternum had already arisen in Early Cretaceous taxa, bridging much of the morphological gap between Archaeopteryx and crown birds. However, detailed features of basal bird evolution remain obscure because of both the small sample of fossil taxa previously considered and a lack of quantitative studies assessing rates of morphological evolution. Here we apply a recently available phylogenetic method and associated sensitivity tests to a large data matrix of morphological characters to quantify rates of morphological evolution in Early Cretaceous birds. Our results reveal that although rates were highly heterogeneous between different Early Cretaceous avian lineages, consistent patterns of significantly high or low rates were harder to pinpoint. Nevertheless, evidence for accelerated evolutionary rates is strongest at the point when Ornithuromorpha (the clade comprises all extant birds and descendants from their most recent common ancestors) split from Enantiornithes (a diverse clade that went extinct at the end-Cretaceous), consistent with the hypothesis that this key split opened up new niches and ultimately led to greater diversity for these two dominant clades of Mesozoic birds. PMID:27053742

  14. Hydrocarbon Seepage during the Boreal Base Cretaceous Hot Shale Event

    NASA Astrophysics Data System (ADS)

    Hammer, Ø.; Hryniewicz, K.; Nakrem, H. A.; Little, C.

    2014-12-01

    We have identified a number of carbonate bodies interpreted as seep-related from near the Jurassic-Cretaceous boundary in Svalbard, arctic Norway. The paleoseeps discovered so far occur over 50 km along strike, representing a seepage field of considerable extent. Ammonites indicate a base Cretaceous (Late Volgian to Late Ryazanian) age. The carbonate bodies are highly fossiliferous, with a very diverse fauna consisting mainly of normal-marine species but also seep-restricted taxa. Carbonate d13C isotopes reach -46‰, which, considering mixture with seawater-derived carbon, is interpreted as indicating a biogenic methane source. It is of interest to note the correlation of this paleoseepage with an episode of extremely high burial of organic matter near the Jurassic-Cretaceous boundary, noted both in Svalbard (top Slottsmøya Member of the Agardhfjellet Formation), in the Barents Sea (Hekkingen Formation) and in the North Sea (Mandal Formation), possibly providing a shallow source for biogenic gas. Together with near contemporaneous events in the Boreal Realm such as ongoing rifting, the base Cretaceous unconformity, the Mjølnir meteorite impact and a possible minor extinction event, these finds contribute to the impression of the Jurassic-Cretaceous boundary as a highly dynamic and interesting time in the North Atlantic area.

  15. The Cretaceous/Paleogene boundary in Jordan

    NASA Astrophysics Data System (ADS)

    Farouk, Sherif; Marzouk, Akmal M.; Ahmad, Fayez

    2014-11-01

    The Cretaceous/Paleogene (K/Pg) boundary in Jordan is marked by a major depositional hiatus that differs in magnitude from place to place due to variable structural movements of the Syrian Arc Fold Belt that resulted in irregularity of Jordan/Levant depositional basin after the deposition of Maastrichtian succession. To elucidate the nature of this hiatus, fieldwork was carried out at a number of locations including lithofacies and stratigraphic analysis, and a multi-proxy study of microplanktonic biostratigraphy (calcareous nannofossilis and planktonic formaminifera). However, the duration of this hiatus extended over latest Maastrichtian and early Danian stages. This is based on the absence of the planktonic foraminifera; Pseudoguembelina hariaensis (CF3), Pseudoguembelina palpebra (CF2), Plummerita hantkeninoides (CF1), Guembelitria cretacea (P0), Parvularugoglobigerina eugubina (P&) zones and Parasubbotina pseudobulloides (P1a) subzones and the coeval calcareous nannofossils Nephrolithus frequens and Markalius inversus zones. We estimate that in the paleo-lows areas an unexpected 3.96 Ma hiatus is present. Conversely, in swell areas, the duration of the hiatus represents the entire Danian-Selandian interval and revealed an unexpected 10.33 Ma hiatus, especially in the central part of Jordan. Subsequently, a marked transgression took place over the whole of Jordan which resulted in the prevalence of deep water conditions (Zones P4 or equivalent NP7/8); this caused the deposition of a retrogradational parasequence set of middle shelf pelagic marl and chalk during a rapid relative rise of sea-level. A correlative hiatus and time gap have also been reported in different parts of the Arabian and African plates, indicating that Jordan was influenced by regional tectonics that combined with the latest Maastrichtian sea-level fall resulted in a long-term sub-marine hiatus and/or non-deposition of sediments. A combination of sea level changes and tectonic uplift are the

  16. Late Cretaceous sea level from a paleoshoreline

    SciTech Connect

    McDonough, K.J.; Cross, T.A. )

    1991-04-10

    The contemporary elevation of a Late Cenomanian ({approx}93 Ma) shoreline was determined at five localities along the tectonically stable, eastern margin of the Cretaceous Western Interior Seaway, North America. This shoreline, represented by marine-to-nonmarine facies transitions in strata of the Greenhorn sequence (UZA-2 cycle of Haq et al. (1987)), was identified from outcrop and borehole data. Biostratigraphic zonations constrained the geologic age at each locality. Sequence stratigraphic correlations, based on identifying discrete progradational units and the surfaces that separate them, were used to refine age correlations to better than 100 kyr between localities. A single Cenomanian shoreline was correlated within a single progradational unit, and its elevation was determined at five localities. This paleostrandline occurs 265-286m above present-day sea level, at an average elevation of 276 m. Isostatic and flexural corrections were applied to remove the effects of postdepositional vertical movement, including sediment compaction by loading, uplift due to erosion, and glacial loading and rebound. Errors inherent in each measurement and each correction were estimated. Corrections and their cumulative error estimates yield a Late Cenomanian elevation of 269{plus minus}87 m above present sea level. The corrected elevation approximates sea level at 93 Ma and provides a measure of Late Cenomanian eustasy prior to the Early Turonian highstand. Establishing the absolute value for eustasy at a single point in geologic time provides a frame of reference for calibrating relative sea level curves, as well as constraining the magnitudes of tectonic subsidence, sediment flux, and other variables that controlled water depth and relative sea level.

  17. Fission-track analysis of apatite and zircon defines a burial depth of 4 to 7 km for lowermost Upper Devonian, Catskill Mountains, New York

    NASA Astrophysics Data System (ADS)

    Lakatos, Stephen; Miller, Donald S.

    1983-02-01

    Apatite and zircon grains separated from a sandstone layer of earliest Late Devonian age, Catskill Mountains, have been subjected to fission-track analysis. A 125-m.y. age, obtained on the apatite grains, requires a temperature for the sediment of less than 120 °C during the past 125 m.y. At some time prior to 125 m.y. ago, temperatures were above 120 °C long enough to cause complete fading of tracks. Analysis of zircon grains resulted in a fission-track age of 320 m.y. Zircon data indicate that the temperature of the sediment layer enclosing the grains did not exceed 175 to 200 °C over a 235-rn.y. period (time between sedimentation and 125 m.y. ago). If one assumes a typical geothermal gradient of 25 °C/km, a burial depth of between 4 and 7 km is indicated for the lowermost Upper Devonian, atskill Mountains. *Present address: Rensselaer Polytechnic Institute, Troy, New York 12181

  18. Paleomagnetic and magnetostratigraphic investigations of the whitehorse group/quartermaster (Dewey Lake) formation (upper permian-lowermost triassic) in the Palo Duro basin, northwest Texas, USA

    NASA Astrophysics Data System (ADS)

    Collins, Dylan R.

    In northwest Texas, upper Permian to lowermost Triassic hematite-cemented detrital sedimentary rocks, which include a small number of regionally extensive ash beds, were deposited during the time interval of the greatest mass extinction event sequences in Earth history. The magnetic polarity stratigraphy, as well as key rock magnetic properties, of the upper Whitehorse Group (WH) and Quartermaster formations (QM) at selected sections in the Palo Duro Basin, have been determined using thermal, and chemical demagnetization approaches and anisotropy of magnetic susceptibility, acquisition of isothermal remanent magnetization (IRM) and backfield demagnetization, and thermal demagnetization of three component IRM methods. Demagnetization results show that the WH/QM contains a primary/near-primary characteristic remanent magnetization at each level sampled and thus the magnetic polarity stratigraphy for each section can be compared with existing polarity time scales across the Permian-Triassic boundary. Estimated site mean directions yield a paleomagnetic pole for the latest Permian for North America of 57.8°N, 130.6°E from 38 sampled sites.

  19. Extent of the low-velocity region in the lowermost mantle beneath the western Pacific detected by the Vietnamese Broadband Seismograph Array

    NASA Astrophysics Data System (ADS)

    Takeuchi, N.; Morita, Y.; Xuyen, N. D.; Zung, N. Q.

    2008-03-01

    We present evidence showing the extent of the low-velocity region in the lowermost mantle beneath the western Pacific. We analyzed S, sS, ScS-S, and sScS-sS travel times observed by the Vietnamese broadband seismograph array deployed as part of the Ocean Hemisphere Project. The abrupt changes in ScS-S and sScS-sS travel times suggest that the western geographical boundary of the low-velocity region is located around 140°E and is sharp (more than 4% velocity contrast within 200 km). The dependency of S and sS travel time anomalies of epicentral distances suggests that the strong low-velocity region is confined to within 400 km from the CMB (core-mantle boundary). The existence of lateral heterogeneities with a 100 km scale inside the low-velocity region is also suggested by the abrupt changes in S and ScS waveforms.

  20. A first record of Cretaceous aphids (Hemiptera, Sternorrhyncha, Aphidomorpha) in Australia, from the Lower Cretaceous Koonwarra Fossil Bed, Victoria.

    PubMed

    Martin, Sarah K; Skidmore, Luke I; Stilwell, Jeffrey D

    2016-07-08

    This paper describes the first species of aphid from the Lower Cretaceous Koonwarra Fossil Bed of the Gippsland Basin, southeastern Victoria, Australia. This aphid, herein named Koonwarraphis rotundafrons gen. & sp. nov., is assigned to the cosmopolitan Cretaceous superfamily Tajmyraphidoidea, which has been previously described from the Lebanese, Taimyrian, Canadian, Myanmar (Burmese), and Spanish ambers. Koonwarraphis rotundafrons is the first aphid recorded from the eastern Gondwanan landmass during the Cretaceous, and represents the only tajmyraphidoid preserved as a compression fossil, rather than as an amber inclusion. Due to the nature of the fossil's preservation, Koonwarraphis cannot be firmly placed in any of the described tajmyraphidoid families; however, all observable morphological features suggest that the genus is broadly typical of the superfamily and Cretaceous aphids in general. Koonwarraphis' shortened rostrum, a feature also seen in other tajmyraphidoids, suggests an association with the more herbaceous aspects of the Early Cretaceous Victorian flora. Considering the modern aphid preference for angiosperm plants, it is possible that this aphid was living upon the herbaceous early angiosperms recorded previously from the Koonwarra macrofloral assemblage.

  1. A troodontid dinosaur from the latest Cretaceous of India.

    PubMed

    Goswami, A; Prasad, G V R; Verma, O; Flynn, J J; Benson, R B J

    2013-01-01

    Troodontid dinosaurs share a close ancestry with birds and were distributed widely across Laurasia during the Cretaceous. Hundreds of occurrences of troodontid bones, and their highly distinctive teeth, are known from North America, Europe and Asia. Thus far, however, they remain unknown from Gondwanan landmasses. Here we report the discovery of a troodontid tooth from the uppermost Cretaceous Kallamedu Formation in the Cauvery Basin of South India. This is the first Gondwanan record for troodontids, extending their geographic range by nearly 10,000 km, and representing the first confirmed non-avian tetanuran dinosaur from the Indian subcontinent. This small-bodied maniraptoran dinosaur is an unexpected and distinctly 'Laurasian' component of an otherwise typical 'Gondwanan' tetrapod assemblage, including notosuchian crocodiles, abelisauroid dinosaurs and gondwanathere mammals. This discovery raises the question of whether troodontids dispersed to India from Laurasia in the Late Cretaceous, or whether a broader Gondwanan distribution of troodontids remains to be discovered.

  2. The late Cretaceous Arman flora of Magadan oblast, Northeastern Russia

    NASA Astrophysics Data System (ADS)

    Herman, A. B.; Golovneva, L. B.; Shczepetov, S. V.; Grabovsky, A. A.

    2016-12-01

    The Arman flora from the volcanogenic-sedimentary beds of the Arman Formation is systematically studied using materials from the Arman River basin and the Nelkandya-Khasyn interfluve (Magadan oblast, Northeastern Russia). Seventy-three species of fossil plants belonging to 49 genera are described. They consist of liverworts, horsetails, ferns, seed ferns, cycadaleans, bennettitaleans, ginkgoaleans, czekanowskialeans, conifers, gymnosperms of uncertain systematic affinity, and angiosperms. The Arman flora shows a unique combination, with relatively ancient Early Cretaceous ferns and gymnosperms occurring alongside younger Late Cretaceous plants, primarily angiosperms. The similarity of the Arman flora to the Penzhina and Kaivayam floras of northwestern Kamchatka and the Tylpegyrgynai flora of the Pekul'nei Ridge allows the Arman flora to be dated as Turonian and Coniacian (Late Cretaceous), which is corroborated by isotopic (U-Pb and 40Ar/39Ar) age determination for the plant-bearing layers.

  3. Molecular fossils in Cretaceous condensate from western India

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sharmila; Dutta, Suryendu; Dutta, Ratul

    2014-06-01

    The present study reports the biomarker distribution of condensate belonging to the early Cretaceous time frame using gas chromatography-mass spectrometry (GC-MS). The early Cretaceous palaeoenvironment was inscribed into these molecular fossils which reflected the source and conditions of deposition of the condensate. The saturate fraction of the condensate is characterized by normal alkanes ranging from n-C9 to n-C29 (CPI-1.13), cycloalkanes and C14 and C15 sesquiterpanes. The aromatic fraction comprises of naphthalene, phenanthrene, their methylated derivatives and cyclohexylbenzenes. Isohexylalkylnaphthalenes, a product of rearrangement process of terpenoids, is detected in the condensate. Several aromatic sesquiterpenoids and diterpenoids have been recorded. Dihydro- ar-curcumene, cadalene and ionene form the assemblage of sesquiterpenoids which are indicative of higher plant input. Aromatic diterpenoid fraction comprises of simonellite and retene. These compounds are also indicative of higher plants, particularly conifer source which had been a predominant flora during the Cretaceous time.

  4. Cretaceous and Eocene lignite deposits, Jackson Purchase, Kentucky

    USGS Publications Warehouse

    Hower, J.C.; Rich, F.J.; Williams, D.A.; Bland, A.E.; Fiene, F.L.

    1990-01-01

    Lignites occur in the Cretaceous McNairy Formation and the Eocene Claiborne Formation in the Jackson Purchase region of western Kentucky. The lone Cretaceous lignite sample has over 18 percent inertodetrinite and 32 percent humodetrinite which, along with the abundant mineral matter, suggests a possible allochthonous origin for the deposit. The Claiborne Formation lignites have higher humic maceral contents than the Cretaceous lignites. Palynology suggests that there was considerable variation in the plant communities responsible for the Claiborne deposits. Differences in the preservation of the various plants is also seen in the variations between the humic types, particularly in the ulminite and humodetrinite contents. Potter and Dilcher (1980) suggested that the Claiborne lignites in the Jackson Purchase and west Tennessee developed in the abandoned oxbows of Eocene rivers. Significant short-distance changes in the peat thickness, flora, and other depositional elements should be expected in such an environment and could easily account for the observed variations in composition. ?? 1990.

  5. The earliest known tyrannosaur from the Lower Cretaceous of Thailand

    NASA Astrophysics Data System (ADS)

    Buffetaut, Eric; Suteethorn, Varavudh; Tong, Haiyan

    1996-06-01

    THE Tyrannosauridae were the dominant large carnivorous dinosaurs in Asia (excluding India) and western North America during the Late Cretaceous period1-3. Most of them are from the Campanian and Maastrichtian ages, and very little is known about their earlier history, although scanty remains have been reported from the early part of the Upper Cretaceous4-7. We describe a newly discovered incomplete skeleton of a large theropod from the Early Cretaceous Sao Khua Formation of northeastern Thailand as an early and primitive representative of the Tyrannosauridae. This new taxon, which is at least 20 million years older than the earliest previously known tyranno-saurids, suggests that the early evolution of tyrannosaurids may have taken place in Asia.

  6. Cretaceous may hold promise in Majunga basin, Madagascar

    SciTech Connect

    Lalaharisaina, J.V. ); Ferrand, N.J. )

    1994-08-01

    Recent drilling in the Majunga basin of northwestern Madagascar revealed unexpected light oil shows in excellent quality reservoir sands of Mid-Cretaceous age. Regional reconstructions show the development of a prograding clastic shelf from the Aptian until the Mid-Turonian that extended laterally from the northwest costs of Madagascar into Northwest India and Southeast Pakistan. Six untested play concepts have been identified in Cretaceous reservoirs of the Majunga basin. These plays offer multiple objectives in the depth range of 800--2,500 m within a well defined area. Further untested plays exist for Tertiary and Dogger objectives. The paper describes the geologic setting, exploration history the Cretaceous reservoirs, source rocks, and other potential plays. Political changes in Madagascar the last four years have led to an open door policy for foreign investment. Favorable terms are on offer for investment in the petroleum sector, and high potential exists for development on this island continent.

  7. The Cretaceous stratigraphy of the Western Cordillera Oriental, Columbia

    SciTech Connect

    Allen, R.B.; Alfonso, C.A.; Ressetar, R.; Salazar, A. ); Ballesteros, I.; Cardozo, E.; Laverde, F.; Ramirez, C. ); Moreno, J.M. ); Rubiano, J.; Sarmiento, L. )

    1993-02-01

    During 1987 and 1988, a major field project sponsored by Tenneco was undertaken along the west flank of the Cordillera Oriental of Colombia between Alpujarra (between the Neiva and Girardot Sub-Basins) and the Middle Magdalena Basin (Cimitarra area). An important result of this study was the documentation of pronounced regional variation in the age, thickness, and facies of the Cretaceous section. The maximum thickness estimated was 7 km for the Bogota-Villeta section, with ages as old as Berriasian. This section can be divided into 4 or 5 depositional sequences. A clastic source to the west or southwest is indicated for the lower sequence 1 (and 2 ), an eastern source dominated sequences 3 and 4, and eastern and western sources supplied the upper sequence. Toward the north the section thins to an estimated 3-5 km but still ranges in age throughout the Cretaceous. Southward, on the other hand, the Cretaceous thins to about 2 km and is restricted to Aptian-Albian and younger ages. The variations in ages, facies, and thickness are consistent with recent models of the evolution of the Cretaceous basin. During the Neocomian, the Bogata area formed the main depocenter of the basin and was characterized by restricted facies and turbidites, suggesting steep, possibly faulted basin margins. Facies to the north, near the Middle Magdalena Basin, indicate shallower water, possibly a platform. By the end of the Early Cretaceous, expansion of the marine basin out of the central Cordillera Oriental and regionally more constant facies indicate the onset of dominantly thermal subsidence. The end of the Cretaceous was marked by regression and asymmetric clastic input from east and west of the basin.

  8. Terrestrial biota and climate during Cretaceous greenhouse in NE China

    NASA Astrophysics Data System (ADS)

    Wan, X.

    2016-12-01

    Northeast China offers a unique opportunity to perceive Cretaceous stratigraphy and climate of terrestrial settings. The sediments contain variegated clastic and volcanic rocks, diverse terrestrial fossils, and important coal and oil resources. Four Cretaceous biotas of Jehol, Fuxin, Songhuajiang and Jiayin occurred in ascending order. For scientific purpose, a coring program (SK1 & 2) provides significant material for Cretaceous research. The SK1 present a continuous section of Upper Cretaceous non-marine fossil, magnetochron successions and chronostratigraphic events. These chronostratigraphic events are integrated with marine events by an X/Y graphic plot between the core data and a global database of GSSP and key reference sections. More precisely, age interpolation based on CA-ID-TIMS U-Pb zircon dates and the calibrated cyclostratigraphy places the end of the Cretaceous Normal Superchon at 83.07 ±0.15Ma. This date also serves as an estimate for the Santonian-Campanian stage boundary. It also places the K/Pg boundary within the upper part of the Mingshui Formation. The terrestrial and marine life and the analysis of elemental composition, δ13Corg, biomarkers show that lake water salinity changed along with a Coniacian-Santonian marine incursion. High lake-level coincides with the sea transgression during the time. High salinity resulted in the development of periodic anoxic environments of the basin. One of these times of deposition of organic-rich mud correlates with the mangnetochron of C34N/C33R and Coniacian-Santonian planktic foraminifera. This marine flooding correlates with OAE 3 and it is possible that the global oceanic anoxic event may have influenced organic carbon burial in the Songliao Basin for this brief period. The evolution of 4 biotas corresponds to the Cretaceous climate change. We tentatively interpret the terrestrial record to reflect the changes in both global climate and regional basin evolution.

  9. Some American Cretaceous fish scales, with notes on the classification and distribution of Cretaceous fishes

    USGS Publications Warehouse

    Cockerell, T.D.A.

    1919-01-01

    Fish remains are extremely abundant in several Cretaceous formations of the Rocky Mountains and Great Plains, but except in the Niobrara formation of Kansas, a fish skeleton well enough preserved for description or identification is the greatest rarity. The fishes are represented by separate scales, in some places associated with a few vertebrae and other fragmentary bones or by isolated teeth. In the original descriptions of both the Mowry and the Aspen shales of Wyoming the presence of fish scales is mentioned as a characteristic feature. Fossils of other classes are usually very rare in beds containing many fish scales. Many of the scales are beautifully preserved and show varied forms and more or less complex structure.

  10. Middle cretaceous carbonate reservoirs, Fahud Field and northwestern Oman: discussion

    SciTech Connect

    Brennan, P.

    1985-05-01

    A discussion is presented of the Cretaceous formations involved in Fahud field. Along the Trucial Coast, as in northwestern Oman, it is not difficult to date the time of formation of the foredeep. This article provides a stratigraphic correlation chart for the Cretaceous along the Arabian side of the Arabian Gulf. The terminology presented on this correlation chart reflects oil-industry usage in the area, including correlations published by Owen and Nasr, Loutfi and Jaber, Arabian American Oil Company, Beydoun and Dunnington, and Hassan et al.

  11. On the age of the Jurassic-Cretaceous boundary

    NASA Astrophysics Data System (ADS)

    Lena, Luis; Ramos, Victor; Pimentel, Marcio; Aguirre-Urreta, Beatriz; Naipauer, Maximiliano; Schaltegger, Urs

    2017-04-01

    Calibrating the geologic time is of utmost importance to understanding geological and biological processes throughout Earth history. The Jurassic-Cretaceous boundary has proven to be one of the most problematic boundaries to calibrate in the geologic time. The present definition of the Jurassic-Cretaceous boundary still remains contentious mainly because of the dominant endemic nature of the flora and fauna in stratigraphic sections, which hinders an agreement on a GSSP. Consequently, an absolute and precise age for the boundary is yet to meet an agreement among the community. Additionally, integrating chemical, paleomagnetic or astronomical proxies to aid the definition of the boundary has also proven to be difficult because the boundary lacks any abrupt geochemical changes or recognizable geological events. However, the traditional Berriasella jacobi Subzone is disregarded as a primary marker and the use of calpionellids has been gaining momentum for defining the boundary. The Jurassic Cretaceous boundary in the Vaca Muerta Fm. in the Nuequen Basin of the Andes is a potential candidate for the boundary stratotype because of its high density of ammonites, nannofossils and interbedded datable horizons. Consequently, the Jurassic-Cretaceous boundary is very well defined in the Vaca Muerta Fm. On the basis of both ammonites and nannofossils. Here we present new high-precision U-Pb age determinations from two volcanic ash beds that bracket the age of the Jurassic-Cretaceous boundary: 1) ash bed LLT_14_9, with a 206Pb/238U age of 139.7 Ma, which is 2 meters above Jurassic-Cretaceous boundary based on the Argetiniceras noduliferum (Early Berriasian ) and Substeueroceras Koeneni (Late Tithonian) ammonites zone; and 2) bed LLT_14_10, with an age of 140.1 Ma, located 3m below the J-K boundary based on last occurrence of the nannofossils N. kamptneri minor and N. steinmanni minor. Therefore, we propose that the age of the Jurassic-Cretaceous boundary should be close to 140

  12. Ocular shell structures in some Cretaceous trachyleberid Ostracoda

    USGS Publications Warehouse

    Kontrovitz, M.; Puckett, T.M.

    1998-01-01

    This is the first study of internal ocular shell structures of Cretaceous ostracodes. Internal molds from eight species of four genera from Santonian, Campanian, and Maastrichtian strata revealed a stalked ocular sinus constricted along its length and distally inflated. The latter part has anterior and posterior lobes and a subcentral concavity. These Cretaceous trachyleberids have ocular shell structures similar to Cenozoic taxa and it is presumed they functioned similarly. However, each taxon has a diagnostic ocular sinus and an inner surface of the eye tubercle that distinguishes each from all other forms examined.

  13. Marine reptiles from the Late Cretaceous of northern Patagonia

    NASA Astrophysics Data System (ADS)

    Gasparini, Z.; Casadio, S.; Fernández, M.; Salgado, L.

    2001-04-01

    During the Campanian-Maastrichtian, Patagonia was flooded by the Atlantic and reduced to an archipelago. Several localities of northern Patagonia have yielded marine reptiles. Analysis of several assemblages suggests that the diversity and abundance of pelagic marine reptiles in northern Patagonia was higher by the end of the Cretaceous than previously thought. Several plesiosaurids, including Aristonectes parvidens and the polycotylid Sulcusuchus, and the first remains of mosasaurinae have been found. The Cretaceous marine reptile record from South America is scanty. Nevertheless, materials described here suggest that Tethyan and Weddelian forms converged in northern Patagonia, as seen with invertebrates.

  14. Arctic Late Cretaceous and Paleocene Plant Community Succession

    NASA Astrophysics Data System (ADS)

    Herman, Alexei; Spicer, Robert; Daly, Robert; Jolley, David; Ahlberg, Anders; Moiseeva, Maria

    2010-05-01

    The Arctic abounds with Late Cretaceous and Paleocene plant fossils attesting to a thriving, diverse, but now extinct polar ecosystem that sequestered vast amounts of carbon. Through detailed examination of plant remains and their distributions in time and space with respect to their entombing sedimentary facies, it has been possible to reconstruct changes in Arctic vegetation composition and dynamics through the Late Cretaceous and into the Paleocene. Based on over 10,000 leaf remains, fossil wood and palynomorph assemblages from northeastern Russia and northern Alaska and palynological data from elsewhere in the Arctic we identify a number of successional plant communities (SPCs) representing seral development from early (pioneer), through middle to late SPCs and climax vegetation. We recognise that (1) Equisetites and some ferns (typically Birisia, but after the beginning of the Maastrichtian, Onoclea) were obligatory components of the early SPCs; (2) first rare angiosperms (e.g. the dicot Vitiphyllum multifidum) appeared in the middle SPCs of the Arctic in the Early - Middle Albian; (3) from late Albian times onwards angiosperms became abundant in the middle SPCs of the Arctic, but were still rare in the earlier and later SPCs; (4) monocots appeared in the Maastrichtian early SPCs; (5) all Arctic Cretaceous late SPCs (and climax vegetation) were dominated by conifers; (6) Arctic SPCs were more numerous and diverse under warm climates than cold; (7) during the Albian and late Cretaceous, advanced (Cenophytic, angiosperm-dominated) plant communities coexisted with those of a more relictual (Mesophytic, dominated by ferns and gymnosperms) aspect, and plants composing these communities did not mix; (8) coal-forming environments (mires) remained conifer, fern and bryophyte dominated throughout the late Cretaceous and Paleocene with little penetration of woody angiosperm components and thus are conservative and predominantly Mesophytic in character; (9) bryophytes

  15. Cretaceous vertical motion of australia and the australian- antarctic discordance

    PubMed

    Gurnis; Muller; Moresi

    1998-03-06

    A three-dimensional model of mantle convection in which the known history of plate tectonics is imposed predicts the anomalous Cretaceous vertical motion of Australia and the present-day distinctive geochemistry and geophysics of the Australian-Antarctic Discordance. The dynamic models infer that a subducted slab associated with the long-lived Gondwanaland-Pacific converging margin passed beneath Australia during the Cretaceous, partially stagnated in the mantle transition zone, and is presently being drawn up by the Southeast Indian Ridge.

  16. Exploring the Stable Isotope Record of Lake Carpenter: A Lacustrine Sequence in the Aptian-Albian Cretaceous Cedar Mountain Formation, Utah, USA

    NASA Astrophysics Data System (ADS)

    Montgomery, E.; Al-Suwaidi, A. H.; Suarez, M. B.; Kirkland, J. I.; Suarez, C. A.

    2014-12-01

    The Cedar Mountain Formation (CMF) represents the earliest deposition of terrestrial Cretaceous strata in the USA, recording significant changes in biota and climate. Understanding these transitions requires improved time constraints and high-resolution proxy records. Here we present new δ13C (organic carbon & carbonate) chemostratigraphic record of a lacustrine sequence in a locality named "Lake Carpenter", near Moab, Utah. Lake Carpenter (LC) comprises interbedded limestone and mudstone units of the Ruby Ranch Member of the CMF. Results of the chemostratigraphy are constrained by detrital zircons from the section allowing correlation of the chemostratigraphy to the carbon isotope segments C9 to C11 (Bralower et al., 1999) spanning the Late Aptian to Early Albian, and supported by previous litho- and chemostratigraphic work in the CMF. δ13Corg values show a pronounced negative stepped excursion, of -6‰ with values reaching -32.3 ‰ occurring in conjunction with an increase in TOC. This negative excursion is followed by a positive recovery, with values of ~-25‰ and relatively low TOC. δ13Ccarb records positive values, up to +8‰, in the lowermost part of the section (< ~7m) followed by a decrease to ~-7 ‰. δ18Ocarb over this interval records values between -2 and -4‰ followed by a decrease to ~-7‰. The lowermost portion of the LC section is indicative of relatively deep lacustrine environment in which organic carbon burial influenced the δ13C of dissolved inorganic carbon (DIC) in the lake. This lower δ13C of DIC may be due to increased upwelling and/or turnover and recycling of organic carbon in the lake. Variability of δ13Ccarb and δ18Ocarb values may reflect changes in water supply to the lake, or climatic variability resulting in the lake drying out. δ13Corg values may be affected by local lake dynamics, including variations in organic carbon storage and changes in algal productivity, perhaps also indicative of changes in nutrient

  17. Environmental changes around the Jurassic/Cretaceous transition: New nannofossil, chemostratigraphic and stable isotope data from the Lókút section (Transdanubian Range, Hungary)

    NASA Astrophysics Data System (ADS)

    Grabowski, J.; Haas, J.; Stoykova, K.; Wierzbowski, H.; Brański, P.

    2017-10-01

    New biostratigraphical, chemical and stable isotope (C, O) data are presented from the Lókút section (Transdanubian Range, Hungary) representing a ca. 13 m thick continuous succession of Lower Tithonian-Lower Berriasian pelagic limestones. The study is conducted to verify timing of nannofossil events and major palaeoenvironmental changes at the Jurassic/Cretaceous transition including lithogenic input, palaeoredox and palaeoproductivity variations. Nannofossil zones from NJT 16b to NKT have been identified in the Lókút section and correlated with magnetostratigraphy, covering an interval from polarity zone M21r to M18r. The nannofossil Zone NJT 16b spans the interval from the upper part of M21r to lowermost part of M19n2n but its lower limit is poorly defined due to large diachronism in first occurrence (FO) of Nannoconus infans in various Tethyan sections. FOs of N. kamptneri minor and N. steinmannii minor are situated in the topmost part of the M19n2n and lowermost part of M19n1r magnetozones, respectively. They are located ca. 2-2.5 m above the J/K boundary defined as Intermedia/Alpina subzonal boundary, which falls within the lower half of magnetozone M19n2n. The position of first occurrences of these taxa is similar to that from the Puerto Escaño section (southern Spain) and slightly lower than in Italian sections (Southern Alps). Concentrations of chemical element proxies of terrigenous transport (Al, K, Rb, Th) decrease towards the top of the Lókút section, which suggests a decrease in input of terrigenous material and increasing carbonate productivity during the Early Tithonian and the Berriasian. Slight oxygen depletion at the sea bottom (decrease of Th/U ratio), and large increase in concentrations of productive elements (P, Ba, Ni, Cu) is observed upsection. Nutrients supply via upwelling seems to be the most likely explanation. Increase in phosphorus accumulation rate and a microfacies change from Saccocoma to calpionellid dominated took place in

  18. Seawater Chemistry Across Cretaceous-Tertiary Boundary

    NASA Astrophysics Data System (ADS)

    Misra, S.; Turchyn, A. V.

    2016-12-01

    Continental weathering is recognized as one of the primary mechanisms moderating the concentration of CO2 in the atmosphere. Past carbon cycle perturbations, often associated with mass extinction events, recovered on a timescale of hundreds of thousands of years, broadly consistent with enhanced chemical weathering being the key moderating process. Since chemical weathering of continental rocks controls the delivery of cations to the oceans, records of seawater cation chemistry provide a powerful archive of this interplay and feedback between climate and weathering.The Cretaceous-Paleogene (K-Pg) boundary at 65.6 Ma is the last major mass extinction event. The two accepted drivers of K-Pg events were the geologically coeval eruption of Deccan Trap continental flood basalts and the meteorite impact at Chicxulub. The Chicxulub impact happened during a second pulse of Deccan traps volcanism. Thus, teasing apart the timing and dominant driver of the mass extinction and the recovery remains enigmatic. A key feature of the K-Pg event is the transient acidification of the global surface ocean that drove the collapse of the oceanic ecosystem. This surface ocean acidification was caused by `geologically instantaneous' influx of large quantities of acidic gases (viz. CO2, SO2) to the ocean-atmosphere system. We will present high-resolution records of Li, B, Mg, and Ca isotope (δ7Li, δ11B, δ26Mg, and δ44Ca, respectively) measured in single species foraminifera across the K-Pg boundary to assess the perturbation and the subsequent continental weathering feedback. The unique aspect of the proposed research is in the first direct reconstruction of seawater isotopic composition of elements intimately linked to the continental weathering cycle (Li, Mg, and Ca), and the carbon budget of the ocean-atmosphere system (Boron) across an event of rapid climate transition and recovery. Moreover, this will allow to fingerprint the timing of the acidic gas input to the atmosphere and to

  19. Marine carbon cycling following end Cretaceous extinction

    NASA Astrophysics Data System (ADS)

    Ridgwell, Andy; Thomas, Ellen; Alegret, Laia; Schmidt, Daniela

    2010-05-01

    Knowing how the transport of particulate organic carbon and associated nutrients into the ocean interior is controlled, is a prerequisite to reliable predictions of future changes in marine carbon cycling as the circulation and carbonate chemistry of the oceans are perturbed. Multiple mechanisms for particulate organic carbon transport have been proposed, most commonly based on sediment trap observations. Yet these observations primarily provide evidence for correlations between fluxes rather than being able to pin-point any particular mechanism. Despite this, global models tend to adopt one or other mechanism (e.g., ballasting) without independent justification. The geological record may help, as the evolution of pelagic ecosystems through the Phanerozoic has seen the emergence of animals (faecal pellets) and silicification and calcification of planktic organisms (ballasting), with evolutionary innovation fundamentally altering the nature of the oceanic biological pump. Moreover, catastrophic and transitory events, in which pelagic ecosystems were temporary disrupted, altering and biological pumping mechanisms, produced a tell-tale marine geochemical signature than may help elucidate the working of the biological pump. Here we focus on the bolide impact at the Cretaceous-Palaeogene boundary as it induced an enigmatic ‘collapse' in surface-to-deep carbon isotope (d13C) gradients, previously interpreted as representing a complete cessation of biological productivity and/or carbon pumping. Contemporaneous with this was a pronounced extinction of planktic calcifiers, resulting in an order of magnitude reduction in carbonate burial in deep-sea sediments. On face value, no (or little) carbonate ballasting and only a minor possible importance for dust together with ceased organic carbon transport to depth, is consistent with the existence of a dominant (carbonate) mineral ballasting mechanism prior to the event. However, a collapsed surface-to-deep d13C gradient does

  20. From Back-Arc Drifting to Arc Accretion: the Late Jurassic-Early Cretaceous Evolution of the Guerrero Terrane in Central Mexico (Sierra de Guanajuato)

    NASA Astrophysics Data System (ADS)

    Martini, M.; Solari, L.; Centeno-García, E.; Mori, L.; Camprubi, A.

    2011-12-01

    Three paleogeographic scenarios have been proposed for the Mesozoic volcano-sedimentary successions that compose the Guerrero terrane, western Mexico. In the "type 1" scenario the Guerrero terrane is an exotic Pacific arc accreted to nuclear Mexico by the consumption of a pre-Cretaceous oceanic basin, named Arperos Basin. The "type 2" scenario considers the Guerrero terrane as a fringing multi-arc system, accreted by the closure of relatively small pre-Cretaceous oceanic basins at multiple subduction zones with varying polarities. Alternatively, in the "type 3" scenario the Guerrero terrane is interpreted as a North American west-facing para-autochthonous arc, which drifted into the paleo-Pacific domain by the opening of the Cretaceous back-arc oceanic Arperos Basin, and subsequently accreted back to the Mexican mainland. In order to test these reconstructions and understand the dynamics of the arc accretion, we present here a combined study that includes sandstone provenance, U-Pb geochronology, and structural data from the Arperos Basin in the Sierra de Guanajuato, central Mexico. Our data document that the Arperos Basin developed in a back-arc setting, and evolved from continental to oceanic conditions from the Late Jurassic to the Early Cretaceous. Sandstone provenance analysis shows an asymmetric distribution of the infill sources for the Arperos Basin: continent-recycled sedimentary rocks were deposited along its north-eastern side, whereas magmatic arc-recycled clastic rocks developed at its south-western side. Such an asymmetric distribution closely fits with sedimentological models proposed for present-day continent-influenced back-arc basins. Based on these evidences, we favor a "type 3" scenario for the Guerrero terrane, which is then considered to represent a detached slice of the Mexican leading-edge that drifted in the paleo-Pacific domain during Late Jurassic-lower Early Cretaceous back-arc extension, and subsequently accreted back to the Mexican

  1. Transport in the Subtropical Lowermost Stratosphere during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment

    NASA Technical Reports Server (NTRS)

    Pittman, Jasna V.; Weinstock, Elliot M.; Oglesby, Robert J.; Sayres, David S.; Smith, Jessica B.; Anderson, James G.; Cooper, Owen R.; Wofsy, Steven C.; Xueref, Irene; Gerbig, Cristoph; Daube, Bruce C.; Richard, Erik C.; Ridley, Brian A.; Weinheimer, Andrew J.; Lowenstein, Max; Hans-Jurg, Jost; Lopez, Jimena P.; Mahoney, Michael J.; Thompson, Thomas L.; Hargrove, William W.; Hoffman, Forrest M.

    2007-01-01

    We use in situ measurements of water vapor (H2O), ozone (O3), carbon dioxide (CO2), carbon monoxide (CO), nitric oxide (NO), and total reactive nitrogen (NOy) obtained during the CRYSTAL-FACE campaign in July 2002 to study summertime transport in the subtropical lowermost stratosphere. We use an objective methodology to distinguish the latitudinal origin of the sampled air masses despite the influence of convection, and we calculate backward trajectories to elucidate their recent geographical history. The methodology consists of exploring the statistical behavior of the data by performing multivariate clustering and agglomerative hierarchical clustering calculations and projecting cluster groups onto principal component space to identify air masses of like composition and hence presumed origin. The statistically derived cluster groups are then examined in physical space using tracer-tracer correlation plots. Interpretation of the principal component analysis suggests that the variability in the data is accounted for primarily by the mean age of air in the stratosphere, followed by the age of the convective influence, and last by the extent of convective influence, potentially related to the latitude of convective injection (Dessler and Sherwood, 2004). We find that high-latitude stratospheric air is the dominant source region during the beginning of the campaign while tropical air is the dominant source region during the rest of the campaign. Influence of convection from both local and nonlocal events is frequently observed. The identification of air mass origin is confirmed with backward trajectories, and the behavior of the trajectories is associated with the North American monsoon circulation.

  2. In situ ∼2.0 Ma trees discovered as fossil rooted stumps, lowermost Bed I, Olduvai Gorge, Tanzania.

    PubMed

    Habermann, Jörg M; Stanistreet, Ian G; Stollhofen, Harald; Albert, Rosa M; Bamford, Marion K; Pante, Michael C; Njau, Jackson K; Masao, Fidelis T

    2016-01-01

    The discovery of fossil rooted tree stumps in lowermost Lower Bed I from the western Olduvai Basin, Tanzania, age-bracketed by the Naabi Ignimbrite (2.038 ± 0.005 Ma) and Tuff IA (1.88 ± 0.05 Ma), provides the first direct, in situ, and to date oldest evidence of living trees at Olduvai Gorge. The tree relicts occur in an interval dominated by low-viscosity mass flow and braided fluvial sediments, deposited at the toe of a largely Ngorongoro Volcano-sourced volcaniclastic fan apron that comprised a widely spaced network of ephemeral braided streams draining northward into the Olduvai Basin. Preservation of the trees occurred through their engulfment by mass flows, post-mortem mold formation resulting from differential decay of woody tissues, and subsequent fluvially-related sediment infill, calcite precipitation, and cast formation. Rhizolith preservation was triggered by the interaction of root-induced organic and inorganic processes to form rhizocretionary calcareous root casts. Phytolith analyses were carried out to complete the paleoenvironmental reconstruction. They imply a pronounced seasonality and indicate a wooded landscape with grasses, shrubs, and sedges growing nearby, comparable to the low, open riverine woodland (unit 4c) along the Garusi River and tributaries in the Laetoli area. Among the tree stump cluster were found outsized lithic clasts and those consisting of quartzite were identified as Oldowan stone tool artifacts. In the context of hominin activity, the identification of wooded grassland in association with nearby freshwater drainages and Oldowan artifacts significantly extends our paleoenvironmental purview on the basal parts of Lower Bed I, and highlights the hitherto underrated role of the yet poorly explored western Olduvai Gorge area as a potential ecologically attractive setting and habitat for early hominins.

  3. Seismological evidence for heterogeneous lowermost outer core of the Earth from PKiKP-PKPbc differential traveltime and dispersion in PKPbc

    NASA Astrophysics Data System (ADS)

    Ohtaki, T.; Kaneshima, S.; Ichikawa, H.; Tsuchiya, T.

    2016-12-01

    We present seismic evidence for heterogeneous structure in the lowermost outer core (F-layer) based on the method developed by Ohtaki and Kaneshima (JGR, 2015). The method uses two observations that are particularly sensitive to the layer structure and are relatively insensitive to the structure of the other parts of the Earth: the frequency dispersion in P-waves that graze or are diffracted at the inner core boundary (PKPbc), and differential traveltimes between the P-waves reflected from the inner core boundary (PKiKP) and those that turn above the boundary (PKPbc). Ohtaki and Kaneshima (2015) have obtained the FVW model for the velocity structure of the F-layer on the "western" hemisphere of the inner core. In this study, we examined the structure for the "eastern" hemisphere using the core phases on vertical-component seismograms of Hi-net in Japan for earthquakes near the South Sandwich Islands. The PKPbc dispersion analysis requires nearly constant velocity on the inner core boundary in this region. The CD-BC analysis necessitates that cumulative velocity in the F-layer is close to that of PREM. The velocity model which satisfies both has nearly constant and smaller velocity than PREM on the boundary and faster ones above. This feature is contrast to the FVW model, which has a somewhat gentler velocity gradient and smaller velocities than PREM in the whole F-layer. The reduced velocity gradient on the inner core boundary beneath Australia signifies chemically unmixed materials there. Its higher velocity than FVW and also PREM indicates that the unmixed materials stem from a higher concentration of light element above the boundary. Thus the light element cloud in the F-layer suggests solidification in the "eastern" hemisphere.

  4. Methyl chloride as a tracer of tropical tropospheric air in the lowermost stratosphere inferred from IAGOS-CARIBIC passenger aircraft measurements

    NASA Astrophysics Data System (ADS)

    Umezawa, T.; Baker, A. K.; Brenninkmeijer, C. A. M.; Zahn, A.; Oram, D. E.; Velthoven, P. F. J.

    2015-12-01

    We present variations of methyl chloride (CH3Cl) and nitrous oxide (N2O) in the lowermost stratosphere (LMS) obtained from air samples collected by the In-service Aircraft for a Global Observing System-Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container (IAGOS-CARIBIC) passenger aircraft observatory for the period 2008-2012. To correct for the temporal increase of atmospheric N2O, the CARIBIC N2O data are expressed as deviations from the long-term trend at the northern hemispheric baseline station Mauna Loa, Hawaii (ΔN2O). ΔN2O undergoes a pronounced seasonal variation in the LMS with a minimum in spring. The amplitude increases going deeper in the LMS (up to potential temperature of 40 K above the thermal tropopause), as a result of the seasonally varying subsidence of air from the stratospheric overworld. Seasonal variation of CH3Cl above the tropopause is similar in phase to that of ΔN2O. Significant correlations are found between CH3Cl and ΔN2O in the LMS from winter to early summer, both being affected by mixing between stratospheric air and upper tropospheric air. This correlation, however, disappears in late summer to autumn. The slope of the CH3Cl-ΔN2O correlation observed in the LMS allows us to determine the stratospheric lifetime of CH3Cl to be 35 ± 7 years. Finally, we examine the partitioning of stratospheric air and tropical/extratropical tropospheric air in the LMS based on a mass balance approach using ΔN2O and CH3Cl. This analysis clearly indicates efficient inflow of tropical tropospheric air into the LMS in summer and demonstrates the usefulness of CH3Cl as a tracer of tropical tropospheric air.

  5. A thermal infrared instrument onboard a geostationary platform for CO and O3 measurements in the lowermost troposphere: observing system simulation experiments

    NASA Astrophysics Data System (ADS)

    Claeyman, M.; Attié, J.-L.; Peuch, V.-H.; El Amraoui, L.; Lahoz, W. A.; Josse, B.; Joly, M.; Barré, J.; Ricaud, P.; Massart, S.; Piacentini, A.; von Clarmann, T.; Höpfner, M.; Orphal, J.; Flaud, J.-M.; Edwards, D. P.

    2011-02-01

    This paper presents observing system simulation experiments (OSSEs) to compare the relative capabilities of two geostationary thermal infrared (TIR) instruments to monitor ozone (O3) and carbon monoxide (CO) for air quality (AQ) purposes over Europe. The originality of this study is to use OSSEs to assess how these infrared instruments can constrain different errors affecting AQ hindcasts and forecasts (emissions, meteorology, initial condition and the 3 parameters together). The first instrument (GEO-TIR) has a configuration optimized to monitor O3 and CO in the lowermost tr posphere (LmT; defined to be the atmosphere between the surface and 3 km), and the second instrument (GEO-TIR2) is designed to monitor temperature and humidity. Both instruments measure radiances in the same spectral TIR band. Results show that GEO-TIR could have a significant impact (GEO-TIR is closer to the reference atmosphere than GEO-TIR2) on the analyses of O3 and CO LmT column. The value of the measurements for both instruments is mainly over the Mediterranean Basin and some impact can be found over the Atlantic Ocean and Northern Europe. The impact of GEO-TIR is mainly above 1 km for O3 and CO but can also improve the surface analyses for CO. The analyses of GEO-TIR2 show low impact for O3 LmT column but a significant impact (but lower than for GEO-TIR) for CO above 1 km. The results of this study indicate the beneficial impact from an infrared instrument (GEO-TIR) dedicated to monitoring O3 and CO concentrations in the LmT, and quantify the value of this information for constraining AQ models.

  6. A thermal infrared instrument onboard a geostationary platform for CO and O3 measurements in the lowermost troposphere: Observing System Simulation Experiments (OSSE)

    NASA Astrophysics Data System (ADS)

    Claeyman, M.; Attié, J.-L.; Peuch, V.-H.; El Amraoui, L.; Lahoz, W. A.; Josse, B.; Joly, M.; Barré, J.; Ricaud, P.; Massart, S.; Piacentini, A.; von Clarmann, T.; Höpfner, M.; Orphal, J.; Flaud, J.-M.; Edwards, D. P.

    2011-08-01

    This paper presents observing system simulation experiments (OSSEs) to compare the relative capabilities of two geostationary thermal infrared (TIR) instruments to measure ozone (O3) and carbon monoxide (CO) for monitoring air quality (AQ) over Europe. The primary motivation of this study is to use OSSEs to assess how these infrared instruments can constrain different errors affecting AQ hindcasts and forecasts (emissions, meteorology, initial condition and the 3 parameters together). The first instrument (GEO-TIR) has a configuration optimized to monitor O3 and CO in the lowermost troposphere (LmT; defined to be the atmosphere between the surface and 3 km), and the second instrument (GEO-TIR2) is designed to monitor temperature and humidity. Both instruments measure radiances in the same spectral TIR band. Results show that GEO-TIR could have a significant impact (GEO-TIR is closer to the reference atmosphere than GEO-TIR2) on the analyses of O3 and CO LmT column. The information added by the measurements for both instruments is mainly over the Mediterranean Basin and some impact can be found over the Atlantic Ocean and Northern Europe. The impact of GEO-TIR is mainly above 1 km for O3 and CO but can also improve the surface analyses for CO. The analyses of GEO-TIR2 show low impact for O3 LmT column but a significant impact (although still lower than for GEO-TIR) for CO above 1 km. The results of this study indicate the beneficial impact from an infrared instrument (GEO-TIR) with a capability for monitoring O3 and CO concentrations in the LmT, and quantify the value of this information for constraining AQ models.

  7. Independent estimate of velocity structure of Earth's lowermost outer core beneath the northeast Pacific from PKiKP - PKPbc differential traveltime and dispersion in PKPbc

    NASA Astrophysics Data System (ADS)

    Ohtaki, Toshiki; Kaneshima, Satoshi

    2015-11-01

    The presence of a low-velocity layer at the base of Earth's outer core has been proposed. However, the seismic profile of the basal layer indeed has been poorly constrained. In previous seismic studies the model parameters of the layer are substantially nonunique and there are tradeoffs between the seismic velocity of the layer and the properties of the mantle and inner core. A more tightly constrained profile of the layer helps further examine the composition and dynamics of the layer. In this study we obtained the P wave velocity profile of the basal layer beneath the northeast Pacific based on two new seismic observations by analyzing seismograms of the Hi-net in Japan. The new observations are particularly sensitive to the layer structure and are relatively insensitive to the structure of the other parts of the Earth: (1) the frequency dispersion in P waves that graze or are diffracted at the inner core boundary (PKPbc and PKPc-diff) and (2) differential traveltimes between the P waves reflected from the inner core boundary (PKiKP) and those that turn above the boundary (PKPbc). The resulting velocity model of the lowermost outer core (called "F layer velocity model for the Western Hemisphere" (FVW)) has P wave velocities that lie between those of AK135 and the preliminary reference Earth model (PREM), and a velocity gradient that is slightly gentler than that of PREM. Models with a uniform P wave velocity value within the layer are not supported by the observations for the region investigated, which appears not to support the presence of a thick basal layer that is Fe rich and dense there.

  8. Sudden and Gradual Molluscan Extinctions in the Latest Cretaceous of Western European Tethys

    PubMed

    Marshall; Ward

    1996-11-22

    Incompleteness of the fossil record has confounded attempts to establish the role of the end-Cretaceous bolide impact in the Late Cretaceous mass extinctions. Statistical analysis of latest Cretaceous outer-shelf macrofossils from western European Tethys reveals (i) a major extinction at or near the Cretaceous-Tertiary (K-T) boundary, probably caused by the impact, (ii) either a faunal abundance change or an extinction of up to nine ammonite species associated with a regression event shortly before the boundary, (iii) gradual extinction of most inoceramid bivalves well before the K-T boundary, and (iv) background extinction of approximately six ammonites throughout the latest Cretaceous.

  9. A primitive therizinosauroid dinosaur from the Early Cretaceous of Utah

    USGS Publications Warehouse

    Kirkland, J.I.; Zanno, L.E.; Sampson, S.D.; Clark, J.M.; DeBlieux, D.D.

    2005-01-01

    Therizinosauroids are an enigmatic group of dinosaurs known mostly from the Cretaceous period of Asia, whose derived members are characterized by elongate necks, laterally expanded pelves, small, leaf-shaped teeth, edentulous rostra and mandibular symphyses that probably bore keratinized beaks. Although more than a dozen therizinosauroid taxa are known, their relationships within Dinosauria have remained controversial because of fragmentary remains and an unusual suite of characters. The recently discovered 'feathered' therizinosauroid Beipiaosaurus from the Early Cretaceous of China helped to clarify the theropod affinities of the group. However, Beipiaosaurus is also poorly represented. Here we describe a new, primitive therizinosauroid from an extensive paucispecific bonebed at the base of the Cedar Mountain Formation (Early Cretaceous) of east-central Utah. This new taxon represents the most complete and most basal therizinosauroid yet discovered. Phylogenetic analysis of coelurosaurian theropods incorporating this taxon places it at the base of the clade Therizinosauroiden, indicating that this species documents the earliest known stage in the poorly understood transition from carnivory to herbivory within Therizinosauroidea. The taxon provides the first documentation, to our knowledge, of therizinosauroids in North America during the Early Cretaceous.

  10. Vertebrate extinctions and survival across the Cretaceous-Tertiary boundary

    NASA Astrophysics Data System (ADS)

    Buffetaut, Eric

    1990-01-01

    A critical analysis of the fossil vertebrate record across the Cretaceous-Tertiary boundary shows that the available evidence is far less accurate than that concerning invertebrates and microfossils. Far-reaching conclusions have been drawn from generalisations about vertebrate extinctions in the continental realm based on the local record from western North America, but little is known about patterns of terminal Cretaceous vertebrate extinctions in other parts of the world, and even the western North American record is ambiguous. Despite this unsatisfactory record, it clearly appears that terminal Cretaceous vertebrate extinctions were highly selective, with some groups (e.g. dinosaurs) becoming completely extinct, whereas others seem to be virtually unaffected. This argues against devastating catastrophes of the kind postulated by some recent impact scenarios. However, the survival of groups known to be sensitive to climatic deterioration (such as crocodilians and other non-dinosaurian reptiles) indicates that alternative hypotheses involving gradual but fairly important climatic changes on a world-wide scale are not convincing either. The pattern of extinction and survival among vertebrates across the Cretaceous-Tertiary boundary may be explained as a consequence of the disruption of some food chains following a crisis in the plant kingdom, which itself may have been the result of the atmospheric consequences of unusual extraterrestrial or internal events.

  11. Tridymite pseudomorphs after wood in virginian lower cretaceous sediments.

    PubMed

    Mitchell, R S

    1967-11-17

    Fossil wood composed of tridymite is abundant in Patuxent (Lower Cretaceous) arkose on Hazel Run, Fredericksburg, Virginia. X-ray diffraction studies of the tridymite indicate that it has a disordered structure in which hexagonal close packing predominates. The specimens, which contain trace amounts of aluminum, iron, and other elements, are soft and fibrous, varying from white to shades of brown.

  12. A primitive therizinosauroid dinosaur from the Early Cretaceous of Utah.

    PubMed

    Kirkland, James I; Zanno, Lindsay E; Sampson, Scott D; Clark, James M; DeBlieux, Donald D

    2005-05-05

    Therizinosauroids are an enigmatic group of dinosaurs known mostly from the Cretaceous period of Asia, whose derived members are characterized by elongate necks, laterally expanded pelves, small, leaf-shaped teeth, edentulous rostra and mandibular symphyses that probably bore keratinized beaks. Although more than a dozen therizinosauroid taxa are known, their relationships within Dinosauria have remained controversial because of fragmentary remains and an unusual suite of characters. The recently discovered 'feathered' therizinosauroid Beipiaosaurus from the Early Cretaceous of China helped to clarify the theropod affinities of the group. However, Beipiaosaurus is also poorly represented. Here we describe a new, primitive therizinosauroid from an extensive paucispecific bonebed at the base of the Cedar Mountain Formation (Early Cretaceous) of east-central Utah. This new taxon represents the most complete and most basal therizinosauroid yet discovered. Phylogenetic analysis of coelurosaurian theropods incorporating this taxon places it at the base of the clade Therizinosauroiden, indicating that this species documents the earliest known stage in the poorly understood transition from carnivory to herbivory within Therizinosauroidea. The taxon provides the first documentation, to our knowledge, of therizinosauroids in North America during the Early Cretaceous.

  13. Cretaceous to Eocene passive margin sedimentation in Northeastern Venezuela

    SciTech Connect

    Erikson, J.P. )

    1993-02-01

    Twenty two palinspastic paleogeographic maps are presented for the Cretaceous to Eocene strata of the Serrania del Interior of northeastern Venezuela. The mapped lithologies, environmental conditions, and evolving depositional systems record [approximately]90 m.y. of dominantly marine sedimentation on the only observable Mesozoic passive margin in the Western Hemisphere. The depositional systems of the passive margin are heterogeneous at lateral (i.e., along-margin) length scales greater than [approximately]40 km. The primary lateral heterogeneity is caused by a major Lower Cretaceous deltaic system that emanated southwest of the Serrania del Interior. All important intervals, such as the laterally variable Aptian-Albian El Cantil platform limestone and the hydrocarbon source rocks of the Upper Cretaceous Querecual and San Antonio formations, are related to probable causal mechanisms and environmental conditions. Stratigraphic events have been interpreted as of either local or regional extent; based on a combination of outcrop sedimentologic analyses and regional depositional systems interpretation. The 3-dimensional distribution of depositional systems and systems tracts reveals 4-6 regional sequence boundaries separated by 4-20 m.y. Subsidence analyses support the facies interpretation of a passive margin by showing continuous, thermally dominated subsidence during the Cretaceous to Eocene interval. Subsidence and accumulation rates increased and facies changed significantly in the Oligocene, indicating the end of passive margin sedimentation and the initiation of foredeep subsidence and accumulation associated with overthrusting the eastward-advancing Caribbean Plate.

  14. Cretaceous carbonate platforms - emerging concepts and open problems

    SciTech Connect

    Schlager, W.

    1988-02-01

    The Cretaceous is a time of both spectacular growth and abrupt demise of carbonate platforms. Tectono-eustatic rise of sea level coupled with sediment-starvation in the ocean basins produced exceptionally high platforms. Because platform slopes steepen with height whereas siliciclastic slopes do not, the flanks of these high-rising platforms were onlapped by more gently dipping siliciclastics when the platforms ceased to grow. Future studies will have to separate these termination unconformities from the geometrically similar lowstand unconformities. Simultaneously, a carbonate sea level curve should be constructed solely from the record of the platform tops and compared with the onlap curves of seismic stratigraphy. The abrupt demise of Cretaceous platforms is even more remarkable than their rapid growth. In the Valanginian, the Aptian, the late Albian, the late Cenomanian, and the Turonian, platforms were drowned or reduced in size. The mid-Cretaceous events affected platforms in all major oceans and point to a global crisis of carbonate platforms, probably caused by environmental change such as oceanic anoxic events. A worldwide study is required to date these events and search for their causes in the record of life, climate, ocean circulation, and ocean chemistry. A third field of future research is the record of paleoclimate in the tidal flats and lagoons of the platforms on the northern and southern margins of Tethys. Climate modeling has identified this zone as a particularly sensitive switch in the ocean-atmosphere system of the Cretaceous.

  15. Architectural studies of Jurassic-Cretaceous fluvial units, Colorado Plateau

    SciTech Connect

    Miall, A.D.; Bromley, M.H.; Cowan, E.J.; Turner-Peterson, C.E.

    1989-03-01

    A sixfold hierarchy of architectural elements and bounding surfaces evolved from outcrop studies of three fluvial units: Westwater Canyon member (WCM), Morrison Formation, Upper Jurassic; Torrivio sandstone member (TSM), Gallup Sandstone, Upper Cretaceous, northwestern New Mexico; and Kayenta Formation (KF), Lower Jurassic, southwestern Colorado. This hierarchy is discussed.

  16. Late Cretaceous seasonal ocean variability from the Arctic.

    PubMed

    Davies, Andrew; Kemp, Alan E S; Pike, Jennifer

    2009-07-09

    The modern Arctic Ocean is regarded as a barometer of global change and amplifier of global warming and therefore records of past Arctic change are critical for palaeoclimate reconstruction. Little is known of the state of the Arctic Ocean in the greenhouse period of the Late Cretaceous epoch (65-99 million years ago), yet records from such times may yield important clues to Arctic Ocean behaviour in near-future warmer climates. Here we present a seasonally resolved Cretaceous sedimentary record from the Alpha ridge of the Arctic Ocean. This palaeo-sediment trap provides new insight into the workings of the Cretaceous marine biological carbon pump. Seasonal primary production was dominated by diatom algae but was not related to upwelling as was previously hypothesized. Rather, production occurred within a stratified water column, involving specially adapted species in blooms resembling those of the modern North Pacific subtropical gyre, or those indicated for the Mediterranean sapropels. With increased CO(2) levels and warming currently driving increased stratification in the global ocean, this style of production that is adapted to stratification may become more widespread. Our evidence for seasonal diatom production and flux testify to an ice-free summer, but thin accumulations of terrigenous sediment within the diatom ooze are consistent with the presence of intermittent sea ice in the winter, supporting a wide body of evidence for low temperatures in the Late Cretaceous Arctic Ocean, rather than recent suggestions of a 15 degrees C mean annual temperature at this time.

  17. Persistence of coral-rudist reefs into the Late Cretaceous

    SciTech Connect

    Scott, R.W. ); Fernandez-Mendiola, P.A. ); Gili, E. ); Simo, A. )

    1990-04-01

    During the Early Cretaceous, coral-algal communities occupied deeper water habitats in the reef ecosystem, and rudist communities generally populated the shallow-water, carbonate-sand substrates. During the middle Cretaceous, however, coral-algal communities became less common, and Late Cretaceous reef communities consisted of both rudist-dominated and rudist-coral communities. In the Pyrenean basins and other basins in the Mediterranean, coral associations co-existed with rudists forming complex buildups at the shelf-edge. In some parts of these buildups corals were nearly as abundant as rudists; in some complex buildups large coral colonies encrusted the rudists. Behind the shelf margin cylindrical, elevator rudists dominated the lenticular thickets that were interspersed with carbonate sands. Global changes in oceanic conditions, such as marine productivity and oxygen content, may have stressed the deeper coral-algal reef communities leaving rudists as the major shallow reef biota in Caribbean reefs. However, the co-occurrence of corals with rudists in these Pyrenean complex buildups suggests that corals were able to compete with rudists for resources. The corals in the complex buildups generally belong to genera different from those in the coral-algal communities. Perhaps this ecological stress in the mid-Cretaceous resulted in the evolution of new coral taxa.

  18. European cretaceous flints on the coast of North America

    USGS Publications Warehouse

    Emery, K.O.; Kaye, C.A.; Loring, D.H.; Nota, D.J.G.

    1968-01-01

    Flint pebbles and nodules from the Upper Cretaceous chalks of Europe occur offshore and at many seaports along the Atlantic coast of North America, where they were brought as ship's ballast. Isolated pieces imported from Europe as gunflints also are present.

  19. High temperatures in the Late Cretaceous Arctic Ocean.

    PubMed

    Jenkyns, Hugh C; Forster, Astrid; Schouten, Stefan; Sinninghe Damsté, Jaap S

    2004-12-16

    To understand the climate dynamics of the warm, equable greenhouse world of the Late Cretaceous period, it is important to determine polar palaeotemperatures. The early palaeoceanographic history of the Arctic Ocean has, however, remained largely unknown, because the sea floor and underlying deposits are usually inaccessible beneath a cover of floating ice. A shallow piston core taken from a drifting ice island in 1970 fortuitously retrieved unconsolidated Upper Cretaceous organic-rich sediment from Alpha ridge, a submarine elevated feature of probable oceanic origin. A lack of carbonate in the sediments from this core has prevented the use of traditional oxygen-isotope palaeothermometry. Here we determine Arctic palaeotemperatures from these Upper Cretaceous deposits using TEX86, a new palaeothermometer that is based on the composition of membrane lipids derived from a ubiquitous component of marine plankton, Crenarchaeota. From these analyses we infer an average sea surface temperature of approximately 15 degrees C for the Arctic Ocean about 70 million years ago. This calibration point implies an Equator-to-pole gradient in sea surface temperatures of approximately 15 degrees C during this interval and, by extrapolation, we suggest that polar waters were generally warmer than 20 degrees C during the middle Cretaceous (approximately 90 million years ago).

  20. Peculiar macrophagous adaptations in a new Cretaceous pliosaurid.

    PubMed

    Fischer, Valentin; Arkhangelsky, Maxim S; Stenshin, Ilya M; Uspensky, Gleb N; Zverkov, Nikolay G; Benson, Roger B J

    2015-12-01

    During the Middle and Late Jurassic, pliosaurid plesiosaurs evolved gigantic body size and a series of craniodental adaptations that have been linked to the occupation of an apex predator niche. Cretaceous pliosaurids (i.e. Brachaucheninae) depart from this morphology, being slightly smaller and lacking the macrophagous adaptations seen in earlier forms. However, the fossil record of Early Cretaceous pliosaurids is poor, concealing the evolution and ecological diversity of the group. Here, we report a new pliosaurid from the Late Hauterivian (Early Cretaceous) of Russia. Phylogenetic analyses using reduced consensus methods recover it as the basalmost brachauchenine. This pliosaurid is smaller than other derived pliosaurids, has tooth alveoli clustered in pairs and possesses trihedral teeth with complex serrated carinae. Maximum-likelihood ancestral state reconstruction suggests early brachauchenines retained trihedral teeth from their ancestors, but modified this feature in a unique way, convergent with macrophagous archosaurs or sphenacodontoids. Our findings indicate that Early Cretaceous marine reptile teeth with serrated carinae cannot be unequivocally assigned to metriorhynchoid crocodylomorphs. Furthermore, they extend the known diversity of dental adaptations seen in Sauropterygia, the longest lived clade of marine tetrapods.

  1. Placental mammal diversification and the Cretaceous-Tertiary boundary.

    PubMed

    Springer, Mark S; Murphy, William J; Eizirik, Eduardo; O'Brien, Stephen J

    2003-02-04

    Competing hypotheses for the timing of the placental mammal radiation focus on whether extant placental orders originated and diversified before or after the Cretaceous-Tertiary (KT) boundary. Molecular studies that have addressed this issue suffer from single calibration points, unwarranted assumptions about the molecular clock, andor taxon sampling that lacks representatives of all placental orders. We investigated this problem using the largest available molecular data set for placental mammals, which includes segments of 19 nuclear and three mitochondrial genes for representatives of all extant placental orders. We used the ThorneKishino method, which permits simultaneous constraints from the fossil record and allows rates of molecular evolution to vary on different branches of a phylogenetic tree. Analyses that used different sets of fossil constraints, different priors for the base of Placentalia, and different data partitions all support interordinal divergences in the Cretaceous followed by intraordinal diversification mostly after the KT boundary. Four placental orders show intraordinal diversification that predates the KT boundary, but only by an average of 10 million years. In contrast to some molecular studies that date the rat-mouse split as old as 46 million years, our results show improved agreement with the fossil record and place this split at 16-23 million years. To test the hypothesis that molecular estimates of Cretaceous divergence times are an artifact of increased body size subsequent to the KT boundary, we also performed analyses with a "KT body size" taxon set. In these analyses, interordinal splits remained in the Cretaceous.

  2. Peculiar macrophagous adaptations in a new Cretaceous pliosaurid

    PubMed Central

    Arkhangelsky, Maxim S.; Stenshin, Ilya M.; Uspensky, Gleb N.; Zverkov, Nikolay G.

    2015-01-01

    During the Middle and Late Jurassic, pliosaurid plesiosaurs evolved gigantic body size and a series of craniodental adaptations that have been linked to the occupation of an apex predator niche. Cretaceous pliosaurids (i.e. Brachaucheninae) depart from this morphology, being slightly smaller and lacking the macrophagous adaptations seen in earlier forms. However, the fossil record of Early Cretaceous pliosaurids is poor, concealing the evolution and ecological diversity of the group. Here, we report a new pliosaurid from the Late Hauterivian (Early Cretaceous) of Russia. Phylogenetic analyses using reduced consensus methods recover it as the basalmost brachauchenine. This pliosaurid is smaller than other derived pliosaurids, has tooth alveoli clustered in pairs and possesses trihedral teeth with complex serrated carinae. Maximum-likelihood ancestral state reconstruction suggests early brachauchenines retained trihedral teeth from their ancestors, but modified this feature in a unique way, convergent with macrophagous archosaurs or sphenacodontoids. Our findings indicate that Early Cretaceous marine reptile teeth with serrated carinae cannot be unequivocally assigned to metriorhynchoid crocodylomorphs. Furthermore, they extend the known diversity of dental adaptations seen in Sauropterygia, the longest lived clade of marine tetrapods. PMID:27019740

  3. North American nonmarine climates and vegetation during the Late Cretaceous

    USGS Publications Warehouse

    Wolfe, J.A.; Upchurch, G.R.

    1987-01-01

    Analyses of physiognomy of Late Cretaceous leaf assemblages and of structural adaptations of Late Cretaceous dicotyledonous woods indicate that megathermal vegetation was an open-canopy, broad-leaved evergreen woodland that existed under low to moderate amounts of rainfall evenly distributed through the year, with a moderate increase at about 40-45??N. Many dicotyledons were probably large, massive trees, but the tallest trees were evergreen conifers. Megathermal climate extended up to paleolatitude 45-50??N. Mesothermal vegetation was at least partially an open, broad-leaved evergreen woodland (perhaps a mosaic of woodland and forest), but the evapotranspirational stress was less than in megathermal climate. Some dicotyledons were large trees, but most were shrubs or small trees; evergreen conifers were the major tree element. Some mild seasonality is evidenced in mesothermal woods; precipitational levels probably varied markedly from year to year. Northward of approximately paleolatitude 65??N, evergreen vegetation was replaced by predominantly deciduous vegetation. This replacement is presumably related primarily to seasonality of light. The southern part of the deciduous vegetation probably existed under mesothermal climate. Comparisons to leaf and wood assemblages from other continents are generally consistent with the vegetational-climatic patterns suggested from North American data. Limited data from equatorial regions suggest low rainfall. Late Cretaceous climates, except probably those of the Cenomanian, had only moderate change through time. Temperatures generally appear to have warmed into the Santonian, cooled slightly into the Campanian and more markedly into the Maastrichtian, and then returned to Santonian values by the late Maastrichtian. The early Eocene was probably warmer than any period of the Late Cretaceous. Latitudinal temperature gradients were lower than at present. For the Campanian and Maastrichtian, a gradient of about 0.3??C/1

  4. Giant Upper Cretaceous oysters from the Gulf coast and Caribbean

    USGS Publications Warehouse

    Sohl, Norman F.; Kauffman, Erle G.

    1964-01-01

    Two unusually massive ostreid species, representing the largest and youngest Mesozoic members of their respective lineages, occur in Upper Cretaceous sediment of the gulf coast and Caribbean areas. Their characteristics and significance, as well as the morphologic terminology of ostreids in general, are discussed. Crassostrea cusseta Sohl and Kauffman n. sp. is the largest known ostreid from Mesozoic rocks of North America; it occurs sporadically in the Cusseta Sand and rarely in the Blufftown Formation of the Chattahoochee River region in Georgia and Alabama. It is especially notable in that it lacks a detectable posterior adductor muscle scar on large adult shells. C. cusseta is the terminal Cretaceous member of the C. soleniscus lineage in gulf coast sediments; the lineage continues, however, with little basic modification, throughout the Cenozoic, being represented in the Eocene by C. gigantissima (Finch) and probably, in modern times, by C. virginica (Gmelin). The C. soleniscus lineage is the first typically modern crassostreid group recognized in the Mesozoic. Arctostrea aguilerae (Böse) occurs in Late Campanian and Early Maestrichtian sediments of Alabama, Mississippi, Texas(?), Mexico, and Cuba. The mature shell of this species is larger and more massive than that of any other known arctostreid. Arctostrea is well represented throughout the Upper Jurassic and Cretaceous of Europe, but in North America, despite the great numbers and diversity of Cretaceous oysters, only A. aguilerae and the Albian form A. carinata are known. The presence of A. aquilerae in both the Caribbean and gulf coast faunas is exceptional, as the Late Cretaceous faunas of these provinces are generally distinct and originated in different faunal realms.

  5. Latest Jurassic-early Cretaceous regressive facies, northeast Africa craton

    SciTech Connect

    van Houten, F.B.

    1980-06-01

    Nonmarine to paralic detrital deposits accumulated in six large basins between Algeria and the Arabo-Nubian shield during major regression in latest Jurassic and Early Cretaceous time. The Ghadames Sirte (north-central Libya), and Northern (Egypt) basins lay along the cratonic margin of northeastern Africa. The Murzuk, Kufra, and Southern (Egypt) basins lay in the south within the craton. Data for reconstructing distribution, facies, and thickness of relevant sequences are adequate for the three northern basins only. High detrital influx near the end of Jurassic time and in mid-Cretaceous time produced regressive nubian facies composed largely of low-sinuosity stream and fahdelta deposits. In the west and southwest the Ghadames, Murzuk, and Kufra basins were filled with a few hundred meters of detritus after long-continued earlier Mesozoic aggradation. In northern Egypt the regressive sequence succeeded earlier Mesozoic marine sedimentation; in the Sirte and Southern basins correlative deposits accumulated on Precambrian and Variscan terranes after earlier Mesozoic uplift and erosion. Waning of detrital influx into southern Tunisia and adjacent Libya in the west and into Israel in the east initiated an Albian to early Cenomanian transgression of Tethys. By late Cenomanian time it had flooded the entire cratonic margin, and spread southward into the Murzuk and Southern basins, as well as onto the Arabo-Nubian shield. Latest Jurassic-earliest Cretaceous, mid-Cretaceous, and Late Cretaceous transgressions across northeastern Africa recorded in these sequences may reflect worldwide eustatic sea-level rises. In contrast, renewed large supply of detritus during each regression and a comparable subsidence history of intracratonic and marginal basins imply regional tectonic control. 6 figures.

  6. Late Cretaceous-Early Palaeogene tectonic development of SE Asia

    NASA Astrophysics Data System (ADS)

    Morley, C. K.

    2012-10-01

    The Late Cretaceous-Early Palaeogene history of the continental core of SE Asia (Sundaland) marks the time prior to collision of India with Asia when SE Asia, from the Tethys in the west to the Palaeo-Pacific in the east, lay in the upper plate of subduction zones. In Myanmar and Sumatra, subduction was interrupted in the Aptian-Albian by a phase of arc accretion (Woyla and Mawgyi arcs) and in Java, eastern Borneo and Western Sulawesi by collision of continental fragments rifted from northern Australia. Subsequent resumption of subduction in the Myanmar-Thailand sector explains: 1) early creation of oceanic crust in the Andaman Sea in a supra-subduction zone setting ~ 95 Ma, 2) the belt of granite plutons of Late Cretaceous-Early Palaeogene age (starting ~ 88 Ma) in western Thailand and central Myanmar, and 3) amphibolite grade metamorphism between 70 and 80 Ma seen in gneissic outcrops in western and central Thailand, and 4) accretionary prism development in the Western Belt of Myanmar, until glancing collision with the NE corner of Greater India promoted ophiolite obduction, deformation and exhumation of marine sediments in the early Palaeogene. The Ranong strike-slip fault and other less well documented faults, were episodically active during the Late Cretaceous-Palaeogene time. N to NW directed subduction of the Palaeo-Pacific ocean below Southern China, Vietnam and Borneo created a major magmatic arc, associated with rift basins, metamorphic core complexes and strike-slip deformation which continued into the Late Cretaceous. The origin and timing of termination of subduction has recently been explained by collision of a large Luconia continental fragment either during the Late Cretaceous or Palaeogene. Evidence for such a collision is absent from the South China Sea well and seismic reflection record and here collision is discounted. Instead relocation of the subducting margin further west, possibly in response of back-arc extension (which created the Proto

  7. Significance of the giant Lower Cretaceous paleoweathering event

    NASA Astrophysics Data System (ADS)

    Thiry, Médard; Ricordel-Prognon, Caroline; Schmitt, Jean-Michel

    2010-05-01

    Weathering profiles typically develop at the interface with the atmosphere, and thus, record the fluctuations in the paleoatmosphere's chemistry and climatic conditions. Consequently they are one of the main archives to upgrade our understanding on paleoclimate and the Earth's environmental history. In this presentation, we will focus on the linking between paleoatmosphere compositions, weathering rates, and their impact on the subsequent sedimentary records. Distribution of the Lower Cretaceous lateritic weathering facies. During the Early Cretaceous, sea level drops and wide exondations lead to development of deep "lateritic" weathering profiles. Thick kaolinitic weathering profiles occured on the Hercynian basements and diverse kaolinitic and ferruginous weathering products covered the Jurassic limestone platforms. This major lateritic event is not restricted to Europe but also well know in North-America (up to Canada), South-America (down to Argentina), and in Australia. Moreover, recent paleomagnetic and radiometric datations revealed that numerous kaolinitic and ferruginous formations, which classically were ascribed to Tertiary ages, date back to the Lower Cretaceous period (Thiry et al., 2006). Additionally, the Bonherz iron ore deposits in the paleokarsts of the Jurassic limestone plateform of the Paris Basin also have to be reconsidered as of Cretaceous age, probably as well as the Tertiary age of the Swiss and Bavarian Jura Bonherz. Paleoclimatic interpretation. During a long time, the interpretation of these paleoweathering features has been a major palaeoclimatic argument. The spreading out of deep kaolinitic weathering profiles (from the Scandinavian and Canadian shields to southern Argentina and Australia, which was still situated close to Antarctica at that time) has lead to considerations, that during this period a warm and wet climate prevailed globally, with very little latitudinal differentiation. These paleoclimatic interpretations stand in

  8. Anatomy of the Cretaceous Hobenzan pluton, SW Japan: Internal structure of a small zoned pluton, and its genesis

    NASA Astrophysics Data System (ADS)

    Imaoka, Teruyoshi; Nakashima, Kazuo; Kamei, Atsushi; Hayasaka, Yasutaka; Ogita, Yasuo; Ikawa, Toshiyuki; Itaya, Tetsumaru; Takahashi, Yoshio; Kagami, Hiroo

    2014-11-01

    Field, petrographic, geochemical, and K-Ar and U-Pb age data were used to elucidate the internal structure of the Cretaceous Hobenzan pluton, SW Japan, and the processes which generated that structure. The pluton is elongated E-W with dimensions of about 6.5 × 2.0 km (13 km2), and was emplaced at ~ 95 Ma as a pluton in accretionary complexes. The pluton contains an early tonalite, but most of the body consists of later granitoids that show a continuous differentiation series from biotite-hornblende granodiorite (GD) to hornblende-biotite granite (HBG) and biotite granite (BG). The contacts between the GD and HBG are gradational. The pluton provides an exceptional cross-sectional view of a simple cooling magma body. The GD shows no vertical variations in modal and chemical compositions, whereas the HBG displays differentiation from the lowermost exposure to the top of the pluton. Initial Sr isotope ratios (SrI) in the HBG increase from the lower part to the top of the pluton. The granitoids show continuous compositional variations from 65 to 79 wt.% SiO2 (anhydrous basis), and magmatic differentiation was dominantly controlled by crystal fractionation of hornblende and plagioclase. Field, elemental and Sr-Nd isotope data are consistent with limited operation of assimilation with pelitic rocks and fractional crystallization (AFC), in which assimilation increased with higher degrees of differentiation. The Hobenzan pluton retains a history of granitoid magma evolution in a subvolcanic magma reservoir. The GD formed as a rigid sponge, and melt fraction increases inwards from the walls, forming the HBG mush by fractional crystallization, coupled with small degrees of assimilation of adjacent schists. A more evolved and enriched low-density melt segregated from the mushy cumulate of the HBG by incomplete crystal-melt separation, and moved upwards with the assistance of gas-driven filter pressing, as indicated by the presence of miarolitic cavities, thus forming the BG

  9. Cretaceous Cu-Au, pyrite, and Fe-oxide-apatite deposits in the Ningwu basin, Lower Yangtze Area, Eastern China

    NASA Astrophysics Data System (ADS)

    Yu, Jin-Jie; Lu, Bang-Cheng; Wang, Tie-Zhu; Che, Lin-Rui

    2015-05-01

    The Cretaceous Ningwu volcanic basin of the Middle and Lower Yangtze River Valley metallogenic belt of eastern China hosts numerous Fe-oxide-apatite, Cu-Au, and pyrite deposits. The mineralization in the Ningwu basin is associated with subvolcanic rocks, consisting of gabbro-diorite porphyry and/or pyroxene diorite. However, the mineralization is associated with subvolcanic and volcanic rock suite belonging to the Niangniangshan Formation in the Tongjing Cu-Au deposit, including nosean-bearing aegirine-augite syenites, quartz syenites, and quartz monzonites. The zoning displayed by the alteration and mineralization comprises: (1) an upper light-colored zone of argillic, carbonate, and pyrite alteration and silicification that is locally associated with pyrite and gold mineralization, (2) a central dark-colored zone of diopside, fluorapatite-magnetite, phlogopite, and garnet alteration associated with fluorapatite-magnetite mineralization, and (3) a lowermost light-colored zone of extensive albite alteration. The Cu-Au and pyrite orebodies are peripheral to the Fe-oxide-apatite deposits in this area and overlie the iron orebodies, including the Meishan Cu-Au deposit in the northern Ningwu basin and the pyrite deposits in the central Ningwu basin. The δ34S values of sulfides from the Fe-oxide-apatite, Cu-Au, and pyrite deposits in the Ningwu basin show large variation, with a mixed sulfur source, including magmatic sulfur and/or a mixture of sulfur derived from a magmatic component, country rock, and thermochemical reduction of sulfate at 200-300 °C. The ore-forming fluids associated with iron mineralization were derived mainly from magmatic fluids, and the late-stage ore-forming fluids related to Cu-Au and pyrite mineralization may have formed by the introduction of cooler meteoric water to the system. The Fe-oxide-apatite, Cu-Au, and pyrite deposits of the Ningwu basin formed in an extensional environment and are associated with a large-scale magmatic

  10. Properties of inertia-gravity waves in the lowermost stratosphere as observed by the PANSY radar over Syowa Station in the Antarctic

    NASA Astrophysics Data System (ADS)

    Mihalikova, Maria; Sato, Kaoru; Tsutsumi, Masaki; Sato, Toru

    2016-05-01

    Inertia-gravity waves (IGWs) are an important component for the dynamics of the middle atmosphere. However, observational studies needed to constrain their forcing are still insufficient especially in the remote areas of the Antarctic region. One year of observational data (January to December 2013) by the PANSY radar of the wind components (vertical resolution of 150 m and temporal resolution of 30 min) are used to derive statistical analysis of the properties of IGWs with short vertical wavelengths ( ≤ 4 km) and ground-based periods longer than 4 h in the lowermost stratosphere (height range 10 to 12 km) with the help of the hodograph method. The annual change of the IGWs parameters are inspected but no pronounced year cycle is found. The year is divided into two seasons (summer and winter) based on the most prominent difference in the ratio of Coriolis parameter (f) to intrinsic frequency (ω^) distribution. Average of f/ω^ for the winter season is 0.40 and for the summer season 0.45 and the average horizontal wavelengths are 140 and 160 km respectively. Vertical wavelengths have an average of 1.85 km through the year. For both seasons the properties of IGWs with upward and downward propagation of the energy are also derived and compared. The percentage of downward propagating waves is 10.7 and 18.4 % in the summer and winter season respectively. This seasonal change is more than the one previously reported in the studies from mid-latitudes and model-based studies. It is in agreement with the findings of past radiosonde data-based studies from the Antarctic region. In addition, using the so-called dual-beam technique, vertical momentum flux and the variance of the horizontal perturbation velocities of IGWs are examined. Tropospheric disturbances of synoptic-scale are suggested as a

  11. Equation of State of Amorphous MgSiO3 and (MgFe)SiO3 to Lowermost Mantle Pressures

    NASA Astrophysics Data System (ADS)

    Sinmyo, R.; Petitgirard, S.; Malfait, W.; Kupenko, I.; Rubie, D. C.

    2014-12-01

    Melting phenomena have a crucial importance during the Earth's formation and evolution. For example, a deep magma ocean of 1000 km or more has lead to the segregation of the core. Tomographic images of the Earth reveal ultra-low velocity zones at the core-mantle boundary that may be due to the presence of dense magmas or remnant zones of a deep basal magma ocean [1]. Unfortunately, measurements of amorphous silicate density over the entire pressure regime of the mantle are scarce and the density contrast between solid and liquid are difficult to assess due to the lack of such data. Only few studies have reported density measurements of amorphous silicates at high-pressure, with limitation up to 60 GPa. High-pressure acoustic velocity measurements have been used to calculate the density of MgSiO3 glass up to 30 GPa [2] but exhibit a large discrepancy compared to recent calculations [3]. SiO2 glass was measured up to 55 GPa using the X-ray absorption method through the diamond anvils [4] and very recently, X-ray diffraction has been used to infer the density of basaltic melt up to 60 GPa [5]. Here we report density measurement of MgSiO3 glass up to 130 GPa and (MgFe)SiO3 glass up to 55 GPa using a novel variation of the X-ray absorption method. The sample contained in a beryllium gasket was irradiated with a micro-focus X-ray beam in two directions: perpendicular and parallel to the compression axis to obtain the absorption coefficient and density under pressure. Our data constrain the first experimental EoS for (Mg,Fe)SiO3 and the first EoS for MgSiO3 up to lowermost mantle pressures. Technical details and EoS parameters will be shown in the presentation. We will address the implications for melts in the deep Earth based on compressibility, bulk modulus and density contrasts between iron-free and iron-bearing glasses. [1] Labrosse S. et al. Nature 2007 [2] Sanchez-Valle C. et al. Earth Planet. Sc. Lett. 2010 [3] Ghosh D. et al Am. Mineral. 2014 [4] Sato T. et al

  12. Complexity of In-situ zircon U-Pb-Hf isotope systematics during arc magma genesis at the roots of a Cretaceous arc, Fiordland, New Zealand

    NASA Astrophysics Data System (ADS)

    Milan, L. A.; Daczko, N. R.; Clarke, G. L.; Allibone, A. H.

    2016-11-01

    Zircons from seventeen samples of Western Fiordland Orthogneiss (WFO) diorites and three samples of country rock (two schists and one Darran Suite diorite) from the lowermost exposed sections of the Median Batholith, Fiordland, New Zealand, were analysed for in-situ U-Pb and Hf-isotopes. The WFO represents the deeper levels of Early Cretaceous continental arc magmatism on the Pacific margin of Gondwana, marking the final stage of long-lived arc magmatism on the margin spanning the Palaeozoic. The WFO plutons were emplaced at high-P (mid to deep crust at c. 8-12 kbar) between 124 and 114 Ma. Minor very high-P (c. 18 kbar) WFO eclogite and omphacite granulite facies orthogneiss (Breaksea Orthogneiss) are inferred to have crystallised in the base of thickened crust at c. 124 Ma. Zircons from the Breaksea Orthogneiss are considered to be variably affected by Pb-loss due to emplacement of the adjacent (Malaspina) Pluton at c. 114 Ma. By identifying Pb-loss, magmatic ages were able to be inferred in respect to apparent Pb-loss ages. Hf isotope data for the WFO define an excursion to less radiogenic Hf isotope ratios with time, reflecting increased recycling of an old source component. Peaks at c. 555, 770 and 2480 Ma, determine the age spectra of inherited populations of zircons within the WFO. This contrasts with detrital zircon patterns in country rocks of the Takaka terrane, which include peaks at c. 465 Ma, and 1250-900 Ma that are absent in the WFO inheritance pattern. These results indicate a previously unrecognised Precambrian lower crustal component of New Zealand. Recycling of this lower crust became increasingly important as a source for the final stage or Mesozoic arc magmatism along this segment of the palaeo-Pacific margin of Gondwana.

  13. Depth-Transect Across the Cretaceous/Paleogene Boundary in the SE Atlantic Ocean: New Insights From the Benthic Foraminiferal Record.

    NASA Astrophysics Data System (ADS)

    Alegret, L.; Thomas, E.

    2014-12-01

    The response of benthic foraminifera to the Cretaceous/Paleogene (K/Pg) impact event is key to reconstruct paleoenvironmental changes and the specific mechanisms triggering faunal turnover in the marine realm, especially because this group did not suffer significant extinction (thus shows a continuous record across the boundary), and because its faunal turnover shows paleobiogeographic differences that remain to be explained. The K/Pg transition was cored along a depth transect on ODP Leg 208 (Walvis Ridge, eastern South Atlantic Ocean), where the K/Pg boundary is marked by a sharp transition from Maastrichtian clay-bearing nannofossil ooze to Danian dark reddish to brown, clay-rich nannofossil-ooze and clay. We analysed the benthic foraminiferal turnover at Sites 1262 (upper abyssal paleodepth; present depth 4755 m) and 1267 (lower bathyal; present depth 4355 m). The record at 1267 appears to be more complete than at 1262, especially the interval just at the K/Pg boundary (Westerhold et al. 2008). The percentage of infaunal taxa (living buried within the sediment) was slightly lower at Site 1262 than at Site 1267, as expected for a deeper, more oligotrophic setting where the scarce food available is preferentially taken up by epifaunal morphogroups. The dominance of calcareous taxa suggests that both sites were located above the CCD throughout the K/Pg transition. Benthic assemblages from both sites are similar, but the species Tappanina eouvigeriniformis is common at Site 1267, as at lower bathyal Southern Ocean Site 690, but is absent at Site 1262. Extinction rates across the K/Pg boundary were very low at both sites. Morphogroup composition did not significantly change across the boundary at Site 1262, but the increase in % infaunal morphogroups and benthic foraminiferal accumulation rates at Site 1267 point to an enhanced food supply immediately after the impact. These results suggest that a short interval is missing from the lowermost Danian at Site 1262.

  14. The sequence stratigraphy of the latest Cretaceous sediments of northern Wyoming: The interplay of tectonic and eustatic controls on foreland basin sedimentation

    SciTech Connect

    Hicks, J.F. . Dept. of Geology); Tauxe, L. )

    1992-01-01

    A west-east chronostratigraphic correlation has been made of the latest Cretaceous sediments of northern Wyoming. Five sections from Jackson Hole to Red Bird have been dated magnetostratigraphically (C34N-C26R) and radiometrically (81-68 Ma), and integrated with the ammonite biostratigraphy of the Niobrara and Pierre Shale. Four major sequence surfaces have been identified in section and the time missing within the unconformities has been measured and traced laterally. These bounding unconformities define six alloformations. The lowest straddles the C34N/C33R chronic boundary and contains the Cody, Telegraph Creek and Eagle Fms. The second ranges from the mid- to upper part of C33N of C32R and contains the Claggett and Judith River/Mesaverde Fms. The third (C32R ) is the Teapot Sandstone Member of the Mesaverde Fm. The fourth extends from the lower to upper part of C32N or to mid-C31R and includes the Bearpaw Shale and Meeteetse Fm. The fifth extends from C31N to C30N or C29N and includes the Harebell and Lance Fms. The base of the uppermost alloformation has been identified within C26R in the uppermost alloformation has been identified within C26R in the lowermost Fort Union. The unconformable surfaces are angular adjacent to the Sevier Thrust Belt but form paraconformities or hiatuses in the marine units to the east. The unconformities are eustatically controlled throughout the Campanian, but become tectonically driven in the Maastrichtian with the onset of rapid foredeep subsidence in Jackson Hole, and forebulge uplift in the Bighorn and Wind River Basin region which correlates exactly to the rapid regression of the Bearpaw Sea from the area in the range of Baculites clinolobatus.

  15. Modeling flow and sediment transport dynamics in the lowermost Mississippi River, Louisiana, USA, with an upstream alluvial-bedrock transition and a downstream bedrock-alluvial transition: Implications for land building using engineered diversions

    NASA Astrophysics Data System (ADS)

    Viparelli, Enrica; Nittrouer, Jeffrey A.; Parker, Gary

    2015-03-01

    The lowermost Mississippi River, defined herein as the river segment downstream of the Old River Control Structure and hydrodynamically influenced by the Gulf of Mexico, extends for approximately 500 km. This segment includes a bedrock (or more precisely, mixed bedrock-alluvial) reach that is bounded by an upstream alluvial-bedrock transition and a downstream bedrock-alluvial transition. Here we present a one-dimensional mathematical formulation for the long-term evolution of lowland rivers that is able to reproduce the morphodynamics of both the alluvial-bedrock and the bedrock-alluvial transitions. Model results show that the magnitude of the alluvial equilibrium bed slope relative to the bedrock surface slope and the depth of bedrock surface relative to the water surface base level strongly influence the mobile bed equilibrium of low-sloping river channels. Using data from the lowermost Mississippi River, the model is zeroed and validated at field scale by comparing the numerical results with field measurements. The model is then applied to predict the influence on the stability of channel bed elevation in response to delta restoration projects. In particular, the response of the river bed to the implementation of two examples of land-building diversions to extract water and sediment from the main channel is studied. In this regard, our model results show that engineered land-building diversions along the lowermost Mississippi River are capable of producing equilibrated bed profiles with only modest shoaling or erosion, and therefore, such diversions are a sustainable strategy for mitigating land loss within the Mississippi River Delta.

  16. Definition of Greater Gulf Basin Lower Cretaceous and Upper Cretaceous Lower Cenomanian Shale Gas Assessment Unit, United States Gulf of Mexico Basin Onshore and State Waters

    USGS Publications Warehouse

    Dennen, Kristin O.; Hackley, Paul C.

    2012-01-01

    An assessment unit (AU) for undiscovered continuous “shale” gas in Lower Cretaceous (Aptian and Albian) and basal Upper Cretaceous (lower Cenomanian) rocks in the USA onshore Gulf of Mexico coastal plain recently was defined by the U.S. Geological Survey (USGS). The AU is part of the Upper Jurassic-Cretaceous-Tertiary Composite Total Petroleum System (TPS) of the Gulf of Mexico Basin. Definition of the AU was conducted as part of the 2010 USGS assessment of undiscovered hydrocarbon resources in Gulf Coast Mesozoic stratigraphic intervals. The purpose of defining the Greater Gulf Basin Lower Cretaceous Shale Gas AU was to propose a hypothetical AU in the Cretaceous part of the Gulf Coast TPS in which there might be continuous “shale” gas, but the AU was not quantitatively assessed by the USGS in 2010.

  17. Specialized shell-breaking crab claws in Cretaceous seas.

    PubMed

    Dietl, Gregory P; Vega, Francisco J

    2008-06-23

    Here we report on a large brachyuran crab species from the Late Cretaceous of Mexico that has claws indicative of highly specialized shell-breaking behaviour. This crab possessed dimorphic claws (the right larger than the left), armed with several broad teeth, including a curved tooth structure found at the base of the movable finger of the right claw. The curved tooth is similar to the one observed on claws of many living durophagous crabs that use it as a weapon to peel, crush or chip the edges of hard-shelled prey, particularly molluscs. These morphological traits suggest that specialized shell-breaking crab predators had evolved during the Cretaceous, which contradicts previous findings supporting an Early Cenozoic origin for specialized shell crushers within the brachyuran clade.

  18. A gliding lizard from the Early Cretaceous of China.

    PubMed

    Li, Pi-Peng; Gao, Ke-Qin; Hou, Lian-Hai; Xu, Xing

    2007-03-27

    Gliding is an energetically efficient mode of locomotion that has evolved independently, and in different ways, in several tetrapod groups. Here, we report on an acrodontan lizard from the Early Cretaceous Jehol Group of China showing an array of morphological traits associated with gliding. It represents the only known occurrence of this specialization in a fossil lizard and provides evidence of an Early Cretaceous ecological diversification into an aerial niche by crown-group squamates. The lizard has a dorsal-rib-supported patagium, a structure independently evolved in the Late Triassic basal lepidosauromorph kuehneosaurs and the extant agamid lizard Draco, revealing a surprising case of convergent evolution among lepidosauromorphans. A patagial character combination of much longer bilaterally than anteroposteriorly, significantly thicker along the leading edge than along the trailing edge, tapered laterally to form a wing tip, and secondarily supported by an array of linear collagen fibers is not common in gliders and enriches our knowledge of gliding adaptations among tetrapods.

  19. Welwitschiaceae from the Lower Cretaceous of northeastern Brazil.

    PubMed

    Dilcher, David L; Bernardes-De-Oliveira, Mary E; Pons, Denise; Lott, Terry A

    2005-08-01

    Welwitschiaceae, a family in the Gnetales, is known today from only one extant species, Welwitschia mirabilis. This species is distributed in the Namibian desert, along the western coast of southern Africa, about 10 km inland from the coast. Very little is known about the fossil record of this family. Lower Cretaceous megafossils of various organs, assigned to Welwitschiaceae, are presented here. These fossils include young stems with paired cotyledons attached (Welwitschiella austroamericana n. gen. et sp.), isolated leaves (Welwitschiophyllum brasiliense n. gen. et sp.), and axes bearing male cones (Welwitschiostrobus murili n. gen. et sp.). They were collected in the Crato Formation, which is dated by palynomorphs and ostracods as Late Aptian (114 to 112 million years ago). These sediments are exposed in the Araripe Basin of northeastern Brazil. This study brings together new information of the megafossil record of Welwitschia-like plants and also reports of pollen said to be similar to that of Welwitschia from Lower Cretaceous sediments.

  20. New angiosperm genera from cretaceous sections of northern Asia

    NASA Astrophysics Data System (ADS)

    Alekseev, P. I.; Herman, A. B.; Shchepetov, S. V.

    2014-11-01

    The Cretaceous floras of northern Asia represented by the Antibes flora of the Chulym-Yenisei area of West Siberia, Kaivayam flora of northwestern Kamchatka, and Grebenka flora of the Anadyr River basin in Chukotka are reviewed. These floras characterize the Late Cretaceous Siberian-Canadian Paleofloristic Region, where they developed in humid warm temperate climatic environments. Two new angiosperm genera are described: genus Chachlovia P. Alekseev et Herman with species C. kiyensis P. Alekseev, sp. nov. and C. dombeyopsoida (Herman) Herman, comb. nov. and genus Soninia Herman et Shczepetov with species S. asiatica P. Alekseev, sp. nov. and S. integerrima Herman et Shczepetov, sp. nov. The species Chachlovia kiyensis and Soninia asiatica were characteristic components of the Antibes flora. Chachlovia dombeyopsoida and Soninia integerrima were constituents of the Kaivayam and Grebenka floras, respectively.

  1. An Early Cretaceous heterodontosaurid dinosaur with filamentous integumentary structures.

    PubMed

    Zheng, Xiao-Ting; You, Hai-Lu; Xu, Xing; Dong, Zhi-Ming

    2009-03-19

    Ornithischia is one of the two major groups of dinosaurs, with heterodontosauridae as one of its major clades. Heterodontosauridae is characterized by small, gracile bodies and a problematic phylogenetic position. Recent phylogenetic work indicates that it represents the most basal group of all well-known ornithischians. Previous heterodontosaurid records are mainly from the Early Jurassic period (205-190 million years ago) of Africa. Here we report a new heterodontosaurid, Tianyulong confuciusi gen. et sp. nov., from the Early Cretaceous period (144-99 million years ago) of western Liaoning Province, China. Tianyulong extends the geographical distribution of heterodontosaurids to Asia and confirms the clade's previously questionable temporal range extension into the Early Cretaceous period. More surprisingly, Tianyulong bears long, singular and unbranched filamentous integumentary (outer skin) structures. This represents the first confirmed report, to our knowledge, of filamentous integumentary structures in an ornithischian dinosaur.

  2. Teacher Training and Authentic Scientific Research Utilizing Cretaceous Fossil Resources

    NASA Astrophysics Data System (ADS)

    Danch, J. M.

    2016-12-01

    The readily accessible Cretaceous fossil beds of central New Jersey provide an excellent opportunity for both teacher training in the utilization of paleontological resources in the classroom and authentic scientific student research at the middle and high school levels. Woodbridge Township New Jersey School District teachers participated in field trips to various fossiliferous sites to obtain photographic and video data and invertebrate and vertebrate fossil specimens for use in the classroom. Teachers were also presented with techniques allowing them to mentor students in performing authentic paleontological research. Students participated in multi-year research projects utilizing Cretaceous fossils collected in the field and presented their findings at science fairs and symposia. A workshop for K - 12 teachers statewide was developed for the New Jersey Science Convention providing information about New Jersey fossil resources and allowing participants to obtain, study and classify specimens. Additionally, the workshop provided participants with the information necessary for them to plan and conduct their own field trips.

  3. Mummified precocial bird wings in mid-Cretaceous Burmese amber

    PubMed Central

    Xing, Lida; McKellar, Ryan C.; Wang, Min; Bai, Ming; O'Connor, Jingmai K.; Benton, Michael J.; Zhang, Jianping; Wang, Yan; Tseng, Kuowei; Lockley, Martin G.; Li, Gang; Zhang, Weiwei; Xu, Xing

    2016-01-01

    Our knowledge of Cretaceous plumage is limited by the fossil record itself: compression fossils surrounding skeletons lack the finest morphological details and seldom preserve visible traces of colour, while discoveries in amber have been disassociated from their source animals. Here we report the osteology, plumage and pterylosis of two exceptionally preserved theropod wings from Burmese amber, with vestiges of soft tissues. The extremely small size and osteological development of the wings, combined with their digit proportions, strongly suggests that the remains represent precocial hatchlings of enantiornithine birds. These specimens demonstrate that the plumage types associated with modern birds were present within single individuals of Enantiornithes by the Cenomanian (99 million years ago), providing insights into plumage arrangement and microstructure alongside immature skeletal remains. This finding brings new detail to our understanding of infrequently preserved juveniles, including the first concrete examples of follicles, feather tracts and apteria in Cretaceous avialans. PMID:27352215

  4. Early environmental effects of the terminal Cretaceous impact

    NASA Technical Reports Server (NTRS)

    Gilmour, Iain; Wolbach, Wendy S.; Anders, Edward

    1988-01-01

    The environmental aftereffects of the terminal Cretaceous impact are examined on the basis of the carbon and nitrogen geochemistry in the basal layer of the K-T boundary clay at Woodside Creek, New Zealand. It is shown that organic carbon and nitrogen at this level are enriched by 15 and 20 times Cretaceous values, respectively. Also, it is found that the N abundances and, to a lesser extent, the organic C abundances are closely correlated with the Ir abundances. The changes in carbon and nitrogen content through the basal layer are outlined, focusing on the possible environmental conditions which could have caused enrichment. In addition, consideration is given to the soot and pyrotoxin content. Possible scenarios for the K-T event and the importance of selective extinction are discussed.

  5. Mycophagous rove beetles highlight diverse mushrooms in the Cretaceous.

    PubMed

    Cai, Chenyang; Leschen, Richard A B; Hibbett, David S; Xia, Fangyuan; Huang, Diying

    2017-03-16

    Agaricomycetes, or mushrooms, are familiar, conspicuous and morphologically diverse Fungi. Most Agaricomycete fruiting bodies are ephemeral, and their fossil record is limited. Here we report diverse gilled mushrooms (Agaricales) and mycophagous rove beetles (Staphylinidae) from mid-Cretaceous Burmese amber, the latter belonging to Oxyporinae, modern members of which exhibit an obligate association with soft-textured mushrooms. The discovery of four mushroom forms, most with a complete intact cap containing distinct gills and a stalk, suggests evolutionary stasis of body form for ∼99 Myr and highlights the palaeodiversity of Agaricomycetes. The mouthparts of early oxyporines, including enlarged mandibles and greatly enlarged apical labial palpomeres with dense specialized sensory organs, match those of modern taxa and suggest that they had a mushroom feeding biology. Diverse and morphologically specialized oxyporines from the Early Cretaceous suggests the existence of diverse Agaricomycetes and a specialized trophic interaction and ecological community structure by this early date.

  6. Selectivity of end-Cretaceous marine bivalve extinctions

    NASA Technical Reports Server (NTRS)

    Jablonski, D.; Raup, D. M.

    1995-01-01

    Analyses of the end-Cretaceous or Cretaceous-Tertiary mass extinction show no selectivity of marine bivalve genera by life position (burrowing versus exposed), body size, bathymetric position on the continental shelf, or relative breadth of bathymetric range. Deposit-feeders as a group have significantly lower extinction intensities than suspension-feeders, but this pattern is due entirely to low extinction in two groups (Nuculoida and Lucinoidea), which suggests that survivorship was not simply linked to feeding mode. Geographically widespread genera have significantly lower extinction intensities than narrowly distributed genera. These results corroborate earlier work suggesting that some biotic factors that enhance survivorship during times of lesser extinction intensities are ineffectual during mass extinctions.

  7. Selectivity of end-Cretaceous marine bivalve extinctions

    NASA Technical Reports Server (NTRS)

    Jablonski, D.; Raup, D. M.

    1995-01-01

    Analyses of the end-Cretaceous or Cretaceous-Tertiary mass extinction show no selectivity of marine bivalve genera by life position (burrowing versus exposed), body size, bathymetric position on the continental shelf, or relative breadth of bathymetric range. Deposit-feeders as a group have significantly lower extinction intensities than suspension-feeders, but this pattern is due entirely to low extinction in two groups (Nuculoida and Lucinoidea), which suggests that survivorship was not simply linked to feeding mode. Geographically widespread genera have significantly lower extinction intensities than narrowly distributed genera. These results corroborate earlier work suggesting that some biotic factors that enhance survivorship during times of lesser extinction intensities are ineffectual during mass extinctions.

  8. Selectivity of end-Cretaceous marine bivalve extinctions.

    PubMed

    Jablonski, D; Raup, D M

    1995-04-21

    Analyses of the end-Cretaceous or Cretaceous-Tertiary mass extinction show no selectivity of marine bivalve genera by life position (burrowing versus exposed), body size, bathymetric position on the continental shelf, or relative breadth of bathymetric range. Deposit-feeders as a group have significantly lower extinction intensities than suspension-feeders, but this pattern is due entirely to low extinction in two groups (Nuculoida and Lucinoidea), which suggests that survivorship was not simply linked to feeding mode. Geographically widespread genera have significantly lower extinction intensities than narrowly distributed genera. These results corroborate earlier work suggesting that some biotic factors that enhance survivorship during times of lesser extinction intensities are ineffectual during mass extinctions.

  9. Palaeogeographic regulation of glacial events during the Cretaceous supergreenhouse

    NASA Astrophysics Data System (ADS)

    Ladant, Jean-Baptiste; Donnadieu, Yannick

    2016-09-01

    The historical view of a uniformly warm Cretaceous is being increasingly challenged by the accumulation of new data hinting at the possibility of glacial events, even during the Cenomanian-Turonian (~95 Myr ago), the warmest interval of the Cretaceous. Here we show that the palaeogeography typifying the Cenomanian-Turonian renders the Earth System resilient to glaciation with no perennial ice accumulation occurring under prescribed CO2 levels as low as 420 p.p.m. Conversely, late Aptian (~115 Myr ago) and Maastrichtian (~70 Myr ago) continental configurations set the stage for cooler climatic conditions, favouring possible inception of Antarctic ice sheets under CO2 concentrations, respectively, about 400 and 300 p.p.m. higher than for the Cenomanian-Turonian. Our simulations notably emphasize that palaeogeography can crucially impact global climate by modulating the CO2 threshold for ice sheet inception and make the possibility of glacial events during the Cenomanian-Turonian unlikely.

  10. Mycophagous rove beetles highlight diverse mushrooms in the Cretaceous

    PubMed Central

    Cai, Chenyang; Leschen, Richard A. B.; Hibbett, David S; Xia, Fangyuan; Huang, Diying

    2017-01-01

    Agaricomycetes, or mushrooms, are familiar, conspicuous and morphologically diverse Fungi. Most Agaricomycete fruiting bodies are ephemeral, and their fossil record is limited. Here we report diverse gilled mushrooms (Agaricales) and mycophagous rove beetles (Staphylinidae) from mid-Cretaceous Burmese amber, the latter belonging to Oxyporinae, modern members of which exhibit an obligate association with soft-textured mushrooms. The discovery of four mushroom forms, most with a complete intact cap containing distinct gills and a stalk, suggests evolutionary stasis of body form for ∼99 Myr and highlights the palaeodiversity of Agaricomycetes. The mouthparts of early oxyporines, including enlarged mandibles and greatly enlarged apical labial palpomeres with dense specialized sensory organs, match those of modern taxa and suggest that they had a mushroom feeding biology. Diverse and morphologically specialized oxyporines from the Early Cretaceous suggests the existence of diverse Agaricomycetes and a specialized trophic interaction and ecological community structure by this early date. PMID:28300055

  11. Tectonic Drift, Climate, and Paleoenvironment of Angola Since the Cretaceous

    NASA Astrophysics Data System (ADS)

    Jacobs, L. L.; Polcyn, M. J.; Mateus, O.; Schulp, A.; Ferguson, K.; Scotese, C.; Jacobs, B. F.; Strganac, C.; Vineyard, D.; Myers, T. S.; Morais, M. L.

    2010-12-01

    Africa is the only continent that now straddles arid zones located beneath the descending limbs of both the northern and southern Hadley cells, and it has done so since it became a distinct continent in the Early Cretaceous. Since that time, Africa has drifted tectonically some 12 degrees north and rotated approximately 45 degrees counterclockwise. This changing latitudinal setting and position of the landmass under the relatively stable Hadley Cells is manifested as southward migration of climatic zones over the past 132 million years. Data from kerogen, X-ray diffraction analysis of sedimentary matrix, carbon isotopes from shell samples and tooth enamel,new 40Ar/39Ar radiometric dates, pollen and plant macrofossils, and fossil vertebrates indicate a productive upwelling system adjacent to a coastal desert since the opening of the South Atlantic Ocean; however, the position of the coastal desert has migrated southward as Africa drifted north, resulting in today's Skeleton Coast and Benguela Current. This migration has had a profound effect on the placement of the West African coast relative to areas of high marine productivity and resulting extensive hydrocarbon deposits, on the placement of arid zones relative to the continent especially the Skeleton Coast desert, on the climatic history of the Congo Basin (which shows a Late Cretaceous decrease in aridity based on the relative abundance of analcime in the Samba core), and in reducing the southern temperate region of Africa from 17% of continental area during the Cretaceous to 2% today. We show here that these related geographic and environmental changes drove ecological and evolutionary adjustments in southern African floras and faunas, specifically with respect to the distribution of anthropoid primates, the occurrence of modern relicts such as the gnetalean Welwitschia mirabilis, endemism as in the case of ice plants, and mammalian adaption to an open environment as in springhares. Africa's tectonic drift

  12. Major wildfires at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Anders, Edward; Wolbach, Wendy S.; Gilmour, Iain

    1991-01-01

    The current status of the reconstruction of major biomass fire events at the Cretaceous-Tertiary boundary is discussed. Attention is given to the sources of charcoal and soot, the identification of biomass and fossil carbon, and such ignition-related problems as delated fires, high atmospheric O2 content, ignition mechanisms, and the greenhouse-effect consequences of fire on the scale envisioned. Consequences of these factors for species extinction patterns are noted.

  13. The Cretaceous opening of the South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Granot, Roi; Dyment, Jérôme

    2015-03-01

    The separation of South America from Africa during the Cretaceous is poorly understood due to the long period of stable polarity of the geomagnetic field, the Cretaceous Normal Superchron (CNS, lasted between ∼121 and 83.6 Myr ago). We present a new identification of magnetic anomalies located within the southern South Atlantic magnetic quiet zones that have arisen due to past variations in the strength of the dipolar geomagnetic field. Using these anomalies, together with fracture zone locations, we calculate the first set of magnetic anomalies-based finite rotation parameters for South America and Africa during that period. The kinematic solutions are generally consistent with fracture zone traces and magnetic anomalies outside the area used to construct them. The rotations indicate that seafloor spreading rates increased steadily throughout most of the Cretaceous and decreased sharply at around 80 Myr ago. A change in plate motion took place in the middle of the superchron, roughly 100 Myr ago, around the time of the final breakup (i.e., separation of continental-oceanic boundary in the Equatorial Atlantic). Prominent misfit between the calculated synthetic flowlines (older than Anomaly Q1) and the fracture zones straddling the African Plate in the central South Atlantic could only be explained by a combination of seafloor asymmetry and internal dextral motion (<100 km) within South America, west of the Rio Grande fracture zone. This process has lasted until ∼92 Myr ago after which both Africa and South America (south of the equator) behaved rigidly. The clearing of the continental-oceanic boundaries within the Equatorial Atlantic Gateway was probably completed by ∼95 Myr ago. The clearing was followed by a progressive widening and deepening of the passageway, leading to the emergence of north-south flow of intermediate and deep-water which might have triggered the global cooling of bottom water and the end for the Cretaceous greenhouse period.

  14. Cretaceous geotectonic patterns in the New Zealand Region

    NASA Astrophysics Data System (ADS)

    Bradshaw, John D.

    1989-08-01

    In the mid-Cretaceous, around 105±5 Ma, the tectonic regime in New Zealand changed significantly. From the Permian to the Early Cretaceous most rocks formed under the influence of convergent margin tectonics and comprise incomplete remnants of magmatic arcs, forearc basins, trench slope basins, and accretionary complexes. This tectonic pattern was ended by the approach and collision of the spreading ridge between the Phoenix and Pacific plates. Crustal extension, leading eventually to fragmentation of the continental crust, commenced immediately after ridge collision. Precollisional and syncollisional events deformed and thickened the accretionary prism, with concurrent folding and thrusting of more arcward elements. Cretaceous granulites in southwest New Zealand are thought to result from the closure of a small backarc basin or marginal sea slightly earlier than the main ridge collision. Postcollisional block faulting led to thick nonmarine sedimentation in new basins that cut across old terrane boundaries, except in the outboard area where a thick wedge of marine rocks was deposited over the subsiding accretionary prism. After oblique ridge trench collision along the New Zealand margin, the Phoenix-Pacific Ridge propagated to the southwest to link with zones of incipient spreading in the Tasman Sea and south of Australia. Subsequently, the eastern part of the ridge continued to migrate south with increasing offset along the Udinsev Fracture Zone. In the Late Cretaceous a duplicate ridge developed. The southern branch continued to move southward and collided with the trench west of the Antarctic Peninsula in the Cenozoic. The northern branch is the extant East Pacific Ridge.

  15. Geography of end-Cretaceous marine bivalve extinctions

    NASA Technical Reports Server (NTRS)

    Raup, David M.; Jablonski, David

    1993-01-01

    Analysis of the end-Cretaceous mass extinction, based on 3514 occurrences of 340 genera of marine bivalves (Mollusca), suggests that extinction intensities were uniformly global; no latitudinal gradients or other geographic patterns are detected. Elevated extinction intensities in some tropical areas are entirely a result of the distribution of one extinct group of highly specialized bivalves, the rudists. When rudists are omitted, intensities at those localities are statistically indistinguishable from those of both the rudist-free tropics and extratropical localities.

  16. Orbitolina, a cretaceous larger foraminifer, from flemish cap: paleoceanographic implications.

    PubMed

    Gupta, B K; Grant, A C

    1971-09-03

    The Tethyan larger foraminiferal genus Orbitolina has been found in the easternmost part of the western North Atlantic continental shelf at 46 degrees 30'N. All other known occurrences of the genus in North America are south of 33 degrees N. The species is Orbitolina conoidea Gras; its abundance in a grainsupported limestone indicates a tropical neritic environment and precludes the influence of Arctic waters in the Flemish Cap region in Early or Middle Cretaceous times.

  17. Geography of end-Cretaceous marine bivalve extinctions.

    PubMed

    Raup, D M; Jablonski, D

    1993-05-14

    Analysis of the end-Cretaceous mass extinction, based on 3514 occurrences of 340 genera of marine bivalves (Mollusca), suggests that extinction intensities were uniformly global; no latitudinal gradients or other geographic patterns are detected. Elevated extinction intensities in some tropical areas are entirely a result of the distribution of one extinct group of highly specialized bivalves, the rudists. When rudists are omitted, intensities at those localities are statistically indistinguishable from those of both the rudist-free tropics and extratropical localities.

  18. Paleoenvironments of the Jurassic and Cretaceous Oceans: Selected Highlights

    NASA Astrophysics Data System (ADS)

    Ogg, J. G.

    2007-12-01

    There are many themes contributing to the sedimentation history of the Mesozoic oceans. This overview briefly examines the roles of the carbonate compensation depth (CCD) and the associated levels of atmospheric carbon dioxide, of the evolution of marine calcareous microplankton, of major transgressive and regressive trends, and of super-plume eruptions. Initiation of Atlantic seafloor spreading in the Middle Jurassic coincided with an elevated carbonate compensation depth (CCD) in the Pacific-Tethys mega-ocean. Organic-rich sediments that would become the oil wealth of regions from Saudi Arabia to the North Sea were deposited during a continued rise in CCD during the Oxfordian-early Kimmeridgian, which suggests a possible increase in carbon dioxide release by oceanic volcanic activity. Deep-sea deposits in near-equatorial settings are dominated by siliceous shales or cherts, which reflect the productivity of siliceous microfossils in the tropical surface waters. The end-Jurassic explosion in productivity by calcareous microplankton contributed to the lowering of the CCD and onset of the chalk ("creta") deposits that characterize the Tithonian and lower Cretaceous in all ocean basins. During the mid-Cretaceous, the eruption of enormous Pacific igneous provinces (Ontong Java Plateau and coeval edifices) increased carbon dioxide levels. The resulting rise in CCD terminated chalk deposition in the deep sea. The excess carbon was progressively removed in widespread black-shale deposits in the Atlantic basins and other regions - another major episode of oil source rock. A major long-term transgression during middle and late Cretaceous was accompanied by extensive chalk deposition on continental shelves and seaways while the oceanic CCD remained elevated. Pacific guyots document major oscillations (sequences) of global sea level superimposed on this broad highstand. The Cretaceous closed with a progressive sea-level regression and lowering of the CCD that again enabled

  19. Early cretaceous radiolarian assemblages from the East Sakhalin Mountains

    NASA Astrophysics Data System (ADS)

    Kurilov, D. V.; Vishnevskaya, V. S.

    2011-02-01

    Three-dimensional radiolarian skeletons isolated from rock matrix in HF solution and then studied under scanning electron microscope substantiate the Early Cretaceous age of volcanogenic-cherty deposits sampled from fragmentary rock successions of the East Sakhalin Mountains. Accordingly the Berriasian age is established for jasper packets formerly attributed to the Upper Paleozoic-Mesozoic Daldagan Group; the Valanginian radiolarians are identified in cherty rock intercalations in the Upper Paleozoic (?) Ivashkino Formation; the Berriasian-Barremian assemblage is macerated from cherty tuffites of the Jurassic-Cretaceous Ostraya Formation; and the Aptian-early Albian radiolarians are characteristic of tuffaceous cherty rocks sampled from the Cretaceous Khoe Formation of the Nabil Group. Photographic documentation of radiolarian skeletons specifies taxonomic composition and age of the Berriasian, Valanginian, Berriasian-Valanginian, Barremian, and Aptian-Albian radiolarian assemblages from the East Sakhalin Mountains, and their evolution as related to abiotic events is considered. Coexistence of Tethyan and Pacific species in the same rock samples evidence origin of radiolarian assemblages in an ecotone. Consequently, the assemblages are applicable for intra- and interregional correlations and paleogeographic reconstructions.

  20. Masirah Graben, Oman: A hidden Cretaceous rift basin

    SciTech Connect

    Beauchamp, W.H.; Ries, A.C.; Coward, M.P.

    1995-06-01

    Reflection seismic data, well data, geochemical data, and surface geology suggest that a Cretaceous rift basin exists beneath the thrusted allochthonous sedimentary sequence of the Masirah graben, Oman. The Masirah graben is located east of the Huqf uplift, parallel to the southern coast of Oman. The eastern side of the northeast-trending Huqf anticlinorium is bounded by an extensional fault system that is downthrown to the southeast, forming the western edge of the Masirah graben. This graben is limited to the east by a large wedge of sea floor sediments and oceanic crust, that is stacked as imbricate thrusts. These sediments/ophiolites were obducted onto the southern margin of the Arabian plate during the collision of the Indian/Afghan plates at the end of the Cretaceous. Most of the Masirah graben is covered by an allochthonous sedimentary sequence, which is complexly folded and deformed above a detachment. This complexly deformed sequence contrasts sharply with what is believed to be a rift sequence below the ophiolites. The sedimentary sequence in the Masirah graben was stable until further rifting of the Arabian Sea/Gulf of Aden in the late Tertiary, resulting in reactivation of earlier rift-associated faults. Wells drilled in the Masirah graben in the south penetrated reservoir quality rocks in the Lower Cretaceous Natih and Shuaiba carbonates. Analyses of oil extracted from Infracambrian sedimentary rocks penetrated by these wells suggest an origin from a Mesozoic source rock.

  1. Source rock evaluation of Cretaceous and Tertiary series in Tunisia

    SciTech Connect

    Oudin, J. )

    1988-08-01

    Tunisia represents a mature hydrocarbon province with a long exploration history. In the Sfax-Kerkennah and Gabes Gulf areas, the hydrocarbon accumulations are located in series of Cretaceous and Tertiary age. To estimate the petroleum potential of this region, an evaluation of the source rock quality of the Cretaceous and Tertiary series was undertaken. In the Sfax-Kerkennak area, most of the wells studied indicate that, in the Tertiary, Ypresian and lower Lutetian show good organic content but, taking into account the potential productivity, only the Ypresian can be considered as a potential source rock. In the Cretaceous, mainly studies in the offshore area of the Gabes Gulf, the amount of organic matter is fair and it is chiefly located in Albian and Cenomanian. The Vraconian with its quite good potential is a valuable source rock. Due to the difference in the environment of deposition for these two possible source rocks - the Ypresian with its lagoon facies being carbonate and the Vraconian shaly - variations in the type of organic matter can be noted, although both are of marine origin. The hydrocarbons generated from these source rocks reflect these variations and permit them to correlate the different crude oils found in this area with their original source beds.

  2. Source rock potential of middle Cretaceous rocks in southwestern Montana

    SciTech Connect

    Dyman, T.S.; Palacas, J.G.; Tysdal, R.G.; Perry, W.J. Jr.; Pawlewicz, M.J.

    1996-08-01

    The middle Cretaceous in southwestern Montana is composed of a marine and nonmarine succession of predominantly clastic rocks that were deposited along the western margin of the Western Interior Seaway. In places, middle Cretaceous rocks contain appreciable total organic carbon (TOC), such as 5.59% for the Mowry Shale and 8.11% for the Frontier Formation in the Madison Range. Most samples, however, exhibit less than 1.0% TOC. The genetic or hydrocarbon potential (S{sub 1}+S{sub 2}) of all the samples analyzed, except one, yield less than 1 mg HC/g rock, strongly indicating poor potential for generating commercial amounts of hydrocarbons. Out of 51 samples analyzed, only one (a Thermopolis Shale sample from the Snowcrest Range) showed a moderate petroleum potential of 3.1 mg HC/g rock. Most of the middle Cretaceous samples are thermally immature to marginally mature, with vitrinite reflectance ranging from about 0.4 to 0.6% R{sub o}. Maturity is high in the Pioneer Mountains, where vitrinite reflectance averages 3.4% R{sub o}, and at Big Sky, Montana, where vitrinite reflectance averages 2.5% R{sub o}. At both localities, high R{sub o} values are due to local heat sources, such as the Pioneer batholith in the Pioneer Mountains.

  3. Late Cretaceous stepwise mass extinction of planktonic foraminifera

    SciTech Connect

    D'Hondt, S.L.; Keller, G.

    1985-01-01

    Quantitative populations analysis of planktonic foraminifera from DSDP sites 10, 21, 528, 577 and the El Kef section of Tunisia indicates that the terminal Cretaceous mass extinction did not occur as a simple catastrophic event. Rather, the final Cretaceous extinction was heralded by a series of earlier extinction events, indicating a changing paleoenvironment during the late Cretaceous. Extinction events appear stepwise marked by periods of rapid faunal turnover during which dominant faunal elements decline in abundance. Generally, weakened surviving populations are subsequently annihilated during the next stepwise ecologic perturbation. Little or no faunal change appears between these stepwise events. Significantly, extinctions generally affect species which are numerically low in abundance (<3% of the total population). This indicates that the number of taxa going extinct is in itself a poor measure of the extent of ecologic perturbations. Thus, species extinctions and changes in populations dynamics must be viewed together in order to gain an understanding of the complex nature of mass extinctions. The observed stepwise extinction events can potentially be explained by geotectonically induced changes in ocean circulation accompanied by temperature and salinity fluctuations. However, it cannot be ruled out at this time that at least some of the extinction events maybe related to impact events. Further studies will be necessary to find evidence of between extinction events and impacts.

  4. New petrofacies in upper Cretaceous section of southern California

    SciTech Connect

    Colburn, I.P.; Oliver, D.

    1986-04-01

    A distinctive sandstone-conglomerate petrofacies is recognized throughout the Late Cretaceous (Maestrichtian-late Campanian) Chatsworth Formation in the Simi Hills. It is named the Woolsey Canyon petrofacies after the district where it was first recognized. The petrofacies is also recognized in the Late Cretaceous (late Campanian and possibly early Maestrichtian) Tuna Canyon Formation of the central Santa Monica Mountains. The conglomerates in the petrofacies are composed predominantly of angular pebble-size clasts of argillite, quartz-rich rocks (orthoquartzarenite, metaorthoquartzarenite, mice quartz schist) and leucocratic plutoniate (granite-granodiorite). The conglomerate texture and composition are mirrored in the sandstone. The uniformly angular character of the conglomerate clasts and the survival of argillite clasts indicate that the detritus underwent no more than 5 mi of subaerial transport before it entered the deep marine realm. Foraminifers collected from mudstones interbedded with the conglomerates indicate upper bathyal water depth at the site of deposition. A source terrane of low to moderate relief is indicated by the absence of cobbles and boulders. Bed forms, sedimentary structures, and textural features indicate the detritus moved north from its source terrane to be deposited by turbidity currents, debris flows, and grain flows on the Chatsworth Submarine Fan. The detritus of the Woolsey Canyon petrofacies was derived from basement rocks, now largely buried beneath the Los Angeles basin, that were being eroded during the formation of the Cretaceous Los Angeles erosion surface. The detritus came from the Los Angeles arch of that surface.

  5. Significance of aragonite cements around Cretaceous marine methane seeps

    SciTech Connect

    Savard, M.M.; Beauchamp, B.; Veizer, J.

    1996-05-01

    Detailed petrography and geochemistry of carbonate precipitates in Cretaceous cold seep mounds from the Canadian Arctic show spectacular early diagenetic products: some still-preserved splays and isopachous layers of fine, acicular aragonite, and large botryoids and crusts of low-magnesium calcite showing unusual entanglement of former fibrous calcite and aragonite. The latter mineralogy is suggested by clear, flat-terminated cathodoluminescence patterns interpreted as ancient crystal growth steps, and the former by rhombohedral terminations. The early cement phases very likely precipitated in cold Arctic water dominated by bicarbonates derived from bacterially oxidized methane: these cements have {delta}{sup 13}C values around {minus}44.0% and {delta}{sup 18}O values of 1.8 to 0.1% PDB. Coexistence of calcite and aragonite early cements in the Cretaceous seep mounds is unusual, because precipitation occurred in high-latitude, cold-water settings, and during a so-called calcite sea mode. As in modern marine hydrocarbon seeps, the chemistry of the Cretaceous system was apparently controlled by chemosynthetic bacterial activity, resulting in high a{sub HCO{sub 3}{sup {minus}}} that promoted precipitation of carbonates. The authors suggest that, locally, fluctuations in a{sub HCO{sub 3}{sup {minus}}}/a{sub SO{sub 4}{sup 2{minus}}} resulted in oscillating aragonite or calcite supersaturation, and hence, controlled the mineralogy of the early precipitates.

  6. Post-Cretaceous faulting at head of Mississippi embayment

    SciTech Connect

    Nelson, W.J. ); Harrison, R.W. )

    1993-03-01

    Recent mapping in southernmost Illinois and southeastern Missouri has revealed numerous faults that displace Cretaceous and Tertiary strata. Units as young as the Pliocene-Pleistocene( ) Mounds Gravel are deformed; some faults possibly displace Quaternary sediments. The faults strike northeast, dip nearly vertically, and exhibit characteristics of dextral strike-slip. Pull-apart grabens occur along right-stepping fault strands, they contain chaotically jumbled blocks of Paleozoic, Cretaceous and Tertiary rocks downdropped as much as 800 m relative to wall rocks. Faults at the head of the Mississippi embayment probably originated during Cambrian rifting (Reelfoot rift) and have a long, complex history of reactivation under different stress fields. Some faults are on strike with faults in the New Madrid seismic zone. Kinematics of post-Cretaceous displacements fit the contemporary stress regime of ENE-WSW compression. Similar fault orientations and kinematics, as well as close proximity, suggest a close link between faulting at the head of the embayment and ongoing tectonism in the New Madrid seismic zone.

  7. Paleoecology of the Late Cretaceous of southern Limburg

    SciTech Connect

    MacKenzie, G.J.

    1985-01-01

    Geochemical, sedimentological and paleontological criteria were used to determine changing paleoenvironmental conditions in southern Limburg during Campanian and Maastrichtian times. To this end a 100 meter composite sequence exposing Middle Campanian to Cretaceous/Tertiary boundary sediments was sampled. Relatively rapid variations in temperature and water depth over this stratigraphic interval are suggested by the faunal assemblage. This shows greater affinity for warmer, shallower waters toward the Cretaceous-Tertiary boundary. Boreal indicators such as belemnites are superseded by rudists, corals and orbitoid foramanifera during climatic amelioration. Profuse algal growth and accompanying rapid benthonic biomass generation at higher levels, indicative of shallow water deposition, contrasts strongly with the less fossiliferous, muddy-bottom, older biofacies dominated by nekton. Strontium, magnesium, manganese, sodium and stable isotope measurements were made on the carbonate soluble fraction of the sediment and contained macrofauna. Although other interpretations may be placed on the geochemical data, progressive increases in the Sr/Ca and Mg/Ca ratios seen through into the lower Upper Maastrichtian offer support for conclusions based on paleontological data. In younger sediments a gradual decline in the Sr/Ca ratio possibly indicate terminal Cretaceous cooling, although without a supporting parallel trend in the Mg/Ca ratio this is less certain.

  8. Cretaceous shallow drilling, US Western Interior: Core research

    SciTech Connect

    Arthur, M.A.

    1993-02-17

    This project is a continuing multidisciplinary study of middle to Upper Cretaceous marine carbonate and clastic rocks in the Utah-Colorado-Kansas corridor of the old Cretaceous seaway that extended from the Gulf Coast to the Arctic during maximum Cretaceous transgressions. It is collaborative between in the US Geological Survey (W.E. Dean, P.I.) and University researchers led by The Pennsylvania State University(M.A. Arthur, P.I.) and funded by DOE and the USGS, in part. Research focusses on the Greenhom, Niobrara and lower Pierre Shale units and their equivalents, combining biostratigraphic/paleoecologic studies, inorganic, organic and stable isotopic geochemical studies, mineralogical investigations and high-resolution geophysical logging. This research requires unweathered samples and continuous smooth exposures'' in the form of cores from at least 4 relatively shallow reference holes (i.e. < 1000m) in transect from east to west across the basin. The major initial effort was recovery in Year 1 of the project of continuous cores from each site in the transect. This drilling provided samples and logs of strata ranging from pelagic sequences that contain organic-carbon-rich marine source rocks to nearshore coal-bearing units. This transect also will provide information on the extent of thermal maturation and migration of hydrocarbons in organic-carbon-rich strata along a burial gradient.

  9. Source rock potential of middle cretaceous rocks in Southwestern Montana

    USGS Publications Warehouse

    Dyman, T.S.; Palacas, J.G.; Tysdal, R.G.; Perry, W.J.; Pawlewicz, M.J.

    1996-01-01

    The middle Cretaceous in southwestern Montana is composed of a marine and nonmarine succession of predominantly clastic rocks that were deposited along the western margin of the Western Interior Seaway. In places, middle Cretaceous rocks contain appreciable total organic carbon (TOC), such as 5.59% for the Mowry Shale and 8.11% for the Frontier Formation in the Madison Range. Most samples, however, exhibit less than 1.0% TOC. The genetic or hydrocarbon potential (S1+S2) of all the samples analyzed, except one, yield less than 1 mg HC/g rock, strongly indicating poor potential for generating commercial amounts of hydrocarbons. Out of 51 samples analyzed, only one (a Thermopolis Shale sample from the Snowcrest Range) showed a moderate petroleum potential of 3.1 mg HC/g rock. Most of the middle Cretaceous samples are thermally immature to marginally mature, with vitrinite reflectance ranging from about 0.4 to 0.6% Ro. Maturity is high in the Pioneer Mountains, where vitrinite reflectance averages 3.4% Ro, and at Big Sky Montana, where vitrinite reflectance averages 2.5% Ro. At both localities, high Ro values are due to local heat sources, such as the Pioneer batholith in the Pioneer Mountains.

  10. Dinosaur trackways from the early Late Cretaceous of western Cameroon

    NASA Astrophysics Data System (ADS)

    Martin, Jeremy E.; Menkem, Elie Fosso; Djomeni, Adrien; Fowe, Paul Gustave; Ntamak-Nida, Marie-Joseph

    2017-10-01

    Dinosaur trackways have rarely been reported in Cretaceous strata across the African continent. To the exception of ichnological occurrences in Morocco, Tunisia, Niger and Cameroon, our knowledge on the composition of Cretaceous dinosaur faunas mostly relies on skeletal evidence. For the first time, we document several dinosaur trackways from the Cretaceous of the Mamfe Basin in western Cameroon. Small and medium-size tridactyl footprints as well as numerous large circular footprints are present on a single horizon showing mudcracks and ripple marks. The age of the locality is considered Cenomanian-Turonian and if confirmed, this ichnological assemblage could be younger than the dinosaur footprints reported from northern Cameroon, and coeval with or younger than skeletal remains reported from the Saharan region. These trackways were left in an adjacent subsiding basin along the southern shore of the Benue Trough during a time of high-sea stand when the Trans-Saharan Seaway was already disconnecting West Africa from the rest of the continent. We predict that other similar track sites may be occurring along the margin of the Benue Trough and may eventually permit to test hypotheses related to provincialism among African dinosaur faunas.

  11. Fossil record of Ephedra in the Lower Cretaceous (Aptian), Argentina.

    PubMed

    Puebla, Gabriela G; Iglesias, Ari; Gómez, María A; Prámparo, Mercedes B

    2017-05-20

    Fossil plants from the Lower Cretaceous (upper Aptian) of the La Cantera Formation, Argentina, are described. The fossils studied represent a leafy shooting system with several orders of articulated and striated axes and attached leaves with unequivocal ephedroid affinity. We also found associated remains of ovulate cones with four whorls of sterile bracts, which contain two female reproductive units (FRU). Ovulate cone characters fit well within the genus Ephedra. Special characters in the ovulate cones including an outer seed envelope with two types of trichomes, allowed us to consider our remains as a new Ephedra species. Abundant dispersed ephedroid pollen obtained from the macrofossil-bearing strata also confirms the abundance of Ephedraceae in the basin. The co-occurrence of abundant fossil of Ephedra (adapted to dry habitats) associated with thermophilic cheirolepideacean conifer pollen (Classopollis) in the unit would suggest marked seasonality at the locality during the Early Cretaceous. Furthermore, the floristic association is linked to dry sensitive rocks in the entire section. The macro- and microflora from San Luis Basin are similar in composition to several Early Cretaceous floras from the Northern Gondwana floristic province, but it may represent one of the southernmost records of an arid biome in South America.

  12. Diatom life cycles and ecology in the Cretaceous.

    PubMed

    Jewson, David H; Harwood, David M

    2017-02-07

    The earliest known diatom fossils with well-preserved siliceous frustules are from Lower Cretaceous neritic marine deposits in Antarctica. In this study, we analyzed the cell wall structure to establish whether their cell and life cycles were similar to modern forms. At least two filamentous species (Basilicostephanus ornatus and Archepyrgus melosiroides) had girdle band structures that functioned during cell division in a similar way to present day Aulacoseira species. Also, size analyses of cell diameter indicated that the cyclic process of size decline and size restoration used to time modern diatom life cycles was present in five species from the Lower Cretaceous (B. ornatus, A. melosiroides, Gladius antiquus, Ancylopyrgus reticulatus, Kreagra forfex) as well as two species from Upper Cretaceous deposits (Trinacria anissimowii and Eunotogramma fueloepi) from the Southwest Pacific. The results indicate that the "Diatom Sex Clock" was present from an early evolutionary stage. Other ecological adaptations included changes in mantle height and coiling. Overall, the results suggest that at least some of the species in these early assemblages are on a direct ancestral line to modern forms.

  13. Late Cretaceous terrestrial vertebrate fauna, North Slope, Alaska

    SciTech Connect

    Clemens, W.A.; Allison, C.W.

    1985-01-01

    Closely related terrestrial vertebrates in Cretaceous mid-latitude (30/sup 0/ to 50/sup 0/) faunas of North America and Asia as well as scattered occurrences of footprints and skin impressions suggested that in the Late Mesozoic the Alaskan North Slope supported a diverse fauna. In 1961 abundant skeletal elements of Cretaceous, Alaskan dinosaurs (hadrosaurids) were discovered by the late R.L. Liscomb. This material is being described by K.L. Davies. Additional fossils collected by E.M. Brouwers and her associates include skeletal elements of hadrosaurid and carnosaurian (.tyrannosaurid) dinosaurs and other vertebrates. The fossil locality on the North Slope is not at about 70/sup 0/N. In the Late Cretaceous the members of this fauna were subject to the daylight regime and environment at a paleolatitude closer to 80/sup 0/N. Current hypotheses attributing extinctions of dinosaurs and some other terrestrial vertebrates to impact of an extraterrestrial object cite periods of darkness, decreased temperature (possibly followed by extreme warming) and acid rain as the direct causes of their demise. Unless members of this North Slope fauna undertook long-distance migrations, their high latitude occurrence indicates groups of dinosaurs and other terrestrial vertebrates regularly tolerated months of darkness.

  14. Cretaceous sauropod diversity and taxonomic succession in South America

    NASA Astrophysics Data System (ADS)

    de Jesus Faria, Caio César; Riga, Bernardo González; dos Anjos Candeiro, Carlos Roberto; da Silva Marinho, Thiago; David, Leonardo Ortiz; Simbras, Felipe Medeiros; Castanho, Roberto Barboza; Muniz, Fellipe Pereira; Gomes da Costa Pereira, Paulo Victor Luiz

    2015-08-01

    The South American sauropod dinosaurs fossil record is one of the world's most relevant for their abundance (51 taxa) and biogeographical implications. Their historical biogeography was influenced by the continental fragmentation of Gondwana. The scenery of biogeographic and stratigraphic distributions can provide new insight into the causes of the evolution of the sauropods in South America. One of the most important events of the sauropods evolution is the progressive replacement of Diplodocimorpha by the Titanosauriformes during the early Late Cretaceous. The fluctuation of the sea levels is frequently related to the diversity of sauropods, but it is necessary to take into account the geological context in each continent. During the Maastrichthian, a global sea level drop has been described; in contrast, in South America there was a significant rise in sea level (named 'Atlantic transgression') which is confirmed by sedimentary sequences and the fossil record of marine vertebrates. This process occurred during the Maastrichtian, when the hadrosaurs arrived from North America. The titanosaurs were amazingly diverse during the Late Cretaceous, both in size and morphology, but they declined prior to their final extinction in the Cretaceous/Paleocene boundary (65.5Yrs).

  15. Implications of cretaceous climate for patterns of sedimentation

    SciTech Connect

    Barron, E.; Cirbus-Sloan, L.; Kruijs, E.; Peterson, W.

    1988-01-01

    Paleogeography and climate are two essential ingredients for a global perspective of processes and patterns in sedimentary rocks. Extensive knowledge in sedimentology has been derived from a largely inductive approach of examining specific sequences and environments and inferring a larger and more general principle. Geographic position and climate offer the opportunity for additional deductive approaches in sedimentology. By considering the whole in conjunction with an understanding of physical climate processes, independent predictions can be verified by specific observations. The large climatic and geographic differences between the Cretaceous Period and the Holocene are a good illustration of the potential of a global sedimentary geology perspective. Three very different examples illustrate this potential: (1) storms and the sedimentary record, (2) upwelling and marine productivity, and (3) precipitation, continental runoff, and coastal sedimentary input. Climate models in conjunction with Cretaceous geographic reconstructions yield the following conclusions. (1) Hurricane and winter storms are predicted to have been quite common in the Cretaceous, but the distribution of storms was strongly tied to continental position and sea level. (2) Planetary warmth and paleogeography operated in concert to more than double total continental rainfall in comparison with the present day. Much of this rainfall was geographically local and is strongly associated with areas of coal, kaolin, and marine sedimentary input. (3) The combination of predicted precipitation, runoff, and wind-induced upwelling provide a more comprehensive forecast of marine productivity than would any single factor. These three components have been combined to derive climate controls on patterns of sedimentation.

  16. The bivalve Neithea from the Cretaceous of Brazil

    NASA Astrophysics Data System (ADS)

    de Jesus Andrade, Edilma; Seeling, Jens; Bengtson, Peter; Souza-Lima, Wagner

    2004-09-01

    On the basis of new collections from the Sergipe and Camamu (Bahia) basins, revision of previously described material from the Pernambuco-Paraı´ba Basin and a reassessment of previous descriptions, five species of the pectinid bivalve Neithea are described from the Cretaceous of northeastern Brazil: N. ( N.) alpina (d'Orbigny, 1847) from the Albian of the Camamu Basin; N. ( N.) coquandi (Peron, 1877) from the Aptian-Cenomanian of the Sergipe Basin, the Albian of the Camamu Basin, broadly mid-Cretaceous beds of the Tucano Sul Basin (Bahia), and the Cenomanian of the São Luı´s Basin (Maranhão); N. ( N.) hispanica (d'Orbigny, 1850) from the Albian-lower Turonian of the Sergipe Basin; N. ( N.) bexarensis (Stephenson, 1941) from the Campanian of the Pernambuco-Paraı´ba Basin; N. ( Neithella) notabilis (Münster in Goldfuss, 1833) from the Cenomanian of the Sergipe Basin. All species show a wide geographical distribution, in sharp contrast to previous studies that have indicated a highly endemic mollusc fauna in the Cretaceous of Brazil.

  17. Stratigraphy and palaeoclimate of Spitsbergen, Svalbard, during the Early Cretaceous

    NASA Astrophysics Data System (ADS)

    Vickers, Madeleine; Price, Gregory; Watkinson, Matthew; FitzPatrick, Meriel; Jerrett, Rhodri

    2016-04-01

    During the Early Cretaceous, Spitsbergen was located at a palaeolatitude of ~60°N. Abundant fossil wood derived from conifer forests, dinosaur trackways, enigmatic deposits such as glendonites, and stable isotope data from the Early Cretaceous formations of Spitsbergen suggest that the climate at that time was much more dynamic than the traditional view of "invariant greenhouse" conditions on Earth. The Early Cretaceous succession in central Spitsbergen comprises a regressive-transgressive mega-cycle. This is made up of the deep water to wave-dominated, Berriasian-Hauterivian Rurikfjellet Formation; the deltaic, Barremian Helvetiafjellet Formation; and the coastal to deep water, Aptian-Albian Carolinefjellet Formation. An erosion surface marks the base of the Helvetiafjellet Formation. Two regions with excellently exposed Early Cretaceous strata were chosen for study in this project: the Festningen section, on the north-western side of Isfjorden; and outcrops found along Adventdalen, near Longyearbyen, ~40km northeast of Festningen. We present the data collected in July 2015 from the Adventdalen area, and compare and correlate it with sedimentological and geochemical data collected from the Festningen succession in 2014. The Festningen section records a full sequence from the Berriasian to the Aptian, whereas the Longyearbyen sections record Aptian-Albian deposition. We use carbon isotope stratigraphy to constrain the Barremian-Aptian boundary in the previously only indirectly-dated Helvetiafjellet Formation, and to identify other major global climatic and carbon cycle perturbations in the Early Cretaceous. We are thus able to correlate this succession with other successions globally. We combine this δ13C(terrestrial) data with sedimentological and petrological data to elucidate the origins of enigmatic glendonites found in both regions. Glendonites are thought to be associated with cold-water (and therefore also cold-climate) conditions, although their mode of

  18. Cretaceous rift related magmatism in central-western South America

    NASA Astrophysics Data System (ADS)

    Viramonte, J. G.; Kay, S. M.; Becchio, R.; Escayola, M.; Novitski, I.

    1999-03-01

    The Cretaceous-Paleocene Andean basin system of central-western South America, comprises northwestern Argentina and southwestern Bolivia. It is situated between 62°-68°W and 18°-27°S, but extends westward to northern Chile and northward to Bolivia and Peru. These basins have been interpreted as an aborted foreland rift. In a general sense, it may be possible to relate this rift to the opening of the South Atlantic Ocean, however it was directly associated, in a backarc position, with the subduction of the Nazca Plate below the South American Plate. Three main magmatic episodes were recognized: the pre-rift stage (130-120 Ma) which is characterized by an early phase of anorogenic plutonism, with subalkaline and alkaline granitic intrusives; the syn-rift volcanic episode which started with a mainly alkaline volcanic activity (110-100) in which alkaline rocks prevail; a second more voluminous volcanic episode (80-75 Ma) which is characterized by an alkaline suite represented by basanites and tephriphonolites; and the last volcanic episode (65-60 Ma) which consists of lamproitic sills and basic K rich lava flows. Petrography, chemistry and chronology of the Cretaceous plutonic bodies indicate anorogenic pre-rift related A-type granite complexes closely related to the further evolution of the Cretaceous rift basin. The petrology and geochemistry of the Cretaceous volcanic rocks show strong alkaline affinities and suggest a similar rift-related origin. The geochemical and isotopic characteristics of the alkaline basalts suggest that they originated through low degrees of partial melting of a depleted mantle subcontinental lithosphere which was previously enriched by processes such as the introduction of veins rich in amphibole, high Ti phlogopite, and apatite. Cretaceous plutonic and volcanic rocks from central-southwestern South America are related to an intracontinental rift environment and although their ages are correlative with those of the Paraná volcanic

  19. Late Cretaceous and Cenozoic exhumation history of the Malay Peninsula

    NASA Astrophysics Data System (ADS)

    François, Thomas; Daanen, Twan; Matenco, Liviu; Willingshofer, Ernst; van der Wal, Jorien

    2015-04-01

    The evolution of Peninsular Malaysia up to the collisional period in the Triassic is well described but the evolution since the collision between Indochina and the Sukhothai Arc in Triassic times is less well described in the literature. The processes affecting Peninsular Malaysia during the Jurassic up to current day times have to explain the emplacement multiple intrusions (the Stong Complex, and the Kemahang granite), the Jurassic/Cretaceous onland basins, the Cenozoic offshore basins, and the asymmetric extension, which caused the exhumation of Taku Schists dome. The orogenic period in Permo-Triassic times, which also formed the Bentong-Raub suture zone, resulted in thickening of the continental crust of current day Peninsular Malaysia due to the collision of the Indochina continental block and the Sukhothai Arc, and is related to the subduction of oceanic crust once present between these continental blocks. The Jurassic/Cretaceous is a period of extension, resulting in the onland Jurassic/Cretaceous basins, synchronous melting of the crust, resulting in the emplacement Stong Complex and the Kemahang granite and thinning of the continental crust on the scale of the Peninsular, followed by uplift of the Peninsular. Different models can explain these observations: continental root removal, oceanic slab detachment, or slab delamination. These models all describe the melting of the lower crust due to asthenospheric upwelling, resulting in uplift and subsequent extension either due to mantle convective movements or gravitational instabilities related to uplift. The Cenozoic period is dominated by extension and rapid exhumation in the area as documented by low temperature thermocrological ages The extension in this period is most likely related to the subduction, which resumed at 45 Ma, of the Australian plate beneath the Eurasian plate after it terminated in Cretaceous times due to the collision of an Australian microcontinental fragment with the Sunda margin in the

  20. Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary.

    PubMed

    Wible, J R; Rougier, G W; Novacek, M J; Asher, R J

    2007-06-21

    Estimates of the time of origin for placental mammals from DNA studies span nearly the duration of the Cretaceous period (145 to 65 million years ago), with a maximum of 129 million years ago and a minimum of 78 million years ago. Palaeontologists too are divided on the timing. Some support a deep Cretaceous origin by allying certain middle Cretaceous fossils (97-90 million years old) from Uzbekistan with modern placental lineages, whereas others support the origin of crown group Placentalia near the close of the Cretaceous. This controversy has yet to be addressed by a comprehensive phylogenetic analysis that includes all well-known Cretaceous fossils and a wide sample of morphology among Tertiary and recent placentals. Here we report the discovery of a new well-preserved mammal from the Late Cretaceous of Mongolia and a broad-scale phylogenetic analysis. Our results exclude Cretaceous fossils from Placentalia, place the origin of Placentalia near the Cretaceous/Tertiary (K/T) boundary in Laurasia rather than much earlier within the Cretaceous in the Southern Hemisphere, and place afrotherians and xenarthrans in a nested rather than a basal position within Placentalia.

  1. Paleo-CO2 variation trends and the Cretaceous greenhouse climate

    NASA Astrophysics Data System (ADS)

    Wang, Yongdong; Huang, Chengmin; Sun, Bainian; Quan, Cheng; Wu, Jingyu; Lin, Zhicheng

    2014-02-01

    The Cretaceous was one of the most remarkable periods in geological history, with a "greenhouse" climate and several important geological events. Reconstructions of atmospheric CO2 using proxies are crucial for understanding the Cretaceous "greenhouse." In this paper we summarize the major approaches for reconstructing CO2 based on paleobotanical or geochemical data, and synthesize the CO2 variations throughout the Cretaceous. The results show that atmospheric CO2 levels remained relatively high throughout the Cretaceous, but were lower in the early Cretaceous, highest in the mid-Cretaceous and gradually declined during the late Cretaceous. However, this overall trend was interrupted by several rapid changes associated with ocean anoxic events (OAEs) and the end-Cretaceous catastrophic event. New data on paleo-CO2 levels from paleobotanical and paleosol evidences support not only the overall trends indicated by geochemical models, but provide more precise records of the short-term fluctuations related to brief episodes of climate change. Temporal resolution within the long quiet magnetic period in the middle Cretaceous is one of the obstacles preventing us from a more comprehensive understanding of the CO2 climate linkage. But new paleo-CO2 determinations and climatic data from stratigraphic sections of sediments intercalated with datable volcanic rocks will allow a better understanding of the relationships between fluctuations of atmospheric CO2, climate change, and geological events.

  2. Sedimentology, stratigraphy, and extinctions during the Cretaceous-Paleogene transition at Bug Creek, Montana

    SciTech Connect

    Fastovsky, D.E.; Dott, R.H. Jr.

    1986-04-01

    Bug Creek Valley, the source of an unusual and controversial Cretaceous-Paleogene coincidence of mammals, dinosaurs, pollen, and iridium, exemplifies the importance of depositional process in the reconstruction of evolutionary events. Five sedimentary facies are recognized at Bug Creek: a cross-stratified sandstone, a green and purple siltstone, a lateral accretionary sandstone, a coal, and a variegated siltstone. Repeated fluvial channeling restricts the accuracy of lateral correlations, and the relationship of the fossil assemblage to the presumed Cretaceous-Paleogene boundary cannot be established. Sedimentologically, the Cretaceous-Paleogene transition is represented here by Cretaceous meandering channels that gave way initially to Paleogene swamp deposition. 13 references, 4 figures.

  3. Soft-sediment deformation structures interpreted as seismites in the uppermost Aptian to lowermost Albian transgressive deposits of the Chihuahua basin (Mexico)

    NASA Astrophysics Data System (ADS)

    Blanc, E. J.-P.; Blanc-Alétru, M.-C.; Mojon, P.-O.

    Several levels of soft-sediment deformation structures (s.-s.d.s.) cut by synsedimentary normal faults have been observed in the transition beds between the ``Las Vigas'' and ``La Virgen'' formations (Cretaceous) in the northeastern part of the Chihuahua basin in Mexico. These structures consisted of four kinds of motifs (floating breccias, flame-like structures, large pillow structures, and wavy structures). They are restricted to five ``stratigraphic'' levels (Σ1-Σ5) and surrounded by undeformed beds in fluvio-lacustrine and tidal deposits and can be traced over a distance of several hundred meters. This deformation is interpreted to have resulted from the combined effects of liquidization and shear stress in soft-sediments due to local earthquakes in the area which could have been generated during the rifting stage of the Chihuahua basin. New constraints placed on the age of the ``Las Vigas'' Formation (bracketed by Late Aptian charophytes at the bottom and colomiellids of late Aptian to earliest Albian age at the top) suggest that this synrift tectonism lasted at least until the end of the Aptian.

  4. Soft-sediment deformation structures interpreted as seismites in the uppermost Aptian to lowermost Albian transgressive deposits of the Chihuahua basin (Mexico)

    USGS Publications Warehouse

    Blanc, E.J.-P.; Blanc-Aletru, M. -C.; Mojon, P.-O.

    1997-01-01

    Several levels of soft-sediment deformation structures (s.-s.d.s.) cut by synsedimentary normal faults have been observed in the transition beds between the "Las Vigas" and "La Virgen" formations (Cretaceous) in the northeastern part of the Chihuahua basin in Mexico. These structures consisted of four kinds of motifs (floating breccias, flame-like structures, large pillow structures, and wavy structures). They are restricted to five "stratigraphic" levels (??1-??5) and surrounded by undeformed beds in fluvio-lacustrine and tidal deposits and can be traced over a distance of several hundred meters. This deformation is interpreted to have resulted from the combined effects of liquidization and shear stress in soft-sediments due to local earthquakes in the area which could have been generated during the rifting stage of the Chihuahua basin. New constraints placed on the age of the "Las Vigas" Formation (bracketed by Late Aptian charophytes at the bottom and colomiellids of late Aptian to earliest Albian age at the top) suggest that this synrift tectonism lasted at least until the end of the Aptian.

  5. Soft-sediment deformation structures interpreted as seismites in the uppermost Aptian to lowermost Albian transgressive deposits of the Chihuahua basin (Mexico)

    USGS Publications Warehouse

    Blanc, E.J.-P.; Blanc-Aletru, M. -C.; Mojon, P.-O.

    1998-01-01

    Several levels of soft-sediment deformation structures (s.-s.d.s.) cut by synsedimentary normal faults have been observed in the transition beds between the "Las Vigas" and "La Virgen" formations (Cretaceous) in the northeastern part of the Chihuahua basin in Mexico. These structures consisted of four kinds of motifs (floating breccias, flame-like structures, large pillow structures, and wavy structures). They are restricted to five "stratigraphie" levels (Z1-Z5) and surrounded by undeformed beds in fluvio-lacustrine and tidal deposits and can be traced over a distance of several hundred meters. This deformation is interpreted to have resulted from the combined effects of liquidization and shear stress in soft-sediments due to local earthquakes in the area which could have been generated during the rifting stage of the Chihuahua basin. New constraints placed on the age of the "Las Vigas" Formation (bracketed by Late Aptian charophytes at the bottom and colomiellids of late Aptian to earliest Albian age at the top) suggest that this synrift tectonism lasted at least until the end of the Aptian. ?? Springer-Verlag 1998.

  6. Island life in the Cretaceous - faunal composition, biogeography, evolution, and extinction of land-living vertebrates on the Late Cretaceous European archipelago

    PubMed Central

    Csiki-Sava, Zoltán; Buffetaut, Eric; Ősi, Attila; Pereda-Suberbiola, Xabier; Brusatte, Stephen L.

    2015-01-01

    Abstract The Late Cretaceous was a time of tremendous global change, as the final stages of the Age of Dinosaurs were shaped by climate and sea level fluctuations and witness to marked paleogeographic and faunal changes, before the end-Cretaceous bolide impact. The terrestrial fossil record of Late Cretaceous Europe is becoming increasingly better understood, based largely on intensive fieldwork over the past two decades, promising new insights into latest Cretaceous faunal evolution. We review the terrestrial Late Cretaceous record from Europe and discuss its importance for understanding the paleogeography, ecology, evolution, and extinction of land-dwelling vertebrates. We review the major Late Cretaceous faunas from Austria, Hungary, France, Spain, Portugal, and Romania, as well as more fragmentary records from elsewhere in Europe. We discuss the paleogeographic background and history of assembly of these faunas, and argue that they are comprised of an endemic ‘core’ supplemented with various immigration waves. These faunas lived on an island archipelago, and we describe how this insular setting led to ecological peculiarities such as low diversity, a preponderance of primitive taxa, and marked changes in morphology (particularly body size dwarfing). We conclude by discussing the importance of the European record in understanding the end-Cretaceous extinction and show that there is no clear evidence that dinosaurs or other groups were undergoing long-term declines in Europe prior to the bolide impact. PMID:25610343

  7. Island life in the Cretaceous - faunal composition, biogeography, evolution, and extinction of land-living vertebrates on the Late Cretaceous European archipelago.

    PubMed

    Csiki-Sava, Zoltán; Buffetaut, Eric; Ősi, Attila; Pereda-Suberbiola, Xabier; Brusatte, Stephen L

    2015-01-01

    The Late Cretaceous was a time of tremendous global change, as the final stages of the Age of Dinosaurs were shaped by climate and sea level fluctuations and witness to marked paleogeographic and faunal changes, before the end-Cretaceous bolide impact. The terrestrial fossil record of Late Cretaceous Europe is becoming increasingly better understood, based largely on intensive fieldwork over the past two decades, promising new insights into latest Cretaceous faunal evolution. We review the terrestrial Late Cretaceous record from Europe and discuss its importance for understanding the paleogeography, ecology, evolution, and extinction of land-dwelling vertebrates. We review the major Late Cretaceous faunas from Austria, Hungary, France, Spain, Portugal, and Romania, as well as more fragmentary records from elsewhere in Europe. We discuss the paleogeographic background and history of assembly of these faunas, and argue that they are comprised of an endemic 'core' supplemented with various immigration waves. These faunas lived on an island archipelago, and we describe how this insular setting led to ecological peculiarities such as low diversity, a preponderance of primitive taxa, and marked changes in morphology (particularly body size dwarfing). We conclude by discussing the importance of the European record in understanding the end-Cretaceous extinction and show that there is no clear evidence that dinosaurs or other groups were undergoing long-term declines in Europe prior to the bolide impact.

  8. From Back-arc Drifting to Arc Accretion: the Late Jurassic-Early Cretaceous Evolution of the Guerrero Terrane Recorded by a Major Provenance Change in Sandstones from the Sierra de los Cuarzos, Central Mexico

    NASA Astrophysics Data System (ADS)

    Palacios Garcia, N. B.; Martini, M.

    2014-12-01

    The Guerrero terrane composed of Middle Jurassic-Early Cretaceous arc assemblages, were drifted from the North American continental mainland during lower Early Cretaceous spreading in the Arperos back arc basin, and subsequently accreted back to the continental margin in the late Aptian. Although the accretion of the Guerrero terrane represents one of the major tectonic processes that shaped the southern North American Pacific margin, the stratigraphic record related to such a regional event was not yet recognized in central Mexico. Due to the Sierra de los Cuarzos is located just 50 km east of the Guerrero terrane suture belt, its stratigraphic record should be highly sensitive to first order tectonic changes and would record a syn-tectonic deposits related to this major event. In that study area, were identified two main Upper Jurassic-Lower Cretaceous clastic units. The Sierra de los Cuarzos formation represents the lowermost exposed stratigraphic record. Sedimentary structures, sandstones composition, and U-Pb detrital zircon ages document that the Sierra de los Cuarzos formation reflects a vigorous mass wasting along the margin of the North American continental mainland, representing the eastern side of the Arperos back arc basin. Sandstones of the Sierra de los Cuarzos formation are free from detrital contributions related to the Guerrero terrane juvenile sources, indicating that the Arperos Basin acted like an efficient sedimentological barrier that inhibited the influence of the arc massifs on the continental mainland deposits. The Sierra de los Cuarzos formation is overlain by submarine slope deposits of the Pelones formation, which mark a sudden change in the depositional conditions. Provenance analysis documents that sandstones from the Pelones formation were fed by the mafic to intermediate arc assemblages of the Guerrero terrane, as well as by quartz-rich sources of the continental mainland, suggesting that, by the time of deposition of the Pelones

  9. The origin and early evolution of metatherian mammals: the Cretaceous record.

    PubMed

    Williamson, Thomas E; Brusatte, Stephen L; Wilson, Gregory P

    2014-01-01

    Metatherians, which comprise marsupials and their closest fossil relatives, were one of the most dominant clades of mammals during the Cretaceous and are the most diverse clade of living mammals after Placentalia. Our understanding of this group has increased greatly over the past 20 years, with the discovery of new specimens and the application of new analytical tools. Here we provide a review of the phylogenetic relationships of metatherians with respect to other mammals, discuss the taxonomic definition and diagnosis of Metatheria, outline the Cretaceous history of major metatherian clades, describe the paleobiology, biogeography, and macroevolution of Cretaceous metatherians, and provide a physical and climatic background of Cretaceous metatherian faunas. Metatherians are a clade of boreosphendian mammals that must have originated by the Late Jurassic, but the first unequivocal metatherian fossil is from the Early Cretaceous of Asia. Metatherians have the distinctive tightly interlocking occlusal molar pattern of tribosphenic mammals, but differ from Eutheria in their dental formula and tooth replacement pattern, which may be related to the metatherian reproductive process which includes an extended period of lactation followed by birth of extremely altricial young. Metatherians were widespread over Laurasia during the Cretaceous, with members present in Asia, Europe, and North America by the early Late Cretaceous. In particular, they were taxonomically and morphologically diverse and relatively abundant in the Late Cretaceous of western North America, where they have been used to examine patterns of biogeography, macroevolution, diversification, and extinction through the Late Cretaceous and across the Cretaceous-Paleogene (K-Pg) boundary. Metatherian diversification patterns suggest that they were not strongly affected by a Cretaceous Terrestrial Revolution, but they clearly underwent a severe extinction across the K-Pg boundary.

  10. The origin and early evolution of metatherian mammals: the Cretaceous record

    PubMed Central

    Williamson, Thomas E.; Brusatte, Stephen L.; Wilson, Gregory P.

    2014-01-01

    Abstract Metatherians, which comprise marsupials and their closest fossil relatives, were one of the most dominant clades of mammals during the Cretaceous and are the most diverse clade of living mammals after Placentalia. Our understanding of this group has increased greatly over the past 20 years, with the discovery of new specimens and the application of new analytical tools. Here we provide a review of the phylogenetic relationships of metatherians with respect to other mammals, discuss the taxonomic definition and diagnosis of Metatheria, outline the Cretaceous history of major metatherian clades, describe the paleobiology, biogeography, and macroevolution of Cretaceous metatherians, and provide a physical and climatic background of Cretaceous metatherian faunas. Metatherians are a clade of boreosphendian mammals that must have originated by the Late Jurassic, but the first unequivocal metatherian fossil is from the Early Cretaceous of Asia. Metatherians have the distinctive tightly interlocking occlusal molar pattern of tribosphenic mammals, but differ from Eutheria in their dental formula and tooth replacement pattern, which may be related to the metatherian reproductive process which includes an extended period of lactation followed by birth of extremely altricial young. Metatherians were widespread over Laurasia during the Cretaceous, with members present in Asia, Europe, and North America by the early Late Cretaceous. In particular, they were taxonomically and morphologically diverse and relatively abundant in the Late Cretaceous of western North America, where they have been used to examine patterns of biogeography, macroevolution, diversification, and extinction through the Late Cretaceous and across the Cretaceous-Paleogene (K-Pg) boundary. Metatherian diversification patterns suggest that they were not strongly affected by a Cretaceous Terrestrial Revolution, but they clearly underwent a severe extinction across the K-Pg boundary. PMID:25589872

  11. Rise to dominance of angiosperm pioneers in European Cretaceous environments.

    PubMed

    Coiffard, Clément; Gomez, Bernard; Daviero-Gomez, Véronique; Dilcher, David L

    2012-12-18

    The majority of environments are dominated by flowering plants today, but it is uncertain how this dominance originated. This increase in angiosperm diversity happened during the Cretaceous period (ca. 145-65 Ma) and led to replacement and often extinction of gymnosperms and ferns. We propose a scenario for the rise to dominance of the angiosperms from the Barremian (ca. 130 Ma) to the Campanian (ca. 84 Ma) based on the European megafossil plant record. These megafossil data demonstrate that angiosperms migrated into new environments in three phases: (i) Barremian (ca. 130-125 Ma) freshwater lake-related wetlands; (ii) Aptian-Albian (ca. 125-100 Ma) understory floodplains (excluding levees and back swamps); and (iii) Cenomanian-Campanian (ca. 100-84 Ma) natural levees, back swamps, and coastal swamps. This scenario allows for the measured evolution of angiosperms in time and space synthesizing changes in the physical environment with concomitant changes in the biological environment. This view of angiosperm radiation in three phases reconciles previous scenarios based on the North American record. The Cretaceous plant record that can be observed in Europe is exceptional in many ways. (i) Angiosperms are well preserved from the Barremian to the Maastrichtian (ca. 65 Ma). (ii) Deposits are well constrained and dated stratigraphically. (iii) They encompass a full range of environments. (iv) European paleobotany provides many detailed studies of Cretaceous floras for analysis. These factors make a robust dataset for the study of angiosperm evolution from the Barremian to the Campanian that can be traced through various ecosystems and related to other plant groups occupying the same niches.

  12. Cretaceous stratigraphy and biostratigraphy, Sierra Blanca basin, southeastern New Mexico

    SciTech Connect

    Lucas, S.G. ); Anderson, O.R. )

    1994-03-01

    The Sierra Blanca basin of Otero and Lincoln counties, New Mexico contains a Lower (upper Albian)-Upper (Santonian) Cretaceous section of marine and nonmarine strata as much as 700 m thick which represent the upper part of a regressive cycle followed by two transgressive-regressive deposition cycles. The lower 55 m of the Cretaceous section are the same tripartite Dakota Group units recognized in Guadalupe and San Miguel counties: basal Mesa Rica Sandstone (late Albian), medial Pajarito formation (late Albian) and upper Romeroville sandstone (earliest Cenomanian). The Mesa Rica and Pajarito represent a regression and are overlain disconformably by the transgressive Romeroville sandstone. Overlying transgressive marine clastics and minor carbonates of the Mancos Shale are as much as 73 m thick and include the early Turonian Greenhorn Limestone. The overlying Tres Hermanos formation (up to 91 m thick) consists of the (ascending order) Atarque sandstone and the Carthage and Fite Ranch sandstone members. These strata represent a mid-Turonian regression in response to regional tectonism (Atarque and Carthage), followed by a transgression (Fite Ranch sandstone) that ended in the deposition of the D-Cross Tongue of the Mancos Shale and Fort Hays Member of the Niobrara Formation during the late Turonian. The subsequent regression began with the Coniacian Gallup Sandstone (55 m) followed by coal-bearing Crevasse Canyon Formation (up to 244 m thick). The Coniacian-Santonian Crevasse Canyon Formation, the youngest Cretaceous unit in the basin, is disconformably overlain by middle Eocene conglomerates and red-bed siliciclastics of the Cub Mountain formation. Dakota Group age determinations in the Sierra Blanca basin are those of well-dated sections to the north, but ammonites and inoceramid bivalves from the Sierra Blanca basin provide precise age control for Cenomanian-Santonian marine and marginal marine strata and palynology and megafossil plants for nonmarine strata.

  13. Late Cretaceous tectonic framework of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wu, Zhenhan; Barosh, Patrick J.; Ye, Peisheng; Hu, Daogong

    2015-12-01

    New research, coupled with previous data, reveals the Late Cretaceous paleo-geography, and related paleo-tectonic movement of the Tibetan Plateau. A vast ocean, the Neo-Tethys Ocean, perhaps as wide as ∼7000 km, existed between the Indian and Eurasian Continental Plates in the early Late Cretaceous. In addition, a Himalaya Marginal Sea lay along the border of the Indian Plate and other marginal seas were present to the north in both the southern Lhasa and southwestern Tarim Blocks. Northward subduction of the Neo-Tethys Oceanic Plate along the Yalung-Zangbu Suture closed most of the ocean and led to intensive thrusting, tight folding, magmatic plutonism and volcanic eruptions in the central plateau to the north. A magmatic arc up to 500 km wide formed across the southern margin of the continental plate in central Tibet and its varying granitic composition appears to reflect the depth to the subducted plate and define its geometry. A series of large, chiefly north-dipping thrust systems also developed across central Tibet. These include thrusts along the Yalung-Zangbu and Bangong-Nujiang Sutures, the North Gangdese and North Lhasa Thrusts in the Lhasa Block, the Qiangtang and North Tangula Thrusts in the Qiangtang block, the Hoh-Xil and Bayan Har Thrusts in the Hoh-Xil Block, as well as the sinistral-slip South Kunlun and Altyn Tagh Faults in northern Tibet. Uplifts formed above the hanging walls of the major thrusts and their eroded debris formed thick red-beds in basins below them. The central Tibetan Plateau maintained a low elevation and coastal vegetation was dominant during the Late Cretaceous.

  14. Recent advances in the cretaceous stratigraphy of Korea

    NASA Astrophysics Data System (ADS)

    Chang, Ki-Hong; Suzuki, Kazuhiro; Park, Sun-Ok; Ishida, Keisuke; Uno, Koji

    2003-06-01

    A subrounded, accidental, zircon grain from a rhyolite sample of the Oknyobong Formation has shown an U-Pb CHIME isochron age, 187 Ma, implying its derivation from a Jurassic felsic igneous rock. Such a lower limit of the geologic age of the Oknyobong Formation, combined with its pre-Kyongsang upper limit, constrains that the Oknyobong Formation belongs to the Jasong Synthem (Late Jurassic-early Early Cretaceous) typified in North Korea. The Jaeryonggang Movement terminated the deposition of the Jasong Synthem and caused a shift of the depocenter from North Korea to the Kyongsang Basin, Southeast Korea. The Cretaceous-Paleocene Kyongsang Supergroup of the Kyongsang Basin is the stratotype of the Kyongsang Synthem, an unconformity-bounded unit in the Korean Peninsula. The unconformity at the base of the Yuchon Volcanic Group is a local expression of the interregionally recognizable mid-Albian tectonism; it subdivides the Kyongsang Synthem into the Lower Kyongsang Subsynthem (Barremian-Early Albian) and the Upper Kyongsang Subsynthem (Late Albian-Paleocene). The latter is unconformably overlain by Eocene and younger strata. The Late Permian to Early Jurassic radiolarian fossils from the chert pebbles of the Kumidong and the Kisadong conglomerates of the Aptian-Early Albian Hayang Group of the Kyongsang Basin are equivalent with those of the cherts that constitute the Jurassic accretionary prisms in Japan, the provenance of the chert pebbles in the Kyongsang Basin. Bimodal volcanisms throughout the history of the Kyongsang Basin is exemplified by the felsic Kusandong Tuff erupted abruptly and briefly in the Late Aptian when semi-coeval volcanisms were of intermediate and mafic compositions. The mean paleomagnetic direction shown by the Kusandong Tuff is in good agreement with the Early Cretaceous directions known from North China, South China and Siberia Blocks.

  15. Rise to dominance of angiosperm pioneers in European Cretaceous environments

    PubMed Central

    Coiffard, Clément; Gomez, Bernard; Daviero-Gomez, Véronique; Dilcher, David L.

    2012-01-01

    The majority of environments are dominated by flowering plants today, but it is uncertain how this dominance originated. This increase in angiosperm diversity happened during the Cretaceous period (ca. 145–65 Ma) and led to replacement and often extinction of gymnosperms and ferns. We propose a scenario for the rise to dominance of the angiosperms from the Barremian (ca. 130 Ma) to the Campanian (ca. 84 Ma) based on the European megafossil plant record. These megafossil data demonstrate that angiosperms migrated into new environments in three phases: (i) Barremian (ca. 130–125 Ma) freshwater lake-related wetlands; (ii) Aptian–Albian (ca. 125–100 Ma) understory floodplains (excluding levees and back swamps); and (iii) Cenomanian–Campanian (ca. 100–84 Ma) natural levees, back swamps, and coastal swamps. This scenario allows for the measured evolution of angiosperms in time and space synthesizing changes in the physical environment with concomitant changes in the biological environment. This view of angiosperm radiation in three phases reconciles previous scenarios based on the North American record. The Cretaceous plant record that can be observed in Europe is exceptional in many ways. (i) Angiosperms are well preserved from the Barremian to the Maastrichtian (ca. 65 Ma). (ii) Deposits are well constrained and dated stratigraphically. (iii) They encompass a full range of environments. (iv) European paleobotany provides many detailed studies of Cretaceous floras for analysis. These factors make a robust dataset for the study of angiosperm evolution from the Barremian to the Campanian that can be traced through various ecosystems and related to other plant groups occupying the same niches. PMID:23213256

  16. The origin and evolution of the Cretaceous Benue Trough (Nigeria)

    NASA Astrophysics Data System (ADS)

    Benkhelil, J.

    The intracontinental Benue Trough was initiated during the Lower Cretaceous in relation with the Atlantic Ocean opening. The first stage of its evolution started in the Aptian, forming isolated basins with continental sedimentation. In the Albian times, a great delta developed in the Upper Benue Trough, while the first marine transgression coming from the opening Gulf of Guinea occurred in the south and reached the Middle Benue. The widespread Turonian transgression made the Atlantic and Tethys waters communicate through the Sahara, Niger basins and the Benue Trough. The tectonic evolution of the Benue Trough was closely controlled by transcurrent faulting through an axial fault system, developing local compressional and tensional regimes and resulting in basins and basement horsts along releasing and restraining bends of the faults. Two major compressional phases occurred: in the Abakaliki area (southern Benue) during the Santonian; and at the end of the Cretaceous in the Upper Benue Trough. In Abakaliki, the sedimentary infilling was severely deformed through folding and flattening, and moderate folding and fracturing occurred in the northeast. The Cretaceous magmatism was restricted to main fault zones in most of the trough but was particularly active in the Abakaliki Trough, where it has alkaline affinities. From Albian to Santonian, the magmatism was accompanied in part of the Abakaliki Trough by a low-grade metamorphism. Geophysical data indicate a crustal thinning beneath the Benue Trough and, at a superficial level, an axial basement high flanked by two elongated deep basins including isolated sub-basins. The model of the tectonic evolution of the trough is based upon a general sinistral wrenching along the trough responsible for the structural arrangement and the geometry of the sub-basins. During the early stages of the Gulf of Guinea opening the Benue Trough was probably the expression on land of the Equatorial Fracture Zones.

  17. Discovery of a Cretaceous Scleractinian Coral with a Calcitic Skeleton

    NASA Astrophysics Data System (ADS)

    Stolarski, J.; Meibom, A.; Przenioslo, R.; Mazur, M.

    2007-12-01

    It has been generally thought that scleractinian corals form purely aragonitic skeletons. We show that a well- preserved fossil coral, Coelosmilia sp. from the Upper Cretaceous (ca. 70 Ma), has preserved skeletal structural features identical to those observed in present day scleractinians. However, the skeleton of Coelosmilia sp. is entirely calcitic. Its fine-scale structure and chemistry indicate that the calcite is primary and did not from via diagenetic alteration of aragonite. This result implies that corals, like other groups of marine, calcium carbonate- producing organisms, can form skeletons of different carbonate polymorphs. Implications for coral biomineralization and evolution will be discussed.

  18. Palaeontology: spider-web silk from the Early Cretaceous.

    PubMed

    Zschokke, Samuel

    2003-08-07

    The use of viscid silk in aerial webs as a means to capture prey was a key innovation of araneoid spiders and has contributed largely to their ecological success. Here I describe a single silk thread from a spider's web that bears glue droplets and has been preserved in Lebanese amber from the Early Cretaceous period for about 130 million years. This specimen not only demonstrates the antiquity of viscid silk and of the spider superfamily Araneoidea, but is also some 90 million years older than the oldest viscid spider thread previously reported in Baltic amber from the Eocene epoch.

  19. Ignition of global wildfires at the Cretaceous/Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.; Schneider, N. M.; Zahnle, K. J.; Latham, D.

    1990-01-01

    The recent discovery of an apparently global soot layer at the Cretaceous/Tertiary boundary indicates that global wildfires were somehow ignited by the impact of a comet or asteroid. It is shown here that the thermal radiation produced by the ballistic reentry of ejecta condensed from the vapor plume of the impact could have increased the global radiation flux by factors of 50 to 150 times the solar input for periods ranging from one to several hours. This great increase in thermal radiation may have been responsible for the ignition of global wildfires, as well as having deleterious effects on unprotected animal life.

  20. Palaeoenvironmental controls on the distribution of Cretaceous herbivorous dinosaurs.

    PubMed

    Butler, Richard J; Barrett, Paul M

    2008-11-01

    Previous attempts to determine palaeoenvironmental preferences in dinosaurs have generally been qualitative assessments based upon data from restricted geographical areas. Here, we use a global database of Cretaceous herbivorous dinosaurs to identify significant associations between clades and broad palaeoenvironmental categories ('terrestrial', 'coastal', 'marine'). Nodosaurid ankylosaurs and hadrosaurids show significant positive associations with marine sediments, while marginocephalians (Ceratopsia, Pachycephalosauria), saurischians (herbivorous theropods, Sauropoda) and ankylosaurid ankylosaurs are significantly positively associated with terrestrial sediments. These results provide quantitative support for the hypothesis that some clades (Nodosauridae, Hadrosauridae) were more abundant in coastal and/or fluvial environments, while others (e.g. Marginocephalia, Ankylosauridae) preferentially inhabited more distal environments.

  1. Fossil woods from the Late Cretaceous Aachen Formation.

    PubMed

    Meijer

    2000-11-01

    Silicified fossil woods from the Late Cretaceous (Santonian) Aachen Formation of northeast Belgium, southernmost Netherlands and adjacent Germany were investigated. Gymnosperms dominate this assemblage: Taxodioxylon gypsaceum, T. cf. gypsaceum, T. cf. albertense (all Taxodiaceae), Dammaroxylon aachenense sp. nov. (Araucariaceae), Pinuxylon sp. (Pinaceae), and Scalaroxylon sp. (Cycad or Cycadeoid). Angiosperms are minor constituents: Nyssoxylon sp. (Nyssaceae?, Cornaceae?), Mastixioxylon symplocoides sp. nov. (Mastixiaceae?, Symplocaceae?), Plataninium decipiens (Platanaceae) and Paraphyllanthoxylon cf. marylandense (Anacardiaceae?, Burseraceae?, Lauraceae?).The composition of this assemblage and the anatomy of the woods indicate a seasonal and humid warm-temperate to subtropical climate.

  2. Exhumation History Of Brasilian Highlands After Late Cretaceous Alcaline Magmatism

    NASA Astrophysics Data System (ADS)

    Doranti Tiritan, Carolina; Hackspacher, Peter Christian; Carina Siqueira Ribeiro, Marli; Glasmacher, Ulrich Anton; Françoso de Godoy, Daniel

    2017-04-01

    The southeast Brazilian margin recorded a long history of tectonic and magmatic events after the Gondwana continent break up. The drifting of the South American Platform over a thermal anomaly generated a series of alkaline intrusions that are distributed from the interior to the coast from west to east. Several exhumation events are recorded on the region and we are providing insights on the landscape evolution of the region since Late Cretaceous, comparing low temperature thermochronology results from two alkaline intrusions regions. Poços de Caldas Alkaline Massif (PCAM), is lied in the interior, 300km from the coastline, covering over 800km2 intruding the Precambrian basement around 83Ma, nepheline syenites, phonolites and tinguaites intruded in a continuous and rapid sequence lasting between 1 to 2 Ma. São Sebastião Island (SSI) on the other hand is located at the coast, 200 km southeast of São Paulo. It is characterized by an intrusion in Precambrian/Brazilian orogen and intruded by Early Cretaceous sub-alkaline basic and acid dykes, as well as by Late Cretaceous alkaline stocks (syenites) and dykes (basanite to phonolite). Will be presenting the apatite fission track (AFT) and (U-Th)/He results that shows the main difference between the areas is that PCAM region register older history then the coastal area of SSI, where thermal history starts register cooling event after the South Atlantic rifting process, while in the PCAM area register a previous history, since Carboniferous. The results are giving support to studies that indicate the development of the relief in Brazil being strongly influenced by the local and regional tectonic movements and the lithological and structural settings. The landscape at the Late Cretaceous was witness of heating process between 90 and 60Ma due the intense uplift of South American Platform. The elevation of the isotherms is associated with the mantellic plumes and the crustal thickness that caused thermal anomalies due

  3. Palaeontology: leg feathers in an Early Cretaceous bird.

    PubMed

    Zhang, Fucheng; Zhou, Zhonghe

    2004-10-21

    Here we describe a fossil of an enantiornithine bird from the Early Cretaceous period in China that has substantial plumage feathers attached to its upper leg (tibiotarsus). The discovery could be important in view of the relative length and aerodynamic features of these leg feathers compared with those of the small 'four-winged' gliding dinosaur Microraptor and of the earliest known bird, Archaeopteryx. They may be remnants of earlier long, aerodynamic leg feathers, in keeping with the hypothesis that birds went through a four-winged stage during the evolution of flight.

  4. Ignition of global wildfires at the Cretaceous/Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.; Schneider, N. M.; Zahnle, K. J.; Latham, D.

    1990-01-01

    The recent discovery of an apparently global soot layer at the Cretaceous/Tertiary boundary indicates that global wildfires were somehow ignited by the impact of a comet or asteroid. It is shown here that the thermal radiation produced by the ballistic reentry of ejecta condensed from the vapor plume of the impact could have increased the global radiation flux by factors of 50 to 150 times the solar input for periods ranging from one to several hours. This great increase in thermal radiation may have been responsible for the ignition of global wildfires, as well as having deleterious effects on unprotected animal life.

  5. Gulf Coast stratigraphic traps in the Lower Cretaceous carbonates

    SciTech Connect

    Sams, R.H.

    1981-09-01

    Prolific oil and gas production is being obtained from carbonate patch reef reservoirs within Lower Cretaceous formations along the Gulf Coast from Florida to Mexico. Many of these reservoirs are trapped stratigraphically where facies changes within a formation or patch reef unit establish an up-dip permeability barrier. Illustrations of such traps are given from the literature for oil and gas fields in Florida, Mississippi, Louisiana, and E. Texas. A geologic model is presented which provides the explorationist with an actual drilling target suitable to a multiple well exploratory program. 18 references.

  6. First identifiable Mesozoic harvestman (Opiliones: Dyspnoi) from Cretaceous Burmese amber.

    PubMed

    Giribet, Gonzalo; Dunlop, Jason A

    2005-05-22

    Two inclusions in a piece of Upper Cretaceous (Albian) Burmese amber from Myanmar are described as a harvestman (Arachnida: Opiliones), Halitherses grimaldii new genus and species. The first Mesozoic harvestman to be named can be referred to the suborder Dyspnoi for the following reasons: prosoma divided into two regions, the posterior formed by the fusion of the meso- and metapeltidium; palp lacking a terminal claw, with clavate setae, and tarsus considerably shorter than the tibia. The bilobed, anteriorly projecting ocular tubercle is reminiscent of that of ortholasmatine nemastomatids. The status of other Mesozoic fossils referred to Opiliones is briefly reviewed.

  7. First identifiable Mesozoic harvestman (Opiliones: Dyspnoi) from Cretaceous Burmese amber

    PubMed Central

    Giribet, Gonzalo; Dunlop, Jason A

    2005-01-01

    Two inclusions in a piece of Upper Cretaceous (Albian) Burmese amber from Myanmar are described as a harvestman (Arachnida: Opiliones), Halitherses grimaldii new genus and species. The first Mesozoic harvestman to be named can be referred to the suborder Dyspnoi for the following reasons: prosoma divided into two regions, the posterior formed by the fusion of the meso- and metapeltidium; palp lacking a terminal claw, with clavate setae, and tarsus considerably shorter than the tibia. The bilobed, anteriorly projecting ocular tubercle is reminiscent of that of ortholasmatine nemastomatids. The status of other Mesozoic fossils referred to Opiliones is briefly reviewed. PMID:16024358

  8. End-Cretaceous mass extinction event - Argument for terrestrial causation

    NASA Astrophysics Data System (ADS)

    Hallam, Anthony

    1987-11-01

    The end-Cretaceous mass extinctions were not a geologically instantaneous event and were selective in character. These features are incompatible with the original Alvarez hypothesis of their being caused by a single asteroid impact that produced a world-embracing dust cloud with devastating environmental consequences. By analysis of physical and chemical evidence from the stratigraphic record it is shown that a modified extraterrestrial model in which stepwise extinctions resulted from encounter with a comet shower is less plausible than one intrinsic to the earth, involving significant disturbance in the mantle.

  9. End-cretaceous mass extinction event: argument for terrestrial causation.

    PubMed

    Hallam, A

    1987-11-27

    The end-Cretaceous mass extinctions were not a geologically instantaneous event and were selective in character. These features are incompatible with the original Alvarez hypothesis of their being caused by a single asteroid impact that produced a world-embracing dust cloud with devastating environmental consequences. By analysis of physical and chemical evidence from the stratigraphic record it is shown that a modified extraterrestrial model in which stepwise extinctions resulted from encounter with a comet shower is less plausible than one intrinsic to the earth, involving significant disturbance in the mantle.

  10. Molecular preservation in Late Cretaceous sauropod dinosaur eggshells

    PubMed Central

    Schweitzer, M.H; Chiappe, L; Garrido, A.C; Lowenstein, J.M; Pincus, S.H

    2005-01-01

    Exceptionally preserved sauropod eggshells discovered in Upper Cretaceous (Campanian) deposits in Patagonia, Argentina, contain skeletal remains and soft tissues of embryonic Titanosaurid dinosaurs. To preserve these labile embryonic remains, the rate of mineral precipitation must have superseded post-mortem degradative processes, resulting in virtually instantaneous mineralization of soft tissues. If so, mineralization may also have been rapid enough to retain fragments of original biomolecules in these specimens. To investigate preservation of biomolecular compounds in these well-preserved sauropod dinosaur eggshells, we applied multiple analytical techniques. Results demonstrate organic compounds and antigenic structures similar to those found in extant eggshells. PMID:15888409

  11. One hundred million year old ergot: psychotropic compounds in the Cretaceous?

    USDA-ARS?s Scientific Manuscript database

    A fungal sclerotium similar to sclerotia of the genus Claviceps, commonly known as ergot, was found infecting a grass kernel in Early Cretaceous Myanmar amber. This represents the first fossil record of ergot dating as far back as the Cretaceous period. The fungus, described as Palaeoclaviceps para...

  12. Nanometre-size diamonds in the Cretaceous/Tertiary boundary clay of Alberta

    NASA Astrophysics Data System (ADS)

    Carlisle, David B.; Braman, Dennis R.

    1991-08-01

    Evidence is presented that the Cretaceous/Tertiary boundary clay of the Red Deer Valley of Alberta contains diamonds, which strengthens the case for an extraterrestrial impact at the end of the Cretaceous. The diamond/iridium ratio is close to the value found in type C2 chondritic meteorites.

  13. Depositional environments of the subsurface Cretaceous deposits of southeastern North Carolina

    NASA Astrophysics Data System (ADS)

    Custer, E. S., Jr.

    1981-02-01

    The subsurface Cretaceous deposits of southeastern North Carolina were analyzed. Six lithologic units were recognized. These are, in ascending stratigraphic order: an unnamed Lower Cretaceous unit, Cape Fear Formation, unnamed Upper Cretaceous unit, Middendorf Formation, Black Creek Formation, and Peedee Formation. The unnamed Lower Cretaceous unit contains interbedded fine to medium grained sands, calcareous sandstones, sandy limestones and clays which were deposited in environments ranging from nearshore to fluvial. The Cape Fear Formation consists of very fine to coarse tan sands interbedded with brown and reddish clays. The Upper Cretaceous unnamed unit is composed of tan and yellow medium to coarse sands interbedded with tan and red clays deposited in braided fluvial environments. The Black Creek Formation consists of lignitic dark clays and coarse to very fine sands. Formation is composed of dark green to greenish-gray, micaceous, glauconitic clays and sands interbedded with calcareous sandstones or sandy limestones.

  14. Plant microfossil record of the terminal Cretaceous event in the western United States and Canada

    NASA Technical Reports Server (NTRS)

    Nichols, D. J.; Fleming, R. F.

    1988-01-01

    Plant microfossils, principally pollen grains and spores produced by land plants, provide an excellent record of the terminal Cretaceous event in nonmarine environments. The record indicates regional devastation of the latest Cretaceous vegetation with the extinction of many groups, followed by a recolonization of the earliest Tertiary land surface, and development of a permanently changed land flora. The regional variations in depositional environments, plant communities, and paleoclimates provide insight into the nature and effects of the event, which were short-lived but profound. The plant microfossil data support the hypothesis that an abruptly initiated, major ecological crisis occurred at the end of the Cretaceous. Disruption of the Late Cretaceous flora ultimately contributred to the rise of modern vegetation. The plant microfossils together with geochemical and mineralogical data are consistent with an extraterrestrial impact having been the cause of the terminal Cretaceous event.

  15. New Ophthalmosaurid Ichthyosaurs from the European Lower Cretaceous Demonstrate Extensive Ichthyosaur Survival across the Jurassic–Cretaceous Boundary

    PubMed Central

    Fischer, Valentin; Maisch, Michael W.; Naish, Darren; Kosma, Ralf; Liston, Jeff; Joger, Ulrich; Krüger, Fritz J.; Pérez, Judith Pardo; Tainsh, Jessica

    2012-01-01

    Background Ichthyosauria is a diverse clade of marine amniotes that spanned most of the Mesozoic. Until recently, most authors interpreted the fossil record as showing that three major extinction events affected this group during its history: one during the latest Triassic, one at the Jurassic–Cretaceous boundary (JCB), and one (resulting in total extinction) at the Cenomanian-Turonian boundary. The JCB was believed to eradicate most of the peculiar morphotypes found in the Late Jurassic, in favor of apparently less specialized forms in the Cretaceous. However, the record of ichthyosaurs from the Berriasian–Barremian interval is extremely limited, and the effects of the end-Jurassic extinction event on ichthyosaurs remains poorly understood. Methodology/Principal Findings Based on new material from the Hauterivian of England and Germany and on abundant material from the Cambridge Greensand Formation, we name a new ophthalmosaurid, Acamptonectes densus gen. et sp. nov. This taxon shares numerous features with Ophthalmosaurus, a genus now restricted to the Callovian–Berriasian interval. Our phylogenetic analysis indicates that Ophthalmosauridae diverged early in its history into two markedly distinct clades, Ophthalmosaurinae and Platypterygiinae, both of which cross the JCB and persist to the late Albian at least. To evaluate the effect of the JCB extinction event on ichthyosaurs, we calculated cladogenesis, extinction, and survival rates for each stage of the Oxfordian–Barremian interval, under different scenarios. The extinction rate during the JCB never surpasses the background extinction rate for the Oxfordian–Barremian interval and the JCB records one of the highest survival rates of the interval. Conclusions/Significance There is currently no evidence that ichthyosaurs were affected by the JCB extinction event, in contrast to many other marine groups. Ophthalmosaurid ichthyosaurs remained diverse from their rapid radiation in the Middle Jurassic to

  16. Evolutionary transition of dental formula in Late Cretaceous eutherian mammals.

    PubMed

    Averianov, Alexander O; Archibald, J David

    2015-10-01

    Kulbeckia kulbecke, stem placental mammal from the Late Cretaceous of Uzbekistan, shows a transitional stage of evolution in the dental formula from five to four premolars. A non-replaced dP3/dp3 may occur as individual variation. In other specimens, the lower premolars are crowded with no space for development of dp3. As is evident from the CT scanning of one juvenile specimen, the development of dp3 started in a late ontogenetic stage and was confined to the pulp cavity of the developing p2. This dp3 would have been resorbed in a later ontogenetic stage, as the roots of p2 formed. The initial stage of reduction of the third premolar can be traced to stem therians (Juramaia and Eomaia), which have both dP3 and P3 present in the adult dentition. Further delay in the development of dP3/dp3 led to the loss of the permanent P3/p3 (a possible synapomorphy for Eutheria). The dP3/dp3 was present during most of the adult stages in the Late Cretaceous stem placentals Zhelestidae and Gypsonictops. This tooth is totally absent in basal taxa of Placentalia, which normally have at most four premolars.

  17. A gliding lizard from the Early Cretaceous of China

    PubMed Central

    Li, Pi-Peng; Gao, Ke-Qin; Hou, Lian-Hai; Xu, Xing

    2007-01-01

    Gliding is an energetically efficient mode of locomotion that has evolved independently, and in different ways, in several tetrapod groups. Here, we report on an acrodontan lizard from the Early Cretaceous Jehol Group of China showing an array of morphological traits associated with gliding. It represents the only known occurrence of this specialization in a fossil lizard and provides evidence of an Early Cretaceous ecological diversification into an aerial niche by crown-group squamates. The lizard has a dorsal-rib-supported patagium, a structure independently evolved in the Late Triassic basal lepidosauromorph kuehneosaurs and the extant agamid lizard Draco, revealing a surprising case of convergent evolution among lepidosauromorphans. A patagial character combination of much longer bilaterally than anteroposteriorly, significantly thicker along the leading edge than along the trailing edge, tapered laterally to form a wing tip, and secondarily supported by an array of linear collagen fibers is not common in gliders and enriches our knowledge of gliding adaptations among tetrapods. PMID:17376871

  18. Mountain building triggered late cretaceous North American megaherbivore dinosaur radiation.

    PubMed

    Gates, Terry A; Prieto-Márquez, Albert; Zanno, Lindsay E

    2012-01-01

    Prior studies of Mesozoic biodiversity document a diversity peak for dinosaur species in the Campanian stage of the Late Cretaceous, yet have failed to provide explicit causal mechanisms. We provide evidence that a marked increase in North American dinosaur biodiversity can be attributed to dynamic orogenic episodes within the Western Interior Basin (WIB). Detailed fossil occurrences document an association between the shift from Sevier-style, latitudinally arrayed basins to smaller Laramide-style, longitudinally arrayed basins and a well substantiated decreased geographic range/increased taxonomic diversity of megaherbivorous dinosaur species. Dispersal-vicariance analysis demonstrates that the nearly identical biogeographic histories of the megaherbivorous dinosaur clades Ceratopsidae and Hadrosauridae are attributable to rapid diversification events within restricted basins and that isolation events are contemporaneous with known tectonic activity in the region. SymmeTREE analysis indicates that megaherbivorous dinosaur clades exhibited significant variation in diversification rates throughout the Late Cretaceous. Phylogenetic divergence estimates of fossil clades offer a new lower boundary on Laramide surficial deformation that precedes estimates based on sedimentological data alone.

  19. Evidence for global cooling in the Late Cretaceous.

    PubMed

    Linnert, Christian; Robinson, Stuart A; Lees, Jackie A; Bown, Paul R; Pérez-Rodríguez, Irene; Petrizzo, Maria Rose; Falzoni, Francesca; Littler, Kate; Arz, José Antonio; Russell, Ernest E

    2014-06-17

    The Late Cretaceous 'greenhouse' world witnessed a transition from one of the warmest climates of the past 140 million years to cooler conditions, yet still without significant continental ice. Low-latitude sea surface temperature (SST) records are a vital piece of evidence required to unravel the cause of Late Cretaceous cooling, but high-quality data remain illusive. Here, using an organic geochemical palaeothermometer (TEX86), we present a record of SSTs for the Campanian-Maastrichtian interval (~83-66 Ma) from hemipelagic sediments deposited on the western North Atlantic shelf. Our record reveals that the North Atlantic at 35 °N was relatively warm in the earliest Campanian, with maximum SSTs of ~35 °C, but experienced significant cooling (~7 °C) after this to <~28 °C during the Maastrichtian. The overall stratigraphic trend is remarkably similar to records of high-latitude SSTs and bottom-water temperatures, suggesting that the cooling pattern was global rather than regional and, therefore, driven predominantly by declining atmospheric pCO2 levels.

  20. Hughmillerites vancouverensis sp. nov. and the Cretaceous diversification of Cupressaceae.

    PubMed

    Atkinson, Brian A; Rothwell, Gar W; Stockey, Ruth A

    2014-12-01

    • Two ovulate conifer cones, one of which is attached terminally to a short leafy shoot, reveal the presence of a new species of Hughmillerites in the Early Cretaceous Apple Bay flora of Vancouver Island, British Columbia, Canada. This ancient conifer expands the diversity of Cupressaceae in the Mesozoic and reveals details about the evolution of Subfamily: Cunninghamioideae.• Specimens were studied from anatomical sections prepared using the cellulose acetate peel technique.• Vegetative shoots have helically arranged leaves that are Cunninghamia-like. Seed cones have many helically arranged bract/scale complexes in which the bract is larger than the ovuliferous scale. Each ovuliferous scale has three free tips that separate from the bract immediately distal to an inverted seed. Several ovuliferous scales show interseminal ridges between seeds.• This study documents a new extinct species of cunninghamioid conifers, Hughmillerites vancouverensis, expanding the record of the genus from the Late Jurassic to the Early Cretaceous. This new extinct species emphasizes the important role that conifers from subfamily Cunninghamioideae played in the initial evolutionary radiation of Cupressaceae. In light of recent findings in conifer regulatory genetics, we use H. vancouverensis to hypothesize that variations of expression in certain gene homologues played an important role in the evolution of the cupressaceous ovuliferous scale. © 2014 Botanical Society of America, Inc.

  1. Debris-carrying camouflage among diverse lineages of Cretaceous insects.

    PubMed

    Wang, Bo; Xia, Fangyuan; Engel, Michael S; Perrichot, Vincent; Shi, Gongle; Zhang, Haichun; Chen, Jun; Jarzembowski, Edmund A; Wappler, Torsten; Rust, Jes

    2016-06-01

    Insects have evolved diverse methods of camouflage that have played an important role in their evolutionary success. Debris-carrying, a behavior of actively harvesting and carrying exogenous materials, is among the most fascinating and complex behaviors because it requires not only an ability to recognize, collect, and carry materials but also evolutionary adaptations in related morphological characteristics. However, the fossil record of such behavior is extremely scarce, and only a single Mesozoic example from Spanish amber has been recorded; therefore, little is known about the early evolution of this complicated behavior and its underlying anatomy. We report a diverse insect assemblage of exceptionally preserved debris carriers from Cretaceous Burmese, French, and Lebanese ambers, including the earliest known chrysopoid larvae (green lacewings), myrmeleontoid larvae (split-footed lacewings and owlflies), and reduviids (assassin bugs). These ancient insects used a variety of debris material, including insect exoskeletons, sand grains, soil dust, leaf trichomes of gleicheniacean ferns, wood fibers, and other vegetal debris. They convergently evolved their debris-carrying behavior through multiple pathways, which expressed a high degree of evolutionary plasticity. We demonstrate that the behavioral repertoire, which is associated with considerable morphological adaptations, was already widespread among insects by at least the Mid-Cretaceous. Together with the previously known Spanish specimen, these fossils are the oldest direct evidence of camouflaging behavior in the fossil record. Our findings provide a novel insight into early evolution of camouflage in insects and ancient ecological associations among plants and insects.

  2. Debris-carrying camouflage among diverse lineages of Cretaceous insects

    PubMed Central

    Wang, Bo; Xia, Fangyuan; Engel, Michael S.; Perrichot, Vincent; Shi, Gongle; Zhang, Haichun; Chen, Jun; Jarzembowski, Edmund A.; Wappler, Torsten; Rust, Jes

    2016-01-01

    Insects have evolved diverse methods of camouflage that have played an important role in their evolutionary success. Debris-carrying, a behavior of actively harvesting and carrying exogenous materials, is among the most fascinating and complex behaviors because it requires not only an ability to recognize, collect, and carry materials but also evolutionary adaptations in related morphological characteristics. However, the fossil record of such behavior is extremely scarce, and only a single Mesozoic example from Spanish amber has been recorded; therefore, little is known about the early evolution of this complicated behavior and its underlying anatomy. We report a diverse insect assemblage of exceptionally preserved debris carriers from Cretaceous Burmese, French, and Lebanese ambers, including the earliest known chrysopoid larvae (green lacewings), myrmeleontoid larvae (split-footed lacewings and owlflies), and reduviids (assassin bugs). These ancient insects used a variety of debris material, including insect exoskeletons, sand grains, soil dust, leaf trichomes of gleicheniacean ferns, wood fibers, and other vegetal debris. They convergently evolved their debris-carrying behavior through multiple pathways, which expressed a high degree of evolutionary plasticity. We demonstrate that the behavioral repertoire, which is associated with considerable morphological adaptations, was already widespread among insects by at least the Mid-Cretaceous. Together with the previously known Spanish specimen, these fossils are the oldest direct evidence of camouflaging behavior in the fossil record. Our findings provide a novel insight into early evolution of camouflage in insects and ancient ecological associations among plants and insects. PMID:27386568

  3. Spherules associated with the cretaceous-paleogene boundary in Poland

    NASA Astrophysics Data System (ADS)

    Brachaniec, Tomasz; Karwowski, Łukasz; Szopa, Krzysztof

    2014-03-01

    The succession of the Lechówka section near Chełm in south-eastern Poland presents the first complete record of the Cretaceous-Paleogene (K-Pg) boundary in Poland. Samples of the boundary clay were examined for microtektites and shocked minerals to confirm the impact origin of the sediment. The spheroidal fraction reveals morphological and mineralogical features, e.g., spherules, similar to material from the K-Pg boundary as described from elsewhere. The impact genesis of the spherules is confirmed by the presence of nickel-rich spinel grains on their surfaces. The spinels are considered to be primary microlites and, thus, the spherules at Lechówka can be classified as microkrystites. No shocked minerals were noted. The deposits with spherules comprise Aland Mg-rich smectite (Cheto smectite). This almost pure Mg-rich smectite, forming up to 100% of the clay fraction, derived from the weathering of the impact glass. It is proposed that the spherules isolated from the Cretaceous- Paleogene boundary clay at Lechówka come from the Chicxulub crater in Mexico.

  4. A eudicot from the Early Cretaceous of China.

    PubMed

    Sun, Ge; Dilcher, David L; Wang, Hongshan; Chen, Zhiduan

    2011-03-31

    The current molecular systematics of angiosperms recognizes the basal angiosperms and five major angiosperm lineages: the Chloranthaceae, the magnoliids, the monocots, Ceratophyllum and the eudicots, which consist of the basal eudicots and the core eudicots. The eudicots form the majority of the angiosperms in the world today. The flowering plants are of exceptional evolutionary interest because of their diversity of over 250,000 species and their abundance as the dominant vegetation in most terrestrial ecosystems, but little is known of their very early history. In this report we document an early presence of eudicots during the Early Cretaceous Period. Diagnostic characters of the eudicot fossil Leefructus gen. nov. include simple and deeply trilobate leaves clustered at the nodes in threes or fours, basal palinactinodromous primary venation, pinnate secondary venation, and a long axillary reproductive axis terminating in a flattened receptacle bearing five long, narrow pseudo-syncarpous carpels. These morphological characters suggest that its affinities are with the Ranunculaceae, a basal eudicot family. The fossil co-occurs with Archaefructus sinensis and Hyrcantha decussata whereas Archaefructus liaoningensis comes from more ancient sediments. Multiple radiometric dates of the Lower Cretaceous Yixian Formation place the bed yielding this fossil at 122.6-125.8 million years old. The earliest fossil records of eudicots are 127 to 125 million years old, on the basis of pollen. Thus, Leefructus gen. nov. suggests that the basal eudicots were already present and diverse by the latest Barremian and earliest Aptian.

  5. Cretaceous origin and repeated tertiary diversification of the redefined butterflies.

    PubMed

    Heikkilä, Maria; Kaila, Lauri; Mutanen, Marko; Peña, Carlos; Wahlberg, Niklas

    2012-03-22

    Although the taxonomy of the ca 18 000 species of butterflies and skippers is well known, the family-level relationships are still debated. Here, we present, to our knowledge, the most comprehensive phylogenetic analysis of the superfamilies Papilionoidea, Hesperioidea and Hedyloidea to date based on morphological and molecular data. We reconstructed their phylogenetic relationships using parsimony and Bayesian approaches. We estimated times and rates of diversification along lineages in order to reconstruct their evolutionary history. Our results suggest that the butterflies, as traditionally understood, are paraphyletic, with Papilionidae being the sister-group to Hesperioidea, Hedyloidea and all other butterflies. Hence, the families in the current three superfamilies should be placed in a single superfamily Papilionoidea. In addition, we find that Hedylidae is sister to Hesperiidae, and this novel relationship is supported by two morphological characters. The families diverged in the Early Cretaceous but diversified after the Cretaceous-Palaeogene event. The diversification of butterflies is characterized by a slow speciation rate in the lineage leading to Baronia brevicornis, a period of stasis by the skippers after divergence and a burst of diversification in the lineages leading to Nymphalidae, Riodinidae and Lycaenidae.

  6. Microbial Cretaceous park: biodiversity of microbial fossils entrapped in amber.

    PubMed

    Martín-González, Ana; Wierzchos, Jacek; Gutiérrez, Juan C; Alonso, Jesús; Ascaso, Carmen

    2009-05-01

    Microorganisms are the most ancient cells on this planet and they include key phyla for understanding cell evolution and Earth history, but, unfortunately, their microbial records are scarce. Here, we present a critical review of fossilized prokaryotic and eukaryotic microorganisms entrapped in Cretaceous ambers (but not exclusively from this geological period) obtained from deposits worldwide. Microbiota in ambers are rather diverse and include bacteria, fungi, and protists. We comment on the most important microbial records from the last 25 years, although it is not an exhaustive bibliographic compilation. The most frequently reported eukaryotic microfossils are shells of amoebae and protists with a cell wall or a complex cortex. Likewise, diverse dormant stages (palmeloid forms, resting cysts, spores, etc.) are abundant in ambers. Besides, viral and protist pathogens have been identified inside insects entrapped in amber. The situation regarding filamentous bacteria and fungi is quite confusing because in some cases, the same record was identified consecutively as a member of these phylogenetically distant groups. To avoid these identification errors in the future, we propose to apply a more resolute microscopic and analytical method in amber studies. Also, we discuss the most recent findings about ancient DNA repair and bacterial survival in remote substrates, which support the real possibility of ancient DNA amplification and bacterial resuscitation from Cretaceous resins.

  7. Major wildfires at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Gilmour, Iain; Wolbach, Wendy S.; Anders, Edward

    1989-01-01

    K-T boundary (KTB) clays from five sites are enriched in soot and charcoal by factors of 100-1000 over Cretaceous levels, apparently due to a global fire. The soot profile nearly coincides with the Ir profile, implying that the fire was triggered by the impact. Much or all of the fuel was biomass, as indicated by the presence of retene and by the C isotopic composition. The amount of elemental C at the KTB (0.012 g/sq cm) is very large, and requires either that most of the Cretaceous biomass burned down or that the soot yield was higher than in small fires. At undisturbed sites, soot correlates tightly with Ir, As, Sb, and Zn. Apparently soot and Ir-bearing ejecta particles coagulated in the stratosphere and then scavenged additional chalcophiles from the hydrosphere. In view of this coagulation, the K-T fire would only slightly prolong the period of darkness and cold caused by impact ejecta.

  8. Late Cretaceous Aquatic Plant World in Patagonia, Argentina

    PubMed Central

    Cúneo, N. Rubén; Gandolfo, María A.; Zamaloa, María C.; Hermsen, Elizabeth

    2014-01-01

    In this contribution, we describe latest Cretaceous aquatic plant communities from the La Colonia Formation, Patagonia, Argentina, based on their taxonomic components and paleoecological attributes. The La Colonia Formation is a geological unit deposited during a Maastrichtian-Danian transgressive episode of the South Atlantic Ocean. This event resulted in the deposition of a series of fine-grained sediments associated with lagoon systems occurring along irregular coastal plains in northern Patagonia. These deposits preserved a diverse biota, including aquatic and terrestrial plants and animals. The aquatic macrophytes can be broadly divided into two groups: free-floating and rooted, the latter with emergent or floating leaves. Free-floating macrophytes include ferns in Salviniaceae (Azolla and Paleoazolla) and a monocot (Araceae). Floating microphytes include green algae (Botryoccocus, Pediastrum and Zygnemataceae). Among the rooted components, marsileaceous water ferns (including Regnellidium and an extinct form) and the eudicot angiosperm Nelumbo (Nelumbonaceae) are the dominant groups. Terrestrial plants occurring in the vegetation surrounding the lagoons include monocots (palms and Typhaceae), ferns with affinities to Dicksoniaceae, conifers, and dicots. A reconstruction of the aquatic plant paleocommuniy is provided based on the distribution of the fossils along a freshwater horizon within the La Colonia Formation. This contribution constitutes the first reconstruction of a Cretaceous aquatic habitat for southern South America. PMID:25148081

  9. Palaeogeographic regulation of glacial events during the Cretaceous supergreenhouse

    PubMed Central

    Ladant, Jean-Baptiste; Donnadieu, Yannick

    2016-01-01

    The historical view of a uniformly warm Cretaceous is being increasingly challenged by the accumulation of new data hinting at the possibility of glacial events, even during the Cenomanian–Turonian (∼95 Myr ago), the warmest interval of the Cretaceous. Here we show that the palaeogeography typifying the Cenomanian–Turonian renders the Earth System resilient to glaciation with no perennial ice accumulation occurring under prescribed CO2 levels as low as 420 p.p.m. Conversely, late Aptian (∼115 Myr ago) and Maastrichtian (∼70 Myr ago) continental configurations set the stage for cooler climatic conditions, favouring possible inception of Antarctic ice sheets under CO2 concentrations, respectively, about 400 and 300 p.p.m. higher than for the Cenomanian–Turonian. Our simulations notably emphasize that palaeogeography can crucially impact global climate by modulating the CO2 threshold for ice sheet inception and make the possibility of glacial events during the Cenomanian–Turonian unlikely. PMID:27650167

  10. Formation of the Upper Cretaceous cherts in northeastern Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Genedi, Adel

    1998-02-01

    The Upper Cretaceous cherts in northeast Sinai, Egypt are found as nodules, tabular sheets and continuous beds within the carbonate dominated successions. They occur in the Halal, Wata and Matulla Formations and become a very conspicuous constituent in the Sudr Chalk. The chert framework is typical of all interstratal structures and is of two types: spotted and brecciated forms. The chert is classified into a fossiliferous and nonfossiliferous variety. The first is likely either to form packstone-grainstone fabrics or to form wackestone fabrics. The packstone-grainstone fabric is interpreted as replacing platform carbonate deposits at relatively lower energy but in an oxygenated environment while the wackestone fabric chert replaces low energy deep water carbonates. This Upper Cretaceous silica cycle was dominated by inorganic reactions involving dissolved silica, and there is much evidence of secondary diagenetic silicification. This process would have started in early diagenesis as opal-A, opal-C and opal-CT precipitated from interstitial waters. Quartz represents the end product of recrystallisation. This transformation from metastable to stable silica phases is explained as a solid-solid diagenetic reaction as emphasised by δ18O. The nodular cherts have formed in coastal mixing zones with opal-CT and quartz supersaturation and calcite undersaturation. The source of silica of the deep water cherts cannot be explained by this mixing zone model and needs further study. On the other hand, there is no evidence of deposition of layered amorphous silica in either shallow or deep environments.

  11. A reappraisal of Polyptychodon (Plesiosauria) from the Cretaceous of England

    PubMed Central

    2016-01-01

    Pliosauridae is a globally distributed clade of aquatic predatory amniotes whose fossil record spans from the Lower Jurassic to the Upper Cretaceous. However, the knowledge of pliosaurid interrelationships remains limited. In part, this is a consequence of a few key taxa awaiting detailed reassessment. Among them, the taxon Polyptychodon is of special importance. It was established on isolated teeth from the mid-Cretaceous strata of East and South East England and subsequently associated with numerous finds of near-cosmopolitan distribution. Here the taxon is reassessed based on the original dental material from England, with special focus on a large collection of late Albian material from the Cambridge Greensand near Cambridge. The dental material is reviewed here from historical and stratigraphic perspective, described in detail, and discussed in terms of its diagnostic nature. The considerable morphological variability observed in the teeth attributed to Polyptychodon, together with a wide stratigraphic range of the ascribed material, possibly exceeding 35 Ma (early Aptian to ?middle Santonian), suggests that the taxon is based on a multispecies assemblage, possibly incorporating members of different plesiosaur clades. Due to the absence of any autapomorphic characters or unique character combinations in the original material, Polyptychodon interruptus, the type species of Polyptychodon, is considered nomen dubium. From a global perspective, Polyptychodon is viewed as a wastebasket taxon whose material originating from different localities should be reconsidered separately. PMID:27190712

  12. A Cretaceous origin for fire adaptations in the Cape flora.

    PubMed

    He, Tianhua; Lamont, Byron B; Manning, John

    2016-10-05

    Fire has had a profound effect on the evolution of worldwide biotas. The Cape Floristic Region is one of the world's most species-rich regions, yet it is highly prone to recurrent fires and fire-adapted species contribute strongly to the overall flora. It is hypothesized that the current fire regimes in the Cape could be as old as 6-8 million years (My), while indirect evidence indicates that the onset of fire could have reached 18 million years ago (Ma). Here, we trace the origin of fire-dependent traits in two monocot families that are significant elements in the fire-prone Cape flora. Our analysis shows that fire-stimulated flowering originated in the Cape Haemodoraceae 81 Ma, while fire-stimulated germination arose in the African Restionaceae at least 70 Ma, implying that wildfires have been a significant force in the evolution of the Cape flora at least 60 My earlier than previous estimates. Our results provide strong evidence for the presence of fire adaptations in the Cape from the Cretaceous, leading to the extraordinary persistence of a fire-adapted flora in this biodiversity hotspot, and giving support to the hypothesis that Cretaceous fire was a global phenomenon that shaped the evolution of terrestrial floras.

  13. A Cretaceous origin for fire adaptations in the Cape flora

    PubMed Central

    He, Tianhua; Lamont, Byron B.; Manning, John

    2016-01-01

    Fire has had a profound effect on the evolution of worldwide biotas. The Cape Floristic Region is one of the world’s most species-rich regions, yet it is highly prone to recurrent fires and fire-adapted species contribute strongly to the overall flora. It is hypothesized that the current fire regimes in the Cape could be as old as 6–8 million years (My), while indirect evidence indicates that the onset of fire could have reached 18 million years ago (Ma). Here, we trace the origin of fire-dependent traits in two monocot families that are significant elements in the fire-prone Cape flora. Our analysis shows that fire-stimulated flowering originated in the Cape Haemodoraceae 81 Ma, while fire-stimulated germination arose in the African Restionaceae at least 70 Ma, implying that wildfires have been a significant force in the evolution of the Cape flora at least 60 My earlier than previous estimates. Our results provide strong evidence for the presence of fire adaptations in the Cape from the Cretaceous, leading to the extraordinary persistence of a fire-adapted flora in this biodiversity hotspot, and giving support to the hypothesis that Cretaceous fire was a global phenomenon that shaped the evolution of terrestrial floras. PMID:27703273

  14. New fossil ants in French Cretaceous amber (Hymenoptera: Formicidae)

    NASA Astrophysics Data System (ADS)

    Perrichot, Vincent; Nel, André; Néraudeau, Didier; Lacau, Sébastien; Guyot, Thierry

    2008-02-01

    Recent studies on the ant phylogeny are mainly based on the molecular analyses of extant subfamilies and do not include the extinct, only Cretaceous subfamily Sphecomyrminae. However, the latter is of major importance for ant relationships, as it is considered the most basal subfamily. Therefore, each new discovery of a Mesozoic ant is of high interest for improving our understanding of their early history and basal relationships. In this paper, a new sphecomyrmine ant, allied to the Burmese amber genus Haidomyrmex, is described from mid-Cretaceous amber of France as Haidomyrmodes mammuthus gen. and sp. n. The diagnosis of the tribe Haidomyrmecini is emended based on the new type material, which includes a gyne (alate female) and two incomplete workers. The genus Sphecomyrmodes, hitherto known by a single species from Burmese amber, is also reported and a new species described as S. occidentalis sp. n. after two workers remarkably preserved in a single piece of Early Cenomanian French amber. The new fossils provide additional information on early ant diversity and relationships and demonstrate that the monophyly of the Sphecomyrminae, as currently defined, is still weakly supported.

  15. Snakefly diversity in Early Cretaceous amber from Spain (Neuropterida, Raphidioptera)

    PubMed Central

    la Fuente, Ricardo Pérez-de; Peñalver, Enrique; Delclòs, Xavier; Engel, Michael S.

    2012-01-01

    Abstract The Albian amber from Spain presently harbors the greatest number and diversity of amber adult fossil snakeflies (Raphidioptera). Within Baissopteridae, Baissoptera? cretaceoelectra sp. n., from the Peñacerrada I outcrop (Moraza, Burgos), is the first amber inclusion belonging to the family and described from western Eurasia, thus substantially expanding the paleogeographical range of the family formerly known from the Cretaceous of Brazil and eastern Asia. Within the family Mesoraphidiidae, Necroraphidia arcuata gen. et sp. n. and Amarantoraphidia ventolina gen. et sp. n. are described from the El Soplao outcrop (Rábago, Cantabria), whereas Styporaphidia? hispanica sp. n. and Alavaraphidia imperterrita gen. et sp. n. are describedfrom Peñacerrada I. In addition, three morphospecies are recognized from fragmentary remains. The following combinations are restored: Yanoraphidia gaoi Ren, 1995, stat. rest., Mesoraphidia durlstonensis Jepson, Coram and Jarzembowski, 2009, stat. rest., and Mesoraphidia heteroneura Ren, 1997, stat. rest. The singularity of this rich paleodiversity could be due to the paleogeographic isolation of the Iberian territory and also the prevalence of wildfires during the Cretaceous. PMID:22787417

  16. Extraterrestrial cause for the cretaceous-tertiary extinction.

    PubMed

    Alvarez, L W; Alvarez, W; Asaro, F; Michel, H V

    1980-06-06

    Platinum metals are depleted in the earth's crust relative to their cosmic abundance; concentrations of these elements in deep-sea sediments may thus indicate influxes of extraterrestrial material. Deep-sea limestones exposed in Italy, Denmark, and New Zealand show iridium increases of about 30, 160, and 20 times, respectively, above the background level at precisely the time of the Cretaceous-Tertiary extinctions, 65 million years ago. Reasons are given to indicate that this iridium is of extraterrestrial origin, but did not come from a nearby supernova. A hypothesis is suggested which accounts for the extinctions and the iridium observations. Impact of a large earth-crossing asteroid would inject about 60 times the object's mass into the atmosphere as pulverized rock; a fraction of this dust would stay in the stratosphere for several years and be distributed worldwide. The resulting darkness would suppress photosynthesis, and the expected biological consequences match quite closely the extinctions observed in the paleontological record. One prediction of this hypothesis has been verified: the chemical composition of the boundary clay, which is thought to come from the stratospheric dust, is markedly different from that of clay mixed with the Cretaceous and Tertiary limestones, which are chemically similar to each other. Four different independent estimates of the diameter of the asteroid give values that lie in the range 10 +/- 4 kilometers.

  17. Occurrences of Chert in Jurassic-Cretaceous Calciturbidites (SW Turkey)

    NASA Astrophysics Data System (ADS)

    Gül, Murat

    2015-10-01

    The Lycian Nappes, containing ophiolite and sedimentary rocks sequences, crop out in the southwest Turkey. The Tavas Nappe is a part of the Lycian Nappes. It includes the Lower Jurassic-Upper Cretaceous calciturbidites. Chert occurrences were observed in the lower part of this calciturbidite. These cherts can be classified on the basis of length, internal structure and host rock. Chert bands are 3.20-35.0min length and 7.0-35.0 cm thick. Chert lenses are 5.0-175.0 cm in length and 1.0-33.0 cm thick. According to its internal structure, granular chert (bladedlarge equitant quartz minerals replaced the big calcite mineral of fossil shell) and porcelanious chert (microcrystalline silica replaced micrite) have been separated. Cherts are generally associated with calcarenite-calcirudite, the others with calcilutite. Micritic calcite patches of cherts point out an uncompleted silicification. The source of silica was dominantly quartz-rich, older, basal rocks and to a lesser extent radiolarians. The coarse-grained calciturbidites act as a way for silica transportation. Some calcite veins (formed during transportation and emplacement of nappes) cut both calciturbidites and cherts. Thus, chert occurrences evolved before emplacement of nappes (the latest Cretaceous-Late Miocene period) during the epigenetic phase.

  18. Microbial Cretaceous park: biodiversity of microbial fossils entrapped in amber

    NASA Astrophysics Data System (ADS)

    Martín-González, Ana; Wierzchos, Jacek; Gutiérrez, Juan C.; Alonso, Jesús; Ascaso, Carmen

    2009-05-01

    Microorganisms are the most ancient cells on this planet and they include key phyla for understanding cell evolution and Earth history, but, unfortunately, their microbial records are scarce. Here, we present a critical review of fossilized prokaryotic and eukaryotic microorganisms entrapped in Cretaceous ambers (but not exclusively from this geological period) obtained from deposits worldwide. Microbiota in ambers are rather diverse and include bacteria, fungi, and protists. We comment on the most important microbial records from the last 25 years, although it is not an exhaustive bibliographic compilation. The most frequently reported eukaryotic microfossils are shells of amoebae and protists with a cell wall or a complex cortex. Likewise, diverse dormant stages (palmeloid forms, resting cysts, spores, etc.) are abundant in ambers. Besides, viral and protist pathogens have been identified inside insects entrapped in amber. The situation regarding filamentous bacteria and fungi is quite confusing because in some cases, the same record was identified consecutively as a member of these phylogenetically distant groups. To avoid these identification errors in the future, we propose to apply a more resolute microscopic and analytical method in amber studies. Also, we discuss the most recent findings about ancient DNA repair and bacterial survival in remote substrates, which support the real possibility of ancient DNA amplification and bacterial resuscitation from Cretaceous resins.

  19. New and revised maimetshid wasps from Cretaceous ambers (Hymenoptera, Maimetshidae)

    PubMed Central

    Perrichot, Vincent; Ortega-Blanco, Jaime; McKellar, Ryan C.; Delclòs, Xavier; Azar, Dany; Nel, André; Tafforeau, Paul; Engel, Michael S.

    2011-01-01

    Abstract New material of the wasp family Maimetshidae (Apocrita) is presented from four Cretaceous amber deposits – the Neocomian of Lebanon, the Early Albian of Spain, the latest Albian/earliest Cenomanian of France, and the Campanian of Canada. The new record from Canadian Cretaceous amber extends the temporal and paleogeographical range of the family. New material from France is assignable to Guyotemaimetsha enigmatica Perrichot et al. including the first females for the species, while a series of males and females from Spain are described and figured as Iberomaimetsha Ortega-Blanco, Perrichot & Engel, gen. n., with the two new species Iberomaimetsha rasnitsyni Ortega-Blanco, Perrichot & Engel, sp. n. and Iberomaimetsha nihtmara Ortega-Blanco, Delclòs & Engel, sp. n.; a single female from Lebanon is described and figured as Ahiromaimetsha najlae Perrichot, Azar, Nel & Engel, gen. et sp. n., and a single male from Canada is described and figured as Ahstemiam cellula McKellar & Engel, gen. et sp. n. The taxa are compared with other maimetshids, a key to genera and species is given, and brief comments made on the family. PMID:22259291

  20. Late cretaceous aquatic plant world in Patagonia, Argentina.

    PubMed

    Cúneo, N Rubén; Gandolfo, María A; Zamaloa, María C; Hermsen, Elizabeth

    2014-01-01

    In this contribution, we describe latest Cretaceous aquatic plant communities from the La Colonia Formation, Patagonia, Argentina, based on their taxonomic components and paleoecological attributes. The La Colonia Formation is a geological unit deposited during a Maastrichtian-Danian transgressive episode of the South Atlantic Ocean. This event resulted in the deposition of a series of fine-grained sediments associated with lagoon systems occurring along irregular coastal plains in northern Patagonia. These deposits preserved a diverse biota, including aquatic and terrestrial plants and animals. The aquatic macrophytes can be broadly divided into two groups: free-floating and rooted, the latter with emergent or floating leaves. Free-floating macrophytes include ferns in Salviniaceae (Azolla and Paleoazolla) and a monocot (Araceae). Floating microphytes include green algae (Botryoccocus, Pediastrum and Zygnemataceae). Among the rooted components, marsileaceous water ferns (including Regnellidium and an extinct form) and the eudicot angiosperm Nelumbo (Nelumbonaceae) are the dominant groups. Terrestrial plants occurring in the vegetation surrounding the lagoons include monocots (palms and Typhaceae), ferns with affinities to Dicksoniaceae, conifers, and dicots. A reconstruction of the aquatic plant paleocommuniy is provided based on the distribution of the fossils along a freshwater horizon within the La Colonia Formation. This contribution constitutes the first reconstruction of a Cretaceous aquatic habitat for southern South America.

  1. Late Cretaceous multicolored shales and phosphatic sedimentary rocks in Egypt

    SciTech Connect

    Glenn, C.R.; Garrison, R.E.; Arthur, M.A.

    1983-03-01

    Upper Cretaceous transitional fluvial to marine variegated shale (upper Nubia Formation) and the fully marine Duwi (phosphate) Formation occur as thin, widespread, shallow-marine deposits in an east-west-trending belt spanning the lower-middle latitudes of Egypt. On a larger scale, the phosphoritic rocks in Egypt represent but a small portion of a laterally extensive Middle Eastern-North African phosphogenic province of Upper Cretaceous-Lower Tertiary age that accounts for accumulation of minable marine phosphate in excess of 70 billion tons. Phosphorites, porcelanites/cherts, organic carbon-rich shales, glauconitic sandstones, and bioclastic and fine-grained carbonate rocks variously reflect major hemipelagic and shallow-water carbonate sedimentation. Biosiliceous hemipelagic deposits, now diagenetically altered to procelanite and chert, reflect low energy depositional conditions that were periodically interrupted by high energy, possibly storm-induced currents and/or down-slope redeposition. Both dark shales and porcelanites locally contain abundant organic matter and are commonly finely laminated. Porcelanites and black shales are phosphatic, containing phosphatic grains identical, morphologically and chemically, to those found in associated phosphorites, and are probably the source from which the phosphorites were derived. The organic carbon-rich shales of the Duwi Formation appear to be quite laterally extensive and may, depending on thermal maturity, represent potential hydrocarbon source rocks in other portions of the region (e.g., Western Desert, Gulf of Suez), where they are more deeply buried.

  2. Kaolinization in examples of Carboniferous and Cretaceous tonsteins

    SciTech Connect

    McCuistion, J.T.; Ambers, C.P. . Dept. of Geological Science)

    1993-03-01

    Optical and electron petrography were used to test if differences of mineral textures in tonsteins offer any evidence of the alteration history of their volcanic precursors. A suspect tonstein from the Mississippian Sample fm. In Crawford County, IN, and true tonsteins from the Pennsylvanian Breathitt Fm. in Leslie County, KY; Cretaceous Adaville Fm. in Lincoln County, WY; and the Cretaceous Williams Fork Fm. in Moffat and Routt Counties, CO were studied. Optical petrography showed lack of silt or sand in the Indiana clay, minor silt/fine-sand in the Kentucky clay, and lack of mica in both. The Indiana clay is very fine grained and has a strong preferred orientation, whereas the Kentucky clay matrix is also very fine grained but is isotropic. Abundant, angular, quartzofeldspathic, medium sand abounds in the western clays. Very large kaolinite verms up to 0.5 mm in length dominate the western clays. Each large kaolinite contains evenly spaced interlayers of relict biotite extending exactly the width of each verm. Kaolinite in the western clays shows strong compactional strain including undulose extinction, kink bands, and shearing along the basal plane. Compactional fabrics show all of the samples to have altered from their parent material before significant burial.

  3. Mid-Cretaceous Hawaiian tholeiites preserved in Kamchatka

    NASA Astrophysics Data System (ADS)

    Portnyagin, Maxim; Savelyev, Dmitry; Hoernle, Kaj; Hauff, Folkmar; Garbe-Schönberg, Dieter

    2008-11-01

    We report geochemical data on a peculiar group of Albian-Cenomanian(120-93 Ma) basalts preserved in ophiolites on the KamchatskyMys peninsula (Kamchatka, Russia) that share trace element andisotopic compositions with enriched tholeiites from the Detroitand Meiji Seamounts in the Hawaiian-Emperor Seamount chain.Melt inclusions in chromium spinel from these rocks, representativeof melt composition unaffected by post-magmatic alteration,exhibit Hawaiian-type [Th/Ba]n (0.25-0.77; i.e., distinctivelylow compared to the majority of oceanic island basalts and mid-oceanicridge basalts). Low 208Pb*/206Pb* of ~0.93 in rocks and high[Nb/La]n = 1.1-4.6 in melt inclusions suggest the presenceof a distinctive "Kea"-type component in their source.We propose that the ophiolitic basalts represent older (Earlyto middle Cretaceous) products of the Hawaiian hotspot (olderthan preserved on the northwest Pacific seafloor) that wereaccreted to the forearc of Kamchatka. The presence of similarcompositional components in modern and Cretaceous Hawaiian hotspotlavas suggests a persistent yet heterogeneous composition ofthe mantle plume, which may have sampled ≥15% of the core-mantleboundary layer over the past ~100 m.y.

  4. Evolutionary transition of dental formula in Late Cretaceous eutherian mammals

    NASA Astrophysics Data System (ADS)

    Averianov, Alexander O.; Archibald, J. David

    2015-10-01

    Kulbeckia kulbecke, stem placental mammal from the Late Cretaceous of Uzbekistan, shows a transitional stage of evolution in the dental formula from five to four premolars. A non-replaced dP3/dp3 may occur as individual variation. In other specimens, the lower premolars are crowded with no space for development of dp3. As is evident from the CT scanning of one juvenile specimen, the development of dp3 started in a late ontogenetic stage and was confined to the pulp cavity of the developing p2. This dp3 would have been resorbed in a later ontogenetic stage, as the roots of p2 formed. The initial stage of reduction of the third premolar can be traced to stem therians ( Juramaia and Eomaia), which have both dP3 and P3 present in the adult dentition. Further delay in the development of dP3/dp3 led to the loss of the permanent P3/p3 (a possible synapomorphy for Eutheria). The dP3/dp3 was present during most of the adult stages in the Late Cretaceous stem placentals Zhelestidae and Gypsonictops. This tooth is totally absent in basal taxa of Placentalia, which normally have at most four premolars.

  5. Evidence for global cooling in the Late Cretaceous

    PubMed Central

    Linnert, Christian; Robinson, Stuart A.; Lees, Jackie A.; Bown, Paul R.; Pérez-Rodríguez, Irene; Petrizzo, Maria Rose; Falzoni, Francesca; Littler, Kate; Arz, José Antonio; Russell, Ernest E.

    2014-01-01

    The Late Cretaceous ‘greenhouse’ world witnessed a transition from one of the warmest climates of the past 140 million years to cooler conditions, yet still without significant continental ice. Low-latitude sea surface temperature (SST) records are a vital piece of evidence required to unravel the cause of Late Cretaceous cooling, but high-quality data remain illusive. Here, using an organic geochemical palaeothermometer (TEX86), we present a record of SSTs for the Campanian–Maastrichtian interval (~83–66 Ma) from hemipelagic sediments deposited on the western North Atlantic shelf. Our record reveals that the North Atlantic at 35 °N was relatively warm in the earliest Campanian, with maximum SSTs of ~35 °C, but experienced significant cooling (~7 °C) after this to <~28 °C during the Maastrichtian. The overall stratigraphic trend is remarkably similar to records of high-latitude SSTs and bottom-water temperatures, suggesting that the cooling pattern was global rather than regional and, therefore, driven predominantly by declining atmospheric pCO2 levels. PMID:24937202

  6. Mountain Building Triggered Late Cretaceous North American Megaherbivore Dinosaur Radiation

    PubMed Central

    Gates, Terry A.; Prieto-Márquez, Albert; Zanno, Lindsay E.

    2012-01-01

    Prior studies of Mesozoic biodiversity document a diversity peak for dinosaur species in the Campanian stage of the Late Cretaceous, yet have failed to provide explicit causal mechanisms. We provide evidence that a marked increase in North American dinosaur biodiversity can be attributed to dynamic orogenic episodes within the Western Interior Basin (WIB). Detailed fossil occurrences document an association between the shift from Sevier-style, latitudinally arrayed basins to smaller Laramide-style, longitudinally arrayed basins and a well substantiated decreased geographic range/increased taxonomic diversity of megaherbivorous dinosaur species. Dispersal-vicariance analysis demonstrates that the nearly identical biogeographic histories of the megaherbivorous dinosaur clades Ceratopsidae and Hadrosauridae are attributable to rapid diversification events within restricted basins and that isolation events are contemporaneous with known tectonic activity in the region. SymmeTREE analysis indicates that megaherbivorous dinosaur clades exhibited significant variation in diversification rates throughout the Late Cretaceous. Phylogenetic divergence estimates of fossil clades offer a new lower boundary on Laramide surficial deformation that precedes estimates based on sedimentological data alone. PMID:22876302

  7. Cretaceous to Recent extension in the Bering Strait region, Alaska

    NASA Astrophysics Data System (ADS)

    Dumitru, Trevor A.; Miller, Elizabeth L.; O'Sullivan, Paul B.; Amato, Jeffrey M.; Hannula, Kimberly A.; Calvert, Andrew T.; Gans, Phillip B.

    1995-06-01

    A key issue presented by the geology of northern Alaska concerns the demise of the Brooks Range going west toward the Bering Strait region. The main Brookian tectonic and stratigraphic elements continue into the Russian Far East, but the thick crustal root and high elevations that define the modern physiographic Brooks Range die out approaching the Bering and Chukchi shelves, which form an unusually broad area of submerged continental crust. Structural, geochronologic, and apatite fission-track data indicate that at least three episodes of extension may have affected the crust beneath the Bering Strait region, in the middle to Late Cretaceous, Eocene-early Oligocene, and Pliocene(?)-Recent. This extension may explain the present thinner crust of the region, the formation of extensive continental shelves, and the dismemberment and southward translation of tectonic elements as they are traced from the Brooks Range toward Russia. Evidence for these events is recorded within a gently tilted 10- to 15-km thick crustal section exposed on the western Seward Peninsula. The earliest episode is documented at high structural levels by the postcollision exhumation history of blueschists. Structural data indicate exhumation was accomplished in part by thinning of the crust during north-south extension bracketed between 120 and 90 Ma by 40Ar/39Ar and U-Pb ages. The Kigluaik Mountains gneiss dome rose through the crust during the later stages of this extension at 91 Ma. Similar gneiss domes occur within a broad, discontinuous belt of Cretaceous magmatism linking interior Alaska with northeast Russia; mantle-derived melts within this belt likely heated the crust and facilitated extension. Apatite fission-track ages indicate cooling below ≈120-85°C occurred sometime between 100 and 70 Ma, and the area subsequently resided at shallow crustal depths (<3-4 km) until the present. This suggests that denudation of deep levels of the crust by erosion and/or tectonism was mostly

  8. Milankovitch rhythms in the Cretaceous: A GCM modelling study

    NASA Astrophysics Data System (ADS)

    Park, Jeffrey; Oglesby, Robert J.

    1991-10-01

    A major feature of the Cretaceous sedimentary record is the presence of cyclical bedding in carbonate sequences, many of which have periodicities similar to those of the Milankovitch rhythms of the earth-sun orbit. We used an atmospheric general circulation model, the NCAR CCM1, to investigate changes in the modeled Cretaceous atmospheric climate resulting from imposed Milankovitch orbital insolation changes. We extend a previous study using a 100 Ma mid-Cretaceous reconstruction to include perpetual-season (January and July) effects due to changes in obliquity as well as changes in precession. A total of eighteen pairs of insolation states have been examined. We perform a regression for linear sensitivity coefficients appropriate to precession and obliquity insolation changes, as well as compute a jackknife estimate of the coefficient uncertainty. Comparison of the regression residual to inherent model variability allows an estimate of any systematic but nonlinear model response to orbital insolation changes. Of particular importance is the response of the atmospheric hydrologic cycle. Changes in this cycle are consistent with at least three examples of Cretaceous bedding cycles: (1) The South Atlantic, where cyclical changes in the E- P balance with precession and, to a lesser extent, obliquity may account for regional oxic versus anoxic cycles observed in Cretaceous marine sediments cored from this region. (2) Regional changes in E- P over the east Tethys and adjacent continents with changes in insolation, which could induce changes in the production of oceanic deep water, possibly accounting for global occurrences of cyclic anoxic conditions. (3) Our simulations show a significant response of the hydrologic cycle to obliquity in July over western North America. This response, however, is smaller and more localized than those observed in low-latitude regions, and may not be robust to small changes in model boundary conditions. For most regions and modeled

  9. Osmium Isotopic Composition of the Sumbar Cretaceous- Tertiary Boundary, Turkmenia

    NASA Astrophysics Data System (ADS)

    Meisel, T.; Krahenbuhl, U.; Nazarov, M. A.

    1992-07-01

    ., Barsukova L. D., Koselov G. M., Nizhegorodova I. V. and Amanniyazov K. N. (1988) The Cretaceous- Paleogene boundary in southern Turkmenia and its geochemical characteristics. Int. Geol. Rev. 30, 121-135. Esser B. K. and Turekian K. K. (1989) Osmium isotopic composition of the Raton Basin Cretaceous-Tertiary boundary interval. 70, 717. Kraehenbuehl U., Geissbuehler M., Buehler F. and Eberhardt P. (1988) The measurement of osmium isotopes in samples from a Cretaceous/Tertiary (K/T) section of the Raton Basin, USA. Meteoritics 23, 282. Lichte F. E., Wilson S. M., Brooks R. R., Reeves R. D., Holzbecher J. and Ryan D. E. (1986) New method for the measurement of osmium isotopes applied to a New Zealand Cretaceous/Tertiary boundary shale. Nature 322, 816-817. Luck J. M. and Turekian K. K. (1983) Osmium-^187/Osmium-^186 in manganese nodules and the Cretaceous-Tertiary boundary. Science 222, 613- 615. Turekian K. K. (1982) Potential of ^187Os/^186Os as a cosmic versus terrestrial indicator in high iridium layers of sedimentary strata. Geol. Bull. Am. Spec. Pap. 190, 243-249.

  10. Cretaceous Arctic magmatism: Slab vs. plume? Or slab and plume?

    NASA Astrophysics Data System (ADS)

    Gottlieb, E. S.; Miller, E. L.; Andronikov, A. V.; Brumley, K.; Mayer, L. A.; Mukasa, S. B.

    2010-12-01

    Tectonic models for the Cretaceous paleogeographic evolution of the Arctic Ocean and its adjacent landmasses propose that rifting in the Amerasia Basin (AB) began in Jura-Cretaceous time, accompanied by the development of the High Arctic Large Igneous Province (HALIP). During the same timespan, deformation and slab-related magmatism, followed by intra-arc rifting, took place along the Pacific side of what was to become the Arctic Ocean. A compilation and comparison of the ages, characteristics and space-time variation of circum-Arctic magmatism allows for a better understanding of the role of Pacific margin versus Arctic-Atlantic plate tectonics and the role of plume-related magmatism in the origin of the Arctic Ocean. In Jura-Cretaceous time, an arc built upon older terranes overthrust the Arctic continental margins of North America and Eurasia, shedding debris into foreland basins in the Brooks Range, Alaska, across Chukotka, Russia, to the Lena Delta and New Siberian Islands region of the Russian Arctic. These syn-tectonic sediments have some common sources (e.g., ~250-300 Ma magmatic rocks) as determined by U-Pb detrital zircon geochronology. They are as young as Valanginian-Berriasian (~136 Ma, Gradstein et al., 2004) and place a lower limit on the age of formation of the AB. Subsequent intrusions of granitoid plutons, inferred to be ultimately slab-retreat related, form a belt along the far eastern Russian Arctic continental margin onto Seward Peninsula and have yielded a continuous succession of zircon U-Pb ages from ~137-95 Ma (n=28) and a younger suite ~91-82 Ma (n=16). All plutons dated were intruded in an extensional tectonic setting based on their relations to wall-rock deformation. Regional distribution of ages shows a southward migration of the locus of magmatism during Cretaceous time. Basaltic lavas as old as 130 Ma and as young as 80 Ma (40Ar/39Ar)) erupted across the Canadian Arctic Islands, Svalbard and Franz Josef Land and are associated with

  11. A Ceratopsian Dinosaur from the Lower Cretaceous of Western North America, and the Biogeography of Neoceratopsia

    PubMed Central

    Farke, Andrew A.; Maxwell, W. Desmond; Cifelli, Richard L.; Wedel, Mathew J.

    2014-01-01

    The fossil record for neoceratopsian (horned) dinosaurs in the Lower Cretaceous of North America primarily comprises isolated teeth and postcrania of limited taxonomic resolution, hampering previous efforts to reconstruct the early evolution of this group in North America. An associated cranium and lower jaw from the Cloverly Formation (?middle–late Albian, between 104 and 109 million years old) of southern Montana is designated as the holotype for Aquilops americanus gen. et sp. nov. Aquilops americanus is distinguished by several autapomorphies, including a strongly hooked rostral bone with a midline boss and an elongate and sharply pointed antorbital fossa. The skull in the only known specimen is comparatively small, measuring 84 mm between the tips of the rostral and jugal. The taxon is interpreted as a basal neoceratopsian closely related to Early Cretaceous Asian taxa, such as Liaoceratops and Auroraceratops. Biogeographically, A. americanus probably originated via a dispersal from Asia into North America; the exact route of this dispersal is ambiguous, although a Beringian rather than European route seems more likely in light of the absence of ceratopsians in the Early Cretaceous of Europe. Other amniote clades show similar biogeographic patterns, supporting an intercontinental migratory event between Asia and North America during the late Early Cretaceous. The temporal and geographic distribution of Upper Cretaceous neoceratopsians (leptoceratopsids and ceratopsoids) suggests at least intermittent connections between North America and Asia through the early Late Cretaceous, likely followed by an interval of isolation and finally reconnection during the latest Cretaceous. PMID:25494182

  12. Time-calibrated models support congruency between Cretaceous continental rifting and titanosaurian evolutionary history

    PubMed Central

    O‘Connor, Patrick M.

    2016-01-01

    Recent model-based phylogenetic approaches have expanded upon the incorporation of extinct lineages and their respective temporal information for calibrating divergence date estimates. Here, model-based methods are explored to estimate divergence dates and ancestral ranges for titanosaurian sauropod dinosaurs, an extinct and globally distributed terrestrial clade that existed during the extensive Cretaceous supercontinental break-up. Our models estimate an Early Cretaceous (approx. 135 Ma) South American origin for Titanosauria. The estimated divergence dates are broadly congruent with Cretaceous geophysical models of supercontinental separation and subsequent continental isolation while obviating the invocation of continuous Late Cretaceous continental connections (e.g. ephemeral land bridges). Divergence dates for mid-Cretaceous African and South American sister lineages support semi-isolated subequatorial African faunas in concordance with the gradual northward separation between South America and Africa. Finally, Late Cretaceous Africa may have linked Laurasian lineages with their sister South American lineages, though the current Late Cretaceous African terrestrial fossil record remains meagre. PMID:27048465

  13. Time-calibrated models support congruency between Cretaceous continental rifting and titanosaurian evolutionary history.

    PubMed

    Gorscak, Eric; O'Connor, Patrick M

    2016-04-01

    Recent model-based phylogenetic approaches have expanded upon the incorporation of extinct lineages and their respective temporal information for calibrating divergence date estimates. Here, model-based methods are explored to estimate divergence dates and ancestral ranges for titanosaurian sauropod dinosaurs, an extinct and globally distributed terrestrial clade that existed during the extensive Cretaceous supercontinental break-up. Our models estimate an Early Cretaceous (approx. 135 Ma) South American origin for Titanosauria. The estimated divergence dates are broadly congruent with Cretaceous geophysical models of supercontinental separation and subsequent continental isolation while obviating the invocation of continuous Late Cretaceous continental connections (e.g. ephemeral land bridges). Divergence dates for mid-Cretaceous African and South American sister lineages support semi-isolated subequatorial African faunas in concordance with the gradual northward separation between South America and Africa. Finally, Late Cretaceous Africa may have linked Laurasian lineages with their sister South American lineages, though the current Late Cretaceous African terrestrial fossil record remains meagre. © 2016 The Author(s).

  14. Mass extinction of birds at the Cretaceous-Paleogene (K-Pg) boundary.

    PubMed

    Longrich, Nicholas R; Tokaryk, Tim; Field, Daniel J

    2011-09-13

    The effect of the Cretaceous-Paleogene (K-Pg) (formerly Cretaceous-Tertiary, K-T) mass extinction on avian evolution is debated, primarily because of the poor fossil record of Late Cretaceous birds. In particular, it remains unclear whether archaic birds became extinct gradually over the course of the Cretaceous or whether they remained diverse up to the end of the Cretaceous and perished in the K-Pg mass extinction. Here, we describe a diverse avifauna from the latest Maastrichtian of western North America, which provides definitive evidence for the persistence of a range of archaic birds to within 300,000 y of the K-Pg boundary. A total of 17 species are identified, including 7 species of archaic bird, representing Enantiornithes, Ichthyornithes, Hesperornithes, and an Apsaravis-like bird. None of these groups are known to survive into the Paleogene, and their persistence into the latest Maastrichtian therefore provides strong evidence for a mass extinction of archaic birds coinciding with the Chicxulub asteroid impact. Most of the birds described here represent advanced ornithurines, showing that a major radiation of Ornithurae preceded the end of the Cretaceous, but none can be definitively referred to the Neornithes. This avifauna is the most diverse known from the Late Cretaceous, and although size disparity is lower than in modern birds, the assemblage includes both smaller forms and some of the largest volant birds known from the Mesozoic, emphasizing the degree to which avian diversification had proceeded by the end of the age of dinosaurs.

  15. Evolution and palaeoenvironment of the Bauru Basin (Upper Cretaceous, Brazil)

    NASA Astrophysics Data System (ADS)

    Fernandes, Luiz Alberto; Magalhães Ribeiro, Claudia Maria

    2015-08-01

    The Bauru Basin was one of the great Cretaceous desert basins of the world, evolved in arid zone called Southern Hot Arid Belt. Its paleobiological record consists mainly of dinosaurs, crocodiles and turtles. The Bauru Basin is an extensive region of the South American continent that includes parts of the southeast and south of Brazil, covering an area of 370,000 km2. It is an interior continental basin that developed as a result of subsidence of the central-southern part of the South-American Platform during the Late Cretaceous (Coniacian-Maastrichtian). This sag basin is filled by a sandy siliciclastic sequence with a preserved maximum thickness of 480 m, deposited in semiarid to desert conditions. Its basement consists of volcanic rocks (mainly basalts) of the Lower Cretaceous (Hauterivian) Serra Geral basalt flows, of the Paraná-Etendeka Continental Flood Basalt Province. The sag basin was filled by an essentially siliciclastic psammitic sequence. In lithostratigraphic terms the sequence consists of the Caiuá and Bauru groups. The northern and northeastern edges of the basin provide a record of more proximal original deposits, such as associations of conglomeratic sand facies from alluvial fans, lakes, and intertwined distributary river systems. The progressive basin filling led to the burial of the basaltic substrate by extensive blanket sand sheets, associated with deposits of small dunes and small shallow lakes that retained mud (such as loess). Also in this intermediate context between the edges (more humid) and the interior (dry), wide sand sheet areas crossed by unconfined desert rivers (wadis) occurred. In the central axis of the elliptical basin a regional drainage system formed, flowing from northeast to southwest between the edges of the basin and the hot and dry inner periphery of the Caiuá desert (southwest). Life in the Bauru Basin flourished most in the areas with the greatest water availability, in which dinosaurs, crocodiles, turtles, fish

  16. Mid-Ocean Ridge Subduction Offshore Alaska During the Cretaceous

    NASA Astrophysics Data System (ADS)

    Sdrolias, M.; Müller, R. D.; Gaina, C.; Torsvik, T.

    2007-12-01

    We present a framework for the tectonic development of the Arctic region through a set of regional plate and ocean floor reconstructions since the early Cretaceous. In order to understand the effect of time-dependent geometries of mid-ocean ridges, subduction zones and collisional plate boundaries on Arctic basin evolution and reactivation through time, we reconstruct now subducted ocean floor, including portions of tectonic plates which have now entirely vanished, and restore their plate boundary configurations and subduction history. We reconstruct paleo-oceans by creating "synthetic plates", the locations and geometry of which are established on the basis of magnetic lineations and fracture zones, geological data and the rules of plate tectonics. The absolute position of the Pacific Plate and its surrounding plates is restored using a Pacific hotspot reference frame, whereas all other plates are reconstructed based on an African-Indian hotspot reference system. This approach is required because the Pacific Plate was entirely surrounded by subduction zones in the Cretaceous, and therefore Pacific Ocean plates cannot be related to other tectonic plates via relative plate motions. Our reconstructions reveal that the Izanagi-Farallon spreading ridge was subducted underneath Alaska from about 120-100Ma. Prior to 120 Ma the northern portion of the Izagani-Farallon plate boundary was a convergent boundary according to our reconstructions, implying that between 140 and 120 Ma a subducting slab was overridden by the Alaskan North Slope and possibly other associated terranes. The Izanagi-Farallon subduction zone (before 120 Ma) and mid-ocean ridge (after 120 Ma) was oriented roughly orthogonal to the overriding plate. Trench subduction would have been associated with negative dynamic topography on the overriding plate, whereas an eastward migrating slab window underneath North Slope and its border terranes may have resulted in asthenospheric upwelling and extension. Mid-Cretaceous

  17. Paleosols and the Cretaceous/Tertiary transition in the Big Bend region of Texas

    SciTech Connect

    Lehman, T.M. )

    1990-04-01

    A marked change in paleosols coincides with Cretaceous/Tertiary transition in fluvial sediments of the Big Bend region in Texas. Early Paleocene paleosols exhibit thick, black epipedons and a greater depth to the argillic and petrocalcic horizons compared to Late Cretaceous paleosols. These features and comparison with modern soils suggest that early Paleocene soils developed under conditions of higher rainfall and cooler temperatures than did Late Cretaceous soils. The change in paleosols occurs abruptly at the highest occurrence of dinosaur bones in the section.

  18. Orbital Cyclicities Above and Below the Cretaceous-Tertiary Boundary, Umbria-Marche Region, Italy

    NASA Technical Reports Server (NTRS)

    King, D. T., Jr.; Petruny, L. W.; Rampino, M. R.; Prokoph, A.; Pope, K.; Fischer, A. G.; Montanari, A.; Ocampo, A. C.

    2000-01-01

    In the Umbria-Marche region of central Italy, the deep basinal carbonate Scaglia Rossa Formation contains an important sequence of Cretaceous-Tertiary strata including a detailed paleomagnetic record and the distal impactoclastic Cretaceous-Tertiary boundary clay layer. In addition to this significant paleomagnetic and impactoclastic record, the Scaglia Rossa also contains potentially important stratigraphic evidence of relatively long-term oceanic and atmospheric consequences of the Cretaceous-Tertiary bolide catastrophe, which we will describe for the first time herein. Additional information is contained in the original extended abstract.

  19. Palynological and iridium anomalies at Cretaceous-Tertiary boundary, south-central Saskatchewan

    USGS Publications Warehouse

    Nichols, D.J.; Jarzen, D.M.; Orth, C.J.; Oliver, P.Q.

    1986-01-01

    The Cretaceous-Tertiary boundary in south-central Saskatchewan is marked by coincident anomalies in abundance of iridium and fern spores at the extinction level of a suite of Cretaceous pollen taxa. Evidence of disruption of the terrestrial flora includes the fern-spore abundance anomaly and local extinction of as much as 30 percent of angiosperm species. The reorganized earliest Tertiary flora is made up largely of surviving species that assumed new roles of dominance. Persistence of climatically sensitive taxa across the boundary indicates that if paleoclimate was altered by the terminal Cretaceous event, it returned quickly to the pre-event condition.

  20. Orbital Cyclicities Above and Below the Cretaceous-Tertiary Boundary, Umbria-Marche Region, Italy

    NASA Technical Reports Server (NTRS)

    King, D. T., Jr.; Petruny, L. W.; Rampino, M. R.; Prokoph, A.; Pope, K.; Fischer, A. G.; Montanari, A.; Ocampo, A. C.

    2000-01-01

    In the Umbria-Marche region of central Italy, the deep basinal carbonate Scaglia Rossa Formation contains an important sequence of Cretaceous-Tertiary strata including a detailed paleomagnetic record and the distal impactoclastic Cretaceous-Tertiary boundary clay layer. In addition to this significant paleomagnetic and impactoclastic record, the Scaglia Rossa also contains potentially important stratigraphic evidence of relatively long-term oceanic and atmospheric consequences of the Cretaceous-Tertiary bolide catastrophe, which we will describe for the first time herein. Additional information is contained in the original extended abstract.

  1. Clay mineralogy of the Cretaceous-Tertiary boundary clay. [in search for asteroid ejecta

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Reynolds, R. C.

    1983-01-01

    Cretaceous-Tertiary boundary layer clay samples from four localities were subjected to analyses which imply that they are neither mineralogically exotic nor distinct from locally derived clays above and below the boundary. The anomalous iridium-rich ejecta component predicted by the asteroid impact scenario of Alvarez et al (1980) was not detected. It is proposed that volcanic material be considered as an explanation of the geochemical anomalies of the Cretaceous-Tertiary boundary. A model which involves a period of intense volcanism at the end of the Cretaceous would generate a variety of climatic and biological effects consonant with the geologic history of that period.

  2. Palynological and Iridium Anomalies at Cretaceous-Tertiary Boundary, South-Central Saskatchewan

    NASA Astrophysics Data System (ADS)

    Nichols, D. J.; Jarzen, D. M.; Orth, C. J.; Oliver, P. Q.

    1986-02-01

    The Cretaceous-Tertiary boundary in south-central Saskatchewan is marked by coincident anomalies in abundance of iridium and fern spores at the extinction level of a suite of Cretaceous pollen taxa. Evidence of disruption of the terrestrial flora includes the fern-spore abundance anomaly and local extinction of as much as 30 percent of angiosperm species. The reorganized earliest Tertiary flora is made up largely of surviving species that assumed new roles of dominance. Persistence of climatically sensitive taxa across the boundary indicates that if paleoclimate was altered by the terminal Cretaceous event, it returned quickly to the pre-event condition.

  3. Paleobotany of Livingston Island: The first report of a Cretaceous fossil flora from Hannah Point

    USGS Publications Warehouse

    Leppe, M.; Michea, W.; Muñoz, C.; Palma-Heldt, S.; Fernandoy, F.

    2007-01-01

    This is the first report of a fossil flora from Hannah Point, Livingston Island, South Shetland Islands, Antarctica. The fossiliferous content of an outcrop, located between two igneous rock units of Cretaceous age are mainly composed of leaf imprints and some fossil trunks. The leaf assemblage consists of 18 taxa of Pteridophyta, Pinophyta and one angiosperm. The plant assemblage can be compared to other Early Cretaceous floras from the South Shetland Islands, but several taxa have an evidently Late Cretaceous affinity. A Coniacian-Santonian age is the most probable age for the outcrops, supported by previous K/Ar isotopic studies of the basalts over and underlying the fossiliferous sequence

  4. Clay mineralogy of the Cretaceous-Tertiary boundary clay. [in search for asteroid ejecta

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Reynolds, R. C.

    1983-01-01

    Cretaceous-Tertiary boundary layer clay samples from four localities were subjected to analyses which imply that they are neither mineralogically exotic nor distinct from locally derived clays above and below the boundary. The anomalous iridium-rich ejecta component predicted by the asteroid impact scenario of Alvarez et al (1980) was not detected. It is proposed that volcanic material be considered as an explanation of the geochemical anomalies of the Cretaceous-Tertiary boundary. A model which involves a period of intense volcanism at the end of the Cretaceous would generate a variety of climatic and biological effects consonant with the geologic history of that period.

  5. New crocodiles (Eusuchia: Alligatoroidea) from the Upper Cretaceous of southern Europe

    NASA Astrophysics Data System (ADS)

    Buscalioni, Angela D.; Ortega, Francisco; Vasse, Denis

    1997-10-01

    The Upper Cretaceous sites of Laño and Quintanilla del Coco in northern Spain have yielded significant crocodilian remains, allowing a more precise interpretation of the fragmentary record of southwestern Europe. Two new genera, Musturzabalsuchus and Acynodon, have been recognized. Both taxa were extinct at the end of the Cretaceous. Their relationships with the alligatoroidean Eusuchia suggest a close relationship with Paleolaurasian groups. Musturzabalsuchus might be regarded as an endemic european taxa, the oldest known member of the basal Alligatoroidea. Acynodon is the only non-North American taxon that is related to the short snouted Upper Cretaceous alligatorids.

  6. Paleogeography and sedimentology of Upper Cretaceous turbidites, San Diego, California.

    USGS Publications Warehouse

    Nilsen, T.H.; Abbott, P.L.

    1981-01-01

    Upper Cretaceous (Campanian and Maestrichtian) marine strata of the Rosario Group in the San Diego area include the Point Loma Formation and overlying Cabrillo Formation. Thes units contain 6 facies associations which define a deep-sea fan deposited by westward-flowing sediment gravity flows that transported sediments derived chiefly from batholithic and pre-batholithic metamorphic rocks of the Peninsular Ranges. The sedimentary basin initially deepened abruptly. The fan then prograded westward into the basin, with a retrogradational phase recorded in the uppermost part of the sequence. The fan was deposited along the eastern edge of a forearc basin similar to that of the Great Valley sequence in northern California. The western part of the fan appears to have been truncated by late Cenozoic strike-slip faulting.-from Authors

  7. Cretaceous extinctions - Evidence for wildfires and search for meteoritic material

    NASA Technical Reports Server (NTRS)

    Wolbach, W. S.; Lewis, R. S.; Anders, E.

    1985-01-01

    The results of analyses of the contents of deposits in the Cretaceous-Ternary (K-T) transition at three sites worldwide are discussed. The study was undertaken to examine the composition of the object which may have struck the earth, causing widespread biotic extinction. The data indicate that most of the parent body was destroyed on impact, a condition which would also hold true for comets, suggesting that comets were not a source of prebiotic life. A four-orders-of-magnitude excess of carbon in the K-T layer is considered in terms of its source, which is suspected to be deposits from wildfires. The consequent extinctions of species are regarded as possibly making the current nuclear winter scenarios too optimistic.

  8. Fossil evidence of water lilies (Nymphaeales) in the Early Cretaceous.

    PubMed

    Friis, E M; Pedersen, K R; Crane, P R

    2001-03-15

    Phylogenetic analyses have identified the water lilies (Nymphaeales: Cabombaceae and Nymphaeaceae), together with four other small groups of flowering plants (the 'ANITA clades': Amborellaceae, Illiciales, Trimeniaceae, Austrobaileyaceae), as the first diverging lineages from the main branch of the angiosperm phylogenetic tree, but evidence of these groups in the earliest phases of the angiosperm fossil record has remained elusive. Here we report the earliest unequivocal evidence, based on fossil floral structures and associated pollen, of fossil plants related to members of the ANITA clades. This extends the history of the water lilies (Nymphaeales) back to the Early Cretaceous (125-115 million years) and into the oldest fossil assemblages that contain unequivocal angiosperm stamens and carpels. This discovery adds to the growing congruence between results from molecular-based analyses of relationships among angiosperms and the palaeobotanical record. It is also consistent with previous observations that the flowers of early angiosperms were generally very small compared with those of their living relatives.

  9. Geodynamic investigation of a Cretaceous superplume in the Pacific ocean

    NASA Astrophysics Data System (ADS)

    Xue, Jing; King, Scott D.

    2016-08-01

    The similarity in both age and geochemistry of the Ontong-Java, Hikurangi, and Manihiki plateaus suggests that they formed as a single superplateau from a unique mantle source. We investigate the necessity of a thermal superplume to form the Great Ontong-Java plateau at about 120 Ma using 3D spherical models of convection with imposed plate reconstruction models. The numerical simulations show that the giant plateau which formed as a result of melting due to the interaction of a plume head and the lithosphere would have been divided into smaller plateaus by spreading ridges, and end up at the present locations of Ontong-Java, Manihiki, and Hikurangi plateaus as well as a fragment in the western Caribbean. By comparing temperature and melt fraction between models with and without an initial thermal superplume, we propose that a Cretaceous superplume in Pacific at 120 Ma is required to form large igneous plateaus.

  10. An endoparasitoid Cretaceous fly and the evolution of parasitoidism

    NASA Astrophysics Data System (ADS)

    Zhang, Qingqing; Zhang, Junfeng; Feng, Yitao; Zhang, Haichun; Wang, Bo

    2016-02-01

    Parasitoidism is a key innovation in insect evolution, and parasitoid insects, nowadays, play a significant role in structuring ecological communities. Despite their diversity and ecological impact, little is known about the early evolution and ecology of parasitoid insects, especially parasitoid true flies (Diptera). Here, we describe a bizarre fly, Zhenia xiai gen. et sp. nov., from Late Cretaceous Burmese amber (about 99 million years old) that represents the latest occurrence of the family Eremochaetidae. Z. xiai is an endoparasitoid insect as evidenced by a highly developed, hypodermic-like ovipositor formed by abdominal tergites VIII + IX that was used for injecting eggs into hosts and enlarged tridactylous claws supposedly for clasping hosts. Our results suggest that eremochaetids are among the earliest definite records of parasitoid insects. Our findings reveal an unexpected morphological specialization of flies and broaden our understanding of the evolution and diversity of ancient parasitoid insects.

  11. Cellular preservation of musculoskeletal specializations in the Cretaceous bird Confuciusornis

    PubMed Central

    Jiang, Baoyu; Zhao, Tao; Regnault, Sophie; Edwards, Nicholas P.; Kohn, Simon C.; Li, Zhiheng; Wogelius, Roy A.; Benton, Michael J.; Hutchinson, John R.

    2017-01-01

    The hindlimb of theropod dinosaurs changed appreciably in the lineage leading to extant birds, becoming more ‘crouched' in association with changes to body shape and gait dynamics. This postural evolution included anatomical changes of the foot and ankle, altering the moment arms and control of the muscles that manipulated the tarsometatarsus and digits, but the timing of these changes is unknown. Here, we report cellular-level preservation of tendon- and cartilage-like tissues from the lower hindlimb of Early Cretaceous Confuciusornis. The digital flexor tendons passed through cartilages, cartilaginous cristae and ridges on the plantar side of the distal tibiotarsus and proximal tarsometatarsus, as in extant birds. In particular, fibrocartilaginous and cartilaginous structures on the plantar surface of the ankle joint of Confuciusornis may indicate a more crouched hindlimb posture. Recognition of these specialized soft tissues in Confuciusornis is enabled by our combination of imaging and chemical analyses applied to an exceptionally preserved fossil. PMID:28327586

  12. Stishovite at the cretaceous-tertiary boundary, raton, new Mexico.

    PubMed

    McHone, J F; Nieman, R A; Lewis, C F; Yates, A M

    1989-03-03

    Stishovite, a dense phase of silica, has become widely accepted as an indicator of terrestrial impact events. Stishovite occurs at several impact structures but has not been found at volcanic sites. Solid-state silicon-29 magic-angle spinning nuclear magnetic resonance (silicon-29 MAS NMR) and X-ray diffraction of samples from the Cretaceous-Tertiary boundary layer at Raton, New Mexico, indicate that stishovite occurs in crystalline mineral grains. Stishovite was indicated by a single, sharp resonance with a chemical shift value of -191.3 ppm, characteristic of silicon in octahedral coordination, that disappeared after heating the sample at 850 degrees Celsius for 30 minutes. An X-ray diffraction pattern of HF residuals from the unheated sample displayed more than 120 peaks, most of which correspond to quartz, zircon, rutile, and anatase. Eight unambiguous weak to moderate reflections could be ascribed to d-spacings characteristic of stishovite.

  13. Ankylosaur Remains from the Early Cretaceous (Valanginian) of Northwestern Germany

    PubMed Central

    Sachs, Sven; Hornung, Jahn J.

    2013-01-01

    A fragmentary cervico-pectoral lateral spine and partial humerus of an ankylosaur from the Early Cretaceous (early Valanginian) of Gronau in Westfalen, northwestern Germany, are described. The spine shows closest morphological similarities to the characteristic cervical and pectoral spines of Hylaeosaurus armatus from the late Valanginian of England. An extensive comparison of distal humeri among thyreophoran dinosaurs supports systematic differences in the morphology of the distal condyli between Ankylosauria and Stegosauria and a referral of the Gronau specimen to the former. The humerus fragment indicates a rather small individual, probably in the size range of H. armatus, and both specimens are determined herein as ?Hylaeosaurus sp.. A short overview of other purported ankylosaur material from the Berriasian-Valanginian of northwest Germany shows that, aside from the material described herein, only tracks can be attributed to this clade with confidence at present. PMID:23560099

  14. Seismic expression of subtle strat trap in Upper Cretaceous Almond

    USGS Publications Warehouse

    Ryder, Robert T.; Lee, Myung W.; Agena, Warren F.; Anderson, Robert C.

    1990-01-01

    The east flank of the Rock Springs uplift and the adjacent Wamsutter arch contain several large hydrocarbon accumulations. Among these accumulations are Patrick Draw field, which produces oil and gas from a stratigraphic trap in the Upper Cretaceous Almond formation, and Table Rock field, a faulted anticlinal trap that produces gas from multiple Tertiary, Mesozoic, and Paleozoic reservoirs. The principal petroleum reservoir in Patrick Draw field is a sandstone at the top of the Almond formation. This sandstone attains a maximum thickness of 35ft and piches out westward into relatively impervious silt-stone and shale that constitute the trapping facies. The objective of this investigation is to determine whether or not the stratigraphic trap at Patrick Draw can be detected on a 12 fold, common depth point seismic profile acquired by Forest Oil Corp. and its partners. The seismic line is 18.5 miles long and crosses Patrick Draw and Table Rock fields.

  15. Seismic expression of subtle strat trap in upper Cretaceous Almond

    SciTech Connect

    Ryder, R.T. ); Lee, M.W.; Agena, W.F. ); Anderson, R.C. )

    1990-12-17

    The east flank of the Rock Springs uplift and the adjacent Wamsutter arch contain several large hydrocarbon accumulations. Among these accumulations are Patrick Draw field, which produces oil and gas from a stratigraphic trap in the upper Cretaceous Almond formation, and Table Rock field, a faulted anticlinal trap that produces gas from multiple Tertiary, Mesozoic, and Paleozoic reservoirs. The principal petroleum reservoir in Patrick Draw field is a sandstone at the top of the Almond formation. This sandstone attains a maximum thickness of 35 ft (11 m) and pinches out westward into relatively impervious siltstone and shale that constitute the trapping facies. The objective of this investigation is to determine whether or not the stratigraphic trap at Patrick Draw can be detected on a 12 fold, common depth point seismic profile.

  16. Alisitos Formation, calcareous facies: Early Cretaceous episode of tectonic calm

    SciTech Connect

    Suarez-Vidal, F.

    1986-07-01

    The Alisitos Formation (Aptian-Albian), shaped as a marine volcanic arc, crops out along the western side of the peninsula of Baja California bounding the Peninsular Range batholith. Lithologically, this formation is formed by volcanic-breccias, porphyritic flows, biohermal limestones, and tuffaceous and pyroclastic sediments. The distribution of the different facies depends on the nature of volcanism and the distance from a volcanic center, although the presence of massive biohermal limestone indicates that in the Early Cretaceous (during the tectonic episodes), the volcanic activity decreased to the level that the environmental conditions were favorable for the development of an organic reef barrier, behind an island arc. Such conditions existed south of the Agua Blanca fault and extended to El Arco, Baja California. Based upon field observations and petrological analysis of the Alisitos limestone, an attempt is made to recreate the environmental condition in the Punta China and San Fernando, Baja California, sites.

  17. Alisitos Formation calcareous facies - Early Cretaceous episode of tectonic calm

    SciTech Connect

    Suarez-Vidal, F.

    1986-04-01

    The Alisitos Formation (Aptian-Albian), shaped as a marine volcanic arc, crops out along the western side of Baja California bounding the Peninsula Range batholith. Lithologically, this formation is formed by volcanic breccias, porphyritic flows, biohermal limestones, and tuffaceous and pyroclastic sediments. The distribution of the different facies depends on the nature of volcanism and the distance from a volcanic center, although the presence of massive biohermal limestone indicates that in the Early Cretaceous (during tectonic episodes), the volcanic activity decreased to the level that the environmental conditions were favorable for the development of an organic barrier reef behind an island arc. Such conditions pertained south of the Agua Blanca fault and extended to El Arco, Baja California. Based on field observation and petrologic analysis in the Alisitos limestone, an attempt has been made to re-create the environmental condition in the Punta China and San Fernando, Baja California, sites.

  18. Theory of chaotic orbital variations confirmed by Cretaceous geological evidence

    NASA Astrophysics Data System (ADS)

    Ma, Chao; Meyers, Stephen R.; Sageman, Bradley B.

    2017-02-01

    Variations in the Earth’s orbit and spin vector are a primary control on insolation and climate; their recognition in the geological record has revolutionized our understanding of palaeoclimate dynamics, and has catalysed improvements in the accuracy and precision of the geological timescale. Yet the secular evolution of the planetary orbits beyond 50 million years ago remains highly uncertain, and the chaotic dynamical nature of the Solar System predicted by theoretical models has yet to be rigorously confirmed by well constrained (radioisotopically calibrated and anchored) geological data. Here we present geological evidence for a chaotic resonance transition associated with interactions between the orbits of Mars and the Earth, using an integrated radioisotopic and astronomical timescale from the Cretaceous Western Interior Basin of what is now North America. This analysis confirms the predicted chaotic dynamical behaviour of the Solar System, and provides a constraint for refining numerical solutions for insolation, which will enable a more precise and accurate geological timescale to be produced.

  19. The Cretaceous superchron geodynamo: observations near the tangent cylinder.

    PubMed

    Tarduno, John A; Cottrell, Rory D; Smirnov, Alexei V

    2002-10-29

    If relationships exist between the frequency of geomagnetic reversals and the morphology, secular variation, and intensity of Earth's magnetic field, they should be best expressed during superchrons, intervals tens of millions of years long lacking reversals. Here we report paleomagnetic and paleointensity data from lavas of the Cretaceous Normal Polarity Superchron that formed at high latitudes near the tangent cylinder that surrounds the solid inner core. The time-averaged field recorded by these lavas is remarkably strong and stable. When combined with global results available from lower latitudes, these data define a time-averaged field that is overwhelmingly dominated by the axial dipole (octupole components are insignificant). These observations suggest that the basic features of the geomagnetic field are intrinsically related. Superchrons may reflect times when the nature of core-mantle boundary heat flux allows the geodynamo to operate at peak efficiency.

  20. Early Cretaceous Archaeamphora is not a carnivorous angiosperm.

    PubMed

    Wong, William Oki; Dilcher, David Leonard; Labandeira, Conrad C; Sun, Ge; Fleischmann, Andreas

    2015-01-01

    Archaeamphora longicervia H. Q. Li was described as an herbaceous, Sarraceniaceae-like pitcher plant from the mid Early Cretaceous Yixian Formation of Liaoning Province, northeastern China. Here, a re-investigation of A. longicervia specimens from the Yixian Formation provides new insights into its identity and the morphology of pitcher plants claimed by Li. We demonstrate that putative pitchers of Archaeamphora are insect-induced leaf galls that consist of three components: (1) an innermost larval chamber; (2) an intermediate zone of nutritive tissue; and (3) an outermost wall of sclerenchyma. Archaeamphora is not a carnivorous, Sarraceniaceae-like angiosperm, but represents insect-galled leaves of the previously reported gymnosperm Liaoningocladus boii G. Sun et al. from the Yixian Formation.

  1. A biostratigraphic sequence analysis in Cretaceous sediments from Eastern Venezuela

    SciTech Connect

    Paredes, I.; Carillo, M.; Fasola, A.; Luna, F. )

    1993-02-01

    This paper presents the results of a high resolution biostratigraphic study integrated with petrophysic analyses, of the Late Cretaceous sequence in several wells from the Maturin Sub-Basin, Eastern Venezuela. The main objective of this study is to integrate the different faunal and floral assemblages to the sedimentological evolution of the basin using sequential analysis techniques. This technique was applied using mainly terrestrial and marine palynomorphs which were relatively abundant and diverse as compared to the scarcity of foraminifera and nonnofossils. Based on the percentages of abundance and the diversity of the different groups of microfoss it was possible to establish the maximum flooding surfaces and condensation levels which allowed the definition of the possible candidates for the sequence boundaries. On the other hand, the identified bioevents made possible the definition of the chronostratigraphic datums of the sequence under study. The results obtained will contribute to optimize the exploration and development programs of the oil fields in Eastern Venezuela.

  2. Cretaceous stem chondrichthyans survived the end-Permian mass extinction.

    PubMed

    Guinot, Guillaume; Adnet, Sylvain; Cavin, Lionel; Cappetta, Henri

    2013-01-01

    Cladodontomorph sharks are Palaeozoic stem chondrichthyans thought to go extinct at the end-Permian mass extinction. This extinction preceded the diversification of euselachians, including modern sharks. Here we describe an outer-platform cladodontomorph shark tooth assemblage from the Early Cretaceous of southern France, increasing the fossil record of this group by circa 120 million years. Identification of this material rests on new histological observations and morphological evidence. Our finding shows that this lineage survived mass extinctions most likely by habitat contraction, using deep-sea refuge environments during catastrophic events. The recorded gap in the cladodontomorph lineage represents the longest gap in the fossil record for an extinct marine vertebrate group. This discovery demonstrates that the deep-sea marine diversity, poorly known during most of the fish evolutionary history, contains essential data for a complete understanding of the long-term evolution of marine fish paleobiodiversity.

  3. Cellular preservation of musculoskeletal specializations in the Cretaceous bird Confuciusornis.

    PubMed

    Jiang, Baoyu; Zhao, Tao; Regnault, Sophie; Edwards, Nicholas P; Kohn, Simon C; Li, Zhiheng; Wogelius, Roy A; Benton, Michael J; Hutchinson, John R

    2017-03-22

    The hindlimb of theropod dinosaurs changed appreciably in the lineage leading to extant birds, becoming more 'crouched' in association with changes to body shape and gait dynamics. This postural evolution included anatomical changes of the foot and ankle, altering the moment arms and control of the muscles that manipulated the tarsometatarsus and digits, but the timing of these changes is unknown. Here, we report cellular-level preservation of tendon- and cartilage-like tissues from the lower hindlimb of Early Cretaceous Confuciusornis. The digital flexor tendons passed through cartilages, cartilaginous cristae and ridges on the plantar side of the distal tibiotarsus and proximal tarsometatarsus, as in extant birds. In particular, fibrocartilaginous and cartilaginous structures on the plantar surface of the ankle joint of Confuciusornis may indicate a more crouched hindlimb posture. Recognition of these specialized soft tissues in Confuciusornis is enabled by our combination of imaging and chemical analyses applied to an exceptionally preserved fossil.

  4. Plant ecological strategies shift across the Cretaceous-Paleogene boundary.

    PubMed

    Blonder, Benjamin; Royer, Dana L; Johnson, Kirk R; Miller, Ian; Enquist, Brian J

    2014-09-01

    The Chicxulub bolide impact caused the end-Cretaceous mass extinction of plants, but the associated selectivity and ecological effects are poorly known. Using a unique set of North Dakota leaf fossil assemblages spanning 2.2 Myr across the event, we show among angiosperms a reduction of ecological strategies and selection for fast-growth strategies consistent with a hypothesized recovery from an impact winter. Leaf mass per area (carbon investment) decreased in both mean and variance, while vein density (carbon assimilation rate) increased in mean, consistent with a shift towards "fast" growth strategies. Plant extinction from the bolide impact resulted in a shift in functional trait space that likely had broad consequences for ecosystem functioning.

  5. Depositional relations of cretaceous and Lower Tertiary Rocks, Northeastern Alaska

    SciTech Connect

    Molenaar, C.M.

    1983-07-01

    Analysis of depositional environments, new paleontologic data, and analogy with depositional patterns observed in areas to the west all indicate the need for revision of Cretaceous and lower Tertiary stratigraphy in northeastern Alaska. In the Sadlerochit Mountains area of the Arctic National Wildlife Refuge, the northernderived (Ellesmerian), late Neocomian Kemik Sandstone Member and organic-rich pebble shale member of the Kongakut Formation unconformably overlie Jurassic and Triassic rocks. The unconformity, which is of midNeocomian age, is present throughout northernmost Alaska and passes southward into a conformable shelf sequence. After pebble shale deposition, the depositional pattern is simply one of progradational basin filling from a southern (Brookian) provenance. This pattern is represented in vertical sequence initially by deep-marine basinal deposits succeeded by prodelta slope shales, and ultimately by deltaic deposits that prograded to the east or northeast in a predictable fashion over most of the area.

  6. The Cretaceous superchron geodynamo: Observations near the tangent cylinder

    PubMed Central

    Tarduno, John A.; Cottrell, Rory D.; Smirnov, Alexei V.

    2002-01-01

    If relationships exist between the frequency of geomagnetic reversals and the morphology, secular variation, and intensity of Earth's magnetic field, they should be best expressed during superchrons, intervals tens of millions of years long lacking reversals. Here we report paleomagnetic and paleointensity data from lavas of the Cretaceous Normal Polarity Superchron that formed at high latitudes near the tangent cylinder that surrounds the solid inner core. The time-averaged field recorded by these lavas is remarkably strong and stable. When combined with global results available from lower latitudes, these data define a time-averaged field that is overwhelmingly dominated by the axial dipole (octupole components are insignificant). These observations suggest that the basic features of the geomagnetic field are intrinsically related. Superchrons may reflect times when the nature of core–mantle boundary heat flux allows the geodynamo to operate at peak efficiency. PMID:12388778

  7. Early Cretaceous Archaeamphora is not a carnivorous angiosperm

    PubMed Central

    Wong, William Oki; Dilcher, David Leonard; Labandeira, Conrad C.; Sun, Ge; Fleischmann, Andreas

    2015-01-01

    Archaeamphora longicervia H. Q. Li was described as an herbaceous, Sarraceniaceae-like pitcher plant from the mid Early Cretaceous Yixian Formation of Liaoning Province, northeastern China. Here, a re-investigation of A. longicervia specimens from the Yixian Formation provides new insights into its identity and the morphology of pitcher plants claimed by Li. We demonstrate that putative pitchers of Archaeamphora are insect-induced leaf galls that consist of three components: (1) an innermost larval chamber; (2) an intermediate zone of nutritive tissue; and (3) an outermost wall of sclerenchyma. Archaeamphora is not a carnivorous, Sarraceniaceae-like angiosperm, but represents insect-galled leaves of the previously reported gymnosperm Liaoningocladus boii G. Sun et al. from the Yixian Formation. PMID:25999978

  8. An endoparasitoid Cretaceous fly and the evolution of parasitoidism.

    PubMed

    Zhang, Qingqing; Zhang, Junfeng; Feng, Yitao; Zhang, Haichun; Wang, Bo

    2016-02-01

    Parasitoidism is a key innovation in insect evolution, and parasitoid insects, nowadays, play a significant role in structuring ecological communities. Despite their diversity and ecological impact, little is known about the early evolution and ecology of parasitoid insects, especially parasitoid true flies (Diptera). Here, we describe a bizarre fly, Zhenia xiai gen. et sp. nov., from Late Cretaceous Burmese amber (about 99 million years old) that represents the latest occurrence of the family Eremochaetidae. Z. xiai is an endoparasitoid insect as evidenced by a highly developed, hypodermic-like ovipositor formed by abdominal tergites VIII + IX that was used for injecting eggs into hosts and enlarged tridactylous claws supposedly for clasping hosts. Our results suggest that eremochaetids are among the earliest definite records of parasitoid insects. Our findings reveal an unexpected morphological specialization of flies and broaden our understanding of the evolution and diversity of ancient parasitoid insects.

  9. Microlens arrays in the complex visual system of Cretaceous echinoderms.

    PubMed

    Gorzelak, Przemysław; Salamon, Mariusz A; Lach, Rafał; Loba, Michał; Ferré, Bruno

    2014-04-01

    It has long been assumed that photosensitivity in echinoderms is mainly related to diffuse photoreception mediated by photosensitive regions embedded within the dermis. Recent studies, however, have shown that some extant echinoderms may also display modified ossicles with microlenses acting as sophisticated photosensory organs. Thanks to their remarkable properties, these calcitic microlenses serve as an inspiration for scientists across various disciplines among which bio-inspired engineering. However, the evolutionary origins of these microlenses remain obscure. Here we provide microstructural evidence showing that analogous spherical calcitic lenses had been acquired in some brittle stars and starfish of Poland by the Late Cretaceous (Campanian, ~79 Ma). Specimens from Poland described here had a highly developed visual system similar to that of modern forms. We suggest that such an optimization of echinoderm skeletons for both mechanical and optical purposes reflects escalation-related adaptation to increased predation pressure during the so-called Mesozoic Marine Revolution.

  10. Theory of chaotic orbital variations confirmed by Cretaceous geological evidence.

    PubMed

    Ma, Chao; Meyers, Stephen R; Sageman, Bradley B

    2017-02-22

    Variations in the Earth's orbit and spin vector are a primary control on insolation and climate; their recognition in the geological record has revolutionized our understanding of palaeoclimate dynamics, and has catalysed improvements in the accuracy and precision of the geological timescale. Yet the secular evolution of the planetary orbits beyond 50 million years ago remains highly uncertain, and the chaotic dynamical nature of the Solar System predicted by theoretical models has yet to be rigorously confirmed by well constrained (radioisotopically calibrated and anchored) geological data. Here we present geological evidence for a chaotic resonance transition associated with interactions between the orbits of Mars and the Earth, using an integrated radioisotopic and astronomical timescale from the Cretaceous Western Interior Basin of what is now North America. This analysis confirms the predicted chaotic dynamical behaviour of the Solar System, and provides a constraint for refining numerical solutions for insolation, which will enable a more precise and accurate geological timescale to be produced.

  11. Magnesioferrite from the Cretaceous-Tertiary boundary, Caravaca, Spain

    USGS Publications Warehouse

    Bohor, B.F.; Foord, E.E.; Ganapathy, R.

    1986-01-01

    Magnesioferrite grading toward magnetite has been identified as a very small but meaningful constituent of the basal iron-rich portion of the Cretaceous-Tertiary (K-T) boundary clay at the Barranco del Gredero section, Caravaca, Spain. This spinel-type phase and others of the spinel group, found in K-T boundary clays at many widely separated sites, have been proposed as representing unaltered remnants of ejecta deposited from an earth-girdling dust cloud formed from the impact of an asteroid or other large bolide at the end of the Cretaceous period. The magnesioferrite occurs as euhedral, frequently skeletal, micron-sized octahedral crystals. The magnesioferrite contains 29 ?? 11 ppb Ir, which accounts for only part of the Ir anomaly at this K-T boundary layer (52 ?? 1 ppb Ir). Major element analyses of the magnesioferrite show variable compositions. Some minor solid solution exists toward hercynite-spinel and chromite-magnesiochromite. A trevorite-nichromite (NiFe2O4NiCr2O4) component is also present. The analyses are very similar to those reported for sites at Furlo and Petriccio, Umbria, Italy. On the basis of the morphology and general composition of the magnesioferrite grains, rapid crystallization at high temperature is indicated, most likely directly from a vapor phase and in an environment of moderate oxygen fugacity. Elemental similarity with metallic alloy injected into rocks beneath two known impact craters suggests that part of the magnesioferrite may be derived from the vaporized chondritic bolide itself, or from the mantle; there is no supporting evidence for its derivation from crustal target rocks. ?? 1986.

  12. Cretaceous and Eocene poroid hymenophores from Vancouver Island, British Columbia.

    PubMed

    Smith, Selena Y; Currah, Randolph S; Stockey, Ruth A

    2004-01-01

    Two fossil poroid hymenophore fragments, one from the Cretaceous Period and the other from the Eocene Epoch, are described. The permineralized specimens were obtained from marine calcareous concretions on Vancouver Island, British Columbia, Canada, and were studied using the cellulose acetate peel technique. Size and distribution of pores in the hymenophores, as well as the hyphal anatomy of the dissepiments and some hymenial elements, were examined. In the Cretaceous specimen, Quatsinoporites cranhamii sp. nov., pores are round to elliptical, three per mm, and 130-540 μm diam. Dissepiments consist of narrow, simple septate, hyphae. Neither basidia nor basidiospores are present, but acuminate hymenial cystidia, up to 54 μm in length, are common. The Eocene specimen, Appianoporites vancouverensis sp. nov., has a pore density of six per mm and pores are 130-163 μm in diam. Dissepiments consist of narrow, simple septate, thin-walled hyphae. Neither basidia nor basidiospores are present, but acuminate, thick-walled hymenial cystidia, up to 32 μm in length, are common. The poroid hymenophore is a characteristic of a number of extant basidiomycete taxa, including the Boletales, Polyporales and Hymenochaetales. It is unlikely that the fleshy, ephemeral, terrestrial basidiomata of the Boletales would be preserved in a marine environment, and thus the specimens are interpreted as belonging to basidiomycete lineages, with persistent, leathery or corky basidiomata. The simple septate hyphae, the minute pores and presence of cystidia most closely resemble taxa of the Hymenochaetales. These fossils unequivocally push back the minimum age of homobasidiomycetes and extend their paleogeographical range.

  13. Early Cretaceous ice rafting and climate zonation in Australia

    SciTech Connect

    Frakes, L.A.; Alley, N.F.; Deynoux, M.

    1995-07-01

    Lower Cretaceous (Valanginian to Albian) strata of the southwestern Eromanga and Carpentaria basins of central and northern Australia, respectively, provide evidence of strongly seasonal climates at high paleolatitudes. These include dispersed clasts (lonestones) in fine sediments and pseudomorphs of calcite after ikaite (glendonites), the latter being known to form only at temperatures below about 7{degrees}C. Rafting is regarded as the transport mechanism for clasts up to boulder size (lonestones) enclosed within dark mudrocks; this interpretation rests on rare occurrences of penetration by clasts into substrate layers. Driftwood and large floating algae are eliminated as possible rafts because fossil wood is found mainly concentrated in nearshore areas of the basins and large algal masses have not been observed. Rafting by icebergs is considered unlikely in view of the global lack of tillites and related glacial deposits of this age. Our interpretation is that seasonal ice, formed in winter along stream courses and strandlines, incorporated clasts which, during the melt season, were dropped into muddy sediments in both basins. Eromanga fine-sediment and concentrations of large clasts and associated sand lenses, both lying above local erosion surfaces. In the Carpentaria Basin, local dumping of sediment from raft surfaces resulted in accumulation of pods of small clasts. Three zones can be identified for the Early Cretaceous climate of eastern Australia: (1) a very cold southern region, at latitudes above about 72{degrees} S, characterized by meteoric waters possibly originating as Antarctic glacial meltwaters; (2) a zone of strongly seasonal climates, with freezing winters and warm summers, between about 72{degrees} and 53{degrees} S.Lat.; and (3) a mid-latitude zone (below about 50{degrees} S. Lat.), where freezing temperatures were not common. 60 refs., 7 figs.

  14. Fire-adapted Gondwanan Angiosperm floras evolved in the Cretaceous

    PubMed Central

    2012-01-01

    Background Fires have been widespread over the last 250 million years, peaking 60−125 million years ago (Ma), and might therefore have played a key role in the evolution of Angiosperms. Yet it is commonly believed that fireprone communities existed only after the global climate became more arid and seasonal 15 Ma. Recent molecular-based studies point to much earlier origins of fireprone Angiosperm floras in Australia and South Africa (to 60 Ma, Paleocene) but even these were constrained by the ages of the clades examined. Results Using a molecular-dated phylogeny for the great Gondwanan family Proteaceae, with a 113-million-year evolutionary history, we show that the ancestors of many of its characteristic sclerophyll genera, such as Protea, Conospermum, Leucadendron, Petrophile, Adenanthos and Leucospermum (all subfamily Proteoideae), occurred in fireprone habitats from 88 Ma (83−94, 95% HPD, Mid-Upper Cretaceous). This coincided with the highest atmospheric oxygen (combustibility) levels experienced over the past 150 million years. Migration from non-fireprone (essentially rainforest-climate-type) environments was accompanied by the evolution of highly speciose clades with a range of seed storage traits and fire-cued seed release or germination mechanisms that was diagnostic for each clade by 71 Ma, though the ant-dispersed lineage (as a soil seed-storage subclade) was delayed until 45 Ma. Conclusions Focusing on the widespread 113-million-year-old family Proteaceae, fireproneness among Gondwanan Angiosperm floras can now be traced back almost 90 million years into the fiery Cretaceous. The associated evolution of on-plant (serotiny) and soil seed storage, and later ant dispersal, affirms them as ancient adaptations to fire among flowering plants. PMID:23171161

  15. Correlation of the Cretaceous formations of Greenland and Alaska

    USGS Publications Warehouse

    Imlay, Ralph Willard; Reeside, John B.

    1953-01-01

    This is Number 10d of a series of correlation charts prepared for the Committee on Stratigraphy of the National Research Council. It has been sponsored by the U.S. Geological Survey and has required about seven months' time of both authors gathering and compiling data and evaluating fossil evidence. As the two regions dealt with in the chart are widely separated, the lists of references are also given separately. The annotations dealing with Greenland are based entirely on published information. The annotations dealing with Alaska are based on a re-examination of nearly all the Cretaceous fossils from Alaska are based on a re-examination of nearly all the Cretaceous fossils from Alaska in the collections of the Geological Survey. This has resulted in many concepts not hitherto published and in some concepts that are completely at variance with those that have been published. Naturally for large areas undergoing active exploration, such as Alaska, a correlation chart is out of date in many particulars as soon as published. Nevertheless it is valuable to the field man whose activities are confined to small areas but who must interpret much of his data in terms of surrounding areas that he has not seen. It is valuable to the student and to the general geologist because it organizes scattered information in a manner that can be applied in their field problems, makes quite unnecessary the memorization of stratigraphic correlations are based on observation and reasoning and not on a vast memory. It is probably of greatest value to the specialist who makes the chart because he discovers what areas and problems are most in need of research and can thereby direct his efforts and those of his associates in a manner that will yield the greatest results.

  16. The semi-aquatic pondweed bugs of a Cretaceous swamp

    PubMed Central

    Sánchez-García, Alba; Nel, André; Arillo, Antonio

    2017-01-01

    Pondweed bugs (Hemiptera: Mesoveliidae), considered a sister group to all other Gerromorpha, are exceedingly rare as fossils. Therefore, each new discovery of a fossil mesoveliid is of high interest, giving new insight into their early evolutionary history and diversity and enabling the testing of their proposed relationships. Here, we report the discovery of new mesoveliid material from Spanish Lower Cretaceous (Albian) amber, which is the first such find in Spanish amber. To date, fossil records of this family only include one species from French Kimmeridgian as compression fossils, two species in French amber (Albian-Cenomanian boundary), and one in Dominican amber (Miocene). The discovery of two males and one female described and figured as Glaesivelia pulcherrima Sánchez-García & Solórzano Kraemer gen. et sp. n., and a single female described and figured as Iberovelia quisquilia Sánchez-García & Nel, gen. et sp. n., reveals novel combinations of traits related to some genera currently in the subfamily Mesoveliinae. Brief comments about challenges facing the study of fossil mesoveliids are provided, showing the necessity for a revision of the existing phylogenetic hypotheses. Some of the specimens were studied using infrared microscopy, a promising alternative to the systematic study of organisms preserved in amber that cannot be clearly visualised. The new taxa significantly expand the fossil record of the family and shed new light on its palaeoecology. The fossils indicate that Mesoveliidae were certainly diverse by the Cretaceous and that numerous tiny cryptic species living in humid terrestrial to marginal aquatic habitats remain to be discovered. Furthermore, the finding of several specimens as syninclusions suggests aggregative behaviour, thereby representing the earliest documented evidence of such ethology. PMID:28890856

  17. The semi-aquatic pondweed bugs of a Cretaceous swamp.

    PubMed

    Sánchez-García, Alba; Nel, André; Arillo, Antonio; Solórzano Kraemer, Mónica M

    2017-01-01

    Pondweed bugs (Hemiptera: Mesoveliidae), considered a sister group to all other Gerromorpha, are exceedingly rare as fossils. Therefore, each new discovery of a fossil mesoveliid is of high interest, giving new insight into their early evolutionary history and diversity and enabling the testing of their proposed relationships. Here, we report the discovery of new mesoveliid material from Spanish Lower Cretaceous (Albian) amber, which is the first such find in Spanish amber. To date, fossil records of this family only include one species from French Kimmeridgian as compression fossils, two species in French amber (Albian-Cenomanian boundary), and one in Dominican amber (Miocene). The discovery of two males and one female described and figured as Glaesivelia pulcherrima Sánchez-García & Solórzano Kraemer gen. et sp. n., and a single female described and figured as Iberovelia quisquilia Sánchez-García & Nel, gen. et sp. n., reveals novel combinations of traits related to some genera currently in the subfamily Mesoveliinae. Brief comments about challenges facing the study of fossil mesoveliids are provided, showing the necessity for a revision of the existing phylogenetic hypotheses. Some of the specimens were studied using infrared microscopy, a promising alternative to the systematic study of organisms preserved in amber that cannot be clearly visualised. The new taxa significantly expand the fossil record of the family and shed new light on its palaeoecology. The fossils indicate that Mesoveliidae were certainly diverse by the Cretaceous and that numerous tiny cryptic species living in humid terrestrial to marginal aquatic habitats remain to be discovered. Furthermore, the finding of several specimens as syninclusions suggests aggregative behaviour, thereby representing the earliest documented evidence of such ethology.

  18. Proxy Constraints on a Warm, Fresh Late Cretaceous Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Super, J. R.; Li, H.; Pagani, M.; Chin, K.

    2015-12-01

    The warm Late Cretaceous is thought to have been characterized by open Arctic Ocean temperatures upwards of 15°C (Jenkyns et al., 2004). The high temperatures and low equator-to-pole temperature gradient have proven difficult to reproduce in paleoclimate models, with the role of the atmospheric hydrologic cycle in heat transport being particularly uncertain. Here, sediments, coprolites and fish teeth of Santonian-Campanian age from two high-latitude mixed terrestrial and marine sections on Devon Island in the Canadian High Arctic (Chin et al., 2008) were analyzed using a suite of organic and inorganic proxies to evaluate the temperature and salinity of Arctic seawater. Surface temperature estimates were derived from TEX86 estimates of near-shore, shallow (~100 meters depth) marine sediments (Witkowski et al., 2011) and MBT-CBT estimates from terrestrial intervals and both suggest mean annual temperatures of ~20°C, consistent with previous estimates considering the more southerly location of Devon Island. The oxygen isotope composition of non-diagenetic phosphate from vertebrate coprolites and bony fish teeth were then measured, giving values ranging from +13‰ to +19‰. Assuming the TEX86 temperatures are valid and using the temperature calibration of Puceat 2010, the δ18O values of coprolites imply Arctic Ocean seawater δ18O values between -4‰ and -10‰, implying very fresh conditions. Lastly, the δD of precipitation will be estimated from the hydrogen isotope composition of higher plant leaf waxes (C-25, C-27, C-29 and C-31 n-alkanes) from both terrestrial and marine intervals. Data are used to model the salinity of seawater and the meteoric relationship between δD and δ18O, thereby helping to evaluate the northern high-latitude meteoric water line of the Late Cretaceous.

  19. Tyrant dinosaur evolution tracks the rise and fall of Late Cretaceous oceans.

    PubMed

    Loewen, Mark A; Irmis, Randall B; Sertich, Joseph J W; Currie, Philip J; Sampson, Scott D

    2013-01-01

    The Late Cretaceous (∼95-66 million years ago) western North American landmass of Laramidia displayed heightened non-marine vertebrate diversity and intracontinental regionalism relative to other latest Cretaceous Laurasian ecosystems. Processes generating these patterns during this interval remain poorly understood despite their presumed role in the diversification of many clades. Tyrannosauridae, a clade of large-bodied theropod dinosaurs restricted to the Late Cretaceous of Laramidia and Asia, represents an ideal group for investigating Laramidian patterns of evolution. We use new tyrannosaurid discoveries from Utah--including a new taxon which represents the geologically oldest member of the clade--to investigate the evolution and biogeography of Tyrannosauridae. These data suggest a Laramidian origin for Tyrannosauridae, and implicate sea-level related controls in the isolation, diversification, and dispersal of this and many other Late Cretaceous vertebrate clades.

  20. Cretaceous pollen in Pliocene rocks: Implications for Pliocene climate in the southwestern United States

    NASA Astrophysics Data System (ADS)

    Farley Fleming, R.

    1994-09-01

    Pliocene rocks of the Imperial and Palm Spring Formations in southern California contain reworked Cretaceous pollen that helps determine the timing of erosion of Cretaceous rocks on the Colorado Plateau. The stratigraphic distribution of reworked pollen in the Imperial and Palm Spring Formations suggests that erosion of Cretaceous rocks in the southern part of the Colorado Plateau began by 4.5 Ma. Erosion of Cretaceous rocks in the northern part of the plateau began at 3.9 Ma. This erosional history indicates that rapid and extensive erosion of the Colorado Plateau occurred during the Pliocene and supports the hypothesis that much of the Grand Canyon was cut during the Pliocene, rather than earlier in the Tertiary. Rapid erosion and transport from the Colorado Plateau require the climate in that region during the Pliocene to have been significantly wetter than it is today.

  1. Anza palaeoichnological site. Late Cretaceous. Morocco. Part I. The first African pterosaur trackway (manus only)

    NASA Astrophysics Data System (ADS)

    Masrour, Moussa; Pascual-Arribas, Carlos; de Ducla, Marc; Hernández-Medrano, Nieves; Pérez-Lorente, Félix

    2017-10-01

    Cretaceous pterosaurs tracksites are very rare worldwide. Until now,only one African Cretaceous site withtracks of (Agadirichnus elegans and Pteraichnus) was known. This makes the discovery of a new outcrop in the Upper Cretaceous of Anza (Morocco) the third manifestation of this type of footprint in Africa, extending the existence of such traces from the Coniacian-Santonian to the Maastrichtian. The site contains only manus tracks, which can be explained as a result of erosion of pes prints. The lack of pes prints and the morphometric characteristics of the manus prints only allow us to relate these prints to Agadirichnus, Pteraichnus or maybe to a new ichnogenus. It is possible that the trackmakers are related to Ornithocheiroidea or Azhdarchoidea superfamilies whose fossil bones have been found from the Late Cretaceous in Morocco.

  2. Tyrant Dinosaur Evolution Tracks the Rise and Fall of Late Cretaceous Oceans

    PubMed Central

    Loewen, Mark A.; Irmis, Randall B.; Sertich, Joseph J. W.; Currie, Philip J.; Sampson, Scott D.

    2013-01-01

    The Late Cretaceous (∼95–66 million years ago) western North American landmass of Laramidia displayed heightened non-marine vertebrate diversity and intracontinental regionalism relative to other latest Cretaceous Laurasian ecosystems. Processes generating these patterns during this interval remain poorly understood despite their presumed role in the diversification of many clades. Tyrannosauridae, a clade of large-bodied theropod dinosaurs restricted to the Late Cretaceous of Laramidia and Asia, represents an ideal group for investigating Laramidian patterns of evolution. We use new tyrannosaurid discoveries from Utah—including a new taxon which represents the geologically oldest member of the clade—to investigate the evolution and biogeography of Tyrannosauridae. These data suggest a Laramidian origin for Tyrannosauridae, and implicate sea-level related controls in the isolation, diversification, and dispersal of this and many other Late Cretaceous vertebrate clades. PMID:24223179

  3. Neovenatorid theropods are apex predators in the Late Cretaceous of North America.

    PubMed

    Zanno, Lindsay E; Makovicky, Peter J

    2013-01-01

    Allosauroid theropods were a diverse and widespread radiation of Jurassic-Cretaceous megapredators. Achieving some of the largest body sizes among theropod dinosaurs, these colossal hunters dominated terrestrial ecosystems until a faunal turnover redefined apex predator guild occupancy during the final 20 million years of the Cretaceous. Here we describe a giant new species of allosauroid--Siats meekerorum gen. et sp. nov.--providing the first evidence for the cosmopolitan clade Neovenatoridae in North America. Siats is the youngest allosauroid yet discovered from the continent and demonstrates that the clade endured there into the Late Cretaceous. The discovery provides new evidence for ecologic sympatry of large allosauroids and small-bodied tyrannosauroids. These data support the hypothesis that extinction of Allosauroidea in terrestrial ecosystems of North America permitted ecological release of tyrannosauroids, which went on to dominate end-Cretaceous food webs.

  4. A giant sauropod dinosaur from an Upper Cretaceous mangrove deposit in Egypt.

    PubMed

    Smith, J B; Lamanna, M C; Lacovara, K J; Dodson, P; Smith, J R; Poole, J C; Giegengack, R; Attia, Y

    2001-06-01

    We describe a giant titanosaurid sauropod dinosaur discovered in coastal deposits in the Upper Cretaceous Bahariya Formation of Egypt, a unit that has produced three Tyrannosaurus-sized theropods and numerous other vertebrate taxa. Paralititan stromeri is the first tetrapod reported from Bahariya since 1935. Its 1.69-meter-long humerus is longer than that of any known Cretaceous sauropod. The autochthonous scavenged skeleton was preserved in mangrove deposits, raising the possibility that titanosaurids and their predators habitually entered such environments.

  5. Cretaceous anuran and dinosaur footprints from the Patuxent Formation of Virginia

    USGS Publications Warehouse

    Weems, R.E.; Bachman, J.M.

    1997-01-01

    Footprints of an anuran (gen. et sp. indet.), a theropod dinosaur (Megalosauropus sp.), and an ornithopod dinosaur (Amblydactylus sp.) have been recovered from the Lower Cretaceous Patuxent Formation in Stafford County, Virginia. These footprints are the first record of terrestrial vertebrates from Cretaceous strata in Virginia, and their discovery suggests that the scarcity of bones and teeth in the Patuxent probably is an artifact of preservation. The anuran trackway provides the oldest known direct evidence for hopping locomotion among these amphibians.

  6. The Sredne-Amursky basin: A migrating cretaceous depocenter for the Amur river, eastern Siberia

    SciTech Connect

    Light, M.; Maslanyj, M.; Davidson, K. )

    1993-09-01

    Recently acquired seismic, well, and regional geological data imply favorable conditions for the accumulation of oil and gas in the 20,000 km[sup 2] Sredne-Amursky basin. Major graben and northeast-trending sinistral wrench-fault systems are recognized in the basin. Lower and Upper Cretaceous sediments are up to 9000 and 3000 m thick, respectively. Paleogeographic reconstructions imply that during the Late Triassic-Early Cretaceous the Sredne-Amursky basin was part of a narrow marine embayment (back-arc basin), which was open to the north. During the Cretaceous, the region was part of a foreland basin complicated by strike-slip, which produced subsidence related to transtension during oblique collision of the Sikhote-Alin arc with Eurasian margin. Contemporaneous uplift also related to this collision migrated from south to north and may have sourced northward-directed deltas and alluvial fans, which fed northward into the closing back-arc basin between 130 and 85 Ma. The progradational clastic succession of the Berriasian-Albian and the Late Cretaceous fluvial, brackish water and paralic sediments within the basin may be analogous to the highly productive late Tertiary clastics of the Amur River delta in the northeast Sakhalin basin. Cretaceous-Tertiary lacustrine-deltaic sapropelic shales provide significant source and seal potential and potential reservoirs occur in the Cretaceous and Tertiary. Structural plays were developed during Cretaceous rifting and subsequent strike-slip deformation. If the full hydrocarbon potential of the Sredne-Amursky basin is to be realized, the regional appraisal suggests that exploration should be focused toward the identification of plays related to prograding Cretaceous deltaic depositional systems.

  7. Cretaceous and Tertiary samples dredged from Florida Escarpment, Eastern Gulf of Mexico

    SciTech Connect

    Freeman-Lynde, R.P.

    1983-09-01

    Cretaceous and Tertiary rocks were dredged along the Florida Escarpment at five areas south of 27/sup 0/05'N in late 1982 during cruise LY-82A of USNS Lynch. The escarpment was sampled from near the base (as deep as 3300 m, 10,800 ft) to near the top (as shallow as 1500 m, 4900 ft) of the slope. Presumed middle Cretaceous dolomites deposited in hypersaline bank-interior environments were taken primarily from the walls of canyons incised from 10 to 50 km (6 to 30 mi) into the escarpment, and also from the escarpment proper at several dredge stations. Limestone lithologic characteristics are generally bioturbated miliolid and mollusk wackestone/packstone (lagoonal) and fenestral and algal-laminated mudstone/wackestone (peritidal). Some dolomites retain primary sedimentary structures (e.g., mottling and algal lamination), whereas others appear structureless, perhaps due to recrystallization. Few of the middle Cretaceous samples were deposited under high-energy conditions. Those that are high-energy deposits are bioclastic rudstones and coral boundstones. Late Cretaceous and Tertiary deep-water limestones and chalks unconformably overlie and drape the older shallow-water carbonates. The limestones are Late Cretaceous through Pleistocene. The limited occurrence of high-energy facies rocks indicates that the escarpment has been eroded bankward over its entire length south of 27/sup 0/05'N, and not just at canyon reentrants. The younger deep-water rocks reflect the drowning of the middle Cretaceous platform in Late Cretaceous time. The facies change from limestone to dolomite is attributed to higher salinities in the bank interior during the middle Cretaceous.

  8. New short-horned flies (Diptera: Eremochaetidae) from the Early Cretaceous of China.

    PubMed

    Zhang, Kuiyan; Yang, Ding; Ren, Dong

    2014-02-03

    Eremochaetidae is a rare family found from the Late Jurassic to the Early Cretaceous. So far, only 8 genera with 12 species have been recorded. Herein, we describe a new species, Dissup clausus sp. nov., and the first male of Eremomukha (E.) tsokotukha Mostovski, 1996, from the Yixian Formation, the Early Cretaceous of Northeastern China. Additionally, E. (E.) insidiosa Mostovski, 1996 is considered as a new synonym of E. (E.) tsokotukha. An updated list of all known Eremochaetidae is presented.

  9. Fossil Megaloptera (Insecta: Neuropterida) from the Lower Cretaceous Crato Formation of Brazil.

    PubMed

    Jepson, James E; Heads, Sam W

    2016-04-05

    Two new genera and species of Megaloptera are described from the Lower Cretaceous Crato Formation of Brazil. Cratocorydalopsis brasiliensis gen. et sp. nov. and Lithocorydalus fuscata gen. et sp. nov. are both placed within the family Corydalidae. The specimens represent the first Cretaceous examples of adult megalopteran body fossils not preserved in amber, and are the first megalopterans to be formally described from the Crato Formation.

  10. Sequence stratigraphy of the lower Upper Cretaceous Elbtal Group (Saxony, Germany): new data from Middle Cenomanian-Upper Turonian outcrops and boreholes

    NASA Astrophysics Data System (ADS)

    Richardt, Nadine; Wilmsen, Markus

    2013-04-01

    The formations of the Saxonian Cretaceous have been combined in the so-called Elbtal Group. Their sedimentation took place in a terrestrial to neritic environment palaeogeographically located between the Mid-European Island (MEI) in the SW and the Lusatian Massif in the NE. The through extended from the narrow marine strait of Saxony into the broad Bohemian Cretaceous Basin (Czech Republic) further to the SE. Deposition has been dominated by marine siliciclastics that accumulated on a graded shelf with basically three main facies zones: the coarse-grained nearshore zone ("Küstensandsteinzone"), the transitional zone ("Faziesübergangszone") and the fine-grained marly offshore facies zone ("Plänerfazies"). In general, transgression proceeded in late Early Cenomanian times from the N. Relictic remains of these marine bioclastic conglomerates (Meißen Formation) only occur in the northwesternmost area of the basin around Meißen and are related to the highstand of the depositional sequence Cenomanian 3 (DS Ce 3). After a short stratigraphic gap, onlap continued in the Middle Cenomanian with the following Niederschöna Formation consisting of coarse-grained braided river deposits at the base grading via carbonaceous point-bar cycles of a meandering river system into bioturbated, partly cross-bedded estuarine sediments toward the top. These sediments record DS Ce 4 and are capped by a paleosol. Sedimentation of DS Ce 5 started with a renewed transgressional pulse initiating the Late Cenomanian. The strata consist of bioturbated, cross-bedded predominantly fine- to medium-grained quartz sandstones with some shell-rich horizons corresponding to the Oberhäslich Formation. The unconformably overlying DS Tu 1 comprises the uppermost Cenomanian Dölzschen Formation and the Lower Turonian part of the Schmilka Formation. The onset of this depositional sequence is marked by a major transgression ("plenus Transgression) drowning the remaining pre-transgression topography

  11. Influence of Transcontinental arch on Cretaceous listric-normal faulting, west flank, Denver basin

    SciTech Connect

    Davis, T.L.

    1983-08-01

    Seismic studies along the west flank of the Denver basin near Boulder and Greeley, Colorado illustrate the interrelationship between shallow listric-normal faulting in the Cretaceous and deeper basement-controlled faulting. Deeper fault systems, primarily associated with the Transcontinental arch, control the styles and causative mechanisms of listric-normal faulting that developed in the Cretaceous. Three major stratigraphic levels of listric-normal faulting occur in the Boulder-Greeley area. These tectonic sensitive intervals are present in the following Cretaceous formations: Laramie-Fox Hills-upper Pierre, middle Pierre Hygiene zone, and the Niobrara-Carlile-Greenhorn. Documentation of the listric-normal fault style reveals a Wattenberg high, a horst block or positive feature of the greater Transcontinental arch, was active in the east Boulder-Greeley area during Cretaceous time. Paleotectonic events associated with the Wattenberg high are traced through analysis of the listric-normal fault systems that occur in the area. These styles are important to recognize because of their stratigraphic and structural influence on Cretaceous petroleum reservoir systems in the Denver basin. Similar styles of listric-normal faulting occur in the Cretaceous in many Rocky Mountain foreland basins.

  12. Extensional tectonic influence on lower and upper cretaceous stratigraphy and reservoirs, southern Powder River basin, Wyoming

    SciTech Connect

    Mitchell, G.C.; Rogers, M.H.

    1993-04-01

    The southern Powder River basin has been influenced significantly by an extensional system affecting Lower Cretaceous, Upper Cretaceous and Tertiary units. The system is composed of small throw, nearly vertical normal faults which are identified in the Cretaceous marine shales and that we believe are basement derived. Resultant fractures were present at erosional/depositional surfaces, both marine and nonmarine, that, in part, controlled erosion and subsequent deposition of Lower and Upper Cretaceous rocks. The normal faults also affected coal deposition in the Tertiary, now exposed at the surface. The erosion and resultant deposition formed extensive stratigraphic traps in Cretaceous units in both conventional and unconventional reservoirs. These reservoirs are interbedded with mature source rocks that have generated and expelled large amounts of hydrocarbons. Resulting overpressuring in the Fall River through the Niobrara formations has kept fractures open and has preserved primary porosity in the reservoirs. The normal faults offset thin sandstone reservoirs forming permeability barriers. Associated fractures may have provided vertical pathways for organic acids that assisted development of secondary porosity in Upper Cretaceous sandstones. These normal...faults and fractures provide significant potential for the use of horizontal drilling techniques to evaluate fractured, overpressured conventional and unconventional reservoirs.

  13. Highly specialized mammalian skulls from the Late Cretaceous of South America.

    PubMed

    Rougier, Guillermo W; Apesteguía, Sebastián; Gaetano, Leandro C

    2011-11-02

    Dryolestoids are an extinct mammalian group belonging to the lineage leading to modern marsupials and placentals. Dryolestoids are known by teeth and jaws from the Jurassic period of North America and Europe, but they thrived in South America up to the end of the Mesozoic era and survived to the beginnings of the Cenozoic. Isolated teeth and jaws from the latest Cretaceous of South America provide mounting evidence that, at least in western Gondwana, dryolestoids developed into strongly endemic groups by the Late Cretaceous. However, the lack of pre-Late Cretaceous dryolestoid remains made study of their origin and early diversification intractable. Here we describe the first mammalian remains from the early Late Cretaceous of South America, including two partial skulls and jaws of a derived dryolestoid showing dental and cranial features unknown among any other group of Mesozoic mammals, such as single-rooted molars preceded by double-rooted premolars, combined with a very long muzzle, exceedingly long canines and evidence of highly specialized masticatory musculature. On one hand, the new mammal shares derived features of dryolestoids with forms from the Jurassic of Laurasia, whereas on the other hand, it is very specialized and highlights the endemic, diverse dryolestoid fauna from the Cretaceous of South America. Our specimens include only the second mammalian skull known for the Cretaceous of Gondwana, bridging a previous 60-million-year gap in the fossil record, and document the whole cranial morphology of a dryolestoid, revealing an unsuspected morphological and ecological diversity for non-tribosphenic mammals.

  14. Petrogenesis of Early Cretaceous basaltic lavas from the North China Craton: Implications for cratonic destruction

    NASA Astrophysics Data System (ADS)

    Qian, Sheng-Ping; Ren, Zhong-Yuan; Richard, Wysoczanski; Zhang, Le; Zhang, Yin-Hui; Hong, Lu-Bing; Ding, Xiang-Li; Wu, Ya-Dong

    2017-03-01

    The North China Craton (NCC) is believed to be the best example of cratonic destruction. However, the processes leading to cratonic destruction remain unclear, largely due to a lack of knowledge of the nature of the Mesozoic NCC lithospheric mantle. Here we report new petrological and geochemical data for Early Cretaceous NCC basalts, which provide insights into the nature of the underlying lithospheric mantle. The Early Cretaceous basalts (all tholeiites) show a limited variation in geochemical composition. In contrast, olivine-hosted melt inclusions from these basalts display a wide range in compositional variation and include both alkalic and tholeiitic basaltic compositions. This result provides the direct evidence of the contribution of silica-undersaturated alkali basaltic melts in the petrogenesis of the Early Cretaceous NCC basalts. In addition, the compositions of olivine phenocrysts and reconstructed primary melts indicate that the Early Cretaceous basalts are derived from a mixed peridotite and refertilized peridotite source. The Pb isotopic compositions of melt inclusions in high fugacity of oxygen (fo) olivines combined with trace element characteristics of these basalts reveal that heterogeneous lithospheric mantle sources for Early Cretaceous basalts were metasomatized by carbonate-bearing eclogite-derived melts. The Pb isotopic variations of the melt inclusions and clinopyroxene and plagioclase phenocrysts demonstrate that the mantle-derived magmas were variably contaminated by lower continental crust. We propose that multiple subduction events during the Phanerozoic, combined with mantle-plume activity, likely play a vital role in the generation of the Early Cretaceous voluminous magmatism and cratonic destruction.

  15. A New Hadrosauroid Dinosaur from the Early Late Cretaceous of Shanxi Province, China

    PubMed Central

    Wang, Run-Fu; You, Hai-Lu; Xu, Shi-Chao; Wang, Suo-Zhu; Yi, Jian; Xie, Li-Juan; Jia, Lei; Li, Ya-Xian

    2013-01-01

    Background The origin of hadrosaurid dinosaurs is far from clear, mainly due to the paucity of their early Late Cretaceous close relatives. Compared to numerous Early Cretaceous basal hadrosauroids, which are mainly from Eastern Asia, only six early Late Cretaceous (pre-Campanian) basal hadrosauroids have been found: three from Asia and three from North America. Methodology/Principal Findings Here we describe a new hadrosauroid dinosaur, Yunganglong datongensis gen. et sp. nov., from the early Late Cretaceous Zhumapu Formation of Shanxi Province in northern China. The new taxon is represented by an associated but disarticulated partial adult skeleton including the caudodorsal part of the skull. Cladistic analysis and comparative studies show that Yunganglong represents one of the most basal Late Cretaceous hadrosauroids and is diagnosed by a unique combination of features in its skull and femur. Conclusions/Significance The discovery of Yunganglong adds another record of basal Hadrosauroidea in the early Late Cretaceous, and helps to elucidate the origin and evolution of Hadrosauridae. PMID:24204734

  16. A review of magnetic stratigraphy investigations in Cretaceous pelagic carbonate rocks

    NASA Astrophysics Data System (ADS)

    Lowrie, W.; Channell, J. E. T.; Alvarez, W.

    1980-07-01

    Pelagic carbonate rocks possess many suitable characteristics for paleomagnetic and magnetostratigraphic studies. Paleomagnetic results are summarized for seven lengthy sections of pelagic limestones and marls from Umbria and the southern Alps in Italy. Differences in apparent polar wander paths from these two regions are interpreted in terms of tectonic rotation of allochthonous Umbria. The magnetic stratigraphies of the paleontologically dated sections are independent of their tectonic differences and are combined to form a continuous record of geomagnetic polarity for the Barremian through Maastrichtian stages of the Cretaceous. All but one of the reversals in these sections are confirmed by duplication in at least one other section. Additional Cretaceous reversals have been reported in other land sections and in DSDP (Deep Sea Drilling Project) and IPOD (International Program of Ocean Drilling) cores. Some of these reversals are not defined well magnetically, and confirmation of others is clouded by imprecise paleontological dates. If real, they are probably of short duration. The confirmed reversal sequence correlates well with the Cretaceous oceanic magnetic anomaly sequence. The ages of certain key anomalies are altered: Late Cretaceous anomalies 29-34 are younger, and Early Cretaceous anomalies M0 and M1 are older than previously thought. The longer duration of the Cretaceous magnetic quiet interval of normal polarity results in a reduction of corresponding sea floor spreading rates to about 70% of earlier values, but they are still appreciably higher than during formation of the preceding M sequence anomalies.

  17. Iridium anomaly in the Cretaceous section of the Eastern Kamchatka

    NASA Astrophysics Data System (ADS)

    Savelyev, Dmitry; Savelyeva, Olga

    2010-05-01

    The origin of iridium anomalies is widely discussed with regard to massive fauna and flora extinction at several geologic boundaries. Two hypotheses are most popular, cosmogenic and volcanogenic. Anomalies of iridium are known at many stratigraphic levels, both at the geologic series borders and within geologic series. Our studies revealed increased content of iridium in a section of Cretaceous oceanic deposits on the Kamchatsky Mys Peninsula (Eastern Kamchatka, Russia). The investigated section (56°03.353´N, 163°00.376´E) includes interbedded jaspers and siliceous limestones overlaying pillow-basalts. These deposits belong to the Smagin Formation of the Albian-Cenomanian age. In the middle and upper parts of the section two beds of black carbonaceous rocks with sapropelic organic matter were observed. Their formation marked likely episodes of oxygen depletion of oceanic intermediate water (oceanic anoxic events). Our geochemical studies revealed an enrichment of the carbonaceous beds in a number of major and trace elements (Al2O3, TiO2, FeO, MgO, K2O, P2O5, Cu, Zn, Ni, Cr, V, Mo, Ba, Y, Zr, Nb, REE, U, Au, Pt etc.) in comparison with associating jaspers and limestones. There are likely different sources which contributed to the enrichment. It is possible however to correlate the excess of Al, Ti, Zr, Nb with volcanogenic admixture, which is absent in limestones and jaspers. A possible source of the volcanogenic material was local volcanism as suggested by the close association of the investigated section with volcanic rocks (basaltic lavas and hyaloclastites). The basalts of the Smagin Formation were previously proposed to originate during Cretaceous activity of the Hawaiian mantle plume (Portnyagin et al., Geology, 2008). Neutron activation analysis indicated increased up to 9 ppb concentration of Ir at the bottom of the lower carbonaceous bed (inorganic part of the sample was analyzed comprising 46% of the bulk rock). In other samples Ir content was below

  18. The Cretaceous and Cenozoic tectonic evolution of Southeast Asia

    NASA Astrophysics Data System (ADS)

    Zahirovic, S.; Seton, M.; Müller, R. D.

    2013-08-01

    Tectonic reconstructions of Southeast Asia have given rise to numerous controversies which include the accretionary history of Sundaland and the enigmatic tectonic origin of the Proto South China Sea. We assimilate a diversity of geological and geophysical observations into a new regional plate model, coupled to a global model, to address these debates. Our approach takes into account terrane suturing and accretion histories, the location of subducted slabs imaged in mantle tomography in order to constrain the opening and closure history of paleo-ocean basins, as well as plausible absolute and relative plate velocities and tectonic driving mechanisms. We propose a scenario of rifting from northern Gondwana in the Late Jurassic, driven by northward slab pull, to detach East Java, Mangkalihat, southeast Borneo and West Sulawesi blocks that collided with a Tethyan intra-oceanic subduction zone in the mid Cretaceous and subsequently accreted to the Sunda margin (i.e. southwest Borneo core) in the Late Cretaceous. In accounting for the evolution of plate boundaries, we propose that the Philippine Sea Plate originated on the periphery of Tethyan crust forming this northward conveyor. We implement a revised model for the Tethyan intra-oceanic subduction zones to reconcile convergence rates, changes in volcanism and the obduction of ophiolites. In our model the northward margin of Greater India collides with the Kohistan-Ladakh intra-oceanic arc at ∼53 Ma, followed by continent-continent collision closing the Shyok and Indus-Tsangpo suture zones between ∼42 and 34 Ma. We also account for the back-arc opening of the Proto South China Sea from ∼65 Ma, consistent with extension along east Asia and the emplacement of supra-subduction zone ophiolites presently found on the island of Mindoro. The related rifting likely detached the Semitau continental fragment from east China, which accreted to northern Borneo in the mid Eocene, to account for the Sarawak Orogeny

  19. The Cretaceous and Cenozoic tectonic evolution of Southeast Asia

    NASA Astrophysics Data System (ADS)

    Zahirovic, S.; Seton, M.; Müller, R. D.

    2014-04-01

    Tectonic reconstructions of Southeast Asia have given rise to numerous controversies that include the accretionary history of Sundaland and the enigmatic tectonic origin of the proto-South China Sea. We assimilate a diversity of geological and geophysical observations into a new regional plate model, coupled to a global model, to address these debates. Our approach takes into account terrane suturing and accretion histories, the location of subducted slabs imaged in mantle tomography in order to constrain the evolution of regional subduction zones, as well as plausible absolute and relative plate velocities and tectonic driving mechanisms. We propose a scenario of rifting from northern Gondwana in the latest Jurassic, driven by northward slab pull from north-dipping subduction of Tethyan crust beneath Eurasia, to detach East Java, Mangkalihat, southeast Borneo and West Sulawesi blocks that collided with a Tethyan intra-oceanic subduction zone in the mid-Cretaceous and subsequently accreted to the Sunda margin (i.e., southwest Borneo core) in the Late Cretaceous. In accounting for the evolution of plate boundaries, we propose that the Philippine Sea plate originated on the periphery of Tethyan crust forming this northward conveyor. We implement a revised model for the Tethyan intra-oceanic subduction zones to reconcile convergence rates, changes in volcanism and the obduction of ophiolites. In our model the northward margin of Greater India collides with the Kohistan-Ladakh intra-oceanic arc at ∼53 Ma, followed by continent-continent collision closing the Shyok and Indus-Tsangpo suture zones between ∼42 and 34 Ma. We also account for the back-arc opening of the proto-South China Sea from ∼65 Ma, consistent with extension along east Asia and the formation of supra-subduction zone ophiolites presently found on the island of Mindoro. The related rifting likely detached the Semitau continental fragment from South China, which accreted to northern Borneo in

  20. The Cretaceous glauconitic sandstones of Abu Tartur, Egypt

    NASA Astrophysics Data System (ADS)

    Pestitschek, Brigitte; Gier, Susanne; Essa, Mahmoud; Kurzweil, Johannes

    2010-05-01

    The Abu Tartur mine is located in the Western Desert of Egypt, 50 km west of El Kharga City. Geologically, the Abu Tartur plateau is built by a sequence of Upper Cretaceous (Campanian - Maastrichtian) phosphorites, black shales and glauconitic sandstones. The phosphate deposits are of great economic importance and have been mined since their discovery in 1967. Outcrop sections were measured, sampled, sedimentologically characterized and described. One specific glaucony layer was investigated mineralogically and chemically in detail and compared to a subsurface sample from the mine. Two depositional regimes can be interpreted based on sedimentary architecture and structures: 1) a deeper-water hemipelagic environment, where phosphorites and organic carbon-rich shales were deposited and 2) a shallower, prograding higher energy shelf environment with glauconies. From a sequence stratigraphic perspective 1) was deposited during the transgressive systems tract and the early highstand while 2) was deposited during the remaining highstand and a lowstand prograding wedge (Glenn & Arthur, 1990). Petrographic and SEM investigations show that the glaucony grains are of authochtonous origin. XRF, EMPA and thin-section analyses show that the glaucony grains from the outcrop differ significantly in their chemical composition, morphology and color from the grains of the mine sample. The fresh glauconies are enriched in Fe2O3 and K2O compared to the surface samples. XRD analyses of the clay fraction of the six outcrop samples and the mine sample show that the grains consist of illite(glauconite)/smectite mixed-layers, with more illite layers (80 %) in the mine sample. The charge distribution diagram muscovite-pyrophyllite-celadonite shows a clear trend from smectitic glaucony to illitic glaucony, the mine sample plots exactly in the field for glauconites. All these features indicate that the surface samples are strongly altered by weathering and that glauconite progressively

  1. Pre-, syn-, and postcollisional stratigraphic framework and provenance of upper triassic-upper cretaceous strata in the northwestern talkeetna mountains, alaska

    USGS Publications Warehouse

    Hampton, B.A.; Ridgway, K.D.; O'Neill, J. M.; Gehrels, G.E.; Schmidt, J.; Blodgett, R.B.

    2007-01-01

    Mesozoic strata of the northwestern Talkeetna Mountains are located in a regional suture zone between the allochthonous Wrangellia composite terrane and the former Mesozoic continental margin of North America (i.e., the Yukon-Tanana terrane). New geologic mapping, measured stratigraphic sections, and provenance data define a distinct three-part stratigraphy for these strata. The lowermost unit is greater than 290 m thick and consists of Upper Triassic-Lower Jurassic mafic lavas, fossiliferous limestone, and a volcaniclastic unit that collectively we informally refer to as the Honolulu Pass formation. The uppermost 75 m of the Honolulu Pass formation represent a condensed stratigraphic interval that records limited sedimentation over a period of up to ca. 25 m.y. during Early Jurassic time. The contact between the Honolulu Pass formation and the overlying Upper Jurassic-Lower Cretaceous clastic marine strata of the Kahiltna assemblage represents a ca. 20 m.y. depositional hiatus that spans the Middle Jurassic and part of Late Jurassic time. The Kahiltna assemblage may to be up to 3000 m thick and contains detrital zircons that have a robust U-Pb peak probability age of 119.2 Ma (i.e., minimum crystallization age/maximum depositional age). These data suggest that the upper age of the Kahiltna assemblage may be a minimum of 10-15 m.y. younger than the previously reported upper age of Valanginian. Sandstone composition (Q-43% F-30% L-27%-Lv-71% Lm-18% Ls-11%) and U-Pb detrital zircon ages suggest that the Kahiltna assemblage received igneous detritus mainly from the active Chisana arc, remnant Chitina and Talkeetna arcs, and Permian-Triassic plutons (Alexander terrane) of the Wrangellia composite terrane. Other sources of detritus for the Kahiltna assemblage were Upper Triassic-Lower Jurassic plutons of the Taylor Mountains batholith and Devonian-Mississippian plutons; both of these source areas are part of the Yukon-Tanana terrane. The Kahiltna assemblage is overlain

  2. Cretaceous rocks from southwestern Montana to southwestern Minnesota, northern Rocky Mountains, and Great Plains

    USGS Publications Warehouse

    Dyman, T.S.; Cobban, W.A.; Fox, J.E.; Hammond, R.H.; Nichols, D.J.; Perry, W.J.; Porter, K.W.; Rice, D.D.; Setterholm, D.R.; Shurr, G.W.; Tysdal, R.G.; Haley, J.C.; Campen, E.B.

    1994-01-01

    In Montana, Wyoming, North and South Dakota, and Minnesota, Cretaceous strata are preserved in the asymmetric Western Interior foreland basin. More than 5,200 m (17,000 ft) of Cretaceous strata are present in southwestern Montana, less than 300 m (1,000 ft) in eastern South Dakota. The asymmetry resulted from varying rates of subsidence due to tectonic and sediment loading. The strata consist primarily of sandstone, siltstone, mudstone, and shale. Conglomerate is locally abundant along the western margin, whereas carbonate is present in most areas of the eastern shelf. Sediment was deposited in both marine and nonmarine environments as the shoreline fluctuated during major tectonic and eustatic cycles.A discussion of Cretaceous strata from southwestern to east-central Montana, the Black Hills, eastern South Dakota, and southwestern Minnesota shows regional stratigraphy and facies relations, sequence, boundaries, and biostratigraphic and radiometric correlations. The thick Cretaceous strata in southwestern Montana typify nonmarine facies of the rapidly subsiding westernmost part of the basin. These strata include more than 3,000 m (10,000 ft) of synorogenic conglomerate of the Upper Cretaceous part of the Beaverhead Group. West of the Madison Range, sequence boundaries bracket the Kootenai (Aptian and Albian), the Blackleaf (Albian and Cenomanian), and the Frontier Formations (Cenomanian and Turonian); sequence boundaries are difficult to recognize because the rocks are dominantly non-marine. Cretaceous strata in east-central Montana (about 1,371 m; 4,500 ft thick) lie at the approximate depositional axis of the basin and are mostly marine terrigenous rocks. Chert-pebble zones in these rocks reflect stratigraphic breaks that may correlate with sequence boundaries to the east and west. Cretaceous rocks of the Black Hills region consist of a predominantly marine clastic sequence averaging approximately 1,524 m (5,000 ft) thick. The Cretaceous System in eastern South

  3. Upper cretaceous microbial petroleum systems in north-central Montana

    USGS Publications Warehouse

    Lillis, Paul G.

    2007-01-01

    Methanogenesis began soon after the deposition (early-stage methanogenesis) of the Cenomanian to Campanian source sediments, and was either sustained or rejuvenated by episodic meteoric water influx until sometime in the Paleogene. Methanogenesis probably continued until CO2 and hydrogen were depleted or the pore size was compacted to below tolerance levels of the methanogens. The composition of the Montana and Colorado Group gases and coproduced formation water precludes a scenario of late-stage methanogenesis like the Antrim gas system in the Michigan basin. Some portion of the methane charge was originally dissolved in the pore waters, and subsequent reduction in hydrostatic pressure caused the methane to exsolve and migrate into local stratigraphic and structural traps. The critical moment of the microbial gas systems is this timing of exsolution rather than the time of generation (methanogenesis). Other studies suggest that the reduction in hydrostatic pressure may have been caused by multiple geologic events including the lowering of sea level in the Late Cretaceous, and subsequent uplift and erosion events, the youngest of which began about 5 Ma.

  4. Cretaceous choristoderan reptiles gave birth to live young

    NASA Astrophysics Data System (ADS)

    Ji, Qiang; Wu, Xiao-Chun; Cheng, Yen-Nien

    2010-04-01

    Viviparity (giving birth to live young) in fossil reptiles has been known only in a few marine groups: ichthyosaurs, pachypleurosaurs, and mosasaurs. Here, we report a pregnant specimen of the Early Cretaceous Hyphalosaurus baitaigouensis, a species of Choristodera, a diapsid group known from unequivocal fossil remains from the Middle Jurassic to the early Miocene (about 165 to 20 million years ago). This specimen provides the first evidence of viviparity in choristoderan reptiles and is also the sole record of viviparity in fossil reptiles which lived in freshwater ecosystems. This exquisitely preserved specimen contains up to 18 embryos arranged in pairs. Size comparison with small free-living individuals and the straight posture of the posterior-most pair suggest that those embryos were at term and had probably reached parturition. The posterior-most embryo on the left side has the head positioned toward the rear, contrary to normal position, suggesting a complication that may have contributed to the mother’s death. Viviparity would certainly have freed species of Hyphalosaurus from the need to return to land to deposit eggs; taking this advantage, they would have avoided intense competition with contemporaneous terrestrial carnivores such as dinosaurs.

  5. A Cretaceous terrestrial snake with robust hindlimbs and a sacrum.

    PubMed

    Apesteguía, Sebastián; Zaher, Hussam

    2006-04-20

    It has commonly been thought that snakes underwent progressive loss of their limbs by gradual diminution of their use. However, recent developmental and palaeontological discoveries suggest a more complex scenario of limb reduction, still poorly documented in the fossil record. Here we report a fossil snake with a sacrum supporting a pelvic girdle and robust, functional legs outside the ribcage. The new fossil, from the Upper Cretaceous period of Patagonia, fills an important gap in the evolutionary progression towards limblessness because other known fossil snakes with developed hindlimbs, the marine Haasiophis, Pachyrhachis and Eupodophis, lack a sacral region. Phylogenetic analysis shows that the new fossil is the most primitive (basal) snake known and that all other limbed fossil snakes are closer to the more advanced macrostomatan snakes, a group including boas, pythons and colubroids. The new fossil retains several features associated with a subterranean or surface dwelling life that are also present in primitive extant snake lineages, supporting the hypothesis of a terrestrial rather than marine origin of snakes.

  6. Seawater Sr isotopes at the Cretaceous/Tertiary boundary

    NASA Astrophysics Data System (ADS)

    Martin, E. E.; Macdougall, J. D.

    1991-06-01

    Seawater 87Sr/ 86Sr values increase abruptly by 28 × 10 -6 across the Cretaceous/Tertiary boundary (KTB). This small, but rapid shift is superimposed on the larger scale structure of the seawater Sr isotope curve. The time scale of radiogenic Sr addition appears to be too rapid to reconcile with sources associated with volcanism, and we show that the amount of Sr required to produce even this small increase is too large to be derived from: (1) a KT bolide of the size constrained by the Ir anomaly, (2) continental crust ejecta from the impact of such a bolide, (3) soot from global wildfires initiated by an impact, or (4) any combination of these sources. The probable source of the radiogenic Sr is enhanced continental weathering, but the high rate of increase appears to rule out processes such as sea level regression, glaciation or tectonism. A plausible mechanism for rapid addition of radiogenic Sr to the oceans is enhanced weathering associated with globally distributed acid rain (pH ˜ 1) which is a proposed by-product of a bolide impact [51, EPSL Vol. 83].

  7. Late Cretaceous (Austin Group) volcanic deposits as a hydrocarbon trap

    SciTech Connect

    Hutchinson, P.J.

    1994-09-01

    A Late Cretaceous submarine igneous extrusion occurs in the subsurface of southwestern Wilson County, Texas. The Coniacian-Santonian-aged (Austin Group) volcanic eruption discharged large volumes of magnetite-rich olivine nephelinite, that upon quenching, formed an extensive nontronitic clay layer. This clay deposit formed a trapping mechanism for hydrocarbons beneath the volcano; production from these features is normally attributed to the shoal-water carbonate facics developed on top of the volcano. The heat energy of the volcano may have thermally matured the calcareous sediments of the Austin Chalk contiguous with the volcano. The normally grayish-colored Austin Chalk in contact with the intrusive portion of the igneous material displays a greenish color suggesting thermal alteration. The overlying nontronite trapped the mobile hydrocarbons, and early emplacement may have preserved some of the original porosity and permeability of the Austin Chalk. Austin Chalk-aged volcanic deposits produce hydrocarbons from stratigraphic traps within the volcanic material, within the porous beachrock, and structurally within overlying sandstones. The intruded Austin Chalk also behaves as a reservoir because the original porosity and permeability is maintained through early emplacement of oil and the overlying volcanic clay prevents vertical migration. Marcefina Creek, discovered in 1980 from an {open_quotes}augen{close_quotes}-shaped seismic signature and an aerial magnetic survey, produces from the fractured chalk beneath the nontronitic clay layer. This field has produced over seven million bbl of oil from over 40 wells from fractured and porous rock beneath the volcano.

  8. Homing in on sweet spots in Cretaceous Austin chalk

    SciTech Connect

    Thomas, G.E. ); Sonnenberg, F.P.

    1993-11-29

    In discussing the nature and causes of fracturing in the Cretaceous Austin chalk of south central Texas, many geologists and operators involved in horizontal drilling of the chalk consider regional rock stress as the probable main cause of the fractures. If Austin chalk fractures are mainly the result of regional extensional stress without localizing factors, then fractured sweet spots are randomly distributed and successful exploration is more or less a matter of luck, usually dependent upon the coincidental placement of a seismic line. But if local, deep-seated structure or basement topography are the main causes of sweet spots, then a successful exploration method would be to first delineate the basement paleo structure