Science.gov

Sample records for lowest rotational states

  1. Orbital rotation in the lowest triplet state of benzophenone

    SciTech Connect

    Dinse, K.P.; Pratt, D.W.

    1982-04-07

    Optically detected magnetic resonance (ODMR) and electron-nuclear double resonance (ODENDOR) spectroscopy at both zero and high magnetic fields were used to examine single crystals of 4,4'-dibromodiphenyl ether (DOE) containing 0.1 mol % of an enriched perdeuterio (/sup 17/O) benzophenone (/sup 17/O-BP-d/sub 10/) guest. Representative spectra are presented and explanations are offered for the electron spin transitions. The summarized results indicate the currently used atomic orbital functions do not provide an accurate description of the lowest excited states of many aromatic carbonyls. (BLM)

  2. Optically detected magnetic resonance studies of photoexcited /sup 17/O-benzophenone. Orbital rotation in the lowest triplet state

    SciTech Connect

    Waeckerle, G.; Baer, M.; Zimmermann, H.; Dinse, K.H.; Yamauchi, S.; Kashmar, R.J.; Pratt, D.W.

    1982-03-01

    The magnetically active isotope of oxygen /sup 17/O has been used to probe the changes in the electron charge and spin density distributions in oxygen valence orbitals which occur when benzophenone is excited to its lowest triplet state. The data obtained include the optically detected magnetic resonance (ODMR) and electron-nuclear double resonance spectra at both zero and high magnetic fields. New methods of analysis of zero-field ODMR spectra, appropriate when the second-order hyperfine splitting exceeds the quadrupole coupling, are described. This analysis yields the principal values of the electron fine-structure (D), oxygen hyperfine (A), and oxygen quadrupole (Q) tensors, and the orientation of their principal axes with respect to the molecular frame. It is found, consistent with expectations for an n..pi..( state, that the direction of the largest component of Q is different from that of the ground state. It is also found, by two independent methods, that the principal transverse axes of A and Q do not conform to the local C/sub 2v/ symmetry axes of the carbonyl group. This result is interpreted to mean that the axis of the n-type oxygen 2p orbital is rotated out of the carbonyl plane, a rotation which appears to be direct consequence of n..pi..(/..pi pi..( configurational mixing. In agreement with this, the principal values of D, A, and Q are different from those expected for a ''pure'' n..pi..( state. Other consequences of n..pi..(/..pi pi..( mixing, not only in benzophenone but also in the lowest triplet states of other aromatic carbonyls, are discussed briefly.

  3. An Analysis of the Torsion-Rotation-Vibration Rotational Spectrum of the Lowest In-Plane Bend and First Excited Torsional State of the C(3V) Internal Rotor C2H5CN

    NASA Technical Reports Server (NTRS)

    Pearson, J. C.; Pickett, Herbert M.; Sastry, K. V. L. N.

    2000-01-01

    C2H5CN (Propionitrile or ethyl cyanide) is a well known interstellar species abundantly observed in hot cores during the onset of star formation. The onset of star formation generally results in elevated temperature, which thermally populates may low lying vibrational states such as the 206/cm in-plane bend and the 212/cm first excited torsional state in C2H5CN. Unfortunately, these two states are strongly coupled through a complex series of torsion-vibration-rotation interactions, which dominate the spectrum. In order to understand the details of these interactions and develop models capable of predicting unmeasured transitions for astronomical observations in C2H5CN and similar molecules, several thousand rotational transitions in the lowest excited in-plane bend and first excited torsional state have been recorded, assigned and analyzed. The analysis reveals very strong a- and b-type Coriolis interactions and a number of other smaller interactions and has a number of important implications for other C3V torsion-rotation-vibration systems. The relative importance and the physical origins of the coupling among the rotational, vibrational and torsional motions will be presented along with a full spectroscopic analysis and supporting astronomical observations.

  4. Hyperfine, rotational, and Zeeman structure of the lowest vibrational levels of the {sup 87}Rb{sub 2} (1) {sup 3{Sigma}}{sub g}{sup +} state

    SciTech Connect

    Takekoshi, T.; Lang, F.; Strauss, C.; Denschlag, J. Hecker; Lysebo, Marius; Veseth, Leif

    2011-06-15

    We present the results of an experimental and theoretical study of the electronically excited (1){sup 3{Sigma}}{sub g}{sup +} state of {sup 87}Rb{sub 2} molecules. The vibrational energies are measured for deeply bound states from the bottom up to v{sup '}=15 using laser spectroscopy of ultracold Rb{sub 2} Feshbach molecules. The spectrum of each vibrational state is dominated by a 47-GHz splitting into 0{sub g}{sup -} and 1{sub g} components caused mainly by a strong second-order spin-orbit interaction. Our spectroscopy fully resolves the rotational, hyperfine, and Zeeman structure of the spectrum. We are able to describe this structure to the first order using a simplified effective Hamiltonian.

  5. Lowest autodetachment state of the water anion

    NASA Astrophysics Data System (ADS)

    Houfek, Karel; Čížek, Martin

    2016-05-01

    The potential energy surface of the ground state of the water anion H2O- is carefully mapped using multireference CI calculations for a large range of molecular geometries. Particular attention is paid to a consistent description of both the O-+H2 and OH-+H asymptotes and to a relative position of the anion energy to the ground state energy of the neutral molecule. The autodetachment region, where the anion state crosses to the electronic continuum is identified. The local minimum in the direction of the O- + H2 channel previously reported by Werner et al. [J. Chem. Phys. 87, 2913 (1987)] is found to be slighly off the linear geometry and is separated by a saddle from the autodetachment region. The autodetachment region is directly accessible from the OH-+H asymptote. For the molecular geometries in the autodetachment region and in its vicinity we also performed fixed-nuclei electron-molecule scattering calculations using the R-matrix method. Tuning of consistency of a description of the correlation energy in both the multireference CI and R-matrix calculations is discussed. Two models of the correlation energy within the R-matrix method that are consistent with the quantum chemistry calculations are found. Both models yield scattering quantities in a close agreement. The results of this work will allow a consistent formulation of the nonlocal resonance model of the water anion in a future publication. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  6. Precision Spectroscopy in Cold Molecules: The Lowest Rotational Interval of He2 + and Metastable He2

    NASA Astrophysics Data System (ADS)

    Jansen, Paul; Semeria, Luca; Hofer, Laura Esteban; Scheidegger, Simon; Agner, Josef A.; Schmutz, Hansjürg; Merkt, Frédéric

    2015-09-01

    Multistage Zeeman deceleration was used to generate a slow, dense beam of translationally cold He2 molecules in the metastable a 3Σu+ state. Precision measurements of the Rydberg spectrum of these molecules at high values of the principal quantum number n have been carried out. The spin-rotational state selectivity of the Zeeman-deceleration process was exploited to reduce the spectral congestion, minimize residual Doppler shifts, resolve the Rydberg series around n =200 and assign their fine structure. The ionization energy of metastable He2 and the lowest rotational interval of the X+ 2Σu+ (ν+=0 ) ground state of 4He2+ have been determined with unprecedented precision and accuracy by Rydberg-series extrapolation. Comparison with ab initio predictions of the rotational energy level structure of 4He2+ [W.-C. Tung, M. Pavanello, and L. Adamowicz, J. Chem. Phys. 136, 104309 (2012)] enabled us to quantify the magnitude of relativistic and quantum-electrodynamics contributions to the fundamental rotational interval of He2+ .

  7. Precision Spectroscopy in Cold Molecules: The Lowest Rotational Interval of He_{2}^{+} and Metastable He_{2}.

    PubMed

    Jansen, Paul; Semeria, Luca; Hofer, Laura Esteban; Scheidegger, Simon; Agner, Josef A; Schmutz, Hansjürg; Merkt, Frédéric

    2015-09-25

    Multistage Zeeman deceleration was used to generate a slow, dense beam of translationally cold He_{2} molecules in the metastable a ^{3}Σ_{u}^{+} state. Precision measurements of the Rydberg spectrum of these molecules at high values of the principal quantum number n have been carried out. The spin-rotational state selectivity of the Zeeman-deceleration process was exploited to reduce the spectral congestion, minimize residual Doppler shifts, resolve the Rydberg series around n=200 and assign their fine structure. The ionization energy of metastable He_{2} and the lowest rotational interval of the X^{+} ^{2}Σ_{u}^{+} (ν^{+}=0) ground state of ^{4}He_{2}^{+} have been determined with unprecedented precision and accuracy by Rydberg-series extrapolation. Comparison with ab initio predictions of the rotational energy level structure of ^{4}He_{2}^{+} [W.-C. Tung, M. Pavanello, and L. Adamowicz, J. Chem. Phys. 136, 104309 (2012)] enabled us to quantify the magnitude of relativistic and quantum-electrodynamics contributions to the fundamental rotational interval of He_{2}^{+}. PMID:26451553

  8. The Ground and Two Lowest-lying Singlet Excited Electronic States of Copper Hydroxide (CuOH)

    SciTech Connect

    Wang, Suyun; Paul, Ankan; DeYonker, Nathan John; Yamaguchi, Yukio; Schaefer, Henry F

    2005-07-12

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Various ab initio methods, including self-consistent field (SCF), configuration interaction, coupled cluster (CC), and complete-active-space SCF (CASSCF), have been employed to study the electronic structure of copper hydroxide (CuOH). Geometries, total energies, dipole moments, harmonic vibrational frequencies, and zero-point vibrational energies are reported for the linear 1Σ+ and 1Π stationary points, and for the bent ground-state1A', and excited-states 2 1A" and 1 1A". Six different basis sets have been used in the study, Wachters/DZP being the smallest and QZVPP being the largest. The ground- and excited-state bending modes present imaginary frequencies for the linear stationary points, indicating that bent structures are more favorable. The effects of relativity for CuOH are important and have been considered using the Douglas–Kroll approach with cc-pVTZ/cc-pVTZ_DK and cc-pVQZ/cc-pVQZ_DK basis sets. The bent ground and two lowest-lying singlet excited states of the CuOH molecule are indeed energetically more stable than the corresponding linear structures. The optimized geometrical parameters for the X˜ 1A' and 1 1A" states agree fairly well with available experimental values. However, the 2 1A' structure and rotational constants are in poor agreement with experiment, and we suggest that the latter are in error. The predicted adiabatic excitation energies are also inconsistent with the experimental values of 45.5 kcal mol-1 for the 2 1A' state and 52.6 kcal mol-1 for the 1 1A" state. The theoretical CC and CASSCF methods show lower

  9. Shedding light on a dark state: The energetically lowest quintet state of C2

    NASA Astrophysics Data System (ADS)

    Bornhauser, P.; Sych, Y.; Knopp, G.; Gerber, T.; Radi, P. P.

    2011-01-01

    In this work we present a deperturbation study of the d ^3Π _g, v=6 state of C2 by double-resonant four-wave mixing spectroscopy. Accurate line positions of perturbed transitions are unambiguously assigned by intermediate level labeling. In addition, extra lines are accessible by taking advantage of the sensitivity and high dynamic range of the technique. These weak spectral features originate from nearby-lying dark states that gain transition strength through the perturbation process. The deperturbation analysis of the complex spectral region in the (6,5) and (6,4) bands of the Swan system (d^3Π _g-a ^3Π _u) unveils the presence of the energetically lowest high-spin state of C2 in the vicinity of the d ^3Π _g, v=6 state. The term energy curves of the three spin components of the d state cross the five terms of the 1^5Π _g state at rotational quantum numbers N ⩽ 11. The spectral complexity for transitions to the v = 6 level of d ^3Π _g state is further enhanced by an additional perturbation at N = 19 and 21 owing to the b ^3Σ _g^-, v=19 state. The spectroscopic characterization of both dark states is accessible by the measurement of 122 "window" levels. A global fit of the positions to a conventional Hamiltonian for a linear diatomic molecule yields accurate molecular constants for the quintet and triplet perturber states for the first time. In addition, parameters for the spin-orbit and L-uncoupling interaction between the electronic levels are determined. The detailed deperturbation study unravels major issues of the so-called high-pressure bands of C2. The anomalous nonthermal emission initially observed by Fowler in 1910 [Mon. Not. R. Astron. Soc. 70, 484 (1910)] and later observed in numerous experimental environments are rationalized by taking into account "gateway" states, i.e., rotational levels of the d ^3Π _g, v=6 state that exhibit significant ^5Π _g character through which all population flows from one electronic state to the other.

  10. Rotating quantum states

    NASA Astrophysics Data System (ADS)

    Ambruş, Victor E.; Winstanley, Elizabeth

    2014-06-01

    We revisit the definition of rotating thermal states for scalar and fermion fields in unbounded Minkowski space-time. For scalar fields such states are ill-defined everywhere, but for fermion fields an appropriate definition of the vacuum gives thermal states regular inside the speed-of-light surface. For a massless fermion field, we derive analytic expressions for the thermal expectation values of the fermion current and stress-energy tensor. These expressions may provide qualitative insights into the behaviour of thermal rotating states on more complex space-time geometries.

  11. Lowest singlet excited state and spectroscopy of α-carotene

    NASA Astrophysics Data System (ADS)

    Itoh, Takao

    2011-03-01

    Emission, excitation and absorption spectra of α-carotene have been measured in solvents with different polarizabilities. It is shown that in highly-polarized solvents α-carotene emits weak fluorescence from the S 1( π, π∗) state with the fluorescence origin observed at 14 800 ± 200 cm -1. The relative S 1/S 2 fluorescence intensity ratio tends to increase with increasing solvent polarizability or decreasing the S 1-S 2 energy separation. The obtained spectroscopic data include the Raman spectrum of α-carotene along with the vibrational analyses of the Raman spectrum based on the DFT calculation at the B3LYP/6-31G(d,p) level.

  12. On the Lowest Ro-Vibrational States of Protonated Methane: Experiment and Analytical Model

    NASA Astrophysics Data System (ADS)

    Schmiedt, Hanno; Jensen, Per; Asvany, Oskar; Schlemmer, Stephan

    2016-06-01

    Protonated methane, CH_5^+, is the prototype of an extremely floppy molecule. To the best of our knowledge all barriers are surmountable in the rovibrational ground state; the large amount of zero-point vibrational energy leads to large amplitude motions for many degrees of freedom. Low resolution but broad band vibrational spectroscopy [1] revealed an extremely wide range of C-H stretching vibrations. Comparison with theoretical IR spectra supported the structural motif of a CH_3 tripod and an H_2 moiety, bound to the central carbon atom by a 3c2e bond. In a more dynamic picture the five protons surround the central carbon atom without significant restrictions on the H-C-H bending or H_n-C torsional motions. The large-amplitude internal motions preclude a simple theoretical description of the type possible for more conventional molecules, such as the related spherical-top methane molecule. Recent high-resolution ro-vibrational spectra obtained in cold ion trap experiments [2] show that the observed CH_5^+ transitions belong to a very well-defined energy level scheme describing the lowest rotational and vibrational states of this enigmatic molecule. Here we analyse the experimental ground state combination differences and associate them with the motional states of CH_5^+ allowed by Fermi-Dirac statistics. A model Hamiltonian for unrestricted internal rotations in CH_5^+ yields a simple analytical expression for the energy eigenvalues, expressed in terms of new quantum numbers describing the free internal rotation. These results are compared to the experimental combination differences and the validity of the model will be discussed together with the underlying assumptions. [1] O. Asvany, P. Kumar, I. Hegemann, B. Redlich, S. Schlemmer and D. Marx, Science 309, (2005) 1219-1222 [2] O. Asvany, K.M.T. Yamada, S. Brünken, A. Potapov, S. Schlemmer, Science 347 (2015) 1346-1349

  13. Far infrared spectrum of Methanol-D2 in the lowest torsional state (e0)

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Indra

    2016-03-01

    The infrared (IR) and far infrared (FIR) absorption spectra have been measured for the Methanol-D1 and D2 species in the wave number range of 20-1200 cm-1 at the Justus Liebig Universität in Giessen, Germany using a Brüker Fourier Transform spectrometer at a resolution of 0.002 cm-1. The spectra looked very complicated but analyses were possible for the lower lying states. At higher wave number regions spectra of few vibrational fundamental modes were visible. In this communication, the details of the assignments and analyses of the lowest lying internal rotational state (e0) for Methanol-D2 are reported. A catalog of about 900 assigned spectral lines has been prepared and is made available from the author to conserve space. As application of this work, it was possible to assign some optically pumped FIR laser lines to quantum states. The results should be useful for "radio astronomers" and in the field of optically pumped FIR and Sub-millimeter Wave (SMMW) lasers which are used in Tokamaks for plasma diagnostics and as local oscillators in radio detection from space.

  14. A Description of Vibrational Modes in Hexaphyrins: Understanding the Aromaticity Reversal in the Lowest Triplet State.

    PubMed

    Sung, Young Mo; Oh, Juwon; Naoda, Koji; Lee, Taegon; Kim, Woojae; Lim, Manho; Osuka, Atsuhiro; Kim, Dongho

    2016-09-19

    Aromaticity reversal in the lowest triplet state, or Baird's rule, has been postulated for the past few decades. Despite numerous theoretical works on aromaticity reversal, experimental study is still at a rudimentary stage. Herein, we investigate the aromaticity reversal in the lowest excited triplet state using a comparable set of [26]- and [28]hexaphyrins by femtosecond time-resolved infrared (IR) spectroscopy. Compared to the relatively simple IR spectra of [26]bis(rhodium) hexaphyrin (R26H), those of [28]bis(rhodium) hexaphyrin (R28H) show complex IR spectra the region for the stretching modes of conjugated rings. Whereas time-resolved IR spectra of R26H in the excited triplet state are dominated by excited state IR absorption peaks, while those of R28H largely show ground state IR bleaching peaks, reflecting the aromaticity reversal in the lowest triplet state. These contrasting IR spectral features serve as new experimental aromaticity indices for Baird's rule. PMID:27510963

  15. A theoretical analysis of the lowest excited states in HNO/NOH and HPO/POH

    NASA Astrophysics Data System (ADS)

    Luna, Alberto; Merchán, Manuela; Ross, Björn O.

    1995-07-01

    A theoretical study has been performed on the ground and two lowest excited states of the HNO/NOH and HPO/POH systems. Full geometry optimization was made for all states using the CASSCF method with dynamic correlation effects accounted for by second order perturbation theory (CASPT2). The computed vertical and adiabatic transition energies are in agreement with available experimental data.

  16. Quasi-classical trajectory study of the adiabatic reactions occurring on the two lowest-lying electronic states of the LiH2+ system.

    PubMed

    Pino, Ilaria; Martinazzo, Rocco; Tantardini, Gian Franco

    2008-09-28

    Quasi-classical trajectory calculations have been performed on the adiabatically allowed reactions taking place on the two lowest-lying electronic states of the LiH2+ system, using the ab initio potential energy surfaces of Martinazzo et al. (J. Chem. Phys., 2003, 119, 11 241). These reactions comprise: (i) the exoergic H2 and H2+ formation occurring through LiH+ + H and LiH + H+ collisions in the ground and in the first electronically excited state, respectively; (ii) the endoergic (ground state) LiH+ dissociation induced by collisions with H atoms; and (iii) the endoergic (excited state) Li + H2+ --> LiH + H+ reaction. The topic is of relevance for a better understanding of the lithium chemistry in the early universe. Thermal rate constants for the above reactions have been computed in the temperature range 10-5000 K and found in reasonably good agreement with estimates based on the capture model.

  17. Aromaticity Reversal in the Lowest Excited Triplet State of Archetypical Möbius Heteroannulenic Systems.

    PubMed

    Oh, Juwon; Sung, Young Mo; Kim, Woojae; Mori, Shigeki; Osuka, Atsuhiro; Kim, Dongho

    2016-05-23

    The aromaticity reversal in the lowest triplet state (T1 ) of a comparable set of Hückel/Möbius aromatic metalated expanded porphyrins was explored by optical spectroscopy and quantum calculations. In the absorption spectra, the T1 states of the Möbius aromatic species showed broad, weak, and ill-defined spectral features with small extinction coefficients, which is in line with typical antiaromatic expanded porphyrins. In combination with quantum calculations, these results indicate that the Möbius aromatic nature of the S0 state is reversed to Möbius antiaromaticity in the T1 state. This is the first experimental observation of aromaticity reversal in the T1 state of Möbius aromatic molecules. PMID:27079620

  18. Testing quantum electrodynamics in the lowest singlet state of neutral beryllium-9

    NASA Astrophysics Data System (ADS)

    Williams, Will; Cao, Melody; Kaplan, Emily

    2016-05-01

    We present high precision spectroscopic results on the 2s2p J = 1 singlet state in neutral beryllium-9. Combined with theoretical predictions this measurement serves as a test of quantum electrodynamics and various theoretical methods for predicting the energy of this state. Our experimental setup consists of an oven at 1200C that produces a beam of beryllium atoms. The singlet state is probed transverse to the atomic beam with 235nm light from a frequency quadrupled titanium sapphire laser, where the frequency doubled light at 470nm is stabilized to an ultra low expansion cavity. We also present our progress on spectroscopy on the lowest triplet states and the ionization threshold.

  19. Nonradiative deactivation of the lowest excited triplet state of the dibenzo- p-dioxin molecule

    NASA Astrophysics Data System (ADS)

    Gastilovich, E. A.; Klimenko, V. G.; Volkova, L. V.; Nurmukhametov, R. N.

    2011-11-01

    In the nonadiabatic approximation, we study how intramolecular interactions affect the nonradiative energy degradation T {1/ s } ↝ S 0 of triplet sublevels s of the lowest triplet state of the dibenzo- p-dioxin molecule. We consider the role played in the degradation by the shape of promoting high- and low-frequency vibrational modes and by spin-orbit interactions separately in the carbon backbone of the molecule and in heteroatoms (oxygen). We find that σ-electrons of oxygen that correspond to the lone pair and to valence electrons play different roles in the nonadiabatic interaction.

  20. Fragile Fractional Quantum Hall States in the Lowest and the Second Landau Level

    NASA Astrophysics Data System (ADS)

    Csathy, Gabor; Kleinbaum, Ethan; Kumar, Ashwani; Samkharadze, Nodar; Pfeiffer, Loren; West, Ken

    Ultra-low temperature measurements of the two-dimensional electron gas have revealed some of the most fragile fractional quantum Hall states. In these experiments electron thermalization was achieved using a He-3 immersion cell and the temperature of the bath is monitored using a quartz tuning fork viscometer. We will review the recently discovered fractional quantum Hall state at filling factor ν = 3 + 1 / 3 observed in the second Landau level and those at the filling factor ν = 4 / 11 and 5 / 13 in the lowest Landau level. The work at Purdue was supported by NSF DMR 1207375 and 1505866 grants. The work at Princeton University was funded by the Gordon and Betty Moore Foundation through the EPiQS initiative Grant GBMF4420, and by the National Science Foundation MRSEC Grant DMR-1420541.

  1. Time-resolved infrared spectroscopy of the lowest triplet state of thymine and thymidine

    NASA Astrophysics Data System (ADS)

    Hare, Patrick M.; Middleton, Chris T.; Mertel, Kristin I.; Herbert, John M.; Kohler, Bern

    2008-05-01

    Vibrational spectra of the lowest energy triplet states of thymine and its 2'-deoxyribonucleoside, thymidine, are reported for the first time. Time-resolved infrared (TRIR) difference spectra were recorded over seven decades of time from 300 fs to 3 μs using femtosecond and nanosecond pump-probe techniques. The carbonyl stretch bands in the triplet state are seen at 1603 and ˜1700 cm -1 in room-temperature acetonitrile- d3 solution. These bands and additional ones observed between 1300 and 1450 cm -1 are quenched by dissolved oxygen on a nanosecond time scale. Density-functional calculations accurately predict the difference spectrum between triplet and singlet IR absorption cross sections, confirming the peak assignments and elucidating the nature of the vibrational modes. In the triplet state, the C4 dbnd O carbonyl exhibits substantial single-bond character, explaining the large (˜70 cm -1) red shift in this vibration, relative to the singlet ground state. Femtosecond TRIR measurements unambiguously demonstrate that the triplet state is fully formed within the first 10 ps after excitation, ruling out a relaxed 1nπ ∗ state as the triplet precursor.

  2. Isotope effects of ground and lowest lying vibrational states of H 3 - x D x O2 - complexes

    NASA Astrophysics Data System (ADS)

    Ansari, Narjes; Meyer, Hans-Dieter

    2016-02-01

    Isotope effects of the H 3 O2 - anion are investigated. For this, the 24 lowest excited vibrational states of the H 3 - x D x O2 - complexes, with x = 0-3, are computed using two different Hamiltonians, namely, a 7D reduced-dimensionality one with a numerical representation of the kinetic energy operator (KEO) and a 9D full-dimensionality Hamiltonian with an exact analytic KEO. The computations are carried out with the multiconfiguration time-dependent Hartree method. The obtained results show that bridge and terminal H-D exchange cause a variation in energy with or without a rearrangement of states. A clear rearrangement of fundamental modes is observed in bridge H-D exchange of the H 3 O2 - complex, where the frequency of bridge hydrogen stretching (z) is strongly lowered by substitution. The isotope effects show that rotation (ϕ), rocking (u1 + u2), wagging (u1 - u2), and O-O stretch (R) modes are sensitive to terminal H-D exchange, while the bridge-atom bending (x,y) and stretch (z) modes are sensitive to bridge H-D exchange. An influence coefficient, which measures the influence of an excitation of one mode on the various 1D reduced densities, is defined and analyzed in detail. It is shown that the D 3 O2 - complex is more strongly correlated or coupled than the other isotopologues.

  3. Anisotropic Quantum Hall Liquid States with No Translational Invariance in the Lowest Landau Level

    NASA Astrophysics Data System (ADS)

    Ciftja, Orion

    2016-05-01

    Strongly correlated two-dimensional electron systems in a high perpendicular magnetic field have displayed remarkable new physics leading to the discovery of phenomena such as the integer and the fractional quantum Hall effect, to mention a few. Laughlin's theoretical model and the composite fermion's (CFs) approach provide a good description of the liquid electronic phases in the lowest Landau level (LLL) at relatively large filling factors. Other electronic phases at smaller filling factors of the LLL likely represent electronic Wigner solid states. It is believed that no other phases with intermediate order stabilize at the liquid-solid transition region. The current study deals with filling factor 1/6 in the LLL, a state which is very close to the critical filling factor where the liquid-solid transition takes place. With the assumption that the underlying signs of crystalline order are starting to appear at this transitional regime, we focus our attention and study the properties of a hybrid electronic phase that lacks translational invariance. To describe such a state, we consider a wave function that lies entirely in the LLL but, unlike a typical quantum Hall liquid phase, does not possess translational invariance. Although inspired by Laughlin's approach, the wave function we introduce differs from Laughlin's or CFs wave functions that describe translationally invariant uniform electronic phases. We perform quantum Monte Carlo simulations in a standard disk geometry to gain a better understanding of the properties of this wave function that may be considered as a precursor to the more conventional Wigner crystal phase.

  4. Valence and Ionic Lowest-Lying Electronic States of Isobutyl Formate Studied by High-Resolution Vacuum Ultraviolet Photoabsorption, Photoelectron Spectroscopy, and Ab Initio Calculations.

    PubMed

    Śmiałek, M A; Łabuda, M; Guthmuller, J; Hoffmann, S V; Jones, N C; MacDonald, M A; Zuin, L; Mason, N J; Limão-Vieira, P

    2015-08-13

    The highest resolution vacuum ultraviolet photoabsorption spectrum of isobutyl formate, C5H10O2, yet reported is presented over the energy range 4.5-10.7 eV (275.5-118.0 nm) revealing several new spectral features. Valence and Rydberg transitions and their associated vibronic series observed in the photoabsorption spectrum have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of isobutyl formate and are compared with a newly recorded photoelectron spectrum (from 9.0 to 27.0 eV). The value of the first ionization energy was determined to be 10.508 eV (adiabatic) and 10.837 eV (vertical). New vibrational structure is observed in the first photoelectron band, predominantly resulting from C-O and C═O stretches of the molecule. The photoabsorption cross sections have been used to calculate the photolysis lifetime of isobutyl formate in the upper stratosphere (20-50 km), indicating that the hydroxyl radical processes will be the main loss process for isobutyl formate.

  5. Valence and Ionic Lowest-Lying Electronic States of Isobutyl Formate Studied by High-Resolution Vacuum Ultraviolet Photoabsorption, Photoelectron Spectroscopy, and Ab Initio Calculations.

    PubMed

    Śmiałek, M A; Łabuda, M; Guthmuller, J; Hoffmann, S V; Jones, N C; MacDonald, M A; Zuin, L; Mason, N J; Limão-Vieira, P

    2015-08-13

    The highest resolution vacuum ultraviolet photoabsorption spectrum of isobutyl formate, C5H10O2, yet reported is presented over the energy range 4.5-10.7 eV (275.5-118.0 nm) revealing several new spectral features. Valence and Rydberg transitions and their associated vibronic series observed in the photoabsorption spectrum have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of isobutyl formate and are compared with a newly recorded photoelectron spectrum (from 9.0 to 27.0 eV). The value of the first ionization energy was determined to be 10.508 eV (adiabatic) and 10.837 eV (vertical). New vibrational structure is observed in the first photoelectron band, predominantly resulting from C-O and C═O stretches of the molecule. The photoabsorption cross sections have been used to calculate the photolysis lifetime of isobutyl formate in the upper stratosphere (20-50 km), indicating that the hydroxyl radical processes will be the main loss process for isobutyl formate. PMID:26176891

  6. On the influence of silver perchlorate on the lowest triplet state properties of N-vinylcarbazole

    NASA Astrophysics Data System (ADS)

    Zander, Maximilian

    1987-01-01

    N-vinylcarbazole is non-phosphorescent due to effective radiationless deactivation of the triplet state but forms a ground state complex with silver ions which is phosphorescent. Two different complexes are observed. From their phosphorescence spectra the T 1 state energy of N-vinylcarbazole is estimated to be 24000 cm -1.

  7. Florida Court: Vouchers Unconstitutional--Ruling Will End Opportunity Scholarships Program for Students in State's Lowest-Rated Schools

    ERIC Educational Resources Information Center

    Richard, Alan

    2006-01-01

    Florida's voucher program for students in the lowest-rated public schools is unconstitutional, the state supreme court ruled early January 2006 in a 5-2 decision that friends and foes of private school choice are scrutinizing for its potential impact on voucher debates nationwide. Chief Justice Barbara J. Pariente of the Florida Supreme Court…

  8. Experimental and theoretical dipole moments of purines in their ground and lowest excited singlet states

    NASA Astrophysics Data System (ADS)

    Aaron, Jean-Jacques; Diabou Gaye, Mame; Párkányi, Cyril; Cho, Nam Sook; Von Szentpály, László

    1987-01-01

    The ground-state dipole moments of seven biologically important purines (purine, 6-chloropurine, 6-mercaptopurine, hypoxanthine, theobromine, theophylline and caffeine) were determined at 25°C in acetic acid (all the above compounds with the exception of purine) and in ethyl acetate (purine, theophylline and caffeine). Because of its low solubility, it was not possible to measure the dipole moment of uric acid. The first excited singlet-state dipole moments were obtained on the basis of the Bakhshiev and Chamma—Viallet equations using the variation of the Stokes shift with the solvent dielectric constant-refractive index term. The theoretical dipole moments for all the purines listed above and including uric acid were calculated by combining the use of the PPP (π-LCI-SCF-MO) method for the π-contribution to the overall dipole moment with the σ-contribution obtained as a vector sum of the σbond moments and group moments. The experimental and theoretical values were compared with the data available in the literature for some of the purines under study. For several purines, the calculations were carried out for different tautomeric forms. Excited singlet-state dipole moments are smaller than the ground-state values by 0.8 to 2.2 Debye units for all purines under study with the exception of 6-chloropurine. The effects of the structure upon the ground- and excited-state dipole moments of the purines are discussed.

  9. Metastable feshbach molecules in high rotational states.

    PubMed

    Knoop, S; Mark, M; Ferlaino, F; Danzl, J G; Kraemer, T; Nägerl, H-C; Grimm, R

    2008-02-29

    We experimentally demonstrate Cs2 Feshbach molecules well above the dissociation threshold, which are stable against spontaneous decay on the time scale of 1 s. An optically trapped sample of ultracold dimers is prepared in a high rotational state and magnetically tuned into a region with a negative binding energy. The metastable character of these molecules arises from the large centrifugal barrier in combination with negligible coupling to states with low rotational angular momentum. A sharp onset of dissociation with increasing magnetic field is mediated by a crossing with a lower rotational dimer state and facilitates dissociation on demand with a well-defined energy. PMID:18352621

  10. New measurements and analysis of the far-infrared spectrum of CH2DOH in the lowest torsional vibrational state (e0)

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Indra

    2016-05-01

    In this work the far infrared (FIR) absorption spectrum has been measured for the asymmetrically mono deuterated Methanol (CH2DOH) species in the wavenumber range of 15-1200 cm-1 better accuracy and signal/noise ratio than known before. Assignments have been made for b-type transitions in the lowest lying torsional vibrational state trans-(e0) for a wide range of rotational angular momentum. The assignments have been rigorously confirmed by the residual loop defect methods. The rR-branch wavenumbers are analyzed by the usual state dependent expansion parameters and the Q-Branch origins. These origins have been used to calculate the torsional and torsional-rotation interaction contributions. These findings are in good agreement with predicted from the Hamiltonian model described in recent publications. A large number of assignments have also been made in the millimeter wave spectrum recorded earlier and thereby evaluated the asymmetry splitting parameters for 4 different axial rotational angular momentum quantum numbers. The analysis and interpretation of the spectra are reported. New assignments for about 260 transitions are included the text and a catalog of about 1500 transitions belonging to the e0 species is prepared (Appendix 1) and is made available through the open server in "Research Gate" and will be freely available to others.

  11. The lowest-energy charge-transfer state and its role in charge separation in organic photovoltaics.

    PubMed

    Nan, Guangjun; Zhang, Xu; Lu, Gang

    2016-06-29

    Energy independent, yet higher than 90% internal quantum efficiency (IQE), has been observed in many organic photovoltaics (OPVs). However, its physical origin remains largely unknown and controversial. The hypothesis that the lowest charge-transfer (CT) state may be weakly bound at the interface has been proposed to rationalize the experimental observations. In this paper, we study the nature of the lowest-energy CT (CT1) state, and show conclusively that the CT1 state is localized in typical OPVs. The electronic couplings in the donor and acceptor are found to determine the localization of the CT1 state. We examine the geminate recombination of the CT1 state and estimate its lifetime from first principles. We identify the vibrational modes that contribute to the geminate recombination. Using material parameters determined from first principles and experiments, we carry out kinetic Monte Carlo simulations to examine the charge separation of the localized CT1 state. We find that the localized CT1 state can indeed yield efficient charge separation with IQE higher than 90%. Dynamic disorder and configuration entropy can provide the energetic and entropy driving force for charge separation. Charge separation efficiency depends more sensitively on the dimension and crystallinity of the acceptor parallel to the interface than that normal to the interface. Reorganization energy is found to be the most important material parameter for charge separation, and lowering the reorganization energy of the donor should be pursued in the materials design.

  12. Single-molecule spectroscopy unmasks the lowest exciton state of the B850 assembly in LH2 from Rps. acidophila.

    PubMed

    Kunz, Ralf; Timpmann, Kõu; Southall, June; Cogdell, Richard J; Freiberg, Arvi; Köhler, Jürgen

    2014-05-01

    We have recorded fluorescence-excitation and emission spectra from single LH2 complexes from Rhodopseudomonas (Rps.) acidophila. Both types of spectra show strong temporal spectral fluctuations that can be visualized as spectral diffusion plots. Comparison of the excitation and emission spectra reveals that for most of the complexes the lowest exciton transition is not observable in the excitation spectra due to the cutoff of the detection filter characteristics. However, from the spectral diffusion plots we have the full spectral and temporal information at hand and can select those complexes for which the excitation spectra are complete. Correlating the red most spectral feature of the excitation spectrum with the blue most spectral feature of the emission spectrum allows an unambiguous assignment of the lowest exciton state. Hence, application of fluorescence-excitation and emission spectroscopy on the same individual LH2 complex allows us to decipher spectral subtleties that are usually hidden in traditional ensemble spectroscopy.

  13. Single-Molecule Spectroscopy Unmasks the Lowest Exciton State of the B850 Assembly in LH2 from Rps. acidophila

    PubMed Central

    Kunz, Ralf; Timpmann, Kõu; Southall, June; Cogdell, Richard J.; Freiberg, Arvi; Köhler, Jürgen

    2014-01-01

    We have recorded fluorescence-excitation and emission spectra from single LH2 complexes from Rhodopseudomonas (Rps.) acidophila. Both types of spectra show strong temporal spectral fluctuations that can be visualized as spectral diffusion plots. Comparison of the excitation and emission spectra reveals that for most of the complexes the lowest exciton transition is not observable in the excitation spectra due to the cutoff of the detection filter characteristics. However, from the spectral diffusion plots we have the full spectral and temporal information at hand and can select those complexes for which the excitation spectra are complete. Correlating the red most spectral feature of the excitation spectrum with the blue most spectral feature of the emission spectrum allows an unambiguous assignment of the lowest exciton state. Hence, application of fluorescence-excitation and emission spectroscopy on the same individual LH2 complex allows us to decipher spectral subtleties that are usually hidden in traditional ensemble spectroscopy. PMID:24806933

  14. Assignments of Lowest Triplet State in Ir Complexes by Observation of Phosphorescence Excitation Spectra at 6 K

    NASA Astrophysics Data System (ADS)

    Kodate, Satoshi; Suzuka, Isamu

    2006-01-01

    We tried the assignment of the origin of phosphorescent bands in Ir complexes. It is important to elucidate the luminescent mechanism in order to design organic light-emitting devices (OLEDs) besed on new materials. The Stokes shift between the phosphorescence and phosphorescence excitation spectra of Ir complexes such as fac-tris(2-phenylpyridine) iridium(III) [Ir(ppy)3], fac-tris(2-(2-thienyl)pyridine) iridium(III) [Ir(thpy)3], bis(2-phenylpyridine) iridium(III)benzo[h]quinoline [Ir(ppy)2bzq], fac-tris(benzo[h]quinoline) iridium(III) [Ir(bzq)3] and bis[(4,6-difluorophenyl)pyridinato](picolinato) iridium(III) [FIrpic] was measured in a solution and (phenyl)4Sn at 6 K. The amount of Stokes shift corresponds to the nature of the lowest triplet state. We discovered that the amount of Stokes shift clearly differs depending on whether the lowest triplet state of each Ir complex is triplet metal-to-ligand charge transfer (3MLCT) or 3π-π*. Namely, the case of 3MLCT shows a large shift, while the case of 3π-π* shows a small shift. We also present the resolved phosphorescence and phosphorescence excitation spectra of Ir complexes in (phenyl)4Sn. The sharp bands were assigned to the 3π-π* transition, and the broad bands were assigned to the 3MLCT state. The nature of the lowest triplet state is also discussed on the basis of resolved spectra.

  15. Nonlinear optical spectra having characteristics of Fano interferences in coherently coupled lowest exciton biexciton states in semiconductor quantum dots

    SciTech Connect

    Gotoh, Hideki Sanada, Haruki; Yamaguchi, Hiroshi; Sogawa, Tetsuomi

    2014-10-15

    Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL) method in a coherently coupled exciton-biexciton system in a single quantum dot (QD). PL and photoluminescence excitation spectroscopy (PLE) are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicate that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.

  16. Zero-field splitting of the lowest excited triplet states of C(60) and C(70) and benzene.

    PubMed

    van Gastel, Maurice

    2010-10-14

    The electronic structure of the lowest excited triplet states of C(60) and C(70) are characterized by a magnetic interaction between the unpaired electrons for which the zero-field-splitting parameter D is negative for the former and positive for the latter molecule. The sign of D has so far been qualitatively understood, and its magnitude has been found to critically depend on the degree of delocalization of the singly occupied molecular orbitals. In this contribution, the effect of spin polarization to the zero-field-splitting parameters of the fullerenes is evaluated, the inclusion of which results in quantitative agreement between the experimental and calculated D values. The direct spin-spin contribution is found to be dominant for both molecules. For C(60), a significant contribution of 20% of the total zero-field splitting has been found to derive from spin polarization. The physical reason for the sign difference of D for C(60) and C(70) is traced back to the relative phases of the local p(z) orbitals of adjacent carbon atoms near the equatorial plane in both singly occupied molecular orbitals. These relative phases differ for C(60) and C(70), because C(70) has an additional set of ten carbon atoms in its equatorial plane as compared to C(60). Additionally, the triplet wave function of C(70) is found to contain significant multireference character. In order to evaluate the effect of spin polarization in multireference systems, the zero-field-splitting parameters of the lowest triplet state of benzene have been evaluated in an illustrative and insightful calculation as well. Though this prototypical molecule is much smaller than C(60) and C(70), the electronic structure of its lowest excited triplet state is also of multireference character. For benzene, 18% of the total zero-field splitting arises from spin polarization.

  17. Measurement of the lifetimes of the lowest {sup 3}P{sub 1} state of neutral Ba and Ra

    SciTech Connect

    Scielzo, N. D.; Guest, J. R.; Schulte, E. C.; Ahmad, I.; Bailey, K.; Holt, R. J.; O'Connor, T. P.; Potterveld, D. H.; Bowers, D. L.; Lu, Z.-T.

    2006-01-15

    The lifetimes of the lowest {sup 3}P{sub 1} states of Ba and Ra were determined to be 1345{+-}14 ns and 422{+-}20 ns, respectively, by measuring the exponential decay of fluorescence after illuminating a thermal atomic beam with pulses of laser light. In addition, the {sup 1}S{sub 0}(F=1/2)-{sup 3}P{sub 1}(F=3/2) transition frequency in {sup 225}Ra was measured to be 13 999.269{+-}0.001 cm{sup -1} by referencing a nearby I{sub 2} transition.

  18. Measurements of the lifetime of the lowest {sup 3}P{sub 1} state of neutral Ba and Ra.

    SciTech Connect

    Scielzo, N. D.; Guest, J. R.; Schulte, E. C.; Ahmad, I.; Bailey, K.; Bowers, D. L.; Holt, R. J.; Lu, Z.-T.; O'Connor, T.; Potterveld, D. H.; Univ. of Chicago

    2006-01-01

    The lifetimes of the lowest {sup 3}P{sub 1} states of Ba and Ra were determined to be 1345 {+-} 14 ns and 422 {+-} 20 ns, respectively, by measuring the exponential decay of fluorescence after illuminating a thermal atomic beam with pulses of laser light. In addition, the {sup 1}S{sub 0}(F=1/2)-{sup 3}P{sub 1}(F=3/2) transition frequency in {sup 225}Ra was measured to be 13 999.269 {+-} 0.001 cm{sup -1} by referencing a nearby I{sub 2} transition.

  19. Accurate ab initio potential energy curves and spectroscopic properties of the four lowest singlet states of C2

    SciTech Connect

    Boschen, Jeffery S.; Theis, Daniel; Ruedenberg, Klaus; Windus, Theresa L.

    2013-12-07

    The diatomic carbon molecule has a complex electronic structure with a large number of low-lying electronic excited states. In this work, the potential energy curves (PECs) of the four lowest lying singlet states (X-1 Sigma(+)(g), A(1)Pi(u), B-1 Delta(g), and B'(1)Sigma(+)(g)) were obtained by high-level ab initio calculations. Valence electron correlation was accounted for by the correlation energy extrapolation by intrinsic scaling (CEEIS) method. Additional corrections to the PECs included core-valence correlation and relativistic effects. Spin-orbit corrections were found to be insignificant. The impact of using dynamically weighted reference wave functions in conjunction with CEEIS was examined and found to give indistinguishable results from the even weighted method. The PECs showed multiple curve crossings due to the B-1 Delta(g) state as well as an avoided crossing between the two (1)Sigma(+)(g) states. Vibrational energy levels were computed for each of the four electronic states, as well as rotational constants and spectroscopic parameters. Comparison between the theoretical and experimental results showed excellent agreement overall. Equilibrium bond distances are reproduced to within 0.05 %. The dissociation energies of the states agree with experiment to within similar to 0.5 kcal/mol, achieving "chemical accuracy." Vibrational energy levels show average deviations of similar to 20 cm(-1) or less. The B-1 Delta(g) state shows the best agreement with a mean absolute deviation of 2.41 cm(-1). Calculated rotational constants exhibit very good agreement with experiment, as do the spectroscopic constants.

  20. Study of Topological Effects Concerning the Lowest A″ and the Three A' States for the CO2(+) Ion.

    PubMed

    Dhindhwal, Vikash; Baer, Michael; Sathyamurthy, N

    2016-05-19

    A study of the topological effects, viz., the Jahn-Teller (JT) and Renner-Teller (RT) effects, in CO2(+) has been carried out by calculating nonadiabatic coupling terms (NACTs) at the state-averaged CASSCF level using the cc-pVTZ basis set for the lowest three A' states and one A″ state along a circular contour. Using the NACTs, the privileged adiabatic-to-diabatic transformation (ADT) angles (γ12) for 1A' and 2A' states of CO2(+) have been calculated along various circular contours. Employing one of the oxygen atoms as the test particle exposed two conical intersections (ci) located on each side of the CO diatom. The main purpose of this study is to explore the possibility of forming reliable diabatic potential energy surfaces for this system. Success in achieving this goal is guaranteed by the ability to calculate quantized privileged ADT angles along closed contours covering large regions in configuration space (see, e.g., J. Phys. Chem. A 2014 , 118 , 6361 ). The calculations were carried out for two and three JT states. In most cases very nice quantization has been achieved although the calculations were frequently done, as required, for large regions in configuration space (sometimes ≥18 Å(2)). In one case, for which the quantization was not gratifying, the inclusion of the RT effect modified it considerably.

  1. Ab initio adiabatic and quasidiabatic potential energy surfaces of lowest four electronic states of the H++O2 system

    NASA Astrophysics Data System (ADS)

    Xavier, F. George D.; Kumar, Sanjay

    2010-10-01

    Ab initio global adiabatic and quasidiabatic potential energy surfaces of lowest four electronic (1-4 A3″) states of the H++O2 system have been computed in the Jacobi coordinates (R,r,γ) using Dunning's cc-pVTZ basis set at the internally contracted multireference (single and double) configuration interaction level of accuracy, which are relevant to the dynamics studies of inelastic vibrational and charge transfer processes observed in the scattering experiments. The computed equilibrium geometry parameters of the bound [HO2]+ ion in the ground electronic state and other parameters for the transition state for the isomerization process, HOO+⇌OOH+ are in good quantitative agreement with those available from the high level ab initio calculations, thus lending credence to the accuracy of the potential energy surfaces. The nonadiabatic couplings between the electronic states have been analyzed in both the adiabatic and quasidiabatic frameworks by computing the nonadiabatic coupling matrix elements and the coupling potentials, respectively. It is inferred that the dynamics of energy transfer processes in the scattering experiments carried out in the range of 9.5-23 eV would involve all the four electronic states.

  2. Transient F-H Center Pairs Produced from Self-Trapped Excitons at the Lowest Triplet State in Alkali Chloride Crystals

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshiro; Abe, Hidetoshi; Hirai, Masamitsu

    1992-08-01

    Time delayed double excitation spectroscopy in the picosecond range has revealed transient F bands due to the F center perturbed by an H center at the next nearest site, [F-H]nnn, in RbCl, KCl and NaCl single crystals after excitation of the self-trapped exciton (STE) from the lowest triplet state to higher excited states. The F band consists of a doublet peaking at 1.99 and 2.11 eV (RbCl), at 2.25 and 2.38 eV (KCl) and at 2.70 and 2.86 eV (NaCl) with the ratio of 2:1 in height in every crystal at 108 ps after the excitation. The peak positions and relative height of the doublets are understood qualitatively by the theory for the off-center type STE. No dichroism of the doublet observed by the light polarized in the [100] or [010] direction suggests rotation of the [F-H] axis during relaxation from the electronic b1u state, but not necessarily from the hole excited πg state.

  3. Conical intersections and diabatic potential energy surfaces for the three lowest electronic singlet states of H{sub 3}{sup +}

    SciTech Connect

    Mukherjee, Saikat; Adhikari, Satrajit; Mukhopadhyay, Debasis

    2014-11-28

    We calculate the adiabatic Potential Energy Surfaces (PESs) and the Non-Adiabatic Coupling Terms (NACTs) for the three lowest singlet states of H{sub 3}{sup +} in hyperspherical coordinates as functions of hyperangles (θ and ϕ) for a grid of fixed values of hyperradius (1.5 ⩽ ρ ⩽ 20 bohrs) using the MRCI level of methodology employing ab initio quantum chemistry package (MOLPRO). The NACT between the ground and the first excited state translates along the seams on the θ − ϕ space, i.e., there are six Conical Intersections (CIs) at each θ (60° ⩽ θ ⩽ 90°) within the domain, 0 ⩽ ϕ ⩽ 2π. While transforming the adiabatic PESs to the diabatic ones, such surfaces show up six crossings along those seams. Our beyond Born-Oppenheimer approach could incorporate the effect of NACTs accurately and construct single-valued, continuous, smooth, and symmetric diabatic PESs. Since the location of CIs and the spatial amplitudes of NACTs are most prominent around ρ = 10 bohrs, generally only those results are depicted.

  4. Exact density of states for lowest Landau level in white noise potential superfield representation for interacting systems

    NASA Astrophysics Data System (ADS)

    Wegner, Franz

    1983-12-01

    The density of states of two-dimensional electrons in a strong perpendicular magnetic field and white-noise potential is calculated exactly under the provision that only the states of the free electrons in the lowest Landau level are taken into account. It is used that the integral over the coordinates in the plane perpendicular to the magnetic field in a Feynman graph yields the inverse of the number λ of Euler trails through the graph, whereas the weight by which a Feynman graph contributes in this disordered system is λ times that of the corresponding interacting system. Thus the factors λ cancel which allows the reduction of the d dimensional disordered problem to a ( d-2) dimensional φ4 interaction problem. The inverse procedure and the equivalence of disordered harmonic systems with interacting systems of superfields is used to give a mapping of interacting systems with U(1) invariance in d dimensions to interacting systems with UPL(1,1) invariance in ( d+2) dimensions. The partition function of the new systems is unity so that systems with quenched disorder can be treated by averaging exp(- H) without recourse to the replica trick.

  5. S1←S0 vibronic spectra and structure of cyclopropanecarboxaldehyde molecule in the S1 lowest excited singlet electronic state

    NASA Astrophysics Data System (ADS)

    Godunov, I. A.; Yakovlev, N. N.; Terentiev, R. V.; Maslov, D. V.; Bataev, V. A.; Abramenkov, A. V.

    2016-11-01

    The S1←S0 vibronic spectra of gas-phase absorption at room temperature and fluorescence excitation of jet-cooled cyclopropanecarboxaldehyde (CPCA, c-C3H5CHO)were obtained and analyzed. In addition, the quantum chemical calculation (CASPT2/cc-pVTZ)was carried out for CPCA in the ground (S0) and lowest excited singlet (S1) electronic states. As a result, it was proved that the S1←S0 electronic excitation of the CPCA conformers (syn and anti) causes (after geometrical relaxation) significant structural changes, namely, the carbonyl fragments become non-planar and the cyclopropyl groups rotate around the central C-C bond. As a consequence, the potential energy surface of CPCA in the S1 state has six minima, 1ab, 2ab, and 3ab, corresponding to three pairs of mirror symmetry conformers: a and b. It was shown that vibronic bands of experimental spectra can be assigned to the 2(S1)←syn(S0) electronic transition with the origin at 30,481 cm-1. A number of fundamental vibrational frequencies for the 2 conformer of CPCA were assigned. In addition, several inversional energy levels for the 2 conformer were found and the 2a↔2b potential function of inversion was determined. The experimental barrier to inversion and the equilibrium angle between the CH bond and the CCO plane were calculated as 570 cm-1 and 28°, respectively.

  6. Valence and ionic lowest-lying electronic states of ethyl formate as studied by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy, and ab initio calculations.

    PubMed

    Śmiałek, M A; Łabuda, M; Guthmuller, J; Hubin-Franskin, M-J; Delwiche, J; Duflot, D; Mason, N J; Hoffmann, S V; Jones, N C; Limão-Vieira, P

    2014-09-14

    The highest resolution vacuum ultraviolet photoabsorption spectrum of ethyl formate, C2H5OCHO, yet reported is presented over the wavelength range 115.0-275.5 nm (10.75-4.5 eV) revealing several new spectral features. Valence and Rydberg transitions and their associated vibronic series, observed in the photoabsorption spectrum, have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of ethyl formate and are compared with a newly recorded He(I) photoelectron spectrum (from 10.1 to 16.1 eV). New vibrational structure is observed in the first photoelectron band. The photoabsorption cross sections have been used to calculate the photolysis lifetime of ethyl formate in the upper stratosphere (20-50 km).

  7. Valence and ionic lowest-lying electronic states of ethyl formate as studied by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy, and ab initio calculations.

    PubMed

    Śmiałek, M A; Łabuda, M; Guthmuller, J; Hubin-Franskin, M-J; Delwiche, J; Duflot, D; Mason, N J; Hoffmann, S V; Jones, N C; Limão-Vieira, P

    2014-09-14

    The highest resolution vacuum ultraviolet photoabsorption spectrum of ethyl formate, C2H5OCHO, yet reported is presented over the wavelength range 115.0-275.5 nm (10.75-4.5 eV) revealing several new spectral features. Valence and Rydberg transitions and their associated vibronic series, observed in the photoabsorption spectrum, have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of ethyl formate and are compared with a newly recorded He(I) photoelectron spectrum (from 10.1 to 16.1 eV). New vibrational structure is observed in the first photoelectron band. The photoabsorption cross sections have been used to calculate the photolysis lifetime of ethyl formate in the upper stratosphere (20-50 km). PMID:25217920

  8. Valence and ionic lowest-lying electronic states of ethyl formate as studied by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy, and ab initio calculations

    SciTech Connect

    Śmiałek, M. A.; Duflot, D.; Mason, N. J.; Hoffmann, S. V.; Jones, N. C.; Limão-Vieira, P.

    2014-09-14

    The highest resolution vacuum ultraviolet photoabsorption spectrum of ethyl formate, C{sub 2}H{sub 5}OCHO, yet reported is presented over the wavelength range 115.0–275.5 nm (10.75–4.5 eV) revealing several new spectral features. Valence and Rydberg transitions and their associated vibronic series, observed in the photoabsorption spectrum, have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of ethyl formate and are compared with a newly recorded He(I) photoelectron spectrum (from 10.1 to 16.1 eV). New vibrational structure is observed in the first photoelectron band. The photoabsorption cross sections have been used to calculate the photolysis lifetime of ethyl formate in the upper stratosphere (20–50 km)

  9. Field shifts and lowest order QED corrections for the ground 1 1S and 2 3S states of the helium atoms.

    PubMed

    Frolov, Alexei M

    2007-03-14

    The bound state properties of the ground 1 1S(L=0) state and the lowest triplet 2 3S(L=0) state of the 3He, 4He, and infinityHe helium atoms are determined to very high accuracy from the results of direct numerical computations. To compute the bound state properties of these atoms the author applied his exponential variational expansion in relative/perimetric three-body coordinates. For the ground 1 1S(L=0) state and the lowest triplet 2 3S(L=0) state of the 3He, 4He, and infinityHe atoms the author also determined the lowest order QED corrections and the field component of isotopic shift (=field shift). For the 2 3S(L=0) state of the 3He atom the hyperfine structure splitting is evaluated. The considered properties of the ground 1 1S state and the lowest 2 3S state in the 3He and 4He atoms are of great interest in a number of applications.

  10. State Funds for Higher Education Total $34-Billion; 11-Pct. Biennial Rise Equals Lowest in 29 Years.

    ERIC Educational Resources Information Center

    Jaschik, Scott

    1987-01-01

    Tight state budgets and regional economic difficulties have prompted a sharp drop in the rate that state appropriations for higher education have increased over the past two years. New England fares well while farm and oil states suffer. (MLW)

  11. Lowest electronic states of the CP47 antenna protein complex of photosystem II: simulation of optical spectra and revised structural assignments.

    PubMed

    Reppert, Mike; Acharya, Khem; Neupane, Bhanu; Jankowiak, Ryszard

    2010-09-16

    In this work, we present simulated steady-state absorption, emission, and nonresonant hole burning (HB) spectra for the CP47 antenna complex of photosystem II (PS II) based on fits to recently refined experimental data (Neupane et al. J. Am. Chem. Soc. 2010, 132, 4214). Excitonic simulations are based on the 2.9 Å resolution structure of the PS II core from cyanobacteria (Guskov et al. Nat. Struct. Mol. Biol. 2009, 16, 334), and allow for preliminary assignment of the chlorophylls (Chls) contributing to the lowest excitonic states. The search for realistic site energies was guided by experimental constraints and aided by simple fitting algorithms. The following experimental constraints were used: (i) the oscillator strength of the lowest-energy state should be approximately ≤0.5 Chl equivalents; (ii) the excitonic structure must explain the experimentally observed red-shifted (∼695 nm) emission maximum; and (iii) the excitonic interactions of all states must properly describe the broad (non-line-narrowed, NLN) HB spectrum (including its antihole) whose shape is extremely sensitive to the excitonic structure of the complex, especially the lowest excitonic states. Importantly, our assignments differ significantly from those previously reported by Raszewski and Renger (J. Am. Chem. Soc. 2008, 130, 4431), due primarily to differences in the experimental data simulated. In particular, we find that the lowest state localized on Chl 526 possesses too high of an oscillator strength to fit low-temperature experimental data. Instead, we suggest that Chl 523 most strongly contributes to the lowest excitonic state, with Chl 526 contributing to the second excitonic state. Since the fits of nonresonant holes are more restrictive (in terms of possible site energies) than those of absorption and emission spectra, we suggest that fits of linear optical spectra along with HB spectra provide more realistic site energies.

  12. Steady States of the Parametric Rotator and Pendulum

    ERIC Educational Resources Information Center

    Bouzas, Antonio O.

    2010-01-01

    We discuss several steady-state rotation and oscillation modes of the planar parametric rotator and pendulum with damping. We consider a general elliptic trajectory of the suspension point for both rotator and pendulum, for the latter at an arbitrary angle with gravity, with linear and circular trajectories as particular cases. We treat the…

  13. Rydberg-atom-mediated nondestructive readout of collective rotational states in polar-molecule arrays

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Elena; Rittenhouse, Seth T.; Sadeghpour, H. R.; Yelin, Susanne F.

    2016-09-01

    We analyze the possibility to exploit charge-dipole interaction between a single polar molecule or a one-dimensional (1D) molecular array and a single Rydberg atom to read out molecular rotational populations. We calculate the energy shift of a single Rb (60 s ) atom interacting with a single KRb or RbYb molecule in their lowest two rotational states. At atom-molecule distances, relevant to trapping of molecules in optical lattices, the Rydberg electron energy shifts conditioned on the rotational states, are of the order of several MHz. Atom excitation to a Rydberg state and detection of atomic fluorescence conditioned on a rotational state preserves the molecule, making our scheme a nondestructive measurement of the rotational state. Similarly, a 1D array of polar molecules can shift the electron energy of a blockaded Rydberg superatom. We consider a scheme to read out the molecular array collective rotational states using the conditioned Rydberg energy shifts, and numerically analyze a system with three and five KRb or RbYb molecules interacting with Rb (60 s ) superatom.

  14. Solid State Replacement of Rotating Mirror Cameras

    SciTech Connect

    Frank, A M; Bartolick, J M

    2006-08-25

    Rotating mirror cameras have been the mainstay of mega-frame per second imaging for decades. There is still no electronic camera that can match a film based rotary mirror camera for the combination of frame count, speed, resolution and dynamic range. The rotary mirror cameras are predominantly used in the range of 0.1 to 100 micro-seconds per frame, for 25 to more than a hundred frames. Electron tube gated cameras dominate the sub microsecond regime but are frame count limited. Video cameras are pushing into the microsecond regime but are resolution limited by the high data rates. An all solid state architecture, dubbed ''In-situ Storage Image Sensor'' or ''ISIS'', by Prof. Goji Etoh, has made its first appearance into the market and its evaluation is discussed. Recent work at Lawrence Livermore National Laboratory has concentrated both on evaluation of the presently available technologies and exploring the capabilities of the ISIS architecture. It is clear though there is presently no single chip camera that can simultaneously match the rotary mirror cameras, the ISIS architecture has the potential to approach their performance.

  15. Relativistic four-component potential energy curves for the lowest 23 covalent states of molecular bromine (Br2).

    PubMed

    Gomes, José da Silva; Gargano, Ricardo; Martins, João B L; M de Macedo, Luiz Guilherme

    2014-08-01

    The covalent excited states and ground state of the Br2 molecule has been investigated by using four-component relativistic COSCI and MRCISD methods. These methods were performed for all covalent states in the representation Ω((±)). Calculated potential energy curves (PECs) were obtained at the four-component COSCI level, and spectroscopic constants (R(e), D(e), D0, ω(e), ω(e)x(e), ω(e)y(e), B(e), α(e), γ(e), Te, Dv) for bounded states are reported. The vertical excitations for all covalent states are reported at COSCI, MRCISD, and MRCISD+Q levels. We also present spectroscopic constants for two weakly bounded states (A':(1)2u and B':(1)0(-)u) not yet reported in the literature, as well as accurate analytical curves for all five relativistic molecular bounded sates [the ground state X:0 g(+) and the excited states A:(1)1(u), B:(1)0(u)(+), C:(2)1(u), and B':(1)0(u)(-)] found in this work.

  16. Short Rotation Crops in the United States

    SciTech Connect

    Wright, L L

    1998-06-04

    The report is based primarily on the results of survey questions sent to approximately 60 woody and 20 herbaceous crop researchers in the United States and on information from the U.S. Department of Energy's Bioenergy Feedstock Development Program. Responses were received from 13 individuals involved in woody crops research or industrial commercialization (with 5 of the responses coming from industry). Responses were received from 11 individuals involved in herbaceous crop research. Opinions on market incentives, technical and non-technical barriers, and highest priority research and development areas are summarized in the text. Details on research activities of the survey responders are provided as appendices to the paper. Woody crops grown as single-stem systems (primarily Populus and Eucalyptus species) are perceived to have strong pulp fiber and oriented strand board markets, and the survey responders anticipated that energy will comprise 25% or less of the utilization of single-stem short-rotation woody crops between now and 2010. The only exception was a response from California where a substantial biomass energy market does currently exist. Willows (Salix species) are only being developed for energy and only in one part of the United States at present. Responses from herbaceous crop researchers suggested frustration that markets (including biomass energy markets) do not currently exist for the crop, and it was the perception of many that federal incentives will be needed to create such markets. In all crops, responses indicate that a wide variety of research and development activities are needed to enhance the yields and profitability of the crops. Ongoing research activities funded by the U.S. Department of Energy's Bioenergy Feedstock Development Program are described in an appendix to the paper.

  17. Incompressible Liquid State of Rapidly Rotating Bosons at Filling Factor 3/2

    SciTech Connect

    Rezayi, E.H.; Read, N.; Cooper, N.R.

    2005-10-14

    Bosons in the lowest Landau level, such as rapidly rotating cold trapped atoms, are investigated numerically in the specially interesting case in which the filling factor (ratio of particle number to vortex number) is 3/2. When a moderate amount of a longer-range (e.g., dipolar) interaction is included, we find clear evidence that the ground state is in a phase constructed earlier by two of us, in which excitations possess non-Abelian statistics.

  18. Identifying the lowest electronic states of the chlorophylls in the CP47 core antenna protein of photosystem II.

    PubMed

    De Weerd, Frank L; Palacios, Miguel A; Andrizhiyevskaya, Elena G; Dekker, Jan P; Van Grondelle, Rienk

    2002-12-24

    CP47 is a pigment-protein complex in the core of photosystem II that tranfers excitation energy to the reaction center. Here we report on a spectroscopic investigation of the isolated CP47 complex. By deconvoluting the 77 K absorption and linear dichroism, red-most states at 683 and 690 nm have been identified with oscillator strengths corresponding to approximately 3 and approximately 1 chlorophyll, respectively. Both states contribute to the 4 K emission, and the Stark spectrum shows that they have a large value for the difference polarizability between their ground and excited states. From site-selective polarized triplet-minus-singlet spectra, an excitonic origin for the 683 nm state was found. The red shift of the 690 nm state is most probably due to strong hydrogen bonding to a protein ligand, as follows from the position of the stretch frequency of the chlorophyll 13(1) keto group (1633 cm(-)(1)) in the fluorescence line narrowing spectrum at 4 K upon red-most excitation. We discuss how the 683 and 690 nm states may be linked to specific chlorophylls in the crystal structure [Zouni, A., Witt, H.-T., Kern, J., Fromme, P., Krauss, N., Saenger, W., and Orth, P. (2001) Nature 409, 739-743].

  19. Superdeformed states in rotating152Dy

    NASA Astrophysics Data System (ADS)

    Strutinsky, V. M.

    1987-09-01

    The recently observed gamma-spectrum of152Dy at angular momenta 25>~ I>~60 is interpreted in terms of a strongly deformed shape isomer. A pronounced minimum is found for these angular momenta in the sum of liquid-drop energy (including rotational part) and shell-correction (calculated in the Nilsson model) of152Dy. The general criteria for stability of this minimum against rotation are discussed.

  20. The order of three lowest-energy states of the six-electron harmonium at small force constant

    NASA Astrophysics Data System (ADS)

    Strasburger, Krzysztof

    2016-06-01

    The order of low-energy states of six-electron harmonium is uncertain in the case of strong correlation, which is not a desired situation for the model system being considered for future testing of approximate methods of quantum chemistry. The computational study of these states has been carried out at the frequency parameter ω = 0.01, using the variational method with the basis of symmetry-projected, explicitly correlated Gaussian (ECG) lobe functions. It has revealed that the six-electron harmonium at this confinement strength is an octahedral Wigner molecule, whose order of states is different than in the strong confinement regime and does not agree with the earlier predictions. The results obtained for ω = 0.5 and 10 are consistent with the findings based on the Hund's rules for the s2p4 electron configuration. Substantial part of the computations has been carried out on the graphical processing units and the efficiency of these devices in calculation of the integrals over ECG functions has been compared with traditional processors.

  1. Transient resonance Raman spectra of benzophenone and its four isotopic analogues in the lowest excited triplet state

    SciTech Connect

    Tahara, T.; Hamaguchi, H.; Tasumi, M.

    1987-11-05

    Transient resonance Raman spectra of T/sub 1/ benzophenone (T/sub 1/BP) and its four isotopic analogues in carbon tetrachloride solutions were measured. Vibrational assignments of eight T/sub 1/ bands have been made on the basis of the observed isotopic frequency shifts. The assignments clarified the following three points concerning the structure of T/sub 1/ BP in solution. (1) The CO bond order in T/sub 1/ BP is much lower than that in the ground-state benzophenone (S/sub 0/ BP). The CO stretching frequency in T/sub 1/ is found to be 1222 cm/sup -1/, whereas the corresponding value in S/sub 0/ is 1665 cm/sup -1/. The former frequency indicates a single-bond-like character of the CO bonding in the T/sub 1/ state. (2) Vibrational frequencies of several ring modes show marked downshifts in going from S/sub 0/ to T/sub 1/. This suggests the delocalization of the ..pi..* electron into the ring part. (3) The assignment (1302 cm/sup -1/) of the symmetric C-phenyl stretch mode in the T/sub 1/ withdraws S/sub 0/ absorption spectrum is questioned. According to the present assignment, the frequency of this mode (approx. 1100 cm/sup -1/) is slightly lower than that in the ground state (1150 cm/sup -1/). The simple quantum chemical picture of T/sub 1/ BP, which predicted the increase of the C-phenyl bond order with the ..pi..* withdraws n excitation, should therefore be reconsidered.

  2. The rotational spectrum of the NiS radical in the X3Sigma- state.

    PubMed

    Yamamoto, Takuya; Tanimoto, Mitsutoshi; Okabayashi, Toshiaki

    2007-07-28

    The rotational spectrum of the NiS radical in the X(3)Sigma(-) state was observed by employing a source-modulation microwave spectrometer. The NiS radical was generated in a free space cell by a dc glow discharge in H(2)S diluted with Ar. The nickel atoms were supplied by the sputtering reaction from a nickel cathode. Rotational transitions with J = 11-10 to 25-24 were measured in the region between 135 and 314 GHz. Rotational, centrifugal distortion and several fine-structure constants were determined by a least-squares analysis. Other spectroscopic parameters such as dissociation energy, vibrational wavenumber and equilibrium bond length were also derived from the determined molecular constants. Excitation energies of the lowest (3)Pi and (1)Sigma(+) states were estimated from the fine-structure constants, lambda and gamma.

  3. The role played by some factors of intramolecular interaction in nonradiative deactivation of the lowest triplet state of octachlorodibenzo- p-dioxin

    NASA Astrophysics Data System (ADS)

    Gastilovich, E. A.; Klimenko, V. G.; Volkova, L. V.; Nurmukhametov, R. N.

    2012-11-01

    We have studied how intramolecular interactions, such as vibronically induced spin-orbit (VISO) and nonadiabatic interactions, which are governed by different structural elements of the octachlorodibenzo- p-dioxin (OCDD) molecule, affect the deactivation of its lowest triplet state. In the nonadiabatic approximation, taking into account out-of-plane vibrational modes as promoting ones, we have estimated the values of rate constant K {dg/s} of the nonradiative energy deactivation of in-plane triplet sublevels ( s = z, y) of the triplet state of the OCDD molecule.

  4. The lowest-energy chlorophyll of photosystem II is adjacent to the peripheral antenna: Emitting states of CP47 assigned via circularly polarized luminescence.

    PubMed

    Hall, Jeremy; Renger, Thomas; Müh, Frank; Picorel, Rafael; Krausz, Elmars

    2016-09-01

    The identification of low-energy chlorophyll pigments in photosystem II (PSII) is critical to our understanding of the kinetics and mechanism of this important enzyme. We report parallel circular dichroism (CD) and circularly polarized luminescence (CPL) measurements at liquid helium temperatures of the proximal antenna protein CP47. This assembly hosts the lowest-energy chlorophylls in PSII, responsible for the well-known "F695" fluorescence band of thylakoids and PSII core complexes. Our new spectra enable a clear identification of the lowest-energy exciton state of CP47. This state exhibits a small but measurable excitonic delocalization, as predicated by its CD and CPL. Using structure-based simulations incorporating the new spectra, we propose a revised set of site energies for the 16 chlorophylls of CP47. The significant difference from previous analyses is that the lowest-energy pigment is assigned as Chl 612 (alternately numbered Chl 11). The new assignment is readily reconciled with the large number of experimental observations in the literature, while the most common previous assignment for the lowest energy pigment, Chl 627(29), is shown to be inconsistent with CD and CPL results. Chl 612(11) is near the peripheral light-harvesting system in higher plants, in a lumen-exposed region of the thylakoid membrane. The low-energy pigment is also near a recently proposed binding site of the PsbS protein. This result consequently has significant implications for our understanding of the kinetics and regulation of energy transfer in PSII. PMID:27342201

  5. The lowest-energy chlorophyll of photosystem II is adjacent to the peripheral antenna: Emitting states of CP47 assigned via circularly polarized luminescence.

    PubMed

    Hall, Jeremy; Renger, Thomas; Müh, Frank; Picorel, Rafael; Krausz, Elmars

    2016-09-01

    The identification of low-energy chlorophyll pigments in photosystem II (PSII) is critical to our understanding of the kinetics and mechanism of this important enzyme. We report parallel circular dichroism (CD) and circularly polarized luminescence (CPL) measurements at liquid helium temperatures of the proximal antenna protein CP47. This assembly hosts the lowest-energy chlorophylls in PSII, responsible for the well-known "F695" fluorescence band of thylakoids and PSII core complexes. Our new spectra enable a clear identification of the lowest-energy exciton state of CP47. This state exhibits a small but measurable excitonic delocalization, as predicated by its CD and CPL. Using structure-based simulations incorporating the new spectra, we propose a revised set of site energies for the 16 chlorophylls of CP47. The significant difference from previous analyses is that the lowest-energy pigment is assigned as Chl 612 (alternately numbered Chl 11). The new assignment is readily reconciled with the large number of experimental observations in the literature, while the most common previous assignment for the lowest energy pigment, Chl 627(29), is shown to be inconsistent with CD and CPL results. Chl 612(11) is near the peripheral light-harvesting system in higher plants, in a lumen-exposed region of the thylakoid membrane. The low-energy pigment is also near a recently proposed binding site of the PsbS protein. This result consequently has significant implications for our understanding of the kinetics and regulation of energy transfer in PSII.

  6. Reducing collective quantum state rotation errors with reversible dephasing

    SciTech Connect

    Cox, Kevin C.; Norcia, Matthew A.; Weiner, Joshua M.; Bohnet, Justin G.; Thompson, James K.

    2014-12-29

    We demonstrate that reversible dephasing via inhomogeneous broadening can greatly reduce collective quantum state rotation errors, and observe the suppression of rotation errors by more than 21 dB in the context of collective population measurements of the spin states of an ensemble of 2.1×10{sup 5} laser cooled and trapped {sup 87}Rb atoms. The large reduction in rotation noise enables direct resolution of spin state populations 13(1) dB below the fundamental quantum projection noise limit. Further, the spin state measurement projects the system into an entangled state with 9.5(5) dB of directly observed spectroscopic enhancement (squeezing) relative to the standard quantum limit, whereas no enhancement would have been obtained without the suppression of rotation errors.

  7. Measurement of the autoionization lifetime of the energetically lowest doubly excited Q_1\\,^1\\Sigma ^+_{u} state in H2 using electron ejection asymmetry

    NASA Astrophysics Data System (ADS)

    Fischer, Andreas; Sperl, Alexander; Cörlin, Philipp; Schönwald, Michael; Meuren, Sebastian; Ullrich, Joachim; Pfeifer, Thomas; Moshammer, Robert; Senftleben, Arne

    2014-01-01

    The autoionization lifetime of doubly excited H2 created by single photon absorption has been measured by means of a kinematically complete study. For dissociative ionization the experimentally observed asymmetry in the electron ejection direction with respect to the emitted proton is used to disentangle the two interfering pathways, direct ionization and autoionization. This allows us to determine the autoionization lifetime of the energetically lowest doubly excited Q_1\\,^1\\Sigma _{u}^+(1) state for a large range of internuclear distances, including the previously inaccessible small values. Excellent agreement with available ab initio calculations is obtained.

  8. Accurate evaluations of the field shift and lowest-order QED correction for the ground 1{sup 1}S−states of some light two-electron ions

    SciTech Connect

    Frolov, Alexei M.; Wardlaw, David M.

    2014-09-14

    Mass-dependent and field shift components of the isotopic shift are determined to high accuracy for the ground 1{sup 1}S−states of some light two-electron Li{sup +}, Be{sup 2+}, B{sup 3+}, and C{sup 4+} ions. To determine the field components of these isotopic shifts we apply the Racah-Rosental-Breit formula. We also determine the lowest order QED corrections to the isotopic shifts for each of these two-electron ions.

  9. Nuclear structure beyond the neutron drip line: The lowest energy states in 9He via their T = 5/2 isobaric analogs in 9Li

    NASA Astrophysics Data System (ADS)

    Uberseder, E.; Rogachev, G. V.; Goldberg, V. Z.; Koshchiy, E.; Roeder, B. T.; Alcorta, M.; Chubarian, G.; Davids, B.; Fu, C.; Hooker, J.; Jayatissa, H.; Melconian, D.; Tribble, R. E.

    2016-03-01

    The level structure of the very neutron rich and unbound 9He nucleus has been the subject of significant experimental and theoretical study. Many recent works have claimed that the two lowest energy 9He states exist with spins Jπ = 1 /2+ and Jπ = 1 /2- and widths on the order of 100-200 keV. These findings cannot be reconciled with our contemporary understanding of nuclear structure. The present work is the first high-resolution study with low statistical uncertainty of the relevant excitation energy range in the 8He+n system, performed via a search for the T = 5 / 2 isobaric analog states in 9Li populated through 8He+p elastic scattering. The present data show no indication of any narrow structures. Instead, we find evidence for a broad Jπ = 1 /2+ state in 9He located approximately 3 MeV above the neutron decay threshold.

  10. Optical cooling of AlH+ to the rotational ground state

    NASA Astrophysics Data System (ADS)

    Lien, Chien-Yu; Seck, Christopher; Odom, Brian

    2014-05-01

    We demonstrate cooling of the rotational degree of freedom of trapped diatomic molecular ions to the rotational ground state. The molecule of interested, AlH+, is co-trapped and sympathetically cooled with Ba+ to milliKelvin temperatures in its translational degree of freedom. The nearly diagonal Franck-Condon-Factors between the electronic X and A states of AlH+ create semi-closed cycling transitions between the vibrational ground states of X and A states. A spectrally filtered femtosecond laser is used to optically pump the population to the two lowest rotational levels, with opposite parities, in as fast as 100 μs via driving the A-X transition. In addition, a cooling scheme relying on vibrational relaxation brings the population to the N = 0 positive-parity level in as fast as 100 ms. The population distribution among the rotational levels is detected by resonance-enhanced multiphoton dissociation (REMPD) and time-of-flight mass-spectrometry (TOFMS). Although the current two-photon state readout scheme is destructive, a scheme of single-molecule fluorescence detection is also considered.

  11. An optical-optical double resonance probe of the lowest triplet state of jet-cooled thiophosgene: Rovibronic structures and electronic relaxation

    NASA Astrophysics Data System (ADS)

    Fujiwara, Takashige; Lim, Edward C.; Judge, Richard H.; Moule, David C.

    2006-03-01

    The vibrational structure, rotational structure, and electronic relaxation of the "dark" T1A23(n,π*) state of jet-cooled thiophosgene have been investigated by two-color S2←T1←S0 optical-optical double resonance (OODR) spectroscopy, which monitors the S2→S0 fluorescence generated by S2←T1 excitation. This method is capable of isolating the T1 vibrational structure into a1, b1, and b2 symmetry blocks. The fluorescence-detected vibrational structure of the Tz spin state of T1 shows that the CS stretching frequency as well as the barrier height for pyramidal deformation are significantly greater in the A23(n,π*) state than in the corresponding A21(n,π*) state. The differing vibrational parameters of the T1 thiophosgene relative to the S1 thiophosgene can be attributed to the motions of unpaired electrons that are better correlated when they are in the excited singlet state than when they are in the triplet state of same electron configuration. A set of T1 structural parameters and the information concerning the T1 spin states have been obtained from least-square fittings of the rotationally resolved T1←S0 excitation spectrum. The nearly degenerate ∣x⟩ and ∣y⟩ spin states are well removed from ∣z⟩ spin component, indicating that T1 thiophosgene is a good example of case (ab) coupling. The decay of the ∣z⟩ spin state of T1 thiophosgene, obtained from time-resolved S2←T1←S0 OODR experiment, is characteristic of strong-coupling intermediate-case decay in which an initial rapid decay is followed by recurrences and/or a long-lived quasiexponential decay.

  12. Lowest excited states and optical absorption spectra of donor-acceptor copolymers for organic photovoltaics: a new picture emerging from tuned long-range corrected density functionals.

    PubMed

    Pandey, Laxman; Doiron, Curtis; Sears, John S; Brédas, Jean-Luc

    2012-11-01

    Polymers with low optical gaps are of importance to the organic photovoltaics community due to their potential for harnessing a large portion of the solar energy spectrum. The combination along their backbones of electron-rich and electron-deficient fragments contributes to the presence of low-lying excited states that are expected to display significant charge-transfer character. While conventional hybrid functionals are known to provide unsatisfactory results for charge-transfer excitations at the time-dependent DFT level, long-range corrected (LRC) functionals have been reported to give improved descriptions in a number of systems. Here, we use such LRC functionals, considering both tuned and default range-separation parameters, to characterize the absorption spectra of low-optical-gap systems of interest. Our results indicate that tuned LRC functionals lead to simulated optical-absorption properties in good agreement with experimental data. Importantly, the lowest-lying excited states (excitons) are shown to present a much more localized nature than initially anticipated.

  13. Approaching an exact treatment of electronic correlations at solid surfaces: The binding energy of the lowest bound state of helium adsorbed on MgO(100)

    NASA Astrophysics Data System (ADS)

    Martinez-Casado, Ruth; Usvyat, Denis; Maschio, Lorenzo; Mallia, Giuseppe; Casassa, Silvia; Ellis, John; Schütz, Martin; Harrison, Nicholas M.

    2014-05-01

    In this work we employ ab initio electronic structure theory at a very high level to resolve a long standing experimental controversy; the interaction between helium and the MgO (100) surface has been studied extensively by other groups, employing diverse experimental approaches. Nevertheless, the binding energy of the lowest bound state is still unclear: the existence of a state at around -5.5 meV is well established but a state at -10 meV has also been reported. The MgO (100)-He system captures the fundamental physics involved in many adsorption problems; the weak binding is governed by long-range electronic correlation for which a fully predictive theory applicable to the solid state has been elusive. The above-mentioned experimental controversy can now be resolved on the basis of the calculations presented in this work. We performed three-dimensional vibrational dynamics calculations on a highly accurate potential-energy surface. The latter was constructed using a method which systematically approaches the exact limit in its treatment of electronic correlation. The outcome is clear: our calculations do not support the existence of a bound state around -10 meV.

  14. Quantum Hall States in Rotating Spin-1 Bose Systems

    NASA Astrophysics Data System (ADS)

    Read, Nicholas

    2003-03-01

    It has been pointed out that when cold atoms in a trap are rotated rapidly, the system can be mapped onto the quantum Hall effect situation of charged particles in a magnetic field, by passing to the rotating frame. For spinless bosons, as the rotation rate increases, the Bose condensate first develops a vortex lattice, then at high rotation rate this is replaced by a sequence of quantum liquids, which are quantum Hall states of bosons. Numerical work [1] has indicated that there is a sequence of these that are well-described by the parafermion states of Read-Rezayi [2]. For spin-1 bosons, we describe here two sequences of spin-singlet quantum Hall states, with applications to the ground states of a standard model Hamiltonian for this system [3]. We also describe the states at low rotation rates, where various spin textures occur. [1] N.R. Cooper, N.K. Wilkin, and J.M.F. Gunn, Phys. Rev. Lett. 87, 120405 (2001). [2] N. Read and E. Rezayi, Phys. Rev. B 59, 8084 (1999). [3] J.W. Reijnders, F.J.M. Lankvelt, K. Schoutens, and N. Read, Phys. Rev. Lett. 89, 120401 (2002).

  15. Chimera states on the route from coherence to rotating waves.

    PubMed

    Jaros, Patrycja; Maistrenko, Yuri; Kapitaniak, Tomasz

    2015-02-01

    We report different types of chimera states in the Kuramoto model with inertia. They arise on the route from coherence, via so-called solitary states, to the rotating waves. We identify the wide region in parameter space, in which a different type of chimera state, i.e., the imperfect chimera state, which is characterized by a certain number of oscillators that have escaped from the synchronized chimera's cluster, appears. We describe a mechanism for the creation of chimera states via the appearance of the solitary states. Our findings reveal that imperfect chimera states represent characteristic spatiotemporal patterns at the transition from coherence to incoherence.

  16. π*-σ* hyperconjugation mechanism on the rotational barrier of the methyl group (III): Methyl-azabenzenes in the ground, excited, and anionic states

    NASA Astrophysics Data System (ADS)

    Kawamura, Y.; Nagasawa, T.; Nakai, H.

    2001-05-01

    We theoretically investigate the internal rotations of the methyl group in methyl-azabenzenes, such as o- and m-methylpyridines, 2-methylpyrazine, 4-methylpyrimidine, 4-methylpyridadine, and 4-methyl-1,2,3-triazine in the ground, excited, and anionic states. The calculated rotational barriers reproduce well the experimental data. Orbital pictures are given for the barrier changes by excitation and electron attachment. An idea of π*-σ* hyperconjugation is applied for a comprehensive interpretation of the barrier changes. A correlation is found between the rotational barriers and the splitting of the lowest and next-lowest unoccupied molecular orbitals.

  17. Fine structure of far infrared spectrum of ethanol in the lowest OH-torsional vibrational trans-state (e0) of ethanol

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Indra

    2016-05-01

    In this report the spectroscopic results for far infrared Fourier transform spectrum corresponding to the b-type transitions within the lowest lying trans-substrate (e0) have been presented. The calculated matrix elements connecting various K-levels suggest that ΔK = 1 transitions within the trans- subs-state should be quite strong but the transitions between the trans state to the gauche states would quite week (practically non-existent). This was also concluded by previous studies using microwave and millimeter wave regions (Pearson et al., 1982; Millar, 1995). The assignments were confirmed by direct observations at the spectrum and the agreement between the observed and calculated spectrum using precise energy levels reported by Pearson et al. (1982). All the strong RR and some RQ branch lines starting from K = 10 ← 9 through K = 24 ← 23 have been identified. State dependent expansion parameters for all the 15 sub-bands have been presented. These parameters can reproduce the experimental wave numbers within experimental uncertainty. An atlas for about 450 transition lines corresponding to transitions within the e0 torsional-vibrational species has been prepared. To our knowledge this is the first time the high resolution far infra-red spectral region study for ethanol have been performed.

  18. Potential Energy Surfaces for the First Two Lowest-Lying Electronic States of the LiH2(+) System, and Dynamics of the H(+) + LiH ⇌ H2(+) + Li + Reactions.

    PubMed

    He, Xiaohu; Lv, Shuangjiang; Hayat, Tasawar; Han, Keli

    2016-04-21

    Two new potential energy surfaces are established for the ground and first excited electronic states of the LiH2(+) system, which are important for the astrophysics-related H(+) + LiH(+) and H(+) + LiH reactions. The ab initio energy points are calculated using the complete active space self-consistent field and multireference configuration interaction method with aug-cc-pVQZ basis set. At each state, more than 40000 energy points are calculated. The spectroscopic constants of the diatoms and the topographical characters of the new surfaces are examined in detail, showing good agreement with the available literature results. The reaction probabilities, integral and differential cross sections, and rate constants for the H(+) + LiH ⇌ H2(+) + Li reactions are obtained by performing quantum dynamics calculations, and compared with the previous literature results. The reaction mechanisms are discussed in detail. It is shown that the new surfaces can be recommended for the dynamics study of the H(+) + LiH(+) and H(+) + LiH(+) reactions and other research including LiH2(+) based rovibrational spectra and cluster dynamics.

  19. Laboratory rotational ground state transitions of NH3D+ and CF+

    NASA Astrophysics Data System (ADS)

    Stoffels, A.; Kluge, L.; Schlemmer, S.; Brünken, S.

    2016-09-01

    Aims: This paper reports accurate laboratory frequencies of the rotational ground state transitions of two astronomically relevant molecular ions, NH3D+ and CF+. Methods: Spectra in the millimetre-wave band were recorded by the method of rotational state-selective attachment of He atoms to the molecular ions stored and cooled in a cryogenic ion trap held at 4 K. The lowest rotational transition in the A state (ortho state) of NH3D+ (JK = 10-00), and the two hyperfine components of the ground state transition of CF+ (J = 1-0) were measured with a relative precision better than 10-7. Results: For both target ions, the experimental transition frequencies agree with recent observations of the same lines in different astronomical environments. In the case of NH3D+ the high-accuracy laboratory measurements lend support to its tentative identification in the interstellar medium. For CF+ the experimentally determined hyperfine splitting confirms previous quantum-chemical calculations and the intrinsic spectroscopic nature of a double-peaked line profile observed in the J = 1-0 transition towards the Horsehead photon-dominated region (PDR).

  20. Isotope shifts of the three lowest 1S states of the B+ ion calculated with a finite-nuclear-mass approach and with relativistic and quantum electrodynamics corrections.

    PubMed

    Bubin, Sergiy; Komasa, Jacek; Stanke, Monika; Adamowicz, Ludwik

    2010-03-21

    We present very accurate quantum mechanical calculations of the three lowest S-states [1s(2)2s(2)((1)S(0)), 1s(2)2p(2)((1)S(0)), and 1s(2)2s3s((1)S(0))] of the two stable isotopes of the boron ion, (10)B(+) and (11)B(+). At the nonrelativistic level the calculations have been performed with the Hamiltonian that explicitly includes the finite mass of the nucleus as it was obtained by a rigorous separation of the center-of-mass motion from the laboratory frame Hamiltonian. The spatial part of the nonrelativistic wave function for each state was expanded in terms of 10,000 all-electron explicitly correlated Gaussian functions. The nonlinear parameters of the Gaussians were variationally optimized using a procedure involving the analytical energy gradient determined with respect to the nonlinear parameters. The nonrelativistic wave functions of the three states were subsequently used to calculate the leading alpha(2) relativistic corrections (alpha is the fine structure constant; alpha=1/c, where c is the speed of light) and the alpha(3) quantum electrodynamics (QED) correction. We also estimated the alpha(4) QED correction by calculating its dominant component. A comparison of the experimental transition frequencies with the frequencies obtained based on the energies calculated in this work shows an excellent agreement. The discrepancy is smaller than 0.4 cm(-1).

  1. Nuclear structure beyond the neutron drip line. The lowest energy states in 9He via their T=5/2 isobaric analogs in 9Li

    DOE PAGES

    Uberseder, E.; Rogachev, G. V.; Goldberg, V. Z.; Koshchiy, E.; Roeder, B. T.; Alcorta, M.; Chubarian, G.; Davids, B.; Fu, C.; Hooker, J.; et al

    2016-03-01

    The level structure of the very neutron rich and unbound 9He nucleus has been the subject of significant experimental and theoretical study. Many recent works have claimed that the two lowest energy 9He states exist with spins Jπ=1/2+and Jπ=1/2-and widths on the order of 100–200 keV. These find-ings cannot be reconciled with our contemporary understanding of nuclear structure. Our present work is the first high-resolution study with low statistical uncertainty of the relevant excitation energy range in the 8He+n system, performed via a search for the T =5/2 isobaric analog states in 9Li populated through 8He+p elastic scattering. Moreover, themore » present data show no indication of any narrow structures. Instead, we find evidence for a broad Jπ=1/2+state in 9He located approximately 3 MeV above the neutron decay threshold.« less

  2. Isotope shifts of the three lowest 1S states of the B+ ion calculated with a finite-nuclear-mass approach and with relativistic and quantum electrodynamics corrections

    NASA Astrophysics Data System (ADS)

    Bubin, Sergiy; Komasa, Jacek; Stanke, Monika; Adamowicz, Ludwik

    2010-03-01

    We present very accurate quantum mechanical calculations of the three lowest S-states [1s22s2(S10), 1s22p2(S10), and 1s22s3s(S10)] of the two stable isotopes of the boron ion, B10+ and B11+. At the nonrelativistic level the calculations have been performed with the Hamiltonian that explicitly includes the finite mass of the nucleus as it was obtained by a rigorous separation of the center-of-mass motion from the laboratory frame Hamiltonian. The spatial part of the nonrelativistic wave function for each state was expanded in terms of 10 000 all-electron explicitly correlated Gaussian functions. The nonlinear parameters of the Gaussians were variationally optimized using a procedure involving the analytical energy gradient determined with respect to the nonlinear parameters. The nonrelativistic wave functions of the three states were subsequently used to calculate the leading α2 relativistic corrections (α is the fine structure constant; α =1/c, where c is the speed of light) and the α3 quantum electrodynamics (QED) correction. We also estimated the α4 QED correction by calculating its dominant component. A comparison of the experimental transition frequencies with the frequencies obtained based on the energies calculated in this work shows an excellent agreement. The discrepancy is smaller than 0.4 cm-1.

  3. Two-color resonance-enhanced multiphoton ionization study of the lowest Rydberg p state of bis(ɛ6-benzene)chromium and its deuterated derivatives

    NASA Astrophysics Data System (ADS)

    Ketkov, Sergey Yu.; Selzle, Heinrich L.; Schlag, Edward W.

    2004-07-01

    Two-color resonance-enhanced multiphoton ionization (REMPI) spectra of jet-cooled (η6-C6H6)2Cr(1), (η6-C6D6)2Cr(2), and (η6-C6D6)(η6-C6D5H)Cr(3) have been measured with use of the 3dz2→R4px,y Rydberg transition as the first step of the electronic excitation. The 000 Rydberg component shifts by 59 and 54 cm-1 to red when one goes from 1 to 2 and 3, respectively. Surprisingly, the REMPI spectra of 1-3 show very rich vibronic structures revealing both totally symmetric vibrations and degenerate vibrational modes. Presence of intense peaks corresponding to the e2g modes in the spectra of 1 and 2 is indicative of Jahn-Teller coupling in the R4px,y Rydberg state. Additional REMPI resonances appear on going from 1 and 2 to 3 as a result of the symmetry reduction. The vibronic components in the spectra of 1-3 were assigned on the basis of the selection rules and comparison with the vibrational frequencies of the 1 and 2 ground-state molecules. The frequencies of over 10 normal vibrations have been determined for the gas-phase 1-3 Rydberg-state molecules from the REMPI experiment. The wavenumber corresponding to the lowest-energy mode (the ring torsion vibration) appears to be 40 cm-1 in 1 and 35 cm-1 in the deuterated complexes. The REMPI peaks are homogeneously broadened. The lower lifetime limits for the upper-state components increase on going from the vibrationless level to higher-lying vibronic states and on going from 1 to the deuterated derivatives.

  4. Fine-Tuning of β-Substitution to Modulate the Lowest Triplet Excited States: A Bioinspired Approach to Design Phosphorescent Metalloporphyrinoids.

    PubMed

    Ke, Xian-Sheng; Zhao, Hongmei; Zou, Xiaoran; Ning, Yingying; Cheng, Xin; Su, Hongmei; Zhang, Jun-Long

    2015-08-26

    Learning nature's approach to modulate photophysical properties of NIR porphyrinoids by fine-tuning β-substituents including the number and position, in a manner similar to naturally occurring chlorophylls, has the potential to circumvent the disadvantages of traditional "extended π-conjugation" strategy such as stability, molecular size, solubility, and undesirable π-π stacking. Here we show that such subtle structural changes in Pt(II) or Pd(II) cis/trans-porphodilactones (termed by cis/trans-Pt/Pd) influence photophysical properties of the lowest triplet excited states including phosphorescence, Stokes shifts, and even photosensitization ability in triplet-triplet annihilation reactions with rubrene. Prominently, the overall upconversion capability (η, η = ε·Φ(UC)) of Pd or Pt trans-complex is 10(4) times higher than that of cis-analogue. Nanosecond time-resolved infrared (TR-IR) spectroscopy experiments showed larger frequency shift of ν(C═O) bands (ca. 10 cm(-1)) of cis-complexes than those of trans-complexes in the triplet excited states. These spectral features, combining with TD-DFT calculations, suggest the strong electronic coupling between the lactone moieties and the main porphyrin chromophores and thus the importance of precisely positioning β-substituents by mimicking chlorophylls, as an alternative to "extended π-conjugation", in designing NIR active porphyrinoids. PMID:26247480

  5. Phase transitions for rotational states within an algebraic cluster model

    NASA Astrophysics Data System (ADS)

    López Moreno, E.; Morales Hernández, G. E.; Hess, P. O.; Yépez Martínez, H.

    2016-07-01

    The ground state and excited, rotational phase transitions are investigated within the Semimicroscopic Algebraic Cluster Model (SACM). The catastrophe theory is used to describe these phase transitions. Short introductions to the SACM and the catastrophe theory are given. We apply the formalism to the case of 16O+α→20Ne.

  6. Rotational and rotationless states of weakly bound molecules

    SciTech Connect

    Lemeshko, Mikhail; Friedrich, Bretislav

    2009-05-15

    By making use of the quantization rule of Raab and Friedrich [Phys. Rev. A 78, 022707 (2008)], we derive simple and accurate formulae for the number of rotational states supported by a weakly bound vibrational level of a diatomic molecule and the rotational constants of any such levels up to the threshold, and provide a criterion for determining whether a given weakly bound vibrational level is rotationless. The results depend solely on the long-range part of the molecular potential and are applicable to halo molecules.

  7. Lowest triplet (n,π{sup *}) state of 2-cyclohexen-1-one: Characterization by cavity ringdown spectroscopy and quantum-chemical calculations

    SciTech Connect

    McAnally, Michael O.; Zabronsky, Katherine L.; Stupca, Daniel J.; Phillipson, Kaitlyn; Pillsbury, Nathan R.; Drucker, Stephen

    2013-12-07

    The cavity ringdown (CRD) absorption spectrum of 2-cyclohexen-1-one (2CHO) was recorded over the range 401.5–410.5 nm in a room-temperature gas cell. The very weak band system (ε ⩽ 0.1 M{sup −1} cm{sup −1}) in this spectral region is due to the T{sub 1}(n, π*) ← S{sub 0} electronic transition. The 0{sub 0}{sup 0} origin band was assigned to the feature observed at 24 558.8 ± 0.3 cm{sup −1}. We have assigned 46 vibronic transitions in a region extending from −200 to +350 cm{sup −1} relative to the origin band. For the majority of these transitions, we have made corresponding assignments in the spectrum of the deuterated derivative 2CHO-2,6,6-d{sub 3}. From the assignments, we determined fundamental frequencies for several vibrational modes in the T{sub 1}(n, π{sup *}) excited state of 2CHO, including the lowest ring-twisting (99.6 cm{sup −1}) and ring-bending (262.2 cm{sup −1}) modes. These values compare to fundamentals of 122.2 cm{sup −1} and 251.9 cm{sup −1}, respectively, determined previously for the isoconfigurational S{sub 1}(n, π{sup *}) excited state of 2CHO and 99 cm{sup −1} and 248 cm{sup −1}, respectively, for the S{sub 0} ground state. With the aid of quantum-mechanical calculations, we have also ascertained descriptions for these two modes, thereby resolving ambiguities appearing in the previous literature. The ring-twisting mode (ν{sub 39}) contains a significant contribution from O=C–C=C torsion, whereas the ring-bending mode (ν{sub 38} in the ground state) involves mainly the motion of C-5 with respect to the plane containing the other heavy atoms. The CRD spectroscopic data for the T{sub 1}(n, π{sup *}) state have allowed us to benchmark several computational methods for treating excited states, including time-dependent density functional theory and an equation-of-motion coupled cluster method. In turn, the computational results provide an explanation for observed differences in the T{sub 1}(n,

  8. Rotational Action Spectroscopy via State-Selective Helium Attachment

    NASA Astrophysics Data System (ADS)

    Kluge, Lars; Stoffels, Alexander; Brünken, Sandra; Asvany, Oskar; Schlemmer, Stephan

    2015-06-01

    Helium atoms can attach to molecular cations via ternary collision processes forming weakly bound (≈ 1 kcal/mol) He-M^+ complexes. We developed a novel sensitive action spectroscopic scheme for molecular ions based on an observed rotational state dependency of the He attachment process [1]. A detailed account of the underlying kinetics will be presented on the example of the CD^+ ion, where our studies indicate a decrease of around 50% for the rotational state dependent ternary He attachment rate coefficient of the J=1 level with respect to the J=0 level. Experiments are performed on mass-selected ions stored in a temperature-variable (T≥ 3.9~K) cryogenic rf 22-pole ion trap in the presence of a high number density of He (≈ 1015 cm-3) [2]. Rotational spectra of the bare ions are recorded by measuring the change in the number of formed He-M^+ complexes after a certain storage time as a function of excitation wavelength. Here we will also present the first measurements of the rotational ground state transitions of CF^+ (J=1-0, hfs resolved) and NH_3D^+ (J_K=1_0-0_0), recorded in this way. [1] Brünken et al., ApJL 783, L4 (2014) [2] Asvany et al., Applied Physics B 114, 203 (2014)

  9. The hyperfine structure of the lowest doublet states of the LiO2 isomers: a density-functional-theory assessment

    NASA Astrophysics Data System (ADS)

    Oliveira, João P. C.; Rivelino, Roberto

    2010-05-01

    Density-functional-theory (DFT) calculations of the hyperfine coupling constants (HFCCs) are systematically reported for the lithium superoxide (LiO2) structural isomers in the doublet ground states, \\tilde X 2A2 and 2Π. Also, structure, harmonic frequencies, rotational constants and dipole moments have been computed at different levels of theory. Our results calculated for the 2A2 state are compared with the available data of matrix-isolated LiO2. Geometric parameters and vibrational modes compare well with available experimental data. However, the present density-functional results show a strong dependence of the isotropic HFCCs on the level of approximation as well as the molecular geometry. Our results confirm that the anisotropic contributions are less sensitive to the exchange-correlation potentials and basis sets. We have obtained the best estimate of the isotropic HFCC (in comparison with the experimental trends) by using the hybrid scheme that combines the Perdew-Wang's 1991 correlation functional with the adiabatic connection. This study allows us to gauge DFT methods for future applications in the alkali superoxide series, as well as open-shell metal centres interacting with dioxygen in biological systems.

  10. High resolution infrared spectrum of the CD2 wagging band of methanol-D2 (CHD2OH) for the lowest lying torsional vibrational state (e0)

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Indra

    2016-07-01

    This paper reports the analysis of the high resolution (0.0019 cm-1) Fourier transform infrared (FTIR) spectrum for asymmetrically deuterated methanol CHD2OH (methanol-D2) at a low temperature for the CD2 wagging band for the lowest lying trans-species (e0). In spite of the complexity and perturbation in the spectra, assignments were possible for the CD2 wagging band for a maximum K value of 10. In total, about 500 spectral lines have been assigned. Analysis of the spectral lines has been performed in terms of state dependent molecular parameters, Q-branch origins and asymmetry splitting. Assignments have been thoroughly confirmed using combination relations (see text). The catalogue of the assigned transition wavenumbers will help identification and prediction of far infrared (FIR) optically pumped CO2 lasers. The absorption lines close to the several 10R and 10P CO2 laser lines have also been identified. These should help experimentalists to optimize the power of the emission FIR laser lines and to predict new lines and should prove valuable as a laboratory support for interstellar detection in "Radio Astronomy". To our knowledge this is the first time such vibrational infrared (IR) high resolution study in CHD2OH is being performed.

  11. Probable Rotation States of Rocket Bodies in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Ojakangas, G.; Anz-Meador, P.; Cowardin, H.

    2012-09-01

    In order for Active Debris Removal to be accomplished, it is critically important to understand the probable rotation states of orbiting, spent rocket bodies (RBs). However, rotational dynamics is non-intuitive and misconceptions are common. Determinations of rotation and precession rates from light curves have been published that are inconsistent with the theory presented here. In a state of free precession, the total angular momentum of the object is constant, while kinetic energy decreases due to internal friction, approaching rotation about the axis of maximum inertia. For solid internal friction the timescale is hundreds to thousands of years for quality factors of ~100 and assuming metallic rigidities, but for friction in partially-filled liquid fuel tanks we predict that the preferred rotational state is approached rapidly, within days to months. However, history has shown that theoretical predictions of the timescale have been notoriously inaccurate. In free precession, the 3-1-3 Euler angle rates dphi/dt (precession rate of long axis about fixed angular momentum with cone angle theta) and dpsi/dt (roll rate around long axis) have comparable magnitudes until very close to theta=pi/2, so that otherwise the true rotation period is not simply twice the primary light curve period. Furthermore dtheta/dt, nonzero due to friction, becomes asymptotically smaller as theta=pi/2 is approached, so that theta can linger within several degrees of flat spin for a relatively long time. Such a condition is likely common, and cannot be distinguished from the wobble of a cylinder with a skewed inertia tensor unless the RB has non-axisymmetric reflectivity characteristics. For an RB of known dimensions, a given value of theta fixes the relative values of dpsi/dt and dphi/dt. In forced precession, the angular momentum precesses about a symmetry axis defined by the relevant torque. However, in LEO, only gravity gradient and magnetic eddy current torques are dominant, and these

  12. Zethrene biradicals: How pro-aromaticity is expressed in the ground electronic state and in the lowest energy singlet, triplet, and ionic states

    SciTech Connect

    Zafra, José Luis; González Cano, Rafael C.; Ruiz Delgado, M. Carmen; López Navarrete, Juan T.; Casado, Juan

    2014-02-07

    A analysis of the electronic and molecular structures of new molecular materials based on zethrene is presented with particular attention to those systems having a central benzo-quinoidal core able to generate Kekulé biradicals whose stability is provided by the aromaticity recovery in this central unit. These Kekulé biradicals display singlet ground electronic states thanks to double spin polarization and have low-energy lying triplet excited states also featured by the aromaticity gain. Pro-aromatization is also the driving force for the stabilization of the ionized species. Moreover, the low energy lying singlet excited states also display a profound biradical fingerprint allowing to singlet exciton fission. These properties are discussed in the context of the size of the zethrene core and of its substitution. The work encompasses all known long zethrenes and makes use of a variety of experimental techniques, such as Raman, UV-Vis-NIR absorption, transient absorption, in situ spectroelectrochemistry and quantum chemical calculations. This study reveals how the insertion of suitable molecular modules (i.e., quinoidal) opens the door to new intriguing molecular properties exploitable in organic electronics.

  13. A theoretical study of the ground state and lowest excited states of PuO0/+/+2 and PuO20/+/+2

    SciTech Connect

    Gibson, John K.; La Macchia, Giovanni; Infante, Ivan; Gagliardi, Laura; Raab, Juraj

    2008-12-08

    The ground and excited states of neutral and cationic PuO and PuO2 have been studied with multiconfigurational quantum chemical methods followed by second order perturbation theory, the CASSCF/CASPT2 method. Scalar relativistic effects and spin-orbit coupling have been included in the treatment. As literature values for the ionization energy of PuO2 are in the wide range of ~;;6.6 eV to ~;;10.1 eV, a central goal of the computations was to resolve these discrepancies; the theoretical results indicate that the ionization energy is near the lower end of this range. The calculated ionization energies for PuO, PuO+ and PuO2+ are in good agreement with the experimental values.

  14. Lowest triplet (n, π*) electronic state of acrolein: Determination of structural parameters by cavity ringdown spectroscopy and quantum-chemical methods

    NASA Astrophysics Data System (ADS)

    Hlavacek, Nikolaus C.; McAnally, Michael O.; Drucker, Stephen

    2013-02-01

    The cavity ringdown absorption spectrum of acrolein (propenal, CH2=CH—CH=O) was recorded near 412 nm, under bulk-gas conditions at room temperature and in a free-jet expansion. The measured spectral region includes the 0^0_0 band of the T1(n, π*) ← S0 system. We analyzed the 0^0_0 rotational contour by using the STROTA computer program [R. H. Judge et al., J. Chem. Phys. 103, 5343 (1995)], 10.1063/1.470569, which incorporates an asymmetric rotor Hamiltonian for simulating and fitting singlet-triplet spectra. We used the program to fit T1(n, π*) inertial constants to the room-temperature contour. The determined values (cm-1), with 2σ confidence intervals, are A = 1.662 ± 0.003, B = 0.1485 ± 0.0006, C = 0.1363 ± 0.0004. Linewidth analysis of the jet-cooled spectrum yielded a value of 14 ± 2 ps for the lifetime of isolated acrolein molecules in the T1(n, π*), v = 0 state. We discuss the observed lifetime in the context of previous computational work on acrolein photochemistry. The spectroscopically derived inertial constants for the T1(n, π*) state were used to benchmark a variety of computational methods. One focus was on complete active space methods, such as complete active space self-consistent field (CASSCF) and second-order perturbation theory with a CASSCF reference function (CASPT2), which are applicable to excited states. We also examined the equation-of-motion coupled-cluster and time-dependent density function theory excited-state methods, and finally unrestricted ground-state techniques, including unrestricted density functional theory and unrestricted coupled-cluster theory with single and double and perturbative triple excitations. For each of the above methods, we or others [O. S. Bokareva et al., Int. J. Quantum Chem. 108, 2719 (2008)], 10.1002/qua.21803 used a triple zeta-quality basis set to optimize the T1(n, π*) geometry of acrolein. We find that the multiconfigurational methods provide the best agreement with fitted inertial

  15. Adiabatic rotation, quantum search, and preparation of superposition states

    NASA Astrophysics Data System (ADS)

    Siu, M. Stewart

    2007-06-01

    We introduce the idea of using adiabatic rotation to generate superpositions of a large class of quantum states. For quantum computing this is an interesting alternative to the well-studied “straight line” adiabatic evolution. In ways that complement recent results, we show how to efficiently prepare three types of states: Kitaev’s toric code state, the cluster state of the measurement-based computation model, and the history state used in the adiabatic simulation of a quantum circuit. We also show that the method, when adapted for quantum search, provides quadratic speedup as other optimal methods do with the advantages that the problem Hamiltonian is time independent and that the energy gap above the ground state is strictly nondecreasing with time. Likewise the method can be used for optimization as an alternative to the standard adiabatic algorithm.

  16. Using Jet Observations to Constrain Enceladus' Rotation State

    NASA Technical Reports Server (NTRS)

    Hurford, Terry A.; Porco, C. C.

    2011-01-01

    Observations of Enceladus have revealed active jets of material erupting from cracks on its surface. It has been proposed that diurnal tidal stress may open these cracks daily when they experience tensile stresses across them, allowing eruptions to occur. An analysis of the tidal stress on jet source regions, as identified by the triangulation of jet observations, finds that there is a correlation between observations and tensile stress on the cracks. However, not all regions are predicted to be in tension when jets were observed to be active. Enceladus' rotation state, such as a physical libration or obliquity, will affect the diurnal stresses on these cracks, changing when in its orbit they experience tension and compression. We will use observations of jet activity from 2005-2007 to place constraints on rotation states of Enceladus.

  17. Rotating states of self-propelling particles in two dimensions

    NASA Astrophysics Data System (ADS)

    Chen, Hsuan-Yi; Leung, Kwan-Tai

    2006-05-01

    We present particle-based simulations and a continuum theory for steady rotating flocks formed by self-propelling particles (SPPs) in two-dimensional space. Our models include realistic but simple rules for the self-propelling, drag, and interparticle interactions. Among other coherent structures, in particle-based simulations we find steady rotating flocks when the velocity of the particles lacks long-range alignment. Physical characteristics of the rotating flock are measured and discussed. We construct a phenomenological continuum model and seek steady-state solutions for a rotating flock. We show that the velocity and density profiles become simple in two limits. In the limit of weak alignment, we find that all particles move with the same speed and the density of particles vanishes near the center of the flock due to the divergence of centripetal force. In the limit of strong body force, the density of particles within the flock is uniform and the velocity of the particles close to the center of the flock becomes small.

  18. Rotating states of self-propelling particles in two dimensions.

    PubMed

    Chen, Hsuan-Yi; Leung, Kwan-Tai

    2006-05-01

    We present particle-based simulations and a continuum theory for steady rotating flocks formed by self-propelling particles (SPPs) in two-dimensional space. Our models include realistic but simple rules for the self-propelling, drag, and interparticle interactions. Among other coherent structures, in particle-based simulations we find steady rotating flocks when the velocity of the particles lacks long-range alignment. Physical characteristics of the rotating flock are measured and discussed. We construct a phenomenological continuum model and seek steady-state solutions for a rotating flock. We show that the velocity and density profiles become simple in two limits. In the limit of weak alignment, we find that all particles move with the same speed and the density of particles vanishes near the center of the flock due to the divergence of centripetal force. In the limit of strong body force, the density of particles within the flock is uniform and the velocity of the particles close to the center of the flock becomes small. PMID:16802998

  19. Rotational bands in 11B and identification of diluted states

    NASA Astrophysics Data System (ADS)

    Demyanova, A. S.; Danilov, A. N.; Ogloblin, A. A.; Goncharov, S. A.; Belyaeva, T. L.; Trzaska, W.

    2016-06-01

    Differential cross-sections of the 11B + α inelastic scattering at E(α) = 65 leading to the most of the known 11B states at the excitation energies up to 14 MeV were measured. The data analysis was done by DWBA and in some cases by the modified diffraction model allowing determining the radii of the excited states. The radii of the states with excitation energies less than ∼ 7 MeV with the accuracy not less than 0.1-0.15 fm coincide with the radius of the ground state. This result is consistent with the traditional view of the shell structure of the low-lying states in 11B. Most of the observed high-energy excited states are distributed among four rotational bands. The moments of inertia of band states are close to the moment of inertia of the Hoyle state of 12C. The calculated radii, related to these bands, are 0.7 - 1.0 fm larger than the radius of the ground state, and are close to the radius of the Hoyle state. These results are in agreement with existing predictions about various cluster structure of 11B at high excitation energies. The state with the excitation energy 12.56 MeV, I π = 1/2+, T = 1/2 and the root mean square radius R ∼ 6 fm predicted in the frame of the alpha condensate hypothesis was not found.

  20. The Determination of Mercury's Rotational state with BepiColombo

    NASA Astrophysics Data System (ADS)

    Palli, Alessandra; Junior Mariani, Mirco; Silvestri, Davide; Tortora, Paolo; Zannoni, Marco

    2015-04-01

    The BepiColombo mission will start its one year nominal in-orbit operation phase at Mercury in January 2024. More than forty years after Mariner 10 discovered the presence of an intrinsic magnetic field, the study of Mercury's core still remains a fascinating objective and in-orbit investigations are a privileged condition for doing this. Since the strict connection existing between core and rotational state, measurements of Mercury's obliquity and librations at unprecedented accuracies became one the main purposes of MORE (Mercury Orbiter Radio science Experiment) rotation experiment. The rotation experiment avails of the employment of precise orbit determination data and high resolution images provided by HRIC, part of the SYMBIO-SYS payload. The correlation of surface landmarks extrapolated by two images of the same area taken at different epochs provides their displacement in time and hence constitutes an observable to be fed into an estimation process for deriving Mercury's rotation parameters. An end-to-end simulator has been built up employing the camera images as the primary observables with the final aim of defining their optimal acquisition scheduling. An extensive simulation campaign has been performed leading to the identification of the most favorable observational strategy and location of the landmarks on the surface so as to fulfill accuracies lower than 1 arcsecond for both obliquity and libration estimation. Finally, the full rotation experiment has been implemented in a global multiarc solution where both optical and radiometric simulated observables are processed by the filter in order to evaluate the science capabilities in terms of Mercury Orientation Parameters. The results also account for the effects of the onboard accelerometer (ISA) error model. The talk will focus on the description of the end-to-end simulator, illustrating the results obtained in terms of the optimal selection of the observations. Next, full simulations results, obtained

  1. Level statistics of near-yrast states in rapidly rotating nuclei

    NASA Astrophysics Data System (ADS)

    Matsuo, M.; Døssing, T.; Vigezzi, E.; Åberg, S.

    1997-02-01

    The nearest neighbour level spacing distribution and the Δ3 statistic of level fluctuations associated with very high spin states ( I ≳ 30) in rare-earth deformed nuclei are analysed by means of a cranked shell model. The many particle-many hole configurations created in the rotating Nilsson potential are mixed by the surface-delta two-body residual interaction. The levels in the near-yrast region show a Poisson-like level spacing distribution. As the intrinsic excitation energy U increases, the level statistics shows a gradual transition from order to chaos, reaching at U ≳ 2 MeV the Wigner distribution typical-of the Gaussian orthogonal ensemble of random matrices. This transition is caused by the residual two-body interaction. On the other hand, the level spacings between the yrast and the first excited state show a peculiar behaviour, displaying a Wigner-like distribution instead of the Poisson-like distribution seen for the other near-yrast rotational states. The lowest spacings reflect the properties of the single-particle orbits in the mean-field, and are only weakly affected by the residual two-body interaction.

  2. The Rotation State of Comet 103P/Hartley 2

    NASA Astrophysics Data System (ADS)

    Farnham, Tony; Knight, Matthew M.; Schleicher, David G.

    2016-10-01

    On November 4, 2010, the Deep Impact (DI) spacecraft made its closest approach to comet 103P/Hartley 2, passing only 694 km from the nucleus. Observations of the coma produced a lightcurve that shows the nucleus is in a state of non-principal axis rotation that evolves with time, while other observations revealed a nucleus that has concentrated collimated jets driven by CO2 emission (A'Hearn et al., 2011), large variability in the production of H2O and CO2 (Besse et al. 2016), and ice patches on the surface (Sunshine et al. 2011). To properly interpret the significance of these phenomena, it is necessary to understand the rotation of the nucleus, so that its thermal history can be derived and properly modeled, while at the same time, it is likely that the comet's high activity levels play an important role in the nucleus dynamics.An analysis of the lightcurve by Belton et al (2013) described the comet's rotation state, with two periodicities (primary of 18 h, secondary of 28 or 55 h) that change with time. Although their solution describes the periodicities observed around closest approach, it is insufficient to reproduce the changes in coma morphology with time. We are performing an analysis of the structures in the coma (Farnham 2009), using Monte Carlo routines to model the outflowing dust produced by active sources on the nucleus, to derive a comprehensive solution for the nucleus' rotation.We are also obtaining new observations of Hartley 2 in June/July 2016 (r~3.2 AU) to measure the nucleus' primary component period before the comet becomes highly active. This will provide an end-state measure of the rotation from the 2010 apparition, as well as a starting value for the current apparition, to allow its continuing evolution to be monitored. We will present an update on the status and preliminary results of these analyses.This work is funded by NASA Grant NNX12AQ64G.A'Hearn, M.F., et al. (2011) Science 332, 1396-1400Belton M.J.S., et al. (2013) Icarus 222, 595

  3. Probable Rotation States of Rocket Bodies in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Ojakangas, Gregory W.; Anz-Meador, P.; Cowardin, H.

    2012-01-01

    In order for Active Debris Removal to be accomplished, it is critically important to understand the probable rotation states of orbiting, spent rocket bodies. As compared to the question of characterizing small unresolved debris, in this problem there are several advantages: (1) objects are of known size, mass, shape and color, (2) they have typically been in orbit for a known period of time, (3) they are large enough that resolved images may be obtainable for verification of predicted orientation, and (4) the dynamical problem is simplified to first order by largely cylindrical symmetry. It is also nearly certain for realistic rocket bodies that internal friction is appreciable in the case where residual liquid or, to a lesser degree, unconsolidated solid fuels exist. Equations of motion have been developed for this problem in which internal friction as well as torques due to solar radiation, magnetic induction, and gravitational gradient are included. In the case of pure cylindrical symmetry, the results are compared to analytical predictions patterned after the standard approach for analysis of symmetrical tops. This is possible because solar radiation and gravitational torques may be treated as conservative. Agreement between results of both methods ensures their mutual validity. For monotone symmetric cylinders, solar radiation torque vanishes if the center of mass resides at the geometric center of the object. Results indicate that in the absence of solar radiation effects, rotation states tend toward an equilibrium configuration in which rotation is about the axis of maximum inertia, with the axis of minimum inertia directed toward the center of the earth. Solar radiation torque introduces a modification to this orientation. The equilibrium state is asymptotically approached within a characteristic timescale given by a simple ratio of relevant characterizing parameters for the body in question. Light curves are simulated for the expected asymptotic final

  4. Ground-state rotational constants of 12CH 3D

    NASA Astrophysics Data System (ADS)

    Chackerian, C.; Guelachvili, G.

    1980-12-01

    An analysis of ground-state combination differences in the ν2( A1) fundamental band of 12CH 3D ( ν0 = 2200.03896 cm -1) has been made to yield values for the rotational constants B0, D0J, D0JK, H0JJJ, H0JJK, H0JKK, LJJJJ, L0JJJK, and order of magnitude values for L0JJKK and L0JKKK. These constants should be useful in assisting radio searches for this molecule in astrophysical sources. In addition, splittings of A1A2 levels ( J ≥ 17, K = 3) have been measured in both the ground and excited vibrational states of this band.

  5. Rotational state distributions of NH(a /sup 1/. delta. ) from HNCO photodissociation

    SciTech Connect

    Spiglanin, T.A.; Chandler, D.W.

    1987-08-01

    We have examined the photofragmentation HNCO..-->..NH(a /sup 1/..delta..)+CO using radiation at wavelengths shorter than 230 nm. Nascent NH(a /sup 1/..delta..) shows relatively little rotational excitation, accounting for less than 12% of the energy in excess of the dissociation energy. The rotational state distributions evidence less population in high rotational states than predicted by statistical theories but more than expected on the basis of a simple impulsive dissociation. A semiclassical impulsive model that describes photoproduct rotation as developing during fragmentation successfully describes the rotational state distributions of NH(a /sup 1/..delta..) produced by HNCO photodissociation over a wide range of wavelengths. The success of this model in describing the NH rotational state distributions and previously measured CO rotational state distributions suggests that the excited state potential energy surface may be repulsive with minima in HNC and NCO bond angles each near 120/sup 0/.

  6. Hindered cluster rotation and 45Sc hyperfine splitting constant in distonoid anion radical Sc3N@C80-, and spatial spin-charge separation as a general principle for anions of endohedral fullerenes with metal-localized lowest unoccupied molecular orbitals.

    PubMed

    Popov, Alexey A; Dunsch, Lothar

    2008-12-31

    DFT calculations of Sc(3)N@C(80) in the neutral and anionic states are performed which revealed that in the neutral state of the nitride clusterfullerene the lowest energy structure has C(3) symmetry, while in the anionic and dianionic states the C(3v) conformer has the lowest energy. Barriers to the cluster rotation inside the cage are also found to increase in the charge states. The (45)Sc hyperfine slitting constant, a(Sc), in Sc(3)N@C(80) anion radical is calculated by different theoretical approaches and in different conformations of Sc(3)N cluster. It is found that a(Sc) is strongly dependent on the cluster orientation with respect to the cage, covering a range form -10 to +25 Gauss at the B3LYP/6-311G*//PBE/TZ2P level of theory. A thorough analysis of the computed values as well as comparison of unrestricted and orbital-restricted calculations revealed that the polarization contribution to a(Sc) is about -10 Gauss and does not depend on the cluster orientation. Dependence of the predicted a(Sc) values on the density functional form (LSDA, BP, PBE, BLYP, OLYP, TPSS, B3LYP, and TPSSh), the basis set, as well as on the scalar-relativistic and spin-orbit corrections were investigated. The analysis of the charge distribution in the Sc(3)N@C(80)(-) anion radical revealed an interesting peculiarity of its electronic structure: while the spin density mostly resides on the cluster, only a slight decrease of its charge is found using both Bader and Mulliken definitions of atomic charges. A set of other endohedral metallofullerenes, including nitride clusterfullerenes Sc(3)N@C(2n) (2n = 68, 70, 78) and Y(3)N@C(2n) (2n = 78-88), carbide clusterfullerenes Sc(2)C(2)@C(68), Sc(2)C(2)@C(82), Sc(3)C(2)@C(80), Ti(2)C(2)@C(78), Y(2)C(2)@C(82), and dimetallofullerenes Sc(2)@C(76), Y(2)@C(82), La(2)@C(2n) (2n = 72, 78, 80), was also studied in the neutral and anionic state, and a spatial charge-spin separation is found to be a general rule for all endohedral fullerenes with high

  7. Muon Spin Rotation Spectroscopy - Utilizing Muons in Solid State Physics

    SciTech Connect

    Suter, Andreas

    2012-10-17

    Over the past decades muon spin rotation techniques (mSR) have established themselves as an invaluable tool to study a variety of static and dynamic phenomena in bulk solid state physics and chemistry. Common to all these approaches is that the muon is utilized as a spin microprobe and/or hydrogen-like probe, implanted in the material under investigation. Recent developments extend the range of application to near surface phenomena, thin film and super-lattice studies. After briefly summarizing the production of so called surface muons used for bulk studies, and discussing the principle differences between pulsed and continuous muon beams, the production of keV-energy muon sources will be discussed. A few topical examples from different active research fields will be presented to demonstrate the power of these techniques.

  8. The electronic spectrum of AgBr 2: Ab initio benchmark vs. DFT calculations on the lowest ligand-field states including spin-orbit effects

    NASA Astrophysics Data System (ADS)

    Santoyo-Castillo, I.; Ramírez-Solís, A.

    2010-10-01

    The X 2Π g, 2Σ g+ and 2Δ g states of AgBr 2 have been studied through benchmark ab initio CASSCF + Averaged Coupled Pair Functional (ACPF) and DFT calculations using especially developed valence basis sets to study the transition energies, geometries, vibrational frequencies, Mulliken charges and spin densities. The spin-orbit (SO) effects were included through the effective hamiltonian formalism using the |ΛSΣ> ACPF energies as diagonal elements. At the ACPF level, the ground state is 2Π g, in contradiction with ligand-field theory and Hartree-Fock results. The ACPF adiabatic excitation energies of the 2Σ g+ and 2Δ g states are 3825 and 20 152 cm -1, respectively. The inclusion of the SO effects leads to a pure Ω = 3/2 ( 2Π g) ground state, a Ω = 1/2 (97% 2Π g + 3% 2Σ g+) A state, a Ω = 1/2 (3% 2Π g + 97% 2Σ g+) B state, a Ω = 5/2 ( 2Δ g) C state and a Ω = 3/2 (99% 2Δ g) D state. The B97, B3LYP and PBE0 functionals, which were shown to yield accurate transition energies for CuCl 2, overestimate the X 2Π g- 2Σ g+ T e by around 25% but provide a qualitative energetic ordering in agreement with CASSCF and ACPF results. The nature of the bonding in the X 2Π g ground state is different from that of AgCl 2 since the Mulliken charge on the metal is 0.95 while the spin density is only 0.39. DFT strongly delocalizes the spin density providing even smaller values of around 0.13 on Ag not only for the ground state, but also for the 2Σ g+ state.

  9. The transition from the open minimum to the ring minimum on the ground state and on the lowest excited state of like symmetry in ozone: A configuration interaction study.

    PubMed

    Theis, Daniel; Ivanic, Joseph; Windus, Theresa L; Ruedenberg, Klaus

    2016-03-14

    The metastable ring structure of the ozone 1(1)A1 ground state, which theoretical calculations have shown to exist, has so far eluded experimental detection. An accurate prediction for the energy difference between this isomer and the lower open structure is therefore of interest, as is a prediction for the isomerization barrier between them, which results from interactions between the lowest two (1)A1 states. In the present work, valence correlated energies of the 1(1)A1 state and the 2(1)A1 state were calculated at the 1(1)A1 open minimum, the 1(1)A1 ring minimum, the transition state between these two minima, the minimum of the 2(1)A1 state, and the conical intersection between the two states. The geometries were determined at the full-valence multi-configuration self-consistent-field level. Configuration interaction (CI) expansions up to quadruple excitations were calculated with triple-zeta atomic basis sets. The CI expansions based on eight different reference configuration spaces were explored. To obtain some of the quadruple excitation energies, the method of Correlation Energy Extrapolation by Intrinsic Scaling was generalized to the simultaneous extrapolation for two states. This extrapolation method was shown to be very accurate. On the other hand, none of the CI expansions were found to have converged to millihartree (mh) accuracy at the quadruple excitation level. The data suggest that convergence to mh accuracy is probably attained at the sextuple excitation level. On the 1(1)A1 state, the present calculations yield the estimates of (ring minimum-open minimum) ∼45-50 mh and (transition state-open minimum) ∼85-90 mh. For the (2(1)A1-(1)A1) excitation energy, the estimate of ∼130-170 mh is found at the open minimum and 270-310 mh at the ring minimum. At the transition state, the difference (2(1)A1-(1)A1) is found to be between 1 and 10 mh. The geometry of the transition state on the 1(1)A1 surface and that of the minimum on the 2(1)A1 surface

  10. The transition from the open minimum to the ring minimum on the ground state and on the lowest excited state of like symmetry in ozone: A configuration interaction study.

    PubMed

    Theis, Daniel; Ivanic, Joseph; Windus, Theresa L; Ruedenberg, Klaus

    2016-03-14

    The metastable ring structure of the ozone 1(1)A1 ground state, which theoretical calculations have shown to exist, has so far eluded experimental detection. An accurate prediction for the energy difference between this isomer and the lower open structure is therefore of interest, as is a prediction for the isomerization barrier between them, which results from interactions between the lowest two (1)A1 states. In the present work, valence correlated energies of the 1(1)A1 state and the 2(1)A1 state were calculated at the 1(1)A1 open minimum, the 1(1)A1 ring minimum, the transition state between these two minima, the minimum of the 2(1)A1 state, and the conical intersection between the two states. The geometries were determined at the full-valence multi-configuration self-consistent-field level. Configuration interaction (CI) expansions up to quadruple excitations were calculated with triple-zeta atomic basis sets. The CI expansions based on eight different reference configuration spaces were explored. To obtain some of the quadruple excitation energies, the method of Correlation Energy Extrapolation by Intrinsic Scaling was generalized to the simultaneous extrapolation for two states. This extrapolation method was shown to be very accurate. On the other hand, none of the CI expansions were found to have converged to millihartree (mh) accuracy at the quadruple excitation level. The data suggest that convergence to mh accuracy is probably attained at the sextuple excitation level. On the 1(1)A1 state, the present calculations yield the estimates of (ring minimum-open minimum) ∼45-50 mh and (transition state-open minimum) ∼85-90 mh. For the (2(1)A1-(1)A1) excitation energy, the estimate of ∼130-170 mh is found at the open minimum and 270-310 mh at the ring minimum. At the transition state, the difference (2(1)A1-(1)A1) is found to be between 1 and 10 mh. The geometry of the transition state on the 1(1)A1 surface and that of the minimum on the 2(1)A1 surface

  11. Formation of ultracold {sup 7}Li{sup 85}Rb molecules in the lowest triplet electronic state by photoassociation and their detection by ionization spectroscopy

    SciTech Connect

    Altaf, Adeel Dutta, Sourav; Lorenz, John; Pérez-Ríos, Jesús; Chen, Yong P.; Elliott, D. S.

    2015-03-21

    We report the formation of ultracold {sup 7}Li{sup 85}Rb molecules in the a{sup 3}Σ{sup +} electronic state by photoassociation (PA) and their detection via resonantly enhanced multiphoton ionization (REMPI). With our dual-species Li and Rb magneto-optical trap apparatus, we detect PA resonances with binding energies up to ∼62 cm{sup −1} below the {sup 7}Li 2s {sup 2}S{sub 1/2} + {sup 85}Rb 5p {sup 2}P{sub 1/2} asymptote. In addition, we use REMPI spectroscopy to probe the a{sup 3}Σ{sup +} state and excited electronic 3{sup 3}Π and 4{sup 3}Σ{sup +} states and identify a{sup 3}Σ{sup +} (v″ = 7–13), 3{sup 3}Π (v{sub Π}′ = 0–10), and 4{sup 3}Σ{sup +} (v{sub Σ}′ = 0–5) vibrational levels. Our line assignments agree well with ab initio calculations. These preliminary spectroscopic studies on previously unobserved electronic states are crucial to discovering transition pathways for transferring ultracold LiRb molecules created via PA to deeply bound rovibrational levels of the electronic ground state.

  12. Vibronic and magnetic coupling in the radiative deactivation of the lowest excited state of (Os(bpy) sub 3 ) sup 2+ doped into (Ru(bpy) sub 3 )(PF sub 6 ) sub 2

    SciTech Connect

    Braun, D.; Hensler, G.; Gallhuber, E.; Yersin, H. )

    1991-02-07

    Small amounts of (Os(bpy){sub 3}){sup 2+} doped into single-crystal (Ru(bpy){sub 3})(PF{sub 6}){sub 2} exhibit highly resolved MLCT spectra corresponding to the transitions between the ground state and the lowest excited states. The electronic origins as well as the vibronic satellites appear as sharp lines with half-widths of {approx}2 cm{sup {minus}1}. Three distinct spectroscopic sites are identified. For the lowest energy site the lowest excited state {vert bar}I> is located at 14,423 cm{sup {minus}1} and the second excited state {vert bar}II> lies 72 cm{sup {minus}1} above {vert bar}>. Due to the polarization properties of the origins both states are assigned to be doubly degenerate (E representations in the D{sub 3} double group). The emission from {vert bar}I> shows a very weak origin line compared to the intense vibronic satellites which mostly correspond to IR-active vibrations. It is proposed that the vibronic intensity is induced by spin-vibronic and/or spin-orbit-vibronic coupling. The electronic state(s) supplying allowedness to the radiative decay from {vert bar}I> are assigned to doubly degenerate E state(s) of singlet parentage. Further, magnetic fields induce a mixing of the wave functions of {vert bar}I> and {vert bar}II>, which results in an intensity increase of the electronic origin of the perturbed state {vert bar}I{prime}>{sub B} by a factor of about 1,000.

  13. The transition from the open minimum to the ring minimum on the ground state and on the lowest excited state of like symmetry in ozone: A configuration interaction study

    DOE PAGES

    Theis, Daniel; Ivanic, Joseph; Windus, Theresa L.; Ruedenberg, Klaus

    2016-03-10

    The metastable ring structure of the ozone 11A1 ground state, which theoretical calculations have shown to exist, has so far eluded experimental detection. An accurate prediction for the energy difference between this isomer and the lower open structure is therefore of interest, as is a prediction for the isomerization barrier between them, which results from interactions between the lowest two 1A1 states. In the present work, valence correlated energies of the 11A1 state and the 21A1 state were calculated at the 11A1 open minimum, the 11A1 ring minimum, the transition state between these two minima, the minimum of the 21A1more » state, and the conical intersection between the two states. The geometries were determined at the full-valence multi-configuration self-consistent-field level. Configuration interaction (CI) expansions up to quadruple excitations were calculated with triple-zeta atomic basis sets. The CI expansions based on eight different reference configuration spaces were explored. To obtain some of the quadruple excitation energies, the method of CorrelationEnergy Extrapolation by Intrinsic Scaling was generalized to the simultaneous extrapolation for two states. This extrapolation method was shown to be very accurate. On the other hand, none of the CI expansions were found to have converged to millihartree (mh) accuracy at the quadruple excitation level. The data suggest that convergence to mh accuracy is probably attained at the sextuple excitation level. On the 11A1 state, the present calculations yield the estimates of (ring minimum—open minimum) ~45–50 mh and (transition state—open minimum) ~85–90 mh. For the (21A1–1A1) excitation energy, the estimate of ~130–170 mh is found at the open minimum and 270–310 mh at the ring minimum. At the transition state, the difference (21A1–1A1) is found to be between 1 and 10 mh. The geometry of the transition state on the 11A1 surface and that of the minimum on the 21A1 surface nearly coincide

  14. The transition from the open minimum to the ring minimum on the ground state and on the lowest excited state of like symmetry in ozone: A configuration interaction study

    NASA Astrophysics Data System (ADS)

    Theis, Daniel; Ivanic, Joseph; Windus, Theresa L.; Ruedenberg, Klaus

    2016-03-01

    The metastable ring structure of the ozone 11A1 ground state, which theoretical calculations have shown to exist, has so far eluded experimental detection. An accurate prediction for the energy difference between this isomer and the lower open structure is therefore of interest, as is a prediction for the isomerization barrier between them, which results from interactions between the lowest two 1A1 states. In the present work, valence correlated energies of the 11A1 state and the 21A1 state were calculated at the 11A1 open minimum, the 11A1 ring minimum, the transition state between these two minima, the minimum of the 21A1 state, and the conical intersection between the two states. The geometries were determined at the full-valence multi-configuration self-consistent-field level. Configuration interaction (CI) expansions up to quadruple excitations were calculated with triple-zeta atomic basis sets. The CI expansions based on eight different reference configuration spaces were explored. To obtain some of the quadruple excitation energies, the method of Correlation Energy Extrapolation by Intrinsic Scaling was generalized to the simultaneous extrapolation for two states. This extrapolation method was shown to be very accurate. On the other hand, none of the CI expansions were found to have converged to millihartree (mh) accuracy at the quadruple excitation level. The data suggest that convergence to mh accuracy is probably attained at the sextuple excitation level. On the 11A1 state, the present calculations yield the estimates of (ring minimum—open minimum) ˜45-50 mh and (transition state—open minimum) ˜85-90 mh. For the (21A1-1A1) excitation energy, the estimate of ˜130-170 mh is found at the open minimum and 270-310 mh at the ring minimum. At the transition state, the difference (21A1-1A1) is found to be between 1 and 10 mh. The geometry of the transition state on the 11A1 surface and that of the minimum on the 21A1 surface nearly coincide. More accurate

  15. Theoretical investigation on properties of the ground and lowest excited states of a red emitter with donor-π-acceptor structure

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojun; Zhang, Xiao; Hou, Yanbing; Teng, Feng; Lou, Zhidong

    2011-03-01

    The ground and excited state properties of DCDPC, particularly designed as a red emitter for organic light emitting diodes applications have been studied by means of density functional theory (DFT) and time-dependent (TD)DFT. The electronic and geometrical structures of DCDPC in acetone, tetrahydrofuran and benzene solvents are reported for the first time. The experimental absorption and fluorescence spectra are reproduced by calculations. By comparison with experimental data, insight on the performance of 10 exchange correlation functionals is also given. M06 in the frame of DFT and TDDFT with a polarizable continuum model and a medium sized basis set emerges as the most effective strategy. Beside the good agreement between the calculational and experimental spectra proving the accuracy of the strategy, the calculations allow further insights into the electronic structure for the family of isophorone-based light emitting materials with D-π-A structure, especially the electronic and geometrical structures for the excited states.

  16. Reversal of Hückel (anti)aromaticity in the lowest triplet states of hexaphyrins and spectroscopic evidence for Baird's rule

    NASA Astrophysics Data System (ADS)

    Sung, Young Mo; Yoon, Min-Chul; Lim, Jong Min; Rath, Harapriya; Naoda, Koji; Osuka, Atsuhiro; Kim, Dongho

    2015-05-01

    The reversal of (anti)aromaticity in a molecule's triplet excited state compared with its closed-shell singlet ground state is known as Baird's rule and has attracted the interest of synthetic, physical organic chemists and theorists because of the potential to modulate the fundamental properties of highly conjugated molecules. Here we show that two closely related bis-rhodium hexaphyrins (R26H and R28H) containing [26] and [28] π-electron peripheries, respectively, exhibit properties consistent with Baird's rule. In the ground state, R26H exhibits a sharp Soret-like band and distinct Q-like bands characteristic of an aromatic porphyrinoid, whereas R28H exhibits a broad absorption spectrum without Q-like bands, which is typical of an antiaromatic porphyrinoid. In contrast, the T-T absorption of R26H is broad, weak and featureless, whereas that of R28H displays an intense and sharp Soret-like band. These spectral signatures, in combination with quantum chemical calculations, are in line with qualitative expectations based on Baird's rule.

  17. Rotationally resolved state-to-state photoelectron study of niobium carbide radical

    SciTech Connect

    Luo, Zhihong; Huang, Huang; Zhang, Zheng; Chang, Yih-Chung; Ng, C. Y.

    2014-07-14

    By employing the two-color visible (VIS)-ultraviolet (UV) laser photoexcitation scheme and the pulsed field ionization-photoelectron (PFI-PE) detection, we have obtained rovibronically selected and resolved photoelectron spectra for niobium carbide cation (NbC{sup +}). The fully rotationally resolved state-to-state VIS-UV-PFI-PE spectra thus obtained allow the unambiguous assignments of rotational photoionization transitions, indicating that the electronic configuration and term symmetry of NbC{sup +}(X{sup ~}) ground state are …10σ{sup 2} 5π{sup 4} 11σ{sup 2} (X{sup ~1}Σ{sup +}). Furthermore, the rotational analysis of these spectra yields the ionization energy of NbC [IE(NbC)] to be 56 369.2 ± 0.8 cm{sup −1} (6.9889 ± 0.0001 eV) and the rotation constant B{sub 0}{sup +} = 0.5681 ± 0.0007 cm{sup −1}. The latter value allows the determination of the bond distance r{sub 0}{sup +} = 1.671 ± 0.001 Å for NbC{sup +}(X{sup ~1}Σ{sup +}). Based on conservation of energy, the IE(NbC) determined in the present study along with the known IE(Nb) gives the difference of 0 K bond dissociation energies (D{sub 0}’s) for NbC{sup +} and NbC, D{sub 0}(NbC{sup +}) − D{sub 0}(NbC) = −1855.4 ± 0.9 cm{sup −1} (−0.2300 ± 0.0001 eV). The energetic values and the B{sub 0}{sup +} constant determined in this work are valuable for benchmarking state-of-the-art ab initio quantum calculations of 4d transition metal-containing molecules.

  18. Time-resolved EPR and optical studies of intermoiety interactions in the lowest triplet state of L-shaped dimers of naphthalene: Conformation dependence of excitation exchange interaction

    SciTech Connect

    Terazima, Masahide; Cai, Jianjian; Lim, E.C.

    2000-03-02

    Time-resolved EPR (TREPR), transient absorption, and phosphorescence spectra have been measured in solid matrixes at 77 K for the covalently linked L-shaped dimers of naphthalene, in which the in-plane long axes of the two naphthalene moieties are parallel and the in-plane short axes make an angle. The zero-field splitting (ZFS) parameters obtained by simulation of the TREPR spectra are consistent with the dimer geometries, if it is assumed that excitation exchange interaction is responsible for the small D values of the dimers relative to the monomer. The tilt angle in the triplet state is significantly smaller for the dimers exhibiting excimeric phosphorescence than those exhibiting monomeric emissions. Comparison of the spectral position and lifetime of phosphorescence from the L-shaped dimers with those from the sandwich dimers indicates that the excitation exchange interaction is substantially greater for the L-shaped dimers as compared to the sandwich dimers. The proposal that the preferred conformation of the triplet excimer of naphthalene is L-shaped, rather than sandwich, is supported by the measurements.

  19. The rotational spectrum of the NiI radical in the X 2Delta(5/2) and A 2Pi(3/2) states.

    PubMed

    Miyazawa, Toru; Okabayashi, Emi Y; Koto, Fumi; Tanimoto, Mitsutoshi; Okabayashi, Toshiaki

    2006-06-14

    The millimeter- and submillimeter-wave spectra of the NiI radical in the X (2)Delta(5/2) and A (2)Pi(3/2) states were observed by a source-modulated microwave spectrometer. The NiI radical was generated by a dc glow discharge in the mixture of CH(3)I vapor and Ar gas through the sputtering reaction with a Ni cathode. Observed transition frequencies for each electronic state were independently analyzed using a polynomial energy expression based on Hund's case (c) approximation. The deperturbed rotational constants were also estimated by the perturbation analysis including interaction terms between the ground state and the lowest excited state.

  20. Metal-to-Ligand Charge-Transfer Emissions of Ruthenium(II) Pentaammine Complexes with Monodentate Aromatic Acceptor Ligands and Distortion Patterns of their Lowest Energy Triplet Excited States.

    PubMed

    Tsai, Chia Nung; Mazumder, Shivnath; Zhang, Xiu Zhu; Schlegel, H Bernhard; Chen, Yuan Jang; Endicott, John F

    2015-09-01

    This is the first report of the 77 K triplet metal-to-ligand charge-transfer ((3)MLCT) emission spectra of pentaammine-MDA-ruthenium(II) ([Ru(NH3)5(MDA)](2+)) complexes, where MDA is a monodentate aromatic ligand. The emission spectra of these complexes and of the related trans-[Ru(NH3)4(MDA) (MDA')](2+) complexes are closely related, and their emission intensities are very weak. Density functional theory (DFT) calculations indicate that the energies of the lowest (3)MLCT excited states of Ru-MDA complexes are either similar to or lower than those of the lowest energy metal-centered excited states ((3)MC(X(Y))), that the barrier to internal conversion at 77 K is large compared to kBT, and that the (3)MC(X(Y)) excited states are weakly bound. The [Ru(NH3)5py](2+) complex is an exception to the general pattern: emission has been observed for the [Ru(ND3)5(d5-py)](2+) complex, but its lifetime is apparently very short. DFT modeling indicates that the excited state distortions of the different (3)MC excited states are very large and are in both Ru-ligand bonds along a single Cartesian axis for each different (3)MC excited state, nominally resulting in (3)MC(X(Y)), (3)MC((X)Y), and (3)MC(Z) lowest energy metal-centered states. The (3)MC(X(Y)) and (3)MC((X)Y) states appear to be the pseudo-Jahn-Teller distorted components of a (3)MC((XY)) state. The (3)MC(X(Y)) states are distorted up to 0.5 Å in each H3N-Ru-NH3 bond along a single Cartesian axis in the pentaammine and trans-tetraammine complexes, whereas the (3)MC(Z) states are found to be dissociative. DFT modeling of the (3)MLCT excited state of [Ru(NH3)5(py)](2+) indicates that the Ru center has a spin density of 1.24 at the (3)MLCT energy minimum and that the (3)MLCT → (3)MC(Z) crossing is smooth with a very small barrier (<0.5 kcal/mol) along the D3N-Ru-py distortion coordinate, implying strong (3)MLCT/(3)MC excited state configurational mixing. Furthermore, the DFT modeling indicates that the long

  1. Prediction and Control of Slip-Free Rotation States in Sphere Assemblies.

    PubMed

    Stäger, D V; Araújo, N A M; Herrmann, H J

    2016-06-24

    We study fixed assemblies of touching spheres that can individually rotate. From any initial state, sliding friction drives an assembly toward a slip-free rotation state. For bipartite assemblies, which have only even loops, this state has at least four degrees of freedom. For exactly four degrees of freedom, we analytically predict the final state, which we prove to be independent of the strength of sliding friction, from an arbitrary initial one. With a tabletop experiment, we show how to impose any slip-free rotation state by only controlling two spheres, regardless of the total number.

  2. Mercury's rotational state from combined MESSENGER laser altimeter and image data

    NASA Astrophysics Data System (ADS)

    Stark, Alexander; Oberst, Jürgen; Preusker, Frank; Margot, Jean-Luc; Phillips, Roger J.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.; Solomon, Sean C.

    2016-04-01

    With orbital data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, we measured the rotational state of Mercury. We developed a novel approach that combined digital terrain models from stereo images (stereo DTMs) and laser altimeter data, and we applied it to 3 years of MESSENGER observations. We find a large libration amplitude, which in combination with the measured obliquity confirms that Mercury possesses a liquid outer core. Our results confirm previous Earth-based observations of Mercury's rotational state. However, we measured a rotation rate that deviates significantly from the mean resonant rotation rate. The larger rotation rate can be interpreted as the signature of a long-period libration cycle. From these findings we derived new constraints on the interior structure of Mercury. The measured rotational parameters define Mercury's body-fixed frame and are critical for the coordinate system of the planet as well as for planning the future BepiColombo spacecraft mission.

  3. Photochromic molecular gyroscope with solid state rotational states determined by an azobenzene bridge.

    PubMed

    Commins, Patrick; Garcia-Garibay, Miguel A

    2014-02-21

    We describe the synthesis, characterization, photochemical isomerization, and rotational dynamics of a crystalline molecular gyroscope containing an azobenzene bridge (trans-2) that spans from one end of the stator to other, with the intention of exploring its function as a molecular brake. While single crystal X-ray diffraction analysis of a photochemically inactive dichloromethane solvate was used to confirm the molecular and packing structures of trans-2, a nanocrystalline pseudopolymorph was shown to be photoactive, and it was analyzed by powder X-ray diffraction (PXRD), scanning electron microscopy, and variable temperature solid state (2)H NMR before and after photoisomerization. It was shown that the nanocrystalline suspension irradiated with λ = 340 nm reaches a photostationary state with 34% of cis-isomer, as compared to that observed in solution where the corresponding value is 74%. Line shape analysis of solid state (2)H NMR spectra of a phenylene-d4 isotopologue, obtained as a function of temperature, indicated that rotation in crystals of the trans-2 isomer, with a mean activation energy of 4.6 ± 0.6 kcal/mol and a pre-exponential factor exp(29.4 ± 1.7), is ten times faster than that of samples containing the cis-2 isomer, which has a higher mean activation energy of 5.1 ± 0.6 kcal/mol and a lower pre-exponential factor of exp(27.9 ± 1.3). PMID:24428572

  4. Photochromic molecular gyroscope with solid state rotational states determined by an azobenzene bridge.

    PubMed

    Commins, Patrick; Garcia-Garibay, Miguel A

    2014-02-21

    We describe the synthesis, characterization, photochemical isomerization, and rotational dynamics of a crystalline molecular gyroscope containing an azobenzene bridge (trans-2) that spans from one end of the stator to other, with the intention of exploring its function as a molecular brake. While single crystal X-ray diffraction analysis of a photochemically inactive dichloromethane solvate was used to confirm the molecular and packing structures of trans-2, a nanocrystalline pseudopolymorph was shown to be photoactive, and it was analyzed by powder X-ray diffraction (PXRD), scanning electron microscopy, and variable temperature solid state (2)H NMR before and after photoisomerization. It was shown that the nanocrystalline suspension irradiated with λ = 340 nm reaches a photostationary state with 34% of cis-isomer, as compared to that observed in solution where the corresponding value is 74%. Line shape analysis of solid state (2)H NMR spectra of a phenylene-d4 isotopologue, obtained as a function of temperature, indicated that rotation in crystals of the trans-2 isomer, with a mean activation energy of 4.6 ± 0.6 kcal/mol and a pre-exponential factor exp(29.4 ± 1.7), is ten times faster than that of samples containing the cis-2 isomer, which has a higher mean activation energy of 5.1 ± 0.6 kcal/mol and a lower pre-exponential factor of exp(27.9 ± 1.3).

  5. Single Molecule Behavior of Inhibited and Active States of Escherichia coli ATP Synthase F1 Rotation*

    PubMed Central

    Sekiya, Mizuki; Hosokawa, Hiroyuki; Nakanishi-Matsui, Mayumi; Al-Shawi, Marwan K.; Nakamoto, Robert K.; Futai, Masamitsu

    2010-01-01

    ATP hydrolysis-dependent rotation of the F1 sector of the ATP synthase is a successive cycle of catalytic dwells (∼0.2 ms at 24 °C) and 120° rotation steps (∼0.6 ms) when observed under Vmax conditions using a low viscous drag 60-nm bead attached to the γ subunit (Sekiya, M., Nakamoto, R. K., Al-Shawi, M. K., Nakanishi-Matsui, M., and Futai, M. (2009) J. Biol. Chem. 284, 22401–22410). During the normal course of observation, the γ subunit pauses in a stochastic manner to a catalytically inhibited state that averages ∼1 s in duration. The rotation behavior with adenosine 5′-O-(3-thiotriphosphate) as the substrate or at a low ATP concentration (4 μm) indicates that the rotation is inhibited at the catalytic dwell when the bound ATP undergoes reversible hydrolysis/synthesis. The temperature dependence of rotation shows that F1 requires ∼2-fold higher activation energy for the transition from the active to the inhibited state compared with that for normal steady-state rotation during the active state. Addition of superstoichiometric ϵ subunit, the inhibitor of F1-ATPase, decreases the rotation rate and at the same time increases the duration time of the inhibited state. Arrhenius analysis shows that the ϵ subunit has little effect on the transition between active and inhibited states. Rather, the ϵ subunit confers lower activation energy of steady-state rotation. These results suggest that the ϵ subunit plays a role in guiding the enzyme through the proper and efficient catalytic and transport rotational pathway but does not influence the transition to the inhibited state. PMID:20974856

  6. Lifetimes of superdeformed rotational states in {sup 36}Ar.

    SciTech Connect

    Svensson, C. E.; Macchiavelli, A. O.; Juodagalvis, A.; Poves, A.; Ragnarsson, I.; Aberg, S.; Appelbe, D. E.; Austin, R. A. E.; Ball, G. C.; Carpenter, M. P.; Caurier, E.; Clark, R. M.; Cromaz, M.; Deleplanque, M. A.; Diamond, R. M.; Fallon, P.; Janssens, R. V. F.; Lane, G. J.; Lee, I. Y.; Nowacki, F.; Sarantites, D. G.; Stephens, F. S.; Vetter, K.; Ward, D.; Physics; LBNL; Lund Inst. of Tech.; Univ. Autonoma de Madrid; McMaster Univ.; TRIUMF; Univ. Louis Pasteur; Washington Univ.

    2001-06-01

    Lifetimes have been measured in a superdeformed rotational band recently identified in the N=Z nucleus {sup 36}Ar. A large low-spin quadrupole deformation ({beta}{sub 2}=0.46{+-}0.03) is confirmed and a decrease in the collectivity is observed as the high-spin band termination at I{sup {pi}}=16{sup +} is approached. Detailed comparisons of the experimental B(E2) values with the results of cranked Nilsson-Strutinsky and large-scale (s{sub 1/2}d{sub 3/2})-pf spherical shell model calculations indicate the need for a more refined treatment of transition matrix elements close to termination in the former, and the inclusion of the complete sd-pf model space in the latter description of this highly-collective rotational band.

  7. Analytic continuation of the rotating black hole state counting

    NASA Astrophysics Data System (ADS)

    Achour, Jibril Ben; Noui, Karim; Perez, Alejandro

    2016-08-01

    In loop quantum gravity, a spherical black hole can be described in terms of a Chern-Simons theory on a punctured 2-sphere. The sphere represents the horizon. The punctures are the edges of spin-networks in the bulk which cross the horizon and carry quanta of area. One can generalize this construction and model a rotating black hole by adding an extra puncture colored with the angular momentum J in the 2-sphere. We compute the entropy of rotating black holes in this model and study its semi-classical limit. After performing an analytic continuation which sends the Barbero-Immirzi parameter to γ = ± i,weshowthattheleadingorderterminthesemi-classicalexpansionoftheentropy reproduces the Bekenstein-Hawking law independently of the value of J.

  8. Equation of State Dependence of Gravitational Waves from Rapidly Rotating Core-Collapse

    NASA Astrophysics Data System (ADS)

    Richers, Sherwood; Ott, Christian D.; Abdikamalov, Ernazar

    2016-03-01

    We carry out axisymmetric simulations of rotating core-collapse, exploring over 92 precollapse rotational configurations and 18 different finite-temperature microphysical equations of state (EOS) using the general-relativistic hydrodynamical code CoCoNuT. Our focus is on gravitational wave (GW) emission. We find that the GW wave signature depends systematically on the rotation rate of the inner core at bounce and the compactness of the protoneutron star (PNS), set by the EOS and rotation. The GW signal from core bounce is almost independent of the EOS. However, the frequency of the post-bounce ring down signal from the fundamental quadrupole oscillation mode of the PNS is dependent on both rotation and the EOS, increasing with rotation rate and compactness. We will discuss the origin of the EOS-dependent f-mode frequency variation and its potential observability with Advanced LIGO.

  9. The lowest ionization potentials of Al2

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Barnes, Leslie A.; Taylor, Peter R.

    1988-01-01

    Potential curves for the lowest two electronic states (X 2 sigma g + and A 2 pi u) of Al2(+) were computed using complete active space SCF/multireference CI wave functions and large Gaussian basis sets. The lowest observable vertical ionization potential (to Al2(+) X 2 sigma g +) of the Al2 X 3 pi u ground state is calculated to occur around 6.1 eV, in excellent agreement with the experimental range of 6.0 to 6.42 eV obtained in recent cluster ionization studies by Cox and co-workers. The second vertical ionization potential (to Al2(+) A 2 pi u) occurs near 6.4 eV, also within the experimental range. The adiabatic IP of 5.90 eV is in good agreement with the value of 5.8 to 6.1 eV deduced by Hanley and co-workers from the difference in thresholds between collision induced dissociation processes of Al3(+). The computed IP values are somewhat larger than those deduced from branching ratios in cluster fragmentation experiments by Jarrold and co-workers. The observation of an ionization threshold below 6.42 eV is shown to be incompatible with an Al2 ground electronic state assignment of 3 sigma g -, but the separation between the two lowest states of Al2 is so small that it is likely that both are populated in the experiments, so that this does not provide unambiguous support for the recent theoretical assignment of the ground state as 3 pi u.

  10. Quantum mechanical forces in the presence of spin and rotational states of nanomagnets

    NASA Astrophysics Data System (ADS)

    Kim, Gwang-Hee

    We study nanomagnets that are free to rotate about their anisotropy and display quantum mechanical forces originated from quantum tunneling between classically degenerate magnetic states. Employing superpositions of spin and rotational states, we show that such forces can exist in the presence of a microwave field and a static magnetic field with a gradient. The optimal conditions for the observation of the oscillating force with quantum beats are presented.

  11. Entanglement spectrum: Identification of the transition from vortex-liquid to vortex-lattice state in a weakly interacting rotating Bose-Einstein condensate

    SciTech Connect

    Liu Zhao; Guo Hongli; Fan Heng; Vedral, Vlatko

    2011-01-15

    We use entanglement to investigate the transition from vortex-liquid phase to vortex-lattice phase in a weakly interacting rotating Bose-Einstein condensate. For the torus geometry, the ground-state entanglement spectrum is analyzed to distinguish these two phases. The low-lying part of the ground-state entanglement spectrum, as well as the behavior of its lowest level, changes clearly when the transition occurs. For the sphere geometry, the entanglement gap in the conformal limit is also studied. We also show that the decrease in entanglement between particles can be regarded as a signal of the transition.

  12. Effects of rotational states on the c /a ratio in solid hydrogens

    NASA Astrophysics Data System (ADS)

    Strzhemechny, Mikhail A.; Hemley, Russell J.

    2015-04-01

    We propose an approach to the problem of lattice distortions at low temperatures and ambient pressure in the solid hydrogens in their rotational ground states that explicitly accounts for the molecular nature of the constituent particles. The model is based on the idea that the second-order rotation-related correction to the ground-state energy depends on the lattice parameters. The calculated ground-state rotation-related contributions, δgs=c /a -(8/3 ) 1 /2 , are negative for all species, amounting to about -1.5 ×10-5 for H2 and D2, whereas for HD this contribution is about -0.6 ×10-3 , which is roughly 50 times larger. This substantial difference stems from the fact that the rotational dynamics in the homonuclear solids and in HD differ appreciably. The approach can be generalized to high pressures.

  13. The Millimeter-Wave Spectrum of Methacrolein. Torsion-Rotation Effects in the Excited States

    NASA Astrophysics Data System (ADS)

    Zakharenko, Olena; Motiyenko, R. A.; Aviles Moreno, Juan-Ramon; Huet, T. R.

    2015-06-01

    Last year we reported the analysis of the rotational spectrum of s-trans conformer of methacrolein CH2=C(CH3)CHO in the ground vibrational state. In this talk we report the study of its low lying excited vibrational states. The study is based on room-temperature absorption spectra of methacrolein recorded in the frequency range 150 - 465 GHz using the spectrometer in Lille. The new results include assignment of the first excited torsional state (131 cm-1), and the joint analysis of the vt = 0 and vt = 1 states, that allowed us to improve the model in the frame of Rho-Axis-Method (RAM) Hamiltonian and to remove some strong correlations between parameters. Also we assigned the first excited vibrational state of the skeletal torsion mode (170 cm-1). The inverse sequence of A and E tunneling substates as well as anomalous A-E splittings observed for the rotational lines of vsk = 1 state clearly indicate a coupling between methyl torsion and skeletal torsion. However we were able to fit within experimental accuracy the rotational lines of vsk = 1 state using the RAM Hamiltonian. Because of the inversion of the A and E tunneling substates the rotational lines of the vsk = 1 states were assumed to belong to a virtual first excited torsional state. Finally, we assigned several low-Ka rotational transitions of the excited vibrational states above 200 cm-1 but their analysis is complicated by different rotation-vibration interactions. In particular there is an evidence of the Fermi-type resonance between the second excited torsional state and the first excited state of the in-plane skeletal bending mode (265 cm-1). Support from the French Laboratoire d'Excellence CaPPA (Chemical and Physical Properties of the Atmosphere) through contract ANR-10-LABX-0005 of the Programme d'Investissements d'Avenir is acknowledged. Zakharenko O. et al., 69th ISMS, 2014, TI01

  14. Periodicity Signatures of Lightcurves of Active Comets in Non-Principal-Axis Rotational States

    NASA Astrophysics Data System (ADS)

    Samarasinha, Nalin H.; Mueller, Beatrice E. A.; Barrera, Jose G.

    2016-10-01

    There are two comets (1P/Halley, 103P/Hartley 2) that are unambiguously in non-principal-axis (NPA) rotational states in addition to a few more comets that are candidates for NPA rotation. Considering this fact, and the ambiguities associated with how to accurately interpret the periodicity signatures seen in lightcurves of active comets, we have started an investigation to identify and characterize the periodicity signatures present in simulated lightcurves of active comets. We carried out aperture photometry of simulated cometary comae to generate model lightcurves and analyzed them with Fourier techniques to identify their periodicity signatures. These signatures were then compared with the input component periods of the respective NPA rotational states facilitating the identification of how these periodicity signatures are related to different component periods of the NPA rotation. Ultimately, we also expect this study to shed light on why only a small fraction of periodic comets is in NPA rotational states, whereas theory indicates a large fraction of them should be in NPA states (e.g., Jewitt 1999, EMP, 79, 35). We explore the parameter space with respect to different rotational states, different orientations for the total rotational angular momentum vector, and different locations on the nucleus for the source region(s). As for special cases, we also investigate potential NPA rotational states representative of comet 103P/Hartley2, the cometary target of the EPOXI mission. The initial results from our investigation will be presented at the meeting. The NASA DDAP Program supports this work through grant NNX15AL66G.

  15. Rotationally Inelastic Scattering of Quantum-State-Selected ND3 with Ar.

    PubMed

    Tkáč, Ondřej; Saha, Ashim K; Loreau, Jérôme; Parker, David H; van der Avoird, Ad; Orr-Ewing, Andrew J

    2015-06-11

    Rotationally inelastic scattering of ND3 with Ar is studied at mean collision energies of 410 and 310 cm(–1). In the experimental component of the study, ND3 molecules are prepared by supersonic expansion and subsequent hexapole state selection in the ground electronic and vibrational levels and in the jk(±) = 1(1) rotational level. A beam of state-selected ND3 molecules is crossed with a beam of Ar, and scattered ND3 molecules are detected in single final j′k′(±) quantum states using resonance enhanced multiphoton ionization spectroscopy. State-to-state differential cross sections for rotational-level changing collisions are obtained by velocity map imaging. The experimental measurements are compared with close-coupling quantum-mechanical scattering calculations performed using an ab initio potential energy surface. The computed DCSs agree well with the experimental measurements, confirming the high quality of the potential energy surface. The angular distributions are dominated by forward scattering for all measured final rotational and vibrational inversion symmetry states. This outcome is in contrast to our recent results for inelastic scattering of ND3 with He, where we observed significant amount of sideways and backward scattering for some final rotational levels of ND3. The differences between He and Ar collision partners are explained by differences in the potential energy surfaces that govern the scattering dynamics.

  16. Comments on the Rotational State and Non-Gravitational Forces of Comet 46/WIRTANEN. Revised

    NASA Technical Reports Server (NTRS)

    Samarasinha, Nalin H.; Mueller, Beatrice E. A.; Belton, Michael J. S.

    1995-01-01

    We apply our experience of modeling the rotational state and non-gravitational forces of comet 1 P/Halley and other comets to comet 46P/Wirtanen. While the paucity of physical data on 46P/Wirtanen makes this process somewhat speculative, this comet's place as target for the important Rosetta mission gives significance to such a study. Our arguments are based on the summary of observational data provided by Jorda and Rickman (1995) and a comparative study of the behavior of other periodic comets. We find 46P/Wirtanen to have a level of surface activity relative to its mass that is dynamically more akin to that found in comet 1 P/Halley than in a typical periodic comet. We show through an illustrative numerical example that this apparent fact should likely lead to an excited spin state for this comet and that significant changes in the spin period could occur in a single pass through perihelion. We argue that the available observations are not sufficient to substantiate the claim of Jorda and Rickman (1995) that the nucleus is undergoing retrograde rotation and it is possible that the rotation is either prograde as well as retrograde. The substantial requirements that must be placed on any future observing program necessary to determine the precise rotational state are outlined. We advocate an extended (approx. two month) southern hemisphere observing campaign to determine the nuclear rotational state in 1996 if possible before activity turns on.

  17. Effect of the equation of state on the maximum mass of differentially rotating neutron stars

    NASA Astrophysics Data System (ADS)

    Studzińska, A. M.; Kucaba, M.; Gondek-Rosińska, D.; Villain, L.; Ansorg, M.

    2016-08-01

    Knowing the value of the maximum mass of a differentially rotating relativistic star is a key-step toward the understanding of the signals to be expected from the merger of binary neutron stars, one of the most awaited alternative sources of gravitational waves after binary black holes. In this article, we study the effects of differential rotation and of the equation of state on the maximum mass of rotating neutron stars modeled as relativistic polytropes with various adiabatic indices. Calculations are performed using a highly accurate numerical code, based on a multi-domain spectral method. We thoroughly explore the parameter space and determine how the maximum mass depends on the stiffness, on the degree of differential rotation and on the maximal density, taking into account all the types of solutions that were proven to exist in a preceding article (Ansorg et al. 2009). The highest increase with respect to the maximum mass for non-rotating stars with the same equation of state is reached for a moderate stiffness. With differential rotation, the maximum mass can even be 3-4 times higher than it is for static stars. This result may have important consequences for the gravitational wave signal from coalescing neutron star binaries or for some supernovae events.

  18. Rotational resonance with multiple-pulse scaling in solid-state nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Spencer, Richard G. S.; Fishbein, Kenneth W.; Levitt, Malcolm H.; Griffin, Robert G.

    1994-04-01

    Multiple-pulse techniques are applied to rotational resonance experiments in solid-state nuclear magnetic resonance. The usual rotational resonance condition is satisfied when an integral multiple of the magic-angle spinning speed equals the difference in isotropic chemical shifts of the two members of a homonuclear spin-1/2 pair. We show that sequences of rapid periodic radio-frequency pulses scale and rotate both the Zeeman and dipole-dipole Hamiltonians, leading to a modification of the resonance condition and to the introduction of new, single- and double-quantum, rotational resonances. Experimental results are presented which demonstrate these effects in the spectra of doubly 13C-labeled solids.

  19. Two-nucleon spectral function of the 16O nucleus using the lowest-order constrained variational state-dependent correlation functions of the Reid and Av18 interactions

    NASA Astrophysics Data System (ADS)

    Modarres, M.; Younesizadeh, Y.

    2012-05-01

    In this work, the two-nucleon spectral functions (TNSFs) are defined in terms of the state- and the density-dependent correlation functions in the framework of the lowest-order constrained variational (LOCV) method to calculate the TNSF of the 16O nucleus in the 16O(e,e'NN)14C reaction. The Reid soft-core (Reid68) and the Av18 potentials are used as the internucleon interactions. Since, the short-range correlation effects are imposed on the wave functions for the individual channels (e.g., the 1S0 and 3PJ channels); therefore, the defect wave functions are obtained for various channels such that the high relative momenta (p>4fm-1) are ignored. The resulting TNSFs for the 16O nucleus are compared with those of the dressed random phase approximation (DRPA) calculations of Geurts and the experimental predictions, especially those of Onderwater , (NIKHEF group), where reasonable agreement is found. It is shown that the optimized state-dependent defect wave functions have substantial effects on the TNSF and it is not justified to use the simplified parametrized two-body correlation functions in all of the channels. In agreement with the experimental data of Onderwater , the knockout of a 1S0 pair proton dominates the above reaction cross section. Finally, it is demonstrated that the 0+ and 2+ peaks, which are expected to be observed in the above reaction cross section, are moved to the lower momenta of out-going protons when the state-dependent correlation functions are imposed.

  20. Rotational Spectroscopy on Ultracold 23 Na40 K Ground State Molecules

    NASA Astrophysics Data System (ADS)

    Will, Sebastian; Park, Jee Woo; Yan, Zoe; Loh, Huanqian; Zwierlein, Martin

    2016-05-01

    Ultracold molecules with controllable dipolar long-range interactions will open up new routes for quantum simulation and the creation of novel states of matter. In particular, the molecules' rich internal degrees of freedom allow for versatile control of intermolecular interactions by applying static electric and microwave fields. Starting from an ultracold, spin-polarized ensemble of trapped fermionic 23 Na40 K molecules in the absolute ground state, we perform microwave spectroscopy on the first rotationally excited state for a range of magnetic and electric fields. Extracting the rotational and hyperfine coupling constants, we comprehensively understand the observed spectra. Following the coherent transfer of the entire ensemble of chemically stable 23 Na40 K molecules to the first rotationally excited state, we observe a lifetime of more than 3 sec, comparable to the lifetime in the rovibrational ground state. The collisional stability of excited rotational states opens up intriguing prospects for the control of intermolecular van-der-Waals interactions via electric fields.

  1. Pure quantum states of a neutrino with rotating spin in dense magnetized matter

    NASA Astrophysics Data System (ADS)

    Arbuzova, E. V.; Lobanov, A. E.; Murchikova, E. M.

    2010-02-01

    The problem of neutrino spin rotation in dense matter and in strong electromagnetic fields is solved in accordance with the basic principles of quantum mechanics. We obtain a complete system of wave functions for a massive Dirac neutrino with an anomalous magnetic moment which are the eigenfunctions of the kinetic momentum operator and have the form of nonspreading wave packets. These wave functions enable one to consider the states of neutrino with rotating spin as pure quantum states and can be used for calculating probabilities of various processes with the neutrino in the framework of the Furry picture.

  2. Using a Spreadsheet to Solve the Schro¨dinger Equations for the Energies of the Ground Electronic State and the Two Lowest Excited States of H[subscript2

    ERIC Educational Resources Information Center

    Ge, Yingbin; Rittenhouse, Robert C.; Buchanan, Jacob C.; Livingston, Benjamin

    2014-01-01

    We have designed an exercise suitable for a lab or project in an undergraduate physical chemistry course that creates a Microsoft Excel spreadsheet to calculate the energy of the S[subscript 0] ground electronic state and the S[subscript 1] and T[subscript 1] excited states of H[subscript 2]. The spreadsheet calculations circumvent the…

  3. Long-lived nuclear spin states in rapidly rotating CH2D groups

    NASA Astrophysics Data System (ADS)

    Elliott, Stuart J.; Brown, Lynda J.; Dumez, Jean-Nicolas; Levitt, Malcolm H.

    2016-11-01

    Although monodeuterated methyl groups support proton long-lived states, hindering of the methyl rotation limits the singlet relaxation time. We demonstrate an experimental case in which the rapid rotation of the CH2D group extends the singlet lifetime but does not quench the chemical shift difference between the CH2D protons, induced by the chiral environment. Proton singlet order is accessed using Spin-Lock Induced Crossing (SLIC) experiments, showing that the singlet relaxation time TS is over 2 min, exceeding the longitudinal relaxation time T1 by a factor of more than 10. This result shows that proton singlet states may be accessible and long-lived in rapidly rotating CH2D groups.

  4. Simultaneous Evaluation of Multiple Rotationally Excited States of Floppy Molecules Using Diffusion Monte Carlo

    NASA Astrophysics Data System (ADS)

    McCoy, Anne B.; Ford, Jason E.; Marlett, Melanie L.; Petit, Andrew S.

    2014-06-01

    In this work, an extension to diffusion Monte Carlo (DMC) is proposed, allowing for the simultaneous calculation of the energy and wave function of multiple rotationally excited states of floppy molecules. The total wave function is expanded into a set of Dirac δ-functions called walkers, while the rotational portion of the wave function is expanded in a symmetric top basis set. Each walker is given a rotational state vector containing coefficients for all states of interest. The positions of the atoms and the coefficients in the state vector evolve according to the split operator approximation of the quantum propagator. The method was benchmarked by comparing calculated rotation-vibration energies for H_3^+, H_2D^+, and H_3O^+ to experimental values. For low to moderate values of J, the resulting energies are within the statistical uncertainty of the calculation. Rotation-vibration coupling is captured through flexibility introduced in the form of the vibrational wave function. This coupling is found to increase with increasing J-values. Based on the success achieved through these systems, the method was applied to CH_5^+ and its deuterated isotopologues for v = 0, J ≥ 10. Based on these calculations, the energy level structure of CH_5^+ is found to resemble that for a of a spherical top, and excitations up to J = 10 displayed insignificant rotation-vibration coupling. Extensions of this approach that explicitly account for vibrations will also be discussed. ` A. S. Petit, J. E. Ford and A. B. McCoy, J. Phys. Chem. A, in press, K. D. Jordan Festschrift, DOI: 10.1021/jp408821a

  5. Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase.

    PubMed

    Zhao, Jianhua; Benlekbir, Samir; Rubinstein, John L

    2015-05-14

    Eukaryotic vacuolar H(+)-ATPases (V-ATPases) are rotary enzymes that use energy from hydrolysis of ATP to ADP to pump protons across membranes and control the pH of many intracellular compartments. ATP hydrolysis in the soluble catalytic region of the enzyme is coupled to proton translocation through the membrane-bound region by rotation of a central rotor subcomplex, with peripheral stalks preventing the entire membrane-bound region from turning with the rotor. The eukaryotic V-ATPase is the most complex rotary ATPase: it has three peripheral stalks, a hetero-oligomeric proton-conducting proteolipid ring, several subunits not found in other rotary ATPases, and is regulated by reversible dissociation of its catalytic and proton-conducting regions. Studies of ATP synthases, V-ATPases, and bacterial/archaeal V/A-ATPases have suggested that flexibility is necessary for the catalytic mechanism of rotary ATPases, but the structures of different rotational states have never been observed experimentally. Here we use electron cryomicroscopy to obtain structures for three rotational states of the V-ATPase from the yeast Saccharomyces cerevisiae. The resulting series of structures shows ten proteolipid subunits in the c-ring, setting the ATP:H(+) ratio for proton pumping by the V-ATPase at 3:10, and reveals long and highly tilted transmembrane α-helices in the a-subunit that interact with the c-ring. The three different maps reveal the conformational changes that occur to couple rotation in the symmetry-mismatched soluble catalytic region to the membrane-bound proton-translocating region. Almost all of the subunits of the enzyme undergo conformational changes during the transitions between these three rotational states. The structures of these states provide direct evidence that deformation during rotation enables the smooth transmission of power through rotary ATPases. PMID:25971514

  6. Superposition states of ultracold bosons in rotating rings with a realistic potential barrier

    SciTech Connect

    Nunnenkamp, Andreas; Rey, Ana Maria; Burnett, Keith

    2011-11-15

    In a recent paper [Phys. Rev. A 82, 063623 (2010)] Hallwood et al. argued that it is feasible to create large superposition states with strongly interacting bosons in rotating rings. Here we investigate in detail how the superposition states in rotating-ring lattices depend on interaction strength and barrier height. With respect to the latter we find a trade-off between energy gap and quality of the superposition state. Most importantly, we go beyond the {delta}-function approximation for the barrier potential and show that the energy gap decreases exponentially with the number of particles for weak barrier potentials of finite width. These are crucial issues in the design of experiments to realize superposition states.

  7. The {ital T}{sub 1}({ital n}{pi}{asterisk}){l_arrow}{ital S}{sub 0} laser induced phosphorescence excitation spectrum of acetaldehyde in a supersonic free jet: Torsion and wagging potentials in the lowest triplet state

    SciTech Connect

    Liu, H.; Lim, E.C.; Munoz-Caro, C.; Nino, A.; Judge, R.H.; Moule, D.C.

    1996-08-01

    The laser induced {ital T}{sub 1}({ital n}{pi}{asterisk}){l_arrow}{ital S}{sub 0} phosphorescence excitation spectrum of jet-cooled acetaldehyde has been observed for the first time with a rotating slit nozzle excitation system. The vibronic origins were fitted to a set of levels that were obtained from a Hamiltonian that employed flexible torsion-wagging large amplitude coordinates. The potential surface extracted from the fitting procedure yielded barriers to torsion and inversion of 609.68 and 869.02 cm{sup {minus}1}, respectively. Minima in the potential hypersurface at {theta}=61.7{degree} and {alpha}=42.2{degree} defined the equilibrium positions for the torsion and wagging coordinates. A comparison to the corresponding {ital S}{sub 1}-state parameters showed that the torsion barrier (in cm{sup {minus}1}) does not greatly change, {ital S}{sub 1}/{ital T}{sub 1}=710.8/609.7, whereas the barrier height for the wagging-inversion barrier increases dramatically, 574.4/869.0. {copyright} {ital 1996 American Institute of Physics.}

  8. Diffraction pattern by rotated conical tracks in solid state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Stevanovic, N.; Markovic, V. M.

    2016-06-01

    The method for determination of diffraction pattern for irregular 3D objects with application on rotated conical tracks in solid state nuclear track detector (SSNTD) wasdescribed in this paper. The model can be applied for different types of the diffraction (Fresnel, Fraunhofer) and arbitrary shapes of the obstacle. By applying the developed model on conical tracks it was fond that diffraction pattern strongly depends from radius, length and rotation angle of the conical tracks. These dependences were investigated in this paper and results can be applied for determination of inner tracks structure via diffraction pattern.

  9. Hindered and modulated rotational states and spectra of adsorbed diatomic molecules

    SciTech Connect

    Shih, Y.T.; Chuu, D.S.; Mei, W.N.

    1996-10-01

    Both vertical and horizontal adsorption configurations of a diatomic molecule were modeled as the rigid rotor with which the spatial motion was confined by a finite conical well. In addition to the polar hindering potential, a sinusoidal azimuthal modulation, which bears the local symmetry of the adsorption site, was incorporated. Eigenfunctions for different models were expressed analytically in terms of the hypergeometric functions, and eigenvalues were solved numerically. We found that the rotational energy levels exhibit oscillatory behavior when plotted as functions of the hindrance angle. This particular phenomenon was interpreted as the occurrence of resonance transmission of the rotor wave function at certain hindrance condition. We also found that the rotational levels were grouped into bands when the azimuthal modulation strength was increased. The solutions were used to calculate the rotational-state distribution of desorbed molecules, and agreement with the previous experiment was obtained. {copyright} {ital 1996 The American Physical Society.}

  10. ROTATION STATE OF COMET 103P/HARTLEY 2 FROM RADIO SPECTROSCOPY AT 1 mm

    SciTech Connect

    Drahus, Michal; Jewitt, David; Guilbert-Lepoutre, Aurelie; Waniak, Waclaw; Hoge, James; Lis, Dariusz C.; Yoshida, Hiroshige; Peng, Ruisheng; Sievers, Albrecht

    2011-06-10

    The nuclei of active comets emit molecules anisotropically from discrete vents. As the nucleus rotates, we expect to observe periodic variability in the molecular emission line profiles, which can be studied through millimeter/submillimeter spectroscopy. Using this technique we investigated the HCN atmosphere of comet 103P/Hartley 2, the target of NASA's EPOXI mission, which had an exceptionally favorable apparition in late 2010. We detected short-term evolution of the spectral line profile, which was stimulated by the nucleus rotation, and which provides evidence for rapid deceleration and excitation of the rotation state. The measured rate of change in the rotation period is +1.00 {+-} 0.15 minutes day{sup -1} and the period itself is 18.32 {+-} 0.03 hr, both applicable at the epoch of the EPOXI encounter. Surprisingly, the spin-down efficiency is lower by two orders of magnitude than the measurement in comet 9P/Tempel 1 and the best theoretical prediction. This secures rotational stability of the comet's nucleus during the next few returns, although we anticipate a catastrophic disruption from spin-up as its ultimate fate.

  11. Short rotation woody crops: Using agroforestry technology for energy in the United States

    SciTech Connect

    Wright, L L; Ranney, J W

    1991-01-01

    Agroforestry in the United States is being primarily defined as the process of using trees in agricultural systems for conservation purposes and multiple products. The type of agroforestry most commonly practiced in many parts of the world, that is the planting of tree crops in combination with food crops or pasture, is the type least commonly practiced in the United States. One type of agroforestry technique, which is beginning now and anticipated to expand to several million acres in the United States, is the planting of short-rotation woody crops (SRWCs) primarily to provide fiber and fuel. Research on SRWC's and environmental concerns are described.

  12. Rotational State Microwave Mixing for Laser Cooling of Complex Diatomic Molecules

    NASA Astrophysics Data System (ADS)

    Yeo, Mark; Hummon, Matthew T.; Collopy, Alejandra L.; Yan, Bo; Hemmerling, Boerge; Chae, Eunmi; Doyle, John M.; Ye, Jun

    2015-06-01

    We demonstrate the mixing of rotational states in the ground electronic state using microwave radiation to enhance optical cycling in the molecule yttrium (II) monoxide (YO). This mixing technique is used in conjunction with a frequency modulated and chirped continuous wave laser to slow longitudinally a cryogenic buffer-gas beam of YO. We generate a flux of YO below 10 m /s , directly loadable into a three-dimensional magneto-optical trap. This technique opens the door for laser cooling of diatomic molecules with more complex loss channels due to intermediate states.

  13. Enhanced optical cycling and slowing of YO through rotational state microwave mixing

    NASA Astrophysics Data System (ADS)

    Yan, Bo; Hummon, Matthew; Yeo, Mark; Collopy, Alejandra; Hemmerling, Boerge; Chae, Eunmi; Anderegg, Loic; Ravi, Aakash; Doyle, John; Ye, Jun

    2015-05-01

    In order to address rotational dark states in the molecule yttrium (II) monoxide (YO) and to enhance optical cycling, we demonstrate the remixing of ground electronic state rotational levels using microwave radiation. This mixing technique, in conjunction with a broadband modulated and frequency chirped laser, is used to decelerate a beam of YO from a cryogenic buffer gas cell. The result is a population of molecules with velocities less than 10 m/s, which are sufficiently slow to be loaded into a magneto-optical trap. With two vibrational repump lasers, the cycling transition is closed to the 10-6 level. Additionally, we present progress towards a three dimensional implementation of a magneto-optical trap for YO. This work was supported in part by the Gordon and Betty Moore Foundation through Grant GBMF3852. We also acknowledge support from ARO, AFOSR (MURI), NIST, and NSF.

  14. Spin-rotation symmetry breaking in the superconducting state of CuxBi2Se3

    NASA Astrophysics Data System (ADS)

    Matano, K.; Kriener, M.; Segawa, K.; Ando, Y.; Zheng, Guo-Qing

    2016-09-01

    Spontaneous symmetry breaking is an important concept for understanding physics ranging from the elementary particles to states of matter. For example, the superconducting state breaks global gauge symmetry, and unconventional superconductors can break further symmetries. In particular, spin-rotational symmetry is expected to be broken in spin-triplet superconductors. However, experimental evidence for such symmetry breaking has not been conclusively obtained so far in any candidate compounds. Here, using 77Se nuclear magnetic resonance measurements, we show that spin-rotation symmetry is spontaneously broken in the hexagonal plane of the electron-doped topological insulator Cu0.3Bi2Se3 below the superconducting transition temperature Tc = 3.4 K. Our results not only establish spin-triplet superconductivity in this compound, but may also serve to lay a foundation for the research of topological superconductivity.

  15. Ion rotational distributions following vibrational autoionization of Rydberg states of water

    NASA Astrophysics Data System (ADS)

    Glab, W. L.; Pratt, S. T.

    2003-10-01

    Rotationally resolved, energy-dispersive photoelectron spectra of vibrationally autoionizing Rydberg states of water were aquired using double-resonance pulsed laser excitation in a high-resolution magnetic bottle photoelectron spectrometer. Symmetry considerations and angular momentum coupling dictate the possible ionic rotational quantum numbers corresponding to various Rydberg states. The measured ionic distributions contain information both on the excited electron's angular momentum in the Rydberg molecule and the dynamics of the autoionization process. These results, which are difficult to reconcile with current simplified theoretical pictures, suggest directions for future theoretical work leading to a better understanding of autoionization in polyatomic molecules. This work was supported by the Welch Foundation under grant D-1204, and by the Department of Energy under contract W-31-109-Eng-38.

  16. An approximate solution to the stress and deformation states of functionally graded rotating disks

    NASA Astrophysics Data System (ADS)

    Sondhi, Lakshman; Sanyal, Shubhashis; Saha, Kashi Nath; Bhowmick, Shubhankar

    2016-07-01

    The present work employs variational principle to investigate the stress and deformation states and estimate the limit angular speed of functionally graded high-speed rotating annular disks of constant thickness. Assuming a series approximation following Galerkin's principle, the solution of the governing equation is obtained. In the present study, elasticity modulus and density of the disk material are taken as power function of radius with the gradient parameter ranging between 0.0 and 1.0. Results obtained from numerical solutions are validated with benchmark results and are found to be in good agreement. The results are reported in dimensional form and presented graphically. The results provide a substantial insight in understanding the behavior of FGM rotating disks with constant thickness and different gradient parameter. Furthermore, the stress and deformation state of the disk at constant angular speed and limit angular speed is investigated to explain the existence of optimum gradient parameters.

  17. Symmetry of extremely floppy molecules: Molecular states beyond rotation-vibration separation

    NASA Astrophysics Data System (ADS)

    Schmiedt, Hanno; Schlemmer, Stephan; Jensen, Per

    2015-10-01

    Traditionally, molecules are theoretically described as near-static structures rotating in space. Vibrational motion causing small structural deformations induces a perturbative treatment of the rotation-vibration interaction, which fails in highly fluxional molecules, where all vibrational motions have amplitudes comparable in size to the linear dimensions of the molecule. An example is protonated methane (CH 5+ ) [P. Kumar and D. Marx, Phys. Chem. Chem. Phys. 8, 573 (2006); Z. Jin et al., J. Phys. Chem. A 110, 1569 (2006); and A. S. Petit et al., J. Phys. Chem. A 118, 7206 (2014)]. For these molecules, customary theory fails to simulate reliably even the low-energy spectrum [T. Oka, Science 347, 1313-1314 (2015) and O. Asvany et al., Science 347, 1346-1349 (2015)]. Within the traditional view of rotation and vibration being near-separable, rotational and vibrational wavefunctions can be symmetry classified separately in the molecular symmetry (MS) group [P. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy, NRC Monograph Publishing Program (NRC Research Press, 2006)]. In this article, we discuss a fundamental group theoretical approach to the problem of determining the symmetries of molecular rotation-vibration states. We will show that all MS groups discussed so far are isomorphic to subgroups of the special orthogonal group in three dimensions SO(3). This leads to a group theoretical foundation of the technique of equivalent rotations [H. Longuet-Higgins, Mol. Phys. 6, 445 (1963)]. The group G240 (the MS group of protonated methane) represents, to the best of our knowledge, the first example of a MS group which is not isomorphic to a subgroup of SO(3) (nor of O(3) or of SU(2)). Because of this, a separate symmetry classification of vibrational and rotational wavefunctions becomes impossible in this MS group, consistent with the fact that a decoupling of vibrational and rotational motion is impossible. We discuss here the consequences of this. In

  18. Symmetry of extremely floppy molecules: Molecular states beyond rotation-vibration separation.

    PubMed

    Schmiedt, Hanno; Schlemmer, Stephan; Jensen, Per

    2015-10-21

    Traditionally, molecules are theoretically described as near-static structures rotating in space. Vibrational motion causing small structural deformations induces a perturbative treatment of the rotation-vibration interaction, which fails in highly fluxional molecules, where all vibrational motions have amplitudes comparable in size to the linear dimensions of the molecule. An example is protonated methane (CH5(+)) [P. Kumar and D. Marx, Phys. Chem. Chem. Phys. 8, 573 (2006); Z. Jin et al., J. Phys. Chem. A 110, 1569 (2006); and A. S. Petit et al., J. Phys. Chem. A 118, 7206 (2014)]. For these molecules, customary theory fails to simulate reliably even the low-energy spectrum [T. Oka, Science 347, 1313-1314 (2015) and O. Asvany et al., Science 347, 1346-1349 (2015)]. Within the traditional view of rotation and vibration being near-separable, rotational and vibrational wavefunctions can be symmetry classified separately in the molecular symmetry (MS) group [P. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy, NRC Monograph Publishing Program (NRC Research Press, 2006)]. In this article, we discuss a fundamental group theoretical approach to the problem of determining the symmetries of molecular rotation-vibration states. We will show that all MS groups discussed so far are isomorphic to subgroups of the special orthogonal group in three dimensions SO(3). This leads to a group theoretical foundation of the technique of equivalent rotations [H. Longuet-Higgins, Mol. Phys. 6, 445 (1963)]. The group G240 (the MS group of protonated methane) represents, to the best of our knowledge, the first example of a MS group which is not isomorphic to a subgroup of SO(3) (nor of O(3) or of SU(2)). Because of this, a separate symmetry classification of vibrational and rotational wavefunctions becomes impossible in this MS group, consistent with the fact that a decoupling of vibrational and rotational motion is impossible. We discuss here the consequences of this. In

  19. Symmetry Beyond Perturbation Theory: Floppy Molecules and Rotation-Vibration States

    NASA Astrophysics Data System (ADS)

    Schmiedt, Hanno; Schlemmer, Stephan; Jensen, Per

    2015-06-01

    In the customary approach to the theoretical description of the nuclear motion in molecules, the molecule is seen as a near-static structure rotating in space. Vibrational motion causing small structural deformations induces a perturbative treatment of the rotation-vibration interaction, which fails in fluxional molecules, where all vibrational motions are large compared to the linear extension of the molecule. An example is protonated methane (CH_5^+). For this molecule, customary theory fails to simulate reliably even the low-energy spectrum. Within the traditional view of rotation and vibration being near-separable, rotational and vibrational wavefunctions can be symmetry classified separately in the molecular symmetry (MS) group. In the present contribution we discuss a fundamental group theoretical approach to the problem of determining the symmetries of molecular rotation-vibration states. We will show that all MS groups discussed so far are subgroups of the special orthogonal group in three dimensions SO(3) This leads to a group theoretical foundation of the technique of equivalent rotations. The MS group of protonated methane (G240) represents, to the best of our knowledge, the first example of an MS group which is not a subgroup of SO(3) (nor of O(3) nor of SU(2)). Because of this, a separate symmetry classification of vibrational and rotational wavefunctions becomes impossible in this MS group, consistent with the fact that a decoupling of vibrational and rotational motion is impossible. We want to discuss the consequences of this. In conclusion, we show that the prototypical floppy molecule CH_5^+ represents a new class of molecules, where usual group theoretical methods for determining selection rules and spectral assignments fail so that new methods have to be developed. P. Kumar and D. Marx, Physical Chemistry Chemical Physics 8, 573 (2006) Z. Jin, B. J. Braams, and J. M. Bowman, The Journal of Physical Chemistry A 110, 1569 (2006) A. S. Petit, J. E

  20. Toward Rotational State-Selective Photoionization of ThF+ Ions

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Ng, Kia Boon; Gresh, Dan; Cairncross, William; Grau, Matt; Ni, Yiqi; Cornell, Eric; Ye, Jun

    2016-06-01

    ThF+ has been chosen to replace HfF+ for a second-generation measurement of the electric dipole moment of the electron (eEDM). Compared to the currently running HfF+ eEDM experiment, ThF+ has several advantages: (i) the eEDM-sensitive state (3Δ1) is the ground state, which facilitates a long coherence time [1]; (ii) its effective electric field (35 GV/cm) is 50% larger than that of HfF+, which promises a direct increase of the eEDM sensitivity [2]; and (iii) the ionization energy of neutral ThF is lower than its dissociation energy, which introduces greater flexibility in rotational state-selective photoionization via core-nonpenetrating Rydberg states [3]. In this talk, we first present our strategy of preparing and utilizing core-nonpenetrating Rydberg states for rotational state-selective ionization. Then, we report spectroscopic data of laser-induced fluorescence of neutral ThF, which provides critical information for multi-photon ionization spectroscopy. [1] D. N. Gresh, K. C. Cossel, Y. Zhou, J. Ye, E. A. Cornell, Journal of Molecular Spectroscopy, 319 (2016), 1-9 [2] M. Denis, M. S. Nørby, H. J. A. Jensen, A. S. P. Gomes, M. K. Nayak, S. Knecht, T. Fleig, New Journal of Physics, 17 (2015) 043005. [3] Z. J. Jakubek, R. W. Field, Journal of Molecular Spectroscopy 205 (2001) 197-220.

  1. Electromagnetic structure of the lowest-lying decuplet resonances in covariant chiral perturbation theory

    SciTech Connect

    Geng, L. S.; Camalich, J. Martin; Vacas, M. J. Vicente

    2009-08-01

    We present a calculation of the leading SU(3)-breaking O(p{sup 3}) corrections to the electromagnetic moments and charge radius of the lowest-lying decuplet resonances in covariant chiral perturbation theory. In particular, the magnetic dipole moment of the members of the decuplet is predicted fixing the only low-energy constant (LEC) present up to this order with the well-measured magnetic dipole moment of the {omega}{sup -}. We predict {mu}{sub {delta}}{sup ++}=6.04(13) and {mu}{sub {delta}}{sup +}=2.84(2), which agree well with the current experimental information. For the electric quadrupole moment and the charge radius, we use state-of-the-art lattice QCD results to determine the corresponding LECs, whereas for the magnetic octupole moment there is no unknown LEC up to the order considered here, and we obtain a pure prediction. We compare our results with those reported in large N{sub c}, lattice QCD, heavy-baryon chiral perturbation theory, and other models.

  2. The ground-state rotational spectrum and molecular geometry of ethynylstannane.

    PubMed

    Guillemin, Jean-Claude; Legoupy, Stéphanie; Batten, Susan; Legon, Anthony

    2006-05-14

    The ground-state rotational spectra of 24 isotopomers of ethynylstannane have been observed by pulsed-jet, Fourier-transform microwave spectroscopy. The spectroscopic constants, B(0,)D(J) and D(JK) are reported for symmetric-top isotopomers H(3)(n)Sn(12)C(12)CH, where n = 116, 117, 118, 119, 120, 122 and 124, D(3)(n)Sn(12)C(12)CH, where n = 116, 118, 120, 122 and 124, H(3)(n)Sn(13)C(12) CH and H(3)(n)Sn(12)C(13)CH , where n = 116,118 and 120, and H(3)(n)Sn(12)C(12)CD, where n = 116, 118 and 120. In addition, the values of A(0), B(0), C(0), Delta(J) and Delta(JK) were obtained for the three asymmetric-top isotopomers DH(2)(n)Sn(12)C(12)CH, where n = 116, 118 and 120. Hyperfine structure was resolved and assigned in the transitions of the isotopomers H(3)(n)SnCCD, where n = 116, 118 and 120, and in the isotopomers H(3)(117)SnCCH and H(3)(119)SnCCH. In the former group, the hyperfine structure arises from D nuclear quadrupole coupling while in the latter group its origin lies in the spin-rotation coupling of the I = 1/2 Sn nuclear spin to the rotational motion. For these isotopomers, D nuclear quadrupole and spin-rotation coupling constants are determined where appropriate. The rotational constants obtained for the 24 isotopomers of H(3)SnCCH were used to obtain the following types of molecular geometry for ethynylstannane: r(0), r(s), and r(m).

  3. Rotation State of Comet 103P/Hartley 2 from Radio Spectroscopy at 1 mm

    NASA Astrophysics Data System (ADS)

    Drahus, Michał; Jewitt, David; Guilbert-Lepoutre, Aurélie; Waniak, Wacław; Hoge, James; Lis, Dariusz C.; Yoshida, Hiroshige; Peng, Ruisheng; Sievers, Albrecht

    2011-06-01

    The nuclei of active comets emit molecules anisotropically from discrete vents. As the nucleus rotates, we expect to observe periodic variability in the molecular emission line profiles, which can be studied through millimeter/submillimeter spectroscopy. Using this technique we investigated the HCN atmosphere of comet 103P/Hartley 2, the target of NASA's EPOXI mission, which had an exceptionally favorable apparition in late 2010. We detected short-term evolution of the spectral line profile, which was stimulated by the nucleus rotation, and which provides evidence for rapid deceleration and excitation of the rotation state. The measured rate of change in the rotation period is +1.00 ± 0.15 minutes day-1 and the period itself is 18.32 ± 0.03 hr, both applicable at the epoch of the EPOXI encounter. Surprisingly, the spin-down efficiency is lower by two orders of magnitude than the measurement in comet 9P/Tempel 1 and the best theoretical prediction. This secures rotational stability of the comet's nucleus during the next few returns, although we anticipate a catastrophic disruption from spin-up as its ultimate fate. Based on observations carried out with the IRAM 30 m, JCMT 15 m, and CSO 10.4 m telescopes. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). JCMT is operated by Joint Astronomy Centre and supported by STFC (UK), NRC (Canada), and NWO (Netherlands). CSO is operated by Caltech and supported through NSF grant AST-0540882 (USA).

  4. Using Diffusion Monte Carlo to Probe the Rotationally Excited States of H_3^+ and its Isotopologues

    NASA Astrophysics Data System (ADS)

    Wellen, Bethany A.; Petit, Andrew S.; McCoy, Anne B.

    2011-06-01

    H3-ND_n^+ are among the most abundant polyatomic ions in the universe. Moreover, the deuterated isotopologues are thought to play a key role in the astrochemical reactions governing the H/D fractionation of "metallic" species in the interstellar medium. An accurate quantum mechanical treatment of these species, as well as any reactions involving them, requires a methodology capable of capturing their large fluxionality as well as the constraints, due to particle exchange symmetries, on their physically allowed rovibrational states. Diffusion Monte Carlo (DMC) has been shown to be a highly successful technique for treating quantum zero-point effects of very floppy molecules and clusters and our group has recently developed a fixed-node DMC methodology capable of including the effects of rotational excitation. Here, we report the results of DMC calculations of the rotationally excited states of H_3^+ and its isotopologues. In particular, comparison with converged variational calculations involving states with J ≤ 20 provides the most thorough test yet of the range of quantum states over which the assumptions underlying our rotationally excited state DMC methodology can be reliably applied. Finally, the implications of this work on our overall goal of using DMC based methodologies to map out the energetics of the reaction of H3-ND_n^+ with HD will be discussed. T. R. Geballe and T. Oka, Science 312, 1610 (2006) E. Hugo, O. Asvany, and S. Schlemmer, J. Chem. Phys. 130, 164302 (2009) A. S. Petit and A. B. McCoy, J. Phys. Chem. A 113, 12706 (2009)

  5. Steady-State Computation of Constant Rotational Rate Dynamic Stability Derivatives

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Green, Lawrence L.

    2000-01-01

    Dynamic stability derivatives are essential to predicting the open and closed loop performance, stability, and controllability of aircraft. Computational determination of constant-rate dynamic stability derivatives (derivatives of aircraft forces and moments with respect to constant rotational rates) is currently performed indirectly with finite differencing of multiple time-accurate computational fluid dynamics solutions. Typical time-accurate solutions require excessive amounts of computational time to complete. Formulating Navier-Stokes (N-S) equations in a rotating noninertial reference frame and applying an automatic differentiation tool to the modified code has the potential for directly computing these derivatives with a single, much faster steady-state calculation. The ability to rapidly determine static and dynamic stability derivatives by computational methods can benefit multidisciplinary design methodologies and reduce dependency on wind tunnel measurements. The CFL3D thin-layer N-S computational fluid dynamics code was modified for this study to allow calculations on complex three-dimensional configurations with constant rotation rate components in all three axes. These CFL3D modifications also have direct application to rotorcraft and turbomachinery analyses. The modified CFL3D steady-state calculation is a new capability that showed excellent agreement with results calculated by a similar formulation. The application of automatic differentiation to CFL3D allows the static stability and body-axis rate derivatives to be calculated quickly and exactly.

  6. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state

    PubMed Central

    Okada, Ken N.; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S.; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori

    2016-01-01

    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit. PMID:27436710

  7. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state

    NASA Astrophysics Data System (ADS)

    Okada, Ken N.; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S.; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori

    2016-07-01

    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit.

  8. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state.

    PubMed

    Okada, Ken N; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori

    2016-01-01

    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit. PMID:27436710

  9. Calculation of Ground State Rotational Populations for Kinetic Gas Homonuclear Diatomic Molecules including Electron-Impact Excitation and Wall Collisions

    SciTech Connect

    David R. Farley

    2010-08-19

    A model has been developed to calculate the ground-state rotational populations of homonuclear diatomic molecules in kinetic gases, including the effects of electron-impact excitation, wall collisions, and gas feed rate. The equations are exact within the accuracy of the cross sections used and of the assumed equilibrating effect of wall collisions. It is found that the inflow of feed gas and equilibrating wall collisions can significantly affect the rotational distribution in competition with non-equilibrating electron-impact effects. The resulting steady-state rotational distributions are generally Boltzmann for N≥3, with a rotational temperature between the wall and feed gas temperatures. The N=0,1,2 rotational level populations depend sensitively on the relative rates of electron-impact excitation versus wall collision and gas feed rates.

  10. Fine structure of alpha decay to rotational states of heavy nuclei

    SciTech Connect

    Wang, Y. Z.; Dong, J. M.; Peng, B. B.; Zhang, H. F.

    2010-06-15

    To gain a better insight into alpha-decay fine structure, we calculate the relative intensities of alpha decay to 2{sup +} and 4{sup +} rotational states in the framework of the generalized liquid drop model (GLDM) and improved Royer's formula. The calculated relative intensities of alpha decay to 2{sup +} states are in good agreement with the experimental data. For the relative intensities of alpha decay to 4{sup +} states, a good agreement with experimental data is achieved for Th and U isotopes. The formula we obtain is useful for the analysis of experimental data of alpha-decay fine structure. In addition, some predicted relative intensities which are still not measured are provided for future experiments.

  11. Rotational characteristics in the resonance state of the HTSC-permanent magnet hybrid magnetic bearing

    NASA Astrophysics Data System (ADS)

    Morii, Y.; Sukedai, M.; Ohashi, S.

    2011-11-01

    The hybrid magnetic bearing using permanent magnets and the high-Tc bulk superconductor (HTSC) has been developed. Repulsive force of the permanent magnet is introduced to increase the load weight of the magnetic bearing. Effect of the hybrid system has been shown. In this paper, influence of the hybrid system on the dynamic characteristics of the rotor is studied. The rotational characteristics in the mechanical resonance state are studied, and the equivalent magnetic spring coefficient is estimated from the experimental results of the load weight. The resonance frequency is measured by the rotation experiments. The rotor achieves stable levitation even in the resonance state. In the hybrid system, effect of the pinning force becomes smaller than that of the lateral force generated by the repulsive force between the two permanent magnets at the smaller air gap. Thus influence of the lateral vibration and the gradient angle in the resonance state becomes larger at a smaller air gap. The equivalent magnetic spring coefficient becomes also small, and the resonance frequency becomes small in the hybrid bearing system.

  12. Rotational 2+ states of superheavy elements in the Skyrme-Hartree-Fock-Bogoliubov model

    NASA Astrophysics Data System (ADS)

    Baran, A.; Staszczak, A.

    2013-05-01

    The Skyrme-Hartree-Fock-Bogoliubov calculations of the energies of first 2+ rotational states of deformed superheavy (SH) elements in the region of 108 ⩽ Z ⩽ 126 and 148 ⩽ N ⩽ 180 are reported. The results agree well in the case of fermium isotopes after a proper scaling of the moment of inertia. The scaling factor equals 1.3. The extension of the model to the region of SH elements gives a possibility of better estimation of the Q-values of α-decay, which is a dominant decay mode of SH elements.

  13. Vibrational and Rotational Structure and Excited-State Dynamics of Pyrene

    NASA Astrophysics Data System (ADS)

    Kowaka, Yasuyuki; Ashizawa, Nolitaka; Baba, Masaaki

    2010-06-01

    Pyrene is one of the prototypical compact polycyclic aromatic hydrocarbons (PAHs), and It is important to investigate its molecular structure precisely, because it does not conform to Hückel's 4n+2 rule. We analyzed high-resolution and ultrahigh-resolution spectra of jet-cooled pyrene and elucidated the vibrational and rotational structures in the S_0 ^1A_g and S_1 ^1B3u states. We conclude that the molecule is planar with D2h symmetry. The rotational constants and vibrational normal energies are very similar for the S_0 and S_1 states, indicating that its geometrical structure and potential energy curves are not changed much upon electronic excitation. This small change is common to large PAH molecules because the changes of bond orders by one electron excitation is diluted with a large number of π electrons. The rates of Radiationless transitions in the S_1 state are closely related with the molecular structure and the potential energy curves. Intersystem crossing (ISC) to the triplet state is expected to be very slow in planar PAHs. Internal conversion (IC) to the S_0 state does not occur, if the molecular structure and potential energy curves are identical for the S_0 and S_1 states. In perylene, the fluorescence lifetime is 1400 ns, and the fluorescence quantum yield is considerably high. These properties are attributed to its small changes in molecular structure and potential energy curves upon S_1 ← S_0 excitation. M. Baba, Y. Kowaka et al., J. Chem. Phys., 131, 224318 (2009)

  14. State-to-state rotational energy-transfer measurements in the nu(2) = 1 state of ammonia by infrared-infrared double resonance

    NASA Technical Reports Server (NTRS)

    Abel, Bernd; Coy, Stephen L.; Klaassen, Jody J.; Steinfeld, Jeffrey I.

    1992-01-01

    The state-resolved rotational (R-R, R-T) energy transfer in (N-14)H3 (for NH3-NH3 and NH3-Ar collisions) was studied using an IR double-resonance laser spectroscopic technique. Measurements of both the total rate of depopulation by collisions, and the rates of transfer into specific final rovibrational states (v,J,K) were performed using time-resolved tunable diode laser absorption spectroscopy. A kinetic master-equation analysis of time-resolved level populatons was carried out, yielding state-to-state rate constants and propensity rules for NH3-NH3 and NH3-Ar collisions.

  15. Security proof of a three-state quantum-key-distribution protocol without rotational symmetry

    SciTech Connect

    Fung, C.-H.F.; Lo, H.-K.

    2006-10-15

    Standard security proofs of quantum-key-distribution (QKD) protocols often rely on symmetry arguments. In this paper, we prove the security of a three-state protocol that does not possess rotational symmetry. The three-state QKD protocol we consider involves three qubit states, where the first two states |0{sub z}> and |1{sub z}> can contribute to key generation, and the third state |+>=(|0{sub z}>+|1{sub z}>)/{radical}(2) is for channel estimation. This protocol has been proposed and implemented experimentally in some frequency-based QKD systems where the three states can be prepared easily. Thus, by founding on the security of this three-state protocol, we prove that these QKD schemes are, in fact, unconditionally secure against any attacks allowed by quantum mechanics. The main task in our proof is to upper bound the phase error rate of the qubits given the bit error rates observed. Unconditional security can then be proved not only for the ideal case of a single-photon source and perfect detectors, but also for the realistic case of a phase-randomized weak coherent light source and imperfect threshold detectors. Our result in the phase error rate upper bound is independent of the loss in the channel. Also, we compare the three-state protocol with the Bennett-Brassard 1984 (BB84) protocol. For the single-photon source case, our result proves that the BB84 protocol strictly tolerates a higher quantum bit error rate than the three-state protocol, while for the coherent-source case, the BB84 protocol achieves a higher key generation rate and secure distance than the three-state protocol when a decoy-state method is used.

  16. Intercept-resend attack on six-state quantum key distribution over collective-rotation noise channels

    NASA Astrophysics Data System (ADS)

    Kevin, Garapo; Mhlambululi, Mafu; Francesco, Petruccione

    2016-07-01

    We investigate the effect of collective-rotation noise on the security of the six-state quantum key distribution. We study the case where the eavesdropper, Eve, performs an intercept-resend attack on the quantum communication between Alice, the sender, and Bob, the receiver. We first derive the collective-rotation noise model for the six-state protocol and then parameterize the mutual information between Alice and Eve. We then derive quantum bit error rate for three intercept-resend attack scenarios. We observe that the six-state protocol is robust against intercept-resend attacks on collective rotation noise channels when the rotation angle is kept within certain bounds. Project supported by the South African Research Chair Initiative of the Department of Science and Technology and National Research Foundation.

  17. The Rotational Spectra of Propyne in the Ground, V(10) = 1, V(10) = 2, and V(9) = 1 Vibrational States

    NASA Astrophysics Data System (ADS)

    Ware, John Matthew

    The problem of a vibrating-rotating polyatomic molecule is treated, with emphasis given to the case of molecules with C(,3V) sym- metry. It is shown that several of the gross features of the rotational spectra of polyatomic molecules in excited vibrational states can be predicted by group theoretical considerations. Expressions for the rotational transition frequencies of molecules of C(,3V) symmetry in the ground vibrational state, singly excited degenerate vibrational states, and doubly excited degenerate vibrational states are given. The deri- vation of these expressions by fourth order perturbation theory as given by Amat, Nielsen, and Tarrago is discussed. The ground and V(,10) = 1 rotational spectra of propyne have been investigated in the 17 to 70 GHz, and 17 to 53 GHz regions, respec- tively, and compared with predictions based on higher frequency measurements. The V(,9) = 1 and V(,10) = 2 rotational spectra of propyne have been investigated and assigned for the first time. A perturbation of the V(,9) = 1 rotational spectra for K = -L has been discovered and discussed. Methods of assignment for excited vibrational state spectra are discussed in detail. The methods of assignment given here allow the analysis of spectra where only a relatively small number of experi- mental points are available. A discrepancy has been found in the interpretation of recently reported infrared results on the rotational spectra of propyne in the V(,10) = 1, 2, 3, and 4 vibrational states. The constants of anharmoni- city which describe the change of the rotational constant, B, with the level of excitation of the V(,10) vibrational mode are rederived from microwave data. It is shown that microwave measurements increase the accuracy of one of these constants by over an order of magnitude.

  18. Raman analysis of bond conformations in the rotator state and premelting of normal alkanes.

    PubMed

    Kotula, Anthony P; Walker, Angela R Hight; Migler, Kalman B

    2016-06-14

    We perform Raman spectroscopic measurements on normal alkanes (CnH2n+2) to quantify the n dependence of the conformational disorder that occurs below the melt temperature. We employ a three-state spectral analysis method originally developed for semi-crystalline polyethylene that posits crystalline, amorphous, and non-crystalline consecutive trans (NCCT) conformations to extract their respective mass fractions. For the alkanes studied that melt via a rotator phase (21 ≤n≤ 37), we find that conformational disorder can be quantified by the loss of NCCT mass fraction, which systematically decreases with increasing chain length. For those that melt directly via the crystal phase (n≥ 40), we observe NCCT conformational mass fractions that are independent of chain length but whose disordered mass fraction increases with length. These complement prior IR measurements which measure disorder via gauche conformations, but have not been able to measure the mass fraction of this disorder as a function of n. An interesting feature of the three-state analysis when applied to alkanes is that the measured fraction of disordered chain conformations in the rotator phase of (10 to 30)% greatly exceeds the mass fraction of gauche bonds (1 to 7)% as measured from IR; we reconcile this difference through DFT calculations. PMID:27174157

  19. Hydrodynamics on the lowest Landau level

    NASA Astrophysics Data System (ADS)

    Geracie, Michael; Son, Dam Thanh

    2015-06-01

    Using the recently developed approach to quantum Hall physics based on Newton-Cartan geometry, we consider the hydrodynamics of an interacting system on the lowest Landau level. We rephrase the non-relativistic fluid equations of motion in a manner that manifests the spacetime diffeomorphism invariance of the underlying theory. In the massless (or lowest Landau level) limit, the fluid obeys a force-free constraint which fixes the charge current. An entropy current analysis further constrains the energy response, determining four transverse response functions in terms of only two: an energy magnetization and a thermal Hall conductivity. Kubo formulas are presented for all transport coefficients and constraints from Weyl invariance derived. We also present a number of Středa-type formulas for the equilibrium response to external electric, magnetic and gravitational fields.

  20. Rotational isomeric state theory applied to the stiffness prediction of an anion polymer electrolyte membrane

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Weiland, Lisa Mauck; Kitchin, John

    2008-03-01

    While the acidic polymer electrolyte membrane (PEM) Nafion has garnered considerable attention, the active response of basic PEMs offers another realm of potential applications. For instance, the basic PEM Selemion is currently being considered in the development of a CO II separation prototype device to be employed in coal power plant flue gas. The mechanical integrity of this material and subsequent effects in active response in this harsh environment will become important in prototype development. A multiscale modeling approach based on rotational isomeric state theory in combination with a Monte Carlo methodology may be employed to study mechanical integrity. The approach has the potential to be adapted to address property change of any PEM in the presence of foreign species (reinforcing or poisoning), as well as temperature and hydration variations. The conformational characteristics of the Selemion polymer chain and the cluster morphology in the polymer matrix are considered in the prediction of the stiffness of Selemion in specific states.

  1. Is rotating between static and dynamic work beneficial for our fatigue state?

    PubMed

    Luger, Tessy; Bosch, Tim; Hoozemans, Marco J M; Veeger, DirkJan H E J; de Looze, Michiel P

    2016-06-01

    Shoulder disorders comprise a large part of work-related musculoskeletal disorders. Risk factors, such as repetitiveness and monotony, may cause muscle fatigue and be attenuated by task rotation. We investigated rotation between a dynamic box-lifting task and a relatively static pick-and-place task and aimed to determine whether (1) a high rotation frequency leads to less fatigue development than a low rotation frequency, and (2) a self-selected rotation frequency leads to less fatigue development than imposed rotation frequencies. Ten participants performed four one-hour rotation schedules: two low frequency rotation schedules rotating at 30min, one high frequency rotation schedule rotating every sixth minute, and a self-selected rotation schedule. Borg, SOFI and electromyography of Trapezius and Deltoid subparts served as fatigue indicators. We found significant signs of fatigue for most schedules regarding the Borg and SOFI ratings and the M. Trapezius pars Descendens. Task rotation frequency had no significant effect on any of the outcome parameters, whereas the self-selected rotation schedule clearly resulted in less development of perceived fatigue than imposed schedules. In conclusion, we think that freedom of rotation has the greatest potential to attenuate potential development of musculoskeletal disorders and we require due caution with the use and interpretation of EMG indicators of fatigue.

  2. Gravitational wave asteroseismology of fast rotating neutron stars with realistic equations of state

    NASA Astrophysics Data System (ADS)

    Doneva, Daniela D.; Gaertig, Erich; Kokkotas, Kostas D.; Krüger, Christian

    2013-08-01

    In the present paper we study the oscillations of fast rotating neutron stars with realistic equations of state (EoS) within the Cowling approximation. We derive improved empirical relations for gravitational wave asteroseismology with f-modes, and for the first time we consider not only quadrupolar oscillations but also modes with higher spherical order (l=|m|=3, 4). After performing a systematic comparison with polytropic EoS, we show that the empirical relations found in this case approximately also hold for realistic EoS. In addition, we show that these relations will not change significantly even if the Cowling approximation is dropped and the full general relativistic case is considered, although the normalization used here (frequencies and damping times in the nonrotating limit) could differ considerably. We also address the inverse problem; i.e., we investigate in detail what kind of observational data are required in order to determine characteristic neutron star parameters. It is shown that masses, radii and rotation rates can be estimated quite accurately using the derived asteroseismology relations. We also compute the instability window for certain models, i.e., the limiting curve in a T-Ω plane where the secular Chandrasekhar-Friedman-Schutz instability overcomes dissipative effects, and we show that some of the modern realistic EoS will lead to a larger instability window compared to all of the polytropic ones presented so far in the literature. Additionally, we calculate the r-mode instability window and compare it with the f-mode case. The overall results for the instability window suggest that it is vital to take into account oscillations with l=3, 4 when considering gravitational wave asteroseismology using the f-mode in rapidly rotating neutron stars, as these modes can become unstable for a much larger range of parameters than pure quadrupolar oscillations.

  3. The electronic spectrum of AgCl2: Ab initio benchmark versus density-functional theory calculations on the lowest ligand-field states including spin-orbit effects

    NASA Astrophysics Data System (ADS)

    Ramírez-Solís, A.; Poteau, R.; Daudey, J. P.

    2006-01-01

    The XΠg2, Σg+2, and Δg2 states of AgCl2 have been studied through benchmark ab initio complete active space self-consistent field plus second-order complete active space multireference Möller-Plesset algorithm (CASSCF +CASPT2) and complete active space self-consistent field plus averaged coupled pair functional (CASSCF +ACPF) and density-functional theory (DFT) calculations using especially developed basis sets to study the transition energies, geometries, vibrational frequencies, Mulliken charges, and spin densities. The spin-orbit (SO) effects were included through the effective Hamiltonian formalism using the ΛSΣ ACPF energies as diagonal elements. At the ACPF level, the ground state is Πg2 in contradiction with ligand-field theory, SCF, and large CASSCF; the adiabatic excitation energies for the Σg+2 and Δg2 states are 1640 and 18230cm-1, respectively. The inclusion of the SO effects leads to a pure Ω =3/2(Πg2) ground state, a Ω =1/2 (66%Πg2 and 34%Σg+2) A state, a Ω =1/2 (34%Πg2 and 66%Σg+2) B state, a Ω =5/2(Δg2)C state, and a Ω =3/2(99%Δg2)D state. The X-A, X-B, X-C, and X-D transition energies are 485, 3715, 17 246, and 20110cm-1, respectively. The B97-2, B3LYP, and PBE0 functionals overestimate by ≈100% the XΠg2-Σg+2Te but provide a qualitative energetic ordering in good agreement with ACPF results. B3LYP with variable exchange leads to a 42% optimal Hartree-Fock exchange for transition energies but all equilibrium geometries get worsened. Asymptotic corrections to B3LYP do not provide improved values. The nature of the bonding in the XΠg2 state is very different from that of CuCl2 since the Mulliken charge on the metal is 1.1 while the spin density is only 0.35. DFT strongly delocalizes the spin density providing even smaller values of around 0.18 on Ag not only for the ground state, but also for the Σg+2 state.

  4. The behavior of surface tension on steady-state rotating fluids in the low gravity environments

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Leslie, Fred W.

    1987-01-01

    The effect of surface tension on steady-state rotating fluids in a low gravity environment is studied. All the values of the physical parameters used in these calculations, except in the low gravity environments, are based on the measurements carried out by Leslie (1985) in the low gravity environment of a free-falling aircraft. The profile of the interface of two fluids is derived from Laplace's equation relating the pressure drop across an interface to the radii of curvature which has been applied to a low gravity rotating bubble that contacts the container boundary. The interface shape depends on the ratio of gravity to surface tension forces, the ratio of centrifugal to surface tension forces, the contact radius of the interface to the boundary, and the contact angle. The shape of the bubble is symmetric about its equator in a zero-gravity environment. This symmetry disappears and gradually shifts to parabolic profiles as the gravity environment becomes non-zero. The location of the maximum radius of the bubble moves upward from the center of the depth toward the top boundary of the cylinder as gravity increases. The contact radius of interface to the boundary r0 at the top side of cylinder increases and r0 at the bottom side of the cylinder decreases as the gravity environment increases from zero to 1 g.

  5. Rotational Spectra of Urea in its Ground and First Excited Vibrational States

    NASA Astrophysics Data System (ADS)

    Thomas, Jessica; Medvedev, Ivan; Kisiel, Zbigniew

    2014-06-01

    Urea is an important terrestrial bio-molecule, which has been tentatively detected in the interstellar medium. To match the much improved range and sensitivities of modern sub-millimeter telescopes a broad laboratory assay of rotational transitions needs to be recorded in order to aid in the definitive identification of this molecule. This paper focuses on the spectroscopic assignment of the rotational transitions of urea in the 207-500 GHz range which belong to its ground and first excited vibrational states. Remijan, A.J., L.E. Snyder, B.A. McGuire, H.-L. Kuo, L.W. Looney, D.N. Friedel, G.Y. Golubiatnikov, F.J. Lovas, V.V. Ilyushin, E.A. Alekseev, S.F. Dyubko, B.J. McCall, and J.M. Hollis, Observational Results of a Multi-Telescope Campaign in Search of Interstellar Urea [NH22CO]. The Astrophysical Journal, 2014. 783(2): p. 77

  6. Rapidly rotating neutron stars in general relativity: Realistic equations of state

    NASA Technical Reports Server (NTRS)

    Cook, Gregory B.; Shapiro, Stuart L.; Teukolsky, Saul A.

    1994-01-01

    We construct equilibrium sequences of rotating neutron stars in general relativity. We compare results for 14 nuclear matter equations of state. We determine a number of important physical parameters for such stars, including the maximum mass and maximum spin rate. The stability of the configurations to quasi-radial perturbations is assessed. We employ a numerical scheme particularly well suited to handle rapid rotation and large departures from spherical symmetry. We provide an extensive tabulation of models for future reference. Two classes of evolutionary sequences of fixed baryon rest mass and entropy are explored: normal sequences, which behave very much like Newtonian sequences, and supramassive sequences, which exist for neutron stars solely because of general relativistic effects. Adiabatic dissipation of energy and angular momentum causes a star to evolve in quasi-stationary fashion along an evolutionary sequence. Supramassive sequences have masses exceeding the maximum mass of a nonrotating neutron star. A supramassive star evolves toward eventual catastrophic collapse to a black hole. Prior to collapse, the star actually spins up as it loses angular momentum, an effect that may provide an observable precursor to gravitational collapse to a black hole.

  7. Post-Transition State Dynamics in Gas Phase Reactivity: Importance of Bifurcations and Rotational Activation.

    PubMed

    Martín-Sómer, Ana; Yáñez, Manuel; Hase, William L; Gaigeot, Marie-Pierre; Spezia, Riccardo

    2016-03-01

    Beyond the established use of thermodynamic vs kinetic control to explain chemical reaction selectivity, the concept of bifurcations on a potential energy surface (PES) is proving to be of pivotal importance with regard to selectivity. In this article, we studied by means of post-transition state (TS) direct dynamics simulations the effect that vibrational and rotational excitation at the TS may have on selectivity on a bifurcating PES. With this aim, we studied the post-TS unimolecular reactivity of the [Ca(formamide)](2+) ion, for which Coulomb explosion and neutral loss reactions compete. The PES exhibits different kinds of nonintrinsic reaction coordinate (IRC) dynamics, among them PES bifurcations, which direct the trajectories to multiple reaction paths after passing the TS. Direct dynamics simulations were used to distinguish between the bifurcation non-IRC dynamics and non-IRC dynamics arising from atomistic motions directing the trajectories away from the IRC. Overall, we corroborated the idea that kinetic selectivity often does not reduce to a simple choice between paths with different barrier heights and instead dynamical behavior after passing the TS may be crucial. Importantly, rotational excitation may play a pivotal role on the reaction selectivity favoring nonthermodynamic products.

  8. Line strengths of rovibrational and rotational transitions in the X2 Π ground state of OH

    NASA Astrophysics Data System (ADS)

    Brooke, James S. A.; Bernath, Peter F.; Western, Colin M.; Sneden, Christopher; Afşar, Melike; Li, Gang; Gordon, Iouli E.

    2016-01-01

    A new line list including positions and absolute transition strengths (in the form of Einstein A values and oscillator strengths) has been produced for the OH ground X2 Π state rovibrational (Meinel system) and pure rotational transitions. All possible transitions are included with v‧ and v ″ up to 13, and J up to between 9.5 and 59.5, depending on the band. An updated fit to determine molecular constants has been performed, which includes some new rotational data and a simultaneous fitting of all molecular constants. The absolute transition strengths are based on a new dipole moment function, which is a combination of two high level ab initio calculations. The calculations show good agreement with an experimental v = 1 lifetime, experimental μv values, and Δv=2 line intensity ratios from an observed spectrum. To achieve this good agreement, an alteration in the method of converting matrix elements from Hund's case (b) to (a) was made. Partitions sums have been calculated using the new energy levels, for the temperature range 5-6000 K, which extends the previously available (in HITRAN) 70-3000 K range. The resulting absolute transition strengths have been used to calculate O abundances in the Sun, Arcturus, and two red giants in the Galactic open and globular clusters M67 and M71. Literature data based mainly on [O I] lines are available for the Sun and Arcturus, and excellent agreement is found.

  9. The ν_{12}+ν_6-ν_6 and ν_{11}-ν_{12} Bands of ^{12}CH_3^{13}CH_3: a Frequency Analysis Including Data from the Four Lowest Vibrational States

    NASA Astrophysics Data System (ADS)

    Moazzen-Ahmadi, N.; Oliaee, J. Norooz; Horneman, V.-M.

    2013-06-01

    High-resolution infrared spectra of the ν_{12}+ν_6-ν_6 (around 820 cm^{-1}) and ν_{11}-ν_{12} (around 370 cm^{-1}) bands of ^{12}CH_3^{13}CH_3 are assigned. Frequencies from these bands together with data from the ν_{12} and ν_5 fundamentals and the torsional bands were analysed in a 4-state fit to determine the torsion mediated Coriolis and Fermi interactions. As compared to normal ethane this lower symmetry isotopologue shows more complicated vibrational couplings. The combined data set includes more than 6800 frequencies and was fitted to within experimental accuracy using a 77-parameter Hamiltonian. The first determination of molecular parameters for the ν_{11} state of ^{12}CH_3^{13}CH_3 has been made and using this Hamiltonian we have provided lower state energies and partition functions between 100 and 330 K in increment of 10 K for planetary data analysis. A comparison with a 4-state fit of similar data for ^{12}CH_3^{12}CH_3 will be made. N. Moazzen-Ahmadi, J. Norooz Oliaee, and V.-M. Horneman, JQSRT, submitted.

  10. Equivalent retarder-rotator approach to on-state twisted nematic liquid crystal displays

    SciTech Connect

    Duran, Vicente; Lancis, Jesus; Tajahuerce, Enrique; Jaroszewicz, Zbigniew

    2006-06-01

    Polarization properties of a twisted nematic liquid crystal cell are fully characterized by an equivalent optical system that consists of a retarder wave plate and a rotator. In this paper we show that this result is of interest to optimize the light-modulation capabilities of a voltage-addressed liquid crystal display (LCD). We provide two examples. First, we demonstrate a calibration method that can be carried out by a standard polarimetric technique with a high degree of precision. Second, we propose an optical device to generate a family of equiazimuth polarization states by adding a quarter-wave plate to the LCD. We find that the design procedure is best described in geometrical terms on the Poincare sphere by use of the equivalent model. Finally, laboratory results corresponding to a commercial LCD are presented.

  11. Vibrational and rotational excited states within a Bohr Hamiltonian with a deformation-dependent mass formalism

    NASA Astrophysics Data System (ADS)

    Chabab, M.; Lahbas, A.; Oulne, M.

    2015-06-01

    In a recent work [Phys. Rev. C 84, 044321 (2011), 10.1103/PhysRevC.84.044321] M. J. Ermamatov and P. R. Fraser have studied rotational and vibrational excited states of axially symmetric nuclei within the Bohr Hamiltonian with different mass parameters. However, the energy formula that the authors have used contains some inaccuracies. So the numerical results they obtained seem to be controversial. In this paper, we revisit all calculations related to this problem and determine the appropriate formula for the energy spectrum. Moreover, in order to improve such calculations, we reconsider this problem within the framework of the deformation-dependent mass formalism. Also, unlike the work of Bonatsos et al. [Phys. Rev. C 83, 044321 (2011), 10.1103/PhysRevC.83.044321], in which the mass parameter has not been considered, we will show the importance of this parameter and its effect on numerical predictions.

  12. Two-color photoassociation spectroscopy of the lowest triplet potential of Na2

    NASA Astrophysics Data System (ADS)

    de Araujo, Luís E. E.; Weinstein, Jonathan D.; Gensemer, Stephen D.; Fatemi, Fredrik K.; Jones, Kevin M.; Lett, Paul D.; Tiesinga, Eite

    2003-07-01

    We have performed a type of Autler-Townes spectroscopy to locate a number of rovibrational-hyperfine levels of the a 3Σu+ potential, the lowest triplet potential of the Na2 dimer. The spectroscopy starts with the photoassociation of ultracold atoms in a magneto-optical trap. We have measured the binding energies of over 100 individual states spanning the vibrational levels v=8-15 of this potential (binding energies up to 27 cm-1). We obtain a typical accuracy of 15 MHz and a typical resolution of 20 MHz, improving on the 10 GHz accuracy and 30 GHz resolution previously available for the vibrational states v<12. Vibrational, rotational, and hyperfine structures are resolved. Additionally, we have been able to resolve the magnetic electron-electron spin-spin dipole splitting of a number of these hyperfine levels. The measured rotational and hyperfine structures show good agreement with theoretical calculations. An analysis of the remaining discrepancies indicates where possible refinements to the potentials can be made. We also observe evidence for the presence of second-order spin-orbit coupling.

  13. Thermalization of rotational states of NO A(2)Σ+(v = 0) in an atmospheric pressure plasma.

    PubMed

    van Gessel, A F H; Bruggeman, P J

    2013-05-28

    Laser induced fluorescence (LIF) measurements of nitric oxide (NO) are performed in an atmospheric pressure microwave plasma jet, operated with a mixture of He and 3% air. The fluorescence signal of NO A(2)Σ(+)(v = 0) is measured time and fluorescence wavelength resolved. Based on the evolution of the rotational spectrum at different positions in the plasma, we determined the thermalization time of the rotational distribution of NO A after pumping a single transition, at temperatures in the range 300-1500 K. Also, a LIF-RET (rotational energy transfer) model is developed to simulate the RET and to calculate the thermalization time. The RET rate coefficients are calculated using the energy corrected sudden-exponential power scaling law. It was found that it is necessary to take the fine structure of the rotational states into account. At room temperature the results of the measurement and the simulation are consistent, and the thermalization occurs during the laser pulse (11 ± 1 ns). At elevated temperatures the measurements show a large increase in thermalization time, up to 35 ± 4 ns at 1474 K. This time is much longer than the laser pulse, and of the order of the NO A lifetime. This means that for spectroscopy measurements of the rotational states of NO A, the RET has to be taken into account to derive gas temperatures from the rotational distribution of NO A.

  14. Mars' rotational state and tidal deformations from radio interferometry of a network of landers.

    NASA Astrophysics Data System (ADS)

    Iess, L.; Giuliani, S.; Dehant, V.

    2012-04-01

    The precise determination of the rotational state of solar system bodies is one of the main tools to investigate their interior structure. Unfortunately the accuracies required for geophysical interpretations are very stringent, and generally unattainable from orbit using optical or radar tracking of surface landmarks. Radio tracking of a lander from ground or from a spacecraft orbiting the planet offers substantial improvements, especially if the lander lifetime is adequately long. The optimal configuration is however attained when two or more landers can be simultaneously tracked from a ground antenna in an interferometric mode. ESA has been considering a network of landers on Mars since many years, and recently this concept has been revived by the study of the Mars Network Science Mission (MNSM). The scientific rationale of MNSM is the investigation of the Mars' interior and atmosphere by means of a network of two or three landers, making it especially suitable for interferometric observations. In order to synthesize an interferometer, the MNSN landers must be tracked simultaneously from a single ground antenna in a coherent two-way mode. The uplink radio signal (at X- or Ka-band) is received by the landers' transponders and retransmitted to ground in the same frequency band. The signals received at ground station are then recorded (typically at few tens of kHz) and beaten against each other to form the output of the interferometer, a complex phasor. The differential phase retain information on Mars' rotational parameters and tidal deformations. A crucial aspect of the interferometric configuration is the rejection of common noise and error sources. Errors in the station location, Earth orientation parameters and ephemerides, path delays due to the Earth troposphere and ionosphere, and, to a good extent, interplanetary plasma are cancelled out. The main residual errors are due to differential path delays from Mars' atmosphere and differential drifts of the

  15. Fast rotating neutron stars with realistic nuclear matter equation of state

    NASA Astrophysics Data System (ADS)

    Cipolletta, F.; Cherubini, C.; Filippi, S.; Rueda, J. A.; Ruffini, R.

    2015-07-01

    We construct equilibrium configurations of uniformly rotating neutron stars for selected relativistic mean-field nuclear matter equations of state (EOS). We compute, in particular, the gravitational mass (M ), equatorial (Req) and polar (Rpol) radii, eccentricity, angular momentum (J ), moment of inertia (I ) and quadrupole moment (M2) of neutron stars stable against mass shedding and secular axisymmetric instability. By constructing the constant frequency sequence f =716 Hz of the fastest observed pulsar, PSR J1748-2446ad, and constraining it to be within the stability region, we obtain a lower mass bound for the pulsar, Mmin=[1.2 - 1.4 ]M⊙ , for the EOS employed. Moreover, we give a fitting formula relating the baryonic mass (Mb) and gravitational mass of nonrotating neutron stars, Mb/M⊙=M /M⊙+(13 /200 )(M /M⊙)2 [or M /M⊙=Mb/M⊙-(1 /20 )(Mb/M⊙)2], which is independent of the EOS. We also obtain a fitting formula, although not EOS independent, relating the gravitational mass and the angular momentum of neutron stars along the secular axisymmetric instability line for each EOS. We compute the maximum value of the dimensionless angular momentum, a /M ≡c J /(G M2) (or "Kerr parameter"), (a /M )max≈0.7 , found to be also independent of the EOS. We then compare and contrast the quadrupole moment of rotating neutron stars with the one predicted by the Kerr exterior solution for the same values of mass and angular momentum. Finally, we show that, although the mass quadrupole moment of realistic neutron stars never reaches the Kerr value, the latter is closely approached from above at the maximum mass value, as physically expected from the no-hair theorem. In particular, the stiffer the EOS, the closer the mass quadrupole moment approaches the value of the Kerr solution.

  16. Accurate Determination of Rotational Energy Levels in the Ground State of ^{12}CH_4

    NASA Astrophysics Data System (ADS)

    Abe, M.; Iwakuni, K.; Okubo, S.; Sasada, H.

    2013-06-01

    We have measured absolute frequencies of saturated absorption of 183 allowed and 21 forbidden transitions in the νb{3} band of ^{12}CH_4 using an optical comb-referenced difference-frequency-generation spectrometer from 86.8 to 93.1 THz (from 2890 to 3100 wn). The pump and signal sources are a 1.06-μ m Nd:YAG laser and a 1.5-μ m extended-cavity laser diode. An enhanced-cavity absorption cell increases the optical electric field and enhances the sensitivity. The typical uncertainty is 3 kHz for the allowed transitions and 12 kHz for the forbidden transitions. Twenty combination differences are precisely determined, and the scalar rotational and centrifugal distortion constants of the ground state are thereby yielded as r@ = l@ r@ = l B_{{s}} (157 122 614.2 ± 1.5) kHz, D_{{s}} (3 328.545 ± 0.031) kHz, H_{{s}} (190.90 ± 0.26) Hz, and L_{{s}} (-13.16 ± 0.76) mHz. Here, B_{{s}} is the rotational constant and D_{{s}}, H_{{s}} and L_{{s}} are the scalar quartic, sextic, octic distortion constants. The relative uncertainties are considerably smaller than those obtained from global analysis of Fourier-transform infrared spectroscopy. S. Okubo, H. Nakayama, K. Iwakuni, H. Inaba and H. Sasada, Opt. Express 19, 23878 (2011). M. Abe, K. Iwakuni, S. Okubo, and H. Sasada, J. Opt. Soc. Am. B (to be published). S. Albert, S. Bauerecker, V. Boudon, L. R. Brown, J. -P. Champion, M. Loëte, A. Nikitin, and M. Quack, Chem. Phys. 356, 131 (2009).

  17. Rotation and vibration-rotation spectrum of FeH

    SciTech Connect

    Phillips, J.G.; Davis, S.P.

    1988-02-01

    The far-IR rotation and fundamental vibration-rotation spectra of the FeH molecule's 4Delta-4Delta system are calculated. The vibration-rotation band is in the middle of a band in the water spectrum, so that it will have to be searched for from outer space. In the case of the rotation spectrum, the feature to look for is the rotation line at 1411 GHz, which is produced by the transition between the two lowest rotational levels of the lowest (7/2) subband. This feature can be looked for from the ground. 14 references.

  18. Rotationally resolved photoelectron spectra in resonance enhanced multiphoton ionization of HCl via the F 1Δ2 Rydberg state

    NASA Astrophysics Data System (ADS)

    Wang, Kwanghsi; McKoy, V.

    1991-12-01

    Results of studies of rotational ion distributions in the X 2Π3/2 and X 2Π1/2 spin-orbit states of HCl+ resulting from (2+1') resonance enhanced multiphoton ionization (REMPI) via the S(0) branch of the F 1Δ2 Rydberg state are reported and compared with measured threshold-field-ionization zero-kinetic-energy spectra reported recently [K. S. Haber, Y. Jiang, G. Bryant, H. Lefebvre-Brion, and E. R. Grant, Phys. Rev. A (in press)]. These results show comparable intensities for J+=3/2 of the X 2Π3/2 ion and J+=1/2 of the X 2Π1/2 ion. Both transitions require an angular momentum change of ΔN=-1 upon photoionization. To provide further insight into the near-threshold dynamics of this process, we also show rotationally resolved photoelectron angular distributions, alignment of the ion rotational levels, and rotational distributions for the parity components of the ion rotational levels. About 18% population is predicted to occur in the (+) parity component, which would arise from odd partial-wave contributions to the photoelectron matrix element. This behavior is similar to that in (2+1) REMPI via the S(2) branch of the F 1Δ2 state of HBr and was shown to arise from significant l mixing in the electronic continuum due to the nonspherical molecular ion potential. Rotational ion distributions resulting from (2+1) REMPI via the S(10) branch of the F 1Δ2 state are also shown.

  19. Effect of a single quantum rotational excitation on state-to-state dynamics of the O(1D)+H2-->OH+H reaction.

    PubMed

    Liu, Xianghong; Wang, Chia C; Harich, Steve A; Yang, Xueming

    2002-09-23

    Crossed molecular beams scattering experiments on the O(1D)+H2 reaction have been carried out in order to study the effect of the reagent (H2) rotational excitation on the detailed dynamics of this benchmark insertion reation. Experimental results indicate that a single quantum rotational excitation of H2 has a significant impact on the product state distributions at the forward and backward scattering directions, while very little effect has been found in the sideway scattering direction. No clear patterns of this effect are found in the OH-product state distributions, indicating that the single quantum excitation on the dynamics is rather complicated.

  20. High-Resolution Faraday Rotation and Electron-Phonon Coupling in Surface States of the Bulk-Insulating Topological Insulator Cu_{0.02}Bi_{2}Se_{3}.

    PubMed

    Wu, Liang; Tse, Wang-Kong; Brahlek, M; Morris, C M; Aguilar, R Valdés; Koirala, N; Oh, S; Armitage, N P

    2015-11-20

    We have utilized time-domain magnetoterahertz spectroscopy to investigate the low-frequency optical response of the topological insulator Cu_{0.02}Bi_{2}Se_{3} and Bi_{2}Se_{3} films. With both field and frequency dependence, such experiments give sufficient information to measure the mobility and carrier density of multiple conduction channels simultaneously. We observe sharp cyclotron resonances (CRs) in both materials. The small amount of Cu incorporated into the Cu_{0.02}Bi_{2}Se_{3} induces a true bulk insulator with only a single type of conduction with a total sheet carrier density of ~4.9×10^{12}/cm^{2} and mobility as high as 4000 cm^{2}/V·s. This is consistent with conduction from two virtually identical topological surface states (TSSs) on the top and bottom of the film with a chemical potential ~145 meV above the Dirac point and in the bulk gap. The CR broadens at high fields, an effect that we attribute to an electron-phonon interaction. This assignment is supported by an extended Drude model analysis of the zero-field Drude conductance. In contrast, in normal Bi_{2}Se_{3} films, two conduction channels were observed, and we developed a self-consistent analysis method to distinguish the dominant TSSs and coexisting trivial bulk or two-dimensional electron gas states. Our high-resolution Faraday rotation spectroscopy on Cu_{0.02}Bi_{2}Se_{3} paves the way for the observation of quantized Faraday rotation under experimentally achievable conditions to push the chemical potential in the lowest Landau level. PMID:26636873

  1. Lifetimes of Vibro-Rotational Levels in Excited Electronic States of Diatomic Hydrogen Isotopologues

    SciTech Connect

    Astashkevich, S. A. Lavrov, B. P.

    2015-06-15

    The current situation in studies of lifetimes of excited rovibronic levels for the H{sub 2}, D{sub 2}, T{sub 2}, HD, HT, and DT molecules is analyzed. All measured lifetime values (792 entries for 618 different vibro-rotational levels of 33 electronic states) reported in 61 publications before April 2015 are compiled and listed in tabular format together with an annotated bibliography. Experimental data are only available for the H{sub 2}, HD, and D{sub 2} molecules. The data collected in the present work show fragmentariness of experimental data. For the vast majority of the levels, the lifetime values were reported in one paper only and up to now are without independent experimental verification. A complete bibliography of publications concerning semiempirical determination and nonempirical calculations of the lifetimes is presented. Numerical results obtained in the framework of these two approaches are listed only in cases when experimental data are available. For more than half of the levels, the differences between measured and calculated values are three times higher than experimental errors. These discrepancies show necessity of more precise experimental and nonempirical studies. For some 79 rovibronic levels, our analysis makes it possible to propose certain set of recommended lifetime values.

  2. Lifetimes of Vibro-Rotational Levels in Excited Electronic States of Diatomic Hydrogen Isotopologues

    NASA Astrophysics Data System (ADS)

    Astashkevich, S. A.; Lavrov, B. P.

    2015-06-01

    The current situation in studies of lifetimes of excited rovibronic levels for the H2, D2, T2, HD, HT, and DT molecules is analyzed. All measured lifetime values (792 entries for 618 different vibro-rotational levels of 33 electronic states) reported in 61 publications before April 2015 are compiled and listed in tabular format together with an annotated bibliography. Experimental data are only available for the H2, HD, and D2 molecules. The data collected in the present work show fragmentariness of experimental data. For the vast majority of the levels, the lifetime values were reported in one paper only and up to now are without independent experimental verification. A complete bibliography of publications concerning semiempirical determination and nonempirical calculations of the lifetimes is presented. Numerical results obtained in the framework of these two approaches are listed only in cases when experimental data are available. For more than half of the levels, the differences between measured and calculated values are three times higher than experimental errors. These discrepancies show necessity of more precise experimental and nonempirical studies. For some 79 rovibronic levels, our analysis makes it possible to propose certain set of recommended lifetime values.

  3. Ferroelectricity and polarity control in solid-state flip-flop supramolecular rotators

    NASA Astrophysics Data System (ADS)

    Akutagawa, Tomoyuki; Koshinaka, Hiroyuki; Sato, Daisuke; Takeda, Sadamu; Noro, Shin-Ichiro; Takahashi, Hiroyuki; Kumai, Reiji; Tokura, Yoshinori; Nakamura, Takayoshi

    2009-04-01

    Molecular rotation has attracted much attention with respect to the development of artificial molecular motors, in an attempt to mimic the intelligent and useful functions of biological molecular motors. Random motion of molecular rotators-for example the 180∘ flip-flop motion of a rotatory unit-causes a rotation of the local structure. Here, we show that such motion is controllable using an external electric field and demonstrate how such molecular rotators can be used as polarization rotation units in ferroelectric molecules. In particular, m-fluoroanilinium forms a hydrogen-bonding assembly with dibenzo[18]crown-6, which was introduced as the counter cation of [Ni(dmit)2]- anions (dmit2-=2-thioxo-1,3-dithiole-4,5-dithiolate). The supramolecular rotator of m-fluoroanilinium exhibited dipole rotation by the application of an electric field, and the crystal showed a ferroelectric transition at 348K. These findings will open up new strategies for ferroelectric molecules where a chemically designed dipole unit enables control of the nature of the ferroelectric transition temperature.

  4. Changes in the structure of nuclei between the magic neutron numbers 50 and 82 as indicated by a rotating-cluster analysis of the energy values of the first 2j excited states of isotopes of cadmium

    SciTech Connect

    Pauling, L.

    1981-09-01

    Values of R, the radius of rotation of the rotating cluster, are calculated from the observed values of the energy of the lowest 2/sup +/ states of the even isotopes of Cd, Sn, and Te with the assumption that the cluster is ..cap alpha.., pb, and ..cap alpha.., respectively. R shows a maximum at approx. N = 58, a minimum at approx. N = 62, and a second maximum at approx. N = 70. The increase to the first maximum is interpreted as resulting from the overcrowding of spherons (alphas and tritons) in the mantle (outer layer) of the nuclei, causing the cluster to change from rotating in the mantle to skimming over its surface; the decrease to the minimum results from the addition of three dineutrons to the core, expanding the mantle and permitting the rotating cluster to begin to drop back into it; and the increase to the second maximum results from the overcrowding of the larger mantle surrounding the core containing the semimagic number 14 of neutrons rather than the magic numbers 8 for N = 50. The decrease after the second maximum results from the further increase in the number of core neutrons to 20, corresponding to the magic number 82. Some additional evidence for the change to an intermediate structure between N = 50 and N = 82 is also discussed.

  5. The rotation state of 67P/Churyumov-Gerasimenko from approach observations with the OSIRIS cameras on Rosetta

    NASA Astrophysics Data System (ADS)

    Mottola, S.; Lowry, S.; Snodgrass, C.; Lamy, P. L.; Toth, I.; Rożek, A.; Sierks, H.; A'Hearn, M. F.; Angrilli, F.; Barbieri, C.; Barucci, M. A.; Bertaux, J.-L.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; De Cecco, M.; Debei, S.; Fornasier, S.; Fulle, M.; Groussin, O.; Gutiérrez, P.; Hviid, S. F.; Ip, W.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Koschny, D.; Kramm, R.; Kührt, E.; Küppers, M.; Lara, L.; Lazzarin, M.; Lopez Moreno, J. J.; Marzari, F.; Michalik, H.; Naletto, G.; Rickman, H.; Rodrigo, R.; Sabau, L.; Thomas, N.; Wenzel, K.-P.; Agarwal, J.; Bertini, I.; Ferri, F.; Güttler, C.; Magrin, S.; Oklay, N.; Tubiana, C.; Vincent, J.-B.

    2014-09-01

    Aims: Approach observations with the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) experiment onboard Rosetta are used to determine the rotation period, the direction of the spin axis, and the state of rotation of comet 67P's nucleus. Methods: Photometric time series of 67P have been acquired by OSIRIS since the post wake-up commissioning of the payload in March 2014. Fourier analysis and convex shape inversion methods have been applied to the Rosetta data as well to the available ground-based observations. Results: Evidence is found that the rotation rate of 67P has significantly changed near the time of its 2009 perihelion passage, probably due to sublimation-induced torque. We find that the sidereal rotation periods P1 = 12.76129 ± 0.00005 h and P2 = 12.4043 ± 0.0007 h for the apparitions before and after the 2009 perihelion, respectively, provide the best fit to the observations. No signs of multiple periodicity are found in the light curves down to the noise level, which implies that the comet is presently in a simple rotation state around its axis of largest moment of inertia. We derive a prograde rotation model with spin vector J2000 ecliptic coordinates λ = 65° ± 15°, β = + 59° ± 15°, corresponding to equatorial coordinates RA = 22°, Dec = + 76°. However, we find that the mirror solution, also prograde, at λ = 275° ± 15°, β = + 50° ± 15° (or RA = 274°, Dec = + 27°), is also possible at the same confidence level, due to the intrinsic ambiguity of the photometric problem for observations performed close to the ecliptic plane. Table 1 is available in electronic form at http://www.aanda.org

  6. Equation of state of neutron star matter, limiting, rotational periods of fast pulsars, and the properties of strange stars

    SciTech Connect

    Weber, F. |; Glendenning, N.K.

    1993-10-25

    In this paper the following items will be treated: The present status of dense nuclear matter calculations and constraints on the behavior of the associated equation of state at high densities from data on rapidly rotating pulsars. Recent finding of the likely existence of a mixed phase of baryons and quarks forming a coulomb lattice in the dense cores of neutron stars. Review of important findings of recently performed calculations of rapidly rotating compact stars. These are constructed in the framework of general relativity theory for a representative collection of realistic nuclear equations of state. Establish the minimum-possible rotational periods of gravitationally bound neutron stars and self-bound strange stars. Its knowledge is of fundamental importance for the decision between pulsars that can be understood as rotating neutron stars and those that cannot (signature of hypothetical self-bound matter of which strange stars are the likely stellar candidates. Investigate the properties of sequences of strange stars. Specifically, we answer the question whether such objects can give rise to the observed phenomena of pulsar glitches, which is at the present time the only astrophysical test of the strange-quark-matter hypothesis.

  7. Titan’s internal structure inferred from its gravity field, shape, and rotation state

    NASA Astrophysics Data System (ADS)

    Baland, Rose-Marie; Tobie, Gabriel; Lefèvre, Axel; Van Hoolst, Tim

    2014-07-01

    Several quantities measured by the Cassini-Huygens mission provide insight into the interior of Titan: the second-degree gravity field coefficients, the shape, the tidal Love number, the electric field, and the orientation of its rotation axis. The measured obliquity and tides, as well as the electric field, are evidence for the presence of an internal global ocean beneath the icy shell of Titan. Here we use these different observations together to constrain the density profile assuming a four-layer interior model (ice I shell, liquid water ocean, high pressure ice mantle, and rock core). Even though the observed second degree gravity field is consistent with the hydrostatic relation J2=10C22/3, which is a necessary but not sufficient condition for a synchronous satellite to be in hydrostatic equilibrium, the observed shape of the surface as well as the non-zero degree-three gravity signal indicate some departure from hydrostaticity. Therefore, we do not restrain our range of assumed density profiles to those corresponding to the hydrostatic value of the moment of inertia (0.34). From a range of density profiles consistent with the radius and mass of the satellite, we compute the obliquity of the Cassini state and the tidal Love number k2. The obliquity is computed from a Cassini state model for a satellite with an internal liquid layer, each layer having an ellipsoidal shape consistent with the measured surface shape and gravity field. The observed (nearly hydrostatic) gravity field is obtained by an additional deflection of the ocean-ice I shell interface, assuming that the layers have uniform densities. We show that the measured obliquity can be reproduced only for internal models with a dense ocean (between 1275 and 1350 kg m-3) above a differentiated interior with a full separation of rock and ice. We obtain normalized moments of inertia between 0.31 and 0.33, significantly lower than the expected hydrostatic value (0.34). Evolutionary mechanisms leading to a

  8. Bound and resonance states of the dipolar anion of hydrogen cyanide: Competition between threshold effects and rotation in an open quantum system

    NASA Astrophysics Data System (ADS)

    Fossez, K.; Michel, N.; Nazarewicz, W.; Płoszajczak, M.; Jaganathen, Y.

    2015-01-01

    Bound and resonance states of the dipole-bound anion of hydrogen cyanide HCN- are studied using a nonadiabatic pseudopotential method and the Berggren expansion technique involving bound states, decaying resonant states, and nonresonant scattering continuum. We devise an algorithm to identify the resonant states in the complex energy plane. To characterize spatial distributions of electronic wave functions, we introduce the body-fixed density and use it to assign families of resonant states into collective rotational bands. We find that the nonadiabatic coupling of electronic motion to molecular rotation results in a transition from the strong-coupling to weak-coupling regime. In the strong-coupling limit, the electron moving in a subthreshold, spatially extended halo state follows the rotational motion of the molecule. Above the ionization threshold, the electron's motion in a resonance state becomes largely decoupled from molecular rotation. The widths of resonance-band members depend primarily on the electron orbital angular momentum.

  9. Potential function of the internal rotation of a methacrolein molecule in the ground ( S 0) electronic state

    NASA Astrophysics Data System (ADS)

    Koroleva, L. A.; Krasnoshchekov, S. V.; Matveev, V. K.; Pentin, Yu. A.

    2016-08-01

    The structural parameters of s- trans- and s- cis-isomers of a methacrolein molecule in the ground ( S 0) electronic state are determined by means of MP2 method with the cc-pVTZ basis set. Kinematic factor F(φ) is expanded in a Fourier series. The potential function of internal rotation (PFIR) of methacrolein in this state is built using experimental frequencies of transitions of the torsional vibration of both isomers, obtained from an analysis of the vibrational structure of the high-resolution UV spectrum with allowance for the geometry and difference between the energy (Δ H) of the isomers. It is shown that the V n parameters of the potential function of internal rotation of the molecule, built using the frequencies of the transition of the torsional vibrations of s- trans- and s- cis-isomers of the methacrolein molecule, determined from vibrational structure of the high-resolution UV spectrum and the FTIR spectrum, are close.

  10. Extensions of Fixed-Node Diffusion Monte Carlo to the Study of the Rotationally Excited States of H_2D^+

    NASA Astrophysics Data System (ADS)

    Wellen, Bethany A.; Petit, Andrew S.; McCoy, Anne B.

    2012-06-01

    Diffusion Monte Carlo (DMC) has been shown to be a highly successful technique for treating quantum zero-point effects of very floppy molecules and clusters. Our group has developed a fixed-node DMC methodology that allows us to expand the application of the approach to studies of rotationally excited states of such systems. We recently applied this approach to the study of H_3^+. We chose this system because of the availability of a global potential energy surface of spectroscopic accuracy, and the results of converged variational calculations have been reported that can be used to assess the accuracy of the DMC calculations. As a symmetric top molecule, the nodal structures of the rotationally excited states of H_3^+ are well known and can be used in fixed-node DMC calculations. We have recently extended this methodology to asymmetric top molecules, using H_2D^+ as a test system for these types of molecules as it has a κ value near zero. Here, we describe these extensions and present the results of DMC calculations of representative rotationally excited states of H_2D^+. A. S. Petit, B. A. Wellen, and A. B. McCoy, J. Chem. Phys. 136, 074101 (2012).

  11. Collective modes and the broken symmetry of a rotating attractive Bose gas in an anharmonic trap

    SciTech Connect

    Collin, A.

    2006-01-15

    We study the rotational properties of an attractively interacting Bose gas in an anharmonic potential. Low-energy excitations for the two possible rotational ground-state configurations (vortex and the center-of-mass rotating state) are analyzed. The vortex excitation spectrum is all positive for weak couplings, but as the interactions become stronger, the energy of the lowest mode decreases rapidly to a negative value. The broken rotational symmetry involved in the center-of-mass rotating state induces the appearance of an extra zero-energy mode in the Bogoliubov spectrum. The excitations of the center-of-mass rotational state also demonstrate the coupling between the center of mass and relative motions.

  12. A Multi-State Single-Molecule Switch Actuated by Rotation of an Encapsulated Cluster within a Fullerene Cage

    SciTech Connect

    Huang, Tian; Zhao, Jin; Feng, Min; Popov, Alexey A.; Yang, Shangfeng; Dunsch, Lothar; Petek, Hrvoje

    2012-11-12

    We demonstrate a single-molecule switch based on tunneling electron-driven rotation of a triangular Sc₃N cluster within an icosahedral C 80 fullerene cage among three pairs of enantiomorphic configura-tions. Scanning tunneling microscopy imaging of switching within single molecules and electronic structure theory identify the conformational isomers and their isomerization pathways. Bias-dependent actionspectra and modeling identify the antisymmetric stretch vibration of Sc 3N cluster to be the gateway for energy transfer from the tunneling electrons to the cluster rotation. Hierarchical switching of conductivity through the internal cluster motion among multiple stationary states while maintaining a constant shape, is advantageous for the integration of endohedral fullerene-based single-molecule memory and logic devices into parallel molecular computing arc.

  13. Solid-state fermentation in rotating drum bioreactors: operating variables affect performance through their effects on transport phenomena.

    PubMed

    Stuart, D M; Mitchell, D A; Johns, M R; Litster, J D

    1999-05-20

    Aspergillus oryzae ACM 4996 was grown on an artificial gel-based substrate and on steamed wheat bran during solid-state fermentations in 18.7 L rotating drum bioreactors. For gel fermentations fungal growth decreased as rotational speed increased, presumably due to increased shear. For wheat bran fermentations fungal growth improved under agitated compared to static culture conditions, due to superior heat and mass transfer. We conclude that the effects of operational variables on the performance of SSF bioreactors are mediated by their effects on transport phenomena such as mixing, shear, heat transfer, and mass transfer within the substrate bed. In addition, the substrate characteristics affect the need for and the rates of these transport processes. Different transport phenomena may be rate limiting with different substrates. This work improves understanding of the effects of bioreactor operation on SSF performance. PMID:10099618

  14. Characteristics of FRC plasmas sustained in quasi-steady state by Rotating Magnetic Field in the FIX apparatus

    NASA Astrophysics Data System (ADS)

    Kitano, Katsuhisa; Inomoto, Michiaki; Fukuda, Takeshi; Okada, Shigefumi; Higashikozono, Takamitsu; Goto, Seiichi

    2004-11-01

    The FRC (Field Reversed Configuration) plasma has been successfully produced and sustained in quasi-steady-state by the application of RMF (Rotating Magnetic Field) in FIX (FRC Injection eXperiment). The transverse RMF was applied to drive toroidal current and sustain FRC at frequencies between ion and electron cyclotron resonances. The experiment was carried out using the metal chamber. The inner radius of the chamber is 0.4m and 4 RMF antennas are located at r=0.3m. By the application of RMF, the axial field was reversed whilst the external field was increased by 50turned off. It has been hereby found that no rotating n=2 distortion was observed despite its small normalized radius of 0.5, which is contrary to the previous experiments in ROTAMAK, STX and TCS. In addition, it was confirmed that the decrement of the axial field is proportional to the RMF frequency (<160kHz) and magnetic strength.

  15. Macroscopic Degeneracy of Zero-Mode Rotating Surface States in 3D Dirac and Weyl Semimetals under Radiation.

    PubMed

    González, José; Molina, Rafael A

    2016-04-15

    We investigate the development of novel surface states when 3D Dirac or Weyl semimetals are placed under circularly polarized electromagnetic radiation. We find that the hybridization between inverted Floquet bands opens, in general, a gap, which closes at so-called exceptional points found for complex values of the momentum. This corresponds to the appearance of midgap surface states in the form of evanescent waves decaying from the surface exposed to the radiation. We observe a phenomenon reminiscent of Landau quantization by which the midgap surface states get a large degeneracy proportional to the radiation flux traversing the surface of the semimetal. We show that all of these surface states carry angular current, leading to an angular modulation of their charge that rotates with the same frequency of the radiation, which should manifest in the observation of a macroscopic chiral current in the irradiated surface. PMID:27127980

  16. Deep, Low Mass Ratio Overcontact Binary Systems. V. The Lowest Mass Ratio Binary V857 Herculis

    NASA Astrophysics Data System (ADS)

    Qian, S.-B.; Zhu, L.-Y.; Soonthornthum, B.; Yuan, J.-Z.; Yang, Y.-G.; He, J.-J.

    2005-09-01

    Charge-coupled device (CCD) photometric light curves in the B, V, and R bands of the complete eclipsing binary star V857 Her are presented. It is shown that the light curves of the W UMa-type binary are symmetric and of A type according to Binnendijk's classification. Our four epochs of light minimum along with others compiled from the literature were used to revise the period and study the period change. Weak evidence indicates that the orbital period of V857 Her may show a continuous increase at a rate of dP/dt=+2.90×10-7 days yr-1. The photometric parameters of the system were determined with the 2003 version of the Wilson-Devinney code. It is shown that V857 Her is a deep overcontact binary system with f=83.8%+/-5.1%. The derived mass ratio of q=0.06532+/-0.0002 suggests that it has the lowest mass ratio among overcontact binary systems. As the orbital period increases, the decrease of the mass ratio will cause it to evolve into a single rapidly rotating star when it meets the more familiar criterion that the orbital angular momentum be less than 3 times the total spin angular momentum. To understand the evolutionary state of the system, long-term photometric monitoring and spectroscopic observations will be required.

  17. The determination of Mercury's gravity field and rotational state with the mission BepiColombo

    NASA Astrophysics Data System (ADS)

    Iess, L.; Asmar, S. W.; Milani, A.; Tortora, P.; Iafolla, V.

    Gravity field and rotational state provide accurate constraints to geophysical models of planetary interiors and have been therefore a major source of information on the internal structure of solar system bodies. Their determination is particularly important for Mercury, whose interior is the least known among terrestrial planets. Today, planetary gravity fields are best investigated by means of microwave Doppler tracking of orbiting spacecraft. In order to attain precise measurements the radio link (involving a carrier transmitted from ground to the spacecraft and retransmitted back to ground) must preserve the highest phase stability and coherence at each intervening stage. Electronic noise from ground and onboard instrumentation must be minimized and propagation noise (due to plasma and troposphere) must be kept to a minimum. This is especially important for phase instabilities induced by interplanetary plasma and solar corona, which have been the main limitation in past gravity experiments with planetary probes. Both forthcoming space missions to Mercury (NASA's Messenger and ESA's Bepi- Colombo) host radio science investigations devoted to geodesy and geophysics. While Messenger's experiment exploits the onboard telecommunication system, based upon a X-band radio link (7.1-8.4 GHz), the experiment MORE (Mercury Orbiter Radioscience Experiment) of BepiColombo makes use of a Ka-band radio link (32-34 GHz) enabled by dedicated onboard and ground hardware. The use of a Ka-band link in combination with the standard telecommunication system allows a complete cancellation of the plasma noise and two-way range rate measurements as accurate as 3 micron/s over time scales of 1000 s, independently of the solar elongation angle. The radio instrumentation includes also a wide-band ranging system (WBRS, using a 20 MHz tone) with a target two-way accuracy of 20 cm. The ranging system will be used to determine Mercury's orbit in the solar system, carrying out accurate tests

  18. Ground-state and rotational properties of a two-component Bose-Einstein condensate in a harmonic plus quartic trap

    NASA Astrophysics Data System (ADS)

    Chen, Guang-Ping; Zhang, Zhi-Yuan; Dong, Biao; Wang, Lin-Xue; Zhang, Xiao-Fei; Zhang, Shou-Gang

    2015-10-01

    We consider a two-component Bose-Einstein condensate under extreme elongation in a harmonic plus quartic trap. The ground-state and rotational properties of such a system are numerically studied as a function of intra- and inter-component contact interactions, and of the rotational frequency. For the nonrotational case, we obtain the exact phase diagram showing the ground-state density distributions as contact-interactions varied. For both slowly and ultrarapidly rotational cases, we demonstrate that the vortex configurations depend strongly on the relative strength of the contact interactions, as well as on the rotational frequency. The controllable system may be used to investigate the interplay of interaction and rotation, and to explore more exotic quantum phases.

  19. Three-dimensional simulation of grain mixing in three different rotating drum designs for solid-state fermentation.

    PubMed

    Schutyser, M A I; Weber, F J; Briels, W J; Boom, R M; Rinzema, A

    2002-08-01

    A previously published two-dimensional discrete particle simulation model for radial mixing behavior of various slowly rotating drums for solid-state fermentation (SSF) has been extended to a three-dimensional model that also predicts axial mixing. Radial and axial mixing characteristics were predicted for three different drum designs: (1) without baffles; (2) with straight baffles; and (3) with curved baffles. The axial mixing behavior was studied experimentally with video- and image-analysis techniques. In the drum without baffles and with curved baffles the predicted mixing behavior matched the observed behavior adequately. The predicted axial mixing behavior in the drum with straight baffles was predicted less accurately, and it appeared to be strongly dependent on particle rotation, which was in contrast to the other drum designs. In the drum with curved baffles complete mixing in the radial and axial direction was achieved much faster than in the other designs; that is, it was already achieved after three to four rotations. This drum design may therefore be very well suited to SSF. It is concluded that discrete particle simulations provide valuable detailed knowledge about particle transport processes, and this may help to understand and optimize related heat and mass transfer processes in SSF. PMID:12115417

  20. Coupled bending-torsion steady-state response of pretwisted, nonuniform rotating beams using a transfer-matrix method

    NASA Technical Reports Server (NTRS)

    Gray, Carl E., Jr.

    1988-01-01

    Using the Newtonian method, the equations of motion are developed for the coupled bending-torsion steady-state response of beams rotating at constant angular velocity in a fixed plane. The resulting equations are valid to first order strain-displacement relationships for a long beam with all other nonlinear terms retained. In addition, the equations are valid for beams with the mass centroidal axis offset (eccentric) from the elastic axis, nonuniform mass and section properties, and variable twist. The solution of these coupled, nonlinear, nonhomogeneous, differential equations is obtained by modifying a Hunter linear second-order transfer-matrix solution procedure to solve the nonlinear differential equations and programming the solution for a desk-top personal computer. The modified transfer-matrix method was verified by comparing the solution for a rotating beam with a geometric, nonlinear, finite-element computer code solution; and for a simple rotating beam problem, the modified method demonstrated a significant advantage over the finite-element solution in accuracy, ease of solution, and actual computer processing time required to effect a solution.

  1. State-dependent rotational diffusion of tetracene in n-alkanes. Evidence for a dominant energy relaxation pathway.

    PubMed

    Mize, Hannah E; Blanchard, G J

    2013-12-19

    We have investigated the rotational diffusion of tetracene in the n-alkanes octane through hexadecane. Emission from the S1 state was monitored following excitation to the S1 state or the S2 state. Our data show that fast, non-radiative relaxation from S2 to S1 gives rise to local heating in the immediate vicinity of the chromophore. This local heating effect exhibits a solvent aliphatic chain length dependence for solvents C11 and longer, where solvents with an even number of carbons behave differently than those with an odd number of carbons. These data shed light on the possible origin(s) of odd-even effects in n-alkanes and suggest that a dominant intermolecular relaxation pathway for excess vibrational energy involves the S1 chromophore ring breathing mode (ca. 1383 cm(-1)) and the solvent terminal methyl group rocking mode (1375 cm(-1)). PMID:24295035

  2. State-dependent rotational diffusion of tetracene in n-alkanes. Evidence for a dominant energy relaxation pathway.

    PubMed

    Mize, Hannah E; Blanchard, G J

    2013-12-19

    We have investigated the rotational diffusion of tetracene in the n-alkanes octane through hexadecane. Emission from the S1 state was monitored following excitation to the S1 state or the S2 state. Our data show that fast, non-radiative relaxation from S2 to S1 gives rise to local heating in the immediate vicinity of the chromophore. This local heating effect exhibits a solvent aliphatic chain length dependence for solvents C11 and longer, where solvents with an even number of carbons behave differently than those with an odd number of carbons. These data shed light on the possible origin(s) of odd-even effects in n-alkanes and suggest that a dominant intermolecular relaxation pathway for excess vibrational energy involves the S1 chromophore ring breathing mode (ca. 1383 cm(-1)) and the solvent terminal methyl group rocking mode (1375 cm(-1)).

  3. The rotational spectrum of the NH+ radical in its X 2Pi and a 4Sigma- states.

    PubMed

    Hübers, Heinz-Wilhelm; Evenson, Kenneth M; Hill, Christian; Brown, John M

    2009-07-21

    Transitions between the spin-rotational levels of the (14)NH(+) radical in the v = 0 levels of its X (2)Pi and a (4)Sigma(-) states have been studied by the technique of laser magnetic resonance at far-infrared wavelengths. The data have been combined with a previous zero-field measurement of the J = 1 1/2 - 1/2 transition frequencies at 1.01 THz to determine a much improved set of molecular parameters for NH(+) in the X (2)Pi state; the major parameters for the a (4)Sigma(-) state have also been determined. A full determination of the hyperfine parameters for both (14)N and (1)H nuclei has been achieved for the first time. Accurate predictions of the transition frequencies between the low-lying levels of the radical in the absence of a magnetic field have also been made, including lambda-doubling frequencies for use by radio astronomers. PMID:19624201

  4. Estimation of the influence of daily rotation of the earth on the stress state of the continental crust

    NASA Astrophysics Data System (ADS)

    Rebetskii, Yu. L.

    2016-07-01

    The problem of formation of additional planetary stresses in the crust initiated by the action of tangential inertia mass forces that are caused by the daily rotation of the Earth is considered. It is established that the stress state formed in the crust has three levels of different geodynamic types: horizontal tension, shear, and compression with a meridional orientation of maximum compression. It is shown that the revealed deep zonality of planetary stresses can explain the regularity of representation of ruptures of various types for planetary fracturing.

  5. Classification of the ground states and topological defects in a rotating two-component Bose-Einstein condensate

    SciTech Connect

    Mason, Peter; Aftalion, Amandine

    2011-09-15

    We classify the ground states and topological defects of a rotating two-component condensate when varying several parameters: the intracomponent coupling strengths, the intercomponent coupling strength, and the particle numbers. No restriction is placed on the masses or trapping frequencies of the individual components. We present numerical phase diagrams which show the boundaries between the regions of coexistence, spatial separation, and symmetry breaking. Defects such as triangular coreless vortex lattices, square coreless vortex lattices, and giant skyrmions are classified. Various aspects of the phase diagrams are analytically justified thanks to a nonlinear {sigma} model that describes the condensate in terms of the total density and a pseudo-spin representation.

  6. Ab initio ground-state potential energy function and vibration-rotation energy levels of imidogen, NH.

    PubMed

    Koput, Jacek

    2015-06-30

    The accurate ground-state potential energy function of imidogen, NH, has been determined from ab initio calculations using the multireference averaged coupled-pair functional (MR-ACPF) method in conjunction with the correlation-consistent core-valence basis sets up to octuple-zeta quality. The importance of several effects, including electron correlation beyond the MR-ACPF level of approximation, the scalar relativistic, adiabatic, and nonadiabatic corrections were discussed. Along with the large one-particle basis set, all of these effects were found to be crucial to attain "spectroscopic" accuracy of the theoretical predictions of vibration-rotation energy levels of NH.

  7. Bose-Einstein condensates in strong electric fields: Effective gauge potentials and rotating states

    SciTech Connect

    Kailasvuori, J.M.; Hansson, T.H.; Kavoulakis, G.M.

    2002-11-01

    Magnetically trapped atoms in Bose-Einstein condensates are spin polarized. Since the magnetic field is inhomogeneous, the atoms acquire Berry phases of the Aharonov-Bohm type during adiabatic motion. In the presence of an electric field, there is an additional Aharonov-Casher effect. Taking into account the limitations on the strength of the electric fields due to the polarizability of the atoms, we investigate the extent to which these effects can be used to induce rotation in a Bose-Einstein condensate.

  8. Analysis of the Rotational Structure of ˜{B}^2A' ← ˜{X}^2A' Transition of Isopropoxy Radical: Isolated State vs. Coupled States Model

    NASA Astrophysics Data System (ADS)

    Melnik, Dmitry G.; Miller, Terry A.; Liu, Jinjun

    2013-06-01

    Isopropoxy radicals are reactive intermediates in atmospheric and combustion chemistry. From the theoretical point of view, they represent an extreme case of ``isotopically'' substituted methoxy radicals with two methyl groups playing the role of heavy hydrogen isotopes. Previously the rotationally resolved spectra of ˜{B}^2A' ← ˜{X}^2A' electronic transition were successfully analyzed using a simple effective rotational Hamiltonian of the isolated ˜{X} and ˜{B} states. However, a number of the experimentally determined parameters appeared dramatically inconsistent with the quantum chemistry calculations and theoretical predictions based on the symmetry arguments. Recently, we analyzed these spectra using a coupled two state model, which explicitly includes interactions between the ground ˜{X}^2A' state and low-lying excited ˜{A}^2A^'' state. In this presentation we will discuss the results of this analysis and compare the parameters of both models and their physical significance. D. G. Melnik, T. A. Miller and J. Liu, TI15, 67^{th Molecular Spectroscopy Symposium}, Columbus, 2012

  9. Temperature dependence of the lowest excitonic transition for an InAs ultrathin quantum well

    NASA Astrophysics Data System (ADS)

    Singh, S. D.; Porwal, S.; Sharma, T. K.; Rustagi, K. C.

    2006-03-01

    Temperature dependent photoluminescence and photoreflectance techniques are used to investigate the lowest excitonic transition of InAs ultrathin quantum well. It is shown that the temperature dependence of the lowest energy transition follows the band gap variation of GaAs barrier, which is well reproduced by calculated results based on the envelope function approximation with significant corrections due to strain and temperature dependences of the confinement potential. A redshift in photoluminescence peak energy compared to photoreflectance is observed at low temperatures. This is interpreted to show that the photoluminescence signal originates from the recombination of carriers occupying the band-tail states below the lowest critical point.

  10. An assessment of the determination of the tides and the rotation state of Ganymede with JUICE radio science experiment

    NASA Astrophysics Data System (ADS)

    Baland, Rose-Marie; Van Hoolst, Tim; Tobie, Gabriel; Dehant, Véronique

    2015-04-01

    Besides being the largest natural satellite known in the Solar System, Ganymede most likely also has the most differentiated internal structure of all satellites.Ganymede is thought to have an external water/ice layer subdivided into three sublayers: an outer ice shell, a global liquid water ocean, and a high pressure ice mantle. The presence of a water layer is supported by the possible detection of an induced magnetic field with the Galileo spacecraft. The metallic core is divided into a solid (inner core) and a liquid (outer core) part. Between the water/ice and the metallic layers, a rock mantle is expected. The JUpiter ICy moons Explorer (JUICE) mission led by ESA is planned to be launched in 2022. The spacecraft is expected to enter in orbit around Ganymede in september 2032. The Ganymede Tour will alternate elliptic and circular phases at different altitudes. The circular phases at altitudes of a few hundred kilometers are dedicated partly to the study of the internal structure such as the determination of the extent and composition of the ocean and of the surface ice shell. The payload of the spacecraft comprises the radio science package 3GM (Gravity and Geophysics of Jupiter and the Galilean Moons) that will be used to measure the Doppler effect on radio links between the orbiter and the Earth which will be affected by the gravity field of Ganymede. The gravity field of Ganymede is the sum of the static hydrostatic field (related to the secular Love number kf), of the periodically varying field due to tidal deformations (related to the tidal Love number k2 and the tidal dissipation factor Q), of the periodically varying field due to change in the rotation state (variations in the rotation rate and in the orientation of the rotation axis), and of the non-hydrostatic field that may be due to mass anomalies. The tidal and rotation parameters depend on the internal structure of the satellite (density, size, rheological properties of the different layers) in a

  11. Rotationally Resolved Spectroscopy of the Electronically Excited C and D States of {ArXe} and {KrXe}

    NASA Astrophysics Data System (ADS)

    Piticco, Lorena; Schäfer, Martin; Merkt, Frédéric

    2011-06-01

    Rotationally resolved (1+1') resonance-enhanced two-photon ionization spectra of the D and C ← X 0^+ band systems of several isotopomers of ArXe and KrXe were recorded using a narrow-bandwidth VUV laser system at a resolution of 0.01 Cm-1 in the wave number range from 77000 Cm-1 to 77400 Cm-1. The analysis of the rotational structures enabled the characterization of the dissociation of the Ω = 1 states of ArXe and KrXe. In the case of Rg129Xe and Rg131Xe (Rg=Ar, Kr), the hyperfine structure could also be resolved and provided new information on these states, and on the nature of the perturbations. Model potentials for the perturbing and perturbed excited states were constructed in an attempt to rationalize the spectroscopic data. The spectra of the C and D states of ArXe and KrXe reveal strong Perturbations(c-e), and are subject to slow predissociation. U. Hollenstein, H. Palm and F. Merkt, Rev. Sci. Instr. 71, 4023 (2000). L. Piticco, F. Merkt, A. A. Cholewinski, F. R. W. Mc Court and R. J. Le Roy, J. Mol. Spectrosc. 264, 83 (2010). S. Liu, A. Hishikawa and K. Yamanouchi, J. Chem. Phys. 108, 5330 (1998). A. P. Hickman, D. L. Huestis and R. P. Saxon, J. Chem. Phys. 96, 2099 (1992) D. M. Mao, X. K. Hu, S. S. Dimov and R. H. Lipson}, J. Phys. B 29, L89 (1996).

  12. Piezoelectrically forced vibrations of electroded doubly rotated quartz plates by state space method

    NASA Technical Reports Server (NTRS)

    Chander, R.

    1990-01-01

    The purpose of this investigation is to develop an analytical method to study the vibration characteristics of piezoelectrically forced quartz plates. The procedure can be summarized as follows. The three dimensional governing equations of piezoelectricity, the constitutive equations and the strain-displacement relationships are used in deriving the final equations. For this purpose, a state vector consisting of stresses and displacements are chosen and the above equations are manipulated to obtain the projection of the derivative of the state vector with respect to the thickness coordinate on to the state vector itself. The solution to the state vector at any plane is then easily obtained in a closed form in terms of the state vector quantities at a reference plane. To simplify the analysis, simple thickness mode and plane strain approximations are used.

  13. Carbon stocks quantification in agricultural systems employing succession and rotation of crops in Rio Grande do Sul State, Brazil.

    NASA Astrophysics Data System (ADS)

    Walter, Michele K. C.; Marinho, Mara de A.; Denardin, José E.; Zullo, Jurandir, Jr.; Paz-González, Antonio

    2013-04-01

    Soil and vegetation constitute respectively the third and the fourth terrestrial reservoirs of Carbon (C) on Earth. C sequestration in these reservoirs includes the capture of the CO2 from the atmosphere by photosynthesis and its storage as organic C. Consequently, changes in land use and agricultural practices affect directly the emissions of the greenhouse gases and the C sequestration. Several studies have already demonstrated that conservation agriculture, and particularly zero tillage (ZT), has a positive effect on soil C sequestration. The Brazilian federal program ABC (Agriculture of Low Carbon Emission) was conceived to promote agricultural production with environmental protection and represents an instrument to achieve voluntary targets to mitigate emissions or NAMAS (National Appropriated Mitigation Actions). With financial resources of about US 1.0 billion until 2020 the ABC Program has a target of expand ZT in 8 million hectares of land, with reduction of 16 to 20 million of CO2eq. Our objective was to quantify the C stocks in soil, plants and litter of representative grain crops systems under ZT in Rio Grande do Sul State, Brazil. Two treatments of a long term experimental essay (> 20 years) were evaluated: 1) Crop succession with wheat (Triticum aestivum L.)/soybean (Glycine max (L.) Merril); 2) Crop rotation with wheat/soybean (1st year), vetch (Vicia sativa L.)/soybean (2nd year), and white oat (Avena sativa L.)/sorghum (Sorghum bicolor L.) (3rd year). C quantification in plants and in litter was performed using the direct method of biomass quantification. The soil type evaluated was a Humic Rhodic Hapludox, and C quantification was executed employing the method referred by "C mass by unit area". Results showed that soybean plants under crop succession presented greater C stock (4.31MgC ha-1) comparing with soybean plants cultivated under crop rotation (3.59 MgC ha-1). For wheat, however, greater C stock was quantified in plants under rotation

  14. Measurement of absolute state-to-state rate constants for collision-induced transitions between spin-orbit and rotational states of NO(X 2Π, v = 2)

    NASA Astrophysics Data System (ADS)

    Sudbø, Aa. S.; Loy, M. M. T.

    1982-04-01

    Using a pulsed, time resolved IR-UV double resonance technique, we have measured initial and final state specific rates for collision-induced rotational and spin-orbit transitions in NO in its (X 2Π, v = 2) vibronic state. A systematic study of the rates was done for initial and final rotational states with J between 1/2 and 35/2, for both Ω = 1/2 and the Ω = 3/2 spin-orbit components of the X 2Π state. Collision partners were room temperature NO, He, Ar, N2, CO, and SF6. No propensity rules favoring ΔΩ = 0 or ΔJ = 0,±1 were observed, except in NO-He collisions, where ΔΩ = 0 was favored. The state-to-state rates do not vary much with initial state and fall off slowly with increasing ΔJ. Total cross sections for collision-induced rotational transitions were found to be tens of Å2, insensitive to initial state, and correlated with the size of the collision partner.

  15. Analysis of the rotational spectrum of methylene (CH2) in its vibronic ground state with an Euler expansion of the Hamiltonian.

    PubMed

    Brünken, Sandra; Müller, Holger S P; Lewen, Frank; Giesen, Thomas F

    2005-10-22

    We present an analysis of a global, field-free data set of the methylene radical CH2 in its X 3B1 vibronic ground state by means of a novel Euler expansion of the Hamiltonian. The data set comprises pure rotational transitions up to 2 THz obtained with microwave accuracies of 30-500 kHz as well as nu2 ground-state combination differences and pure rotational data obtained with infrared accuracies of 0.001-0.010 cm(-1). Highly accurate spectroscopic parameters have been determined. These include rotational, spin-spin, spin-rotation, and electron-spin-nuclear-spin coupling terms along with several centrifugal distortion corrections. The spectroscopic model has been tested and improved by recording newly three weak DeltaN not equalDeltaJ fine-structure components of the N(KaKc)=2(12)-3(03) and 5(05)-4(14) transitions near 434, 454, and 581 GHz. These lines were rather close to the predictions. Overall weighted root mean squares of 1.28 and 0.83 were achieved for fits in which the Euler expansion was used only for the rotational part of the Hamiltonian or for the rotational and spin-spin terms of the Hamiltonian, respectively. The resulting spectroscopic parameters allow for precise frequency predictions of astrophysically important rotational transitions of methylene.

  16. Rotationally resolved state-to-state photoionization and photoelectron study of titanium carbide and its cation (TiC/TiC⁺).

    PubMed

    Luo, Zhihong; Huang, Huang; Chang, Yih-Chung; Zhang, Zheng; Yin, Qing-Zhu; Ng, C Y

    2014-10-14

    Titanium carbide and its cation (TiC/TiC(+)) have been investigated by the two-color visible (VIS)-ultraviolet (UV) resonance-enhanced photoionization and pulsed field ionization-photoelectron (PFI-PE) methods. Two visible excitation bands for neutral TiC are observed at 16,446 and 16,930 cm(-1). Based on rotational analyses, these bands are assigned as the respective TiC((3)Π1) ← TiC(X(3)Σ(+)) and TiC((3)Σ(+)) ← TiC(X(3)Σ(+)) transition bands. This assignment supports that the electronic configuration and term symmetry for the neutral TiC ground state are …7σ(2)8σ(1)9σ(1)3π(4) (X(3)Σ(+)). The rotational constant and the corresponding bond distance of TiC(X(3)Σ(+); v″ = 0) are determined to be B0″ = 0.6112(10) cm(-1) and r0″ = 1.695(2) Å, respectively. The rotational analyses of the VIS-UV-PFI-PE spectra for the TiC(+)(X; v(+) = 0 and 1) vibrational bands show that the electronic configuration and term symmetry for the ionic TiC(+) ground state are …7σ(2)8σ(1)3π(4) (X(2)Σ(+)) with the v(+) = 0 → 1 vibrational spacing of 870.0(8) cm(-1) and the rotational constants of B(e)(+) = 0.6322(28) cm(-1), and α(e)(+) = 0.0085(28) cm(-1). The latter rotational constants yield the equilibrium bond distance of r(e)(+) = 1.667(4) Å for TiC(+)(X(2)Σ(+)). The cleanly rotationally resolved VIS-UV-PFI-PE spectra have also provided a highly precise value of 53 200.2(8) cm(-1) [6.5960(1) eV] for the adiabatic ionization energy (IE) of TiC. This IE(TiC) value along with the known IE(Ti) has made possible the determination of the difference between the 0 K bond dissociation energy (D0) of TiC(+)(X(2)Σ(+)) and that of TiC(X(3)Σ(+)) to be D0(Ti(+)-C) - D0(Ti-C) = 0.2322(2) eV. Similar to previous experimental observations, the present state-to-state PFI-PE study of the photoionization transitions, TiC(+)(X(2)Σ(+); v(+) = 0 and 1, N(+)) ← TiC((3)Π1; v', J'), reveals a strong decreasing trend for the photoionization cross section as |ΔN(+)| = |N

  17. Determination of the pair correlation of OH rotational states from the 266 nm photolysis of H 2O 2 using velocity-aligned doppler spectroscopy

    NASA Astrophysics Data System (ADS)

    Dixon, R. N.; Nightingale, J.; Western, C. M.; Yang, X.

    1988-10-01

    Time-delayed Doppler-split line profiles have been measured at high resolution for many rotational states of OH generated by the 266 nm photolysis of H 2O 2. The mean rotational energy of the partner OH increases linearly with that of the probed OH with a constant of proportionality of 0.28. These measurements lead to an HO-OH bond dissociation energy Δ H00 = 220±5 kJ/mole.

  18. Rotationally inelastic collisions between a diatomic molecule in a2Π electronic state and a structureless target

    NASA Astrophysics Data System (ADS)

    Alexander, Millard H.

    1982-06-01

    We present the full close-coupling formulation of the collision between a diatomic molecule in a 2Π state in the Hund's case (a) limit and a structureless target. Due to the possibility of transitions between spin-orbit and/or Λ-doubling states the scattering displays an additional degree of complexity not seen in rotationally inelastic collisions of 1Σ+ molecules. The well-known coupled states and infinite-order-sudden (IOS) approximation techniques can be applied in a straightforward manner. The factorization and scaling relations between the various cross sections, which are valid in the energy sudden limit, are explored. For transitions within either spin-orbit manifold (Ω = 1/2, Ω = 3/2), these scaling relations allow both matrices of cross sections, for parity conserving the parity violating transitions, to be expressed in terms of the cross sections for parity conserving transitions out of the Ω = 1/2, J = 1/2 level. Under conditions in which either a Born or sudden formulation of the collision dynamics is appropriate, we show that at large values of the total angular momentum, transitions which conserve the parity index of the molecular wave functions will be strongly favored, a propensity rule which has been seen in previous experimental studies of rotational relaxation in 2Π molecules. A scaling relation is also derived for the cross sections for transitions between the two spin-orbit manifolds. For these processes, however, the propensity toward conservation of the parity index only occurs in the case of transitions which are elastic in the total angular momentum. The IOS formulation of the collision dynamics is then extended to a Hund's case (b) representation of the molecular wave function. Although a complete factorization is no longer possible, one can still show that at large J there will exist a strong propensity toward conservation of the alignment between S (the spin-angular momentum of the molecule) and N (the vector sum of the nuclear

  19. Torsional Splitting in the Rotational Spectrum from 8 TO 650 GHz of the Ground State of 1,1-DIFLUOROACETONE

    NASA Astrophysics Data System (ADS)

    Margules, L.; Motiyenko, R. A.; Groner, P.; De Chirico, F.; Turk, A.; Cooke, S. A.

    2013-06-01

    Measurements on the rotational spectrum of 1,1-difluoroacetone have been extended from the cm-wave region into the mm-wave region. Measurements between 150 GHz and 600 GHz were performed a t Lille at room temperature. About 2000 transitions have been added to the known line listing for the ground state. The range of J and K_{-1} values, for both the A and E torsional substates, now span 1 - 60 and 0 - 30, respectively. Analysis of the cm-wave spectrum was only possible using the Watson S-reduced Hamiltonian, with the A-reduction producing a poor spectral fit. For that analysis only quartic centrifugal distortion terms were required. With the newly recorded higher J and K_{-1} measurements it is necessary to expand the Hamiltonian to now include sextic and octic centrifugal distortion terms. This should allow us to extend the assignment to even higher J and K_{-1} and perhaps to shed more light into failure of the A-reduction Hamiltonian to achieve a satisfactory fit for the cm-wave transitions. The effective barrier to methyl group internal rotation has been determined more accurately. G. S. Grubbs II, P. Groner, S. E. Novick and S. A. Cooke J. Mol. Spectrosc. {280} 21-26, 2012.

  20. Rotational and vibrational dynamics in the excited electronic state of deprotonated and protonated fluorescein studied by time-resolved photofragmentation in an ion trap

    PubMed Central

    Imanbaew, Dimitri; Gelin, Maxim F.; Riehn, Christoph

    2016-01-01

    Excited state dynamics of deprotonated and protonated fluorescein were investigated by polarization dependent femtosecond time-resolved pump-probe photofragmentation in a 3D ion trap. Transients of deprotonated fluorescein exhibit vibrational wavepacket dynamics with weak polarization dependence. Transients of protonated fluorescein show only effects of molecular alignment and rotational dephasing. The time resolved rotational anisotropy of protonated fluorescein is simulated by the calculated orientational correlation function. The observed differences between deprotonated and protonated fluorescein are ascribed to their different higher lying electronically excited states and corresponding structures. This is partially supported by time-dependent density functional theory calculations of the excited state structures. PMID:27376104

  1. Rotational and vibrational dynamics in the excited electronic state of deprotonated and protonated fluorescein studied by time-resolved photofragmentation in an ion trap.

    PubMed

    Imanbaew, Dimitri; Gelin, Maxim F; Riehn, Christoph

    2016-07-01

    Excited state dynamics of deprotonated and protonated fluorescein were investigated by polarization dependent femtosecond time-resolved pump-probe photofragmentation in a 3D ion trap. Transients of deprotonated fluorescein exhibit vibrational wavepacket dynamics with weak polarization dependence. Transients of protonated fluorescein show only effects of molecular alignment and rotational dephasing. The time resolved rotational anisotropy of protonated fluorescein is simulated by the calculated orientational correlation function. The observed differences between deprotonated and protonated fluorescein are ascribed to their different higher lying electronically excited states and corresponding structures. This is partially supported by time-dependent density functional theory calculations of the excited state structures. PMID:27376104

  2. Rotationally Resolved Vacuum Ultraviolet Resonance-Enhanced Multiphoton Ionization (VUV REMPI) of Acetylene via the G̃ Rydberg State.

    PubMed

    Schmidt-May, Alice F; Grütter, Monika; Neugebohren, Jannis; Kitsopoulos, T N; Wodtke, Alec M; Harding, Dan J

    2016-07-14

    We present a 1 + 1' resonance-enhanced multiphoton ionization (REMPI) scheme for acetylene via the linear G̃ 4sσ (1)Πu Rydberg state, offering partial rotational resolution and the possibility to detect excitation in both the cis- and trans-bending modes. The resonant transition to the G̃ state is driven by a vacuum ultraviolet (VUV) photon, generated by resonant four-wave mixing (FWM) in krypton. Ionization from the short-lived G̃ state then occurs quickly, driven by the high intensity of the residual light from the FWM process. We have observed nine bands in the region between 79 200 cm(-1) and 80 500 cm(-1) in C2H2 and C2D2. We compare our results with published spectra in this region and suggest alternative assignments for some of the Renner-Teller split bands. Similar REMPI schemes should be applicable to other small molecules with picosecond lifetime Rydberg states. PMID:27073931

  3. Rotationally Resolved Spectroscopy of the Electronically Excited C and D States of {XeKr} and {XeAr}

    NASA Astrophysics Data System (ADS)

    Piticco, Lorena; Schäfer, Martin; Merkt, Frédéric

    2009-06-01

    Informations on excited electronic states of the heteronuclear rare-gas dimers XeRg (Rg=Kr, Ar) available in the literature are limited to the vibrational structure of several band systems in the VUV range of the electromagnetic spectrum. Using a near-Fourier-transform-limited vacuum-ultraviolet laser system spectra of the C ← X and D ← X band systems of several isotopomers of XeKr and XeAr were recorded at high resolution in the wavenumber range from 77 000 cm^{-1} to 77 350 cm^{-1} by resonance-enhanced two-photon ionization spectroscopy. The rotational and vibrational structures of the C ← X and D ← X band systems could be fully resolved and assigned on the basis of isotopic shifts, combination differences and the ground state microwave spectra. The orbital hyperfine structure of the C1 state could be resolved for the ^{129}Xe^{40}Ar and ^{131}Xe^{40}Ar isotopomers. Potential energy functions and a full set of spectroscopic parameters were derived for the ground and excited states. D. M. Mao, X. K. Hu, S. S. Dimov, R. H. Lipson}, J. Phys. B 29, L89 (1996). O. Zehnder, F. Merkt, Mol. Phys. 106, 1215 (2008). KrXe+ O. Zehnder, F. Merkt, J. Chem. Phys. 128, 014306 (2008). ArXe+ U. Hollenstein, H. Palm and F. Merkt, Rev. Sci. Instr. 71, 4023 (2000). W. Jäger, Y. Xu, M. C. L. Gerry, J. Chem. Phys. 99, 919 (1993).

  4. State-to-state rotationally inelastic scattering of ND[sub 3] on a graphite (0001) surface

    SciTech Connect

    LaVilla, M.E.; Ionova, I.V.; Ionov, S.I. )

    1992-12-15

    State-selected molecular beams of deuterated ammonia, [vert bar][ital JKM][epsilon][gt][vert bar]inversion[gt]=[vert bar]1111[gt][vert bar][minus][gt] or [vert bar]222[minus]1[gt][vert bar][minus][gt] and [vert bar]3331[gt][vert bar][minus][gt] states in the proportion 2.3:1, are produced via hexapole electrostatic focusing and then scattered at near-normal incidence on a graphite (0001) surface at [ital T][sub [ital s

  5. Predicting yields of short-rotation hybrid poplar (Populus spp.) for the United States through model-data synthesis.

    PubMed

    Wang, Dan; LeBauer, David; Dietze, Michael

    2013-06-01

    Hybrid poplar (Populus spp.) is an important biomass crop being evaluated for cellulosic ethanol production. Predictions of poplar growth, rotation period, and soil carbon sequestration under various growing conditions, soils, and climates are critical for farmers and managers planning to establish short-rotation forestry (SRF) plantations. In this study, we used an ecoinformatics workflow, the Predictive Ecosystem Analyzer (PEcAn), to integrate literature data and field measurements into the Ecosystem Demography 2 (ED2) model to estimate yield potential of poplar plantations. Within PEcAn 164 records of seven different traits from the literature were assimilated using a Bayesian meta-analysis. Next, variance decomposition identified seven variables for further constraint that contributed > 80% to the uncertainty in modeled yields: growth respiration, dark respiration, quantum efficiency, mortality coefficient, water conductance, fine-root allocation, and root turnover rate. Assimilation of observed yields further constrained uncertainty in model parameters (especially dark respiration and root turnover rate) and biomass estimates. Additional measurements of growth respiration, mortality, water conductance, and quantum efficiency would provide the most efficient path toward further constraint of modeled yields. Modeled validation demonstrated that ED2 successfully captured the interannual and spatial variability of poplar yield observed at nine independent sites. Site-level analyses were conducted to estimate the effect of land use change to SRF poplar on soil C sequestration compared to alternate land uses. These suggest that poplar plantations became a C sink within 18 years of conversion from corn production or existing forest. Finally, poplar yields were estimated for the contiguous United States at a half degree resolution in order to determine potential productivity, estimate the optimal rotation period, and compare poplar to perennial grass yields. This

  6. Predicting yields of short-rotation hybrid poplar (Populus spp.) for the United States through model-data synthesis.

    PubMed

    Wang, Dan; LeBauer, David; Dietze, Michael

    2013-06-01

    Hybrid poplar (Populus spp.) is an important biomass crop being evaluated for cellulosic ethanol production. Predictions of poplar growth, rotation period, and soil carbon sequestration under various growing conditions, soils, and climates are critical for farmers and managers planning to establish short-rotation forestry (SRF) plantations. In this study, we used an ecoinformatics workflow, the Predictive Ecosystem Analyzer (PEcAn), to integrate literature data and field measurements into the Ecosystem Demography 2 (ED2) model to estimate yield potential of poplar plantations. Within PEcAn 164 records of seven different traits from the literature were assimilated using a Bayesian meta-analysis. Next, variance decomposition identified seven variables for further constraint that contributed > 80% to the uncertainty in modeled yields: growth respiration, dark respiration, quantum efficiency, mortality coefficient, water conductance, fine-root allocation, and root turnover rate. Assimilation of observed yields further constrained uncertainty in model parameters (especially dark respiration and root turnover rate) and biomass estimates. Additional measurements of growth respiration, mortality, water conductance, and quantum efficiency would provide the most efficient path toward further constraint of modeled yields. Modeled validation demonstrated that ED2 successfully captured the interannual and spatial variability of poplar yield observed at nine independent sites. Site-level analyses were conducted to estimate the effect of land use change to SRF poplar on soil C sequestration compared to alternate land uses. These suggest that poplar plantations became a C sink within 18 years of conversion from corn production or existing forest. Finally, poplar yields were estimated for the contiguous United States at a half degree resolution in order to determine potential productivity, estimate the optimal rotation period, and compare poplar to perennial grass yields. This

  7. An Analysis of the Rotational Spectrum of Acetonitrile (CH_3CN) in Excited Vibrational States

    NASA Astrophysics Data System (ADS)

    Neese, Christopher F.; McMillan, James; Fortman, Sarah; De Lucia, Frank C.

    2014-06-01

    Acetonitrile (CH_3CN) is a well-known interstellar molecule whose vibrationally excited states need to be accounted for in searches for new molecules in the interstellar medium. To help catalog such `weed' molecules, we have developed a technique that involves recording complete spectra over a range of astrophysically significant temperatures. With such a data set, we can experimentally measure the line strengths and lower state energies of unassigned lines in the spectrum. In this talk we will present the ongoing analysis of complete temperature resolved spectra in the 215-265 GHz and 570-650 GHz regions. We have been able to assign many vibrationally hot lines from this data and a room temperature data set spanning 165-700 GHz. To date, we have assigned lines from most of the vibrational states below ν_6 at 1448 wn.

  8. The emergence of deformation and rotational states in the many-nucleon quantum theory of nuclei

    NASA Astrophysics Data System (ADS)

    Rowe, D. J.

    2016-02-01

    The many-nucleon quantum mechanics of a nucleus is infinite-dimensional and, although simply defined, it has the potential for unlimited complexity. Nevertheless, the low-energy states of heavy open-shell nuclei exhibit properties that are remarkably well described by simple collective models. This paper examines this emergent simplicity from a perspective that closely parallels the emergence of shell structure in the Mayer-Jensen model. The result is an expression of the many-nucleon Hilbert space of a nucleus as an energy-ordered sum of subspaces each of which carries a microscopic version of the Bohr-Mottelson unified model. Each of the subspaces is characterized by nuclear states with a common intrinsic shape defined by its quadrupole moments. An emergence of simplicity and shape-coexistence in nuclei is then explained if it can be demonstrated that there is a relatively small and coherent mixing of the states of different collective subspaces.

  9. Surface-catalyzed recombination into excited electronic, vibrational, rotational, and kinetic energy states: A review

    NASA Technical Reports Server (NTRS)

    Kofsky, I. L.; Barrett, J. L.

    1985-01-01

    Laboratory experiments in which recombined CO, CO2, D2O, OH, N2, H2, and O2 molecules desorb from surfaces in excited internal and translational states are briefly reviewed. Unequilibrated distributions predominate from the principally catalytic metal substrates so far investigated. Mean kinetic energies have been observed up to approx. 3x, and in some cases less than, wall-thermal; the velocity distributions generally vary with emission angle, with non-Lambertian particle fluxes. The excitation state populations are found to depend on surface impurities, in an as yet unexplained way.

  10. Observation of a thermally accessible triplet state resulting from rotation around a main-group π bond.

    PubMed

    Kostenko, Arseni; Tumanskii, Boris; Karni, Miriam; Inoue, Shigeyoshi; Ichinohe, Masaaki; Sekiguchi, Akira; Apeloig, Yitzhak

    2015-10-01

    We report the first direct spectroscopic observation by electron paramagnetic resonance (EPR) spectroscopy of a triplet diradical that is formed in a thermally induced rotation around a main-group π bond, that is, the SiSi double bond of tetrakis(di-tert-butylmethylsilyl)disilene (1). The highly twisted ground-state geometry of singlet 1 allows access to the perpendicular triplet diradical 2 at moderate temperatures of 350-410 K. DFT-calculated zero-field splitting (ZFS) parameters of 2 accurately reproduce the experimentally observed half-field transition. Experiment and theory suggest a thermal equilibrium between 1 and 2 with a very low singlet-triplet energy gap of only 7.3 kcal mol(-1) . PMID:26297814

  11. Observation of a thermally accessible triplet state resulting from rotation around a main-group π bond.

    PubMed

    Kostenko, Arseni; Tumanskii, Boris; Karni, Miriam; Inoue, Shigeyoshi; Ichinohe, Masaaki; Sekiguchi, Akira; Apeloig, Yitzhak

    2015-10-01

    We report the first direct spectroscopic observation by electron paramagnetic resonance (EPR) spectroscopy of a triplet diradical that is formed in a thermally induced rotation around a main-group π bond, that is, the SiSi double bond of tetrakis(di-tert-butylmethylsilyl)disilene (1). The highly twisted ground-state geometry of singlet 1 allows access to the perpendicular triplet diradical 2 at moderate temperatures of 350-410 K. DFT-calculated zero-field splitting (ZFS) parameters of 2 accurately reproduce the experimentally observed half-field transition. Experiment and theory suggest a thermal equilibrium between 1 and 2 with a very low singlet-triplet energy gap of only 7.3 kcal mol(-1) .

  12. Theoretical study of Raman chirped adiabatic passage by X-ray absorption spectroscopy: Highly excited electronic states and rotational effects

    SciTech Connect

    Engin, Selma; Sisourat, Nicolas Selles, Patricia; Taïeb, Richard; Carniato, Stéphane

    2014-06-21

    Raman Chirped Adiabatic Passage (RCAP) is an efficient method to climb the vibrational ladder of molecules. It was shown on the example of fixed-in-space HCl molecule that selective vibrational excitation can thus be achieved by RCAP and that population transfer can be followed by X-ray Photoelectron spectroscopy [S. Engin, N. Sisourat, P. Selles, R. Taïeb, and S. Carniato, Chem. Phys. Lett. 535, 192–195 (2012)]. Here, in a more detailed analysis of the process, we investigate the effects of highly excited electronic states and of molecular rotation on the efficiency of RCAP. Furthermore, we propose an alternative spectroscopic way to monitor the transfer by means of X-ray absorption spectra.

  13. Effect of rotational-state-dependent molecular alignment on the optical dipole force

    NASA Astrophysics Data System (ADS)

    Kim, Lee Yeong; Lee, Ju Hyeon; Kim, Hye Ah; Kwak, Sang Kyu; Friedrich, Bretislav; Zhao, Bum Suk

    2016-07-01

    The properties of molecule-optical elements such as lenses or prisms based on the interaction of molecules with optical fields depend in a crucial way on the molecular quantum state and its alignment created by the optical field. Herein, we consider the effects of state-dependent alignment in estimating the optical dipole force acting on the molecules and, to this end, introduce an effective polarizability which takes proper account of molecular alignment and is directly related to the alignment-dependent optical dipole force. We illustrate the significance of including molecular alignment in the optical dipole force by a trajectory study that compares previously used approximations with the present approach. The trajectory simulations were carried out for an ensemble of linear molecules subject to either propagating or standing-wave optical fields for a range of temperatures and laser intensities. The results demonstrate that the alignment-dependent effective polarizability can serve to provide correct estimates of the optical dipole force, on which a state-selection method applicable to nonpolar molecules could be based. We note that an analogous analysis of the forces acting on polar molecules subject to an inhomogeneous static electric field reveals a similarly strong dependence on molecular orientation.

  14. Torsion - Rotation - Vibration Effects in the Ground and First Excited States of Methacrolein and Methyl Vinyl Ketone

    NASA Astrophysics Data System (ADS)

    Zakharenko, Olena; Motiyenko, R. A.; Aviles Moreno, Juan-Ramon; Huet, T. R.

    2016-06-01

    Methacrolein and methyl vinyl ketone are the two major oxidation products of isoprene emitted in the troposphere. New spectroscopic information is provided with the aim to allow unambiguous identification of these molecules, characterized by a large amplitude motion associated with the methyl top. State-of-the-art millimeter-wave spectroscopy experiments coupled to quantum chemical calculations have been performed. Comprehensive sets of molecular parameters have been obtained. The torsion-rotation-vibration effects will be discussed in detail. From the atmospheric application point of view the results provide precise ground state molecular constants essential as a foundation (by using the Ground State Combination Differences method) for the analysis of high resolution spectrum, recorded from 600 to 1600 wn. The infrared range can be then refitted using appropriate Hamiltonian parameters. The present work is funded by the French ANR through the PIA under contract ANR-11-LABX-0005-01 (Labex CaPPA), by the Regional Council Nord-Pas de Calais and by the European Funds for Regional Economic Development (FEDER).

  15. Progress in the Rotational Analysis of the Ground and Low-Lying Vibrationally Excited States of Malonaldehyde

    NASA Astrophysics Data System (ADS)

    Goudreau, E. S.; Tokaryk, Dennis W.; Ross, Stephen Cary; Billinghurst, Brant E.

    2016-06-01

    Despite being an important prototype molecule for intramolecular proton tunnelling, the far-IR spectrum of the internally hydrogen-bonded species malonaldehyde (C_3O_2H_4) is not yet well understood. In the talk I gave at the ISMS meeting in 2015 I discussed the high-resolution spectra we obtained at the Canadian Light Source synchrotron in Saskatoon, Saskatchewan. These spectra include a number of fundamental vibrational bands in the 100-2000 cm-1 region. In our efforts to analyze these bands we have noticed that our ground state combination differences show a large drift (up to an order of magnitude larger than our experimental error) away from those calculated using constants established by Baba et al., particularly in regions of high J (above 30) and low Ka (below 5). An examination of the previous microwave and far-IR studies reveals that this region of J-Ka space was not represented in the lines that Baba et al. used to generate the values for their fitting parameters. By including our own measurements in the fitting, we were able to improve the characterization of the ground state so that it is now consistent with all of the existing data. This characterization now covers a much larger range of J-Ka space and has enabled us to make significant progress in analyzing our far-IR synchrotron spectra. These include an excited vibrational state at 241 cm-1 as well as several states split by the tunnelling effect at higher wavenumber. T. Baba, T. Tanaka, I. Morino, K. M. T. Yamada, K. Tanaka. Detection of the tunneling-rotation transitions of malonaldehyde in the submillimeter-wave region. J. Chem. Phys., 110. 4131-4133 (1999) P. Turner, S. L. Baughcum, S. L. Coy, Z. Smith. Microwave Spectroscopic Study of Malonaldehyde. 4. Vibration-Rotation Interaction in Parent Species. J. Am. Chem. Soc., 106. 2265-2267 (1984) D. W. Firth, K. Beyer, M. A. Dvorak, S. W. Reeve, A. Grushow, K. R. Leopold. Tunable far-infrared spectroscopy of malonaldehyde. J. Chem. Phys., 94. 1812

  16. Vibrational and Rotational Spectroscopy of CD_2H^+

    NASA Astrophysics Data System (ADS)

    Asvany, Oskar; Jusko, Pavol; Brünken, Sandra; Schlemmer, Stephan

    2016-06-01

    The lowest rotational levels (J=0-5) of the CD_2H^+ ground state have been probed by high-resolution rovibrational and pure rotational spectroscopy in a cryogenic 22-pole ion trap. For this, the ν_1 rovibrational band has been revisited, detecting 107 transitions, among which 35 are new. The use of a frequency comb system allowed to measure the rovibrational transitions with high precision and accuracy, typically better than 1 MHz. The high precision has been confirmed by comparing combination differences in the ground and vibrationally excited state. For the ground state, this allowed for equally precise predictions of pure rotational transitions, 24 of which have been measured directly by a novel IR - mm-wave double resonance method. M.-F. Jagod et al, J. Molec. Spectrosc. 153, 666, 1992 S. Gartner et al, J. Phys. Chem. A 117, 9975, 2013

  17. Vibrationally and rotationally nonadiabatic calculations on H3+ using coordinate-dependent vibrational and rotational masses

    NASA Astrophysics Data System (ADS)

    Diniz, Leonardo G.; Mohallem, José Rachid; Alijah, Alexander; Pavanello, Michele; Adamowicz, Ludwik; Polyansky, Oleg L.; Tennyson, Jonathan

    2013-09-01

    Using the core-mass approach, we have generated a vibrational-mass surface for the triatomic H3+. The coordinate-dependent masses account for the off-resonance nonadiabatic coupling and permit a very accurate determination of the rovibrational states using a single potential energy surface. The new, high-precision measurements of 12 rovibrational transitions in the ν2 bending fundamental of H3+ by Wu [Phys. Rev. A1050-294710.1103/PhysRevA.88.032507 88, 032507 (2013)] are used to scale this surface empirically and to derive state-dependent vibrational and rotational masses that reproduce the experimental transition energies to 10-3cm-1. Rotational term values for J≤10 are presented for the two lowest vibrational states and equivalent transitions in D3+ considered.

  18. Towards rotationally state-resolved differential cross sections for the hydrogen exchange reaction

    SciTech Connect

    Vrakking, M.J.J.

    1992-11-01

    The hydrogen exchange reaction H + H{sub 2} {yields} H{sub 2} + H (and its isotopic variants) plays a pivotal role in chemical reaction dynamics. It is the only chemical reaction for which fully converged quantum scattering calculations have been carried out using a potential energy surface which is considered to be chemically accurate. To improve our ability to test the theory, a `perfect experiment`, measuring differential cross sections with complete specification of the reactant and product states, is called for. In this thesis, the design of an experiment is described that aims at achieving this goal for the D + H{sub 2} reaction. A crossed molecular beam arrangement is used, in which a photolytic D atom beam is crossed by a pulsed beam of H{sub 2} molecules. DH molecules formed in the D + H{sub 2} reaction are state-specifically ionized using Doppler-free (2+1) Resonance-Enhanced Multi-Photon Ionization (REMPI) and detected using a Position-sensitive microchannel plate detector. This detection technique has an unprecedented single shot detection sensitivity of 6.8 10{sup 3} molecules/cc. This thesis does not contain experimental results for the D + H{sub 2} reaction yet, but progress that has been made towards achieving this goal is reported. In addition, results are reported for a study of the Rydberg spectroscopy of the water molecule.

  19. Towards rotationally state-resolved differential cross sections for the hydrogen exchange reaction

    SciTech Connect

    Vrakking, M.J.J.

    1992-11-01

    The hydrogen exchange reaction H + H[sub 2] [yields] H[sub 2] + H (and its isotopic variants) plays a pivotal role in chemical reaction dynamics. It is the only chemical reaction for which fully converged quantum scattering calculations have been carried out using a potential energy surface which is considered to be chemically accurate. To improve our ability to test the theory, a 'perfect experiment', measuring differential cross sections with complete specification of the reactant and product states, is called for. In this thesis, the design of an experiment is described that aims at achieving this goal for the D + H[sub 2] reaction. A crossed molecular beam arrangement is used, in which a photolytic D atom beam is crossed by a pulsed beam of H[sub 2] molecules. DH molecules formed in the D + H[sub 2] reaction are state-specifically ionized using Doppler-free (2+1) Resonance-Enhanced Multi-Photon Ionization (REMPI) and detected using a Position-sensitive microchannel plate detector. This detection technique has an unprecedented single shot detection sensitivity of 6.8 10[sup 3] molecules/cc. This thesis does not contain experimental results for the D + H[sub 2] reaction yet, but progress that has been made towards achieving this goal is reported. In addition, results are reported for a study of the Rydberg spectroscopy of the water molecule.

  20. Approach to designing rotating drum bioreactors for solid-state fermentation on the basis of dimensionless design factors.

    PubMed

    Hardin, M T; Mitchell, D A; Howes, T

    2000-02-01

    The development of large-scale solid-state fermentation (SSF) processes is hampered by the lack of simple tools for the design of SSF bioreactors. The use of semifundamental mathematical models to design and operate SSF bioreactors can be complex. In this work, dimensionless design factors are used to predict the effects of scale and of operational variables on the performance of rotating drum bioreactors. The dimensionless design factor (DDF) is a ratio of the rate of heat generation to the rate of heat removal at the time of peak heat production. It can be used to predict maximum temperatures reached within the substrate bed for given operational variables. Alternatively, given the maximum temperature that can be tolerated during the fermentation, it can be used to explore the combinations of operating variables that prevent that temperature from being exceeded. Comparison of the predictions of the DDF approach with literature data for operation of rotating drums suggests that the DDF is a useful tool. The DDF approach was used to explore the consequences of three scale-up strategies on the required air flow rates and maximum temperatures achieved in the substrate bed as the bioreactor size was increased on the basis of geometric similarity. The first of these strategies was to maintain the superficial flow rate of the process air through the drum constant. The second was to maintain the ratio of volumes of air per volume of bioreactor constant. The third strategy was to adjust the air flow rate with increase in scale in such a manner as to maintain constant the maximum temperature attained in the substrate bed during the fermentation. PMID:10620257

  1. Translation-rotation states of H2 in C60: New insights from a perturbation-theory treatment.

    PubMed

    Felker, Peter M; Bačić, Zlatko

    2016-08-28

    We report an investigation of the translation-rotation (TR) level structure of H2 entrapped in C60, in the rigid-monomer approximation, by means of a low-order perturbation theory (PT). We focus in particular on the degree to which PT can accurately account for that level structure, by comparison with the variational quantum five-dimensional calculations. To apply PT to the system, the interaction potential of H2@C60 is decomposed into a sum over bipolar spherical tensors. A zeroth-order Hamiltonian, Hˆ0, is then constructed as the sum of the TR kinetic-energy operator and the one term in the tensor decomposition of the potential that depends solely on the radial displacement of the H2 center of mass (c.m.) from the cage center. The remaining terms in the potential are treated as perturbations. The eigenstates of Hˆ0, constructed to also account for the coupling of the angular momentum of the H2 c.m. about the cage center with the rotational angular momentum of the H2 about the c.m., are taken as the PT zeroth-order states. This zeroth-order level structure is shown to be an excellent approximation to the true one except for two types of TR-level splittings present in the latter. We then show that first-order PT accounts very well for these splittings, with respect to both their patterns and magnitudes. This allows one to connect specific features of the level structure with specific features of the potential-energy surface, and provides important new physical insight into the characteristics of the TR level structure. PMID:27586925

  2. Translation-rotation states of H2 in C60: New insights from a perturbation-theory treatment

    NASA Astrophysics Data System (ADS)

    Felker, Peter M.; Bačić, Zlatko

    2016-08-01

    We report an investigation of the translation-rotation (TR) level structure of H2 entrapped in C60, in the rigid-monomer approximation, by means of a low-order perturbation theory (PT). We focus in particular on the degree to which PT can accurately account for that level structure, by comparison with the variational quantum five-dimensional calculations. To apply PT to the system, the interaction potential of H2@C60 is decomposed into a sum over bipolar spherical tensors. A zeroth-order Hamiltonian, Hˆ 0, is then constructed as the sum of the TR kinetic-energy operator and the one term in the tensor decomposition of the potential that depends solely on the radial displacement of the H2 center of mass (c.m.) from the cage center. The remaining terms in the potential are treated as perturbations. The eigenstates of Hˆ 0, constructed to also account for the coupling of the angular momentum of the H2 c.m. about the cage center with the rotational angular momentum of the H2 about the c.m., are taken as the PT zeroth-order states. This zeroth-order level structure is shown to be an excellent approximation to the true one except for two types of TR-level splittings present in the latter. We then show that first-order PT accounts very well for these splittings, with respect to both their patterns and magnitudes. This allows one to connect specific features of the level structure with specific features of the potential-energy surface, and provides important new physical insight into the characteristics of the TR level structure.

  3. Some rotations like it hot: selective energy partitioning in the state resolved dynamics of collisions between CO 2 and highly vibrationally excited pyrazine

    NASA Astrophysics Data System (ADS)

    Mullin, Amy S.; Park, Jeunghee; Chou, James Z.; Flynn, George W.; Weston, Ralph E.

    1993-09-01

    The collisional quenching of highly vibrationally excited pyrazine by CO2 molecules has been studied with high resolution diode laser spectroscopy. The vibrationally hot pyrazine molecules are formed by 248 nm excimer laser pumping, followed by rapid radiationless transitions to the ground electronic state. The nascent rotational population distributions in the 0000 and 0001 vibrational levels of CO2 produced by collisions with hot pyrazine were probed at short times following excitation of pyrazine by the excimer laser pulse. In addition, the CO2 translational recoil velocity was measured for a number of rotational levels in each vibrational state. The results of these experiments reveal that very little rotational and translational excitation accompanies the energy transfer from hot pyrazine to excited vibrational levels of CO2. In contrast, rotational excitation of the CO2 ground state due to collisions with highly excited pyrazine is significant and is accompanied by a substantial enhancement in the CO2 translational energy. These results are consistent with a picture in which vibration-vibration (V → V) energy transfer processes, leading to vibrational excitation of the bath, are dominated by long range attractive forces, and vibration-translation/rotation (V → T/R) energy transfer, which leaves the bath vibrations unexcited, is dominated by short range repulsive forces.

  4. A new accurate ground-state potential energy surface of ethylene and predictions for rotational and vibrational energy levels

    NASA Astrophysics Data System (ADS)

    Delahaye, Thibault; Nikitin, Andrei; Rey, Michaël; Szalay, Péter G.; Tyuterev, Vladimir G.

    2014-09-01

    In this paper we report a new ground state potential energy surface for ethylene (ethene) C2H4 obtained from extended ab initio calculations. The coupled-cluster approach with the perturbative inclusion of the connected triple excitations CCSD(T) and correlation consistent polarized valence basis set cc-pVQZ was employed for computations of electronic ground state energies. The fit of the surface included 82 542 nuclear configurations using sixth order expansion in curvilinear symmetry-adapted coordinates involving 2236 parameters. A good convergence for variationally computed vibrational levels of the C2H4 molecule was obtained with a RMS(Obs.-Calc.) deviation of 2.7 cm-1 for fundamental bands centers and 5.9 cm-1 for vibrational bands up to 7800 cm-1. Large scale vibrational and rotational calculations for 12C2H4, 13C2H4, and 12C2D4 isotopologues were performed using this new surface. Energy levels for J = 20 up to 6000 cm-1 are in a good agreement with observations. This represents a considerable improvement with respect to available global predictions of vibrational levels of 13C2H4 and 12C2D4 and rovibrational levels of 12C2H4.

  5. A stationary north-finding scheme for an azimuth rotational IMU utilizing a linear state equality constraint.

    PubMed

    Yu, Huapeng; Zhu, Hai; Gao, Dayuan; Yu, Meng; Wu, Wenqi

    2015-01-01

    The Kalman filter (KF) has always been used to improve north-finding performance under practical conditions. By analyzing the characteristics of the azimuth rotational inertial measurement unit (ARIMU) on a stationary base, a linear state equality constraint for the conventional KF used in the fine north-finding filtering phase is derived. Then, a constrained KF using the state equality constraint is proposed and studied in depth. Estimation behaviors of the concerned navigation errors when implementing the conventional KF scheme and the constrained KF scheme during stationary north-finding are investigated analytically by the stochastic observability approach, which can provide explicit formulations of the navigation errors with influencing variables. Finally, multiple practical experimental tests at a fixed position are done on a postulate system to compare the stationary north-finding performance of the two filtering schemes. In conclusion, this study has successfully extended the utilization of the stochastic observability approach for analytic descriptions of estimation behaviors of the concerned navigation errors, and the constrained KF scheme has demonstrated its superiority over the conventional KF scheme for ARIMU stationary north-finding both theoretically and practically. PMID:25688588

  6. On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions

    NASA Astrophysics Data System (ADS)

    Antoine, Xavier; Tang, Qinglin; Zhang, Yong

    2016-11-01

    In this paper, we propose some efficient and robust numerical methods to compute the ground states and dynamics of Fractional Schrödinger Equation (FSE) with a rotation term and nonlocal nonlinear interactions. In particular, a newly developed Gaussian-sum (GauSum) solver is used for the nonlocal interaction evaluation [31]. To compute the ground states, we integrate the preconditioned Krylov subspace pseudo-spectral method [4] and the GauSum solver. For the dynamics simulation, using the rotating Lagrangian coordinates transform [14], we first reformulate the FSE into a new equation without rotation. Then, a time-splitting pseudo-spectral scheme incorporated with the GauSum solver is proposed to simulate the new FSE. In parallel to the numerical schemes, we also prove some existence and nonexistence results for the ground states. Dynamical laws of some standard quantities, including the mass, energy, angular momentum and the center of mass, are stated. The ground states properties with respect to the fractional order and/or rotating frequencies, dynamics involving decoherence and turbulence together with some interesting phenomena are reported.

  7. Steric asymmetry and lambda-doublet propensities in state-to-state rotationally inelastic scattering of NO(2Π1/2) with He

    NASA Astrophysics Data System (ADS)

    de Lange, Marc J. L.; Stolte, Steven; Taatjes, Craig A.; Kłos, Jacek; Groenenboom, Gerrit C.; van der Avoird, Ad

    2004-12-01

    Relative integrated cross sections are measured for rotationally inelastic scattering of NO(2Π1/2), hexapole selected in the upper Λ-doublet level of the ground rotational state (j=0.5), in collisions with He at a nominal energy of 514 cm-1. Application of a static electric field E in the scattering region, directed parallel or antiparallel to the relative velocity vector v, allows the state-selected NO molecule to be oriented with either the N end or the O end towards the incoming He atom. Laser-induced fluorescence detection of the final state of the NO molecule is used to determine the experimental steric asymmetry, SA≡(σv↑↓E-σv↑↑E)/(σv↑↓E+σv↑↑E), which is equal to within a factor of (-1) to the molecular steric effect, Si→f≡(σHe→NO-σHe→ON)/(σHe→NO+σHe→ON). The dependence of the integral inelastic cross section on the incoming Λ-doublet component is also observed as a function of the final rotational (j'), spin-orbit (Ω'), and Λ-doublet (ɛ') state. The measured steric asymmetries are significantly larger than previously observed for NO-Ar scattering, supporting earlier proposals that the repulsive part of the interaction potential is responsible for the steric asymmetry. In contrast to the case of scattering with Ar, the steric asymmetry of NO-He collisions is not very sensitive to the value of Ω'. However, the Λ-doublet propensities are very different for [Ω=0.5(F1)→Ω'=1.5(F2)] and [Ω=0.5(F1)→Ω'=0.5(F1)] transitions. Spin-orbit manifold conserving collisions exhibit a propensity for parity conservation at low Δj, but spin-orbit manifold changing collisions do not show this propensity. In conjunction with the experiments, state-to-state cross sections for scattering of oriented NO(2Π) molecules with He atoms are predicted from close-coupling calculations on restricted coupled-cluster methods including single, double, and noniterated triple excitations [J. Klos, G. Chalasinski, M. T. Berry, R. Bukowski, and

  8. 48 CFR 47.306-2 - Lowest overall transportation costs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... transportation costs. 47.306-2 Section 47.306-2 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.306-2 Lowest overall transportation costs. (a) For the evaluation of offers, the transportation officer shall give to the...

  9. 48 CFR 47.306-2 - Lowest overall transportation costs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... transportation costs. 47.306-2 Section 47.306-2 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.306-2 Lowest overall transportation costs. (a) For the evaluation of offers, the transportation officer shall give to the...

  10. 48 CFR 47.306-2 - Lowest overall transportation costs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... transportation costs. 47.306-2 Section 47.306-2 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.306-2 Lowest overall transportation costs. (a) For the evaluation of offers, the transportation officer shall give to the...

  11. 48 CFR 47.306-2 - Lowest overall transportation costs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... transportation costs. 47.306-2 Section 47.306-2 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.306-2 Lowest overall transportation costs. (a) For the evaluation of offers, the transportation officer shall give to the...

  12. 48 CFR 47.306-2 - Lowest overall transportation costs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... transportation costs. 47.306-2 Section 47.306-2 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.306-2 Lowest overall transportation costs. (a) For the evaluation of offers, the transportation officer shall give to the...

  13. Rotating trapped Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Fetter, A. L.

    2008-01-01

    Trapped Bose-Einstein condensates (BECs) differ considerably from the standard textbook example of a uniform Bose gas. In an isotropic harmonic potential V( r) = ½ Mω2 r 2, the single-particle ground state introduces a new intrinsic scale of length [the ground-state size d = √ ℏ/( Mω)] and energy [the ground-state energy E 0 = frac{3} {2} ℏω]. When the trap rotates at a low angular velocity, the behavior of a single vortex illustrates the crucial role of discrete quantized vorticity. For more rapid rotation, the condensate contains a vortex array. The resulting centrifugal forces expand the condensate radially and shrink it axially; thus, the condensate becomes effectively two dimensional. If the external rotation speed approaches the frequency of the radial harmonic confining potential, the condensate enters the "lowest-Landau-level" regime, and a simple description again becomes possible. Eventually, the system is predicted to make a quantum phase transition to a highly correlated state analogous to the fractional quantum Hall states of electrons in a strong magnetic field.

  14. Changes of crop rotation in Iowa determined from the United States Department of Agriculture, National Agricultural Statistics Service cropland data layer product

    NASA Astrophysics Data System (ADS)

    Stern, Alan J.; Doraiswamy, Paul C.; Raymond Hunt, E.

    2012-01-01

    Crop rotation is one of the important decisions made independently by numerous farm managers, and is a critical variable in models of crop growth and soil carbon. In Iowa and much of the Midwestern United States (US), the typical management decision is to rotate corn and soybean crops for a single field; therefore, the land-cover changes each year even though the total area of agricultural land-use remains the same. The price for corn increased from 2001 to 2010, which increased corn production in Iowa. We tested the hypothesis that the production increase was the result of changes in crop rotation in Iowa using the annual remote sensing classification (the cropland data layer) produced by the United States Department of Agriculture, National Agricultural Statistics Service. It was found that the area planted in corn increased from 4.7 million hectares in 2001 to 5.7 million hectares in 2007, which was correlated with the market price for corn. At the county level, there were differences in how the increase in corn production was accomplished. Northern and central counties had little land to expand cultivation and generally increased corn production by converting to a corn-corn rotation from the standard corn-soybean rotation. Southern counties in Iowa increased corn production by expanding into land that was not under recent cultivation. These changes affect the amount of soil carbon sequestration.

  15. Rotationally resolved state-to-state photoionization and photoelectron study of titanium carbide and its cation (TiC/TiC{sup +})

    SciTech Connect

    Luo, Zhihong; Huang, Huang; Chang, Yih-Chung; Zhang, Zheng; Ng, C. Y.; Yin, Qing-Zhu

    2014-10-14

    Titanium carbide and its cation (TiC/TiC{sup +}) have been investigated by the two-color visible (VIS)-ultraviolet (UV) resonance-enhanced photoionization and pulsed field ionization-photoelectron (PFI-PE) methods. Two visible excitation bands for neutral TiC are observed at 16 446 and 16 930 cm{sup −1}. Based on rotational analyses, these bands are assigned as the respective TiC({sup 3}Π{sub 1}) ← TiC(X{sup 3}Σ{sup +}) and TiC({sup 3}Σ{sup +}) ← TiC(X{sup 3}Σ{sup +}) transition bands. This assignment supports that the electronic configuration and term symmetry for the neutral TiC ground state are …7σ{sup 2}8σ{sup 1}9σ{sup 1}3π{sup 4} (X{sup 3}Σ{sup +}). The rotational constant and the corresponding bond distance of TiC(X{sup 3}Σ{sup +}; v″ = 0) are determined to be B{sub 0}″ = 0.6112(10) cm{sup −1} and r{sub 0}″ = 1.695(2) Å, respectively. The rotational analyses of the VIS-UV-PFI-PE spectra for the TiC{sup +}(X; v{sup +} = 0 and 1) vibrational bands show that the electronic configuration and term symmetry for the ionic TiC{sup +} ground state are …7σ{sup 2}8σ{sup 1}3π{sup 4} (X{sup 2}Σ{sup +}) with the v{sup +} = 0 → 1 vibrational spacing of 870.0(8) cm{sup −1} and the rotational constants of B{sub e}{sup +} = 0.6322(28) cm{sup −1}, and α{sub e}{sup +} = 0.0085(28) cm{sup −1}. The latter rotational constants yield the equilibrium bond distance of r{sub e}{sup +} = 1.667(4) Å for TiC{sup +}(X{sup 2}Σ{sup +}). The cleanly rotationally resolved VIS-UV-PFI-PE spectra have also provided a highly precise value of 53 200.2(8) cm{sup −1} [6.5960(1) eV] for the adiabatic ionization energy (IE) of TiC. This IE(TiC) value along with the known IE(Ti) has made possible the determination of the difference between the 0 K bond dissociation energy (D{sub 0}) of TiC{sup +}(X{sup 2}Σ{sup +}) and that of TiC(X{sup 3}Σ{sup +}) to be D{sub 0}(Ti{sup +}−C) − D{sub 0}(Ti−C) = 0.2322(2) eV. Similar to previous experimental

  16. Correlated phases of bosons in the flat lowest band of the dice lattice.

    PubMed

    Möller, G; Cooper, N R

    2012-01-27

    We study correlated phases occurring in the flat lowest band of the dice-lattice model at flux density one-half. We discuss how to realize this model, also referred to as the T(3) lattice, in cold atomic gases. We construct the projection of the model to the lowest dice band, which yields a Hubbard Hamiltonian with interaction-assisted hopping processes. We solve this model for bosons in two limits. In the limit of large density, we use Gross-Pitaevskii mean-field theory to reveal time-reversal symmetry breaking vortex lattice phases. At low density, we use exact diagonalization to identify three stable phases at fractional filling factors ν of the lowest band, including a classical crystal at ν = 1/3, a supersolid state at ν = 1/2, and a Mott insulator at ν = 1.

  17. Medium-range order in sodium phosphate glasses: a quantitative rotational echo double resonance solid state NMR study.

    PubMed

    Strojek, Wenzel; Eckert, Hellmut

    2006-05-21

    Sodium ultraphosphate glasses (Na(2)O)(x)(P(2)O(5))(1-x) show a strongly non-linear dependence of the glass transition temperatures T(g)(x) on composition. To explore the structural origins of this behaviour, local and medium range ordering processes have been investigated by state-of-the-art (23)Na high-resolution and dipolar NMR spectroscopies. In particular, (31)P(23)Na) and (23)Na((31)P) rotational echo double resonance (REDOR) experiments have been analyzed to yield quantitative constraints for the structural description of these glasses. The sodium ions are found to be randomly distributed and, for x < 0.25, spatially correlated with a single metaphosphate-type Q((2)) unit at a distance of 330 pm. In this region, unusual compositional trends observed for the (23)Na chemical shifts and nuclear electric quadrupolar coupling constants, measured by triple-quantum magic-angle spinning (TQMAS) NMR, suggest a systematic decrease of Na coordination number with x. At higher sodium contents (x > 0.25), the magnitude of the (31)P((23)Na) dipolar interaction increases markedly, indicating a significantly increased extent of Q((2))-Na-Q((2)) crosslinking. Based on these results, a comprehensive description of medium-range order in sodium ultraphosphate glasses is developed, suggesting that the T(g)(x) dependence is closely linked to changes in the relative phosphorus/sodium distance distributions.

  18. A general elastohydrodynamic lubrication analysis of artificial hip joints employing a compliant layered socket under steady state rotation.

    PubMed

    Wang, F C; Liu, F; Jin, Z M

    2004-01-01

    A general numerical methodology was developed in the present study to analyse the elastohydrodynamic lubrication problem of a compliant layered socket against a rigid ball under steady state rotation representing flexion and extension during walking, with particular reference to artificial hip joint replacements. The general numerical methodology consisted of using the Newton-Raphson method to solve the Reynolds equation, simultaneously with the full elasticity equation using the finite element method in combination with the fast Fourier transform technique. Two specific types of acetabular cup were considered, one with ultra-high molecular weight polyethylene used in current total hip joint replacements, and one with polyurethane proposed for compliant layered 'cushion form bearings' for future developments. The film thickness and the pressure distribution for both cups were obtained under a wide range of operating conditions. The predicted central or average film thicknesses within the contact conjunction were compared with those estimated from various simplified theories available in the literature. A simple analytical methodology was consequently established to estimate the lubricating film thickness in a compliant layered socket, based on the corresponding ball-on-plane model and the consideration of the curvature effect.

  19. Dimethyl ether: laboratory spectra up to 2.1 THz. Torsion-rotational spectra within the vibrational ground state

    NASA Astrophysics Data System (ADS)

    Endres, C. P.; Drouin, B. J.; Pearson, J. C.; Müller, H. S. P.; Lewen, F.; Schlemmer, S.; Giesen, T. F.

    2009-09-01

    Dimethyl ether (CH_3OCH_3) is one of the largest organic molecules detected in the interstellar medium. As an asymmetric top molecule with two methyl groups which undergo large amplitude motions and a dipole moment of μ=1.3 D, it conveys a dense spectrum throughout the terahertz region and contributes to the spectral line confusion in astronomical observations at these frequencies. In this paper, we present rotational spectra of dimethyl ether in its ground vibrational states, which have been measured in the laboratory and analyzed covering frequencies up to 2.1 THz. The analysis is based on an effective Hamiltonian for a symmetric two-top rotor and includes experimental data published so far. Frequency predictions are presented up to 2.5 THz for astronomical applications with accuracies better than 1 MHz. Table A.1 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/504/635

  20. A new accurate ground-state potential energy surface of ethylene and predictions for rotational and vibrational energy levels

    SciTech Connect

    Delahaye, Thibault Rey, Michaël Tyuterev, Vladimir G.; Nikitin, Andrei; Szalay, Péter G.

    2014-09-14

    In this paper we report a new ground state potential energy surface for ethylene (ethene) C{sub 2}H{sub 4} obtained from extended ab initio calculations. The coupled-cluster approach with the perturbative inclusion of the connected triple excitations CCSD(T) and correlation consistent polarized valence basis set cc-pVQZ was employed for computations of electronic ground state energies. The fit of the surface included 82 542 nuclear configurations using sixth order expansion in curvilinear symmetry-adapted coordinates involving 2236 parameters. A good convergence for variationally computed vibrational levels of the C{sub 2}H{sub 4} molecule was obtained with a RMS(Obs.–Calc.) deviation of 2.7 cm{sup −1} for fundamental bands centers and 5.9 cm{sup −1} for vibrational bands up to 7800 cm{sup −1}. Large scale vibrational and rotational calculations for {sup 12}C{sub 2}H{sub 4}, {sup 13}C{sub 2}H{sub 4}, and {sup 12}C{sub 2}D{sub 4} isotopologues were performed using this new surface. Energy levels for J = 20 up to 6000 cm{sup −1} are in a good agreement with observations. This represents a considerable improvement with respect to available global predictions of vibrational levels of {sup 13}C{sub 2}H{sub 4} and {sup 12}C{sub 2}D{sub 4} and rovibrational levels of {sup 12}C{sub 2}H{sub 4}.

  1. Rotational spectroscopy as a tool to investigate interactions between vibrational polyads in symmetric top molecules: Low-lying states v(8) <= 2 of methyl cyanide, CH3CN

    SciTech Connect

    Muller, H. S.; Brown, Linda R.; Drouin, B. J.; Pearson, J. C.; Kleiner, Isabelle; Sams, Robert L.; Sung, Keeyoon; Ordu, Matthias H.; Lewen, Frank

    2015-06-01

    Rotational and rovibrational spectra of methyl cyanide were recorded to analyze interactions in low-lying vibrational states and to construct line lists for radio astronomical observations as well as for infrared spectroscopic investigations of planetary atmospheres. The rotational spectra cover large portions of the 36-1627 GHz region. In the infrared (IR), a spectrum was recorded for this study in the region of 2v(8) around 717 cm(-1) with assignments covering 684-765 cm-1. Additional spectra in the vs region were used to validate the analysis.

  2. Spectroscopic study on deuterated benzenes. II. High-resolution laser spectroscopy and rotational structure in the S{sub 1} state

    SciTech Connect

    Kunishige, Sachi; Katori, Toshiharu; Baba, Masaaki; Hayashi, Masato; Hasegawa, Hirokazu; Ohshima, Yasuhiro

    2015-12-28

    High-resolution spectra of the S{sub 1}←S{sub 0} transition in jet-cooled deuterated benzenes were observed using pulse dye amplification of single-mode laser light and mass-selective resonance enhanced multiphoton ionization (REMPI) detection. The vibrational and rotational structures were accurately analyzed for the vibronic levels in the S{sub 1} state. The degenerate 6{sup 1} levels of C{sub 6}H{sub 6} or C{sub 6}D{sub 6} are split into 6a{sup 1} and 6b{sup 1} in many of deuterated benzenes. The rigid-rotor rotational constants were assessed and found to be slightly different between 6a and 6b because of different mean molecular structures. Their rotational levels are significantly shifted by Coriolis interactions. It was found that the Coriolis parameter proportionally changed with the number of substituted D atoms.

  3. Simulation study comparing the imaging performance of a solid state detector with a rotating slat collimator versus parallel beam collimator setups

    NASA Astrophysics Data System (ADS)

    Staelens, Steven; Vandenberghe, Stefaan; De Beenhouwer, Jan; De Clercq, Stijn; D'Asseler, Yves; Lemahieu, Ignace; Van de Walle, Rik

    2004-05-01

    The main goal of this work is to assess the overall imaging performance of dedicated new solid state devices compared to a traditional scintillation camera for use in SPECT imaging. A solid state detector with a rotating slat collimator will be compared with the same detector mounted with a classical collimator as opposed to a traditional Anger camera. A better energy resolution characterizes the solid state materials while the rotating slat collimator promises a better sensitivity-resolution tradeoff. The evaluation of the different imaging modalities is done using GATE, a recently developed Monte Carlo code. Several features for imaging performance evaluation were addressed: spatial resolution, energy resolution, sensitivity, and a ROC analysis was performed to evaluate the hot spot detectability. In this way a difference in perfromance was concluded for the diverse imaging techniques which allows a task dependent application of these modalities in future clinical practice.

  4. Influence of counter-rotating interaction on quantum phase transition in Dicke-Hubbard lattice: an extended coherent-state approach

    NASA Astrophysics Data System (ADS)

    Lu, Yongchuan; Wang, Chen

    2016-07-01

    We investigate the ground-state behavior of the Dicke-Hubbard model including counter-rotating terms. By generalizing an extended coherent-state approach within mean-field theory, we self-consistently obtain the ground-state energy and delocalized order parameter. Localization-delocalization quantum phase transition of photons is clearly observed by breaking the parity symmetry. Particularly, Mott lobes are fully suppressed, and the delocalized order parameter shows monotonic enhancement by increasing qubit-cavity coupling strength, in sharp contrast to the Dicke-Hubbard model under rotating-wave approximation. Moreover, the corresponding phase boundaries are stabilized by decreasing photon hopping strength, compared to the Rabi-Hubbard model.

  5. Influence of counter-rotating interaction on quantum phase transition in Dicke-Hubbard lattice: an extended coherent-state approach

    NASA Astrophysics Data System (ADS)

    Lu, Yongchuan; Wang, Chen

    2016-10-01

    We investigate the ground-state behavior of the Dicke-Hubbard model including counter-rotating terms. By generalizing an extended coherent-state approach within mean-field theory, we self-consistently obtain the ground-state energy and delocalized order parameter. Localization-delocalization quantum phase transition of photons is clearly observed by breaking the parity symmetry. Particularly, Mott lobes are fully suppressed, and the delocalized order parameter shows monotonic enhancement by increasing qubit-cavity coupling strength, in sharp contrast to the Dicke-Hubbard model under rotating-wave approximation. Moreover, the corresponding phase boundaries are stabilized by decreasing photon hopping strength, compared to the Rabi-Hubbard model.

  6. Quantal radiation from macroscopic rotation

    NASA Astrophysics Data System (ADS)

    Strutinsky, V.; Plujko, V.

    1988-09-01

    Macroscopic rotation of deformed excited nuclei may under certain conditions be accompanied by radiation of quasi-discrete gamma rays which resemble the cascade of transitions between nuclear rotational states.

  7. Dynamics of momentum entanglement in lowest-order QED

    SciTech Connect

    Lamata, L.; Leon, J.; Solano, E.

    2006-01-15

    We study the dynamics of momentum entanglement generated in the lowest-order QED interaction between two massive spin-(1/2) charged particles, which grows in time as the two fermions exchange virtual photons. We observe that the degree of generated entanglement between interacting particles with initial well-defined momentum can be infinite. We explain this divergence in the context of entanglement theory for continuous variables, and show how to circumvent this apparent paradox. Finally, we discuss two different possibilities of transforming momentum into spin entanglement, through dynamical operations or through Lorentz boosts.

  8. Rotational, steric, and coriolis effects on the F + HCl --> HF + Cl reaction on the 1(2)A' ground-state surface.

    PubMed

    Defazio, Paolo; Petrongolo, Carlo

    2009-04-23

    We present a quantum study of the reaction F((2)P) + HCl(X(1)Sigma(+)) --> HF(X(1)Sigma(+)) + Cl((2)P) on a recently computed 1(2)A' ground-state surface, considering HCl in the ground vibrational state, with up to 16 rotational quanta j(0). We employ the real wavepacket (WP) and flux methods for calculating coupled-channel (CC) and centrifugal-sudden (CS) initial-state probabilities up to J = 80 and 140, respectively. We also report CC and CS ground-state cross sections and CS excited-state cross sections and discuss the dynamics analyzing WP time evolutions. The HCl rotation highly enhances reaction probabilities and cross sections, as it was previously found for probabilities at J rotation to the F-H---Cl reactive vibration. WP snapshots confirm and explain the HCl rotational effects, because the density into the nearly collinear F-H---Cl product channel increases remarkably with j(0). Finally, our CS rate constant is underestimated with respect to the experiment, pointing out the need of more accurate multisurface and CC calculations.

  9. Rationality, irrationality and escalating behavior in lowest unique bid auctions.

    PubMed

    Radicchi, Filippo; Baronchelli, Andrea; Amaral, Luís A N

    2012-01-01

    Information technology has revolutionized the traditional structure of markets. The removal of geographical and time constraints has fostered the growth of online auction markets, which now include millions of economic agents worldwide and annual transaction volumes in the billions of dollars. Here, we analyze bid histories of a little studied type of online auctions--lowest unique bid auctions. Similarly to what has been reported for foraging animals searching for scarce food, we find that agents adopt Lévy flight search strategies in their exploration of "bid space". The Lévy regime, which is characterized by a power-law decaying probability distribution of step lengths, holds over nearly three orders of magnitude. We develop a quantitative model for lowest unique bid online auctions that reveals that agents use nearly optimal bidding strategies. However, agents participating in these auctions do not optimize their financial gain. Indeed, as long as there are many auction participants, a rational profit optimizing agent would choose not to participate in these auction markets.

  10. The rotational spectrum of the CH radical in its a 4Sigma(-) state, studied by far-infrared laser magnetic resonance

    NASA Technical Reports Server (NTRS)

    Nelis, Thomas; Brown, John M.; Evenson, Kenneth M.

    1990-01-01

    The CH radical has been detected in its a 4Sigma(-) state by the technique of laser magnetic resonance at far-infrared wavelengths. Spectra relating to different spin components of the first three rotational transitions have been recorded. The molecule was generated either by the reaction of F atoms with CH4, with a trace of added oxygen or by the reaction of O atoms with C2H2. The observed resonances have been analyzed and fitted to determine the parameters of an effective Hamiltonian for a molecule in a 4Sigma state. The principal quantities determined are the rotational constant B0 = 451 138.434(94) MHz and the spin-spin parameter lambda(0) = 2785.83(18) MHz. Proton hyperfine parameters have also been determined.

  11. Spin--rotation and hyperfine structure in the X sup 2. Sigma. sup + state of yttrium monosulfide by molecular-beam laser-radio-frequency double resonance

    SciTech Connect

    Azuma, Y.; Childs, W.J. )

    1990-12-15

    The molecular-beam laser-radio-frequency double-resonance method has been used to measure the spin--rotation and magnetic hyperfine structure of yttrium monosulfide (YS) in its {ital X} {sup 2}{Sigma}{sup +} electronic ground state. The spin--rotation constant {gamma} is found to be positive, unlike that of YO. The Fermi contact and dipolar hyperfine interactions (due to the spin {ital I}=1/2 of {sup 89}Y) are found to be rather close to the corresponding quantities in YO. The contact hfs constant {ital b} in the excited {ital B} {sup 2}{Sigma}{sup +} state of YS was determined by combining the directly measured {ital X} {sup 2}{Sigma}{sup +} splitting information with {ital B}--{ital X} optical hfs observations.

  12. Rotating Vesta

    NASA Video Gallery

    Astronomers combined 146 exposures taken by NASA's Hubble SpaceTelescope to make this 73-frame movie of the asteroid Vesta's rotation.Vesta completes a rotation every 5.34 hours.› Asteroid and...

  13. Rotational moulding.

    PubMed

    Crawford, R J; Kearns, M P

    2003-10-01

    Rotational moulding promises designers attractive economics and a low-pressure process. The benefits of rotational moulding are compared here with other manufacturing methods such as injection and blow moulding. PMID:14603714

  14. What can the observed rotation of the Earth's inner core reveal about the state of the outer core?

    NASA Astrophysics Data System (ADS)

    Hollerbach, Rainer

    1998-11-01

    The discovery that the Earth's inner core is rotating relative to the mantle has prompted a number of authors to reinvestigate the dynamics of inner core rotation. These models include a highly idealized analytical one by Aurnou, Brito & Olson (1996), as well as a fully 3-D numerical one by Glatzmaier & Roberts (1996). In this work I present a model intermediate between these two extremes. In particular, I retain the simplicity of the model of Aurnou et al. by kinematically prescribing a thermal wind and poloidal magnetic field. By doing so it is possible to vary the strengths of these quantities at will, and thereby explore the dependence of the inner core's rotation rate on them more thoroughly than in the model of Glatzmaier & Roberts, where these quantities emerge as part of the solution, and one therefore has far less control over their strengths. However, as in the model of Glatzmaier & Roberts, the full back-reaction of the magnetic field on the fluid flow in the outer core is included. It is found that if one includes this effect, the relationship between the inner core's rotation rate and the strength of the thermal wind is more complicated than that found by Aurnou et al., who did not include it. As a result, while the observed rotation of the inner core certainly gives a rigorous lower bound on the maximum difference in angular velocity throughout the outer core, that maximum difference could be as much as an order of magnitude greater. Finally, it is also pointed out that, because of the particular nature of the torque balance that determines the inner core's rotation rate, it is difficult, if not impossible, to use that observed rate to obtain precise bounds on the magnetic field strength deep within the core.

  15. Rotating Bose-Einstein condensate with attractive interaction in one dimension: Single-L states and mesoscopics

    SciTech Connect

    Kartsev, P.F.

    2003-12-01

    We present the results of an exact numeric simulation of N one-dimensional bosons with attractive {delta}-functional interaction in a rotating ring. We prove that even at intermediate values of N, the system can be described by conventional methods of weakly interacting gas, the dimensionless parameter of weak interaction being just 1/N. When the strength of interaction is less than a certain threshold value, the dependence of angular momentum on the rotation frequency features plateaus characteristic of the irrotational fluid.

  16. Ground State Rotational Lines of Doubly Deuterated Ammonia as Tracers of the Physical Conditions and Chemistry of Cold Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Lis, D. C.; Gerin, M.; Roueff, E.; Vastel, C.; Phillips, T. G.

    2006-01-01

    We report the first detection of the NKAKC=111-->000 and 110-->000 ground state rotational lines of o-ND2H at 335.5 and 388.7 GHz, obtained in the Lynds 1689N, Barnard 1, and Lynds 1544 molecular clouds using the Caltech Submillimeter Observatory (CSO). The submillimeter ND2H lines have moderate opacities and simple hyperfine patterns, which allow accurate determination of the excitation temperature, H2 volume density, and molecular column density. Both transitions have high critical densities. The 389 GHz line, in particular, traces molecular material with densities above a few × 106 cm-3. The strong 389 GHz ND2H emission in LDN 1689N implies a high fraction of dense gas in this source, ~30%, as compared to ~15% in B1 and LDN 1544. All these regions are sites of strong molecular depletion and heavy deuteration. Nonaccreting molecules, H+3 and its isotopologues, are difficult to study, but in the sources studied here it appears that ammonia and its isotopologues are not completely frozen out, even in the high density gas. In the well-studied case of LDN 1544, the volume probed by the ND2H emission has densities of ~106-107 cm-3, within the range where the ``complete freezeout'' has been predicted to occur. The critical density of the 389 GHz ND2H line is close to that of the 309 GHz ND3 line. Observations of these two transitions thus provide an accurate measure of the [ND3]/[ND2H] fractionation ratio in the very dense gas. The [ND3]/[ND2H] ratio in LDN 1689N (~3%) appears lower than the values measured in B1 and LDN 1544 (~7%-10%), indicating that different chemical processes may be at work in these environments. The submillimeter lines of deuteroammonia are relatively strong and detectable from good sites, such as Mauna Kea or Chajnantor. Interferometric observations of these lines with the Submillimeter Array (SMA), and subsequently the Atacama Large Millimeter Array (ALMA), will provide new opportunities to study the physics and chemistry of cold, dense ISM

  17. Measurement of high-frequency rotational transitions of H2O+ in its ground state by far-infrared laser magnetic resonance (LMR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Mürtz, P.; Zink, L. R.; Evenson, K. M.; Brown, J. M.

    1998-12-01

    Thirteen new rotational transitions of H2O+ in the (0,0,0) level of the X˜ 2B1 state have been measured in the wavenumber region between 80 and 200 cm-1 (50 and 120 μm) by far-infrared laser magnetic resonance (LMR) spectroscopy. LMR data measured previously between 25 and 90 cm-1 (110 and 400 μm), as well as optical and infrared combination differences, have been combined with the new LMR data in a weighted least-squares analysis using an A-reduced expression of the rotational-fine structure Hamiltonian. Thirty-two molecular constants were simultaneously determined, some sextic centrifugal distortion parameters and some quartic and sextic spin-rotation parameters for the first time. From this improved set of molecular parameters, very accurate calculations of rotational term values and zero-field predictions of the 111-000 transition, including hyperfine structure, have been performed. Moreover, the electronic g-tensors and the hyperfine coupling constants are consistent with ab initio calculations which had been carried out for these constants.

  18. Fuzzy logic control of rotating drum bioreactor for improved production of amylase and protease enzymes by Aspergillus oryzae in solid-state fermentation.

    PubMed

    Sukumprasertsri, Monton; Unrean, Pornkamol; Pimsamarn, Jindarat; Kitsubun, Panit; Tongta, Anan

    2013-03-01

    In this study, we compared the performance of two control systems, fuzzy logic control (FLC) and conventional control (CC). The control systems were applied for controlling temperature and substrate moisture content in a solidstate fermentation for the biosynthesis of amylase and protease enzymes by Aspergillus oryzae. The fermentation process was achieved in a 200 L rotating drum bioreactor. Three factors affecting temperature and moisture content in the solid-state fermentation were considered. They were inlet air velocity, speed of the rotating drum bioreactor, and spray water addition. The fuzzy logic control system was designed using four input variables: air velocity, substrate temperature, fermentation time, and rotation speed. The temperature was controlled by two variables, inlet air velocity and rotational speed of bioreactor, while the moisture content was controlled by spray water. Experimental results confirmed that the FLC system could effectively control the temperature and moisture content of substrate better than the CC system, resulting in an increased enzyme production by A. oryzae. Thus, the fuzzy logic control is a promising control system that can be applied for enhanced production of enzymes in solidstate fermentation.

  19. Rotating superfluid turbulence.

    PubMed

    Tsubota, Makoto; Araki, Tsunehiko; Barenghi, Carlo F

    2003-05-23

    Almost all studies of vortex states in helium II have been concerned with either ordered vortex arrays or disordered vortex tangles. This work numerically studies what happens in the presence of both rotation (which induces order) and thermal counterflow (which induces disorder). We find a new statistically steady state in which the vortex tangle is polarized along the rotational axis. Our results are used to interpret an instability that was discovered experimentally by Swanson et al. [Phys. Rev. Lett. 50, 190 (1983)

  20. Vibrational structures of predissociating methylamines (CH3NH2 and CH3ND2) in à states: Free internal rotation of CH3 with respect to NH2

    NASA Astrophysics Data System (ADS)

    Baek, Sun Jong; Choi, Kyo-Won; Choi, Young S.; Kim, Sang Kyu

    2002-12-01

    Resonantly-enhanced one-color two-photon (1+1) ionization spectra of jet-cooled methylamines (CH3NH2 and CH3ND2) reveal the vibrational structures of these molecules in predissociative à states. Rotational fine structure is clearly resolved for CH3ND2 at the origin and first wagging vibrational level in the excited state. The spectral linewidth becomes homogeneously broadened to give only vibrationally resolved spectral features for the higher vibrational energy levels of CH3ND2 (Ã). From the spectral analysis of the ÖX transition of CH3ND2, it is found that the methyl moiety rotates nearly freely about the C-N axis with respect to the amino group in the à state, indicating that the removal of an electron from the nonbonding orbital of N is responsible for the free internal rotation. Vibrational levels are only barely resolved in the ÖX excitation spectrum of CH3NH2 due to severe homogeneous line-broadening, indicating ultrashort lifetimes of ˜0.4 ps for predissociating CH3NH2 molecules in the à state. Spectral interpretation of the ÖX excitation spectrum of CH3NH2 is carried out by the comparison with that of CH3ND2, giving the confirmative vibrational assignment of methylamines in à states for the first time. The dramatic difference of CH3NH2 and CH3ND2 in their lifetimes in à states suggests that the major dissociation channel of the excited methylamine may be the N-H (or D) bond dissociation.

  1. Crystal structure of release factor RF3 trapped in the GTP state on a rotated conformation of the ribosome

    SciTech Connect

    Zhou, Jie; Lancaster, Laura; Trakhanov, Sergei; Noller, Harry F.

    2012-03-26

    The class II release factor RF3 is a GTPase related to elongation factor EF-G, which catalyzes release of class I release factors RF1 and RF2 from the ribosome after termination of protein synthesis. The 3.3 {angstrom} crystal structure of the RF3 {center_dot} GDPNP {center_dot} ribosome complex provides a high-resolution description of interactions and structural rearrangements that occur when binding of this translational GTPase induces large-scale rotational movements in the ribosome. RF3 induces a 7{sup o} rotation of the body and 14{sup o} rotation of the head of the 30S ribosomal subunit, and itself undergoes inter- and intradomain conformational rearrangements. We suggest that ordering of critical elements of switch loop I and the P loop, which help to form the GTPase catalytic site, are caused by interactions between the G domain of RF3 and the sarcin-ricin loop of 23S rRNA. The rotational movements in the ribosome induced by RF3, and its distinctly different binding orientation to the sarcin-ricin loop of 23S rRNA, raise interesting implications for the mechanism of action of EF-G in translocation.

  2. Direct Oxygen Abundances for the Lowest Luminosity LVL Galaxies

    NASA Astrophysics Data System (ADS)

    Berg, Danielle; Skillman, E. D.; Marble, A. R.; van Zee, L.; Engelbracht, C. W.

    2012-01-01

    We present new MMT spectroscopic observations of HII regions in 42 of the lowest luminosity galaxies in the Spitzer Local Volume Legacy (LVL) survey. For 31 of the galaxies in our sample we were able to measure the [OIII] ? auroral line at a strength of 4σ or greater, and thus determine oxygen abundances using the direct method. Direct oxygen abundances were compared to B-band luminosity, 4.5 μm luminosity, and stellar mass to characterize the luminosity-metallicity (L-Z) and mass-metallicity (M-Z) relationships at low-luminosity. We examined a "Combined Select” sample composed of 38 objects, from the present sample and the literature, with direct oxygen abundances and reliable distance determinations (based on the tip of the red giant branch or Cepheid variables). The B-band and 4.5 μm L-Z relationships were found to be 12+log(O/H) = (6.19±0.07) + (-0.12±0.01)MB and 12+log(O/H) = (5.93±0.11) + (-0.11±0.01)M[4.5] with dispersions of σ = 0.17 and σ = 0.14 respectively. Since the slope of the L-Z relationship doesn't seem to vary from the optical to the near-IR, as has been observed in studies of more luminous galaxies, we propose that less extinction due to dust is created in the lowest luminosity galaxies. We subsequently derived a M-Z relationship of 12+log(O/H) = (5.49±0.23) + (0.31±0.03)log M*, with a dispersion of σ = 0.16. None of the relationships seem to hold an advantage with respect to dispersion, supporting the idea of minimized dust. Additionally, the trend of N/O abundance with respect to B-V color and oxygen abundance was examined. Similar to the conclusions of van Zee & Haynes (2006), we find a positive correlation between N/O ratio and B-V color: log(N/O) = 0.92 (B-V) - 1.83. Furthermore, there are no objects with high N/O ratio below 12+log(O/H)=7.9.

  3. Production of cold beams of ND{sub 3} with variable rotational state distributions by electrostatic extraction of He and Ne buffer-gas-cooled beams

    SciTech Connect

    Twyman, Kathryn S.; Bell, Martin T.; Heazlewood, Brianna R.; Softley, Timothy P.

    2014-07-14

    The measurement of the rotational state distribution of a velocity-selected, buffer-gas-cooled beam of ND{sub 3} is described. In an apparatus recently constructed to study cold ion-molecule collisions, the ND{sub 3} beam is extracted from a cryogenically cooled buffer-gas cell using a 2.15 m long electrostatic quadrupole guide with three 90° bends. (2+1) resonance enhanced multiphoton ionization spectra of molecules exiting the guide show that beams of ND{sub 3} can be produced with rotational state populations corresponding to approximately T{sub rot} = 9–18 K, achieved through manipulation of the temperature of the buffer-gas cell (operated at 6 K or 17 K), the identity of the buffer gas (He or Ne), or the relative densities of the buffer gas and ND{sub 3}. The translational temperature of the guided ND{sub 3} is found to be similar in a 6 K helium and 17 K neon buffer-gas cell (peak kinetic energies of 6.92(0.13) K and 5.90(0.01) K, respectively). The characterization of this cold-molecule source provides an opportunity for the first experimental investigations into the rotational dependence of reaction cross sections in low temperature collisions.

  4. Direct observation of the fundamental vibration-rotation transitions within the NiD X2Δ ground state by CO-Faraday-L.M.R. spectroscopy and zero field transitions in NiH

    NASA Astrophysics Data System (ADS)

    Lipus, K.; Simon, U.; Bachem, E.; Nelis, Th.; Urban, W.

    We report the first direct observation of the vibration-rotation spectrum of nickel-deuteride in its X2Δ ground state by CO-Faraday-L.M.R. spectroscopy. A set of effective molecular parameters is given. We present first results on the vibration-rotation spectroscopy of NiH, employing a tunable diode laser spectrometer.

  5. Lowest adverse effects concentrations (LOAECs) for formaldehyde exposure.

    PubMed

    Gelbke, Heinz-Peter; Gröters, Sibylle; Morfeld, Peter

    2014-10-01

    In 2012 the Committee for Risk Assessment (RAC) of the European Chemicals Agency concluded that 2ppm formaldehyde represent a Lowest Observed Adverse Effect Concentration (LOAEC) for polypoid adenomas, histopathological lesions and cell proliferation. An analysis of all data shows that a LOAEC of 2ppm it is not justified for cell proliferation and polypoid adenomas. Higher values are also supported by a new statistical analysis. For histopathological lesions a NOAEC of 1ppm may be defined but the lesions at 2ppm cannot be regarded as pre-stages for tumour development. One major uncertainty exists: the description of polypoid adenomas and the lesions at 2ppm often is insufficient and diagnostic uncertainties can only be resolved by a re-evaluation according to modern histomorphological standards. Although the discrepancy between our assessment and that of RAC may seem rather small we feel the LOAECs proposed by RAC must be challenged taking into consideration the broad data base for formaldehyde and the potential impact of any published RAC opinion on the present discussions about appropriate occupational and indoor exposure limits.

  6. Smarter than Others? Conjectures in Lowest Unique Bid Auctions

    PubMed Central

    Hu, Rui; Chen, Qinghua

    2015-01-01

    Research concerning various types of auctions, such as English auctions, Dutch auctions, highest-price sealed-bid auctions, and second-price sealed-bid auctions, is always a topic of considerable interest in interdisciplinary fields. The type of auction, known as a lowest unique bid auction (LUBA), has also attracted significant attention. Various models have been proposed, but they often fail to explain satisfactorily the real bid-distribution characteristics. This paper discusses LUBA bid-distribution characteristics, including the inverted-J shape and the exponential decrease in the upper region. The authors note that this type of distribution, which initially increases and later decreases, cannot be derived from the symmetric Nash equilibrium framework based on perfect information that has previously been used. A novel optimization model based on non-perfect information is presented. The kernel of this model is the premise that agents make decisions to achieve maximum profit based on imaginary information or assumptions regarding the behavior of others. PMID:25849631

  7. Observation of b2 symmetry vibrational levels of the SO2C 1B2 state: Vibrational level staggering, Coriolis interactions, and rotation-vibration constants

    DOE PAGES

    Park, G. Barratt; Jiang, Jun; Saladrigas, Catherine A.; Field, Robert W.

    2016-04-14

    Here, the C 1B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. However, low-lying levels with odd quanta of antisymmetric stretch (b2 vibrational symmetry) have not previously been observed because transitions into these levels from the zero-point level of the X~ state are vibronically forbidden. We use IR-UV double resonance to observe the b2 vibrational levels of the C state below 1600 cm–1 of vibrational excitation. This enables a direct characterization of the vibrational level staggering that results from the double-minimum potential. In addition, itmore » allows us to deperturb the strong c-axis Coriolis interactions between levels of a1 and b2 vibrational symmetry, and to determine accurately the vibrational dependence of the rotational constants in the distorted C electronic state.« less

  8. Observation of b2 symmetry vibrational levels of the SO2 C̃ (1)B2 state: Vibrational level staggering, Coriolis interactions, and rotation-vibration constants.

    PubMed

    Park, G Barratt; Jiang, Jun; Saladrigas, Catherine A; Field, Robert W

    2016-04-14

    The C̃ (1)B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. However, low-lying levels with odd quanta of antisymmetric stretch (b2 vibrational symmetry) have not previously been observed because transitions into these levels from the zero-point level of the X̃ state are vibronically forbidden. We use IR-UV double resonance to observe the b2 vibrational levels of the C̃ state below 1600 cm(-1) of vibrational excitation. This enables a direct characterization of the vibrational level staggering that results from the double-minimum potential. In addition, it allows us to deperturb the strong c-axis Coriolis interactions between levels of a1 and b2 vibrational symmetry and to determine accurately the vibrational dependence of the rotational constants in the distorted C̃ electronic state.

  9. Observation of b2 symmetry vibrational levels of the SO2 C ˜ 1B2 state: Vibrational level staggering, Coriolis interactions, and rotation-vibration constants

    NASA Astrophysics Data System (ADS)

    Park, G. Barratt; Jiang, Jun; Saladrigas, Catherine A.; Field, Robert W.

    2016-04-01

    The C ˜ 1B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. However, low-lying levels with odd quanta of antisymmetric stretch (b2 vibrational symmetry) have not previously been observed because transitions into these levels from the zero-point level of the X ˜ state are vibronically forbidden. We use IR-UV double resonance to observe the b2 vibrational levels of the C ˜ state below 1600 cm-1 of vibrational excitation. This enables a direct characterization of the vibrational level staggering that results from the double-minimum potential. In addition, it allows us to deperturb the strong c-axis Coriolis interactions between levels of a1 and b2 vibrational symmetry and to determine accurately the vibrational dependence of the rotational constants in the distorted C ˜ electronic state.

  10. Rotational testing.

    PubMed

    Furman, J M

    2016-01-01

    The natural stimulus for the semicircular canals is rotation of the head, which also might stimulate the otolith organs. Vestibular stimulation usually induces eye movements via the vestibulo-ocular reflex (VOR). The orientation of the subject with respect to the axis of rotation and the orientation of the axis of rotation with respect to gravity together determine which labyrinthine receptors are stimulated for particular motion trajectories. Rotational testing usually includes the measurement of eye movements via a video system but might use a subject's perception of motion. The most common types of rotational testing are whole-body computer-controlled sinusoidal or trapezoidal stimuli during earth-vertical axis rotation (EVAR), which stimulates primarily the horizontal semicircular canals bilaterally. Recently, manual impulsive rotations, known as head impulse testing (HIT), have been developed to assess individual horizontal semicircular canals. Most types of rotational stimuli are not used routinely in the clinical setting but may be used in selected research environments. This chapter will discuss clinically relevant rotational stimuli and several types of rotational testing that are used primarily in research settings. PMID:27638070

  11. Effects of rotation on the sleep state-dependent midlatency auditory evoked P50 potential in the human

    NASA Technical Reports Server (NTRS)

    Dornhoffer, John L.; Mamiya, N.; Bray, P.; Skinner, Robert D.; Garcia-Rill, Edgar

    2002-01-01

    Sopite syndrome, characterized by loss of initiative, sensitivity to normally innocuous sensory stimuli, and impaired concentration amounting to a sensory gating deficit, is commonly associated with Space Motion Sickness (SMS). The amplitude of the P50 potential is a measure of level of arousal, and a paired-stimulus paradigm can be used to measure sensory gating. We used the rotary chair to elicit the sensory mismatch that occurs with SMS by overstimulating the vestibular apparatus. The effects of rotation on the manifestation of the P50 midlatency auditory evoked response were then assessed as a measure of arousal and distractibility. Results showed that rotation-induced motion sickness produced no change in the level of arousal but did produce a significant deficit in sensory gating, indicating that some of the attentional and cognitive deficits observed with SMS may be due to distractibility induced by decreased habituation to repetitive stimuli.

  12. LHC phenomenology of lowest massive Regge recurrences in the Randall-Sundrum orbifold

    SciTech Connect

    Anchordoqui, Luis A.; Huang Xing; Goldberg, Haim; Taylor, Tomasz R.

    2010-11-15

    We consider string realizations of the Randall-Sundrum effective theory for electroweak symmetry breaking and explore the search for the lowest massive Regge excitation of the gluon and of the extra (color singlet) gauge boson inherent in D-brane constructions. In these curved backgrounds, the higher-spin Regge recurrences of standard model fields localized near the IR brane are warped down to close to the TeV range and hence can be produced at collider experiments. Assuming that the theory is weakly coupled, we make use of four gauge boson amplitudes evaluated near the first Regge pole to determine the discovery potential of LHC. We study the inclusive dijet mass spectrum in the central rapidity region |y{sub jet}|<1.0 for dijet masses M{>=}2.5 TeV. We find that with an integrated luminosity of 100 fb{sup -1}, the 5{sigma} discovery reach can be as high as 4.7 TeV. Observations of resonant structures in pp{yields}direct{gamma}+jet can provide interesting corroboration for string physics up to 3.0 TeV. We also study the ratio of dijet mass spectra at small and large scattering angles. We show that with the first fb{sup -1} such a ratio can probe lowest-lying Regge states for masses {approx}2.5 TeV.

  13. Steady-state temperature distribution within a Brayton rotating unit operating in a power conversion system using helium-xenon gas

    NASA Technical Reports Server (NTRS)

    Johnsen, R. L.; Namkoong, D.; Edkin, R. A.

    1971-01-01

    The Brayton rotating unit (BRU), consisting of a turbine, an alternator, and a compressor, was tested as part of a Brayton cycle power conversion system over a side range of steady state operating conditions. The working fluid in the system was a mixture of helium-xenon gases. Turbine inlet temperature was varied from 1200 to 1600 F, compressor inlet temperature from 60 to 120 F, compressor discharge pressure from 20 to 45 psia, rotative speed from 32 400 to 39 600 rpm, and alternator liquid-coolant flow rate from 0.01 to 0.27 pound per second. Test results indicated that the BRU internal temperatures were highly sensitive to alternator coolant flow below the design value of 0.12 pound per second but much less so at higher values. The armature winding temperature was not influenced significantly by turbine inlet temperature, but was sensitive, up to 20 F per kVA alternator output, to varying alternator output. When only the rotational speed was changed (+ or - 10% of rated value), the BRU internal temperatures varied directly with the speed.

  14. Fully quantal calculation of H2 translation-rotation states in (H2)4@5(12)6(4) clathrate sII inclusion compounds.

    PubMed

    Felker, Peter M

    2013-05-01

    The quantal translation-rotation (TR) states of the (p-H2)4@5(12)6(4) and (o-D2)4@5(12)6(4) hydrate clathrate sII inclusion compounds have been computed by nuclear-orbital/configuration-interaction methods. The model of these compounds in a rigid, high-symmetry 5(12)6(4) cage is treated in detail. The low-energy TR level structures of both isotopomers within this model are found to consist of states that can be readily described in terms of a small number of single-H2 and double-H2 excitation modes. The use of the high-symmetry results to facilitate the calculation and interpretation of (p-H2)4 and (o-D2)4 TR states in low-symmetry physically realizable 5(12)6(4) cages is also reported.

  15. Rotational frequencies of transition metal hydrides for astrophysical searches in the far-infrared

    NASA Technical Reports Server (NTRS)

    Brown, John M.; Beaton, Stuart P.; Evenson, Kenneth M.

    1993-01-01

    Accurate frequencies for the lowest rotational transitions of five transition metal hydrides (CrH, FeH, CoH, NiH, and CuH) in their ground electronic states are reported to help the identification of these species in astrophysical sources from their far-infrared spectra. Accurate frequencies are determined in two ways: for CuH, by calculation from rotational constants determined from higher J transitions with an accuracy of 190 kHz; for the other species, by extrapolation to zero magnetic field from laser magnetic resonance spectra with an accuracy of 0.7 MHz.

  16. On the influence of non-LTE effects on OH rotational temperatures

    NASA Astrophysics Data System (ADS)

    Noll, S.; Kausch, W.; Kimeswenger, S.; Unterguggenberger, S.; Jones, A. M.

    2015-03-01

    OH airglow is an important tracer of the state of the mesopause and its variability at about 87 km, since it is the dominating emission from the upper atmosphere in the optical to near-infrared wavelength regime. A great deal of the world-wide mesopause temperature records are based on OH. Lines of single OH bands are used to derive rotational temperatures, which are expected to be close to the ambient temperature if only lines from the lowest rotational levels are considered. However, establishing a rotational-translational equilibrium requires a sufficient frequency of suitable collisions, since the nascent level population distribution of OH by the hydrogen-ozone reaction is dominated by high rotational levels and radiative transitions can change the level by one quantum at most. At least for the upper parts of the OH emission layer, it is not clear whether this criterion is fulfilled, since the concentration of the crucial quencher O2 is relatively low.

  17. Improved calculations of the lowest vibrational transitions in HeH{sup +}

    SciTech Connect

    Bubin, Sergiy; Stanke, Monika; Kedziera, Dariusz; Adamowicz, Ludwik

    2007-08-15

    More accurate variational calculations of the lowest three pure vibrational states (v=0,1,2) of the {sup 4}HeH{sup +} molecular ion have been carried out without assuming the Born-Oppenheimer approximation. In the calculations we included the complete set of {alpha}{sup 2} relativistic corrections, i.e., mass-velocity, Darwin, spin-spin, and orbit-orbit. This allowed us to improve the agreement between the theory and the experiment for the vibrational frequencies of the 1{yields}0 and 2{yields}1 transitions as compared to our previous calculations [Stanke et al., Phys. Rev. Lett. 96, 233002 (2006)].

  18. Sigma meson and lowest possible glueball candidate in an extended linear {sigma} model

    SciTech Connect

    Mukherjee, Tamal K.; Huang Mei; Yan Qishu

    2012-10-23

    We formulate an extended linear {sigma} model of a quarkonia nonet and a tetraquark nonet as well as a complex iso-singlet (glueball) field to study the low-lying scalar meson. Chiral symmetry and U{sub A}(1) symmetry and their breaking play important role to shape the scalar meson spectrum in our work. Based on our study we will comment on what may be the mass of the lowest possible scalar and pseudoscalar glueball states. We will also discuss on what may be the nature of the sigma or f{sub 0}(600) meson.

  19. Rotating Wavepackets

    ERIC Educational Resources Information Center

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  20. Unifying the rotational and permutation symmetry of nuclear spin states: Schur-Weyl duality in molecular physics

    NASA Astrophysics Data System (ADS)

    Schmiedt, Hanno; Jensen, Per; Schlemmer, Stephan

    2016-08-01

    In modern physics and chemistry concerned with many-body systems, one of the mainstays is identical-particle-permutation symmetry. In particular, both the intra-molecular dynamics of a single molecule and the inter-molecular dynamics associated, for example, with reactive molecular collisions are strongly affected by selection rules originating in nuclear-permutation symmetry operations being applied to the total internal wavefunctions, including nuclear spin, of the molecules involved. We propose here a general tool to determine coherently the permutation symmetry and the rotational symmetry (associated with the group of arbitrary rotations of the entire molecule in space) of molecular wavefunctions, in particular the nuclear-spin functions. Thus far, these two symmetries were believed to be mutually independent and it has even been argued that under certain circumstances, it is impossible to establish a one-to-one correspondence between them. However, using the Schur-Weyl duality theorem we show that the two types of symmetry are inherently coupled. In addition, we use the ingenious representation-theory technique of Young tableaus to represent the molecular nuclear-spin degrees of freedom in terms of well-defined mathematical objects. This simplifies the symmetry classification of the nuclear wavefunction even for large molecules. Also, the application to reactive collisions is very straightforward and provides a much simplified approach to obtaining selection rules.

  1. Unifying the rotational and permutation symmetry of nuclear spin states: Schur-Weyl duality in molecular physics.

    PubMed

    Schmiedt, Hanno; Jensen, Per; Schlemmer, Stephan

    2016-08-21

    In modern physics and chemistry concerned with many-body systems, one of the mainstays is identical-particle-permutation symmetry. In particular, both the intra-molecular dynamics of a single molecule and the inter-molecular dynamics associated, for example, with reactive molecular collisions are strongly affected by selection rules originating in nuclear-permutation symmetry operations being applied to the total internal wavefunctions, including nuclear spin, of the molecules involved. We propose here a general tool to determine coherently the permutation symmetry and the rotational symmetry (associated with the group of arbitrary rotations of the entire molecule in space) of molecular wavefunctions, in particular the nuclear-spin functions. Thus far, these two symmetries were believed to be mutually independent and it has even been argued that under certain circumstances, it is impossible to establish a one-to-one correspondence between them. However, using the Schur-Weyl duality theorem we show that the two types of symmetry are inherently coupled. In addition, we use the ingenious representation-theory technique of Young tableaus to represent the molecular nuclear-spin degrees of freedom in terms of well-defined mathematical objects. This simplifies the symmetry classification of the nuclear wavefunction even for large molecules. Also, the application to reactive collisions is very straightforward and provides a much simplified approach to obtaining selection rules. PMID:27544099

  2. Unifying the rotational and permutation symmetry of nuclear spin states: Schur-Weyl duality in molecular physics.

    PubMed

    Schmiedt, Hanno; Jensen, Per; Schlemmer, Stephan

    2016-08-21

    In modern physics and chemistry concerned with many-body systems, one of the mainstays is identical-particle-permutation symmetry. In particular, both the intra-molecular dynamics of a single molecule and the inter-molecular dynamics associated, for example, with reactive molecular collisions are strongly affected by selection rules originating in nuclear-permutation symmetry operations being applied to the total internal wavefunctions, including nuclear spin, of the molecules involved. We propose here a general tool to determine coherently the permutation symmetry and the rotational symmetry (associated with the group of arbitrary rotations of the entire molecule in space) of molecular wavefunctions, in particular the nuclear-spin functions. Thus far, these two symmetries were believed to be mutually independent and it has even been argued that under certain circumstances, it is impossible to establish a one-to-one correspondence between them. However, using the Schur-Weyl duality theorem we show that the two types of symmetry are inherently coupled. In addition, we use the ingenious representation-theory technique of Young tableaus to represent the molecular nuclear-spin degrees of freedom in terms of well-defined mathematical objects. This simplifies the symmetry classification of the nuclear wavefunction even for large molecules. Also, the application to reactive collisions is very straightforward and provides a much simplified approach to obtaining selection rules.

  3. The rotation-vibration structure of the SO2 C1B2 state explained by a new internal coordinate force field

    DOE PAGES

    Jiang, Jun; Park, G. Barratt; Field, Robert W.

    2016-04-14

    A new quartic force field for the SO2 C~1B2 state has been derived, based on high resolution data from S16O2 and S18O2. Included are eight b2 symmetry vibrational levels of S16O2 reported in the first paper of this series [G. B. Park, et al., J. Chem. Phys. 144, 144311 (2016)]. Many of the experimental observables not included in the fit, such as the Franck-Condon intensities and the Coriolis-perturbed effective C rotational constants of highly anharmonic C~ state vibrational levels, are well reproduced using our force field. Because the two stretching modes of the C~ state are strongly coupled via Fermi-133more » interaction, the vibrational structure of the C state is analyzed in a Fermi-system basis set, constructed explicitly in this work via partial diagonalization of the vibrational Hamiltonian. The physical significance of the Fermi-system basis is discussed in terms of semiclassical dynamics, based on study of Fermi-resonance systems by Kellman and coworkers [M. E. Kellman and L. Xiao, J. Chem. Phys. 93, 5821 (1990)]. By diagonalizing the vibrational Hamiltonian in the Fermi-system basis, the vibrational characters of all vibrational levels can be determined unambiguously. It is shown that the bending mode cannot be treated separately from the coupled stretching modes, particularly at vibrational energies of more than 2000 cm–1. Based on our force field, the structure of the Coriolis interactions in the C~ state of SO2 is also discussed. As a result, we identify the origin of the alternating patterns in the effective C rotational constants of levels in the vibrational progressions of the symmetry-breaking mode, νβ (which correlates with the antisymmetric stretching mode in our assignment scheme).« less

  4. The rotation-vibration structure of the SO2 C̃(1)B2 state explained by a new internal coordinate force field.

    PubMed

    Jiang, Jun; Park, G Barratt; Field, Robert W

    2016-04-14

    A new quartic force field for the SO2 C̃(1)B2 state has been derived, based on high resolution data from S(16)O2 and S(18)O2. Included are eight b2 symmetry vibrational levels of S(16)O2 reported in the first paper of this series [G. B. Park et al., J. Chem. Phys. 144, 144311 (2016)]. Many of the experimental observables not included in the fit, such as the Franck-Condon intensities and the Coriolis-perturbed effective C rotational constants of highly anharmonic C̃ state vibrational levels, are well reproduced using our force field. Because the two stretching modes of the C̃ state are strongly coupled via Fermi-133 interaction, the vibrational structure of the C̃ state is analyzed in a Fermi-system basis set, constructed explicitly in this work via partial diagonalization of the vibrational Hamiltonian. The physical significance of the Fermi-system basis is discussed in terms of semiclassical dynamics, based on study of Fermi-resonance systems by Kellman and Xiao [J. Chem. Phys. 93, 5821 (1990)]. By diagonalizing the vibrational Hamiltonian in the Fermi-system basis, the vibrational characters of all vibrational levels can be determined unambiguously. It is shown that the bending mode cannot be treated separately from the coupled stretching modes, particularly at vibrational energies of more than 2000 cm(-1). Based on our force field, the structure of the Coriolis interactions in the C̃ state of SO2 is also discussed. We identify the origin of the alternating patterns in the effective C rotational constants of levels in the vibrational progressions of the symmetry-breaking mode, νβ (which correlates with the antisymmetric stretching mode in our assignment scheme). PMID:27083726

  5. The rotation-vibration structure of the SO2 C̃(1)B2 state explained by a new internal coordinate force field.

    PubMed

    Jiang, Jun; Park, G Barratt; Field, Robert W

    2016-04-14

    A new quartic force field for the SO2 C̃(1)B2 state has been derived, based on high resolution data from S(16)O2 and S(18)O2. Included are eight b2 symmetry vibrational levels of S(16)O2 reported in the first paper of this series [G. B. Park et al., J. Chem. Phys. 144, 144311 (2016)]. Many of the experimental observables not included in the fit, such as the Franck-Condon intensities and the Coriolis-perturbed effective C rotational constants of highly anharmonic C̃ state vibrational levels, are well reproduced using our force field. Because the two stretching modes of the C̃ state are strongly coupled via Fermi-133 interaction, the vibrational structure of the C̃ state is analyzed in a Fermi-system basis set, constructed explicitly in this work via partial diagonalization of the vibrational Hamiltonian. The physical significance of the Fermi-system basis is discussed in terms of semiclassical dynamics, based on study of Fermi-resonance systems by Kellman and Xiao [J. Chem. Phys. 93, 5821 (1990)]. By diagonalizing the vibrational Hamiltonian in the Fermi-system basis, the vibrational characters of all vibrational levels can be determined unambiguously. It is shown that the bending mode cannot be treated separately from the coupled stretching modes, particularly at vibrational energies of more than 2000 cm(-1). Based on our force field, the structure of the Coriolis interactions in the C̃ state of SO2 is also discussed. We identify the origin of the alternating patterns in the effective C rotational constants of levels in the vibrational progressions of the symmetry-breaking mode, νβ (which correlates with the antisymmetric stretching mode in our assignment scheme).

  6. The rotation-vibration structure of the SO2 C ˜ 1B2 state explained by a new internal coordinate force field

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Park, G. Barratt; Field, Robert W.

    2016-04-01

    A new quartic force field for the SO2 C ˜ 1B2 state has been derived, based on high resolution data from S16O2 and S18O2. Included are eight b2 symmetry vibrational levels of S16O2 reported in the first paper of this series [G. B. Park et al., J. Chem. Phys. 144, 144311 (2016)]. Many of the experimental observables not included in the fit, such as the Franck-Condon intensities and the Coriolis-perturbed effective C rotational constants of highly anharmonic C ˜ state vibrational levels, are well reproduced using our force field. Because the two stretching modes of the C ˜ state are strongly coupled via Fermi-133 interaction, the vibrational structure of the C ˜ state is analyzed in a Fermi-system basis set, constructed explicitly in this work via partial diagonalization of the vibrational Hamiltonian. The physical significance of the Fermi-system basis is discussed in terms of semiclassical dynamics, based on study of Fermi-resonance systems by Kellman and Xiao [J. Chem. Phys. 93, 5821 (1990)]. By diagonalizing the vibrational Hamiltonian in the Fermi-system basis, the vibrational characters of all vibrational levels can be determined unambiguously. It is shown that the bending mode cannot be treated separately from the coupled stretching modes, particularly at vibrational energies of more than 2000 cm-1. Based on our force field, the structure of the Coriolis interactions in the C ˜ state of SO2 is also discussed. We identify the origin of the alternating patterns in the effective C rotational constants of levels in the vibrational progressions of the symmetry-breaking mode, νβ (which correlates with the antisymmetric stretching mode in our assignment scheme).

  7. Rail corrugation growth accounting for the flexibility and rotation of the wheel set and the non-Hertzian and non-steady-state effects at contact patch

    NASA Astrophysics Data System (ADS)

    Vila, Paloma; Baeza, Luis; Martínez-Casas, José; Carballeira, Javier

    2014-05-01

    In this work, a simulation tool is developed to analyse the growth of rail corrugation consisting of several models connected in a feedback loop in order to account for both the short-term dynamic vehicle-track interaction and the long-term damage. The time-domain vehicle-track interaction model comprises a flexible rotating wheel set model, a cyclic track model based on a substructuring technique and a non-Hertzian and non-steady-state three-dimensional wheel-rail contact model, based on the variational theory by Kalker. Wear calculation is performed with Archard's wear model by using the contact parameters obtained with the non-Hertzian and non-steady-state three-dimensional contact model. The aim of this paper is to analyse the influence of the excitation of two coinciding resonances of the flexible rotating wheel set on the rail corrugation growth in the frequency range from 20 to 1500 Hz, when contact conditions similar to those that can arise while a wheel set is negotiating a gentle curve are simulated. Numerical results show that rail corrugation grows only on the low rail for two cases in which two different modes of the rotating wheel set coincide in frequency. In the first case, identified by using the Campbell diagram, the excitation of both the backward wheel mode and the forward third bending mode of the wheel set model (B-F modes) promotes the growth of rail corrugation with a wavelength of 110 mm for a vehicle velocity of 142 km/h. In the second case, the excitation of both the backward wheel mode and the backward third bending mode (B-B modes) gives rise to rail corrugation growth at a wavelength of 156 mm when the vehicle velocity is 198 km/h.

  8. Final rotational state distributions from NO(vi = 11) in collisions with Au(111): the magnitude of vibrational energy transfer depends on orientation in molecule-surface collisions.

    PubMed

    Krüger, Bastian C; Bartels, Nils; Wodtke, Alec M; Schäfer, Tim

    2016-06-01

    When NO molecules collide at a Au(111) surface, their interaction is controlled by several factors; especially important are the molecules' orientation with respect to the surface (N-first vs. O-first) and their distance of closest approach. In fact, the former may control the latter as N-first orientations are attractive and O-first orientations are repulsive. In this work, we employ electric fields to control the molecules' incidence orientation in combination with rotational rainbow scattering detection. Specifically, we report final rotational state distributions of oriented NO(vi = 11) molecules scattered from Au(111) for final vibrational states between vf = 4 and 11. For O-first collisions, the interaction potential is highly repulsive preventing the close approach and scattering results in high-J rainbows. By contrast, these rainbows are not seen for the more intimate collisions possible for attractive N-first orientations. In this way, we reveal the influence of orientation and the distance of closest approach on vibrational relaxation of NO(vi = 11) in collisions with a Au(111) surface. We also elucidate the influence of steering forces which cause the O-first oriented molecules to rotate to an N-first orientation during their approach to the surface. The experiments show that when NO collides at the surface with the N-atom first, on average more than half of the initial vibrational energy is lost; whereas O-first oriented collisions lose much less vibrational energy. These observations qualitatively confirm theoretical predictions of electronically non-adiabatic NO interactions at Au(111). PMID:27193070

  9. Exponential Decay of the Vorticity in the Steady-State Flow of a Viscous Liquid Past a Rotating Body

    NASA Astrophysics Data System (ADS)

    Deuring, Paul; Galdi, Giovanni P.

    2016-07-01

    Consider the flow of a Navier-Stokes liquid past a body rotating with a prescribed constant angular velocity, {ω}, and assume that the motion is steady with respect to a body-fixed frame. In this paper we show that the vorticity field associated to every "weak" solution corresponding to data of arbitrary "size" ( Leray Solution) must decay exponentially fast outside the wake region at sufficiently large distances from the body. Our result improves and generalizes in a non-trivial way famous results by Clark (Indiana Univ Math J 20:633-654, 1971) and Babenko and Vasil'ev (J Appl Math Mech 37:651-665, 1973) obtained in the case {ω=0}.

  10. Rotational excitation of symmetric top molecules by collisions with atoms: Close coupling, coupled states, and effective potential calculations for NH3-He

    NASA Technical Reports Server (NTRS)

    Green, S.

    1976-01-01

    The formalism for describing rotational excitation in collisions between symmetric top rigid rotors and spherical atoms is presented both within the accurate quantum close coupling framework and also the coupled states approximation of McGuire and Kouri and the effective potential approximation of Rabitz. Calculations are reported for thermal energy NH3-He collisions, treating NH3 as a rigid rotor and employing a uniform electron gas (Gordon-Kim) approximation for the intermolecular potential. Coupled states are found to be in nearly quantitative agreement with close coupling results while the effective potential method is found to be at least qualitatively correct. Modifications necessary to treat the inversion motion in NH3 are discussed.

  11. Rotational Energy.

    ERIC Educational Resources Information Center

    Lockett, Keith

    1988-01-01

    Demonstrates several objects rolling down a slope to explain the energy transition among potential energy, translational kinetic energy, and rotational kinetic energy. Contains a problem from Galileo's rolling ball experiment. (YP)

  12. Solar rotation.

    NASA Astrophysics Data System (ADS)

    Dziembowski, W.

    Sunspot observations made by Johannes Hevelius in 1642 - 1644 are the first ones providing significant information about the solar differential rotation. In modern astronomy the determination of the rotation rate is done in a routine way by measuring positions of various structures on the solar surface as well as by studying the Doppler shifts of spectral lines. In recent years a progress in helioseismology enabled determination of the rotation rate in the layers inaccessible for direct observations. There are still uncertainties concerning, especially, the temporal variations of the rotation rate and its behaviour in the radiative interior. We are far from understanding the observations. Theoretical works have not yet resulted in a satisfactory model for the angular momentum transport in the convective zone.

  13. A quantum algorithm for obtaining the lowest eigenstate of a Hamiltonian assisted with an ancillary qubit system

    NASA Astrophysics Data System (ADS)

    Bang, Jeongho; Lee, Seung-Woo; Lee, Chang-Woo; Jeong, Hyunseok

    2015-01-01

    We propose a quantum algorithm to obtain the lowest eigenstate of any Hamiltonian simulated by a quantum computer. The proposed algorithm begins with an arbitrary initial state of the simulated system. A finite series of transforms is iteratively applied to the initial state assisted with an ancillary qubit. The fraction of the lowest eigenstate in the initial state is then amplified up to 1. We prove that our algorithm can faithfully work for any arbitrary Hamiltonian in the theoretical analysis. Numerical analyses are also carried out. We firstly provide a numerical proof-of-principle demonstration with a simple Hamiltonian in order to compare our scheme with the so-called "Demon-like algorithmic cooling (DLAC)", recently proposed in Xu (Nat Photonics 8:113, 2014). The result shows a good agreement with our theoretical analysis, exhibiting the comparable behavior to the best `cooling' with the DLAC method. We then consider a random Hamiltonian model for further analysis of our algorithm. By numerical simulations, we show that the total number of iterations is proportional to , where is the difference between the two lowest eigenvalues and is an error defined as the probability that the finally obtained system state is in an unexpected (i.e., not the lowest) eigenstate.

  14. Comparison of short-range-order in liquid- and rotator-phase states of a simple molecular liquid: A reverse Monte Carlo and molecular dynamics analysis of neutron diffraction data

    SciTech Connect

    Pardo, Luis Carlos; Tamarit, Josep Lluis; Veglio, Nestor; Bermejo, Francisco Javier; Cuello, Gabriel Julio

    2007-10-01

    The short-range order (SRO) correlations in liquid- and rotator-phase states of carbon tetrachloride are revisited here. The correlation of some angular magnitudes is used to evaluate the positional and orientational correlations in the liquid as well as in the rotator phase. The results show significant similitudes in the relative position of the molecules surrounding a central one but striking differences in their relative orientations, which could explain the changes in SRO between the two phases and the puzzling behavior of the local density in the liquid and rotator phases.

  15. Electronic structure with vibration-rotation study of the NaYb molecule

    NASA Astrophysics Data System (ADS)

    Tohme, Samir N.; Korek, Mahmoud

    2015-10-01

    The potential energy curves have been investigated for the 15 lowest doublet and quartet electronic states in the 2s+1Λ± representation of the molecule NaYb via CASSCF/MRCI (single and double excitations with Davidson correction) calculations. The spectroscopic constants (Te, De, ωe, Be, re, …) have been calculated in addition to the permanent dipole moments μ. By using the canonical functions approach, the eigenvalues Ev, the rotational constants Bv, the centrifugal distortion constant Dv, and the abscissas of the turning points rmin and rmax have been calculated for different electronic states. Fourteen molecular states have been studied theoretically for the first time.

  16. The role of symmetry and optical selection rules in revealing the molecular structure of the lowest Rydberg and ionic states of the 1,4-diazabicyclo[2.2.2]octane-Arn (n = 1,2,3) van der Waals complexes.

    PubMed

    Belcher, David E; Watkins, Mark J; Tonge, Nicola; Cockett, Martin C R

    2004-05-01

    The 1,4-diazabicyclo[2.2.2]octane-Arn (n = 1,2,3) van der Waals complexes (DABCO-Arn) have been investigated using a combination of (1 + 1') resonance enhanced multiphoton ionization (REMPI) and zero electron kinetic energy (ZEKE) spectroscopy. The additivity of the spectral shifts observed in both REMPI and ZEKE spectra, taken together with analysis of vibrational structure, suggest that in both DABCO-Ar and DABCO-Ar2 the argon atoms bind in equivalent equatorial (face) locations between two adjacent (CH2)2 bridges. However, the cumulative evidence from both REMPI and ZEKE spectra, together with ab initio results, suggests that the DABCO-Ar3 complex does not revert to D3h symmetry, but rather adopts a C2v structure in which all three argon atoms bind to one side of the DABCO framework. The exceptionally low wave-number vibrational structure observed in the REMPI spectra suggest that the van der Waals interaction in the excited state is extremely weak. However, ionization necessarily increases the strength of the interaction by virtue of the introduction of charge-induced dipole forces, as revealed by a consistent increase in vibrational wave numbers of the modes observed in the resultant ZEKE spectra.

  17. The role of symmetry and optical selection rules in revealing the molecular structure of the lowest Rydberg and ionic states of the 1,4-diazabicyclo[2.2.2]octane-Arn (n=1,2,3) van der Waals complexes

    NASA Astrophysics Data System (ADS)

    Belcher, David E.; Watkins, Mark J.; Tonge, Nicola; Cockett, Martin C. R.

    2004-05-01

    The 1,4-diazabicyclo[2.2.2]octane-Arn (n=1,2,3) van der Waals complexes (DABCO-Arn) have been investigated using a combination of (1+1') resonance enhanced multiphoton ionization (REMPI) and zero electron kinetic energy (ZEKE) spectroscopy. The additivity of the spectral shifts observed in both REMPI and ZEKE spectra, taken together with analysis of vibrational structure, suggest that in both DABCO-Ar and DABCO-Ar2 the argon atoms bind in equivalent equatorial (face) locations between two adjacent (CH2)2 bridges. However, the cumulative evidence from both REMPI and ZEKE spectra, together with ab initio results, suggests that the DABCO-Ar3 complex does not revert to D3h symmetry, but rather adopts a C2v structure in which all three argon atoms bind to one side of the DABCO framework. The exceptionally low wave-number vibrational structure observed in the REMPI spectra suggest that the van der Waals interaction in the excited state is extremely weak. However, ionization necessarily increases the strength of the interaction by virtue of the introduction of charge-induced dipole forces, as revealed by a consistent increase in vibrational wave numbers of the modes observed in the resultant ZEKE spectra.

  18. The ground states and pseudospin textures of rotating two-component Bose–Einstein condensates trapped in harmonic plus quartic potential

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Zhang, Su-Ying

    2016-09-01

    The ground states of two-component miscible Bose–Einstein condensates (BECs) confined in a rotating annular trap are obtained by using the Thomas–Fermi (TF) approximation method. The ground state density distribution of the condensates experiences a transition from a disc shape to an annulus shape either when the angular frequency increases and the width and the center height of the trap are fixed, or when the width and the center height of the trap increase and the angular frequency is fixed. Meantime the numerical solutions of the ground states of the trapped two-component miscible BECs with the same condition are obtained by using imaginary-time propagation method. They are in good agreement with the solutions obtained by the TF approximation method. The ground states of the trapped two-component immiscible BECs are also given by using the imaginary-time propagation method. Furthermore, by introducing a normalized complex-valued spinor, three kinds of pseudospin textures of the BECs, i.e., giant skyrmion, coaxial double-annulus skyrmion, and coaxial three-annulus skyrmion, are found. Project supported by the National Natural Science Foundation of China (Grant Nos. 91430109 and 11404198), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111401110004), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2014011005-3).

  19. The ground states and pseudospin textures of rotating two-component Bose-Einstein condensates trapped in harmonic plus quartic potential

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Zhang, Su-Ying

    2016-09-01

    The ground states of two-component miscible Bose-Einstein condensates (BECs) confined in a rotating annular trap are obtained by using the Thomas-Fermi (TF) approximation method. The ground state density distribution of the condensates experiences a transition from a disc shape to an annulus shape either when the angular frequency increases and the width and the center height of the trap are fixed, or when the width and the center height of the trap increase and the angular frequency is fixed. Meantime the numerical solutions of the ground states of the trapped two-component miscible BECs with the same condition are obtained by using imaginary-time propagation method. They are in good agreement with the solutions obtained by the TF approximation method. The ground states of the trapped two-component immiscible BECs are also given by using the imaginary-time propagation method. Furthermore, by introducing a normalized complex-valued spinor, three kinds of pseudospin textures of the BECs, i.e., giant skyrmion, coaxial double-annulus skyrmion, and coaxial three-annulus skyrmion, are found. Project supported by the National Natural Science Foundation of China (Grant Nos. 91430109 and 11404198), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111401110004), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2014011005-3).

  20. Intrinsic rotation with gyrokinetic models

    SciTech Connect

    Parra, Felix I.; Barnes, Michael; Catto, Peter J.; Calvo, Ivan

    2012-05-15

    The generation of intrinsic rotation by turbulence and neoclassical effects in tokamaks is considered. To obtain the complex dependences observed in experiments, it is necessary to have a model of the radial flux of momentum that redistributes the momentum within the tokamak in the absence of a preexisting velocity. When the lowest order gyrokinetic formulation is used, a symmetry of the model precludes this possibility, making small effects in the gyroradius over scale length expansion necessary. These effects that are usually small become important for momentum transport because the symmetry of the lowest order gyrokinetic formulation leads to the cancellation of the lowest order momentum flux. The accuracy to which the gyrokinetic equation needs to be obtained to retain all the physically relevant effects is discussed.

  1. On the absence of rotational levels for J{sup π}K = 0{sup +}0{sub 2} and 2{sup +}2{sub 2} nonrotational states in {sup 164}Dy and {sup 166}Er

    SciTech Connect

    Govor, L. I. Demidov, A. M.; Kurkin, V. A.; Mikhailov, I. V.

    2015-03-15

    Various reasons for the absence of rotational levels for J{sup π}K = 0{sup +}0{sub 2} and 2{sup +}2{sub 2} nonrotational states in {sup 164}Dy and {sup 166}Er are considered. Preference is given to the effect of the excitation of an anharmonic two-phonon state in pair vibrations of the superconducting type.

  2. Bose-Einstein condensate in a rapidly rotating nonsymmetric trap

    SciTech Connect

    Fetter, Alexander L.

    2010-03-15

    A rapidly rotating Bose-Einstein condensate in a symmetric two-dimensional harmonic trap can be described with the lowest Landau-level set of single-particle states. The condensate wave function {psi}(x,y) is a Gaussian {proportional_to}exp(-r{sup 2}/2), multiplied by an analytic function f(z) of the complex variable z=x+iy. The criterion for a quantum phase transition to a non-superfluid correlated many-body state is usually expressed in terms of the ratio of the number of particles to the number of vortices. Here a similar description applies to a rapidly rotating nonsymmetric two-dimensional trap with arbitrary quadratic anisotropy ({omega}{sub x}{sup 2}<{omega}{sub y}{sup 2}). The corresponding condensate wave function {psi}(x,y) is a complex anisotropic Gaussian with a phase proportional to xy, multiplied by an analytic function f(z), where z=x+i{beta}{sub -}y is a stretched complex variable and 0{<=}{beta}{sub -{<=}}1 is a real parameter that depends on the trap anisotropy and the rotation frequency. Both in the mean-field Thomas-Fermi approximation and in the mean-field lowest Landau level approximation with many visible vortices, an anisotropic parabolic density profile minimizes the energy. An elongated condensate grows along the soft trap direction yet ultimately shrinks along the tight trap direction. The criterion for the quantum phase transition to a correlated state is generalized (1) in terms of N/L{sub z}, which suggests that a nonsymmetric trap should make it easier to observe this transition, or (2) in terms of a 'fragmented' correlated state, which suggests that a nonsymmetric trap should make it harder to observe this transition. An alternative scenario involves a crossover to a quasi one-dimensional condensate without visible vortices, as suggested by Aftalion et al., Phys. Rev. A 79, 011603(R) (2009).

  3. Interference fringes of m=0 spin states under the Majorana transition caused by rapid half-rotation of a magnetic field

    NASA Astrophysics Data System (ADS)

    Takahashi, Atsushi; Morinaga, Atsuo

    2010-04-01

    The phase shift and visibility of fringes in the Ramsey atom interferometer composed of the |F=1,mF=0> and |F=2,mF=0> states were examined systematically for rapid half-rotation of the magnetic field. It was verified that the phase shifts by π rad in the adiabatic regime, but it does not shift from the original one in the nonadiabatic regime. These results support Robbins and Berry’s claim [J. M. Robbins and M. V. Berry, J. Phys. A 27, L435 (1994)]. The fact that the interference fringes disappear in the intermediate regime and reappear in the nonadiabatic regime can be explained by the Majorana transition caused by a rapid reverse of the magnetic field.

  4. High resolution difference bands of ethane C2H6 from torsionally excited lower states: rotation-torsion structure of the ν 2, ν 11 and ν 4 + ν 11 vibrational states

    NASA Astrophysics Data System (ADS)

    Lattanzi, Franca; di Lauro, Carlo; Horneman, Veli-Matti

    2011-10-01

    A high resolution Fourier transform infrared spectrum of C2H6, measured at a pressure of 173.3 Pa and an optical path of 153.2 m, was analysed between 1050 and 1295 cm-1. Extensive absorption due to the difference bands ν 11-ν 4, and several rotation-torsion lines of the difference band ν 2-ν 4, in the region of the x, y-Coriolis resonance of ν 2 and ν 11, were observed. This allowed a detailed rotation-torsion analysis of the upper states ν 11 and ν 2. The anomalous torsional structure, found in the non-degenerate vibrational state ν 2, can be explained as the effect of an Hamiltonian term accounting for a strong dependence of the torsional barrier height on the normal vibrational coordinate q 2. The value of the barrier height derivative ? is estimated to be 127 ± 10 cm-1. Also detected and assigned were 'hot' difference transitions belonging to the (ν 4 + ν 11)-2ν 4 band, yielding information on the upper state ν 4 + ν 11. It is believed that transitions from 3ν 4 to 2ν 4 + ν 11 are also detectable in the investigated region.

  5. Earth Rotation

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  6. Concepts in crop rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop rotations have been a part of civilization since the Middle Ages. With colonization of what would become the United States came new crops of tobacco, cotton, and corn, the first two of which would play significant roles in both the economic beginnings and social fabric of the new country, how ...

  7. Fully quantum state-resolved inelastic scattering of NO(X) + Kr: Differential cross sections and product rotational alignment

    SciTech Connect

    Brouard, M. Chadwick, H.; Gordon, S. D. S.; Hornung, B.; Nichols, B.; Kłos, J.; Aoiz, F. J.; Stolte, S.

    2014-10-28

    Fully quantum state selected and resolved inelastic scattering of NO(X) by krypton has been investigated. Initial Λ-doublet state selection is achieved using an inhomogeneous hexapole electric field. Differential cross sections and even-moment polarization dependent differential cross sections have been obtained at a collision energy of 514 cm{sup −1} for both spin-orbit and parity conserving and changing collisions. Experimental results are compared with those obtained from quantum scattering calculations and are shown to be in very good agreement. Hard shell quantum scattering calculations are also performed to determine the effects of the different parts of the potential on the scattering dynamics. Comparisons are also made with the NO(X) + Ar system.

  8. Fully quantum state-resolved inelastic scattering of NO(X) + Kr: differential cross sections and product rotational alignment.

    PubMed

    Brouard, M; Chadwick, H; Gordon, S D S; Hornung, B; Nichols, B; Kłos, J; Aoiz, F J; Stolte, S

    2014-10-28

    Fully quantum state selected and resolved inelastic scattering of NO(X) by krypton has been investigated. Initial Λ-doublet state selection is achieved using an inhomogeneous hexapole electric field. Differential cross sections and even-moment polarization dependent differential cross sections have been obtained at a collision energy of 514 cm(-1) for both spin-orbit and parity conserving and changing collisions. Experimental results are compared with those obtained from quantum scattering calculations and are shown to be in very good agreement. Hard shell quantum scattering calculations are also performed to determine the effects of the different parts of the potential on the scattering dynamics. Comparisons are also made with the NO(X) + Ar system. PMID:25362298

  9. Noncommutative Chern-Simons theory and exotic geometry emerging from the lowest Landau level

    NASA Astrophysics Data System (ADS)

    Luo, Xi; Wu, Yong-Shi; Yu, Yue

    2016-06-01

    We relate the collective dynamic internal geometric degrees of freedom to the gauge fluctuations in ν =1 /m (m odd ) fractional quantum Hall effects. In this way, in the lowest Landau level, a highly nontrivial quantum geometry in two-dimensional guiding center space emerges from these internal geometric modes. Using the Dirac bracket method, we find that this quantum geometric field theory is a topological noncommutative Chern-Simons theory. Topological indices, such as the guiding center angular momentum (also called the shift) and the guiding center spin, which characterize the fractional quantum Hall (FQH) states besides the filling factor, are naturally defined. A noncommutative K-matrix Chern-Simons theory is proposed as a generalization to a large class of Abelian FQH topological orders.

  10. Determination of the geometry change of benzimidazole upon electronic excitation from a combined Franck-Condon/rotational constants fit

    NASA Astrophysics Data System (ADS)

    Stuhlmann, Benjamin; Gmerek, Felix; Krügler, Daniel; Schmitt, Michael

    2014-08-01

    Single vibronic level fluorescence spectra of the electronic origin and of seven vibronic bands between 0,0 and 0,0 + 1265 cm-1 have been measured and analyzed by means of a combined Franck-Condon/rotational constants fit. The rotational constants in ground and lowest electronically excited singlet state of four different isotopologues have been taken from previous rotationally resolved measurements of Schmitt et al. (2006). The intensities of 182 vibronic emission bands and of 8 rotational constants have been used for a fit of the complete heavy atom geometry changes upon electronic excitation. Vibronic modes, about 1000 cm-1 above the electronic origin, show strong deviations from Franck-Condon behavior in emission. Herzberg-Teller coupling contributes to this effect. 1300 cm-1 above the origin, we observe the onset of intramolecular vibrational redistribution in the emission spectra.

  11. Negative-parity high-spin states and a possible magnetic rotation band in 76 59 135Pr

    NASA Astrophysics Data System (ADS)

    Garg, Ritika; Kumar, S.; Saxena, Mansi; Goyal, Savi; Siwal, Davinder; Kalkal, Sunil; Verma, S.; Singh, R.; Pancholi, S. C.; Palit, R.; Choudhury, Deepika; Ghugre, S. S.; Mukherjee, G.; Kumar, R.; Singh, R. P.; Muralithar, S.; Bhowmik, R. K.; Mandal, S.

    2015-11-01

    Excited states in 135Pr have been investigated using the reaction 123Sb(16O,4 n )135Pr at an incident beam energy of 82 MeV. The partial level scheme has been established for negative-parity states with addition of new γ -ray transitions. The directional correlation and polarization measurements have been performed to assign spin parity for most of the reported γ -ray transitions. At high spin, a negative-parity dipole band (Δ I =1 ) has been reported along with the observation of new crossover E 2 transitions. Tilted Axis Cranking (TAC) calculations have been performed by considering a three-quasiparticle (3qp) configuration π (h11/2) 1⊗ν (h11/2) -2 and a five-quasiparticle (5qp) configuration π (h11/2) 1(g7/2) 2⊗ν (h11/2) -2 for the lower and upper parts of the band, respectively. The observed results are compared with the results of the theoretical (TAC) calculations.

  12. High resolution analysis of the rotational levels of the (0 0 0), (0 1 0), (1 0 0), (0 0 1), (0 2 0), (1 1 0) and (0 1 1) vibrational states of 34S16O2

    SciTech Connect

    Lafferty, Walter; Flaud, Jean-marie; Sams, Robert L.; Ngom, El Hadji A.

    2008-11-01

    A high resolution (0.0018 cm-1) Fourier transform instrument has been used to record the spectrum of an enriched 34S (95.3 %) sample of sulfur dioxide. A thorough analysis of the ν2, 2ν2 - ν2 , ν1, ν1 + ν2 - ν2, ν3, ν2 + ν3 - ν2, ν1 + ν2 and ν2 + ν3 bands has been carried out leading to a large set of assigned lines. From these lines ground state combination differences were obtained and fitted together with the existing microwave, millimeter, and terahertz rotational lines. An improved set of ground state rotational constants were obtained. Next, the upper state rotational levels were fitted. For the (010), (110), (011) states, a simple Watson type Hamilton sufficed. However, it was necessary to include explicitly interacting terms in the Hamiltonian matrix in order to fit the rotational levels of the (020), (100) and (101) states to within their experimental accuracy. More explicitly, it was necessary to use a ΔK=2 term to model the Fermi interaction between the (020) and (100) levels and a ΔK=3 term to model the Coriolis interaction between the (100) and (001) levels. Precise Hamiltonian constants were derived for the (000), (010), (100), (001), (020), (110) and (011) vibrational states.

  13. Microscopic verification of topological electron-vortex binding in the lowest Landau-level crystal state.

    PubMed

    Chang, Chia-Chen; Jeon, Gun Sang; Jain, Jainendra K

    2005-01-14

    When two-dimensional electrons are subjected to a very strong magnetic field, they are believed to form a triangular crystal. By a direct comparison with the exact wave function, we demonstrate that this crystal is not a simple Hartree-Fock crystal of electrons but an inherently quantum mechanical crystal characterized by a nonperturbative binding of quantized vortices to electrons. It is suggested that this has qualitative consequences for experiment.

  14. Valence and lowest Rydberg electronic states of phenol investigated by synchrotron radiation and theoretical methods.

    PubMed

    Limão-Vieira, P; Duflot, D; Ferreira da Silva, F; Lange, E; Jones, N C; Hoffmann, S V; Śmiałek, M A; Jones, D B; Brunger, M J

    2016-07-21

    We present the experimental high-resolution vacuum ultraviolet (VUV) photoabsorption spectra of phenol covering for the first time the full 4.3-10.8 eV energy-range, with absolute cross sections determined. Theoretical calculations on the vertical excitation energies and oscillator strengths were performed using time-dependent density functional theory and the equation-of-motion coupled cluster method restricted to single and double excitations level. These have been used in the assignment of valence and Rydberg transitions of the phenol molecule. The VUV spectrum reveals several new features not previously reported in the literature, with particular reference to the 6.401 eV transition, which is here assigned to the 3sσ/σ(∗)(OH)←3π(3a″) transition. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of phenol in the earth's atmosphere (0-50 km). PMID:27448882

  15. Valence and lowest Rydberg electronic states of phenol investigated by synchrotron radiation and theoretical methods

    NASA Astrophysics Data System (ADS)

    Limão-Vieira, P.; Duflot, D.; Ferreira da Silva, F.; Lange, E.; Jones, N. C.; Hoffmann, S. V.; Śmiałek, M. A.; Jones, D. B.; Brunger, M. J.

    2016-07-01

    We present the experimental high-resolution vacuum ultraviolet (VUV) photoabsorption spectra of phenol covering for the first time the full 4.3-10.8 eV energy-range, with absolute cross sections determined. Theoretical calculations on the vertical excitation energies and oscillator strengths were performed using time-dependent density functional theory and the equation-of-motion coupled cluster method restricted to single and double excitations level. These have been used in the assignment of valence and Rydberg transitions of the phenol molecule. The VUV spectrum reveals several new features not previously reported in the literature, with particular reference to the 6.401 eV transition, which is here assigned to the 3sσ/σ∗(OH)←3π(3a″) transition. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of phenol in the earth's atmosphere (0-50 km).

  16. Nonradiative deactivation of the lowest triplet state of tetrachlorodibenzo- p-dioxin

    NASA Astrophysics Data System (ADS)

    Gastilovich, E. A.; Klimenko, V. G.; Volkova, L. V.; Nurmukhametov, R. N.

    2014-03-01

    In the nonadiabatic approximation, we have studied how the shape of promoting out-of-plane vibrational modes and vibronically induced spin-orbit interactions in structural elements of the 2,3,7,8-tetrachlorodibenzo- p-dioxin molecule affect the energy degradation rate constants K {dg/ s } of triplet T {1/ s } sublevels.

  17. Solar Resource and Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Escalante Tri-State - Prewitt, New Mexico (Data)

    DOE Data Explorer

    Wilcox, S.; Andreas, A.

    2012-11-03

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  18. Rotational Spectroscopy as a Tool to Investigate Interactions Between Vibrational Polyads in Symmetric Top Molecules: Low-Lying States v_8 ≤ 2 OF Methyl Cyanide

    NASA Astrophysics Data System (ADS)

    Müller, Holger S. P.; Ordu, Matthias H.; Lewen, Frank; Brown, Linda; Drouin, Brian; Pearson, John; Sung, Keeyoon; Kleiner, Isabelle; Sams, Robert

    2015-06-01

    Rotational and rovibrational spectra of methyl cyanide were recorded to analyze interactions in low-lying vibrational states and to construct line lists for radio astronomical observations as well as for infrared spectroscopic investigations of planetary atmospheres. The rotational spectra cover large portions of the 36-1627~GHz region. In the infrared (IR), a spectrum was recorded for this study in the region of 2ν_8 around 717~cm-1 with assignments covering 684-765~cm-1. Additional spectra in the ν _8 region were used to validate the analysis. Using ν _8 data as well as spectroscopic parameters for v_4 = 1, v_7 = 1, and v_8 = 3 from previous studies, we analyzed rotational data involving v = 0, v_8 = 1, and v_8 = 2 up to high J and K quantum numbers. We analyzed a strong Δ v_8 = ± 1, Δ K = 0, Δ l = ±3 Fermi resonance between v_8 = 1-1 and v_8 = 2+2 at K = 14 and obtained preliminary results for two further Fermi resonances between v_8 = 2 and 3. We also found resonant Δ v_8 = ± 1, Δ K = ∓ 2, Δ l = ± 1 interactions between v_8 = 1 and 2 and present the first detailed analysis of such a resonance between v_8 = 0 and 1. We discuss the impact of this analysis on the v_8 = 1 and 2 as well as on the axial v = 0 parameters and compare selected CH_3CN parameters with those of CH_3CCH and CH_3NC. We evaluated transition dipole moments of ν _8, 2ν _8 - ν _8, and 2ν _8 for remote sensing in the IR. Part of this work was carried out at the Jet Propulsion Laboratory under contract with the National Aeronautics and Space Administration. M. Koivusaari et al., J. Mol. Spectrosc. 152 (1992) 377-388. A.-M. Tolonen et al., J. Mol. Spectrosc. 160 (1993) 554-565.

  19. Terahertz-visible two-photon rotational spectroscopy of cold OD-

    NASA Astrophysics Data System (ADS)

    Lee, Seunghyun; Hauser, Daniel; Lakhmanskaya, Olga; Spieler, Steffen; Endres, Eric S.; Geistlinger, Katharina; Kumar, Sunil S.; Wester, Roland

    2016-03-01

    We present a method to measure rotational transitions of molecular anions in the terahertz domain by sequential two-photon absorption. Ion excitation by bound-bound terahertz absorption is probed by absorption in the visible on a bound-free transition. The visible frequency is tuned to a state-selective photodetachment transition of the excited anions. This provides a terahertz action spectrum for just a few hundred molecular ions. To demonstrate this we measure the two lowest rotational transitions, J =1 ←0 and J =2 ←1 of OD- anions in a cryogenic 22-pole trap. We obtain rotational transition frequencies of 598 596.08(19) MHz for J =1 ←0 and 1 196 791.57(27) MHz for J =2 ←1 of OD-, in good agreement with their only previous measurement. This two-photon scheme opens up terahertz rovibrational spectroscopy for a range of molecular anions, in particular for polyatomic and cluster anions.

  20. X-ray observations of XSS J12270-4859 in a new low state: A transformation to a disk-free rotation-powered pulsar binary

    SciTech Connect

    Bogdanov, Slavko; Patruno, Alessandro; Archibald, Anne M.; Bassa, Cees; Hessels, Jason W. T.; Janssen, Gemma H.; Stappers, Ben W.

    2014-07-01

    We present XMM-Newton and Chandra observations of the low-mass X-ray binary XSS J12270-4859, which experienced a dramatic decline in optical/X-ray brightness at the end of 2012, indicative of the disappearance of its accretion disk. In this new state, the system exhibits previously absent orbital-phase-dependent, large-amplitude X-ray modulations with a decline in flux at superior conjunction. The X-ray emission remains predominantly non-thermal but with an order of magnitude lower mean luminosity and significantly harder spectrum relative to the previous high flux state. This phenomenology is identical to the behavior of the radio millisecond pulsar (MSP) binary PSR J1023+0038 in the absence of an accretion disk, where the X-ray emission is produced in an intra-binary shock driven by the pulsar wind. This further demonstrates that XSS J12270-4859 no longer has an accretion disk and has transformed to a full-fledged eclipsing 'redback' system that hosts an active rotation-powered MSP. There is no evidence for diffuse X-ray emission associated with the binary that may arise due to outflows or a wind nebula. An extended source situated 1.'5 from XSS J12270-4859 is unlikely to be associated, and is probably a previously uncataloged galaxy cluster.

  1. X-Ray Observations of XSS J12270-4859 in a New Low State: A Transformation to a Disk-free Rotation-powered Pulsar Binary

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko; Patruno, Alessandro; Archibald, Anne M.; Bassa, Cees; Hessels, Jason W. T.; Janssen, Gemma H.; Stappers, Ben W.

    2014-07-01

    We present XMM-Newton and Chandra observations of the low-mass X-ray binary XSS J12270-4859, which experienced a dramatic decline in optical/X-ray brightness at the end of 2012, indicative of the disappearance of its accretion disk. In this new state, the system exhibits previously absent orbital-phase-dependent, large-amplitude X-ray modulations with a decline in flux at superior conjunction. The X-ray emission remains predominantly non-thermal but with an order of magnitude lower mean luminosity and significantly harder spectrum relative to the previous high flux state. This phenomenology is identical to the behavior of the radio millisecond pulsar (MSP) binary PSR J1023+0038 in the absence of an accretion disk, where the X-ray emission is produced in an intra-binary shock driven by the pulsar wind. This further demonstrates that XSS J12270-4859 no longer has an accretion disk and has transformed to a full-fledged eclipsing "redback" system that hosts an active rotation-powered MSP. There is no evidence for diffuse X-ray emission associated with the binary that may arise due to outflows or a wind nebula. An extended source situated 1.'5 from XSS J12270-4859 is unlikely to be associated, and is probably a previously uncataloged galaxy cluster.

  2. The Torsional Fundamental Band and Rotational Spectra up to 940 GHz of the Ground, First and Second Excited Torsional States of Acetone

    NASA Astrophysics Data System (ADS)

    Ilyushin, V.; Armieieva, Iuliia; Dorovskaya, Olga; Alekseev, E. A.; Tudorie, Marcela; Motiyenko, R. A.; Margulès, L.; Pirali, Olivier; Drouin, Brian

    2016-06-01

    A new global study of the acetone (CH_3)_2CO spectrum is reported. The new microwave measurements covering the frequency range from 34 GHz to 940 GHz have been carried out using spectrometers in IRA NASU (Ukraine) and PhLAM Lille (France). The far infrared spectrum of acetone has been recorded on the AILES beamline of the synchrotron SOLEIL using a Fourier transform infrared spectrometer coupled to a long path cell. The transitions belonging to the three lowest torsional states as well as to the observed fundamental band associated with the methyl-top torsion mode (νb{17} = 1) have been analyzed using recently developed model for the molecules with two equivalent methyl rotors and C2v symmetry at equilibrium (PAM_C2v_2tops program). The dataset consisting of more than 26100 microwave and 1100 FIR line frequencies and including transitions with J up to 89 was fit using a model consisting of 119 parameters and weighted root-mean-square deviation of 0.89 has been achieved. In the talk the details of this new study will be discussed. V. Ilyushin, J.T. Hougen J. Mol. Spectrosc. 289 (2013) 41-49.

  3. Was the drought of 2015 on the River Vistula in Warsaw the lowest ever observed?

    NASA Astrophysics Data System (ADS)

    Kowalski, Hubert; Magnuszewski, Artur; Romanowicz, Renata

    2016-04-01

    The River Vistula has a hydrological regime controlled by rainfall and snowmelt. The flood of 22 V 2010 r. had the highest discharge ever measured in Warsaw (Q=5898 m3/s). After this flood extreme low flows occurred in 12 IX 2012 (Q=172 m3/s) and in 28 VIII 2015 (157 m3/s). The low flow of 2015 set the lowest stage record (H=42 cm). The conditions during the low flow were favourable for archaeologists working on the River Vistula channel and banks. A group of archaeologists from the University of Warsaw discovered in the middle of the channel at 517 km a treasury of 17 century marbles and other finds. In 1656 Poland was in the state of war with Sweden. Marble sculptures were stolen and evacuated by the Swedish army from Warsaw to Gdansk harbor down the River Vistula. The barge transporting marbles sunk, leaving the treasure in the channel of the River Vistula. Since that time until now, the water levels in the river were too high to discover the treasures. The question is whether the drought of 2015 was the lowest in history and to what extent the lowest ever observed stage is related to the process of channel erosion in a regulated reach of the river. The specific conditions at the archaeological site have been studied using both long term hydrological data and hydrodynamic the 2D model CCHE2D, to the estimate erosion rate and velocities. The results show that the bottom erosion is quite strong and has caused lowering of the river bottom by 205 cm since 1919 (first rating curve published). The River Vistula reach in Warsaw forms a narrowing, called a "corset" which is controlled by the geological structures (river over flood terraces and glacial sills). Additionally the channel has been regulated by hydrotechnical structures and dredging work. The sequence of the 2010 year flood that increased the erosion rate in the reach and two deep low flows in 2012 and 2015 were favourable for archaeologists working in Warsaw on the River Vistula. The hydraulic conditions

  4. carlomat: A program for automatic computation of lowest order cross sections

    NASA Astrophysics Data System (ADS)

    Kołodziej, Karol

    2009-09-01

    The current version of carlomat, a program for automatic computation of the lowest order cross sections of multiparticle reactions, is described. The program can be used as the Monte Carlo generator of unweighted events as well. Program summaryProgram title:carlomat Catalogue identifier: AEDQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 101 613 No. of bytes in distributed program, including test data, etc.: 1 092 251 Distribution format: tar.gz Programming language: Fortran 90/95 Computer: all Operating system: Linux Classification: 4.4, 11.2 Nature of problem: Description of two particle scattering reactions with possibly up to 10 particles in the final state with a complete set of the Feynman diagrams in the lowest order of the Standard Model. Solution method: The matrix element for a user specified process and phase space parametrizations, which are necessary for the multichannel Monte Carlo integration of the lowest order cross sections and event generation, are generated automatically. Both the electroweak and quantum chromodynamics lowest order contributions are taken into account. Particle masses are not neglected in the program. Matrix elements are calculated numerically with the helicity amplitude method. Constant widths of unstable particles are implemented by modifying mass parameters in corresponding propagators. Restrictions: The number of external particles is limited to 12. Only the Standard Model is implemented at the moment in the program. No higher order effects are taken into account, except for assuming the fine structure constant and the strong coupling at appropriate scale and partial summation of the one particle irreducible loop corrections by introducing fixed widths of

  5. Rotation of Hyperion. I - Observations

    NASA Technical Reports Server (NTRS)

    Klavetter, James Jay

    1989-01-01

    Precise and well sampled observations of Hyperion over a long period of time have been performed to test the prediction of Wisdom et al. (1984) that the satellite is in a state of chaotic rotation. CCD data for a 13-week period were obtained in Chile and in Arizona. A phase-dispersion-minimization analysis of the light curve indicates that Hyperion is not in a periodic rotational state, thus suggesting that it is chaotic.

  6. Lowest l=0 proton resonance in {sup 26}Si and implications for nucleosynthesis of {sup 26}Al

    SciTech Connect

    Peplowski, P. N.; Baby, L. T.; Wiedenhoever, I.; Diffenderfer, E.; Hoeflich, P.; Rojas, A.; Volya, A.; Dekat, S. E.; Gay, D. L.; Grubor-Urosevic, O.; Kaye, R. A.; Keeley, N.

    2009-03-15

    Using a beam of the radioactive isotope {sup 25}Al, produced with the new RESOLUT facility, we measured the direct (d,n) proton-transfer reaction leading to low-lying proton resonances in {sup 26}Si. We observed the lowest l=0 proton resonance, identified with the 3{sup +} state at 5.914-MeV excitation energy. This result eliminates the largest uncertainty in astrophysical reaction rates involved in the nucleosynthesis of {sup 26}Al.

  7. Investigation of the Rotational Spectrum of Pyrimidine from 3 to 337 GHz: Molecular Structure, Nuclear Quadrupole Coupling, and Vibrational Satellites.

    PubMed

    Kisiel; Pszczólkowski; López; Alonso; Maris; Caminati

    1999-06-01

    A comprehensive reinvestigation of the rotational spectrum of pyrimidine was carried out by using several different spectrometers. All singly substituted 13C- and 15N-isotopic species of pyrimidine have been measured in natural abundance with millimeter-wave free jet and waveguide Fourier transform microwave techniques, and complete rs and r0 heavy atom geometries have been determined. The ground state rotational spectrum in the centimeter-wave region was measured at sub-Doppler resolution of the cavity Fourier transform spectrometer and all elements in the inertial and principal nuclear quadrupole-coupling tensors of the nitrogen nuclei in pyrimidine have been determined. The room-temperature spectrum was measured up to 337 GHz and J = 66 with BWO-based spectrometers and sextic level centrifugal distortion constants in the rotational Hamiltonian have been determined for the ground state and three lowest vibrational fundamentals of pyrimidine. Copyright 1999 Academic Press.

  8. Solid state {sup 1}H spin-lattice relaxation and isolated-molecule and cluster electronic structure calculations in organic molecular solids: The relationship between structure and methyl group and t-butyl group rotation

    SciTech Connect

    Wang, Xianlong E-mail: pbeckman@brynmawr.edu; Mallory, Frank B.; Mallory, Clelia W.; Odhner, Hosanna R.; Beckmann, Peter A. E-mail: pbeckman@brynmawr.edu

    2014-05-21

    We report ab initio density functional theory electronic structure calculations of rotational barriers for t-butyl groups and their constituent methyl groups both in the isolated molecules and in central molecules in clusters built from the X-ray structure in four t-butyl aromatic compounds. The X-ray structures have been reported previously. We also report and interpret the temperature dependence of the solid state {sup 1}H nuclear magnetic resonance spin-lattice relaxation rate at 8.50, 22.5, and 53.0 MHz in one of the four compounds. Such experiments for the other three have been reported previously. We compare the computed barriers for methyl group and t-butyl group rotation in a central target molecule in the cluster with the activation energies determined from fitting the {sup 1}H NMR spin-lattice relaxation data. We formulate a dynamical model for the superposition of t-butyl group rotation and the rotation of the t-butyl group's constituent methyl groups. The four compounds are 2,7-di-t-butylpyrene, 1,4-di-t-butylbenzene, 2,6-di-t-butylnaphthalene, and 3-t-butylchrysene. We comment on the unusual ground state orientation of the t-butyl groups in the crystal of the pyrene and we comment on the unusually high rotational barrier of these t-butyl groups.

  9. RED DWARF DYNAMO RAISES PUZZLE OVER INTERIORS OF LOWEST-MASS STARS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    -years away in the constellation Aquila. Gliese 752A is a red dwarf that is one-third the mass of the Sun and slightly more than half its diameter. By contrast, VB10 is physically smaller than the planet Jupiter and only about nine percent the mass of our Sun. This very faint star is near the threshold of the lowest possible mass for a true star (.08 solar masses), below which nuclear fusion processes cannot take place according to current models. A team led by Linsky used Hubble's Goddard High Resolution Spectrograph (GHRS) to make a one-hour long exposure of VB10 on October 12, 1994. No detectable ultraviolet emission was seen until the last five minutes, when bright emission was detected in a flare. Though the star's normal surface temperature is 4,500 degrees Fahrenheit, Hubble's GHRS detected a sudden burst of 270,000 degrees Fahrenheit in the star's outer atmosphere. Linsky attributes this rapid heating to the presence of an intense, but unstable, magnetic field. THE INTERIOR WORKINGS OF A STELLAR DYNAMO Before the Hubble observation, astronomers thought magnetic fields in stars required the same dynamo process which creates magnetic fields on the Sun. In the classic solar model, heat generated by nuclear fusion reactions at the star's center escapes through a radiative zone just outside the core. The heat travels from the radiative core to the star's surface through a convection zone. In this region, heat bubbles to the surface by motions similar to boiling in a pot of water. Dynamos, which accelerate electrons to create magnetic forces, operate when the interior of a star rotates faster than the surface. Recent studies of the Sun indicate its convective zone rotates at nearly the same rate at all depths. This means the solar dynamo must operate in the more rapidly rotating radiative core just below the convective zone. The puzzle is that stars below 20 percent the mass of our Sun do not have radiative cores, but instead transport heat from their core through

  10. RED DWARF DYNAMO RAISES PUZZLE OVER INTERIORS OF LOWEST-MASS STARS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    -years away in the constellation Aquila. Gliese 752A is a red dwarf that is one-third the mass of the Sun and slightly more than half its diameter. By contrast, VB10 is physically smaller than the planet Jupiter and only about nine percent the mass of our Sun. This very faint star is near the threshold of the lowest possible mass for a true star (.08 solar masses), below which nuclear fusion processes cannot take place according to current models. A team led by Linsky used Hubble's Goddard High Resolution Spectrograph (GHRS) to make a one-hour long exposure of VB10 on October 12, 1994. No detectable ultraviolet emission was seen until the last five minutes, when bright emission was detected in a flare. Though the star's normal surface temperature is 4,500 degrees Fahrenheit, Hubble's GHRS detected a sudden burst of 270,000 degrees Fahrenheit in the star's outer atmosphere. Linsky attributes this rapid heating to the presence of an intense, but unstable, magnetic field. THE INTERIOR WORKINGS OF A STELLAR DYNAMO Before the Hubble observation, astronomers thought magnetic fields in stars required the same dynamo process which creates magnetic fields on the Sun. In the classic solar model, heat generated by nuclear fusion reactions at the star's center escapes through a radiative zone just outside the core. The heat travels from the radiative core to the star's surface through a convection zone. In this region, heat bubbles to the surface by motions similar to boiling in a pot of water. Dynamos, which accelerate electrons to create magnetic forces, operate when the interior of a star rotates faster than the surface. Recent studies of the Sun indicate its convective zone rotates at nearly the same rate at all depths. This means the solar dynamo must operate in the more rapidly rotating radiative core just below the convective zone. The puzzle is that stars below 20 percent the mass of our Sun do not have radiative cores, but instead transport heat from their core through

  11. Rotation-vibration interactions in the spectra of polycyclic aromatic hydrocarbons: Quinoline as a test-case species.

    PubMed

    Pirali, O; Kisiel, Z; Goubet, M; Gruet, S; Martin-Drumel, M A; Cuisset, A; Hindle, F; Mouret, G

    2015-03-14

    Polycyclic aromatic hydrocarbons (PAHs) are highly relevant for astrophysics as possible, though controversial, carriers of the unidentified infrared emission bands that are observed in a number of different astronomical objects. In support of radio-astronomical observations, high resolution laboratory spectroscopy has already provided the rotational spectra in the vibrational ground state of several molecules of this type, although the rotational study of their dense infrared (IR) bands has only recently become possible using a limited number of experimental set-ups. To date, all of the rotationally resolved data have concerned unperturbed spectra. We presently report the results of a high resolution study of the three lowest vibrational states of quinoline C9H7N, an N-bearing naphthalene derivative. While the pure rotational ground state spectrum of quinoline is unperturbed, severe complications appear in the spectra of the ν45 and ν44 vibrational modes (located at about 168 cm(-1) and 178 cm(-1), respectively). In order to study these effects in detail, we employed three different and complementary experimental techniques: Fourier-transform microwave spectroscopy, millimeter-wave spectroscopy, and Fourier-transform far-infrared spectroscopy with a synchrotron radiation source. Due to the high density of states in the IR spectra of molecules as large as PAHs, perturbations in the rotational spectra of excited states should be ubiquitous. Our study identifies for the first time this effect and provides some insights into an appropriate treatment of such perturbations. PMID:25770543

  12. Fission of rotating fermium isotopes

    NASA Astrophysics Data System (ADS)

    Baran, A.; Staszczak, A.

    2014-05-01

    In this paper we discuss the process of fission of even fermium isotopes, on the basis of their rotational states. The nuclear intrinsic vorticity and its coupling to the global rotation of the nucleus are used to simulate the interaction between the rotational motion and the pairing field, and lead to pairing quenching in the case of higher angular momentum states. The rotation leads to a decreasing of the fission barrier heights. The ingredients of the model—ground state fission barriers, pairing correlation energies and the cranking moments of inertia—are obtained within the self-consistent Hartree-Fock-Bogoliubov framework using the Skyrme \\text{Sk}{{\\text{M}}^{*}} energy density functional. Fission barriers and half-lives are estimated for spins I up to I = 16ℏ.

  13. Accurate rotational constant and bond lengths of hexafluorobenzene by femtosecond rotational Raman coherence spectroscopy and ab initio calculations

    SciTech Connect

    Den, Takuya S.; Frey, Hans-Martin; Leutwyler, Samuel

    2014-11-21

    The gas-phase rotational motion of hexafluorobenzene has been measured in real time using femtosecond (fs) time-resolved rotational Raman coherence spectroscopy (RR-RCS) at T = 100 and 295 K. This four-wave mixing method allows to probe the rotation of non-polar gas-phase molecules with fs time resolution over times up to ∼5 ns. The ground state rotational constant of hexafluorobenzene is determined as B{sub 0} = 1029.740(28) MHz (2σ uncertainty) from RR-RCS transients measured in a pulsed seeded supersonic jet, where essentially only the v = 0 state is populated. Using this B{sub 0} value, RR-RCS measurements in a room temperature gas cell give the rotational constants B{sub v} of the five lowest-lying thermally populated vibrationally excited states ν{sub 7/8}, ν{sub 9}, ν{sub 11/12}, ν{sub 13}, and ν{sub 14/15}. Their B{sub v} constants differ from B{sub 0} by between −1.02 MHz and +2.23 MHz. Combining the B{sub 0} with the results of all-electron coupled-cluster CCSD(T) calculations of Demaison et al. [Mol. Phys. 111, 1539 (2013)] and of our own allow to determine the C-C and C-F semi-experimental equilibrium bond lengths r{sub e}(C-C) = 1.3866(3) Å and r{sub e}(C-F) = 1.3244(4) Å. These agree with the CCSD(T)/wCVQZ r{sub e} bond lengths calculated by Demaison et al. within ±0.0005 Å. We also calculate the semi-experimental thermally averaged bond lengths r{sub g}(C-C)=1.3907(3) Å and r{sub g}(C-F)=1.3250(4) Å. These are at least ten times more accurate than two sets of experimental gas-phase electron diffraction r{sub g} bond lengths measured in the 1960s.

  14. Fully quantal calculation of H{sub 2} translation-rotation states in the (p-H{sub 2}){sub 2}@5{sup 12}6{sup 4} clathrate hydrate inclusion compound

    SciTech Connect

    Felker, Peter M.

    2014-11-14

    The quantal translation-rotation (TR) states of the (p-H{sub 2}){sub 2}@5{sup 12}6{sup 4} clathrate hydrate inclusion compound have been computed. The ten-dimensional problem (in the rigid-cage and rigid-H{sub 2} approximation) is solved by first approximating the H{sub 2} moieties as spherically symmetric and solving for their 6D translational eigenstates. These are then combined with H{sub 2} free rotational states in a product basis that is used to diagonalize the full TR hamiltonian. The computed low-energy eigenstates have translational components that are essentially identical to the 6D translational eigenstates and rotational components that are 99.9% composed of rotationally unexcited H{sub 2} moieties. In other words, TR coupling is minimal for the low-energy states of the species. The low-energy level structure is found to be substantially more congested than that of the more tightly packed (p-H{sub 2}){sub 4}@5{sup 12}6{sup 4} clathrate species. The level structure is also shown to be understandable in terms of a model of (H{sub 2}){sub 2} as a semirigid diatomic species consisting of two spherically symmetric H{sub 2} pseudo-atoms.

  15. Approximate theoretical model for the five electronic states ( Ω = 5/2, 3/2, 3/2, 1/2, 1/2) arising from the ground 3d 9 configuration in nickel halide molecules and for rotational levels of the two Ω = 1/2 states in that manifold

    NASA Astrophysics Data System (ADS)

    Hougen, Jon T.

    2011-05-01

    In the first part of this paper an effective Hamiltonian for a non-rotating diatomic molecule containing only crystal-field and spin-orbit operators is set up to describe the energies of the five spin-orbit components that arise in the ground electronic configuration of the nickel monohalides. The model assumes that bonding in the nickel halides has the approximate form Ni +X -, with an electronic 3d 9 configuration plus closed shells on the Ni + moiety and a closed shell configuration on the X - moiety. From a crystal-field point of view, interactions of the positive d-hole with the cylindrically symmetrical electric charge distribution of the hypothetical NiX - closed-shell core can then be parameterized by three terms in a traditional expansion in spherical harmonics: C0 + C2Y20( θ, ϕ) + C4Y40( θ, ϕ). Interaction of the hole with the magnetic field generated by its own orbital motion can be parameterized by a traditional spin-orbit interaction operator A L · S. The Hamiltonian matrix is set up in a basis set consisting of the 10 Hund's case (a) basis functions | L, Λ; S , Σ> that arise when L = 2 and S = 1/2. Least-squares fits of the observed five spin-orbit components of the three lowest electronic states in NiF and NiCl are then carried out in terms of the four parameters C0, C2, C4, and A which lead to good agreement, except for the two | Ω| = 1/2 states. The large equal and opposite residuals of the | Ω| = 1/2 states can be reduced to values comparable with those for the | Ω| = 3/2 and | Ω| = 5/2 states by fixing A to its value in Ni + and then introducing an empirical correction factor for one off-diagonal orbital matrix element. In the second part of this paper the usual effective Hamiltonian B( J- L- S) 2 for a rotating diatomic molecule is used to derive expressions for the Ω-type doubling parameter p in the two | Ω| = 1/2 states. These expressions show (for certain sign conventions) that the sum of the two p values should be -2 B, but that

  16. Magnetic field dependence of the lowest-frequency edge-localized spin wave mode in a magnetic nanotriangle.

    PubMed

    Lin, C S; Lim, H S; Wang, Z K; Ng, S C; Kuok, M H; Adeyeye, A O

    2011-03-01

    An understanding of the spin dynamics of nanoscale magnetic elements is important for their applications in magnetic sensing and storage. Inhomogeneity of the demagnetizing field in a non-ellipsoidal magnetic element results in localization of spin waves near the edge of the element. However, relative little work has been carried out to investigate the effect of the applied magnetic fields on the nature of such localized modes. In this study, micromagnetic simulations are performed on an equilateral triangular nanomagnet to investigate the magnetic field dependence of the mode profiles of the lowest-frequency spin wave. Our findings reveal that the lowest-frequency mode is localized at the base edge of the equilateral triangle. The characteristics of its mode profile change with the ground state magnetization configuration of the nanotriangle, which, in turn, depends on the magnitude of the in-plane applied magnetic field.

  17. Four-fermion production at γ γ colliders: 1. Lowest-order predictions and anomalous couplings

    NASA Astrophysics Data System (ADS)

    Bredenstein, A.; Dittmaier, S.; Roth, M.

    2004-08-01

    We have constructed a Monte Carlo generator (the corresponding FORTRAN code can be obtained from the authors upon request) for lowest-order predictions for the processes γγto 4f and γγto 4fγ in the standard model and extensions thereof by an effective γγ H coupling as well as anomalous triple and quartic gauge-boson couplings. Polarization is fully supported, and a realistic photon beam spectrum can be taken into account. For the processes γγto 4f all helicity amplitudes are explicitly given in a compact form. The presented numerical results contain, in particular, a survey of cross sections for representative final states and their comparison to results obtained with the program package Whizard/Madgraph. The impact of a realistic beam spectrum on cross sections and distributions is illustrated. Moreover, the size of various contributions to cross sections, such as from weak charged- or neutral-current, or from strong interactions, is analyzed. Particular attention is paid to W-pair production channels γγto W Wto 4f(γ) where we investigate the impact of background diagrams, possible definitions of the W-pair signal, and the issue of gauge-invariance violation caused by finite gauge-boson widths. Finally, the effects of triple and quartic anomalous gauge-boson couplings on cross sections as well as the possibility to constrain these anomalous couplings at future γγ colliders are discussed.

  18. (SO2)-S-34-O-16: High-resolution analysis of the (030),(101), (111), (002) and (201) vibrational states; determination of equilibrium rotational constants for sulfur dioxide and anharmonic vibrational constants

    SciTech Connect

    Lafferty, Walter; Flaud, Jean-marie; Ngom, El Hadji A.; Sams, Robert L.

    2009-01-02

    High resolution Fourier transform spectra of a sample of sulfur dioxide, enriched in 34S (95.3%). were completely analyzed leading to a large set of assigned lines. The experimental levels derived from this set of transitions were fit to within their experimental uncertainties using Watson-type Hamiltonians. Precise band centers, rotational and centrifugal distortion constants were determined. The following band centers in cm-1 were obtained: ν0(3ν2)=1538.720198(11), ν0(ν1+ν3)=2475.828004(29), ν0(ν1+ν2+ν3)=2982.118600(20), ν0(2ν3)=2679.800919(35), and ν0(2ν1+ν3)=3598.773915(38). The rotational constants obtained in this work have been fit together with the rotational constants of lower lying vibrational states [ W.J. Lafferty, J.-M. Flaud, R.L. Sams and EL Hadjiabib, in press] to obtain equilibrium constants as well as vibration-rotation constants. These equilibrium constants have been fit together with those of 32S16O2 [J.-M. Flaud and W.J. Lafferty, J. Mol. Spectrosc. 16 (1993) 396-402] leading to an improved equilibrium structure. Finally the observed band centers have been fit to obtain anharmonic rotational constants.

  19. Flow Structure on a Rotating Wing: Effect of Rossby Number

    NASA Astrophysics Data System (ADS)

    Wolfinger, Maxwell; Rockwell, Donald

    2013-11-01

    The flow structure on a rotating wing is determined via stereoscopic particle image velocimetry. Sectional and three-dimensional, volumetric reconstructions define the flow patterns as a function of Rossby number Ro. An aspect ratio AR = 1 rectangular, flat plate is rotated at a geometric angle of attack α = 45°. The flow structure is determined at various angles of rotation, in order to characterize both the initial development and the fully evolved state of the flow structure. The Rossby number Ro =rg / C is varied via alteration of the radius of gyration rg of the wing, to give values from Ro = 1.2 to Ro = 5.1. Large changes of the flow structure are represented by images of of spanwise vorticity, Q-criterion; spanwise velocity; and downwash velocity. At the lowest Rossby number Ro = 1.2, a vortex is attached to the leading edge of the wing; it is present along most of the span. At higher Rossby numbers Ro = 2.1 and Ro = 5.1, this leading-edge vortex becomes less organized and deflects away from the surface of the wing. At a Rossby number Ro = 5.1 the structure of the flow in the vicinity of the leading edge resembles a separated shear layer. The nature of other elements of the three-dimensional flow, such as the root and tip vortices and the downwash velocity, are closely related to the degree of coherence of the leading-edge vortex.

  20. Rotational Rehybridization and the High Temperature Phase of UC2

    SciTech Connect

    Wen, Xiaodong; Rudin, Sven P.; Batista, Enrique R.; Clark, David L.; Scuseria, Gustavo E.; Martin, Richard L.

    2012-12-03

    The screened hybrid approximation (HSE) of density functional theory (DFT) is used to examine the structural, optical, and electronic properties of the high temperature phase, cubic UC(2). This phase contains C(2) units with a computed C-C distance of 1.443 Å which is in the range of a CC double bond; U is formally 4+, C(2) 4-. The closed shell paramagnetic state (NM) was found to lie lowest. Cubic UC(2) is found to be a semiconductor with a narrow gap, 0.4 eV. Interestingly, the C(2) units connecting two uranium sites can rotate freely up to an angle of 30°, indicating a hindered rotational solid. Ab-initio molecular dynamic simulations (HSE) show that the rotation of C(2) units in the low temperature phase (tetragonal UC(2)) occurs above 2000 K, in good agreement with experiment. The computed energy barrier for the phase transition from tetragonal UC(2) to cubic UC(2) is around 1.30 eV per UC(2). What is fascinating about this system is that at high temperature, the phase transformation to the cubic phase is associated with a rehybridization of the C atoms from sp to sp(3).

  1. Ab initio molecular dynamics simulation of photoisomerization in azobenzene in the n{pi}* state

    SciTech Connect

    Ootani, Yusuke; Satoh, Kiminori; Nakayama, Akira; Noro, Takeshi; Taketsugu, Tetsuya

    2009-11-21

    Photoisomerization mechanism of azobenzene in the lowest excited state S{sub 1}(n{pi}*) is investigated by ab initio molecular dynamics (AIMD) simulation with the RATTLE algorithm, based on the state-averaged complete active space self-consistent field method. AIMD simulations show that cis to trans isomerization occurs via two-step rotation mechanism, accompanying rotations of the central NN part and two phenyl rings, and this process can be classified into two types, namely, clockwise and counterclockwise rotation pathways. On the other hand, trans to cis isomerization occurs via conventional rotation pathway where two phenyl rings rotate around the NN bond. The quantum yields are calculated to be 0.45 and 0.28{+-}0.14 for cis to trans and trans to cis photoisomerizations, respectively, which are in very good agreement with the corresponding experimental results.

  2. Search for lowest-energy fullerenes: C98 to C110.

    PubMed

    Shao, Nan; Gao, Yi; Yoo, Soohaeng; An, Wei; Zeng, Xiao Cheng

    2006-06-22

    By combining the semiempirical density-functional based tight-binding optimization with density-functional theory single-point energy calculation at the PBE1PBE/6-311G level, we propose an efficient computational approach to determine lowest-energy structures of large-sized carbon fullerenes. Our studies show that C(92) (D(3): 28) and C(94) (C(2): 43) are the new leading candidates for the lowest-energy structures of C(92) and C(94). Moreover, for the first time, the lowest-energy structures of C(98)-C(110) are identified on the basis of the density-functional theory calculation. The lowest-energy isomers C(102) (C(1): 603) and C(108) (D(2): 1771) are readily isolated experimentally because they are much lower in energy than their other low-lying IPR isomers.

  3. A 1 + 1' resonance-enhanced multiphoton ionization scheme for rotationally state-selective detection of formaldehyde via the à (1)A2 ← X[combining tilde] (1)A1 transition.

    PubMed

    Park, G Barratt; Krüger, Bastian C; Meyer, Sven; Wodtke, Alec M; Schäfer, Tim

    2016-08-10

    The formaldehyde molecule is an important model system for understanding dynamical processes in small polyatomic molecules. However, prior to this work, there have been no reports of a resonance-enhanced multiphoton ionization (REMPI) detection scheme for formaldehyde suitable for rovibrationally state-selective detection in molecular beam scattering experiments. Previously reported tunable REMPI schemes are either non-rotationally resolved, involve multiple resonant steps, or involve many-photon ionization steps. In the current work, we present a new 1 + 1' REMPI scheme for formaldehyde. The first photon is tunable and provides rotational resolution via the vibronically allowed à (1)A2 ← X[combining tilde] (1)A1 transition. Molecules are then directly ionized from the à state by one photon of 157 nm. The results indicate that the ionization cross section from the 4(1) vibrational level of the à state is independent of the rotational level used as intermediate, to within experimental uncertainty. The 1 + 1' REMPI intensities are therefore directly proportional to the à ← X[combining tilde] absorption intensities and can be used for quantitative measurement of X[combining tilde]-state population distributions.

  4. Muon spin rotation studies

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The bulk of the muon spin rotation research work centered around the development of the muon spin rotation facility at the Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory (BNL). The collimation system was both designed and fabricated at Virginia State University. This improved collimation system, plus improvements in detectors and electronics enabled the acquisition of spectra free of background out to 15 microseconds. There were two runs at Brookhaven in 1984, one run was devoted primarily to beam development and the other run allowed several successful experiments to be performed. The effect of uniaxial strain on an Fe(Si) crystal at elevated temperature (360K) was measured and the results are incorporated herein. A complete analysis of Fe pulling data taken earlier is included.

  5. A Translational Polarization Rotator

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Wollack, Edward J.; Pisano, Giampaolo; Ackiss, Sheridan; U-Yen, Kongpop; Ng, Ming wah

    2012-01-01

    We explore a free-space polarization modulator in which a variable phase introduction between right- and left-handed circular polarization components is used to rotate the linear polarization of the outgoing beam relative to that of the incoming beam. In this device, the polarization states are separated by a circular polarizer that consists of a quarter-wave plate in combination with a wire grid. A movable mirror is positioned behind and parallel to the circular polarizer. As the polarizer-mirror distance is separated, an incident liear polarization will be rotated through an angle that is proportional to the introduced phase delay. We demonstrate a prototype device that modulates Stokes Q and U over a 20% bandwidth.

  6. Rotational properties of dipolar Bose-Einstein condensates confined in anisotropic harmonic potentials

    SciTech Connect

    Malet, F.; Reimann, S. M.; Kristensen, T.; Kavoulakis, G. M.

    2011-03-15

    We study the rotational properties of a dipolar Bose-Einstein condensate confined in a quasi-two-dimensional anisotropic trap for an arbitrary orientation of the dipoles with respect to their plane of motion. Within the mean-field approximation, we find that the lowest-energy state of the system depends strongly on the relative strength between the dipolar and the contact interactions, as well as on the size and the orientation of the dipoles and the size and the orientation of the deformation of the trapping potential.

  7. Failures of TDDFT in describing the lowest intramolecular charge-transfer excitation in para-nitroaniline

    NASA Astrophysics Data System (ADS)

    Eriksen, Janus J.; Sauer, Stephan P. A.; Mikkelsen, Kurt V.; Christiansen, Ove; Jensen, Hans Jørgen Aa.; Kongsted, Jacob

    2013-07-01

    We investigate the failure of time-dependent density functional theory (TDDFT) with the CAM-B3LYP exchange-correlation (xc) functional coupled to the polarisable embedding (PE) scheme (PE-CAM-B3LYP) in reproducing the solvatochromic shift of the lowest intense charge-transfer excitation in para-nitroaniline (pNA) in water by comparing with results obtained with the coupled cluster singles and doubles (CCSD) model also coupled to the polarisable embedding scheme (PE-CCSD). We determine the amount of charge separation in the ground and excited charge-transfer state with both methods by calculating the electric dipole moments in the gas phase and for 100 solvent configurations. We find that CAM-B3LYP overestimates the amount of charge separation inherent in the ground state and TDDFT/CAM-B3LYP drastically underestimates this amount in the excited charge-transfer state. As the errors in the solvatochromatic shift are found to be inverse proportional to the change in dipole moment upon excitation, we conclude that the flaws in the description of the solvatochromic shift of this excitation are related to TDDFT itself and how it responds to the solvent effects modelled by the PE scheme. We recommend therefore to benchmark results of TDDFT calculations with CAM-B3LYP for intramolecular charge-transfer excitations in molecular systems similar to pNA against higher level ab initio wave function methods, like, e.g. CCSD, prior to their use. Using the calculated change in dipole moment upon excitation as a measure for charge-transfer character, we furthermore confirm that the difference between excitation energies calculated with TDDFT and with the Tamm-Dancoff approximation (TDA) to TDDFT is indeed correlated with the charge-transfer character of a given electronic transition both in vacuo and in solution. This is supported by a corresponding correlation between the change in dipole moment and the size of the Λ index diagnostic for the investigated CT excitation.

  8. Tracing the Lowest Propeller Line in Magellanic High-mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Christodoulou, Dimitris M.; Laycock, Silas G. T.; Yang, Jun; Fingerman, Samuel

    2016-09-01

    We have combined the published observations of high-mass X-ray binary (HMXB) pulsars in the Magellanic Clouds with a new processing of the complete archival data sets from the XMM-Newton and Chandra observatories in an attempt to trace the lowest propeller line below which accretion to polar caps is inhibited by the centrifugal force and the pulsations from the most weakly magnetized pulsars cease. Previously published data reveal that some of the faster-spinning pulsars with spin periods of P S < 12 s, detected at relatively low X-ray luminosities L X , appear to define such a line in the P S -L X diagram, characterized by a magnetic moment of μ = 3 × 1029 G cm3. This value implies the presence of surface magnetic fields of B ≥ 3 × 1011 G in the compact objects of this class. Only a few quiescent HMXBs are found below the propeller line: LXP4.40 and SXP4.78, for which XMM-Newton and Chandra null detections respectively placed firm upper limits on their X-ray fluxes in deep quiescence; and A0538-66, for which many sub-Eddington detections have never measured any pulsations. On the other hand, the data from the XMM-Newton and Chandra archives show clearly that, during routine observation cycles, several sources have been detected below the propeller line in extremely faint, nonpulsating states that can be understood as the result of weak magnetospheric emission when accretion to the poles is centrifugally stalled or severely diminished. We also pay attention to the anomalous X-ray pulsar CXOU J010043.1-721134 that was reported in HMXB surveys. Its pulsations and locations near and above the propeller line indicate that this pulsar could be accreting from a fossil disk.

  9. Slowly rotating thin shell gravastars

    NASA Astrophysics Data System (ADS)

    Uchikata, Nami; Yoshida, Shijun

    2016-01-01

    We construct the solutions of slowly rotating gravastars with a thin shell. In the zero-rotation limit, we consider the gravastar composed of a de Sitter core, a thin shell, and Schwarzschild exterior spacetime. The rotational effects are treated as small axisymmetric and stationary perturbations. The perturbed internal and external spacetimes are matched with a uniformly rotating thin shell. We assume that the angular velocity of the thin shell, Ω, is much smaller than the Keplerian frequency of the nonrotating gravastar, {{{Ω }}}{{k}}. The solutions within an accuracy up to the second order of {{Ω }}/{{{Ω }}}{{k}} are obtained. The thin shell matter is assumed to be described by a perfect fluid and to satisfy the dominant energy condition in the zero-rotation limit. In this study, we assume that the equation of state for perturbations is the same as that of the unperturbed solution. The spherically symmetric component of the energy density perturbations, δ {σ }0, is assumed to vanish independently of the rotation rate. Based on these assumptions, we obtain many numerical solutions and investigate properties of the rotational corrections to the structure of the thin shell gravastar.

  10. Rotator Cuff Tears

    MedlinePlus

    ... doctors because of a rotator cuff problem. A torn rotator cuff will weaken your shoulder. This means ... or more of the rotator cuff tendons is torn, the tendon no longer fully attaches to the ...

  11. Chaotic Rotation of Nereid

    NASA Technical Reports Server (NTRS)

    Dobrovolskis, Anthony R.; Cuzzi, Jeffrey N. (Technical Monitor)

    1995-01-01

    The shape and spin of Neptune's outermost satellite Nereid are still unknown. Ground-based photometry indicates large brightness variations, but different observers report very different lightcurve amplitudes and periods. On the contrary, Voyager 2 images spanning 12 days show no evidence of variations greater than 0.1 mag. The latter suggest either that Nereid is nearly spherical, or that it is rotating slowly. We propose that tides have already despun Nereid's rotation to a period of a few weeks, during the time before the capture of Triton when Nereid was closer to Neptune. Since Nereid reached its present orbit, tides have further despun Nereid to a period on the order of a month. For Nereid's orbital eccentricity of 0.75, tidal evolution ceases when the spin period is still approximately 1/8 of the orbital period. Furthermore, the synchronous resonance becomes quite weak for such high eccentricities, along with other low-order spin orbit commensurabilities. In contrast, high-order resonances become very strong particularly the 6:1, 6.5:1, 7:1, 7.5:1, and 8:1 spin states. If Nereid departs by more than approximately 1% from a sphere, however, these resonances overlap, generating chaos. Our simulations show that Nereid is likely to be in chaotic rotation for any spin period longer than about 2 weeks.

  12. Rotating black droplet

    NASA Astrophysics Data System (ADS)

    Fischetti, Sebastian; Santos, Jorge E.

    2013-07-01

    We construct the gravitational dual, in the Unruh state, of the "jammed" phase of a CFT at strong coupling and infinite N on a fixed five-dimensional rotating Myers-Perry black hole with equal angular momenta. When the angular momenta are all zero, the solution corresponds to the five-dimensional generalization of the solution first studied in [1]. In the extremal limit, when the angular momenta of the Myers-Perry black hole are maximum, the Unruh, Boulware and Hartle-Hawking states degenerate. We give a detailed analysis of the corresponding holographic stress energy tensor for all values of the angular momenta, finding it to be regular at the horizon in all cases. We compare our results with existent literature on thermal states of free field theories on black hole backgrounds.

  13. Broadband Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pate, Brooks

    2014-06-01

    The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De

  14. Direct non-Born-Oppenheimer variational calculations of all bound vibrational states corresponding to the first rotational excitation of D{sub 2} performed with explicitly correlated all-particle Gaussian functions

    SciTech Connect

    Sharkey, Keeper L.; Kirnosov, Nikita; Adamowicz, Ludwik

    2015-05-07

    Direct variational calculations where the Born-Oppenheimer approximation is not assumed are done for all rovibrational states of the D{sub 2} molecule corresponding to first excited rotational level (the N = 1 states). All-particle explicitly correlated Gaussian basis functions are used in the calculations. The exponential parameters of the Gaussians are optimized with the aid of analytically calculated energy gradient determined with respect to these parameters. The results allow to determine the ortho-para spin isomerization energies as a function of the vibrational quantum number.

  15. The Ar-HCl potential energy surface from a global map-facilitated inversion of state-to-state rotationally resolved differential scattering cross sections and rovibrational spectral data

    NASA Astrophysics Data System (ADS)

    Geremia, J. M.; Rabitz, H.

    2001-11-01

    A recently developed global, nonlinear map-facilitated quantum inversion procedure is used to obtain the interaction potential for Ar-HCl(v=0) based on the rotationally resolved state-to-state inelastic cross sections of Lorenz, Westley, and Chandler [Phys. Chem. Chem. Phys. 2, 481 (2000)] as well as rovibrational spectral data. The algorithm adopted here makes use of nonlinear potential→observable maps to reveal the complete family of surfaces that reproduce the observed scattering and spectral data to within its experimental error. A nonlinear analysis is performed on the error propagation from the measured data to the recovered family of potentials. The family of potentials extracted from the inversion data is compared to the Hutson H6(4,3,0) surface [Phys. Chem. 96, 4237 (1992)], which was unable to fully account for the inelastic scattering data [Phys. Chem. Chem. Phys. 2, 481 (2000)]. There is excellent agreement with H6(4,3,0) in the attractive well, where Hutson's surface is considered most reliable. There is also good long-range agreement. However, it is shown that H6(4,3,0) predicts too soft a wall for the linear Ar-HCl configuration and significantly too steep a wall for linear Ar-ClH. These differences account for the systematically backscattered inelastic cross sections computed using the H6(4,3,0) surface. The new, nonlinear inversion results provide a global Ar-HCl interaction potential with reliable error bars that are consistent with all of the experimental data.

  16. THE NUCLEUS OF COMET 10P/TEMPEL 2 IN 2013 AND CONSEQUENCES REGARDING ITS ROTATIONAL STATE: EARLY SCIENCE FROM THE DISCOVERY CHANNEL TELESCOPE

    SciTech Connect

    Schleicher, David G.; Knight, Matthew M.; Levine, Stephen E.

    2013-11-01

    We present new lightcurve measurements of Comet 10P/Tempel 2 carried out with Lowell Observatory's Discovery Channel Telescope in early 2013 when the comet was at aphelion. These data represent some of the first science obtained with this new 4.3 m facility. With Tempel 2 having been observed to exhibit a small but ongoing spin-down in its rotation period for over two decades, our primary goals at this time were two-fold. First, to determine its current rotation period and compare it to that measured shortly after its most recent perihelion passage in 2010, and second, to disentangle the spin-down from synodic effects due to the solar day and Earth's orbital motion and to determine the sense of rotation, i.e., prograde or retrograde. At our midpoint of 2013 February 24, the observed synodic period is 8.948 ± 0.001 hr, exactly matching the predicted prograde rotation solution based on 2010 results, and yields a sidereal period of the identical value due to the solar and Earth synodic components just canceling out during the interval of the 2013 observations. The retrograde solution is ruled out because the associated sidereal periods in 2010 and 2013 are quite different even though we know that extremely little outgassing, needed to produce torques, occurred in this interval. With a definitive sense of rotation, the specific amounts of spin-down to the sidereal period could be assessed. The nominal values imply that the rate of spin-down has decreased over time, consistent with the secular drop in water production since 1988. Our data also exhibited an unexpectedly small lightcurve amplitude which appears to be associated with viewing from a large, negative sub-Earth latitude, and a lightcurve shape deviating from a simple sinusoid implying a highly irregularly shaped nucleus.

  17. Spin and the Coulomb gap in the half-filled lowest Landau level

    NASA Astrophysics Data System (ADS)

    Eisenstein, J. P.; Khaire, T.; Nandi, D.; Finck, A. D. K.; Pfeiffer, L. N.; West, K. W.

    2016-09-01

    The Coulomb gap observed in tunneling between parallel two-dimensional electron systems, each at half-filling of the lowest Landau level, is found to depend sensitively on the presence of an in-plane magnetic field. Especially at low electron density, the width of the Coulomb gap at first increases sharply with in-plane field, but then abruptly levels off. This behavior appears to coincide with the known transition from partial to complete spin polarization of the half-filled lowest Landau level. The tunneling gap therefore opens a window onto the spin configuration of two-dimensional electron systems at high magnetic field.

  18. High-resolution photodetachment spectroscopy from the lowest threshold of O{sup -}

    SciTech Connect

    Joiner, Anne; Mohr, Robert H.; Yukich, J. N.

    2011-03-15

    We conducted photodetachment spectroscopy near the lowest detachment threshold from O{sup -} in a 1-T field with sufficient resolution to observe a magnetic field structure similar to that observed in experiments conducted at the threshold of the electron affinity. These observations included not only cyclotron structure but also, to a smaller degree, individual Zeeman thresholds. The experiment was conducted in a Penning ion trap and with a single-mode, tunable, amplified diode laser. Finally, analysis of our results yielded a measurement of the lowest threshold energy.

  19. Autoionizing np Rydberg states of H2

    NASA Astrophysics Data System (ADS)

    Xu, E. Y.; Helm, H.; Kachru, R.

    1989-04-01

    We report a study of the autoionizing np Rydberg states near the lowest ionization threshold of H2. Using resonant two-photon excitation, intermediate states in specific rotovibrational levels in the double well, E,F 1Σ+g states are prepared. Then, a second, tunable laser is used to photoionize via excitation of the np Rydberg states. Because of the stepwise laser excitation scheme employed in our experiment the photoionization occurs from states with vibrational wave functions very similar to those of the H+2 core. As a consequence, the autoionizing states appear as nearly symmetric resonances, rather than the highly asymmetric Beutler-Fano profiles observed from the direct photoexcitation from the ground state of H2. Our experiments show that the J=1 np states are broader than the J=3 np states converging to the same limit, suggesting that the two states autoionize into the ɛp and ɛf continuum, respectively. We compare our observations with a theoretical analysis using a multichannel quantum defect theory. The J=1 states reveal the profound effect caused by the perturbation of the autoionizing Rydberg series converging to the lowest vibrational and rotational state of H+2 by low-n states converging to higher vibrational states of the H2-ion core.

  20. Gas Phase Conformations and Methyl Internal Rotation for 2-PHENYLETHYL Methyl Ether and its Argon Van Der Waals Complex from Fourier Transform Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gurusinghe, Ranil M.; Tubergen, Michael

    2015-06-01

    A mini-cavity microwave spectrometer was used to record the rotational spectra arising from 2-phenylethyl methyl ether and its weakly bonded argon complex in the frequency range of 10.5 - 22 GHz. Rotational spectra were found for two stable conformations of the monomer: anti-anti and gauche-anti, which are 1.4 kJ mol-1 apart in energy at wB97XD/6-311++G(d,p) level. Doubled rotational transitions, arising from internal motion of the methyl group, were observed for both conformers. The program XIAM was used to fit the rotational constants, centrifugal distortion constants, and barrier to internal rotation to the measured transition frequencies of the A and E internal rotation states. The best global fit values of the rotational constants for the anti-anti conformer are A= 3799.066(3) MHz, B= 577.95180(17) MHz, C= 544.7325(3) MHz and the A state rotational constants of the gauche-anti conformer are A= 2676.1202(7) MHz, B= 760.77250(2) MHz, C= 684.78901(2) MHz. The rotational spectrum of 2-phenylethyl methyl ether - argon complex is consistent with the geometry where argon atom lies above the plane of the benzene moiety of gauche-anti conformer. Tunneling splittings were too small to resolve within experimental accuracy, likely due to an increase in three fold potential barrier when the argon complex is formed. Fitted rotational constants are A= 1061.23373(16) MHz, B= 699.81754(7) MHz, C= 518.33553(7) MHz. The lowest energy solvated ether - water complex with strong intermolecular hydrogen bonding has been identified theoretically. Progress on the assignment of the water complex will also be presented.

  1. Wormhole shadows in rotating dust

    NASA Astrophysics Data System (ADS)

    Ohgami, Takayuki; Sakai, Nobuyuki

    2016-09-01

    As an extension of our previous work, which investigated the shadows of the Ellis wormhole surrounded by nonrotating dust, in this paper we study wormhole shadows in a rotating dust flow. First, we derive steady-state solutions of slowly rotating dust surrounding the wormhole by solving relativistic Euler equations. Solving null geodesic equations and radiation transfer equations, we investigate the images of the wormhole surrounded by dust for the above steady-state solutions. Because the Ellis wormhole spacetime possesses unstable circular orbits of photons, a bright ring appears in the image, just as in Schwarzschild spacetime. The bright ring looks distorted due to rotation. Aside from the bright ring, there appear weakly luminous complex patterns by the emission from the other side of the throat. These structure could be detected by high-resolution very-long-baseline-interferometry observations in the near future.

  2. Digital rotation measurement unit

    DOEpatents

    Sanderson, S.N.

    1983-09-30

    A digital rotation indicator is disclosed for monitoring the position of a valve member having a movable actuator. The indicator utilizes mercury switches adapted to move in cooperation with the actuator. Each of the switches produces an output as it changes state when the actuator moves. A direction detection circuit is connected to the switches to produce a first digital signal indicative of the direction of rotation of the actuator. A count pulse generating circuit is also connected to the switches to produce a second digital pulse signal having count pulses corresponding to a change of state of any of the mercury switches. A reset pulse generating circuit is provided to generate a reset pulse each time a count pulse is generated. An up/down counter is connected to receive the first digital pulse signal and the second digital pulse signal and to count the pulses of the second digital pulse signal either up or down depending upon the instantaneous digital value of the first digital signal whereby a running count indicative of the movement of the actuator is maintained.

  3. The Federal Transformation Intervention Model in Persistently Lowest Achieving High Schools: A Mixed-Methods Study

    ERIC Educational Resources Information Center

    Le Patner, Michelle B.

    2012-01-01

    This study examined the American Recovery and Reinvestment Act federal mandate of the Transformation Intervention Model (TIM) outlined by the School Improvement Grant, which was designed to turn around persistently lowest achieving schools. The study was conducted in four high schools in a large Southern California urban district that selected the…

  4. 42 CFR 405.506 - Charges higher than customary or prevailing charges or lowest charge levels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Charges higher than customary or prevailing charges or lowest charge levels. 405.506 Section 405.506 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM FEDERAL HEALTH INSURANCE FOR THE...

  5. Graduation Rates Hit Lowest Level in 7 Years for Athletes in Football and Basketball.

    ERIC Educational Resources Information Center

    Suggs, Welch

    1999-01-01

    Graduation rates of football players and men's and women's basketball players at National Collegiate Athletic Association Division I colleges have reached their lowest level in seven years, with fewer black athletes graduating than at any time since the mid-1980s. Eight universities graduated at least 90% of athletes enrolling between 1989 and…

  6. Influence of Soil Management on Water Retention from Saturation to Oven Dryness and Dominant Soil Water States in a Vertisol under Crop Rotation

    NASA Astrophysics Data System (ADS)

    Vanderlinden, Karl; Pachepsky, Yakov; Pederera, Aura; Martinez, Gonzalo; Espejo, Antonio Jesus; Giraldez, Juan Vicente

    2014-05-01

    Unique water transfer and retention properties of Vertisols strongly affect their use in rainfed agriculture in water-limited environments. Despite the agricultural importance of the hydraulic properties of those soils, water retention data dryer than the wilting point are generally scarce, mainly as a result of practical constraints of traditional water retention measurement methods. In this work we provide a detailed description of regionalized water retention data from saturation to oven dryness, obtained from 54 minimally disturbed topsoil (0-0.05m) samples collected at a 3.5-ha experimental field in SW Spain where conventional tillage (CT) and direct drilling (DD) is compared in a wheat-sunflower-legume crop rotation on a Vertisol. Water retention was measured from saturation to oven dryness using sand and sand-kaolin boxes, a pressure plate apparatus and a dew point psychrometer, respectively. A common shape of the water retention curve (WRC) was observed in both tillage systems, with a strong discontinuity in its slope near -0.4 MPa and a decreasing spread from the wet to the dry end. A continuous function, consisting of the sum of a double exponential model (Dexter et al, 2008) and the Groenevelt and Grant (2004) model could be fitted successfully to the data. Two inflection points in the WRC were interpreted as boundaries between the structural and the textural pore spaces and between the textural and the intra-clay aggregate pore spaces. Water retention was significantly higher in DD (p<0.05) for pressure heads ranging from -0.006 to -0.32 MPa, and from -1.8 to -3.3 MPa. The magnitude of these differences ranged from 0.006 to 0.015 kg kg-1. The differential water capacity and associated equivalent pore-size distribution showed that these differences could be attributed to a combined effect of tillage and compaction, increasing and decreasing the amount of the largest pores in CT and DD, respectively, but resulting in a proportionally larger pore space

  7. Ionic rotational branching ratios in resonant enhanced multiphoton ionization of NO via the A2Sigma(+)(3s sigma) and D2Sigma(+)(3p sigma) states

    NASA Astrophysics Data System (ADS)

    Rudolph, H.; McKoy, V.; Dixit, S. N.; Huo, W. M.

    1988-01-01

    Results are presented for the rotationally resolved photoelectron spectra resulting from a (2 + 1) one-color resonant enhanced multiphoton ionization (REMPI) of NO via the rotationally clean S21(11.5) and mixed S11(15.5) + R21(15.5) branches of the 0-0 transition in the D-X band. The calculations were done in the fixed-nuclei frozen core approximation. The resulting photoionization spectra, convoluted with a Lorentzian detection function, agree qualitatively with experimental results of Viswanathan et al. (1986) and support their conclusion that the nonspherical nature of the molecular potential creates a substantial l-mixing in the continuum, which in turn leads to the intense Delta N = 0 peak. The rather strong photoelectron energy dependence of the rotational branching ratios of the D 2Sigma(+) S21(11.5) line was investigated and compared to the weak energy dependence of the A 2Sigma(+) R22(21.5) line.

  8. Transitions in turbulent rotating convection

    NASA Astrophysics Data System (ADS)

    Rajaei, Hadi; Alards, Kim; Kunnen, Rudie; Toschi, Federico; Clercx, Herman; Fluid Dynamics Lab Team

    2015-11-01

    This study aims to explore the flow transition from one state to the other in rotating Rayleigh-Bènard convection using Lagrangian acceleration statistics. 3D particle tracking velocimetry (3D-PTV) is employed in a water-filled cylindrical tank of equal height and diameter. The measurements are performed at the center and close to the top plate at a Rayleigh number Ra = 1.28e9 and Prandtl number Pr = 6.7 for different rotation rates. In parallel, direct numerical simulation (DNS) has been performed to provide detailed information on the boundary layers. We report the acceleration pdfs for different rotation rates and show how the transition from weakly to strongly rotating Rayleigh-Bènard affects the acceleration pdfs in the bulk and boundary layers. We observe that the shapes of the acceleration PDFs as well as the isotropy in the cell center are largely unaffected while crossing the transition point. However, acceleration pdfs at the top show a clear change at the transition point. Using acceleration pdfs and DNS data, we show that the transition between turbulent states is actually a boundary layer transition between Prandtl-Blasius type (typical of non-rotating convection) and Ekman type.

  9. Transport Coefficients in Rotating Weakly Compressible Turbulence

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Zhou, Ye; Erlebacher, Gordon

    1998-01-01

    Analytical studies of compressible turbulence have found that compressible velocity fluctuations create both effective fluid transport properties and an effective equation of state. This paper investigates the effects of rotation on compressible turbulence. It is shown that rotation modifies the transport properties of compressible turbulence by replacing the turbulence time scale by a rotational time scale, much as rotation modifies the transport properties of incompressible turbulence. But thermal equilibrium properties are modified in a more complex manner. Two regimes are possible: one dominated by incompressible fluctuations, in which the sound speed is modified as it is in non-rotating turbulence, and a rotation dominated regime in which the sound speed enhancement is rotation dependent. The dimensionless parameter which discriminates between regimes is identified. In general, rotation is found to suppress the effects of compressibility. A novel feature of the present analysis is the use of a non-Kolmogorov steady state as the reference state of turbulence. introduction of such steady states expands the power and utility of analytical turbulence closures to a wider range of problems.

  10. Rotational Preference in Gymnastics

    PubMed Central

    Heinen, Thomas; Jeraj, Damian; Vinken, Pia M.; Velentzas, Konstantinos

    2012-01-01

    In gymnastics, most skills incorporate rotations about one or more body axes. At present, the question remains open if factors such as lateral preference and/or vestibulo-spinal asymmetry are related to gymnast’s rotational preference. Therefore, we sought to explore relationships in gymnast’s rotation direction between different gymnastic skills. Furthermore, we sought to explore relationships between rotational preference, lateral preference, and vestibulo-spinal asymmetry. In the experiment n = 30 non-experts, n = 30 near-experts and n = 30 experts completed a rotational preference questionnaire, a lateral preference inventory, and the Unterberger-Fukuda Stepping Test. The results revealed, that near-experts and experts more often rotate rightward in the straight jump with a full turn when rotating leftward in the round-off and vice versa. The same relationship was found for experts when relating the rotation preference in the handstand with a full turn to the rotation preference in the straight jump with a full turn. Lateral preference was positively related to rotational preference in non-expert gymnasts, and vestibulo-spinal asymmetry was positively related to rotational preference in experts. We suggest, that gymnasts should explore their individual rotational preference by systematically practicing different skills with a different rotation direction, bearing in mind that a clearly developed structure in rotational preference between different skills may be appropriate to develop more complex skills in gymnastics. PMID:23486362

  11. Rotational preference in gymnastics.

    PubMed

    Heinen, Thomas; Jeraj, Damian; Vinken, Pia M; Velentzas, Konstantinos

    2012-06-01

    In gymnastics, most skills incorporate rotations about one or more body axes. At present, the question remains open if factors such as lateral preference and/or vestibulo-spinal asymmetry are related to gymnast's rotational preference. Therefore, we sought to explore relationships in gymnast's rotation direction between different gymnastic skills. Furthermore, we sought to explore relationships between rotational preference, lateral preference, and vestibulo-spinal asymmetry. In the experiment n = 30 non-experts, n = 30 near-experts and n = 30 experts completed a rotational preference questionnaire, a lateral preference inventory, and the Unterberger-Fukuda Stepping Test. The results revealed, that near-experts and experts more often rotate rightward in the straight jump with a full turn when rotating leftward in the round-off and vice versa. The same relationship was found for experts when relating the rotation preference in the handstand with a full turn to the rotation preference in the straight jump with a full turn. Lateral preference was positively related to rotational preference in non-expert gymnasts, and vestibulo-spinal asymmetry was positively related to rotational preference in experts. We suggest, that gymnasts should explore their individual rotational preference by systematically practicing different skills with a different rotation direction, bearing in mind that a clearly developed structure in rotational preference between different skills may be appropriate to develop more complex skills in gymnastics. PMID:23486362

  12. The Lowest Metallicity Stars in the LMC: Clues from MaGICC Simulations

    NASA Astrophysics Data System (ADS)

    Brook, Chris B.; Miranda, Maider S.; Gibson, Brad. K.; Pilkington, Kate; Stinson, Greg S.

    2013-07-01

    Using a cosmological hydrodynamical simulation of a galaxy of similar mass to the Large Magellanic Cloud (LMC), we examine the predicted characteristics of its lowest metallicity populations. In particular, we emphasise the spatial distributions of first (Pop III) and second (polluted by only immediate Pop III ancestors) generation stars. We find that primordial composition stars form not only in the central galaxy's progenitor, but also in locally collapsed subhaloes during the early phases of galaxy formation. The lowest metallicity stars in these subhaloes end up in a relatively extended distribution around the host, with these accreted stars possessing present-day galactocentric distances as great as ~40 kpc. By contrast, the earliest stars formed within the central galaxy remain in the inner region, where the vast majority of star formation occurs, for the entirety of the simulation. Consequently, the fraction of stars that are from the earliest generation increases strongly with radius.

  13. Equilibrium Strategy and Population-Size Effects in Lowest Unique Bid Auctions

    NASA Astrophysics Data System (ADS)

    Pigolotti, Simone; Bernhardsson, Sebastian; Juul, Jeppe; Galster, Gorm; Vivo, Pierpaolo

    2012-02-01

    In lowest unique bid auctions, N players bid for an item. The winner is whoever places the lowest bid, provided that it is also unique. We use a grand canonical approach to derive an analytical expression for the equilibrium distribution of strategies. We then study the properties of the solution as a function of the mean number of players, and compare them with a large data set of internet auctions. The theory agrees with the data with striking accuracy for small population-size N, while for larger N a qualitatively different distribution is observed. We interpret this result as the emergence of two different regimes, one in which adaptation is feasible and one in which it is not. Our results question the actual possibility of a large population to adapt and find the optimal strategy when participating in a collective game.

  14. Disaster threat : Preparedness and potential response of the lowest income quartile.

    SciTech Connect

    Phillips, B. D.; Metz, W. C.; Nieves, L. A.; Decision and Information Sciences

    2005-01-01

    For a community to manage hazards successfully, those who are responsible for planning and implementing responses to a disaster threat situation must understand the social and economic realities of populations at risk. A random sample survey of residents in the vicinity of a US Army chemical weapons storage depot in Alabama confirms that those in the lowest quartile of household income (i.e., less than US $25,000 in 1999) differ in important ways from the rest of the sample. Using economic status as a grouping variable resulted in identifying a concentration of individuals with special needs. This group differed significantly from the remainder of the sample as to demographic and attitudinal characteristics, hazard knowledge and concerns, emergency preparedness, and emergency decision-making and their likelihood of taking protective actions. Respondents in the lowest income quartile reported greater restrictions in physical abilities, fewer community contacts, a heightened concern about area hazards, and limited resources for taking preparedness and response actions.

  15. Rotating polygon instability of a swirling free surface flow.

    PubMed

    Tophøj, L; Mougel, J; Bohr, T; Fabre, D

    2013-05-10

    We explain the rotating polygon instability on a swirling fluid surface [G. H. Vatistas, J. Fluid Mech. 217, 241 (1990) and Jansson et al., Phys. Rev. Lett. 96, 174502 (2006)] in terms of resonant interactions between gravity waves on the outer part of the surface and centrifugal waves on the inner part. Our model is based on potential flow theory, linearized around a potential vortex flow with a free surface for which we show that unstable resonant states appear. Limiting our attention to the lowest order mode of each type of wave and their interaction, we obtain an analytically soluble model, which, together with estimates of the circulation based on angular momentum balance, reproduces the main features of the experimental phase diagram. The generality of our arguments implies that the instability should not be limited to flows with a rotating bottom (implying singular behavior near the corners), and indeed we show that we can obtain the polygons transiently by violently stirring liquid nitrogen in a hot container.

  16. Rotationally resolved photoelectron spectroscopic study of the Jahn-Teller effect in allene

    NASA Astrophysics Data System (ADS)

    Schulenburg, A. M.; Merkt, F.

    2009-01-01

    The pulsed-field-ionization zero-kinetic-energy photoelectron spectra of allene (C3H4) and perdeuterated allene have been recorded from the first adiabatic ionization energy up to 2200 cm-1 of internal energy in the cations at a resolution sufficient to observe the full rotational structure. The intensity distributions in the spectra are dominated by vibrational progressions in the torsional mode, which were analyzed in the realm of a two-dimensional model of the E ⊗(b1⊕b2) Jahn-Teller effect in the allene cation [C. Woywod and W. Domcke, Chem. Phys. 162, 349 (1992)]. Whereas the rotational structure of the transitions to the lowest torsional levels (00 and 41) are regular and can be qualitatively analyzed in terms of a simple orbital ionization model, the rotational structure of the spectra of the 42 and 43 levels are strongly perturbed. The photoelectron spectrum of C3H4 also reveals several weak vibrational bands in the immediate vicinity of these levels that are indicative of (ro)vibronic perturbations. A slight broadening of the transitions to the 41 levels compared to that of the vibronic ground state and the increase of the number of sharp features in the rotational structure of the spectrum of the 42 level point at the importance of large-amplitude motions not considered in previous treatments of the Jahn-Teller effect in the allene cation.

  17. Single-Molecule Rotational Switch on a Dangling Bond Dimer Bearing.

    PubMed

    Godlewski, Szymon; Kawai, Hiroyo; Kolmer, Marek; Zuzak, Rafał; Echavarren, Antonio M; Joachim, Christian; Szymonski, Marek; Saeys, Mark

    2016-09-27

    One of the key challenges in the construction of atomic-scale circuits and molecular machines is to design molecular rotors and switches by controlling the linear or rotational movement of a molecule while preserving its intrinsic electronic properties. Here, we demonstrate both the continuous rotational switching and the controlled step-by-step single switching of a trinaphthylene molecule adsorbed on a dangling bond dimer created on a hydrogen-passivated Ge(001):H surface. The molecular switch is on-surface assembled when the covalent bonds between the molecule and the dangling bond dimer are controllably broken, and the molecule is attached to the dimer by long-range van der Waals interactions. In this configuration, the molecule retains its intrinsic electronic properties, as confirmed by combined scanning tunneling microscopy/spectroscopy (STM/STS) measurements, density functional theory calculations, and advanced STM image calculations. Continuous switching of the molecule is initiated by vibronic excitations when the electrons are tunneling through the lowest unoccupied molecular orbital state of the molecule. The switching path is a combination of a sliding and rotation motion over the dangling bond dimer pivot. By carefully selecting the STM conditions, control over discrete single switching events is also achieved. Combined with the ability to create dangling bond dimers with atomic precision, the controlled rotational molecular switch is expected to be a crucial building block for more complex surface atomic-scale devices. PMID:27504525

  18. Rotational Cooling of Trapped Polyatomic Molecules.

    PubMed

    Glöckner, Rosa; Prehn, Alexander; Englert, Barbara G U; Rempe, Gerhard; Zeppenfeld, Martin

    2015-12-01

    Controlling the internal degrees of freedom is a key challenge for applications of cold and ultracold molecules. Here, we demonstrate rotational-state cooling of trapped methyl fluoride molecules (CH_{3}F) by optically pumping the population of 16 M sublevels in the rotational states J=3, 4, 5 and 6 into a single level. By combining rotational-state cooling with motional cooling, we increase the relative number of molecules in the state J=4, K=3, M=4 from a few percent to over 70%, thereby generating a translationally cold (≈30  mK) and nearly pure state ensemble of about 10^{6} molecules. Our scheme is extendable to larger sets of initial states, other final states, and a variety of molecule species, thus paving the way for internal-state control of ever-larger molecules.

  19. Are the lowest-cost healthful food plans culturally and socially acceptable?

    PubMed Central

    Maillot, Matthieu; Darmon, Nicole; Drewnowski, Adam

    2014-01-01

    Objective Nutritious yet inexpensive foods do exist. However, many such foods are rejected by the low-income consumer. Is it because their use violates unspoken social norms? The present study was designed to assess the variety and cost of the lowest-cost market basket of foods that simultaneously met required dietary standards and progressively stricter consumption constraints. Design A mathematical optimisation model was used to develop the lowest-cost food plans to meet three levels of nutritional requirements and seven levels of consumption constraints. Subjects: The nationally representative INCA (National Individual Survey of Food Consumption) dietary survey study of 1332 adults provided population estimates of food consumption patterns in France. Food plan costs were based on retail food prices. Results The lowest-cost food plans that provided 9204 kJ/d (2200 kcal/d) for men and 7531 kJ/d (1800 kcal/d) for women and met specified dietary standards could be obtained for ,1?50 h/d. The progressive imposition of consumption constraints designed to create more mainstream French diets sharply increased food plan costs, without improving nutritional value. Conclusions Minimising diet costs, while meeting nutrition standards only, led to food plans that provided little variety and deviated substantially from social norms. Aligning the food plan with mainstream consumption led to higher costs. Food plans designed for low-income groups need to be socially acceptable as well as affordable and nutritious. PMID:20105388

  20. Rotation and Rotation-Vibration Spectroscopy of the 0+-0- Inversion Doublet in Deuterated Cyanamide

    NASA Astrophysics Data System (ADS)

    Kisiel, Zbigniew; Kraśnicki, Adam; Jabs, Wolfgang; Herbst, Eric; Winnewisser, Brenda P.; Winnewisser, Manfred

    2013-10-01

    The pure rotation spectrum of deuterated cyanamide was recorded at frequencies from 118 to 649 GHz, which was complemented by measurement of its high-resolution rotation-vibration spectrum at 8-350 cm-1. For D2NCN the analysis revealed considerable perturbations between the lowest Ka rotational energy levels in the 0+ and 0- substates of the lowest inversion doublet. The final data set for D2NCN exceeded 3000 measured transitions and was successfully fitted with a Hamiltonian accounting for the 0+ - 0- coupling. A smaller data set, consisting only of pure rotation and rotation-vibration lines observed with microwave techniques was obtained for HDNCN, and additional transitions of this type were also measured for H2NCN. The spectroscopic data for all three isotopic species were fitted with a unified, robust Hamiltonian allowing confident prediction of spectra well into the terahertz frequency region, which is of interest to contemporary radioastronomy. The isotopic dependence of the determined inversion splitting, -E = 16.4964789(8), 32.089173(3), and 49.567770(6) cm-1, for D2NCN, HDNCN, and H2NCN, respectively, is found to be in good agreement with estimates from a simple reduced quartic-quadratic double minimum potential.

  1. Short-range photoassociation from the inner wall of the lowest triplet potential of 85Rb2

    NASA Astrophysics Data System (ADS)

    Carollo, R. A.; Carini, J. L.; Eyler, E. E.; Gould, P. L.; Stwalley, W. C.

    2016-10-01

    Ultracold photoassociation is typically performed at large internuclear separations, where the scattering wavefunction amplitude is large and Franck–Condon overlap is maximized. Recently, work by this group and others on alkali-metal diatomics has shown that photoassociation can efficiently form molecules at short internuclear distance in both homonuclear and heteronuclear dimers. We propose that this short-range photoassociation is due to excitation near the wavefunction amplitude maximum at the inner wall of the lowest triplet potential. We show that Franck–Condon factors (FCFs) from the highest-energy bound state can almost precisely reproduce FCFs from a low-energy scattering state, and that both calculations match experimental data from the near-zero positive-energy scattering state with reasonable accuracy. We also show that the corresponding photoassociation from the inner wall of the ground-state singlet potential at much shorter internuclear distance is weaker and undetectable under our current experimental conditions. We predict from FCFs that the strongest of these weaker short-range photoassociation transitions are one order of magnitude below our current sensitivity.

  2. Power Harvesting from Rotation?

    ERIC Educational Resources Information Center

    Chicone, Carmen; Feng, Z. C.

    2008-01-01

    We show the impossibility of harvesting power from rotational motions by devices attached to the rotating object. The presentation is suitable for students who have studied Lagrangian mechanics. (Contains 2 figures.)

  3. Rotator cuff problems

    MedlinePlus

    ... rotator cuff is a group of muscles and tendons that attach to the bones of the shoulder ... Rotator cuff tendinitis refers to irritation of these tendons and inflammation of the bursa (a normally smooth ...

  4. The chaotic rotation of Hyperion

    NASA Technical Reports Server (NTRS)

    Wisdom, J.; Peale, S. J.; Mignard, F.

    1984-01-01

    Under the assumption that the satellite is rotating about a principal axis that is normal to its orbit plane, a plot of spin rate-versus-orientation for Hyperion at the pericenter of its orbit has revealed a large, chaotic zone surrounding Hyperion's synchronous spin-orbit state. The chaotic zone is so large that it surrounds the 1/2 and 2 states, and libration in the 3/2 state is not possible. Rotation in the chaotic zone is also attitude-unstable. As tidal dissipation drives Hyperion's spin toward a nearly synchronous value, Hyperion necessarily enters the large chaotic zone, becoming attitude-unstable and tumbling. It is therefore predicted that Hyperion will be found to be tumbling chaotically.

  5. Accurate calculations of bound rovibrational states for argon trimer

    SciTech Connect

    Brandon, Drew; Poirier, Bill

    2014-07-21

    This work presents a comprehensive quantum dynamics calculation of the bound rovibrational eigenstates of argon trimer (Ar{sub 3}), using the ScalIT suite of parallel codes. The Ar{sub 3} rovibrational energy levels are computed to a very high level of accuracy (10{sup −3} cm{sup −1} or better), and up to the highest rotational and vibrational excitations for which bound states exist. For many of these rovibrational states, wavefunctions are also computed. Rare gas clusters such as Ar{sub 3} are interesting because the interatomic interactions manifest through long-range van der Waals forces, rather than through covalent chemical bonding. As a consequence, they exhibit strong Coriolis coupling between the rotational and vibrational degrees of freedom, as well as highly delocalized states, all of which renders accurate quantum dynamical calculation difficult. Moreover, with its (comparatively) deep potential well and heavy masses, Ar{sub 3} is an especially challenging rare gas trimer case. There are a great many rovibrational eigenstates to compute, and a very high density of states. Consequently, very few previous rovibrational state calculations for Ar{sub 3} may be found in the current literature—and only for the lowest-lying rotational excitations.

  6. Nuclear rotation in the continuum

    NASA Astrophysics Data System (ADS)

    Fossez, K.; Nazarewicz, W.; Jaganathen, Y.; Michel, N.; Płoszajczak, M.

    2016-01-01

    Background: Atomic nuclei often exhibit collective rotational-like behavior in highly excited states, well above the particle emission threshold. What determines the existence of collective motion in the continuum region is not fully understood. Purpose: In this work, by studying the collective rotation of the positive-parity deformed configurations of the one-neutron halo nucleus 11Be, we assess different mechanisms that stabilize collective behavior beyond the limits of particle stability. Method: To solve a particle-plus-core problem, we employ a nonadiabatic coupled-channel formalism and the Berggren single-particle ensemble, which explicitly contains bound states, narrow resonances, and the scattering continuum. We study the valence-neutron density in the intrinsic rotor frame to assess the validity of the adiabatic approach as the excitation energy increases. Results: We demonstrate that collective rotation of the ground band of 11Be is stabilized by (i) the fact that the ℓ =0 one-neutron decay channel is closed, and (ii) the angular momentum alignment, which increases the parentage of high-ℓ components at high spins; both effects act in concert to decrease decay widths of ground-state band members. This is not the case for higher-lying states of 11Be, where the ℓ =0 neutron-decay channel is open and often dominates. Conclusion: We demonstrate that long-lived collective states can exist at high excitation energy in weakly bound neutron drip-line nuclei such as 11Be.

  7. Low-spin states of /sup 250/Cf populated in the electron capture decay of 2. 22-h /sup 250/Es. [ULTIPOLE TRANSITIONS; PARITY; ROTATIONAL STATES; SPIN; VIBRATIONAL STATES; GAMMA SPECTRA

    SciTech Connect

    Ahmad, I.; Sjoblom, R.K.

    1980-09-01

    Low-spin states of /sup 250/Cf have been investigated by measuring ..gamma.. rays and conversion electrons associated with the electron capture decay of 2.22-h /sup 250/Es. Mass-separated /sup 250/Es samples produced by the /sup 249/Cf(d,n) reaction were used for these measurements. The ..gamma..-ray spectra were measured with a 25-cm/sup 3/ coaxial Ge(Li) spectrometer and the electron spectra were measured with a cooled Si(Li) detector. Multipolarities of intense transitions in /sup 250/Cf were deduced and logft values of electron capture transitions were derived from measured electron capture intensities. On the basis of the results of the present investigation the following bandheads were identified in /sup 250/Cf: E (keV),K,I..pi..=871.6, 2,2-; 1031.9, 2,2+; 1154.2, 0,0+; 1175.5, 1,1-; 1210.0, 2,2-; 1244.4, 2,2+; 1266.5, 0,0+; and 1658.1, 2,2+. The 2.22-h state in /sup 250/Es has been given a spin-parity assignment of 1- with configuration )n(734)9/2-; p(633)7/2+)/sub 1//sub -/.

  8. Evolutionary optimization of rotational population transfer

    SciTech Connect

    Rouzee, Arnaud; Vrakking, Marc J. J.; Ghafur, Omair; Gijsbertsen, Arjan; Vidma, Konstantin; Meijer, Afric; Zande, Wim J. van der; Parker, David; Shir, Ofer M.; Baeck, Thomas

    2011-09-15

    We present experimental and numerical studies on control of rotational population transfer of NO(J=1/2) molecules to higher rotational states. We are able to transfer 57% of the population to the J=5/2 state and 46% to J=9/2, in good agreement with quantum mechanical simulations. The optimal pulse shapes are composed of pulse sequences with delays corresponding to the beat frequencies of states on the rotational ladder. The evolutionary algorithm is limited by experimental constraints such as volume averaging and the finite laser intensity used, the latter to circumvent ionization. Without these constraints, near-perfect control (>98%) is possible. In addition, we show that downward control, moving molecules from high to low rotational states, is also possible.

  9. The rotation of the Sun's core.

    NASA Astrophysics Data System (ADS)

    Paterno, L.; Sofia, S.; di Mauro, M. P.

    1996-10-01

    The rotation of the Sun's core, below 0.3Rsun_, is inferred from two independent new results. The first is based on the recent oblateness measurements carried out by the Solar Disk Sextant (SDS) instrument outside the Earth's atmosphere, and the second on the very accurate measurements of rotational splittings of the lowest degree acoustic modes, carried out in the framework of the helioseismic network IRIS. By using the theory of slowly rotating stars applied to a solar standard model, we deduce a set of rotational laws for the innermost layers, which are consistent with both the measured oblateness value and the results of the inversion of helioseismic data. The SDS and IRIS results indicate that the Sun's central regions rotate at a rate in between 1.5 and 2 times the surface equatorial angular velocity. As a result of our analysis, we deduce a quadrupole moment J_2_=2.22x10^-7^, which implies an advance of Mercury's perihelion of 42.98arcsec/c, in agreement with the theory of General Relativity and the measurements of Mercury's orbit by means of planetary radar ranging. However, very recent results obtained by the helioseismic network BISON indicate that core rotation is even slower than the polar surface rotation and therefore imply a completely different scenario than that proposed here. If we assume the intermediate solution of rigid body rotation, an alternate source of the oblateness may be attributed to a magnetic field of the order of 10^5^Gauss in the interior of the Sun.

  10. Rotations with Rodrigues' Vector

    ERIC Educational Resources Information Center

    Pina, E.

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…

  11. Instabilities of rare rotating cold molecular clouds

    SciTech Connect

    Nekrasov, A. K.

    2009-03-15

    New electromagnetic streaming instabilities of rare rotating molecular clouds induced by the relative drift of ions, electrons, and dust grains in the equilibrium state are studied. The cases of a weak and strong collisional coupling of neutrals and ions in the perturbed state are involved. The dust grains are considered as unmagnetized having weak collisional coupling with neutrals in perturbations. The compressibility is taken into account. Axisymmetric perturbations with growth rates much larger than the rotation frequency are found.

  12. Time to lowest postoperative carcinoembryonic antigen level is predictive on survival outcome in rectal cancer

    PubMed Central

    Yu, Huichuan; Luo, Yanxin; Wang, Xiaolin; Bai, Liangliang; Huang, Pinzhu; Wang, Lei; Huang, Meijin; Deng, Yanhong; Wang, Jianping

    2016-01-01

    This study was to investigate whether the time to the lowest postoperative CEA can predict cancer survival. We enrolled 155 rectal cancer patients in this retrospective and longitudinal cohort study. Deepness of response (DpR) of CEA refers to the relative change of the lowest postoperative CEA level from baseline, and time to DpR (TTDpR) refers to the time from surgery to the lowest postoperative CEA level. The median of TTDpR and DpR was 4.5 (range, 3.0–18.0) weeks and −67% (range, −99% to 114%) respectively. Patients with TTDpR 4.5 weeks. Using TTDpR as a continuous variable, the HR of DFS and OS was 1.13 (95% CI 1.06–1.22, P = 0.001) and 1.17 (95% CI 1.07–1.29, P = 0.001) respectively. On multivariate analysis, the predictive value of prolonged TTDpR remained [adjusted HRs: 1.12 (95% CI 1.03–1.21, P = 0.006) and 1.17 (95% CI 1.06–1.28, P = 0.001)]. These findings remained significant in patients with normal preoperative CEA. Our results showed prolonged TTDpR of CEA independently predicted unfavorable survival outcomes, regardless of whether preoperative CEA was elevated or not. PMID:27658525

  13. Rotational rainbows in electron-molecule scattering

    SciTech Connect

    Ziegler, G.; Raedle, M.; Puetz, O.; Jung, K.; Ehrhardt, H.; Bergmann, K.

    1987-06-22

    We report the measurement of state-to-state differential cross sections for rotationally inelastic electron-Na/sub 2/ collisions for impact energies from 150 to 300 eV. The data demonstrate for the first time large rotational transitions (0less than or equal to..delta..jless than or equal to30) for backward scattering. The most surprising result is the observation of pronounced rotational rainbows. These structures are expected to be general features in high-energy electron-molecule scattering.

  14. Measurement of the lowest millimeter-wave transition frequency of the CH radical

    SciTech Connect

    Truppe, S.; Hendricks, R. J.; Hinds, E. A.; Tarbutt, M. R.

    2014-01-01

    The CH radical offers a sensitive way to test the hypothesis that fundamental constants measured on Earth may differ from those observed in other parts of the universe. The starting point for such a comparison is to have accurate laboratory frequencies. Here, we measure the frequency of the lowest millimeter-wave transition of CH, near 535 GHz, with an accuracy of 0.6 kHz. This improves the uncertainty by roughly two orders of magnitude over previous determinations and opens the way for sensitive new tests of varying constants.

  15. Rotation-vibration interactions in the spectra of polycyclic aromatic hydrocarbons: Quinoline as a test-case species

    SciTech Connect

    Pirali, O.; Gruet, S.; Kisiel, Z.; Martin-Drumel, M. A.; Cuisset, A.; Hindle, F.; Mouret, G.

    2015-03-14

    Polycyclic aromatic hydrocarbons (PAHs) are highly relevant for astrophysics as possible, though controversial, carriers of the unidentified infrared emission bands that are observed in a number of different astronomical objects. In support of radio-astronomical observations, high resolution laboratory spectroscopy has already provided the rotational spectra in the vibrational ground state of several molecules of this type, although the rotational study of their dense infrared (IR) bands has only recently become possible using a limited number of experimental set-ups. To date, all of the rotationally resolved data have concerned unperturbed spectra. We presently report the results of a high resolution study of the three lowest vibrational states of quinoline C{sub 9}H{sub 7}N, an N-bearing naphthalene derivative. While the pure rotational ground state spectrum of quinoline is unperturbed, severe complications appear in the spectra of the ν{sub 45} and ν{sub 44} vibrational modes (located at about 168 cm{sup −1} and 178 cm{sup −1}, respectively). In order to study these effects in detail, we employed three different and complementary experimental techniques: Fourier-transform microwave spectroscopy, millimeter-wave spectroscopy, and Fourier-transform far-infrared spectroscopy with a synchrotron radiation source. Due to the high density of states in the IR spectra of molecules as large as PAHs, perturbations in the rotational spectra of excited states should be ubiquitous. Our study identifies for the first time this effect and provides some insights into an appropriate treatment of such perturbations.

  16. SEAL FOR ROTATING SHAFT

    DOEpatents

    Coffman, R.T.

    1957-12-10

    A seal is described for a rotatable shaft that must highly effective when the shaft is not rotating but may be less effective while the shaft is rotating. Weights distributed about a sealing disk secured to the shaft press the sealing disk against a tubular section into which the shiilt extends, and whem the shaft rotates, the centrifugal forces on the weights relieve the pressurc of the sealing disk against the tubular section. This action has the very desirible result of minimizing the wear of the rotating disk due to contact with the tubular section, while affording maximum sealing action when it is needed.

  17. Pair truncation for rotational nuclei: j =(17/2 model

    SciTech Connect

    Halse, P.; Jaqua, L.; Barrett, B.R. )

    1989-08-01

    The suitability of the pair condensate approach for rotational states is studied in a single {ital j}=17/2 shell of identical nucleons interacting through a quadrupole-quadrupole Hamiltonian. The ground band and a {ital K}=2 excited band are both studied in detail. A direct comparison of the exact states with those constituting the {ital SD} and {ital SDG} subspaces is used to identify the important degrees of freedom for these levels. The range of pairs necessary for a good description is found to be highly state dependent; {ital S} and {ital D} pairs are the major constituents of the low-spin ground-band levels, while {ital G} pairs are needed for those in the {gamma} band. Energy spectra are obtained for each truncated subspace. {ital SDG} pairs allow accurate reproduction of the binding energy and {ital K}=2 excitation energy, but still give a moment of inertia which is about 30% too small even for the lowest levels.

  18. Predictors of human rotation.

    PubMed

    Stochl, Jan; Croudace, Tim

    2013-01-01

    Why some humans prefer to rotate clockwise rather than anticlockwise is not well understood. This study aims to identify the predictors of the preferred rotation direction in humans. The variables hypothesised to influence rotation preference include handedness, footedness, sex, brain hemisphere lateralisation, and the Coriolis effect (which results from geospatial location on the Earth). An online questionnaire allowed us to analyse data from 1526 respondents in 97 countries. Factor analysis showed that the direction of rotation should be studied separately for local and global movements. Handedness, footedness, and the item hypothesised to measure brain hemisphere lateralisation are predictors of rotation direction for both global and local movements. Sex is a predictor of the direction of global rotation movements but not local ones, and both sexes tend to rotate clockwise. Geospatial location does not predict the preferred direction of rotation. Our study confirms previous findings concerning the influence of handedness, footedness, and sex on human rotation; our study also provides new insight into the underlying structure of human rotation movements and excludes the Coriolis effect as a predictor of rotation.

  19. Perturbation analysis for the rotational spectrum of the NiBr radical in the X2Pi3/2 and A2Delta5/2 states.

    PubMed

    Yamazaki, Emi; Okabayashi, Toshiaki; Tanimoto, Mitsutoshi

    2004-07-01

    The millimeter- and submillimeter-wave spectra of the NiBr radical in the X (2)Pi(3/2) and A (2)Delta(5/2) states were observed by a source-modulated microwave spectrometer. The NiBr radical was generated in a dc glow discharge through the mixture of Br(2) vapor and Ar gas by the sputtering reaction with a Ni cathode. Observed transition frequencies were independently analyzed for both electronic states using a standard polynomial expression of a Hund's case (c) approximation. Anomalous behavior of the effective molecular constants in the X (2)Pi(3/2) state was interpreted as the result of the perturbation between the X (2)Pi(3/2) and A (2)Delta(5/2) states. The deperturbed molecular constants were derived using a simplified supermultiplet Hamiltonian including the interaction terms between the two electronic states.

  20. Vacuum birefringence in strong magnetic fields: (II) Complex refractive index from the lowest Landau level

    SciTech Connect

    Hattori, Koichi; Itakura, Kazunori

    2013-07-15

    We compute the refractive indices of a photon propagating in strong magnetic fields on the basis of the analytic representation of the vacuum polarization tensor obtained in our previous paper. When the external magnetic field is strong enough for the fermion one-loop diagram of the polarization tensor to be approximated by the lowest Landau level, the propagating mode in parallel to the magnetic field is subject to modification: The refractive index deviates from unity and can be very large, and when the photon energy is large enough, the refractive index acquires an imaginary part indicating decay of a photon into a fermion–antifermion pair. We study dependences of the refractive index on the propagating angle and the magnetic-field strength. It is also emphasized that a self-consistent treatment of the equation which defines the refractive index is indispensable for accurate description of the refractive index. This self-consistent treatment physically corresponds to consistently including the effects of back reactions of the distorted Dirac sea in response to the incident photon. -- Highlights: •Vacuum birefringence and photon decay are described by the complex refractive index. •Resummed photon vacuum polarization tensor in the lowest Landau level is used. •Back reactions from the distorted Dirac sea are self-consistently taken into account. •Self-consistent treatment drastically changes structure in photon energy dependence. •Dependences on photon propagation angle and magnetic-field strength are presented.

  1. Reports on block rotations, fault domains and crustal deformation

    NASA Technical Reports Server (NTRS)

    Nur, Amos

    1990-01-01

    Studies of block rotations, fault domains and crustal deformation in the western United States, Israel, and China are discussed. Topics include a three-dimensional model of crustal fracture by distributed fault sets, distributed deformation and block rotation in 3D, stress field rotation, and multiple strike slip fault sets.

  2. Influence of laser parameters in generating the NiTi nanoparticles with a rotating target using underwater solid state Nd: YAG laser ablation

    NASA Astrophysics Data System (ADS)

    Gagrani, Rohit; Patra, Nandini; Rajagopalan, P.; Singh, Vipul; Palani, I. A.

    2016-09-01

    The great effort that the scientific community has put in the last decade in the study of nanoscience and nanotechnology has been leading the research toward the development of new methodologies of nanostructures synthesis. Among them, Pulsed Laser Ablation in Liquid, PLAL, is gaining an increasing interest thanks to several promising advantages, which include: environmental sustainability, easy experimental set-up (which does not require extreme conditions of the ambient of synthesis), long-lasting stability of the nanoparticles, which are produced completely free of undesired contaminants or dangerous synthesis reactants. In this work, a drop wise flow of deionized water on the periphery of NiTi rotating target was tested as a procedure for the significant production of NiTi nanoparticles. This is a novel technique to improve the ablation efficiency of nanoparticles than the existing techniques of laser ablation. The influence of varying external parameters like laser wavelengths and laser fluences on the size distribution of nanoparticle was investigated. Second harmonic and third harmonics of Nd: YAG nanosecond laser with three different laser fluences of 30 J/cm2, 40 J/cm2 and 50 J/cm2 was used to ablate the nitinol (Ni-55%, Ti-45%) target. The average particle size and redistribution was characterized by dynamic light scattering (DLS) and the crystalline formation of NiTi nanoparticles were analyzed by X-ray diffraction, where it confirms the alloy formation of NiTi nanoparticles.

  3. Vortex formation in a fast rotating Bose-Einstein condensate

    SciTech Connect

    Ghosh, Tarun Kanti

    2004-04-01

    We study rotational motion of an interacting atomic Bose-Einstein condensate confined in a quadratic-plus-quartic potential. We calculate the lowest energy surface mode frequency and show that a symmetric trapped (harmonic and quartic) Bose-Einstein condensate breaks the rotational symmetry of the Hamiltonian when rotational frequency is greater than one-half of the lowest energy surface mode frequency. We argue that the formation of a vortex is not possible in a noninteracting as well as in an attractive Bose-Einstein condensate confined in a harmonic trap due to the absence of the spontaneous shape deformation, but it can occur which leads to the vortex formation if we add an additional quartic potential. Moreover, the spontaneous shape deformation and consequently the formation of a vortex in an attractive system depends on the strengths of the two-body interaction and the quartic potential.

  4. Constraints on the central density and chemical composition of the white dwarf RX J0648.0-4418 with a record period of rotation in a model with the equation of state of an ideal degenerate electron gas

    NASA Astrophysics Data System (ADS)

    Mikheev, S. A.; Tsvetkov, V. P.

    2016-07-01

    A system of equations and inequalities that allows one to determine the constraints on central density ρ c and the chemical composition, which is governed by parameter μ e , of the white dwarf RX J0648.0- 4418 with a record short period of rotation T = 13.18s and mass m = (1.28 ± 0.05) m⊙, has been derived. The analysis of numerical solutions of this system reveal a complex dependence of μ e on ρ c . The intervals of variation of μ e and ρ c are as follows: 1.09 ≤ μ e ≤ 1.21 and 9.04 ≤ μ e /ρ0 ≤ 103 (ρ0 = 0.98 × 106 g/cm3). This range of μ e values suggests that the white dwarf RX J0648.0-4418 is not made of pure hydrogen and should contain 9-21% of heavy elements. Calculations have been performed with the equation of state of an ideal degenerate electron gas. Approximate analytic expressions (with an accuracy of 10-3) for the minimum period T min and mass m of the white dwarf are obtained. It is demonstrated that the white-dwarf mass is almost doubled (compared to the case of no rotation at a fixed central density) as period T approaches T min.

  5. An SVM-Based Classifier for Estimating the State of Various Rotating Components in Agro-Industrial Machinery with a Vibration Signal Acquired from a Single Point on the Machine Chassis

    PubMed Central

    Ruiz-Gonzalez, Ruben; Gomez-Gil, Jaime; Gomez-Gil, Francisco Javier; Martínez-Martínez, Víctor

    2014-01-01

    The goal of this article is to assess the feasibility of estimating the state of various rotating components in agro-industrial machinery by employing just one vibration signal acquired from a single point on the machine chassis. To do so, a Support Vector Machine (SVM)-based system is employed. Experimental tests evaluated this system by acquiring vibration data from a single point of an agricultural harvester, while varying several of its working conditions. The whole process included two major steps. Initially, the vibration data were preprocessed through twelve feature extraction algorithms, after which the Exhaustive Search method selected the most suitable features. Secondly, the SVM-based system accuracy was evaluated by using Leave-One-Out cross-validation, with the selected features as the input data. The results of this study provide evidence that (i) accurate estimation of the status of various rotating components in agro-industrial machinery is possible by processing the vibration signal acquired from a single point on the machine structure; (ii) the vibration signal can be acquired with a uniaxial accelerometer, the orientation of which does not significantly affect the classification accuracy; and, (iii) when using an SVM classifier, an 85% mean cross-validation accuracy can be reached, which only requires a maximum of seven features as its input, and no significant improvements are noted between the use of either nonlinear or linear kernels. PMID:25372618

  6. Bid distribution derived from consistent mixed strategy in lowest unique bid auction

    NASA Astrophysics Data System (ADS)

    Zhao, Yinan; Chen, Qinghua; Wang, Yougui

    2014-12-01

    The Lowest Unique Bid Auction (LUBA) booms recently through the Internet. A typical distribution pattern of bid price in this reverse auction has been found and needs to be interpreted. The distribution curve is a decreasing one whose slope has a close relationship with the number of agents participating in the auction. To explain this stylized fact, we develop a model assuming that agents prefer to bid on the price at which the probability of winning is higher. The bid distributions of actual auctions with the number of agents less than 200 can be fitted very well using the parameters for the value of items and the number of bids. When this number becomes larger, however, a deviation occurs between prediction and empirical data, which can be adjusted by introducing cognitive illusion of the bid number.

  7. Lowest-order average effect of turbulence on atmospheric profiles derived from radio occultation

    NASA Technical Reports Server (NTRS)

    Eshleman, V. R.; Haugstad, B. S.

    1977-01-01

    Turbulence in planetary atmospheres and ionospheres causes changes in angles of refraction of radio waves used in occultation experiments. Atmospheric temperature and pressure profiles, and ionospheric electron concentration profiles, derived from radio occultation measurements of Doppler frequency contain errors due to such angular offsets. The lowest-order average errors are derived from a geometrical-optics treatment of the radio-wave phase advance caused by the addition of uniform turbulence to an initially homogeneous medium. It is concluded that the average profile errors are small and that precise Doppler frequency measurements at two or more wavelengths could be used to help determine characteristics of the turbulence, as well as accuracy limits and possible correction terms for the profiles. However, a more detailed study of both frequency and intensity characteristics in radio and optical occultation measurements of turbulent planetary atmospheres and ionospheres is required to realize the full potential of such measurements.

  8. The lowest diploid number (2n = 16) yet found in any primate: Callicebus lugens (Humboldt, 1811).

    PubMed

    Bonvicino, Cibele R; Penna-Firme, Valéria; do Nascimento, Fabrícia F; Lemos, Bernardo; Stanyon, Roscoe; Seuánez, Héctor N

    2003-01-01

    Morphologic, molecular and karyologic analyses of Callicebus lugens (Humboldt, 1811) of known geographic origin supported the proposition that this is a valid species. Morphologic and morphometric analyses showed evident differences between C. lugens and two other related taxa of the same group (Callicebus purinus and Callicebus torquatus). Cytochrome b DNA analyses (maximum parsimony, neighbour joining and maximum likelihood) were congruent in showing a strong association between C. lugens and Callicebus sp. of the torquatus group in one branch and a sister branch further divided into two clades: one with species of the personatus group and another, with species of the moloch group. Karyotypic analysis showed that C. lugens has the lowest diploid chromosome number of the primate order (2n = 16). Comparisons with other congeneric species clearly supported the proposition that C. lugens is karyotypically similar to others of the torquatus group.

  9. Lowest-order phase space structure of a simplified beam halo Hamiltonian

    SciTech Connect

    Bruhwiler, D.L.

    1996-06-01

    Hamiltonian perturbation theory is applied to the particle-core model for zero-angular-momentum test-particles in the limit of small mismatch and moderate space charge. A first-order treatment captures the lowest-order averaged dynamics arising from the dominant 2:1 parametric resonance, neglecting any chaotic effects that might arise from the overlap of higher-order resonances. The analysis shows that test-particles from a matched Kapchinskij-Vladimirskij (KV) distribution are driven into the halo by the oscillations of the mismatched core KV distribution, if the mismatch factor exceeds a critical value which depends on the space charge parameter {mu}. This dynamical effect persists, although the time scale grows without bound, even in the limit {mu}{r_arrow}0. A symplectic test-particle code and self-consistent particle simulations both show good agreement with the analysis. {copyright} {ital 1996 American Institute of Physics.}

  10. Global Rotation of Non-Rotating Origin

    NASA Astrophysics Data System (ADS)

    Fukushima, T.

    2001-11-01

    At its 24th General Assembly held at Manchester last year, the IAU has adopted the Celestial Ephemeris Origin (CEO) as a new longitude origin of the celestial coordinate system (Capitaine et al. 2000, IAU 2001). The CEO is the application of Guinot's non-rotating origin (NRO) to the Earth's equator (Guinot 1979, Capitaine et al. 1986, Capitaine 1990). By using the current IAU precession/nutation theory, we integrated the global orbit of CEO. It is a slightly curved zigzag pattern of the amplitude of around 23o moving secularly along the ecliptic. Among its kinematical features, we note that CEO has a large secular component of rotation with respect to the inertial reference frame. The current speed of this global rotation is as large as around -4.15 ''/yr. The negative sign shows that CEO rotates clockwise with respect to the inertial frame when viewed from the north celestial pole. Unfortunately this is a general property of NROs. On the other hand, such secular rotation does not exist for some geometrically-defined longitude origins like K, H, and Σ already discussed in Kovalevsky and McCarthy (1998). We think that the existence of a global secular rotaion means that the CEO, and NROs in general, is not appropriate to be specified as the x-axis of celestial coordinate systems.

  11. Rotational spectroscopy of pyridazine and its isotopologs from 235-360 GHz: equilibrium structure and vibrational satellites.

    PubMed

    Esselman, Brian J; Amberger, Brent K; Shutter, Joshua D; Daane, Mitchell A; Stanton, John F; Woods, R Claude; McMahon, Robert J

    2013-12-14

    The rotational spectrum of pyridazine (o-C4H4N2), the ortho disubstituted nitrogen analog of benzene, has been measured and analyzed in the gas phase. For the ground vibrational state of the normal isotopolog, over 2000 individual rotational transitions have been identified between 238 and 360 GHz and have been fit to 13 parameters of a 6th-order centrifugal distortion Hamiltonian. All transitions in this frequency region can now be predicted from this model to near experimental accuracy, i.e., well enough for the purpose of any future radio-astronomical search for this species. Three isotopologs, [3-(13)C]-C4H4N2, [4-(13)C]-C4H4N2, and [1-(15)N]-C4H4N2, have been detected in natural abundance, and several hundred lines have been measured for each of these species and fit to 6th-order Hamiltonians. Ten additional isotopologs were synthesized with enhanced deuterium substitution and analyzed to allow for a complete structure determination. The equilibrium structure (Re) of pyridazine was obtained by correcting the experimental rotational constants for the effects of vibration-rotation coupling using interaction constants predicted from CCSD(T) calculations with an ANO0 basis set and further correcting for the effect of electron mass. The final Re structural parameters are determined with excellent accuracy, as evidenced by their ability to predict 28 independent moments of inertia (Ia and Ib for 14 isotopologs) very well from 9 structural parameters. The rotational spectra of the six lowest-energy fundamental vibrational satellites of the main isotopolog have been detected. The rotational spectra of the five lowest-energy vibrational satellites have been assigned and fit to yield accurate rotational and distortion constants, while the fit and assignment for the sixth is less complete. The resultant vibration-rotation interaction (α) constants are found to be in excellent agreement with ones predicted from coupled-cluster calculations, which proved to be the key

  12. Rotational spectroscopy of pyridazine and its isotopologs from 235–360 GHz: Equilibrium structure and vibrational satellites

    SciTech Connect

    Esselman, Brian J.; Amberger, Brent K.; Shutter, Joshua D.; Daane, Mitchell A.; Woods, R. Claude; McMahon, Robert J.; Stanton, John F.

    2013-12-14

    The rotational spectrum of pyridazine (o-C{sub 4}H{sub 4}N{sub 2}), the ortho disubstituted nitrogen analog of benzene, has been measured and analyzed in the gas phase. For the ground vibrational state of the normal isotopolog, over 2000 individual rotational transitions have been identified between 238 and 360 GHz and have been fit to 13 parameters of a 6th-order centrifugal distortion Hamiltonian. All transitions in this frequency region can now be predicted from this model to near experimental accuracy, i.e., well enough for the purpose of any future radio-astronomical search for this species. Three isotopologs, [3-{sup 13}C]-C{sub 4}H{sub 4}N{sub 2}, [4-{sup 13}C]-C{sub 4}H{sub 4}N{sub 2}, and [1-{sup 15}N]-C{sub 4}H{sub 4}N{sub 2}, have been detected in natural abundance, and several hundred lines have been measured for each of these species and fit to 6th-order Hamiltonians. Ten additional isotopologs were synthesized with enhanced deuterium substitution and analyzed to allow for a complete structure determination. The equilibrium structure (R{sub e}) of pyridazine was obtained by correcting the experimental rotational constants for the effects of vibration-rotation coupling using interaction constants predicted from CCSD(T) calculations with an ANO0 basis set and further correcting for the effect of electron mass. The final R{sub e} structural parameters are determined with excellent accuracy, as evidenced by their ability to predict 28 independent moments of inertia (I{sub a} and I{sub b} for 14 isotopologs) very well from 9 structural parameters. The rotational spectra of the six lowest-energy fundamental vibrational satellites of the main isotopolog have been detected. The rotational spectra of the five lowest-energy vibrational satellites have been assigned and fit to yield accurate rotational and distortion constants, while the fit and assignment for the sixth is less complete. The resultant vibration-rotation interaction (α) constants are found to

  13. Asteroid rotation rates

    NASA Technical Reports Server (NTRS)

    Dermott, S. F.; Harris, A. W.; Murray, C. D.

    1984-01-01

    A trend of increasing mean rotational frequency with increasing diameter is noted in asteroids with diameters greater than 120 km, irrespective of M-, S-, and C-type asteroid subset and family or nonfamily membership. This trend cannot be accounted for by observational selection. For asteroids with diameters smaller than 120 km mean rotational frequency increases with decreasing diameter, but within this group there is a subset with exceptionally long rotational periods. This marked change in the distribution at 120-km diameter could separate primordial asteroids from their collision products. It is also noted that, for asteroids of a given diameter, M asteroids rotate faster than S asteroids, which in turn rotate faster than C asteroids. For all types, family members rotate faster than nonfamily members.

  14. Nuclear Collective Rotation in the SU_{3} Model. I --Semiclassical Rotation--

    NASA Astrophysics Data System (ADS)

    Kinouchi, S.; Kammuri, T.; Kishimoto, T.

    1989-01-01

    The collective rotation of a nuclear system having the quadrupole-quadrupole interaction is described by the dynamical nuclear field theory (DNFT). We use the one-body harmonic oscillator potential and restrict the discussion to the Delta N = 0 transitions. Energy eigenvalues of the resulting SU_{3} Hamiltonian are obtained by using the eigenstates of the cranked harmonic oscillator. Both the low and high spin states are studied by the perturbative DNFT, reproducing successfully the diagonalization results. In spite of the simple rotational spectrum, the nuclear shape is seriously influenced by the rotational disturbances. Similarities with our previous analyses of the pair rotation are pointed out. Especially, the SU_{3} rotation in the odd mass system decouples with the particle motion just as the pair rotation does in the single-j limit.

  15. MODELING OF DIFFERENTIAL ROTATION IN RAPIDLY ROTATING SOLAR-TYPE STARS

    SciTech Connect

    Hotta, H.; Yokoyama, T.

    2011-10-10

    We investigate differential rotation in rapidly rotating solar-type stars by means of an axisymmetric mean field model that was previously applied to the Sun. This allows us to calculate the latitudinal entropy gradient with a reasonable physical basis. Our conclusions are as follows. (1) Differential rotation approaches the Taylor-Proudman state when stellar rotation is faster than solar rotation. (2) Entropy gradient generated by the attached subadiabatic layer beneath the convection zone becomes relatively small with a large stellar angular velocity. (3) Turbulent viscosity and turbulent angular momentum transport determine the spatial difference of angular velocity {Delta}{Omega}. (4) The results of our mean field model can explain observations of stellar differential rotation.

  16. The spatial rotator.

    PubMed

    Rasmusson, A; Hahn, U; Larsen, J O; Gundersen, H J G; Jensen, E B Vedel; Nyengaard, J R

    2013-05-01

    This paper presents a new local volume estimator, the spatial rotator, which is based on measurements on a virtual 3D probe, using computer assisted microscopy. The basic design of the probe builds upon the rotator principle which requires only a few manual intersection markings, thus making the spatial rotator fast to use. Since a 3D probe is involved, it is expected that the spatial rotator will be more efficient than the the nucleator and the planar rotator, which are based on measurements in a single plane. An extensive simulation study shows that the spatial rotator may be more efficient than the traditional local volume estimators. Furthermore, the spatial rotator can be seen as a further development of the Cavalieri estimator, which does not require randomization of sectioning or viewing direction. The tissue may thus be sectioned in any arbitrary direction, making it easy to identify the specific tissue region under study. In order to use the spatial rotator in practice, however, it is necessary to be able to identify intersection points between cell boundaries and test rays in a series of parallel focal planes, also at the peripheral parts of the cell boundaries. In cases where over- and underprojection phenomena are not negligible, they should therefore be corrected for if the spatial rotator is to be applied. If such a correction is not possible, it is needed to avoid these phenomena by using microscopy with increased resolution in the focal plane. PMID:23488880

  17. The relationship between normal and strike-slip faults in Valley of Fire State Park, Nevada, and its implications for stress rotation and partitioning of deformation in the east-central Basin and Range

    NASA Astrophysics Data System (ADS)

    Aydin, Atilla; de Joussineau, Ghislain

    2014-06-01

    This study expands on our earlier studies of the evolution of fracturing and faulting in the Jurassic aeolian Aztec Sandstone exposed over a large area in the Valley of Fire State Park, southeastern Nevada. Based on a nearly three-dimensional data set collected from 200-m-high cliff-face exposures with stair-case morphology composed of steep and flat parts, we find that a series of inclined, relatively low-angle normal faults and their splay fractures are precursors of the strike-slip fault network that we previously documented. We discuss the significance of this finding in terms of the tectonics of the broader area, stress rotation, partitioning of deformation, and the development of fracture clusters with compartmentalization of the structures as a function of spatial, depositional and deformational domains.

  18. Rotationally resolved electronic spectroscopy of 4-aminobenzonitrile

    NASA Astrophysics Data System (ADS)

    Berden, Giel; van Rooy, Jack; Meerts, W. Leo; Zachariasse, Klaas A.

    1997-10-01

    The rotationally resolved fluorescence excitation spectrum of the 0 00 band in the S 1 ← S 0 transition of 4-aminobenzonitrile (ABN) was recorded, at 299 nm, by using laser induced fluorescence in a molecular beam apparatus. This spectrum exhibits pure b-type character, which indicates that the electronic transition moment vector is oriented along the short molecular axis. The rotational constants of the S 0 and S 1 states were determined. In addition, the rotationally resolved fluorescence excitation spectra of two vibronic bands in the S 1 state, at 807 and 816 cm -1, were recorded. The molecular structure of the ABN molecule is discussed by comparing the rotational constants and the inertial defects.

  19. Unusual rotation modes of minor planetary satellites

    NASA Astrophysics Data System (ADS)

    Mel'Nikov, A. V.; Shevchenko, I. I.

    2007-12-01

    An analysis of the character of the possible dynamics of all hitherto known planetary satellites shows two satellites—Amalthea (J5) and Prometheus (S16)—to have the most unusual structure of the phase space of possible rotational motion. These are the only satellites whose phase space of planar rotation may host synchronous resonances of three different kinds: the α resonance, the β resonance, and a mode corresponding to the period doubling bifurcation of the α resonance. We analyze the stability of these states against the tilt of the rotational axis.

  20. Rotational Energy Transfer in N2

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.

    1994-01-01

    Using the N2-N2 intermolecular potential of van der Avoird et al. rotational energy transfer cross sections have been calculated using both the coupled state (CS) and infinite order sudden (IOS) approximations. The rotational energy transfer rate constants at 300 K, calculated in the CS approximation, are in reasonable agreement with the measurements of Sitz and Farrow. The IOS approximation qualitatively reproduces the dependence of the rate constants on the rotational quantum numbers, but consistently overestimates their magnitudes. The treatment of exchange symmetry will be discussed.

  1. Massless rotating fermions inside a cylinder

    SciTech Connect

    Ambruş, Victor E.; Winstanley, Elizabeth

    2015-12-07

    We study rotating thermal states of a massless quantum fermion field inside a cylinder in Minkowski space-time. Two possible boundary conditions for the fermion field on the cylinder are considered: the spectral and MIT bag boundary conditions. If the radius of the cylinder is sufficiently small, rotating thermal expectation values are finite everywhere inside the cylinder. We also study the Casimir divergences on the boundary. The rotating thermal expectation values and the Casimir divergences have different properties depending on the boundary conditions applied at the cylinder. This is due to the local nature of the MIT bag boundary condition, while the spectral boundary condition is nonlocal.

  2. Intramolecular structure and dynamics of mequinol and guaiacol in the gas phase: Rotationally resolved electronic spectra of their S{sub 1} states

    SciTech Connect

    Ruiz-Santoyo, José Arturo; Rodríguez-Matus, Marcela; Álvarez-Valtierra, Leonardo E-mail: gmerino@mda.cinvestav.mx; Cabellos, José Luis; Merino, Gabriel E-mail: gmerino@mda.cinvestav.mx; Yi, John T.; Pratt, David W.; Schmitt, Michael

    2015-09-07

    The molecular structures of guaiacol (2-methoxyphenol) and mequinol (4-methoxyphenol) have been studied using high resolution electronic spectroscopy in a molecular beam and contrasted with ab initio computations. Mequinol exhibits two low frequency bands that have been assigned to electronic origins of two possible conformers of the molecule, trans and cis. Guaiacol also shows low frequency bands, but in this case, the bands have been assigned to the electronic origin and vibrational modes of a single conformer of the isolated molecule. A detailed study of these bands indicates that guaiacol has a vibrationally averaged planar structure in the ground state, but it is distorted along both in-plane and out-of-plane coordinates in the first electronically excited state. An intramolecular hydrogen bond involving the adjacent   –OH and   –OCH{sub 3} groups plays a major role in these dynamics.

  3. The operator product expansion between the 16 lowest higher spin currents in the N=4 superspace

    NASA Astrophysics Data System (ADS)

    Ahn, Changhyun; Kim, Man Hea

    2016-07-01

    Some of the operator product expansions (OPEs) between the lowest 16 higher spin currents of spins (1, 3/2, 3/2, 3/2, 3/2, 2, 2, 2, 2, 2, 2, 5/2, 5/2, 5/2, 5/2, 3) in an extension of the large N=4 linear superconformal algebra were constructed in N=4 superconformal coset SU(5)/SU(3) theory previously. In this paper, by rewriting these OPEs in the N=4 superspace developed by Schoutens (and other groups), the remaining undetermined OPEs in which the corresponding singular terms possess the composite fields with spins s =7/2, 4, 9/2, 5 are completely determined. Furthermore, by introducing arbitrary coefficients in front of the composite fields on the right-hand sides of the above complete 136 OPEs, reexpressing them in the N=2 superspace, and using the N=2 OPEs Mathematica package by Krivonos and Thielemans, the complete structures of the above OPEs with fixed coefficient functions are obtained with the help of various Jacobi identities. We then obtain ten N=2 super OPEs between the four N=2 higher spin currents denoted by (1, 3/2, 3/2, 2), (3/2, 2, 2, 5/2), (3/2, 2, 2, 5/2), and (2, 5/2, 5/2, 3) (corresponding 136 OPEs in the component approach) in the N=4 superconformal coset SU(N+2)/SU(N) theory. Finally, we describe them as one single N=4 super OPE between the above 16 higher spin currents in the N=4 superspace. The fusion rule for this OPE contains the next 16 higher spin currents of spins of (2, 5/2, 5/2, 5/2, 5/2, 3, 3, 3, 3, 3, 3, 7/2, 7/2, 7/2, 7/2, 4) in addition to the quadratic N=4 lowest higher spin multiplet and the large N=4 linear superconformal family of the identity operator. The various structure constants (fixed coefficient functions) appearing on the right-hand side of this OPE depend on N and the level k of the bosonic spin-1 affine Kac-Moody current. For convenience, the above 136 OPEs in the component approach for generic ( N, k) with simplified notation are given.

  4. Exotic Rotational Correlations in Quantum Geometry

    SciTech Connect

    Hogan, Craig

    2015-09-26

    It is argued by extrapolation of general relativity and quantum mechanics that a classical inertial frame corresponds to a statistically defined observable that rotationally fluctuates due to Planck scale indeterminacy. Physical effects of exotic nonlocal rotational correlations on large scale field states are estimated. Their entanglement with the strong interaction vacuum is estimated to produce a universal, statistical centrifugal acceleration that resembles the observed cosmological constant.

  5. Modeling rapidly rotating stars

    NASA Astrophysics Data System (ADS)

    Rieutord, M.

    2006-06-01

    We review the quest of modeling rapidly rotating stars during the past 40 years and detail the challenges to be taken up by models facing new data from interferometry, seismology, spectroscopy... We then present the progress of the ESTER project aimed at giving a physically self-consistent model for the structure and evolution of rapidly rotating stars.

  6. Rotatable shear plate interferometer

    DOEpatents

    Duffus, Richard C.

    1988-01-01

    A rotatable shear plate interferometer comprises a transparent shear plate mounted obliquely in a tubular supporting member at 45.degree. with respect to its horizontal center axis. This tubular supporting member is supported rotatably around its center axis and a collimated laser beam is made incident on the shear plate along this center axis such that defocus in different directions can be easily measured.

  7. The Weighted Oblimin Rotation.

    ERIC Educational Resources Information Center

    Lorenzo-Seva, Urbano

    2000-01-01

    Demonstrates that the weighting procedure proposed by E. Cureton and S. Mulaik (1975) can be applied to the Direct Oblimin approach of D. Clarkson and R. Jennrich (1988) to provide good results. The rotation method obtained is called Weighted Oblimin. Compared this method to other rotation methods with favorable results. (SLD)

  8. CONTROL ROD ROTATING MECHANISM

    DOEpatents

    Baumgarten, A.; Karalis, A.J.

    1961-11-28

    A threaded rotatable shaft is provided which rotates in response to linear movement of a nut, the shaft being surrounded by a pair of bellows members connected to either side of the nut to effectively seal the reactor from leakage and also to store up energy to shut down the reactor in the event of a power failure. (AEC)

  9. Serious rotator cuff injuries.

    PubMed

    Jobe, F W

    1983-07-01

    Usually, serious rotator cuff injuries can be operated upon and a high level of performance can be achieved afer surgery. This is not so for the substantial tears seen in baseball pitchers. However, a damaged rotator cuff can be rehabilitated and can recover from the threatened tear without surgery if detected early enough and given the proper treatment.

  10. THE LOWEST-MASS MEMBER OF THE {beta} PICTORIS MOVING GROUP

    SciTech Connect

    Rice, Emily L.; Faherty, Jacqueline K.; Cruz, Kelle L.

    2010-06-01

    We present spectral and kinematic evidence that 2MASS J06085283-2753583 (M8.5{gamma}) is a member of the {beta} Pictoris Moving Group (BPMG, age {approx}12 Myr), making it the latest-type known member of this young, nearby association. We confirm low-gravity spectral morphology at both medium and high resolutions in the near-infrared. We present new radial velocity and proper motion measurements, and use these to calculate galactic location and space motion consistent with other high-probability members of the BPMG. The predicted mass range consistent with the object's effective temperature, surface gravity, spectral type, and age is 15-35 M {sub Jup}, placing 2MASS 0608-27 well within the brown dwarf mass regime. 2MASS J06085283-2753583 is thus confidently added to the short list of very low mass, intermediate age benchmark objects that inform ongoing searches for the lowest-mass members of nearby young associations.

  11. Widest Separation and the Lowest Mass Objects among Planetary-mass Companion Candidates around Young Stars

    NASA Astrophysics Data System (ADS)

    Oh, D.

    2014-08-01

    Two substellar companion candidates with planetary mass, around a T-Tauri star in the ρ Ophiuchi star-forming region, are discovered by results of near-infrared imaging. Candidates are separated by 1454AU, candi 1 for short, and 542AU, candi 2 for short. There are high possibilities that both candidates are physically related to its primary star from their common proper motions, colors and statistics of YSOs in star forming region. candi 2 is identified as an extremely low-mass object, 0.0070.002 ⊙, and this is the lowest mass among planetary-mass companion(PMC) candidates imaged to date. In addition, separation from its primary star of candi 1, 0.014 ± 0.002 ⊙, is the widest among PMC candidates imaged to date. Formation of these extremely wide separated, > 100AU, PMCs, like candi 1 and c, is not fully explained by current planet formation theories, core accretion or gravitational instability. This discovery may suggest that PMCs separated by > 100AU form via extreme mass ratio case of cloud core fragmentation for multiple stars. Apologies : Because of our team policy, we cannot present the name and details of this target currently.

  12. The Lowest Prevalence of Cholelithiasis in the Americas - An Autopsy-based Study

    PubMed Central

    Asperti, André Marangoni; Reis, Paulo; Diniz, Marcio Augusto; Pinto, Mariana Dourado; da Silva, Edinésio Carlos; da Silva, Danilo Felipe Dias; D’Albuquerque, Luiz Augusto Carneiro; Andraus, Wellington

    2016-01-01

    OBJECTIVES: This study used autopsy to evaluate the prevalence of cholelithiasis and its associated risk factors in a population of healthy, young subjects who suffered a violent or natural death. METHODS: This study is a prospective evaluation of autopsies of 446 individuals from 2011 to 2013 in Brazil. Of that sample, 330 (74%) subjects died from violent deaths and 116 (26%) died naturally. The presence of biliary calculi, previous cholecystectomy, gender, age, ethnicity, body mass index (BMI) and alcohol use were evaluated. RESULTS: In the natural death group, 6.9% (95% CI 3.39 to 13.28) (3.08% of the male subjects and 11.76% of the female subjects) exhibited evidence of gallbladder disease. In the violent death group, only 2.12% (95% CI 0.96 to 4.43) (2.17% of the male subjects and 1.85% of the female subjects) of the subjects exhibited evidence of gallbladder disease. Age was correlated with the prevalence of gallbladder disease, but BMI was correlated with only gallbladder disease in the natural death group. CONCLUSIONS: This population has the lowest prevalence of cholelithiasis in the Americas. Dietary habits, physical activity, ethnicity, alcohol consumption and genetic factors may be responsible for this low prevalence. PMID:27464291

  13. Solar Cycle 24 UV Radiation: Lowest in more than 6 Decades

    NASA Astrophysics Data System (ADS)

    Schroder, Klaus-Peter; Mittag, Marco; Schmitt, J. H. M. M.

    2015-01-01

    Using spectra taken by the robotic telescope ``TIGRE'' (see Fig. 1 and the TIGRE-poster presented by Schmitt et al. at this conference) and its mid-resolution (R=20,000) HEROS double-channel echelle spectrograph, we present our measurements of the solar Ca II H&K chromospheric emission. Using moonlight, we applied the calibration and definition of the Mt. Wilson S-index , which allows a direct comparison with historic observations, reaching back to the early 1960's. At the same time, coming from the same EUV emitting plage regions, the Ca II H&K emission is a good proxy for the latter, which is of interest as a forcing factor in climate models. Our measurements probe the weak, asynchronous activity cycle 24 around its 2nd maximum during the past winter. Our S-values suggest that this maximum is the lowest in chromospheric emission since at least 60 years -- following the longest and deepest minimum since a century. Our observations suggest a similarly long-term (on a scale of decades) low of the far-UV radiation, which should be considered by the next generation of climate models. The current, very interesting activity behaviour calls for a concerted effort on long-term solar monitoring.

  14. Kinetic Simulations of the Lowest-order Unstable Mode of Relativistic Magnetostatic Equilibria

    NASA Astrophysics Data System (ADS)

    Nalewajko, Krzysztof; Zrake, Jonathan; Yuan, Yajie; East, William E.; Blandford, Roger D.

    2016-08-01

    We present the results of particle-in-cell numerical pair plasma simulations of relativistic two-dimensional magnetostatic equilibria known as the “Arnold–Beltrami–Childress” fields. In particular, we focus on the lowest-order unstable configuration consisting of two minima and two maxima of the magnetic vector potential. Breaking of the initial symmetry leads to exponential growth of the electric energy and to the formation of two current layers, which is consistent with the picture of “X-point collapse” first described by Syrovatskii. Magnetic reconnection within the layers heats a fraction of particles to very high energies. After the saturation of the linear instability, the current layers are disrupted and the system evolves chaotically, diffusing the particle energies in a stochastic second-order Fermi process, leading to the formation of power-law energy distributions. The power-law slopes harden with the increasing mean magnetization, but they are significantly softer than those produced in simulations initiated from Harris-type layers. The maximum particle energy is proportional to the mean magnetization, which is attributed partly to the increase of the effective electric field and partly to the increase of the acceleration timescale. We describe in detail the evolving structure of the dynamical current layers and report on the conservation of magnetic helicity. These results can be applied to highly magnetized astrophysical environments, where ideal plasma instabilities trigger rapid magnetic dissipation with efficient particle acceleration and flares of high-energy radiation.

  15. Kinetic Simulations of the Lowest-order Unstable Mode of Relativistic Magnetostatic Equilibria

    NASA Astrophysics Data System (ADS)

    Nalewajko, Krzysztof; Zrake, Jonathan; Yuan, Yajie; East, William E.; Blandford, Roger D.

    2016-08-01

    We present the results of particle-in-cell numerical pair plasma simulations of relativistic two-dimensional magnetostatic equilibria known as the “Arnold-Beltrami-Childress” fields. In particular, we focus on the lowest-order unstable configuration consisting of two minima and two maxima of the magnetic vector potential. Breaking of the initial symmetry leads to exponential growth of the electric energy and to the formation of two current layers, which is consistent with the picture of “X-point collapse” first described by Syrovatskii. Magnetic reconnection within the layers heats a fraction of particles to very high energies. After the saturation of the linear instability, the current layers are disrupted and the system evolves chaotically, diffusing the particle energies in a stochastic second-order Fermi process, leading to the formation of power-law energy distributions. The power-law slopes harden with the increasing mean magnetization, but they are significantly softer than those produced in simulations initiated from Harris-type layers. The maximum particle energy is proportional to the mean magnetization, which is attributed partly to the increase of the effective electric field and partly to the increase of the acceleration timescale. We describe in detail the evolving structure of the dynamical current layers and report on the conservation of magnetic helicity. These results can be applied to highly magnetized astrophysical environments, where ideal plasma instabilities trigger rapid magnetic dissipation with efficient particle acceleration and flares of high-energy radiation.

  16. Compressibility of Ru and Os in Comparison with Hcp ɛ -Fe; the lowest measured compressibility

    NASA Astrophysics Data System (ADS)

    Cynn, H.; Yoo, C.; Iota, V.; Baer, B.

    2001-12-01

    The hardness of a material is strongly correlated with its bulk modulus; thus, the search for superhard materials often becomes the search for very low compressibilities. Diamond is the hardest known material and has the highest known bulk modulus, B0 = 443 GPa (or the lowest compressibility, β = 0.226 Mbar-1). In this paper, we present surprising experimental findings that metallic elements like Os, Ir, and Ru are also good candidates for superhard materials based on their measured low compressibilities. We also present the pressure volume relationships of Ru, Os, and Ir to 70 GPa, in comparison with those of ɛ -Fe, W and C. The results are in a systematic agreement with the change of the bulk moduli and also with the first-principles electronic structure calculations. However, the c/a ratios of the 4,5d-transition metals show a slightly different trend from that of 3d ɛ -Fe at high pressures. Because of the similarity in electronic structure of these metals and Fe, the major constituent of the Earth's core, the EOS's and crystal structural parameters of the Group VIIIA transition metals reported in this paper are central to understanding the Earth's core mineral physics. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  17. Vibrations of an elastic cylindrical shell near the lowest cut-off frequency

    NASA Astrophysics Data System (ADS)

    Kaplunov, J.; Manevitch, L. I.; Smirnov, V. V.

    2016-05-01

    A new asymptotic approximation of the dynamic equations in the two-dimensional classical theory of thin-elastic shells is established for a circular cylindrical shell. It governs long wave vibrations in the vicinity of the lowest cut-off frequency. At a fixed circumferential wavenumber, the latter corresponds to the eigenfrequency of in-plane vibrations of a thin almost inextensible ring. It is stressed that the well-known semi-membrane theory of cylindrical shells is not suitable for tackling a near-cut-off behaviour. The dispersion relation within the framework of the developed formulation coincides with the asymptotic expansion of the dispersion relation originating from full two-dimensional shell equations. Asymptotic analysis also enables refining the geometric hypotheses underlying various ad hoc set-ups, including the assumption on vanishing of shear and circumferential mid-surface deformations used in the semi-membrane theory. The obtained results may be of interest for dynamic modelling of elongated cylindrical thin-walled structures, such as carbon nanotubes.

  18. A DISTINCTIVE DISK-JET COUPLING IN THE LOWEST-MASS SEYFERT, NGC 4395

    SciTech Connect

    King, Ashley L.; Miller, Jon M.; Reynolds, Mark T.; Gueltekin, Kayhan; Gallo, Elena; Maitra, Dipankar

    2013-09-10

    Simultaneous observations of X-rays and radio luminosities have been well studied in accreting stellar-mass black holes. These observations are performed in order to understand how mass accretion rates and jetted outflows are linked in these individual systems. Such contemporaneous studies in supermassive black holes (SMBH) are harder to perform, as viscous times scale linearly with mass. However, as NGC 4395 is the lowest known mass Seyfert galaxy, we have used it to examine the simultaneous X-ray (Swift) and radio (Very Large Array) correlation in a SMBH in a reasonably timed observing campaign. We find that the intrinsic X-ray variability is stronger than the radio variability, and that the fluxes are only weakly or tentatively coupled, similar to prior results obtained in NGC 4051. If the corona and the base of the jet are one and the same, this may suggest that the corona in radio-quiet active galactic nucleus filters disk variations, only transferring the strongest and/or most sustained variations into the jet. Further, when both NGC 4395 and NGC 4051 are placed on the stellar-mass L{sub X} -L{sub R} plane, they appear to reside on the steeper L{sub X} -L{sub R} track. This suggests that SMBHs also follow two distinct tracks just as stellar-mass black holes do, and supports the idea that the same physical disk-jet mechanisms are at play across the mass scale.

  19. CloudLCA: finding the lowest common ancestor in metagenome analysis using cloud computing.

    PubMed

    Zhao, Guoguang; Bu, Dechao; Liu, Changning; Li, Jing; Yang, Jian; Liu, Zhiyong; Zhao, Yi; Chen, Runsheng

    2012-02-01

    Estimating taxonomic content constitutes a key problem in metagenomic sequencing data analysis. However, extracting such content from high-throughput data of next-generation sequencing is very time-consuming with the currently available software. Here, we present CloudLCA, a parallel LCA algorithm that significantly improves the efficiency of determining taxonomic composition in metagenomic data analysis. Results show that CloudLCA (1) has a running time nearly linear with the increase of dataset magnitude, (2) displays linear speedup as the number of processors grows, especially for large datasets, and (3) reaches a speed of nearly 215 million reads each minute on a cluster with ten thin nodes. In comparison with MEGAN, a well-known metagenome analyzer, the speed of CloudLCA is up to 5 more times faster, and its peak memory usage is approximately 18.5% that of MEGAN, running on a fat node. CloudLCA can be run on one multiprocessor node or a cluster. It is expected to be part of MEGAN to accelerate analyzing reads, with the same output generated as MEGAN, which can be import into MEGAN in a direct way to finish the following analysis. Moreover, CloudLCA is a universal solution for finding the lowest common ancestor, and it can be applied in other fields requiring an LCA algorithm. PMID:22426983

  20. Rotation sensor switch

    DOEpatents

    Sevec, John B.

    1978-01-01

    A protective device to provide a warning if a piece of rotating machinery slows or stops comprises a pair of hinged weights disposed to rotate on a rotating shaft of the equipment. When the equipment is rotating, the weights remain in a plane essentially perpendicular to the shaft and constitute part of an electrical circuit that is open. When the shaft slows or stops, the weights are attracted to a pair of concentric electrically conducting disks disposed in a plane perpendicular to the shaft and parallel to the plane of the weights when rotating. A disk magnet attracts the weights to the electrically conducting plates and maintains the electrical contact at the plates to complete an electrical circuit that can then provide an alarm signal.

  1. Slowly rotating homogeneous masses revisited

    NASA Astrophysics Data System (ADS)

    Reina, Borja

    2016-02-01

    Hartle's model for slowly rotating stars has been extensively used to compute equilibrium configurations of slowly rotating stars to second order in perturbation theory in general relativity, given a barotropic equation of state. A recent study based on the modern theory of perturbed matchings concludes that the functions in the (first and second order) perturbation tensors can always be taken as continuous at the surface of the star, except for the second-order function m0. This function presents a jump at the surface of the star proportional to the discontinuity of the energy density there. This concerns only a particular outcome of the model: the change in mass δM. In this paper, the amended change in mass is calculated for the case of constant density stars.

  2. Ergonomics and biology of spinal rotation.

    PubMed

    Kumar, Shrawan

    2004-03-15

    Spinal rotation, though being a very common motion of the body, is poorly understood. Furthermore, this motion and the extent of its development is unique to the human. Beyond the extent of its need in common activities, spinal rotation is a destabilizating motion for an inherently unstable structure. Spinal rotation has been argued to be an essential feature for an efficient bipedal gait. Also, it provides leverage to the upper extremities in delivering a forceful impact. An artificial restriction/elimination of spinal rotation resulted in significantly shorter stride length, slower walking velocity, and higher energy consumption in walking (p < 0.05). Spinal rotation also decreases the amount of force the spinal muscles can generate (to 25% of spinal extension). However, its extensive employment in industrial activities has been associated with 60.4% of back injuries. It is further stated that the amount of scientific information currently available is inadequate to biomechanically model the spinal response in a working environment. For example, when the spine is pre-rotated, a further rotation in the direction of pre-rotation decreases the force production significantly (p < 0.01) and increases the EMG activity significantly (p < 0.01) but the pattern changes with effort in the opposite direction. This and other properties (described in the paper) render biomechanical models inadequate. Muscle activation pattern and neuromotor behaviour of spinal muscles in flexion/extension and rotation of the spine are significantly different from each other (p < 0.01). The localized fatigue in different spinal muscles in the same contraction is significantly different and has been called differential fatigue. Finally, the trunk rotation, being pivotal for bipedal locomotion has brought many back problems to the human race.

  3. Static Properties and Stark Effect of the Ground State of the HD Molecular Ion

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Drachman, Richard J.

    1999-01-01

    We have calculated static properties of the ground state of the HD(+) ion and its lowest-lying P-state without making use of the Born-Oppenheimer approximation, as was done in the case of H2(+) and D2(+) [Phys. Rev. A 58, 2787 (1998)]. The ion is treated as a three-body system whose ground state is spherically symmetric. The wavefunction is of generalized Hylleraas type, but it is necessary to include high powers of the internuclear distance to localize the nuclear motion. We obtain good values of the energies of the ground S-state and lowest P-state and compare them with earlier calculations. Expectation values are obtained for various operators, the Fermi contact parameters, and the permanent quadrupole moment. The cusp conditions are also calculated. The polarizability was then calculated using second-order perturbation theory with intermediate P pseudostates. Since the nuclei in HD(+) are not of equal mass there is dipole coupling between the lowest two rotational states, which are almost degenerate. This situation is carefully analyzed, and the Stark shift is calculated variationally as a function of the applied electric field.

  4. Detection of closed influenza virus hemagglutinin fusion peptide structures in membranes by backbone (13)CO- (15)N rotational-echo double-resonance solid-state NMR.

    PubMed

    Ghosh, Ujjayini; Xie, Li; Weliky, David P

    2013-02-01

    The influenza virus fusion peptide is the N-terminal ~20 residues of the HA2 subunit of the hemagglutinin protein and this peptide plays a key role in the fusion of the viral and endosomal membranes during initial infection of a cell. The fusion peptide adopts N-helix/turn/C-helix structure in both detergent and membranes with reports of both open and closed interhelical topologies. In the present study, backbone (13)CO-(15)N REDOR solid-state NMR was applied to the membrane-associated fusion peptide to detect the distribution of interhelical distances. The data clearly showed a large fraction of closed and semi-closed topologies and were best-fitted to a mixture of two structures that do not exchange. One of the earlier open structural models may have incorrect G13 dihedral angles derived from TALOS analysis of experimentally correct (13)C shifts.

  5. Numbers of Stroke Patients and Stroke Subtypes According to Highest and Lowest Daily Temperatures in Seoul

    PubMed Central

    Shin, Dong-Won; Yoon, Jee-Eun; Hwang, Hye-Won; Kim, Ji-Sun; Park, Sukh-Que; Roh, Hakjae; Ahn, Moo-Young

    2016-01-01

    Background and Purpose There is conflicting evidence for whether or not the incidence of stroke is influenced by the daily temperature. The association between daily temperature and incidence of stroke is largely unknown in Korea. This study attempted to evaluate whether the maximum or minimum daily temperature is associated with increased numbers of strokes and stroke subtypes among Seoul residents. Methods We obtained the maximum and minimum daily temperatures in Seoul from the Korean Meteorological Administration between January 2005 and December 2014. Consecutive patients with acute stroke were registered who visited the emergency room or outpatient clinic in Soonchunhyang University Hospital, Seoul. The residential addresses of cases were restricted to within a 2-kilometer radius of this hospital. The stroke events were prospectively recorded with onset time, and were classified by subtypes. The categories of daily temperature were divided by 10℃ from the mean temperature. The mean daily number of strokes was calculated during the study period. One-way analysis of variance and Duncan's post-hoc test were applied to compare the number of strokes among the temperature groups. Results In total, 2,313 acute strokes were identified during the period: 1,643 ischemic strokes and 670 hemorrhagic strokes. The number of cases was significantly higher when the maximum daily temperature was >32℃ or ≤3℃ (p=0.048) or the minimum daily temperature was ≤-11.0℃ (p=0.020). The lowest maximum daily temperature was associated with increased instances of intracerebral hemorrhage (p=0.029) and small-vessel occlusion (p=0.013), while the highest maximum daily temperature was associated with an increased instance of large-artery atherosclerosis (p=0.045). Conclusions The daily temperature had measurable and different associations with the number of strokes and strokes subtypes in Seoul, Korea.

  6. Pricing equity warrants with a promised lowest price in Merton's jump-diffusion model

    NASA Astrophysics Data System (ADS)

    Xiao, Weilin; Zhang, Xili

    2016-09-01

    Motivated by the empirical evidence of jumps in the dynamics of firm behavior, this paper considers the problem of pricing equity warrants in the presence of a promised lowest price when the price of the underlying asset follows the Merton's jump-diffusion process. Using the Martingale approach, we propose a valuation model of equity warrants based on the firm value, its volatility, and parameters of the jump component, which are not directly observable. To implement our pricing model empirically, this paper also provides a promising estimation method for obtaining these desired variables based on observable data, such as stock prices and the book value of total liability. We conduct an empirical study to ascertain the performance of our proposed model using the data of Changdian warrant collected from 25 May 2006 (the listing date) to 29 January 2007 (the expiration date). Furthermore, the comparison of traditional models (such as the Black-Scholes model, the Noreen-Wolfson model, the Lauterbach-Schultz model, and the Ukhov model) with our model is presented. From the empirical study, we can see that the mean absolute error of our pricing model is 16.75%. By contrast, the Black-Scholes model, the Noreen-Wolfson model, the Lauterbach-Schultz model, and the Ukhov model applied to the same warrant produce mean absolute errors of 92.24%, 45.38%, 87.34%, 76.12%, respectively. Thus both the dilution effect and the jump feature cannot be ignored in determining the valuation of equity warrants.

  7. HH 1158: THE LOWEST LUMINOSITY EXTERNALLY IRRADIATED HERBIG–HARO JET

    SciTech Connect

    Riaz, B.; Whelan, E. T.

    2015-12-20

    We have identified a new externally irradiated Herbig–Haro (HH) jet, HH 1158, within ∼2 pc of the massive OB type stars in the σ Orionis cluster. At an L{sub bol} ∼ 0.1 L{sub ⊙}, HH 1158 is the lowest luminosity irradiated HH jet identified to date in any cluster. Results from the analysis of high-resolution optical spectra indicate asymmetries in the brightness, morphology, electron density, velocity, and the mass outflow rates for the blue and redshifted lobes. We constrain the position angle of the HH 1158 jet at 102° ± 5°. The mass outflow rate and the mean accretion rate for HH 1158 using multiple diagnostics are estimated to be (5.2 ± 2.6) × 10{sup −10} M{sub ⊙} yr{sup −1} and (3.0 ± 1.0) × 10{sup −10} M{sub ⊙} yr{sup −1}, respectively. The properties for HH 1158 are notably similar to the externally irradiated HH 444–HH 447 jets previously identified in σ Orionis. In particular, the morphology is such that the weaker jet beam is tilted toward the massive stars, indicating a higher extent of photo-evaporation. The high value for the Hα/[S ii] ratio is also consistent with the ratios measured in other irradiated jets, including HH 444–HH 447. The presence of an extended collimated jet that is bipolar and the evidence of shocked emission knots make HH 1158 the first unique case of irradiated HH jets at the very low-luminosity end, and provides an opportunity to learn the physical properties of very faint HH jet sources.

  8. Non-rotating and rotating radiative-convective equilibrium

    NASA Astrophysics Data System (ADS)

    Zhou, Wenyu

    Radiative-convective equilibrium (RCE), in which the radiative cooling in the atmosphere is balanced by the convective heating in a horizontally homogeneous environment, is a good starting point for studying tropical convection. It also provides an idealized framework to compare analogous simulations by global climate models (GCMs) which rely on convective parameterizations, and cloud-resolving models (CRMs) which aim to explicitly resolve moist convection. In this work, we seek to further our understanding of tropical cyclones and convective aggregation in the idealized framework of non-rotating and rotating RCE with both types of models. First, we achieve rotating RCE by coupling the resolution and physics of a GCM to rotating hydrostatic dynamics. A large doubly-periodic f-plane is used to allow multiple tropical cyclones (TCs) to coexist. Both cases with fixed and coupled sea surface temperature (SST) are considered. For fixed SST, the sensitivity to environmental parameters is investigated. Particularly, we find that the intensity, radius of maximum wind and size of TCs increase with SST. For coupled SST, SST is predicted using a simple slab ocean model. The effect of the eyewall cooling on TC intensity is studied. We show that Potential-Intensity theory overestimates the impact of the eyewall cooling on TC intensity, as its key assumption that entropy is well-mixed along angular-momentum surfaces within the atmospheric boundary layer no longer holds in cases with substantial eyewall cooling. We then study TC genesis with a small doubly-periodic f-plane. Through cloud-resolving simulations, we show that vertical shear plays an important role on regulating the sensitivity of tropical cyclogenesis to both the environmental rotation and thermodynamic state. As indicated by analogous simulations with the resolution and physics of GCMs, such effects of wind shear might not be fully represented in GCMs. Finally, we investigate convective self-aggregation from non-rotating

  9. Solitary waves of the rotation-modified Kadomtsev Petviashvili equation

    NASA Astrophysics Data System (ADS)

    Chen, Robin Ming; Mikyoung Hur, Vera; Liu, Yue

    2008-12-01

    The rotation-modified Kadomtsev-Petviashvili equation describes small-amplitude, long internal waves propagating in one primary direction in a rotating frame of reference. The main investigation is the existence and properties of its solitary waves. The existence and nonexistence results for the solitary waves are obtained, and their regularity and decay properties are established. Various characterizations are given for the ground states and their cylindrical symmetry is demonstrated. When the effects of rotation are weak, the energy minima constrained by constant momentum are shown to be nonlinearly stable. The weak rotation limit of solitary waves as the rotation parameter tends to zero is studied.

  10. Random rotation survival forest for high dimensional censored data.

    PubMed

    Zhou, Lifeng; Wang, Hong; Xu, Qingsong

    2016-01-01

    Recently, rotation forest has been extended to regression and survival analysis problems. However, due to intensive computation incurred by principal component analysis, rotation forest often fails when high-dimensional or big data are confronted. In this study, we extend rotation forest to high dimensional censored time-to-event data analysis by combing random subspace, bagging and rotation forest. Supported by proper statistical analysis, we show that the proposed method random rotation survival forest outperforms state-of-the-art survival ensembles such as random survival forest and popular regularized Cox models. PMID:27625979

  11. ROTATING GLOBULAR CLUSTERS

    SciTech Connect

    Bianchini, P.; Varri, A. L.; Bertin, G.; Zocchi, A.

    2013-07-20

    Internal rotation is thought to play a major role in the dynamics of some globular clusters. However, in only a few cases has internal rotation been studied by the quantitative application of realistic and physically justified global models. Here, we present a dynamical analysis of the photometry and three-dimensional kinematics of {omega} Cen, 47 Tuc, and M15, by means of a recently introduced family of self-consistent axisymmetric rotating models. The three clusters, characterized by different relaxation conditions, show evidence of differential rotation and deviations from sphericity. The combination of line-of-sight velocities and proper motions allows us to determine their internal dynamics, predict their morphology, and estimate their dynamical distance. The well-relaxed cluster 47 Tuc is interpreted very well by our model; internal rotation is found to explain the observed morphology. For M15, we provide a global model in good agreement with the data, including the central behavior of the rotation profile and the shape of the ellipticity profile. For the partially relaxed cluster {omega} Cen, the selected model reproduces the complex three-dimensional kinematics; in particular, the observed anisotropy profile, characterized by a transition from isotropy to weakly radial anisotropy and then to tangential anisotropy in the outer parts. The discrepancy found for the steep central gradient in the observed line-of-sight velocity dispersion profile and for the ellipticity profile is ascribed to the condition of only partial relaxation of this cluster and the interplay between rotation and radial anisotropy.

  12. Anomalous hyperfine structure of NSF{sub 3} in the degenerate vibrational state v{sub 5}=1: Lifting of the parity degeneracy by the fluorine spin-rotation interaction

    SciTech Connect

    Harder, Hauke; Macholl, Sven; Maeder, Heinrich; Fusina, Luciano; Ozier, Irving

    2010-03-15

    For the principal isotopologue {sup 14}N{sup 32}S{sup 19}F{sub 3} of thiazyl trifluoride in the degenerate fundamental state (v{sub 5}=1), the hyperfine structure has been investigated in the Q-branch spectrum between 8 and 26.5 GHz using microwave Fourier transform waveguide spectrometers with a resolution limit of {approx_equal}30 kHz. In addition to l-type doubling spectra and l-type resonance transitions with ({Delta}k={Delta}l={+-}2), perturbation-allowed spectra were measured with {Delta}(k-l)={+-}3,{+-}6. The range in J was from 13 to 61; for the lower states, kl=-3,-2,-1,0,+1. For all the transitions, the hyperfine patterns observed are predicted to be doublets when only the nitrogen quadrupole Hamiltonian H{sub Q}{sup N} is taken into account. Doublets were indeed measured for transitions with {Gamma}{sub RV}=A{sub 1{r_reversible}}A{sub 2}, where {Gamma}{sub RV} is the rovibrational symmetry. However, when {Gamma}{sub RV}=E{r_reversible}E, triplets and quartets were observed in addition to doublets. These anomalous hyperfine patterns are shown to be due to the ({Delta}k={+-}1) and ({Delta}k={+-}2) matrix elements of the fluorine spin-rotation Hamiltonian H{sub SR}{sup F} characterized by the fluorine spin-rotation constants c(1)=(1/2)(c{sub xz}+c{sub zx}{sup *}) and c(2)=(1/2)(c{sub xx}-c{sub yy}), respectively. These terms in H{sub SR}{sup F} lift the parity degeneracy for {Gamma}{sub RV}=E. The rovibrational Hamiltonian H{sub RV} was adopted from an earlier partner study [S. Macholl et al., J. Phys. Chem. A 113, 668 (2009)]. A good fit to the hyperfine data was obtained with a standard deviation of 3.1 kHz. In the fitting process, 12 rovibrational parameters were varied, while the remaining constants in H{sub RV} were left at the values of Macholl et al. In addition, six hyperfine parameters were determined: four in H{sub Q}{sup N}, and two in H{sub SR}{sup F}. It was found that |c(1)|=7.48(24) kHz and |c(2)|=2.423(22) kHz. This determination of c(1) is

  13. Rotating reactor studies

    NASA Technical Reports Server (NTRS)

    Roberts, Glyn O.

    1991-01-01

    Undesired gravitational effects such as convection or sedimentation in a fluid can sometimes be avoided or decreased by the use of a closed chamber uniformly rotated about a horizontal axis. In a previous study, the spiral orbits of a heavy or buoyant particle in a uniformly rotating fluid were determined. The particles move in circles, and spiral in or out under the combined effects of the centrifugal force and centrifugal buoyancy. A optimization problem for the rotation rate of a cylindrical reactor rotated about its axis and containing distributed particles was formulated and solved. Related studies in several areas are addressed. A computer program based on the analysis was upgraded by correcting some minor errors, adding a sophisticated screen-and-printer graphics capability and other output options, and by improving the automation. The design, performance, and analysis of a series of experiments with monodisperse polystyrene latex microspheres in water were supported to test the theory and its limitations. The theory was amply confirmed at high rotation rates. However, at low rotation rates (1 rpm or less) the assumption of uniform solid-body rotation of the fluid became invalid, and there were increasingly strong secondary motions driven by variations in the mean fluid density due to variations in the particle concentration. In these tests the increase in the mean fluid density due to the particles was of order 0.015 percent. To a first approximation, these flows are driven by the buoyancy in a thin crescent-shaped depleted layer on the descending side of the rotating reactor. This buoyancy distribution is balanced by viscosity near the walls, and by the Coriolis force in the interior. A full analysis is beyond the scope of this study. Secondary flows are likely to be stronger for buoyant particles, which spiral in towards the neutral point near the rotation axis under the influence of their centrifugal buoyancy. This is because the depleted layer is

  14. Rotatable seal assembly. [Patent application; rotating targets

    DOEpatents

    Logan, C.M.; Garibaldi, J.L.

    1980-11-12

    An assembly is provided for rotatably supporting a rotor on a stator so that vacuum chambers in the rotor and stator remain in communication while the chambers are sealed from ambient air, which enables the use of a ball bearing or the like to support most of the weight of the rotor. The apparatus includes a seal device mounted on the rotor to rotate therewith, but shiftable in position on the rotor while being sealed to the rotor as by an O-ring. The seal device has a flat face that is biased towards a flat face on the stator, and pressurized air is pumped between the faces to prevent contact between them while spacing them a small distance apart to avoid the inflow of large amounts of air between the faces and into the vacuum chambers.

  15. Acoustic rotation control

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Croonquist, A. P.; Wang, T. G. (Inventor)

    1983-01-01

    A system is described for acoustically controlled rotation of a levitated object, which avoids deformation of a levitated liquid object. Acoustic waves of the same wavelength are directed along perpendicular directions across the object, and with the relative phases of the acoustic waves repeatedly switched so that one wave alternately leads and lags the other by 90 deg. The amount of torque for rotating the object, and the direction of rotation, are controlled by controlling the proportion of time one wave leads the other and selecting which wave leads the other most of the time.

  16. Chaotic rotation of Hyperion?

    NASA Technical Reports Server (NTRS)

    Binzel, R. P.; Green, J. R.; Opal, C. B.

    1986-01-01

    Thomas et al. (1984) analyzed 14 Voyager 2 images of Saturn's satellite Hyperion and interpreted them to be consistent with a coherent (nonchaotic) rotation period of 13.1 days. This interpretation was criticized by Peale and Wisdom (1984), who argued that the low sampling frequency of Voyager data does not allow chaotic or nonchaotic rotation to be distinguished. New observations obtained with a higher sampling frequency are reported here which conclusively show that the 13.1 day period found by Thomas et al. was not due to coherent rotation.

  17. Description of ligand field splitting in terms of density functional theory: Split levels of the lowest-lying subterms of the 4f{sup n{minus}1}6s{sup 2} (n=3{endash}14) configurations in lanthanide monofluorides LnF (Ln=Pr{endash}Yb)

    SciTech Connect

    Ren, J.; Whangbo, M.; Dai, D.; Li, L.

    1998-05-01

    The split levels associated with the lowest-lying subterms of the 4f{sup n{minus}1}6s{sup 2} (n=3{endash}14) configurations of lanthanide monofluorides LnF (Ln=Pr{endash}Yb) were calculated by employing the combined ligand field and density functional theory (CLDT) method recently proposed. The 288 calculated split levels are in excellent agreement with experiment and hence shows that the CLDT method can accurately reproduce the low-lying electronic excited states of lanthanide compounds. To quantitatively describe the low-lying electronic states of a lanthanide compound, therefore, the effective ligand potential must include the Coulomb and exchange-correlation potentials of the compound as well as the pseudopotentials of the ligands. {copyright} {ital 1998 American Institute of Physics.}

  18. Effectiveness of pre-admission data and letters of recommendation to predict students who will need professional behavior intervention during clinical rotations in the United States

    PubMed Central

    2016-01-01

    The study aimed at finding the value of letters of recommendation in predicting professional behavior problems in the clinical portion of a Doctor of Physical Therapy program learning cohorts from 2009-2014 in the United States. De-identified records of 137 Doctor of Physical Therapy graduates were examined by the descriptive statistics and comparison analysis. Thirty letters of recommendation were investigated based on grounded theory from 10 student applications with 5 randomly selected students of interest and 5 non-students of interest. Critical thinking, organizational skills, and judgement were statistically significant and quantitative differentiating characteristics. Qualitatively, significant characteristics of the student of interest included effective communication and cultural competency. Meanwhile, those of nonstudents of interest included conflicting personality descriptor, commitment to learning, balance, teamwork skills, potential future success, compatible learning skills, effective leadership skills, and emotional intelligence. Emerged significant characteristics did not consistently match common non-professional behavior issues encountered in clinic. Pre-admission data and letters of recommendation appear of limited value in predicting professional behavior performance in clinic. PMID:27378011

  19. Effectiveness of pre-admission data and letters of recommendation to predict students who will need professional behavior intervention during clinical rotations in the United States.

    PubMed

    Engelhard, Chalee; Leugers, Rebecca; Stephan, Jenna

    2016-01-01

    The study aimed at finding the value of letters of recommendation in predicting professional behavior problems in the clinical portion of a Doctor of Physical Therapy program learning cohorts from 2009-2014 in the United States. De-identified records of 137 Doctor of Physical Therapy graduates were examined by the descriptive statistics and comparison analysis. Thirty letters of recommendation were investigated based on grounded theory from 10 student applications with 5 randomly selected students of interest and 5 non-students of interest. Critical thinking, organizational skills, and judgement were statistically significant and quantitative differentiating characteristics. Qualitatively, significant characteristics of the student of interest included effective communication and cultural competency. Meanwhile, those of nonstudents of interest included conflicting personality descriptor, commitment to learning, balance, teamwork skills, potential future success, compatible learning skills, effective leadership skills, and emotional intelligence. Emerged significant characteristics did not consistently match common non-professional behavior issues encountered in clinic. Pre-admission data and letters of recommendation appear of limited value in predicting professional behavior performance in clinic. PMID:27378011

  20. Effectiveness of pre-admission data and letters of recommendation to predict students who will need professional behavior intervention during clinical rotations in the United States.

    PubMed

    Engelhard, Chalee; Leugers, Rebecca; Stephan, Jenna

    2016-01-01

    The study aimed at finding the value of letters of recommendation in predicting professional behavior problems in the clinical portion of a Doctor of Physical Therapy program learning cohorts from 2009-2014 in the United States. De-identified records of 137 Doctor of Physical Therapy graduates were examined by the descriptive statistics and comparison analysis. Thirty letters of recommendation were investigated based on grounded theory from 10 student applications with 5 randomly selected students of interest and 5 non-students of interest. Critical thinking, organizational skills, and judgement were statistically significant and quantitative differentiating characteristics. Qualitatively, significant characteristics of the student of interest included effective communication and cultural competency. Meanwhile, those of nonstudents of interest included conflicting personality descriptor, commitment to learning, balance, teamwork skills, potential future success, compatible learning skills, effective leadership skills, and emotional intelligence. Emerged significant characteristics did not consistently match common non-professional behavior issues encountered in clinic. Pre-admission data and letters of recommendation appear of limited value in predicting professional behavior performance in clinic.