Science.gov

Sample records for lowermost cretaceous bornholm

  1. The bivalve Anopaea (Inoceramidae) from the Upper Jurassic-lowermost Cretaceous of Mexico

    NASA Astrophysics Data System (ADS)

    Zell, Patrick; Crame, J. Alistair; Stinnesbeck, Wolfgang; Beckmann, Seija

    2015-07-01

    In Mexico, the Upper Jurassic to lowermost Cretaceous La Casita and coeval La Caja and La Pimienta formations are well-known for their abundant and well-preserved marine vertebrates and invertebrates. The latter include conspicuous inoceramid bivalves of the genus Anopaea not formally described previously from Mexico. Anopaea bassei (Lecolle de Cantú, 1967), Anopaea cf. stoliczkai (Holdhaus, 1913), Anopaea cf. callistoensis Crame and Kelly, 1995 and Anopaea sp. are rare constituents in distinctive Tithonian-lower Berriasian levels of the La Caja Formation and one Tithonian horizon of the La Pimienta Formation. Anopaea bassei was previously documented from the Tithonian of central Mexico and Cuba, while most other members of Anopaea described here are only known from southern high latitudes. The Mexican assemblage also includes taxa which closely resemble Anopaea stoliczkai from the Tithonian of India, Indonesia and the Antarctic Peninsula, and Anopaea callistoensis from the late Tithonian to ?early Berriasian of the Antarctic Peninsula. Our new data expand the palaeogeographical distribution of the high latitude Anopaea to the Gulf of Mexico region and substantiate faunal exchange, in the Late Jurassic-earliest Cretaceous, between Mexico and the Antarctic Realm.

  2. Petroleum geology and play assessment, Bornholm Area, Denmark

    SciTech Connect

    Joergensen, N.B.

    1988-01-01

    The Bornholm area is in the easternmost part of the Danish license area of northwest Europe, where it is part of the mobile border zone between the stable Fennoscandian shield and the subsiding Danish-Polish trough. The Bornholm area is dominated by a complicated pattern of grabens and uplift horst blocks, of which the island of Bornholm is one. The horst blocks are parallel with the general northwest-southeast trend of the border zone, but major grabens are perpendicular to this trend. The most prominent one is the Ronne graben, in which up to 2 km of Paleozoic and Mesozoic sediment are present. Cambrian-Silurian rocks are present over most of the Bornholm area, whereas substantial thicknesses of Mesozoic sediments are more or less restricted to the southwestern part. Devonian-Early Triassic rocks are not seen in outcrop but may be present in the deeper grabens. During the Late Cretaceous-early Tertiary Laramide orogeny, part of the area was uplifted as much as 1-2 km. Source rocks are probably lower Paleozoic, high-TOC, shelf mudstones, and possibly Upper Carboniferous coal measures, and Jurassic coal measures. Due to its proximity to the Fennoscandian shield, clastic sediment has been supplied to the Bornholm area throughout geologic history. A wide range of structural traps resulted from normal extension, strike-slip faulting, and inversion. Although the Bornholm area is virtually unexplored for hydrocarbons, the presence of surrounding, structurally related oil and gas provinces makes the area a logical target for exploration today.

  3. Petroleum geology and play assessment, Bornholm area, Denmark

    SciTech Connect

    Joergensen, N.B.

    1988-02-01

    The Bornholm area is dominated by a complicated pattern of grabens and uplift horst blocks, of which the island of Borhnolm is one. The horst blocks are parallel with the general northwest-southeast trend of the border zone, but major grabens arc perpendicular to this trend. The most prominent one is the Ronne graben, in which up to 2 km of Paleozoic and Mesozoic sediment are present. Cambrian-Silurian rocks are present over most of the Bornholm area, whereas substantial thicknesses of mesozoic sediments are more or less restricted to the southwestern part. Devonian-Early Triassic rocks are not seen in outcrop but may be present in the deeper grabens. During the Late Cretaceous-early Tertiary Laramide orogeny, part of the area was uplifted as much as 1-2 km. Source rocks are probably lower Paleozoic, high-TOC, shelf mudstones, and possibly Upper Carboniferous coal measures, and Jurassic coal measures. Due to its proximity to the Fennoscandian shield, clastic sediment has been supplied to the Bornholm area throughout geologic history. A wide range of structural traps resulted from normal extension, strike-slip faulting, and inversion. Although the Bornholm area is virtually unexplored for hydrocarbons, the presence of surrounding, structurally related oil and gas provinces makes the area a logical target for exploration today.

  4. The oldest accurate record of Scenopinidae in the Lowermost Eocene amber of France (Diptera: Brachycera).

    PubMed

    Garrouste, Romain; Azar, Dany; Nel, Andre

    2016-01-01

    Eocenotrichia magnifica gen. et sp. nov. (Diptera: Scenopinidae: Metatrichini) is described and illustrated from the Lowermost Eocene amber of Oise (France) and represents the oldest definitive window fly fossil. The present discovery in the Earliest Eocene supports the Late Cretaceous-Paleocene age currently proposed for the emergence of Metatrichini. PMID:27394507

  5. Multiple seismic reflectors in Earth's lowermost mantle.

    PubMed

    Shang, Xuefeng; Shim, Sang-Heon; de Hoop, Maarten; van der Hilst, Robert

    2014-02-18

    The modern view of Earth's lowermost mantle considers a D″ region of enhanced (seismologically inferred) heterogeneity bounded by the core-mantle boundary and an interface some 150-300 km above it, with the latter often attributed to the postperovskite phase transition (in MgSiO3). Seismic exploration of Earth's deep interior suggests, however, that this view needs modification. So-called ScS and SKKS waves, which probe the lowermost mantle from above and below, respectively, reveal multiple reflectors beneath Central America and East Asia, two areas known for subduction of oceanic plates deep into Earth's mantle. This observation is inconsistent with expectations from a thermal response of a single isochemical postperovskite transition, but some of the newly observed structures can be explained with postperovskite transitions in differentiated slab materials. Our results imply that the lowermost mantle is more complex than hitherto thought and that interfaces and compositional heterogeneity occur beyond the D″ region sensu stricto. PMID:24550266

  6. Multiple seismic reflectors in Earth's lowermost mantle.

    PubMed

    Shang, Xuefeng; Shim, Sang-Heon; de Hoop, Maarten; van der Hilst, Robert

    2014-02-18

    The modern view of Earth's lowermost mantle considers a D″ region of enhanced (seismologically inferred) heterogeneity bounded by the core-mantle boundary and an interface some 150-300 km above it, with the latter often attributed to the postperovskite phase transition (in MgSiO3). Seismic exploration of Earth's deep interior suggests, however, that this view needs modification. So-called ScS and SKKS waves, which probe the lowermost mantle from above and below, respectively, reveal multiple reflectors beneath Central America and East Asia, two areas known for subduction of oceanic plates deep into Earth's mantle. This observation is inconsistent with expectations from a thermal response of a single isochemical postperovskite transition, but some of the newly observed structures can be explained with postperovskite transitions in differentiated slab materials. Our results imply that the lowermost mantle is more complex than hitherto thought and that interfaces and compositional heterogeneity occur beyond the D″ region sensu stricto.

  7. Mass and Ozone Fluxes from the Lowermost Stratosphere

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Olsen, Mark A.

    2004-01-01

    Net mass flux from the stratosphere to the troposphere can be computed from the heating rate along the 380K isentropic surface and the time rate of change of the mass of the lowermost stratosphere (the region between the tropopause and the 380K isentrope). Given this net mass flux and the cross tropopause diabatic mass flux, the residual adiabatic mass flux across the tropopause can also be estimated. These fluxes have been computed using meteorological fields from a free-running general circulation model (FVGCM) and two assimilation data sets, FVDAS, and UKMO. The data sets tend to agree that the annual average net mass flux for the Northern Hemisphere is about 1P10 kg/s. There is less agreement on the southern Hemisphere flux that might be half as large. For all three data sets, the adiabatic mass flux is computed to be from the upper troposphere into the lowermost stratosphere. This flux will dilute air entering from higher stratospheric altitudes. The mass fluxes are convolved with ozone mixing ratios from the Goddard 3D CTM (which uses the FVGCM) to estimate the cross-tropopause transport of ozone. A relatively large adiabatic flux of tropospheric ozone from the tropical upper troposphere into the extratropical lowermost stratosphere dilutes the stratospheric air in the lowermost stratosphere. Thus, a significant fraction of any measured ozone STE may not be ozone produced in the higher Stratosphere. The results also illustrate that the annual cycle of ozone concentration in the lowermost stratosphere has as much of a role as the transport in the seasonal ozone flux cycle. This implies that a simplified calculation of ozone STE mass from air mass and a mean ozone mixing ratio may have a large uncertainty.

  8. Early Cambrian wave-formed shoreline deposits: the Hardeberga Formation, Bornholm, Denmark

    NASA Astrophysics Data System (ADS)

    Clemmensen, Lars B.; Glad, Aslaug C.; Pedersen, Gunver K.

    2016-09-01

    During the early Cambrian, the Danish island Bornholm was situated on the northern edge of the continent Baltica with palaeolatitudes of about 35°S. An early Cambrian (Terreneuvian) transgression inundated large areas of Baltica including Bornholm creating shallow marine and coastline environments. During this period, wave-formed shoreline sediments (the Vik Member, Hardeberga Formation) were deposited on Bornholm and are presently exposed at Strøby quarry. The sediments consist of fine- and medium-grained quartz-cemented arenites in association with a few silt-rich mudstones. The presence of well-preserved subaqueous dunes and wave ripples indicates deposition in a wave-dominated upper shoreface (littoral zone) environment, and the presence of interference ripples indicates that the littoral zone environment experienced water level fluctuations due to tides and/or changing meteorological conditions. Discoidal structures (medusoids) are present in the quarry, but due to the relative poor preservation of their fine-scale structures it is difficult to determine if the discoids represent true medusae imprints or inorganic structures. The preservation of the shallow-water bedforms as well as the possible medusae imprints is related to either the formation of thin mud layers, formed during a period of calm water when winds blew offshore for a longer period, or to the growth of bacterial mats. The orientation of the wave-formed bedforms indicates a local palaeoshoreline trending NE-SW and facing a large ocean to the north.

  9. Tomographic resolution of plume anomalies in the lowermost mantle

    NASA Astrophysics Data System (ADS)

    Xue, Jing; Zhou, Ying; Chen, Yongshun

    2015-05-01

    Mantle plumes as well as `superplumes' have been imaged in the lowermost mantle in tomographic studies. To investigate seismic resolution of deep mantle plume anomalies, we use a spectral element method (SEM) to simulate global seismic wave propagation in 3-D wave speed models and measure frequency-dependent P-, S-, Pdiff- and Sdiff-wave traveltime anomalies caused by plume structures in the lowermost mantle. We compare SEM time delay measurements with calculations based on ray theory and show that an anticorrelation between bulk sound wave speed and S-wave speed could be produced as an artifact. This is caused by different wavefront healing effects between P and S waves in thermal plume models. The differences in wave diffraction between the two types of waves depend on epicentral distance and wave frequency. We show that bulk-sound speed structure can not be recovered in ray-theoretical tomographic inversions when the lateral extent of the anomaly is smaller than the size of the Fresnel zone in the lowermost mantle. In addition, an anticorrelation between bulk sound speed and S-wave speed can be produced in ray-theoretical tomography when the size of the anomaly is less than ˜2000 km; and, the artifacts become more pronounced as the lateral extent of the plume decreases. This indicates a chemical origin of `superplumes' in the lowermost mantle may not be necessary to explain observed seismic traveltimes of core-mantle diffracted waves. The same set of Pdiff and Sdiff measurements are inverted using finite-frequency tomography based on Born sensitivity kernels. We show that wavefront healing effects can be accounted for in finite-frequency tomography to recover the true velocity model.

  10. Water partitioning between bridgmanite and postperovskite in the lowermost mantle

    NASA Astrophysics Data System (ADS)

    Townsend, Joshua P.; Tsuchiya, Jun; Bina, Craig R.; Jacobsen, Steven D.

    2016-11-01

    The lowermost mantle appears to contain geochemically primitive reservoirs of volatile components including water, as evidenced by certain ocean island basalts (Hallis et al., 2015). We used ab initio lattice dynamics to calculate the water partition coefficient between bridgmanite and postperovskite using quasi-harmonic free energies to determine how water is distributed between nominally anhydrous minerals in the D″ region. In the absence of aluminum, hydrogen was incorporated into both phases by a simple substitution of Mg2+ ⇔ 2H+, and we found that water favors bridgmanite over postperovskite by a factor of about 5:1 at conditions where an average mantle geotherm intersects the phase boundary. In the Al-bearing system, hydrogen and aluminum were coupled as Si4+ ⇔Al3+ +H+ defects into both phases, and we found that water favors postperovskite over bridgmanite in the Al-bearing system by a factor of about 3:1 at ambient mantle conditions, and by about 8:1 at colder slab conditions. Our results indicate that aluminum controls the partitioning of water between bridgmanite and postperovskite, and that aluminous postperovskite may be a potential host for primordial water in the lowermost region of the mantle. The strong partitioning of water into aluminous postperovskite over bridgmanite provides a potential mechanism for dehydration melting in the lowermost mantle that could be a source for ocean island basalts in regions of upwelling.

  11. Strong, Multi-Scale Heterogeneity in Earth's Lowermost Mantle.

    PubMed

    Tkalčić, Hrvoje; Young, Mallory; Muir, Jack B; Davies, D Rhodri; Mattesini, Maurizio

    2015-01-01

    The core mantle boundary (CMB) separates Earth's liquid iron outer core from the solid but slowly convecting mantle. The detailed structure and dynamics of the mantle within ~300 km of this interface remain enigmatic: it is a complex region, which exhibits thermal, compositional and phase-related heterogeneity, isolated pockets of partial melt and strong variations in seismic velocity and anisotropy. Nonetheless, characterising the structure of this region is crucial to a better understanding of the mantle's thermo-chemical evolution and the nature of core-mantle interactions. In this study, we examine the heterogeneity spectrum from a recent P-wave tomographic model, which is based upon trans-dimensional and hierarchical Bayesian imaging. Our tomographic technique avoids explicit model parameterization, smoothing and damping. Spectral analyses reveal a multi-scale wavelength content and a power of heterogeneity that is three times larger than previous estimates. Inter alia, the resulting heterogeneity spectrum gives a more complete picture of the lowermost mantle and provides a bridge between the long-wavelength features obtained in global S-wave models and the short-scale dimensions of seismic scatterers. The evidence that we present for strong, multi-scale lowermost mantle heterogeneity has important implications for the nature of lower mantle dynamics and prescribes complex boundary conditions for Earth's geodynamo. PMID:26674394

  12. Vitrinite reflectance data for Cretaceous marine shales and coals in the Bighorn Basin, north-central Wyoming and south-central Montana

    USGS Publications Warehouse

    Pawlewicz, Mark J.; Finn, Thomas M.

    2012-01-01

    The Bighorn Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 10,400 square miles in north-central Wyoming and south-central Montana. The purpose of this report is to present new vitrinite reflectance data collected from Cretaceous marine shales and coals in the Bighorn Basin to better characterize the thermal maturity and petroleum potential of these rocks. Ninety-eight samples from Lower Cretaceous and lowermost Upper Cretaceous strata were collected from well cuttings from wells stored at the U.S. Geological Survey (USGS) Core Research Center in Lakewood, Colorado.

  13. Biogeochemical implications of levee confinement in the lowermost Mississippi River

    NASA Astrophysics Data System (ADS)

    Galler, J. J.; Bianchi, T. S.; Alison, M. A.; Wysocki, L. A.; Campanella, R.

    With the recent formation of the Center for River-Ocean Studies (CeROS) at Tulane University in Louisiana (see http://www.tulane.edu/~ceros) and the emerging state-federal partnership that is creating river diversions to combat coastal land loss, increased attention is being paid to the lowermost Mississippi River, from Baton Rouge to the Gulf of Mexico, as a critical juncture and storage area for sediment particles and bio-active compounds.CeROS scientists, working with the US. Geological Survey and the National Oceanic and Atmospheric Administration, have undertaken a detailed re-assessment of the channel floor and water column of this region using geophysical and biogeochemical data collection, combined with historical data sets.

  14. Significant radiative impact of volcanic aerosol in the lowermost stratosphere.

    PubMed

    Andersson, Sandra M; Martinsson, Bengt G; Vernier, Jean-Paul; Friberg, Johan; Brenninkmeijer, Carl A M; Hermann, Markus; van Velthoven, Peter F J; Zahn, Andreas

    2015-01-01

    Despite their potential to slow global warming, until recently, the radiative forcing associated with volcanic aerosols in the lowermost stratosphere (LMS) had not been considered. Here we study volcanic aerosol changes in the stratosphere using lidar measurements from the NASA CALIPSO satellite and aircraft measurements from the IAGOS-CARIBIC observatory. Between 2008 and 2012 volcanism frequently affected the Northern Hemisphere stratosphere aerosol loadings, whereas the Southern Hemisphere generally had loadings close to background conditions. We show that half of the global stratospheric aerosol optical depth following the Kasatochi, Sarychev and Nabro eruptions is attributable to LMS aerosol. On average, 30% of the global stratospheric aerosol optical depth originated in the LMS during the period 2008-2011. On the basis of the two independent, high-resolution measurement methods, we show that the LMS makes an important contribution to the overall volcanic forcing. PMID:26158244

  15. Significant radiative impact of volcanic aerosol in the lowermost stratosphere

    PubMed Central

    Andersson, Sandra M.; Martinsson, Bengt G.; Vernier, Jean-Paul; Friberg, Johan; Brenninkmeijer, Carl A. M.; Hermann, Markus; van Velthoven, Peter F. J.; Zahn, Andreas

    2015-01-01

    Despite their potential to slow global warming, until recently, the radiative forcing associated with volcanic aerosols in the lowermost stratosphere (LMS) had not been considered. Here we study volcanic aerosol changes in the stratosphere using lidar measurements from the NASA CALIPSO satellite and aircraft measurements from the IAGOS-CARIBIC observatory. Between 2008 and 2012 volcanism frequently affected the Northern Hemisphere stratosphere aerosol loadings, whereas the Southern Hemisphere generally had loadings close to background conditions. We show that half of the global stratospheric aerosol optical depth following the Kasatochi, Sarychev and Nabro eruptions is attributable to LMS aerosol. On average, 30% of the global stratospheric aerosol optical depth originated in the LMS during the period 2008–2011. On the basis of the two independent, high-resolution measurement methods, we show that the LMS makes an important contribution to the overall volcanic forcing. PMID:26158244

  16. Punctuated sand transport in the lowermost Mississippi River

    NASA Astrophysics Data System (ADS)

    Nittrouer, Jeffrey A.; Mohrig, David; Allison, Mead

    2011-12-01

    Measurements of sand flux and water flow in the Mississippi River are presented for a portion of the system 35-50 km upstream from the head of its subaerial delta. These data are used to provide insight into how nonuniform flow conditions, present in the lower reaches of large alluvial rivers, affect the timing and magnitude of sand transport near the river outlet. Field surveys during both low and high water discharge include (1) sequential digital bathymetric maps defining mobile river bottom topography which were used to estimate bed material flux, (2) multiple water velocity profiles, and (3) multiple suspended sediment profiles collected using a point-integrated sampler. These data show that total sand transport increases by two orders of magnitude over the measured range in water discharge (11,300 to 38,400 m3 s-1). During low water discharge no sand is measured in suspension, and sand discharge via bed form migration is minimal. During high water discharge 54% of the sand discharge is measured in suspension while 46% of the sand discharge is part of bed form migration. The component of boundary shear stress associated with moving this sediment is estimated using a set of established sediment transport algorithms, and values for the total boundary shear stress are predicted by fitting logarithmic velocity functions to the measured profiles. The estimates of boundary shear stress, using measurements of suspended sand transport, bed form transport, and downstream oriented velocity profiles are internally consistent; moreover, the analyses show that boundary shear stress increases by nearly 10-fold over the measured water discharge range. We show how this increase in shear stress is consistent with backwater flow arising where the river approaches its outlet. The hydrodynamic properties of backwater flow affect the timing and magnitude of sand flux and produce punctuated sand transport through the lowermost Mississippi River. Our field data are used to evaluate

  17. Transport in the Subtropical Lowermost Stratosphere during CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Pittman, Jasna V.; Weinstock, elliot M.; Oglesby, Robert J.; Sayres, David S.; Smith, Jessica B.; Anderson, James G.; Cooper, Owen R.; Wofsy, Steven C.; Xueref, Irene; Gerbig, Cristoph; Daube, Bruce C.; Richard, Erik C.; Ridley, Brian A.; Weinheimer, Andrew J.; Loewenstein, Max; Jost, Hans-Jurg; Lopez, Jimena P.; Mahoney, Michael J.; Thompson, Thomas L.; Hargrove, William W.; Hoffman, Forrest M.

    2007-01-01

    We use in situ measurements of water vapor (H2O), ozone (O3), carbon dioxide (CO2), carbon monoxide (CO), nitric oxide (NO), and total reactive nitrogen (NO(y)) obtained during the CRYSTAL-FACE campaign in July 2002 to study summertime transport in the subtropical lowermost stratosphere. We use an objective methodology to distinguish the latitudinal origin of the sampled air masses despite the influence of convection, and we calculate backward trajectories to elucidate their recent geographical history. The methodology consists of exploring the statistical behavior of the data by performing multivariate clustering and agglomerative hierarchical clustering calculations, and projecting cluster groups onto principal component space to identify air masses of like composition and hence presumed origin. The statistically derived cluster groups are then examined in physical space using tracer-tracer correlation plots. Interpretation of the principal component analysis suggests that the variability in the data is accounted for primarily by the mean age of air in the stratosphere, followed by the age of the convective influence, and lastly by the extent of convective influence, potentially related to the latitude of convective injection [Dessler and Sherwuud, 2004]. We find that high-latitude stratospheric air is the dominant source region during the beginning of the campaign while tropical air is the dominant source region during the rest of the campaign. Influence of convection from both local and non-local events is frequently observed. The identification of air mass origin is confirmed with backward trajectories, and the behavior of the trajectories is associated with the North American monsoon circulation.

  18. Spatial and temporal habitat partitioning by zooplankton in the Bornholm Basin (central Baltic Sea)

    NASA Astrophysics Data System (ADS)

    Schulz, Jan; Peck, Myron A.; Barz, Kristina; Schmidt, Jörn Oliver; Hansen, Frank C.; Peters, Janna; Renz, Jasmin; Dickmann, Miriam; Mohrholz, Volker; Dutz, Jörg; Hirche, Hans-Jürgen

    2012-12-01

    The deep basins in the Baltic Sea such as the Bornholm Basin (BB) are subject to seasonal changes in the strength of physico-chemical stratification. These depth-related changes in key abiotic factors are strong drivers of habitat partitioning by the autochthonous zooplankton community. Species-specific ecophysiological preferences often result in both seasonal and inter-annual changes in vertical abundance that, when combined with depth-specific water currents, also lead to horizontal differences in spatial distribution. The present study documented the seasonal and depth-specific changes in the abundance and species composition of zooplankton in the BB based upon broad-scale survey data: 832 vertically-resolved (10 m) multinet samples collected at nine stations between March 2002 and May 2003. Changes in the zooplankton community were significantly correlated with changes in ambient hydrography. Each of five taxa (Bosmina coregoni maritima, Acartia spp., Pseudocalanus spp., Temora longicornis, Synchaeta spp.) contributed >10% to the zooplankton community composition. The appearance of cladocerans was mainly correlated with the phenology of thermocline development in the spring. The cladoceran B. coregoni maritima was a dominant member of this community during the warmest periods, preferring the surface waters above the thermocline. Copepods exhibited distinct, ontogenetic and seasonal changes in their distribution. The rotifers (Synchaeta sp.) were the most abundant zooplankton in May. Based on a multivariate approach and the evaluation of vertical distribution patterns, five major habitat utilisation modes were identified that were based, to a large extent, on the dynamics of thermal and haline stratification of the Baltic Sea. Our statistical analysis of one of the most thorough datasets collected on Baltic zooplankton in recent decades reveals some of the factors that make this stratified system highly dynamic with respect to the spatial overlap between

  19. Observations of near-bottom currents in Bornholm Basin, Slupsk Furrow and Gdansk Deep

    NASA Astrophysics Data System (ADS)

    Bulczak, A. I.; Rak, D.; Schmidt, B.; Beldowski, J.

    2016-06-01

    Dense bottom currents are responsible for transport of the salty inflow waters from the North Sea driving ventilation and renewal of Baltic deep waters. This study characterises dense currents in three deep locations of the Baltic Proper: Bornholm Basin (BB), Gdansk Basin (GB) and Slupsk Furrow (SF). These locations are of fundamental importance for the transport and pollution associated with chemical munitions deposited in BB and GB after 2nd World War. Of further importance the sub-basins are situated along the pathway of dense inflowing water.Current velocities were measured in the majority of the water column during regular cruises of r/v Oceania and r/v Baltica in 2001-2012 (38 cruises) by 307 kHz vessel mounted (VM), downlooking ADCP. Additionally, the high-resolution CTD and oxygen profiles were collected. Three moorings measured current velocity profiles in SF and GB over the summer 2012. In addition, temperature, salinity, oxygen and turbidity were measured at about 1 m above the bottom in GB. The results showed that mean current speed across the Baltic Proper was around 12 cm s-1 and the stronger flow was characteristic to the regions located above the sills, in the Bornholm and Slupsk Channels, reaching on average about 20 cm s-1. The results suggest that these regions are important for the inflow of saline waters into the eastern Baltic and are the areas of intense vertical mixing. The VM ADCP observations indicate that the average near-bottom flow across the basin can reach 35±6 cm s-1. The mooring observations also showed similar near-bottom flow velocities. However, they showed that the increased speed of the near-bottom layer occurred frequently in SF and GB during short time periods lasting for about few to several days or 10-20% of time. The observations showed that the bottom mixed layer occupies at least 10% of the water column and the turbulent mixing induced by near-bottom currents is likely to produce sediment resuspension and transport

  20. Core Mantle Boundary Topography and Lowermost Mantle Heterogeneity

    NASA Astrophysics Data System (ADS)

    Sze, E. K.; Karason, H.; van der Hilst, R. D.

    2001-05-01

    The core-mantle boundary (CMB) separates the solid silicate mantle and the liquid iron-nickel outer core and marks the strongest contrasts in density and viscosity within the Earth. Knowledge of CMB topography and heterogeneity pattern above it is key for the understanding of many geodynamic processes. In this study, we use P, PcP, PKPab, PKPbc, PKPdf, PKKP, and Pdiff residual travel times to constrain lateral variations in the depth to the core-mantle boundary (CMB) and in lowermost mantle P-wavespeed. In a first experiment, PcP, PKPab, PKPbc, PKPdf, and PKKP data from Engdahl et al. (BSSA, 1998) were corrected for mantle structure (Karason & Van der Hilst, JGR, 2001 - KH2001) and inner-core anisotropy (Su & Dziewonski, JGR, 1995) before being inverted for variations in CMB depth. The spherical averages of all inverted topographic models suggest that the actual CMB radius is slightly smaller than in the Earth reference model used (ak135). These inversions yield amplitude variations of up to 5 km for PcP, PKPab, PKPbc, and PKKP and 13 km for PKPdf, which is larger than the CMB undulations inferred in geodetic studies. Moreover, the PcP results are not readily consistent with the topography models inferred from the core refracted (PKP and PKKP) waves. These discrepancies suggest that the travel-time residuals cannot be explained by topography alone. Anisotropy and outer core heterogeneity could play a role, and despite the use of P, PKP, and Pdiff data the wavespeed perturbations in KH2001 may be too small to fully account for the trade off between volumetric heterogeneity and CMB. In a second experiment we explored the latter. We applied corrections for mantle structure outside a basal 290-thick layer and inverted all data for both CMB topography and volumetric heterogeneity within this layer. This reduces the amplitude of CMB topography to 1.7 km and yields velocity variations of +/- 5%. The long-wavelength pattern of the velocity model is similar to that of KH

  1. Phase transition in aluminous silica in the lowermost mantle

    NASA Astrophysics Data System (ADS)

    Tronnes, R. G.; Andrault, D.; Konopkova, Z.; Morgenroth, W.; Liermann, H.

    2012-12-01

    CaCl2-phase and via extra interstitial Al in seifertite. That would result in a ~1.5% density increase at the transition pressure for silica containing 5 wt% Al2O3. This value is similar to the estimated difference in density between peridotitic mantle and basaltic lithologies in the lowermost mantle. References: [1] Hirose et al. 2005, EPSL; [2] Murakami et al. 2003, GRL

  2. Geologic and biostratigraphic framework of the non-marine Cretaceous-Tertiary boundary interval in western North America

    USGS Publications Warehouse

    Nichols, D.J.

    1990-01-01

    Palynologically defined Cretaceous-Tertiary boundary sites in nonmarine rocks in western North America exhibit similar characteristics. All are marked by abrupt disappearance of the regional uppermost Cretaceous palynoflora at the level of an iridium anomaly; most also yeild shock-metamorphosed minerals. All are in coal-bearing, fluvial or paludal depositional settings, although the boundary horizon may be below, within, above, or at some stratigraphic distance from coal seams. At many sites the lowermost Tertiary beds contain assemblages overwhelmed by fern spores that, together with extinctions of some groups of angiosperms, are taken as evidence of regional devastation of terrestrial plant communities and subsequent recolonization by pioneer species. ?? 1990.

  3. The Lower Cretaceous Chinkeh Formation: A frontier-type play in the Liard basin of western Canada

    SciTech Connect

    Leckie, D.A. ); Potocki, D.J. ); Visser, K. )

    1991-08-01

    The Lower Cretaceous Liard basin in western Canada covers an area of 9,500 km{sup 2} (3,668 mi{sup 2}) but is relatively unexplored despite its size. The present-day expression of the basin, which formed during the latest Cretaceous to early Tertiary, trends north-south and is delineated by the outcrop of the coarse-clastic Upper Cretaceous Dunvegan Formation. The lowermost Cretaceous unit, herein named the Chinkeh Formation, is up to 32 m (105 ft) thick and unconformably overlies older Paleozoic strata. The Chinkeh Formation contains four major lithotypes: (1) conglomeratic breccia interpreted as debris-flow or talus deposits, (2) interbedded coal, carbonaceous as nonmarine valley fill or channel deposits, (3) conglomeratic lag related to marine deposits, (3) conglomeratic lag related to marine transgression, and (4) upward-coarsening sandstone interpreted as abandoned shoreline deposits. Cretaceous strata in the Liard basin have gave petroleum source-rock and reservoir potential, and hydrocarbons may be present in sandstone of the Chinkeh Formation. Potential play types include stratigraphic traps formed by incised-valley deposits and shallow-marine sandstone pinching out laterally into marine shales of the Garbutt Formation. A potential structural play may occur along the Bovie fault zone where reservoirs may abut against a shale seal on the eastern side of the fault. Potential source rocks include the lowermost Garbutt Formation and underlying Triassic Toad Garbutt formations. The Chinkeh Formation sandstone has porosity values of 8-18%.

  4. Hydrology of the uppermost Cretaceous and the lowermost Paleocene rocks in the Hilight oil field, Campbell County, Wyoming

    USGS Publications Warehouse

    Lowry, Marlin E.

    1973-01-01

    The lithologic equivalents of the Fox Hills Sandstone, Lance Formation, and the Tullock member of the Fort Union Formation, as mapped on the east side of the Powder River Basin, can be recognized throughout the basin; however, the formations are in hydraulic connection and cannot be treated as separate aquifers. Recharge to the Lance-Fox Hills aquifer in the Hilight oil field is largely by vertical movement; there is no recharge from the Lance and Fox Hills outcrops on the east side of the basin to the formations in the Hilight area. At the and of the central Hilight water-flood project, the maximum possible drawdown resulting from the pumping of any one well at a distance of l0 miles from the pumped well, would be about 15 feet, if the projected pumping were evenly distributed among the project wells. Within a few years after pumping has ceased, water in the project wells will approach the levels present before pumping began. The only irreversible effect of pumping will be the compaction of shale, with attendant subsidence, because the water derived from the shale probably will not be replaced.

  5. Traveltime tomography as part of an integrated geophysical investigation of black shales on Bornholm, Denmark

    NASA Astrophysics Data System (ADS)

    Baumann-Wilke, M.; Bauer, K.; Stiller, M.

    2011-12-01

    In October 2010 measurements using different geophysical methods were carried out on the Danish island Bornholm. They are part of a mainly seismic investigation and characterization of black shales. Black shales are sedimentary rocks with a high content of organic carbon, which leads to a dark grayish to black color. Because of their potential to contain oil or gas, black shales are of great interest for the support of the worldwide energy supply. Our general objective is to determine basic seismic properties (P-wave velocity, P/S-wave velocity ratio, attenuation) in an exposed quasi in-situ situation and to relate the results to core and downhole logging data describing reservoir properties. The results will later be used to study the relationship between reservoir properties and seismic reflection attributes. The experiments were carried out at two locations around new drill sites. Three different methods were used: geoelectrical measurements, ambient noise recordings and seismic measurements. In this context we will only concentrate on the presentation of the latter one for one location. At this location, two about 700 m long seismic profiles were measured. It is known from a drilling campaign that the top of the black shale is in about 8 m depth. First, a 1D P-wave velocity model was determined by ray tracing. This model was used as an input for a tomographic inversion to obtain a 2D velocity model. We will show first results of the traveltime tomography for both profiles. A vertical velocity profile through the final model is compared to borehole information.

  6. Improving oxygen conditions in the deeper parts of bornholm sea by pumped injection of winter water.

    PubMed

    Stigebrandt, Anders; Kalén, Ola

    2013-09-01

    Vertical diffusivity and oxygen consumption in the basin water, the water below the sill level at about 59 m depth, have been estimated by applying budget methods to monitoring data from hydrographical stations BY4 and BY5 for periods without water renewal. From the vertical diffusivity, the mean rate of work against the buoyancy forces below 65 m depth is estimated to about 0.10 mW m(-2). This is slightly higher than published values for East Gotland Sea. The horizontally averaged vertical diffusivity κ can be approximated by the expression κ = a 0 N (-1) where N is the buoyancy frequency and a 0 ≈ 1.25 × 10(-7) m(2) s(-2), which is similar to values for a 0 used for depths below the halocline in Baltic proper circulation models for long-term simulations. The contemporary mean rate of oxygen consumption in the basin water is about 75 g O2 m(-2) year(-1), which corresponds to an oxidation of 28 g C m(-2) year(-1). The oxygen consumption in the Bornholm Basin doubled from the 1970s to the 2000s, which qualitatively explains the observed increasing frequency and vertical extent of anoxia and hypoxia in the basin water in records from the end of the 1950s to present time. A horizontally averaged vertical advection-diffusion model of the basin water is used to calculate the effects on stratification and oxygen concentration by a forced pump-driven vertical convection. It is shown that the residence time of the basin water may be reduced by pumping down and mixing the so-called winter water into the deepwater. With the present rate of oxygen consumption, a pumped flux of about 25 km(3) year(-1) would be sufficient to keep the oxygen concentration in the deepwater above 2 mL O2 L(-1). PMID:23161366

  7. Geochemistry and petrogenesis of Mesoproterozoic A-type granitoids from the Danish island of Bornholm, southern Fennoscandia

    NASA Astrophysics Data System (ADS)

    Johansson, Åke; Waight, Tod; Andersen, Tom; Simonsen, Siri L.

    2016-02-01

    Granitoids and gneisses from the Danish island of Bornholm have been investigated using whole rock geochemistry, Sr and Nd isotope geochemistry and Hf isotopes in zircon. Recent U-Pb dating shows that the rocks were formed during a short time interval at 1.45 to 1.46 Ga, penecontemporaneous with ongoing deformation. The strong similarity in geochemical signatures indicate that they all belong to a single igneous suite composed of alkali-calcic biotite-hornblende quartz monzonites to more evolved biotite granites, albeit with an apparent gap in SiO2 content at around 70 wt%, dividing the suite into an intermediate and a felsic part. These dominantly metaluminous rocks are strongly ferroan and potassic, and with highly elevated concentrations of many trace elements, traits that are typical for A-type granitoids. The presence of magnetite and titanite indicates relatively oxidized compositions, and Nb/Y ratios designate them to the A2 subtype. Initial whole rock εNd values range between + 1 and - 2 (with one outlier at + 4), and initial zircon εHf values between + 3 and - 4. These values may be explained by melting of relatively juvenile crust similar to that forming the Transscandinavian Igneous Belt alone, but the spread in Hf and Nd isotope compositions to values overlapping with the Svecofennian mantle at 1.45 Ga suggests involvement of a mantle-derived component. This indicates the magmatism was associated with juvenile crustal growth. There are no systematic differences in isotope or trace element characteristics between the orthogneisses and the less deformed granitoids, suggesting similar origins for both rock types, and no systematic changes in isotopic composition with SiO2 concentration. Trace element compositions indicate a within-plate setting, similar to other 1.45 Ga granites in southwest Fennoscandia, in spite of the close relation between magmatism and deformation on Bornholm. We therefore suggest intracratonic A-type magmatism within an active

  8. Is There Evidence of Convectively Injected Water Vapor in the Lowermost Stratosphere Over Boulder, Colorado?

    NASA Astrophysics Data System (ADS)

    Hurst, D. F.; Rosenlof, K. H.; Davis, S. M.; Hall, E. G.; Jordan, A. F.

    2014-12-01

    Anderson et al. (2012) reported the frequent presence of convectively injected water vapor in the lowermost stratosphere over North America during summertime, based on aircraft measurements. They asserted that enhanced catalytic ozone destruction within these wet stratospheric air parcels presents a concern for UV dosages in populated areas, especially if the frequency of deep convective events increases. Schwartz et al.(2013) analyzed 8 years of more widespread Aura Microwave Limb Sounder (MLS) measurements of lower stratospheric water vapor over North America and concluded that anomalously wet (>8 ppm) air parcels were present only 2.5% of the time during July and August. However, given the 3-km vertical resolution of MLS water vapor retrievals in the lowermost stratosphere, thin wet layers deposited by overshooting convection may be present but not readily detectable by MLS. Since 1980 the balloon-borne NOAA frost point hygrometer (FPH) has produced nearly 400 high quality water vapor profiles over Boulder, Colorado, at 5-m vertical resolution from the surface to the middle stratosphere. The 34-year record of high-resolution FPH profiles obtained over Boulder during summer months is evaluated for evidence of convectively injected water vapor in the lowermost stratosphere. A number of approaches are used to assess the contributions of deep convection to the Boulder stratospheric water vapor record. The results are compared to those based on MLS profiles over Boulder and the differences are discussed. Anderson, J. G., D. M. Wilmouth, J. B. Smith, and D. S. Sayres (2012), UV dosage levels in summer: Increased risk of ozone loss from convectively injected water vapor, Science, 337(6096), 835-839, doi:10.1126/science.1222978. Schwartz, M. J., W. G. Read, M. L. Santee, N. J. Livesey, L. Froidevaux, A. Lambert, and G. L. Manney (2013), Convectively injected water vapor in the North American summer lowermost stratosphere, Geophys. Res. Lett., 40, 2316-2321, doi:10

  9. Seasonal Variability of Middle Latitude Ozone in the Lowermost Stratosphere Derived from Probability Distribution Functions

    NASA Technical Reports Server (NTRS)

    Cerniglia, M. C.; Douglass, A. R.; Rood, R. B.; Sparling, L. C..; Nielsen, J. E.

    1999-01-01

    We present a study of the distribution of ozone in the lowermost stratosphere with the goal of understanding the relative contribution to the observations of air of either distinctly tropospheric or stratospheric origin. The air in the lowermost stratosphere is divided into two population groups based on Ertel's potential vorticity at 300 hPa. High [low] potential vorticity at 300 hPa suggests that the tropopause is low [high], and the identification of the two groups helps to account for dynamic variability. Conditional probability distribution functions are used to define the statistics of the mix from both observations and model simulations. Two data sources are chosen. First, several years of ozonesonde observations are used to exploit the high vertical resolution. Second, observations made by the Halogen Occultation Experiment [HALOE] on the Upper Atmosphere Research Satellite [UARS] are used to understand the impact on the results of the spatial limitations of the ozonesonde network. The conditional probability distribution functions are calculated at a series of potential temperature surfaces spanning the domain from the midlatitude tropopause to surfaces higher than the mean tropical tropopause [about 380K]. Despite the differences in spatial and temporal sampling, the probability distribution functions are similar for the two data sources. Comparisons with the model demonstrate that the model maintains a mix of air in the lowermost stratosphere similar to the observations. The model also simulates a realistic annual cycle. By using the model, possible mechanisms for the maintenance of mix of air in the lowermost stratosphere are revealed. The relevance of the results to the assessment of the environmental impact of aircraft effluence is discussed.

  10. Seasonal Variability of Middle Latitude Ozone in the Lowermost Stratosphere Derived from Probability Distribution Functions

    NASA Technical Reports Server (NTRS)

    Cerniglia, M. C.; Douglass, A. R.; Rood, R. B.; Sparling, L. C.; Nielsen, J. E.

    1999-01-01

    We present a study of the distribution of ozone in the lowermost stratosphere with the goal of understanding the relative contribution to the observations of air of either distinctly tropospheric or stratospheric origin. The air in the lowermost stratosphere is divided into two population groups based on Ertel's potential vorticity at 300 hPa. High [low] potential vorticity at 300 hPa suggests that the tropopause is low [high], and the identification of the two groups helps to account for dynamic variability. Conditional probability distribution functions are used to define the statistics of the mix from both observations and model simulations. Two data sources are chosen. First, several years of ozonesonde observations are used to exploit the high vertical resolution. Second, observations made by the Halogen Occultation Experiment [HALOE) on the Upper Atmosphere Research Satellite [UARS] are used to understand the impact on the results of the spatial limitations of the ozonesonde network. The conditional probability distribution functions are calculated at a series of potential temperature surfaces spanning the domain from the midlatitude tropopause to surfaces higher than the mean tropical tropopause [approximately 380K]. Despite the differences in spatial and temporal sampling, the probability distribution functions are similar for the two data sources. Comparisons with the model demonstrate that the model maintains a mix of air in the lowermost stratosphere similar to the observations. The model also simulates a realistic annual cycle. By using the model, possible mechanisms for the maintenance of mix of air in the lowermost stratosphere are revealed. The relevance of the results to the assessment of the environmental impact of aircraft effluence is discussed.

  11. Seismic evidence for an Iceland thermo-chemical plume in the Earth's lowermost mantle

    NASA Astrophysics Data System (ADS)

    He, Yumei; Wen, Lianxing; Capdeville, Yann; Zhao, Liang

    2015-05-01

    We constrain the geographic extent, geometry and velocity structure of the seismic anomaly near the Earth's core-mantle boundary (CMB) beneath Iceland, based on travel time and three-dimensional waveform modeling of the seismic data sampling the lowermost mantle beneath Iceland. Our analysis suggests a mushroom-shaped low velocity anomaly situated in the lowermost mantle beneath Iceland surrounded by a high velocity province. The best fitting mushroom-shaped model is 600 km high and has a stem with a radius of 350 km in the lowermost 250 km of the mantle and a cap with increasing radii from 550 km at 250 km above the CMB to 650 km at 600 km above the CMB. The shear velocity structure varies from 0% at the top to - 3% at 250 km above the CMB and to - 6% at the CMB. These inferred seismic features, in combination with the previous evidence of existence of ultra-low velocity zones at the base of the mantle beneath the region, suggest that Iceland represents a thermo-chemical plume generated by interaction of downwelling and a localized chemical anomaly at the base of the mantle.

  12. Cretaceous polar climates

    SciTech Connect

    Ziegler, A.M.; Horrell, M.A.; Lottes, A.L.; Gierlowski, T.C.

    1988-02-01

    The Cretaceous, like most Phanerozoic periods, was characterized by ice-free poles. Some still argue that the glaciers and sea ice were there, and that the tillites, etc, have been eroded or remain undiscovered. However, diverse floras, dense forests, and coal-forming cypress swamps, and dinosaurs, crocodilians, and lungfish are known from areas that were certainly at 75/degree/-80/degree/ north and south paleolatitude in the Cretaceous, implying that the coastal basins did not experience hard freezes. No deep marine connections to the North Pole existed in the Cretaceous, so oceanic polar heat transport can be discounted. However, the five north-south trending epeiric or rift-related seaways that connected or nearly connected the Tethys to the Arctic would have dampened the seasonal temperature cycle, bring maritime climates deep into the North American and Eurasian continents and, more importantly, would have served as an energy source and channel for winter storms, much as the Gulf Stream does today. Cyclones have a natural tendency to move poleward, because of the increase in the Coriolis Parameter, and they transport both sensible and latent heat. The coastal regions of the relatively warm polar ocean in the Cretaceous would have received continuous precipitation during the winter because cyclones would be entering from as many as five directions. Coastal rainfall would also have been abundant in the summer but for a different reason; the land-sea temperature profile would reverse, with the warm land surface drawing in moisture, while clear ice-free conditions over the ocean would allow for solar warming.

  13. Cretaceous polar climates

    SciTech Connect

    Ziegler, A.M.; Horrell, M.A.; Lottes, A.L.; Gierlowski, T.C.

    1988-01-01

    The Cretaceous, like most Phanerozooic periods, was characterized by ice-free poles. Some still argue that the glacier and sea ice were there, and that the tillites, etc, have been eroded or remain undiscovered. However, diverse floras, dense forests, coal-forming cypress swamps, and dinosaurs, crocodilians, and lungfish are known from areas that were certainly at 75/sup 0/-80/sup 0/ north and south paleolatitude in the Cretaceous, implying that the coastal basins did not experience hard freezes. No deep marine connections to the North Pole existed in the Cretaceous, so oceanic polar heat transport can be discounted. However, the five north-south trending epeiric or rift-related seaways that connected or nearly connected the Tethys to the Arctic would have dampened the seasonal temperature cycle, bringing maritime climates deep into the North American and Eurasian continents and, more importantly, would have served as an energy source and channel for winter storms, much as the Gulf Stream does today. Cyclones have a natural tendency to move poleward, because of the increase in the Coriolis Paramteter, and they transport both sensible and latent heat. The coastal regions of the relatively warm polar ocean in the Cretaceous would have received continuous precipitation during the winter because cyclones would be entering from as many as five directions. Coastal rainfall would also have been abundant in the summer but for a different reason; the land-sea temperature profile would reverse, with the warm land surface drawing in moisture, while clear ice-free conditions over the ocean would allow for solar warming.

  14. Using mineral elasticities to link geodynamics and seismic observations in the lowermost mantle.

    NASA Astrophysics Data System (ADS)

    Wookey, J.; Walker, A. M.; Nowacki, A.; Walpole, J.; Kendall, J.

    2012-12-01

    The base of the mantle is the site of the most significant change in physical parameters in the Earth system: the core-mantle boundary. As the region which mediates core-mantle interactions and acts as the lower boundary for mantle convection understanding its properties is key to understanding the broader dynamics of the mantle. One issue is the participation of material in the lowermost mantle (often referred to as D″) in whole mantle convection. This is exemplified by the questions outstanding about the origin of the large, low shear-velocity provinces observed beneath Africa and the Pacific. While the consensus view is that these are long-term, stable features which are compositionally distinct (lending them higher density than their surroundings), a dominantly thermal origin (whereby they are lower density transitory upwellings, such as clustered plumes) is favoured by a number of very recent studies. Observations of seismic anisotropy (which results from the deformation of mantle minerals) are key to understanding the geodynamic nature of the lowermost mantle. There are a broad set of observations of D″ anisotropy, ranging from tomographic to waveform studies which allow resolution of a more general anisotropy style. These observations show variation at a range of length scales, with some regions apparently very complex. To interpret them robustly in terms of geodynamics requires significant knowledge of lowermost mantle mineralogy. Mineralogical information comes from both laboratory experiments and theoretical calculations. In addition to single-crystal elasticities of relevant mantle phases we also need information about deformation mechanisms in order to calculate the aggregate seismic anisotropy. While candidate determinations of these latter parameters exist there is no consensus as to the dominant mechanism for the mineral likely to be most significant for the lowermost mantle region - post-perovskite. In order to test these candidates we have

  15. Seasonal Variability of Middle Latitude Ozone in the Lowermost Stratosphere Derived from Probability Distribution Functions

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.; Douglass, Anne R.; Cerniglia, Mark C.; Sparling, Lynn C.; Nielsen, J. Eric

    1999-01-01

    We present a study of the distribution of ozone in the lowermost stratosphere with the goal of characterizing the observed variability. The air in the lowermost stratosphere is divided into two population groups based on Ertel's potential vorticity at 300 hPa. High (low) potential vorticity at 300 hPa indicates that the tropopause is low (high), and the identification of these two groups is made to account for the dynamic variability. Conditional probability distribution functions are used to define the statistics of the ozone distribution from both observations and a three-dimensional model simulation using winds from the Goddard Earth Observing System Data Assimilation System for transport. Ozone data sets include ozonesonde observations from northern midlatitude stations (1991-96) and midlatitude observations made by the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite (UARS) (1994- 1998). The conditional probability distribution functions are calculated at a series of potential temperature surfaces spanning the domain from the midlatitude tropopause to surfaces higher than the mean tropical tropopause (approximately 380K). The probability distribution functions are similar for the two data sources, despite differences in horizontal and vertical resolution and spatial and temporal sampling. Comparisons with the model demonstrate that the model maintains a mix of air in the lowermost stratosphere similar to the observations. The model also simulates a realistic annual cycle. Results show that during summer, much of the observed variability is explained by the height of the tropopause. During the winter and spring, when the tropopause fluctuations are larger, less of the variability is explained by tropopause height. This suggests that more mixing occurs during these seasons. During all seasons, there is a transition zone near the tropopause that contains air characteristic of both the troposphere and the stratosphere. The

  16. Trace gas evolution in the lowermost stratosphere from Aura Microwave Limb Sounder measurements

    NASA Astrophysics Data System (ADS)

    Santee, M. L.; Manney, G. L.; Livesey, N. J.; Froidevaux, L.; Schwartz, M. J.; Read, W. G.

    2011-09-01

    Daily global measurements from NASA's Aura Microwave Limb Sounder (MLS) allow comprehensive investigation of interhemispheric and interannual variations in chemical and transport processes throughout the lowermost stratosphere (LMS). We analyze nearly seven years of MLS O3, HNO3, HCl and ClO measurements along with meteorological analyses to place chemical processing in and dispersal of processed air from the winter polar lowermost vortex and subvortex in a global context. The MLS data, the first simultaneous observations of HCl and ClO covering much of the LMS, reveal that chlorine activation is widespread in the Antarctic subvortex and can occur to a significant degree in the Arctic subvortex. Unusually low temperatures and strong, prolonged chlorine activation in the lowermost vortex and subvortex promoted large ozone losses there in the 2006 (and 2008) Antarctic and 2004/2005 Arctic winters, consistent with reported record low column ozone. Processed air dispersing from the decaying vortex in spring induces rapid changes in extravortex trace gas abundances. After vortex breakdown, the subtropical jet/tropopause becomes the major transport barrier in the LMS. Quasi-isentropic transport of tropical tropospheric air into the LMS, associated with the summer monsoon circulations, leads to decreases in extratropical O3, HNO3, and HCl in both hemispheres. Strong mixing in the summertime LMS homogenizes extratropical trace gas fields. MLS measurements in the tropics show signatures of monsoon-related cross-equatorial stratosphere-to-troposphere transport. Observed seasonal and interannual variations in trace gas abundances in the LMS are consistent with variations in the strength of transport barriers diagnosed from meteorological analyses.

  17. Cretaceous eustasy revisited

    NASA Astrophysics Data System (ADS)

    Haq, Bilal U.

    2014-02-01

    Eustatic sea-level changes of the Cretaceous are reevaluated based on a synthesis of global stratigraphic data. A new terminology for local/regional or relative sea-level changes (eurybatic shifts) is proposed to distinguish them from global (eustatic) sea-level changes, with the observation that all measures of sea-level change in any given location are eurybatic, even when they include a strong global signal. Solid-earth factors that influence inherited regional topography and thus modify physical measures of amplitude of the sea-level rises and falls locally are reviewed. One of these factors, dynamic topography (surface expression of mass flow in the upper mantle on land- and seascapes), is considered most pertinent in altering local measures of amplitude of sea-level events on third-order time scales (0.5-3.0 Myr). Insights gained from these models have led to the reconciliation of variance between amplitude estimates of eurybatic shifts in any given region and global measures of eustatic changes. Global estimates of third-order events can only be guesstimated at best by averaging the eurybatic data from widely distributed time-synchronous events. Revised curves for both long-term and short-term sea-level variations are presented for the Cretaceous Period. The curve representing the long-term envelope shows that average sea levels throughout the Cretaceous remained higher than the present day mean sea level (75-250 m above PDMSL). Sea level reached a trough in mid Valanginian (~ 75 m above PDMSL), followed by two high points, the first in early Barremian (~ 160-170 m above PDMSL) and the second, the highest peak of the Cretaceous, in earliest Turonian (~ 240-250 m above PDMSL). The curve also displays two ~ 20 Myr-long periods of relatively high and stable sea levels (Aptian through early Albian and Coniacian through Campanian). The short-term curve identifies 58 third-order eustatic events in the Cretaceous, most have been documented in several basins, while

  18. Predominant Intermediate-Spin Ferrous Iron in Lowermost Mantle Post-Perovskite and Perovskite

    NASA Astrophysics Data System (ADS)

    Lin, J.; Watson, H. C.; Vanko, G.; Alp, E. E.; Prakapenka, V.; Dera, P.; Struzhkin, V. V.; Kubo, A.; Zhao, J.; McCammon, C.; Evans, W. J.

    2008-12-01

    Silicate post-perovskite and perovskite are believed to be the dominant minerals of the lowermost mantle and the lower mantle, respectively, and their properties, which can be strongly influenced by the electronic state of iron in these phases, affect our understanding of the nature of the deep Earth. To date, in these minerals the electronic spin state of iron remains unknown under lowermost-mantle pressure-temperature conditions, although recent studies have showed an electronic spin crossover from high-spin to low-spin in ferropericlase over an extended pressure-temperature range of the lower mantle (i.e., Lin et al., Science, 2007) and from high-spin to intermediate-spin in silicate perovskite near the top of the lower mantle (McCammon et al., Nature Geoscience, 2008). Here we report the spin and valence states of iron in post-perovskite and perovskite at pressure-temperature conditions relevant to the lowermost mantle using in situ X-ray emission, X-ray diffraction, and synchrotron Mossbauer spectroscopies in a laser-heated diamond cell. Perovskite and post-perovskite display extremely high quadrupole splitting (QS) of approximately 4 mm/s and relatively high center shift in the synchrotron Mossbauer spectra at 110 GPa and 134 GPa, respectively. Our results show that Fe2+ exists predominantly in the intermediate-spin state with a total spin number of one in both phases (Lin et al., Nature Geoscience, 2008). Together with recent results on the effects of the spin transition in the lower-mantle ferropericlase (see a recent review by Lin and Tsuchiya, PEPI, 2008), here we will address how the electronic spin states in lower-mantle phases and their associated effects affect our understanding on the composition, geophysics, and dynamics of the lower mantle.. References: 1. Lin, J. F., H. C. Watson, G. Vanko, E. E. Alp, V. B. Prakapenka, P. Dera, V. V. Struzhkin, A. Kubo, J. Zhao, C. McCammon, W. J. Evans, Intermediate-spin ferrous iron in lowermost mantle post

  19. Towards global observations of shear wave splitting in the Earth's lowermost mantle

    NASA Astrophysics Data System (ADS)

    Walpole, J.; Wookey, J.; Nowacki, A. J.; Walker, A. M.; Masters, G.

    2011-12-01

    It is well documented that the Earth's lowermost mantle (a.k.a. D") is seismically anisotropic. This anisotropy is indicative of a long range order which may be caused by the alignment of crystals in a strained fabric due to lower mantle flow, or alternatively by the presence of shaped heterogeneities such as fine layers, or pockets of melt. The resolution of this anisotropy, and its proper interpretation, will place important constraints on the thermodynamic and mineralogical properties of this elusive region. Local studies of D" anisotropy have revealed that in some places the simplest style of anisotropy that fits the data is transversely isotropic with a tilted axis of symmetry. To date, global studies of lowermost mantle anisotropy have made the assumption that the anisotropy is transversely isotropic with a vertical axis of symmetry. This limits the capacity of such measurements to infer geodynamic or mineralogical causes. It remains an outstanding challenge to make global observations of anisotropy in D" without recourse to simplifying assumptions as to the style and symmetry axis of anisotropy. We use seismograms from the IRIS DMC (over the period 1998 to 2005) to perform S-ScS differential splitting and thus make observations of shear wave splitting in the lowermost mantle at a number of localities around the globe. Our method makes no assumptions as to the style of anisotropy. The determination from the S phase of splitting in the upper mantle beneath stations and events enables us to ensure that splitting in the upper mantle does not contaminate our observations of splitting in the lowermost mantle on the ScS phase. This work validates our method, and provides a firm platform from which to further our observations of shear wave splitting in D". Our dataset has excellent spatial coverage over the Northern Hemisphere with especially good azimuthal coverage over a large swath beneath Asia. The global nature of the dataset will enable us to measure splitting

  20. Consequences of artificial deepwater ventilation in the Bornholm Basin for oxygen conditions, cod reproduction and benthic biomass - a model study

    NASA Astrophysics Data System (ADS)

    Stigebrandt, A.; Rosenberg, R.; Råman Vinnå, L.; Ödalen, M.

    2014-07-01

    We develop and use a circulation model to estimate hydrographical and ecological changes in the isolated basin water of the Bornholm Basin. By pumping well oxygenated so-called winter water, residing beneath the level of the summer thermocline, to the greatest depth of the basin, where it is forced to mix with the resident water, the rate of density reduction should increase and thereby the frequency of intrusions of new oxygen-rich deepwater. We show that pumping 1000 m3 s-1 should increase the rates of water exchange and oxygen supply by 2.5 and 3 times, respectively. The CRV (Cod Reproduction Volume), the volume of water in the isolated basin meeting the requirements for successful cod reproduction (S > 11, O2 > 2 mL L-1), should every year be greater than 54 km3, which is an immense improvement since it in certain years is currently much less. Anoxic bottoms should no longer occur in the basin and hypoxic events will become rare. This should permit extensive colonization of fauna on the earlier periodically anoxic bottoms. Increased biomass of benthic fauna should also mean increased food supply to economically valuable demersal fish like cod and flatfish. In addition, the bioturbation activity and re-oxygenation of the sediments should lead to increased phosphorus retention by the sediments.

  1. Consequences of artificial deepwater ventilation in the Bornholm Basin for oxygen conditions, cod reproduction and benthic biomass - a model study

    NASA Astrophysics Data System (ADS)

    Stigebrandt, A.; Rosenberg, R.; Råman Vinnå, L.; Ödalen, M.

    2015-01-01

    We develop and use a circulation model to estimate hydrographical and ecological changes in the isolated basin water of the Bornholm Basin. By pumping well-oxygenated so-called winter water to the greatest depth, where it is forced to mix with the resident water, the rate of deepwater density reduction increases as well as the frequency of intrusions of new oxygen-rich deepwater. We show that pumping 1000 m3 s-1 should increase the rates of water exchange and oxygen supply by 2.5 and 3 times, respectively. The CRV (cod reproduction volume), the volume of water in the isolated basin meeting the requirements for successful cod reproduction (S > 11, O2 > 2 mL L-1), should every year be greater than 54 km3, which is an immense improvement, since it has been much less in certain years. Anoxic bottoms should no longer occur in the basin, and hypoxic events will become rare. This should permit extensive colonization of fauna on the earlier periodically anoxic bottoms. Increased biomass of benthic fauna should also mean increased food supply to economically valuable demersal fish like cod and flatfish. In addition, re-oxygenation of the sediments should lead to increased phosphorus retention by the sediments.

  2. Strong, Multi-Scale Heterogeneity in Earth’s Lowermost Mantle

    PubMed Central

    Tkalčić, Hrvoje; Young, Mallory; Muir, Jack B.; Davies, D. Rhodri; Mattesini, Maurizio

    2015-01-01

    The core mantle boundary (CMB) separates Earth’s liquid iron outer core from the solid but slowly convecting mantle. The detailed structure and dynamics of the mantle within ~300 km of this interface remain enigmatic: it is a complex region, which exhibits thermal, compositional and phase-related heterogeneity, isolated pockets of partial melt and strong variations in seismic velocity and anisotropy. Nonetheless, characterising the structure of this region is crucial to a better understanding of the mantle’s thermo-chemical evolution and the nature of core-mantle interactions. In this study, we examine the heterogeneity spectrum from a recent P-wave tomographic model, which is based upon trans-dimensional and hierarchical Bayesian imaging. Our tomographic technique avoids explicit model parameterization, smoothing and damping. Spectral analyses reveal a multi-scale wavelength content and a power of heterogeneity that is three times larger than previous estimates. Inter alia, the resulting heterogeneity spectrum gives a more complete picture of the lowermost mantle and provides a bridge between the long-wavelength features obtained in global S-wave models and the short-scale dimensions of seismic scatterers. The evidence that we present for strong, multi-scale lowermost mantle heterogeneity has important implications for the nature of lower mantle dynamics and prescribes complex boundary conditions for Earth’s geodynamo. PMID:26674394

  3. Testing geodynamic models of lowermost mantle flow with a regional shear wave splitting data set

    NASA Astrophysics Data System (ADS)

    Ford, H. A.; Long, M. D.

    2015-12-01

    Global flow models rely on a number of assumptions, including composition, temperature, viscosity, and deformation mechanism. In the upper mantle, flow models and their associated assumptions can be tested and refined with observations of seismic anisotropy, which is treated as a proxy for flow direction. Beneath the transition zone, direct observations of seismic anisotropy are scarce, except for in the lowermost ~250 km of the mantle. In this study, we utilize a comprehensive, previously published (Ford et al., 2015) shear wave splitting study in order to test a three-dimensional global geodynamic flow model (Walker et al., 2011). Our study focuses on a region of the lowermost mantle along the eastern edge of the African Superplume beneath the Afar region. We find that our observations are fit by a model which invokes slip along the (010) plane of post-perovskite with flow directed down and to the southwest. Critically, we demonstrate the ability of a regional data set to interrogate models of lower mantle flow.

  4. Cretaceous source rocks in Pakistan

    SciTech Connect

    Kari, I.B. )

    1993-02-01

    Pakistan is located at the converging boundaries of the Indian, Arabian, and Eurasian plates. Evolution of this tectonic setting has provided an array of environmental habitats for deposition of petroleum source rocks and development of structural forms. The potential Cretaceous source rocks in Central and South Indus Basin are spread over an area of about 300,000 km[sup 2]. With 2% cutoff on Total Organic Carbon, the average source rock thickness is 30-50 m, which is estimated to have generated more than 200 billion bbl of oil equivalent. To date, production of more than 30,000 bbl of oil and about 1200 million ft[sup 3] of gas per day can be directly attributed to Cretaceous source. This basin was an area of extensional tectonics during the Lower to Middle Cretaceous associated with slightly restricted circulation of the sea waters at the north-western margin of Indian Plate. Lower Cretaceous source rocks (Sembar Formation) were deposited while the basin was opening up and anoxia was prevailing. Similarly Middle to Upper Cretaceous clastics were deposited in setting favorable for preservation of organic matter. The time and depth of burial of the Cretaceous source material and optimum thermal regime have provided the requisite maturation level for generation of hydrocarbons in the basin. Central Indus basin is characterized by Cretaceous source rocks mature for gas generation. However, in South Indus Basin Cretaceous source rocks lie within the oil window in some parts and have gone past it in others.

  5. Mesorbitolina (Cretaceous larger foraminifera) from the Yezo Group in Hokkaido, Japan and its stratigraphic and paleobiogeographic significance

    PubMed Central

    Iba, Yasuhiro; Sano, Shin-ichi

    2006-01-01

    In this paper, we describe an Aptian (Early Cretaceous) larger foraminiferal species Orbitolina (Mesorbitolina) parva from the limestone olistoliths in the lower part of the Yezo Group in the Yubari–Ashibetsu area, central Hokkaido and from limestone pebbles in the lowermost part of the Yezo Group in the Nakagawa area, northern Hokkaido. This is the first report of this species from the circum-North Pacific regions. Based on its occurrences, the shallow-marine carbonates, re-deposited in the lower part of the Yezo Group, are precisely assigned in age to the Late Aptian. Comparison of the lower part of the Yezo Group in central and northern Hokkaido indicates differences of the Aptian–Albian depositional history between the two areas. This study reveals that after Late Aptian, Mesogean key taxa (typical Cretaceous Tethyan biota) demised in the Northwest Pacific. PMID:25792785

  6. Deformation and seismic anisotropy of silicate post-perovskite in the Earth's lowermost mantle

    NASA Astrophysics Data System (ADS)

    wu, X.; Lin, J.; Mao, Z.; Liu, J.; Kaercher, P. M.; Wenk, H.; Prakapenka, V.; Zhuravlev, K. K.

    2013-12-01

    The D' layer in the Earth's lowermost mantle with an average thickness of 250 km right above the core-mantle boundary plays a significant role in the geophysics, geochemistry, and geodynamics of the planet's interior. Seismic observations of the region have shown a number of enigmatic features including shear wave discontinuity and seismic wave anisotropy. The seismic anisotropy, in which the horizontally-polarized shear wave (VSH) travels faster than the vertically-polarized shear wave (VSV) by 1%~3% in areas below the circum Pacific, has been proposed to be a result of the lattice-preferred orientation of silicate post-perovskite (PPv) that is to be the most abundant phase in the D' layer [1]. Therefore, understanding the elasticity and deformation of the PPv phase is critical under relevant P-T conditions of the region. However, experimental results on the textures and the elastic anisotropy of PPv remain largely limited and controversial. Specifically, a number of slip systems of PPv, such as (010), (100), (110) and (001), have been proposed based on experimental and theoretical results [2-4]. Here we have studied the textures and deformation mechanism of iron-bearing PPv ((Mg0.75,Fe0.25)SiO3) at relevant P-T conditions of the lowermost mantle using synchrotron radiation radial x-ray diffraction in a membrane-driven laser-heated diamond anvil cell. The diffraction patterns were recorded from the laser-heated PPv sample during further compression between 130 GPa and 150 GPa. Analyses of the diffraction patterns and simulation results from viscoplastic self-consistent polycrystal plasticity code (VPSC) show that the development of active slip systems can be strongly influenced by experimental pressure-temperature-time conditions. At relevant P-T conditions of the lowermost mantle, our results demonstrate that the dominant slip systems of PPv should be (001)[100] and (001)[010]. Combined these results with the elasticity of PPv, we provide more constrains on the

  7. A global study of the lowermost mantle using scattered PKKP waves (PK?KP)

    NASA Astrophysics Data System (ADS)

    Frost, Daniel; Rost, Sebastian; Selby, Neil

    2013-04-01

    The short-period (1 Hz) seismic wavefield shows strong evidence for scattered energy from the interior of the Earth. This energy mainly arrives in the coda following major seismic phases; however, several ray configurations exist in which seismic energy from the lowermost mantle arrives as precursors to main phases, allowing analysis of energy undisturbed by crustal interference. Here we use the phase PKKP to infer small-scale structure at the Core-Mantle Boundary (CMB) and in the D'' layer. PKKP back-scattered at, or above, the CMB (PK?KP where the ? represents the location of scattering) is observed in a time window starting about 1720 s after origin (for a surface focus) and can be observed from 0° to about 60° epicentral distance. PK?KP is not closely related to the parent phase PKKP since it arrives in a time and distance range where only PKKPdf could be observed; nonetheless, due to the high attenuation in the inner core PKKPdf is rarely detected. The time window used is free from other major and minor arrivals thus allowing the identification of the scattered PKKP energy, despite its relatively low amplitude. The ray path of PK?KP is complicated with scattering occurring off great-circle path, thus avoiding the attenuating inner core. Due to the scattered energy travelling the major arc of the great-circle path (similar to PKKP), PK?KP waves sample regions of the Core-Mantle Boundary inaccessible to most other scattering probes using similar source-receiver combinations. Observations of 1-2 Hz PK?KP energy indicate that the scatterers are discrete heterogeneities with a scale length of ~10 km. Here we use the dense, small to medium aperture arrays of the International Monitoring System of the CTBTO to extract the small amplitude PK?KP from seismic noise. Arrays increase signal-to-noise ratio and give directivity information allowing the determination of the scattering location in the lowermost mantle through ray-tracing. We use the frequency-wavenumber (fk

  8. Origin of granulite terranes and the formation of the lowermost continental crust.

    PubMed

    Bohlen, S R; Mezger, K

    1989-04-21

    Differences in composition and pressures of equilibration between exposed, regional granulite terranes and suites of granulite xenoliths of crustal origin indicate that granulite terranes do not represent exhumed lowermost crust, as had been thought, but rather middle and lower-middle crustal levels. Application of well-calibrated barometers indicate that exposed granulites record equilibration pressures of 0.6 to 0.8 gigapascal (20 to 30 kilometers depth of burial), whereas granulite xenoliths, which also tend to be more mafic, record pressures of at least 1.0 to 1.5 gigapascals (35 to 50 kilometers depth of burial). Thickening of the crust by the crystallization of mafic magmas at the crust-mantle boundary may account for both the formation of regional granulite terranes at shallower depths and the formation of deep-seated mafic crust represented by many xenolith suites.

  9. Temperature profile in the lowermost mantle from seismological and mineral physics joint modeling

    PubMed Central

    Kawai, Kenji; Tsuchiya, Taku

    2009-01-01

    The internal structure of the core-mantle boundary (CMB) region of the Earth plays a crucial role in controlling the dynamics and evolution of our planet. We have developed a comprehensive model based on the radial variations of shear velocity in the D″ layer (the base of the lower mantle) and the high-P,T elastic properties of major candidate minerals, including the effects of post-perovskite phase changes. This modeling shows a temperature profile in the lowermost mantle with a CMB temperature of 3,800 ± 200 K, which suggests that lateral temperature variations of 200–300 K can explain much of the large velocity heterogeneity observed in D″. A single-crossing phase transition model was found to be more favorable in reproducing the observed seismic wave velocity structure than a double-crossing phase transition model. PMID:20018735

  10. Origin of granulite terranes and the formation of the lowermost continental crust

    USGS Publications Warehouse

    Bohlen, S.R.; Mezger, K.

    1989-01-01

    Differences in composition and pressures of equilibration between exposed, regional granulite terranes and suites of granulite xenoliths of crustal origin indicate that granulite terranes do not represent exhumed lowermost crust, as had been thought, but rather middle and lower-middle crustal levels. Application of well-calibrated barometers indicate that exposed granulites record equilibration pressures of 0.6 to 0.8 gigapascal (20 to 30 kilometers depth of burial), whereas granulite xenoliths, which also tend to be more mafic, record pressures of at least 1.0 to 1.5 gigapascals (35 to 50 kilometers depth of burial). Thickening of the crust by the crystalliztion of mafic magmas at the crust-mantle boundary may account for both the formation of regional granulite terranes at shallower depths and the formation of deep-seated mafic crust represented by many xenolith suites.

  11. Origin of granulite terranes and the formation of the lowermost continental crust.

    PubMed

    Bohlen, S R; Mezger, K

    1989-04-21

    Differences in composition and pressures of equilibration between exposed, regional granulite terranes and suites of granulite xenoliths of crustal origin indicate that granulite terranes do not represent exhumed lowermost crust, as had been thought, but rather middle and lower-middle crustal levels. Application of well-calibrated barometers indicate that exposed granulites record equilibration pressures of 0.6 to 0.8 gigapascal (20 to 30 kilometers depth of burial), whereas granulite xenoliths, which also tend to be more mafic, record pressures of at least 1.0 to 1.5 gigapascals (35 to 50 kilometers depth of burial). Thickening of the crust by the crystallization of mafic magmas at the crust-mantle boundary may account for both the formation of regional granulite terranes at shallower depths and the formation of deep-seated mafic crust represented by many xenolith suites. PMID:17738304

  12. Reconstruction of climate and environmental changes in the Bornholm Basin during the last 6000 years, based on foraminiferal assemblages

    NASA Astrophysics Data System (ADS)

    Binczewska, Anna; Polovodova Asteman, Irina; Moros, Matthias; Sławińska, Joanna

    2016-04-01

    The Baltic Sea is the largest brackish sea in the world connected to the Atlantic Ocean through the narrow and shallow Danish Straits. The hydrography of the Baltic Sea is strongly dependent on inflows from the North Sea and its environmental conditions are influenced by meteorological and anthropogenic factors. To improve our understanding of the natural variability and forcing factors driving changes in the Baltic ecosystem, detailed analyses of palaeoecological archives are needed. Here we present a high-resolution study of foraminiferal assemblages together with sediment geochemistry (LOI, TOC, TIC, CNS) from a 8-m long gravity core (GC) and a 42-cm long multi core (MUC) taken in the Bornholm Basin in 2013. Both cores were investigated in order to reconstruct bottom water mass variability during the mid- and late Holocene. Cores were dated by AMS 14C (mostly on Macoma balthica shells), 210Pb and 137Cs. Age-model allowed us to place variability of foraminiferal assemblages in time and link them with the Holocene climate extremes and the Major Baltic Inflows (MBIs). High absolute abundances (ind./g wet sed.) of foraminifera are found within a core interval corresponding to the Dark Ages and the Medieval Warm Period (~AD 400-1200). The Little Ice Age is represented by rare to absent foraminiferal shells, while significant changes of foraminiferal abundances occur in the lower part of core(~ BC 2050-2995). The dominant species found in both cores are Cribroelphidium excavatum, C. excavatum f. clavatum, C. albiumbilicatum and C. incertum, all adapted to an ecologically unstable environment with high fluctuations of salinity and oxygen. The arenaceous species Reophax dentaliniformis strongly occurs at ~ AD 1450-1600, where calcareous species were rare. Presence of agglutinated foraminifera and prevailing small size of individuals in all studied material suggest bottom water undersaturation with respect to calcium carbonate. In the Baltic Sea, bottom waters

  13. On the structure of the lowermost mantle beneath the southwest Pacific, southeast Asia and Australasia

    NASA Astrophysics Data System (ADS)

    Kendall, J.-M.; Shearer, P. M.

    1995-11-01

    The region of the lowermost mantle beneath the southwest Pacific, Australasia and southeast Asia (50°S-50°N and 80-190°E) has been studied using a wide variety of seismic techniques. We complement these studies with results obtained from long-period Global Digital Seismograph Network (GDSN) data using a recently developed phase-stripping technique that permits the isolation of D″ reflections from the stronger neighbouring S and ScS signals. We identify patches with D″ reflections and areas where we cannot confidently determine the presence or absence of a D″ reflection. A synthesis of our results with other studies suggests that D″ varies dramatically through the region, generally thickening from 100-150 km in a central zone to about 300 km at the eastern and western margins. However, there are irregularities in this overall pattern, including areas where there seems to be little evidence for a D″ discontinuity. Inspection of waveform amplitudes shows considerable scatter in not only the D″ reflected phases, but also core-mantle boundary reflected phases. Experiments with synthetic seismograms for a variety of D″ models and the observed lateral variability through the region suggest that this is to be expected. Furthermore, ray-theory calculations for large-scale 3D Earth models predict significant variations (±30%) in S-wave amplitudes of lowermost mantle turning rays. Finally, we investigate possible correlations between lower-mantle velocity, flow and D″ thickness. We find some correlation between D″ thickness and lower-mantle velocities obtained from tomographic inversions, with a thin D″ layer in high-velocity regions and a thickening of the layer toward slower regions. The relationship between predicted lower-mantle flow and D″ thickness is less clear. These results are qualitatively consistent with thermal boundary layer predictions for D″, but do not preclude the possibility of compositionally distinct material in the layer.

  14. Late Cretaceous - Cenozoic development of outer continental margin, southwestern Nova Scotia

    SciTech Connect

    Swift, S.A.

    1987-06-01

    The growth pattern for the outer continental margin of Nova Scotia during the Late Cretaceous and Cenozoic was studied using seismic stratigraphy and well data. Sediment accumulation was broadly controlled by temporal changes in relative sea level, but significant spatial and temporal changes in accumulation patterns were caused by changes in sediment supply rate, morphology, erosion by abyssal currents, and salt tectonics. A Jurassic-Early Cretaceous carbonate platform remained exposed until the Late Cretaceous and controlled the location and steepness of the paleoslope until the late Miocene. Local erosion of the outer shelf and slope in the late Paleocene-early Eocene produced chalky fans on the upper rise. The relationship between erosion of the shelf in the late Eocene and early Oligocene, and abyssal current erosion of the upper rise in the Oligocene, is unclear. Seaward extensions of Tertiary shelf-edge canyons are poorly defined except for the Eocene fans. In the Miocene, abyssal currents eroded a bench on the upper continental rise. Subsequently, sediments lapped onto and buried the paleoslope. The lower rise above horizon A/sup u/ (Oligocene) is composed of fans and olistostromes shed from halokinetic uplift of the upper rise. Current eroded unconformities are common in the rise sequence, but the only current deposit is a Pliocene interval (< 300 m) restricted to the lowermost rise. Pleistocene turbidity currents eroded the present canyon morphology. 15 figures, 2 tables.

  15. Vegetation and plant food reconstruction of lowermost Bed II, Olduvai Gorge, using modern analogs.

    PubMed

    Copeland, Sandi R

    2007-08-01

    Vegetation and plant foods for hominins of lowermost Bed II, Olduvai Gorge were modeled by examining vegetation in modern habitats in northern Tanzania (Lake Manyara, Ngorongoro, Serengeti) that are analogous to the paleolandscape in terms of climate, land forms, and soil types, as indicated by previous paleoenvironmental studies of Olduvai. Plant species in the modern habitats were identified in a series of sample plots, and those known to be eaten by modern humans, chimpanzees, or baboons were considered potentially edible for early hominins. Within the 50-80 kyr deposition of lowermost Bed II, periods of drier climate were characterized by low lake stands and a broad eastern lacustrine plain containing a mosaic of springs, marsh, woodland, and edaphic grassland. Based on results of this study, plant food diversity in each of those habitats was relatively low, but the mosaic nature of the area meant that hominins could reach several different habitat types within short distances, with access to potential plant foods including marsh plants, grass grains, roots, shrub fruits, edible parts from palms, leafy herbaceous plants, and Acacia pods, flowers, and gum. Based on Manyara analogs, a greater variety of plant foods, such as tree fruits (e.g., Ficus, Trichilia) and the roots and fruits of shrubs (e.g., Cordia, Salvadora) would be expected further east along the rivers in the lacustrine terrace and alluvial fans. Interfluves of the alluvial fans were probably less wooded and offered relatively fewer varieties of plant foods, but there is sparse paleoenvironmental evidence for the character of Olduvai's alluvial fans, making the choice of appropriate modern analogs difficult. In the western side of the basin, based on modern analogs in the Serengeti, riverine habitats provided the greatest variety of edible plant food species (e.g., Acacia, Grewia, Justicia). If the interfluves were grassland, then a large variety of potentially edible grasses and forbs were present

  16. Effects of Isotropic and Anisotropic Structure in the Lowermost Mantle on High-Frequency Body Waveforms

    NASA Astrophysics Data System (ADS)

    Parisi, L.; Ferreira, A. M. G.; Ritsema, J.

    2015-12-01

    It has been observed that vertically (SV) and horizontally (SH) polarised S waves crossing the lowermost mantle sometimes are split by a few seconds The splitting of such waves is often interpreted in terms of seismic anisotropy in the D" region. Here we investigate systematically the effects of elastic, anelastic, isotropic and anisotropic structure on shear-wave splitting, including 3-D variations in some of these physical properties. Taking advantage of accurate waveform modeling techniques such as Gemini and the Spectral Element Method we generate three-component theoretical waveforms in a wide set of 1-D and 3-D, isotropic and radially anisotropic earth models, accurate down to a wave period of T~5.6s. Our numerical simulations in isotropic earth models show that the contamination of S waves by other phases can generate an apparent splitting between SH and SV waves. In particular, in the case of very shallow sources, the sS phase can interfere with the direct S phase, resulting in split SH and SV pulses when the SH and SV (or sSH and sSV) waves have different polarity or a substantial amplitude difference. In the case of deep earthquake sources, a positive shear velocity jump at the top of the D" can cause the triplication of S waves and the ScSH and ScSV phases can have different polarity. Thus, when the triplicated S wave is combined with the ScS phase, the resulting SH-ScSH and SV-ScSV phases may seem split. On the other hand, in the absence of a sharp vertical variation in the shear wave velocity, the difference in polarity between ScSH and ScSV can make the SH pulse larger than SV and thus also lead to apparent splitting between these phases. This effect depends on the thickness of the D" and the Vs gradient within it. S waveforms simulated in radially anisotropic models reveal that a radial anisotropy of ξ=1.07 in the D" seems to be necessary to explain the 2-3s of splitting observed in waveforms recorded in Tanzania from an event in the Banda Sea

  17. Vegetation and plant food reconstruction of lowermost Bed II, Olduvai Gorge, using modern analogs.

    PubMed

    Copeland, Sandi R

    2007-08-01

    Vegetation and plant foods for hominins of lowermost Bed II, Olduvai Gorge were modeled by examining vegetation in modern habitats in northern Tanzania (Lake Manyara, Ngorongoro, Serengeti) that are analogous to the paleolandscape in terms of climate, land forms, and soil types, as indicated by previous paleoenvironmental studies of Olduvai. Plant species in the modern habitats were identified in a series of sample plots, and those known to be eaten by modern humans, chimpanzees, or baboons were considered potentially edible for early hominins. Within the 50-80 kyr deposition of lowermost Bed II, periods of drier climate were characterized by low lake stands and a broad eastern lacustrine plain containing a mosaic of springs, marsh, woodland, and edaphic grassland. Based on results of this study, plant food diversity in each of those habitats was relatively low, but the mosaic nature of the area meant that hominins could reach several different habitat types within short distances, with access to potential plant foods including marsh plants, grass grains, roots, shrub fruits, edible parts from palms, leafy herbaceous plants, and Acacia pods, flowers, and gum. Based on Manyara analogs, a greater variety of plant foods, such as tree fruits (e.g., Ficus, Trichilia) and the roots and fruits of shrubs (e.g., Cordia, Salvadora) would be expected further east along the rivers in the lacustrine terrace and alluvial fans. Interfluves of the alluvial fans were probably less wooded and offered relatively fewer varieties of plant foods, but there is sparse paleoenvironmental evidence for the character of Olduvai's alluvial fans, making the choice of appropriate modern analogs difficult. In the western side of the basin, based on modern analogs in the Serengeti, riverine habitats provided the greatest variety of edible plant food species (e.g., Acacia, Grewia, Justicia). If the interfluves were grassland, then a large variety of potentially edible grasses and forbs were present

  18. An overview of the Cretaceous stratigraphy and facies development of the Yazd Block, western Central Iran

    NASA Astrophysics Data System (ADS)

    Wilmsen, Markus; Fürsich, Franz Theodor; Majidifard, Mahmoud Reza

    2015-04-01

    The Cretaceous successions of the Yazd Block, the western of three structural blocks of the Central-East Iranian Microcontinent (CEIM), have been studied using an integrated approach of litho-, bio- and sequence stratigraphy associated with litho-, bio- and microfacies analyses. The Cretaceous System of that area is in excess of 5 km thick and a generalized relative sea-level curve can be inferred from the facies and thickness development. This curve can be subdivided into two transgressive-regressive megacycles (TRMs), separated by a major tectonic unconformity in the Upper Turonian. TRM 1 comprises the Early Cretaceous to Middle Turonian, TRM 2 the Coniacian to Maastrichtian. TRM 1 starts with up to 1500-m-thick conglomerates and sandstones covering Palaeozoic-Triassic basement rocks, metasediments, or Upper Jurassic-lowermost Cretaceous granites. The basal tectonic unconformity, related to the Late Cimmerian event (Jurassic-Cretaceous boundary interval), shows a pronounced palaeo-relief that is levelled by the basal siliciclastic formations. Sparse biostratigraphic data from calcareous intercalations in the upper part of these strata indicate a Hauterivian to Barremian age. The Aptian facies development is marked by the onlap of thick-bedded, micritic carbonates with abundant orbitolinid foraminifera and rudists representing a large-scale shallow-marine carbonate platform system that fringed the Yazd Block in the north and west. These platforms are up to 1000 m thick and drowned during the middle to Late Aptian, followed by up to 1500-m-thick basinal marly sediments of Late Aptian to mid-Late Albian ages, representing the maximum relative sea-level during TRM 1. During the latest Albian-Middle Turonian, a gradual shallowing is indicated by progradation of shallow-water skeletal limestones separated by marl tongues, representing a carbonate ramp system. Strata of TRM 2 overlie older units along a regional angular unconformity and indicate tectonic stability and

  19. Anticorrelated seismic velocity anomalies from post-perovskite in the lowermost mantle.

    PubMed

    Hutko, Alexander R; Lay, Thorne; Revenaugh, Justin; Garnero, Edward J

    2008-05-23

    Earth's lowermost mantle has thermal, chemical, and mineralogical complexities that require precise seismological characterization. Stacking, migration, and modeling of over 10,000 P and S waves that traverse the deep mantle under the Cocos plate resolve structures above the core-mantle boundary. A small -0.07 +/- 0.15% decrease of P wave velocity (Vp) is accompanied by a 1.5 +/- 0.5% increase in S wave velocity (V(s)) near a depth of 2570 km. Bulk-sound velocity [Vb = (Vp2 - 4/3Vs2)1/2] decreases by -1.0 +/- 0.5% at this depth. Transition of the primary lower-mantle mineral, (Mg(1-x-y) Fe(x)Al(y))(Si,Al)O3 perovskite, to denser post-perovskite is expected to have a negligible effect on the bulk modulus while increasing the shear modulus by approximately 6%, resulting in local anticorrelation of Vb and Vs anomalies; this behavior explains the data well.

  20. Anticorrelated seismic velocity anomalies from post-perovskite in the lowermost mantle

    USGS Publications Warehouse

    Hutko, Alexander R.; Lay, T.; Revenaugh, Justin; Garnero, E.J.

    2008-01-01

    Earth's lowermost mantle has thermal, chemical, and mineralogical complexities that require precise seismological characterization. Stacking, migration, and modeling of over 10,000 P and S waves that traverse the deep mantle under the Cocos plate resolve structures above the core-mantle boundary. A small -0.07 ?? 0.15% decrease of P wave velocity (Vp) is accompanied by a 1.5 ?? 0.5% increase in S wave velocity (Vs) near a depth of 2570 km. Bulk-sound velocity [Vb = (V p2 - 4/3Vs2)1/2] decreases by -1.0 ?? 0.5% at this depth. Transition of the primary lower-mantle mineral, (Mg1-x-y FexAly)(Si,Al) O3 perovskite, to denser post-perovskite is expected to have a negligible effect on the bulk modulus while increasing the shear modulus by ???6%, resulting in local anticorrelation of Vb and Vs anomalies; this behavior explains the data well.

  1. Long-term Temperature Measurements of the Upper Troposphere and Lowermost Stratosphere with MOZAIC and IAGOS

    NASA Astrophysics Data System (ADS)

    Berkes, Florian; Neis, Patrick; Rohs, Susanne; Smit, Herman; Schultz, Martin; Konopka, Paul; Nédélec, Phillipe; Boulanger, Damien; Petzold, Andreas

    2016-04-01

    An important component of numerical weather prediction models is the assimilation of in-situ temperature measurements on a global scale. The sources of temperature data are retrievals from various satellite instruments, and in-situ radiosonde and commercial aircrafts measurements. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System) operates a global-scale monitoring system for meteorological and atmospheric trace gases at high spatial resolution by instrumented passenger aircrafts. We will present in-situ airborne temperature measurements at cruise level by IAGOS/MOZAIC since 1994. The temperature measurements are obtained through a Pt100 built into a VAISALA capacity hygrometer, and they are independed, which means the measurements are not assimilated in numerical weather prediction models. The accuracy is better than the in-general installed temperature sensors on commercial aircrafts. We will show an intercomparison between the ERA-Interim temperature data against the Pt100 measurements for different atmospheric layers (upper troposphere, tropopause, lowermost stratosphere) and focus on the northern and mid-latitude regions.

  2. Impact of Aircraft Emissions on NO(x) in the Lowermost Stratosphere at Northern Midlatitudes

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Koike, M.; Ikeda, H.; Anderson, B. E.; Brunke, K. E.; Zhao, Y.; Kita, K.; Sugita, T.; Singh, H. B.; Liu, S. C.

    1999-01-01

    Airborne measurements of NO(x) total reactive nitrogen (NO(y)), O3 and condensation nuclei (CN) were made within air traffic corridors over the U.S. and North Atlantic regions (35-60 deg N) in the fall of 1997. NO(x) and NO(y) data obtained in the lowermost stratosphere (LS) were examined using the calculated increase in NO(y) ((delta)NO(y)) along five-day back trajectories as a parameter to identify possible effects of aircraft on reactive nitrogen. It is very likely that aircraft emissions had a significant impact on the NO(x) levels in the LS inasmuch as the NO(s), mixing ratios at 8.5-12 km were significantly correlated with the independent parameters of aircraft emissions, i.e., (delta)NO(y) levels and CN values. In order to estimate quantitatively the impact of aircraft emissions on NO(x), and CN, the background levels of CN and NO(x) at O3 = 100-200 ppbv were derived from the correlations of these quantities with (delta)NO(y)). On average, the aircraft emissions are estimated to have increased the NO(x) and CN values by 130 pptv and 400 STP,cc, respectively, which corresponds to 70 -/+ 30 % and 30 -/+ 20 % of the observed median values.

  3. Seismic stratigraphy of the western Florida carbonate platform above the Mid-Cretaceous sequence boundary (MCSB)

    SciTech Connect

    Jee, J.L. . Dept. of Geology)

    1993-03-01

    From the Apalachicola Basin (AB) to the Sarasota Arch, a web of multifold seismic and 29 wells were analyzed to determine Upper Cretaceous-Cenozoic stratigraphy. Concordant reflection geometries above and below the MCSB throughout most of the study area do not suggest prolonged subaerial exposure of the platform as some have considered. The configuration of the MCSB surface influenced the distribution of overlying sediment such that the section is thick in the basins and thin on the highs. The three main units recognized are Upper Cretaceous, Paleocene-Eocene, and post-Eocene. The Upper Cretaceous has two subunits, KU1 and KU2. KU1 corresponds in age to the Tuscaloosa-Eutaw lithostratigraphic units, has continuous, parallel seismic facies, and tends to thicken in depressions on the MCSB. KU2 is age-equivalent to part of the Selma Gp. Maastrichtian strata are locally thin to partly absent. In the AB, KU2 appears intensely faulted. Sonic velocities in KU2 show southeastward change to more carbonate rock across the Middle Ground Arch, where hummocky-to-contorted seismic facies and thickening on the structural high suggest constructional accumulation. In wells, Paleocene strata lie unconformably on the Upper Cretaceous. The Paleocene section is thin and not easy to resolve on seismic sections. In the AB, the lowermost Eocene sequence is a wedge that thickens dramatically to the west. In the eastern AB, younger Eocene sequences are stacked to form broad en echelon mounds. Post-Eocene strata in the AB are continuous, parallel and drape the upper Eocene surface. Along the southeastern, up-dip margin of the Tampa Embayment (TE), a belt of west-prograding clinoforms marks the Eocene shelf edge. Landward of this, a seismic marbled zone suggests dolomitic facies. In the post-Eocene section of the TE, Oligocene-Lower Miocene strata form successive sequences of progradational clinoforms that steepen as they impinge on the FL Escarpment.

  4. A simulation of groundwater discharge and nitrate delivery to chesapeake bay from the lowermost delmarva peninsula, USA

    USGS Publications Warehouse

    Sanford, W.E.; Pope, J.P.

    2007-01-01

    A groundwater model has been developed for the lowermost Delmarva Peninsula, USA, that simulates saltwater intrusion into local confined aquifers and nitrate delivery to the Chesapeake Bay from the surficial aquifer. A flow path and groundwater-age analysis was performed using the model to estimate the timing of nitrate delivery to the bay over the next several decades. The simulated mean and median residence times of groundwater in the lowermost peninsula are 30 and 15 years, respectively. Current and future nitrate concentrations in coastal groundwater discharge were simulated based on local well data that include nitrate concentrations and groundwater age. A simulated future-trends analysis indicates that nitrate that has been applied to agricultural regions over the last few decades will continue to discharge into the bay for several decades to come. This study highlights the importance of considering the groundwater lag time that affects the mean transport time from diffuse contamination sources.

  5. The feasibility of inverting for flow in the lowermost mantle (Invited)

    NASA Astrophysics Data System (ADS)

    Nowacki, A.; Walpole, J.; Wookey, J. M.; Walker, A.; Forte, A. M.; Masters, G.; Kendall, J. M.

    2013-12-01

    At the core-mantle boundary (CMB), the largest change in physical properties occurs within the Earth. Furthermore, up to a few hundred kilometres above the CMB--the region known as D″--the largest lateral variations in seismic wave speed are observed outside the upper mantle. Observations of shear wave splitting in D″ shows that these variations are dependent not only on position, but also wave propagation direction and polarisation; that is, strong seismic anisotropy is a pervasive feature of D″, just as in the upper mantle (UM). Similarly to the UM, it is frequently argued that alignment of anisotropic minerals due to flow is the cause of this. Were this the case, this anisotropy could be used to retrieve the recent strain history of the lowermost mantle. Recent modelling of mineral alignment in D″ [1,2] has shown that quite simple models of mantle flow do not produce simple anisotropy, hence one must make use of the most information about the type and orientation of anisotropy possible. Global inversion for radial anisotropy permits complete coverage of the CMB but so far has relied on core-diffracted waves (Sdiff) which are challenging to accurately interpret [3]. The assumption of radial anisotropy may also be too restrictive [4]. Shear wave splitting studies do not impose any assumed type of anisotropy but have been traditionally limited in their geographical scope. We present the results of a consistent analysis of core-reflected shear waves (ScS) for shear wave splitting, producing near-global coverage [5] of D″. Over 12,000 individual measurements are made, from ~470 events. Along well-studied paths such as beneath the Caribbean, our results agree excellently with previous work. Elsewhere, a full range of fast orientations are observed, indicating that simple SV-SH comparisons may not accurately reflect the elasticity present. We compare these results to candidate models of D″ anisotropy assuming a simple flow model derived from geophysical

  6. Numerical model of the lowermost Mississippi River as an alluvial-bedrock reach: preliminary results

    NASA Astrophysics Data System (ADS)

    Viparelli, E.; Nittrouer, J. A.; Mohrig, D. C.; Parker, G.

    2012-12-01

    Recent field studies reveal that the river bed of the Lower Mississippi River is characterized by a transition from alluvium (upstream) to bedrock (downstream). In particular, in the downstream 250 km of the river, fields of actively migrating bedforms alternate with deep zones where a consolidated substratum is exposed. Here we present a first version of a one-dimensional numerical model able to capture the alluvial-bedrock transition in the lowermost Mississippi River, defined herein as the 500-km reach between the Old River Control Structure and the Gulf of Mexico. The flow is assumed to be steady, and the cross-section is divided in two regions, the river channel and the floodplain. The streamwise variation of channel and floodplain geometry is described with synthetic relations derived from field observations. Flow resistance in the river channel is computed with the formulation for low-slope, large sand bed rivers due to Wright and Parker, while a Chezy-type formulation is implemented on the floodplain. Sediment is modeled in terms of bed material and wash load. Suspended load is computed with the Wright-Parker formulation. This treatment allows either uniform sediment or a mixture of different grain sizes, and accounts for stratification effects. Bedload transport rates are estimated with the relation for sediment mixtures of Ashida and Michiue. Previous work documents reasonable agreement between these load relations and field measurements. Washload is routed through the system solving the equation of mass conservation of sediment in suspension in the water column. The gradual transition from the alluvial reach to the bedrock reach is modeled in terms of a "mushy" layer of specified thickness overlying the non-erodible substrate. In the case of a fully alluvial reach, the channel bed elevation is above this mushy layer, while in the case of partial alluvial cover of the substratum, the channel bed elevation is within the mushy layer. Variations in base

  7. Trace chemical measurements from the northern midlatitude lowermost stratosphere in early spring: Distributions, correlations, and fate

    NASA Astrophysics Data System (ADS)

    Singh, H. B.; Chen, Y.; Gregory, G. L.; Sachse, G. W.; Talbot, R.; Blake, D. R.; Kondo, Y.; Bradshaw, J. D.; Heikes, B.; Thornton, D.

    In situ measurements of a large number of trace chemicals from the midlatitude (37-57°N) lower stratosphere were performed with the NASA DC-8 aircraft during March 1994. Deepest penetrations into the stratosphere (550 ppb O3, 279 ppb N2O, and 350 K potential temperature) corresponded to a region that has been defined as the “lowermost stratosphere” (LS) by Holton et al. [1995]. Analysis of data shows that the mixing ratios of long-lived tracer species (e. g. CH4, HNO3, NOy, CFCs) are linearly correlated with those of O3 and N2O. A ΔNOy/ΔO3 of 0.0054 ppb/ppb and ΔNOy/ΔN2O of -0.081 ppb/ppb is in good agreement with other reported measurements from the DC-8. These slopes are however, somewhat steeper than those reported from the ER-2 airborne studies. We find that the reactive nitrogen budget in the LS is largely balanced with HNO3 accounting for 80% of NOy, and PAN and NOx together accounting for 5%. A number of oxygenated species (e. g. acetone, H2O2) were present and may provide an important in situ source of HOx in the LS. SO2 mixing ratios were found to increase in the stratosphere at a rate that was comparable to the decline in OCS levels. No evidence of particle formation could be observed. Ethane, propane, and acetylene mixing ratios declined rapidly in the LS with Cl atoms likely playing a key role in this process. A number of reactive hydrocarbons/halocarbons (e. g. C6H6, CH3I) were present at low but measurable concentrations.

  8. Late Cretaceous volcanism in south-central New Mexico: Conglomerates of the McRae and Love Ranch Formations

    SciTech Connect

    Chapman-Fahey, J.L.; McMillan, N.J.; Mack, G.H.; Seager, W.R. . Dept. of Geological Sciences)

    1993-04-01

    Evidence to support Late Cretaceous volcanism in south central New Mexico is restricted to a small area of 75-Ma-old andesitic rocks at Copper Flats near Hillsboro, and volcanic clasts in the McRae (Late Cretaceous/Paleocene ) and Love Ranch (Paleocene/Eocene). Formations located in the Jornada del Muerto basin east and northeast of the Caballo Mountains. Major and trace element data and petrographic analysis of 5 samples from Copper Flats lavas and 40 samples of volcanic clasts from the McRae and Love Ranch conglomerates will be used to reconstruct the Cretaceous volcanic field. The McRae Formation consists of two members: the lower Jose Creek and the upper Hall Lake. The lowermost Love Ranch Formation is unconformable in all places on the Hall Lake Member. Stratigraphic variations in clast composition from volcanic rocks in the lower Love Ranch Formation to Paleozoic and Precambrian clasts in the upper Love Ranch Formation reflect the progressive unroofing of the Laramide Rio Grande Uplift. Volcanic clasts in the McRae and Love Ranch Formations were derived from the west and south of the depositional basin, but the source area for McRae clasts is less well constrained. Stratigraphic, chemical, and petrographic data will be used to reconstruct the volcanic complex and more clearly define magma genesis and metasomatism associated with Laramide deformation.

  9. Reactive Nitrogen Distribution and Partitioning in the North American Troposphere and Lowermost Stratosphere

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; Salas, L.; Herlth, D.; Kolyer, R.; Czech, E.; Avery, M.; Crawford, J. H.; Pierce, B.; Sachse, G. W.; Blake, D. R.; Cohen, R. C.; Dibb, J.; Huey, G.; Hudman, R. C.; Turquety, S.; Emmons, L. K.; FLocke, F.; Tang, Y.; Carmichael, G. R.; Horowitz, L. W.

    2007-01-01

    A comprehensive group of reactive nitrogen species (NO, NO2, HNO3, HO2NO2, PANs, alkyl nitrates, and aerosol-NO3) were measured in the troposphere and lowermost stratosphere over North America and the Atlantic during July/August 2004 (INTEX-A) from the NASA DC-8 platform (0.1-12 km). Less reactive nitrogen species (HCN and CH3CN), that are also unique tracers of biomass combustion, were also measured along with a host of other gaseous (CO, VOC, OVOC, halocarbon) and aerosol tracers. Clean background air as well as air with influences from biogenic emissions, anthropogenic pollution, biomass combustion, and stratosphere was sampled both over continental U. S., Atlantic and Pacific. The North American upper troposphere was found to be greatly influenced by both lightning NO(x) and surface pollution lofted via convection and contained elevated concentrations of PAN, ozone, hydrocarbons, and NO(x). Under polluted conditions PAN was a dominant carrier of reactive nitrogen in the upper troposphere while nitric acid dominated in the lower troposphere. Peroxynitric acid (HO2NO2) was present in sizable concentrations always peaking at around 8 km. Aerosol nitrate appeared to be mostly contained in large soil based particles in the lower troposphere. Plumes from Alaskan fires contained large amounts of PAN and very little enhancement in ozone. Observational data suggest that lightning was a far greater contributor to NO(x) in the upper troposphere than previously believed. NO(x) and NO(y) reservoir appeared to be in steady state only in the middle troposphere where NO(x)/NO(y) was independent of air mass age. A first comparison of observed data with simulations from four 3-D models shows significant differences between observations and models as well as among models. These uncertainties likely propagate themselves in satellites derived NOx data. Observed data are interpreted to suggest that soil sinks of HCN/CH3CN are at best very small. We investigate the partitioning and

  10. The limits of ray theory when measuring shear wave splitting in the lowermost mantle with ScS waves

    NASA Astrophysics Data System (ADS)

    Nowacki, Andy; Wookey, James

    2016-09-01

    Observations of shear wave splitting provide unambiguous evidence of the presence of anisotropy in the Earth's lowermost mantle, a region known as D″. Much recent work has attempted to use these observations to place constraints on strain above the core-mantle boundary (CMB), as this may help map flow throughout the mantle. Previously, this interpretation has relied on the assumption that waves can be modelled as infinite-frequency rays, or that the Earth is radially symmetric. Due to computational constraints it has not been possible to test these approximations until now. We use fully three-dimensional, generally-anisotropic simulations of ScS waves at the frequencies of the observations to show that ray methods are sometimes inadequate to interpret the signals seen. We test simple, uniform models, and for a D″ layer as thin as 50 km, significant splitting may be produced, and we find that recovered fast orientations usually reflect the imposed fast orientation above the CMB. Ray theory in these cases provides useful results, though there are occasional, notable differences between forward methods. Isotropic models do not generate apparent splitting. We also test more complex models, including ones based on our current understanding of mineral plasticity and elasticity in D″. The results show that variations of anisotropy over even several hundred kilometres cause the ray-theoretical and finite-frequency calculations to differ greatly. Importantly, models with extreme mineral alignment in D″ yield splitting times not dissimilar to observations (δt ≤ 3 s), suggesting that anisotropy in the lowermost mantle is probably much stronger than previously thought-potentially ˜10 % shear wave anisotropy or more. We show that if the base of the mantle is as complicated as we believe, future studies of lowermost mantle anisotropy will have to incorporate finite-frequency effects to fully interpret observations of shear wave splitting.

  11. Baja california: late cretaceous dinosaurs.

    PubMed

    Morris, W J

    1967-03-24

    Late Cretaceous dinosaurs have been discovered along the Pacific margin of Baja California. The presence of Hypacrosaurus sp. is suggestive of correlation with the Upper Edmonton Formation, Alberta. Dissimilarities between the Baja California fauna and those from contemporary units along the eastern trend of the Rocky Mountains suggest that Baja California was ecologically separated from mainland Mexico during late Campanian and early Maastrictian time. PMID:17830047

  12. The Cretaceous-Tertiary boundary biotic crisis in the Basque country

    NASA Technical Reports Server (NTRS)

    Lamolda, M. A.

    1988-01-01

    The Zumaya section has been selected as a classic locality for the study of the Cretaceous-Tertiary (K-T) boundary due to its richness in microfaune, macrofaune, and nannoflora. The sections present similar good conditions for the study of the K-T boundary. The sedimentary rocks of the Uppermost Maastrichtian from the Basque Country are purple or pink marls and marls-tones. Above it is found a clayed bed, 40 to 29 cm thick, grey or dark grey in its basal part, of Lowermost Danian age. Above there is alternation of micritic grey-pink limestones and thin clay beds of Dano-Montian age. The average sedimentation is 7 to 8 times higher during the Upper Maastrichtian than in the Dano-Montian. The macrofauna underwent a decrease since the Campanian and was not found in the last 11 m of the Zumaya section; it was associated with changes in paleoceanographic conditions and primary productivity of the oceans. The microfossil assemblages in the K-T transition allows the recognition of several phases of a complex crisis between two well established planktonic ecosystems. In the Mayaroensis Zone there is a stable ecosystem with 45 to 47 planktonic foraminifera species. The disappearance of A. mayaroensis starts a degradation of the ecosystem. The number of planktonic foraminiera species decreases between 20 and 45 percent. The next phase of the crisis was the result of main extinction events in the planktonic calcareous ecosystem. There are several cretaceous planktonic foraminifera species, probably reworked, whose numbers decrease upward. The next and last phase of the biotic crisis shows a diversification of the ecosystem; the number of planktonic foraminifera is 2 to 3 times higher than before and it is noted the first appearance of Tertiary nannoflora species, while Cretaceous species decrease and persisting species are still the main ones.

  13. Nonmarine upper cretaceous rocks, Cook Inlet, Alaska

    SciTech Connect

    Magoon, L.B.; Griesbach, F.B.; Egbert, R.M.

    1980-08-01

    A section of Upper Cretaceous (Maestrichtian) nonmarine sandstone, conglomerate, and siltstone with associated coal is exposed near Saddle mountain on the northwest flank of Cook Inlet basin, the only known surface exposure of nonmarine Upper Cretaceous rocks in the Cook Inlet area. The section, at least 83.3 m thick, unconformably overlies the Upper Jurassic Naknek Formation and is unconformably overlain by the lower Tertiary West Foreland Formation. These upper Cretaceous rocks correlate lithologically with the second or deeper interval of nonmarine Upper Cretaceous rocks penetrated in the lower Cook Inlet COST 1 well.

  14. Preliminary identification of fullerenes in the lowermost Jurassic strata, Queen Charlotte Islands, British Columbia

    NASA Astrophysics Data System (ADS)

    Perry, Randall S.; Haggart, James W.; Ward, Peter D.

    2004-02-01

    The Triassic-Jurassic (TJ) mass extinction (~200 mya) event is one of the most severe in geologic history. It is also one of the most poorly understood. Few geologic sections containing the TJ boundary interval have been identified globally, and most of those are poorly preserved; the paucity of suitable stratigraphic sections has prevented corroborative geochemical studies of this interval. Recently, fullerene molecules (C60 to C200) have been shown to be present in the mass extinction boundary intervals of the Permian-Triassic (PT) event (~251.4 mya), as well as the well-known "dinosaur" extinction event of the Cretaceous-Tertiary (KT) (~65 mya). The presence of fullerenes in both these extinction intervals has been used to invoke an extraterrestrial impact cause for the extinctions. Preliminary results of laser desorption mass spectrometry (LDMS) of selected samples from the Kennecott Point TJ boundary section, Queen Charlotte Islands, British Columbia, suggest that fullerenes (C60 to ~C200) are present in the section, stratigraphically above the extinction interval (as defined by paleontological and isotopic data), but not actually within the interval itself. The presence of fullerenes may not be diagnostic of an impact event.

  15. Volcanic influence on background sulfurous and carbonaceous aerosol in the Lowermost Stratosphere

    NASA Astrophysics Data System (ADS)

    Friberg, J.; Martinsson, B. G.; Andersson, S. M.; Brenninkmeijer, C. A. M.; Hermann, M.; van Velthoven, P. F. J.; Zahn, A.

    2012-04-01

    Previous measurements in the upper troposphere (UT) and the lowermost stratosphere (LS) have indicated the presence of a carbonaceous component in the aerosol (Murphy et al.,1998; Nguyen et al., 2008; Martinsson et al., 2009). Here the occurrence of carbonaceous and sulfurous particles around the tropopause is investigated. The data were taken from the CARIBIC (Civil Aircraft for Regular Investigation of the atmosphere Based on an Instrument Container) platform, where instruments onboard a Lufthansa passenger aircraft on inter-continental flights are used for examination of the atmospheric composition in the UT/LS at 8-12 km altitude (Brenninkmeijer et al., 2007). CARIBIC undertakes aerosol sampling for chemical characterization, as well as measurements of particle number concentrations and mixing ratios of a large number of trace gases including O3, CO, NO/NOy, Hg, water (gaseous and condensed), greenhouse gases and halogenated hydrocarbons. The CARIBIC dataset also contains data on meteorological conditions. 500 aerosol samples were collected during 150 flights with a sampling time of 100 minutes by an impaction technique (Nguyen et al., 2006). Specimen are then analyzed by quantitative multi-elemental analysis by PIXE (Particle-Induced X-ray Emission) and PESA (Particle Elastic Scattering Analysis) to obtain elemental concentrations for sulfur, iron, titanium, potassium, hydrogen, carbon, nitrogen and oxygen among others (Nguyen and Martinsson, 2007). The present study is based on samples collected in the LS from May 2005- August 2008. Concentrations of particulate carbon and sulfur in the LS is shown to follow seasonal cycles, correlated with ozone concentrations, with increasing concentrations from the tropopause through the LS. This indicates downward transport from the so-called stratospheric over-world (SOV) as an important source for these species. Sulfuric acid particles are formed in the stratosphere from carbonyl sulfide (OCS) via photochemical

  16. Fe-Mg partitioning between perovskite, post-perovskite, and ferropericlase at the lowermost mantle

    NASA Astrophysics Data System (ADS)

    Sakai, T.; Ohtani, E.; Miyahara, M.; Nishijima, M.; Terasaki, H.; Kondo, T.; Kikegawa, T.; Hirao, N.; Ohishi, Y.

    2007-12-01

    The lower mantle consists mainly of iron-bearing magnesium silicate perovskite and ferropericlase. The Fe-Mg partition coefficient between these minerals is important to understand the chemical and physical properties of the mantle. The lowermost 200 km of the mantle is called D" layer and it is considered to be a thermal and chemical boundary layer between the silicate mantle and outer core. Recent high pressure studies [e.g., Murakami et al., 2004] revealed that (Mg, Fe)SiO3 perovskite transformed to post-perovskite phase at the pressure and temperature conditions of D" layer. In this study, high pressure and high temperature partitioning experiments were performed up to 140 GPa at 2000 K using a laser heated diamond anvil cell (LHDAC). Powdered or single crystalline Al-free San Carlos olivine (Mg0.88, Fe0.12)2SiO4 was used as a starting material in order to avoid complicated compositional effects. The starting material was embedded in sodium chloride which is pressure medium. Pressures were determined by both the ruby fluorescence method [Mao et al., 1978] and the Raman shift of the first-order Raman spectra of diamond anvil [Akahama and Kawamura, 2004]. Temperatures were measured by spectroradiometric method. The recovered samples were analyzed using the technique of combination of FIB and ATEM (JEOL JEM-3000F (FEG TEM-STEM)). The result shows that post- perovskite phase exhibits very small iron content, Fe# = 0.01 at 140 GPa and 2000 K. Therefore, the partition coefficient was K = 0.03, which indicates that iron prefers ferropericlase strongly rather than post-perovskite phase, which is consistent with the prediction of the ab initio calculation [Iitaka et al., 2004], and the high-spin/low- spin transition arguments of ferropericlase [Badro et al., 2003]. Kobayashi et al. (2005) showed higher partitioning coefficient of K= 0.30 in spite of the lower temperature condition of 1600 K compared to the present experiment. They reported that significant iron

  17. Lowermost Mantle Velocity Estimations Beneath the Central North Atlantic Area from Pdif Observed at Balkan, East Mediterranean, and American Stations

    NASA Astrophysics Data System (ADS)

    Ivan, Marian; Ghica, Daniela Veronica; Gosar, Andrej; Hatzidimitriou, Panagiotis; Hofstetter, Rami; Polat, Gulten; Wang, Rongjiang

    2015-02-01

    Lowermost mantle velocity in the area 15°S-70°N latitude/60°W-5° W longitude is estimated using two groups of observations, complementary to each other. There are 894 Pdif observations at stations in the Balkan and Eastern Mediterranean areas from 15 major earthquakes in Central and South America. Another 218 Pdif observations are associated with four earthquakes in Greece/Turkey and one event in Africa, recorded by American stations. A Pdif slowness tomographic approach of the structures immediately above the core-to-mantle boundary (CMB) is used, incorporating corrections for ellipticity, station elevation and velocity perturbations along the ray path. A low-velocity zone above CMB with a large geographical extent, approximately in the area (35-65°N) × (40-20°W), appears to have the velocity perturbations exceeding the value actually assumed by some global models. Most likely, it is extended beneath western Africa. A high-velocity area is observed west of the low-velocity zone. The results suggest that both Cape Verde and Azorean islands are located near transition areas from low-to-high velocity values in the lowermost mantle.

  18. La coupe d'Ouled Haddou (Rif externe oriental) : un affleurement continu de la transition Crétacé Paléogène au Maroc, révélé par les Foraminifères planctoniquesThe Ouled Haddou section (oriental external Rif): a continuous outcrop of the Cretaceous Palaeogene transition in Morocco, revealed by planktonic Foraminifera

    NASA Astrophysics Data System (ADS)

    Toufiq, Abdelkabir; Bellier, Jean-Pierre; Boutakiout, Mohamed; Feinberg, Hugues

    2002-10-01

    In the Ouled Haddou section, deposits of the Uppermost Maastrichtian correspond to the Abathomphalus mayaroensis Biozone. The index species is regularly present until the Cretaceous-Palaeogene boundary, which is marked by a mass extinction affecting 41 species (large and complex). Some Cretaceous small species persist in the Lowermost Danian. The first levels of the Danian are assigned to the Guembelitria cretacea Biozone, in which the species index persist without being affected, and the first species of the Tertiary appear. The upper part of the Lower Danian corresponds to the succession of Parvularugoglobigerina eugubina, Parasubbotina pseudobulloides, and Subbotina triloculinoides Biozones. From the P. eugubina Biozone, associations of Danian vary to undergo a complete renewal in the upper zones. The Ouled Haddou section, described for the first time, presents, according to planktonic Foraminifera, a complete record of the Cretaceous-Palaeogene transition. To cite this article: A. Toufiq et al., C. R. Geoscience 334 (2002) 995-1001.

  19. Impact of different Asian source regions on the composition of the Asian monsoon anticyclone and on the extratropical lowermost stratosphere

    NASA Astrophysics Data System (ADS)

    Vogel, B.; Günther, G.; Müller, R.; Grooß, J.-U.; Riese, M.

    2015-04-01

    The impact of different boundary layer source regions in Asia on the chemical composition of the Asian monsoon anticyclone, considering its intraseasonal variability in 2012, is analysed by CLaMS simulations using artificial emission tracers. Our simulations show that the Asian monsoon anticyclone is highly variable in location and shape and oscillates between 2 states: first a symmetric anticyclone and second, an asymmetric anticyclone either elongated or split in two smaller anticyclones. A maximum in the distribution of air originating from Indian/Chinese boundary layer sources is usually found in the core of the symmetric anticyclone, in contrast the asymmetric state is characterised by a double peak structure in the horizontal distribution of air originating from India and China. The simulated horizontal distribution of artificial emission tracers for India/China is in agreement with patterns found in satellite measurements of O3 and CO by the Aura Microwave Limb Sounder (MLS). The contribution of different boundary source regions to the Asian monsoon anticyclone strongly depends on its intraseasonal variability and is therefore more complex than hitherto believed, but in general the highest contributions are from North India and Southeast Asia at 380 K. In the early (June to mid-July) and late (mid-August to October) period of the monsoon 2012, contributions of emissions from Southeast Asia are highest and in the intervening period (≈ mid-July to mid-August) emissions from North India have the largest impact. Further, our simulations confirm that the thermal tropopause above the anticyclone constitutes a vertical transport barrier. Enhanced contributions of emission tracers for Asia are found at the northern flank of the Asian monsoon anticyclone between double tropopauses indicating an isentropic transport from the anticyclone into the lowermost stratosphere. After the breakup of the anticyclone, significant contributions of air masses originating in India

  20. Quantifying the Impact of the North American Monsoon and Deep Midlatitude Convection on the Subtropical Lowermost Stratosphere using in Situ Measurements

    NASA Technical Reports Server (NTRS)

    Weinstock, E. M.; Pittman, J. V.; Sayres, D. S.; Smith, J. B.; Anderson, J. G.; Wofsy, S. C.; Xueref, I.; Gerbig, C.; Daube, B. C.; Pfister, L.; Richard, E. C.; Ridley, B. A.; Weinheimer, A. J.; Jost, H.-J.; Lopez, J. P.; Lowenstein, M.; Thompson, T. L.

    2007-01-01

    The chemical composition of the lowermost stratosphere exhibits both spatial and temporal variability depending upon the relative strength of (1) isentropic transport from the tropical tropopause layer (TTL), (2) diabatic descent from the midlatitude and northern midlatitude stratosphere followed by equatorward isentropic transport, and (3) diabatic ascent from the troposphere through convection. In situ measurements made in the lowermost stratosphere over Florida illustrate the additional impact of equatorward flow around the monsoon anticyclone. This flow carries, along with older stratospheric air, the distinct signature of deep midlatitude convection. We use simultaneous in situ measurements of water vapor (H2O), ozone (O3), total odd nitrogen (NOy), carbon dioxide (CO2), and carbon monoxide (CO) in the framework of a simple box model to quantify the composition of the air sampled in the lowermost stratosphere during the mission on the basis of tracer mixing ratios ascribed to the source regions for these transport pathways. The results show that in the summer, convection has a significant impact on the composition of air in the lowermost stratosphere, being the dominant source of water vapor up to the 380 K isentrope. The implications of these results extend from the potential for heterogeneous ozone loss resulting from the increased frequency and lifetime of cirrus near the local tropopause, to air with increased water vapor that as part of the equatorward flow associated with the North American monsoon can become part of the general circulation.

  1. A new genus of fossil Mymaridae (Hymenoptera) from Cretaceous amber and key to Cretaceous mymarid genera.

    PubMed

    Poinar, George; Huber, John T

    2011-01-01

    Myanmymar aresconoidesgen n., sp. n. is described from one female in Burmese amber, dated as about 100 my. It is similar to Arescon on wing features but is unique among Mymaridae in having distinctly segmented palpi. It is the fifth mymarid genus definitely referable to the Cretaceous period. A key to Cretaceous mymarid genera is presented and the features of Myanmymar are compared with the other Cretaceous and extant mymarid genera.

  2. A new genus of fossil Mymaridae (Hymenoptera) from Cretaceous amber and key to Cretaceous mymarid genera.

    PubMed

    Poinar, George; Huber, John T

    2011-01-01

    Myanmymar aresconoidesgen n., sp. n. is described from one female in Burmese amber, dated as about 100 my. It is similar to Arescon on wing features but is unique among Mymaridae in having distinctly segmented palpi. It is the fifth mymarid genus definitely referable to the Cretaceous period. A key to Cretaceous mymarid genera is presented and the features of Myanmymar are compared with the other Cretaceous and extant mymarid genera. PMID:22259293

  3. Stratigraphy, plankton communities, and magnetic proxies at the Jurassic/Cretaceous boundary in the Pieniny Klippen Belt (Western Carpathians, Slovakia)

    NASA Astrophysics Data System (ADS)

    Michalík, Jozef; Reháková, Daniela; Grabowski, Jacek; Lintnerová, Otília; Svobodová, Andrea; Schlögl, Ján; Sobień, Katarzyna; Schnabl, Petr

    2016-08-01

    A well preserved Upper Tithonian-Lower Berriasian Strapkova sequence of hemipelagic limestones improves our understanding of environmental changes occurring at the Jurassic/Cretaceous boundary in the Western Carpathians. Three dinoflagellate and four calpionellid zones have been recognized in the section. The onset of the Alpina Subzone of the standard Calpionella Zone, used as a marker of the Jurassic/Cretaceous boundary is defined by morphological change of Calpionella alpina tests. Calpionellids and calcified radiolarians numerically dominate in microplankton assemblages. The first occurrence of Nannoconus wintereri indicates the beginning of the nannofossil zone NJT 17b Subzone. The FO of Nannoconus steinmannii minor was documented in the lowermost part of the Alpina Subzone. This co-occurrence of calpionellid and nannoplankton events along the J/K boundary transition is typical of other Tethyan sections. Correlation of calcareous microplankton, of stable isotopes (C, O), and TOC/CaCO3 data distribution was used in the characterization of the J/K boundary interval. δ13C values (from +1.09 to 1.44 ‰ VPDB) do not show any temporal trends and thus show a relatively balanced carbon-cycle regime in sea water across the Jurassic/Cretaceous boundary. The presence of radiolarian laminites, interpreted as contourites, and relatively high levels of bioturbation in the Berriasian prove oxygenation events of bottom waters. The lower part of the Crassicolaria Zone (up to the middle part of the Intermedia Subzone) correlates with the M19r magnetozone. The M19n magnetozone includes not only the upper part of the Crassicollaria Zone and lower part of the Alpina Subzone but also the FO of Nannoconus wintereri and Nannoconus steinmannii minor. The reverse Brodno magnetosubzone (M19n1r) was identified in the uppermost part of M19n. The top of M18r and M18n magnetozones are located in the upper part of the Alpina Subzone and in the middle part of the Ferasini Subzone

  4. Biostratigraphy of Echinoid spines, Cretaceous of Texas

    SciTech Connect

    Kirkland, P.L.

    1984-04-01

    Echinoid (sea urchin) spines from Cretaceous strata have widely varying morphology. They are common, and most are small enough to be recovered from well cuttings. Many forms have restricted ranges; consequently, echinoid spine have substantial biostratigraphic utility. There have been established 115 form taxa of echinoid spines and 14 form taxa of ophiuroid-asteroid spines for the Cretaceous of Texas. The specimens used for establishing the form taxa were processed from 533 outcrop samples (78 localities) from 30 Cretaceous formations, each with a well-defined age based on faunal zones of ammonites and Foraminifera. A dichotomous key in 9 parts and a catalog of scanning electron micrographs (87 plates) have been set up to assist identification of the form taxa. Range charts for the echinoid and ophiuroid-asteroid form taxa have utility through the Cretaceous of much of the Gulf Coastal area. The most precise zonation has been possible for the Albian.

  5. Early Cretaceous angiosperms and beetle evolution

    PubMed Central

    Wang, Bo; Zhang, Haichun; Jarzembowski, Edmund A.

    2013-01-01

    The Coleoptera (beetles) constitute almost one–fourth of all known life-forms on earth. They are also among the most important pollinators of flowering plants, especially basal angiosperms. Beetle fossils are abundant, almost spanning the entire Early Cretaceous, and thus provide important clues to explore the co-evolutionary processes between beetles and angiosperms. We review the fossil record of some Early Cretaceous polyphagan beetles including Tenebrionoidea, Scarabaeoidea, Curculionoidea, and Chrysomeloidea. Both the fossil record and molecular analyses reveal that these four groups had already diversified during or before the Early Cretaceous, clearly before the initial rise of angiosperms to widespread floristic dominance. These four beetle groups are important pollinators of basal angiosperms today, suggesting that their ecological association with angiosperms probably formed as early as in the Early Cretaceous. With the description of additional well-preserved fossils and improvements in phylogenetic analyses, our knowledge of Mesozoic beetle–angiosperm mutualisms will greatly increase during the near future. PMID:24062759

  6. The Cretaceous/Tertiary Extinction Controversy Reconsidered.

    ERIC Educational Resources Information Center

    McCartney, Kevin; Nienstedt, Jeffrey

    1986-01-01

    Reviews varying positions taken in the Cretaceous/Tertiary (K/Y) extinction controversy. Analyzes and contests the meteoritic impact theory known as the Alvarez Model. Presents an alternative working hypothesis explaining the K/T transition. (ML)

  7. New paleomagnetic data from Bornholm granitoids testing whether the East-European Craton rotated during the 1.50-1.45 Ga Danopolonian orogeny

    NASA Astrophysics Data System (ADS)

    Lubnina, N.; Bogdanova, S.; Cecys, A.

    2009-04-01

    According to the palaeogeographic reconstructions, the East-European Craton (EEC) was part of the Palaeo- to Mesoproterozoic supercontinent Nuna / Columbia (Hoffman, 1997; Rogers and Santosh, 2002). Particularly important was the period between 1.5 and 1.3 Ga, when incipient break-up of this supercontinent occurred (Condie, 2002) but the EEC ("Baltica") still remained in close connection with other continental blocks. During the entire Mesoproterozoic, however, the EEC featured different geodynamic regimes in its presently western and eastern parts. In the west, these were convergent, while rifting prevailed in the east (Bogdanova et al., 2008). Previously, paleomagnetic studies of the Mesoproterozoic Ladoga Lake mafic rocks in NE Russia and the Dalarna mafic dykes in Sweden have disclosed a regular trend from the older Dalarna dykes to the younger dolerites of Lake Ladoga, suggesting an anticlockwise rotation of about 20 degrees. That rotation could either have affected the entire EEC as a result of the Danopolonian orogeny at ca. 1.50-1.45 Ga or have been associated with local block-displacement events in the Pasha-Ladoga graben (Lubnina et al., 2005, 2007). In the present study, we have tested these alternative possibilities by carrying out new paleomagnetic studies of Mesoproterozoic granitoids from the Danish island of Bornholm in the South Baltic Sea, which is a key area of the Danopolonian orogeny. On SW Bornholm, the 1.46 Ga Ronne granodiorites, which are cut by NNW trending thin dolerite dykes have been sampled in the Klippelokke quarry. Remanence measurements were performed using a 2G cryogenic magnetometer at the Palaeomagnetic Laboratory of the Department of Geology, Lund University, Sweden. Conventional progressive thermal or alternating field (AF) demagnetizations were applied to all specimens. During the stepwise thermal and AF demagnetization experiments, two components of NRM were isolated in the majority of the granitoid specimens. The low

  8. Dinosaurs and the Cretaceous Terrestrial Revolution.

    PubMed

    Lloyd, Graeme T; Davis, Katie E; Pisani, Davide; Tarver, James E; Ruta, Marcello; Sakamoto, Manabu; Hone, David W E; Jennings, Rachel; Benton, Michael J

    2008-11-01

    The observed diversity of dinosaurs reached its highest peak during the mid- and Late Cretaceous, the 50 Myr that preceded their extinction, and yet this explosion of dinosaur diversity may be explained largely by sampling bias. It has long been debated whether dinosaurs were part of the Cretaceous Terrestrial Revolution (KTR), from 125-80 Myr ago, when flowering plants, herbivorous and social insects, squamates, birds and mammals all underwent a rapid expansion. Although an apparent explosion of dinosaur diversity occurred in the mid-Cretaceous, coinciding with the emergence of new groups (e.g. neoceratopsians, ankylosaurid ankylosaurs, hadrosaurids and pachycephalosaurs), results from the first quantitative study of diversification applied to a new supertree of dinosaurs show that this apparent burst in dinosaurian diversity in the last 18 Myr of the Cretaceous is a sampling artefact. Indeed, major diversification shifts occurred largely in the first one-third of the group's history. Despite the appearance of new clades of medium to large herbivores and carnivores later in dinosaur history, these new originations do not correspond to significant diversification shifts. Instead, the overall geometry of the Cretaceous part of the dinosaur tree does not depart from the null hypothesis of an equal rates model of lineage branching. Furthermore, we conclude that dinosaurs did not experience a progressive decline at the end of the Cretaceous, nor was their evolution driven directly by the KTR.

  9. The Cretaceous/Paleogene Transition on the East Tasman Plateau, Southwestern Pacific

    NASA Technical Reports Server (NTRS)

    Schellenberg, Stephen A.; Brinkhuis, Henk; Stickley, Catherine E.; Fuller, Michael; Kyte, Frank T.; Williams, Graham L.

    2004-01-01

    Ocean Drilling Program Leg 189 recovered a potentially complete shallow marine record of the Cretaceous-Paleogene boundary (KPB) at Site 1172 on the East Tasman Plateau. Here we present high-resolution (cm-scale) data from micropaleontology, geochemistry, sedimentology, and paleomagnetism that provide no evidence for a complete KPB, but instead suggest a boundary-spanning hiatus of at least 0.8 Ma. We interpret this hiatus to represent the sequence boundary between the uppermost Maastrichtian Tal.1 and lowermost Danian Ta1.2/ Da- 1 3rd-order sequence stratigraphic cycles. Microfloral assemblages indicate generally shallow paleodepths, restricted circulation, and eutrophic conditions through the section. Paleodepths progressively shallow through the late Maastrichtian, while more oceanic and warmer conditions dominate the early Danian. The Site 1172 KPB section is broadly comparable to other southern highlatitude sections in Antarctica and New Zealand, but appears to record a shallower and more restricted environment that permitted a eustatically-driven hiatus across the KPB mass extinction event.

  10. Fluviomarine sequences in the Lower Cretaceous of the west Netherlands basin

    SciTech Connect

    Van Der Zwan, K. ); Den Hartog Jager, D.; De Klerk, C. )

    1993-09-01

    The Lower Cretaceous of the West Netherlands Basin contains fluvial deposits of the Delfland Group, overlain by shallow marine sediments of the Rijnland Group. Sequence stratigraphy was applied to both succession, to study the nature of the transgression and to identify possible reservoir-seal pairs. A total of six depositional sequences has been identified using extensive new biostratigraphy and sedimentology. Three of the sequences contain fluvial sediments only, two are mixed fluvial and marine, and one is fully marine. The typical thickness per sequence is 200-400 m. Characteristic for the fluvial sequences is an overall fining-upward pattern. The sequence boundaries have been correlated on logs and on regional seismic. Each of the main depositional settings displays a characteristic seismic facies, which has been used to reconstruct the sedimentological facies distribution. The results demonstrate that the source direction of the Delfland Group was predominantly southeast, controlled by the tectonic grain. Strong thickness variations within the lowermost sequence indicate syndepositional rifting, which confined the main channel systems. The major intervening flood-plain shales correspond to base-level highstands, which implies they can be correlated regionally and may act as intraformational seals. The marine transgression entered the basin from the north during the late Valanginian. By the early Barremian, it covered the entire basin. Retrograding barrier sands from the transgressive systems tract are the best reservoirs within the marine succession. In both fluvial and marine settings, the use of sequence stratigraphy has enabled recognition of several types stratigraphic traps.

  11. Step-wise extinctions at the Cretaceous-Tertiary boundary and their climatic implications

    NASA Technical Reports Server (NTRS)

    Maurrasse, Florentin J-M. R.

    1988-01-01

    A comparative study of planktonic foraminifera and radiolarian assemblages from the Cretaceous-Tertiary (K-T) boundary section of the Beloc Formation in the southern Peninsula of Haiti, and the lowermost Danian sequence of the Micara Formation in southern Cuba reveals a remarkable pattern of step-wise extinctions. This pattern is consistent in both places despite the widely different lithologies of the two formations. Because of a step-wise extinction and the delayed disappearance of taxa known to be more representative of cooler water realms, it is inferred that a cooling trend which characterized the close of the Maastrichtian and the onset of the Tertiary had the major adverse effect on the existing biota. Although repetitive lithologic and faunal fluctuations throughout the Maastrichtian sediments found at Deep Sea Drilling Project (DSDP) site 146/149 in the Caribbean Sea indicate variations reminiscent of known climatically induced cycles in the Cenozoic, rapid biotic succession appears to have taken place during a crisis period of a duration greater than 2 mission years. Widespread and abundant volcanic activities recorded in the Caribbean area during the crisis period gives further credence to earlier contention that intense volcanism may have played a major role in exhacerbating pre-existing climatic conditions during that time.

  12. A late Albian ammonite assemblage from the mid- Cretaceous succession at Annopol, Poland

    NASA Astrophysics Data System (ADS)

    Kennedy, William J.; Machalski, Marcin

    2015-12-01

    A previously unrecorded ammonite assemblage, comprising Lepthoplites sp., Callihoplites tetragonus (Seeley, 1865), C. cf. tetragonus, Arrhaphoceras cf. substuderi Spath, 1923, Cantabrigites sp., Stoliczkaiella (Stoliczkaiella) sp., Hamites cf. duplicatus Pictet and Campiche, 1861, H. cf. subvirgulatus Spath, 1941, and H. cf. venetzianus Pictet, 1847, is described from the mid-Cretaceous condensed succession at Annopol, Poland. These specimens are preserved as pale phosphates or sandstone moulds in a bed of reworked phosphatic nodules near the top of the Albian. This assemblage has many species in common with the late late Albian faunas from condensed deposits of England, Switzerland, and France. The presence of Callihoplites tetragonus indicates the lowermost upper upper Albian Mortoniceras fallax Zone. The ammonites studied are the youngest elements in the phosphate bed, which also contains taxa as old as the middle Albian Hoplites dentatus Zone. This bed originated through condensation and reworking of nodules and fossils in a period of low net sedimentation rate, being probably a reflection of a sea-level drop at the boundary between the classic ammonite zones of Mortoniceras inflatum and Stoliczkaiella dispar.

  13. A global study of the lowermost mantle using short and long period scattered PKKP waves (PK●KP)

    NASA Astrophysics Data System (ADS)

    Frost, D. A.; Rost, S.; Selby, N.

    2013-12-01

    The short-period (1 Hz) seismic wavefield shows strong evidence for scattered energy from the interior of the Earth. This energy mainly arrives in the coda following major seismic phases; however, several ray configurations exist in which seismic energy from the lowermost mantle arrives as precursors to main phases, allowing analysis of heterogeneities in the deep Earth, undisturbed by crustal interference. Here we use the phase PKKP to infer small-scale structure at the Core-Mantle Boundary (CMB) and in the D″ layer. PKKP back-scattered at, or above, the CMB (PK●KP where the ● represents the location of scattering) is observed in a time window starting about 1720 s after origin (for a surface focus) and can be observed from 0° to greater than 60° epicentral distance. This time and distance window is free from other seismic arrivals thus allowing identification of the scattered PKKP energy, despite its relatively low amplitude. The ray path of PK●KP is complicated with scattering occurring off great-circle path, thus avoiding the attenuating inner core. Due to its raypath, PK●KP waves sample regions of the Core-Mantle Boundary inaccessible to most other scattering probes. Back-scattering in this frequency range is controlled by the acoustic impedance of the scattering heterogeneity. This method, therefore, could resolve density contrasts in the deep Earth. When combined with forward scattering probes, such as PKP, which are sensitive to elastic moduli, all the material properties of the scattering heterogeneity could be resolved. Here we use the dense, small to medium aperture arrays of the International Monitoring System of the CTBTO to extract the small amplitude PK●KP from seismic noise. Directivity information from the arrays and ray tracing allows us to infer the location of heterogeneity in the deep Earth. We use the frequency-wavenumber (fk) analysis in conjunction with the F-statistic coherency measure, commonly used in forensic seismology, to

  14. Stratigraphy of Blair formation, an Upper Cretaceous slope and basin deposit, eastern flank of the Rock Springs Uplift, Wyoming

    SciTech Connect

    Shannon, L.T.

    1985-05-01

    The Blair Formation (Upper Cretaceous) is the lowermost unit of the Mesaverde Group in southwestern Wyoming. Outcrop study of the Blair exposures on the east flank of the Rock Springs uplift reveals 1,100 ft (330 m) of sandstone, siltstone, and shale. The formation has a sharp conformable to locally erosional basal contact and contains intraformational channeling, syndepositional slumping, and high-energy sedimentary structures. Facies relationships indicate the Blair represents a slope and basinal deposit laterally equivalent to the shelf and delta complex of the lower Rock Springs Formation to the north. Overall stratification types, textures, and southeast paleotransport directions recorded within the Blair, which are normal to the southwest-trending Rock Springs shoreline, support this interpretation. High sedimentation rates in excess of subsidence rates during the early Campanian, possibly related to early movement on the Absaroka thrust and a eustatic lowering of sea level approximately 81 Ma, caused rapid shoreline progradation and favored the development of a narrow shelf. These conditions enabled sand-sized material to bypass the shelf and be deposited in slope and basin environments. A present-day example of these relationships is the modern Mississippi delta located near the shelfslope break of the Gulf of Mexico. Recognition of a narrow shelf in southwestern Wyoming during the early Campanian requires a modification of Late Cretaceous paleogeography to incorporate the concept of depositional topography. The occurrence of slope and basin sandstones in the Blair suggests that new interpretations may be needed to explain sandstone distribution for other stratigraphic intervals within the Cretaceous of the Western Interior.

  15. Constraining the Geological Time Scale for the Upper Cretaceous in the Edmonton Group: Western Canadian Sedimentary Basin

    NASA Astrophysics Data System (ADS)

    Heredia, B.; Gaylor, J. R.; Hilgen, F.; Kuiper, K.; Mezger, K.; Wijbrans, J. R.; Quidelleur, X.; Huesing, S.

    2011-12-01

    The Cretaceous period records evidence of sea-level changes, remarkably cyclic sedimentation, major perturbations in carbon cycles during anoxic events, and large scale igneous activity. Astronomically-tuned time scales are only partially consistent with recalculated Ar-Ar constraints for the Cretaceous-Paleogene (K-Pg) boundary, but differ in number and tuning of 405-kyr eccentricity related cycles. The exposures of Upper Cretaceous strata along the Red Deer River (Western Canadian Sedimentary Basin) offer a unique opportunity to examine aspects of marine, tectonic, and climatic influenced sediments. The uppermost part of the Knudsen Farm section is a well-preserved continuous section, mainly composed by climatically controlled alternations of silt and organic rich horizons, in which altered volcanic ash layers have been deposited. In this section, the K-Pg boundary has been placed at the base of a prominent coal layer (Nevis coal), approx. 24 m from the base of the c29r. We present a compilation of paleomagnetic data, chemical, colour and magnetic susceptibility proxies, and Ar-Ar, K-Ar and U-Pb (CA-TIMS) for the uppermost part of the Maastrichtian, including the base of the c29r to the K-Pg boundary and up to the lowermost Danian. High-resolution radioisotopic ages and the multi-proxy lithological and geochemical datasets are used to develop a cyclostratigraphic reconstruction of this interval, thus permitting the synchronisation of rock clocks close to the K-Pg boundary. This research is funded by the European Community's Seventh Framework Program (FP7/2007-2013) under grant agreement no [215458].

  16. Stratospheric cooling and downward planetary-wave propagation in the lowermost stratosphere during the 2010-11 winter

    NASA Astrophysics Data System (ADS)

    Nishii, K.; Nakamura, H.; Orsolini, Y. J.

    2012-04-01

    Dynamical cooling in the polar stratosphere is induced by weakening of E-P flux convergence (i.e. anomalous divergence) in the stratosphere. As the E-P flux convergence is mainly contributed to by upward planetary-wave (PW) propagation from the troposphere, the intensity of its propagation is well correlated with the E-P flux convergence and the polar stratospheric temperature. Recent studies (Orsolini et al. 2009, QJRMS; Nishii et al. 2010, GRL) pointed out that a tropospheric blocking high over the western Pacific, whose anomalous circulation is projected strongly onto the Western Pacific (WP) teleconnection pattern, tends to weaken the upward PW propagation and thus lower the polar stratospheric temperature. In this study, we present a possibility that downward PW propagation in the lowermost stratosphere can also cause the E-P flux divergence in the polar stratosphere and thereby the stratospheric cooling. On the basis of prominent downward events of the 100-hPa E-P flux averaged over the mid- to high-latitudes in the northern hemisphere, we performed a lag composite analysis for each of the terms of the transformed Eulerian mean (TEM) equation. In the composite time evolution, downward E-P flux in the lowermost stratosphere and the E-P flux divergence aloft are evident around the reference date, followed by persistent cooling of the polar stratosphere for more than two weeks. About one week before the reference date, enhanced upward E-P flux and its convergence lead to the deceleration of upper-stratospheric zonal winds and thus the weakening of their vertical shear , which may result in the formation of a turning surface for upward-propagating PWs. Our results are overall consistent with Harnik (2009, JGR), who showed that a short pulse of upward-propagating PWs forms a turning surface in the upper stratosphere, where the PWs that subsequently propagate upward can be reflected back. By taking above results into consideration, we analyzed the prolonged cold

  17. Late Cretaceous- Cenozoic history of deciduousness and the terminal Cretaceous event.

    USGS Publications Warehouse

    Wolfe, J.A.

    1987-01-01

    Deciduousness in mesic, broad-leaved plants occurred in disturbed, middle-latitude environments during the Late Cretaceous. Only in polar environments in the Late Cretaceous was the deciduous element dominant, although of low diversity. The terminal Cretaceous event resulted in wide-spread selection for plants of deciduous habit and diversification of deciduous taxa, thus leaving a lasting imprint on Northern Hemisphere vegetation. Various environmental factors have played important roles in subsequent diversification of mesic, broad-leaved deciduous taxa and in origination and decline of broad-leaved deciduous forests. Low diversity and rarity of mesic deciduous plants in the post-Cretaceous of the Southern Hemisphere indicate that the inferred 'impact winter' of the terminal Cretaceous event had little effect on Southern Hemisphere vegetation and climate. -Author

  18. Cretaceous shelf-sea chalk deposits

    SciTech Connect

    Hattin, D.E.

    1988-01-01

    The word ''chalk'' is linked etymologically to the Cretaceous, but chalky facies neither dominate that system nor are confined to it. As used commonly, the term ''chalk'' refers to a variety of marine limestone that is white to light gray very fine grained, soft and friable, porous, and composed predominantly of calcitic skeletal remains, especially those derived from coccolithophores. No simple definition suffices to embrace all Cretaceous chalks, which include sandy, marly, shelly, phospatic, glauconitic, dolomitic, pyritic and organic-rich lithotypes. Most of the world's exposed Cretaceous chalk deposits were formed at shelf depths rather than in the deep sea. Cretaceous shelf-sea chalks are developed most extensively in northern Europe, the U.S. Gulf Coastal Plain and Western Interior, and the Middle East, with lesser occurrences alo in Australia. Most Cretaceous shelf-sea chalks formed in the temperature zones, and in relatively deep water. Cretaceous chalks deposited on well-oxygenated sea floors are bioturbated and massive where deficient in terrigenous detritus, or bioturbated and rhythmically interbedded with argillaceous units where influx of terrigenous detritus varied systematically with climate changes. Accumulation of sufficient pelagic mud to form vast deposits of Cretaceous shelf-sea chalk required (1) sustained high productivity of calareous plankton, (2) extensive development of stable shelf and continental platform environments, (3) highstands of seal level, (4) deficiency of aragonitic skeletal material in chalk-forming sediments, and (5) low rates of terrigenous detrital influx. These conditions were met at different times in different places, even within the same general region.

  19. Reactive flow as dominant evolution process in the lowermost oceanic crust: evidence from olivine of the Pineto ophiolite (Corsica)

    NASA Astrophysics Data System (ADS)

    Sanfilippo, Alessio; Tribuzio, Riccardo; Tiepolo, Massimo; Berno, Davide

    2015-10-01

    The Jurassic Pineto ophiolite from Corsica exposes a ~1-km-thick troctolite-olivine-gabbro sequence, interpreted to represent a lowermost sector of the gabbroic oceanic crust from a (ultra-)slow spreading system. To constrain the petrogenesis of the olivine-gabbros, minor and trace element analyses of olivine (forsterite = 84-82 mol%) were carried out. Olivine from the olivine-gabbros is depleted in incompatible trace elements (Sc, V, Ti, Y, Zr and heavy rare earth elements) with respect to olivines from associated troctolites. Depleted incompatible element compositions are also shown by olivine (forsterite = 86 mol%) from a clinopyroxene-rich troctolite. The incompatible element compositions of olivine argue against a petrogenetic process entirely driven by fractional crystallization. We propose that melts migrating through an olivine-plagioclase crystal mush chemically evolved by reaction with the existing minerals, changing in composition as it flowed upward. The melt residual from these interactions led to partial dissolution of preexisting olivine and to crystallization of clinopyroxene, generating olivine-gabbro bodies within a troctolite matrix. Reactive flow was the major evolution process active in the ~1-km crustal transect exposed at the Pineto ophiolite, producing lithological variations classically attributed to fractional crystallization processes.

  20. The Cretaceous-Paleogene boundary in the Brazos River area (Texas): new sections and revised interpretations

    NASA Astrophysics Data System (ADS)

    Hart, M.; Leighton, A.; Yancey, T.; Miller, B.; Smart, C.; Twitchett, R.

    2012-04-01

    The Brazos River area of Texas is famous for outcrops of the K/Pg transition and lowermost Paleocene strata. A number of new, un-described sections have been investigated and they provide biostratigraphical and sedimentological information on the events preceding, during and following the Chixculub impact event. The mudstones of the Corsicana Formation (Maastrichtian) contain a number of very thin volcanic ashes, including the yellow/white gypsum-rich horizon incorrectly regarded by some workers as evidence of a pre-K/Pg boundary impact. The mudstones of the Corsicana Mudstone Fm (uppermost Maastrichtian) were significantly eroded by the end-Cretaceous tsunami and the surficial unconsolidated muds as well as a thickness of lithified mudstone eroded and put into suspension, thereby providing the reworked Cretaceous assemblages of microfossils recorded by a number of authors. Erosional relief on the 75-100 m deep sea floor is visible in Cottonmouth Creek and the new River Bank South section as a series of ridges and erosional troughs, trending NW-SE. Trough lows are in-filled with mud-matrix mass flow deposits containing large blocks of Maastrichtian mudstones and transported concretions. These are overlain with granular shell-rich sediments containing spherules, fish teeth, bone fragments and re-worked foraminifera and hummocky cross-stratified storm sands with mudstone inter-beds. Sea floor ridges remained exposed to open marine waters and were colonized with a thin oyster pavement before burial by Kincaid Formation mudstones and siltstones. A return to quiet water conditions during the earliest Paleocene is recorded in a new 3-6 m section of foraminifera-rich mudstones, siltstones and sandstones bounded above and below with zones of carbonate and pyrite concretions, best seen in the River bank South section. The foraminiferal sand unit contains steinkerns and phosphatic concretions indicative of a condensed deposit. The P1a/P1b zonal boundary lies near the top of

  1. Early cretaceous dinosaurs from the sahara.

    PubMed

    Sereno, P C; Wilson, J A; Larsson, H C; Dutheil, D B; Sues, H D

    1994-10-14

    A major question in Mesozoic biogeography is how the land-based dinosaurian radiation responded to fragmentation of Pangaea. A rich fossil record has been uncovered on northern continents that spans the Cretaceous, when continental isolation reached its peak. In contrast, dinosaur remains on southern continents are scarce. The discovery of dinosaurian skeletons from Lower Cretaceous beds in the southern Sahara shows that several lineages of tetanuran theropods and broad-toothed sauropods had a cosmopolitan distribution across Pangaea before the onset of continental fragmentation. The distinct dinosaurian faunas of Africa, South America, and Asiamerica arose during the Cretaceous by differential survival of once widespread lineages on land masses that were becoming increasingly isolated from one another.

  2. An opilioacarid mite in Cretaceous Burmese amber

    NASA Astrophysics Data System (ADS)

    Dunlop, Jason A.; de Oliveira Bernardi, Leopoldo Ferreira

    2014-09-01

    A fossil opilioacarid mite (Parasitiformes: Opilioacarida) in Burmese amber is described as ? Opilioacarus groehni sp. nov. This ca. 99 Ma record (Upper Cretaceous: Cenomanian) represents only the third fossil example of this putatively basal mite lineage, the others originating from Eocene Baltic amber (ca. 44-49 Ma). Our new record is not only the oldest record of Opilioacarida, but it is also one of the oldest examples of the entire Parasitiformes clade. The presence of Opilioacarida—potentially Opiloacarus—in the Cretaceous of SE Asia suggests that some modern genus groups were formerly more widely distributed across the northern hemisphere, raising questions about previously suggested Gondwanan origins for these mites.

  3. The last dicynodont: an Australian Cretaceous relict.

    PubMed Central

    Thulborn, Tony; Turner, Susan

    2003-01-01

    Some long-forgotten fossil evidence reveals that a dicynodont (mammal-like reptile of the infraorder Dicynodontia) inhabited Australia as recently as the Early Cretaceous, ca. 110 Myr after the supposed extinction of dicynodonts in the Late Triassic. This remarkably late occurrence more than doubles the known duration of dicynodont history (from ca. 63 Myr to ca. 170 Myr) and betrays the profound impact of geographical isolation on Australian terrestrial faunas through the Mesozoic. Australia's late-surviving dicynodont may be envisaged as a counterpart of the ceratopians (horned dinosaurs) in Cretaceous tetrapod faunas of Asia and North America. PMID:12803915

  4. Late Cretaceous vicariance in Gondwanan amphibians.

    PubMed

    Van Bocxlaer, Ines; Roelants, Kim; Biju, S D; Nagaraju, J; Bossuyt, Franky

    2006-01-01

    Overseas dispersals are often invoked when Southern Hemisphere terrestrial and freshwater organism phylogenies do not fit the sequence or timing of Gondwana fragmentation. We used dispersal-vicariance analyses and molecular timetrees to show that two species-rich frog groups, Microhylidae and Natatanura, display congruent patterns of spatial and temporal diversification among Gondwanan plates in the Late Cretaceous, long after the presumed major tectonic break-up events. Because amphibians are notoriously salt-intolerant, these analogies are best explained by simultaneous vicariance, rather than by oceanic dispersal. Hence our results imply Late Cretaceous connections between most adjacent Gondwanan landmasses, an essential concept for biogeographic and palaeomap reconstructions. PMID:17183706

  5. Impact of different Asian source regions on the composition of the Asian monsoon anticyclone and of the extratropical lowermost stratosphere

    NASA Astrophysics Data System (ADS)

    Vogel, B.; Günther, G.; Müller, R.; Grooß, J.-U.; Riese, M.

    2015-12-01

    anticyclone. Air masses originating in Southeast Asia are found both within and outside of the Asian monsoon anticyclone because these air masses experience, in addition to transport within the anticyclone, upward transport at the southeastern flank of the anticyclone and in the tropics. Subsequently, isentropic poleward transport of these air masses occurs at around 380 K with the result that the extratropical lowermost stratosphere in the Northern Hemisphere is flooded by the end of September with air masses originating in Southeast Asia. Even after the breakup of the anticyclonic circulation (around the end of September), significant contributions of air masses originating in India/China are still found in the upper troposphere over Asia. Our results demonstrate that emissions from India, China, and Southeast Asia have a significant impact on the chemical composition of the lowermost stratosphere of the Northern Hemisphere, in particular at the end of the monsoon season in September/October 2012.

  6. Investigating the Edges of the Large Low Shear Velocity Province in the Lowermost Mantle Beneath the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Garnero, E. J.

    2008-12-01

    Whether the large low shear velocity province (LLSVP) in the lowermost mantle beneath the Pacific Ocean has a purely thermal origin (e.g., related to a superplume) or is a chemically distinct structure (e.g., a thermochemical pile) is still under active investigation. A number of seismic investigations have documented a sharp transition between the Pacific and African LLSVPs and surrounding lower mantle material, which argues for a chemically distinct origin. We previously used USArray recordings of Fiji-Tonga and Kemadec events to study the northern portion of the Pacific LLSVP, and found wave broadening consistent with multi- pathing along the LLSVP margin. In this study, we additionally compare the P-wave times to the SH times. All timing measurements were recalculated with a new travel time picking algorithm, which reduced scatter in our earlier estimates. Rapidly changing arrival times are observed, and are consistent with a sharp LLSVP boundary. We also define a waveform misfit parameter that quantifies each observation's deviation from a mean source shape on an event by event basis. Here we investigate a data set with direct S and P waves that bottom above and within the Pacific LLSVP, covering a significant portion of the central Pacific. A double array stacking method is employed to search for wave broadening as well as post-cursors associated with a possible top of the LLSVP. Some waveform complexities are observed, but vary geographically. These data will be discussed in regards to the possible nature of the LLSVP, its top, and the chemistry and dynamics of the deep mantle.

  7. Tomographic-Geodynamic Model Comparisons and the Presence of Post-Perovskite and Chemical Heterogeneity in Earth's Lowermost Mantle

    NASA Astrophysics Data System (ADS)

    Koelemeijer, P.; Deuss, A. F.; Ritsema, J.; van Heijst, H. J.; Davies, R.; Schuberth, B. S. A.; Chust, T.

    2014-12-01

    Dynamic processes occurring in the mantle and core interact at the core-mantle boundary (CMB), which marks the largest thermal and compositional interface inside the Earth. This interplay has produced a myriad of complex structures in the lowermost mantle that offer valuable insights into the dynamics of this region. Large-low-shear velocity provinces (LLSVPs) dominate shear wave velocity (Vs) models of the deep mantle. In addition, global tomography studies generally find an increase in the ratio of shear wave to compressional wave velocity (Vp) variations, accompanied by a significant anti-correlation between shear wave and bulk sound velocity (Vc) variations. These seismic characteristics, also observed in the recent SP12RTS tomographic model, have primarily been interpreted in terms of chemical variations but could potentially also be explained by the presence of the deep mantle post-perovskite (pPv) phase. In this contribution, we attempt to interpret the observed seismic characteristics by linking them to dynamic processes occurring in the deep mantle. For this purpose, we compare the shear and compressional wave velocity structure of SP12RTS to mantle structure derived from geodynamic models of mantle convection. We project the geodynamic models into the SP12RTS model parametrization and use its resolution operator to account for the limited tomographic resolution. We include geodynamic models with and without the post-perovskite phase and/or chemical variations and in addition vary the CMB temperature. Although the reparametrization and tomographic filtering significantly affect the obtained mantle structure, we demonstrate that the patterns observed in the ratios and correlations of seismic velocities are robust features. Our tomographic-geodynamic model comparison suggests that the seismic characteristics can be explained by the presence of post-perovskite but it allows no discrimination between isochemical and thermochemical models of mantle convection.

  8. The Cretaceous/Tertiary Extinction Controversy.

    ERIC Educational Resources Information Center

    McCartney, Kevin

    1984-01-01

    The cause of the Cretaceous/Tertiary extinction has become a major geologic controversy. Current evidence for the two opposing views is reviewed to provide an introduction to the controversy and to form the basis for a seminar of discussion topic. (Author/JN)

  9. Lithostratigraphy, biostratigraphy and chemostratigraphy of Upper Cretaceous and Paleogene sediments from southern Tanzania: Tanzania Drilling Project Sites 27-35

    NASA Astrophysics Data System (ADS)

    Jimènez Berrocoso, Àlvaro; Huber, Brian T.; MacLeod, Kenneth G.; Petrizzo, Maria Rose; Lees, Jacqueline A.; Wendler, Ines; Coxall, Helen; Mweneinda, Amina K.; Falzoni, Francesca; Birch, Heather; Singano, Joyce M.; Haynes, Shannon; Cotton, Laura; Wendler, Jens; Bown, Paul R.; Robinson, Stuart A.; Gould, Jeremy

    2012-07-01

    The 2008 Tanzania Drilling Project (TDP) expedition recovered common planktonic foraminifera (PF), calcareous nannofossils (CN) and calcareous dinoflagellates with extraordinary shell preservation at multiple Cenomanian-Campanian sites that will be used for paleoclimatic, paleoceanographic, and biostratigraphic studies. New cores confirm the existence of a more expanded and continuous Upper Cretaceous sequence than had previously been documented in the Lindi and Kilwa regions of southeastern coastal Tanzania. This TDP expedition cored 684.02 m at eight Upper Cretaceous sites (TDP Sites 28-35) and a thin Paleocene section (TDP Site 27). TDP Sites 29, 30, 31 and 34 together span the lowermost Turonian to Coniacian (PF Whiteinella archaeocretacea to Dicarinella concavata Zones and CN Zones UC6a-9b), with TDP Site 31 being the most biostratigraphically complete Turonian section found during TDP drilling. A discontinuous section from the Santonian-upper Campanian (PF D. asymetrica to Radotruncana calcarata Zones and CN Zones UC12-16) was collectively recovered at TDP Sites 28, 32 and 35, while thin sequences of the lower Cenomanian (PF Thalmanninella globotruncanoides Zone and CN subzones UC3a-b) and middle Paleocene (Selandian; PF Zone P3a and CN Zone NP5) were cored in TDP Sites 33 and 27, respectively. Records of δ13Corg and δ13Ccarb from bulk sediments generated for all the Cretaceous sites show largely stable values through the sections. Only a few parallel δ13Corg and δ13Ccarb shifts have been found and they are interpreted to reflect local processes. The δ18Ocarb record, however, is consistent with Late Cretaceous cooling trends from the Turonian into the Campanian. Lithologies of these sites include thick intervals of claystones and siltstones with locally abundant, finely-laminated fabrics, irregular occurrences of thin sandstone layers, and sporadic bioclastic debris (e.g., inoceramids, ammonites). Minor lithologies represent much thinner units of up to

  10. Fine Scale Structure of Low and Ultra-Low Velocity Patches in the Lowermost Mantle: Some Case Studies

    NASA Astrophysics Data System (ADS)

    Yuan, K.; Romanowicz, B. A.; French, S.

    2015-12-01

    The lowermost part of the mantle, which is roughly halfway to the center of the earth, plays a key role as a thermal and chemical boundary layer between the solid, silicate mantle and fluid, iron outer core. Constraining the seismic velocity structure in this region provides important insights on mantle dynamics, and core-mantle interactions. Recently, global shear wave velocity tomography has confirmed the presence of broad plume conduits extending vertically through the lower mantle in the vicinity of major hotspots (SEMUCB-WM1, French and Romanowicz, 2015). These conduits are rooted in D" in patches of strongly reduced shear velocity, at least some of which, such as Hawaii, appear to contain known ultra low velocity zones (e.g. Cottaar and Romanowicz, 2012). We seek to determine whether these patches generally contain ULVZs, and to contrast them with less extreme structures such as the PERM anomaly (Lekic et al., 2012). Because global tomography cannot resolve such fine scale structure, we apply forward modeling of higher frequency (10-20s) Sdiff waveforms in 3D complex structures using the Spectral Element Method. We focus on Iceland, Hawaii and the PERM anomaly, and Sdiff observations at USArray and/or dense broadband arrays in Europe. In all three cases, Sdiff waveforms are clearly distorted by these anomalies, with either a complex coda and/or evidence for amplitude focusing. As a start, we design simple cylindrical models of shear velocity reduction, and contrast the best fitting ones at each location considered in terms of diameter, height above the core-mantle boundary and strength of velocity reduction. We refine previously obtained models for Hawaii and the Perm Anomaly. For Iceland, the waveforms show a strong azimuthally dependent post-cursor, with maximum travel time delay of ~20s and focusing effects. The preliminary best fitting model shows a structure of 700km in diameter, ~15% reduction in shear wave velocity, extending ~40 km above the core

  11. Using seismic array-processing to enhance observations of PcP waves to constrain lowermost mantle structure

    NASA Astrophysics Data System (ADS)

    Ventosa, S.; Romanowicz, B. A.

    2014-12-01

    The topography of the core-mantle boundary (CMB) and the structure and composition of the D" region are essential to understand the interaction between the earth's mantle and core. A variety of seismic data-processing techniques have been used to detect and measure travel-times and amplitudes of weak short-period teleseismic body-waves phases that interact with CMB and D", which is crucial to constrain properties of the lowermost mantle at short wavelengths. Major challenges in enhancing these observations are: (1) increasing signal-to-noise ratio of target phases and (2) isolating them from unwanted neighboring phases. Seismic array-processing can address these problems by combining signals from groups of seismometers and exploiting information that allows to separate the coherent signals from the noise. Here, we focus on the study of the Pacific large-low shear-velocity province (LLSVP) and surrounding areas using differential travel-times and amplitude ratios of the P and PcP phases, and their depth phases. We particularly design scale-dependent slowness filters that do not compromise time-space resolution. This is a local delay-and-sum (i.e. slant-stack) approach implemented in the time-scale domain using the wavelet transform to enhance time-space resolution (i.e. reduce array aperture). We group stations from USArray and other nearby networks, and from Hi-Net and F-net in Japan, to define many overlapping local arrays. The aperture of each array varies mainly according (1) to the space resolution target and (2) to the slowness resolution required to isolate the target phases at each period. Once the target phases are well separated, we measure their differential travel-times and amplitude ratios, and we project these to the CMB. In this process, we carefully analyze and, when possible and significant, correct for the main sources of bias, i.e., mantle heterogeneities, earthquake mislocation and intrinsic attenuation. We illustrate our approach in a series of

  12. Nitrogen geochemistry of a Cretaceous-Tertiary boundary site in New Zealand

    NASA Technical Reports Server (NTRS)

    Gilmour, Iain; Boyd, Stuart R.

    1988-01-01

    Nitrogen in the basal layer of the K-T boundary clay at Woodside Creek, New Zealand, has an abundance of 1100 ppm, a 20-fold enrichment over Cretaceous and Tertiary values. The enrichment parallels that for Ir and elemental carbon (soot); all decrease over the next 6 mm of the boundary clay. The C/N ratio, assuming the nitrogen to be associated with organic rather than elemental carbon, is approximately 5 for the basal layer compared to 20 to 30 for the remainder of the boundary clay. The correlation between N and Ir abundances appears to persist above the boundary, implying that the N is intimately associated with the primary fallout and remained with it during the secondary redeposition processes that kept the Ir abundance relatively high into the lowermost Tertiary. Apparently the basal layer of the boundary clay represents the accumulation of a substantial quantity of N with an isotopic composition approximately 10 percent heavier than background delta value of N-15 values. If the boundary clay represents an altered impact glass from a meteorite impact than it probably denotes a time period of less than 1 year. Therefore, the changes in nitrogen geochemistry apparently occurred over a very short period of time. The high abundance of N and the correspondingly low C/N ratio may reflect enhanced preservation of organic material as a result of the rapid sweepout and burial of plankton by impact ejecta, with little or no bacterial degradation. It is conceivable that the shift in delta value of N-15 may represent an influx of nitrogen from a different source deposited contemporaneously with the impact ejecta. An interesting possibility is that it may be derived from nitrate, produced from the combustion of atmospheric nitrogen.

  13. Shocked cobbles in Lower Cretaceous Duwon Formation, South Korea: their classification and possible formation mechanisms

    NASA Astrophysics Data System (ADS)

    Lim, Hyoun Soo; Chae, Yong-Un; Kim, Kyung Soo; Kim, Cheng-Bin; Huh, Min

    2016-04-01

    Shocked cobbles are the cobbles having shock-induced deformation structures on the surfaces. The most distinctive macroscopic features are the subparallel fractures and the pervasive surface craters, with or without radial fractures. Until now, these shocked cobbles have been reported mainly in Europe, America, and Africa, but never been found or reported in Korea. Shocked cobbles have recently found in the Lower Cretaceous Duwon Formation in South Korea, which was the second report in Asia. The Duwon Formation consists mainly of conglomerates, gravelly sandstones and intercalated mudstone and shale layers. The shocked cobbles are commonly found in the lowermost clast-supported conglomerate layers, and they show various deformation features, such as pockmarked (circular or elliptical) cobbles, cratered (Hertzian or bowl-shaped) cobbles with or without radial fractures, cobbles showing subparallel fractures, and strongly squashed or heavily dissected cobbles. In general, these deformation structures are considered to have resulted from pressure dissolution by overburden, tectonic compression, and seismic or meteorite impacts. However, the exact formation mechanism is not clearly understood, and still in debate. The shocked cobbles found in the Duwon Formation have similar features to those of previously reported shocked cobbles, especially to Triassic Buntsandstein conglomerates in northeastern Spain. Based on the degree of deformation, the Duwon shocked cobbles can be divided into four types, which are (1) faint contact marks, (2) pitted marks without any fractures, (3) pitted marks with radial or sub-parallel fractures affected by pits, and (4) intensive fractures and heavily dissected fragments. The possible mechanisms for the Duwon shocked cobbles are thought to be crushing process by shear stress and pressure solution.

  14. Crustal structure of the eastern Qinling orogenic belt and implication for reactivation since the Cretaceous

    NASA Astrophysics Data System (ADS)

    Guo, Zhen; Chen, Y. John

    2016-06-01

    A high resolution crustal model of the eastern Qinling belt and central North China Craton (central NCC) is obtained along a N-S trending profile (corridor) by joint inversion of surface wave and receiver function. The NCC is one of the oldest cratons on Earth and the Qinling belt is the suture zone between the NCC and South China block (SCB). The Qinling belt is characterized by low crustal velocity (< 3.6 km/s) as well as low bulk Vp/Vs ratio (1.66-1.8), suggesting that the mid- to lower crust is predominantly felsic in composition, which could be the consequence of removal of mafic root by delamination in the past. The quartz-rich hence mechanically weak crust beneath the Qinling belt could be responsible for the strain focusing and significant reactivation since the Cretaceous. Beneath the central NCC, a ~ 10 km thick high-velocity layer (3.9-4.1 km/s) is observed just above the Moho, consistent with the regional high bulk Vp/Vs ratio (> 1.8). The forward gravity modeling supports the presence of a high-density layer (3.05 g/cm3) at the base of the crust beneath the central NCC. We propose that the high velocity in the lowermost crust beneath the central NCC is most likely due to the repeated mafic underplating, which also results in high crustal Vp/Vs ratio and is responsible for the rapid crustal uplift during the late Mesozoic.

  15. Chronostratigraphy of the Cretaceous-Oligocene unconformity in Northern Monagas, Eastern Venezuela

    SciTech Connect

    Helenes, J. )

    1993-02-01

    Palynological analyses of several subsurface sections in the autochthonous block in Northern Monagas, eastern Venezuela, show a Cretaceous-Oligocene unconformity. The Maastrichtian to Paleocene sandstones of the San Juan Formation unconformably underlie the Oligocene to Miocene sandstones of the Merecure Formation. Log analyses indicate two stratigraphic sequences within San Juan and two more within Merecure, and integration with paleontological data indicates changes which can be correlated with Haq et al.'s (1988) Sequence Chronostratigraphic Charts as follows: (1) The basal San Juan sandstones represent the late Maastrichtian (68 Ma) drop of seal level and the UZA-4.5/TA-1.1 Sequence Boundary (SB). The Maastrichtian or Maastrichtian to Paleocene San Juan sandstones represent either the TA-1.1 and the TA-1.2 Third-Order Cycles. (2) The late Oligocene sequence overlying the unconformity, represents the TB-1.3 Cycle starting at 26.5 Ma. Within this lower part of the Merecure sediments, an increase in the abundance and diversity of marine palynomorphs represents a maximum transgression correlatable with the 26 Ma Condensed Section contained in the Tb-1.3 Cycle. (3) The upper part of Merecure represents the Tb-1.4 Cycle starting at 25.5 Ma. Within this cycle, the lowermost (Oligocene) sandstones contain almost exclusively terrestrial palynomorphs, while the (Miocene) alternating sands and shales of the upper part contain diverse marine palynomorphs indicating a change from Low Stand Wedge to Transgressive deposits. This change is correlated with the Oligocene/Miocene limit at 25.2 Ma.

  16. Seawater sulfur isotope fluctuations in the Cretaceous.

    PubMed

    Paytan, Adina; Kastner, Miriam; Campbell, Douglas; Thiemens, Mark H

    2004-06-11

    The exogenic sulfur cycle is tightly coupled with the carbon and oxygen cycles, and therefore a central component of Earth's biogeochemistry. Here we present a high-resolution record of the sulfur isotopic composition of seawater sulfate for the Cretaceous. The general enrichment of isotopically light sulfur that prevailed during the Cretaceous may have been due to increased volcanic and hydrothermal activity. Two excursions toward isotopically lighter sulfur represent periods of lower rates of pyrite burial, implying a shift in the location of organic carbon burial to terrestrial or open-ocean settings. The concurrent changes in seawater sulfur and inorganic carbon isotopic compositions imply short-term variability in atmospheric oxygen partial pressure.

  17. Shocked cobbles in Lower Cretaceous Duwon Formation, South Korea: A first report in Asia and their possible mechanisms

    NASA Astrophysics Data System (ADS)

    Chae, Y. U.; Kim, K. S.; Kim, C. B.; Son, M.; Lim, H. S.

    2015-12-01

    Shocked cobbles are the cobbles having shock-induced deformation structures on the surfaces. The most distinctive macroscopic features are the subparallel fractures and the pervasive surface craters, with or without radial fractures. Until now, these shocked cobbles have been reported mainly in Europe (Spain and UK) and N. America (USA and Canada), but never been found or reported in Asia. Shocked cobbles have recently found in the Lower Cretaceous Duwon Formation in South Korea, which was the first report in Asia. The Duwon Formation consists mainly of conglomerates, gravelly sandstones and intercalated mudstone and shale layers. The shocked cobbles are commonly found in the lowermost clast-supported conglomerate layers, and they show various deformation features, such as pockmarked (circular or elliptical) cobbles, cratered (Hertzian or bowl-shaped) cobbles with or without radial fractures, cobbles showing subparallel fractures, and strongly squashed or heavily dissected cobbles. In general, these deformation structures are considered to have resulted from pressure dissolution by overburden, tectonic compression, and seismic or meteorite impacts. However, the exact formation mechanism is not clearly understood, and still in debate. The shocked cobbles found in the Duwon Formation have similar features to those of previously reported shocked cobbles, especially to Triassic Buntsandstein conglomerates in northeastern Spain. Based on the macroscopic and microscopic observations, the impact shock is thought to be the best explanation for the deformation features of the Duwon Formation. However, we think that further studies are still needed to clarify the formation mechanism in detail.

  18. The cretaceous opening of the Northeast Atlantic

    NASA Astrophysics Data System (ADS)

    Hanisch, J.

    1984-01-01

    A continuous rift system from the Rockall Trough through the Faeroe-Shetland Channel, and the Møre and Vøring basins up to the Tromsø and Bear Island basins is inferred to have developed during the Cretaceous. Oceanic crust was generated in its southern part but its width presumably decreases toward the northeast and probably ends in the Møre Basin. This rift/spreading system requires a clockwise rotation of Greenland and the Rockall Plateau during the Cretaceous around a rotation pole at its northern end at about 74°N 21°E. North of the pole of rotation crustal shortening must have occurred. This compression is interpreted to have taken place on West Spitsbergen. The orogeny there is reinterpreted as (1) a Cretaceous folding phase, (2) a phase of overthrusting at the Paleocene-Eocene boundary, and (3) an extensional faulting phase during the Oligocene. This plate-tectonic model can resolve a series of problems in the Northeast Atlantic region: the connection of the Caledonian fronts of Scotland and Greenland can be easily established. The northern ends of the West Shetland Basin and the North Sea graben; the unusual depth of the Møre and Vøring basins; the marked obliqueness of structural trends between the Northeast Greenland shelf and the Norwegian shelf; the fact that the western Hammerfest Basin was intersected by a younger north-south trending graben which formed the deep Tromsø Basin—all these enigmatic observations can be explained by the Cretaceous rift system.

  19. Palaeontology: pterosaur embryo from the Early Cretaceous.

    PubMed

    Wang, Xiaolin; Zhou, Zhonghe

    2004-06-10

    Dinosaur embryos have been discovered all over the world, but so far no pterosaur embryos have been reported. Here we describe a Chinese fossil from the Early Cretaceous period containing an embryo that is unambiguously a pterosaur. The embryonic skeleton, which is exquisitely preserved in its egg, is associated with eggshell fragments, wing membranes and skin imprints. This discovery confirms that pterosaurs were egg-layers and sheds new light on our understanding of pterosaur development.

  20. Cretaceous biostratigraphy in the Wyoming thrust belt

    SciTech Connect

    Nichols, D.J.; Jacobson, S.R.

    1982-07-01

    Biostratigraphy is essential to exploration for oil and gas in the Wyoming thrust belt because fossils provide a temporal framework for interpretation of events of faulting, erosion, sedimentation, and the development of hydrocarbon traps and migration pathways. In the Cretaceous section, fossils are especially useful for dating and correlating repetitive facies of different ages in structurally complex terrain. The biostratigraphic zonation for the region is based on megafossils (chiefly ammonites), which permit accurate dating and correlation of outcrop sections, and which have been calibrated with the radiometric time scale for the Western Interior. Molluscan and vertebrate zone fossils are difficult to obtain from the subsurface, however, and ammonities are restricted to rocks of margin origin. Palynomorphs (plant microfossils) have proven to be the most valuable fossils in investigations of stratigraphy and structures in the subsurface of the thrust belt because palynomorphs can be recovered from drill cuttings. Palynomorphs also are found in both marine and nonmarine rocks and can be used for correlation between facies. In this paper, stratigraphic ranges of selected Cretaceous marine and nonmarine palynomorphs in previously designated reference sections in Fossil Basin, Wyoming, are correlated with the occurrence of ammonities and other zone fossils in the same sections. These correlations can be related to known isotopic ages, and they contribute to the calibration of palynomorph ranges in the Cretaceous of the Western Interior.

  1. Cretaceous biostratigraphy in the Wyoming thrust belt.

    USGS Publications Warehouse

    Nichols, D.J.; Jacobson, S.R.

    1982-01-01

    In the Cretaceous section of the thrust belt, fossils are especially useful for dating and correlating repetitive facies of different ages in structurally complex terrain. The biostratigraphic zonation for the region is based on megafossils (chiefly ammonites) , which permit accurate dating and correlation of outcrop sections, and which have been calibrated with the radiometric time scale for the Western Interior. Molluscan and vertebrate zone fossils are difficult to obtain from the subsurface, however, and ammonites are restricted to rocks of marine origin. Palynomorphs (plant microfossils) have proven to be the most valuable fossils in the subsurface because they can be recovered from drill cuttings. Palynomorphs also are found in both marine and nonmarine rocks and can be used for correlation between facies. Stratigraphic ranges of selected Cretaceous marine and nonmarine palynomorphs in previously designated reference sections in Fossil Basin, Wyoming are correlated with the occurrence of ammonites and other zone fossils in the same sections. These correlations can be related to known isotopic ages, and they contribute to the calibration of palynomorph ranges in the Cretaceous of the Western Interior. -from Authors

  2. Modelling the effects of internal heating in the core and lowermost mantle on the earth’s magnetic history

    NASA Astrophysics Data System (ADS)

    Costin, S. O.; Butler, S. L.

    2006-08-01

    Recently, an incompatible-element enriched reservoir, bearing a high degree of radioactive heating, has been proposed to exist at the base of the mantle. This scenario has been discussed based on parameterized thermal and magnetic models of the core [Buffett, B.A., 2002. Estimates of heat flow in the deep mantle based on the power requirements for the geodynamo. Geophys. Res. Lett. 29(12), 7], as well as on geochemical grounds [Tolstikhin, I., Hofmann, A.W., 2005. Early crust on top of the Earth's core. Phys. Earth Plan. Int., 148, 109-130; Boyet M., Carlson, R.W., 2005. Nd142 Evidence for early ( >4.53 Ga) global differentiation of the sillicate earth. Science 309, 576-581]. A high degree of radioactivity at the base of the mantle [ Buffett, B.A., 2003. The thermal state of Earth's core. Science 299, 1675-1677], or alternatively the presence of radioactivity in the core [e.g., Labrosse, S., 2003. Thermal and magnetic evolution of the Earth's core. Phys. Earth Plan. Int. 140, 127-143; Nimmo F., Price, G.D., Brodholt, J., Gubbins, D., 2004. The influence of potassium on core and geodynamo evolution. Geophys. J. Int. 156, 363-376], have been proposed as means to allow sufficient buoyancy to power the geodynamo and maintain a magnetic field throughout most of the Earth's history as palaeomagnetic records indicate [ McElhinny, M.W., Senanayake, W.E., 1980. Paleomagnetic evidence for the existence of the geomagnetic field 3.5 Ga ago. J. Geophys. Res. 85, 3523-3528; Hale, C.J., D.J. Dunlop, 1984. Evidence for an early Archean geomagnetic field: a paleomagnetic study of the Komati Formation, Barberton Greenstone Belt, South Africa. Geophys. Res. Lett. 11, 97-100], while maintaining a sufficiently high temperature in the core. The present paper analyzes the consequences of internal heating in the core and the lowermost mantle on the core's magnetic history using numerical simulations of convection in the mantle coupled to an energy balance model for the core. This method

  3. Significance of Tocopherols during Cretaceous Oae

    NASA Astrophysics Data System (ADS)

    Brassell, S. C.

    2013-12-01

    Most biomarker studies of Cretaceous OAE have tended to focus on investigations of hydrocarbon constituents, which means that evidence of environmental conditions contained in the distributions and abundance of more polar components has rarely been utilized with the notable exception of GDGTs as paleotemperature proxies. One group of functionalized lipids, tocopherols, fulfills various critical functions in plants and bacteria, including optimization of photosynthetic activity and macronutrient homeostasis in cyanobacteria. These compounds are often prevalent constituents of immature Cretaceous sediments rich in organic matter (OM) in those instances where analytical protocols have assessed their presence. They occur in Cenomanian-Turonian (OAE2), early Aptian (OAE1a), Valanginian, and other Cretaceous sediments, and their concentrations can exceed 2-5 mg/g dry sediment. One possible explanation for the abundance of tocopherols is that environmental conditions prevailing during OAE led to enhanced biochemical production of these components by phytoplankton, given their key biophysiochemical role of protecting lipids and membranes against oxidative stress. High concentrations of tocopherols (>250 mg/g dry weight) have been reported in haptophytes and marine green algae, and their production in cyanobacteria increases under high light intensity. Hence, environmental conditions during Cretaceous OAE may have been conducive to production of copious amounts of tocopherols by phytoplankton in response to environment stresses. Previous work in contemporary systems has suggested that the propensity of tocopherols to autooxidation would make their survival in sediments unlikely. However, this scenario and interpretation is clearly not applicable during Cretaceous episodes of enhanced OM sequestration and/or dysoxia. Since tocopherols serve to protect plant cells from oxidative damage it seems plausible that they might fulfill a similar function in settling, particulate, and

  4. Cretaceous gastropods: contrasts between tethys and the temperate provinces.

    USGS Publications Warehouse

    Sohl, N.F.

    1987-01-01

    During the Cretaceous Period, gastropod faunas show considerable differences in their evolution between the Tethyan Realm (tropical) and the Temperate Realms to the north and south. Like Holocene faunas, prosobranch, gastropods constitute the dominant part of Cretaceous marine snail faunas. Entomotaeneata and opisthobranchs usually form all of the remainder. In Tethyan faunas the Archaeogastropoda form a consistent high proportion of total taxa but less than the Mesogastropoda throughout the period. In contrast, the Temperate faunas beginning in Albian times show a decline in percentages of archaeogastropod taxa and a significant increase in the Neogastropoda, until they constitute over 50 percent of the taxa in some faunas. The neogastropods never attain high diversity in the Cretaceous of the Tethyan Realm and are judged to be of Temperate Realm origin. Cretaceous Tethyan gastropod faunas are closely allied to those of the 'corallien facies' of the Jurassic and begin the period evolutionarily mature and well diversified. Three categories of Tethyan gastropods are analyzed. The first group consists of those of Jurassic ancestry. The second group orginates mainly during the Barremian and Aptian, reaches a climax in diversification during middle Cretaceous time, and usually declines during the latest Cretaceous. The third group originates late in the Cretaceous and consists of taxa that manage to either survive the Cretaceous-Tertiary crisis or give rise to forms of prominence among Tertiary warm water faunas. Temperate Realm gastropod faunas are less diverse than those of Tethys during the Early Cretaceous. They show a steady increase in diversity, primarily among the Mesogastropoda and Neogastropoda. This trend culminates in latest Cretaceous times when the gastropod assemblages of the clastic provinces of the inner shelf contain an abundance of taxa outstripping that of any other part of the Cretaceous of either realm. Extinction at the Cretaceous

  5. Cretaceous stratigraphic sequences of north-central California suggest a discontinuity in the Late Cretaceous forearc basin

    SciTech Connect

    Haggart, J.W.

    1986-10-01

    The Cretaceous sedimentary succession preserved east of Redding, at the northern end of California's Great Valley, indicates that marine deposition was widespread in the region for only two periods during the Late Cretaceous. If it is assumed that there was minimal Cenozoic offset between the northern Sierra Nevada and eastern Klamath Mountains terranes, Cretaceous sedimentation in this region was most likely restricted to a narrow trough and was not a continuation of the wide, Cretaceous forearc basin of central California. The dissimilar depositional histories of the Redding basin and the Hornbrook basin of north-central California suggest that the basins were not linked continuously during the Late Cretaceous. A thick section of Cretaceous strata beneath the southwestern Modoc Plateau is considered unlikely.

  6. New depositional models for Cretaceous source rocks

    SciTech Connect

    Kauffman, E.G.; Villamil, T. )

    1993-02-01

    The Cretaceous marks one of the greatest periods of source rock development in geologic history, especially in coastal and epi-continental marine basins where the number, duration, and geographic extent of Corg-rich intervals exceeds that of oceanic basins. Large-scale factors regulating Cretaceous source rocks include sealevel, sedimentation rate/type, paleoclimate and marine thermal gradients, paleoceanography (circulation, stratification, chemistry, upwelling, nutrient supply), and surface water productivity. Marine dispositional settings favored as models for Corg concentration include silled and tectonically depressed basins, intersection of OMZ's with shallow continental seas, coastal upwelling, highly stratified shallow seas, and oceanic anoxic events (OAE's). All of these settings are thought to be characterized by stagnant, anoxic/highly dysoxic water masses above the sediment-water interface, and highly stressed benthic environments. This seemingly supported by fine lamination, spare bioturbation, high pyrite and Corg content of most source rocks. But high-resolution (cm-scale) sedimentologic, paleobiologic, and geochemical analyses of Jurassic-Cretaceous source rocks reveal, instead, dynamic benthic environments with active currents, episodically crowded with diverse life in event communities, and persistently characterized by longer term, low diversity resident benthic communities. These characteristics indicate rapidly fluctuating, predominantly dysoxic to oxic waters at and above the sediment-water interface for most Corg-rich black shales. A new model for source rock generation is proposed which retains the redox boundary at or near the sediment-water interface over large areas of seafloor, in part aided by extensive development of benthic microbial mats which may contribute up to 30% of the Corg to marine source rocks.

  7. DNA sequence from Cretaceous period bone fragments.

    PubMed

    Woodward, S R; Weyand, N J; Bunnell, M

    1994-11-18

    DNA was extracted from 80-million-year-old bone fragments found in strata of the Upper Cretaceous Blackhawk Formation in the roof of an underground coal mine in eastern Utah. This DNA was used as the template in a polymerase chain reaction that amplified and sequenced a portion of the gene encoding mitochondrial cytochrome b. These sequences differ from all other cytochrome b sequences investigated, including those in the GenBank and European Molecular Biology Laboratory databases. DNA isolated from these bone fragments and the resulting gene sequences demonstrate that small fragments of DNA may survive in bone for millions of years.

  8. The drainage of Africa since the Cretaceous

    NASA Astrophysics Data System (ADS)

    Goudie, Andrew S.

    2005-04-01

    Much of the drainage of Africa is relatively youthful. Many of its major rivers have shown substantial changes in their courses since the break up of Gondwanaland in the Cretaceous. In addition, many of the rivers have distinctive morphological characteristics such as inland deltas, cataracts and elbows of capture. Tectonic and climatic changes, including the development of the East African Rift System and the aridification of the Quaternary, help to explain the nature of these rivers. The history of the Saharan rivers, the Niger, the Nile, the Congo, the Cunene, the Zambezi, the Limpopo and the Orange, is reviewed.

  9. Cretaceous - Tertiary Hoploparia species: Occurrence, paleobiogeography and predation context

    NASA Astrophysics Data System (ADS)

    El-Shazly, Soheir

    2015-12-01

    The study of Hoploparia species in 25 localities in Northern and Southern Hemispheres from Early Cretaceous to Early Miocene reveals the appearance of 51 species in Early Cretaceous, mostly in Northern Hemisphere, 46 species from Late Cretaceous (42 and 4 carryover from the Early Cretaceous), 7 species from Danian (4 plus 3 carryover from the Late Cretaceous), 7 species from Eocene (6 plus one from the Early Cretaceous), 2 species from Lower Oligocene and the last recorded species Hoploparia persisted in the Early Miocene of Antarctica. The oldest Hoploparia was recorded from Europe and distributed through the Northern and Southern Hemispheres with the facilitation of the Indo-Madagascar sea-way and Hispanic corridor. The tolerance for temperature and water depth as well as the morphological changes in genus Hoploparia in the Late Cretaceous and Tertiary periods, helped some species to survive the K/T event. Drill-hole predation in Hoploparia longimana (Sowerby, 1826) was recorded for the first time from the Lower Cretaceous (Albian) of Egypt.

  10. New dinosaurs link southern landmasses in the Mid-Cretaceous.

    PubMed Central

    Sereno, Paul C.; Wilson, Jeffrey A.; Conrad, Jack L.

    2004-01-01

    Abelisauroid predators have been recorded almost exclusively from South America, India and Madagascar, a distribution thought to document persistent land connections exclusive of Africa. Here, we report fossils from three stratigraphic levels in the Cretaceous of Niger that provide definitive evidence that abelisauroid dinosaurs and their immediate antecedents were also present on Africa. The fossils include an immediate abelisauroid antecedent of Early Cretaceous age (ca. 130-110 Myr ago), early members of the two abelisauroid subgroups (Noasauridae, Abelisauridae) of Mid-Cretaceous age (ca. 110 Myr ago) and a hornless abelisaurid skull of early Late Cretaceous age (ca. 95 Myr ago). Together, these fossils fill in the early history of the abelisauroid radiation and provide key evidence for continued faunal exchange among Gondwanan landmasses until the end of the Early Cretaceous (ca. 100 Myr ago). PMID:15306329

  11. Low ecological disparity in Early Cretaceous birds.

    PubMed

    Mitchell, Jonathan S; Makovicky, Peter J

    2014-07-22

    Ecological divergence is thought to be coupled with evolutionary radiations, yet the strength of this coupling is unclear. When birds diversified ecologically has received much less attention than their hotly debated crown divergence time. Here, we quantify how accurately skeletal morphology can predict ecology in living and extinct birds, and show that the earliest known assemblage of birds (=pygostylians) from the Jehol Biota (≈125 Ma) was substantially impoverished ecologically. The Jehol avifauna has few representatives of highly preservable ecomorphs (e.g. aquatic forms) and a notable lack of ecomorphological overlap with the pterosaur assemblage (e.g. no large or aerially foraging pygostylians). Comparisons of the Jehol functional diversity with modern and subfossil avian assemblages show that taphonomic bias alone cannot explain the ecomorphological impoverishment. However, evolutionary simulations suggest that the constrained ecological diversity of the Early Cretaceous pygostylians is consistent with what is expected from a relatively young radiation. Regardless of the proximate biological explanation, the anomalously low functional diversity of the Jehol birds is evidence both for ecological vacancies in Cretaceous ecosystems, which were subsequently filled by the radiation of crown Aves, and for discordance between taxonomic richness and ecological diversity in the best-known Mesozoic ecosystem.

  12. Low ecological disparity in Early Cretaceous birds

    PubMed Central

    Mitchell, Jonathan S.; Makovicky, Peter J.

    2014-01-01

    Ecological divergence is thought to be coupled with evolutionary radiations, yet the strength of this coupling is unclear. When birds diversified ecologically has received much less attention than their hotly debated crown divergence time. Here, we quantify how accurately skeletal morphology can predict ecology in living and extinct birds, and show that the earliest known assemblage of birds (= pygostylians) from the Jehol Biota (≈ 125 Ma) was substantially impoverished ecologically. The Jehol avifauna has few representatives of highly preservable ecomorphs (e.g. aquatic forms) and a notable lack of ecomorphological overlap with the pterosaur assemblage (e.g. no large or aerially foraging pygostylians). Comparisons of the Jehol functional diversity with modern and subfossil avian assemblages show that taphonomic bias alone cannot explain the ecomorphological impoverishment. However, evolutionary simulations suggest that the constrained ecological diversity of the Early Cretaceous pygostylians is consistent with what is expected from a relatively young radiation. Regardless of the proximate biological explanation, the anomalously low functional diversity of the Jehol birds is evidence both for ecological vacancies in Cretaceous ecosystems, which were subsequently filled by the radiation of crown Aves, and for discordance between taxonomic richness and ecological diversity in the best-known Mesozoic ecosystem. PMID:24870044

  13. Cretaceous Cogollo Group study - District Zulia Occidental

    SciTech Connect

    Lagazzi, R.; D`Antonio, G.; Hung, O.; Avila, A.

    1996-08-01

    The Cretaceous Cogollo Group, with over 1500 feet of platform carbonate and shale section, contains important oil accumulations in the west portion of the Maracaibo basin. However, after discovery of the major oil fields, all subsequent exploration and exploitation efforts led to disappointing results. This paper summarizes the study of the Cogollo Group in the Lake Maracaibo West Coast area, where light Cretaceous oil may have an impact on the total reserves. After integrating the Cogollo Group into the regional framework, the study focuses on the District Zulia Occidental, where over 40 deep wells either penetrated or tested the reservoir. Structural and stratigraphic descriptions are enriched by a significant amount of core and petrophysical data that leads to a better understanding of the reservoir layering and pore geometry. Well production performance and reservoir data are incorporated to the study as additional tools to determine the size of the oil accumulations. Finally, the study addresses the possibility of drilling slant or horizontal wells as a way to reduce the number of dry holes or marginal producers.

  14. The Darwin Rise: A Cretaceous superswell?

    NASA Astrophysics Data System (ADS)

    McNutt, M. K.; Winterer, E. L.; Sager, W. W.; Natland, J. H.; Ito, G.

    1990-07-01

    The Japanese Guyots, Wake Guyots, and Mid-Pacific Mountains are part of a broad area of Cretaceous volcanism in the western Pacific termed the “Darwin Rise.” Based on Seabeam bathymetric data we classify these drowned volcanic islands as: type “A,” those that advanced to the atoll stage before final submergence; type “B,” those that drowned at the barrier reef stage; and type “V,” those with little or no reef material on their volcanic summits. Widespread evidence for karst topography extending to depths of 200 m on the summits of A and B guyots sheds new light on events leading to the synchronous extinction of reefs on the Darwin Rise in the mid-Cretaceous. We propose that after the formation of the reefs on the A and B guyots, the entire region was elevated at approximately the Aptian-Albian boundary (113 Ma) to form a superswell similar to that existing now in French Polynesia. The type V guyots formed on this anomalously shallow lithosphere. The demise of the reefs was the direct result of the rise of this superswell, although climate factors may have prevented reef recolonization following its later subsidence.

  15. Cretaceous-Palaeogene experiments in Biogeochemical Resilience

    NASA Astrophysics Data System (ADS)

    Penman, D. E.; Henehan, M. J.; Hull, P. M.; Planavsky, N.; Schmidt, D. N.; Rae, J. W. B.; Thomas, E.; Huber, B. T.

    2015-12-01

    Human activity is altering biogeochemical cycles in the ocean. While ultimately anthropogenic forcings may be brought under control, it is still unclear whether tipping points may exist beyond which human-induced changes to biogeochemical cycles become irreversible. We use the Late Cretaceous and the Cretaceous-Palaeogene (K-Pg) boundary interval as an informative case study. Over this interval, two carbon cycle perturbations (gradual flood basalt volcanism and abrupt bolide impact) occurred within a short time window, allowing us to investigate the resilience of biogeochemical cycles to different pressures applied to the same initial boundary conditions on very different time scales. We demonstrate that relatively gradual emission of CO2 from the Deccan large igneous province was efficiently mitigated within the limits of existing biogeochemical processes. However, the rapid extinction of pelagic calcifying organisms at the K-Pg boundary due to the Chicxulub bolide impact had more profound effects, and caused lasting (> 1 million years) changes to biogeochemical cycles. By combining sedimentological observations with boron isotope-based pH reconstructions over these events, we document two potentially useful partial analogues for best and worst case scenarios for anthropogenic global change. We suggest that if current ocean acidification results in the mass extinction of marine pelagic calcifiers, we may cause profound changes to the Earth system that will persist for 100,000s to millions of years.

  16. Aircraft observations of East-Asian cyclone induced uplift and long-range transport of polluted boundary layer air to the lowermost stratosphere

    NASA Astrophysics Data System (ADS)

    Schlager, Hans; Arnold, Frank; Aufmhoff, Heinrich; Baumann, Robert; Priola, Lisa; Roiger, Anke; Sailer, Tomas; Wirth, Martin; Schumann, Ulrich

    2013-04-01

    We report on the airborne detection of a large-scale stratified pollution layer in the lowermost stratosphere which contained increased concentrations of sulfur dioxide, reactive nitrogen, water vapour and sulfate aerosols. The measurements were performed over Central Europe with a chemical ionization mass spectrometer and a high spectral resolution Lidar on board the new German research aircraft HALO. Transport model simulations indicate the East-Asian planetary boundary layer (PBL) as the source region of this layer. The PBL air was uplifted by an East Asian warm conveyor belt (WCB) and thereafter experienced mostly horizontal transport and dispersion covering significant part of the northern hemisphere. The pollution layer extent up to 2 km above the thermal tropopause and appears to be trapped in the upper part of the tropopause inversion layer (TIL). Accompanying chemistry and aerosol model simulations indicate efficient SO2 conversion to sulfuric acid during the horizontal transport in the TIL, accelerated by increased OH resulting from the increased water vapour. Low temperature and increased water vapour led to efficient binary H2SO4/H2O nucleation. The uplifted anthropogenic nitrogen oxides experienced OH and particle mediated conversion to HNO3. The layer of sulfate particles formed in the upper part of the TIL was observed in the Lidar backscatter signal. Since mid-latitude East Asia is a region with very large SO2 emissions and a very high frequency of WCBs, SO2 uplift into the lowermost stratosphere from this region may occur frequently, eventually leading very often to corresponding pollution layers in the northern-hemisphere TIL.

  17. New U-Pb and Rb-Sr ages from northwest Turkey; Early Cretaceous continental collision in the western Pontides

    NASA Astrophysics Data System (ADS)

    Akbayram, K.; Okay, A.; Satır, M.; Topuz, G.

    2009-04-01

    Keywords: Intra-Pontide suture, Ä°stanbul Zone, Sakarya Zone, U-Pb zircon ages, Rb-Sr mica ages We provide new isotopic data from the Intra-Pontide Suture Zone, which indicate Early Cretaceous collision between the Sakarya and Ä°stanbul terranes following the consumption of the Intra-Pontide Ocean. The study area is located south of Sapanca Lake between the Ä°stanbul and Sakarya terranes in northwest Turkey. These two terranes show different geological histories, as reflected in their stratigraphic record, and are juxtaposed along the Intra-Pontide suture. The new U/Pb zircon and Rb/Sr mica ages come from south of the Sapanca Lake, south of the North Anatolian Fault in northwest Turkey. The Ä°stanbul terrane has a late Proterozoic basement (Chen et al., 2002; 570 Ma) overlain by a sedimentary sequence of Ordovician to Carboniferous age. The Sakarya terrane is characterized by Carboniferous (330-310 Ma) high temperature metamorphism (Okay et al., 2006), Paleozoic granitic plutonism (Topuz et al., 2007) and by the presence of Palaeo-Tethyan subduction-accretion units. South of the Sapanca Lake, three main tectonostratigraphic units have been differentiated forming a northeastward dipping thrust stack. At the top of the thrust stack is an amphibolite-facies metamorphic unit consisting of an intercalation of amphibolite, metaperidotite, metapyroxenite and gneiss representing a Proterozoic metaophiolite in the basement of the Istanbul Zone. This old metaophiolite is underlain by a Cretaceous accretionary complex of metabasite, metachert, slate and serpentinite. The lowermost tectonic unit in the thrust stack is a metasandstone, slate, phyllite and marble unit metamorphosed in greenschist facies. Our U/Pb geochronological data comes from the basement gneisses and the metasedimentary unit. The age of deposition and metamorphism of this metasedimentary unit were not constrained. The U/Pb ages of the clastic zircons from metasandstones are between 500-317 Ma. These

  18. Late Cretaceous restructuring of terrestrial communities facilitated the end-Cretaceous mass extinction in North America

    PubMed Central

    Roopnarine, Peter D.; Angielczyk, Kenneth D.

    2012-01-01

    The sudden environmental catastrophe in the wake of the end-Cretaceous asteroid impact had drastic effects that rippled through animal communities. To explore how these effects may have been exacerbated by prior ecological changes, we used a food-web model to simulate the effects of primary productivity disruptions, such as those predicted to result from an asteroid impact, on ten Campanian and seven Maastrichtian terrestrial localities in North America. Our analysis documents that a shift in trophic structure between Campanian and Maastrichtian communities in North America led Maastrichtian communities to experience more secondary extinction at lower levels of primary production shutdown and possess a lower collapse threshold than Campanian communities. Of particular note is the fact that changes in dinosaur richness had a negative impact on the robustness of Maastrichtian ecosystems against environmental perturbations. Therefore, earlier ecological restructuring may have exacerbated the impact and severity of the end-Cretaceous extinction, at least in North America. PMID:23112149

  19. Late Cretaceous restructuring of terrestrial communities facilitated the end-Cretaceous mass extinction in North America.

    PubMed

    Mitchell, Jonathan S; Roopnarine, Peter D; Angielczyk, Kenneth D

    2012-11-13

    The sudden environmental catastrophe in the wake of the end-Cretaceous asteroid impact had drastic effects that rippled through animal communities. To explore how these effects may have been exacerbated by prior ecological changes, we used a food-web model to simulate the effects of primary productivity disruptions, such as those predicted to result from an asteroid impact, on ten Campanian and seven Maastrichtian terrestrial localities in North America. Our analysis documents that a shift in trophic structure between Campanian and Maastrichtian communities in North America led Maastrichtian communities to experience more secondary extinction at lower levels of primary production shutdown and possess a lower collapse threshold than Campanian communities. Of particular note is the fact that changes in dinosaur richness had a negative impact on the robustness of Maastrichtian ecosystems against environmental perturbations. Therefore, earlier ecological restructuring may have exacerbated the impact and severity of the end-Cretaceous extinction, at least in North America.

  20. Late Cretaceous restructuring of terrestrial communities facilitated the end-Cretaceous mass extinction in North America

    NASA Astrophysics Data System (ADS)

    Mitchell, Jonathan S.; Roopnarine, Peter D.; Angielczyk, Kenneth D.

    2012-11-01

    The sudden environmental catastrophe in the wake of the end-Cretaceous asteroid impact had drastic effects that rippled through animal communities. To explore how these effects may have been exacerbated by prior ecological changes, we used a food-web model to simulate the effects of primary productivity disruptions, such as those predicted to result from an asteroid impact, on ten Campanian and seven Maastrichtian terrestrial localities in North America. Our analysis documents that a shift in trophic structure between Campanian and Maastrichtian communities in North America led Maastrichtian communities to experience more secondary extinction at lower levels of primary production shutdown and possess a lower collapse threshold than Campanian communities. Of particular note is the fact that changes in dinosaur richness had a negative impact on the robustness of Maastrichtian ecosystems against environmental perturbations. Therefore, earlier ecological restructuring may have exacerbated the impact and severity of the end-Cretaceous extinction, at least in North America.

  1. New Australian sauropods shed light on Cretaceous dinosaur palaeobiogeography

    PubMed Central

    Poropat, Stephen F.; Mannion, Philip D.; Upchurch, Paul; Hocknull, Scott A.; Kear, Benjamin P.; Kundrát, Martin; Tischler, Travis R.; Sloan, Trish; Sinapius, George H. K.; Elliott, Judy A.; Elliott, David A.

    2016-01-01

    Australian dinosaurs have played a rare but controversial role in the debate surrounding the effect of Gondwanan break-up on Cretaceous dinosaur distribution. Major spatiotemporal gaps in the Gondwanan Cretaceous fossil record, coupled with taxon incompleteness, have hindered research on this effect, especially in Australia. Here we report on two new sauropod specimens from the early Late Cretaceous of Queensland, Australia, that have important implications for Cretaceous dinosaur palaeobiogeography. Savannasaurus elliottorum gen. et sp. nov. comprises one of the most complete Cretaceous sauropod skeletons ever found in Australia, whereas a new specimen of Diamantinasaurus matildae includes the first ever cranial remains of an Australian sauropod. The results of a new phylogenetic analysis, in which both Savannasaurus and Diamantinasaurus are recovered within Titanosauria, were used as the basis for a quantitative palaeobiogeographical analysis of macronarian sauropods. Titanosaurs achieved a worldwide distribution by at least 125 million years ago, suggesting that mid-Cretaceous Australian sauropods represent remnants of clades which were widespread during the Early Cretaceous. These lineages would have entered Australasia via dispersal from South America, presumably across Antarctica. High latitude sauropod dispersal might have been facilitated by Albian–Turonian warming that lifted a palaeoclimatic dispersal barrier between Antarctica and South America. PMID:27763598

  2. Climate-mediated diversification of turtles in the Cretaceous.

    PubMed

    Nicholson, David B; Holroyd, Patricia A; Benson, Roger B J; Barrett, Paul M

    2015-01-01

    Chelonians are ectothermic, with an extensive fossil record preserved in diverse palaeoenvironmental settings: consequently, they represent excellent models for investigating organismal response to long-term environmental change. We present the first Mesozoic chelonian taxic richness curve, subsampled to remove geological/collection biases, and demonstrate that their palaeolatitudinal distributions were climate mediated. At the Jurassic/Cretaceous transition, marine taxa exhibit minimal diversity change, whereas non-marine diversity increases. A Late Cretaceous peak in 'global' non-marine subsampled richness coincides with high palaeolatitude occurrences and the Cretaceous thermal maximum (CTM): however, this peak also records increased geographic sampling and is not recovered in continental-scale diversity patterns. Nevertheless, a model-detrended richness series (insensitive to geographic sampling) also recovers a Late Cretaceous peak, suggesting genuine geographic range expansion among non-marine turtles during the CTM. Increased Late Cretaceous diversity derives from intensive North American sampling, but subsampling indicates that Early Cretaceous European/Asian diversity may have exceeded that of Late Cretaceous North America. PMID:26234913

  3. Climate-mediated diversification of turtles in the Cretaceous

    PubMed Central

    Nicholson, David B.; Holroyd, Patricia A.; Benson, Roger B. J.; Barrett, Paul M.

    2015-01-01

    Chelonians are ectothermic, with an extensive fossil record preserved in diverse palaeoenvironmental settings: consequently, they represent excellent models for investigating organismal response to long-term environmental change. We present the first Mesozoic chelonian taxic richness curve, subsampled to remove geological/collection biases, and demonstrate that their palaeolatitudinal distributions were climate mediated. At the Jurassic/Cretaceous transition, marine taxa exhibit minimal diversity change, whereas non-marine diversity increases. A Late Cretaceous peak in ‘global' non-marine subsampled richness coincides with high palaeolatitude occurrences and the Cretaceous thermal maximum (CTM): however, this peak also records increased geographic sampling and is not recovered in continental-scale diversity patterns. Nevertheless, a model-detrended richness series (insensitive to geographic sampling) also recovers a Late Cretaceous peak, suggesting genuine geographic range expansion among non-marine turtles during the CTM. Increased Late Cretaceous diversity derives from intensive North American sampling, but subsampling indicates that Early Cretaceous European/Asian diversity may have exceeded that of Late Cretaceous North America. PMID:26234913

  4. Cretaceous-Tertiary findings, paradigms and problems

    NASA Technical Reports Server (NTRS)

    Officer, C. B.; Drake, C. L.

    1988-01-01

    The asteroid hypothesis has stimulated numerous studies of the paleontological record at Cretaceous/Tertiary time as well as of geological indicators of environmental crisis preserved in the rock record. Both extinctions and geological anomalies often occur at times that do not appear to be synchronous or instantaneous. The record includes paleontological indicators of dinosaurs, terrestrial flora, marine planktonic organisms, and shallow water marine macrofauna and geological phenomena include occurrences of iridium and other platinum metals, trace elements, clay mineralogy, shocked minerals, soot, microspherules, and isotopes of osmium, strontium and carbon. These findings are reviewed in the context of the alternate hypotheses of an exogenic cause, involving either a single asteroid impact or multiple commentary impacts, and an endogenic cause, involving intense global volcanism and major sea level regression.

  5. Resistance of spiders to Cretaceous-Tertiary extinction events.

    PubMed

    Penney, David; Wheater, C Philip; Selden, Paul A

    2003-11-01

    Throughout Earth history a small number of global catastrophic events leading to biotic crises have caused mass extinctions. Here, using a technique that combines taxonomic and numerical data, we consider the effects of the Cenomanian-Turonian and Cretaceous-Tertiary mass extinctions on the terrestrial spider fauna in the light of new fossil data. We provide the first evidence that spiders suffered no decline at the family level during these mass extinction events. On the contrary, we show that they increased in relative numbers through the Cretaceous and beyond the Cretaceous-Tertiary extinction event. PMID:14686534

  6. Geography of cretaceous extinctions: Data base development

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1991-01-01

    Data bases built from the source literature are plagued by problems of data quality. Unless the data acquisition is done by experts, working slowly, the data base may contain so much garbage that true signals and patterns cannot be detected. On the other hand, high quality data bases develop so slowly that satisfactory statistical analysis may never be possible due to the small sample sizes. Results of a test are presented of the opposite strategy: rapid data acquisition by non-experts with minimal control on data quality. A published list of 186 species and genera of fossil invertibrates of the latest Cretaceous Age (Maestrichtian) were located through a random search of the paleobiological and geological literature. The geographic location for each faunal list was then transformed electronically to Maestrichtian latitude and longitude and the lists were further digested to identify the genera occurring in each ten-degree, latitude-longitude block. The geographical lists were clustered using the Otsuka similarity coefficient and a standard unweight-pair-group method. The resulting clusters are remarkably consistent geographically, indicating that a strong biogeographic signal is visible despite low-quality data. A further test evaluated the geographic pattern of end-Cretaceaous extinctions. All genera in the data base were compared with Sepkoski's compendium of time ranges of genera to determine which of the reported genera survived the Cretaceous mass extinction. In turn, extinction rates for the ten-degree, latitude-longitude blocks were mapped. The resulting distribution is readily interpretable as a robust pattern of the geography of the mass extinction. The study demonstrates that a low-quality data base, built rapidly, can provide a basis for meaningful analysis of past biotic events.

  7. Lower Cretaceous lacustrine deposits and paleosol development

    SciTech Connect

    Mantzios, C.; Vondra, C.F.

    1987-05-01

    The Little Sheep Mudstone Member of the Lower Cretaceous Cloverly Formation in the Big Horn basin, Wyoming, is predominantly a montmorillonite-rich lacustrine deposit. It is informally subdivided into lower and upper units. The lower unit is a playa-lake deposit rich in bentonite derived from the alteration of volcanic ash which had its origin to the west. Horizons of silcretes and septarian nodules are common. The latter show irregular lenticular cracks and are filled with coarse calcite and barite crystals. They formed by desiccation of a clay-gel during dry periods. Silcretes are diagenetic products that formed due to the lowering of silica solubility along with decreasing of the pH value. Desiccation cracks on the playa surface were filled with chalcedony which later underwent replacement by calcite. The upper unit is a perennial saline lake deposit similar to that accumulating in Lake Magadi of the Eastern Rift Valley, Kenya, Chert nodules covered with calcium carbonate form stratigraphically persistent horizons. This chert is the product of the magadiite-kenyaite-chert transformation of Hay. Lenticular devitrified tuffs occurring at various stratigraphic positions up to 3 m thick were deposited in depressions or swales. Locally the tuffs show evidence of mass movement. Pedogenic features in both units indicate paleosol development. Tree trunks, plant roots, burrows, clay-rich zones, and organic-rich A and more iron-rich B master horizons are recognized. These paleosols resemble modern-day Vertisols. The lower unit is not as extensive areally as the upper unit which is present throughout the Big Horn basin, indicating that extensive lakes occurred during the Early Cretaceous in the Sevier foreland basin.

  8. Cretaceous Vertebrate Tracksites - Korean Cretaceous Dinosaur Coast World Heritage Nomination Site

    NASA Astrophysics Data System (ADS)

    Huh, M.; Woo, K. S.; Lim, J. D.; Paik, I. S.

    2009-04-01

    South Korea is one of the best known regions in the world for Cretaceous fossil footprints, which are also world-renowned. Korea has produced more scientifically named bird tracks (ichnotaxa) than any other region in the world. It has also produced the world's largest pterosaur tracks. Dinosaur tracksites also have the highest frequency of vertebrate track-bearing levels currently known in any stratigraphic sequence. Among the areas that have the best track records, and the greatest scientific significance with best documentation, Korea ranks very highly. Objective analysis of important individual tracksites and tracksite regions must be based on multiple criteria including: size of site, number of tracks, trackways and track bearing levels, number of valid named ichnotaxa including types, number of scientific publications, quality of preservation. The unique and distinctive dinosaur tracksites are known as one of the world's most important dinosaur track localities. In particular, the dinosaur track sites in southern coastal area of Korea are very unique. In the sites, we have excavated over 10,000 dinosaur tracks. The Hwasun sites show diverse gaits with unusual walking patterns and postures in some tracks. The pterosaur tracks are the most immense in the world. The longest pterosaur trackway yet known from any track sites suggests that pterosaurs were competent terrestrial locomotors. This ichnofauna contains the first pterosaur tracks reported from Asia. The Haenam Uhangri pterosaur assigns to a new genus Haenamichnus which accomodates the new ichnospecies, Haenamichnus uhangriensis. At least 12 track types have been reported from the Haman and Jindong Formations (probably late Lower Cretaceous). These include the types of bird tracks assigned to Koreanornis, Jindongornipes, Ignotornis and Goseongornipes. In addition the bird tracks Hwangsanipes, Uhangrichnus, the pterosaur track Haenamichnus and the dinosaur tracks, Brontopodus, Caririchnium, Minisauripus and

  9. Late Cretaceous stratigraphy of the Upper Magdalena Basin in the Payandé-Chaparral segment (western Girardot Sub-Basin), Colombia

    NASA Astrophysics Data System (ADS)

    Barrio, C. A.; Coffield, D. Q.

    1992-02-01

    The Cretaceous section on the western margin of the Girardot Sub-Basin, Upper Magdalena Valley, is composed of the Lower Sandstone (Hauterivian-Barremian?), Tetuán Limestone (pre-Aptian?), and Bambuca Shale (pre-Aptian?), and the following formations: Caballos (Aptian-Albian), Villeta (Albian-Campanian), Monserrate (Campanian-Maastrichtian), and Guaduas (Maastrichtian-Paleocene). The Lower Sandstone is composed of quartz arenites with abundant calcareous cement; the Tetuúan Limestone is a succession of fossiliferous limestones and calcareous shales; the the Bambuca Shale is composed of black shales that grade upward to micritic limestones and calcarenites. The Caballos Formation comprises three members: a lower member of quartz arenites, a middle member of black shales and limestones, and an upper member of crossbedded, coarsening-upward quartz arenites. The Villeta Formation is a sequence of shales intercalated with micritic limestones and calcarenites. Two levels of chert (Upper and Lower Chert) are differentiated within the Villeta Formation throughout the study area, with a sandstone unit (El Cobre Sandstone) to the north. The Monserrate Formation is composed of quartz arenites, with abundant crossbedding, and locally of limestone breccias and coarse-grained fossiliferous packstones. The Guaduas Formation is a monotonous succession of red shales and lithic sandstones. Our data suggest three major transgressive-regressive cycles in the Girardot Sub-Basin. The first cycle (Hauterivian?-lower Aptian) is represented by the Lower Sandstone-Tetuán-Bambuca-lower Caballos succession, the second cycle (Aptian-Albian) by the middle-upper Caballos members, and the third cycle (Albian-Paleocene) by the lower Villeta-Monserrate-Guaduas succession. Previous studies proposed a eustatic control during deposition of the Upper Cretaceous in the Upper Magdalena Valley. The lowermost transgressive-regressive cycle was not previously differentiated in the study area, and this

  10. Late Cretaceous base level lowering in Campanian and Maastrichtian depositional sequences, Kure Beach, North Carolina

    USGS Publications Warehouse

    Harris, W.B.; ,

    2006-01-01

    Campanian through Maastrichtian mixed carbonate and siliciclastic sediments in a 422 m continuous core drilled at Kure Beach, NC provide a record of sea-level change. Based on lithology and stratigraphy, depositional sequences are defined, and calcareous nannofossil zones and 87Sr/86Sr ratios and corresponding ages using the LOWESS Table determined. Campanian and Maastrichtian sediments comprise six depositional sequences. The oldest is Tar Heel 1 and contains calcareous nannofossils that indicate assignment to the upper part of Zones CC18a, CC18c and the lower part of CC19. 87Sr/86 Sr ratios indicate ages from 83.2 to 80.0 Ma or lower Campanian. Tar Heel II contains calcareous nannofossils that indicate assignment to the upper part of Zone CC 19 and CC20. 87Sr/86Sr ratios indicate ages from 78.0 to 76.3 Ma or middle Campanian. Donoho Creek I and II are thin and contain calcareous nannofossils referable to upper Zone CC21 and Zone CC22, and to CC23, respectively. The top of Donoho Creek II marks the Campanian-Maastrichtian boundary. Donoho Creek I 87Sr/86Sr ratios cluster into two groups, and provide ages from 78.0 to 76.2 Ma and 73.7 to 72.3 Ma, respectively. 87Sr/86Sr ratios in Donoho Creek II indicate ages from 71.4 to 69.6 Ma. Two Maastrichtian sequences are present; the lowermost Peedee I contains calcareous nannofossils that place it in Zones CC25a and CC25b. 87Sr/86Sr r ratios indicate an age from 69.3 to 66.9 Ma or late Maastrichtian. Peedee II is assigned to calcareous nannofossil Zone CC26a. 87Sr/86Sr ratios indicate ages from 66.4 to 65.2 Ma or late Maastrichtian. The four Campanian sequences correlate to three depositional sequences in New Jersey; the sequence boundary between upper Campanian Donoho Creek I and Donoho Creek II is not recognized in New Jersey. This boundary is interpreted to result from Gulf Stream impingement and subsequent erosion on the outer shelf. The two Maastrichtian sequences recognized in the Kure Beach core correlate to the two

  11. Colombian late cretaceous tropical planktonic foraminifera: Redressing the imbalance

    SciTech Connect

    McCarthy, L.D.

    1993-02-01

    Recent work involving Late Cretaceous planktonic foraminifera has concentrated on European and other areas in the Northern Hemisphere. Many of the biostratigraphical and evolutionary models reflect this geographical restriction and ignore earlier studies from tropical areas. In 1955 Rolando Gandolfi described many new species and subspecies from Colombia and provided a different view of the evolutionary development of planktonic foraminifera. A re-examination of the Gandolfi type collection using Scanning Electron Micrography (Environmental Chamber technique) integrated with Colombian well samples from onshore Guajira area, Middle and Upper Magdalena Valley and Putumayo Basin has given a new view into the evolutionary development of Late Cretaceous planktonic foraminifera. This has enabled a modified globigerine Late Cretaceous biostratigraphy to be constructed for Colombia. This work redresses the imbalance between studies of tropical and northern high latitude Late Cretaceous planktonic foraminifera and provides an insight into the paleoenvironmental and paleoclimatological factors influencing the Colombian region at the time.

  12. Regional variation of PKP C-diff slowness observed by high-dense network -implication for lateral velocity variation of the lowermost outer core

    NASA Astrophysics Data System (ADS)

    Ohtaki, T.; Kawakatsu, H.

    2004-12-01

    Clear core phases are observed at a recently deployed Japanese seismic network (Hi-net) for two intermediate depth events which occurred beneath S. Bolivia on 2001/06/29 and beneath Argentina on 2002/09/24. The epicentral distances are between 144 and 161 degrees, and between 150 and 164 degrees, respectively. The differential travel times of PKP(BC) or PKP(Cdiff) minus PKP(DF) for the S. Bolivia event suit calculated results using by the previous model of Kaneshima et al. (1994). The differential travel time residuals for the Argentina event show positive value, and become larger as the epicentral distance becomes large. Although the above results suggest that there is anomalous structure in the inner or outer core along the ray paths for the Argentina event, it is unclear which T(DF) or T(BC or Cdiff) is anomalous. Hi-net is a dense short-period seismic network which consists of about 700 stations in almost whole extent of Japan. Close look at core phases can be carried out using data from Hi-net. We checked the slowness of PKP(DF) and PKP(Cdiff) for the events. We select data whose epicentral distance is greater than 153 degree. The slowness of PKP(DF) and PKP(Cdiff) for the S. Bolivia event, and that of PKP(DF) for the Argentina event are almost same as those of PREM. However, the slowness of PKP(Cdiff) for the Argentina event is 7 percent larger than that of PREM. Thus we can conclude that the large slowness of PKP(Cdiff) is a main cause of the large differential residuals. This result suggests that a low velocity anomaly exists in the lowermost outer core which the PKP(Cdiff) for the Argentina event samples, and that the velocity structure in the inner core along the rays for the two events and in the outer core along the rays for the Argentina event sample is close to the normal, although the influence of the heterogeneous structure beneath stations and D_h cannot be ruled out yet. The central points of the diffracted rays on the inner core boundary are

  13. Timing and duration of biotic extinction and recovery at the Cretaceous/Paleogene boundary in Texas and Alabama

    NASA Astrophysics Data System (ADS)

    Leighton, Andrew; Hart, Malcolm; Hampton, Matt; Leng, Melanie; Smart, Christopher

    2014-05-01

    The Cretaceous/Paleogene boundary successions in Texas and Alabama provide a sedimentary record of events relatively close to the Chicxulub impact site. Recent work in both areas has shown that there was a single 'impact' event that is coincident with extinctions of planktic foraminifera and calcareous nannofossil, although the dinoflagellate cyst community was little affected. The benthic foraminifera in the Texas successions are, remarkably, little affected with many taxa being found in both the Corsicana Mudstone Formation (uppermost Maastrichtian) and the Kincaid Mudstone Formation (lowermost Paleocene). In the sediments just above the erosive surface that marks the 'impact' event (and the K/Pg boundary) there are large benthic foraminifera, including nodosariids <1.5 mm in length and lenticulinids <1.5 mm in diameter. This assemblage is rather unusual, and we have been unable to determine any modern, or fossil, equivalent. As Lenticulina rotulata Lamarck occurs throughout the succession, this taxon has been used for stable isotope analysis (δ18O and δ13C) of a range of different size fractions. The results show both a variation in oxygen and carbon isotope values with size as well as a distinct cyclicity which, almost certainly, reflects astronomical tuning. It is possible, therefore, to use this cyclicity to determine the possible duration of zones P0 and Pα (80-100 kyrs), and the timing of biotic recovery following the 'impact' event. The size of the stable isotope excursions (close to the base of zone P1a) is indicative of the Dan-C2 and the Lower 29n hyperthermal events, allowing direct correlation with the two other locations where these have been described: most notably in the Gubbio succession where there is also a good record of the magnetostratigraphy and biostratigraphy.

  14. Diagenetic Patterns of the Cretaceous Baseline Sandstone, Southern Nevada: Implications for Controls on Iron-Oxide Cementation and Coloration

    NASA Astrophysics Data System (ADS)

    Duncan, C. J.; Chan, M. A.

    2015-12-01

    The Cretaceous Baseline Sandstone of the Sevier foreland basin deposits in southern Nevada exhibits intense diagenetic iron-oxide coloration and bleaching, and contains abundant cemented masses. The Baseline Formation is ~1 km thick with three alluvial to fluvial members: the basal White (Kbw) Member, overlain by coeval Red (Kbr) and Overton Conglomerate (Kbo) Members. Iron-oxide diagenetic features occur in two broad classes: 1) bedding parallel coloration facies of diffuse to banded red, pink, purple, white, to yellow colors; and 2) concretionary facies of heavily cemented horizons, pods/lenses, spherical to spheroidal concretions, boxworks, pipes, and irregular concretion forms. A distinctive geometry is the occurrence of large (~1 m diameter) spherical "beach ball" concretions within the Kbr. Preliminary mapping of diagenetic features shows that concretionary facies are more common within a ~125 m interval near the bottom of Kbw, and within the lower ~125 m of Kbr. Intense coloration changes are present throughout Kbw but occur only in the lowermost ~150 m of Kbr. In the Kbw, concretionary forms commonly occur in stratigraphic intervals of fine-grained sandstone, siltstone, and mudstone lithologies, whereas cemented masses are much less common in stratigraphic intervals composed of medium-grained sandstone and conglomerate lithologies. Additionally, both Kbw and Kbr Members exhibit rare examples of wood fragments in the center of iron-oxide concretions, suggesting the importance of organics as nucleation sites for precipitation. The distribution of complex and overprinted diagenetic patterns indicates nested scales of processes involving iron-oxide dissolution, mobilization, and precipitation. Overall stratigraphic architecture influenced formation-scale patterns, but specific lithologies and textures influenced the type and distribution of diagenetic facies at outcrop scales, and organic content encouraged cementation at grain-scales.

  15. A Late Cretaceous ceratopsian dinosaur from Europe with Asian affinities.

    PubMed

    Osi, Attila; Butler, Richard J; Weishampel, David B

    2010-05-27

    Ceratopsians (horned dinosaurs) represent a highly diverse and abundant radiation of non-avian dinosaurs known primarily from the Cretaceous period (65-145 million years ago). This radiation has been considered to be geographically limited to Asia and western North America, with only controversial remains reported from other continents. Here we describe new ceratopsian cranial material from the Late Cretaceous of Iharkút, Hungary, from a coronosaurian ceratopsian, Ajkaceratops kozmai. Ajkaceratops is most similar to 'bagaceratopsids' such as Bagaceratops and Magnirostris, previously known only from Late Cretaceous east Asia. The new material unambiguously demonstrates that ceratopsians occupied Late Cretaceous Europe and, when considered with the recent discovery of possible leptoceratopsid teeth from Sweden, indicates that the clade may have reached Europe on at least two independent occasions. European Late Cretaceous dinosaur faunas have been characterized as consisting of a mix of endemic 'relictual' taxa and 'Gondwanan' taxa, with typical Asian and North American groups largely absent. Ajkaceratops demonstrates that this prevailing biogeographical hypothesis is overly simplified and requires reassessment. Iharkút was part of the western Tethyan archipelago, a tectonically complex series of island chains between Africa and Europe, and the occurrence of a coronosaurian ceratopsian in this locality may represent an early Late Cretaceous 'island-hopping' dispersal across the Tethys Ocean.

  16. Stratigraphy and paleogeography of the Cretaceous in Arabian Peninsula

    SciTech Connect

    Alsharhan, A.S.; Nairn, A.E.M.

    1986-05-01

    The Cretaceous of the Arabian Peninsula is divided into three major units by regional unconformities: Lower Cretaceous Thamama Group (Berriasian-middle Aptian), middle Cretaceous Wasia Group (Albian-Turonian), and Upper Cretaceous Aruma Group (Coniacian-Maestrichtian). The profusion of named stratigraphic units in the area reflects not only the lithologic variation resulting from facies changes, but also terminologies adopted by different companies. The authors provide a stratigraphic nomenclature defining standard type sections and indicate synonymies, which follow the recommendation of 10th Geological Liaison Meeting and hence are acceptable to operators in the area. The sedimentologic history of the area was presented in a series of paleogeographic maps, which they relate to the regional tectonic framework. The maps show a predominantly carbonate shelf ramp bordering a land area to the north and west. The principal change in depositional environment occurs during the Upper Cretaceous, as a result of tectonic activity. Less significant changes are attributed to eustatic sea level fluctuations, on which tilting caused by tectonic movement may be superposed during the Lower and middle Cretaceous. The major producing horizons lie below the regional unconformities; secondary porosity in the shelf reefal buildups was developed during subaerial exposure in the Shuaiba Formation (early-middle Aptian), in the Mishrif Formation (late Cenomanian), and in the Simsima Formation (Maestrichtian).

  17. A Late Cretaceous ceratopsian dinosaur from Europe with Asian affinities.

    PubMed

    Osi, Attila; Butler, Richard J; Weishampel, David B

    2010-05-27

    Ceratopsians (horned dinosaurs) represent a highly diverse and abundant radiation of non-avian dinosaurs known primarily from the Cretaceous period (65-145 million years ago). This radiation has been considered to be geographically limited to Asia and western North America, with only controversial remains reported from other continents. Here we describe new ceratopsian cranial material from the Late Cretaceous of Iharkút, Hungary, from a coronosaurian ceratopsian, Ajkaceratops kozmai. Ajkaceratops is most similar to 'bagaceratopsids' such as Bagaceratops and Magnirostris, previously known only from Late Cretaceous east Asia. The new material unambiguously demonstrates that ceratopsians occupied Late Cretaceous Europe and, when considered with the recent discovery of possible leptoceratopsid teeth from Sweden, indicates that the clade may have reached Europe on at least two independent occasions. European Late Cretaceous dinosaur faunas have been characterized as consisting of a mix of endemic 'relictual' taxa and 'Gondwanan' taxa, with typical Asian and North American groups largely absent. Ajkaceratops demonstrates that this prevailing biogeographical hypothesis is overly simplified and requires reassessment. Iharkút was part of the western Tethyan archipelago, a tectonically complex series of island chains between Africa and Europe, and the occurrence of a coronosaurian ceratopsian in this locality may represent an early Late Cretaceous 'island-hopping' dispersal across the Tethys Ocean. PMID:20505726

  18. Evidence for local tectonism related to a mid-Turonian unconformity beneath Upper Cretaceous Turner Sandy Member of Carlile Formation, northeastern Powder River basin, Wyoming

    SciTech Connect

    Reinbold, M.L.; Harwerth, L.A. )

    1989-09-01

    In the northeastern Powder River basin the Upper Cretaceous (upper Turonian) Turner Sandy Member consists of marine sandstone, siltstone, shale, and bentonites. These lithologies comprise several laterally continuous, primarily upward-coarsening sequences. Turner petroleum production (> 11 million bbl of oil) has been largely from the lowermost sandstone. In this part of the basin, the Turner is conformably overlain by the Sage Breaks shale, but the base of the Turner is, in most areas, unconformable with the underlying Greenhorn Formation. This unconformity records a mid-Turonian sea level lowstand accompanied by widespread erosion. Turner sediments were deposited during the subsequent sea level rise and onlap the erosional surface. Detailed correlations of several shaly or bentonitic marker horizons within the Turner and Greenhorn indicate the unconformity typically occurs at the base of an upward-coarsening sequence. In the far northeast the older Turner sequence may be conformable with the underlying Pool Creek shale. However, to the southwest progressively younger basal Turner sequences onlap progressively older Greenhorn strata at the unconformity. Cross sections and isopach maps document several dominantly north-south-oriented Turner and Greenhorn thins, which they interpret to represent areas of structurally controlled paleohighs. As much as 150 ft of pre-Turner erosion occurs over these paleohighs. Thickness patterns suggest that the greatest uplift immediately preceded the mid-Turonian erosional event. Decreased uplift continued throughout upper Turonian (Turner) time but became much less evident in post-Turner time.

  19. Groundwater from Lower Cretaceous rocks in Kansas

    USGS Publications Warehouse

    Keene, Katherine M.; Bayne, Charles Knight

    1976-01-01

    Sandstones in Lower Cretaceous rocks contain supplies, of water that may be adequate to meet increasing present and future demands for supplemental municipal and domestic use in central and western Kansas. An estimated 70 to 80 million acre-feet (86,000 to 99,000 cubic hectometers) of water containing less than 1,000 milligrams per liter dissolved solids may be acceptable for use at the present (1976). An additional 10 to 15 million acre-feet (12,000 to 18,000 cubic hectometers) containing 1,000 to 3,000 milligrams per liter dissolved solids is estimated to be available for use in the future with appropriate desalinization. Lower Cretaceous rocks crop out from Washington County on the north to Comanche County on-the south. The rocks dip from a structural high in the southwest part of the State to structural lows in the northwest and north-central part. Depth below land surface increases generally northwestward to about 2,600 feet (790 meters); thickness of the rocks increases westward, nearly zero to about 850 feet (260 meters). The rocks consist chiefly of marine to nonmarine shale and silt- stone interbedded with coastal to deltaic sandstone. The interbedded sandstone, which composes about one-third of the rocks, consists of one or more lenses that thicken westward to about 400 feet (120 meters) in the central part of western Kansas. The yield of water to individual wells is related to areal extent, thickness, and interconnection of the sand lenses and to grain size and cementation of the sand. Large amounts of water may be pumped by wells where loosely cemented sand lenses are interconnected. Wells commonly yield adequate supplies for domestic and stock use; reported yields from municipal and irrigation wells range from about 100 to 2,000 gallons per minute (6 to 125 liters per second). Recharge to the Lower Cretaceous-rocks occurs in the area of outcrop and from hydraulically connected saturated Cenozoic rocks, especially in the southern part of the State

  20. Late Cretaceous Volcaniclastics in NW Turkey

    NASA Astrophysics Data System (ADS)

    Boehm, Katharina; Wolfgring, Erik; Omer Yilmaz, Ismail; Tüysüz, Okan; Wagreich, Michael

    2015-04-01

    On the southwestern coast of the Black Sea, in the western Pontides Upper Cretaceous tuff layers are present. The tuffs are intercalated with limestones, marls and turbidites and were investigated with focus on their geochemistry, to get new insights to the arrangement of terranes and ocean basins at this time. In the region two Upper Cretaceous volcanic units can be distinguished, separated by distinct red pelagic limestone successions, belonging to the Unaz Formation. The lower volcanic unit is named Dereköy Formation and is Turonian to Santonian in age. It is thought to be deposited within extension structures, contemporaneously with rifting in the western Black Sea basin. The upper volcanic unit is called Cambu Formation. According to biostratigraphic data it is deposited throughout Campanian, when spreading in the western Black Sea basin started. Interpreted as submarine deposits, element mobility has to be taken into account when interpreting geochemical ICP-MS data of the volcaniclastics. Multiple discrimination diagrams with suitable proxies elucidate the type of volcanism and contribute to reconstruction of the tectonic setting. The classified rock types range from basaltic to rhyodacitic in both volcanic formations. Basically degree of differentiation and alkalinity are the parameters looked at, when determining rock types of the volcanic eruption. Further volcanic series are specified as calc-alkaline to shoshonitic. Moreover, a volcanic arc setting seems to be the most likely case, following several discrimination diagrams, as well as normalized multi-element plots. This tectonic setting can be discussed in connection with paleo-tectonic reconstructions. Most cited in literature nowadays are models favoring a northward subduction of the northern branch of Neotethys, creating an extensional setting north of the Pontides. This kind of back arc extension is interpreted as the reason of a southward drift of the Istanbul continental fragment from Eurasia

  1. Composition and depositional environment of concretionary strata of early Cenomanian (early Late Cretaceous) age, Johnson County, Wyoming

    USGS Publications Warehouse

    Merewether, E.A.; Gautier, Donald L.

    2000-01-01

    Unusual, concretion-bearing mudrocks of early Late Cretaceous age, which were deposited in an early Cenomanian epeiric sea, have been recognized at outcrops in eastern Wyoming and in adjoining areas of Montana, South Dakota, Nebraska, and Colorado. In Johnson County, Wyo., on the western flank of the Powder River Basin, these strata are in the lower part of the Belle Fourche Member of the Frontier Formation. At a core hole in south-central Johnson County, they are informally named Unit 2. These strata are about 34 m (110 ft) thick and consist mainly of medium- to dark-gray, noncalcareous, silty shale and clayey or sandy siltstone; and light-gray to grayish-red bentonite. The shale and siltstone are either bioturbated or interlaminated; the laminae are discontinuous, parallel, and even or wavy. Several ichnogenera of deposit feeders are common in the unit but filter feeders are sparse. The unit also contains marine and continental palynomorphs and, near the top, a few arenaceous foraminifers. No invertebrate macrofossils have been found in these rocks. Unit 2 conformably overlies lower Cenomanian shale in the lowermost Belle Fourche Member, informally named Unit 3, and is conformably overlain by lower and middle Cenomanian shale, siltstone, and sandstone within the member, which are informally named Unit 1. The mineral and chemical composition of the three Cenomanian units is comparable and similar to that of shale and siltstone in the Upper Cretaceous Pierre Shale, except that these units contain more SiO2 and less CaO, carbonate carbon, and manganese. Silica is generally more abundant and CaO is generally less abundant in river water than in seawater. The composition of Unit 2 contrasts significantly with that of the underlying and overlying units. Unit 2 contains no pyrite and dolomite and much less sulfur than Units 1 and 3. Sulfate is generally less abundant in river water than in seawater. Unit 2 also includes sideritic and calcitic concretions, whereas Units

  2. Palaeoclimatic changes during the Upper Cretaceous of eastern Denmark: a study based on the Stevns-2 chalk core

    NASA Astrophysics Data System (ADS)

    Boussaha, M.; Stemmerik, L.; Thibault, N.

    2013-12-01

    The Stevns-2 core located in eastern Denmark penetrated close to 350 m of upper Campanian-Maastrichtian sediments of the upper Chalk Group (Stemmerik et al., 2006). The calcareous nannofossil biozonation spans the time interval from the UC16aBP from the upper Campanian to the NNT1 in the lowermost Danian. Carbon and Oxygen isotopes trends records climatic events occurring in the upper Cretaceous: (1) the Late Campanian warm climatic optimum, (2) the early Maastrichtian cooling event, (3) the mid-Maastrichtian warming event, and (4) the late Maastrichtian cooling event, also observed in the nearby Stevns-1 core (Thibault et al., 2011) . These climatic variations match closely those observed in the nearby Stevns-1 core and in the Atlantic, Pacific and Tethyan realms (Thibault & GARDIN, 2006; Thibault et al., 2011). Changes occurring in the number of observed Inoceramids prisms per meter of core section, in the abundance of calcareous nannofossils and in the visible trace fossils abundances seem to be linked to climatic changes as expressed in the δ18O of the bulk sediment. In addition to the sedimentological data show that the distribution of facies through time from: (1) cyclic marl alternating with mudstone-wackestone chalk and conglomerates, to (2) bioturbated white mudstone and wackestone chalk, then to (3) flint alternating with mudstone and wackestone chalk, ending with (5) bryozoans wackestone and packstone, and the sedimentation rate changes varying from 1.4 cm/kyr to 13.4 cm/kyr. Here we show how changes in the sedimentology of the chalk and abundances of different fossil group are influenced by global and regional mechanisms. Isotopic results mainly reflect global paleoclimatic changes, whereas the sedimentological record is mostly influenced by (1) local variations in paleoproductivity, (2) deep-water paleocurrents influencing the chalk deposition and the shape of the sea-floor, (3) and (4) the geodynamic activity and paleotopography of the Late

  3. The Predicted Distribution of Post-Perovskite in the Lowermost Mantle: Relationship to Chemical Heterogeneity and Further Constraints on Core-Mantle Boundary Heat Flow

    NASA Astrophysics Data System (ADS)

    Hernlund, J.; McNamara, A. K.; Labrosse, S.; Tackley, P. J.

    2005-12-01

    We use three-dimensional spherical shell mantle convection models (McNamara, 2005) with plate motion history over the past several hundred million years as a surface boundary condition to study the predicted distribution of post-perovskite in Earth's lowermost mantle, both with and without large-scale chemical heterogeneity. Chemical heterogeneity in the form of "super-piles" induces a strongly bimodal pattern of temperatures in the D" region, and predicts a distribution of post-perovskite that is in good agreement with seismic observations of a discontinuity on top of D". In these cases, post-perovskite is confined to cooler regions associated with downwellings and large scale mantle circulation, whereas the chemically dense piles are hot because they reside just above the core-mantle boundary (CMB) and do not participate in the larger scale mantle circulation. By varying the parameters defining the post-perovskite phase boundary, and applying the double-crossing model of Hernlund et al. (2005), an upper bound for the CMB heat flow can be more confidently estimated. However, significant trade-offs still exist with respect to other uncertain physical parameters, especially thermal conductivity. Our preferred model also predicts that a D" discontinuity should be present beneath Antarctica, a region that has thus far eluded the necessary seismic coverage.

  4. Fission-track analysis of apatite and zircon defines a burial depth of 4 to 7 km for lowermost Upper Devonian, Catskill Mountains, New York

    NASA Astrophysics Data System (ADS)

    Lakatos, Stephen; Miller, Donald S.

    1983-02-01

    Apatite and zircon grains separated from a sandstone layer of earliest Late Devonian age, Catskill Mountains, have been subjected to fission-track analysis. A 125-m.y. age, obtained on the apatite grains, requires a temperature for the sediment of less than 120 °C during the past 125 m.y. At some time prior to 125 m.y. ago, temperatures were above 120 °C long enough to cause complete fading of tracks. Analysis of zircon grains resulted in a fission-track age of 320 m.y. Zircon data indicate that the temperature of the sediment layer enclosing the grains did not exceed 175 to 200 °C over a 235-rn.y. period (time between sedimentation and 125 m.y. ago). If one assumes a typical geothermal gradient of 25 °C/km, a burial depth of between 4 and 7 km is indicated for the lowermost Upper Devonian, atskill Mountains. *Present address: Rensselaer Polytechnic Institute, Troy, New York 12181

  5. Proxy data constraints on Cretaceous sea surface temperature evolution

    NASA Astrophysics Data System (ADS)

    O'Brien, Charlotte L.; Robinson, Stuart A.; O'Connor, Lauren K.; Pancost, Richard D.

    2015-04-01

    It is well established that greenhouse conditions prevailed during the Cretaceous. However, constraining the exact nature of the greenhouse gas forcing, climatic warming and climate sensitivity remains an ongoing topic of research. Proxy temperature data provide valuable observational constraints on Cretaceous climate. In particular, much of our understanding of Cretaceous climate warmth comes from marine temperature proxy data reconstructions derived using planktic foraminiferal oxygen isotope (δ18O) palaeothermometry and, more recently, the TEX86 proxy, based on the distribution of marine isoprenoidal glycerol dialkyl glycerol tetraether lipids (GDGTs). Both of these proxies provide estimates of sea surface temperature (SST), however each technique is subject to a number of proxy-specific caveats. For example, δ18O values in planktic foraminifer may be compromised by preservation and/or diagenetic alteration, while the TEX86 proxy has undergone several temperature calibration re-evaluations and the exact mechanism that relates GDGT production to SST is not fully understood. Here we synthesise and reinterpret available TEX86- and δ18O-SST proxy data for the entire Cretaceous. For the TEX86 data, where possible we re-evaluate the fractional abundance of all individual GDGTs. By utilising fractional GDGT abundances we are also able to compute methane indices and branched and isoprenoid tetraether (BIT) indices, as well as apply both the TEX86H and TEX86L temperature calibrations. For each of the two SST proxy techniques, TEX86 and δ18O, we apply consistent temperature calibrations and place all data on a common timescale. Our new data-based SST synthesis allows us to examine long term temperature trends in the Cretaceous, including latitudinal temperature gradient variations, and evaluate global versus regional temperature patterns. Through considering both TEX86 and planktic foraminiferal δ18O data we critically compare the application of these two techniques

  6. Microspectroscopic Evidence of Cretaceous Bone Proteins

    PubMed Central

    Lindgren, Johan; Uvdal, Per; Engdahl, Anders; Lee, Andrew H.; Alwmark, Carl; Bergquist, Karl-Erik; Nilsson, Einar; Ekström, Peter; Rasmussen, Magnus; Douglas, Desirée A.; Polcyn, Michael J.; Jacobs, Louis L.

    2011-01-01

    Low concentrations of the structural protein collagen have recently been reported in dinosaur fossils based primarily on mass spectrometric analyses of whole bone extracts. However, direct spectroscopic characterization of isolated fibrous bone tissues, a crucial test of hypotheses of biomolecular preservation over deep time, has not been performed. Here, we demonstrate that endogenous proteinaceous molecules are retained in a humerus from a Late Cretaceous mosasaur (an extinct giant marine lizard). In situ immunofluorescence of demineralized bone extracts shows reactivity to antibodies raised against type I collagen, and amino acid analyses of soluble proteins extracted from the bone exhibit a composition indicative of structural proteins or their breakdown products. These data are corroborated by synchrotron radiation-based infrared microspectroscopic studies demonstrating that amino acid containing matter is located in bone matrix fibrils that express imprints of the characteristic 67 nm D-periodicity typical of collagen. Moreover, the fibrils differ significantly in spectral signature from those of potential modern bacterial contaminants, such as biofilms and collagen-like proteins. Thus, the preservation of primary soft tissues and biomolecules is not limited to large-sized bones buried in fluvial sandstone environments, but also occurs in relatively small-sized skeletal elements deposited in marine sediments. PMID:21559386

  7. Paleointensity of the geomagnetic field in the Cretaceous (from Cretaceous rocks of Mongolia)

    NASA Astrophysics Data System (ADS)

    Shcherbakova, V. V.; Kovalenko, D. V.; Shcherbakov, V. P.; Zhidkov, G. V.

    2011-09-01

    A representative collection of Cretaceous rocks of Mongolia is used for the study of the magnetic properties of the rocks and for determination of the paleodirections and paleointensities H anc of the geomagnetic field. The characteristic NRM component in the samples is recognized in the temperature interval from 200 to 620-660°C. The values of H anc are determined by the Thellier-Coe method with observance of all present-day requirements regarding the reliability of such kind of results. Comparison of data in the literature on paleointensity in the Cretaceous superchron and in the Miocene supports the hypothesis of the inverse correlation between the average intensity of the paleofield and the frequency of geomagnetic reversals. The increase in the average intensities is accompanied by an appreciable increase in the variance of the virtual dipole moment (VDM). We suggest that the visible increase in the average VDM value in the superchron is due to the greater variability of VDM in this period compared to the Miocene.

  8. Hydrocarbon Seepage during the Boreal Base Cretaceous Hot Shale Event

    NASA Astrophysics Data System (ADS)

    Hammer, Ø.; Hryniewicz, K.; Nakrem, H. A.; Little, C.

    2014-12-01

    We have identified a number of carbonate bodies interpreted as seep-related from near the Jurassic-Cretaceous boundary in Svalbard, arctic Norway. The paleoseeps discovered so far occur over 50 km along strike, representing a seepage field of considerable extent. Ammonites indicate a base Cretaceous (Late Volgian to Late Ryazanian) age. The carbonate bodies are highly fossiliferous, with a very diverse fauna consisting mainly of normal-marine species but also seep-restricted taxa. Carbonate d13C isotopes reach -46‰, which, considering mixture with seawater-derived carbon, is interpreted as indicating a biogenic methane source. It is of interest to note the correlation of this paleoseepage with an episode of extremely high burial of organic matter near the Jurassic-Cretaceous boundary, noted both in Svalbard (top Slottsmøya Member of the Agardhfjellet Formation), in the Barents Sea (Hekkingen Formation) and in the North Sea (Mandal Formation), possibly providing a shallow source for biogenic gas. Together with near contemporaneous events in the Boreal Realm such as ongoing rifting, the base Cretaceous unconformity, the Mjølnir meteorite impact and a possible minor extinction event, these finds contribute to the impression of the Jurassic-Cretaceous boundary as a highly dynamic and interesting time in the North Atlantic area.

  9. Mammal disparity decreases during the Cretaceous angiosperm radiation.

    PubMed

    Grossnickle, David M; Polly, P David

    2013-11-22

    Fossil discoveries over the past 30 years have radically transformed traditional views of Mesozoic mammal evolution. In addition, recent research provides a more detailed account of the Cretaceous diversification of flowering plants. Here, we examine patterns of morphological disparity and functional morphology associated with diet in early mammals. Two analyses were performed: (i) an examination of diversity based on functional dental type rather than higher-level taxonomy, and (ii) a morphometric analysis of jaws, which made use of modern analogues, to assess changes in mammalian morphological and dietary disparity. Results demonstrate a decline in diversity of molar types during the mid-Cretaceous as abundances of triconodonts, symmetrodonts, docodonts and eupantotherians diminished. Multituberculates experience a turnover in functional molar types during the mid-Cretaceous and a shift towards plant-dominated diets during the late Late Cretaceous. Although therians undergo a taxonomic expansion coinciding with the angiosperm radiation, they display small body sizes and a low level of morphological disparity, suggesting an evolutionary shift favouring small insectivores. It is concluded that during the mid-Cretaceous, the period of rapid angiosperm radiation, mammals experienced both a decrease in morphological disparity and a functional shift in dietary morphology that were probably related to changing ecosystems.

  10. Potential cretaceous play in the Rharb basin of northern Morocco

    SciTech Connect

    Jobidon, G.P. )

    1993-09-01

    The autochthonous Cretaceous in the Rharb basin of northern Morocco is located underneath a cover of neogene sediments and of the Prerif nappe olistostrome, which was emplaced during the Tortonian 7 m.y. The presence of infranappe Cretaceous sediments is documented in a few onshore wells in the Rharb basin and in the adjacent Prerif Rides area, as well as in the Rif Mountains. Their presence in the deeper portion of the Rharb basin is difficult to detail because of poor seismic resolution data beneath dispersive prerif nappe. A recent study of offshore seismic data acquired by PCIAC in 1987 indicates that the infranappe interval can be more than 1500 m thick in some of the offshore Kenitra area. These sediments have seismic signatures that would correspond to Middle Cretaceous transgressions, culminating with a Turonian highstand. Their deposition systems were located on the northern and western flanks of the Meseta and were followed by a hiatus lasting until the Miocene. Regional studies of gravity and magnetic data provide and additional understanding of the Rif province, its evolution, and the possible presence of autochthonous Cretaceous sediments below the prerif nappe cover. The infranappe of Rharb basin has a good potential to develop into a major hydrocarbon play with the presence of middle Cretaceous reservoir rocks, Turonian-Cenomanian black shale source rocks, as well as the timely combination of trap formation, source rock maturation, and hydrocarbon migration.

  11. Mammal disparity decreases during the Cretaceous angiosperm radiation.

    PubMed

    Grossnickle, David M; Polly, P David

    2013-11-22

    Fossil discoveries over the past 30 years have radically transformed traditional views of Mesozoic mammal evolution. In addition, recent research provides a more detailed account of the Cretaceous diversification of flowering plants. Here, we examine patterns of morphological disparity and functional morphology associated with diet in early mammals. Two analyses were performed: (i) an examination of diversity based on functional dental type rather than higher-level taxonomy, and (ii) a morphometric analysis of jaws, which made use of modern analogues, to assess changes in mammalian morphological and dietary disparity. Results demonstrate a decline in diversity of molar types during the mid-Cretaceous as abundances of triconodonts, symmetrodonts, docodonts and eupantotherians diminished. Multituberculates experience a turnover in functional molar types during the mid-Cretaceous and a shift towards plant-dominated diets during the late Late Cretaceous. Although therians undergo a taxonomic expansion coinciding with the angiosperm radiation, they display small body sizes and a low level of morphological disparity, suggesting an evolutionary shift favouring small insectivores. It is concluded that during the mid-Cretaceous, the period of rapid angiosperm radiation, mammals experienced both a decrease in morphological disparity and a functional shift in dietary morphology that were probably related to changing ecosystems. PMID:24089340

  12. Structural Extremes in a Cretaceous Dinosaur

    PubMed Central

    Sereno, Paul C.; Wilson, Jeffrey A.; Witmer, Lawrence M.; Whitlock, John A.; Maga, Abdoulaye; Ide, Oumarou; Rowe, Timothy A.

    2007-01-01

    Fossils of the Early Cretaceous dinosaur, Nigersaurus taqueti, document for the first time the cranial anatomy of a rebbachisaurid sauropod. Its extreme adaptations for herbivory at ground-level challenge current hypotheses regarding feeding function and feeding strategy among diplodocoids, the larger clade of sauropods that includes Nigersaurus. We used high resolution computed tomography, stereolithography, and standard molding and casting techniques to reassemble the extremely fragile skull. Computed tomography also allowed us to render the first endocast for a sauropod preserving portions of the olfactory bulbs, cerebrum and inner ear, the latter permitting us to establish habitual head posture. To elucidate evidence of tooth wear and tooth replacement rate, we used photographic-casting techniques and crown thin sections, respectively. To reconstruct its 9-meter postcranial skeleton, we combined and size-adjusted multiple partial skeletons. Finally, we used maximum parsimony algorithms on character data to obtain the best estimate of phylogenetic relationships among diplodocoid sauropods. Nigersaurus taqueti shows extreme adaptations for a dinosaurian herbivore including a skull of extremely light construction, tooth batteries located at the distal end of the jaws, tooth replacement as fast as one per month, an expanded muzzle that faces directly toward the ground, and hollow presacral vertebral centra with more air sac space than bone by volume. A cranial endocast provides the first reasonably complete view of a sauropod brain including its small olfactory bulbs and cerebrum. Skeletal and dental evidence suggests that Nigersaurus was a ground-level herbivore that gathered and sliced relatively soft vegetation, the culmination of a low-browsing feeding strategy first established among diplodocoids during the Jurassic. PMID:18030355

  13. Structural extremes in a cretaceous dinosaur.

    PubMed

    Sereno, Paul C; Wilson, Jeffrey A; Witmer, Lawrence M; Whitlock, John A; Maga, Abdoulaye; Ide, Oumarou; Rowe, Timothy A

    2007-11-21

    Fossils of the Early Cretaceous dinosaur, Nigersaurus taqueti, document for the first time the cranial anatomy of a rebbachisaurid sauropod. Its extreme adaptations for herbivory at ground-level challenge current hypotheses regarding feeding function and feeding strategy among diplodocoids, the larger clade of sauropods that includes Nigersaurus. We used high resolution computed tomography, stereolithography, and standard molding and casting techniques to reassemble the extremely fragile skull. Computed tomography also allowed us to render the first endocast for a sauropod preserving portions of the olfactory bulbs, cerebrum and inner ear, the latter permitting us to establish habitual head posture. To elucidate evidence of tooth wear and tooth replacement rate, we used photographic-casting techniques and crown thin sections, respectively. To reconstruct its 9-meter postcranial skeleton, we combined and size-adjusted multiple partial skeletons. Finally, we used maximum parsimony algorithms on character data to obtain the best estimate of phylogenetic relationships among diplodocoid sauropods. Nigersaurus taqueti shows extreme adaptations for a dinosaurian herbivore including a skull of extremely light construction, tooth batteries located at the distal end of the jaws, tooth replacement as fast as one per month, an expanded muzzle that faces directly toward the ground, and hollow presacral vertebral centra with more air sac space than bone by volume. A cranial endocast provides the first reasonably complete view of a sauropod brain including its small olfactory bulbs and cerebrum. Skeletal and dental evidence suggests that Nigersaurus was a ground-level herbivore that gathered and sliced relatively soft vegetation, the culmination of a low-browsing feeding strategy first established among diplodocoids during the Jurassic.

  14. Late Cretaceous sea level from a paleoshoreline

    SciTech Connect

    McDonough, K.J.; Cross, T.A. )

    1991-04-10

    The contemporary elevation of a Late Cenomanian ({approx}93 Ma) shoreline was determined at five localities along the tectonically stable, eastern margin of the Cretaceous Western Interior Seaway, North America. This shoreline, represented by marine-to-nonmarine facies transitions in strata of the Greenhorn sequence (UZA-2 cycle of Haq et al. (1987)), was identified from outcrop and borehole data. Biostratigraphic zonations constrained the geologic age at each locality. Sequence stratigraphic correlations, based on identifying discrete progradational units and the surfaces that separate them, were used to refine age correlations to better than 100 kyr between localities. A single Cenomanian shoreline was correlated within a single progradational unit, and its elevation was determined at five localities. This paleostrandline occurs 265-286m above present-day sea level, at an average elevation of 276 m. Isostatic and flexural corrections were applied to remove the effects of postdepositional vertical movement, including sediment compaction by loading, uplift due to erosion, and glacial loading and rebound. Errors inherent in each measurement and each correction were estimated. Corrections and their cumulative error estimates yield a Late Cenomanian elevation of 269{plus minus}87 m above present sea level. The corrected elevation approximates sea level at 93 Ma and provides a measure of Late Cenomanian eustasy prior to the Early Turonian highstand. Establishing the absolute value for eustasy at a single point in geologic time provides a frame of reference for calibrating relative sea level curves, as well as constraining the magnitudes of tectonic subsidence, sediment flux, and other variables that controlled water depth and relative sea level.

  15. In situ ∼2.0 Ma trees discovered as fossil rooted stumps, lowermost Bed I, Olduvai Gorge, Tanzania.

    PubMed

    Habermann, Jörg M; Stanistreet, Ian G; Stollhofen, Harald; Albert, Rosa M; Bamford, Marion K; Pante, Michael C; Njau, Jackson K; Masao, Fidelis T

    2016-01-01

    The discovery of fossil rooted tree stumps in lowermost Lower Bed I from the western Olduvai Basin, Tanzania, age-bracketed by the Naabi Ignimbrite (2.038 ± 0.005 Ma) and Tuff IA (1.88 ± 0.05 Ma), provides the first direct, in situ, and to date oldest evidence of living trees at Olduvai Gorge. The tree relicts occur in an interval dominated by low-viscosity mass flow and braided fluvial sediments, deposited at the toe of a largely Ngorongoro Volcano-sourced volcaniclastic fan apron that comprised a widely spaced network of ephemeral braided streams draining northward into the Olduvai Basin. Preservation of the trees occurred through their engulfment by mass flows, post-mortem mold formation resulting from differential decay of woody tissues, and subsequent fluvially-related sediment infill, calcite precipitation, and cast formation. Rhizolith preservation was triggered by the interaction of root-induced organic and inorganic processes to form rhizocretionary calcareous root casts. Phytolith analyses were carried out to complete the paleoenvironmental reconstruction. They imply a pronounced seasonality and indicate a wooded landscape with grasses, shrubs, and sedges growing nearby, comparable to the low, open riverine woodland (unit 4c) along the Garusi River and tributaries in the Laetoli area. Among the tree stump cluster were found outsized lithic clasts and those consisting of quartzite were identified as Oldowan stone tool artifacts. In the context of hominin activity, the identification of wooded grassland in association with nearby freshwater drainages and Oldowan artifacts significantly extends our paleoenvironmental purview on the basal parts of Lower Bed I, and highlights the hitherto underrated role of the yet poorly explored western Olduvai Gorge area as a potential ecologically attractive setting and habitat for early hominins. PMID:26767961

  16. Transport in the Subtropical Lowermost Stratosphere during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment

    NASA Technical Reports Server (NTRS)

    Pittman, Jasna V.; Weinstock, Elliot M.; Oglesby, Robert J.; Sayres, David S.; Smith, Jessica B.; Anderson, James G.; Cooper, Owen R.; Wofsy, Steven C.; Xueref, Irene; Gerbig, Cristoph; Daube, Bruce C.; Richard, Erik C.; Ridley, Brian A.; Weinheimer, Andrew J.; Lowenstein, Max; Hans-Jurg, Jost; Lopez, Jimena P.; Mahoney, Michael J.; Thompson, Thomas L.; Hargrove, William W.; Hoffman, Forrest M.

    2007-01-01

    We use in situ measurements of water vapor (H2O), ozone (O3), carbon dioxide (CO2), carbon monoxide (CO), nitric oxide (NO), and total reactive nitrogen (NOy) obtained during the CRYSTAL-FACE campaign in July 2002 to study summertime transport in the subtropical lowermost stratosphere. We use an objective methodology to distinguish the latitudinal origin of the sampled air masses despite the influence of convection, and we calculate backward trajectories to elucidate their recent geographical history. The methodology consists of exploring the statistical behavior of the data by performing multivariate clustering and agglomerative hierarchical clustering calculations and projecting cluster groups onto principal component space to identify air masses of like composition and hence presumed origin. The statistically derived cluster groups are then examined in physical space using tracer-tracer correlation plots. Interpretation of the principal component analysis suggests that the variability in the data is accounted for primarily by the mean age of air in the stratosphere, followed by the age of the convective influence, and last by the extent of convective influence, potentially related to the latitude of convective injection (Dessler and Sherwood, 2004). We find that high-latitude stratospheric air is the dominant source region during the beginning of the campaign while tropical air is the dominant source region during the rest of the campaign. Influence of convection from both local and nonlocal events is frequently observed. The identification of air mass origin is confirmed with backward trajectories, and the behavior of the trajectories is associated with the North American monsoon circulation.

  17. Landscape distribution of Oldowan stone artifact assemblages across the fault compartments of the eastern Olduvai Lake Basin during early lowermost Bed II times.

    PubMed

    Blumenschine, Robert J; Masao, Fidelis T; Stollhofen, Harald; Stanistreet, Ian G; Bamford, Marion K; Albert, Rosa M; Njau, Jackson K; Prassack, Kari A

    2012-08-01

    The density and composition of Oldowan stone artifact assemblages deposited during the first ca. 20,000 years of lowermost Bed II times show a recurrent pattern of variation across recognized synsedimentary faults that compartmentalized landscapes of the eastern Olduvai Lake Basin. When active, the faults created minor topographic relief. The upthrown fault footwalls accumulated assemblages with relatively high densities of artifacts, including types retaining potential usefulness, particularly volcanic flaked pieces, manuports, pounded pieces, and split cobbles. Values for these assemblage characteristics decline toward the lower-lying hangingwall of the fault compartments, accompanied by an increase in the proportionate weight of artifact assemblages comprising quartzite, particularly flaking shatter and potentially useful detached pieces. Values reverse once again at faults, either on the downthrown, hangingwall side or on the upthrown side. The patterns are stronger for the volcanic components of the artifact assemblages than for the quartzite components, reflecting the additional influence of distance from the local source on quartzite assemblage characteristics reported previously. The landscape distributions of artifact assemblages are consistent with a landscape-fault model in which minor fault-induced topographic relief at times created a mosaic of vegetation environments repeated within each of the three fault compartments of the lake margin and distal alluvial fan. The fault-compartmentalized landscape model is currently supported only by sediment thickness and facies changes across synsedimentary faults, but it provides predictions for spatial variation in the cover abundance of trees, freshwater reservoirs and associated distributions of resources and hazards associated with stone artifact use and discard that can be tested if sample sizes of key paleoenvironmental indicators are increased. PMID:21945135

  18. In situ ∼2.0 Ma trees discovered as fossil rooted stumps, lowermost Bed I, Olduvai Gorge, Tanzania.

    PubMed

    Habermann, Jörg M; Stanistreet, Ian G; Stollhofen, Harald; Albert, Rosa M; Bamford, Marion K; Pante, Michael C; Njau, Jackson K; Masao, Fidelis T

    2016-01-01

    The discovery of fossil rooted tree stumps in lowermost Lower Bed I from the western Olduvai Basin, Tanzania, age-bracketed by the Naabi Ignimbrite (2.038 ± 0.005 Ma) and Tuff IA (1.88 ± 0.05 Ma), provides the first direct, in situ, and to date oldest evidence of living trees at Olduvai Gorge. The tree relicts occur in an interval dominated by low-viscosity mass flow and braided fluvial sediments, deposited at the toe of a largely Ngorongoro Volcano-sourced volcaniclastic fan apron that comprised a widely spaced network of ephemeral braided streams draining northward into the Olduvai Basin. Preservation of the trees occurred through their engulfment by mass flows, post-mortem mold formation resulting from differential decay of woody tissues, and subsequent fluvially-related sediment infill, calcite precipitation, and cast formation. Rhizolith preservation was triggered by the interaction of root-induced organic and inorganic processes to form rhizocretionary calcareous root casts. Phytolith analyses were carried out to complete the paleoenvironmental reconstruction. They imply a pronounced seasonality and indicate a wooded landscape with grasses, shrubs, and sedges growing nearby, comparable to the low, open riverine woodland (unit 4c) along the Garusi River and tributaries in the Laetoli area. Among the tree stump cluster were found outsized lithic clasts and those consisting of quartzite were identified as Oldowan stone tool artifacts. In the context of hominin activity, the identification of wooded grassland in association with nearby freshwater drainages and Oldowan artifacts significantly extends our paleoenvironmental purview on the basal parts of Lower Bed I, and highlights the hitherto underrated role of the yet poorly explored western Olduvai Gorge area as a potential ecologically attractive setting and habitat for early hominins.

  19. Sub-micrometer aerosol particles in the upper troposphere/lowermost stratosphere as measured by CARIBIC and modeled using the MIT-CAM3 global climate model

    NASA Astrophysics Data System (ADS)

    Ekman, Annica M. L.; Hermann, Markus; Groß, Peter; Heintzenberg, Jost; Kim, Dongchul; Wang, Chien

    2012-06-01

    In this study, we compare modeled (MIT-CAM3) and observed (CARIBIC) sub-micrometer nucleation (N4-12, 4 ≤ d ≤ 12 nm) and Aitken mode (N12, d > 12 nm) particle number concentrations in the upper troposphere and lowermost stratosphere (UT/LMS). Modeled and observed global median N4-12 and N12 agree fairly well (within a factor of two) indicating that the relatively simplified binary H2SO4-H2O nucleation parameterization applied in the model produces reasonable results in the UT/LMS. However, a comparison of the spatiotemporal distribution of sub-micrometer particles displays a number of discrepancies between MIT-CAM3 and CARIBIC data: N4-12is underestimated by the model in the tropics and overestimated in the extra-topics. N12 is in general overestimated by the model, in particular in the tropics and during summer months. The modeled seasonal variability of N4-12 is in poor agreement with CARIBIC data whereas it agrees rather well for N12. Modeled particle frequency distributions are in general narrower than the observed ones. The model biases indicate an insufficient diffusive mixing in MIT-CAM3 and a too large vertical transport of carbonaceous aerosols. The overestimated transport is most likely caused by the constant supersaturation threshold applied in the model for the activation of particles into cloud droplets. The annually constant SO2 emissions in the model may also partly explain the poor representation of the N4-12seasonal cycle. Comparing the MIT-CAM3 with CARIBIC data, it is also clear that care has to be taken regarding the representativeness of the measurement data and the time frequency of the model output.

  20. Ages and geochemistry of Cretaceous mafic dikes in Southeastern China: implications for paleo-Pacific subduction evolution during Cretaceous

    NASA Astrophysics Data System (ADS)

    Lin, Jian-wei; Lee, Chi-Yu; Chen, Cheng-Hong

    2016-04-01

    The spatial and temporal distribution of two Cretaceous mafic dike populations in SE China provides an opportunity to study the mantle evolution related to the paleo-Pacific subduction. They include early Cretaceous (143-131 Ma) mafic dikes in the interior SE China (Jiangxi and north Guangdong), and late Cretaceous (98-79 Ma) mafic dikes in the coastal area of Fujian and Hong Kong. All these rocks exhibit some arc-like geochemical signatures, such as large ion lithophile element (LILE; Rb, Ba) enrichment and high field strength element (HFSE; Nb, Ta, Ti) depletion. However, the former have higher concentrations in TiO2, Nb, Ta and lower La/Nb ratio. Sr and Nd isotope data indicate that they may involve two end-members, one with lithosphere-modified OIB-like asthenosphere composition and the other with subduction-modified lithosphere composition. These results suggest that asthenospheric mantle probably play a role for the formation of early Cretaceous mafic dikes. Conversely, the latter exhibits typical mantle compositions of an arc system. Abundances of Jurassic basalts in the interior SE China with typical asthenosphere signatures suggest that they might be the products in response to the delamination of partially over-thickened lithosphere under a rifting environment. Appearance of early Cretaceous mafic dikes, tinged with OIB-like in addition to the arc-like signatures in the interior SE China, may be an indication that paleo-Pacific subduction started or resumed at the beginning of the early Cretaceous. On the other hand, the coastal SE China was characterized by the formation of a NE-trending A-type granite and rhyolite belt near the end of the late Cretaceous, a sign for the epilog of the paleo-Pacific movement. Therefore, widespread of the late Cretaceous mafic dikes would be a reflection of a well-modified mantle by the paleo-Pacific before the cessation of the subduction system in the coastal SE China. (Keywords: Cretaceous, Mafic dike, SE China)

  1. A first record of Cretaceous aphids (Hemiptera, Sternorrhyncha, Aphidomorpha) in Australia, from the Lower Cretaceous Koonwarra Fossil Bed, Victoria.

    PubMed

    Martin, Sarah K; Skidmore, Luke I; Stilwell, Jeffrey D

    2016-01-01

    This paper describes the first species of aphid from the Lower Cretaceous Koonwarra Fossil Bed of the Gippsland Basin, southeastern Victoria, Australia. This aphid, herein named Koonwarraphis rotundafrons gen. & sp. nov., is assigned to the cosmopolitan Cretaceous superfamily Tajmyraphidoidea, which has been previously described from the Lebanese, Taimyrian, Canadian, Myanmar (Burmese), and Spanish ambers. Koonwarraphis rotundafrons is the first aphid recorded from the eastern Gondwanan landmass during the Cretaceous, and represents the only tajmyraphidoid preserved as a compression fossil, rather than as an amber inclusion. Due to the nature of the fossil's preservation, Koonwarraphis cannot be firmly placed in any of the described tajmyraphidoid families; however, all observable morphological features suggest that the genus is broadly typical of the superfamily and Cretaceous aphids in general. Koonwarraphis' shortened rostrum, a feature also seen in other tajmyraphidoids, suggests an association with the more herbaceous aspects of the Early Cretaceous Victorian flora. Considering the modern aphid preference for angiosperm plants, it is possible that this aphid was living upon the herbaceous early angiosperms recorded previously from the Koonwarra macrofloral assemblage. PMID:27395744

  2. Molecular fossils in Cretaceous condensate from western India

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sharmila; Dutta, Suryendu; Dutta, Ratul

    2014-06-01

    The present study reports the biomarker distribution of condensate belonging to the early Cretaceous time frame using gas chromatography-mass spectrometry (GC-MS). The early Cretaceous palaeoenvironment was inscribed into these molecular fossils which reflected the source and conditions of deposition of the condensate. The saturate fraction of the condensate is characterized by normal alkanes ranging from n-C9 to n-C29 (CPI-1.13), cycloalkanes and C14 and C15 sesquiterpanes. The aromatic fraction comprises of naphthalene, phenanthrene, their methylated derivatives and cyclohexylbenzenes. Isohexylalkylnaphthalenes, a product of rearrangement process of terpenoids, is detected in the condensate. Several aromatic sesquiterpenoids and diterpenoids have been recorded. Dihydro- ar-curcumene, cadalene and ionene form the assemblage of sesquiterpenoids which are indicative of higher plant input. Aromatic diterpenoid fraction comprises of simonellite and retene. These compounds are also indicative of higher plants, particularly conifer source which had been a predominant flora during the Cretaceous time.

  3. Cretaceous and Eocene lignite deposits, Jackson Purchase, Kentucky

    USGS Publications Warehouse

    Hower, J.C.; Rich, F.J.; Williams, D.A.; Bland, A.E.; Fiene, F.L.

    1990-01-01

    Lignites occur in the Cretaceous McNairy Formation and the Eocene Claiborne Formation in the Jackson Purchase region of western Kentucky. The lone Cretaceous lignite sample has over 18 percent inertodetrinite and 32 percent humodetrinite which, along with the abundant mineral matter, suggests a possible allochthonous origin for the deposit. The Claiborne Formation lignites have higher humic maceral contents than the Cretaceous lignites. Palynology suggests that there was considerable variation in the plant communities responsible for the Claiborne deposits. Differences in the preservation of the various plants is also seen in the variations between the humic types, particularly in the ulminite and humodetrinite contents. Potter and Dilcher (1980) suggested that the Claiborne lignites in the Jackson Purchase and west Tennessee developed in the abandoned oxbows of Eocene rivers. Significant short-distance changes in the peat thickness, flora, and other depositional elements should be expected in such an environment and could easily account for the observed variations in composition. ?? 1990.

  4. More stable yet bimodal geodynamo during the Cretaceous superchron?

    NASA Astrophysics Data System (ADS)

    Lhuillier, Florian; Gilder, Stuart A.; Wack, Michael; He, Kuang; Petersen, Nikolai; Singer, Brad S.; Jicha, Brian R.; Schaen, Allen J.; Colon, Dylan

    2016-06-01

    We report palaeomagnetic and 40Ar/39Ar dating results from two sequences of basaltic lava flows deposited at the same locality in western China, yet separated in time by ~50 Myr: one set lies within the Cretaceous normal superchron at 112-115 Ma and a second at 59-70 Ma spanning the Cretaceous-Palaeogene boundary. We find that magnetic field directions during the superchron exhibit bimodal populations: one with inclinations representative of a dipolar field and another with shallow inclinations that could reflect a more complex, multipolar field. However, the time-dependent variability in field directions was 50% lower during the superchron than after, which implies greater field stability during the superchron. Our results suggest that episodes of less dipolar field behavior occurred within the Cretaceous superchron and raise the question whether a second, more multipolar, field state is more persistent than previously thought.

  5. The Cretaceous stratigraphy of the Western Cordillera Oriental, Columbia

    SciTech Connect

    Allen, R.B.; Alfonso, C.A.; Ressetar, R.; Salazar, A. ); Ballesteros, I.; Cardozo, E.; Laverde, F.; Ramirez, C. ); Moreno, J.M. ); Rubiano, J.; Sarmiento, L. )

    1993-02-01

    During 1987 and 1988, a major field project sponsored by Tenneco was undertaken along the west flank of the Cordillera Oriental of Colombia between Alpujarra (between the Neiva and Girardot Sub-Basins) and the Middle Magdalena Basin (Cimitarra area). An important result of this study was the documentation of pronounced regional variation in the age, thickness, and facies of the Cretaceous section. The maximum thickness estimated was 7 km for the Bogota-Villeta section, with ages as old as Berriasian. This section can be divided into 4 or 5 depositional sequences. A clastic source to the west or southwest is indicated for the lower sequence 1 (and 2 ), an eastern source dominated sequences 3 and 4, and eastern and western sources supplied the upper sequence. Toward the north the section thins to an estimated 3-5 km but still ranges in age throughout the Cretaceous. Southward, on the other hand, the Cretaceous thins to about 2 km and is restricted to Aptian-Albian and younger ages. The variations in ages, facies, and thickness are consistent with recent models of the evolution of the Cretaceous basin. During the Neocomian, the Bogata area formed the main depocenter of the basin and was characterized by restricted facies and turbidites, suggesting steep, possibly faulted basin margins. Facies to the north, near the Middle Magdalena Basin, indicate shallower water, possibly a platform. By the end of the Early Cretaceous, expansion of the marine basin out of the central Cordillera Oriental and regionally more constant facies indicate the onset of dominantly thermal subsidence. The end of the Cretaceous was marked by regression and asymmetric clastic input from east and west of the basin.

  6. Some American Cretaceous fish scales, with notes on the classification and distribution of Cretaceous fishes

    USGS Publications Warehouse

    Cockerell, T.D.A.

    1919-01-01

    Fish remains are extremely abundant in several Cretaceous formations of the Rocky Mountains and Great Plains, but except in the Niobrara formation of Kansas, a fish skeleton well enough preserved for description or identification is the greatest rarity. The fishes are represented by separate scales, in some places associated with a few vertebrae and other fragmentary bones or by isolated teeth. In the original descriptions of both the Mowry and the Aspen shales of Wyoming the presence of fish scales is mentioned as a characteristic feature. Fossils of other classes are usually very rare in beds containing many fish scales. Many of the scales are beautifully preserved and show varied forms and more or less complex structure.

  7. Exploring the Stable Isotope Record of Lake Carpenter: A Lacustrine Sequence in the Aptian-Albian Cretaceous Cedar Mountain Formation, Utah, USA

    NASA Astrophysics Data System (ADS)

    Montgomery, E.; Al-Suwaidi, A. H.; Suarez, M. B.; Kirkland, J. I.; Suarez, C. A.

    2014-12-01

    The Cedar Mountain Formation (CMF) represents the earliest deposition of terrestrial Cretaceous strata in the USA, recording significant changes in biota and climate. Understanding these transitions requires improved time constraints and high-resolution proxy records. Here we present new δ13C (organic carbon & carbonate) chemostratigraphic record of a lacustrine sequence in a locality named "Lake Carpenter", near Moab, Utah. Lake Carpenter (LC) comprises interbedded limestone and mudstone units of the Ruby Ranch Member of the CMF. Results of the chemostratigraphy are constrained by detrital zircons from the section allowing correlation of the chemostratigraphy to the carbon isotope segments C9 to C11 (Bralower et al., 1999) spanning the Late Aptian to Early Albian, and supported by previous litho- and chemostratigraphic work in the CMF. δ13Corg values show a pronounced negative stepped excursion, of -6‰ with values reaching -32.3 ‰ occurring in conjunction with an increase in TOC. This negative excursion is followed by a positive recovery, with values of ~-25‰ and relatively low TOC. δ13Ccarb records positive values, up to +8‰, in the lowermost part of the section (< ~7m) followed by a decrease to ~-7 ‰. δ18Ocarb over this interval records values between -2 and -4‰ followed by a decrease to ~-7‰. The lowermost portion of the LC section is indicative of relatively deep lacustrine environment in which organic carbon burial influenced the δ13C of dissolved inorganic carbon (DIC) in the lake. This lower δ13C of DIC may be due to increased upwelling and/or turnover and recycling of organic carbon in the lake. Variability of δ13Ccarb and δ18Ocarb values may reflect changes in water supply to the lake, or climatic variability resulting in the lake drying out. δ13Corg values may be affected by local lake dynamics, including variations in organic carbon storage and changes in algal productivity, perhaps also indicative of changes in nutrient

  8. Ocular shell structures in some Cretaceous trachyleberid Ostracoda

    USGS Publications Warehouse

    Kontrovitz, M.; Puckett, T.M.

    1998-01-01

    This is the first study of internal ocular shell structures of Cretaceous ostracodes. Internal molds from eight species of four genera from Santonian, Campanian, and Maastrichtian strata revealed a stalked ocular sinus constricted along its length and distally inflated. The latter part has anterior and posterior lobes and a subcentral concavity. These Cretaceous trachyleberids have ocular shell structures similar to Cenozoic taxa and it is presumed they functioned similarly. However, each taxon has a diagnostic ocular sinus and an inner surface of the eye tubercle that distinguishes each from all other forms examined.

  9. Middle cretaceous carbonate reservoirs, Fahud Field and northwestern Oman: discussion

    SciTech Connect

    Brennan, P.

    1985-05-01

    A discussion is presented of the Cretaceous formations involved in Fahud field. Along the Trucial Coast, as in northwestern Oman, it is not difficult to date the time of formation of the foredeep. This article provides a stratigraphic correlation chart for the Cretaceous along the Arabian side of the Arabian Gulf. The terminology presented on this correlation chart reflects oil-industry usage in the area, including correlations published by Owen and Nasr, Loutfi and Jaber, Arabian American Oil Company, Beydoun and Dunnington, and Hassan et al.

  10. Early cretaceous uplift in the ellsworth mountains of west antarctica.

    PubMed

    Fitzgerald, P G; Stump, E

    1991-10-01

    Apatite fission-track analysis of samples covering a 4.2-kilometer vertical section from the western flank of Vinson Massif, Antarctica's highest mountain, indicates that the Ellsworth Mountains were uplifted by 4 kilometers or more during the Early Cretaceous following the initial separation of East and West Gondwana and accompanying the opening of the Weddell Sea. Relief of at least 1.8 kilometers has persisted in the Ellsworth Mountains since the Early Cretaceous, and a maximum of 3 kilometers of uplift has occurred since that time.

  11. Arctic Late Cretaceous and Paleocene Plant Community Succession

    NASA Astrophysics Data System (ADS)

    Herman, Alexei; Spicer, Robert; Daly, Robert; Jolley, David; Ahlberg, Anders; Moiseeva, Maria

    2010-05-01

    The Arctic abounds with Late Cretaceous and Paleocene plant fossils attesting to a thriving, diverse, but now extinct polar ecosystem that sequestered vast amounts of carbon. Through detailed examination of plant remains and their distributions in time and space with respect to their entombing sedimentary facies, it has been possible to reconstruct changes in Arctic vegetation composition and dynamics through the Late Cretaceous and into the Paleocene. Based on over 10,000 leaf remains, fossil wood and palynomorph assemblages from northeastern Russia and northern Alaska and palynological data from elsewhere in the Arctic we identify a number of successional plant communities (SPCs) representing seral development from early (pioneer), through middle to late SPCs and climax vegetation. We recognise that (1) Equisetites and some ferns (typically Birisia, but after the beginning of the Maastrichtian, Onoclea) were obligatory components of the early SPCs; (2) first rare angiosperms (e.g. the dicot Vitiphyllum multifidum) appeared in the middle SPCs of the Arctic in the Early - Middle Albian; (3) from late Albian times onwards angiosperms became abundant in the middle SPCs of the Arctic, but were still rare in the earlier and later SPCs; (4) monocots appeared in the Maastrichtian early SPCs; (5) all Arctic Cretaceous late SPCs (and climax vegetation) were dominated by conifers; (6) Arctic SPCs were more numerous and diverse under warm climates than cold; (7) during the Albian and late Cretaceous, advanced (Cenophytic, angiosperm-dominated) plant communities coexisted with those of a more relictual (Mesophytic, dominated by ferns and gymnosperms) aspect, and plants composing these communities did not mix; (8) coal-forming environments (mires) remained conifer, fern and bryophyte dominated throughout the late Cretaceous and Paleocene with little penetration of woody angiosperm components and thus are conservative and predominantly Mesophytic in character; (9) bryophytes

  12. Early cretaceous uplift in the ellsworth mountains of west antarctica.

    PubMed

    Fitzgerald, P G; Stump, E

    1991-10-01

    Apatite fission-track analysis of samples covering a 4.2-kilometer vertical section from the western flank of Vinson Massif, Antarctica's highest mountain, indicates that the Ellsworth Mountains were uplifted by 4 kilometers or more during the Early Cretaceous following the initial separation of East and West Gondwana and accompanying the opening of the Weddell Sea. Relief of at least 1.8 kilometers has persisted in the Ellsworth Mountains since the Early Cretaceous, and a maximum of 3 kilometers of uplift has occurred since that time. PMID:17739957

  13. Carbon cycles in Late Cretaceous time

    NASA Astrophysics Data System (ADS)

    Sprovieri, M.; Sabatino, N.; Pelosi, N.; Batenburg, S.; Coccioni, R.; Iavarone, M.; Mazzola, S.

    2012-04-01

    speculate that the 4.5 and 2.5 Myr cycles documented in the Late Cretaceous represent homologues of the present eccentricity grand cycles evolved by chaotic behaviour of solar planets during the Mesozoic. They could represent appropriate system low-frequency means for geological correlation and robust constraints on the orbital evolution of the Solar System.

  14. From Back-Arc Drifting to Arc Accretion: the Late Jurassic-Early Cretaceous Evolution of the Guerrero Terrane in Central Mexico (Sierra de Guanajuato)

    NASA Astrophysics Data System (ADS)

    Martini, M.; Solari, L.; Centeno-García, E.; Mori, L.; Camprubi, A.

    2011-12-01

    Three paleogeographic scenarios have been proposed for the Mesozoic volcano-sedimentary successions that compose the Guerrero terrane, western Mexico. In the "type 1" scenario the Guerrero terrane is an exotic Pacific arc accreted to nuclear Mexico by the consumption of a pre-Cretaceous oceanic basin, named Arperos Basin. The "type 2" scenario considers the Guerrero terrane as a fringing multi-arc system, accreted by the closure of relatively small pre-Cretaceous oceanic basins at multiple subduction zones with varying polarities. Alternatively, in the "type 3" scenario the Guerrero terrane is interpreted as a North American west-facing para-autochthonous arc, which drifted into the paleo-Pacific domain by the opening of the Cretaceous back-arc oceanic Arperos Basin, and subsequently accreted back to the Mexican mainland. In order to test these reconstructions and understand the dynamics of the arc accretion, we present here a combined study that includes sandstone provenance, U-Pb geochronology, and structural data from the Arperos Basin in the Sierra de Guanajuato, central Mexico. Our data document that the Arperos Basin developed in a back-arc setting, and evolved from continental to oceanic conditions from the Late Jurassic to the Early Cretaceous. Sandstone provenance analysis shows an asymmetric distribution of the infill sources for the Arperos Basin: continent-recycled sedimentary rocks were deposited along its north-eastern side, whereas magmatic arc-recycled clastic rocks developed at its south-western side. Such an asymmetric distribution closely fits with sedimentological models proposed for present-day continent-influenced back-arc basins. Based on these evidences, we favor a "type 3" scenario for the Guerrero terrane, which is then considered to represent a detached slice of the Mexican leading-edge that drifted in the paleo-Pacific domain during Late Jurassic-lower Early Cretaceous back-arc extension, and subsequently accreted back to the Mexican

  15. A longirostrine tyrannosauroid from the Early Cretaceous of China.

    PubMed

    Li, Daqing; Norell, Mark A; Gao, Ke-Qin; Smith, Nathan D; Makovicky, Peter J

    2010-01-22

    The fossil record of tyrannosauroid theropods is marked by a substantial temporal and morphological gap between small-bodied, Barremian taxa, and extremely large-bodied taxa from the latest Cretaceous. Here we describe a new tyrannosauroid, Xiongguanlong baimoensis n. gen. et sp., from the Aptian-Albian Xinminpu Group of western China that represents a phylogenetic, morphological, and temporal link between these disjunct portions of tyrannosauroid evolutionary history. Xiongguanlong is recovered in our phylogenetic analysis as the sister taxon to Tyrannosauridae plus Appalachiosaurus, and marks the appearance of several tyrannosaurid hallmark features, including a sharp parietal sagittal crest, a boxy basicranium, a quadratojugal with a flaring dorsal process and a flexed caudal edge, premaxillary teeth bearing a median lingual ridge, and an expanded axial neural spine surmounted by distinct processes at its corners. Xiongguanlong is characterized by a narrow and elongate muzzle resembling that of Alioramus. The slender, unornamented nasals of Xiongguanlong are inconsistent with recent hypotheses of correlated progression in tyrannosauroid feeding mechanics, and suggest more complex patterns of character evolution in the integration of feeding adaptations in tyrannosaurids. Body mass estimates for the full-grown holotype specimen of Xiongguanlong fall between those of Late Cretaceous tyrannosaurids and Barremian tyrannosauroids, suggesting that the trend of increasing body size observed in North American Late Cretaceous Tyrannosauridae may extend through the Cretaceous history of Tyrannosauroidea though further phylogenetic work is required to corroborate this.

  16. Constraining the oxygen isotope composition of early Cretaceous seawater

    NASA Astrophysics Data System (ADS)

    Price, Gregory; VanDeVelde, Justin; Passey, Ben; Grimes, Stephen

    2015-04-01

    The oxygen isotopic composition of well-preserved marine fossils fundamentally underpins our understanding of the evolution of the Earth's climate. However, a lack of constraint on the delta18O of seawater provides a major challenge. In this study new analyses of sub-Arctic and Boreal Cretaceous (Berriasian-late Valanginian, ca. 145-134 Ma) fossil molluscs (belemnites) have been undertaken using carbonate clumped isotopes, an approach based on the "clumping" of 13C and 18O in the carbonate mineral lattice into bonds with each other. From our analyses we infer Early Cretaceous marine temperatures ranging from 10 °C to 20 °C. We identify a cooler late Valanginian interval with temperatures consistent with regions a few degrees above freezing. Our combined temperature and delta18O belemnite data imply seawater delta18O values that have a remarkably modern profile in that they are similar to modern high-latitude seawater and much more positive than values typically assumed for Cretaceous seawater. These high oxygen isotope ratios suggest a hydrological cycle similar to the modern rather than a substantial increase towards a more vigorous hydrological cycle. Our results argue for generally warm but dynamic polar climates during Cretaceous greenhouse intervals that were punctuated by periods of ice growth.

  17. Relative sea level changes during the Cretaceous in Israel

    SciTech Connect

    Flexer, A.; Rosenfeld, A.; Lipson-Benitah, S.; Honigstein, A.

    1986-11-01

    Detailed lithologic, microfaunal, and biometric investigations, using relative abundances, diversity indexes, and duration charts of ostracods and foraminifera, allowed the recognition of sea level changes during the Cretaceous of Israel. Three major transgressive-regressive sedimentation cycles occur on the northwest margins of the Arabian craton. These cycles are the Neocomian-Aptian, which is mostly terrigenous sediments; the Albian-Turonian, which is basin marls and platform carbonates; and the Senonian, which is uniform marly chalks. The cycles are separated by two major regional unconformities, the Aptian-Albian and Turonian-Coniacian boundaries. The sedimentary cycles are related to regional tectonic and volcanic events and eustatic changes. The paleodepth curve illustrates the gradual sea level rise, reaching its maximum during the Late Cretaceous, with conspicuous advances during the late Aptian, late Albian-Cenomanian, early Turonian, early Santonian, and early Campanian. Major lowstands occur at the Aptian-Albian, Cenomanian-Turonian, Turonian-Coniacian, and Campanian-Maastrichtian boundaries. This model for Israel agrees well with other regional and global sea level fluctuations. Four anoxic events (black shales) accompanying transgressions correspond to the Cretaceous oceanic record. They hypothesize the presence of mature oil shales in the present-day eastern Mediterranean basin close to allochthonous reef blocks detached from the Cretaceous platform. 11 figures.

  18. European cretaceous flints on the coast of North America

    USGS Publications Warehouse

    Emery, K.O.; Kaye, C.A.; Loring, D.H.; Nota, D.J.G.

    1968-01-01

    Flint pebbles and nodules from the Upper Cretaceous chalks of Europe occur offshore and at many seaports along the Atlantic coast of North America, where they were brought as ship's ballast. Isolated pieces imported from Europe as gunflints also are present.

  19. Persistence of coral-rudist reefs into the Late Cretaceous

    SciTech Connect

    Scott, R.W. ); Fernandez-Mendiola, P.A. ); Gili, E. ); Simo, A. )

    1990-04-01

    During the Early Cretaceous, coral-algal communities occupied deeper water habitats in the reef ecosystem, and rudist communities generally populated the shallow-water, carbonate-sand substrates. During the middle Cretaceous, however, coral-algal communities became less common, and Late Cretaceous reef communities consisted of both rudist-dominated and rudist-coral communities. In the Pyrenean basins and other basins in the Mediterranean, coral associations co-existed with rudists forming complex buildups at the shelf-edge. In some parts of these buildups corals were nearly as abundant as rudists; in some complex buildups large coral colonies encrusted the rudists. Behind the shelf margin cylindrical, elevator rudists dominated the lenticular thickets that were interspersed with carbonate sands. Global changes in oceanic conditions, such as marine productivity and oxygen content, may have stressed the deeper coral-algal reef communities leaving rudists as the major shallow reef biota in Caribbean reefs. However, the co-occurrence of corals with rudists in these Pyrenean complex buildups suggests that corals were able to compete with rudists for resources. The corals in the complex buildups generally belong to genera different from those in the coral-algal communities. Perhaps this ecological stress in the mid-Cretaceous resulted in the evolution of new coral taxa.

  20. A primitive therizinosauroid dinosaur from the Early Cretaceous of Utah.

    PubMed

    Kirkland, James I; Zanno, Lindsay E; Sampson, Scott D; Clark, James M; DeBlieux, Donald D

    2005-05-01

    Therizinosauroids are an enigmatic group of dinosaurs known mostly from the Cretaceous period of Asia, whose derived members are characterized by elongate necks, laterally expanded pelves, small, leaf-shaped teeth, edentulous rostra and mandibular symphyses that probably bore keratinized beaks. Although more than a dozen therizinosauroid taxa are known, their relationships within Dinosauria have remained controversial because of fragmentary remains and an unusual suite of characters. The recently discovered 'feathered' therizinosauroid Beipiaosaurus from the Early Cretaceous of China helped to clarify the theropod affinities of the group. However, Beipiaosaurus is also poorly represented. Here we describe a new, primitive therizinosauroid from an extensive paucispecific bonebed at the base of the Cedar Mountain Formation (Early Cretaceous) of east-central Utah. This new taxon represents the most complete and most basal therizinosauroid yet discovered. Phylogenetic analysis of coelurosaurian theropods incorporating this taxon places it at the base of the clade Therizinosauroiden, indicating that this species documents the earliest known stage in the poorly understood transition from carnivory to herbivory within Therizinosauroidea. The taxon provides the first documentation, to our knowledge, of therizinosauroids in North America during the Early Cretaceous.

  1. Cretaceous to Eocene passive margin sedimentation in Northeastern Venezuela

    SciTech Connect

    Erikson, J.P. )

    1993-02-01

    Twenty two palinspastic paleogeographic maps are presented for the Cretaceous to Eocene strata of the Serrania del Interior of northeastern Venezuela. The mapped lithologies, environmental conditions, and evolving depositional systems record [approximately]90 m.y. of dominantly marine sedimentation on the only observable Mesozoic passive margin in the Western Hemisphere. The depositional systems of the passive margin are heterogeneous at lateral (i.e., along-margin) length scales greater than [approximately]40 km. The primary lateral heterogeneity is caused by a major Lower Cretaceous deltaic system that emanated southwest of the Serrania del Interior. All important intervals, such as the laterally variable Aptian-Albian El Cantil platform limestone and the hydrocarbon source rocks of the Upper Cretaceous Querecual and San Antonio formations, are related to probable causal mechanisms and environmental conditions. Stratigraphic events have been interpreted as of either local or regional extent; based on a combination of outcrop sedimentologic analyses and regional depositional systems interpretation. The 3-dimensional distribution of depositional systems and systems tracts reveals 4-6 regional sequence boundaries separated by 4-20 m.y. Subsidence analyses support the facies interpretation of a passive margin by showing continuous, thermally dominated subsidence during the Cretaceous to Eocene interval. Subsidence and accumulation rates increased and facies changed significantly in the Oligocene, indicating the end of passive margin sedimentation and the initiation of foredeep subsidence and accumulation associated with overthrusting the eastward-advancing Caribbean Plate.

  2. Late Cretaceous seasonal ocean variability from the Arctic.

    PubMed

    Davies, Andrew; Kemp, Alan E S; Pike, Jennifer

    2009-07-01

    The modern Arctic Ocean is regarded as a barometer of global change and amplifier of global warming and therefore records of past Arctic change are critical for palaeoclimate reconstruction. Little is known of the state of the Arctic Ocean in the greenhouse period of the Late Cretaceous epoch (65-99 million years ago), yet records from such times may yield important clues to Arctic Ocean behaviour in near-future warmer climates. Here we present a seasonally resolved Cretaceous sedimentary record from the Alpha ridge of the Arctic Ocean. This palaeo-sediment trap provides new insight into the workings of the Cretaceous marine biological carbon pump. Seasonal primary production was dominated by diatom algae but was not related to upwelling as was previously hypothesized. Rather, production occurred within a stratified water column, involving specially adapted species in blooms resembling those of the modern North Pacific subtropical gyre, or those indicated for the Mediterranean sapropels. With increased CO(2) levels and warming currently driving increased stratification in the global ocean, this style of production that is adapted to stratification may become more widespread. Our evidence for seasonal diatom production and flux testify to an ice-free summer, but thin accumulations of terrigenous sediment within the diatom ooze are consistent with the presence of intermittent sea ice in the winter, supporting a wide body of evidence for low temperatures in the Late Cretaceous Arctic Ocean, rather than recent suggestions of a 15 degrees C mean annual temperature at this time.

  3. High temperatures in the Late Cretaceous Arctic Ocean.

    PubMed

    Jenkyns, Hugh C; Forster, Astrid; Schouten, Stefan; Sinninghe Damsté, Jaap S

    2004-12-16

    To understand the climate dynamics of the warm, equable greenhouse world of the Late Cretaceous period, it is important to determine polar palaeotemperatures. The early palaeoceanographic history of the Arctic Ocean has, however, remained largely unknown, because the sea floor and underlying deposits are usually inaccessible beneath a cover of floating ice. A shallow piston core taken from a drifting ice island in 1970 fortuitously retrieved unconsolidated Upper Cretaceous organic-rich sediment from Alpha ridge, a submarine elevated feature of probable oceanic origin. A lack of carbonate in the sediments from this core has prevented the use of traditional oxygen-isotope palaeothermometry. Here we determine Arctic palaeotemperatures from these Upper Cretaceous deposits using TEX86, a new palaeothermometer that is based on the composition of membrane lipids derived from a ubiquitous component of marine plankton, Crenarchaeota. From these analyses we infer an average sea surface temperature of approximately 15 degrees C for the Arctic Ocean about 70 million years ago. This calibration point implies an Equator-to-pole gradient in sea surface temperatures of approximately 15 degrees C during this interval and, by extrapolation, we suggest that polar waters were generally warmer than 20 degrees C during the middle Cretaceous (approximately 90 million years ago).

  4. Architectural studies of Jurassic-Cretaceous fluvial units, Colorado Plateau

    SciTech Connect

    Miall, A.D.; Bromley, M.H.; Cowan, E.J.; Turner-Peterson, C.E.

    1989-03-01

    A sixfold hierarchy of architectural elements and bounding surfaces evolved from outcrop studies of three fluvial units: Westwater Canyon member (WCM), Morrison Formation, Upper Jurassic; Torrivio sandstone member (TSM), Gallup Sandstone, Upper Cretaceous, northwestern New Mexico; and Kayenta Formation (KF), Lower Jurassic, southwestern Colorado. This hierarchy is discussed.

  5. Cretaceous carbonate platforms - emerging concepts and open problems

    SciTech Connect

    Schlager, W.

    1988-02-01

    The Cretaceous is a time of both spectacular growth and abrupt demise of carbonate platforms. Tectono-eustatic rise of sea level coupled with sediment-starvation in the ocean basins produced exceptionally high platforms. Because platform slopes steepen with height whereas siliciclastic slopes do not, the flanks of these high-rising platforms were onlapped by more gently dipping siliciclastics when the platforms ceased to grow. Future studies will have to separate these termination unconformities from the geometrically similar lowstand unconformities. Simultaneously, a carbonate sea level curve should be constructed solely from the record of the platform tops and compared with the onlap curves of seismic stratigraphy. The abrupt demise of Cretaceous platforms is even more remarkable than their rapid growth. In the Valanginian, the Aptian, the late Albian, the late Cenomanian, and the Turonian, platforms were drowned or reduced in size. The mid-Cretaceous events affected platforms in all major oceans and point to a global crisis of carbonate platforms, probably caused by environmental change such as oceanic anoxic events. A worldwide study is required to date these events and search for their causes in the record of life, climate, ocean circulation, and ocean chemistry. A third field of future research is the record of paleoclimate in the tidal flats and lagoons of the platforms on the northern and southern margins of Tethys. Climate modeling has identified this zone as a particularly sensitive switch in the ocean-atmosphere system of the Cretaceous.

  6. A primitive therizinosauroid dinosaur from the Early Cretaceous of Utah

    USGS Publications Warehouse

    Kirkland, J.I.; Zanno, L.E.; Sampson, S.D.; Clark, J.M.; DeBlieux, D.D.

    2005-01-01

    Therizinosauroids are an enigmatic group of dinosaurs known mostly from the Cretaceous period of Asia, whose derived members are characterized by elongate necks, laterally expanded pelves, small, leaf-shaped teeth, edentulous rostra and mandibular symphyses that probably bore keratinized beaks. Although more than a dozen therizinosauroid taxa are known, their relationships within Dinosauria have remained controversial because of fragmentary remains and an unusual suite of characters. The recently discovered 'feathered' therizinosauroid Beipiaosaurus from the Early Cretaceous of China helped to clarify the theropod affinities of the group. However, Beipiaosaurus is also poorly represented. Here we describe a new, primitive therizinosauroid from an extensive paucispecific bonebed at the base of the Cedar Mountain Formation (Early Cretaceous) of east-central Utah. This new taxon represents the most complete and most basal therizinosauroid yet discovered. Phylogenetic analysis of coelurosaurian theropods incorporating this taxon places it at the base of the clade Therizinosauroiden, indicating that this species documents the earliest known stage in the poorly understood transition from carnivory to herbivory within Therizinosauroidea. The taxon provides the first documentation, to our knowledge, of therizinosauroids in North America during the Early Cretaceous.

  7. Tridymite pseudomorphs after wood in virginian lower cretaceous sediments.

    PubMed

    Mitchell, R S

    1967-11-17

    Fossil wood composed of tridymite is abundant in Patuxent (Lower Cretaceous) arkose on Hazel Run, Fredericksburg, Virginia. X-ray diffraction studies of the tridymite indicate that it has a disordered structure in which hexagonal close packing predominates. The specimens, which contain trace amounts of aluminum, iron, and other elements, are soft and fibrous, varying from white to shades of brown. PMID:17753597

  8. Peculiar macrophagous adaptations in a new Cretaceous pliosaurid

    PubMed Central

    Arkhangelsky, Maxim S.; Stenshin, Ilya M.; Uspensky, Gleb N.; Zverkov, Nikolay G.

    2015-01-01

    During the Middle and Late Jurassic, pliosaurid plesiosaurs evolved gigantic body size and a series of craniodental adaptations that have been linked to the occupation of an apex predator niche. Cretaceous pliosaurids (i.e. Brachaucheninae) depart from this morphology, being slightly smaller and lacking the macrophagous adaptations seen in earlier forms. However, the fossil record of Early Cretaceous pliosaurids is poor, concealing the evolution and ecological diversity of the group. Here, we report a new pliosaurid from the Late Hauterivian (Early Cretaceous) of Russia. Phylogenetic analyses using reduced consensus methods recover it as the basalmost brachauchenine. This pliosaurid is smaller than other derived pliosaurids, has tooth alveoli clustered in pairs and possesses trihedral teeth with complex serrated carinae. Maximum-likelihood ancestral state reconstruction suggests early brachauchenines retained trihedral teeth from their ancestors, but modified this feature in a unique way, convergent with macrophagous archosaurs or sphenacodontoids. Our findings indicate that Early Cretaceous marine reptile teeth with serrated carinae cannot be unequivocally assigned to metriorhynchoid crocodylomorphs. Furthermore, they extend the known diversity of dental adaptations seen in Sauropterygia, the longest lived clade of marine tetrapods. PMID:27019740

  9. Tridymite pseudomorphs after wood in virginian lower cretaceous sediments.

    PubMed

    Mitchell, R S

    1967-11-17

    Fossil wood composed of tridymite is abundant in Patuxent (Lower Cretaceous) arkose on Hazel Run, Fredericksburg, Virginia. X-ray diffraction studies of the tridymite indicate that it has a disordered structure in which hexagonal close packing predominates. The specimens, which contain trace amounts of aluminum, iron, and other elements, are soft and fibrous, varying from white to shades of brown.

  10. Cosmic Genes in the Cretaceous-Tertiary transition

    NASA Astrophysics Data System (ADS)

    Wallis, M. K.

    2003-07-01

    It is proposed that genes coding for Aib-polypeptides arose early on in the K/T transition, presumed from the Earth's accretion of interplanetary (comet) dust. Aib-fungi flourished because of the evolutionary advantage of novel antibiotics. The stress on Cretaceous biology led directly and indirectly to mass species extinctions, including many dinosaur species, in the epoch preceding the Chicxulub impact.

  11. New thoughts about the Cretaceous climate and oceans

    NASA Astrophysics Data System (ADS)

    Hay, William W.; Floegel, Sascha

    2012-12-01

    Several new discoveries suggest that the climate of the Cretaceous may have been more different from that of today than has been previously supposed. Detailed maps of climate-sensitive fossils and sediments compiled by Nicolai Chumakov and his colleagues in Russia indicate widespread aridity in the equatorial region during the Early Cretaceous. The very warm ocean temperatures postulated for the Mid-Cretaceous by some authors would likely have resulted in unacceptable heat stress for land plants at those latitudes, however, and may be flawed. Seasonal reversals of the atmospheric pressure systems in the Polar Regions are an oversimplification. However, the seasonal pressure differences between 30° and 60° latitude became quite pronounced, being more than 25 hPa in winter and less than 10 hPa in summer. This resulted in inconstant winds, affecting the development of the gyre-limiting frontal systems that control modern ocean circulation. The idea of Hasegawa et al. (2012) who suggest a drastic reduction in the size of the Hadley cells during the warm Cretaceous greenhouse is supported by several numerical climate simulations. Rapid contraction of the Hadley cell such that its sinking dry air occurs at 15° N latitude rather than 30° N is proposed to occur at a threshold of 1000 ppmv CO2 in the atmosphere. This change will probably be reached in the next century.

  12. Peculiar macrophagous adaptations in a new Cretaceous pliosaurid.

    PubMed

    Fischer, Valentin; Arkhangelsky, Maxim S; Stenshin, Ilya M; Uspensky, Gleb N; Zverkov, Nikolay G; Benson, Roger B J

    2015-12-01

    During the Middle and Late Jurassic, pliosaurid plesiosaurs evolved gigantic body size and a series of craniodental adaptations that have been linked to the occupation of an apex predator niche. Cretaceous pliosaurids (i.e. Brachaucheninae) depart from this morphology, being slightly smaller and lacking the macrophagous adaptations seen in earlier forms. However, the fossil record of Early Cretaceous pliosaurids is poor, concealing the evolution and ecological diversity of the group. Here, we report a new pliosaurid from the Late Hauterivian (Early Cretaceous) of Russia. Phylogenetic analyses using reduced consensus methods recover it as the basalmost brachauchenine. This pliosaurid is smaller than other derived pliosaurids, has tooth alveoli clustered in pairs and possesses trihedral teeth with complex serrated carinae. Maximum-likelihood ancestral state reconstruction suggests early brachauchenines retained trihedral teeth from their ancestors, but modified this feature in a unique way, convergent with macrophagous archosaurs or sphenacodontoids. Our findings indicate that Early Cretaceous marine reptile teeth with serrated carinae cannot be unequivocally assigned to metriorhynchoid crocodylomorphs. Furthermore, they extend the known diversity of dental adaptations seen in Sauropterygia, the longest lived clade of marine tetrapods. PMID:27019740

  13. Sudden and Gradual Molluscan Extinctions in the Latest Cretaceous of Western European Tethys

    PubMed

    Marshall; Ward

    1996-11-22

    Incompleteness of the fossil record has confounded attempts to establish the role of the end-Cretaceous bolide impact in the Late Cretaceous mass extinctions. Statistical analysis of latest Cretaceous outer-shelf macrofossils from western European Tethys reveals (i) a major extinction at or near the Cretaceous-Tertiary (K-T) boundary, probably caused by the impact, (ii) either a faunal abundance change or an extinction of up to nine ammonite species associated with a regression event shortly before the boundary, (iii) gradual extinction of most inoceramid bivalves well before the K-T boundary, and (iv) background extinction of approximately six ammonites throughout the latest Cretaceous. PMID:8910273

  14. Equation of State of Amorphous MgSiO3 and (MgFe)SiO3 to Lowermost Mantle Pressures

    NASA Astrophysics Data System (ADS)

    Sinmyo, R.; Petitgirard, S.; Malfait, W.; Kupenko, I.; Rubie, D. C.

    2014-12-01

    Melting phenomena have a crucial importance during the Earth's formation and evolution. For example, a deep magma ocean of 1000 km or more has lead to the segregation of the core. Tomographic images of the Earth reveal ultra-low velocity zones at the core-mantle boundary that may be due to the presence of dense magmas or remnant zones of a deep basal magma ocean [1]. Unfortunately, measurements of amorphous silicate density over the entire pressure regime of the mantle are scarce and the density contrast between solid and liquid are difficult to assess due to the lack of such data. Only few studies have reported density measurements of amorphous silicates at high-pressure, with limitation up to 60 GPa. High-pressure acoustic velocity measurements have been used to calculate the density of MgSiO3 glass up to 30 GPa [2] but exhibit a large discrepancy compared to recent calculations [3]. SiO2 glass was measured up to 55 GPa using the X-ray absorption method through the diamond anvils [4] and very recently, X-ray diffraction has been used to infer the density of basaltic melt up to 60 GPa [5]. Here we report density measurement of MgSiO3 glass up to 130 GPa and (MgFe)SiO3 glass up to 55 GPa using a novel variation of the X-ray absorption method. The sample contained in a beryllium gasket was irradiated with a micro-focus X-ray beam in two directions: perpendicular and parallel to the compression axis to obtain the absorption coefficient and density under pressure. Our data constrain the first experimental EoS for (Mg,Fe)SiO3 and the first EoS for MgSiO3 up to lowermost mantle pressures. Technical details and EoS parameters will be shown in the presentation. We will address the implications for melts in the deep Earth based on compressibility, bulk modulus and density contrasts between iron-free and iron-bearing glasses. [1] Labrosse S. et al. Nature 2007 [2] Sanchez-Valle C. et al. Earth Planet. Sc. Lett. 2010 [3] Ghosh D. et al Am. Mineral. 2014 [4] Sato T. et al

  15. Properties of inertia-gravity waves in the lowermost stratosphere as observed by the PANSY radar over Syowa Station in the Antarctic

    NASA Astrophysics Data System (ADS)

    Mihalikova, Maria; Sato, Kaoru; Tsutsumi, Masaki; Sato, Toru

    2016-05-01

    Inertia-gravity waves (IGWs) are an important component for the dynamics of the middle atmosphere. However, observational studies needed to constrain their forcing are still insufficient especially in the remote areas of the Antarctic region. One year of observational data (January to December 2013) by the PANSY radar of the wind components (vertical resolution of 150 m and temporal resolution of 30 min) are used to derive statistical analysis of the properties of IGWs with short vertical wavelengths ( ≤ 4 km) and ground-based periods longer than 4 h in the lowermost stratosphere (height range 10 to 12 km) with the help of the hodograph method. The annual change of the IGWs parameters are inspected but no pronounced year cycle is found. The year is divided into two seasons (summer and winter) based on the most prominent difference in the ratio of Coriolis parameter (f) to intrinsic frequency (ω^) distribution. Average of f/ω^ for the winter season is 0.40 and for the summer season 0.45 and the average horizontal wavelengths are 140 and 160 km respectively. Vertical wavelengths have an average of 1.85 km through the year. For both seasons the properties of IGWs with upward and downward propagation of the energy are also derived and compared. The percentage of downward propagating waves is 10.7 and 18.4 % in the summer and winter season respectively. This seasonal change is more than the one previously reported in the studies from mid-latitudes and model-based studies. It is in agreement with the findings of past radiosonde data-based studies from the Antarctic region. In addition, using the so-called dual-beam technique, vertical momentum flux and the variance of the horizontal perturbation velocities of IGWs are examined. Tropospheric disturbances of synoptic-scale are suggested as a

  16. Significance of the giant Lower Cretaceous paleoweathering event

    NASA Astrophysics Data System (ADS)

    Thiry, Médard; Ricordel-Prognon, Caroline; Schmitt, Jean-Michel

    2010-05-01

    Weathering profiles typically develop at the interface with the atmosphere, and thus, record the fluctuations in the paleoatmosphere's chemistry and climatic conditions. Consequently they are one of the main archives to upgrade our understanding on paleoclimate and the Earth's environmental history. In this presentation, we will focus on the linking between paleoatmosphere compositions, weathering rates, and their impact on the subsequent sedimentary records. Distribution of the Lower Cretaceous lateritic weathering facies. During the Early Cretaceous, sea level drops and wide exondations lead to development of deep "lateritic" weathering profiles. Thick kaolinitic weathering profiles occured on the Hercynian basements and diverse kaolinitic and ferruginous weathering products covered the Jurassic limestone platforms. This major lateritic event is not restricted to Europe but also well know in North-America (up to Canada), South-America (down to Argentina), and in Australia. Moreover, recent paleomagnetic and radiometric datations revealed that numerous kaolinitic and ferruginous formations, which classically were ascribed to Tertiary ages, date back to the Lower Cretaceous period (Thiry et al., 2006). Additionally, the Bonherz iron ore deposits in the paleokarsts of the Jurassic limestone plateform of the Paris Basin also have to be reconsidered as of Cretaceous age, probably as well as the Tertiary age of the Swiss and Bavarian Jura Bonherz. Paleoclimatic interpretation. During a long time, the interpretation of these paleoweathering features has been a major palaeoclimatic argument. The spreading out of deep kaolinitic weathering profiles (from the Scandinavian and Canadian shields to southern Argentina and Australia, which was still situated close to Antarctica at that time) has lead to considerations, that during this period a warm and wet climate prevailed globally, with very little latitudinal differentiation. These paleoclimatic interpretations stand in

  17. North American nonmarine climates and vegetation during the Late Cretaceous

    USGS Publications Warehouse

    Wolfe, J.A.; Upchurch, G.R.

    1987-01-01

    Analyses of physiognomy of Late Cretaceous leaf assemblages and of structural adaptations of Late Cretaceous dicotyledonous woods indicate that megathermal vegetation was an open-canopy, broad-leaved evergreen woodland that existed under low to moderate amounts of rainfall evenly distributed through the year, with a moderate increase at about 40-45??N. Many dicotyledons were probably large, massive trees, but the tallest trees were evergreen conifers. Megathermal climate extended up to paleolatitude 45-50??N. Mesothermal vegetation was at least partially an open, broad-leaved evergreen woodland (perhaps a mosaic of woodland and forest), but the evapotranspirational stress was less than in megathermal climate. Some dicotyledons were large trees, but most were shrubs or small trees; evergreen conifers were the major tree element. Some mild seasonality is evidenced in mesothermal woods; precipitational levels probably varied markedly from year to year. Northward of approximately paleolatitude 65??N, evergreen vegetation was replaced by predominantly deciduous vegetation. This replacement is presumably related primarily to seasonality of light. The southern part of the deciduous vegetation probably existed under mesothermal climate. Comparisons to leaf and wood assemblages from other continents are generally consistent with the vegetational-climatic patterns suggested from North American data. Limited data from equatorial regions suggest low rainfall. Late Cretaceous climates, except probably those of the Cenomanian, had only moderate change through time. Temperatures generally appear to have warmed into the Santonian, cooled slightly into the Campanian and more markedly into the Maastrichtian, and then returned to Santonian values by the late Maastrichtian. The early Eocene was probably warmer than any period of the Late Cretaceous. Latitudinal temperature gradients were lower than at present. For the Campanian and Maastrichtian, a gradient of about 0.3??C/1

  18. Where were Arctic Alaska and Beringia during the Cretaceous?

    NASA Astrophysics Data System (ADS)

    Lawver, L. A.; Gahagan, L. M.; Norton, I. O.

    2010-12-01

    Tectonically, the Amerasian Basin of the Arctic Ocean is in many ways, the least known in the global system. Even though Cretaceous biomes for northern Alaska and Beringia appear to have been mild, major plate motions indicate that this region was not only at high latitudes at the start of the Cretaceous but they then moved northward. They reached their northernmost position during the Campanian into the Maastrictian before moving southward during the latest Maastrictian until the Late Eocene (~40 Ma) when southward motion slowed but continued. Aerogeophysical data collected by the Naval Research Lab in the 1990s did not find easily correlateable magnetic anomalies in the Canada Basin as hoped but do confirm the suggestion of a multi-stage opening that finished prior to the beginning of the Cretaceous Normal Superchron or before 120 Ma (Aptian). At the beginning of the Cretaceous, Arctic Alaska was influenced by a marine climate to the west since it was oriented nearly north-south, with Arctic Canada to the east. As Arctic Alaska with the Chukotka block first translated westward, Beringia developed with open seas both to the east and west. The combined terranes entered the final phase of rotational opening, estimated to have been between Hauterivian to Aptian time (135 Ma to 120 Ma), ending in a more east to west orientation with the fully-open Amerasian Basin of the Arctic Ocean to the north and a collection of accreting terranes to the south. Beringia began the Cretaceous straddling 60 N and moved northward to 85 N by ~82 Ma before beginning a slow drift southward.

  19. Latest Jurassic-early Cretaceous regressive facies, northeast Africa craton

    SciTech Connect

    van Houten, F.B.

    1980-06-01

    Nonmarine to paralic detrital deposits accumulated in six large basins between Algeria and the Arabo-Nubian shield during major regression in latest Jurassic and Early Cretaceous time. The Ghadames Sirte (north-central Libya), and Northern (Egypt) basins lay along the cratonic margin of northeastern Africa. The Murzuk, Kufra, and Southern (Egypt) basins lay in the south within the craton. Data for reconstructing distribution, facies, and thickness of relevant sequences are adequate for the three northern basins only. High detrital influx near the end of Jurassic time and in mid-Cretaceous time produced regressive nubian facies composed largely of low-sinuosity stream and fahdelta deposits. In the west and southwest the Ghadames, Murzuk, and Kufra basins were filled with a few hundred meters of detritus after long-continued earlier Mesozoic aggradation. In northern Egypt the regressive sequence succeeded earlier Mesozoic marine sedimentation; in the Sirte and Southern basins correlative deposits accumulated on Precambrian and Variscan terranes after earlier Mesozoic uplift and erosion. Waning of detrital influx into southern Tunisia and adjacent Libya in the west and into Israel in the east initiated an Albian to early Cenomanian transgression of Tethys. By late Cenomanian time it had flooded the entire cratonic margin, and spread southward into the Murzuk and Southern basins, as well as onto the Arabo-Nubian shield. Latest Jurassic-earliest Cretaceous, mid-Cretaceous, and Late Cretaceous transgressions across northeastern Africa recorded in these sequences may reflect worldwide eustatic sea-level rises. In contrast, renewed large supply of detritus during each regression and a comparable subsidence history of intracratonic and marginal basins imply regional tectonic control. 6 figures.

  20. Giant Upper Cretaceous oysters from the Gulf coast and Caribbean

    USGS Publications Warehouse

    Sohl, Norman F.; Kauffman, Erle G.

    1964-01-01

    Two unusually massive ostreid species, representing the largest and youngest Mesozoic members of their respective lineages, occur in Upper Cretaceous sediment of the gulf coast and Caribbean areas. Their characteristics and significance, as well as the morphologic terminology of ostreids in general, are discussed. Crassostrea cusseta Sohl and Kauffman n. sp. is the largest known ostreid from Mesozoic rocks of North America; it occurs sporadically in the Cusseta Sand and rarely in the Blufftown Formation of the Chattahoochee River region in Georgia and Alabama. It is especially notable in that it lacks a detectable posterior adductor muscle scar on large adult shells. C. cusseta is the terminal Cretaceous member of the C. soleniscus lineage in gulf coast sediments; the lineage continues, however, with little basic modification, throughout the Cenozoic, being represented in the Eocene by C. gigantissima (Finch) and probably, in modern times, by C. virginica (Gmelin). The C. soleniscus lineage is the first typically modern crassostreid group recognized in the Mesozoic. Arctostrea aguilerae (Böse) occurs in Late Campanian and Early Maestrichtian sediments of Alabama, Mississippi, Texas(?), Mexico, and Cuba. The mature shell of this species is larger and more massive than that of any other known arctostreid. Arctostrea is well represented throughout the Upper Jurassic and Cretaceous of Europe, but in North America, despite the great numbers and diversity of Cretaceous oysters, only A. aguilerae and the Albian form A. carinata are known. The presence of A. aquilerae in both the Caribbean and gulf coast faunas is exceptional, as the Late Cretaceous faunas of these provinces are generally distinct and originated in different faunal realms.

  1. Paleomagnetic study of some Cretaceous and Tertiary sedimentary rocks of the Klamath Mountains province, California.

    USGS Publications Warehouse

    Mankinen, E.A.; Irwin, W.P.

    1982-01-01

    Paleomagnetic investigation of Cretaceous outliers and Tertiary sedimentary strata of the Klamath Mountains province, and of onlapping Cretaceous strata, has shown the rocks to be largely remagnetized. Samples studied are from the Upper Jurassic to Upper Cretaceous Great Valley sequence, Upper Cretaceous Hornbrook Formation, Eocene Montgomery Creek Formation, and Oligocene(?) Weaverville Formation. Cretaceous samples that survived the remagnetization have a mean remanence direction that is very close to the expected direction of the Cretaceous magnetic field at the locality of the Klamath Mountains. Data from both primary and remanetized samples suggest the possiblity of 11.5o+ or -15.8o of post-Cretaceous clockwise rotation of the Klamath Mountains province. -Authors

  2. Modeling flow and sediment transport dynamics in the lowermost Mississippi River, Louisiana, USA, with an upstream alluvial-bedrock transition and a downstream bedrock-alluvial transition: Implications for land building using engineered diversions

    NASA Astrophysics Data System (ADS)

    Viparelli, Enrica; Nittrouer, Jeffrey A.; Parker, Gary

    2015-03-01

    The lowermost Mississippi River, defined herein as the river segment downstream of the Old River Control Structure and hydrodynamically influenced by the Gulf of Mexico, extends for approximately 500 km. This segment includes a bedrock (or more precisely, mixed bedrock-alluvial) reach that is bounded by an upstream alluvial-bedrock transition and a downstream bedrock-alluvial transition. Here we present a one-dimensional mathematical formulation for the long-term evolution of lowland rivers that is able to reproduce the morphodynamics of both the alluvial-bedrock and the bedrock-alluvial transitions. Model results show that the magnitude of the alluvial equilibrium bed slope relative to the bedrock surface slope and the depth of bedrock surface relative to the water surface base level strongly influence the mobile bed equilibrium of low-sloping river channels. Using data from the lowermost Mississippi River, the model is zeroed and validated at field scale by comparing the numerical results with field measurements. The model is then applied to predict the influence on the stability of channel bed elevation in response to delta restoration projects. In particular, the response of the river bed to the implementation of two examples of land-building diversions to extract water and sediment from the main channel is studied. In this regard, our model results show that engineered land-building diversions along the lowermost Mississippi River are capable of producing equilibrated bed profiles with only modest shoaling or erosion, and therefore, such diversions are a sustainable strategy for mitigating land loss within the Mississippi River Delta.

  3. Late-Cretaceous allochthons and post-Cretaceous strike-slip displacement along the Cuilco-Chixoy-Polochic Fault, Guatemala

    NASA Astrophysics Data System (ADS)

    Anderson, Thomas H.; Erdlac, Richard J., Jr.; Sandstrom, Melissa A.

    1985-08-01

    The disposition of allochthonous masses, emplaced in late Cretaceous to Early Tertiary time, along the Cuilco-Chixoy-Polochic strike-slip fault zone in western Guatemala, constrains the amount of Tertiary displacement. The absence of major disruption of the allochthons argues against lateral displacements of hundreds of kilometers during the Tertiary. In westernmost Guatemala, along the flank of the Cuilco-Chixoy-Polochic fault, granite, volcaniclastic and volcanic rocks, minor carbonate and phyllite comprise a sequence of south-dipping allochthons. These tilted slabs lie against almost horizontal Jurassic and Cretaceous beds to the north. Field relations indicate that the slides were emplaced across the Cuilco-Chixoy-Polochic fault from south to north probably during late Cretaceous or early Tertiary time. Other fault-bounded masses, which crop out tens of kilometers eastward, near San Sebastián Huehuetenango, probably were emplaced contemporaneously with those to the west. Locally, these allochthons lie astride the active trace of the Cuilco-Chixoy-Polochic fault along which offset streams record about 1 km of left-lateral motion. Total displacement recorded by the apparent offset of allochthonous sheets is no more than several kilometers. Farther east, along much of the Cuilco-Chixoy-Polochic fault zone, a throughgoing strike-slip trace has not been identified. We postulate that the pre-Tertiary tectonic record is obscured by an extensive series of allochthons composed of regional stratigraphic suites emplaced during late Cretaceous time. In western Guatemala stratigraphic relationships between serpentinized peridotite and carbonate beds of late Cretaceous age indicate Turonian as a maximum age for initial emplacement of allochthonous material. Regional relationships indicate that deformation culminated during latest Cretaceous - earliest Tertiary time. The emplacement of thrust sheets along the Cuilco-Chixoy-Polochic fault is a likely product of

  4. Late Cretaceous-Early Palaeogene tectonic development of SE Asia

    NASA Astrophysics Data System (ADS)

    Morley, C. K.

    2012-10-01

    The Late Cretaceous-Early Palaeogene history of the continental core of SE Asia (Sundaland) marks the time prior to collision of India with Asia when SE Asia, from the Tethys in the west to the Palaeo-Pacific in the east, lay in the upper plate of subduction zones. In Myanmar and Sumatra, subduction was interrupted in the Aptian-Albian by a phase of arc accretion (Woyla and Mawgyi arcs) and in Java, eastern Borneo and Western Sulawesi by collision of continental fragments rifted from northern Australia. Subsequent resumption of subduction in the Myanmar-Thailand sector explains: 1) early creation of oceanic crust in the Andaman Sea in a supra-subduction zone setting ~ 95 Ma, 2) the belt of granite plutons of Late Cretaceous-Early Palaeogene age (starting ~ 88 Ma) in western Thailand and central Myanmar, and 3) amphibolite grade metamorphism between 70 and 80 Ma seen in gneissic outcrops in western and central Thailand, and 4) accretionary prism development in the Western Belt of Myanmar, until glancing collision with the NE corner of Greater India promoted ophiolite obduction, deformation and exhumation of marine sediments in the early Palaeogene. The Ranong strike-slip fault and other less well documented faults, were episodically active during the Late Cretaceous-Palaeogene time. N to NW directed subduction of the Palaeo-Pacific ocean below Southern China, Vietnam and Borneo created a major magmatic arc, associated with rift basins, metamorphic core complexes and strike-slip deformation which continued into the Late Cretaceous. The origin and timing of termination of subduction has recently been explained by collision of a large Luconia continental fragment either during the Late Cretaceous or Palaeogene. Evidence for such a collision is absent from the South China Sea well and seismic reflection record and here collision is discounted. Instead relocation of the subducting margin further west, possibly in response of back-arc extension (which created the Proto

  5. Significance of the giant Lower Cretaceous paleoweathering event

    NASA Astrophysics Data System (ADS)

    Thiry, Médard; Ricordel-Prognon, Caroline; Schmitt, Jean-Michel

    2010-05-01

    Weathering profiles typically develop at the interface with the atmosphere, and thus, record the fluctuations in the paleoatmosphere's chemistry and climatic conditions. Consequently they are one of the main archives to upgrade our understanding on paleoclimate and the Earth's environmental history. In this presentation, we will focus on the linking between paleoatmosphere compositions, weathering rates, and their impact on the subsequent sedimentary records. Distribution of the Lower Cretaceous lateritic weathering facies. During the Early Cretaceous, sea level drops and wide exondations lead to development of deep "lateritic" weathering profiles. Thick kaolinitic weathering profiles occured on the Hercynian basements and diverse kaolinitic and ferruginous weathering products covered the Jurassic limestone platforms. This major lateritic event is not restricted to Europe but also well know in North-America (up to Canada), South-America (down to Argentina), and in Australia. Moreover, recent paleomagnetic and radiometric datations revealed that numerous kaolinitic and ferruginous formations, which classically were ascribed to Tertiary ages, date back to the Lower Cretaceous period (Thiry et al., 2006). Additionally, the Bonherz iron ore deposits in the paleokarsts of the Jurassic limestone plateform of the Paris Basin also have to be reconsidered as of Cretaceous age, probably as well as the Tertiary age of the Swiss and Bavarian Jura Bonherz. Paleoclimatic interpretation. During a long time, the interpretation of these paleoweathering features has been a major palaeoclimatic argument. The spreading out of deep kaolinitic weathering profiles (from the Scandinavian and Canadian shields to southern Argentina and Australia, which was still situated close to Antarctica at that time) has lead to considerations, that during this period a warm and wet climate prevailed globally, with very little latitudinal differentiation. These paleoclimatic interpretations stand in

  6. Cretaceous Cu-Au, pyrite, and Fe-oxide-apatite deposits in the Ningwu basin, Lower Yangtze Area, Eastern China

    NASA Astrophysics Data System (ADS)

    Yu, Jin-Jie; Lu, Bang-Cheng; Wang, Tie-Zhu; Che, Lin-Rui

    2015-05-01

    The Cretaceous Ningwu volcanic basin of the Middle and Lower Yangtze River Valley metallogenic belt of eastern China hosts numerous Fe-oxide-apatite, Cu-Au, and pyrite deposits. The mineralization in the Ningwu basin is associated with subvolcanic rocks, consisting of gabbro-diorite porphyry and/or pyroxene diorite. However, the mineralization is associated with subvolcanic and volcanic rock suite belonging to the Niangniangshan Formation in the Tongjing Cu-Au deposit, including nosean-bearing aegirine-augite syenites, quartz syenites, and quartz monzonites. The zoning displayed by the alteration and mineralization comprises: (1) an upper light-colored zone of argillic, carbonate, and pyrite alteration and silicification that is locally associated with pyrite and gold mineralization, (2) a central dark-colored zone of diopside, fluorapatite-magnetite, phlogopite, and garnet alteration associated with fluorapatite-magnetite mineralization, and (3) a lowermost light-colored zone of extensive albite alteration. The Cu-Au and pyrite orebodies are peripheral to the Fe-oxide-apatite deposits in this area and overlie the iron orebodies, including the Meishan Cu-Au deposit in the northern Ningwu basin and the pyrite deposits in the central Ningwu basin. The δ34S values of sulfides from the Fe-oxide-apatite, Cu-Au, and pyrite deposits in the Ningwu basin show large variation, with a mixed sulfur source, including magmatic sulfur and/or a mixture of sulfur derived from a magmatic component, country rock, and thermochemical reduction of sulfate at 200-300 °C. The ore-forming fluids associated with iron mineralization were derived mainly from magmatic fluids, and the late-stage ore-forming fluids related to Cu-Au and pyrite mineralization may have formed by the introduction of cooler meteoric water to the system. The Fe-oxide-apatite, Cu-Au, and pyrite deposits of the Ningwu basin formed in an extensional environment and are associated with a large-scale magmatic

  7. Soft-sediment deformation structures interpreted as seismites in the uppermost Aptian to lowermost Albian transgressive deposits of the Chihuahua basin (Mexico)

    USGS Publications Warehouse

    Blanc, E.J.-P.; Blanc-Aletru, M. -C.; Mojon, P.-O.

    1997-01-01

    Several levels of soft-sediment deformation structures (s.-s.d.s.) cut by synsedimentary normal faults have been observed in the transition beds between the "Las Vigas" and "La Virgen" formations (Cretaceous) in the northeastern part of the Chihuahua basin in Mexico. These structures consisted of four kinds of motifs (floating breccias, flame-like structures, large pillow structures, and wavy structures). They are restricted to five "stratigraphic" levels (??1-??5) and surrounded by undeformed beds in fluvio-lacustrine and tidal deposits and can be traced over a distance of several hundred meters. This deformation is interpreted to have resulted from the combined effects of liquidization and shear stress in soft-sediments due to local earthquakes in the area which could have been generated during the rifting stage of the Chihuahua basin. New constraints placed on the age of the "Las Vigas" Formation (bracketed by Late Aptian charophytes at the bottom and colomiellids of late Aptian to earliest Albian age at the top) suggest that this synrift tectonism lasted at least until the end of the Aptian.

  8. Soft-sediment deformation structures interpreted as seismites in the uppermost Aptian to lowermost Albian transgressive deposits of the Chihuahua basin (Mexico)

    USGS Publications Warehouse

    Blanc, E.J.-P.; Blanc-Aletru, M. -C.; Mojon, P.-O.

    1998-01-01

    Several levels of soft-sediment deformation structures (s.-s.d.s.) cut by synsedimentary normal faults have been observed in the transition beds between the "Las Vigas" and "La Virgen" formations (Cretaceous) in the northeastern part of the Chihuahua basin in Mexico. These structures consisted of four kinds of motifs (floating breccias, flame-like structures, large pillow structures, and wavy structures). They are restricted to five "stratigraphie" levels (Z1-Z5) and surrounded by undeformed beds in fluvio-lacustrine and tidal deposits and can be traced over a distance of several hundred meters. This deformation is interpreted to have resulted from the combined effects of liquidization and shear stress in soft-sediments due to local earthquakes in the area which could have been generated during the rifting stage of the Chihuahua basin. New constraints placed on the age of the "Las Vigas" Formation (bracketed by Late Aptian charophytes at the bottom and colomiellids of late Aptian to earliest Albian age at the top) suggest that this synrift tectonism lasted at least until the end of the Aptian. ?? Springer-Verlag 1998.

  9. Soft-sediment deformation structures interpreted as seismites in the uppermost Aptian to lowermost Albian transgressive deposits of the Chihuahua basin (Mexico)

    NASA Astrophysics Data System (ADS)

    Blanc, E. J.-P.; Blanc-Alétru, M.-C.; Mojon, P.-O.

    Several levels of soft-sediment deformation structures (s.-s.d.s.) cut by synsedimentary normal faults have been observed in the transition beds between the ``Las Vigas'' and ``La Virgen'' formations (Cretaceous) in the northeastern part of the Chihuahua basin in Mexico. These structures consisted of four kinds of motifs (floating breccias, flame-like structures, large pillow structures, and wavy structures). They are restricted to five ``stratigraphic'' levels (Σ1-Σ5) and surrounded by undeformed beds in fluvio-lacustrine and tidal deposits and can be traced over a distance of several hundred meters. This deformation is interpreted to have resulted from the combined effects of liquidization and shear stress in soft-sediments due to local earthquakes in the area which could have been generated during the rifting stage of the Chihuahua basin. New constraints placed on the age of the ``Las Vigas'' Formation (bracketed by Late Aptian charophytes at the bottom and colomiellids of late Aptian to earliest Albian age at the top) suggest that this synrift tectonism lasted at least until the end of the Aptian.

  10. Lower Cretaceous Puez key-section in the Dolomites - towards the mid-Cretaceous super-greenhouse

    NASA Astrophysics Data System (ADS)

    Lukeneder, A.; Halásová, E.; Rehákova, D.; Józsa, Š.; Soták, J.; Kroh, A.; Jovane, L.; Florindo, F.; Sprovieri, M.; Giorgioni, M.; Lukeneder, S.

    2012-04-01

    Investigations on different fossil groups in addition to isotopic, paleomagnetic and geochemical analysis are combined to extract the Early Cretaceous history of environmental changes, as displayed by the sea level and climate changes. Results on biostratigraphy are integrated with other dating methods as magnetostraigraphy, correlation and cyclostratigraphy. The main investigation topics of the submitted project within the above-described framework are the biostratigraphic (Lukeneder and Aspmair, 2006, 2012), palaeoecological (Lukeneder, 2008, 2012), palaeobiogeographic, lithostratigraphic (Lukeneder, 2010, 2011), cyclostratigraphic and magnetostratigraphic development of the Early Cretaceous in the Puez area. The main sections occur in expanded outcrops located on the southern margin of the Puez Plateau, within the area of the Puez-Geisler Natural Park, in the northern part of the Dolomites (South Tyrol, North Italy). The cephalopod, microfossil and nannofossil faunas and floras from the marly limestones to marls here indicates Hauterivian to Albian/Cenomanian age. Oxygen isotope values from the Lower Cretaceous Puez Formation show a decreasing trend throughout the log, from -1.5‰ in the Hauterivian to -4.5‰ in the Albian/Cenomanian. The decreasing values mirror an increasing trend in palaeotemperatures from ~ 15-18°C in the Hauterivian up to ~25-30 °C in the Albian/Cenomanian. The trend probably indicates the positive shift in temperature induced by the well known Mid Cretaceous Ocean warming (e.g., Super-Greenhouse). The cooperative project (FWF project P20018-N10; 22 international scientists): An integrative high resolution project. Macro- and microfossils, isotopes, litho-, cyclo-, magneto-and biostratigraphy as tools for investigating the Lower Cretaceous within the Dolomites (Southern Alps, Northern Italy) -The Puez area as a new key region of the Tethyan Realm), is on the way since 2008 by the Natural History Museum in Vienna and the 'Naturmuseum S

  11. Complexity of In-situ zircon U-Pb-Hf isotope systematics during arc magma genesis at the roots of a Cretaceous arc, Fiordland, New Zealand

    NASA Astrophysics Data System (ADS)

    Milan, L. A.; Daczko, N. R.; Clarke, G. L.; Allibone, A. H.

    2016-11-01

    Zircons from seventeen samples of Western Fiordland Orthogneiss (WFO) diorites and three samples of country rock (two schists and one Darran Suite diorite) from the lowermost exposed sections of the Median Batholith, Fiordland, New Zealand, were analysed for in-situ U-Pb and Hf-isotopes. The WFO represents the deeper levels of Early Cretaceous continental arc magmatism on the Pacific margin of Gondwana, marking the final stage of long-lived arc magmatism on the margin spanning the Palaeozoic. The WFO plutons were emplaced at high-P (mid to deep crust at c. 8-12 kbar) between 124 and 114 Ma. Minor very high-P (c. 18 kbar) WFO eclogite and omphacite granulite facies orthogneiss (Breaksea Orthogneiss) are inferred to have crystallised in the base of thickened crust at c. 124 Ma. Zircons from the Breaksea Orthogneiss are considered to be variably affected by Pb-loss due to emplacement of the adjacent (Malaspina) Pluton at c. 114 Ma. By identifying Pb-loss, magmatic ages were able to be inferred in respect to apparent Pb-loss ages. Hf isotope data for the WFO define an excursion to less radiogenic Hf isotope ratios with time, reflecting increased recycling of an old source component. Peaks at c. 555, 770 and 2480 Ma, determine the age spectra of inherited populations of zircons within the WFO. This contrasts with detrital zircon patterns in country rocks of the Takaka terrane, which include peaks at c. 465 Ma, and 1250-900 Ma that are absent in the WFO inheritance pattern. These results indicate a previously unrecognised Precambrian lower crustal component of New Zealand. Recycling of this lower crust became increasingly important as a source for the final stage or Mesozoic arc magmatism along this segment of the palaeo-Pacific margin of Gondwana.

  12. Depth-Transect Across the Cretaceous/Paleogene Boundary in the SE Atlantic Ocean: New Insights From the Benthic Foraminiferal Record.

    NASA Astrophysics Data System (ADS)

    Alegret, L.; Thomas, E.

    2014-12-01

    The response of benthic foraminifera to the Cretaceous/Paleogene (K/Pg) impact event is key to reconstruct paleoenvironmental changes and the specific mechanisms triggering faunal turnover in the marine realm, especially because this group did not suffer significant extinction (thus shows a continuous record across the boundary), and because its faunal turnover shows paleobiogeographic differences that remain to be explained. The K/Pg transition was cored along a depth transect on ODP Leg 208 (Walvis Ridge, eastern South Atlantic Ocean), where the K/Pg boundary is marked by a sharp transition from Maastrichtian clay-bearing nannofossil ooze to Danian dark reddish to brown, clay-rich nannofossil-ooze and clay. We analysed the benthic foraminiferal turnover at Sites 1262 (upper abyssal paleodepth; present depth 4755 m) and 1267 (lower bathyal; present depth 4355 m). The record at 1267 appears to be more complete than at 1262, especially the interval just at the K/Pg boundary (Westerhold et al. 2008). The percentage of infaunal taxa (living buried within the sediment) was slightly lower at Site 1262 than at Site 1267, as expected for a deeper, more oligotrophic setting where the scarce food available is preferentially taken up by epifaunal morphogroups. The dominance of calcareous taxa suggests that both sites were located above the CCD throughout the K/Pg transition. Benthic assemblages from both sites are similar, but the species Tappanina eouvigeriniformis is common at Site 1267, as at lower bathyal Southern Ocean Site 690, but is absent at Site 1262. Extinction rates across the K/Pg boundary were very low at both sites. Morphogroup composition did not significantly change across the boundary at Site 1262, but the increase in % infaunal morphogroups and benthic foraminiferal accumulation rates at Site 1267 point to an enhanced food supply immediately after the impact. These results suggest that a short interval is missing from the lowermost Danian at Site 1262.

  13. New angiosperm genera from cretaceous sections of northern Asia

    NASA Astrophysics Data System (ADS)

    Alekseev, P. I.; Herman, A. B.; Shchepetov, S. V.

    2014-11-01

    The Cretaceous floras of northern Asia represented by the Antibes flora of the Chulym-Yenisei area of West Siberia, Kaivayam flora of northwestern Kamchatka, and Grebenka flora of the Anadyr River basin in Chukotka are reviewed. These floras characterize the Late Cretaceous Siberian-Canadian Paleofloristic Region, where they developed in humid warm temperate climatic environments. Two new angiosperm genera are described: genus Chachlovia P. Alekseev et Herman with species C. kiyensis P. Alekseev, sp. nov. and C. dombeyopsoida (Herman) Herman, comb. nov. and genus Soninia Herman et Shczepetov with species S. asiatica P. Alekseev, sp. nov. and S. integerrima Herman et Shczepetov, sp. nov. The species Chachlovia kiyensis and Soninia asiatica were characteristic components of the Antibes flora. Chachlovia dombeyopsoida and Soninia integerrima were constituents of the Kaivayam and Grebenka floras, respectively.

  14. Palaeogeographic regulation of glacial events during the Cretaceous supergreenhouse

    NASA Astrophysics Data System (ADS)

    Ladant, Jean-Baptiste; Donnadieu, Yannick

    2016-09-01

    The historical view of a uniformly warm Cretaceous is being increasingly challenged by the accumulation of new data hinting at the possibility of glacial events, even during the Cenomanian-Turonian (~95 Myr ago), the warmest interval of the Cretaceous. Here we show that the palaeogeography typifying the Cenomanian-Turonian renders the Earth System resilient to glaciation with no perennial ice accumulation occurring under prescribed CO2 levels as low as 420 p.p.m. Conversely, late Aptian (~115 Myr ago) and Maastrichtian (~70 Myr ago) continental configurations set the stage for cooler climatic conditions, favouring possible inception of Antarctic ice sheets under CO2 concentrations, respectively, about 400 and 300 p.p.m. higher than for the Cenomanian-Turonian. Our simulations notably emphasize that palaeogeography can crucially impact global climate by modulating the CO2 threshold for ice sheet inception and make the possibility of glacial events during the Cenomanian-Turonian unlikely.

  15. What Was the Oxygen Isotopic Composition of Cretaceous Arctic Precipitation?

    NASA Astrophysics Data System (ADS)

    Ludvigson, G. A.; Gonzalez, L. A.; Lollar, J. C.; McCarthy, P. J.

    2010-12-01

    Siderite-bearing paleosols in the Albian Nanushuk Fm, North Slope, Alaska (AK; > 75°N paleolatitude) were used to pioneer isotopic studies of Arctic precipitation in the Cretaceous greenhouse world. From siderite δ18O values ranging between -17.6‰ to -14.3‰ VPDB, Ufnar et al. (2004; GSA Bull 116:463-473) estimated paleoprecipitation δ18O values for North Slope AK as ranging from -23.0‰ to -19.5‰ VSMOW. This characterization of Cretaceous Arctic rainfall with very light δ18O values led to interpretation of an intensified Cretaceous hydrologic cycle, with increased rainout of 18O from atmospheric moisture during poleward transport from the tropics (Ufnar et al., 2002, Palaeo-3 188:51-71). However, using the GENESIS 2.3 Earth System model with water isotope module, Poulsen et al. (2007; Geology 35:199-202) predicted siderite δ18O values for North Slope AK as ranging between -7 to -8‰ VPDB for 2x and 8x CO2 simulations; a significant discrepancy with the published data. There is uncertainty about whether the light siderite δ18O values reported from the Nanushuk Fm are actually representative of zonal mean Arctic paleoprecipitation, or a result of local orographic effects related to the ancestral Brooks Range, or even possibly effects of a dilute freshwater cap on the Arctic Ocean. In order to address uncertainties, we expanded the paleogeographic range of sampling in the Cretaceous Colville foreland basin in North Slope AK. The data of Ufnar et al. (2004) were produced from the USGS Grandstand #1 core, located about 80 km from the Brooks Range thrust front. In order to test the idea of local orographic influences on data from the Grandstand #1 core, we produced data from the Nanushuk Fm in the USGS Tunalik and Wainwright cores from the National Petroleum Reserve, AK (NPRA), drillsites located from 210 to 240 km from the Brooks Range thrust front. Siderite horizons from the Wainwright core produce meteoric sphaerosiderite line (MSL) trends with δ18O

  16. Early environmental effects of the terminal Cretaceous impact

    NASA Technical Reports Server (NTRS)

    Gilmour, Iain; Wolbach, Wendy S.; Anders, Edward

    1988-01-01

    The environmental aftereffects of the terminal Cretaceous impact are examined on the basis of the carbon and nitrogen geochemistry in the basal layer of the K-T boundary clay at Woodside Creek, New Zealand. It is shown that organic carbon and nitrogen at this level are enriched by 15 and 20 times Cretaceous values, respectively. Also, it is found that the N abundances and, to a lesser extent, the organic C abundances are closely correlated with the Ir abundances. The changes in carbon and nitrogen content through the basal layer are outlined, focusing on the possible environmental conditions which could have caused enrichment. In addition, consideration is given to the soot and pyrotoxin content. Possible scenarios for the K-T event and the importance of selective extinction are discussed.

  17. An Early Cretaceous heterodontosaurid dinosaur with filamentous integumentary structures.

    PubMed

    Zheng, Xiao-Ting; You, Hai-Lu; Xu, Xing; Dong, Zhi-Ming

    2009-03-19

    Ornithischia is one of the two major groups of dinosaurs, with heterodontosauridae as one of its major clades. Heterodontosauridae is characterized by small, gracile bodies and a problematic phylogenetic position. Recent phylogenetic work indicates that it represents the most basal group of all well-known ornithischians. Previous heterodontosaurid records are mainly from the Early Jurassic period (205-190 million years ago) of Africa. Here we report a new heterodontosaurid, Tianyulong confuciusi gen. et sp. nov., from the Early Cretaceous period (144-99 million years ago) of western Liaoning Province, China. Tianyulong extends the geographical distribution of heterodontosaurids to Asia and confirms the clade's previously questionable temporal range extension into the Early Cretaceous period. More surprisingly, Tianyulong bears long, singular and unbranched filamentous integumentary (outer skin) structures. This represents the first confirmed report, to our knowledge, of filamentous integumentary structures in an ornithischian dinosaur. PMID:19295609

  18. An Early Cretaceous heterodontosaurid dinosaur with filamentous integumentary structures.

    PubMed

    Zheng, Xiao-Ting; You, Hai-Lu; Xu, Xing; Dong, Zhi-Ming

    2009-03-19

    Ornithischia is one of the two major groups of dinosaurs, with heterodontosauridae as one of its major clades. Heterodontosauridae is characterized by small, gracile bodies and a problematic phylogenetic position. Recent phylogenetic work indicates that it represents the most basal group of all well-known ornithischians. Previous heterodontosaurid records are mainly from the Early Jurassic period (205-190 million years ago) of Africa. Here we report a new heterodontosaurid, Tianyulong confuciusi gen. et sp. nov., from the Early Cretaceous period (144-99 million years ago) of western Liaoning Province, China. Tianyulong extends the geographical distribution of heterodontosaurids to Asia and confirms the clade's previously questionable temporal range extension into the Early Cretaceous period. More surprisingly, Tianyulong bears long, singular and unbranched filamentous integumentary (outer skin) structures. This represents the first confirmed report, to our knowledge, of filamentous integumentary structures in an ornithischian dinosaur.

  19. A gigantic feathered dinosaur from the lower cretaceous of China.

    PubMed

    Xu, Xing; Wang, Kebai; Zhang, Ke; Ma, Qingyu; Xing, Lida; Sullivan, Corwin; Hu, Dongyu; Cheng, Shuqing; Wang, Shuo

    2012-04-04

    Numerous feathered dinosaur specimens have recently been recovered from the Middle-Upper Jurassic and Lower Cretaceous deposits of northeastern China, but most of them represent small animals. Here we report the discovery of a gigantic new basal tyrannosauroid, Yutyrannus huali gen. et sp. nov., based on three nearly complete skeletons representing two distinct ontogenetic stages from the Lower Cretaceous Yixian Formation of Liaoning Province, China. Y. huali shares some features, particularly of the cranium, with derived tyrannosauroids, but is similar to other basal tyrannosauroids in possessing a three-fingered manus and a typical theropod pes. Morphometric analysis suggests that Y. huali differed from tyrannosaurids in its growth strategy. Most significantly, Y. huali bears long filamentous feathers, thus providing direct evidence for the presence of extensively feathered gigantic dinosaurs and offering new insights into early feather evolution.

  20. Mummified precocial bird wings in mid-Cretaceous Burmese amber.

    PubMed

    Xing, Lida; McKellar, Ryan C; Wang, Min; Bai, Ming; O'Connor, Jingmai K; Benton, Michael J; Zhang, Jianping; Wang, Yan; Tseng, Kuowei; Lockley, Martin G; Li, Gang; Zhang, Weiwei; Xu, Xing

    2016-01-01

    Our knowledge of Cretaceous plumage is limited by the fossil record itself: compression fossils surrounding skeletons lack the finest morphological details and seldom preserve visible traces of colour, while discoveries in amber have been disassociated from their source animals. Here we report the osteology, plumage and pterylosis of two exceptionally preserved theropod wings from Burmese amber, with vestiges of soft tissues. The extremely small size and osteological development of the wings, combined with their digit proportions, strongly suggests that the remains represent precocial hatchlings of enantiornithine birds. These specimens demonstrate that the plumage types associated with modern birds were present within single individuals of Enantiornithes by the Cenomanian (99 million years ago), providing insights into plumage arrangement and microstructure alongside immature skeletal remains. This finding brings new detail to our understanding of infrequently preserved juveniles, including the first concrete examples of follicles, feather tracts and apteria in Cretaceous avialans. PMID:27352215

  1. Selectivity of end-Cretaceous marine bivalve extinctions.

    PubMed

    Jablonski, D; Raup, D M

    1995-04-21

    Analyses of the end-Cretaceous or Cretaceous-Tertiary mass extinction show no selectivity of marine bivalve genera by life position (burrowing versus exposed), body size, bathymetric position on the continental shelf, or relative breadth of bathymetric range. Deposit-feeders as a group have significantly lower extinction intensities than suspension-feeders, but this pattern is due entirely to low extinction in two groups (Nuculoida and Lucinoidea), which suggests that survivorship was not simply linked to feeding mode. Geographically widespread genera have significantly lower extinction intensities than narrowly distributed genera. These results corroborate earlier work suggesting that some biotic factors that enhance survivorship during times of lesser extinction intensities are ineffectual during mass extinctions.

  2. Selectivity of end-Cretaceous marine bivalve extinctions

    NASA Technical Reports Server (NTRS)

    Jablonski, D.; Raup, D. M.

    1995-01-01

    Analyses of the end-Cretaceous or Cretaceous-Tertiary mass extinction show no selectivity of marine bivalve genera by life position (burrowing versus exposed), body size, bathymetric position on the continental shelf, or relative breadth of bathymetric range. Deposit-feeders as a group have significantly lower extinction intensities than suspension-feeders, but this pattern is due entirely to low extinction in two groups (Nuculoida and Lucinoidea), which suggests that survivorship was not simply linked to feeding mode. Geographically widespread genera have significantly lower extinction intensities than narrowly distributed genera. These results corroborate earlier work suggesting that some biotic factors that enhance survivorship during times of lesser extinction intensities are ineffectual during mass extinctions.

  3. Mummified precocial bird wings in mid-Cretaceous Burmese amber

    PubMed Central

    Xing, Lida; McKellar, Ryan C.; Wang, Min; Bai, Ming; O'Connor, Jingmai K.; Benton, Michael J.; Zhang, Jianping; Wang, Yan; Tseng, Kuowei; Lockley, Martin G.; Li, Gang; Zhang, Weiwei; Xu, Xing

    2016-01-01

    Our knowledge of Cretaceous plumage is limited by the fossil record itself: compression fossils surrounding skeletons lack the finest morphological details and seldom preserve visible traces of colour, while discoveries in amber have been disassociated from their source animals. Here we report the osteology, plumage and pterylosis of two exceptionally preserved theropod wings from Burmese amber, with vestiges of soft tissues. The extremely small size and osteological development of the wings, combined with their digit proportions, strongly suggests that the remains represent precocial hatchlings of enantiornithine birds. These specimens demonstrate that the plumage types associated with modern birds were present within single individuals of Enantiornithes by the Cenomanian (99 million years ago), providing insights into plumage arrangement and microstructure alongside immature skeletal remains. This finding brings new detail to our understanding of infrequently preserved juveniles, including the first concrete examples of follicles, feather tracts and apteria in Cretaceous avialans. PMID:27352215

  4. Extraterrestrial cause for the Cretaceous-Tertiary extinction

    NASA Technical Reports Server (NTRS)

    Alvarez, L. W.; Alvarez, W.; Asaro, F.; Michel, H. V.

    1980-01-01

    Direct physical evidence is presented for an unusual event at exactly the time of extinctions in the planktonic realm. Deep-sea limestones exposed in Italy, Denmark, and New Zealand indicate iridium increases of about 30, 160, and 20 times, respectively, above the background level at precisely the time of the Cretaceous-Tertiary extinctions, 65 million years ago. Reasons are given that this iridium is of extraterrestrial origin, but did not come from a nearby supernova. A hypothesis is set forth which accounts for the extinctions and the iridium observations. One prediction of this hypothesis is verified, that the chemical composition of the boundary clay, which is thought to come from the stratospheric dust, is markedly different from that of clay mixed with the chemically similar Cretaceous and Tertiary limestones.

  5. Definition of Greater Gulf Basin Lower Cretaceous and Upper Cretaceous Lower Cenomanian Shale Gas Assessment Unit, United States Gulf of Mexico Basin Onshore and State Waters

    USGS Publications Warehouse

    Dennen, Kristin O.; Hackley, Paul C.

    2012-01-01

    An assessment unit (AU) for undiscovered continuous “shale” gas in Lower Cretaceous (Aptian and Albian) and basal Upper Cretaceous (lower Cenomanian) rocks in the USA onshore Gulf of Mexico coastal plain recently was defined by the U.S. Geological Survey (USGS). The AU is part of the Upper Jurassic-Cretaceous-Tertiary Composite Total Petroleum System (TPS) of the Gulf of Mexico Basin. Definition of the AU was conducted as part of the 2010 USGS assessment of undiscovered hydrocarbon resources in Gulf Coast Mesozoic stratigraphic intervals. The purpose of defining the Greater Gulf Basin Lower Cretaceous Shale Gas AU was to propose a hypothetical AU in the Cretaceous part of the Gulf Coast TPS in which there might be continuous “shale” gas, but the AU was not quantitatively assessed by the USGS in 2010.

  6. Tectonic Drift, Climate, and Paleoenvironment of Angola Since the Cretaceous

    NASA Astrophysics Data System (ADS)

    Jacobs, L. L.; Polcyn, M. J.; Mateus, O.; Schulp, A.; Ferguson, K.; Scotese, C.; Jacobs, B. F.; Strganac, C.; Vineyard, D.; Myers, T. S.; Morais, M. L.

    2010-12-01

    Africa is the only continent that now straddles arid zones located beneath the descending limbs of both the northern and southern Hadley cells, and it has done so since it became a distinct continent in the Early Cretaceous. Since that time, Africa has drifted tectonically some 12 degrees north and rotated approximately 45 degrees counterclockwise. This changing latitudinal setting and position of the landmass under the relatively stable Hadley Cells is manifested as southward migration of climatic zones over the past 132 million years. Data from kerogen, X-ray diffraction analysis of sedimentary matrix, carbon isotopes from shell samples and tooth enamel,new 40Ar/39Ar radiometric dates, pollen and plant macrofossils, and fossil vertebrates indicate a productive upwelling system adjacent to a coastal desert since the opening of the South Atlantic Ocean; however, the position of the coastal desert has migrated southward as Africa drifted north, resulting in today's Skeleton Coast and Benguela Current. This migration has had a profound effect on the placement of the West African coast relative to areas of high marine productivity and resulting extensive hydrocarbon deposits, on the placement of arid zones relative to the continent especially the Skeleton Coast desert, on the climatic history of the Congo Basin (which shows a Late Cretaceous decrease in aridity based on the relative abundance of analcime in the Samba core), and in reducing the southern temperate region of Africa from 17% of continental area during the Cretaceous to 2% today. We show here that these related geographic and environmental changes drove ecological and evolutionary adjustments in southern African floras and faunas, specifically with respect to the distribution of anthropoid primates, the occurrence of modern relicts such as the gnetalean Welwitschia mirabilis, endemism as in the case of ice plants, and mammalian adaption to an open environment as in springhares. Africa's tectonic drift

  7. Paleoenvironments of the Jurassic and Cretaceous Oceans: Selected Highlights

    NASA Astrophysics Data System (ADS)

    Ogg, J. G.

    2007-12-01

    There are many themes contributing to the sedimentation history of the Mesozoic oceans. This overview briefly examines the roles of the carbonate compensation depth (CCD) and the associated levels of atmospheric carbon dioxide, of the evolution of marine calcareous microplankton, of major transgressive and regressive trends, and of super-plume eruptions. Initiation of Atlantic seafloor spreading in the Middle Jurassic coincided with an elevated carbonate compensation depth (CCD) in the Pacific-Tethys mega-ocean. Organic-rich sediments that would become the oil wealth of regions from Saudi Arabia to the North Sea were deposited during a continued rise in CCD during the Oxfordian-early Kimmeridgian, which suggests a possible increase in carbon dioxide release by oceanic volcanic activity. Deep-sea deposits in near-equatorial settings are dominated by siliceous shales or cherts, which reflect the productivity of siliceous microfossils in the tropical surface waters. The end-Jurassic explosion in productivity by calcareous microplankton contributed to the lowering of the CCD and onset of the chalk ("creta") deposits that characterize the Tithonian and lower Cretaceous in all ocean basins. During the mid-Cretaceous, the eruption of enormous Pacific igneous provinces (Ontong Java Plateau and coeval edifices) increased carbon dioxide levels. The resulting rise in CCD terminated chalk deposition in the deep sea. The excess carbon was progressively removed in widespread black-shale deposits in the Atlantic basins and other regions - another major episode of oil source rock. A major long-term transgression during middle and late Cretaceous was accompanied by extensive chalk deposition on continental shelves and seaways while the oceanic CCD remained elevated. Pacific guyots document major oscillations (sequences) of global sea level superimposed on this broad highstand. The Cretaceous closed with a progressive sea-level regression and lowering of the CCD that again enabled

  8. Major wildfires at the Cretaceous-Tertiary boundary

    NASA Astrophysics Data System (ADS)

    Anders, Edward; Wolbach, Wendy S.; Gilmour, Iain

    The current status of the reconstruction of major biomass fire events at the Cretaceous-Tertiary boundary is discussed. Attention is given to the sources of charcoal and soot, the identification of biomass and fossil carbon, and such ignition-related problems as delated fires, high atmospheric O2 content, ignition mechanisms, and the greenhouse-effect consequences of fire on the scale envisioned. Consequences of these factors for species extinction patterns are noted.

  9. The Cretaceous opening of the South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Granot, Roi; Dyment, Jérôme

    2015-03-01

    The separation of South America from Africa during the Cretaceous is poorly understood due to the long period of stable polarity of the geomagnetic field, the Cretaceous Normal Superchron (CNS, lasted between ∼121 and 83.6 Myr ago). We present a new identification of magnetic anomalies located within the southern South Atlantic magnetic quiet zones that have arisen due to past variations in the strength of the dipolar geomagnetic field. Using these anomalies, together with fracture zone locations, we calculate the first set of magnetic anomalies-based finite rotation parameters for South America and Africa during that period. The kinematic solutions are generally consistent with fracture zone traces and magnetic anomalies outside the area used to construct them. The rotations indicate that seafloor spreading rates increased steadily throughout most of the Cretaceous and decreased sharply at around 80 Myr ago. A change in plate motion took place in the middle of the superchron, roughly 100 Myr ago, around the time of the final breakup (i.e., separation of continental-oceanic boundary in the Equatorial Atlantic). Prominent misfit between the calculated synthetic flowlines (older than Anomaly Q1) and the fracture zones straddling the African Plate in the central South Atlantic could only be explained by a combination of seafloor asymmetry and internal dextral motion (<100 km) within South America, west of the Rio Grande fracture zone. This process has lasted until ∼92 Myr ago after which both Africa and South America (south of the equator) behaved rigidly. The clearing of the continental-oceanic boundaries within the Equatorial Atlantic Gateway was probably completed by ∼95 Myr ago. The clearing was followed by a progressive widening and deepening of the passageway, leading to the emergence of north-south flow of intermediate and deep-water which might have triggered the global cooling of bottom water and the end for the Cretaceous greenhouse period.

  10. Major wildfires at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Anders, Edward; Wolbach, Wendy S.; Gilmour, Iain

    1991-01-01

    The current status of the reconstruction of major biomass fire events at the Cretaceous-Tertiary boundary is discussed. Attention is given to the sources of charcoal and soot, the identification of biomass and fossil carbon, and such ignition-related problems as delated fires, high atmospheric O2 content, ignition mechanisms, and the greenhouse-effect consequences of fire on the scale envisioned. Consequences of these factors for species extinction patterns are noted.

  11. Geography of end-Cretaceous marine bivalve extinctions.

    PubMed

    Raup, D M; Jablonski, D

    1993-05-14

    Analysis of the end-Cretaceous mass extinction, based on 3514 occurrences of 340 genera of marine bivalves (Mollusca), suggests that extinction intensities were uniformly global; no latitudinal gradients or other geographic patterns are detected. Elevated extinction intensities in some tropical areas are entirely a result of the distribution of one extinct group of highly specialized bivalves, the rudists. When rudists are omitted, intensities at those localities are statistically indistinguishable from those of both the rudist-free tropics and extratropical localities.

  12. Geography of end-Cretaceous marine bivalve extinctions

    NASA Technical Reports Server (NTRS)

    Raup, David M.; Jablonski, David

    1993-01-01

    Analysis of the end-Cretaceous mass extinction, based on 3514 occurrences of 340 genera of marine bivalves (Mollusca), suggests that extinction intensities were uniformly global; no latitudinal gradients or other geographic patterns are detected. Elevated extinction intensities in some tropical areas are entirely a result of the distribution of one extinct group of highly specialized bivalves, the rudists. When rudists are omitted, intensities at those localities are statistically indistinguishable from those of both the rudist-free tropics and extratropical localities.

  13. Late Cretaceous terrestrial vertebrate fauna, North Slope, Alaska

    SciTech Connect

    Clemens, W.A.; Allison, C.W.

    1985-01-01

    Closely related terrestrial vertebrates in Cretaceous mid-latitude (30/sup 0/ to 50/sup 0/) faunas of North America and Asia as well as scattered occurrences of footprints and skin impressions suggested that in the Late Mesozoic the Alaskan North Slope supported a diverse fauna. In 1961 abundant skeletal elements of Cretaceous, Alaskan dinosaurs (hadrosaurids) were discovered by the late R.L. Liscomb. This material is being described by K.L. Davies. Additional fossils collected by E.M. Brouwers and her associates include skeletal elements of hadrosaurid and carnosaurian (.tyrannosaurid) dinosaurs and other vertebrates. The fossil locality on the North Slope is not at about 70/sup 0/N. In the Late Cretaceous the members of this fauna were subject to the daylight regime and environment at a paleolatitude closer to 80/sup 0/N. Current hypotheses attributing extinctions of dinosaurs and some other terrestrial vertebrates to impact of an extraterrestrial object cite periods of darkness, decreased temperature (possibly followed by extreme warming) and acid rain as the direct causes of their demise. Unless members of this North Slope fauna undertook long-distance migrations, their high latitude occurrence indicates groups of dinosaurs and other terrestrial vertebrates regularly tolerated months of darkness.

  14. Cretaceous sauropod diversity and taxonomic succession in South America

    NASA Astrophysics Data System (ADS)

    de Jesus Faria, Caio César; Riga, Bernardo González; dos Anjos Candeiro, Carlos Roberto; da Silva Marinho, Thiago; David, Leonardo Ortiz; Simbras, Felipe Medeiros; Castanho, Roberto Barboza; Muniz, Fellipe Pereira; Gomes da Costa Pereira, Paulo Victor Luiz

    2015-08-01

    The South American sauropod dinosaurs fossil record is one of the world's most relevant for their abundance (51 taxa) and biogeographical implications. Their historical biogeography was influenced by the continental fragmentation of Gondwana. The scenery of biogeographic and stratigraphic distributions can provide new insight into the causes of the evolution of the sauropods in South America. One of the most important events of the sauropods evolution is the progressive replacement of Diplodocimorpha by the Titanosauriformes during the early Late Cretaceous. The fluctuation of the sea levels is frequently related to the diversity of sauropods, but it is necessary to take into account the geological context in each continent. During the Maastrichthian, a global sea level drop has been described; in contrast, in South America there was a significant rise in sea level (named 'Atlantic transgression') which is confirmed by sedimentary sequences and the fossil record of marine vertebrates. This process occurred during the Maastrichtian, when the hadrosaurs arrived from North America. The titanosaurs were amazingly diverse during the Late Cretaceous, both in size and morphology, but they declined prior to their final extinction in the Cretaceous/Paleocene boundary (65.5Yrs).

  15. Cretaceous shallow drilling, US Western Interior: Core research

    SciTech Connect

    Arthur, M.A.

    1993-02-17

    This project is a continuing multidisciplinary study of middle to Upper Cretaceous marine carbonate and clastic rocks in the Utah-Colorado-Kansas corridor of the old Cretaceous seaway that extended from the Gulf Coast to the Arctic during maximum Cretaceous transgressions. It is collaborative between in the US Geological Survey (W.E. Dean, P.I.) and University researchers led by The Pennsylvania State University(M.A. Arthur, P.I.) and funded by DOE and the USGS, in part. Research focusses on the Greenhom, Niobrara and lower Pierre Shale units and their equivalents, combining biostratigraphic/paleoecologic studies, inorganic, organic and stable isotopic geochemical studies, mineralogical investigations and high-resolution geophysical logging. This research requires unweathered samples and continuous smooth exposures'' in the form of cores from at least 4 relatively shallow reference holes (i.e. < 1000m) in transect from east to west across the basin. The major initial effort was recovery in Year 1 of the project of continuous cores from each site in the transect. This drilling provided samples and logs of strata ranging from pelagic sequences that contain organic-carbon-rich marine source rocks to nearshore coal-bearing units. This transect also will provide information on the extent of thermal maturation and migration of hydrocarbons in organic-carbon-rich strata along a burial gradient.

  16. Source rock potential of middle Cretaceous rocks in southwestern Montana

    SciTech Connect

    Dyman, T.S.; Palacas, J.G.; Tysdal, R.G.; Perry, W.J. Jr.; Pawlewicz, M.J.

    1996-08-01

    The middle Cretaceous in southwestern Montana is composed of a marine and nonmarine succession of predominantly clastic rocks that were deposited along the western margin of the Western Interior Seaway. In places, middle Cretaceous rocks contain appreciable total organic carbon (TOC), such as 5.59% for the Mowry Shale and 8.11% for the Frontier Formation in the Madison Range. Most samples, however, exhibit less than 1.0% TOC. The genetic or hydrocarbon potential (S{sub 1}+S{sub 2}) of all the samples analyzed, except one, yield less than 1 mg HC/g rock, strongly indicating poor potential for generating commercial amounts of hydrocarbons. Out of 51 samples analyzed, only one (a Thermopolis Shale sample from the Snowcrest Range) showed a moderate petroleum potential of 3.1 mg HC/g rock. Most of the middle Cretaceous samples are thermally immature to marginally mature, with vitrinite reflectance ranging from about 0.4 to 0.6% R{sub o}. Maturity is high in the Pioneer Mountains, where vitrinite reflectance averages 3.4% R{sub o}, and at Big Sky, Montana, where vitrinite reflectance averages 2.5% R{sub o}. At both localities, high R{sub o} values are due to local heat sources, such as the Pioneer batholith in the Pioneer Mountains.

  17. Source rock evaluation of Cretaceous and Tertiary series in Tunisia

    SciTech Connect

    Oudin, J. )

    1988-08-01

    Tunisia represents a mature hydrocarbon province with a long exploration history. In the Sfax-Kerkennah and Gabes Gulf areas, the hydrocarbon accumulations are located in series of Cretaceous and Tertiary age. To estimate the petroleum potential of this region, an evaluation of the source rock quality of the Cretaceous and Tertiary series was undertaken. In the Sfax-Kerkennak area, most of the wells studied indicate that, in the Tertiary, Ypresian and lower Lutetian show good organic content but, taking into account the potential productivity, only the Ypresian can be considered as a potential source rock. In the Cretaceous, mainly studies in the offshore area of the Gabes Gulf, the amount of organic matter is fair and it is chiefly located in Albian and Cenomanian. The Vraconian with its quite good potential is a valuable source rock. Due to the difference in the environment of deposition for these two possible source rocks - the Ypresian with its lagoon facies being carbonate and the Vraconian shaly - variations in the type of organic matter can be noted, although both are of marine origin. The hydrocarbons generated from these source rocks reflect these variations and permit them to correlate the different crude oils found in this area with their original source beds.

  18. Masirah Graben, Oman: A hidden Cretaceous rift basin

    SciTech Connect

    Beauchamp, W.H.; Ries, A.C.; Coward, M.P.

    1995-06-01

    Reflection seismic data, well data, geochemical data, and surface geology suggest that a Cretaceous rift basin exists beneath the thrusted allochthonous sedimentary sequence of the Masirah graben, Oman. The Masirah graben is located east of the Huqf uplift, parallel to the southern coast of Oman. The eastern side of the northeast-trending Huqf anticlinorium is bounded by an extensional fault system that is downthrown to the southeast, forming the western edge of the Masirah graben. This graben is limited to the east by a large wedge of sea floor sediments and oceanic crust, that is stacked as imbricate thrusts. These sediments/ophiolites were obducted onto the southern margin of the Arabian plate during the collision of the Indian/Afghan plates at the end of the Cretaceous. Most of the Masirah graben is covered by an allochthonous sedimentary sequence, which is complexly folded and deformed above a detachment. This complexly deformed sequence contrasts sharply with what is believed to be a rift sequence below the ophiolites. The sedimentary sequence in the Masirah graben was stable until further rifting of the Arabian Sea/Gulf of Aden in the late Tertiary, resulting in reactivation of earlier rift-associated faults. Wells drilled in the Masirah graben in the south penetrated reservoir quality rocks in the Lower Cretaceous Natih and Shuaiba carbonates. Analyses of oil extracted from Infracambrian sedimentary rocks penetrated by these wells suggest an origin from a Mesozoic source rock.

  19. Implications of cretaceous climate for patterns of sedimentation

    SciTech Connect

    Barron, E.; Cirbus-Sloan, L.; Kruijs, E.; Peterson, W.

    1988-01-01

    Paleogeography and climate are two essential ingredients for a global perspective of processes and patterns in sedimentary rocks. Extensive knowledge in sedimentology has been derived from a largely inductive approach of examining specific sequences and environments and inferring a larger and more general principle. Geographic position and climate offer the opportunity for additional deductive approaches in sedimentology. By considering the whole in conjunction with an understanding of physical climate processes, independent predictions can be verified by specific observations. The large climatic and geographic differences between the Cretaceous Period and the Holocene are a good illustration of the potential of a global sedimentary geology perspective. Three very different examples illustrate this potential: (1) storms and the sedimentary record, (2) upwelling and marine productivity, and (3) precipitation, continental runoff, and coastal sedimentary input. Climate models in conjunction with Cretaceous geographic reconstructions yield the following conclusions. (1) Hurricane and winter storms are predicted to have been quite common in the Cretaceous, but the distribution of storms was strongly tied to continental position and sea level. (2) Planetary warmth and paleogeography operated in concert to more than double total continental rainfall in comparison with the present day. Much of this rainfall was geographically local and is strongly associated with areas of coal, kaolin, and marine sedimentary input. (3) The combination of predicted precipitation, runoff, and wind-induced upwelling provide a more comprehensive forecast of marine productivity than would any single factor. These three components have been combined to derive climate controls on patterns of sedimentation.

  20. New petrofacies in upper Cretaceous section of southern California

    SciTech Connect

    Colburn, I.P.; Oliver, D.

    1986-04-01

    A distinctive sandstone-conglomerate petrofacies is recognized throughout the Late Cretaceous (Maestrichtian-late Campanian) Chatsworth Formation in the Simi Hills. It is named the Woolsey Canyon petrofacies after the district where it was first recognized. The petrofacies is also recognized in the Late Cretaceous (late Campanian and possibly early Maestrichtian) Tuna Canyon Formation of the central Santa Monica Mountains. The conglomerates in the petrofacies are composed predominantly of angular pebble-size clasts of argillite, quartz-rich rocks (orthoquartzarenite, metaorthoquartzarenite, mice quartz schist) and leucocratic plutoniate (granite-granodiorite). The conglomerate texture and composition are mirrored in the sandstone. The uniformly angular character of the conglomerate clasts and the survival of argillite clasts indicate that the detritus underwent no more than 5 mi of subaerial transport before it entered the deep marine realm. Foraminifers collected from mudstones interbedded with the conglomerates indicate upper bathyal water depth at the site of deposition. A source terrane of low to moderate relief is indicated by the absence of cobbles and boulders. Bed forms, sedimentary structures, and textural features indicate the detritus moved north from its source terrane to be deposited by turbidity currents, debris flows, and grain flows on the Chatsworth Submarine Fan. The detritus of the Woolsey Canyon petrofacies was derived from basement rocks, now largely buried beneath the Los Angeles basin, that were being eroded during the formation of the Cretaceous Los Angeles erosion surface. The detritus came from the Los Angeles arch of that surface.

  1. Source rock potential of middle cretaceous rocks in Southwestern Montana

    USGS Publications Warehouse

    Dyman, T.S.; Palacas, J.G.; Tysdal, R.G.; Perry, W.J.; Pawlewicz, M.J.

    1996-01-01

    The middle Cretaceous in southwestern Montana is composed of a marine and nonmarine succession of predominantly clastic rocks that were deposited along the western margin of the Western Interior Seaway. In places, middle Cretaceous rocks contain appreciable total organic carbon (TOC), such as 5.59% for the Mowry Shale and 8.11% for the Frontier Formation in the Madison Range. Most samples, however, exhibit less than 1.0% TOC. The genetic or hydrocarbon potential (S1+S2) of all the samples analyzed, except one, yield less than 1 mg HC/g rock, strongly indicating poor potential for generating commercial amounts of hydrocarbons. Out of 51 samples analyzed, only one (a Thermopolis Shale sample from the Snowcrest Range) showed a moderate petroleum potential of 3.1 mg HC/g rock. Most of the middle Cretaceous samples are thermally immature to marginally mature, with vitrinite reflectance ranging from about 0.4 to 0.6% Ro. Maturity is high in the Pioneer Mountains, where vitrinite reflectance averages 3.4% Ro, and at Big Sky Montana, where vitrinite reflectance averages 2.5% Ro. At both localities, high Ro values are due to local heat sources, such as the Pioneer batholith in the Pioneer Mountains.

  2. Late Cretaceous stepwise mass extinction of planktonic foraminifera

    SciTech Connect

    D'Hondt, S.L.; Keller, G.

    1985-01-01

    Quantitative populations analysis of planktonic foraminifera from DSDP sites 10, 21, 528, 577 and the El Kef section of Tunisia indicates that the terminal Cretaceous mass extinction did not occur as a simple catastrophic event. Rather, the final Cretaceous extinction was heralded by a series of earlier extinction events, indicating a changing paleoenvironment during the late Cretaceous. Extinction events appear stepwise marked by periods of rapid faunal turnover during which dominant faunal elements decline in abundance. Generally, weakened surviving populations are subsequently annihilated during the next stepwise ecologic perturbation. Little or no faunal change appears between these stepwise events. Significantly, extinctions generally affect species which are numerically low in abundance (<3% of the total population). This indicates that the number of taxa going extinct is in itself a poor measure of the extent of ecologic perturbations. Thus, species extinctions and changes in populations dynamics must be viewed together in order to gain an understanding of the complex nature of mass extinctions. The observed stepwise extinction events can potentially be explained by geotectonically induced changes in ocean circulation accompanied by temperature and salinity fluctuations. However, it cannot be ruled out at this time that at least some of the extinction events maybe related to impact events. Further studies will be necessary to find evidence of between extinction events and impacts.

  3. Significance of aragonite cements around Cretaceous marine methane seeps

    SciTech Connect

    Savard, M.M.; Beauchamp, B.; Veizer, J.

    1996-05-01

    Detailed petrography and geochemistry of carbonate precipitates in Cretaceous cold seep mounds from the Canadian Arctic show spectacular early diagenetic products: some still-preserved splays and isopachous layers of fine, acicular aragonite, and large botryoids and crusts of low-magnesium calcite showing unusual entanglement of former fibrous calcite and aragonite. The latter mineralogy is suggested by clear, flat-terminated cathodoluminescence patterns interpreted as ancient crystal growth steps, and the former by rhombohedral terminations. The early cement phases very likely precipitated in cold Arctic water dominated by bicarbonates derived from bacterially oxidized methane: these cements have {delta}{sup 13}C values around {minus}44.0% and {delta}{sup 18}O values of 1.8 to 0.1% PDB. Coexistence of calcite and aragonite early cements in the Cretaceous seep mounds is unusual, because precipitation occurred in high-latitude, cold-water settings, and during a so-called calcite sea mode. As in modern marine hydrocarbon seeps, the chemistry of the Cretaceous system was apparently controlled by chemosynthetic bacterial activity, resulting in high a{sub HCO{sub 3}{sup {minus}}} that promoted precipitation of carbonates. The authors suggest that, locally, fluctuations in a{sub HCO{sub 3}{sup {minus}}}/a{sub SO{sub 4}{sup 2{minus}}} resulted in oscillating aragonite or calcite supersaturation, and hence, controlled the mineralogy of the early precipitates.

  4. Early cretaceous radiolarian assemblages from the East Sakhalin Mountains

    NASA Astrophysics Data System (ADS)

    Kurilov, D. V.; Vishnevskaya, V. S.

    2011-02-01

    Three-dimensional radiolarian skeletons isolated from rock matrix in HF solution and then studied under scanning electron microscope substantiate the Early Cretaceous age of volcanogenic-cherty deposits sampled from fragmentary rock successions of the East Sakhalin Mountains. Accordingly the Berriasian age is established for jasper packets formerly attributed to the Upper Paleozoic-Mesozoic Daldagan Group; the Valanginian radiolarians are identified in cherty rock intercalations in the Upper Paleozoic (?) Ivashkino Formation; the Berriasian-Barremian assemblage is macerated from cherty tuffites of the Jurassic-Cretaceous Ostraya Formation; and the Aptian-early Albian radiolarians are characteristic of tuffaceous cherty rocks sampled from the Cretaceous Khoe Formation of the Nabil Group. Photographic documentation of radiolarian skeletons specifies taxonomic composition and age of the Berriasian, Valanginian, Berriasian-Valanginian, Barremian, and Aptian-Albian radiolarian assemblages from the East Sakhalin Mountains, and their evolution as related to abiotic events is considered. Coexistence of Tethyan and Pacific species in the same rock samples evidence origin of radiolarian assemblages in an ecotone. Consequently, the assemblages are applicable for intra- and interregional correlations and paleogeographic reconstructions.

  5. Stratigraphy and palaeoclimate of Spitsbergen, Svalbard, during the Early Cretaceous

    NASA Astrophysics Data System (ADS)

    Vickers, Madeleine; Price, Gregory; Watkinson, Matthew; FitzPatrick, Meriel; Jerrett, Rhodri

    2016-04-01

    During the Early Cretaceous, Spitsbergen was located at a palaeolatitude of ~60°N. Abundant fossil wood derived from conifer forests, dinosaur trackways, enigmatic deposits such as glendonites, and stable isotope data from the Early Cretaceous formations of Spitsbergen suggest that the climate at that time was much more dynamic than the traditional view of "invariant greenhouse" conditions on Earth. The Early Cretaceous succession in central Spitsbergen comprises a regressive-transgressive mega-cycle. This is made up of the deep water to wave-dominated, Berriasian-Hauterivian Rurikfjellet Formation; the deltaic, Barremian Helvetiafjellet Formation; and the coastal to deep water, Aptian-Albian Carolinefjellet Formation. An erosion surface marks the base of the Helvetiafjellet Formation. Two regions with excellently exposed Early Cretaceous strata were chosen for study in this project: the Festningen section, on the north-western side of Isfjorden; and outcrops found along Adventdalen, near Longyearbyen, ~40km northeast of Festningen. We present the data collected in July 2015 from the Adventdalen area, and compare and correlate it with sedimentological and geochemical data collected from the Festningen succession in 2014. The Festningen section records a full sequence from the Berriasian to the Aptian, whereas the Longyearbyen sections record Aptian-Albian deposition. We use carbon isotope stratigraphy to constrain the Barremian-Aptian boundary in the previously only indirectly-dated Helvetiafjellet Formation, and to identify other major global climatic and carbon cycle perturbations in the Early Cretaceous. We are thus able to correlate this succession with other successions globally. We combine this δ13C(terrestrial) data with sedimentological and petrological data to elucidate the origins of enigmatic glendonites found in both regions. Glendonites are thought to be associated with cold-water (and therefore also cold-climate) conditions, although their mode of

  6. Late Cretaceous and Cenozoic exhumation history of the Malay Peninsula

    NASA Astrophysics Data System (ADS)

    François, Thomas; Daanen, Twan; Matenco, Liviu; Willingshofer, Ernst; van der Wal, Jorien

    2015-04-01

    The evolution of Peninsular Malaysia up to the collisional period in the Triassic is well described but the evolution since the collision between Indochina and the Sukhothai Arc in Triassic times is less well described in the literature. The processes affecting Peninsular Malaysia during the Jurassic up to current day times have to explain the emplacement multiple intrusions (the Stong Complex, and the Kemahang granite), the Jurassic/Cretaceous onland basins, the Cenozoic offshore basins, and the asymmetric extension, which caused the exhumation of Taku Schists dome. The orogenic period in Permo-Triassic times, which also formed the Bentong-Raub suture zone, resulted in thickening of the continental crust of current day Peninsular Malaysia due to the collision of the Indochina continental block and the Sukhothai Arc, and is related to the subduction of oceanic crust once present between these continental blocks. The Jurassic/Cretaceous is a period of extension, resulting in the onland Jurassic/Cretaceous basins, synchronous melting of the crust, resulting in the emplacement Stong Complex and the Kemahang granite and thinning of the continental crust on the scale of the Peninsular, followed by uplift of the Peninsular. Different models can explain these observations: continental root removal, oceanic slab detachment, or slab delamination. These models all describe the melting of the lower crust due to asthenospheric upwelling, resulting in uplift and subsequent extension either due to mantle convective movements or gravitational instabilities related to uplift. The Cenozoic period is dominated by extension and rapid exhumation in the area as documented by low temperature thermocrological ages The extension in this period is most likely related to the subduction, which resumed at 45 Ma, of the Australian plate beneath the Eurasian plate after it terminated in Cretaceous times due to the collision of an Australian microcontinental fragment with the Sunda margin in the

  7. Sedimentology, stratigraphy, and extinctions during the Cretaceous-Paleogene transition at Bug Creek, Montana

    SciTech Connect

    Fastovsky, D.E.; Dott, R.H. Jr.

    1986-04-01

    Bug Creek Valley, the source of an unusual and controversial Cretaceous-Paleogene coincidence of mammals, dinosaurs, pollen, and iridium, exemplifies the importance of depositional process in the reconstruction of evolutionary events. Five sedimentary facies are recognized at Bug Creek: a cross-stratified sandstone, a green and purple siltstone, a lateral accretionary sandstone, a coal, and a variegated siltstone. Repeated fluvial channeling restricts the accuracy of lateral correlations, and the relationship of the fossil assemblage to the presumed Cretaceous-Paleogene boundary cannot be established. Sedimentologically, the Cretaceous-Paleogene transition is represented here by Cretaceous meandering channels that gave way initially to Paleogene swamp deposition. 13 references, 4 figures.

  8. Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary.

    PubMed

    Wible, J R; Rougier, G W; Novacek, M J; Asher, R J

    2007-06-21

    Estimates of the time of origin for placental mammals from DNA studies span nearly the duration of the Cretaceous period (145 to 65 million years ago), with a maximum of 129 million years ago and a minimum of 78 million years ago. Palaeontologists too are divided on the timing. Some support a deep Cretaceous origin by allying certain middle Cretaceous fossils (97-90 million years old) from Uzbekistan with modern placental lineages, whereas others support the origin of crown group Placentalia near the close of the Cretaceous. This controversy has yet to be addressed by a comprehensive phylogenetic analysis that includes all well-known Cretaceous fossils and a wide sample of morphology among Tertiary and recent placentals. Here we report the discovery of a new well-preserved mammal from the Late Cretaceous of Mongolia and a broad-scale phylogenetic analysis. Our results exclude Cretaceous fossils from Placentalia, place the origin of Placentalia near the Cretaceous/Tertiary (K/T) boundary in Laurasia rather than much earlier within the Cretaceous in the Southern Hemisphere, and place afrotherians and xenarthrans in a nested rather than a basal position within Placentalia.

  9. The oldest known tracks of web-footed birds from the lower Cretaceous of South Korea.

    PubMed

    Lim, J D; Zhou, Z; Martin, L D; Baek, K S; Yang, S Y

    2000-06-01

    We describe the oldest tracks of web-footed birds from the Early Cretaceous in South Korea. The tracks are characterized by a wide divarication angle and a long reversed hallux. The web is semipalmate and restricted to the proximal portion of the three forward digits. The tracks from the Early Cretaceous in South Korea are smaller than those of the Late Cretaceous, therefore confirming the trend of size increasing in the early evolution of birds as shown by skeletal fossils. The discovery of web-footed tracks with abundant non-web-footed tracks indicates that there was a considerable diversification of shore birds as early as the Early Cretaceous.

  10. Island life in the Cretaceous - faunal composition, biogeography, evolution, and extinction of land-living vertebrates on the Late Cretaceous European archipelago

    PubMed Central

    Csiki-Sava, Zoltán; Buffetaut, Eric; Ősi, Attila; Pereda-Suberbiola, Xabier; Brusatte, Stephen L.

    2015-01-01

    Abstract The Late Cretaceous was a time of tremendous global change, as the final stages of the Age of Dinosaurs were shaped by climate and sea level fluctuations and witness to marked paleogeographic and faunal changes, before the end-Cretaceous bolide impact. The terrestrial fossil record of Late Cretaceous Europe is becoming increasingly better understood, based largely on intensive fieldwork over the past two decades, promising new insights into latest Cretaceous faunal evolution. We review the terrestrial Late Cretaceous record from Europe and discuss its importance for understanding the paleogeography, ecology, evolution, and extinction of land-dwelling vertebrates. We review the major Late Cretaceous faunas from Austria, Hungary, France, Spain, Portugal, and Romania, as well as more fragmentary records from elsewhere in Europe. We discuss the paleogeographic background and history of assembly of these faunas, and argue that they are comprised of an endemic ‘core’ supplemented with various immigration waves. These faunas lived on an island archipelago, and we describe how this insular setting led to ecological peculiarities such as low diversity, a preponderance of primitive taxa, and marked changes in morphology (particularly body size dwarfing). We conclude by discussing the importance of the European record in understanding the end-Cretaceous extinction and show that there is no clear evidence that dinosaurs or other groups were undergoing long-term declines in Europe prior to the bolide impact. PMID:25610343

  11. From Back-arc Drifting to Arc Accretion: the Late Jurassic-Early Cretaceous Evolution of the Guerrero Terrane Recorded by a Major Provenance Change in Sandstones from the Sierra de los Cuarzos, Central Mexico

    NASA Astrophysics Data System (ADS)

    Palacios Garcia, N. B.; Martini, M.

    2014-12-01

    The Guerrero terrane composed of Middle Jurassic-Early Cretaceous arc assemblages, were drifted from the North American continental mainland during lower Early Cretaceous spreading in the Arperos back arc basin, and subsequently accreted back to the continental margin in the late Aptian. Although the accretion of the Guerrero terrane represents one of the major tectonic processes that shaped the southern North American Pacific margin, the stratigraphic record related to such a regional event was not yet recognized in central Mexico. Due to the Sierra de los Cuarzos is located just 50 km east of the Guerrero terrane suture belt, its stratigraphic record should be highly sensitive to first order tectonic changes and would record a syn-tectonic deposits related to this major event. In that study area, were identified two main Upper Jurassic-Lower Cretaceous clastic units. The Sierra de los Cuarzos formation represents the lowermost exposed stratigraphic record. Sedimentary structures, sandstones composition, and U-Pb detrital zircon ages document that the Sierra de los Cuarzos formation reflects a vigorous mass wasting along the margin of the North American continental mainland, representing the eastern side of the Arperos back arc basin. Sandstones of the Sierra de los Cuarzos formation are free from detrital contributions related to the Guerrero terrane juvenile sources, indicating that the Arperos Basin acted like an efficient sedimentological barrier that inhibited the influence of the arc massifs on the continental mainland deposits. The Sierra de los Cuarzos formation is overlain by submarine slope deposits of the Pelones formation, which mark a sudden change in the depositional conditions. Provenance analysis documents that sandstones from the Pelones formation were fed by the mafic to intermediate arc assemblages of the Guerrero terrane, as well as by quartz-rich sources of the continental mainland, suggesting that, by the time of deposition of the Pelones

  12. The origin and early evolution of metatherian mammals: the Cretaceous record.

    PubMed

    Williamson, Thomas E; Brusatte, Stephen L; Wilson, Gregory P

    2014-01-01

    Metatherians, which comprise marsupials and their closest fossil relatives, were one of the most dominant clades of mammals during the Cretaceous and are the most diverse clade of living mammals after Placentalia. Our understanding of this group has increased greatly over the past 20 years, with the discovery of new specimens and the application of new analytical tools. Here we provide a review of the phylogenetic relationships of metatherians with respect to other mammals, discuss the taxonomic definition and diagnosis of Metatheria, outline the Cretaceous history of major metatherian clades, describe the paleobiology, biogeography, and macroevolution of Cretaceous metatherians, and provide a physical and climatic background of Cretaceous metatherian faunas. Metatherians are a clade of boreosphendian mammals that must have originated by the Late Jurassic, but the first unequivocal metatherian fossil is from the Early Cretaceous of Asia. Metatherians have the distinctive tightly interlocking occlusal molar pattern of tribosphenic mammals, but differ from Eutheria in their dental formula and tooth replacement pattern, which may be related to the metatherian reproductive process which includes an extended period of lactation followed by birth of extremely altricial young. Metatherians were widespread over Laurasia during the Cretaceous, with members present in Asia, Europe, and North America by the early Late Cretaceous. In particular, they were taxonomically and morphologically diverse and relatively abundant in the Late Cretaceous of western North America, where they have been used to examine patterns of biogeography, macroevolution, diversification, and extinction through the Late Cretaceous and across the Cretaceous-Paleogene (K-Pg) boundary. Metatherian diversification patterns suggest that they were not strongly affected by a Cretaceous Terrestrial Revolution, but they clearly underwent a severe extinction across the K-Pg boundary.

  13. The origin and early evolution of metatherian mammals: the Cretaceous record.

    PubMed

    Williamson, Thomas E; Brusatte, Stephen L; Wilson, Gregory P

    2014-01-01

    Metatherians, which comprise marsupials and their closest fossil relatives, were one of the most dominant clades of mammals during the Cretaceous and are the most diverse clade of living mammals after Placentalia. Our understanding of this group has increased greatly over the past 20 years, with the discovery of new specimens and the application of new analytical tools. Here we provide a review of the phylogenetic relationships of metatherians with respect to other mammals, discuss the taxonomic definition and diagnosis of Metatheria, outline the Cretaceous history of major metatherian clades, describe the paleobiology, biogeography, and macroevolution of Cretaceous metatherians, and provide a physical and climatic background of Cretaceous metatherian faunas. Metatherians are a clade of boreosphendian mammals that must have originated by the Late Jurassic, but the first unequivocal metatherian fossil is from the Early Cretaceous of Asia. Metatherians have the distinctive tightly interlocking occlusal molar pattern of tribosphenic mammals, but differ from Eutheria in their dental formula and tooth replacement pattern, which may be related to the metatherian reproductive process which includes an extended period of lactation followed by birth of extremely altricial young. Metatherians were widespread over Laurasia during the Cretaceous, with members present in Asia, Europe, and North America by the early Late Cretaceous. In particular, they were taxonomically and morphologically diverse and relatively abundant in the Late Cretaceous of western North America, where they have been used to examine patterns of biogeography, macroevolution, diversification, and extinction through the Late Cretaceous and across the Cretaceous-Paleogene (K-Pg) boundary. Metatherian diversification patterns suggest that they were not strongly affected by a Cretaceous Terrestrial Revolution, but they clearly underwent a severe extinction across the K-Pg boundary. PMID:25589872

  14. The origin and early evolution of metatherian mammals: the Cretaceous record

    PubMed Central

    Williamson, Thomas E.; Brusatte, Stephen L.; Wilson, Gregory P.

    2014-01-01

    Abstract Metatherians, which comprise marsupials and their closest fossil relatives, were one of the most dominant clades of mammals during the Cretaceous and are the most diverse clade of living mammals after Placentalia. Our understanding of this group has increased greatly over the past 20 years, with the discovery of new specimens and the application of new analytical tools. Here we provide a review of the phylogenetic relationships of metatherians with respect to other mammals, discuss the taxonomic definition and diagnosis of Metatheria, outline the Cretaceous history of major metatherian clades, describe the paleobiology, biogeography, and macroevolution of Cretaceous metatherians, and provide a physical and climatic background of Cretaceous metatherian faunas. Metatherians are a clade of boreosphendian mammals that must have originated by the Late Jurassic, but the first unequivocal metatherian fossil is from the Early Cretaceous of Asia. Metatherians have the distinctive tightly interlocking occlusal molar pattern of tribosphenic mammals, but differ from Eutheria in their dental formula and tooth replacement pattern, which may be related to the metatherian reproductive process which includes an extended period of lactation followed by birth of extremely altricial young. Metatherians were widespread over Laurasia during the Cretaceous, with members present in Asia, Europe, and North America by the early Late Cretaceous. In particular, they were taxonomically and morphologically diverse and relatively abundant in the Late Cretaceous of western North America, where they have been used to examine patterns of biogeography, macroevolution, diversification, and extinction through the Late Cretaceous and across the Cretaceous-Paleogene (K-Pg) boundary. Metatherian diversification patterns suggest that they were not strongly affected by a Cretaceous Terrestrial Revolution, but they clearly underwent a severe extinction across the K-Pg boundary. PMID:25589872

  15. Recent advances in the cretaceous stratigraphy of Korea

    NASA Astrophysics Data System (ADS)

    Chang, Ki-Hong; Suzuki, Kazuhiro; Park, Sun-Ok; Ishida, Keisuke; Uno, Koji

    2003-06-01

    A subrounded, accidental, zircon grain from a rhyolite sample of the Oknyobong Formation has shown an U-Pb CHIME isochron age, 187 Ma, implying its derivation from a Jurassic felsic igneous rock. Such a lower limit of the geologic age of the Oknyobong Formation, combined with its pre-Kyongsang upper limit, constrains that the Oknyobong Formation belongs to the Jasong Synthem (Late Jurassic-early Early Cretaceous) typified in North Korea. The Jaeryonggang Movement terminated the deposition of the Jasong Synthem and caused a shift of the depocenter from North Korea to the Kyongsang Basin, Southeast Korea. The Cretaceous-Paleocene Kyongsang Supergroup of the Kyongsang Basin is the stratotype of the Kyongsang Synthem, an unconformity-bounded unit in the Korean Peninsula. The unconformity at the base of the Yuchon Volcanic Group is a local expression of the interregionally recognizable mid-Albian tectonism; it subdivides the Kyongsang Synthem into the Lower Kyongsang Subsynthem (Barremian-Early Albian) and the Upper Kyongsang Subsynthem (Late Albian-Paleocene). The latter is unconformably overlain by Eocene and younger strata. The Late Permian to Early Jurassic radiolarian fossils from the chert pebbles of the Kumidong and the Kisadong conglomerates of the Aptian-Early Albian Hayang Group of the Kyongsang Basin are equivalent with those of the cherts that constitute the Jurassic accretionary prisms in Japan, the provenance of the chert pebbles in the Kyongsang Basin. Bimodal volcanisms throughout the history of the Kyongsang Basin is exemplified by the felsic Kusandong Tuff erupted abruptly and briefly in the Late Aptian when semi-coeval volcanisms were of intermediate and mafic compositions. The mean paleomagnetic direction shown by the Kusandong Tuff is in good agreement with the Early Cretaceous directions known from North China, South China and Siberia Blocks.

  16. Evidence For Volcanic Initiation Of Cretaceous Ocean Anoxic Events (Invited)

    NASA Astrophysics Data System (ADS)

    Sageman, B. B.; Hurtgen, M. T.; McElwain, J.; Adams, D.; Barclay, R. S.; Joo, Y.

    2010-12-01

    Increasing evidence from studies of Cretaceous ocean anoxic events (OAE’s) has suggested that major changes in volcanic activity may have played a significant role in their genesis. Numerous specific mechanisms of have been proposed, including increases in atmospheric CO2 and surface temperature, leading to enhanced chemical weathering and terrestrial nutrient release, or increases in reduced trace metal fluxes, leading to oxygen depletion and possibly providing micronutrients for enhanced primary production. An additional pathway by which the byproducts of enhanced volcanic activity may have contributed to OAE genesis involves relationships between the biogeochemical cycles sulfur, iron, and phosphorus. Recent analysis of S-isotope data from carbonate-associated sulfate and pyrite collected across the Cenomanian-Turonian OAE2 in the Western Interior basin suggest that increases in sulfate to an initially sulfate-depleted ocean preceded onset of the event. Modern lake data support the idea that increases in sulfate concentration drive microbial sulfate reduction, leading to more efficient regeneration of P from sedimentary organic matter. If the early Cretaceous opening of the South Atlantic was accompanied by evaporite deposition sufficient to draw down global marine sulfate levels, and widespread anoxia leading to elevated pyrite burial helped maintain these low levels for the succeeding 30 myr, during which most Cretaceous OAE’s are found, perhaps pulses of volcanism that rapidly introduced large volumes of sulfate may have played a key role in OAE initiation. The eventually burial of S in the form of pyrite may have returned sulfate levels to a low background, thus providing a mechanism to terminate the anoxic events. This talk will review the evidence for volcanic initiation of OAE’s in the context of the sulfate-phosphorus regeneration model.

  17. Cretaceous stratigraphy and biostratigraphy, Sierra Blanca basin, southeastern New Mexico

    SciTech Connect

    Lucas, S.G. ); Anderson, O.R. )

    1994-03-01

    The Sierra Blanca basin of Otero and Lincoln counties, New Mexico contains a Lower (upper Albian)-Upper (Santonian) Cretaceous section of marine and nonmarine strata as much as 700 m thick which represent the upper part of a regressive cycle followed by two transgressive-regressive deposition cycles. The lower 55 m of the Cretaceous section are the same tripartite Dakota Group units recognized in Guadalupe and San Miguel counties: basal Mesa Rica Sandstone (late Albian), medial Pajarito formation (late Albian) and upper Romeroville sandstone (earliest Cenomanian). The Mesa Rica and Pajarito represent a regression and are overlain disconformably by the transgressive Romeroville sandstone. Overlying transgressive marine clastics and minor carbonates of the Mancos Shale are as much as 73 m thick and include the early Turonian Greenhorn Limestone. The overlying Tres Hermanos formation (up to 91 m thick) consists of the (ascending order) Atarque sandstone and the Carthage and Fite Ranch sandstone members. These strata represent a mid-Turonian regression in response to regional tectonism (Atarque and Carthage), followed by a transgression (Fite Ranch sandstone) that ended in the deposition of the D-Cross Tongue of the Mancos Shale and Fort Hays Member of the Niobrara Formation during the late Turonian. The subsequent regression began with the Coniacian Gallup Sandstone (55 m) followed by coal-bearing Crevasse Canyon Formation (up to 244 m thick). The Coniacian-Santonian Crevasse Canyon Formation, the youngest Cretaceous unit in the basin, is disconformably overlain by middle Eocene conglomerates and red-bed siliciclastics of the Cub Mountain formation. Dakota Group age determinations in the Sierra Blanca basin are those of well-dated sections to the north, but ammonites and inoceramid bivalves from the Sierra Blanca basin provide precise age control for Cenomanian-Santonian marine and marginal marine strata and palynology and megafossil plants for nonmarine strata.

  18. The origin and evolution of the Cretaceous Benue Trough (Nigeria)

    NASA Astrophysics Data System (ADS)

    Benkhelil, J.

    The intracontinental Benue Trough was initiated during the Lower Cretaceous in relation with the Atlantic Ocean opening. The first stage of its evolution started in the Aptian, forming isolated basins with continental sedimentation. In the Albian times, a great delta developed in the Upper Benue Trough, while the first marine transgression coming from the opening Gulf of Guinea occurred in the south and reached the Middle Benue. The widespread Turonian transgression made the Atlantic and Tethys waters communicate through the Sahara, Niger basins and the Benue Trough. The tectonic evolution of the Benue Trough was closely controlled by transcurrent faulting through an axial fault system, developing local compressional and tensional regimes and resulting in basins and basement horsts along releasing and restraining bends of the faults. Two major compressional phases occurred: in the Abakaliki area (southern Benue) during the Santonian; and at the end of the Cretaceous in the Upper Benue Trough. In Abakaliki, the sedimentary infilling was severely deformed through folding and flattening, and moderate folding and fracturing occurred in the northeast. The Cretaceous magmatism was restricted to main fault zones in most of the trough but was particularly active in the Abakaliki Trough, where it has alkaline affinities. From Albian to Santonian, the magmatism was accompanied in part of the Abakaliki Trough by a low-grade metamorphism. Geophysical data indicate a crustal thinning beneath the Benue Trough and, at a superficial level, an axial basement high flanked by two elongated deep basins including isolated sub-basins. The model of the tectonic evolution of the trough is based upon a general sinistral wrenching along the trough responsible for the structural arrangement and the geometry of the sub-basins. During the early stages of the Gulf of Guinea opening the Benue Trough was probably the expression on land of the Equatorial Fracture Zones.

  19. Rise to dominance of angiosperm pioneers in European Cretaceous environments.

    PubMed

    Coiffard, Clément; Gomez, Bernard; Daviero-Gomez, Véronique; Dilcher, David L

    2012-12-18

    The majority of environments are dominated by flowering plants today, but it is uncertain how this dominance originated. This increase in angiosperm diversity happened during the Cretaceous period (ca. 145-65 Ma) and led to replacement and often extinction of gymnosperms and ferns. We propose a scenario for the rise to dominance of the angiosperms from the Barremian (ca. 130 Ma) to the Campanian (ca. 84 Ma) based on the European megafossil plant record. These megafossil data demonstrate that angiosperms migrated into new environments in three phases: (i) Barremian (ca. 130-125 Ma) freshwater lake-related wetlands; (ii) Aptian-Albian (ca. 125-100 Ma) understory floodplains (excluding levees and back swamps); and (iii) Cenomanian-Campanian (ca. 100-84 Ma) natural levees, back swamps, and coastal swamps. This scenario allows for the measured evolution of angiosperms in time and space synthesizing changes in the physical environment with concomitant changes in the biological environment. This view of angiosperm radiation in three phases reconciles previous scenarios based on the North American record. The Cretaceous plant record that can be observed in Europe is exceptional in many ways. (i) Angiosperms are well preserved from the Barremian to the Maastrichtian (ca. 65 Ma). (ii) Deposits are well constrained and dated stratigraphically. (iii) They encompass a full range of environments. (iv) European paleobotany provides many detailed studies of Cretaceous floras for analysis. These factors make a robust dataset for the study of angiosperm evolution from the Barremian to the Campanian that can be traced through various ecosystems and related to other plant groups occupying the same niches.

  20. Late Cretaceous tectonic framework of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wu, Zhenhan; Barosh, Patrick J.; Ye, Peisheng; Hu, Daogong

    2015-12-01

    New research, coupled with previous data, reveals the Late Cretaceous paleo-geography, and related paleo-tectonic movement of the Tibetan Plateau. A vast ocean, the Neo-Tethys Ocean, perhaps as wide as ∼7000 km, existed between the Indian and Eurasian Continental Plates in the early Late Cretaceous. In addition, a Himalaya Marginal Sea lay along the border of the Indian Plate and other marginal seas were present to the north in both the southern Lhasa and southwestern Tarim Blocks. Northward subduction of the Neo-Tethys Oceanic Plate along the Yalung-Zangbu Suture closed most of the ocean and led to intensive thrusting, tight folding, magmatic plutonism and volcanic eruptions in the central plateau to the north. A magmatic arc up to 500 km wide formed across the southern margin of the continental plate in central Tibet and its varying granitic composition appears to reflect the depth to the subducted plate and define its geometry. A series of large, chiefly north-dipping thrust systems also developed across central Tibet. These include thrusts along the Yalung-Zangbu and Bangong-Nujiang Sutures, the North Gangdese and North Lhasa Thrusts in the Lhasa Block, the Qiangtang and North Tangula Thrusts in the Qiangtang block, the Hoh-Xil and Bayan Har Thrusts in the Hoh-Xil Block, as well as the sinistral-slip South Kunlun and Altyn Tagh Faults in northern Tibet. Uplifts formed above the hanging walls of the major thrusts and their eroded debris formed thick red-beds in basins below them. The central Tibetan Plateau maintained a low elevation and coastal vegetation was dominant during the Late Cretaceous.

  1. Rise to dominance of angiosperm pioneers in European Cretaceous environments

    PubMed Central

    Coiffard, Clément; Gomez, Bernard; Daviero-Gomez, Véronique; Dilcher, David L.

    2012-01-01

    The majority of environments are dominated by flowering plants today, but it is uncertain how this dominance originated. This increase in angiosperm diversity happened during the Cretaceous period (ca. 145–65 Ma) and led to replacement and often extinction of gymnosperms and ferns. We propose a scenario for the rise to dominance of the angiosperms from the Barremian (ca. 130 Ma) to the Campanian (ca. 84 Ma) based on the European megafossil plant record. These megafossil data demonstrate that angiosperms migrated into new environments in three phases: (i) Barremian (ca. 130–125 Ma) freshwater lake-related wetlands; (ii) Aptian–Albian (ca. 125–100 Ma) understory floodplains (excluding levees and back swamps); and (iii) Cenomanian–Campanian (ca. 100–84 Ma) natural levees, back swamps, and coastal swamps. This scenario allows for the measured evolution of angiosperms in time and space synthesizing changes in the physical environment with concomitant changes in the biological environment. This view of angiosperm radiation in three phases reconciles previous scenarios based on the North American record. The Cretaceous plant record that can be observed in Europe is exceptional in many ways. (i) Angiosperms are well preserved from the Barremian to the Maastrichtian (ca. 65 Ma). (ii) Deposits are well constrained and dated stratigraphically. (iii) They encompass a full range of environments. (iv) European paleobotany provides many detailed studies of Cretaceous floras for analysis. These factors make a robust dataset for the study of angiosperm evolution from the Barremian to the Campanian that can be traced through various ecosystems and related to other plant groups occupying the same niches. PMID:23213256

  2. Rise to dominance of angiosperm pioneers in European Cretaceous environments.

    PubMed

    Coiffard, Clément; Gomez, Bernard; Daviero-Gomez, Véronique; Dilcher, David L

    2012-12-18

    The majority of environments are dominated by flowering plants today, but it is uncertain how this dominance originated. This increase in angiosperm diversity happened during the Cretaceous period (ca. 145-65 Ma) and led to replacement and often extinction of gymnosperms and ferns. We propose a scenario for the rise to dominance of the angiosperms from the Barremian (ca. 130 Ma) to the Campanian (ca. 84 Ma) based on the European megafossil plant record. These megafossil data demonstrate that angiosperms migrated into new environments in three phases: (i) Barremian (ca. 130-125 Ma) freshwater lake-related wetlands; (ii) Aptian-Albian (ca. 125-100 Ma) understory floodplains (excluding levees and back swamps); and (iii) Cenomanian-Campanian (ca. 100-84 Ma) natural levees, back swamps, and coastal swamps. This scenario allows for the measured evolution of angiosperms in time and space synthesizing changes in the physical environment with concomitant changes in the biological environment. This view of angiosperm radiation in three phases reconciles previous scenarios based on the North American record. The Cretaceous plant record that can be observed in Europe is exceptional in many ways. (i) Angiosperms are well preserved from the Barremian to the Maastrichtian (ca. 65 Ma). (ii) Deposits are well constrained and dated stratigraphically. (iii) They encompass a full range of environments. (iv) European paleobotany provides many detailed studies of Cretaceous floras for analysis. These factors make a robust dataset for the study of angiosperm evolution from the Barremian to the Campanian that can be traced through various ecosystems and related to other plant groups occupying the same niches. PMID:23213256

  3. Fossil woods from the Late Cretaceous Aachen Formation.

    PubMed

    Meijer

    2000-11-01

    Silicified fossil woods from the Late Cretaceous (Santonian) Aachen Formation of northeast Belgium, southernmost Netherlands and adjacent Germany were investigated. Gymnosperms dominate this assemblage: Taxodioxylon gypsaceum, T. cf. gypsaceum, T. cf. albertense (all Taxodiaceae), Dammaroxylon aachenense sp. nov. (Araucariaceae), Pinuxylon sp. (Pinaceae), and Scalaroxylon sp. (Cycad or Cycadeoid). Angiosperms are minor constituents: Nyssoxylon sp. (Nyssaceae?, Cornaceae?), Mastixioxylon symplocoides sp. nov. (Mastixiaceae?, Symplocaceae?), Plataninium decipiens (Platanaceae) and Paraphyllanthoxylon cf. marylandense (Anacardiaceae?, Burseraceae?, Lauraceae?).The composition of this assemblage and the anatomy of the woods indicate a seasonal and humid warm-temperate to subtropical climate.

  4. Cretaceous anoxic-oxic changes in the Moldavids (Carpathians, Romania)

    NASA Astrophysics Data System (ADS)

    Melinte-Dobrinescu, Mihaela C.; Roban, Relu-Dumitru

    2011-03-01

    This study focused on the Cretaceous black shale successions, followed by red shales that crop out at the outer regions of the Romanian Carpathians, in the Moldavids. The oldest parts of the black shale units deposited in an abyssal plain during Late Valanginian-Late Barremian time; they are mainly characterized by hemipelagic and pelagic muddy siliciclastic rocks and carbonates, commonly intercalated with fine-grained turbidites. During the sedimentation of the middle part of the black shale units in the Late Barremian-Early Albian interval, the depth of the basin increased, as the carbonate hemipelagic sedimentation was replaced by a mainly siliceous one. Only a few thin turbidite intercalations are present. The youngest part (Albian pro parte) of the black shale units is characterized by a turbiditic sedimentation, with mainly sandy sequences of middle and lower deep-water fans. We may assume that the depth of the basin continuously decreased. The presence of authigenic glauconite in the Albian sandstones suggests a palaeoenvironmental change, linked to the occurrence of oxygenated turbidity current circulation. A significant shift in the sedimentation regime in the Eastern Carpathian Moldavids took place in the Late Albian, when Cretaceous Oceanic Red Beds (CORB) occurred. This type of sedimentation lasted up to the Coniacian. The lower part of the CORBs that contains radiolarites intercalated with variegated shales, pyroclastic tuffs and thin sandstones is interpreted as a hemipelagic and pelagic sedimentation in the abyssal plain environment, where rarely turbidites occurred. Upwards, there are mainly burrowed variegated red and green shales. The youngest parts of CORBs are characterized by increased thickness and frequency of the turbidites. While the main part of the CORB is carbonate free or has very low carbonate content, the upper part of these strata becomes rich in marl and mudstone strata, indicating a decrease of the basin-depth. The accumulation of

  5. Palaeontology: spider-web silk from the Early Cretaceous.

    PubMed

    Zschokke, Samuel

    2003-08-01

    The use of viscid silk in aerial webs as a means to capture prey was a key innovation of araneoid spiders and has contributed largely to their ecological success. Here I describe a single silk thread from a spider's web that bears glue droplets and has been preserved in Lebanese amber from the Early Cretaceous period for about 130 million years. This specimen not only demonstrates the antiquity of viscid silk and of the spider superfamily Araneoidea, but is also some 90 million years older than the oldest viscid spider thread previously reported in Baltic amber from the Eocene epoch.

  6. Palaeontology: leg feathers in an Early Cretaceous bird.

    PubMed

    Zhang, Fucheng; Zhou, Zhonghe

    2004-10-21

    Here we describe a fossil of an enantiornithine bird from the Early Cretaceous period in China that has substantial plumage feathers attached to its upper leg (tibiotarsus). The discovery could be important in view of the relative length and aerodynamic features of these leg feathers compared with those of the small 'four-winged' gliding dinosaur Microraptor and of the earliest known bird, Archaeopteryx. They may be remnants of earlier long, aerodynamic leg feathers, in keeping with the hypothesis that birds went through a four-winged stage during the evolution of flight.

  7. Molecular preservation in Late Cretaceous sauropod dinosaur eggshells

    PubMed Central

    Schweitzer, M.H; Chiappe, L; Garrido, A.C; Lowenstein, J.M; Pincus, S.H

    2005-01-01

    Exceptionally preserved sauropod eggshells discovered in Upper Cretaceous (Campanian) deposits in Patagonia, Argentina, contain skeletal remains and soft tissues of embryonic Titanosaurid dinosaurs. To preserve these labile embryonic remains, the rate of mineral precipitation must have superseded post-mortem degradative processes, resulting in virtually instantaneous mineralization of soft tissues. If so, mineralization may also have been rapid enough to retain fragments of original biomolecules in these specimens. To investigate preservation of biomolecular compounds in these well-preserved sauropod dinosaur eggshells, we applied multiple analytical techniques. Results demonstrate organic compounds and antigenic structures similar to those found in extant eggshells. PMID:15888409

  8. Nature and Origin of Cretaceous Carbon-rich Facies

    NASA Astrophysics Data System (ADS)

    Force, Eric

    Nature and Origin of Cretaceous Carbon-rich Facies is a symposium volume and shows the weaknesses endemic to its genre. One could ignore the book and its shortcomings if the topic were less promising. But the book attempts to cover an advance in the science of geology as intriguing as any since plate tectonics. After seven years since the “ocean anoxic event” concept was broached, it is time for a comprehensive volume on the subject. The niche is still open; this volume doesn't fill it.

  9. End-cretaceous mass extinction event: argument for terrestrial causation.

    PubMed

    Hallam, A

    1987-11-27

    The end-Cretaceous mass extinctions were not a geologically instantaneous event and were selective in character. These features are incompatible with the original Alvarez hypothesis of their being caused by a single asteroid impact that produced a world-embracing dust cloud with devastating environmental consequences. By analysis of physical and chemical evidence from the stratigraphic record it is shown that a modified extraterrestrial model in which stepwise extinctions resulted from encounter with a comet shower is less plausible than one intrinsic to the earth, involving significant disturbance in the mantle.

  10. End-Cretaceous mass extinction event - Argument for terrestrial causation

    NASA Astrophysics Data System (ADS)

    Hallam, Anthony

    1987-11-01

    The end-Cretaceous mass extinctions were not a geologically instantaneous event and were selective in character. These features are incompatible with the original Alvarez hypothesis of their being caused by a single asteroid impact that produced a world-embracing dust cloud with devastating environmental consequences. By analysis of physical and chemical evidence from the stratigraphic record it is shown that a modified extraterrestrial model in which stepwise extinctions resulted from encounter with a comet shower is less plausible than one intrinsic to the earth, involving significant disturbance in the mantle.

  11. End-cretaceous mass extinction event: argument for terrestrial causation.

    PubMed

    Hallam, A

    1987-11-27

    The end-Cretaceous mass extinctions were not a geologically instantaneous event and were selective in character. These features are incompatible with the original Alvarez hypothesis of their being caused by a single asteroid impact that produced a world-embracing dust cloud with devastating environmental consequences. By analysis of physical and chemical evidence from the stratigraphic record it is shown that a modified extraterrestrial model in which stepwise extinctions resulted from encounter with a comet shower is less plausible than one intrinsic to the earth, involving significant disturbance in the mantle. PMID:17744360

  12. Ignition of global wildfires at the Cretaceous/Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.; Schneider, N. M.; Zahnle, K. J.; Latham, D.

    1990-01-01

    The recent discovery of an apparently global soot layer at the Cretaceous/Tertiary boundary indicates that global wildfires were somehow ignited by the impact of a comet or asteroid. It is shown here that the thermal radiation produced by the ballistic reentry of ejecta condensed from the vapor plume of the impact could have increased the global radiation flux by factors of 50 to 150 times the solar input for periods ranging from one to several hours. This great increase in thermal radiation may have been responsible for the ignition of global wildfires, as well as having deleterious effects on unprotected animal life.

  13. One hundred million year old ergot: psychotropic compounds in the Cretaceous?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A fungal sclerotium similar to sclerotia of the genus Claviceps, commonly known as ergot, was found infecting a grass kernel in Early Cretaceous Myanmar amber. This represents the first fossil record of ergot dating as far back as the Cretaceous period. The fungus, described as Palaeoclaviceps para...

  14. Nanometre-size diamonds in the Cretaceous/Tertiary boundary clay of Alberta

    NASA Astrophysics Data System (ADS)

    Carlisle, David B.; Braman, Dennis R.

    1991-08-01

    Evidence is presented that the Cretaceous/Tertiary boundary clay of the Red Deer Valley of Alberta contains diamonds, which strengthens the case for an extraterrestrial impact at the end of the Cretaceous. The diamond/iridium ratio is close to the value found in type C2 chondritic meteorites.

  15. New Ophthalmosaurid Ichthyosaurs from the European Lower Cretaceous Demonstrate Extensive Ichthyosaur Survival across the Jurassic–Cretaceous Boundary

    PubMed Central

    Fischer, Valentin; Maisch, Michael W.; Naish, Darren; Kosma, Ralf; Liston, Jeff; Joger, Ulrich; Krüger, Fritz J.; Pérez, Judith Pardo; Tainsh, Jessica

    2012-01-01

    Background Ichthyosauria is a diverse clade of marine amniotes that spanned most of the Mesozoic. Until recently, most authors interpreted the fossil record as showing that three major extinction events affected this group during its history: one during the latest Triassic, one at the Jurassic–Cretaceous boundary (JCB), and one (resulting in total extinction) at the Cenomanian-Turonian boundary. The JCB was believed to eradicate most of the peculiar morphotypes found in the Late Jurassic, in favor of apparently less specialized forms in the Cretaceous. However, the record of ichthyosaurs from the Berriasian–Barremian interval is extremely limited, and the effects of the end-Jurassic extinction event on ichthyosaurs remains poorly understood. Methodology/Principal Findings Based on new material from the Hauterivian of England and Germany and on abundant material from the Cambridge Greensand Formation, we name a new ophthalmosaurid, Acamptonectes densus gen. et sp. nov. This taxon shares numerous features with Ophthalmosaurus, a genus now restricted to the Callovian–Berriasian interval. Our phylogenetic analysis indicates that Ophthalmosauridae diverged early in its history into two markedly distinct clades, Ophthalmosaurinae and Platypterygiinae, both of which cross the JCB and persist to the late Albian at least. To evaluate the effect of the JCB extinction event on ichthyosaurs, we calculated cladogenesis, extinction, and survival rates for each stage of the Oxfordian–Barremian interval, under different scenarios. The extinction rate during the JCB never surpasses the background extinction rate for the Oxfordian–Barremian interval and the JCB records one of the highest survival rates of the interval. Conclusions/Significance There is currently no evidence that ichthyosaurs were affected by the JCB extinction event, in contrast to many other marine groups. Ophthalmosaurid ichthyosaurs remained diverse from their rapid radiation in the Middle Jurassic to

  16. Plant microfossil record of the terminal Cretaceous event in the western United States and Canada

    NASA Technical Reports Server (NTRS)

    Nichols, D. J.; Fleming, R. F.

    1988-01-01

    Plant microfossils, principally pollen grains and spores produced by land plants, provide an excellent record of the terminal Cretaceous event in nonmarine environments. The record indicates regional devastation of the latest Cretaceous vegetation with the extinction of many groups, followed by a recolonization of the earliest Tertiary land surface, and development of a permanently changed land flora. The regional variations in depositional environments, plant communities, and paleoclimates provide insight into the nature and effects of the event, which were short-lived but profound. The plant microfossil data support the hypothesis that an abruptly initiated, major ecological crisis occurred at the end of the Cretaceous. Disruption of the Late Cretaceous flora ultimately contributred to the rise of modern vegetation. The plant microfossils together with geochemical and mineralogical data are consistent with an extraterrestrial impact having been the cause of the terminal Cretaceous event.

  17. New and revised maimetshid wasps from Cretaceous ambers (Hymenoptera, Maimetshidae)

    PubMed Central

    Perrichot, Vincent; Ortega-Blanco, Jaime; McKellar, Ryan C.; Delclòs, Xavier; Azar, Dany; Nel, André; Tafforeau, Paul; Engel, Michael S.

    2011-01-01

    Abstract New material of the wasp family Maimetshidae (Apocrita) is presented from four Cretaceous amber deposits – the Neocomian of Lebanon, the Early Albian of Spain, the latest Albian/earliest Cenomanian of France, and the Campanian of Canada. The new record from Canadian Cretaceous amber extends the temporal and paleogeographical range of the family. New material from France is assignable to Guyotemaimetsha enigmatica Perrichot et al. including the first females for the species, while a series of males and females from Spain are described and figured as Iberomaimetsha Ortega-Blanco, Perrichot & Engel, gen. n., with the two new species Iberomaimetsha rasnitsyni Ortega-Blanco, Perrichot & Engel, sp. n. and Iberomaimetsha nihtmara Ortega-Blanco, Delclòs & Engel, sp. n.; a single female from Lebanon is described and figured as Ahiromaimetsha najlae Perrichot, Azar, Nel & Engel, gen. et sp. n., and a single male from Canada is described and figured as Ahstemiam cellula McKellar & Engel, gen. et sp. n. The taxa are compared with other maimetshids, a key to genera and species is given, and brief comments made on the family. PMID:22259291

  18. New palaeointensity results from Cretaceous basalt of Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Zhao, Xixi; Riisager, Peter; Riisager, Janna; Draeger, Ulrike; Coe, Robert S.; Zheng, Zhong

    2004-02-01

    We present new Thellier-Thellier palaeointensity results from three cooling units (32 samples) of Inner Mongolia lava flows (91.7 Ma) emplaced during the Cretaceous Normal Superchron (CNS). Based on rock-magnetic and microscopy observations the magneto-mineralogy of all samples is determined to be primary and unaltered high-Ti titanomagnetite. Accepted palaeointensity determinations, obtained in the 80-200 °C temperature interval, are of good technical quality with positive standard partial thermoremanent magnetisation (pTRM) checks and pTRM-tail checks. Obtained palaeointensity estimates range from 14.7 to 28.0 μT, with virtual axial dipole moments (VADM) of 2.4 to 4.6 (× 10 22 Am 2). The data agree well with recently published results from the same region and, combining the two datasets, we obtain independent estimates from six different cooling units yielding a time-averaged VADM of 3.2 ± 1.6 (× 10 22 Am 2). These data suggest a relatively low dipole moment towards the end of the Cretaceous Normal Superchron.

  19. Palaeogeographic regulation of glacial events during the Cretaceous supergreenhouse

    PubMed Central

    Ladant, Jean-Baptiste; Donnadieu, Yannick

    2016-01-01

    The historical view of a uniformly warm Cretaceous is being increasingly challenged by the accumulation of new data hinting at the possibility of glacial events, even during the Cenomanian–Turonian (∼95 Myr ago), the warmest interval of the Cretaceous. Here we show that the palaeogeography typifying the Cenomanian–Turonian renders the Earth System resilient to glaciation with no perennial ice accumulation occurring under prescribed CO2 levels as low as 420 p.p.m. Conversely, late Aptian (∼115 Myr ago) and Maastrichtian (∼70 Myr ago) continental configurations set the stage for cooler climatic conditions, favouring possible inception of Antarctic ice sheets under CO2 concentrations, respectively, about 400 and 300 p.p.m. higher than for the Cenomanian–Turonian. Our simulations notably emphasize that palaeogeography can crucially impact global climate by modulating the CO2 threshold for ice sheet inception and make the possibility of glacial events during the Cenomanian–Turonian unlikely. PMID:27650167

  20. Mountain Building Triggered Late Cretaceous North American Megaherbivore Dinosaur Radiation

    PubMed Central

    Gates, Terry A.; Prieto-Márquez, Albert; Zanno, Lindsay E.

    2012-01-01

    Prior studies of Mesozoic biodiversity document a diversity peak for dinosaur species in the Campanian stage of the Late Cretaceous, yet have failed to provide explicit causal mechanisms. We provide evidence that a marked increase in North American dinosaur biodiversity can be attributed to dynamic orogenic episodes within the Western Interior Basin (WIB). Detailed fossil occurrences document an association between the shift from Sevier-style, latitudinally arrayed basins to smaller Laramide-style, longitudinally arrayed basins and a well substantiated decreased geographic range/increased taxonomic diversity of megaherbivorous dinosaur species. Dispersal-vicariance analysis demonstrates that the nearly identical biogeographic histories of the megaherbivorous dinosaur clades Ceratopsidae and Hadrosauridae are attributable to rapid diversification events within restricted basins and that isolation events are contemporaneous with known tectonic activity in the region. SymmeTREE analysis indicates that megaherbivorous dinosaur clades exhibited significant variation in diversification rates throughout the Late Cretaceous. Phylogenetic divergence estimates of fossil clades offer a new lower boundary on Laramide surficial deformation that precedes estimates based on sedimentological data alone. PMID:22876302

  1. Debris-carrying camouflage among diverse lineages of Cretaceous insects.

    PubMed

    Wang, Bo; Xia, Fangyuan; Engel, Michael S; Perrichot, Vincent; Shi, Gongle; Zhang, Haichun; Chen, Jun; Jarzembowski, Edmund A; Wappler, Torsten; Rust, Jes

    2016-06-01

    Insects have evolved diverse methods of camouflage that have played an important role in their evolutionary success. Debris-carrying, a behavior of actively harvesting and carrying exogenous materials, is among the most fascinating and complex behaviors because it requires not only an ability to recognize, collect, and carry materials but also evolutionary adaptations in related morphological characteristics. However, the fossil record of such behavior is extremely scarce, and only a single Mesozoic example from Spanish amber has been recorded; therefore, little is known about the early evolution of this complicated behavior and its underlying anatomy. We report a diverse insect assemblage of exceptionally preserved debris carriers from Cretaceous Burmese, French, and Lebanese ambers, including the earliest known chrysopoid larvae (green lacewings), myrmeleontoid larvae (split-footed lacewings and owlflies), and reduviids (assassin bugs). These ancient insects used a variety of debris material, including insect exoskeletons, sand grains, soil dust, leaf trichomes of gleicheniacean ferns, wood fibers, and other vegetal debris. They convergently evolved their debris-carrying behavior through multiple pathways, which expressed a high degree of evolutionary plasticity. We demonstrate that the behavioral repertoire, which is associated with considerable morphological adaptations, was already widespread among insects by at least the Mid-Cretaceous. Together with the previously known Spanish specimen, these fossils are the oldest direct evidence of camouflaging behavior in the fossil record. Our findings provide a novel insight into early evolution of camouflage in insects and ancient ecological associations among plants and insects. PMID:27386568

  2. Late Cretaceous Aquatic Plant World in Patagonia, Argentina

    PubMed Central

    Cúneo, N. Rubén; Gandolfo, María A.; Zamaloa, María C.; Hermsen, Elizabeth

    2014-01-01

    In this contribution, we describe latest Cretaceous aquatic plant communities from the La Colonia Formation, Patagonia, Argentina, based on their taxonomic components and paleoecological attributes. The La Colonia Formation is a geological unit deposited during a Maastrichtian-Danian transgressive episode of the South Atlantic Ocean. This event resulted in the deposition of a series of fine-grained sediments associated with lagoon systems occurring along irregular coastal plains in northern Patagonia. These deposits preserved a diverse biota, including aquatic and terrestrial plants and animals. The aquatic macrophytes can be broadly divided into two groups: free-floating and rooted, the latter with emergent or floating leaves. Free-floating macrophytes include ferns in Salviniaceae (Azolla and Paleoazolla) and a monocot (Araceae). Floating microphytes include green algae (Botryoccocus, Pediastrum and Zygnemataceae). Among the rooted components, marsileaceous water ferns (including Regnellidium and an extinct form) and the eudicot angiosperm Nelumbo (Nelumbonaceae) are the dominant groups. Terrestrial plants occurring in the vegetation surrounding the lagoons include monocots (palms and Typhaceae), ferns with affinities to Dicksoniaceae, conifers, and dicots. A reconstruction of the aquatic plant paleocommuniy is provided based on the distribution of the fossils along a freshwater horizon within the La Colonia Formation. This contribution constitutes the first reconstruction of a Cretaceous aquatic habitat for southern South America. PMID:25148081

  3. Occurrences of Chert in Jurassic-Cretaceous Calciturbidites (SW Turkey)

    NASA Astrophysics Data System (ADS)

    Gül, Murat

    2015-10-01

    The Lycian Nappes, containing ophiolite and sedimentary rocks sequences, crop out in the southwest Turkey. The Tavas Nappe is a part of the Lycian Nappes. It includes the Lower Jurassic-Upper Cretaceous calciturbidites. Chert occurrences were observed in the lower part of this calciturbidite. These cherts can be classified on the basis of length, internal structure and host rock. Chert bands are 3.20-35.0min length and 7.0-35.0 cm thick. Chert lenses are 5.0-175.0 cm in length and 1.0-33.0 cm thick. According to its internal structure, granular chert (bladedlarge equitant quartz minerals replaced the big calcite mineral of fossil shell) and porcelanious chert (microcrystalline silica replaced micrite) have been separated. Cherts are generally associated with calcarenite-calcirudite, the others with calcilutite. Micritic calcite patches of cherts point out an uncompleted silicification. The source of silica was dominantly quartz-rich, older, basal rocks and to a lesser extent radiolarians. The coarse-grained calciturbidites act as a way for silica transportation. Some calcite veins (formed during transportation and emplacement of nappes) cut both calciturbidites and cherts. Thus, chert occurrences evolved before emplacement of nappes (the latest Cretaceous-Late Miocene period) during the epigenetic phase.

  4. A eudicot from the Early Cretaceous of China.

    PubMed

    Sun, Ge; Dilcher, David L; Wang, Hongshan; Chen, Zhiduan

    2011-03-31

    The current molecular systematics of angiosperms recognizes the basal angiosperms and five major angiosperm lineages: the Chloranthaceae, the magnoliids, the monocots, Ceratophyllum and the eudicots, which consist of the basal eudicots and the core eudicots. The eudicots form the majority of the angiosperms in the world today. The flowering plants are of exceptional evolutionary interest because of their diversity of over 250,000 species and their abundance as the dominant vegetation in most terrestrial ecosystems, but little is known of their very early history. In this report we document an early presence of eudicots during the Early Cretaceous Period. Diagnostic characters of the eudicot fossil Leefructus gen. nov. include simple and deeply trilobate leaves clustered at the nodes in threes or fours, basal palinactinodromous primary venation, pinnate secondary venation, and a long axillary reproductive axis terminating in a flattened receptacle bearing five long, narrow pseudo-syncarpous carpels. These morphological characters suggest that its affinities are with the Ranunculaceae, a basal eudicot family. The fossil co-occurs with Archaefructus sinensis and Hyrcantha decussata whereas Archaefructus liaoningensis comes from more ancient sediments. Multiple radiometric dates of the Lower Cretaceous Yixian Formation place the bed yielding this fossil at 122.6-125.8 million years old. The earliest fossil records of eudicots are 127 to 125 million years old, on the basis of pollen. Thus, Leefructus gen. nov. suggests that the basal eudicots were already present and diverse by the latest Barremian and earliest Aptian.

  5. Microbial Cretaceous park: biodiversity of microbial fossils entrapped in amber.

    PubMed

    Martín-González, Ana; Wierzchos, Jacek; Gutiérrez, Juan C; Alonso, Jesús; Ascaso, Carmen

    2009-05-01

    Microorganisms are the most ancient cells on this planet and they include key phyla for understanding cell evolution and Earth history, but, unfortunately, their microbial records are scarce. Here, we present a critical review of fossilized prokaryotic and eukaryotic microorganisms entrapped in Cretaceous ambers (but not exclusively from this geological period) obtained from deposits worldwide. Microbiota in ambers are rather diverse and include bacteria, fungi, and protists. We comment on the most important microbial records from the last 25 years, although it is not an exhaustive bibliographic compilation. The most frequently reported eukaryotic microfossils are shells of amoebae and protists with a cell wall or a complex cortex. Likewise, diverse dormant stages (palmeloid forms, resting cysts, spores, etc.) are abundant in ambers. Besides, viral and protist pathogens have been identified inside insects entrapped in amber. The situation regarding filamentous bacteria and fungi is quite confusing because in some cases, the same record was identified consecutively as a member of these phylogenetically distant groups. To avoid these identification errors in the future, we propose to apply a more resolute microscopic and analytical method in amber studies. Also, we discuss the most recent findings about ancient DNA repair and bacterial survival in remote substrates, which support the real possibility of ancient DNA amplification and bacterial resuscitation from Cretaceous resins.

  6. Cretaceous origin and repeated tertiary diversification of the redefined butterflies.

    PubMed

    Heikkilä, Maria; Kaila, Lauri; Mutanen, Marko; Peña, Carlos; Wahlberg, Niklas

    2012-03-22

    Although the taxonomy of the ca 18 000 species of butterflies and skippers is well known, the family-level relationships are still debated. Here, we present, to our knowledge, the most comprehensive phylogenetic analysis of the superfamilies Papilionoidea, Hesperioidea and Hedyloidea to date based on morphological and molecular data. We reconstructed their phylogenetic relationships using parsimony and Bayesian approaches. We estimated times and rates of diversification along lineages in order to reconstruct their evolutionary history. Our results suggest that the butterflies, as traditionally understood, are paraphyletic, with Papilionidae being the sister-group to Hesperioidea, Hedyloidea and all other butterflies. Hence, the families in the current three superfamilies should be placed in a single superfamily Papilionoidea. In addition, we find that Hedylidae is sister to Hesperiidae, and this novel relationship is supported by two morphological characters. The families diverged in the Early Cretaceous but diversified after the Cretaceous-Palaeogene event. The diversification of butterflies is characterized by a slow speciation rate in the lineage leading to Baronia brevicornis, a period of stasis by the skippers after divergence and a burst of diversification in the lineages leading to Nymphalidae, Riodinidae and Lycaenidae.

  7. Evolutionary transition of dental formula in Late Cretaceous eutherian mammals

    NASA Astrophysics Data System (ADS)

    Averianov, Alexander O.; Archibald, J. David

    2015-10-01

    Kulbeckia kulbecke, stem placental mammal from the Late Cretaceous of Uzbekistan, shows a transitional stage of evolution in the dental formula from five to four premolars. A non-replaced dP3/dp3 may occur as individual variation. In other specimens, the lower premolars are crowded with no space for development of dp3. As is evident from the CT scanning of one juvenile specimen, the development of dp3 started in a late ontogenetic stage and was confined to the pulp cavity of the developing p2. This dp3 would have been resorbed in a later ontogenetic stage, as the roots of p2 formed. The initial stage of reduction of the third premolar can be traced to stem therians ( Juramaia and Eomaia), which have both dP3 and P3 present in the adult dentition. Further delay in the development of dP3/dp3 led to the loss of the permanent P3/p3 (a possible synapomorphy for Eutheria). The dP3/dp3 was present during most of the adult stages in the Late Cretaceous stem placentals Zhelestidae and Gypsonictops. This tooth is totally absent in basal taxa of Placentalia, which normally have at most four premolars.

  8. Debris-carrying camouflage among diverse lineages of Cretaceous insects

    PubMed Central

    Wang, Bo; Xia, Fangyuan; Engel, Michael S.; Perrichot, Vincent; Shi, Gongle; Zhang, Haichun; Chen, Jun; Jarzembowski, Edmund A.; Wappler, Torsten; Rust, Jes

    2016-01-01

    Insects have evolved diverse methods of camouflage that have played an important role in their evolutionary success. Debris-carrying, a behavior of actively harvesting and carrying exogenous materials, is among the most fascinating and complex behaviors because it requires not only an ability to recognize, collect, and carry materials but also evolutionary adaptations in related morphological characteristics. However, the fossil record of such behavior is extremely scarce, and only a single Mesozoic example from Spanish amber has been recorded; therefore, little is known about the early evolution of this complicated behavior and its underlying anatomy. We report a diverse insect assemblage of exceptionally preserved debris carriers from Cretaceous Burmese, French, and Lebanese ambers, including the earliest known chrysopoid larvae (green lacewings), myrmeleontoid larvae (split-footed lacewings and owlflies), and reduviids (assassin bugs). These ancient insects used a variety of debris material, including insect exoskeletons, sand grains, soil dust, leaf trichomes of gleicheniacean ferns, wood fibers, and other vegetal debris. They convergently evolved their debris-carrying behavior through multiple pathways, which expressed a high degree of evolutionary plasticity. We demonstrate that the behavioral repertoire, which is associated with considerable morphological adaptations, was already widespread among insects by at least the Mid-Cretaceous. Together with the previously known Spanish specimen, these fossils are the oldest direct evidence of camouflaging behavior in the fossil record. Our findings provide a novel insight into early evolution of camouflage in insects and ancient ecological associations among plants and insects. PMID:27386568

  9. Snakefly diversity in Early Cretaceous amber from Spain (Neuropterida, Raphidioptera)

    PubMed Central

    la Fuente, Ricardo Pérez-de; Peñalver, Enrique; Delclòs, Xavier; Engel, Michael S.

    2012-01-01

    Abstract The Albian amber from Spain presently harbors the greatest number and diversity of amber adult fossil snakeflies (Raphidioptera). Within Baissopteridae, Baissoptera? cretaceoelectra sp. n., from the Peñacerrada I outcrop (Moraza, Burgos), is the first amber inclusion belonging to the family and described from western Eurasia, thus substantially expanding the paleogeographical range of the family formerly known from the Cretaceous of Brazil and eastern Asia. Within the family Mesoraphidiidae, Necroraphidia arcuata gen. et sp. n. and Amarantoraphidia ventolina gen. et sp. n. are described from the El Soplao outcrop (Rábago, Cantabria), whereas Styporaphidia? hispanica sp. n. and Alavaraphidia imperterrita gen. et sp. n. are describedfrom Peñacerrada I. In addition, three morphospecies are recognized from fragmentary remains. The following combinations are restored: Yanoraphidia gaoi Ren, 1995, stat. rest., Mesoraphidia durlstonensis Jepson, Coram and Jarzembowski, 2009, stat. rest., and Mesoraphidia heteroneura Ren, 1997, stat. rest. The singularity of this rich paleodiversity could be due to the paleogeographic isolation of the Iberian territory and also the prevalence of wildfires during the Cretaceous. PMID:22787417

  10. Extreme Morphogenesis and Ecological Specialization among Cretaceous Basal Ants.

    PubMed

    Perrichot, Vincent; Wang, Bo; Engel, Michael S

    2016-06-01

    Ants comprise one lineage of the triumvirate of eusocial insects and experienced their early diversification within the Cretaceous [1-9]. Their ecological success is generally attributed to their remarkable social behavior. Not all ants cooperate in social hunting, however, and some of the most effective predatory ants are solitary hunters with powerful trap jaws [10]. Recent evolutionary studies predict that the early branching lineages of extant ants formed small colonies of ground-dwelling, solitary specialist predators [2, 5, 7, 11, 12], while some Cretaceous fossils suggest group recruitment and socially advanced behavior among stem-group ants [9]. We describe a trap-jaw ant from 99 million-year-old Burmese amber with head structures that presumably functioned as a highly specialized trap for large-bodied prey. These are a cephalic horn resulting from an extreme modification of the clypeus hitherto unseen among living and extinct ants and scythe-like mandibles that extend high above the head, both demonstrating the presence of exaggerated morphogenesis early among stem-group ants. The new ant belongs to the Haidomyrmecini, possibly the earliest ant lineage [9], and together these trap-jaw ants suggest that at least some of the earliest Formicidae were solitary specialist predators. With their peculiar adaptations, haidomyrmecines had a refined ecology shortly following the advent of ants. PMID:27238278

  11. A reappraisal of Polyptychodon (Plesiosauria) from the Cretaceous of England

    PubMed Central

    2016-01-01

    Pliosauridae is a globally distributed clade of aquatic predatory amniotes whose fossil record spans from the Lower Jurassic to the Upper Cretaceous. However, the knowledge of pliosaurid interrelationships remains limited. In part, this is a consequence of a few key taxa awaiting detailed reassessment. Among them, the taxon Polyptychodon is of special importance. It was established on isolated teeth from the mid-Cretaceous strata of East and South East England and subsequently associated with numerous finds of near-cosmopolitan distribution. Here the taxon is reassessed based on the original dental material from England, with special focus on a large collection of late Albian material from the Cambridge Greensand near Cambridge. The dental material is reviewed here from historical and stratigraphic perspective, described in detail, and discussed in terms of its diagnostic nature. The considerable morphological variability observed in the teeth attributed to Polyptychodon, together with a wide stratigraphic range of the ascribed material, possibly exceeding 35 Ma (early Aptian to ?middle Santonian), suggests that the taxon is based on a multispecies assemblage, possibly incorporating members of different plesiosaur clades. Due to the absence of any autapomorphic characters or unique character combinations in the original material, Polyptychodon interruptus, the type species of Polyptychodon, is considered nomen dubium. From a global perspective, Polyptychodon is viewed as a wastebasket taxon whose material originating from different localities should be reconsidered separately. PMID:27190712

  12. Palaeogeographic regulation of glacial events during the Cretaceous supergreenhouse.

    PubMed

    Ladant, Jean-Baptiste; Donnadieu, Yannick

    2016-01-01

    The historical view of a uniformly warm Cretaceous is being increasingly challenged by the accumulation of new data hinting at the possibility of glacial events, even during the Cenomanian-Turonian (∼95 Myr ago), the warmest interval of the Cretaceous. Here we show that the palaeogeography typifying the Cenomanian-Turonian renders the Earth System resilient to glaciation with no perennial ice accumulation occurring under prescribed CO2 levels as low as 420 p.p.m. Conversely, late Aptian (∼115 Myr ago) and Maastrichtian (∼70 Myr ago) continental configurations set the stage for cooler climatic conditions, favouring possible inception of Antarctic ice sheets under CO2 concentrations, respectively, about 400 and 300 p.p.m. higher than for the Cenomanian-Turonian. Our simulations notably emphasize that palaeogeography can crucially impact global climate by modulating the CO2 threshold for ice sheet inception and make the possibility of glacial events during the Cenomanian-Turonian unlikely. PMID:27650167

  13. Microbial Cretaceous park: biodiversity of microbial fossils entrapped in amber

    NASA Astrophysics Data System (ADS)

    Martín-González, Ana; Wierzchos, Jacek; Gutiérrez, Juan C.; Alonso, Jesús; Ascaso, Carmen

    2009-05-01

    Microorganisms are the most ancient cells on this planet and they include key phyla for understanding cell evolution and Earth history, but, unfortunately, their microbial records are scarce. Here, we present a critical review of fossilized prokaryotic and eukaryotic microorganisms entrapped in Cretaceous ambers (but not exclusively from this geological period) obtained from deposits worldwide. Microbiota in ambers are rather diverse and include bacteria, fungi, and protists. We comment on the most important microbial records from the last 25 years, although it is not an exhaustive bibliographic compilation. The most frequently reported eukaryotic microfossils are shells of amoebae and protists with a cell wall or a complex cortex. Likewise, diverse dormant stages (palmeloid forms, resting cysts, spores, etc.) are abundant in ambers. Besides, viral and protist pathogens have been identified inside insects entrapped in amber. The situation regarding filamentous bacteria and fungi is quite confusing because in some cases, the same record was identified consecutively as a member of these phylogenetically distant groups. To avoid these identification errors in the future, we propose to apply a more resolute microscopic and analytical method in amber studies. Also, we discuss the most recent findings about ancient DNA repair and bacterial survival in remote substrates, which support the real possibility of ancient DNA amplification and bacterial resuscitation from Cretaceous resins.

  14. Major wildfires at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Gilmour, Iain; Wolbach, Wendy S.; Anders, Edward

    1989-01-01

    K-T boundary (KTB) clays from five sites are enriched in soot and charcoal by factors of 100-1000 over Cretaceous levels, apparently due to a global fire. The soot profile nearly coincides with the Ir profile, implying that the fire was triggered by the impact. Much or all of the fuel was biomass, as indicated by the presence of retene and by the C isotopic composition. The amount of elemental C at the KTB (0.012 g/sq cm) is very large, and requires either that most of the Cretaceous biomass burned down or that the soot yield was higher than in small fires. At undisturbed sites, soot correlates tightly with Ir, As, Sb, and Zn. Apparently soot and Ir-bearing ejecta particles coagulated in the stratosphere and then scavenged additional chalcophiles from the hydrosphere. In view of this coagulation, the K-T fire would only slightly prolong the period of darkness and cold caused by impact ejecta.

  15. Debris-carrying camouflage among diverse lineages of Cretaceous insects.

    PubMed

    Wang, Bo; Xia, Fangyuan; Engel, Michael S; Perrichot, Vincent; Shi, Gongle; Zhang, Haichun; Chen, Jun; Jarzembowski, Edmund A; Wappler, Torsten; Rust, Jes

    2016-06-01

    Insects have evolved diverse methods of camouflage that have played an important role in their evolutionary success. Debris-carrying, a behavior of actively harvesting and carrying exogenous materials, is among the most fascinating and complex behaviors because it requires not only an ability to recognize, collect, and carry materials but also evolutionary adaptations in related morphological characteristics. However, the fossil record of such behavior is extremely scarce, and only a single Mesozoic example from Spanish amber has been recorded; therefore, little is known about the early evolution of this complicated behavior and its underlying anatomy. We report a diverse insect assemblage of exceptionally preserved debris carriers from Cretaceous Burmese, French, and Lebanese ambers, including the earliest known chrysopoid larvae (green lacewings), myrmeleontoid larvae (split-footed lacewings and owlflies), and reduviids (assassin bugs). These ancient insects used a variety of debris material, including insect exoskeletons, sand grains, soil dust, leaf trichomes of gleicheniacean ferns, wood fibers, and other vegetal debris. They convergently evolved their debris-carrying behavior through multiple pathways, which expressed a high degree of evolutionary plasticity. We demonstrate that the behavioral repertoire, which is associated with considerable morphological adaptations, was already widespread among insects by at least the Mid-Cretaceous. Together with the previously known Spanish specimen, these fossils are the oldest direct evidence of camouflaging behavior in the fossil record. Our findings provide a novel insight into early evolution of camouflage in insects and ancient ecological associations among plants and insects.

  16. Evidence for global cooling in the Late Cretaceous

    PubMed Central

    Linnert, Christian; Robinson, Stuart A.; Lees, Jackie A.; Bown, Paul R.; Pérez-Rodríguez, Irene; Petrizzo, Maria Rose; Falzoni, Francesca; Littler, Kate; Arz, José Antonio; Russell, Ernest E.

    2014-01-01

    The Late Cretaceous ‘greenhouse’ world witnessed a transition from one of the warmest climates of the past 140 million years to cooler conditions, yet still without significant continental ice. Low-latitude sea surface temperature (SST) records are a vital piece of evidence required to unravel the cause of Late Cretaceous cooling, but high-quality data remain illusive. Here, using an organic geochemical palaeothermometer (TEX86), we present a record of SSTs for the Campanian–Maastrichtian interval (~83–66 Ma) from hemipelagic sediments deposited on the western North Atlantic shelf. Our record reveals that the North Atlantic at 35 °N was relatively warm in the earliest Campanian, with maximum SSTs of ~35 °C, but experienced significant cooling (~7 °C) after this to <~28 °C during the Maastrichtian. The overall stratigraphic trend is remarkably similar to records of high-latitude SSTs and bottom-water temperatures, suggesting that the cooling pattern was global rather than regional and, therefore, driven predominantly by declining atmospheric pCO2 levels. PMID:24937202

  17. A Cretaceous origin for fire adaptations in the Cape flora

    PubMed Central

    He, Tianhua; Lamont, Byron B.; Manning, John

    2016-01-01

    Fire has had a profound effect on the evolution of worldwide biotas. The Cape Floristic Region is one of the world’s most species-rich regions, yet it is highly prone to recurrent fires and fire-adapted species contribute strongly to the overall flora. It is hypothesized that the current fire regimes in the Cape could be as old as 6–8 million years (My), while indirect evidence indicates that the onset of fire could have reached 18 million years ago (Ma). Here, we trace the origin of fire-dependent traits in two monocot families that are significant elements in the fire-prone Cape flora. Our analysis shows that fire-stimulated flowering originated in the Cape Haemodoraceae 81 Ma, while fire-stimulated germination arose in the African Restionaceae at least 70 Ma, implying that wildfires have been a significant force in the evolution of the Cape flora at least 60 My earlier than previous estimates. Our results provide strong evidence for the presence of fire adaptations in the Cape from the Cretaceous, leading to the extraordinary persistence of a fire-adapted flora in this biodiversity hotspot, and giving support to the hypothesis that Cretaceous fire was a global phenomenon that shaped the evolution of terrestrial floras. PMID:27703273

  18. New fossil ants in French Cretaceous amber (Hymenoptera: Formicidae)

    NASA Astrophysics Data System (ADS)

    Perrichot, Vincent; Nel, André; Néraudeau, Didier; Lacau, Sébastien; Guyot, Thierry

    2008-02-01

    Recent studies on the ant phylogeny are mainly based on the molecular analyses of extant subfamilies and do not include the extinct, only Cretaceous subfamily Sphecomyrminae. However, the latter is of major importance for ant relationships, as it is considered the most basal subfamily. Therefore, each new discovery of a Mesozoic ant is of high interest for improving our understanding of their early history and basal relationships. In this paper, a new sphecomyrmine ant, allied to the Burmese amber genus Haidomyrmex, is described from mid-Cretaceous amber of France as Haidomyrmodes mammuthus gen. and sp. n. The diagnosis of the tribe Haidomyrmecini is emended based on the new type material, which includes a gyne (alate female) and two incomplete workers. The genus Sphecomyrmodes, hitherto known by a single species from Burmese amber, is also reported and a new species described as S. occidentalis sp. n. after two workers remarkably preserved in a single piece of Early Cenomanian French amber. The new fossils provide additional information on early ant diversity and relationships and demonstrate that the monophyly of the Sphecomyrminae, as currently defined, is still weakly supported.

  19. Cretaceous origin and repeated tertiary diversification of the redefined butterflies.

    PubMed

    Heikkilä, Maria; Kaila, Lauri; Mutanen, Marko; Peña, Carlos; Wahlberg, Niklas

    2012-03-22

    Although the taxonomy of the ca 18 000 species of butterflies and skippers is well known, the family-level relationships are still debated. Here, we present, to our knowledge, the most comprehensive phylogenetic analysis of the superfamilies Papilionoidea, Hesperioidea and Hedyloidea to date based on morphological and molecular data. We reconstructed their phylogenetic relationships using parsimony and Bayesian approaches. We estimated times and rates of diversification along lineages in order to reconstruct their evolutionary history. Our results suggest that the butterflies, as traditionally understood, are paraphyletic, with Papilionidae being the sister-group to Hesperioidea, Hedyloidea and all other butterflies. Hence, the families in the current three superfamilies should be placed in a single superfamily Papilionoidea. In addition, we find that Hedylidae is sister to Hesperiidae, and this novel relationship is supported by two morphological characters. The families diverged in the Early Cretaceous but diversified after the Cretaceous-Palaeogene event. The diversification of butterflies is characterized by a slow speciation rate in the lineage leading to Baronia brevicornis, a period of stasis by the skippers after divergence and a burst of diversification in the lineages leading to Nymphalidae, Riodinidae and Lycaenidae. PMID:21920981

  20. A eudicot from the Early Cretaceous of China.

    PubMed

    Sun, Ge; Dilcher, David L; Wang, Hongshan; Chen, Zhiduan

    2011-03-31

    The current molecular systematics of angiosperms recognizes the basal angiosperms and five major angiosperm lineages: the Chloranthaceae, the magnoliids, the monocots, Ceratophyllum and the eudicots, which consist of the basal eudicots and the core eudicots. The eudicots form the majority of the angiosperms in the world today. The flowering plants are of exceptional evolutionary interest because of their diversity of over 250,000 species and their abundance as the dominant vegetation in most terrestrial ecosystems, but little is known of their very early history. In this report we document an early presence of eudicots during the Early Cretaceous Period. Diagnostic characters of the eudicot fossil Leefructus gen. nov. include simple and deeply trilobate leaves clustered at the nodes in threes or fours, basal palinactinodromous primary venation, pinnate secondary venation, and a long axillary reproductive axis terminating in a flattened receptacle bearing five long, narrow pseudo-syncarpous carpels. These morphological characters suggest that its affinities are with the Ranunculaceae, a basal eudicot family. The fossil co-occurs with Archaefructus sinensis and Hyrcantha decussata whereas Archaefructus liaoningensis comes from more ancient sediments. Multiple radiometric dates of the Lower Cretaceous Yixian Formation place the bed yielding this fossil at 122.6-125.8 million years old. The earliest fossil records of eudicots are 127 to 125 million years old, on the basis of pollen. Thus, Leefructus gen. nov. suggests that the basal eudicots were already present and diverse by the latest Barremian and earliest Aptian. PMID:21455178

  1. A reappraisal of Polyptychodon (Plesiosauria) from the Cretaceous of England.

    PubMed

    Madzia, Daniel

    2016-01-01

    Pliosauridae is a globally distributed clade of aquatic predatory amniotes whose fossil record spans from the Lower Jurassic to the Upper Cretaceous. However, the knowledge of pliosaurid interrelationships remains limited. In part, this is a consequence of a few key taxa awaiting detailed reassessment. Among them, the taxon Polyptychodon is of special importance. It was established on isolated teeth from the mid-Cretaceous strata of East and South East England and subsequently associated with numerous finds of near-cosmopolitan distribution. Here the taxon is reassessed based on the original dental material from England, with special focus on a large collection of late Albian material from the Cambridge Greensand near Cambridge. The dental material is reviewed here from historical and stratigraphic perspective, described in detail, and discussed in terms of its diagnostic nature. The considerable morphological variability observed in the teeth attributed to Polyptychodon, together with a wide stratigraphic range of the ascribed material, possibly exceeding 35 Ma (early Aptian to ?middle Santonian), suggests that the taxon is based on a multispecies assemblage, possibly incorporating members of different plesiosaur clades. Due to the absence of any autapomorphic characters or unique character combinations in the original material, Polyptychodon interruptus, the type species of Polyptychodon, is considered nomen dubium. From a global perspective, Polyptychodon is viewed as a wastebasket taxon whose material originating from different localities should be reconsidered separately. PMID:27190712

  2. Intertropical African palynostratigraphy from Cretaceous to late quaternary times

    NASA Astrophysics Data System (ADS)

    Salard-Cheboldaeff, M.

    The break up of Gondwana and the final separation of South America and Africa resulted in the formation of sedimentary basins along the coast of West Africa. These basins were infilled with Cretaceous and Tertiary sediments. The paleoflora (spores and pollen grains) of these sediments was studied as a follow-up to an earlier general study of the microfauna (Foraminifera and Ostracodes). It is interesting to note that the African intertropical microflora assemblages are significantly different from those of north African basins but bear close ressemblance to those of South America and to a lesser extent to those of India and Borneo. The literature on the palynology of Cretaceous-Tertiary sediments of West Africa, from English and French sources, has been reviewed and synthesized with a veiw to describe the paleofloral succession as defined by the appearance, predominance and disappearance of pollen species which correspond approximately with established stratigraphic subdivisions. A palynostratigraphic scale is proposed ranging from Neocomian to Pliocene, showing the marker-pollen and spore species for intertropical Africa. Some of these species also occur in virtually all the nowadays intertropical zone.

  3. Osmium Isotopic Composition of the Sumbar Cretaceous- Tertiary Boundary, Turkmenia

    NASA Astrophysics Data System (ADS)

    Meisel, T.; Krahenbuhl, U.; Nazarov, M. A.

    1992-07-01

    ., Barsukova L. D., Koselov G. M., Nizhegorodova I. V. and Amanniyazov K. N. (1988) The Cretaceous- Paleogene boundary in southern Turkmenia and its geochemical characteristics. Int. Geol. Rev. 30, 121-135. Esser B. K. and Turekian K. K. (1989) Osmium isotopic composition of the Raton Basin Cretaceous-Tertiary boundary interval. 70, 717. Kraehenbuehl U., Geissbuehler M., Buehler F. and Eberhardt P. (1988) The measurement of osmium isotopes in samples from a Cretaceous/Tertiary (K/T) section of the Raton Basin, USA. Meteoritics 23, 282. Lichte F. E., Wilson S. M., Brooks R. R., Reeves R. D., Holzbecher J. and Ryan D. E. (1986) New method for the measurement of osmium isotopes applied to a New Zealand Cretaceous/Tertiary boundary shale. Nature 322, 816-817. Luck J. M. and Turekian K. K. (1983) Osmium-^187/Osmium-^186 in manganese nodules and the Cretaceous-Tertiary boundary. Science 222, 613- 615. Turekian K. K. (1982) Potential of ^187Os/^186Os as a cosmic versus terrestrial indicator in high iridium layers of sedimentary strata. Geol. Bull. Am. Spec. Pap. 190, 243-249.

  4. The Late Cretaceous hydrological cycle very different from today

    NASA Astrophysics Data System (ADS)

    Floegel, S.; Hay, W. W.; Deconto, R. M.

    2003-04-01

    Numeric modeling of the climate system at the Cenomanian/Turonian boundary has produced surprising results concerning the hydrological cycle during the Late Cretaceous. Today; the global average of subsurface runoff (groundwater, 13.320 km3) to surface runoff (43.790 km3) is about 30%. Globally, about 2/3 of the total river discharge entering the sea today is from surface runoff, much of it originating as snowmelt, and 1/3 is from groundwater, The present day data show similar proportions of surface runoff/subsurface runoff for different continents, ~4:1 in Aus-tralia, ~3:1 in Europe, Africa, and South America, and lower on other continents. The amount and seasonal distribution of surface runoff drives both mechanical erosion and terrigenous bio-logical activity. The amount and distribution of subsurface runoff is of importance for chemical erosion and subsurface dissolution. GENESIS (v.2.0) paleoclimate simulations of the Late Cretaceous, show a relation opposite to that of present, with subsurface runoff dominating over surface runoff both globally and region-ally. Globally, the simulations produce an annual mean value for subsurface runoff about 6 times higher than that of the surface runoff. Detailed examination of the data shows very large regional differences. The ratios of surface to subsurface runoff range from 1:2 (Sevier Highlands of west-ern North America) to 1:1200 (S-Asia). There are significant regional differences between the surface runoff and subsurface runoff, even at similar paleolatitudes. Not only does the total amount of water transported annually by these two mechanisms change dramatically, but their distribution during the course of a year is different from present. In addition to the effect of the different Cretaceous hydrology on rivers, low salinity, nutrient-rich groundwater discharge di-rectly into coastal waters could have had a significant impact on the local ecology along the margins of continents and islands. If atmospheric CO2 were

  5. Evolution and palaeoenvironment of the Bauru Basin (Upper Cretaceous, Brazil)

    NASA Astrophysics Data System (ADS)

    Fernandes, Luiz Alberto; Magalhães Ribeiro, Claudia Maria

    2015-08-01

    The Bauru Basin was one of the great Cretaceous desert basins of the world, evolved in arid zone called Southern Hot Arid Belt. Its paleobiological record consists mainly of dinosaurs, crocodiles and turtles. The Bauru Basin is an extensive region of the South American continent that includes parts of the southeast and south of Brazil, covering an area of 370,000 km2. It is an interior continental basin that developed as a result of subsidence of the central-southern part of the South-American Platform during the Late Cretaceous (Coniacian-Maastrichtian). This sag basin is filled by a sandy siliciclastic sequence with a preserved maximum thickness of 480 m, deposited in semiarid to desert conditions. Its basement consists of volcanic rocks (mainly basalts) of the Lower Cretaceous (Hauterivian) Serra Geral basalt flows, of the Paraná-Etendeka Continental Flood Basalt Province. The sag basin was filled by an essentially siliciclastic psammitic sequence. In lithostratigraphic terms the sequence consists of the Caiuá and Bauru groups. The northern and northeastern edges of the basin provide a record of more proximal original deposits, such as associations of conglomeratic sand facies from alluvial fans, lakes, and intertwined distributary river systems. The progressive basin filling led to the burial of the basaltic substrate by extensive blanket sand sheets, associated with deposits of small dunes and small shallow lakes that retained mud (such as loess). Also in this intermediate context between the edges (more humid) and the interior (dry), wide sand sheet areas crossed by unconfined desert rivers (wadis) occurred. In the central axis of the elliptical basin a regional drainage system formed, flowing from northeast to southwest between the edges of the basin and the hot and dry inner periphery of the Caiuá desert (southwest). Life in the Bauru Basin flourished most in the areas with the greatest water availability, in which dinosaurs, crocodiles, turtles, fish

  6. Intracontinental deformation in southern Africa during the Late Cretaceous

    NASA Astrophysics Data System (ADS)

    Brown, Roderick; Summerfield, Michael; Gleadow, Andrew; Gallagher, Kerry; Carter, Andrew; Beucher, Romain; Wildman, Mark

    2014-12-01

    Intracontinental deformation accommodated along major lithospheric scale shear zone systems and within associated extensional basins has been well documented within West, Central and East Africa during the Late Cretaceous. The nature of this deformation has been established by studies of the tectonic architecture of sedimentary basins preserved in this part of Africa. In southern Africa, where the post break-up history has been dominated by major erosion, little evidence for post-break-up tectonics has been preserved in the onshore geology. Here we present the results of 38 new apatite fission track analyses from the Damara region of northern Namibia and integrate these new data with our previous results that were focused on specific regions or sections only to comprehensively document the thermo-tectonic history of this region since continental break-up in the Early Cretaceous. The apatite fission track ages range from 449 ± 20 Ma to 59 ± 3 Ma, with mean confined track lengths between 14.61 ± 0.1 μm (SD 0.95 μm) to 10.83 ± 0.33 μm (SD 2.84 μm). The youngest ages (c. 80-60 Ma) yield the longest mean track lengths, and combined with their spatial distribution, indicate major cooling during the latest Cretaceous. A simple numerical thermal model is used to demonstrate that this cooling is consistent with the combined effects of heating caused by magmatic underplating, related to the Paraná-Etendeka continental flood volcanism associated with rifting and the opening of the South Atlantic, and enhanced erosion caused by major reactivation of major lithospheric structures within southern Africa during a key period of plate kinematic change that occurred in the South Atlantic and SW Indian ocean basins between 87 and 56 Ma. This phase of intraplate tectonism in northern Namibia, focused in discrete structurally defined zones, is coeval with similar phases elsewhere in Africa and suggests some form of trans-continental linkage between these lithospheric zones.

  7. Time-calibrated models support congruency between Cretaceous continental rifting and titanosaurian evolutionary history.

    PubMed

    Gorscak, Eric; O'Connor, Patrick M

    2016-04-01

    Recent model-based phylogenetic approaches have expanded upon the incorporation of extinct lineages and their respective temporal information for calibrating divergence date estimates. Here, model-based methods are explored to estimate divergence dates and ancestral ranges for titanosaurian sauropod dinosaurs, an extinct and globally distributed terrestrial clade that existed during the extensive Cretaceous supercontinental break-up. Our models estimate an Early Cretaceous (approx. 135 Ma) South American origin for Titanosauria. The estimated divergence dates are broadly congruent with Cretaceous geophysical models of supercontinental separation and subsequent continental isolation while obviating the invocation of continuous Late Cretaceous continental connections (e.g. ephemeral land bridges). Divergence dates for mid-Cretaceous African and South American sister lineages support semi-isolated subequatorial African faunas in concordance with the gradual northward separation between South America and Africa. Finally, Late Cretaceous Africa may have linked Laurasian lineages with their sister South American lineages, though the current Late Cretaceous African terrestrial fossil record remains meagre. PMID:27048465

  8. An abelisaurid from the Late Cretaceous of Egypt: implications for theropod biogeography.

    PubMed

    Smith, Joshua B; Lamanna, Matthew C

    2006-05-01

    Recent paleogeographic scenarios postulate the isolation of continental Africa during the Late Cretaceous. The absence of abelisaurid theropods from Upper Cretaceous African strata was offered as support of hypothesized African isolation with the acknowledgement that the paucity of African abelisaurids may be mostly an issue of sampling. Here we report on a shed theropod tooth from the Upper Cretaceous (Maastrichtian, approximately 70 Ma) Duwi Formation of Egypt. The tooth was referred to the Malagasy abelisaurid "Megalosaurus" crenatissimus (=Majungasaurus crenatissimus) in 1921. A discriminant function analysis was run to test for morphological congruence between the Egyptian tooth and the dentitions of 24 theropod taxa. The analysis correctly classified 96.6% of the teeth in the sample and assigned the tooth to Majungasaurus. As current paleogeographic reconstructions posit Madagascar had attained its current position relative to Africa before the Late Cretaceous, it is unlikely that the Egyptian tooth actually pertains to Majungasaurus. Nevertheless, its classification as an abelisaurid supports its referral to the clade. This tooth thus constitutes defensible evidence of an abelisaurid from the post-Cenomanian Cretaceous of mainland Africa. Combined with recent discoveries of abelisaurids in Niger and Morocco, the result indicates that Abelisauridae was a diverse group in Africa during the Cretaceous, existing in multiple places for at least approximately 25 Ma and weakens support for hypotheses of an isolated Africa during the Late Cretaceous. PMID:16541232

  9. An abelisaurid from the Late Cretaceous of Egypt: implications for theropod biogeography

    NASA Astrophysics Data System (ADS)

    Smith, Joshua B.; Lamanna, Matthew C.

    2006-05-01

    Recent paleogeographic scenarios postulate the isolation of continental Africa during the Late Cretaceous. The absence of abelisaurid theropods from Upper Cretaceous African strata was offered as support of hypothesized African isolation with the acknowledgement that the paucity of African abelisaurids may be mostly an issue of sampling. Here we report on a shed theropod tooth from the Upper Cretaceous (Maastrichtian, ˜70 Ma) Duwi Formation of Egypt. The tooth was referred to the Malagasy abelisaurid “ Megalosaurus” crenatissimus (= Majungasaurus crenatissimus) in 1921. A discriminant function analysis was run to test for morphological congruence between the Egyptian tooth and the dentitions of 24 theropod taxa. The analysis correctly classified 96.6% of the teeth in the sample and assigned the tooth to Majungasaurus. As current paleogeographic reconstructions posit Madagascar had attained its current position relative to Africa before the Late Cretaceous, it is unlikely that the Egyptian tooth actually pertains to Majungasaurus. Nevertheless, its classification as an abelisaurid supports its referral to the clade. This tooth thus constitutes defensible evidence of an abelisaurid from the post-Cenomanian Cretaceous of mainland Africa. Combined with recent discoveries of abelisaurids in Niger and Morocco, the result indicates that Abelisauridae was a diverse group in Africa during the Cretaceous, existing in multiple places for at least ˜25 Ma and weakens support for hypotheses of an isolated Africa during the Late Cretaceous.

  10. Biodiversity changes in Cretaceous palynofloras of eastern Asia and western North America

    NASA Astrophysics Data System (ADS)

    Nichols, D. J.

    2003-06-01

    Palynology has great potential for providing comparative data and interpretations about changes in biodiversity during the Cretaceous Period. This is especially true for both eastern Asia and western North America because of strong floristic similarities that existed between these regions during Cretaceous time. Also, because palynomorphs of terrestrial origin can be deposited in offshore as well as terrestrial environments, significant potential exists for marine-to-continental palynostratigraphic correlations in both regions. Palynological biostratigraphy can improve the geologic dating of changes in biodiversity. During the Early Cretaceous, eastern Asia and western North America lay within the Cerebropollenites palynofloral province, a circumpolar phytogeographic zone characterized by distinctive palynological assemblages. During most of the Late Cretaceous, these regions lay within the palynofloristically unique Aquilapollenites Province, which was more restricted geographically than the Cerebropollenites Province. The most important development during Cretaceous time that is reflected in palynological assemblages was the rise of the angiosperms as the numerically and ecologically dominant forms of vegetation. The most striking short-term palynofloral event in the two regions was the sudden disappearance of species of Aquilapollenites and associated genera at the Cretaceous-Tertiary (K/T) boundary. Both of these occurrences produced major changes in biodiversity in the terrestrial realm. Geologic research in International Geological Correlation Program Project 434 can benefit from applications of palynostratigraphy. Palynologic research within Project 434 could include development of a comprehensive palynostratigraphic zonation for the Cretaceous, the definition of regional palynostratigraphic datums, and investigation of the record of floral change at the K/T boundary.

  11. A Ceratopsian Dinosaur from the Lower Cretaceous of Western North America, and the Biogeography of Neoceratopsia

    PubMed Central

    Farke, Andrew A.; Maxwell, W. Desmond; Cifelli, Richard L.; Wedel, Mathew J.

    2014-01-01

    The fossil record for neoceratopsian (horned) dinosaurs in the Lower Cretaceous of North America primarily comprises isolated teeth and postcrania of limited taxonomic resolution, hampering previous efforts to reconstruct the early evolution of this group in North America. An associated cranium and lower jaw from the Cloverly Formation (?middle–late Albian, between 104 and 109 million years old) of southern Montana is designated as the holotype for Aquilops americanus gen. et sp. nov. Aquilops americanus is distinguished by several autapomorphies, including a strongly hooked rostral bone with a midline boss and an elongate and sharply pointed antorbital fossa. The skull in the only known specimen is comparatively small, measuring 84 mm between the tips of the rostral and jugal. The taxon is interpreted as a basal neoceratopsian closely related to Early Cretaceous Asian taxa, such as Liaoceratops and Auroraceratops. Biogeographically, A. americanus probably originated via a dispersal from Asia into North America; the exact route of this dispersal is ambiguous, although a Beringian rather than European route seems more likely in light of the absence of ceratopsians in the Early Cretaceous of Europe. Other amniote clades show similar biogeographic patterns, supporting an intercontinental migratory event between Asia and North America during the late Early Cretaceous. The temporal and geographic distribution of Upper Cretaceous neoceratopsians (leptoceratopsids and ceratopsoids) suggests at least intermittent connections between North America and Asia through the early Late Cretaceous, likely followed by an interval of isolation and finally reconnection during the latest Cretaceous. PMID:25494182

  12. Sauropod dinosaur osteoderms from the Late Cretaceous of Madagascar.

    PubMed

    Curry Rogers, Kristina; D'Emic, Michael; Rogers, Raymond; Vickaryous, Matthew; Cagan, Amanda

    2011-01-01

    Osteoderms are bones embedded within the dermis, and are common to select members of most major tetrapod lineages. The largest known animals that bear osteoderms are members of Titanosauria, a diverse clade of sauropod dinosaurs. Here we report on two titanosaur osteoderms recovered from the Upper Cretaceous Maevarano Formation of Madagascar. Each osteoderm was discovered in association with a partial skeleton representing a distinct ontogenetic stage of the titanosaur Rapetosaurus krausei. Combined, these specimens provide novel insights into the arrangement and function of titanosaur osteoderms. Taphonomic data confirm that Rapetosaurus developed only limited numbers of osteoderms in its integument. The adult-sized osteoderm is the most massive integumentary skeletal element yet discovered, with an estimated volume of 9.63 litres. Uniquely, this specimen possesses an internal cavity equivalent to more than half its total volume. Large, hollow osteoderms may have functioned as mineral stores in fecund, rapidly growing titanosaurs inhabiting stressed environments. PMID:22127060

  13. A biostratigraphic sequence analysis in Cretaceous sediments from Eastern Venezuela

    SciTech Connect

    Paredes, I.; Carillo, M.; Fasola, A.; Luna, F. )

    1993-02-01

    This paper presents the results of a high resolution biostratigraphic study integrated with petrophysic analyses, of the Late Cretaceous sequence in several wells from the Maturin Sub-Basin, Eastern Venezuela. The main objective of this study is to integrate the different faunal and floral assemblages to the sedimentological evolution of the basin using sequential analysis techniques. This technique was applied using mainly terrestrial and marine palynomorphs which were relatively abundant and diverse as compared to the scarcity of foraminifera and nonnofossils. Based on the percentages of abundance and the diversity of the different groups of microfoss it was possible to establish the maximum flooding surfaces and condensation levels which allowed the definition of the possible candidates for the sequence boundaries. On the other hand, the identified bioevents made possible the definition of the chronostratigraphic datums of the sequence under study. The results obtained will contribute to optimize the exploration and development programs of the oil fields in Eastern Venezuela.

  14. Alisitos Formation calcareous facies - Early Cretaceous episode of tectonic calm

    SciTech Connect

    Suarez-Vidal, F.

    1986-04-01

    The Alisitos Formation (Aptian-Albian), shaped as a marine volcanic arc, crops out along the western side of Baja California bounding the Peninsula Range batholith. Lithologically, this formation is formed by volcanic breccias, porphyritic flows, biohermal limestones, and tuffaceous and pyroclastic sediments. The distribution of the different facies depends on the nature of volcanism and the distance from a volcanic center, although the presence of massive biohermal limestone indicates that in the Early Cretaceous (during tectonic episodes), the volcanic activity decreased to the level that the environmental conditions were favorable for the development of an organic barrier reef behind an island arc. Such conditions pertained south of the Agua Blanca fault and extended to El Arco, Baja California. Based on field observation and petrologic analysis in the Alisitos limestone, an attempt has been made to re-create the environmental condition in the Punta China and San Fernando, Baja California, sites.

  15. Alisitos Formation, calcareous facies: Early Cretaceous episode of tectonic calm

    SciTech Connect

    Suarez-Vidal, F.

    1986-07-01

    The Alisitos Formation (Aptian-Albian), shaped as a marine volcanic arc, crops out along the western side of the peninsula of Baja California bounding the Peninsular Range batholith. Lithologically, this formation is formed by volcanic-breccias, porphyritic flows, biohermal limestones, and tuffaceous and pyroclastic sediments. The distribution of the different facies depends on the nature of volcanism and the distance from a volcanic center, although the presence of massive biohermal limestone indicates that in the Early Cretaceous (during the tectonic episodes), the volcanic activity decreased to the level that the environmental conditions were favorable for the development of an organic reef barrier, behind an island arc. Such conditions existed south of the Agua Blanca fault and extended to El Arco, Baja California. Based upon field observations and petrological analysis of the Alisitos limestone, an attempt is made to recreate the environmental condition in the Punta China and San Fernando, Baja California, sites.

  16. Early Cretaceous Archaeamphora is not a carnivorous angiosperm.

    PubMed

    Wong, William Oki; Dilcher, David Leonard; Labandeira, Conrad C; Sun, Ge; Fleischmann, Andreas

    2015-01-01

    Archaeamphora longicervia H. Q. Li was described as an herbaceous, Sarraceniaceae-like pitcher plant from the mid Early Cretaceous Yixian Formation of Liaoning Province, northeastern China. Here, a re-investigation of A. longicervia specimens from the Yixian Formation provides new insights into its identity and the morphology of pitcher plants claimed by Li. We demonstrate that putative pitchers of Archaeamphora are insect-induced leaf galls that consist of three components: (1) an innermost larval chamber; (2) an intermediate zone of nutritive tissue; and (3) an outermost wall of sclerenchyma. Archaeamphora is not a carnivorous, Sarraceniaceae-like angiosperm, but represents insect-galled leaves of the previously reported gymnosperm Liaoningocladus boii G. Sun et al. from the Yixian Formation.

  17. Seismic expression of subtle strat trap in Upper Cretaceous Almond

    USGS Publications Warehouse

    Ryder, Robert T.; Lee, Myung W.; Agena, Warren F.; Anderson, Robert C.

    1990-01-01

    The east flank of the Rock Springs uplift and the adjacent Wamsutter arch contain several large hydrocarbon accumulations. Among these accumulations are Patrick Draw field, which produces oil and gas from a stratigraphic trap in the Upper Cretaceous Almond formation, and Table Rock field, a faulted anticlinal trap that produces gas from multiple Tertiary, Mesozoic, and Paleozoic reservoirs. The principal petroleum reservoir in Patrick Draw field is a sandstone at the top of the Almond formation. This sandstone attains a maximum thickness of 35ft and piches out westward into relatively impervious silt-stone and shale that constitute the trapping facies. The objective of this investigation is to determine whether or not the stratigraphic trap at Patrick Draw can be detected on a 12 fold, common depth point seismic profile acquired by Forest Oil Corp. and its partners. The seismic line is 18.5 miles long and crosses Patrick Draw and Table Rock fields.

  18. Seismic expression of subtle strat trap in upper Cretaceous Almond

    SciTech Connect

    Ryder, R.T. ); Lee, M.W.; Agena, W.F. ); Anderson, R.C. )

    1990-12-17

    The east flank of the Rock Springs uplift and the adjacent Wamsutter arch contain several large hydrocarbon accumulations. Among these accumulations are Patrick Draw field, which produces oil and gas from a stratigraphic trap in the upper Cretaceous Almond formation, and Table Rock field, a faulted anticlinal trap that produces gas from multiple Tertiary, Mesozoic, and Paleozoic reservoirs. The principal petroleum reservoir in Patrick Draw field is a sandstone at the top of the Almond formation. This sandstone attains a maximum thickness of 35 ft (11 m) and pinches out westward into relatively impervious siltstone and shale that constitute the trapping facies. The objective of this investigation is to determine whether or not the stratigraphic trap at Patrick Draw can be detected on a 12 fold, common depth point seismic profile.

  19. Cretaceous stem chondrichthyans survived the end-Permian mass extinction.

    PubMed

    Guinot, Guillaume; Adnet, Sylvain; Cavin, Lionel; Cappetta, Henri

    2013-01-01

    Cladodontomorph sharks are Palaeozoic stem chondrichthyans thought to go extinct at the end-Permian mass extinction. This extinction preceded the diversification of euselachians, including modern sharks. Here we describe an outer-platform cladodontomorph shark tooth assemblage from the Early Cretaceous of southern France, increasing the fossil record of this group by circa 120 million years. Identification of this material rests on new histological observations and morphological evidence. Our finding shows that this lineage survived mass extinctions most likely by habitat contraction, using deep-sea refuge environments during catastrophic events. The recorded gap in the cladodontomorph lineage represents the longest gap in the fossil record for an extinct marine vertebrate group. This discovery demonstrates that the deep-sea marine diversity, poorly known during most of the fish evolutionary history, contains essential data for a complete understanding of the long-term evolution of marine fish paleobiodiversity.

  20. Fullerenes in the cretaceous-tertiary boundary layer

    SciTech Connect

    Heymann, D.; Chibante, L.P.F.; Smalley, R.E. ); Brooks, R.R. ); Wolbach, W.S. )

    1994-07-29

    High-pressure liquid chromatography with ultraviolet-visible spectral analysis of toluene extracts of samples from two Cretaceous-Tertiary (K-T) boundary sites in New Zealand has revealed the presence of C[sub 60] at concentrations of 0.1 to 0.2 parts per million of the associated soot. This technique verified also that fullerenes are produced in similar amounts in the soots of common flames under ambient atmospheric conditions. Therefore, the C[sub 60] in the K-T boundary layer may have originated in the extensive wildfires that were associated with the cataclysmic impact event that terminated the Mezozoic era about 65 million years ago.

  1. Morphological stasis of protists in lower cretaceous amber.

    PubMed

    Martín-González, Ana; Wierzchos, Jacek; Gutiérrez, Juan C; Alonso, Jesús; Ascaso, Carmen

    2008-04-01

    Paleomicrobiological studies of terrestrial and freshwater protists are extremely rare in comparison with studies of eukaryotic microfossils from marine ecosystems. Using optical and electron microscopy (SEM-BSE) for hard substrates, we have examined protists trapped in Lower Cretaceous amber from Peñacerrada (Alava, Spain). We present the earliest reasonably confident microfossils of three taxa: Excavata (Euglenozoa), that are similar to the extant genera Euglena and Phacus; Chlorophyceae identified as members of the genus Chlamydomonas, and finally, in the taxon Ciliophora (Chromalveolata), two ciliated protozoa identified as Colpoda (Class Colpodea) and Prorodon (Class Prostomatea). Morphological stasis is evident, and identification based on phenotypic traits indicates the existence of conservative phenotypes persisting over geological time scales.

  2. Early Cretaceous Archaeamphora is not a carnivorous angiosperm.

    PubMed

    Wong, William Oki; Dilcher, David Leonard; Labandeira, Conrad C; Sun, Ge; Fleischmann, Andreas

    2015-01-01

    Archaeamphora longicervia H. Q. Li was described as an herbaceous, Sarraceniaceae-like pitcher plant from the mid Early Cretaceous Yixian Formation of Liaoning Province, northeastern China. Here, a re-investigation of A. longicervia specimens from the Yixian Formation provides new insights into its identity and the morphology of pitcher plants claimed by Li. We demonstrate that putative pitchers of Archaeamphora are insect-induced leaf galls that consist of three components: (1) an innermost larval chamber; (2) an intermediate zone of nutritive tissue; and (3) an outermost wall of sclerenchyma. Archaeamphora is not a carnivorous, Sarraceniaceae-like angiosperm, but represents insect-galled leaves of the previously reported gymnosperm Liaoningocladus boii G. Sun et al. from the Yixian Formation. PMID:25999978

  3. Early Cretaceous Archaeamphora is not a carnivorous angiosperm

    PubMed Central

    Wong, William Oki; Dilcher, David Leonard; Labandeira, Conrad C.; Sun, Ge; Fleischmann, Andreas

    2015-01-01

    Archaeamphora longicervia H. Q. Li was described as an herbaceous, Sarraceniaceae-like pitcher plant from the mid Early Cretaceous Yixian Formation of Liaoning Province, northeastern China. Here, a re-investigation of A. longicervia specimens from the Yixian Formation provides new insights into its identity and the morphology of pitcher plants claimed by Li. We demonstrate that putative pitchers of Archaeamphora are insect-induced leaf galls that consist of three components: (1) an innermost larval chamber; (2) an intermediate zone of nutritive tissue; and (3) an outermost wall of sclerenchyma. Archaeamphora is not a carnivorous, Sarraceniaceae-like angiosperm, but represents insect-galled leaves of the previously reported gymnosperm Liaoningocladus boii G. Sun et al. from the Yixian Formation. PMID:25999978

  4. Plant ecological strategies shift across the Cretaceous-Paleogene boundary.

    PubMed

    Blonder, Benjamin; Royer, Dana L; Johnson, Kirk R; Miller, Ian; Enquist, Brian J

    2014-09-01

    The Chicxulub bolide impact caused the end-Cretaceous mass extinction of plants, but the associated selectivity and ecological effects are poorly known. Using a unique set of North Dakota leaf fossil assemblages spanning 2.2 Myr across the event, we show among angiosperms a reduction of ecological strategies and selection for fast-growth strategies consistent with a hypothesized recovery from an impact winter. Leaf mass per area (carbon investment) decreased in both mean and variance, while vein density (carbon assimilation rate) increased in mean, consistent with a shift towards "fast" growth strategies. Plant extinction from the bolide impact resulted in a shift in functional trait space that likely had broad consequences for ecosystem functioning.

  5. Cretaceous stem chondrichthyans survived the end-Permian mass extinction.

    PubMed

    Guinot, Guillaume; Adnet, Sylvain; Cavin, Lionel; Cappetta, Henri

    2013-01-01

    Cladodontomorph sharks are Palaeozoic stem chondrichthyans thought to go extinct at the end-Permian mass extinction. This extinction preceded the diversification of euselachians, including modern sharks. Here we describe an outer-platform cladodontomorph shark tooth assemblage from the Early Cretaceous of southern France, increasing the fossil record of this group by circa 120 million years. Identification of this material rests on new histological observations and morphological evidence. Our finding shows that this lineage survived mass extinctions most likely by habitat contraction, using deep-sea refuge environments during catastrophic events. The recorded gap in the cladodontomorph lineage represents the longest gap in the fossil record for an extinct marine vertebrate group. This discovery demonstrates that the deep-sea marine diversity, poorly known during most of the fish evolutionary history, contains essential data for a complete understanding of the long-term evolution of marine fish paleobiodiversity. PMID:24169620

  6. Plant ecological strategies shift across the Cretaceous-Paleogene boundary.

    PubMed

    Blonder, Benjamin; Royer, Dana L; Johnson, Kirk R; Miller, Ian; Enquist, Brian J

    2014-09-01

    The Chicxulub bolide impact caused the end-Cretaceous mass extinction of plants, but the associated selectivity and ecological effects are poorly known. Using a unique set of North Dakota leaf fossil assemblages spanning 2.2 Myr across the event, we show among angiosperms a reduction of ecological strategies and selection for fast-growth strategies consistent with a hypothesized recovery from an impact winter. Leaf mass per area (carbon investment) decreased in both mean and variance, while vein density (carbon assimilation rate) increased in mean, consistent with a shift towards "fast" growth strategies. Plant extinction from the bolide impact resulted in a shift in functional trait space that likely had broad consequences for ecosystem functioning. PMID:25225914

  7. Testate amoebae from a cretaceous forest floor microbiocoenosis of france.

    PubMed

    Schmidt, Alexander R; Girard, Vincent; Perrichot, Vincent; Schönborn, Wilfried

    2010-01-01

    Amber-preserved shells of testate amoebae often provide as many diagnostic features as the tests of modern taxa. Most of these well-preserved microfossils are morphologically assignable to modern species indicating either evolutionary stasis or convergent evolution. Here we describe two Lower Cretaceous testate amoebae that are clearly distinguishable from modern species. Centropyxis perforata n. sp. and Leptochlamys galippei n. sp. possessed perforate shells that were previously unknown in these genera. They are preserved in highly fossiliferous amber pieces from the Upper Albian (ca. 100 million years old) of Archingeay/Les Nouillers (Charente-Maritime, southwestern France). Syninclusions of soil and litter dwelling arthropods and microorganisms indicate a limnetic-terrestrial microhabitat at the floor of a coastal conifer forest.

  8. An endoparasitoid Cretaceous fly and the evolution of parasitoidism

    NASA Astrophysics Data System (ADS)

    Zhang, Qingqing; Zhang, Junfeng; Feng, Yitao; Zhang, Haichun; Wang, Bo

    2016-02-01

    Parasitoidism is a key innovation in insect evolution, and parasitoid insects, nowadays, play a significant role in structuring ecological communities. Despite their diversity and ecological impact, little is known about the early evolution and ecology of parasitoid insects, especially parasitoid true flies (Diptera). Here, we describe a bizarre fly, Zhenia xiai gen. et sp. nov., from Late Cretaceous Burmese amber (about 99 million years old) that represents the latest occurrence of the family Eremochaetidae. Z. xiai is an endoparasitoid insect as evidenced by a highly developed, hypodermic-like ovipositor formed by abdominal tergites VIII + IX that was used for injecting eggs into hosts and enlarged tridactylous claws supposedly for clasping hosts. Our results suggest that eremochaetids are among the earliest definite records of parasitoid insects. Our findings reveal an unexpected morphological specialization of flies and broaden our understanding of the evolution and diversity of ancient parasitoid insects.

  9. Geodynamic investigation of a Cretaceous superplume in the Pacific ocean

    NASA Astrophysics Data System (ADS)

    Xue, Jing; King, Scott D.

    2016-08-01

    The similarity in both age and geochemistry of the Ontong-Java, Hikurangi, and Manihiki plateaus suggests that they formed as a single superplateau from a unique mantle source. We investigate the necessity of a thermal superplume to form the Great Ontong-Java plateau at about 120 Ma using 3D spherical models of convection with imposed plate reconstruction models. The numerical simulations show that the giant plateau which formed as a result of melting due to the interaction of a plume head and the lithosphere would have been divided into smaller plateaus by spreading ridges, and end up at the present locations of Ontong-Java, Manihiki, and Hikurangi plateaus as well as a fragment in the western Caribbean. By comparing temperature and melt fraction between models with and without an initial thermal superplume, we propose that a Cretaceous superplume in Pacific at 120 Ma is required to form large igneous plateaus.

  10. Palynological and iridium anomalies at Cretaceous-Tertiary boundary, south-central Saskatchewan

    USGS Publications Warehouse

    Nichols, D.J.; Jarzen, D.M.; Orth, C.J.; Oliver, P.Q.

    1986-01-01

    The Cretaceous-Tertiary boundary in south-central Saskatchewan is marked by coincident anomalies in abundance of iridium and fern spores at the extinction level of a suite of Cretaceous pollen taxa. Evidence of disruption of the terrestrial flora includes the fern-spore abundance anomaly and local extinction of as much as 30 percent of angiosperm species. The reorganized earliest Tertiary flora is made up largely of surviving species that assumed new roles of dominance. Persistence of climatically sensitive taxa across the boundary indicates that if paleoclimate was altered by the terminal Cretaceous event, it returned quickly to the pre-event condition.

  11. Paleobotany of Livingston Island: The first report of a Cretaceous fossil flora from Hannah Point

    USGS Publications Warehouse

    Leppe, M.; Michea, W.; Muñoz, C.; Palma-Heldt, S.; Fernandoy, F.

    2007-01-01

    This is the first report of a fossil flora from Hannah Point, Livingston Island, South Shetland Islands, Antarctica. The fossiliferous content of an outcrop, located between two igneous rock units of Cretaceous age are mainly composed of leaf imprints and some fossil trunks. The leaf assemblage consists of 18 taxa of Pteridophyta, Pinophyta and one angiosperm. The plant assemblage can be compared to other Early Cretaceous floras from the South Shetland Islands, but several taxa have an evidently Late Cretaceous affinity. A Coniacian-Santonian age is the most probable age for the outcrops, supported by previous K/Ar isotopic studies of the basalts over and underlying the fossiliferous sequence

  12. Clay mineralogy of the Cretaceous-Tertiary boundary clay. [in search for asteroid ejecta

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Reynolds, R. C.

    1983-01-01

    Cretaceous-Tertiary boundary layer clay samples from four localities were subjected to analyses which imply that they are neither mineralogically exotic nor distinct from locally derived clays above and below the boundary. The anomalous iridium-rich ejecta component predicted by the asteroid impact scenario of Alvarez et al (1980) was not detected. It is proposed that volcanic material be considered as an explanation of the geochemical anomalies of the Cretaceous-Tertiary boundary. A model which involves a period of intense volcanism at the end of the Cretaceous would generate a variety of climatic and biological effects consonant with the geologic history of that period.

  13. Paleosols and the Cretaceous/Tertiary transition in the Big Bend region of Texas

    SciTech Connect

    Lehman, T.M. )

    1990-04-01

    A marked change in paleosols coincides with Cretaceous/Tertiary transition in fluvial sediments of the Big Bend region in Texas. Early Paleocene paleosols exhibit thick, black epipedons and a greater depth to the argillic and petrocalcic horizons compared to Late Cretaceous paleosols. These features and comparison with modern soils suggest that early Paleocene soils developed under conditions of higher rainfall and cooler temperatures than did Late Cretaceous soils. The change in paleosols occurs abruptly at the highest occurrence of dinosaur bones in the section.

  14. New crocodiles (Eusuchia: Alligatoroidea) from the Upper Cretaceous of southern Europe

    NASA Astrophysics Data System (ADS)

    Buscalioni, Angela D.; Ortega, Francisco; Vasse, Denis

    1997-10-01

    The Upper Cretaceous sites of Laño and Quintanilla del Coco in northern Spain have yielded significant crocodilian remains, allowing a more precise interpretation of the fragmentary record of southwestern Europe. Two new genera, Musturzabalsuchus and Acynodon, have been recognized. Both taxa were extinct at the end of the Cretaceous. Their relationships with the alligatoroidean Eusuchia suggest a close relationship with Paleolaurasian groups. Musturzabalsuchus might be regarded as an endemic european taxa, the oldest known member of the basal Alligatoroidea. Acynodon is the only non-North American taxon that is related to the short snouted Upper Cretaceous alligatorids.

  15. Depletion of 13C in Cretaceous marine organic matter: Source, diagenetic, or environmental sigal?

    USGS Publications Warehouse

    Dean, W.E.; Arthur, M.A.; Claypool, G.E.

    1986-01-01

    Geochemical studies of Cretaceous strata rich in organic carbon (OC) from Deep Sea Drilling Project (DSDP) sites and several land sections reveal several consistent relationships among amount of OC, hydrocarbon generating potential of kerogen (measured by pyrolysis as the hydrogen index, HI), and the isotopic composition of the OC. First, there is a positive correlation between HI and OC in strata that contain more than about 1% OC. Second, percent OC and HI often are negatively correlated with carbon isotopic composition (?? 13C) of kerogen. The relationship between HI and OC indicates that as the amount of organic matter increases, this organic matter tends to be more lipid rich reflecting the marine source of the organic matter. Cretaceous samples that contain predominantly marine organic matter tend to be isotopically lighter than those that contain predominantly terrestrial organic matter. Average ?? 13C values for organic matter from most Cretaceous sites are between -26 and -28???, and values heavier than about -25??? occur at very few sites. Most of the ?? 13C values of Miocene to Holocene OC-rich strata and modern marine plankton are between -16 to -23???. Values of ??13C of modern terrestrial organic matter are mostly between -23 and -33???. The depletion of terrestial OC in 13C relative to marine planktonic OC is the basis for numerous statements in the literature that isotopically light Cretaceous organic matter is of terrestrial origin, even though other organic geochemical and(or) optical indicators show that the organic matter is mainly of marine origin. A difference of about 5??? in ?? 13C between modern and Cretaceous OC-rich marine strata suggests either that Cretaceous marine planktonic organic matter had the same isotopic signature as modern marine plankton and that signature has been changed by diagenesis, or that OC derived from Cretaceous marine plankton was isotopically lighter by about 5??? relative to modern plankton OC. Diagenesis does

  16. Orbital Cyclicities Above and Below the Cretaceous-Tertiary Boundary, Umbria-Marche Region, Italy

    NASA Technical Reports Server (NTRS)

    King, D. T., Jr.; Petruny, L. W.; Rampino, M. R.; Prokoph, A.; Pope, K.; Fischer, A. G.; Montanari, A.; Ocampo, A. C.

    2000-01-01

    In the Umbria-Marche region of central Italy, the deep basinal carbonate Scaglia Rossa Formation contains an important sequence of Cretaceous-Tertiary strata including a detailed paleomagnetic record and the distal impactoclastic Cretaceous-Tertiary boundary clay layer. In addition to this significant paleomagnetic and impactoclastic record, the Scaglia Rossa also contains potentially important stratigraphic evidence of relatively long-term oceanic and atmospheric consequences of the Cretaceous-Tertiary bolide catastrophe, which we will describe for the first time herein. Additional information is contained in the original extended abstract.

  17. Correlation of the Cretaceous formations of Greenland and Alaska

    USGS Publications Warehouse

    Imlay, Ralph Willard; Reeside, John B.

    1953-01-01

    This is Number 10d of a series of correlation charts prepared for the Committee on Stratigraphy of the National Research Council. It has been sponsored by the U.S. Geological Survey and has required about seven months' time of both authors gathering and compiling data and evaluating fossil evidence. As the two regions dealt with in the chart are widely separated, the lists of references are also given separately. The annotations dealing with Greenland are based entirely on published information. The annotations dealing with Alaska are based on a re-examination of nearly all the Cretaceous fossils from Alaska are based on a re-examination of nearly all the Cretaceous fossils from Alaska in the collections of the Geological Survey. This has resulted in many concepts not hitherto published and in some concepts that are completely at variance with those that have been published. Naturally for large areas undergoing active exploration, such as Alaska, a correlation chart is out of date in many particulars as soon as published. Nevertheless it is valuable to the field man whose activities are confined to small areas but who must interpret much of his data in terms of surrounding areas that he has not seen. It is valuable to the student and to the general geologist because it organizes scattered information in a manner that can be applied in their field problems, makes quite unnecessary the memorization of stratigraphic correlations are based on observation and reasoning and not on a vast memory. It is probably of greatest value to the specialist who makes the chart because he discovers what areas and problems are most in need of research and can thereby direct his efforts and those of his associates in a manner that will yield the greatest results.

  18. Magnesioferrite from the Cretaceous-Tertiary boundary, Caravaca, Spain

    USGS Publications Warehouse

    Bohor, B.F.; Foord, E.E.; Ganapathy, R.

    1986-01-01

    Magnesioferrite grading toward magnetite has been identified as a very small but meaningful constituent of the basal iron-rich portion of the Cretaceous-Tertiary (K-T) boundary clay at the Barranco del Gredero section, Caravaca, Spain. This spinel-type phase and others of the spinel group, found in K-T boundary clays at many widely separated sites, have been proposed as representing unaltered remnants of ejecta deposited from an earth-girdling dust cloud formed from the impact of an asteroid or other large bolide at the end of the Cretaceous period. The magnesioferrite occurs as euhedral, frequently skeletal, micron-sized octahedral crystals. The magnesioferrite contains 29 ?? 11 ppb Ir, which accounts for only part of the Ir anomaly at this K-T boundary layer (52 ?? 1 ppb Ir). Major element analyses of the magnesioferrite show variable compositions. Some minor solid solution exists toward hercynite-spinel and chromite-magnesiochromite. A trevorite-nichromite (NiFe2O4NiCr2O4) component is also present. The analyses are very similar to those reported for sites at Furlo and Petriccio, Umbria, Italy. On the basis of the morphology and general composition of the magnesioferrite grains, rapid crystallization at high temperature is indicated, most likely directly from a vapor phase and in an environment of moderate oxygen fugacity. Elemental similarity with metallic alloy injected into rocks beneath two known impact craters suggests that part of the magnesioferrite may be derived from the vaporized chondritic bolide itself, or from the mantle; there is no supporting evidence for its derivation from crustal target rocks. ?? 1986.

  19. Extreme Cranial Ontogeny in the Upper Cretaceous Dinosaur Pachycephalosaurus

    PubMed Central

    Horner, John R.; Goodwin, Mark B.

    2009-01-01

    Background Extended neoteny and late stage allometric growth increase morphological disparity between growth stages in at least some dinosaurs. Coupled with relatively low dinosaur density in the Upper Cretaceous of North America, ontogenetic transformational representatives are often difficult to distinguish. For example, many hadrosaurids previously reported to represent relatively small lambeosaurine species were demonstrated to be juveniles of the larger taxa. Marginocephalians (pachycephalosaurids + ceratopsids) undergo comparable and extreme cranial morphological change during ontogeny. Methodology/Principal Findings Cranial histology, morphology and computer tomography reveal patterns of internal skull development that show the purported diagnostic characters for the pachycephalosaurids Dracorex hogwartsia and Stygimoloch spinifer are ontogenetically derived features. Coronal histological sections of the frontoparietal dome of an adult Pachycephalosaurus wyomingensis reveal a dense structure composed of metaplastic bone with a variety of extremely fibrous and acellular tissue. Coronal histological sections and computer tomography of a skull and frontoparietal dome of Stygimoloch spinifer reveal an open intrafrontal suture indicative of a subadult stage of development. These dinosaurs employed metaplasia to rapidly grow and change the size and shape of their horns, cranial ornaments and frontoparietal domes, resulting in extreme cranial alterations during late stages of growth. We propose that Dracorex hogwartsia, Stygimoloch spinifer and Pachycephalosaurus wyomingensis are the same taxon and represent an ontogenetic series united by shared morphology and increasing skull length. Conclusions/Significance Dracorex hogwartsia (juvenile) and Stygimoloch spinifer (subadult) are reinterpreted as younger growth stages of Pachycephalosaurus wyomingensis (adult). This synonymy reduces the number of pachycephalosaurid taxa from the Upper Cretaceous of North America

  20. Cretaceous and Eocene poroid hymenophores from Vancouver Island, British Columbia.

    PubMed

    Smith, Selena Y; Currah, Randolph S; Stockey, Ruth A

    2004-01-01

    Two fossil poroid hymenophore fragments, one from the Cretaceous Period and the other from the Eocene Epoch, are described. The permineralized specimens were obtained from marine calcareous concretions on Vancouver Island, British Columbia, Canada, and were studied using the cellulose acetate peel technique. Size and distribution of pores in the hymenophores, as well as the hyphal anatomy of the dissepiments and some hymenial elements, were examined. In the Cretaceous specimen, Quatsinoporites cranhamii sp. nov., pores are round to elliptical, three per mm, and 130-540 μm diam. Dissepiments consist of narrow, simple septate, hyphae. Neither basidia nor basidiospores are present, but acuminate hymenial cystidia, up to 54 μm in length, are common. The Eocene specimen, Appianoporites vancouverensis sp. nov., has a pore density of six per mm and pores are 130-163 μm in diam. Dissepiments consist of narrow, simple septate, thin-walled hyphae. Neither basidia nor basidiospores are present, but acuminate, thick-walled hymenial cystidia, up to 32 μm in length, are common. The poroid hymenophore is a characteristic of a number of extant basidiomycete taxa, including the Boletales, Polyporales and Hymenochaetales. It is unlikely that the fleshy, ephemeral, terrestrial basidiomata of the Boletales would be preserved in a marine environment, and thus the specimens are interpreted as belonging to basidiomycete lineages, with persistent, leathery or corky basidiomata. The simple septate hyphae, the minute pores and presence of cystidia most closely resemble taxa of the Hymenochaetales. These fossils unequivocally push back the minimum age of homobasidiomycetes and extend their paleogeographical range.

  1. Proxy Constraints on a Warm, Fresh Late Cretaceous Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Super, J. R.; Li, H.; Pagani, M.; Chin, K.

    2015-12-01

    The warm Late Cretaceous is thought to have been characterized by open Arctic Ocean temperatures upwards of 15°C (Jenkyns et al., 2004). The high temperatures and low equator-to-pole temperature gradient have proven difficult to reproduce in paleoclimate models, with the role of the atmospheric hydrologic cycle in heat transport being particularly uncertain. Here, sediments, coprolites and fish teeth of Santonian-Campanian age from two high-latitude mixed terrestrial and marine sections on Devon Island in the Canadian High Arctic (Chin et al., 2008) were analyzed using a suite of organic and inorganic proxies to evaluate the temperature and salinity of Arctic seawater. Surface temperature estimates were derived from TEX86 estimates of near-shore, shallow (~100 meters depth) marine sediments (Witkowski et al., 2011) and MBT-CBT estimates from terrestrial intervals and both suggest mean annual temperatures of ~20°C, consistent with previous estimates considering the more southerly location of Devon Island. The oxygen isotope composition of non-diagenetic phosphate from vertebrate coprolites and bony fish teeth were then measured, giving values ranging from +13‰ to +19‰. Assuming the TEX86 temperatures are valid and using the temperature calibration of Puceat 2010, the δ18O values of coprolites imply Arctic Ocean seawater δ18O values between -4‰ and -10‰, implying very fresh conditions. Lastly, the δD of precipitation will be estimated from the hydrogen isotope composition of higher plant leaf waxes (C-25, C-27, C-29 and C-31 n-alkanes) from both terrestrial and marine intervals. Data are used to model the salinity of seawater and the meteoric relationship between δD and δ18O, thereby helping to evaluate the northern high-latitude meteoric water line of the Late Cretaceous.

  2. Early Cretaceous ice rafting and climate zonation in Australia

    SciTech Connect

    Frakes, L.A.; Alley, N.F.; Deynoux, M.

    1995-07-01

    Lower Cretaceous (Valanginian to Albian) strata of the southwestern Eromanga and Carpentaria basins of central and northern Australia, respectively, provide evidence of strongly seasonal climates at high paleolatitudes. These include dispersed clasts (lonestones) in fine sediments and pseudomorphs of calcite after ikaite (glendonites), the latter being known to form only at temperatures below about 7{degrees}C. Rafting is regarded as the transport mechanism for clasts up to boulder size (lonestones) enclosed within dark mudrocks; this interpretation rests on rare occurrences of penetration by clasts into substrate layers. Driftwood and large floating algae are eliminated as possible rafts because fossil wood is found mainly concentrated in nearshore areas of the basins and large algal masses have not been observed. Rafting by icebergs is considered unlikely in view of the global lack of tillites and related glacial deposits of this age. Our interpretation is that seasonal ice, formed in winter along stream courses and strandlines, incorporated clasts which, during the melt season, were dropped into muddy sediments in both basins. Eromanga fine-sediment and concentrations of large clasts and associated sand lenses, both lying above local erosion surfaces. In the Carpentaria Basin, local dumping of sediment from raft surfaces resulted in accumulation of pods of small clasts. Three zones can be identified for the Early Cretaceous climate of eastern Australia: (1) a very cold southern region, at latitudes above about 72{degrees} S, characterized by meteoric waters possibly originating as Antarctic glacial meltwaters; (2) a zone of strongly seasonal climates, with freezing winters and warm summers, between about 72{degrees} and 53{degrees} S.Lat.; and (3) a mid-latitude zone (below about 50{degrees} S. Lat.), where freezing temperatures were not common. 60 refs., 7 figs.

  3. Outer shelf storm deposits of Upper Cretaceous Chico Formation, California

    SciTech Connect

    Russell, J.S.

    1987-05-01

    The Kingsley Cave member of the Upper Cretaceous Chico Formation, northeastern Sacramento Valley, California, is an outer shelf sequence consisting of muddy siltstones deposited below storm wave base. Silty fine-grained sandstone interbeds, interpreted as distal tempestites, are common within this member and are typically parallel laminated and devoid of shell material. Fossil concentrations within this member are rare, occurring as internally simple lenses within fine-grained sandstone interbeds. These fossil concentrations are up to 1.0 m in thickness. The faunas within these lenses are allochthonous or, less commonly, parautochthonous. Comparisons of the faunas in these shell lenses with published faunal assemblages for the Chico Formation and other Upper Cretaceous west coast nearshore deposits indicate that they were displaced from shallower-water environments. Lenses typically contain faunal elements of shoreface and inner shelf environments, which were located to the east during this time, as well as outer shelf faunal elements. These fossil concentrations are sedimentologic in origin. The scoured bases and overlying hummocky cross-stratified to ripple laminated siltstones of these lenses, their relative thicknesses, and the allochthonous shallower-water faunal elements contained within them are all characteristics of proximal tempestites, normally found within inner shelf sandstones. Distal tempestites, typical of outer shelf facies, are the norm for the Kingsley Cave member, while these proximal tempestites are the exception. The former were deposited by normal-strength storm events, while the latter are indicative of rare, extremely high-intensity storm events. During these extremely high-intensity storms proximality trends shifted seaward (westward), causing proximal tempestites to form more offshore than the proximal tempestites generated by normal-strength storms.

  4. Fire-adapted Gondwanan Angiosperm floras evolved in the Cretaceous

    PubMed Central

    2012-01-01

    Background Fires have been widespread over the last 250 million years, peaking 60−125 million years ago (Ma), and might therefore have played a key role in the evolution of Angiosperms. Yet it is commonly believed that fireprone communities existed only after the global climate became more arid and seasonal 15 Ma. Recent molecular-based studies point to much earlier origins of fireprone Angiosperm floras in Australia and South Africa (to 60 Ma, Paleocene) but even these were constrained by the ages of the clades examined. Results Using a molecular-dated phylogeny for the great Gondwanan family Proteaceae, with a 113-million-year evolutionary history, we show that the ancestors of many of its characteristic sclerophyll genera, such as Protea, Conospermum, Leucadendron, Petrophile, Adenanthos and Leucospermum (all subfamily Proteoideae), occurred in fireprone habitats from 88 Ma (83−94, 95% HPD, Mid-Upper Cretaceous). This coincided with the highest atmospheric oxygen (combustibility) levels experienced over the past 150 million years. Migration from non-fireprone (essentially rainforest-climate-type) environments was accompanied by the evolution of highly speciose clades with a range of seed storage traits and fire-cued seed release or germination mechanisms that was diagnostic for each clade by 71 Ma, though the ant-dispersed lineage (as a soil seed-storage subclade) was delayed until 45 Ma. Conclusions Focusing on the widespread 113-million-year-old family Proteaceae, fireproneness among Gondwanan Angiosperm floras can now be traced back almost 90 million years into the fiery Cretaceous. The associated evolution of on-plant (serotiny) and soil seed storage, and later ant dispersal, affirms them as ancient adaptations to fire among flowering plants. PMID:23171161

  5. A Complete Skull of an Early Cretaceous Sauropod and the Evolution of Advanced Titanosaurians

    PubMed Central

    Zaher, Hussam; Pol, Diego; Carvalho, Alberto B.; Nascimento, Paulo M.; Riccomini, Claudio; Larson, Peter; Juarez-Valieri, Rubén; Pires-Domingues, Ricardo; da Silva, Nelson Jorge; de Almeida Campos, Diógenes

    2011-01-01

    Advanced titanosaurian sauropods, such as nemegtosaurids and saltasaurids, were diverse and one of the most important groups of herbivores in the terrestrial biotas of the Late Cretaceous. However, little is known about their rise and diversification prior to the Late Cretaceous. Furthermore, the evolution of their highly-modified skull anatomy has been largely hindered by the scarcity of well-preserved cranial remains. A new sauropod dinosaur from the Early Cretaceous of Brazil represents the earliest advanced titanosaurian known to date, demonstrating that the initial diversification of advanced titanosaurians was well under way at least 30 million years before their known radiation in the latest Cretaceous. The new taxon also preserves the most complete skull among titanosaurians, further revealing that their low and elongated diplodocid-like skull morphology appeared much earlier than previously thought. PMID:21326881

  6. Tyrant Dinosaur Evolution Tracks the Rise and Fall of Late Cretaceous Oceans

    PubMed Central

    Loewen, Mark A.; Irmis, Randall B.; Sertich, Joseph J. W.; Currie, Philip J.; Sampson, Scott D.

    2013-01-01

    The Late Cretaceous (∼95–66 million years ago) western North American landmass of Laramidia displayed heightened non-marine vertebrate diversity and intracontinental regionalism relative to other latest Cretaceous Laurasian ecosystems. Processes generating these patterns during this interval remain poorly understood despite their presumed role in the diversification of many clades. Tyrannosauridae, a clade of large-bodied theropod dinosaurs restricted to the Late Cretaceous of Laramidia and Asia, represents an ideal group for investigating Laramidian patterns of evolution. We use new tyrannosaurid discoveries from Utah—including a new taxon which represents the geologically oldest member of the clade—to investigate the evolution and biogeography of Tyrannosauridae. These data suggest a Laramidian origin for Tyrannosauridae, and implicate sea-level related controls in the isolation, diversification, and dispersal of this and many other Late Cretaceous vertebrate clades. PMID:24223179

  7. Cretaceous anuran and dinosaur footprints from the Patuxent Formation of Virginia

    USGS Publications Warehouse

    Weems, R.E.; Bachman, J.M.

    1997-01-01

    Footprints of an anuran (gen. et sp. indet.), a theropod dinosaur (Megalosauropus sp.), and an ornithopod dinosaur (Amblydactylus sp.) have been recovered from the Lower Cretaceous Patuxent Formation in Stafford County, Virginia. These footprints are the first record of terrestrial vertebrates from Cretaceous strata in Virginia, and their discovery suggests that the scarcity of bones and teeth in the Patuxent probably is an artifact of preservation. The anuran trackway provides the oldest known direct evidence for hopping locomotion among these amphibians.

  8. Cretaceous and Tertiary samples dredged from Florida Escarpment, Eastern Gulf of Mexico

    SciTech Connect

    Freeman-Lynde, R.P.

    1983-09-01

    Cretaceous and Tertiary rocks were dredged along the Florida Escarpment at five areas south of 27/sup 0/05'N in late 1982 during cruise LY-82A of USNS Lynch. The escarpment was sampled from near the base (as deep as 3300 m, 10,800 ft) to near the top (as shallow as 1500 m, 4900 ft) of the slope. Presumed middle Cretaceous dolomites deposited in hypersaline bank-interior environments were taken primarily from the walls of canyons incised from 10 to 50 km (6 to 30 mi) into the escarpment, and also from the escarpment proper at several dredge stations. Limestone lithologic characteristics are generally bioturbated miliolid and mollusk wackestone/packstone (lagoonal) and fenestral and algal-laminated mudstone/wackestone (peritidal). Some dolomites retain primary sedimentary structures (e.g., mottling and algal lamination), whereas others appear structureless, perhaps due to recrystallization. Few of the middle Cretaceous samples were deposited under high-energy conditions. Those that are high-energy deposits are bioclastic rudstones and coral boundstones. Late Cretaceous and Tertiary deep-water limestones and chalks unconformably overlie and drape the older shallow-water carbonates. The limestones are Late Cretaceous through Pleistocene. The limited occurrence of high-energy facies rocks indicates that the escarpment has been eroded bankward over its entire length south of 27/sup 0/05'N, and not just at canyon reentrants. The younger deep-water rocks reflect the drowning of the middle Cretaceous platform in Late Cretaceous time. The facies change from limestone to dolomite is attributed to higher salinities in the bank interior during the middle Cretaceous.

  9. The Sredne-Amursky basin: A migrating cretaceous depocenter for the Amur river, eastern Siberia

    SciTech Connect

    Light, M.; Maslanyj, M.; Davidson, K. )

    1993-09-01

    Recently acquired seismic, well, and regional geological data imply favorable conditions for the accumulation of oil and gas in the 20,000 km[sup 2] Sredne-Amursky basin. Major graben and northeast-trending sinistral wrench-fault systems are recognized in the basin. Lower and Upper Cretaceous sediments are up to 9000 and 3000 m thick, respectively. Paleogeographic reconstructions imply that during the Late Triassic-Early Cretaceous the Sredne-Amursky basin was part of a narrow marine embayment (back-arc basin), which was open to the north. During the Cretaceous, the region was part of a foreland basin complicated by strike-slip, which produced subsidence related to transtension during oblique collision of the Sikhote-Alin arc with Eurasian margin. Contemporaneous uplift also related to this collision migrated from south to north and may have sourced northward-directed deltas and alluvial fans, which fed northward into the closing back-arc basin between 130 and 85 Ma. The progradational clastic succession of the Berriasian-Albian and the Late Cretaceous fluvial, brackish water and paralic sediments within the basin may be analogous to the highly productive late Tertiary clastics of the Amur River delta in the northeast Sakhalin basin. Cretaceous-Tertiary lacustrine-deltaic sapropelic shales provide significant source and seal potential and potential reservoirs occur in the Cretaceous and Tertiary. Structural plays were developed during Cretaceous rifting and subsequent strike-slip deformation. If the full hydrocarbon potential of the Sredne-Amursky basin is to be realized, the regional appraisal suggests that exploration should be focused toward the identification of plays related to prograding Cretaceous deltaic depositional systems.

  10. A giant sauropod dinosaur from an Upper Cretaceous mangrove deposit in Egypt.

    PubMed

    Smith, J B; Lamanna, M C; Lacovara, K J; Dodson, P; Smith, J R; Poole, J C; Giegengack, R; Attia, Y

    2001-06-01

    We describe a giant titanosaurid sauropod dinosaur discovered in coastal deposits in the Upper Cretaceous Bahariya Formation of Egypt, a unit that has produced three Tyrannosaurus-sized theropods and numerous other vertebrate taxa. Paralititan stromeri is the first tetrapod reported from Bahariya since 1935. Its 1.69-meter-long humerus is longer than that of any known Cretaceous sauropod. The autochthonous scavenged skeleton was preserved in mangrove deposits, raising the possibility that titanosaurids and their predators habitually entered such environments.

  11. Highly specialized mammalian skulls from the Late Cretaceous of South America.

    PubMed

    Rougier, Guillermo W; Apesteguía, Sebastián; Gaetano, Leandro C

    2011-11-02

    Dryolestoids are an extinct mammalian group belonging to the lineage leading to modern marsupials and placentals. Dryolestoids are known by teeth and jaws from the Jurassic period of North America and Europe, but they thrived in South America up to the end of the Mesozoic era and survived to the beginnings of the Cenozoic. Isolated teeth and jaws from the latest Cretaceous of South America provide mounting evidence that, at least in western Gondwana, dryolestoids developed into strongly endemic groups by the Late Cretaceous. However, the lack of pre-Late Cretaceous dryolestoid remains made study of their origin and early diversification intractable. Here we describe the first mammalian remains from the early Late Cretaceous of South America, including two partial skulls and jaws of a derived dryolestoid showing dental and cranial features unknown among any other group of Mesozoic mammals, such as single-rooted molars preceded by double-rooted premolars, combined with a very long muzzle, exceedingly long canines and evidence of highly specialized masticatory musculature. On one hand, the new mammal shares derived features of dryolestoids with forms from the Jurassic of Laurasia, whereas on the other hand, it is very specialized and highlights the endemic, diverse dryolestoid fauna from the Cretaceous of South America. Our specimens include only the second mammalian skull known for the Cretaceous of Gondwana, bridging a previous 60-million-year gap in the fossil record, and document the whole cranial morphology of a dryolestoid, revealing an unsuspected morphological and ecological diversity for non-tribosphenic mammals.

  12. Extensional tectonic influence on lower and upper cretaceous stratigraphy and reservoirs, southern Powder River basin, Wyoming

    SciTech Connect

    Mitchell, G.C.; Rogers, M.H.

    1993-04-01

    The southern Powder River basin has been influenced significantly by an extensional system affecting Lower Cretaceous, Upper Cretaceous and Tertiary units. The system is composed of small throw, nearly vertical normal faults which are identified in the Cretaceous marine shales and that we believe are basement derived. Resultant fractures were present at erosional/depositional surfaces, both marine and nonmarine, that, in part, controlled erosion and subsequent deposition of Lower and Upper Cretaceous rocks. The normal faults also affected coal deposition in the Tertiary, now exposed at the surface. The erosion and resultant deposition formed extensive stratigraphic traps in Cretaceous units in both conventional and unconventional reservoirs. These reservoirs are interbedded with mature source rocks that have generated and expelled large amounts of hydrocarbons. Resulting overpressuring in the Fall River through the Niobrara formations has kept fractures open and has preserved primary porosity in the reservoirs. The normal faults offset thin sandstone reservoirs forming permeability barriers. Associated fractures may have provided vertical pathways for organic acids that assisted development of secondary porosity in Upper Cretaceous sandstones. These normal...faults and fractures provide significant potential for the use of horizontal drilling techniques to evaluate fractured, overpressured conventional and unconventional reservoirs.

  13. Influence of Transcontinental arch on Cretaceous listric-normal faulting, west flank, Denver basin

    SciTech Connect

    Davis, T.L.

    1983-08-01

    Seismic studies along the west flank of the Denver basin near Boulder and Greeley, Colorado illustrate the interrelationship between shallow listric-normal faulting in the Cretaceous and deeper basement-controlled faulting. Deeper fault systems, primarily associated with the Transcontinental arch, control the styles and causative mechanisms of listric-normal faulting that developed in the Cretaceous. Three major stratigraphic levels of listric-normal faulting occur in the Boulder-Greeley area. These tectonic sensitive intervals are present in the following Cretaceous formations: Laramie-Fox Hills-upper Pierre, middle Pierre Hygiene zone, and the Niobrara-Carlile-Greenhorn. Documentation of the listric-normal fault style reveals a Wattenberg high, a horst block or positive feature of the greater Transcontinental arch, was active in the east Boulder-Greeley area during Cretaceous time. Paleotectonic events associated with the Wattenberg high are traced through analysis of the listric-normal fault systems that occur in the area. These styles are important to recognize because of their stratigraphic and structural influence on Cretaceous petroleum reservoir systems in the Denver basin. Similar styles of listric-normal faulting occur in the Cretaceous in many Rocky Mountain foreland basins.

  14. Late Cretaceous relatives of rabbits, rodents, and other extant eutherian mammals

    NASA Astrophysics Data System (ADS)

    Archibald, J. David; Averianov, Alexander O.; Ekdale, Eric G.

    2001-11-01

    Extant eutherian mammals and their most recent common ancestor constitute the crown group Placentalia. This taxon, plus all extinct taxa that share a more recent common ancestor with placentals than they do with Metatheria (including marsupials), constitute Eutheria. The oldest well documented eutherian-dominated fauna in the world is Dzharakuduk, Uzbekistan. Among eutherians that it yields is Kulbeckia, an 85-90-Myr-old member of Zalambdalestidae (a family of Late Cretaceous Asian eutherians). This extends Zalambdalestidae back by some 10 million years from sites in the Gobi Desert, Mongolia. A phylogenetic analysis of well described Late Cretaceous eutherians strongly supports Zalambdalestidae, less strongly supports `Zhelestidae' (a Late Cretaceous clade related to Tertiary ungulates), but does not support Asioryctitheria (a group of Late Cretaceous Asian eutherians). A second analysis incorporating placentals from clades that include rodents (Tribosphenomys), lagomorphs (Mimotona) and archaic ungulates (Protungulatum and Oxyprimus) strongly supports Zalambdalestidae in a clade with Glires (rabbits, rodents and extinct relatives) and less strongly `Zhelestidae' within a clade that includes archaic ungulates (`condylarths'). This argues that some Late Cretaceous eutherians belong within the crown group Placentalia. The ages of these taxa are in line with molecularly based estimates of 64-104Myr ago (median 84Myr ago) for the superordinal diversification of some placentals, but provide no support for a Late Cretaceous diversification of extant placental orders.

  15. A New Hadrosauroid Dinosaur from the Early Late Cretaceous of Shanxi Province, China

    PubMed Central

    Wang, Run-Fu; You, Hai-Lu; Xu, Shi-Chao; Wang, Suo-Zhu; Yi, Jian; Xie, Li-Juan; Jia, Lei; Li, Ya-Xian

    2013-01-01

    Background The origin of hadrosaurid dinosaurs is far from clear, mainly due to the paucity of their early Late Cretaceous close relatives. Compared to numerous Early Cretaceous basal hadrosauroids, which are mainly from Eastern Asia, only six early Late Cretaceous (pre-Campanian) basal hadrosauroids have been found: three from Asia and three from North America. Methodology/Principal Findings Here we describe a new hadrosauroid dinosaur, Yunganglong datongensis gen. et sp. nov., from the early Late Cretaceous Zhumapu Formation of Shanxi Province in northern China. The new taxon is represented by an associated but disarticulated partial adult skeleton including the caudodorsal part of the skull. Cladistic analysis and comparative studies show that Yunganglong represents one of the most basal Late Cretaceous hadrosauroids and is diagnosed by a unique combination of features in its skull and femur. Conclusions/Significance The discovery of Yunganglong adds another record of basal Hadrosauroidea in the early Late Cretaceous, and helps to elucidate the origin and evolution of Hadrosauridae. PMID:24204734

  16. A New Troodontid Theropod Dinosaur from the Lower Cretaceous of Utah

    PubMed Central

    Senter, Phil; Kirkland, James I.; Bird, John; Bartlett, Jeff A.

    2010-01-01

    Background The theropod dinosaur family Troodontidae is known from the Upper Jurassic, Lower Cretaceous, and Upper Cretaceous of Asia and from the Upper Jurassic and Upper Cretaceous of North America. Before now no undisputed troodontids from North America have been reported from the Early Cretaceous. Methodology/Principal Findings Herein we describe a theropod maxilla from the Lower Cretaceous Cedar Mountain Formation of Utah and perform a phylogenetic analysis to determine its phylogenetic position. The specimen is distinctive enough to assign to a new genus and species, Geminiraptor suarezarum. Phylogenetic analysis places G. suarezarum within Troodontidae in an unresolved polytomy with Mei, Byronosaurus, Sinornithoides, Sinusonasus, and Troodon + (Saurornithoides + Zanabazar). Geminiraptor suarezarum uniquely exhibits extreme pneumatic inflation of the maxilla internal to the antorbital fossa such that the anterior maxilla has a triangular cross-section. Unlike troodontids more closely related to Troodon, G. suarezarum exhibits bony septa between the dental alveoli and a promaxillary foramen that is visible in lateral view. Conclusions/Significance This is the first report of a North American troodontid from the Lower Cretaceous. It therefore contributes to a fuller understanding of troodontid biogeography through time. It also adds to the known dinosaurian fauna of the Cedar Mountain Formation. PMID:21179513

  17. Iridium anomaly in the Cretaceous section of the Eastern Kamchatka

    NASA Astrophysics Data System (ADS)

    Savelyev, Dmitry; Savelyeva, Olga

    2010-05-01

    The origin of iridium anomalies is widely discussed with regard to massive fauna and flora extinction at several geologic boundaries. Two hypotheses are most popular, cosmogenic and volcanogenic. Anomalies of iridium are known at many stratigraphic levels, both at the geologic series borders and within geologic series. Our studies revealed increased content of iridium in a section of Cretaceous oceanic deposits on the Kamchatsky Mys Peninsula (Eastern Kamchatka, Russia). The investigated section (56°03.353´N, 163°00.376´E) includes interbedded jaspers and siliceous limestones overlaying pillow-basalts. These deposits belong to the Smagin Formation of the Albian-Cenomanian age. In the middle and upper parts of the section two beds of black carbonaceous rocks with sapropelic organic matter were observed. Their formation marked likely episodes of oxygen depletion of oceanic intermediate water (oceanic anoxic events). Our geochemical studies revealed an enrichment of the carbonaceous beds in a number of major and trace elements (Al2O3, TiO2, FeO, MgO, K2O, P2O5, Cu, Zn, Ni, Cr, V, Mo, Ba, Y, Zr, Nb, REE, U, Au, Pt etc.) in comparison with associating jaspers and limestones. There are likely different sources which contributed to the enrichment. It is possible however to correlate the excess of Al, Ti, Zr, Nb with volcanogenic admixture, which is absent in limestones and jaspers. A possible source of the volcanogenic material was local volcanism as suggested by the close association of the investigated section with volcanic rocks (basaltic lavas and hyaloclastites). The basalts of the Smagin Formation were previously proposed to originate during Cretaceous activity of the Hawaiian mantle plume (Portnyagin et al., Geology, 2008). Neutron activation analysis indicated increased up to 9 ppb concentration of Ir at the bottom of the lower carbonaceous bed (inorganic part of the sample was analyzed comprising 46% of the bulk rock). In other samples Ir content was below

  18. Pre-, syn-, and postcollisional stratigraphic framework and provenance of upper triassic-upper cretaceous strata in the northwestern talkeetna mountains, alaska

    USGS Publications Warehouse

    Hampton, B.A.; Ridgway, K.D.; O'Neill, J. M.; Gehrels, G.E.; Schmidt, J.; Blodgett, R.B.

    2007-01-01

    Mesozoic strata of the northwestern Talkeetna Mountains are located in a regional suture zone between the allochthonous Wrangellia composite terrane and the former Mesozoic continental margin of North America (i.e., the Yukon-Tanana terrane). New geologic mapping, measured stratigraphic sections, and provenance data define a distinct three-part stratigraphy for these strata. The lowermost unit is greater than 290 m thick and consists of Upper Triassic-Lower Jurassic mafic lavas, fossiliferous limestone, and a volcaniclastic unit that collectively we informally refer to as the Honolulu Pass formation. The uppermost 75 m of the Honolulu Pass formation represent a condensed stratigraphic interval that records limited sedimentation over a period of up to ca. 25 m.y. during Early Jurassic time. The contact between the Honolulu Pass formation and the overlying Upper Jurassic-Lower Cretaceous clastic marine strata of the Kahiltna assemblage represents a ca. 20 m.y. depositional hiatus that spans the Middle Jurassic and part of Late Jurassic time. The Kahiltna assemblage may to be up to 3000 m thick and contains detrital zircons that have a robust U-Pb peak probability age of 119.2 Ma (i.e., minimum crystallization age/maximum depositional age). These data suggest that the upper age of the Kahiltna assemblage may be a minimum of 10-15 m.y. younger than the previously reported upper age of Valanginian. Sandstone composition (Q-43% F-30% L-27%-Lv-71% Lm-18% Ls-11%) and U-Pb detrital zircon ages suggest that the Kahiltna assemblage received igneous detritus mainly from the active Chisana arc, remnant Chitina and Talkeetna arcs, and Permian-Triassic plutons (Alexander terrane) of the Wrangellia composite terrane. Other sources of detritus for the Kahiltna assemblage were Upper Triassic-Lower Jurassic plutons of the Taylor Mountains batholith and Devonian-Mississippian plutons; both of these source areas are part of the Yukon-Tanana terrane. The Kahiltna assemblage is overlain

  19. Long-Proboscid Flies as Pollinators of Cretaceous Gymnosperms.

    PubMed

    Peñalver, Enrique; Arillo, Antonio; Pérez-de la Fuente, Ricardo; Riccio, Mark L; Delclòs, Xavier; Barrón, Eduardo; Grimaldi, David A

    2015-07-20

    The great evolutionary success of angiosperms has traditionally been explained, in part, by the partnership of these plants with insect pollinators. The main approach to understanding the origins of this pervasive relationship has been study of the pollinators of living cycads, gnetaleans, and basal angiosperms. Among the most morphologically specialized living pollinators are diverse, long-proboscid flies. Early such flies include the brachyceran family Zhangsolvidae, previously known only as compression fossils from the Early Cretaceous of China and Brazil. It belongs to the infraorder Stratiomyomorpha, a group that includes the flower-visiting families Xylomyidae and Stratiomyidae. New zhangsolvid specimens in amber from Spain (ca. 105 mega-annum [Ma]) and Myanmar (100 Ma) reveal a detailed proboscis structure adapted to nectivory. Pollen clumped on a specimen from Spain is Exesipollenites, attributed to a Mesozoic gymnosperm, most likely the Bennettitales. Late Mesozoic scorpionflies with a long proboscis have been proposed as specialized pollinators of various extinct gymnosperms, but pollen has never been observed on or in their bodies. The new discovery is a very rare co-occurrence of pollen with its insect vector and provides substantiating evidence that other long-proboscid Mesozoic insects were gymnosperm pollinators. Evidence is thus now gathering that visitors and probable pollinators of early anthophytes, or seed plants, involved some insects with highly specialized morphological adaptations, which has consequences for interpreting the reproductive modes of Mesozoic gymnosperms and the significance of insect pollination in angiosperm success.

  20. Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds.

    PubMed

    Zhang, Fucheng; Kearns, Stuart L; Orr, Patrick J; Benton, Michael J; Zhou, Zhonghe; Johnson, Diane; Xu, Xing; Wang, Xiaolin

    2010-02-25

    Spectacular fossils from the Early Cretaceous Jehol Group of northeastern China have greatly expanded our knowledge of the diversity and palaeobiology of dinosaurs and early birds, and contributed to our understanding of the origin of birds, of flight, and of feathers. Pennaceous (vaned) feathers and integumentary filaments are preserved in birds and non-avian theropod dinosaurs, but little is known of their microstructure. Here we report that melanosomes (colour-bearing organelles) are not only preserved in the pennaceous feathers of early birds, but also in an identical manner in integumentary filaments of non-avian dinosaurs, thus refuting recent claims that the filaments are partially decayed dermal collagen fibres. Examples of both eumelanosomes and phaeomelanosomes have been identified, and they are often preserved in life position within the structure of partially degraded feathers and filaments. Furthermore, the data here provide empirical evidence for reconstructing the colours and colour patterning of these extinct birds and theropod dinosaurs: for example, the dark-coloured stripes on the tail of the theropod dinosaur Sinosauropteryx can reasonably be inferred to have exhibited chestnut to reddish-brown tones.

  1. Upper cretaceous microbial petroleum systems in north-central Montana

    USGS Publications Warehouse

    Lillis, Paul G.

    2007-01-01

    Methanogenesis began soon after the deposition (early-stage methanogenesis) of the Cenomanian to Campanian source sediments, and was either sustained or rejuvenated by episodic meteoric water influx until sometime in the Paleogene. Methanogenesis probably continued until CO2 and hydrogen were depleted or the pore size was compacted to below tolerance levels of the methanogens. The composition of the Montana and Colorado Group gases and coproduced formation water precludes a scenario of late-stage methanogenesis like the Antrim gas system in the Michigan basin. Some portion of the methane charge was originally dissolved in the pore waters, and subsequent reduction in hydrostatic pressure caused the methane to exsolve and migrate into local stratigraphic and structural traps. The critical moment of the microbial gas systems is this timing of exsolution rather than the time of generation (methanogenesis). Other studies suggest that the reduction in hydrostatic pressure may have been caused by multiple geologic events including the lowering of sea level in the Late Cretaceous, and subsequent uplift and erosion events, the youngest of which began about 5 Ma.

  2. Upper cretaceous (Austin Group) volcanic deposits as a hydrocarbon trap

    SciTech Connect

    Hutchinson, P.J.

    1994-12-31

    An Upper Cretaceous submarine igneous extrusion occurs in the subsurface of southwestern Wilson County, Texas. The Coniacian-Santonian-aged (Austin Group) volcanic eruption discharged large volumes of magnetite-rich olivine nephelinite that upon quenching formed an extensive nontronitic clay layer. This clay deposit formed a trapping mechanism for hydrocarbon beneath the volcano. Production from volcanic plugs is normally attributed to the shoal-water carbonate facies developed on top of the volcanic, the palagonite tuff ({open_quotes}serpentine{close_quotes}), and overlying sandstones. The heat energy of the volcano may have thermally matured the calcarous sediments of adjacent parts of the Austin Chalk. The normally grayish-colored suggesting thermal alteration. The overlying nontronite trapped mobile hydrocarbons, and this early emplacement of oil may have preserved some of the original porosity and permeability of the Austin Chalk. Austin Chalk-aged volcanic deposits produce hydrocarbons from stratigraphic traps within the volcanic material, within the porous beachrock, and structurally within overlying sandstones. The intruded Austin Chalk also behaves as a reservoir because the original porosity and permeability are maintained by early emplacement of oil and the overlying volcanic clay acts as a seal by preventing vertical migration. Marcelina Creek field, discovered in 1980 from an {open_quotes}augen{close_quotes}-shaped seismic signature and an aerial magnetic survey, produces from the fractured chalk beneath the nontronitic clay layer. This field has produced more than 15 million barrels of oil from more than 60 wells in fractured and porous rock beneath the volcano.

  3. Homing in on sweet spots in Cretaceous Austin chalk

    SciTech Connect

    Thomas, G.E. ); Sonnenberg, F.P.

    1993-11-29

    In discussing the nature and causes of fracturing in the Cretaceous Austin chalk of south central Texas, many geologists and operators involved in horizontal drilling of the chalk consider regional rock stress as the probable main cause of the fractures. If Austin chalk fractures are mainly the result of regional extensional stress without localizing factors, then fractured sweet spots are randomly distributed and successful exploration is more or less a matter of luck, usually dependent upon the coincidental placement of a seismic line. But if local, deep-seated structure or basement topography are the main causes of sweet spots, then a successful exploration method would be to first delineate the basement paleo structure or topography and secondly, place a seismic line to confirm the delineated features. Finding localities of maximum fracturing and production would than be based on scientific logic rather than luck. It is the purpose of this article to present the results of an examination of these alternative causes for the Austin chalk fracturing in the hope of determining the most cost effective exploration method for the fractured chalk reservoir.

  4. Late Cretaceous (Austin Group) volcanic deposits as a hydrocarbon trap

    SciTech Connect

    Hutchinson, P.J.

    1994-09-01

    A Late Cretaceous submarine igneous extrusion occurs in the subsurface of southwestern Wilson County, Texas. The Coniacian-Santonian-aged (Austin Group) volcanic eruption discharged large volumes of magnetite-rich olivine nephelinite, that upon quenching, formed an extensive nontronitic clay layer. This clay deposit formed a trapping mechanism for hydrocarbons beneath the volcano; production from these features is normally attributed to the shoal-water carbonate facics developed on top of the volcano. The heat energy of the volcano may have thermally matured the calcareous sediments of the Austin Chalk contiguous with the volcano. The normally grayish-colored Austin Chalk in contact with the intrusive portion of the igneous material displays a greenish color suggesting thermal alteration. The overlying nontronite trapped the mobile hydrocarbons, and early emplacement may have preserved some of the original porosity and permeability of the Austin Chalk. Austin Chalk-aged volcanic deposits produce hydrocarbons from stratigraphic traps within the volcanic material, within the porous beachrock, and structurally within overlying sandstones. The intruded Austin Chalk also behaves as a reservoir because the original porosity and permeability is maintained through early emplacement of oil and the overlying volcanic clay prevents vertical migration. Marcefina Creek, discovered in 1980 from an {open_quotes}augen{close_quotes}-shaped seismic signature and an aerial magnetic survey, produces from the fractured chalk beneath the nontronitic clay layer. This field has produced over seven million bbl of oil from over 40 wells from fractured and porous rock beneath the volcano.

  5. Turkana Grits - a Cretaceous braided alluvial system in northern Kenya

    SciTech Connect

    Handford, C.R.

    1987-05-01

    Rather spotty but excellent exposures of the Cretaceous-age Turkana Grits occur near the western shore of Lake Turkana, northern Kenya. These very coarse to pebbly arkosic sandstones and sandy conglomerates were derived from and rest unconformably upon Precambrian metamorphic basement; they are overlain by late Tertiary basaltic flows that comprise much of the volcanics in the East African Rift Zone. The formation ranges up to 2000 ft thick in the Laburr Range. Several outcrops contain sauropod, crocodile, and tortoise remains as well as abundant trunks of petrified wood (Dryoxylon). Five major facies make up the Turkana Grits and record a major episode of continental fluvial deposition in basins flanked by Precambrian basement. Facies 1 is crudely stratified, cobble and boulder conglomerate (clast-supported); Facies 2 is crudely stratified pebble-cobble conglomerate and pebbly sandstone; Facies 3 is trough cross-bedded, very coarse sandstones containing fossils wood and vertebrate remains; Facies 4 is crudely stratified to massive sandstones with ironstone nodules; and Facies 5 is red, purple, and gray mudstone and mud shale with carbonate nodules. Facies 1 through 3 record deposition in proximal to medial braided-stream channel, longitudinal bar and dune complexes. Facies 4 is a lowland, hydromorphic paleosol, and Facies 5 represents overbank and abandoned channel-fill sedimentation in an alluvial plain.

  6. Seawater Sr isotopes at the Cretaceous/Tertiary boundary

    NASA Astrophysics Data System (ADS)

    Martin, E. E.; Macdougall, J. D.

    1991-06-01

    Seawater 87Sr/ 86Sr values increase abruptly by 28 × 10 -6 across the Cretaceous/Tertiary boundary (KTB). This small, but rapid shift is superimposed on the larger scale structure of the seawater Sr isotope curve. The time scale of radiogenic Sr addition appears to be too rapid to reconcile with sources associated with volcanism, and we show that the amount of Sr required to produce even this small increase is too large to be derived from: (1) a KT bolide of the size constrained by the Ir anomaly, (2) continental crust ejecta from the impact of such a bolide, (3) soot from global wildfires initiated by an impact, or (4) any combination of these sources. The probable source of the radiogenic Sr is enhanced continental weathering, but the high rate of increase appears to rule out processes such as sea level regression, glaciation or tectonism. A plausible mechanism for rapid addition of radiogenic Sr to the oceans is enhanced weathering associated with globally distributed acid rain (pH ˜ 1) which is a proposed by-product of a bolide impact [51, EPSL Vol. 83].

  7. Sequence stratigraphy on an early Cretaceous passive margin, Exmouth Plateau

    SciTech Connect

    Boyd, R.; Gorur, N.; Ito, M.; O'Brien, D.; Wilkens, R.; Tang, C.

    1989-03-01

    Permian-Jurassic rifting of northwestern Australia resulted in the development of a passive continental margin flanking the northeastern Indian Ocean. On this margin the relatively thin synrift to postrift sedimentary sequence of southern Exmouth Plateau was drilled during ODP Leg 122. A sequence-stratigraphy analysis of the complete Mesozoic-Cenozoic sedimentary succession at Sites 762 and 763 was derived from a synthesis of seismic stratigraphy, wireline logs, lithostratigraphy, biostratigraphy, and magnetostratigraphy. Results indicate that during breakup, the southern Exmouth Plateau was a transform margin with an extensional component. Between the Tithonian and Valanginian, a thick clastic wedge prograded from the transform margin south of Site 763 northwestward toward Site 762 and onto subsiding continental crust. Southern clastic supply decreased into the Aptian-Cenomanian, and cyclic deposition of deep-water mudstones continued during subsidence of the earlier shelf margin wedge. Between the Albian and Cenomanian, deposition gradually became dominated by pelagic carbonates. Two regional unconformities mark the Cenomanian/Turonian and Cretaceous/Tertiary boundaries. Each was an erosional event, succeeded by renewed pelagic carbonate deposition that began in the distal northern basin and onlapped progressively toward the topographic high, which persisted into the Tertiary along the southern margin. The entire Jurassic to Holocene record at the southern Exmouth Plateau ODP sites is less than 1500 m thick and represents a classic rift to mature ocean passive-margin succession.

  8. A Cretaceous terrestrial snake with robust hindlimbs and a sacrum.

    PubMed

    Apesteguía, Sebastián; Zaher, Hussam

    2006-04-20

    It has commonly been thought that snakes underwent progressive loss of their limbs by gradual diminution of their use. However, recent developmental and palaeontological discoveries suggest a more complex scenario of limb reduction, still poorly documented in the fossil record. Here we report a fossil snake with a sacrum supporting a pelvic girdle and robust, functional legs outside the ribcage. The new fossil, from the Upper Cretaceous period of Patagonia, fills an important gap in the evolutionary progression towards limblessness because other known fossil snakes with developed hindlimbs, the marine Haasiophis, Pachyrhachis and Eupodophis, lack a sacral region. Phylogenetic analysis shows that the new fossil is the most primitive (basal) snake known and that all other limbed fossil snakes are closer to the more advanced macrostomatan snakes, a group including boas, pythons and colubroids. The new fossil retains several features associated with a subterranean or surface dwelling life that are also present in primitive extant snake lineages, supporting the hypothesis of a terrestrial rather than marine origin of snakes.

  9. Late Cretaceous biostratigraphy of the La Luna Formation, Maracaibo basin

    SciTech Connect

    Truskowski, I.; Galeaalvarez, F.; Sliter, W.V.

    1996-08-01

    Micropaleontological analysis, sedimentological studies, and geochemical data are presented for the Upper Cretaceous {open_quote}black shales{close_quote} of the La Luna Formation of Western Venezuela. The detailed planktonic foraminiferal studies allowed the establishment of the first biozonation, determination of sedimentation rates, and documentation of occurrences of benthic foraminifers for these unusually thick black shales that extend stratigraphically nearly 100 m. Hedbergellids, whiteinellids and Heterohelix characterize the lower part of the La Luna Formation, dated from the late Cenomanian Rotalipora cushmani Zone to middle Turonian Helvetoglobotruncana belvetica Zone. The high productivity of these groups associated with phosphatized fish remains suggest upwelling and a poorly stratified water column. The presence of buliminids and Favreina sp. at some levels, imply disoxic conditions in this anoxic interval. Planktonic foraminifers in the middle and upper parts of the formation range in age from the late Turonian Marginotruncana sigali- Dicarinella primitiva Zone to the early Campanian Globotruncanita elevata Zone. The increase in keeled planktonic foraminifers toward the top of the formation suggest more stratified, oligotrophic surface waters. Benthic foraminifers found at the top are indicative of dysaerobic conditions. This study provides new opportunities for utilizing the petroleum system in the La Luna Formation, arguably the most prolific source rock in northern South America.

  10. Phosphogenesis at a Cretaceous methane seep from New Zealand

    NASA Astrophysics Data System (ADS)

    Zwicker, Jennifer; Steindl, Florian; Smrzka, Daniel; Böttcher, Michael; Gier, Susanne; Kiel, Steffen; Peckmann, Jörn

    2016-04-01

    Phosphate-rich deposits have been a topic of intense research for decades. The process of phosphogenesis is mainly observed in marine sediments of coastal upwelling zones, where organic matter delivers sufficient phosphorus (P) to enable the formation of phosphorites. As P may be cycled within marine sediments on short timescales, only specific geochemical conditions allow for the precipitation and preservation of phosphate minerals. The processes that enable phosphogenesis are still a matter of debate, and not all mechanisms involved are fully understood. We expand the scope of known phosphorous-rich deposits further, with evidence of phosphogenesis at methane seeps. Cretaceous methane-seep limestones from Waipiro Bay, New Zealand, exhibit (1) a matrix composed of cryptocrystalline fluorapatite in between micritic spheroids and coated calcite grains, and (2) phosphatic spheroids within a micritic matrix. Due to the abundant spherical morphologies of phosphate and carbonate grains, and the exceptionally well preserved phosphate matrix, we suggest that their formation was associated with microbial activity. Methane seeps provide ideal conditions for chemosynthetic communities to thrive, and for the growth of bacterial mats at the sediment water interface. To understand these unique deposits, we derive a formation scenario for apatite and spheroidal carbonate, using detailed petrographical observations, X-ray diffraction, scanning electron microscopy, and electron microprobe analyses. Furthermore, it is shown that phase-specific stable carbon and oxygen isotopes confirm that both phosphate and carbonate formation occurred at a methane seep.

  11. Cretaceous choristoderan reptiles gave birth to live young

    NASA Astrophysics Data System (ADS)

    Ji, Qiang; Wu, Xiao-Chun; Cheng, Yen-Nien

    2010-04-01

    Viviparity (giving birth to live young) in fossil reptiles has been known only in a few marine groups: ichthyosaurs, pachypleurosaurs, and mosasaurs. Here, we report a pregnant specimen of the Early Cretaceous Hyphalosaurus baitaigouensis, a species of Choristodera, a diapsid group known from unequivocal fossil remains from the Middle Jurassic to the early Miocene (about 165 to 20 million years ago). This specimen provides the first evidence of viviparity in choristoderan reptiles and is also the sole record of viviparity in fossil reptiles which lived in freshwater ecosystems. This exquisitely preserved specimen contains up to 18 embryos arranged in pairs. Size comparison with small free-living individuals and the straight posture of the posterior-most pair suggest that those embryos were at term and had probably reached parturition. The posterior-most embryo on the left side has the head positioned toward the rear, contrary to normal position, suggesting a complication that may have contributed to the mother’s death. Viviparity would certainly have freed species of Hyphalosaurus from the need to return to land to deposit eggs; taking this advantage, they would have avoided intense competition with contemporaneous terrestrial carnivores such as dinosaurs.

  12. Tertiary Magmatism on the Early Cretaceous Ontong Java Plateau

    NASA Astrophysics Data System (ADS)

    Coffin, M. F.; Inoue, H.; Mochizuki, K.; Nakamura, Y.; Kroenke, L.

    2008-12-01

    The Ontong Java Plateau (OJP) in the western equatorial Pacific is the largest flood basalt province, or large igneous province (LIP), known in the oceans. Although the bulk of the OJP is believed to have formed in Early Cretaceous time, ca. 122 Ma, ca, 90 Ma basalts have also been recovered from the OJP and obducted OJP sections in the Solomon Islands. Still younger igneous rock is found in the Solomon Islands (Tejada et al., 1996), and the submarine plateau is itself surmounted by atolls, seamounts, and other features of presumed igneous origin, for which age data are lacking. To investigate this apparently younger igneous activity on the OJP itself, we have identified submarine lava flows and/or a volcaniclastic apron around Tauu Atoll on the southwestern OJP using seismic reflection data. Through stratigraphic correlation with Deep Sea Drilling Project and Ocean Drilling Program sites, we interpret the age of the igneous activity that created Tauu Atoll to be Middle Eocene to Miocene. Through similar seismic identification and stratigraphic correlation, we interpret an Oligocene to Miocene age for three hydrothermal vents in the central OJP. On the northwestern margin of the OJP, an unnamed seamount likely represents impingement of the much younger Caroline hotspot with the OJP. More seismic reflection and/or drilling data will be required to date Ontong Java Atoll, one of the largest atolls on the globe, as well as the many other atolls and seamounts surmounting the OJP.

  13. The debate over the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Alvarez, W.; Asaro, F.; Alvarez, L. W.; Michel, H. V.

    1988-01-01

    Large-body impact on the Earth is a rare but indisputable geologic process. The impact rate is approximately known from objects discovered in Earth-crossing orbits and from the statistics of craters on the Earth's surface. Tektite and microtektite strewn fields constitute unmistakable ejecta deposits that can be due only to large-body impacts. The Cretaceous-Tertiary (K-T) boundary coincides with an unusually severe biological trauma, and this stratigraphic horizon is marked on a worldwide basis by anomalous concentrations of noble metals in chondritic proportions, mineral spherules with relict quench-crystallization textures, and mineral and rock grains showing shock deformation. These features are precisely compatible with an impact origin. Although only impact explains all the types of K-T boundary evidence, the story may not be as simple as once thought. The original hypothesis envisioned one large impact, triggering one great extinction. Newer evidence hints at various complications. Different challenges are faced by the occupants of each apex of a three-cornered argument over the K-T event. Proponents of a non-impact explanation must show that the evidence fits their preferred model better than it fits the impact scenario. Proponents of the single impact-single extinction view must explain away the complications. Proponents of a more complex impact crisis must develop a reasonable scenario which honors the new evidence.

  14. Sedimentological evolution of the Cretaceous carbonate platform of Chiapas (Mexico)

    NASA Astrophysics Data System (ADS)

    Cros, Pierre; Michaud, François; Fourcade, Eric; Fleury, Jean-Jacques

    1998-07-01

    The Cretaceous epicontinental carbonate platform of Chiapas (south-east of Mexico) extends along a 200 km NW-SE narrow strip, north of the Sierra Madre basement, from Ocozocoautla to Comitan. In the western and central domain, three stratigraphic sections of the Sierra Madre Formation (late Aptian to early Senonian) display well exposed facies sequences enabling broad facies correlations about: (1) The successive transgressive-regressive stages, (2) the different subsidence rates controlling the outer to inner platform environmental evolution, (3) the conditions of tectonically controlled partial platform drowning during Campanian-Maastrichtian. Three other sections through the eastern Maastrichtian carbonate platform area record the changes from limestone to dolomite during the Angostura Maastrichtian platform stage. This evolution of thickness and facies in the occidental domain of Piedra Parada and in the central domain of Guadalupe Victoria and Julian Grajales illustrates the settlement process of the carbonate platform and the general decreasing of the thickness of the Sierra Madre Formation from west to east. The eastern platform domain (Comitan) crops out extensively and enables new correlations along a south-north transect. The Sierra Madre Formation and Angostura Formation documents continuous carbonate platform sedimentation with foraminifers, rudists and dasycladacean algae during Campanian and Maastrichtian. These sections permit palaeogeographical comparisons of depositional conditions of the Mexican margin of the Maya block.

  15. The debate over the Cretaceous-Tertiary boundary

    NASA Astrophysics Data System (ADS)

    Alvarez, W.; Asaro, F.; Alvarez, L. W.; Michel, H. V.

    Large-body impact on the Earth is a rare but indisputable geologic process. The impact rate is approximately known from objects discovered in Earth-crossing orbits and from the statistics of craters on the Earth's surface. Tektite and microtektite strewn fields constitute unmistakable ejecta deposits that can be due only to large-body impacts. The Cretaceous-Tertiary (K-T) boundary coincides with an unusually severe biological trauma, and this stratigraphic horizon is marked on a worldwide basis by anomalous concentrations of noble metals in chondritic proportions, mineral spherules with relict quench-crystallization textures, and mineral and rock grains showing shock deformation. These features are precisely compatible with an impact origin. Although only impact explains all the types of K-T boundary evidence, the story may not be as simple as once thought. The original hypothesis envisioned one large impact, triggering one great extinction. Newer evidence hints at various complications. Different challenges are faced by the occupants of each apex of a three-cornered argument over the K-T event. Proponents of a non-impact explanation must show that the evidence fits their preferred model better than it fits the impact scenario. Proponents of the single impact-single extinction view must explain away the complications. Proponents of a more complex impact crisis must develop a reasonable scenario which honors the new evidence.

  16. End-Cretaceous Brachiopod Extinctions in the Chalk of Denmark

    NASA Astrophysics Data System (ADS)

    Surlyk, Finn; Bagge Johansen, Marianne

    1984-03-01

    The results of a detailed study of the brachiopods of the most complete Cretaceous-Tertiary boundary in Denmark, Nye Klov, show an extinction pattern for this marine invertebrate group compatible with that reported for pelagic foraminifera and coccoliths and with the impact scenario. The extinction is abrupt, coinciding with the Maastrichtian-Danian boundary. There is no warning in the form of decreasing density, decreasing diversity, or early extinction of specialized groups. The basal few meters of the Danian are almost devoid of brachiopods, and a Danian brachiopod fauna starts almost as abruptly as the Maastrichtian fauna disappeared. The new fauna is similar to the Maastrichtian as regards density and diversity, and at maximum six species are common to both stages. The northwest European Maastrichtian chalk is composed mainly of the remains of coccoliths and pelagic foraminifera. The mass extinction of these groups led to a total cessation of chalk production. The chalk is overlain by a thin clay bed deposited partly under anoxic conditions. This combination of anoxia and clay deposition coupled with a cessation of productivity led to the extinction of specialized groups such as the chalk brachiopods. The surviving species included forms that could survive in well-aerated shallow marine waters on substrates other than chalk.

  17. End-cretaceous brachiopod extinctions in the chalk of denmark.

    PubMed

    Surlyk, F; Johansen, M B

    1984-03-16

    The results of a detailed study of the brachiopods of the most complete Cretaceous-Tertiary boundary in Denmark, Nye Klslashed circlev, show an extinction pattern for this marine invertebrate group compatible with that reported for pelagic foraminifera and coccoliths and with the impact scenario. The extinction is abrupt, coinciding with the Maastrichtian-Danian boundary. There is no warning in the form of decreasing density, decreasing diversity, or early extinction of specialized groups. The basal few meters of the Danian are almost devoid of brachiopods, and a Danian brachiopod fauna starts almost as abruptly as the Maastrichtian fauna disappeared. The new fauna is similar to the Maastrichtian as regards density and diversity, and at maximum six species are common to both stages. The northwest European Masstrichtian chalk is composed mainly of the remains of coccoliths and pelagic foraminifera. The mass extinction of these groups led to a total cessation of chalk production. The chalk is overlain by a thin clay bed deposited partly under anoxic conditions. This combination of anoxia and clay deposition coupled with a cessation of productivity led to the extinction of specialized groups such as the chalk brachiopods. The surviving species included forms that could survive in well-aerated shallow marine waters on substrates other than chalk.

  18. Long-Proboscid Flies as Pollinators of Cretaceous Gymnosperms.

    PubMed

    Peñalver, Enrique; Arillo, Antonio; Pérez-de la Fuente, Ricardo; Riccio, Mark L; Delclòs, Xavier; Barrón, Eduardo; Grimaldi, David A

    2015-07-20

    The great evolutionary success of angiosperms has traditionally been explained, in part, by the partnership of these plants with insect pollinators. The main approach to understanding the origins of this pervasive relationship has been study of the pollinators of living cycads, gnetaleans, and basal angiosperms. Among the most morphologically specialized living pollinators are diverse, long-proboscid flies. Early such flies include the brachyceran family Zhangsolvidae, previously known only as compression fossils from the Early Cretaceous of China and Brazil. It belongs to the infraorder Stratiomyomorpha, a group that includes the flower-visiting families Xylomyidae and Stratiomyidae. New zhangsolvid specimens in amber from Spain (ca. 105 mega-annum [Ma]) and Myanmar (100 Ma) reveal a detailed proboscis structure adapted to nectivory. Pollen clumped on a specimen from Spain is Exesipollenites, attributed to a Mesozoic gymnosperm, most likely the Bennettitales. Late Mesozoic scorpionflies with a long proboscis have been proposed as specialized pollinators of various extinct gymnosperms, but pollen has never been observed on or in their bodies. The new discovery is a very rare co-occurrence of pollen with its insect vector and provides substantiating evidence that other long-proboscid Mesozoic insects were gymnosperm pollinators. Evidence is thus now gathering that visitors and probable pollinators of early anthophytes, or seed plants, involved some insects with highly specialized morphological adaptations, which has consequences for interpreting the reproductive modes of Mesozoic gymnosperms and the significance of insect pollination in angiosperm success. PMID:26166781

  19. Seawater strontium isotopes at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Macdougall, J. D.; Martin, E.

    1988-01-01

    Anomalously high values of Seawater Sr-87/Sr-86 near the Cretaceous-Tertiary (K-T) boundary have been reported. However, few of the data from the literature are from a single continuous section, and perhaps the most complete study of the boundary region, from a shallow marine limestone sequence in Alabama, showed elevated Sr-87/Sr-86 but no pronounced spike. Thus, in order to investigate the cause of the change in strontium isotopic composition, it is important to determine the exact nature and magnitude of the increase by studying in detail continuous sections through the boundary. If there is indeed a Sr isotope spike at the K-T boundary, it requires the addition of a large amount of radiogenic Sr to the oceans over a short time period, a phenomenon that may be linked to other large-scale environmental disturbances which occurred at that time. In order to address this question, a high-resolution strontium isotope study of foraminifera from three Deep Sea Drilling Project (DSDP) cores which recovered the K-T boundary section: Site 356 in the South Atlantic, Site 384 in the North Atlantic and Site 577 from the Shatsky Rise in the Pacific was initiated. The isotope measurements are being made on either single or small numbers of forams carefully picked and identified and in most cases examined by SEM before analysis. Because this work is not yet complete, conclusions drawn here must be viewed as tentative. They are briefly discussed.

  20. Fleas (Siphonaptera) are Cretaceous, and evolved with Theria.

    PubMed

    Zhu, Qiyun; Hastriter, Michael W; Whiting, Michael F; Dittmar, Katharina

    2015-09-01

    Fleas (order Siphonaptera) are highly-specialized, diverse blood-feeding ectoparasites of mammals and birds with an enigmatic evolutionary history and obscure origin. We here present a molecular phylogenetic study based on a comprehensive taxon sampling of 259 flea taxa, representing 16 of the 18 extant families of this order. A Bayesian phylogenetic tree with strong nodal support was recovered, consisting of seven sequentially derived lineages with Macropsyllidae as the earliest divergence, followed by Stephanocircidae. Divergence times of flea lineages were estimated based on fossil records and host specific associations to bats (Chiroptera), suggesting that the common ancestor of extant Siphonaptera diversified during the Cretaceous. However, most of the intraordinal divergence into extant lineages took place after the K-Pg boundary. Ancestral states of host association and biogeographical distribution were reconstructed, suggesting with high likelihood that fleas originated in the southern continents (Gondwana) and migrated from South America to their extant distributions in a relatively short time frame. Theria (placental mammals and marsupials) represent the most likely ancestral host group of extant Siphonaptera, with marsupials occupying a more important role than previously assumed. Major extant flea families evolved in connection to post K-Pg diversification of Placentalia. The association of fleas with monotremes and birds is likely due to later secondary host association. These results suggest caution in casually interpreting recently discovered Mesozoic fossil "dinosaur fleas" of Northeast Asia as part of what we currently consider Siphonaptera. PMID:25987528

  1. Biostratigraphy of Late Cretaceous carbonate platforms based on larger foraminifera: the Late Cretaceous shallow benthic zones (LKSBZ)

    NASA Astrophysics Data System (ADS)

    Caus, Esmeralda; Parente, Mariano; Albrich, Sergi; Boix, Carme; Consorti, Lorenzo; Di Lucia, Matteo; Frijia, Gianluca; Robles, Raquel; Villalonga, Raquel

    2014-05-01

    The larger foraminifera are single-celled organisms extremely abundant and diverse in tropical-to-subtropical shallow-water oligotrophic-to- mesotrophic environments, especially in carbonate platforms. They cover all the environments within the platform, from the littoral areas to the lower limit of the photic zone. In the geological past, starting from the Late Carboniferous, the same ecological niches where inhabited by different assemblages that evolved in subsequent global community maturation cycles (GCMCs). These cycles are bounded by global palaeoenvironmental crises marked by increased extinction rates or even mass extinctions. This work focuses on the Late Cretaceous Global Community Maturation cycle (LKGCMC), which is bracketed between two mass extinction events: the Cenomanian-Turonian boundary event at the base and the Cretaceous-Palaeogene boundary event at the top. Ten shallow benthic zones (SBZs) are proposed for the time span going from the base of the Turonian up to the Maastrichtian-Danian boundary. A SBZ is a composite zone of parallel phylogenetic lineages that covers at least the most common facies realms of shallow-water deposits. Each zone corresponds to the "total range zone" of some larger foraminifera taxa, and is defined using integrated evidence on multiple first appearances and last occurrences of taxa from all available neritic palaeoenvironments. The new biozonaton is based on an extensive regional data set derived from well exposed shallow-water carbonate successions on both sides of the Pyrenees (Northern Spain and Southern France). The LKSBZ 1 corresponds to the earliest phase of the LKGCM cycle. This biozone is characterized by the presence of few Cenomanian survivors. The LKSBZs 2-4 are characterized by the great development of the structurally complex porcellaneous groups and the first diversification of rotaliids. The LKSBZ 5-10 are dominated by lamellar-perforate foraminifera, with three main groups: Orbitoidids

  2. Thermal history of the Maramureş area (Northern Romania) constrained by zircon fission track analysis: Cretaceous metamorphism and Late Cretaceous to Paleocene exhumation

    NASA Astrophysics Data System (ADS)

    Gröger, Heike R.; Tischler, Matthias; Fügenschuh, Bernhard; Schmid, Stefan M.

    2013-10-01

    This study presents zircon fission track data from the Bucovinian nappe stack (northern part of the Inner Eastern Carpathians, Rodna Mountains) and a neighbouring part of the Biharia nappe system (Preluca massif) in order to unravel the thermal history of the area and its structural evolution by integrating the fission track data with published data on the tectonic and sedimentary evolution of the area. The increase of metamorphic temperatures towards the SW detected by the zircon fission track data suggests SW-wards increasing tectonic overburden (up to at least 15 km) and hence top NE thrusting. Sub-greenschist facies conditions during the Alpine metamorphic overprint only caused partial annealing of fission tracks in zircon in the external main chain of the Central Eastern Carpathians. Full annealing of zircon points to at least 300 °C in the more internal elements (Rodna Mountains and Preluca massif). The zircon fission track central and single grain ages largely reflect Late Cretaceous cooling and exhumation. A combination of fission track data and stratigraphic constraints points to predominantly tectonic differential exhumation by some 7-11 km, connected to massive Late Cretaceous extension not yet detected in the area. Later events such as the latest Cretaceous ("Laramian") juxtaposition of the nappe pile with the internal Moldavides, causing exhumation by erosion, re-burial by sedimentation and tectonic loading during the Cenozoic had no impact on the zircon fission track data; unfortunately it prevented a study of the low temperature part of the Late Cretaceous exhumation history.

  3. Palynologically calibrated vertebrate record from North Dakota consistent with abrupt dinosaur extinction at the Cretaceous-Tertiary boundary

    USGS Publications Warehouse

    Pearson, D.A.; Schaefer, T.; Johnson, K.R.; Nichols, D.J.

    2001-01-01

    New data from 17 Cretaceous-Tertiary (K-T) boundary sections and 53 vertebrate sites in the Hell Creek and Fort Union Formations in southwestern North Dakota document a 1.76 m barren interval between the highest Cretaceous vertebrate fossils and the palynologically recognized K-T boundary. The boundary is above the formational contact at 15 localities and coincident with it at two, demonstrating that the formational contact is diachronous. Dinosaurs are common in the highest Cretaceous vertebrate samples and a partial dinosaur skeleton in the Fort Union Formation is the highest recorded Cretaceous vertebrate fossil in this area.

  4. Source rock in the lower Tertiary and Cretaceous, deep-water Gulf of Mexico

    SciTech Connect

    Wagner, B.E.; Sofer, Z.; Claxton, B.L.

    1994-12-31

    The MC-84 (King) well was drilled in the deep-water Gulf of Mexico in 1993, in Mississippi Canyon Block 84 in a water depth of 5,149 ft. This well drilled an anticlinal feature. The well penetrated an Upper Cretaceous section and crossed Middle Cretaceous Unconformity with final total depth in the Lower Cenomanian. Numerous sidewall cores were taken throughout the Lower Tertiary and Cretaceous. Six of the sidewall cores (from 14,230 to 15,170 ft subsea) are organic rich and contain Type II oil-prone kerogen (TOC values from 2.6 to 5.2% and hydrogen indices from 360 to 543 ppm). The Lower Tertiary through Lower Cenomianian section is thermally immature for oil generation, on the basis of biomarker ratios and vitrinite reflectance measurements. Organic extracts from cores in the Cretaceous section had biomarker characteristics similar to oil recovered from the Miocene in the MC-84 well. The oil was generated from a similar but more mature source rock, probably of Early Cretaceous age. Results of thermal modeling indicate that the only section thermally mature for oil generation is in the lower portion of the Lower Cretaceous, below the total depth of the well. The model also indicates that the organic-rich section equivalent to that penetrated by the MC-84 well could be mature farther to the north, where water depths are shallower, overburden thickness is greater, and heat flow is higher. Late Tertiary sediment loading in this area, primarily during the Miocene, is probably the driving mechanism for hydrocarbon generation from the Cretaceous (and possibly the Lower Tertiary) potential source rocks. This offers a favorable geological setting for capturing hydrocarbons because reservoirs and traps associated with Miocene deposition and subsequent loading-induced salt movement had formed prior to the onset of oil generation and migration.

  5. Biodiversity changes in Cretaceous palynofloras of eastern Asia and western North America

    USGS Publications Warehouse

    Nichols, D.J.

    2003-01-01

    Palynology has great potential for providing comparative data and interpretations about changes in biodiversity during the Cretaceous Period. This is especially true for both eastern Asia and western North America because of strong floristic similarities that existed between these regions during Cretaceous time. Also, because palynomorphs of terrestrial origin can be deposited in offshore as well as terrestrial environments, significant potential exists for marine-to-continental palynostratigraphic correlations in both regions. Palynological biostratigraphy can improve the geologic dating of changes in biodiversity. During the Early Cretaceous, eastern Asia and western North America lay within the Cerebropollenites palynofloral province, a circumpolar phytogeographic zone characterized by distinctive palynological assemblages. During most of the Late Cretaceous, these regions lay within the palynofloristically unique Aquilapollenites Province, which was more restricted geographically than the Cerebropollenites Province. The most important development during Cretaceous time that is reflected in palynological assemblages was the rise of the angiosperms as the numerically and ecologically dominant forms of vegetation. The most striking short-term palynofloral event in the two regions was the sudden disappearance of species of Aquilapollenites and associated genera at the Cretaceous-Tertiary (K/T) boundary. Both of these occurrences produced major changes in biodiversity in the terrestrial realm. Geologic research in International Geological Correlation Program Project 434 can benefit from applications of palynostratigraphy. Palynologic research within Project 434 could include development of a comprehensive palynostratigraphic zonation for the Cretaceous, the definition of regional palynostratigraphic datums, and investigation of the record of floral change at the K/T boundary. ?? 2002 Elsevier Science Ltd. All rights reserved.

  6. Petroleum geology of Cretaceous-Tertiary rift basins in Niger, Chad, and Central African Republic

    SciTech Connect

    Genik, G.J. )

    1993-08-01

    This overview of the petroleum geology of rift basins in Niger, Chad, and Central African Republic (CAR) is based on exploration work by Exxon and partners in the years 1969-1991. The work included 50,000 km of modern reflection seismic, 53 exploration wells, 1,000,000 km[sup 2] of aeromagnetic coverage, and about 10,500 km of gravity profiles. The results outline ten Cretaceous and Tertiary rift basins, which constitute a major part of the West and Central African rift system (WCARS). The rift basins derive from a multiphased geologic history dating from the Pan-African (approximately 750-550 Ma) to the Holocene. WCARS in the study area is divided into the West African rift subsystem (WAS) and the Central African rift subsystem (WAS) and the Central African rift subsystem (CAS). WAS basins in Niger and Chad are chiefly extensional, and are filled by up to 13,000 m of Lower Cretaceous to Holocene continental and marine clastics. The basins contain five oil (19-43[degrees]API) and two oil and gas accumulations in Upper Cretaceous and Eocene sandstone reservoirs. The hydrocarbons are sourced and sealed by Upper Cretaceous and Eocene marine and lacustrine shales. The most common structural styles and hydrocarbon traps usually are associated with normal fault blocks. CAS rift basins in Chad and CAR are extensional and transtensional, and are filled by up to 7500 m of chiefly Lower Cretaceous continental clastics. The basins contain eight oil (15-39[degrees]API) and one oil and gas discovery in Lower and Upper Cretaceous sandstone reservoirs. The hydrocarbons are sourced by Lower Cretaceous shales and sealed by interbedded lacustrine and flood-plain shales. Structural styles range from simple fault blocks through complex flower structures. The main hydrocarbon traps are in contractional anticlines. Geological conditions favor the discovery of potentially commercial volumes of oil in WCARS basins, of Niger, Chad and CAR. 108 refs., 24 figs., 4 tabs.

  7. Upper Cretaceous and Lower Jurassic strata in shallow cores on the Chukchi Shelf, Arctic Alaska

    USGS Publications Warehouse

    Houseknecht, David W.; Craddock, William H.; Lease, Richard O.

    2016-02-12

    Shallow cores collected in the 1980s on the Chukchi Shelf of western Arctic Alaska sampled pre-Cenozoic strata whose presence, age, and character are poorly known across the region. Five cores from the Herald Arch foreland contain Cenomanian to Coniacian strata, as documented by biostratigraphy, geochronology, and thermochronology. Shallow seismic reflection data collected during the 1970s and 1980s show that these Upper Cretaceous strata are truncated near the seafloor by subtle angular unconformities, including the Paleogene mid-Brookian unconformity in one core and the Pliocene-Pleistocene unconformity in four cores. Sedimentary structures and lithofacies suggest that Upper Cretaceous strata were deposited in a low accommodation setting that ranged from low-lying coastal plain (nonmarine) to muddy, shallow-marine environments near shore. These observations, together with sparse evidence from the adjacent western North Slope, suggest that Upper Cretaceous strata likely were deposited across all of Arctic Alaska.A sixth core from the Herald Arch contains lower Toarcian marine strata, indicated by biostratigraphy, truncated by a Neogene or younger unconformity. These Lower Jurassic strata evidently were deposited south of the arch, buried structurally to high levels of thermal maturity during the Early Cretaceous, and uplifted on the Herald thrust-fault system during the mid to Late Cretaceous. These interpretations are based on regional stratigraphy and apatite fission-track data reported in a complementary report and are corroborated by the presence of recycled palynomorphs of Early Jurassic age and high thermal maturity found in Upper Cretaceous strata in two of the foreland cores. This dataset provides evidence that uplift and exhumation of the Herald thrust belt provided sediment to the foreland during the Late Cretaceous.

  8. A formicine in New Jersey Cretaceous amber (Hymenoptera: Formicidae) and early evolution of the ants

    PubMed Central

    Grimaldi, David; Agosti, Donat

    2000-01-01

    A worker ant preserved with microscopic detail has been discovered in Turonian-aged New Jersey amber [ca. 92 mega-annum (Ma)]. The apex of the gaster has an acidopore and, thus, allows definitive assignment of the fossil to the large extant subfamily Formicinae, members of which use a defensive spray of formic acid. This specimen is the only Cretaceous record of the subfamily, and only two other fossil ants are known from the Cretaceous that unequivocally belong to an extant subfamily (Brownimecia and Canapone of the Ponerinae, in New Jersey and Canadian amber, respectively). In lieu of a cladogram of formicine genera, generalized morphology of this fossil suggests a basal position in the subfamily. Formicinae and Ponerinae in the mid Cretaceous indicate divergence of basal lineages of ants near the Albian (ca. 105–110 Ma) when they presumably diverged from the Sphecomyrminae. Sphecomyrmines are the plesiomorphic sister group to all other ants, or they are a paraphyletic stem group ancestral to all other ants—they apparently became extinct in the Late Cretaceous. Ant abundance in major deposits of Cretaceous and Tertiary insects indicates that they did not become common and presumably dominant in terrestrial ecosystems until the Eocene (ca. 45 Ma). It is at this time that modern genera that form very large colonies (at least 10,000 individuals) first appear. During the Cretaceous, eusocial termites, bees, and vespid wasps also first appear—they show a similar pattern of diversification and proliferation in the Tertiary. The Cretaceous ants have further implications for interpreting distributions of modern ants. PMID:11078527

  9. Dependence of the Tidal Response on the Internal Structure of the Moon: Geodetic Implication to the Partial Melt Layer at the Lower-Most Part of the Lunar Mantle

    NASA Astrophysics Data System (ADS)

    Harada, Y.; Goossens, S. J.; Matsumoto, K.; Yan, J.; Ping, J.; Noda, H.

    2012-12-01

    Generally, internal energy dissipation associated with tidal deformation and physical libration of a planetary body depends on its internal structure, especially viscosity structure. Here magnitude of the tidal dissipation is mainly represented by the quality factor (Q) and the Love number (k2). These values inevitably depend on its viscosity structure, and thus, give us clues of its thermal state and history. Although dependence of the tidal dissipation on the viscosity structure of the Moon has already been demonstrated by previous research, its parameter study unfortunately has certain limitations. First, it assumes the lunar interior as a uniform sphere. Second, only Q has been calculated. Third, in the past, there are no observational values which correspond to the calculation results. By resolving the above issues, we would be able to put a new constraint on the interior structure on the Moon. That is, it allows us to consider what kind of viscosity structure can explain both Q and k2 with no contradiction. Moreover, such consideration further enables us to tell what should be investigated in the framework of the lunar exploration project in the next generation. Therefore, parameter studies on visco-elastic deformation are performed based on more realistic interior structure, and then, these calculation results are compared with pre-existing values derived from selenodetic observation. Concretely speaking, by employing the density and elasticity structures from seismic inversion, and by defining the viscosity as a free parameter, Q and k2 are calculated for both monthly and annual periods. After that, by comparing these numerical results with the observational values, it is examined whether the viscosity value satisfying Q and k2 at the same time is admissible or not. For the sake of simplification, this study only prepares the viscosity structure in which just the viscosity of the lower-most part of the mantle is changed over several orders of magnitude. The

  10. Novel insect leaf-mining after the end-Cretaceous extinction and the demise of cretaceous leaf miners, Great Plains, USA.

    PubMed

    Donovan, Michael P; Wilf, Peter; Labandeira, Conrad C; Johnson, Kirk R; Peppe, Daniel J

    2014-01-01

    Plant and associated insect-damage diversity in the western U.S.A. decreased significantly at the Cretaceous-Paleogene (K-Pg) boundary and remained low until the late Paleocene. However, the Mexican Hat locality (ca. 65 Ma) in southeastern Montana, with a typical, low-diversity flora, uniquely exhibits high damage diversity on nearly all its host plants, when compared to all known local and regional early Paleocene sites. The same plant species show minimal damage elsewhere during the early Paleocene. We asked whether the high insect damage diversity at Mexican Hat was more likely related to the survival of Cretaceous insects from refugia or to an influx of novel Paleocene taxa. We compared damage on 1073 leaf fossils from Mexican Hat to over 9000 terminal Cretaceous leaf fossils from the Hell Creek Formation of nearby southwestern North Dakota and to over 9000 Paleocene leaf fossils from the Fort Union Formation in North Dakota, Montana, and Wyoming. We described the entire insect-feeding ichnofauna at Mexican Hat and focused our analysis on leaf mines because they are typically host-specialized and preserve a number of diagnostic morphological characters. Nine mine damage types attributable to three of the four orders of leaf-mining insects are found at Mexican Hat, six of them so far unique to the site. We found no evidence linking any of the diverse Hell Creek mines with those found at Mexican Hat, nor for the survival of any Cretaceous leaf miners over the K-Pg boundary regionally, even on well-sampled, surviving plant families. Overall, our results strongly relate the high damage diversity on the depauperate Mexican Hat flora to an influx of novel insect herbivores during the early Paleocene, possibly caused by a transient warming event and range expansion, and indicate drastic extinction rather than survivorship of Cretaceous insect taxa from refugia.

  11. Novel Insect Leaf-Mining after the End-Cretaceous Extinction and the Demise of Cretaceous Leaf Miners, Great Plains, USA

    PubMed Central

    Donovan, Michael P.; Wilf, Peter; Labandeira, Conrad C.; Johnson, Kirk R.; Peppe, Daniel J.

    2014-01-01

    Plant and associated insect-damage diversity in the western U.S.A. decreased significantly at the Cretaceous-Paleogene (K-Pg) boundary and remained low until the late Paleocene. However, the Mexican Hat locality (ca. 65 Ma) in southeastern Montana, with a typical, low-diversity flora, uniquely exhibits high damage diversity on nearly all its host plants, when compared to all known local and regional early Paleocene sites. The same plant species show minimal damage elsewhere during the early Paleocene. We asked whether the high insect damage diversity at Mexican Hat was more likely related to the survival of Cretaceous insects from refugia or to an influx of novel Paleocene taxa. We compared damage on 1073 leaf fossils from Mexican Hat to over 9000 terminal Cretaceous leaf fossils from the Hell Creek Formation of nearby southwestern North Dakota and to over 9000 Paleocene leaf fossils from the Fort Union Formation in North Dakota, Montana, and Wyoming. We described the entire insect-feeding ichnofauna at Mexican Hat and focused our analysis on leaf mines because they are typically host-specialized and preserve a number of diagnostic morphological characters. Nine mine damage types attributable to three of the four orders of leaf-mining insects are found at Mexican Hat, six of them so far unique to the site. We found no evidence linking any of the diverse Hell Creek mines with those found at Mexican Hat, nor for the survival of any Cretaceous leaf miners over the K-Pg boundary regionally, even on well-sampled, surviving plant families. Overall, our results strongly relate the high damage diversity on the depauperate Mexican Hat flora to an influx of novel insect herbivores during the early Paleocene, possibly caused by a transient warming event and range expansion, and indicate drastic extinction rather than survivorship of Cretaceous insect taxa from refugia. PMID:25058404

  12. Small theropod teeth from the Late Cretaceous of the San Juan Basin, northwestern New Mexico and their implications for understanding latest Cretaceous dinosaur evolution.

    PubMed

    Williamson, Thomas E; Brusatte, Stephen L

    2014-01-01

    Studying the evolution and biogeographic distribution of dinosaurs during the latest Cretaceous is critical for better understanding the end-Cretaceous extinction event that killed off all non-avian dinosaurs. Western North America contains among the best records of Late Cretaceous terrestrial vertebrates in the world, but is biased against small-bodied dinosaurs. Isolated teeth are the primary evidence for understanding the diversity and evolution of small-bodied theropod dinosaurs during the Late Cretaceous, but few such specimens have been well documented from outside of the northern Rockies, making it difficult to assess Late Cretaceous dinosaur diversity and biogeographic patterns. We describe small theropod teeth from the San Juan Basin of northwestern New Mexico. These specimens were collected from strata spanning Santonian - Maastrichtian. We grouped isolated theropod teeth into several morphotypes, which we assigned to higher-level theropod clades based on possession of phylogenetic synapomorphies. We then used principal components analysis and discriminant function analyses to gauge whether the San Juan Basin teeth overlap with, or are quantitatively distinct from, similar tooth morphotypes from other geographic areas. The San Juan Basin contains a diverse record of small theropods. Late Campanian assemblages differ from approximately coeval assemblages of the northern Rockies in being less diverse with only rare representatives of troodontids and a Dromaeosaurus-like taxon. We also provide evidence that erect and recurved morphs of a Richardoestesia-like taxon represent a single heterodont species. A late Maastrichtian assemblage is dominated by a distinct troodontid. The differences between northern and southern faunas based on isolated theropod teeth provide evidence for provinciality in the late Campanian and the late Maastrichtian of North America. However, there is no indication that major components of small-bodied theropod diversity were lost

  13. Novel insect leaf-mining after the end-Cretaceous extinction and the demise of cretaceous leaf miners, Great Plains, USA.

    PubMed

    Donovan, Michael P; Wilf, Peter; Labandeira, Conrad C; Johnson, Kirk R; Peppe, Daniel J

    2014-01-01

    Plant and associated insect-damage diversity in the western U.S.A. decreased significantly at the Cretaceous-Paleogene (K-Pg) boundary and remained low until the late Paleocene. However, the Mexican Hat locality (ca. 65 Ma) in southeastern Montana, with a typical, low-diversity flora, uniquely exhibits high damage diversity on nearly all its host plants, when compared to all known local and regional early Paleocene sites. The same plant species show minimal damage elsewhere during the early Paleocene. We asked whether the high insect damage diversity at Mexican Hat was more likely related to the survival of Cretaceous insects from refugia or to an influx of novel Paleocene taxa. We compared damage on 1073 leaf fossils from Mexican Hat to over 9000 terminal Cretaceous leaf fossils from the Hell Creek Formation of nearby southwestern North Dakota and to over 9000 Paleocene leaf fossils from the Fort Union Formation in North Dakota, Montana, and Wyoming. We described the entire insect-feeding ichnofauna at Mexican Hat and focused our analysis on leaf mines because they are typically host-specialized and preserve a number of diagnostic morphological characters. Nine mine damage types attributable to three of the four orders of leaf-mining insects are found at Mexican Hat, six of them so far unique to the site. We found no evidence linking any of the diverse Hell Creek mines with those found at Mexican Hat, nor for the survival of any Cretaceous leaf miners over the K-Pg boundary regionally, even on well-sampled, surviving plant families. Overall, our results strongly relate the high damage diversity on the depauperate Mexican Hat flora to an influx of novel insect herbivores during the early Paleocene, possibly caused by a transient warming event and range expansion, and indicate drastic extinction rather than survivorship of Cretaceous insect taxa from refugia. PMID:25058404

  14. Small Theropod Teeth from the Late Cretaceous of the San Juan Basin, Northwestern New Mexico and Their Implications for Understanding Latest Cretaceous Dinosaur Evolution

    PubMed Central

    Williamson, Thomas E.; Brusatte, Stephen L.

    2014-01-01

    Studying the evolution and biogeographic distribution of dinosaurs during the latest Cretaceous is critical for better understanding the end-Cretaceous extinction event that killed off all non-avian dinosaurs. Western North America contains among the best records of Late Cretaceous terrestrial vertebrates in the world, but is biased against small-bodied dinosaurs. Isolated teeth are the primary evidence for understanding the diversity and evolution of small-bodied theropod dinosaurs during the Late Cretaceous, but few such specimens have been well documented from outside of the northern Rockies, making it difficult to assess Late Cretaceous dinosaur diversity and biogeographic patterns. We describe small theropod teeth from the San Juan Basin of northwestern New Mexico. These specimens were collected from strata spanning Santonian – Maastrichtian. We grouped isolated theropod teeth into several morphotypes, which we assigned to higher-level theropod clades based on possession of phylogenetic synapomorphies. We then used principal components analysis and discriminant function analyses to gauge whether the San Juan Basin teeth overlap with, or are quantitatively distinct from, similar tooth morphotypes from other geographic areas. The San Juan Basin contains a diverse record of small theropods. Late Campanian assemblages differ from approximately co-eval assemblages of the northern Rockies in being less diverse with only rare representatives of troodontids and a Dromaeosaurus-like taxon. We also provide evidence that erect and recurved morphs of a Richardoestesia-like taxon represent a single heterodont species. A late Maastrichtian assemblage is dominated by a distinct troodontid. The differences between northern and southern faunas based on isolated theropod teeth provide evidence for provinciality in the late Campanian and the late Maastrichtian of North America. However, there is no indication that major components of small-bodied theropod diversity were lost

  15. Paleobiological implications of dinosaur egg-bearing deposits in the Cretaceous Gyeongsang Supergroup of Korea

    NASA Astrophysics Data System (ADS)

    Paik, In Sung; Kim, Hyun Joo; Huh, Min

    2010-05-01

    Dinosaur egg-bearing deposits in the Cretaceous Gyeongsang Basin in Korea is described in taphonomic aspect, their paleoenvironments are interpreted, and geobiological implications of dinosaur egg-bearing deposits in the world and Korea are analyzed in geographic occurrences, geological ages, paleoenvironments, and lithology. Dinosaur eggs with spheroolithids, faveoloolithid, and elongatoolithid structural types occur in several stratigraphic formations of the Cretaceous Gyeongsang Basin in South Korea, and most of the egg-bearing formations are the Late Cretaceous. The dinosaur eggs usually occur as clutches in purple sandy mudstone of floodplain deposits preserved as calcic paleosol with association of vertic paleosol features in places. Most of the eggs are top-broken and filled with surrounding sediments. The general depositional environment of dinosaur egg deposits in the Gyeongsang Supergroup are interpreted as a dried floodplain where volcanic activity occurred intermittently in the vicinity of the nesting sites. Their depositional settings on which floodplains developed are diverse from fluvial plain with meandering rivers to alluvial plain with episodic sheet flooding. The nesting areas in the Gyeongsang Basin are deemed to have been under semi-arid climate, which resulted in formation of calcic soils facilitating preservation of the dinosaur eggs. The geochronologic occurrences of dinosaur egg-bearing deposits are mostly restricted to the Late Cretaceous in the world as well as in Korea. If it has not been resulted from biased discoveries and reports of dinosaur eggs, biological rather than physical and chemical conditions for preservation of dinosaur eggs might be related with the restricted occurrences in the Late Cretaceous. Two hypotheses are suggested for probable biological causes to the geochronologically restricted occurrences of dinosaur egg-bearing deposits. One is related with the appearance of angiosperms in the Late Jurassic and the spreading

  16. Cretaceous paleomagnetism of the eastern South China Block: establishment of the stable body of SCB

    NASA Astrophysics Data System (ADS)

    Morinaga, Hayao; Liu, Yuyan

    2004-06-01

    A paleomagnetic investigation was performed on the Cretaceous red sandstones collected at the eastern side of the South China Block (SCB), China, and attempted to establish the stable part of the SCB since the Cretaceous. Paleomagnetic specimens were collected at 39, 25 and 14 sites from three independent parts: the northern, central and southern regions of eastern SCB, respectively. Characteristic directions of higher temperature components (HTCs) with an unblocking temperature of ˜680 °C were isolated from 69/78 sites. The optimal concentrations of global mean HTC directions calculated using the direction-correction tilt test were achieved at 79±19%, 95±27%, 71±37% and 117±98% untilting for the Early Cretaceous sites from the northern part, Late Cretaceous sites from the northern, central and southern parts, respectively. This treatment gives positive tilt tests or brings the optimal concentration not far from being indistinguishable from positive tilt tests, although this observation can be due to imperfect separation of a primary component (HTC) from a secondary one (lower temperature component). We adopted completely (100%) untilted directions of the HTCs as the paleomagnetic field directions during the Cretaceous, because the mean directions after complete untilting were almost equal to each mean direction after incomplete untilting showing the optimal concentration. The mean paleomagnetic poles for three independent parts were located at almost the same positions and were indistinguishable from that for Sichuan, the western side of SCB at the 95% confidence level. This observation indicates that there is no relative movement between the eastern and western sides of SCB and implies that a large part of the SCB (excluding a 400-km-wide swath along the Red River Fault) has behaved as its coherent (stable) body since the Cretaceous. The Cretaceous paleomagnetic pole for the stable body of the SCB (latitude=80.0°N, longitude=206.7°E, A95=2.5°) is worth

  17. Cretaceous sedimentation and tectonism in the southeastern Kaiparowits region, Utah

    USGS Publications Warehouse

    Peterson, Fred

    1969-01-01

    Upper Cretaceous strata in the southeastern Kaiparowits region of south-central Utah consist of approximately 3,500 feet of interfingering sandstone, mudstone, shale, and coal in the Dakota Formation (oldest), Tropic Shale, Straight Cliffs Formation, and Wahweap Formation (youngest). The formations consist of several depositional facies that can be recognized by characteristic lithologies bedding structures, and fossils; these are the alluvial plain, deltaic plain, lagoonal-paludal, barrier sandstone, and offshore marine facies. The distribution of facies clearly defines the paleogeography of the region during several cycles of marine transgression and regression. The nonmarine beds were deposited on a broad alluvial coastal plain that was bordered on the west and southwest by highlands and on the east and northeast by the Western Interior seaway. The marine beds were deposited whenever the seaway advanced into or across the region. The Dakota Formation and the lower part of the Tropic Shale were deposited in nonmarine and marine environments, while the shoreline advanced generally westward across the region. The middle and upper part of the Tropic Shale and the Tibbet Canyon and Smoky Hollow Members of the Straight Cliffs Formation were deposited in marine and nonmarine environments when the seaway had reached its greatest areal extent and began a gradual northeastward withdrawal. An unconformity at the top of the Smoky Hollow represents a period of erosion and possibly nondeposition before deposition of the John Henry Member of the Straight Cliffs. The John Henry Member grades from nonmarine in the southwest to predominantly marine in the northeast, and was deposited during two relatively minor cycles of transgression and regression. The Drip Tank Member at the top of the Straight Cliffs Formation is a widespread sandstone unit deposited mainly in fluvial environments. Some of the beds in the northeastern part of the region were probably deposited in marine

  18. Ascaulocardium armatum (Morton 1833), new genus (Late Cretaceous): the ultimate variation on the bivalve paradigm.

    USGS Publications Warehouse

    Pojeta, J.; Sohl, N.F.

    1987-01-01

    Cretaceous clavagellid pelecypods are a poorly known group, and have previously received little study. Ascaulocardium armatum is conchologically the most complex burrowing pelecypod known. From the study of living clavagellids, it is possible to interpret the various tubes extending outward from the adventitious crypt of A. armatum as devices for hydraulic burrowing and deposit feeding. The conchologically complex A. armatum occurs near the beginning of the history of the Clavagellidae, and does not seem to have given rise to any younger species. Ascaulocardium armatum is known only from the Upper Cretaceous rocks (Santonian-Maastrichtian) of the east Gulf and Atlantic Coastal Plains of the United States of America, as is probably the genus Ascaulocardium. All known Cretaceous clavagellids are burrowing species having a free right valve, and this is the ancestral mode of life of the Clavagellidae. Clavagellids that have a boring habit are a more recent evolutionary development, as are burrowing species having both juvenile valves cemented to the crypt. Clavagellids probably evolved from Jurassic-Early Cretaceous pholadomyids. Almost all Cretaceous clavagellids occur outside the Tethyan Zoogeographic Realm; this distribution is in marked contrast to the modern distribution of the family. Living species mostly inhabit clear, shallow seas in subtropical to tropical shelf areas. - Authors

  19. A small azhdarchoid pterosaur from the latest Cretaceous, the age of flying giants

    NASA Astrophysics Data System (ADS)

    Martin-Silverstone, Elizabeth; Witton, Mark P.; Arbour, Victoria M.; Currie, Philip J.

    2016-08-01

    Pterosaur fossils from the Campanian-Maastrichtian of North America have been reported from the continental interior, but few have been described from the west coast. The first pterosaur from the Campanian Northumberland Formation (Nanaimo Group) of Hornby Island, British Columbia, is represented here by a humerus, dorsal vertebrae (including three fused notarial vertebrae), and other fragments. The elements have features typical of Azhdarchoidea, an identification consistent with dominance of this group in the latest Cretaceous. The new material is significant for its size and ontogenetic stage: the humerus and vertebrae indicate a wingspan of ca 1.5 m, but histological sections and bone fusions indicate the individual was approaching maturity at time of death. Pterosaurs of this size are exceedingly rare in Upper Cretaceous strata, a phenomenon commonly attributed to smaller pterosaurs becoming extinct in the Late Cretaceous as part of a reduction in pterosaur diversity and disparity. The absence of small juveniles of large species-which must have existed-in the fossil record is evidence of a preservational bias against small pterosaurs in the Late Cretaceous, and caution should be applied to any interpretation of latest Cretaceous pterosaur diversity and success.

  20. The mid-Cretaceous super plume, carbon dioxide, and global warming

    NASA Technical Reports Server (NTRS)

    Caldeira, Ken; Rampino, Michael R.

    1991-01-01

    Carbon-dioxide releases associated with a mid-Cretaceous super plume and the emplacement of the Ontong-Java Plateau have been suggested as a principal cause of the mid-Cretaceous global warming. A carbonate-silicate cycle model is developed to quantify the possible climatic effects of these CO2 releases, utilizing four different formulations for the rate of silicate-rock weathering as a function of atmospheric CO2. CO2 emissions resulting from super-plume tectonics could have produced atmospheric CO2 levels from 3.7 to 14.7 times the modern preindustrial value of 285 ppm. Based on the temperature sensitivity to CO2 increases used in the weathering-rate formulations, this would cause a global warming of from 2.8 to 7.7 C over today's glogal mean temperature. Altered continental positions and higher sea level may have been contributed about 4.8 C to mid-Cretaceous warming. Thus, the combined effects of paleogeographic changes and super-plume related CO2 emissions could be in the range of 7.6 to 12.5 C, within the 6 to 14 C range previously estimated for mid-Cretaceous warming. CO2 releases from oceanic plateaus alone are unlikely to have been directly responsible for more than 20 percent of the mid-Cretaceous increase in atmospheric CO2.

  1. Large Cretaceous sphenodontian from Patagonia provides insight into lepidosaur evolution in Gondwana.

    PubMed

    Apesteguía, Sebastián; Novas, Fernando E

    2003-10-01

    Sphenodontian reptiles successfully radiated during Triassic and Jurassic times, but were driven almost to extinction during the Cretaceous period. The sparse Early Cretaceous record of sphenodontians has been interpreted as reflecting the decline of the group in favour of lizards, their suspected ecological successors. However, recent discoveries in Late Cretaceous beds in Patagonia partially modify this interpretation. Numerous skeletons of a new sphenodontian, Priosphenodon avelasi gen. et sp. nov., were collected from a single locality in the Cenomanian-Turonian Candeleros Formation, where it is more abundant than any other tetrapod group recorded in the quarry (for example, Crocodyliformes, Serpentes, Dinosauria and Mammalia). Adult specimens of Priosphenodon reached one metre in length, larger than any previously known terrestrial sphenodontian. Here we propose, using available evidence, that sphenodontians were not a minor component of the Cretaceous terrestrial ecosystems of South America, and that their ecological replacement by squamates was delayed until the early Tertiary. The new discovery helps to bridge the considerable gap in the fossil record (around 120 million years) that separates the Early Cretaceous sphenodontians from their living relatives (Sphenodon). PMID:14534584

  2. Low-latitude seasonality of Cretaceous temperatures in warm and cold episodes.

    PubMed

    Steuber, Thomas; Rauch, Markus; Masse, Jean-Pierre; Graaf, Joris; Malkoc, Matthias

    2005-10-27

    The Cretaceous period is generally considered to have been a time of warm climate. Evidence for cooler episodes exists, particularly in the early Cretaceous period, but the timing and significance of these cool episodes are not well constrained. The seasonality of temperatures is important for constraining equator-to-pole temperature gradients and may indicate the presence of polar ice sheets; however, reconstructions of Cretaceous sea surface temperatures are predominantly based on the oxygen isotopic composition of planktonic foraminifera that do not provide information about such intra-annual variations. Here we present intra-shell variations in delta18O values of rudist bivalves (Hippuritoidea) from palaeolatitudes between 8 degrees and 31 degrees N, which record the evolution of the seasonality of Cretaceous sea surface temperatures in detail. We find high maximum temperatures (approximately 35 to 37 degrees C) and relatively low seasonal variability (< 12 degrees C) between 20 degrees and 30 degrees N during the warmer Cretaceous episodes. In contrast, during the cooler episodes our data show seasonal sea surface temperature variability of up to 18 degrees C near 25 degrees N, comparable to the range found today. Such a large seasonal variability is compatible with the existence of polar ice sheets.

  3. Cretaceous sequence stratigraphy of the Northern South American Passive Margin: Implications for tectonic evolution

    SciTech Connect

    Kauffman, E.G.; Villamil, T.; Johnson, C.C. )

    1993-02-01

    The passive margin of northern South America, from Colombia to northeastern Venezuela, was relatively stable through the Cretaceous and only broadly affected by the entry of the Caribbean Plate into the Protocaribbean Basin. This region offers a unique opportunity to test the relative effects of global sealevel change, autocyclic sedimentologic processed, and regional tectonics in shaping the stratigraphic record of Cretaceous passive margins. High-resolution stratigraphic studies of Colombia and Venezuela have established a precise system of regional chronology and correlation with resolution <1 Ma (50-500 ka for the middle Cretaceous). This allows precise separation of allocyclic and autocyclic controls on facies development. This new chronology integrates assemblage zone biostratigraphy with event/cycle chronostratigraphy. Newly measured Cretaceous sections in Venezuela and throughout Colombia are calibrated to this new chronology, and sequence stratigraphic units independently defined to the third-order of resolution. Graphic correlation of all sections is used to identify sequences with regional stratigraphic expression, and those which correlate to sequence stratigraphic standards of North America, Europe and the global cycles of Hag et al. (1988). 50-60 percent of the stratigraphic sequences across the South American passive margin correlate to other continents and to the global sequence stratigraphic standard, reflecting strong eustatic influence on Cretaceous sedimentation across northern South America. The remaining sequences in this region reflect tectonic modification of the passive margin and autocyclic sedimentary processes.

  4. Evidence of reworked Cretaceous fossils and their bearing on the existence of Tertiary dinosaurs

    SciTech Connect

    Eaton, J.G. ); Kirkland, J.I. ); Doi, K. )

    1989-06-01

    The Paleocene Shotgun fauna of Wyoming includes marine sharks as well as mammals. It has been suggested that the sharks were introduced from the Cannonball Sea. It is more likely that these sharks were reworked from a Cretaceous rock sequence that included both marine and terrestrial deposits as there is a mixture of marine and freshwater taxa. These taxa have not been recorded elsewhere after the Cretaceous and are not known from the Cannonball Formation. Early Eocene localities at Raven Ridge, Utah, similarly contain teeth of Cretaceous marine and freshwater fish, dinosaurs, and Eocene mammals. The Cretaceous teeth are well preserved, variably abraded, and serve to cast doubts on criteria recently used to claim that dinosaur teeth recovered from the Paleocene of Montana are not reworked. Another Eocene locality in the San Juan Basin has produced an Eocene mammalian fauna with diverse Cretaceous marine sharks. Neither the nature of preservation nor the degree of abrasion could be used to distinguish reworked from contemporaneous material. The mixed environments represented by the fish taxa and recognition of the extensive pre-Tertiary extinction of both marine and freshwater fish were employed to recognize reworked specimens.

  5. Large Cretaceous sphenodontian from Patagonia provides insight into lepidosaur evolution in Gondwana.

    PubMed

    Apesteguía, Sebastián; Novas, Fernando E

    2003-10-01

    Sphenodontian reptiles successfully radiated during Triassic and Jurassic times, but were driven almost to extinction during the Cretaceous period. The sparse Early Cretaceous record of sphenodontians has been interpreted as reflecting the decline of the group in favour of lizards, their suspected ecological successors. However, recent discoveries in Late Cretaceous beds in Patagonia partially modify this interpretation. Numerous skeletons of a new sphenodontian, Priosphenodon avelasi gen. et sp. nov., were collected from a single locality in the Cenomanian-Turonian Candeleros Formation, where it is more abundant than any other tetrapod group recorded in the quarry (for example, Crocodyliformes, Serpentes, Dinosauria and Mammalia). Adult specimens of Priosphenodon reached one metre in length, larger than any previously known terrestrial sphenodontian. Here we propose, using available evidence, that sphenodontians were not a minor component of the Cretaceous terrestrial ecosystems of South America, and that their ecological replacement by squamates was delayed until the early Tertiary. The new discovery helps to bridge the considerable gap in the fossil record (around 120 million years) that separates the Early Cretaceous sphenodontians from their living relatives (Sphenodon).

  6. The Cretaceous record in a northeast-trending transect, northern Utah to east-central Wyoming

    SciTech Connect

    Merewether, E.A. )

    1991-03-01

    Cretaceous sedimentary rocks in the Laramide basins of the middle Rocky Mountains include 16,600 ft (5060 m) of predominantly siliciclastic strata in the thrust-belt of northern Utah and 7800 ft (2380 m) of mainly siliciclastic and calcareous strata near the craton in east central Wyoming. Regional changes in the thickness of the strata indicate that crustal subsidence during the Cretaceous was generally greatest in northern Utah and western Wyoming where it was associated with tectonic and sediment loading. However, the considerable thickness of uppermost Cretaceous nonmarine beds in several other areas reflects pronounced basin subsidence during early stages of the Laramide orogeny. In a transect from northern Utah to east-central Wyoming, based on outcrop sections, borehole logs, and chronostratigraphic data, Cretaceous rocks grade northeastward from mainly fluvial and nearshore marine synorogenic conglomerate, sandstone, mudstone, coal, and bentonite to mostly nearshore and offshore marine sandstone, mudstone, calcareous shale, and bentonite. Lateral changes in the lithofacies and in the extent of enclosed unconformities indicate marine transgressions and regressions that were effected by structural deformation, sedimentation, and eustatic events. Significant unconformities have been found at the base of the Cretaceous strata, at two horizons within beds of Albian age, at two horizons within rocks of Cenomanian and Turonian ages, at one horizon within Coniacian strata, and at two horizons within Campanian beds. Most of these unconformities are either flooding surfaces or sequence boundaries.

  7. The mid-Cretaceous super plume, carbon dioxide, and global warming

    SciTech Connect

    Caldeira, K. ); Rampino, M.R. NASA Goddard Inst. for Space Studies, New York, NY )

    1991-06-01

    Carbon-dioxide releases associated with a mid-Cretaceous super plume and the emplacement of the Ontong-Java Plateau have been suggested as a principal cause of the mid-Cretaceous global warming. The authors developed a carbonate-silicate cycle model to quantify the possible climatic effects of these CO{sub 2} releases, utilizing four different formulations for the rate of silicate-rock weathering as a function of atmospheric CO{sub 2}. They find that CO{sub 2} emissions resulting from super-plume tectonics could have produced atmospheric CO{sub 2} levels from 3.7 to 14.7 times the modern pre-industrial value of 285 ppm. Based on the temperature sensitivity to CO{sub 2} increases used in the weathering-rate formulations, this would cause a global warming of from 2.8 to 7.7C over today's global mean temperature. Altered continental positions and higher sea level may have been contributed about 4.8C to mid-Cretaceous warming. Thus, the combined effects of paleogeographic changes and super-plume related CO{sub 2} emissions could be in the range of 7.6 to 12.5C, within the 6 to 14C range previously estimated for mid-Cretaceous warming. CO{sub 2} releases from oceanic plateaus alone are unlikely to have been directly responsible for more than 20% of the mid-Cretaceous increase in atmospheric CO{sub 2}.

  8. The first definitive Asian spinosaurid (Dinosauria: Theropoda) from the early cretaceous of Laos

    NASA Astrophysics Data System (ADS)

    Allain, Ronan; Xaisanavong, Tiengkham; Richir, Philippe; Khentavong, Bounsou

    2012-05-01

    Spinosaurids are among the largest and most specialized carnivorous dinosaurs. The morphology of their crocodile-like skull, stomach contents, and oxygen isotopic composition of the bones suggest they had a predominantly piscivorous diet. Even if close relationships between spinosaurids and Middle Jurassic megalosaurs seem well established, very little is known about the transition from a generalized large basal tetanuran to the specialized morphology of spinosaurids. Spinosaurid remains were previously known from the Early to Late Cretaceous of North Africa, Europe, and South America. Here, we report the discovery of a new spinosaurid theropod from the late Early Cretaceous Savannakhet Basin in Laos, which is distinguished by an autapomorphic sinusoidal dorsosacral sail. This new taxon, Ichthyovenator laosensis gen. et sp. nov., includes well-preserved and partially articulated postcranial remains. Although possible spinosaurid teeth have been reported from various Early Cretaceous localities in Asia, the new taxon I. laosensis is the first definite record of Spinosauridae from Asia. Cladistic analysis identifies Ichthyovenator as a member of the sub-clade Baryonychinae and suggests a widespread distribution of this clade at the end of the Early Cretaceous. Chilantaisaurus tashouikensis from the Cretaceous of Inner Mongolia, and an ungual phalanx from the Upper Jurassic of Colorado are also referred to spinosaurids, extending both the stratigraphical and geographical range of this clade.

  9. Cretaceous-Tertiary structural evolution of the north central Lhasa terrane, Tibet

    NASA Astrophysics Data System (ADS)

    Volkmer, John E.; Kapp, Paul; Guynn, Jerome H.; Lai, Qingzhou

    2007-12-01

    In the north central Lhasa terrane of Tibet, two distinct structural levels of an east-west striking thrust system are exposed along the north trending late Cenozoic Xiagangjiang rift. Upper Paleozoic strata deformed by the south directed Langgadong La thrust, and Cretaceous strata involved in variably north and south directed thrusting characterize these lower and upper structural levels, respectively. These two structural levels are separated by the Tagua Ri passive roof thrust. Balanced cross section restoration suggests that the thrust system accommodated ˜103 km (˜53%) shortening. The 40Ar/39Ar results, together with an interpretation of synthrust deposition of Upper Cretaceous strata, suggest that the majority of shortening occurred during the Late Cretaceous-Paleocene. Cretaceous strata lie unconformable on Permian rocks; volcanic tuffs directly above the unconformity yield U-Pb zircon ages of ˜131 Ma. Upper Cretaceous strata record a change from shallow marine to nonmarine deposition, indicating uplift above sea level during this time. The overall south directed vergence of the thrust belt is consistent with substantial crustal thickening in central Tibet by large-scale northward underthrusting of Lhasa terrane basement beneath the Qiantang terrane prior to the Indo-Asian collision. The documented decoupling of contractional deformation at shallow crustal levels appears to be a regional characteristic of Tibet from at least the Bangong suture in the north to the Tethyan Himalaya to the south. This style of deformation explains the absence of basement exposures and major denudation in this region despite substantial crustal shortening.

  10. On the evolutionary history of Ephedra: Cretaceous fossils and extant molecules

    PubMed Central

    Rydin, Catarina; Pedersen, Kaj Raunsgaard; Friis, Else Marie

    2004-01-01

    Gnetales comprise three unusual genera of seed plants, Ephedra, Gnetum, and Welwitschia. Their extraordinary morphological diversity suggests that they are survivors of an ancient, more diverse group. Gnetalean antiquity is also supported by fossil data. Dispersed “ephedroid” (polyplicate) pollen first appeared in the Permian >250 million years ago (Myr), and a few megafossils document the presence of gnetalean features in the early Cretaceous. The Cretaceous welwitschioid seedling Cratonia cotyledon dates the split between Gnetum and Welwitschia to before 110 Myr. Ages and character evolution of modern diversity are, however, controversial, and, based on molecular data, it has recently been suggested that Ephedra is very young, only 8–32 Myr. Here, we present data on the evolutionary history of Ephedra. Fossil seeds from Buarcos, Portugal, unequivocally link one type of Cretaceous polyplicate pollen to Ephedra and document that plants with unique characters, including the peculiar naked male gametophyte, were established already in the Early Cretaceous. Clades in our molecular phylogeny of extant species correspond to geographical regions, with African species in a basal grade/clade. The study demonstrates extremely low divergence in both molecular and morphological characters in Ephedra. Features observed in the fossils are present in all major extant clades, showing that modern species have retained unique reproductive characters for >110 million years. A recent origin of modern species of Ephedra would imply that the Cretaceous Ephedra fossils discussed here were members of widespread, now extinct sister lineage(s), and that no morphological innovations characterized the second diversification. PMID:15545612

  11. The mid-Cretaceous super plume, carbon dioxide, and global warming.

    PubMed

    Caldeira, K; Rampino, M R

    1991-06-01

    Carbon-dioxide releases associated with a mid-Cretaceous super plume and the emplacement of the Ontong-Java Plateau have been suggested as a principal cause of the mid-Cretaceous global warming. We developed a carbonate-silicate cycle model to quantify the possible climatic effects of these CO2 releases, utilizing four different formulations for the rate of silicate-rock weathering as a function of atmospheric CO2. We find that CO2 emissions resulting from super-plume tectonics could have produced atmospheric CO2 levels from 3.7 to 14.7 times the modern pre-industrial value of 285 ppm. Based on the temperature sensitivity to CO2 increases used in the weathering-rate formulations, this would cause a global warming of from 2.8 to 7.7 degrees C over today's global mean temperature. Altered continental positions and higher sea level may have been contributed about 4.8 degrees C to mid-Cretaceous warming. Thus, the combined effects of paleogeographic changes and super-plume related CO2 emissions could be in the range of 7.6 to 12.5 degrees C, within the 6 to 14 degrees C range previously estimated for mid-Cretaceous warming. CO2 releases from oceanic plateaus alone are unlikely to have been directly responsible for more than 20% of the mid-Cretaceous increase in atmospheric CO2.

  12. Macrofossil extinction patterns at Bay of Biscay Cretaceous-Tertiary boundary sections

    NASA Technical Reports Server (NTRS)

    Ward, Peter D.; Macleod, Kenneth

    1988-01-01

    Researchers examined several K-T boundary cores at Deep Sea Drilling Project (DSDP) core repositories to document biostratigraphic ranges of inoceramid shell fragments and prisms. As in land-based sections, prisms in the deep sea cores disappear well before the K-T boundary. Ammonites show a very different extinction pattern than do the inoceramids. A minimum of seven ammonite species have been collected from the last meter of Cretaceous strata in the Bay of Biscay basin. In three of the sections there is no marked drop in either species numbers or abundance prior to the K-T boundary Cretaceous strata; at the Zumaya section, however, both species richness and abundance drop in the last 20 m of the Cretaceous, with only a single ammonite specimen recovered to date from the uppermost 12 m of Cretaceous strata in this section. Researchers conclude that inoceramid bivalves and ammonites showed two different times and patterns of extinction, at least in the Bay of Biscay region. The inoceramids disappeared gradually during the Early Maestrichtian, and survived only into the earliest Late Maestrichtian. Ammonites, on the other hand, maintained relatively high species richness throughout the Maestrichtian, and then disappeared suddenly, either coincident with, or immediately before the microfossil extinction event marking the very end of the Cretaceous.

  13. From nappe stacking to exhumation: Cretaceous tectonics in the Apuseni Mountains (Romania)

    NASA Astrophysics Data System (ADS)

    Reiser, Martin Kaspar; Schuster, Ralf; Spikings, Richard; Tropper, Peter; Fügenschuh, Bernhard

    2016-05-01

    New Ar-Ar muscovite and Rb-Sr biotite age data in combination with structural analyses from the Apuseni Mountains provide new constraints on the timing and kinematics of deformation during the Cretaceous. Time-temperature paths from the structurally highest basement nappe of the Apuseni Mountains in combination with sedimentary data indicate exhumation and a position close to the surface after the Late Jurassic emplacement of the South Apuseni Ophiolites. Early Cretaceous Ar-Ar muscovite ages from structurally lower parts in the Biharia Nappe System (Dacia Mega-Unit) show cooling from medium-grade conditions. NE-SW-trending stretching lineation and associated kinematic indicators of this deformation phase (D1) are overprinted by top-NW-directed thrusting during D2. An Albian to Turonian age (110-90 Ma) is proposed for the main deformation (D2) that formed the present-day geometry of the nappe stack and led to a pervasive retrograde greenschist-facies overprint. Thermochronological and structural data from the Bihor Unit (Tisza Mega-Unit) allowed to establish E-directed differential exhumation during Early-Late Cretaceous times (D3.1). Brittle detachment faulting (D3.2) and the deposition of syn-extensional sediments indicate general uplift and partial surface exposure during the Late Cretaceous. Brittle conditions persist during the latest Cretaceous compressional overprint (D4).

  14. Diagenetic processes in cretaceous sandstones from occidental Brazilian Equatorial Margin

    NASA Astrophysics Data System (ADS)

    Schrank, A. B. S.; De Ros, L. F.

    2015-11-01

    Despite a great interest in Brazilian Equatorial Margin exploration, very little was published on the diagenesis of sandstones from that area. A wide recognition petrographic study was performed to identify the major diagenetic processes that impacted the porosity of Lower Cretaceous sandstones of the Pará-Maranhão, São Luís, Bragança-Viseu and Barreirinhas basins. Arkoses from the Pará-Maranhão Basin show neoformed or infiltrated clay coatings, mica replacement and expansion by kaolinite and vermiculite, and precipitation of grain-replacive and pore-filling quartz, kaolinite, albite, chlorite, calcite, dolomite, siderite, pyrite and titanium oxides. Compaction, quartz and calcite cementation were the main porosity-reducing processes. Barreirinhas Basin lithic arkoses and subarkoses display clay coatings, compaction of metamorphic fragments into pseudomatrix, and precipitation of grain-replacive and pore-filling kaolinite, quartz, albite, chlorite, calcite, dolomite, TiO2 and pyrite. The main porosity-reducing processes were calcite cementation in the subarkoses, and compaction and quartz cementation in lithic arkoses. Quartzarenites from this basin were early- and pervasively cemented by dolomite. Arkoses and lithic arkoses of the São Luís and Bragança-Viseu basins show clay coatings, pseudomatrix from mud intraclasts compaction, and precipitation of pore-filling and grain-replacive kaolinite, vermiculite, smectite, quartz, albite, chlorite, illite, calcite, dolomite, hematite, TiO2 and pyrite. Compaction of mud intraclasts and dissolution of feldspars and heavy minerals were the main porosity-modification processes. These preliminary results may contribute to the understanding of the spatial and temporal distribution of the diagenetic processes and their impacts on the porosity of the sandstones from these basins.

  15. The global Cretaceous-Tertiary fire: Biomass or fossil carbon

    NASA Technical Reports Server (NTRS)

    Gilmour, Iain; Guenther, Frank

    1988-01-01

    The global soot layer at the K-T boundary indicates a major fire triggered by meteorite impact. However, it is not clear whether the principal fuel was biomass or fossil carbon. Forests are favored by delta value of C-13, which is close to the average for trees, but the total amount of elemental C is approximately 10 percent of the present living carbon, and thus requires very efficient conversion to soot. The PAH was analyzed at Woodside Creek, in the hope of finding a diagnostic molecular marker. A promising candidate is 1-methyl-7-isopropyl phenanthrene (retene,), which is probably derived by low temperature degradation of abietic acid. Unlike other PAH that form by pyrosynthesis at higher temperatures, retene has retained the characteristic side chains of its parent molecule. A total of 11 PAH compounds were identified in the boundary clay. Retene is present in substantial abundance. The identification was confirmed by analysis of a retene standard. Retene is characteristic of the combustion of resinous higher plants. Its formation depends on both temperature and oxygen access, and is apparently highest in oxygen-poor fires. Such fires would also produce soot more efficiently which may explain the high soot abundance. The relatively high level of coronene is not typical of a wood combustion source, however, though it can be produced during high temperature pyrolysis of methane, and presumably other H, C-containing materials. This would require large, hot, low O2 zones, which may occur only in very large fires. The presence of retene indicates that biomass was a significant fuel source for the soot at the Cretaceous-Tertiary boundary. The total amount of elemental C produced requires a greater than 3 percent soot yield, which is higher than typically observed for wildfires. However, retene and presumably coronene imply limited access of O2 and hence high soot yield.

  16. Molybdenum drawdown during Cretaceous Oceanic Anoxic Event 2

    NASA Astrophysics Data System (ADS)

    Goldberg, Tatiana; Poulton, Simon W.; Wagner, Thomas; Kolonic, Sadat F.; Rehkämper, Mark

    2016-04-01

    During the Cretaceous greenhouse, episodes of widespread ocean deoxygenation were associated with globally occurring events of black shale deposition. Possibly the most pronounced of these oceanic anoxic events (OAE's) was the Cenomanian-Turonian OAE2 (∼94 Ma). However, although certain redox sensitive trace metals tend to be preferentially sequestered in sediments deposited under anoxic conditions, with Mo drawdown being specifically prone to euxinic settings, these elements are generally somewhat depleted in sediments deposited during OAE2. To understand the driving factors responsible for this depleted trace metal drawdown, we have studied a low latitude section from the proto-North Atlantic Ocean (Tarfaya S57), where existing biomarker and iron-sulphur data point to a dominantly euxinic water column, with periodic transitions to ferruginous (Fe-rich) water column conditions. We utilise a variety of redox proxies (Fe-speciation, redox sensitive trace metals and Mo isotopes), which, in combination, allows us to evaluate the detailed nature of ocean redox conditions and hence controls on trace metal drawdown. The results suggest that seawater δ98Mo values may have ranged between ∼0.6 and 1.1‰ during OAE2, likely connected to changes in the local Mo reservoir as a consequence of low and probably heterogeneous concentrations of Mo in the ocean. The very low Mo/TOC ratios at Tarfaya and elsewhere in the proto-North Atlantic may support a model in which deep-water circulation was partially restricted within and between the North Atlantic and other ocean basins. We propose that the combination of a low and possibly heterogeneous δ98Mo of seawater Mo, together with low Mo/TOC ratios, points to a large decrease in the global oceanic Mo reservoir during OAE2, reflecting a major global scale increase in Mo drawdown under persistent euxinic conditions.

  17. Reidentification of Avian Embryonic Remains from the Cretaceous of Mongolia

    PubMed Central

    Varricchio, David J.; Balanoff, Amy M.; Norell, Mark A.

    2015-01-01

    Embryonic remains within a small (4.75 by 2.23 cm) egg from the Late Cretaceous, Mongolia are here re-described. High-resolution X-ray computed tomography (HRCT) was used to digitally prepare and describe the enclosed embryonic bones. The egg, IGM (Mongolian Institute for Geology, Ulaanbaatar) 100/2010, with a three-part shell microstructure, was originally assigned to Neoceratopsia implying extensive homoplasy among eggshell characters across Dinosauria. Re-examination finds the forelimb significantly longer than the hindlimbs, proportions suggesting an avian identification. Additional, postcranial apomorphies (strut-like coracoid, cranially located humeral condyles, olecranon fossa, slender radius relative to the ulna, trochanteric crest on the femur, and ulna longer than the humerus) identify the embryo as avian. Presence of a dorsal coracoid fossa and a craniocaudally compressed distal humerus with a strongly angled distal margin support a diagnosis of IGM 100/2010 as an enantiornithine. Re-identification eliminates the implied homoplasy of this tri-laminate eggshell structure, and instead associates enantiornithine birds with eggshell microstructure composed of a mammillary, squamatic, and external zones. Posture of the embryo follows that of other theropods with fore- and hindlimbs folded parallel to the vertebral column and the elbow pointing caudally just dorsal to the knees. The size of the egg and embryo of IGM 100/2010 is similar to the two other Mongolian enantiornithine eggs. Well-ossified skeletons, as in this specimen, characterize all known enantiornithine embryos suggesting precocial hatchlings, comparing closely to late stage embryos of modern precocial birds that are both flight- and run-capable upon hatching. Extensive ossification in enantiornithine embryos may contribute to their relatively abundant representation in the fossil record. Neoceratopsian eggs remain unrecognized in the fossil record. PMID:26030147

  18. Late Cretaceous Breakup of the Pacific Margin of Southern Mexico

    NASA Astrophysics Data System (ADS)

    Guerrero-Garcia, J. C.; Herrero-Bervera, E.

    2006-12-01

    As geological, geophysical and geochemical evidence keeps accumulating over the years, there seems to be a growing general acceptance that the Chortis block (nuclear Central America) occupied a position further to the NW along the present-day margin of southwestern Mexico, sometime between Early Jurassic and Neogene time. The controversy resides no longer in the sense of motion along the coast but on the timing of events and in the latitude that the Chortis block occupied at the time of detachment. Previous studies mainly confined to the northern margin of the Chortis block, confirmed a left-lateral displacement of 130 km in Neogene time. Further studies made northwestward along the Mexican coast provided a better understanding of magmatic and metamorphic processes in the area, and suggested times of detachment increased to 30 Ma (Wadge and Burke, 1983), 40 Ma (Schaaf and others, 1995), and 66 Ma (Herrmann and others, 1994). The pre- detachment westernmost position of the block has changed, depending on the model chosen, from Puerto Vallarta and beyond, to the current position. We contend that several indicators, namely: (1) the truncated nature of the Pacific coast of SW Mexico; (2) the genesis of the Kula-Farallon ridge at 85 Ma; (3) the 2,600 km of northward transport of Baja British Columbia from the present-day latitude of the Baja California Peninsula, beginning at 85 Ma; (4) the paleomagnetic counterclockwise rotations of areas both in the Chortis block and along the Mexican coast, during Late Cretaceous-Paleogene time, and (5) the systematic NW-SE decrease of radiometric dates beginning at 85 Ma in Puerto Vallarta, point to this time and region for the onset of strike- slip drifting of the Chortis block toward its current position.

  19. Secondarily flightless birds or Cretaceous non-avian theropods?

    PubMed

    Kavanau, J Lee

    2010-02-01

    Recent studies by Varricchio et al. reveal that males cared for the eggs of troodontids and oviraptorids, so-called "non-avian theropods" of the Cretaceous, just as do those of most Paleognathic birds (ratites and tinamous) today. Further, the clutches of both groups have large relative volumes, and consist of many eggs of relatively large size. By comparison, clutch care by most extant birds is biparental and the clutches are of small relative volume, and consist of but few small eggs. Varricchio et al. propose that troodontids and oviraptorids were pre-avian and that paternal egg care preceded the origin of birds. On the contrary, unmentioned by them is that abundant paleontological evidence has led several workers to conclude that troodontids and oviraptorids were secondary flightless birds. This evidence ranges from bird-like bodies and bone designs, adapted for climbing, perching, gliding, and ultimately flight, to relatively large, highly developed brains, poor sense of smell, and their feeding habits. Because ratites also are secondarily flightless and tinamous are reluctant, clumsy fliers, the new evidence strengthens the view that troodontids and oviraptorids were secondarily flightless. Although secondary flightlessness apparently favors paternal care of clutches of large, abundant eggs, such care is not likely to have been primitive. There are a suite of previously unknown independent findings that point to the evolution of, first, maternal, followed by biparental egg care in earliest ancestors of birds. This follows from the discovery of remarkable relict avian reproductive behaviors preserved by virtue of the highly conservative nature of vertebrate brain evolution. These behaviors can be elicited readily by exposing breeding birds to appropriate conditions, both environmental and with respect to their eggs and chicks. They give significant new clues for a coherent theory of avian origin and early evolution. PMID:19800747

  20. Morphological Analysis of Cretaceous-Paleogene Boundary Foraminiferal Taxa

    NASA Astrophysics Data System (ADS)

    Mikenas, M.; Hull, P. M.; Henehan, M. J.

    2014-12-01

    66 million years ago at the end of the Cretaceous period, an asteroid impact in the Gulf of Mexico triggered the sudden extinction of an estimated 50% of marine invertebrate species. The event profoundly affected planktonic foraminifera, marine protists with an excellent fossil records in open marine sediments. The mass extinction and expansive fossil record of foraminifera creates the opportunity for detailed studies of the way species and ecosystems evolve and respond to environmental changes. Community level research is, however, relatively rare compared to geochemical paleoceanographic approaches. This is due, in part, to the fact that community level data collection is labor intensive and only partially records all aspects of the biological response. Here, I use a new approach to quantify community change with a computer-controlled microscope able to take high-resolution images of thousands of foraminifera at a time. Analytical software is used to classify populations by morphology, and this data is compared with traditional assemblage counts from multiple oceanic core sites from the late Maastrichtian to the early Danian. Previous studies have suggested that certain phenotypic characteristics are related to ecological niches -here, the direct measurement of shape of large populations of foraminifera is used to research the possible correlation between the K-Pg boundary events and community structure. Continued study of morphological data can be used to investigate the evolution of foraminiferal phenotypes, the connection between shape and ecological behavior, and the changes they exhibit in response to both sudden and long term changes in climate such as occurred near the K/Pg boundary. The image database of Maastrichtian and early Danian foraminifera will be made available to the scientific community, enabling inter-lab and cross-site comparisons.

  1. Cathodoluminescence of shocked quartz at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Owen, Michael R.; Anders, Mark H.

    1988-01-01

    Empirical studies have documented an association between rock type and the cathodoluminescence color of constituent quartz grains. Quartz from extrusive igneous sources luminesces uniform pale blue. Quartz from intrusive igneous and high-grade metamorphic rocks generally luminesces darker purple-blue, whereas quartz recrystallized under low-grade metamorphic conditions luminesces reddish-brown. Quartz grains in most sandstones luminesce a heterogeneous mixture of these colors because the grains were derived from a variety of ultimate source rocks. If shocked quartz found at the Cretaceous-Tertiary (K-T) boundary is volcanic in origin, its cathodoluminescence should be predominantly pale blue. Alternatively, quartz grains derived from bolide impact upon, and ejection of, mixed igneous, metamorphic, and sedimentary rocks should luminesce a variety of colors. Grain mounts of sand collected at the K-T boundary horizon from the Clear Creek North site in the Raton Basin, Colorado were examined. Shocked quartz luminesced a variety of colors and very few grains luminesced the pale blue color that is typical of volcanic quartz. It was concluded that the shocked quartz was derived from a petrologically diverse source region without substantial volcanic contribution. Most shocked grains apparently were derived from low-grade metamorphic rocks, with a slightly smaller contribution from high-grade metamorphic and intrusive igneous rocks. Rare quartz grains with brown-luminescing rims reflect a minor addition from detrital sedimentary sources. The apparent relative abundances of intrusive (and rare extrusive) igneous, metamorphic, and sedimentary ultimate source rocks suggested by CL colors of shock-deformed quartz at the K-T boundary is consistent with a crustal/supracrustal origin for the grains.

  2. Model Calculations of Ocean Acidification at the End Cretaceous

    NASA Astrophysics Data System (ADS)

    Tyrrell, T.; Merico, A.; Armstrong McKay, D. I.

    2014-12-01

    Most episodes of ocean acidification (OA) in Earth's past were either too slow or too minor to provide useful lessons for understanding the present. The end-Cretaceous event (66 Mya) is special in this sense, both because of its rapid onset and also because many calcifying species (including 100% of ammonites and >95% of calcareous nannoplankton and planktonic foraminifera) went extinct at this time. We used box models of the ocean carbon cycle to evaluate whether impact-generated OA could feasibly have been responsible for the calcifier mass extinctions. We simulated several proposed consequences of the asteroid impact: (1) vaporisation of gypsum (CaSO4) and carbonate (CaCO3) rocks at the point of impact, producing sulphuric acid and CO2 respectively; (2) generation of NOx by the impact pressure wave and other sources, producing nitric acid; (3) release of CO2 from wildfires, biomass decay and disinterring of fossil organic carbon and hydrocarbons; and (4) ocean stirring leading to introduction into the surface layer of deep water with elevated CO2. We simulated additions over: (A) a few years (e-folding time of 6 months), and also (B) a few days (e-folding time of 10 hours) for SO4 and NOx, as recently proposed by Ohno et al (2014. Nature Geoscience, 7:279-282). Sulphuric acid as a consequence of gypsum vaporisation was found to be the most important acidifying process. Results will also be presented of the amounts of SO4 required to make the surface ocean become extremely undersaturated (Ωcalcite<0.5) for different e-folding times and combinations of processes. These will be compared to estimates in the literature of how much SO4 was actually released.

  3. Quantitative petrographic analysis of Cretaceous sandstones from southwest Montana

    SciTech Connect

    Dyman, T.S. Krystinik, K.B.; Takahashi, K.I.

    1986-05-01

    The Albian Blackleaf Formation and the Cenomanian lower Frontier Formation in southwest Montana lie within or east of the fold and thrust belt in the Cretaceous foreland basin complex. Petrography of these strata record a complex interaction between source-area tectonism, basin subsidence, and sedimentation patterns associated with a cyclic sequence of transgressions and regressions. Because the petrographic data set was large (127 thin sections) and difficult to interpret subjectively, statistical techniques were used to establish sample and variable relationships. Theta-mode cluster and correspondence analysis were used to determine the contributing effect (total variance) of key framework grains. Monocrystalline quartz, plagioclase, potassium feldspar, and sandstone-, limestone-, and volcanic-lithic grain content contribute most to the variation in the framework-grain population. Theta-mode cluster and correspondence analysis were used to identify six petrofacies. Lower Blackleaf petrofacies (I-III) contain abundant monocrystalline quartz (55-90%) and sedimentary lithic grains (10-50%), which are distributed throughout the study area. Petrofacies I-III are differentiated by variable monocrystalline quartz and sedimentary lithic grain content. Upper Blackleaf and lower Frontier petrofacies (IV-VI) exhibit highly variable, sedimentary and volcanic lithic ratios, and contain less monocrystalline quartz (20-50%) than lower Blackleaf petrofacies. Information from quantitative analyses combined with available paleocurrent data indicates that Blackleaf and lower Frontier detritus was derived from variable source areas through time. Lower Blackleaf detritus was derived from Precambrian through Paleozoic sedimentary terranes to the west, north, and east; whereas, upper Blackleaf and lower Frontier detritus was derived from both sedimentary and volcanic terranes to the south.

  4. SHRIMP U-Pb dating and geochemistry of the Cretaceous plutonic rocks in the Korean Peninsula: A new tectonic model of the Cretaceous Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Kim, Sung Won; Kwon, Sanghoon; Park, Seung-Ik; Lee, Changyeol; Cho, Deung-Lyong; Lee, Hong-Jin; Ko, Kyoungtae; Kim, Sook Ju

    2016-10-01

    The Cretaceous tectonomagmatism of the Korean Peninsula was examined based on geochemical and geochronological data of the Cretaceous plutonic rocks, along with distribution of volcano-sedimentary nonmarine N- to NE-trending fault bounded sedimentary basins. We conducted sensitive high-resolution ion microprobe (SHRIMP) zircon U-Pb ages and whole-rock geochemical compositions of 21 Cretaceous plutonic rocks, together with previously published data, from the central to southern Korean Peninsula. Four age groups of plutonic rocks were identified: Group I (ca. 119-106 Ma) in the northern to central area, Group II (ca. 99-87 Ma) in the central southern area, Group III (ca. 85-82 Ma) in the central to southern area, and Group IV (ca. 76-67 Ma) in the southernmost area. These results indicate a sporadic trenchward-younging trend of the Cretaceous magmatism in the Korean Peninsula. The Group I, II, and III rocks are dominated by high-K calc-alkaline I-type rocks with rift-related A-type granitoids. In contrast, the Group IV rocks are high-K calc-alkaline I-type plutonic rocks with no A-type rocks. The geochemical signatures of the entire groups indicated LREEs (light rare earth elements) enrichments and negative Nb, Ta, and Ti anomalies, indicating normal arc magmatism. A new tectonic model of the Cretaceous Korean Peninsula was proposed based on temporal and spatial distribution of the Cretaceous plutons represented by four age groups; 1) magmatic quiescence throughout the Korean Peninsula from ca. 160 to 120 Ma, 2) intrusions of the I- and A-type granitoids in the northern and central Korean Peninsula (Group I plutonic rocks from ca. 120 to 100 Ma) resulted from the partial melting of the lower continental crust due to the rollback of the Izanagi plate expressed as the conversion from flat-lying subduction to normal subduction. The Gyeongsang nonmarine sedimentary rift basin in the Korean Peninsula and adakite magmatism preserved in the present-day Japanese Islands

  5. Polar standstill of the mid-cretaceous pacific plate and its geodynamic implications.

    PubMed

    Tarduno, J A; Sager, W W

    1995-08-18

    Paleomagnetic data from the Mid-Cretaceous Mountains suggest that Pacific plate motion during the Early to mid-Cretaceous was slow, less than 0.3 degree per year, resembling the polar standstill observed in coeval rocks of Eurasia and North America. There is little evidence for a change in plate motion that could have precipitated the major volcanic episode of the early Aptian that is marked by the formation of the Ontong Java Plateau. During the volcanism, oceanic plates bordering the Pacific plate moved rapidly. Large-scale northward motion of the Pacific plate began after volcanism ceased. This pattern suggests that mantle plume volcanism exerted control on plate tectonics in the Cretaceous Pacific basin. PMID:17807731

  6. A diverse ant fauna from the mid-cretaceous of Myanmar (Hymenoptera: Formicidae).

    PubMed

    Barden, Phillip; Grimaldi, David

    2014-01-01

    A new collection of 24 wingless ant specimens from mid-Cretaceous Burmese amber (Albian-Cenomanian, 99 Ma) comprises nine new species belonging to the genus Sphecomyrmodes Engel and Grimaldi. Described taxa vary considerably with regard to total size, head and body proportion, cuticular sculpturing, and petiole structure while all species are unified by a distinct shared character. The assemblage represents the largest known diversification of closely related Cretaceous ants with respect to species number. These stem-group ants exhibit some characteristics previously known only from their extant counterparts along with presumed plesiomorphic morphology. Consequently, their morphology may inform hypotheses relating to basal relationships and general patterns of ant evolution. These and other uncovered Cretaceous species indicate that stem-group ants are not simply wasp-like, transitional formicids, but rather a group of considerable adaptive diversity, exhibiting innovations analogous to what crown-group ants would echo 100 million years later.

  7. A new dinosaur ichnotaxon from the Lower Cretaceous Patuxent Formation of Maryland and Virginia

    USGS Publications Warehouse

    Stanford, R.; Weems, R.E.; Lockley, M.G.

    2004-01-01

    In recent years, numerous dinosaur footprints have been discovered on bedding surfaces within the Lower Cretaceous Patuxent Formation of Maryland and Virginia. Among these, distinctive small tracks that display a combination of small manus with five digit impressions and a relatively much larger pes with four toe impressions evidently were made by animals belonging to the ornithischian family Hypsilophodontidae. These tracks differ from any ornithischian ichnotaxon previously described. We here name them Hypsiloichnus marylandicus and provide a description of their diagnostic characteristics. Although hypsilophodontid skeletal remains have not been found in the Patuxent, their skeletal remains are known from Lower Cretaceous strata of similar age in both western North America and Europe. Therefore, it is not surprising to find that an Early Cretaceous representative of this family also existed in eastern North America. ?? Taylor and Francis Ltd.

  8. The last polar dinosaurs: high diversity of latest Cretaceous arctic dinosaurs in Russia.

    PubMed

    Godefroit, Pascal; Golovneva, Lina; Shchepetov, Sergei; Garcia, Géraldine; Alekseev, Pavel

    2009-04-01

    A latest Cretaceous (68 to 65 million years ago) vertebrate microfossil assemblage discovered at Kakanaut in northeastern Russia reveals that dinosaurs were still highly diversified in Arctic regions just before the Cretaceous-Tertiary mass extinction event. Dinosaur eggshell fragments, belonging to hadrosaurids and non-avian theropods, indicate that at least several latest Cretaceous dinosaur taxa could reproduce in polar region and were probably year-round residents of high latitudes. Palaeobotanical data suggest that these polar dinosaurs lived in a temperate climate (mean annual temperature about 10 degrees C), but the climate was apparently too cold for amphibians and ectothermic reptiles. The high diversity of Late Maastrichtian dinosaurs in high latitudes, where ectotherms are absent, strongly questions hypotheses according to which dinosaur extinction was a result of temperature decline, caused or not by the Chicxulub impact.

  9. Polar standstill of the mid-cretaceous pacific plate and its geodynamic implications.

    PubMed

    Tarduno, J A; Sager, W W

    1995-08-18

    Paleomagnetic data from the Mid-Cretaceous Mountains suggest that Pacific plate motion during the Early to mid-Cretaceous was slow, less than 0.3 degree per year, resembling the polar standstill observed in coeval rocks of Eurasia and North America. There is little evidence for a change in plate motion that could have precipitated the major volcanic episode of the early Aptian that is marked by the formation of the Ontong Java Plateau. During the volcanism, oceanic plates bordering the Pacific plate moved rapidly. Large-scale northward motion of the Pacific plate began after volcanism ceased. This pattern suggests that mantle plume volcanism exerted control on plate tectonics in the Cretaceous Pacific basin.

  10. Avian evolution, Gondwana biogeography and the Cretaceous-Tertiary mass extinction event.

    PubMed Central

    Cracraft, J.

    2001-01-01

    The fossil record has been used to support the origin and radiation of modern birds (Neornithes) in Laurasia after the Cretaceous-Tertiary mass extinction event, whereas molecular clocks have suggested a Cretaceous origin for most avian orders. These alternative views of neornithine evolution are examined using an independent set of evidence, namely phylogenetic relationships and historical biogeography. Pylogenetic relationships of basal lineages of neornithines, including ratite birds and their allies (Palaleocognathae), galliforms and anseriforms (Galloanserae), as well as lineages of the more advanced Neoves (Gruiformes, (Capimulgiformes, Passeriformes and others) demonstrate pervasive trans-Antarctic distribution patterns. The temporal history of the neornithines can be inferred from fossil taxa and the ages of vicariance events, and along with their biogeographical patterns, leads to the conclusion that neornithines arose in Gondwana prior to the Cretaceous Tertiary extinction event. PMID:11296857

  11. High-paleolatitude late cretaceous paleotemperatures: New data from James Ross Island, Antarctica

    SciTech Connect

    Pirrie, D. ); Marshall, J.D. )

    1990-01-01

    Oxygen-isotope analysis of well-preserved macrofossils from the Santonian-Campanian of James Ross Island and the Maastrichtian of Vega Island, Antarctica, indicates that cool high-paleolatitude temperatures prevailed during the Late Cretaceous and suggests that cooling occurred between the Santonian-Campanian and the Maastrichtian. Although more than 50% of the material showed diagenetic alteration, 52 unaltered aragonite and calcite samples were analyzed. Mean {delta}{sup 18}O and calculated paleotemperature values were {minus}0.23{per thousand} and 13.6 C, respectively, for the Santonian-Campanian, and 0.66{per thousand} and 11.7 C, respectively, for the Masstrichtian. In conjunction with recent Late Cretaceous paleoclimatic data from high northern paleolatitudes, these data indicate the presence of cool polar regions with broad climatic zonation during the late Cretaceous. This may have partly controlled faunal distributions.

  12. New evidence on deinonychosaurian dinosaurs from the Late Cretaceous of Patagonia.

    PubMed

    Novas, Fernando E; Pol, Diego

    2005-02-24

    Most of what is known about the evolution of deinonychosaurs (that is, the group of theropods most closely related to birds) is based on discoveries from North America and Asia. Except for Unenlagia comahuensis and some fragmentary remains from northern Africa, no other evidence was available on deinonychosaurian diversity in Gondwana. Here we report a new, Late Cretaceous member of the clade, Neuquenraptor argentinus gen. et sp. nov., representing uncontroversial evidence of a deinonychosaurian theropod in the Southern Hemisphere. The new discovery demonstrates that Cretaceous theropod faunas from the southern continents shared greater similarity with those of the northern landmasses than previously thought. Available evidence suggests that deinonychosaurians were probably distributed worldwide at least by the beginning of the Cretaceous period. The phylogenetic position of the new deinonychosaur, as well as other Patagonian coelurosaurian theropods, is compatible with a vicariance model of diversification for some groups of Gondwanan and Laurasian dinosaurs.

  13. Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae.

    PubMed

    Prasad, V; Strömberg, C A E; Leaché, A D; Samant, B; Patnaik, R; Tang, L; Mohabey, D M; Ge, S; Sahni, A

    2011-09-20

    Rice and its relatives are a focal point in agricultural and evolutionary science, but a paucity of fossils has obscured their deep-time history. Previously described cuticles with silica bodies (phytoliths) from the Late Cretaceous period (67-65 Ma) of India indicate that, by the latest Cretaceous, the grass family (Poaceae) consisted of members of the modern subclades PACMAD (Panicoideae-Aristidoideae-Chloridoideae-Micrairoideae-Arundinoideae-Danthonioideae) and BEP (Bambusoideae-Ehrhartoideae-Pooideae), including a taxon with proposed affinities to Ehrhartoideae. Here we describe additional fossils and show that, based on phylogenetic analyses that combine molecular genetic data and epidermal and phytolith features across Poaceae, these can be assigned to the rice tribe, Oryzeae, of grass subfamily Ehrhartoideae. The new Oryzeae fossils suggest substantial diversification within Ehrhartoideae by the Late Cretaceous, pushing back the time of origin of Poaceae as a whole. These results, therefore, necessitate a re-evaluation of current models for grass evolution and palaeobiogeography.

  14. Sequential stratigraphy of Jurassic and Cretaceous in the central Saudi Arabian platform

    SciTech Connect

    Le Nindre, Y.M.; Manivit, J.; Vaslet, D. ); Manivit, H. Univ. Pierre et Marie Curie, Paris )

    1991-08-01

    Depositional sequences and system tracts in the Jurassic and Cretaceous sedimentary rocks of the Central Saudi Arabian platform have been established on the basis of precise lithofacies analysis, detailed sedimentologic interpretation, and accurate age determination by ammonites, nautoli, brachipods, echinoids, and nannoflora. A eustatic depositional model integrated with accepted worldwide sequential stratigraphic data is proposed, and appears to correlate fairly well with the 1988 global sea level chart by Haq and others, particularly for the Lower and Middle Jurassic and the Middle and Upper Cretaceous. Ages determined by accurate biostratigraphic data enable time correlations to be made with third-order eustatic cycles from Vail's 1988 global chart. Eustatic changes therefore appear to be the main factors of sedimentary control during the Jurassic and Cretaceous on the Arabian platform.

  15. Calibration of the geologic time scale: Cenozoic and Late Cretaceous glauconite and nonglauconite dates compared

    SciTech Connect

    Craig, L.E.; Smith, A.G. ); Armstrong, R.L. )

    1989-09-01

    Revision of the 1982 time scale of Harland et al. has led to the compilation of 377 isotopic dates for calibration of the Cenozoic to Cretaceous time interval. The results show that the ages of stage boundaries based on glauconite dates are on average about 2 m.y. younger than those based on nonglauconite dates, but for many Cenozoic and Late Cretaceous stages the differences are too small to require special consideration of glauconite dates. Future work may reveal an irreducible systematic difference between glauconite and nonglauconite time scales, but the progress made so far in recognizing those glauconites likely to yield reliable dates for the Cenozoic to Late Cretaceous interval may continue to provide useful time-scale calibration points.

  16. Morphological features of Triassic and Late Cretaceous high-latitude radiolarian assemblages (comparative analysis)

    NASA Astrophysics Data System (ADS)

    Bragin, Nikita; Bragina, Liubov

    2010-05-01

    High-latitude radiolarian assemblages of Mesozoic represent particular interest for Boreal-Tethyan correlation of Mesozoic as well as for their paleobiogeography. Radiolarians are the only planktonic protists that present both in low- and high-latitude Mesozoic sections, therefore they have high importance. The aim of this work is to distinguish common and different features of Triassic and Late Cretaceous high-latitude assemblages of Radiolaria during their comparative analysis. We use material from Triassic of Omolon Massif (NE Siberia) (Bragin, Egorov, 2001) and Kotel'nyi Island (Arctic) (Bragin, Bragina, 2009; Bragin, in press) and Late Cretaceous of Western Siberia (Amon, 2000) and Kamchatka Peninsula (Vishnevskaya, 2005; Bragina, 1991). The main trends of radiolarian assemblages from these sections are: quantitative domination of some taxa, presence of characteristic high-latitude taxa that are absent or very rare in low-latitude regions, and relatively low taxonomic diversity with absence of many high taxa and many morphotypes. We made following conclusions after comparative analysis: 1. Triassic assemblages are dominated by morphotypes with bipolar main spines (Pseudostylosphaera and similar forms), and by pylomate forms (Glomeropyle). Genus Glomeropyle has bipolar distribution pattern and it is typically high-latitude taxon. Late Cretaceous assemblages are dominated by forms with bipolar three-bladed main spines (Amphisphaera, Protoxiphotractus, Stylosphaera), by prunoid morphotypes (Amphibrachium, Prunobrachium), discoid spongy forms (Orbiculiforma, Spongodiscus) by three-rayed (Paronaella, Spongotripus), four-rayed (Crucella, Histiastrum) and multirayed stauraxon forms (Pentinastrum, Multastrum). Pylomate forms (Spongopyle) are present in the Late Cretaceous high-latitude assemblages but not so common. 2. Spherical forms with spines that possess apophyses (Kahlerosphaera, Dumitricasphaera) are common for Triassic high-latitude areas, but not present in

  17. Stratigraphic correlation of the Late Cretaceous Simsima Formation United Arab Emirates and Akveren Formation, northwest Turkey

    NASA Astrophysics Data System (ADS)

    Abdelghany, O.; Abu Saima, M.; Ramazanoglu, S.; Arman, H.

    2015-11-01

    Latest Cretaceous (Campanian-Maastrichtian) microfossils are used to correlate the carbonate rocks of the Simsima Formation in the northeastern part of the Arabian Peninsula (Northern Oman Mountains, United Arab Emirates and Oman) with the Akveren Formation in Kandira (northwest Turkey, near Black Sea region). Both formations have characteristically rich planktonic foraminiferal and calcareous nannofossil faunal assemblages that permit the recognition of the Globotruncanella havanensis Zone and Quadrum sissinghii Zone CC22. The palaeontological data is used to build an appropriate palaeoenvironmental model for the latest Cretaceous Aruma Group in the Oman Mountains foreland basin. The study reveals that the Late Cretaceous formations of UAE and Turkey can be divided into an open marine carbonate shelf facies (planktonic foraminifera/calcareous nannofossil biomicrite) and a shallow-marine carbonate facies (rudistids, coralline algal foraminiferal biomicrite).

  18. A new Early Cretaceous eutherian mammal from the Sasayama Group, Hyogo, Japan

    PubMed Central

    Kusuhashi, Nao; Tsutsumi, Yukiyasu; Saegusa, Haruo; Horie, Kenji; Ikeda, Tadahiro; Yokoyama, Kazumi; Shiraishi, Kazuyuki

    2013-01-01

    We here describe a new Early Cretaceous (early Albian) eutherian mammal, Sasayamamylos kawaii gen. et sp. nov., from the ‘Lower Formation’ of the Sasayama Group, Hyogo Prefecture, Japan. Sasayamamylos kawaii is characterized by a robust dentary, a distinct angle on the ventral margin of the dentary at the posterior end of the mandibular symphysis, a lower dental formula of 3–4 : 1 : 4 : 3, a robust lower canine, a non-molariform lower ultimate premolar, and a secondarily reduced entoconid on the molars. To date, S. kawaii is the earliest known eutherian mammal possessing only four premolars, which demonstrates that the reduction in the premolar count in eutherians started in the late Early Cretaceous. The occurrence of S. kawaii implies that the relatively rapid diversification of eutherians in the mid-Cretaceous had already started by the early Albian. PMID:23536594

  19. Macrofossil evidence for a rapid and severe Cretaceous-Paleogene mass extinction in Antarctica

    NASA Astrophysics Data System (ADS)

    Witts, James D.; Whittle, Rowan J.; Wignall, Paul B.; Crame, J. Alistair; Francis, Jane E.; Newton, Robert J.; Bowman, Vanessa C.

    2016-05-01

    Debate continues about the nature of the Cretaceous-Paleogene (K-Pg) mass extinction event. An abrupt crisis triggered by a bolide impact contrasts with ideas of a more gradual extinction involving flood volcanism or climatic changes. Evidence from high latitudes has also been used to suggest that the severity of the extinction decreased from low latitudes towards the poles. Here we present a record of the K-Pg extinction based on extensive assemblages of marine macrofossils (primarily new data from benthic molluscs) from a highly expanded Cretaceous-Paleogene succession: the López de Bertodano Formation of Seymour Island, Antarctica. We show that the extinction was rapid and severe in Antarctica, with no significant biotic decline during the latest Cretaceous, contrary to previous studies. These data are consistent with a catastrophic driver for the extinction, such as bolide impact, rather than a significant contribution from Deccan Traps volcanism during the late Maastrichtian.

  20. Mass extinction of lizards and snakes at the Cretaceous-Paleogene boundary.

    PubMed

    Longrich, Nicholas R; Bhullar, Bhart-Anjan S; Gauthier, Jacques A

    2012-12-26

    The Cretaceous-Paleogene (K-Pg) boundary is marked by a major mass extinction, yet this event is thought to have had little effect on the diversity of lizards and snakes (Squamata). A revision of fossil squamates from the Maastrichtian and Paleocene of North America shows that lizards and snakes suffered a devastating mass extinction coinciding with the Chicxulub asteroid impact. Species-level extinction was 83%, and the K-Pg event resulted in the elimination of many lizard groups and a dramatic decrease in morphological disparity. Survival was associated with small body size and perhaps large geographic range. The recovery was prolonged; diversity did not approach Cretaceous levels until 10 My after the extinction, and resulted in a dramatic change in faunal composition. The squamate fossil record shows that the end-Cretaceous mass extinction was far more severe than previously believed, and underscores the role played by mass extinctions in driving diversification.

  1. Mass extinction of lizards and snakes at the Cretaceous-Paleogene boundary

    NASA Astrophysics Data System (ADS)

    Longrich, Nicholas R.; Bhullar, Bhart-Anjan S.; Gauthier, Jacques A.

    2012-12-01

    The Cretaceous-Paleogene (K-Pg) boundary is marked by a major mass extinction, yet this event is thought to have had little effect on the diversity of lizards and snakes (Squamata). A revision of fossil squamates from the Maastrichtian and Paleocene of North America shows that lizards and snakes suffered a devastating mass extinction coinciding with the Chicxulub asteroid impact. Species-level extinction was 83%, and the K-Pg event resulted in the elimination of many lizard groups and a dramatic decrease in morphological disparity. Survival was associated with small body size and perhaps large geographic range. The recovery was prolonged; diversity did not approach Cretaceous levels until 10 My after the extinction, and resulted in a dramatic change in faunal composition. The squamate fossil record shows that the end-Cretaceous mass extinction was far more severe than previously believed, and underscores the role played by mass extinctions in driving diversification.

  2. Macrofossil evidence for a rapid and severe Cretaceous-Paleogene mass extinction in Antarctica.

    PubMed

    Witts, James D; Whittle, Rowan J; Wignall, Paul B; Crame, J Alistair; Francis, Jane E; Newton, Robert J; Bowman, Vanessa C

    2016-01-01

    Debate continues about the nature of the Cretaceous-Paleogene (K-Pg) mass extinction event. An abrupt crisis triggered by a bolide impact contrasts with ideas of a more gradual extinction involving flood volcanism or climatic changes. Evidence from high latitudes has also been used to suggest that the severity of the extinction decreased from low latitudes towards the poles. Here we present a record of the K-Pg extinction based on extensive assemblages of marine macrofossils (primarily new data from benthic molluscs) from a highly expanded Cretaceous-Paleogene succession: the López de Bertodano Formation of Seymour Island, Antarctica. We show that the extinction was rapid and severe in Antarctica, with no significant biotic decline during the latest Cretaceous, contrary to previous studies. These data are consistent with a catastrophic driver for the extinction, such as bolide impact, rather than a significant contribution from Deccan Traps volcanism during the late Maastrichtian. PMID:27226414

  3. Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae.

    PubMed

    Prasad, V; Strömberg, C A E; Leaché, A D; Samant, B; Patnaik, R; Tang, L; Mohabey, D M; Ge, S; Sahni, A

    2011-01-01

    Rice and its relatives are a focal point in agricultural and evolutionary science, but a paucity of fossils has obscured their deep-time history. Previously described cuticles with silica bodies (phytoliths) from the Late Cretaceous period (67-65 Ma) of India indicate that, by the latest Cretaceous, the grass family (Poaceae) consisted of members of the modern subclades PACMAD (Panicoideae-Aristidoideae-Chloridoideae-Micrairoideae-Arundinoideae-Danthonioideae) and BEP (Bambusoideae-Ehrhartoideae-Pooideae), including a taxon with proposed affinities to Ehrhartoideae. Here we describe additional fossils and show that, based on phylogenetic analyses that combine molecular genetic data and epidermal and phytolith features across Poaceae, these can be assigned to the rice tribe, Oryzeae, of grass subfamily Ehrhartoideae. The new Oryzeae fossils suggest substantial diversification within Ehrhartoideae by the Late Cretaceous, pushing back the time of origin of Poaceae as a whole. These results, therefore, necessitate a re-evaluation of current models for grass evolution and palaeobiogeography. PMID:21934664

  4. Piercing Lines Between Southwest Mexico and the Chortis Block of Northern Central America: Constraints on Cretaceous Position of Chortis Block

    NASA Astrophysics Data System (ADS)

    Rogers, R. D.

    2007-05-01

    Geologic investigations in Honduras and Nicaragua reveal features and structures which correlate to southern Mexico in sufficient detail to constrain the latest Cretaceous position of the Chortis block along the truncated southwestern margin of Mexico. Two regional features common to southern Mexico and Honduras are 1) their Precambrian basement contain both containing Grenville age protoliths and 2) the similar Mesozoic cover of Late Cretaceous clastic, marine sandstone and shale over Early Cretaceous shallow water platform carbonate rocks. Three north trending piercing lines are common to southern Mexico and to the Chortis block: 1) north trending mid-Cretaceous arc and geochemical trends of Teloloapan arc in Mexico and the Manto arc in Honduras; 2) north trending late Cretaceous structural belts southern Mexico and the Frey Pedro, Comayagua, Minas de Oro and La Flor structural belts of Honduras and 3) a north trending common magnetic signature in Mexico separating the Guerrero terrane from the autochthonous terranes of Mexico and in Honduras forming the southwestern edge of the Precambrian continental basement. A forth piercing line is the east trending alignment of the eastern Honduras Colon fold belt with late Cretaceous east trending fold belt of southeastern Guatemala. Our best fit alignment of these features and piercing lines place the northern limit of the Chortis block along the southern margin of Mexico between Zihuatenejo and Acapulco in the latest Cretaceous and is consistent with 35 degrees of post-Cretaceous counterclockwise rotation of the Chortis block.

  5. Integrated geophysical and geological study and petroleum appraisal of Cretaceous plays in the Western Gulf of Gabes, Tunisia

    NASA Astrophysics Data System (ADS)

    Dkhaili, Noomen; Bey, Saloua; El Abed, Mahmoud; Gasmi, Mohamed; Inoubli, Mohamed Hedi

    2015-09-01

    An integrated study of available seismic and calibrated wells has been conducted in order to ascertain the structural development and petroleum potential of the Cretaceous Formations of the Western Gulf of Gabes. This study has resulted in an understanding of the controls of deep seated Tethyan tectonic lineaments by analysis of the Cretaceous deposits distribution. Three main unconformities have been identified in this area, unconformity U1 between the Jurassic and Cretaceous series, unconformity U2 separating Early from Late Cretaceous and known as the Austrian unconformity and the major unconformity U3 separating Cretaceous from Tertiary series. The seismic analysis and interpretation have confirmed the existence of several features dominated by an NE-SW extensive tectonic regime evidenced by deep listric faults, asymmetric horst and graben and tilted blocks structures. Indeed, the structural mapping of these unconformities, displays the presence of dominant NW-SE fault system (N140 to N160) bounding a large number of moderate sized basins. A strong inversion event related to the unconformity U3 can be demonstrated by the mapping of the unconformities consequence of the succession of several tectonic manifestations during the Cretaceous and post-Cretaceous periods. These tectonic events have resulted in the development of structural and stratigraphic traps further to the porosity and permeability enhancement of Cretaceous reservoirs.

  6. First North American occurrence of Anacoracid selachian Squalicorax yangaensis, Upper Cretaceous Dalton sandstone, near Crownpoint, New Mexico

    SciTech Connect

    Wolberg, D.L.; Bellis, D. )

    1989-09-01

    This report documents the first North American occurrence of Squalicorax yangaensis in the Upper Cretaceous Dalton sandstone, Borrego Pass area, southeast of Crownpoint, New Mexico. The Dalton sandstone has been interpreted to be a regressive coastal barrier sandstone deposited parallel to the southeast-trending shoreline of the Late Cretaceous epeiric seaway.

  7. Large igneous provinces and organic carbon burial: Controls on global temperature and continental weathering during the Early Cretaceous

    NASA Astrophysics Data System (ADS)

    Bodin, Stéphane; Meissner, Philipp; Janssen, Nico M. M.; Steuber, Thomas; Mutterlose, Jörg

    2015-10-01

    There is an abundance of evidence for short intervals of cold climatic conditions during the Early Cretaceous. However, the lack of a high-resolution, long-term Early Cretaceous paleotemperature record hampers a full-scale synthesis of these putative "cold snap" episodes, as well as a more holistic approach to Early Cretaceous climate changes. We present an extended compilation of belemnite-based oxygen, carbon and strontium isotope records covering the Berriasian-middle Albian from the Vocontian Basin (SE France). This dataset clearly demonstrates three intervals of cold climatic conditions during the Early Cretaceous (late Valanginian-earliest Hauterivian, late early Aptian, latest Aptian-earliest Albian). Each of these intervals is associated with rapid and high amplitude sea-level fluctuations, supporting the hypothesis of transient growth of polar ice caps during the Early Cretaceous. As evidenced by positive carbon isotope excursions, each cold episode is associated with enhanced burial of organic matter on a global scale. Moreover, there is a relatively good match between the timing and size of large igneous province eruptions and the amplitude of Early Cretaceous warming episodes. Altogether, these observations confirm the instrumental role of atmospheric CO2 variations in driving Early Cretaceous climate change. From a long-term perspective, the coupling of global paleotemperature and seawater strontium isotopic ratio during the Early Cretaceous is best explained by temperature-controlled changes of continental crust weathering rates.

  8. Sedimentologic Expression of the Cretaceous OAEs in a Tropical Epicontinental Sea

    NASA Astrophysics Data System (ADS)

    Silva-Tamayo, J. C.; Eisenhauer, A.

    2015-12-01

    The acidification and deoxygention of modern oceans are major environmental concerns to the international community. The effects of ocean acidification and deoxigention in the biogeochemical cycles of modern tropical oceans are poorly constrained mainly due to the lack of empirical and quantitative data. The Cretaceous World witnessed several period of potential ocean acidification and deoxygenation, which resulted from the rapid additions of volcanic derived CO2 to the atmosphere. The effects of ocean acidification and deoxygenation on the Cretaceous biogeochemical cycles are evidenced mainly by major global C-isotope anomalies. These anomalies parallel the occurrence of organic rich black shales as well as major decreases in the deposition of shallow marine carbonates worldwide. Here we use detailed C- and Sr- chemostratigraphy as well as published bioestratigraphic information and volcanic zircon U-Pb ages to precisely constrain the geochemical and sedimentologic expression of the Cretaceous OAES along a tropical epicontinental sea, the La Luna Sea. Our multi-pronged approach allows identifying the occurrence of several of the Cretaceous Oceanic Anoxic Events (OAEs) in carbonate units paleogeographically located along the northern most part of the La Luna Sea, i.e. Weissert-OAE-(Palanz and Rosablanca Formations), Faraoni-(Rosablanca Formation), AOE1a-(Paja and Fomeque Formations, Cogollo Group), OAE1c-(Cogollo Group), OAE2-(Cogollo Group), OAE3-(La Luna Formation). These events are preserved in highly euxinic - organic rich "black shales" successions deposited along the deepest part of the seaway at the Middle Magdalena Valley and Cundinamarca Basin; Weiser-OAE-(Lutitas de Macanal Formation), OAE1a-(Paja Formation, Fomeque Formation), OAE1C-(San Gil Formation). Regional changes in depositional settings and sedimentary facies preserving the different Cretaceous OAEs were likely the result of the combined action of regional changes in paleogeography and tectonic

  9. Source rock in the Lower Tertiary and Cretaceous, deep-water Gulf of Mexico

    SciTech Connect

    Wagner, B.E.; Sofer, Z.; Claxton, B.L.

    1994-09-01

    Amoco drilled three wells in the deep-water Gulf of Mexico in 1993. One well, in Mississippi Canyon Block 84 (W.D. 5200 ft), drilled a structural feature. The well penetrated Cretaceous section and crossed the middle Cenomanian unconformity. Six sidewall cores from 14,230-15,200 ft (subsea) contained TOC values from 2.6 to 5.2% with hydrogen indices front 360 to 543 ppm in lower Tertiary and Cretaceous shales. All six cores were thermally immature, for oil generation, based on biomarker ratios and vitrinite reflectance measurements. Organic extracts from cores in the Cretaceous had biomarker characteristics similar to oil reservoired in the Miocene. The oil was probably generated from a similar, but more mature, source rock. The high structural position of the well prevented the lower Tertiary and Upper Cretaceous section from entering the oil window at this location. There are over 2000 ft of structural relief and an additional 6000-8000 ft of Lower Cretaceous section below the level penetrated by the well. It is probable that an equivalent section off structure is in the oil window. Prior to drilling, estimates of expected thermal maturities and temperatures were made using {sub BASINMOD}, a hydrocarbon generation/expulsion modeling package. The model predicted higher well temperatures (e,g., 225{degrees}F vs. 192{degrees}F) and lower vitrinite maturity (0.44% vs. 0.64%) than encountered in the well. Vitrinite reflectance equivalents of 0.41% and 0.43% were calculated from biomarker ratios of the Cretaceous core extracts, matching the {sub BASINMOD} predicted value of 0.44%.

  10. Early cretaceous platform-margin configuration and evolution in the central Oman mountains, Arabian peninsula

    SciTech Connect

    Pratt, B.R. ); Smewing, J.D. )

    1993-02-01

    The Hajar Supergroup (Middle Permian-Lower Cretaceous) of northeastern Oman records rifting and development of a passive margin along the edge of the Arabian platform facing Neo-Tethys. The Jurassic and Lower Cretaceous part, comprising the Sahtan, Kahmah, and Wasia groups, was deposited during the maximum extent of the broad epicontinental sea landward of this margin. These limestone units reach a total of 1500 m in thickness and correlate with the hydrocarbon reservoirs of the Arabian Peninsula. The trace of the Jurassic and Cretaceous margin in northeastern Oman followed a zigzag series of rift segments, resulting in promontories and reentrants that changed in position through time in response to the configuration and differential motion of underlying rift blocks. Synsedimentary normal faulting occurred locally in the Middle Jurassic, whereas in the Late Jurassic, the margin was eroded from variable uplift of up to 300 m before subsiding to below storm wave base. This uplift may have been caused by compression from oceanic crust that obducted along the southeastern side of the platform. The Lower Cretaceous succession in the central Oman Mountains and adjacent subsurface began with regional drowning around the Jurassic-Cretaceous boundary. The succession in the east (Saih Hatat) records a single regressive sequence, ending in the progradation of the shallow-water carbonate platform by the Cenomanian. However, the succession in the west (Jebel Akhdar and interior) is dominated by shallow-water carbonate facies, but punctuated by a second regional drowning in the late Aptian. A third, Late Cretaceous drowning terminated deposition of the Wasia Group in the Turonian and was caused by convergence of oceanic crust and foreland basic formation. The record of tectonic behavior of carbonate platforms has important implications for the development of hydrocarbon source rocks and porosity. 68 refs., 11 figs., 1 tab.

  11. Tectono-sedimentary framework of the early Cretaceous continental Bima formation (upper Benue Trough, NE Nigeria)

    NASA Astrophysics Data System (ADS)

    Guiraud, M.

    The major structural features of the upper Benue Trough, directly influenced by the Precambrian framework, were initiated during Early Cretaceous times. Previous studies have shown the sandy Bima member deposits to be of probable Neocomian to Upper Aptain age. The Lower Bima gfang lomerates are restricted to the faulted basin margins and give way to braided-river deposits and ≪lacustrine≫deposits towards the basin axes. Characteristic sedimentary profiles of the different facies present within the various Bima members are given. On a regional scale, a horst and graben structural environment controlled both Upper Jurassic to Neocomian magmatism and the overall paleocurrent pattern prevailing during Lower Bima member sedimentation. The Lower Bima continental detrital deposits were transported along varying directions from uplifted areas towards neighbouring sub-basins. These observations clearly demonstrate the influence of Early Cretaceous synsedimentary tectonics on Lower Bima deposition. Both the Benue and Chad structural trends were of importance in controlling the Early Cretaceous history of the Upper Benue basin. A detailed microtectonic study was carried out along the Early Cretaceous synsedimentary fault zones. The results obtained, coupled with those from regional tectonics, indicate that the Upper Benue trough consists of a set a Earlt Cretaceous rhomb grabens or pull-ampart basins with sinistral strike-slip borders trending N 40°E to N 70°E ("Benue" trend) and normal borders striking N 120°E to N 160°E ("Chad" trend). The sediments of the lower Bima member were deposited prior to a major regional hiatus corresponding to the levelling of the continental basins during Late Aptian to Albian times. The fine-grained sediments of the upper Bima member were deposited in an homogeneous braided river system flowing towards the northwest. These deposits seal the major Early Cretaceous structural features.

  12. Maps showing thermal maturity of Upper Cretaceous marine shales in the Bighorn Basin, Wyoming and Montana

    USGS Publications Warehouse

    Finn, Thomas M.; Pawlewicz, Mark J.

    2014-01-01

    The Bighorn Basin is one of many structural and sedimentary basins that formed in the Rocky Mountain foreland during the Laramide orogeny, a period of crustal instability and compressional tectonics that began in latest Cretaceous time and ended in the Eocene. The basin is nearly 180 mi long, 100 mi wide, and encompasses about 10,400 mi2 in north-central Wyoming and south-central Montana. The basin is bounded on the northeast by the Pryor Mountains, on the east by the Bighorn Mountains, and on the south by the Owl Creek Mountains). The north boundary includes a zone of faulting and folding referred to as the Nye-Bowler lineament. The northwest and west margins are formed by the Beartooth Mountains and Absaroka Range, respectively. Important conventional oil and gas resources have been discovered and produced from reservoirs ranging in age from Cambrian through Tertiary. In addition, a potential unconventional basin-centered gas accumulation may be present in Cretaceous reservoirs in the deeper parts of the basin. It has been suggested by numerous authors that various Cretaceous marine shales are the principal source rock for these accumulations. Numerous studies of various Upper Cretaceous marine shales in the Rocky Mountain region have led to the general conclusion that these rocks have generated or are capable of generating oil and (or) gas. In recent years, advances in horizontal drilling and multistage fracture stimulation have resulted in increased exploration and completion of wells in Cretaceous marine shales in other Rocky Mountain Laramide basins that were previously thought of only as hydrocarbon source rocks. Important parameters controlling hydrocarbon production from these shale reservoirs include: reservoir thickness, amount and type of organic matter, and thermal maturity. The purpose of this report is to present maps and a cross section showing levels of thermal maturity, based on vitrinite reflectance (Ro), for selected Upper Cretaceous marine

  13. The Early Cretaceous Sulfur Isotope Record: New Data, Revised Ages, and Updated Modeling

    NASA Astrophysics Data System (ADS)

    Kristall, B.; Hurtgen, M.; Sageman, B. B.; Jacobson, A. D.

    2015-12-01

    The Early Cretaceous is a time of significant transformation with the continued break-up of Pangea, the emplacement of several LIPs, and a climatic shift from a cool greenhouse to a warm greenhouse. The timing of these major events and their relationship to seawater geochemistry (as recorded in isotope records) is critical for understanding changes in global biogeochemical cycles during this time. Within this context, recent revisions to the Cretaceous portion of the geologic timescale necessitate a reevaluation of the Cretaceous S isotope record as recorded in marine barite (Paytan et al., 2004). We present a revised Early Cretaceous S isotope record and present new δ34Sbarite data that extend the record further back in time and provide more detail during two major S isotope shifts of the Early Cretaceous. The new data maintain the major ~5‰ negative shift but raise questions on the timing and structure of this perturbation. Furthermore, recently updated estimates for global rates of marine microbial sulfate reduction (MSR) (Bowles et al., 2014) and sulfate burial during the Phanerozoic (Halevy et al., 2012) require notable revisions in the fluxes and isotopic values used to model the global S cycle. We present a revised global S cycle box model and reconstruct the evolution of the Early Cretaceous S isotope record primarily through perturbations in volcanic and hydrothermal fluxes (e.g., submarine LIPs). Changes to the weathering and pyrite burial fluxes and the global integrated fractionation factor for MSR are also used to modulate, balance, and smooth the LIP-driven perturbation. The massive evaporite burial during the Late Aptian post dates the major -5‰ shift and has little affect on the modeled S isotope composition of seawater sulfate, despite causing a major drop in sulfate concentration. The S cycle box model is coupled to a Sr cycle box model to provide additional constraints on the magnitude and timing of perturbations within the S isotope record.

  14. Highly specialized mammalian skulls from the Late Cretaceous of South America.

    PubMed

    Rougier, Guillermo W; Apesteguía, Sebastián; Gaetano, Leandro C

    2011-11-01

    Dryolestoids are an extinct mammalian group belonging to the lineage leading to modern marsupials and placentals. Dryolestoids are known by teeth and jaws from the Jurassic period of North America and Europe, but they thrived in South America up to the end of the Mesozoic era and survived to the beginnings of the Cenozoic. Isolated teeth and jaws from the latest Cretaceous of South America provide mounting evidence that, at least in western Gondwana, dryolestoids developed into strongly endemic groups by the Late Cretaceous. However, the lack of pre-Late Cretaceous dryolestoid remains made study of their origin and early diversification intractable. Here we describe the first mammalian remains from the early Late Cretaceous of South America, including two partial skulls and jaws of a derived dryolestoid showing dental and cranial features unknown among any other group of Mesozoic mammals, such as single-rooted molars preceded by double-rooted premolars, combined with a very long muzzle, exceedingly long canines and evidence of highly specialized masticatory musculature. On one hand, the new mammal shares derived features of dryolestoids with forms from the Jurassic of Laurasia, whereas on the other hand, it is very specialized and highlights the endemic, diverse dryolestoid fauna from the Cretaceous of South America. Our specimens include only the second mammalian skull known for the Cretaceous of Gondwana, bridging a previous 60-million-year gap in the fossil record, and document the whole cranial morphology of a dryolestoid, revealing an unsuspected morphological and ecological diversity for non-tribosphenic mammals. PMID:22051679

  15. The Geochemical Records of the Mid-Cretaceous in Tibet and Their Implications to the OAEs

    NASA Astrophysics Data System (ADS)

    Biao, C.

    2014-12-01

    It is well known that a few Oceanic Anoxic Events(OAEs)occurred with extreme warming climates during the Middle Cretaceous. Although many models have been proposed[ e.g. reference 1-4], the mechanisms for the occurrences of the OAEs with extreme climates remain unclear. Here, we provide inorganic carbon isotope (δ13C), iron speciation chemistry and trace element records for the later Aptian and the Cenomannian OAEs in the Southern Tibet. Our results indicate that these OAEs in the Tibet were featured by extremely negative δ13Canomalies(-15‰~-35‰),rich LREE with Eu positive anomalies and low iron ratios which suggest oxic bottom water conditions for the depositions .Accordingly, we propose that large-scale releases of methane may have greatly consumed dissolved oxygen and other oxidants in the water columns with increasing carbon emissions, which may at least partially contributed to the multiple developments of the oceanic anoxia and extreme warming in the middle Cretaceous. Reference:1. Larson, R.L. and E. Erba, Onset of the Mid-Cretaceous greenhouse in the Barremian-Aptian: Igneous events and the biological, sedimentary, and geochemical responses. Paleoceanography, 1999. 14(6): p. 663-678. 2. Weissert, H., et al., Correlation of Early Cretaceous carbon isotope stratigraphy and platform drowning events: a possible link? Palaeogeography, Palaeoclimatology, Palaeoecology, 1998. 137(3): p. 189-203. 3. Erbacher, J., et al., Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period. Nature, 2001. 409(6818): p. 325-327. 4. Wilson, P.A. and R.D. Norris, Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature, 2001. 412(6845): p. 425-429.

  16. Chapter 4: The Cretaceous-Lower Tertiary Composite Total Petroleum System, Wind River Basin, Wyoming

    USGS Publications Warehouse

    Johnson, R.C.; Finn, Thomas M.; Kirschbaum, Mark A.; Roberts, Stephen B.; Roberts, Laura N.R.; Cook, Troy; Taylor, David J.

    2007-01-01

    The Cretaceous-Lower Tertiary Composite Total Petroleum System (TPS) of the Wind River Basin Province includes all strata from the base of the Lower Cretaceous Cloverly Formation to the base of the Waltman Shale Member of the Paleocene age Fort Union Formation and, where the Waltman is absent, includes strata as young as the Eocene Wind River Formation. Locally, Cretaceous-sourced gas migrated into strata as old as the Mississippian Madison Limestone, and in these areas the TPS extends stratigraphically downward to include these reservoirs. The extensive vertical migration of gases in highly fractured areas of the Wind River Basin led to the commingling of gases from several Upper Cretaceous and lower Tertiary sources, thus only two petroleum systems are recognized in these rocks, the Cretaceous-Lower Tertiary Composite TPS, the subject of this report, and the Waltman Shale TPS described by Roberts and others (Chapter 5, this CD-ROM). The Cretaceous-lower Tertiary Composite TPS was subdivided into (1) seven continuous gas assessment units (AU): (a) Frontier-Muddy Continuous Gas AU, (b) Cody Sandstone Continuous Gas AU, (c) Mesaverde--Meeteetse Sandstone Gas AU, (d) Lance-Fort Union Sandstone Gas AU, (e) Mesaverde Coalbed Gas AU, (f) Meeteetse Coalbed Gas AU, and (g) Fort Union Coalbed Gas AU; (2) one continuous oil assessement unit--- Cody Fractured Shale Continuous Oil AU; and (3) one conventional assessment Unit--- Cretaceous-Tertiary Conventional Oil and Gas AU. Estimates of undiscovered resources having the potential for additions to reserves were made for all but the Cody Fractured Shale Continuous Oil AU, which is considered hypothetical and was not quantitively assessed. The mean estimate of the total oil is 41.99 million barrels, mean estimate of gas is 2.39 trillion cubic feet, and mean estimate of natural gas liquids is 20.55 million barrels. For gas, 480.66 billion cubic feet (BCFG) is estimated for the Frontier-Muddy Continuous Gas AU, 115.34 BCFG for

  17. Fossils of hydrothermal vent worms from Cretaceous sulfide ores of the Samail ophiolite, Oman

    USGS Publications Warehouse

    Haymon, R.M.; Koski, R.A.; Sinclair, C.

    1984-01-01

    Fossil worm tubes of Cretaceous age preserved in the Bayda massive sulfide deposit of the Samail ophiolite, Oman, are apparently the first documented examples of fossils embedded in massive sulfide deposits from the geologic record. The geologic setting of the Bayda deposit and the distinctive mineralogic and textural features of the fossiliferous samples suggest that the Bayda sulfide deposit and fossil fauna are remnants of a Cretaceous sea-floor hydrothermal vent similar to modern hot springs on the East Pacific Rise and the Juan de Fuca Ridge.

  18. Late Cretaceous paleomagnetism of the Tucson Mountains: implications for vertical axis rotations in south central Arizona

    USGS Publications Warehouse

    Hagstrum, J.T.; Lipman, P.W.

    1991-01-01

    The Tucson Mountains of southern Arizona are the site of an Upper Cretaceous caldera from which the rhyolitic Cat Mountain Tuff was erupted at about 72 Ma. Two magnetic units within the Cat Mountain Tuff are distinguished by paleomagnetic data in both the northern and southern Tucson Mountains. The available paleomagnetic data indicate that rocks in southern Arizona have not remained unrotated with respect to North America since Late Cretaceous time and that vertical axis rotations may have played an important role in the region during Laramide deformation. -from Authors

  19. A pterodactyloid pterosaur from the Upper Cretaceous Lapurr sandstone, West Turkana, Kenya.

    PubMed

    O'Connor, Patrick M; Sertich, Joseph J W; Manthi, Fredrick K

    2011-03-01

    An isolated pterosaurian caudal cervical (~ postcervical) vertebra was recovered from the Upper Cretaceous Lapurr sandstone of West Turkana, northwestern Kenya. The vertebral centrum is short, wide, and dorsoventrally compressed. Although the specimen is lightly built similar to most pterosaurs, it is here referred to Pterodactyloidea and tentatively to the Azhdarchidae in that it lacks pneumatic features on both the centrum and neural arch. This represents one of the few pterosaurs recovered from the entirety of Afro-Arabia, the first pterosaur recovered from the Cretaceous of East Africa, and, significantly, a specimen that was recovered from fluvial deposits rather than the near-shore marine setting typical of most pterosaur discoveries.

  20. Depositional environments of the early cretaceous Kurnub (Hathira) sandstones, North Jordan

    NASA Astrophysics Data System (ADS)

    Abed, Abdulkader M.

    1982-04-01

    The Kurnub (Hathira) sandstones in north Jordan, which are most probably of Early Cretaceous age, are about 300 m thick varicoloured, friable quartz-arenitic sandstones. Based on grain-size analysis, sedimentary structures, palaeocurrent, fossil content and petrography, these sandstones are postulated to be dominantly of fluvial origin with a few interfingering shallow marine horizons. A southward displacement of Jordan by at least 100 km would bring these sandstones opposite to similar rocks west of the Jordan-Araba rift, with Jordan being higher during the EArly Cretaceous.

  1. A Gigantic Shark from the Lower Cretaceous Duck Creek Formation of Texas

    PubMed Central

    Frederickson, Joseph A.; Schaefer, Scott N.; Doucette-Frederickson, Janessa A.

    2015-01-01

    Three large lamniform shark vertebrae are described from the Lower Cretaceous of Texas. We interpret these fossils as belonging to a single individual with a calculated total body length of 6.3 m. This large individual compares favorably to another shark specimen from the roughly contemporaneous Kiowa Shale of Kansas. Neither specimen was recovered with associated teeth, making confident identification of the species impossible. However, both formations share a similar shark fauna, with Leptostyrax macrorhiza being the largest of the common lamniform sharks. Regardless of its actual identification, this new specimen provides further evidence that large-bodied lamniform sharks had evolved prior to the Late Cretaceous. PMID:26039066

  2. Early and Late Cretaceous volcanism and reef-building in the Marshall Islands

    NASA Astrophysics Data System (ADS)

    Lincoln, Jonathan M.; Pringle, Malcolm S.; Silva, Isabella Premoli

    Radiometric and biostratigraphic ages for samples recovered from fourteen guyots, seamounts and atolls in the Marshall Islands document construction of carbonate platforms and the volcanos on which the platforms grew during the Early and Late Cretaceous. Previously, the only evidence for reef-building during the Early and Late Cretaceous in the Marshall Islands was shallow-bank fossils deposited in turbidites penetrated at DSDP Site 462 in the Nauru Basin. The distribution of volcano and platform ages reported in this paper suggests a complex history that cannot be explained by passage of the region over a single hotspot. Assemblages of whole and fragmented rudists recovered from two guyots may be equivalent to the lower to middle Albian of the Gulf of Mexico coast. Limestones dated Cenomanian or older that contain shallow-water debris document the existence of carbonate banks during the Early Cretaceous at three additional guyots. A 40Ar/39Ar age of 138.2±0.8 Ma for Look Seamount is the first direct evidence of seamount volcanism in the Marshall Islands during the Early Cretaceous. Limestones of Late Cretaceous age that contain shallow-water debris were recovered from nine seamounts or guyots in the Marshall Islands; limestones of Eocene age have been recovered at two other locations. Late Cretaceous 40Ar/39Ar ages, including a revised age of 75.9±0.6 Ma for the basalt recovered from the bottom of the Anewetak Atoll drill core, have been determined for 6 volcanic edifices in this region. Four Marshall Islands sites of volcanism and reef-building during the Late Cretaceous are located at, or adjacent to, sites of volcanism or reef-building during the Early Cretaceous. This superposition of ages suggests multiple periods of volcanism, uplift, reef-building, and subsidence that cannot be explained with a single hotspot model. The origin of the Marshall Islands could be explained by the passage of the region over more than one hotspot over a period of at least 70 m.y.

  3. Kinematics from footprints: Analysis of a possible dinosaur predation event in the Cretaceous Era

    NASA Astrophysics Data System (ADS)

    Lee, Scott

    2008-10-01

    Motivation is enhanced by challenging students with interesting and open-ended