Science.gov

Sample records for lowest singlet excitation

  1. Ultrafast internal conversion of excited cytosine via the lowest pipi electronic singlet state.

    PubMed

    Merchán, Manuela; Serrano-Andrés, Luis

    2003-07-09

    Computational evidence at the CASPT2 level supports that the lowest excited state pipi* contributes to the S1/S0 crossing responsible for the ultrafast decay of singlet excited cytosine. The computed radiative lifetime, 33 ns, is consistent with the experimentally derived value, 40 ns. The nOpi* state does not play a direct role in the rapid repopulation of the ground state; it is involved in a S2/S1 crossing. Alternative mechanisms through excited states pisigma* or nNpi* are not competitive in cytosine.

  2. Excited state properties of peridinin: Observation of a solvent dependence of the lowest excited singlet state lifetime and spectral behavior unique among carotenoids

    SciTech Connect

    Bautista, J.A.; Connors, R.E.; Raju, B.B.; Hiller, R.G.; Sharples, F.P.; Gosztola, D.; Wasielewski, M.R.; Frank, H.A.

    1999-10-14

    The spectroscopic properties and dynamic behavior of peridinin in several different solvents were studied by steady-state absorption, fluorescence, and transient optical spectroscopy. The lifetime of the lowest excited singlet state of peridinin is found to be strongly dependent on solvent polarity and ranges from 7 ps in the strongly polar solvent trifluoroethanol to 172 ps in the nonpolar solvents cyclohexane and benzene. The lifetimes show no obvious correlation with solvent polarizability, and hydrogen bonding of the solvent molecules to peridinin is not an important factor in determining the dynamic behavior of the lowest excited singlet state. The wavelengths of emission maxima, the quantum yields of fluorescence, and the transient absorption spectra are also affected by the solvent environment. A model consistent with the data and supported by preliminary semiempirical calculations invokes the presence of a charge transfer state in the excited state manifold of peridinin to account for the observations. The charge transfer state most probably results from the presence of the lactone ring in the {pi}-electron conjugation of peridinin analogous to previous findings on aminocoumarins and related compounds. The behavior of peridinin reported here is highly unusual for carotenoids, which generally show little dependence of the spectral properties and lifetimes of the lowest excited singlet state on the solvent environment.

  3. Effect of hydration on the lowest singlet PiPi* excited-state geometry of guanine: a theoretical study.

    PubMed

    Shukla, M K; Leszczynski, Jerzy

    2005-09-15

    An ab-initio computational study was performed to investigate the effect of explicit hydration on the ground and lowest singlet PiPi* excited-state geometry and on the selected stretching vibrational frequencies corresponding to the different NH sites of the guanine acting as hydrogen-bond donors. The studied systems consisted of guanine interacting with one, three, five, six, and seven water molecules. Ground-state geometries were optimized at the HF level, while excited-state geometries were optimized at the CIS level. The 6-311G(d,p) basis set was used in all calculations. The nature of potential energy surfaces was ascertained via the harmonic vibrational frequency analysis; all structures were found minima at the respective potential energy surfaces. The changes in the geometry and the stretching vibrational frequencies of hydrogen-bond-donating sites of the guanine in the ground and excited state consequent to the hydration are discussed. It was found that the first solvation shell of the guanine can accommodate up to six water molecules. The addition of the another water molecule distorts the hydrogen-bonding network by displacing other neighboring water molecules away from the guanine plane.

  4. Five-membered rings as diazo components in optical data storage devices: an ab initio investigation of the lowest singlet excitation energies

    NASA Astrophysics Data System (ADS)

    Åstrand, Per-Olof; Sommer-Larsen, Peter; Hvilsted, Søren; Ramanujam, P. S.; Bak, Keld L.; Sauer, Stephan P. A.

    2000-07-01

    The two lowest singlet excitation energies of 18 azo dyes have been studied by ab initio quantum-chemical methods within the second-order polarization propagator approximation (SOPPA). Various combinations of five-membered rings (furan, thiophene, pyrrole, oxazole, thiazole, and imidazole) have been investigated as diazo components for a potential use in optical data storage materials. It is found that the diazo compounds with two heterocyclic five-membered rings have π→π ∗ excitation energies corresponding to laser wavelengths in the region 450-500 nm whereas one five-membered ring and a phenyl group as diazo components results in wavelengths in the region 400-435 nm.

  5. S1←S0 vibronic spectra and structure of cyclopropanecarboxaldehyde molecule in the S1 lowest excited singlet electronic state

    NASA Astrophysics Data System (ADS)

    Godunov, I. A.; Yakovlev, N. N.; Terentiev, R. V.; Maslov, D. V.; Bataev, V. A.; Abramenkov, A. V.

    2016-11-01

    The S1←S0 vibronic spectra of gas-phase absorption at room temperature and fluorescence excitation of jet-cooled cyclopropanecarboxaldehyde (CPCA, c-C3H5CHO)were obtained and analyzed. In addition, the quantum chemical calculation (CASPT2/cc-pVTZ)was carried out for CPCA in the ground (S0) and lowest excited singlet (S1) electronic states. As a result, it was proved that the S1←S0 electronic excitation of the CPCA conformers (syn and anti) causes (after geometrical relaxation) significant structural changes, namely, the carbonyl fragments become non-planar and the cyclopropyl groups rotate around the central C-C bond. As a consequence, the potential energy surface of CPCA in the S1 state has six minima, 1ab, 2ab, and 3ab, corresponding to three pairs of mirror symmetry conformers: a and b. It was shown that vibronic bands of experimental spectra can be assigned to the 2(S1)←syn(S0) electronic transition with the origin at 30,481 cm-1. A number of fundamental vibrational frequencies for the 2 conformer of CPCA were assigned. In addition, several inversional energy levels for the 2 conformer were found and the 2a↔2b potential function of inversion was determined. The experimental barrier to inversion and the equilibrium angle between the CH bond and the CCO plane were calculated as 570 cm-1 and 28°, respectively.

  6. Temperature dependence of the lowest excited singlet-state lifetime of all- trans -. beta. -carotene and fully deuterated all- trans -. beta. -carotene

    SciTech Connect

    Wasielewski, M.R.; Johnson, D.G. ); Bradford, E.G.; Kispert, L.D. )

    1989-12-01

    A 4 ps, 450 nm laser pulse was used to electronically excite all-{ital trans}-{beta}-carotene and all-{ital trans}-{beta}-carotene-{ital d}{sub 56} in 3-methylpentane. The transient absorption spectra of these molecules were measured as a function of temperature down to 20 K. In all cases the 400--500 nm electronic absorption band of each carotene bleaches and a new absorption band near 560 nm appears immediately upon excitation. These bands recover with single exponential kinetics: {tau}=8.1{plus minus}0.5 ps for all-{ital trans}-{beta}-carotene, and {tau}=10.5{plus minus}0.6 ps for all-{ital trans}-{beta}-carotene-{ital d}{sub 56} at 294 K. These recovery times increase by about a factor of 2 in glassy 3-methylpentane, and are nearly independent of temperature from 100 to 20 K. The weak dependencies of the lowest excited single-state lifetime of all-{ital trans}-{beta}-carotene on deuteration and temperature are discussed in terms of nonradiative decay mechanisms within carotenoids.

  7. Ab Initio Calculations of Singlet and Triplet Excited States of Chlorine Nitrate and Nitric Acid

    NASA Technical Reports Server (NTRS)

    Grana, Ana M.; Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    Ab initio calculations of vertical excitations to singlet and triplet excited states of chlorine nitrate and nitric acid are reported. The nature of the electronic transitions are examined by decomposing the difference density into the sum of detachment and attachment densities. Counterparts for the three lowest singlet excited states of nitric acid survive relatively unperturbed in chlorine nitrate, while other low-lying singlet states of chlorine nitrate appear to be directly dissociative in the ClO chromophore. These results suggest an assignment of the two main peaks in the experimental chlorine nitrate absorption spectrum. In addition, triplet vertical excitations and the lowest optimized triplet geometries of both molecules are studied.

  8. Conical intersections and diabatic potential energy surfaces for the three lowest electronic singlet states of H3 (+).

    PubMed

    Mukherjee, Saikat; Mukhopadhyay, Debasis; Adhikari, Satrajit

    2014-11-28

    We calculate the adiabatic Potential Energy Surfaces (PESs) and the Non-Adiabatic Coupling Terms (NACTs) for the three lowest singlet states of H3 (+) in hyperspherical coordinates as functions of hyperangles (θ and ϕ) for a grid of fixed values of hyperradius (1.5 ⩽ ρ ⩽ 20 bohrs) using the MRCI level of methodology employing ab initio quantum chemistry package (MOLPRO). The NACT between the ground and the first excited state translates along the seams on the θ - ϕ space, i.e., there are six Conical Intersections (CIs) at each θ (60° ⩽ θ ⩽ 90°) within the domain, 0 ⩽ ϕ ⩽ 2π. While transforming the adiabatic PESs to the diabatic ones, such surfaces show up six crossings along those seams. Our beyond Born-Oppenheimer approach could incorporate the effect of NACTs accurately and construct single-valued, continuous, smooth, and symmetric diabatic PESs. Since the location of CIs and the spatial amplitudes of NACTs are most prominent around ρ = 10 bohrs, generally only those results are depicted.

  9. Lowest ^{2}S Electronic Excitations of the Boron Atom.

    PubMed

    Bubin, Sergiy; Adamowicz, Ludwik

    2017-01-27

    A theoretical ab initio approach for calculating bound states of small atoms is developed and implemented. The approach is based on finite-nuclear-mass [non-Born-Oppenheimer (non-BO)] nonrelativistic variational calculations performed with all-particle explicitly correlated Gaussian functions and includes the leading relativistic and quantum electrodynamics energy corrections determined using the non-BO wave functions. The approach is applied to determine the total and transition energies for the lowest four ^{2}S electronic excitations of the boron atom. The transition energies agree with the available experimental values within 0.2-0.3  cm^{-1}. Previously, such accuracy was achieved for three- and four-electron systems.

  10. Lowest 2S Electronic Excitations of the Boron Atom

    NASA Astrophysics Data System (ADS)

    Bubin, Sergiy; Adamowicz, Ludwik

    2017-01-01

    A theoretical ab initio approach for calculating bound states of small atoms is developed and implemented. The approach is based on finite-nuclear-mass [non-Born-Oppenheimer (non-BO)] nonrelativistic variational calculations performed with all-particle explicitly correlated Gaussian functions and includes the leading relativistic and quantum electrodynamics energy corrections determined using the non-BO wave functions. The approach is applied to determine the total and transition energies for the lowest four 2S electronic excitations of the boron atom. The transition energies agree with the available experimental values within 0.2 - 0.3 cm-1 . Previously, such accuracy was achieved for three- and four-electron systems.

  11. The excitation intensity dependence of singlet fission dynamics of a rubrene microcrystal studied by femtosecond transient microspectroscopy.

    PubMed

    Ishibashi, Y; Inoue, Y; Asahi, T

    2016-10-05

    We have investigated the excitation intensity dependence of the singlet fission in a crystalline rubrene by means of femtosecond transient absorption microspectroscopy. When a rubrene microcrystal was excited to higher energy levels than that of the lowest singlet excited (S1) state with a 397 nm femtosecond laser pulse, a triplet excited state was formed through two pathways of the singlet fission, i.e. the direct fission from higher vibrational levels of the S1 state with a time constant of 2.2 ps and the thermally activated fission from the S1 state in a few tens of ps. The time constant of the thermally activated fission changed from 35 to 17 ps for increasing of the laser fluence from 0.65 to 18 mJ cm(-2) per pulse, although that of the direct fission was constant with the excitation laser intensity. On the other hand, the yield of the triplet formation was independent of the intensity. We also examined the temperature dependence of the singlet fission and demonstrated the activation energy of the thermally activated fission to be 0.21 eV. Based on the experimental results, we considered the excitation intensity dependence of the singlet fission of the rubrene crystal in terms of the effect of transient local heating on a ps time scale after femtosecond laser excitation owing to the nonradiative vibrational relaxation from the higher vibrational level to the lower one in the S1 state.

  12. Effect of the solvent environment on the spectroscopic properties and dynamics of the lowest excited states of carotenoids

    SciTech Connect

    Frank, H.A.; Bautista, J.A.; Josue, J.; Pendon, Z.; Hiller, R.G.; Sharples, F.P.; Gosztola, D.; Wasielewski, M.R.

    2000-05-11

    The spectroscopic properties and dynamics of the lowest excited singlet states of peridinin, fucoxanthin, neoxanthin, uriolide acetate, spheroidene, and spheroidenone in several different solvents have been studied by steady-state absorption and fast-transient optical spectroscopic techniques. Peridinin, fucoxanthin, uriolide acetate, and spheroidenone, which contain carbonyl functional groups in conjugation with the carbon-carbon {pi}-electron system, display broader absorption spectral features and are affected more by the solvent environment than neoxanthin and spheroidene, which do not contain carbonyl functional groups. The possible sources of the spectral broadening are explored by examining the absorption spectra at 77 K in glassy solvents. Also, carotenoids which contain carbonyls have complex transient absorption spectra and show a pronounced dependence of the excited singlet state lifetime on the solvent environment. It is postulated that these effects are related to the presence of an intramolecular charge transfer state strongly coupled to the S{sub 1} (2{sup 1}A{sub g}) excited singlet state. Structural variations in the series of carotenoids studied here make it possible to focus on the general molecular features that control the spectroscopic and dynamic properties of carotenoids.

  13. How much double excitation character do the lowest excited states of linear polyenes have?

    NASA Astrophysics Data System (ADS)

    Starcke, Jan Hendrik; Wormit, Michael; Schirmer, Jochen; Dreuw, Andreas

    2006-10-01

    Doubly excited states play important roles in the low-energy region of the optical spectra of polyenes and their investigation has been subject of theoretical and experimental studies for more than 30 years now and still is in the focus of ongoing research. In this work, we address the question why doubly excited states play a role in the low-energy region of the optical spectrum of molecular systems at all, since from a naive point of view one would expect their excitation energy approximately twice as large as the one of the corresponding single excitation. Furthermore, we show that extended-ADC(2) is well suited for the balanced calculation of the low-lying excited 21Ag-, 11Bu- and 11Bu+ states of long all- trans polyenes, which are known to possess substantial double excitation character. A careful re-investigation of the performance of TDDFT calculations for these states reveals that the previously reported good performance for the 21Ag- state relies heavily on fortuitous cancellation of errors. Finally, the title question is answered such that for short polyenes the lowest excited 21Ag- and 11Bu- states can clearly be classified as doubly excited, whereas the 11Ag- ground state is essentially represented by the (ground-state) HF determinant. For longer polyenes, in addition to increasing double excitation contributions in the 21Ag- and 11Bu- states, the ground state itself aquires substantial double excitation character (45% in C 22H 24), so that the transition from the ground state to these excited states should not be addressed as the excitation of two electrons relative to the 11Ag- ground state.

  14. Ab - initio non-adiabatic couplings among three lowest singlet states of H3 +: Construction of multisheeted diabatic potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Mukherjee, Bijit; Mukherjee, Saikat; Adhikari, Satrajit

    2016-10-01

    We calculate the adiabatic potential energy surfaces and non-adiabatic interactions among the three lowest singlet states (11 A', 21 A' and 31 A') of H3 + in hyperspherical coordinates for a fixed hyperradius, ρ = 9 bohr as functions of hyperangles, θ (0 < θ < 90°) and ϕ (0 < ϕ < 360°). All ab initio calculations are performed using MRCI level of methodology implemented in quantum chemistry package, MOLPRO. The ground (11 A') and the first excited (21 A') states exhibit several conical intersections as functions of ϕ for θ > 70°. Subsequently, we carry out adiabatic to diabatic transformation (ADT) to obtain ADT angles for constructing single-valued, continuous, smooth and symmetric 3 × 3 diabatic potential energy matrix to perform accurate scattering calculations.

  15. Origin of the Red Shift for the Lowest Singlet π → π* Charge-Transfer Absorption of p-Nitroaniline in Supercritical CO2.

    PubMed

    Hidalgo, Marcelo; Rivelino, Roberto; Canuto, Sylvio

    2014-04-08

    The origin of the unusual solvatochromic shift of p-nitroaniline (PNA) in supercritical carbon dioxide (SCCO2) is theoretically investigated on the basis of experimental data. Ab initio quantum chemistry calculations have been employed to unveil the interaction of CO2 with this archetypical molecule. It is demonstrated that the nitro group of PNA works as an electron-donating site binding to the electron-deficient carbon atom of CO2, most probably via a Lewis acid-base interaction. Moreover, a cooperative C-H···O hydrogen bond seems to act as an additional stabilizing source during the solvation process of PNA in SCCO2. To support the influence of solute-solvent specific interactions on the lowest singlet π → π* charge-transfer excitation, we perform a sequential Monte Carlo time-dependent density functional theory simulation to evaluate the excited states of PNA in SCCO2 (T = 315 K, ρ = 0.81 g/cm(3)). A critical assessment of this simulation, compared to calculations carried out within the polarized continuum model, gives strong evidence that our proposed complexes are important in describing the solvatochromic shift of PNA in SCCO2. The calculated red shift from the gas phase accounts for 66% to 80% (depending on the degree of complexation) of the experimental data. Finally, these results also alleviate possible failures commonly attributed to long-range corrected functionals in reproducing the solvatochromism of PNA.

  16. Characterization of the singlet and triplet excited states of 3-chloro-4-methylumbelliferone.

    PubMed

    Seixas de Melo, J Sérgio; Cabral, Catarina; Lima, João C; Maçanita, António L

    2011-08-04

    An extensive photophysical characterization of 3-chloro-4-methylumbelliferone (3Cl4MU) in the ground-state, S(0), first excited singlet state, S(1), and lowest triplet state, T(1), was undertaken in water, neutral ethanol, acidified ethanol, and basified ethanol. Quantitative measurements of quantum yields (fluorescence, phosphorescence, intersystem crossing, internal conversion, and singlet oxygen formation) together with lifetimes were obtained at room and low temperature in water, dioxane/water mixtures, and alcohols. The different transient species were assigned and a general kinetic scheme is presented, summarizing the excited-state multiequilibria of 3Cl4MU. In water, the equilibrium is restricted to neutral (N*) and anionic (A*) species, both in the ground (pK(a) = 7.2) and first excited singlet states (pK(a)* = 0.5). In dioxane/water mixtures (pH ca. 6), substantial changes of the kinetics of the S(1) state were observed with the appearance of an additional tautomeric T* species. In low water content mixtures (mixture 9:1 v:v), only the neutral (N*) and tautomeric (T*) forms of 3Cl4MU are observed, whereas at higher water content mixtures (water mole fraction superior to 0.45), all three species N*, T*, and A* coexist in the excited state. In the triplet state, in the nonprotic and nonpolar solvent dioxane, the observed transient signals were assigned as the triplet-triplet transition of the neutral form, N*(T(1)) → N*(T(n)). In water, two transient species were observed and are assigned as the triplets of the neutral N*(T(1)) and the anionic form, A*(T(1)) (also obtained in basified ethanol). The phosphorescence spectra and decays of 3Cl4MU, in neutral, acidified, and basified solutions, demonstrate that only these two species N*(T(1)) and A*(T(1)) exist in the lowest lying triplet state, T(1). The radiative channel was found dominant for the deactivation of the anionic species, whereas with the neutral the S(1) ⇝ S(0) internal conversion competes with

  17. Lowest optical excitations in molecular crystals: bound excitons versus free electron-hole pairs in anthracene.

    PubMed

    Hummer, Kerstin; Puschnig, Peter; Ambrosch-Draxl, Claudia

    2004-04-09

    By solving the Bethe-Salpeter equation for the electron-hole Green function for crystalline anthracene we find the lowest absorption peak generated by strongly bound excitons or by a free electron-hole pair, depending on the polarization direction being parallel to the short or the long molecular axis, respectively. Both excitations are shifted to lower energies by pressure. The physical difference of these excitations is apparent from the electron-hole wave functions. Our findings are a major contribution to solve the long-standing puzzle about the nature of the lowest optical excitations in organic materials.

  18. Photo-excitation of carotenoids causes cytotoxicity via singlet oxygen production

    SciTech Connect

    Yoshii, Hiroshi; Yoshii, Yukie; Asai, Tatsuya; Furukawa, Takako; Takaichi, Shinichi; Fujibayashi, Yasuhisa

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Some photo-excited carotenoids have photosensitizing ability. Black-Right-Pointing-Pointer They are able to produce ROS. Black-Right-Pointing-Pointer Photo-excited fucoxanthin can produce singlet oxygen through energy transfer. -- Abstract: Carotenoids, natural pigments widely distributed in algae and plants, have a conjugated double bond system. Their excitation energies are correlated with conjugation length. We hypothesized that carotenoids whose energy states are above the singlet excited state of oxygen (singlet oxygen) would possess photosensitizing properties. Here, we demonstrated that human skin melanoma (A375) cells are damaged through the photo-excitation of several carotenoids (neoxanthin, fucoxanthin and siphonaxanthin). In contrast, photo-excitation of carotenoids that possess energy states below that of singlet oxygen, such as {beta}-carotene, lutein, loroxanthin and violaxanthin, did not enhance cell death. Production of reactive oxygen species (ROS) by photo-excited fucoxanthin or neoxanthin was confirmed using a reporter assay for ROS production with HeLa Hyper cells, which express a fluorescent indicator protein for intracellular ROS. Fucoxanthin and neoxanthin also showed high cellular penetration and retention. Electron spin resonance spectra using 2,2,6,6-tetramethil-4-piperidone as a singlet oxygen trapping agent demonstrated that singlet oxygen was produced via energy transfer from photo-excited fucoxanthin to oxygen molecules. These results suggest that carotenoids such as fucoxanthin, which are capable of singlet oxygen production through photo-excitation and show good penetration and retention in target cells, are useful as photosensitizers in photodynamic therapy for skin disease.

  19. Nature of the lowest excited states of neutral polyenyl radicals and polyene radical cations

    NASA Astrophysics Data System (ADS)

    Starcke, Jan Hendrik; Wormit, Michael; Dreuw, Andreas

    2009-10-01

    Due to the close relation of the polyenyl radicals C2n+1H2n+3• and polyene radical cations C2nH2n+2•+ to the neutral linear polyenes, one may suspect their excited states to possess substantial double excitation character, similar to the famous S1 state of neutral polyenes and thus to be equally problematic for simple excited state theories. Using the recently developed unrestricted algebraic-diagrammatic construction scheme of second order perturbation theory and the equation-of-motion coupled-cluster method, the vertical excitation energies, their corresponding oscillator strengths, and the nature of the wave functions of the lowest excited electronic states of the radicals are calculated and analyzed in detail. For the polyenyl radicals two one-photon allowed states are found as D1 and D4 states, with two symmetry-forbidden D2 and D3 states in between, while in the polyene radical cations D1 and D2 are allowed and D3 is forbidden. The order of the states is conserved with increasing chain length. It is found that all low-lying excited states exhibit a significant but similar amount of doubly excited configuration in their wave functions of 15%-20%. Using extrapolation, predictions for the excitation energies of the five lowest excited states of the polyene radical cations are made for longer chain lengths.

  20. Excited singlet-state absorption in laser dyes at the XeCl wavelength

    NASA Astrophysics Data System (ADS)

    Taylor, R. S.; Mihailov, S.

    1985-10-01

    The transmission properties of the laser dyes BBQ, PBD, BPBD, α-NPO, p-Quarterphenyl and PPO have been measured using a XeCl (308 nm) excimer laser. A model for the dye saturation which incorporates excited-state absorption was used to estimate the lifetime and the absorption cross section of the first excited singlet-state for each dye.

  1. Mutual Co-Assignment of the Calculated Vibrational Frequencies in the Ground and Lowest Excited Electronic States

    NASA Astrophysics Data System (ADS)

    Panchenko, Yurii N.

    2013-06-01

    The shifts of the molecular vibrational frequencies when going from the ground electronic state to the lowest excited electronic states pose some problems for the mutual co-assignment of the calculated vibrational frequencies in the different excited states. The trans-{C_2 O_2 F_2} shift of the frequency of the symmetrical ν(C=O) stretching vibration between the S_0 and T_1 is 373 wn. The feasibility of mutual co-assignments of the vibrational frequencies in these electronic states has been demonstrated for trans-{C_2 O_2 F_2}. Matrices analogous to the Duschinsky matrix were used to juxtapose the a_g vibrational frequencies of this molecule calculated at the CASPT2/cc-pVTZ level in the ground S_0 and excited triplet T_1 and singlet S_1 electronic states. The analog of the Duschinsky matrix D was obtained for this molecule using the equation D = (L_{I})^{-1} L_{II} where L_{I} and L_{II} are the matrices of the vibrational modes (normalized atomic displacements) obtained by solving the vibrational problems for the S_0 and T_1 electronic states, respectively. Choosing the dominant elements in columns of the D matrix and permuting these columns to arrange these elements along the diagonal of the transformed matrix D^* makes it possible to establish the correct mutual co-assignments of the calculated a_g vibrational frequencies of the trans-{C_2 O_2 F_2} molecule in the S_0 and T_1 electronic states. The analogous procedure was performed for the trans-{C_2 O_2 F_2} molecule in the T_1 and S_1 excited electronic states. The recent reassignments of the νb{2} and νb{3} calculated vibrational frequencies in the trans-{C_2 O_2 F_2} molecule in the ground state were also obtained for the triplet T_1 and singlet S_1 excited electronic states. The approach set forth in this text makes it possible to juxtapose the calculated vibrational frequencies of the same molecule in the different electronic states and to refine the assignments of these frequencies. This is essential

  2. Accurate ab initio potential energy curves and spectroscopic properties of the four lowest singlet states of C2

    SciTech Connect

    Boschen, Jeffery S.; Theis, Daniel; Ruedenberg, Klaus; Windus, Theresa L.

    2013-12-07

    The diatomic carbon molecule has a complex electronic structure with a large number of low-lying electronic excited states. In this work, the potential energy curves (PECs) of the four lowest lying singlet states (X-1 Sigma(+)(g), A(1)Pi(u), B-1 Delta(g), and B'(1)Sigma(+)(g)) were obtained by high-level ab initio calculations. Valence electron correlation was accounted for by the correlation energy extrapolation by intrinsic scaling (CEEIS) method. Additional corrections to the PECs included core-valence correlation and relativistic effects. Spin-orbit corrections were found to be insignificant. The impact of using dynamically weighted reference wave functions in conjunction with CEEIS was examined and found to give indistinguishable results from the even weighted method. The PECs showed multiple curve crossings due to the B-1 Delta(g) state as well as an avoided crossing between the two (1)Sigma(+)(g) states. Vibrational energy levels were computed for each of the four electronic states, as well as rotational constants and spectroscopic parameters. Comparison between the theoretical and experimental results showed excellent agreement overall. Equilibrium bond distances are reproduced to within 0.05 %. The dissociation energies of the states agree with experiment to within similar to 0.5 kcal/mol, achieving "chemical accuracy." Vibrational energy levels show average deviations of similar to 20 cm(-1) or less. The B-1 Delta(g) state shows the best agreement with a mean absolute deviation of 2.41 cm(-1). Calculated rotational constants exhibit very good agreement with experiment, as do the spectroscopic constants.

  3. Singlet-to-Triplet Excitations in the Unconventional Spin-Peierls System TiOBr

    SciTech Connect

    Clancy, James P; Gaulin, Bruce D.; Adams, Carl P; Granroth, Garrett E; Kolesnikov, Alexander I; Sherline, Todd E; Chou, F. C.

    2011-01-01

    We have performed time-of-flight neutron scattering measurements on powder samples of the unconventional spin-Peierls compound TiOBr using the fine-resolution Fermi chopper spectrometer (SEQUOIA) at the SNS. These measurements reveal two branches of magnetic excitations within the commensurate and incommensurate spin-Peierls phases, which we associate with n = 1 and n = 2 triplet excitations out of the singlet ground state. These measurements represent the first direct measure of the singlet-triplet energy gap in TiOBr, which is found to have a value of Eg 21 meV.

  4. Singlet-Triplet Excitations in the Unconventional Spin-Peierls TiOBr Compound

    NASA Astrophysics Data System (ADS)

    Clancy, J. P.; Gaulin, B. D.; Adams, C. P.; Granroth, G. E.; Kolesnikov, A. I.; Sherline, T. E.; Chou, F. C.

    2011-03-01

    We have performed time-of-flight neutron scattering measurements on powder samples of the unconventional spin-Peierls compound TiOBr using the fine-resolution Fermi chopper spectrometer (SEQUOIA) at the Spallation Neutron Source at Oak Ridge National Laboratory. These measurements reveal two branches of magnetic excitations within the commensurate and incommensurate spin-Peierls phases, which we associate with n=1 and n=2 triplet excitations out of the singlet ground state. These results represent the first direct measurement of the singlet-triplet energy gap in TiOBr, which has a value of Eg=21.2±1.0meV.

  5. Zethrene biradicals: how pro-aromaticity is expressed in the ground electronic state and in the lowest energy singlet, triplet, and ionic states.

    PubMed

    Zafra, José Luis; González Cano, Rafael C; Ruiz Delgado, M Carmen; Sun, Zhe; Li, Yuan; López Navarrete, Juan T; Wu, Jishan; Casado, Juan

    2014-02-07

    A analysis of the electronic and molecular structures of new molecular materials based on zethrene is presented with particular attention to those systems having a central benzo-quinoidal core able to generate Kekulé biradicals whose stability is provided by the aromaticity recovery in this central unit. These Kekulé biradicals display singlet ground electronic states thanks to double spin polarization and have low-energy lying triplet excited states also featured by the aromaticity gain. Pro-aromatization is also the driving force for the stabilization of the ionized species. Moreover, the low energy lying singlet excited states also display a profound biradical fingerprint allowing to singlet exciton fission. These properties are discussed in the context of the size of the zethrene core and of its substitution. The work encompasses all known long zethrenes and makes use of a variety of experimental techniques, such as Raman, UV-Vis-NIR absorption, transient absorption, in situ spectroelectrochemistry and quantum chemical calculations. This study reveals how the insertion of suitable molecular modules (i.e., quinoidal) opens the door to new intriguing molecular properties exploitable in organic electronics.

  6. Zethrene biradicals: How pro-aromaticity is expressed in the ground electronic state and in the lowest energy singlet, triplet, and ionic states

    SciTech Connect

    Zafra, José Luis; González Cano, Rafael C.; Ruiz Delgado, M. Carmen; López Navarrete, Juan T.; Casado, Juan

    2014-02-07

    A analysis of the electronic and molecular structures of new molecular materials based on zethrene is presented with particular attention to those systems having a central benzo-quinoidal core able to generate Kekulé biradicals whose stability is provided by the aromaticity recovery in this central unit. These Kekulé biradicals display singlet ground electronic states thanks to double spin polarization and have low-energy lying triplet excited states also featured by the aromaticity gain. Pro-aromatization is also the driving force for the stabilization of the ionized species. Moreover, the low energy lying singlet excited states also display a profound biradical fingerprint allowing to singlet exciton fission. These properties are discussed in the context of the size of the zethrene core and of its substitution. The work encompasses all known long zethrenes and makes use of a variety of experimental techniques, such as Raman, UV-Vis-NIR absorption, transient absorption, in situ spectroelectrochemistry and quantum chemical calculations. This study reveals how the insertion of suitable molecular modules (i.e., quinoidal) opens the door to new intriguing molecular properties exploitable in organic electronics.

  7. The lowest-lying electronic singlet and triplet potential energy surfaces for the HNO-NOH system: energetics, unimolecular rate constants, tunneling and kinetic isotope effects for the isomerization and dissociation reactions.

    PubMed

    Bozkaya, Uğur; Turney, Justin M; Yamaguchi, Yukio; Schaefer, Henry F

    2012-04-28

    The lowest-lying electronic singlet and triplet potential energy surfaces (PES) for the HNO-NOH system have been investigated employing high level ab initio quantum chemical methods. The reaction energies and barriers have been predicted for two isomerization and four dissociation reactions. Total energies are extrapolated to the complete basis set limit applying focal point analyses. Anharmonic zero-point vibrational energies, diagonal Born-Oppenheimer corrections, relativistic effects, and core correlation corrections are also taken into account. On the singlet PES, the (1)HNO → (1)NOH endothermicity including all corrections is predicted to be 42.23 ± 0.2 kcal mol(-1). For the barrierless decomposition of (1)HNO to H + NO, the dissociation energy is estimated to be 47.48 ± 0.2 kcal mol(-1). For (1)NOH → H + NO, the reaction endothermicity and barrier are 5.25 ± 0.2 and 7.88 ± 0.2 kcal mol(-1). On the triplet PES the reaction energy and barrier including all corrections are predicted to be 7.73 ± 0.2 and 39.31 ± 0.2 kcal mol(-1) for the isomerization reaction (3)HNO → (3)NOH. For the triplet dissociation reaction (to H + NO) the corresponding results are 29.03 ± 0.2 and 32.41 ± 0.2 kcal mol(-1). Analogous results are 21.30 ± 0.2 and 33.67 ± 0.2 kcal mol(-1) for the dissociation reaction of (3)NOH (to H + NO). Unimolecular rate constants for the isomerization and dissociation reactions were obtained utilizing kinetic modeling methods. The tunneling and kinetic isotope effects are also investigated for these reactions. The adiabatic singlet-triplet energy splittings are predicted to be 18.45 ± 0.2 and 16.05 ± 0.2 kcal mol(-1) for HNO and NOH, respectively. Kinetic analyses based on solution of simultaneous first-order ordinary-differential rate equations demonstrate that the singlet NOH molecule will be difficult to prepare at room temperature, while the triplet NOH molecule is viable with respect to isomerization and dissociation reactions up to

  8. High resolution study of the six lowest doubly excited vibrational states of PH 2D

    NASA Astrophysics Data System (ADS)

    Leroy, C.; Ulenikov, O. N.; Bekhtereva, E. S.; Onopenko, G. A.; Chudinova, T. D.

    2005-12-01

    The five lowest doubly excited deformational vibrational bands ν4 + ν6, 2 ν6, ν3 + ν4, ν3 + ν6, and 2 ν3 of PH 2D have been recorded for the first time using a Bruker 120 HR interferometer with a resolution 0.0033 cm -1 and analysed. Some transitions belonging to a very weak band 2 ν4 have been also assigned. From the fit 24 and 86, respectively, diagonal and resonance interaction parameters were obtained which reproduce 1089 upper energy levels obtained from more than 4600 assigned transitions with the rms deviation of 0.00059 cm -1.

  9. Failures of TDDFT in describing the lowest intramolecular charge-transfer excitation in para-nitroaniline

    NASA Astrophysics Data System (ADS)

    Eriksen, Janus J.; Sauer, Stephan P. A.; Mikkelsen, Kurt V.; Christiansen, Ove; Jensen, Hans Jørgen Aa.; Kongsted, Jacob

    2013-07-01

    We investigate the failure of time-dependent density functional theory (TDDFT) with the CAM-B3LYP exchange-correlation (xc) functional coupled to the polarisable embedding (PE) scheme (PE-CAM-B3LYP) in reproducing the solvatochromic shift of the lowest intense charge-transfer excitation in para-nitroaniline (pNA) in water by comparing with results obtained with the coupled cluster singles and doubles (CCSD) model also coupled to the polarisable embedding scheme (PE-CCSD). We determine the amount of charge separation in the ground and excited charge-transfer state with both methods by calculating the electric dipole moments in the gas phase and for 100 solvent configurations. We find that CAM-B3LYP overestimates the amount of charge separation inherent in the ground state and TDDFT/CAM-B3LYP drastically underestimates this amount in the excited charge-transfer state. As the errors in the solvatochromatic shift are found to be inverse proportional to the change in dipole moment upon excitation, we conclude that the flaws in the description of the solvatochromic shift of this excitation are related to TDDFT itself and how it responds to the solvent effects modelled by the PE scheme. We recommend therefore to benchmark results of TDDFT calculations with CAM-B3LYP for intramolecular charge-transfer excitations in molecular systems similar to pNA against higher level ab initio wave function methods, like, e.g. CCSD, prior to their use. Using the calculated change in dipole moment upon excitation as a measure for charge-transfer character, we furthermore confirm that the difference between excitation energies calculated with TDDFT and with the Tamm-Dancoff approximation (TDA) to TDDFT is indeed correlated with the charge-transfer character of a given electronic transition both in vacuo and in solution. This is supported by a corresponding correlation between the change in dipole moment and the size of the Λ index diagnostic for the investigated CT excitation.

  10. Benchmarking singlet and triplet excitation energies of molecular semiconductors for singlet fission: Tuning the amount of HF exchange and adjusting local correlation to obtain accurate functionals for singlet-triplet gaps

    NASA Astrophysics Data System (ADS)

    Brückner, Charlotte; Engels, Bernd

    2017-01-01

    Vertical and adiabatic singlet and triplet excitation energies of molecular p-type semiconductors calculated with various DFT functionals and wave-function based approaches are benchmarked against MS-CASPT2/cc-pVTZ reference values. A special focus lies on the singlet-triplet gaps that are very important in the process of singlet fission. Singlet fission has the potential to boost device efficiencies of organic solar cells, but the scope of existing singlet-fission compounds is still limited. A computational prescreening of candidate molecules could enlarge it; yet it requires efficient methods accurately predicting singlet and triplet excitation energies. Different DFT formulations (Tamm-Dancoff approximation, linear response time-dependent DFT, Δ-SCF) and spin scaling schemes along with several ab initio methods (CC2, ADC(2)/MP2, CIS(D), CIS) are evaluated. While wave-function based methods yield rather reliable singlet-triplet gaps, many DFT functionals are shown to systematically underestimate triplet excitation energies. To gain insight, the impact of exact exchange and correlation is in detail addressed.

  11. Revisiting the photophysical properties and excited singlet-state dipole moments of several coumarin derivatives.

    PubMed

    Cisse, Lamine; Djande, Abdoulaye; Capo-Chichi, Martine; Delatre, François; Saba, Adama; Tine, Alphonse; Aaron, Jean-Jacques

    2011-08-01

    The solvent effects on the electronic absorption and fluorescence emission spectra of several coumarins derivatives, containing amino, N,N-dimethyl-amino, N,N-diethyl-amino, hydroxyl, methyl, carboxyl, or halogen substituents at the positions 7, 4, or 3, were investigated in eight solvents with various polarities. The first excited singlet-state dipole moments of these coumarins were determined by various solvatochromic methods, using the theoretical ground-state dipole moments which were calculated by the AM1 method. The first excited singlet-state dipole moment values were obtained by the Bakhshiev, Kawski-Chamma-Viallet, Lippert-Mataga, and Reichardt-Dimroth equations, and were compared to the ground-state dipole moments. In all cases, the dipole moments were found to be higher in the excited singlet-state than in the ground state because of the different electron densities in both states. The red-shifts of the absorption and fluorescence emission bands, observed for most compounds upon increasing the solvent polarity, indicated that the electronic transitions were of π-π* nature.

  12. Revisiting the photophysical properties and excited singlet-state dipole moments of several coumarin derivatives

    NASA Astrophysics Data System (ADS)

    Cisse, Lamine; Djande, Abdoulaye; Capo-Chichi, Martine; Delatre, François; Saba, Adama; Tine, Alphonse; Aaron, Jean-Jacques

    2011-08-01

    The solvent effects on the electronic absorption and fluorescence emission spectra of several coumarins derivatives, containing amino, N,N-dimethyl-amino, N,N-diethyl-amino, hydroxyl, methyl, carboxyl, or halogen substituents at the positions 7, 4, or 3, were investigated in eight solvents with various polarities. The first excited singlet-state dipole moments of these coumarins were determined by various solvatochromic methods, using the theoretical ground-state dipole moments which were calculated by the AM1 method. The first excited singlet-state dipole moment values were obtained by the Bakhshiev, Kawski-Chamma-Viallet, Lippert-Mataga, and Reichardt-Dimroth equations, and were compared to the ground-state dipole moments. In all cases, the dipole moments were found to be higher in the excited singlet-state than in the ground state because of the different electron densities in both states. The red-shifts of the absorption and fluorescence emission bands, observed for most compounds upon increasing the solvent polarity, indicated that the electronic transitions were of π-π* nature.

  13. Benchmark calculations on the lowest-energy singlet, triplet, and quintet states of the four-electron harmonium atom

    SciTech Connect

    Cioslowski, Jerzy; Strasburger, Krzysztof; Matito, Eduard

    2014-07-28

    For a wide range of confinement strengths ω, explicitly-correlated calculations afford approximate energies E(ω) of the ground and low-lying excited states of the four-electron harmonium atom that are within few μhartree of the exact values, the errors in the respective energy components being only slightly higher. This level of accuracy constitutes an improvement of several orders of magnitude over the previously published data, establishing a set of benchmarks for stringent calibration and testing of approximate electronic structure methods. Its usefulness is further enhanced by the construction of differentiable approximants that allow for accurate computation of E(ω) and its components for arbitrary values of ω. The diversity of the electronic states in question, which involve both single- and multideterminantal first-order wavefunctions, and the availability of the relevant natural spinorbitals and their occupation numbers make the present results particularly useful in research on approximate density-matrix functionals. The four-electron harmonium atom is found to possess the {sup 3}P{sub +} triplet ground state at strong confinements and the {sup 5}S{sub −} quintet ground state at the weak ones, the energy crossing occurring at ω ≈ 0.0240919.

  14. Proton collisional excitation in the lowest lying 3P terms of ions in the Be and Mg isoelectronic sequences

    NASA Technical Reports Server (NTRS)

    Landman, D. A.; Brown, T.

    1979-01-01

    Proton collisional excitation cross sections and rate constants are presented for transitions between the 3P(J) fine-structure levels of the lowest-lying sp configurations in a number of astrophysically important ions belonging to the Be and Mg isoelectronic sequences. The calculations were made by direct integration of the Schroedinger equation resulting from semiclassical Coulomb excitation theory. The cross sections and rate constants for the 3P(J) transitions in the lowest-lying P(2) configurations are expected to be similar to those for the corresponding sp configuration transitions, and this is illustrated for C III. For the high-temperature ion Ca XVII alpha particle excitation is shown to be unimportant for situations involving ordinary values of the He/H abundance ratio. A simple, but apparently accurate method for determining certain radial integrals for low-lying excited configurations is proposed.

  15. Singlet-Triplet Excitations in the Unconventional Spin-Peierls System TiOBr

    NASA Astrophysics Data System (ADS)

    Clancy, J. P.; Gaulin, B. D.; Adams, C. P.; Granroth, G. E.; Kolesnikov, A. I.; Sherline, T. E.; Chou, F. C.

    2011-03-01

    TiOBr belongs to a select group of quasi-one-dimensional materials which undergo a spin-Peierls (SP) phase transition and develop a dimerized singlet ground state at low temperatures. However, unlike conventional SP systems, TiOBr exhibits not one, but two successive phase transitions upon cooling: a continuous transition into an incommensurate SP state at TC 2 ~ 48 K, followed by a discontinuous transition into a commensurate SP state at TC 1 ~ 27 K. We have performed time-of-flight neutron scattering measurements on powder samples of TiOBr using the fine-resolution Fermi chopper spectrometer (SEQUOIA) at the Spallation Neutron Source. These measurements reveal two branches of magnetic excitations within the commensurate and incommensurate SP phases, which we associate with n = 1 and n = 2 triplet excitations out of the singlet ground state. This study represents the first direct measure of the singlet-triplet energy gap in TiOBr, which we have determined to be Eg = 21.2 +/- 1.0 meV.

  16. Twisting the Phenyls in Aryl Diphosphenes (Ar-P=P-Ar). Significant Impact upon Lowest Energy Excited States

    PubMed Central

    Peng, Huo-Lei; Payton, John L.; Protasiewicz, John D.

    2009-01-01

    Aryl diphosphenes (Ar-P=P-Ar) possess features that may make them useful in photonic devices, including the possibility for photochemical E-Z isomerization. Development of good models guided by computations is hampered by poor correspondence between predicted and experimental UV/vis absorption spectra. An hypothesis that the phenyl twist angle (i.e. PPCC torsion) accounts for this discrepancy is explored, with positive findings. DFT and TDDFT (B3LYP) were applied to the phenyl-P=P-phenyl (Ph-P=P-Ph) model compound over a range of phenyl twist angles, and to the Ph-P=P-Ph cores of two crystallographically characterized diphosphenes: bis-(2,4,6-tBu3C6H2)-diphosphene (Mes*-P=P-Mes*) and bis-(2,6-Mes2C6H3)-diphosphene (Dmp-P=P-Dmp). A shallow PES is observed: the full range of phenyl twist angles is accessible for under 5 kcal/mol. The Kohn-Sham orbitals (KS-MOs) exhibit stabilization and mixing of the two highest energy frontier orbitals – the n+ and π localized primarily on the – P=P– unit. A simple, single-configuration model based upon this symmetry-breaking is shown to be consistent with the major features of the measured UV/vis spectra of several diphosphenes. Detailed evaluation of singlet excitations, transition energies and oscillator strengths with TDDFT showed that the lowest energy transition (S1 ← S0) does not always correspond to the LUMO ← HOMO configuration. Coupling between the phenyl rings and central –P=P– destabilizes the π-π* dominated state. Hence, the S1 is always n+-π* in nature, even with a π-type HOMO. This coupling of the ring and –P=P– π systems engenders complexity in the UV/vis absorption region, and may be the origin of the variety of photobehaviours observed in diphosphenes. PMID:19496568

  17. V-T relaxation of vibrationally excited singlet oxygen molecule in the EOIL systems

    NASA Astrophysics Data System (ADS)

    Torbin, A. P.; Heaven, M. C.; Azyazov, V. N.

    2017-01-01

    Kinetics of vibrationally-excited singlet oxygen O2(a1Δ,v) molecule have been examined using pulsed laser technique.O2(a1Δ,v) molecules were produced by the pulsed 266 nm laser photolysis of ozone. The kinetics of O2(a1Δ) quenching were followed by observing the 1268 nm fluorescence of the O2 a1Δ-X3Σ transition. It has been found that the loss of O2(a1Δ,v) in the O(3P)/O3/N2 mixture is carried out both in chemical and in V-T process. We observed that the vibrational excitation of singlet oxygen molecule enhances the rate of reaction between O2(a1Δ,v) and O3 molecules. The rate constant of this process was estimated to be in the range 10-12-10-11 cm3/s. Rate constant of O2(a,v=1) quenching by CO2 was found to be (1.03±0.07)×10-14 cm3/s.

  18. The holographic recording in photopolymer by excitation forbidden singlet-triplet transitions

    NASA Astrophysics Data System (ADS)

    Shelkovnikov, V. V.; Pen, E. F.; Russkich, V. V.; Vasiliev, E. V.; Kovalevsky, V. I.

    2006-05-01

    The possibility and features of the holographic recording by excitation of the forbidden singlet-triplet transitions are considered in the report. The experimental demonstration of the hologram recording on forbidden transition is carried out in thick photopolymer material sensitized by Erithrozine dye. The single hologram with diffraction efficiency DE=50% and 16 angle multiplexing hologram were recorded by irradiation of the low intensity He-Ne laser (632 nm) at high concentration of the sensitizing dye and at high optical density in allowed absorption band of dye. The growth of DE of transition hologram depending on the Kr+(647 nm) laser irradiation intensity of was studied. The observed linear dependence of the maximal rate of DE growth on the intensity of recording irradiation was explained by two steps-two photon excitation (T I<--S 0, T II<--T I) of the dye in the photopolymer samples.

  19. Temperature and solvent effects on the luminescence spectrum of C{sub 70}: Assignment of the lowest singlet and triplet states

    SciTech Connect

    Argentine, S.M.; Kotz, K.T.; Francis, A.H.

    1995-11-29

    The temperature, solvent, and concentration dependence of the fluorescence and phosphorescence spectra of C{sub 70} in glassy solutions have been examined. Spectra have been recorded over the temperature range 4-200 K. In addition, the AC Stark field modulated phosphorescence and the phosphorescence of {sup 13}C{sub 70} have been recorded and analyzed. The lowest triplet state is identified as a {sup 3}E{sub 1}` state and the vibronic structure consists primarily of Herzberg-Teller active e{sub 2}` modes. The intensity of the electronic origin is comparable to the vibronically induced intensity and is extraordinarily solvent sensitive. The solvent sensitivity exhibited by the spectra is shown to have the same origins as that observed in benzene and pyrene, but is several times greater in magnitude. Analysis of the spectra suggests that two electronic excited states contribute to the observed phosphorescence spectrum. 27 refs., 6 figs., 1 tab.

  20. Vibrational dynamics of aniline (N2)1 clusters in their first excited singlet state

    NASA Astrophysics Data System (ADS)

    Hineman, M. F.; Kim, S. K.; Bernstein, E. R.; Kelley, D. F.

    1992-04-01

    The first excited singlet state S1 vibrational dynamics of aniline(N2)1 clusters are studied and compared to previous results on aniline(CH4)1 and aniline(Ar)1. Intramolecular vibrational energy redistribution (IVR) and vibrational predissociation (VP) rates fall between the two extremes of the CH4 (fast IVR, slow VP) and Ar (slow IVR, fast VP) cluster results as is predicted by a serial IVR/VP model using Fermi's golden rule to describe IVR processes and a restricted Rice-Ramsperger-Kassel-Marcus (RRKM) theory to describe unimolecular VP rates. The density of states is the most important factor determining the rates. Two product states, 00 and 10b1, of bare aniline and one intermediate state ˜(00) in the overall IVR/VP process are observed and time resolved measurements are obtained for the 000 and ˜(000) transitions. The results are modeled with the serial mechanism described above.

  1. Excited singlet molecular O2 (1Δg) is generated enzymatically from excited carbonyls in the dark

    PubMed Central

    Mano, Camila M.; Prado, Fernanda M.; Massari, Júlio; Ronsein, Graziella E.; Martinez, Glaucia R.; Miyamoto, Sayuri; Cadet, Jean; Sies, Helmut; Medeiros, Marisa H. G.; Bechara, Etelvino J. H.; Di Mascio, Paolo

    2014-01-01

    In mammalian tissues, ultraweak chemiluminescence arising from biomolecule oxidation has been attributed to the radiative deactivation of singlet molecular oxygen [O2 (1Δg)] and electronically excited triplet carbonyl products involving dioxetane intermediates. Herein, we describe evidence of the generation of O2 (1Δg) in aqueous solution via energy transfer from excited triplet acetone. This involves thermolysis of 3,3,4,4-tetramethyl-1,2-dioxetane, a chemical source, and horseradish peroxidase-catalyzed oxidation of 2-methylpropanal, as an enzymatic source. Both sources of excited carbonyls showed characteristic light emission at 1,270 nm, directly indicative of the monomolecular decay of O2 (1Δg). Indirect analysis of O2 (1Δg) by electron paramagnetic resonance using the chemical trap 2,2,6,6-tetramethylpiperidine showed the formation of 2,2,6,6-tetramethylpiperidine-1-oxyl. Using [18O]-labeled triplet, ground state molecular oxygen [18O2 (3Σg-)], chemical trapping of 18O2 (1Δg) with disodium salt of anthracene-9,10-diyldiethane-2,1-diyl disulfate yielding the corresponding double-[18O]-labeled 9,10-endoperoxide, was detected through mass spectrometry. This corroborates formation of O2 (1Δg). Altogether, photoemission and chemical trapping studies clearly demonstrate that chemically and enzymatically nascent excited carbonyl generates 18O2 (1Δg) by triplet-triplet energy transfer to ground state oxygen O2 (3Σg−), and supports the long formulated hypothesis of O2 (1Δg) involvement in physiological and pathophysiological events that might take place in tissues in the absence of light. PMID:25087485

  2. Geminate recombination kinetics of solute radical ions. Singlet excited state formation in cyclohexane solutions of biphenyl

    NASA Astrophysics Data System (ADS)

    Tagawa, S.; Washio, M.; Tabata, Y.; Kobayashi, H.

    Transient absorption spectra of the solute anion, cation and triplet state and the solute fluorescence in the pulse radiolysis of 0.1 mole 1 -1 biphenyl in cyclohexane were observed on a nanosecond timescale longer than 1 ns after a 20 ps pulse. The formation of the solute excited singlet state is mainly due to the geminate ion recombination reaction even in the high concentrated solutions. The decay of the solute ions obeys the reciprocal square root dependence on time longer than 10 ns from the end of a 10 ps pulse. The slope of this reciprocal square root plots agrees with the literature value on a longer timescale obtained by microwave absorption. The yield of free ions obtained from the intercept of the slope agrees also with the literature values obtained by the field clearing method. Ratio of the formation rate of the solute excited triplet state to the decay rate of the solute anion changes in a time range between 5 and 20 ns. It is very well correlated with a theoretical calculation of spin correlation decay of the germinate ion pairs by Brocklehurst, although the formation of the solute triplet state was observed even on a timescale shorter than 5 ns from the end of a 20 ps pulse, where loss of spin correlation is negligibly small.

  3. Theoretical description of electronically excited vinylidene up to 10 eV: First high level ab initio study of singlet valence and Rydberg states

    SciTech Connect

    Boyé-Péronne, Séverine; Gauyacq, Dolores; Liévin, Jacques

    2014-11-07

    The first quantitative description of the Rydberg and valence singlet electronic states of vinylidene lying in the 0–10 eV region is performed by using large scale ab initio calculations. A deep analysis of Rydberg-valence interactions has been achieved thanks to the comprehensive information contained in the accurate Multi-Reference Configuration Interaction wavefunctions and an original population analysis highlighting the respective role played by orbital and state mixing in such interactions. The present theoretical approach is thus adequate for dealing with larger than diatomic Rydberg systems. The nine lowest singlet valence states have been optimized. Among them, some are involved in strong Rydberg-valence interactions in the region of the Rydberg state equilibrium geometry. The Rydberg states of vinylidene present a great similarity with the acetylene isomer, concerning their quantum defects and Rydberg molecular orbital character. As in acetylene, strong s-d mixing is revealed in the n = 3 s-d supercomplex. Nevertheless, unlike in acetylene, the close-energy of the two vinylidene ionic cores {sup 2}A{sub 1} and {sup 2}B{sub 1} results into two overlapped Rydberg series. These Rydberg series exhibit local perturbations when an accidental degeneracy occurs between them and results in avoided crossings. In addition, some Δl = 1 (s-p and p-d) mixings arise for some Rydberg states and are rationalized in term of electrostatic interaction from the electric dipole moment of the ionic core. The strongest dipole moment of the {sup 2}B{sub 1} cationic state also stabilizes the lowest members of the n = 3 Rydberg series converging to this excited state, as compared to the adjacent series converging toward the {sup 2}A{sub 1} ionic ground state. The overall energies of vinylidene Rydberg states lie above their acetylene counterpart. Finally, predictions for optical transitions in singlet vinylidene are suggested for further experimental spectroscopic

  4. Theoretical description of electronically excited vinylidene up to 10 eV: first high level ab initio study of singlet valence and Rydberg states.

    PubMed

    Boyé-Péronne, Séverine; Gauyacq, Dolores; Liévin, Jacques

    2014-11-07

    The first quantitative description of the Rydberg and valence singlet electronic states of vinylidene lying in the 0-10 eV region is performed by using large scale ab initio calculations. A deep analysis of Rydberg-valence interactions has been achieved thanks to the comprehensive information contained in the accurate Multi-Reference Configuration Interaction wavefunctions and an original population analysis highlighting the respective role played by orbital and state mixing in such interactions. The present theoretical approach is thus adequate for dealing with larger than diatomic Rydberg systems. The nine lowest singlet valence states have been optimized. Among them, some are involved in strong Rydberg-valence interactions in the region of the Rydberg state equilibrium geometry. The Rydberg states of vinylidene present a great similarity with the acetylene isomer, concerning their quantum defects and Rydberg molecular orbital character. As in acetylene, strong s-d mixing is revealed in the n = 3 s-d supercomplex. Nevertheless, unlike in acetylene, the close-energy of the two vinylidene ionic cores (2)A1 and (2)B1 results into two overlapped Rydberg series. These Rydberg series exhibit local perturbations when an accidental degeneracy occurs between them and results in avoided crossings. In addition, some Δl = 1 (s-p and p-d) mixings arise for some Rydberg states and are rationalized in term of electrostatic interaction from the electric dipole moment of the ionic core. The strongest dipole moment of the (2)B1 cationic state also stabilizes the lowest members of the n = 3 Rydberg series converging to this excited state, as compared to the adjacent series converging toward the (2)A1 ionic ground state. The overall energies of vinylidene Rydberg states lie above their acetylene counterpart. Finally, predictions for optical transitions in singlet vinylidene are suggested for further experimental spectroscopic characterization of vinylidene.

  5. Deactivation processes of the lowest excited state of [UO2(H2O)5]2+ in aqueous solution.

    PubMed

    Formosinho, Sebastião J; Burrows, Hugh D; da Graça Miguel, Maria; Azenha, M Emília D G; Saraiva, Isabel M; Ribeiro, A Catarina D N; Khudyakov, Igor V; Gasanov, Rashid G; Bolte, Michèle; Sarakha, Mohamed

    2003-05-01

    A detailed analysis of the photophysical behaviour of uranyl ion in aqueous solutions at room temperature is given using literature data, together with results of new experimental and theoretical studies to see whether the decay mechanism of the lowest excited state involves physical deactivation by energy transfer or a chemical process through hydrogen atom abstraction. Comparison of the radiative lifetimes determined from quantum yield and lifetime data with that obtained from the Einstein relationship strongly suggests that the emitting state is identical to that observed in the lowest energy absorption band. From study of the experimental rate and that calculated theoretically, from deuterium isotope effects and the activation energy for decay support is given to a deactivation mechanism of hydrogen abstraction involving water clusters to give uranium(v) and hydroxyl radicals. Support for hydroxyl radical formation comes from electron spin resonance spectra observed in the presence of the spin traps 5,5-dimethyl-1-pyrroline N-oxide and tert-butyl-N-phenylnitrone and from literature results on photoinduced uranyl oxygen exchange and photoconductivity. It has previously been suggested that the uranyl emission above pH 1.5 may involve an exciplex between excited uranyl ion and uranium(v). Evidence against this mechanism is given on the basis of quenching of uranyl luminescence by uranium(v), together with other kinetic reasoning. No overall photochemical reaction is observed on excitation of aqueous uranyl solutions, and it is suggested that this is mainly due to reoxidation of UO2+ by hydroxyl radicals in a radical pair. An alternative process involving oxidation by molecular oxygen is analysed experimentally and theoretically, and is suggested to be too slow to be a major reoxidation pathway.

  6. Exciton delocalization, charge transfer, and electronic coupling for singlet excitation energy transfer between stacked nucleobases in DNA: An MS-CASPT2 study

    SciTech Connect

    Blancafort, Lluís; Voityuk, Alexander A.

    2014-03-07

    Exciton delocalization and singlet excitation energy transfer have been systematically studied for the complete set of 16 DNA nucleobase dimers in their ideal, single-strand stacked B-DNA conformation, at the MS-CASPT2 level of theory. The extent of exciton delocalization in the two lowest (π,π{sup *}) states of the dimers is determined using the symmetrized one-electron transition density matrices between the ground and excited states, and the electronic coupling is calculated using the delocalization measure and the energy splitting between the states [see F. Plasser, A. J. A. Aquino, W. L. Hase, and H. Lischka, J. Phys. Chem. A 116, 11151–11160 (2012)]. The calculated couplings lie between 0.05 eV and 0.14 eV. In the B-DNA conformation, where the interchromophoric distance is 3.38 Å, our couplings deviate significantly from those calculated with the transition charges, showing the importance of orbital overlap components for the couplings in this conformation. The calculation of the couplings is based on a two-state model for exciton delocalization. However, in three stacks with a purine in the 5{sup ′} position and a pyrimidine in the 3{sup ′} one (AT, GC, and GT), there is an energetically favored charge transfer state that mixes with the two lowest excited states. In these dimers we have applied a three-state model that considers the two locally excited diabatic states and the charge transfer state. Using the delocalization and charge transfer descriptors, we obtain all couplings between these three states. Our results are important in the context of DNA photophysics, since the calculated couplings can be used to parametrize effective Hamiltonians to model extended DNA stacks. Our calculations also suggest that the 5{sup ′}-purine-pyrimidine-3{sup ′} sequence favors the formation of charge transfer excited states.

  7. Exciton delocalization, charge transfer, and electronic coupling for singlet excitation energy transfer between stacked nucleobases in DNA: An MS-CASPT2 study

    NASA Astrophysics Data System (ADS)

    Blancafort, Lluís; Voityuk, Alexander A.

    2014-03-01

    Exciton delocalization and singlet excitation energy transfer have been systematically studied for the complete set of 16 DNA nucleobase dimers in their ideal, single-strand stacked B-DNA conformation, at the MS-CASPT2 level of theory. The extent of exciton delocalization in the two lowest (π,π*) states of the dimers is determined using the symmetrized one-electron transition density matrices between the ground and excited states, and the electronic coupling is calculated using the delocalization measure and the energy splitting between the states [see F. Plasser, A. J. A. Aquino, W. L. Hase, and H. Lischka, J. Phys. Chem. A 116, 11151-11160 (2012)]. The calculated couplings lie between 0.05 eV and 0.14 eV. In the B-DNA conformation, where the interchromophoric distance is 3.38 Å, our couplings deviate significantly from those calculated with the transition charges, showing the importance of orbital overlap components for the couplings in this conformation. The calculation of the couplings is based on a two-state model for exciton delocalization. However, in three stacks with a purine in the 5' position and a pyrimidine in the 3' one (AT, GC, and GT), there is an energetically favored charge transfer state that mixes with the two lowest excited states. In these dimers we have applied a three-state model that considers the two locally excited diabatic states and the charge transfer state. Using the delocalization and charge transfer descriptors, we obtain all couplings between these three states. Our results are important in the context of DNA photophysics, since the calculated couplings can be used to parametrize effective Hamiltonians to model extended DNA stacks. Our calculations also suggest that the 5'-purine-pyrimidine-3' sequence favors the formation of charge transfer excited states.

  8. Dynamics of photofragmentation of dimethylnitrosamine from its first two excited singlet states

    NASA Astrophysics Data System (ADS)

    Lavi, R.; Rosenwaks, S.

    1988-08-01

    The photofragmentation of dimethylintrosamine (DMN) from its first two excited singlet states was studied by monitoring the scalar and vector properties of the nascent NO via one-photon laser induced fluorescence, combined with polarization and sub-Doppler spectroscopy. The DMN was fragmented following irradiation at 363.5 nm [S1←S0(π*←n)] and 250 nm [S2←S0(π*←π)]. The photofragmentation is characteristic of a direct dissociation mechanism on a repulsive potential surface for both dissociation wavelengths. The NO fragment ejects with its velocity along the bond that breaks, and its angular momentum vector tends to be perpendicular to the plane of the C2NNO frame of the parent molecule. The experiments corroborate that the transition dipole moment is perpendicular to the plane of the parent molecule for the S1←S0 transition and lies parallel to this plane, along the bond which breaks, for the S2←S0 transition. The Λ-doublet population ratio obtained for the two dissociation wavelengths is consistent with an A` symmetry for the S1 and an A' symmetry for the S2 state. Finally, a comparison between the photodissociation of tert-butyl nitrite (TBN) and DMN is presented. In particular, it is shown that in both molecules, for both states, the fragmentation is largely planar with the main forces acting approximately along the bond which breaks. On the other hand, retainment of vibrational energy in the NO fragment is observed only for TBN S1. Also, a preference of the antisymmetric Λ component in NO from TBN S2 and of the symmetric component in DMN S2 is found.

  9. Double excitations and state-to-state transition dipoles in π-π∗ excited singlet states of linear polyenes: Time-dependent density-functional theory versus multiconfigurational methods

    NASA Astrophysics Data System (ADS)

    Mikhailov, Ivan A.; Tafur, Sergio; Masunov, Artëm E.

    2008-01-01

    The effect of static and dynamic electron correlation on the nature of excited states and state-to-state transition dipole moments is studied with a multideterminant wave function approach on the example of all-trans linear polyenes ( C4H6 , C6H8 , and C8H10 ). Symmetry-forbidden singlet nAg states were found to separate into three groups: purely single, mostly single, and mostly double excitations. The excited-state absorption spectrum is dominated by two bright transitions: 1Bu-2Ag and 1Bu-mAg , where mAg is the state, corresponding to two-electron excitation from the highest occupied to lowest unoccupied molecular orbital. The richness of the excited-state absorption spectra and strong mixing of the doubly excited determinants into lower- nAg states, reported previously at the complete active space self-consistent field level of theory, were found to be an artifact of the smaller active space, limited to π orbitals. When dynamic σ-π correlation is taken into account, single- and double-excited states become relatively well separated at least at the equilibrium geometry of the ground state. This electronic structure is closely reproduced within time-dependent density-functional theory (TD DFT), where double excitations appear in a second-order coupled electronic oscillator formalism and do not mix with the single excitations obtained within the linear response. An extension of TD DFT is proposed, where the Tamm-Dancoff approximation (TDA) is invoked after the linear response equations are solved (a posteriori TDA). The numerical performance of this extension is validated against multideterminant-wave-function and quadratic-response TD DFT results. It is recommended for use with a sum-over-states approach to predict the nonlinear optical properties of conjugated molecules.

  10. Ultrafast decay of the excited singlet states of thioxanthone by internal conversion and intersystem crossing.

    PubMed

    Angulo, Gonzalo; Grilj, Jakob; Vauthey, Eric; Serrano-Andrés, Luis; Rubio-Pons, Oscar; Jacques, Patrice

    2010-02-01

    The experimental ultrafast photophysics of thioxanthone in several aprotic organic solvents at room temperature is presented, measured using femtosecond transient absorption together with high-level ab initio CASPT2 calculations of the singlet- and triplet-state manifolds in the gas phase, including computed state minima and conical intersections, transition energies, oscillator strengths, and spin-orbit coupling terms. The initially populated singlet pi pi* state is shown to decay through internal conversion and intersystem crossing processes via intermediate n pi* singlet and triplet states, respectively. Two easily accessible conical intersections explain the favorable internal conversion rates and low fluorescence quantum yields in nonpolar media. The presence of a singlet-triplet crossing near the singlet pi pi* minimum and the large spin-orbit coupling terms also rationalize the high intersystem crossing rates. A phenomenological kinetic scheme is proposed that accounts for the decrease in internal conversion and intersystem crossing (i.e. the very large experimental crescendo of the fluorescence quantum yield) with the increase of solvent polarity.

  11. Vibrational spectra of the ground and the singlet excited ππ* state of 6,7-dimethyl-8-ribityllumazine.

    PubMed

    Schreier, Wolfgang J; Pugliesi, Igor; Koller, Florian O; Schrader, Tobias E; Zinth, Wolfgang; Braun, Markus; Kacprzak, Sylwia; Weber, Stefan; Römisch-Margl, Werner; Bacher, Adelbert; Illarionov, Boris; Fischer, Markus

    2011-04-07

    6,7-Dimethyl-8-ribityllumazine serves as fluorophore in lumazine proteins (LumP) of luminescent bacteria. The molecule exhibits several characteristic vibrational absorption bands between 1300 and 1750 cm(-1) in its electronic ground state. The IR-absorption pattern of the singlet excited ππ* state was monitored via ultrafast infrared spectroscopy after photoexcitation at 404 nm. The comparison of experimentally observed band shifts for a number of isotopologues allows for a clear assignment of several absorption bands--most importantly the two carbonyl bands. This assignment is confirmed by normal-mode calculations by means of either density functional theory (DFT) calculations for the ground state or the configuration interaction singles (CIS) method for the excited singlet state. A good agreement between experiment and calculation is obtained for models including explicitly a first solvation shell. The results provide a basis for further investigations of lumazine protein and demonstrate the necessity of proper accounting for explicit hydrogen bonding in case of strongly polar molecular systems.

  12. Singlet-Triplet Excitations and Long-Range Entanglement in the Spin-Orbital Liquid Candidate FeSc2S4.

    PubMed

    Laurita, N J; Deisenhofer, J; Pan, LiDong; Morris, C M; Schmidt, M; Johnsson, M; Tsurkan, V; Loidl, A; Armitage, N P

    2015-05-22

    Theoretical models of the spin-orbital liquid (SOL) FeSc2S4 have predicted it to be in close proximity to a quantum critical point separating a spin-orbital liquid phase from a long-range ordered magnetic phase. Here, we examine the magnetic excitations of FeSc2S4 through time-domain terahertz spectroscopy under an applied magnetic field. At low temperatures an excitation emerges that we attribute to a singlet-triplet excitation from the SOL ground state. A threefold splitting of this excitation is observed as a function of applied magnetic field. As singlet-triplet excitations are typically not allowed in pure spin systems, our results demonstrate the entangled spin and orbital character of singlet ground and triplet excited states. Using experimentally obtained parameters we compare to existing theoretical models to determine FeSc2S4's proximity to the quantum critical point. In the context of these models, we estimate the characteristic length of the singlet correlations to be ξ/(a/2)≈8.2 (where a/2 is the nearest neighbor lattice constant), which establishes FeSc2S4 as a SOL with long-range entanglement.

  13. DFT spin-orbit coupling between singlet and triplet excited states: A case of psoralen compounds

    NASA Astrophysics Data System (ADS)

    Chiodo, Sandro G.; Russo, Nino

    2010-04-01

    We present a computational protocol in which our method is used to compute spin-orbit (SO) matrix elements on time-dependent-density functional theory (TD-DFT). These SO contributions, computed employing our SO program package, MolSOC, have been expressed, in turn, in terms of weighted coefficients and SO matrix elements between singlet and triplet wave functions arising from a given one-electron transition. The protocol has been applied to study psoralen compound and its derivatives obtained from the replacement of one oxygen with sulfur or selenium. The obtained results have been compared with those reported in literature.

  14. Tuning ground states of bis(triarylamine) dications: from a closed-shell singlet to a diradicaloid with an excited triplet state.

    PubMed

    Su, Yuanting; Wang, Xingyong; Zheng, Xin; Zhang, Zaichao; Song, You; Sui, Yunxia; Li, Yizhi; Wang, Xinping

    2014-03-10

    Three bis(triarylamine) dications were isolated by using weakly coordinating anions. Their electronic structures in the ground state were investigated by various experiments in conjunction with theoretical calculations. The ground-state electronic structures of these species were tunable by substituent effects, with two of them as closed-shell singlets and one of them as an open-shell singlet in the solid state. The excited state of the latter is thermally accessible, indicated by EPR and SQUID measurements. The work provides a new and stable diradicaloid structure motif with an excited triplet sate.

  15. Photophysics of threaded sp-carbon chains: the polyyne is a sink for singlet and triplet excitation.

    PubMed

    Movsisyan, Levon D; Peeks, Martin D; Greetham, Gregory M; Towrie, Michael; Thompson, Amber L; Parker, Anthony W; Anderson, Harry L

    2014-12-31

    We have used single-crystal X-ray diffraction and time-resolved UV-NIR-IR absorption spectroscopy to gain insights into the structures and excited-state dynamics of a rotaxane consisting of a hexayne chain threaded through a phenanthroline macrocycle and a family of related compounds, including the rhenium(I) chlorocarbonyl complex of this rotaxane. The hexayne unit in the rhenium-rotaxane is severely nonlinear; it is bent into an arc with an angle of 155.6(1)° between the terminal C1 and C12 atoms and the centroid of the central C-C bond, with the most acute distortion at the point where the polyyne chain pushes against the Re(CO)3Cl unit. There are strong through-space excited-state interactions between the components of the rotaxanes. In the metal-free rotaxane, there is rapid singlet excitation energy transfer (EET) from the macrocycle to the hexayne (τ = 3.0 ps), whereas in the rhenium-rotaxane there is triplet EET, from the macrocycle complex (3)MLCT state to the hexayne (τ = 1.5 ns). This study revealed detailed information on the short-lived higher excited state of the hexayne (lifetime ∼1 ps) and on structural reorganization and cooling of hot polyyne chains, following internal conversion (over ∼5 ps). Comparison of the observed IR bands of the excited states of the hexayne with results from time-dependent density functional calculations (TD DFT) shows that these excited states have high cumulenic character (low bond length alternation) around the central region of the chain. These findings shed light on the complex interactions between the components of this supramolecular rotaxane and are important for the development of materials for the emerging molecular and nanoscale electronics.

  16. The spectroscopy of singlets and triplets excites electronic states, spatial and electronic structure of hydrocarbons and quantum classifications in chemmotology

    NASA Astrophysics Data System (ADS)

    Obukhov, A. E.

    2016-12-01

    In this work we demonstrate the physical foundations of the spectroscopy of the grounds states: E- and X-ray, (RR) Raman scattering the NMR 1H and 13C and IR-, EPR- absorption and the singlets and triplets electronic excited states in the multinuclear hydrocarbons in chemmotology. The parameters of UV-absorption, RR-Raman scattering of light, the fluorescence and the phosphorescence and day-lasers at the pumping laser and lamp, OLEDs and OTETs- are measurements. The spectral-energy properties are briefly studied. The quantum-chemical LCAO-MO SCF expanded-CI PPP/S and INDO/S methods in the electronic and spatial structure hidrocarbons are considered.

  17. Two-photon excitation into low-energy singlet states of anthracene in mixed crystals

    NASA Astrophysics Data System (ADS)

    Bree, A.; Leyderman, A.; Taliani, C.

    1985-08-01

    The two-photon excitation spectrum of the first excited state of anthracene in fluorene and biphenyl at 4.2 K has been measured. Intensity is induced into the origin by the static dipole moment of fluorene, and into b 1u vibrons through coupling to an A g state near 29400 cm -1; the nature of this A g state is discussed.

  18. Difluorodiazirine (CF2N2): A comparative quantum mechanical study of the first triplet and first singlet excited states

    NASA Astrophysics Data System (ADS)

    Terrabuio, Luiz Alberto; Haiduke, Roberto Luiz Andrade; Matta, Chérif F.

    2016-07-01

    3,3‧-Difluorodiazirine is a precursor of difluorocarbene radical (:CF2) which is used in organic synthesis and photo affinity labelling. This molecule possesses no dipole moment in the ground electronic state (S0) but has a significant dipole moment (of magnitude ~0.97 D) in both its first (triplet, T1) and second (singlet S1) excited states. These equal dipole moments are shown to originate from widely differing atomic polarization and inter-atomic charge transfer terms (defined by the Quantum Theory of Atoms in Molecules (QTAIM)). The calculated vertical/adiabatic excitation energies for the T1 and S1 states are 2.81/2.63 and 3.99/3.78 eV, respectively. Geometries, vibrational frequencies, atomic charges and spin populations, and the localization-delocalization matrices (LDMs) (Matta, J. Comput. Chem. 35 (2014) 1165) of the excited states are compared with those of the ground state. All calculations have been conducted at the (U)QCISD/aug-cc-pVTZ level of theory.

  19. Excited singlet (S1) state interactions of calixarenes with chloroalkanes: A combination of concerted and stepwise dissociative electron transfer mechanism

    NASA Astrophysics Data System (ADS)

    Mohanty, J.; Pal, H.; Nayak, S. K.; Chattopadhyay, S.; Sapre, A. V.

    2002-12-01

    Both steady-state and time-resolved studies in acetonitrile (ACN) solutions show that the excited singlet (S1) states of calixarenes (CX) undergo quenching by chloroalkanes (CA). It has been revealed by characterizing the Cl ions in the photolyzed CX-CA systems in ACN solutions that the quenching occurs due to dissociative electron transfer (DET) mechanism, whereby a C-Cl bond of the CAs undergoes dissociation on acceptance of an electron from excited CX. The bimolecular quenching constants (kq) in the present systems were correlated with the free energy changes for the concerted DET reactions based on a suitable DET theory. Such a correlation results in the recovery of an intramolecular reorganization energy, which is substantially lower to account for the C-Cl bond dissociation energy of the CAs. Comparing present results with those of an another donor-acceptor system (e.g., biphenyldiol-CA systems) where a concerted DET mechanism is applicable, it is inferred that in CX-CA systems both concerted and stepwise DET mechanisms operate simultaneously. It is proposed that the interaction of excited CXs with encaged CAs follows the stepwise mechanism whereas that with the out of cage CAs follows the concerted mechanism.

  20. Estimation of first excited singlet-state dipole moments of aminoanthraquinones by solvatochromic method.

    PubMed

    Siddlingeshwar, B; Hanagodimath, S M

    2009-04-01

    The ground state (micro(g)) and the excited state (micro(e)) dipole moments of three substituted anthraquinones, namely 1-aminoanthracene-9,10-dione (AAQ), 1-(methylamino)anthracence-9,10-dione (MAQ) and 1,5-diaminoanthracene-9,10-dione (DAQ) were estimated in various solvents. The dipole moments (micro(g) and micro(e)) were estimated from Lippert, Bakhshiev, Kawski-Chamma-Viallet, McRae and Suppan equations by using the variation of Stokes shift with the solvent dielectric constant and refractive index. The excited state dipole moments were also calculated by using the variation of Stokes shift with microscopic solvent polarity parameter (Epsilon(T)(N)). It was observed that dipole moment values of excited states (micro(e)) were higher than corresponding ground state values (micro(g)), indicating a substantial redistribution of the pi-electron densities in a more polar excited state for all the molecules investigated.

  1. Estimation of first excited singlet-state dipole moments of aminoanthraquinones by solvatochromic method

    NASA Astrophysics Data System (ADS)

    Siddlingeshwar, B.; Hanagodimath, S. M.

    2009-04-01

    The ground state ( μg) and the excited state ( μe) dipole moments of three substituted anthraquinones, namely 1-aminoanthracene-9,10-dione (AAQ), 1-(methylamino)anthracence-9,10-dione (MAQ) and 1,5-diaminoanthracene-9,10-dione (DAQ) were estimated in various solvents. The dipole moments ( μg and μe) were estimated from Lippert, Bakhshiev, Kawski-Chamma-Viallet, McRae and Suppan equations by using the variation of Stokes shift with the solvent dielectric constant and refractive index. The excited state dipole moments were also calculated by using the variation of Stokes shift with microscopic solvent polarity parameter ( ETN). It was observed that dipole moment values of excited states ( μe) were higher than corresponding ground state values ( μg), indicating a substantial redistribution of the π-electron densities in a more polar excited state for all the molecules investigated.

  2. Vertical Singlet Excitations on Adenine Dimer: A Time Dependent Density Functional Study

    NASA Astrophysics Data System (ADS)

    Crespo-Hernández, Carlos E.; Marai, Christopher N. J.

    2007-12-01

    The condense phase, excited state dynamics of the adenylyl(3'→5')adenine (ApA) dinucleotide has been previously studied using transient absorption spectroscopy with femtosecond time resolution (Crespo-Hernández et al. Chem. Rev. 104, 1977-2019 (2004)). An ultrafast and a long-lived component were observed with time constants of <1 ps and 60±16 ps, respectively. Comparison of the time constants measured for the dinucleotide with that for the adenine nucleotide suggested that the fast component observed in ApA could be assigned to monomer dynamics. The long-lived component observed in ApA was assigned to an excimer state that originates from a fraction of base stacked conformations present at the time of excitation. In this contribution, supermolecule calculations using the time dependent implementation of density functional theory is used to provide more insights on the origin of the initial Franck-Condon excitations. Monomer-like, localized excitations are observed for conformations having negligible base stacking interactions, whereas delocalized excitations are predicted for conformations with significant vertical base-base overlap.

  3. LASER APPLICATIONS AND OTHER TOPICS IN LASER TECHNOLOGY: Influence of transitions between excited singlet and triplet states on the phase response of dye solutions

    NASA Astrophysics Data System (ADS)

    Kabanov, V. V.; Rubanov, A. S.; Tolstik, A. L.

    1988-08-01

    An investigation is made of the transitions between excited singlet and triplet states, and of the effects of stereoisomerism molecules on the light-induced change in the refractive index of a dye solution. It is shown that the contribution of the ground and excited channels to the total phase response varies within a wide range depending on the spectroscopic characteristics of the medium and the parameters of the exciting radiation. An estimate is obtained of the ratio of the contributions of the resonant and thermal nonlinearities to the total change in the refractive index.

  4. From Model Hamiltonians to ab Initio Hamiltonians and Back Again: Using Single Excitation Quantum Chemistry Methods To Find Multiexciton States in Singlet Fission Materials.

    PubMed

    Mayhall, Nicholas J

    2016-09-13

    Due to the promise of significantly enhanced photovoltaic efficiencies, significant effort has been directed toward understanding and controlling the singlet fission mechanism. Although accurate quantum chemical calculations would provide a detail-rich view of the singlet fission mechanism, this is complicated by the multiexcitonic nature of one of the key intermediates, the (1)(TT) state. Being described as two simultaneous and singlet-coupled triplet excitations on a pair of nearest neighbor monomers, the (1)(TT) state is inherently a multielectronic excitation. This fact renders most single-reference ab initio quantum chemical methods incapable of providing accurate results. This paper serves two purposes: (1) to demonstrate that the multiexciton states in singlet fission materials can be described using a spin-only Hamiltonian and with each monomer treated as a biradical and (2) to propose a very simple procedure for extracting the values for this Hamiltonian from single-reference calculations. Numerical examples are included for a number of different systems, including dimers, trimers, tetramers, and a cluster comprised of seven chromophores.

  5. Quantitative treatment of the solvent effects on the electronic absorption and fluorescence spectra of acridines and phenazines. The ground and first excited singlet-state dipole moments

    NASA Astrophysics Data System (ADS)

    Aaron, Jean Jacques; Maafi, Mounir; Párkányi, Cyril; Boniface, Christian

    1995-04-01

    Electronic absorption and fluorescence excitation and emission spectra of four acridines (acridine, Acridine Yellow, 9-aminoacridine and proflavine) and three phenazines (phenazine, neutral Red and safranine) are determined at room temperature (298 K) in several solvents of various polarities (dioxane, chloroform, ethyl ether, ethyl acetate, 1-butanol, 2-propanol, ethanol, methanol, dimethylformamide, acetonitrile and dimethyl sulfoxide). The effect of the solvent upon the spectral characteristics of the above compounds, is studied. In combination with the ground-state dipole moments of these compounds, the spectral data are used to evaluate their first excited singlet-state dipole moments by means of the solvatochromic shift method (Bakhshiev's and Kawski-Chamma-Viallet's correlations). The theoretical ground and excited singlet-state dipole moments for acridines and phenazines are also calculated as a vector sum of the π-component (obtained by the PPP method) and the σ-component (obtained from σ-bond moments). For most acridines and phenazines under study, the experimental excited singlet-state dipole moments are found to be higher than their ground state counterpart. The application of the Kamlet-Abboud-Taft solvatochromic parameters to the solvent effect on spectral properties of acridine and phenazine derivatives is discussed.

  6. Quantitative treatment of the effect of solvent on the electronic absorption and fluorescence spectra of substituted coumarins: Evaluation of the first excited singlet-state dipole moments.

    PubMed

    Aaron, J J; Buna, M; Parkanyi, C; Antonious, M S; Tine, A; Cisse, L

    1995-12-01

    The electronic absorption and fluorescence spectra of coumarin and 11 substituted coumarins were measured in several solvents (dioxane, ethyl ether, ethyl acetate, ethanol, dimethylformamide, acetonitrile, and dimethyl sulfoxide). Ground-state dipole moments were determined in dioxane at 298 K. The results were used to obtain the first excited singlet-state dipole moments of the coumarins under study by the solvatochromic shift method (Bakhshiev, Kawski-Chamma-Viallet, McRae, and Suppan correlations). Also, the ground- and the first excited singlet-state dipole moments were calculated using a combination of the PPP method (π-contribution) and the vector sum of the σ-bond and group moments (σ-contribution). In general, the first excited singlet-state dipole moments of the coumarins are noticeably higher than the corresponding ground-state values, indicating a substantial redistribution of theπ-electron densities resulting in a more polar excited state. There is a reasonably good agreement between the calculated and the experimental dipole moments.

  7. The effects of detergents DDM and beta-OG on the singlet excited state lifetime of the chlorophyll a in cytochrome b6f complex from spinach chloroplasts.

    PubMed

    Chen, XiaoBo; Zhao, XiaoHui; Zhang, JianPing; Li, LiangBi; Kuang, TingYun

    2007-08-01

    The singlet excited state lifetime of the chlorophyll a (Chl a) in cytochrome b(6)f (Cyt b(6)f) complex was reported to be shorter than that of free Chl a in methanol, but the value was different for Cyt b(6)f complexes from different sources ( approximately 200 and approximately 600 ps are the two measured results). The present study demonstrated that the singlet excited state lifetime is associated with the detergents n-dodecyl-beta-D-maltoside (DDM) and n-octyl-beta-D-glucopyranoside (beta-OG), but has nothing to do with the different sources of Cyt b(6)f complexes. Compared with the Cyt b(6)f dissolved in beta-OG, the Cyt b(6)f in DDM had a lower fluorescence yield, a lower photodegradation rate of Chl a, and a shorter lifetime of Chl a excited state. In short, the singlet excited state lifetime, approximately 200 ps, of the Chl a in Cyt b(6)f complex in DDM is closer to the true in vivo.

  8. Role of excited singlet state in the photooxidation of carotenoids: A time-resolved Q-band EPR study

    SciTech Connect

    Jeevarajan, A.S.; Kispert, L.D.; Avdievich, N.I.; Forbes, M.D.E.

    1996-01-11

    Spin-polarized 35 GHz time-resolved EPR (TREPR) spectra were obtained for the first time of the cation radicals of {beta}-carotene (I), 15,15`-didehydro-{beta}-carotene (II), 7`,7`-dicyano-7`-apo-{beta}-carotene (III), and 7`-cyano-7`- ethoxycarbonyl-7`-apo-{beta}-carotene (IV) and the anion radical of the solvent which were formed by 308 nm photoexcitation of the carotenoids in carbon tetrachloride solution. Although the EPR spectra are weak in intensity due to the small dimensions of the 35 GHz quartz flat cell and have very broad line widths, it was possible to positively determine from the polarization pattern that the electron transfer to the solvent occurs from the excited singlet state of the carotenoids. The 35 GHz EPR spectra consist of two resolved EPR lines (one absorption and one emission) from which it has been possible to measure the g factor and {Delta}H{sub pp} of the solvent-separated radical ion pair that was formed; measurements were not possible at 9 GHz. 25 refs., 2 figs., 1 tab.

  9. Multiple Decay Mechanisms and 2D‐UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine‐Uracil Monophosphate

    PubMed Central

    Li, Quansong; Giussani, Angelo; Segarra‐Martí, Javier; Nenov, Artur; Rivalta, Ivan; Voityuk, Alexander A.; Mukamel, Shaul; Roca‐Sanjuán, Daniel

    2016-01-01

    Abstract The decay channels of singlet excited adenine uracil monophosphate (ApU) in water are studied with CASPT2//CASSCF:MM potential energy calculations and simulation of the 2D‐UV spectroscopic fingerprints with the aim of elucidating the role of the different electronic states of the stacked conformer in the excited state dynamics. The adenine 1La state can decay without a barrier to a conical intersection with the ground state. In contrast, the adenine 1Lb and uracil S(U) states have minima that are separated from the intersections by sizeable barriers. Depending on the backbone conformation, the CT state can undergo inter‐base hydrogen transfer and decay to the ground state through a conical intersection, or it can yield a long‐lived minimum stabilized by a hydrogen bond between the two ribose rings. This suggests that the 1Lb, S(U) and CT states of the stacked conformer may all contribute to the experimental lifetimes of 18 and 240 ps. We have also simulated the time evolution of the 2D‐UV spectra and provide the specific fingerprint of each species in a recommended probe window between 25 000 and 38 000 cm−1 in which decongested, clearly distinguishable spectra can be obtained. This is expected to allow the mechanistic scenarios to be discerned in the near future with the help of the corresponding experiments. Our results reveal the complexity of the photophysics of the relatively small ApU system, and the potential of 2D‐UV spectroscopy to disentangle the photophysics of multichromophoric systems. PMID:27113273

  10. Sensitization of singlet oxygen via encounter complexes and via exciplexes of pipi* triplet excited sensitizers and oxygen.

    PubMed

    Mehrdad, Zahra; Noll, Astrid; Grabner, Erich-Walter; Schmidt, Reinhard

    2002-04-01

    Both excited singlet states, 1sigma(g)+ and 1delta(g), and the triplet ground state, 3sigma(g)-, of molecular oxygen are competitively formed during the quenching by O2 of triplet (T1) excited sensitizers of sufficient energy. The corresponding overall rate constants kT(1sigma), kT(1delta), and kT(3sigma) as well as the T1 state energies E(T) and the oxidation potentials E(ox), have been determined for a series of six fluorene derivatives. Graduated and in part strong charge transfer (CT) effects on kT(1sigma), kT(1delta), and kT(3sigma) are observed. These and literature data strongly indicate that quenching occurs in two different channels each capable of producing O2(1sigma(g)-), O2(1delta(g)), and O2(3sigma(g)-). One proceeds via internal conversion (IC) of excited 1,3(T1 x 3sigma) complexes with no CT character (nCT), which cannot be distinguished from encounter complexes, the other via IC of 1,3(T1 x 3sigma) exciplexes with partial CT character (pCT). The contributions of nCT and pCT deactivation channels to the overall formation of O2(1sigma(g)+), O2(1delta(g)). and O2(3sigma(g)-) depend on E(T) and E(ox). The rate constants of the nCT channel are controlled by the excess energies of the respective IC processes by an energy gap law. The rate constants of the pCT channel depend on the change of free energy deltaG(CET) for complete electron transfer from T1 excited sensitizer to O2. Equations are presented which show the functional form of the dependence of the oxygen quenching rate constants on E(T) and E(ox). Particular emphasis is laid on the question of whether these relations could generally be valid for pipi* triplet sensitizers.

  11. Extensive TD-DFT Benchmark: Singlet-Excited States of Organic Molecules.

    PubMed

    Jacquemin, Denis; Wathelet, Valérie; Perpète, Eric A; Adamo, Carlo

    2009-09-08

    Extensive Time-Dependent Density Functional Theory (TD-DFT) calculations have been carried out in order to obtain a statistically meaningful analysis of the merits of a large number of functionals. To reach this goal, a very extended set of molecules (∼500 compounds, >700 excited states) covering a broad range of (bio)organic molecules and dyes have been investigated. Likewise, 29 functionals including LDA, GGA, meta-GGA, global hybrids, and long-range-corrected hybrids have been considered. Comparisons with both theoretical references and experimental measurements have been carried out. On average, the functionals providing the best match with reference data are, one the one hand, global hybrids containing between 22% and 25% of exact exchange (X3LYP, B98, PBE0, and mPW1PW91) and, on the other hand, a long-range-corrected hybrid with a less-rapidly increasing HF ratio, namely LC-ωPBE(20). Pure functionals tend to be less consistent, whereas functionals incorporating a larger fraction of exact exchange tend to underestimate significantly the transition energies. For most treated cases, the M05 and CAM-B3LYP schemes deliver fairly small deviations but do not outperform standard hybrids such as X3LYP or PBE0, at least within the vertical approximation. With the optimal functionals, one obtains mean absolute deviations smaller than 0.25 eV, though the errors significantly depend on the subset of molecules or states considered. As an illustration, PBE0 and LC-ωPBE(20) provide a mean absolute error of only 0.14 eV for the 228 states related to neutral organic dyes but are completely off target for cyanine-like derivatives. On the basis of comparisons with theoretical estimates, it also turned out that CC2 and TD-DFT errors are of the same order of magnitude, once the above-mentioned hybrids are selected.

  12. Lowest excited states and optical absorption spectra of donor-acceptor copolymers for organic photovoltaics: a new picture emerging from tuned long-range corrected density functionals.

    PubMed

    Pandey, Laxman; Doiron, Curtis; Sears, John S; Brédas, Jean-Luc

    2012-11-07

    Polymers with low optical gaps are of importance to the organic photovoltaics community due to their potential for harnessing a large portion of the solar energy spectrum. The combination along their backbones of electron-rich and electron-deficient fragments contributes to the presence of low-lying excited states that are expected to display significant charge-transfer character. While conventional hybrid functionals are known to provide unsatisfactory results for charge-transfer excitations at the time-dependent DFT level, long-range corrected (LRC) functionals have been reported to give improved descriptions in a number of systems. Here, we use such LRC functionals, considering both tuned and default range-separation parameters, to characterize the absorption spectra of low-optical-gap systems of interest. Our results indicate that tuned LRC functionals lead to simulated optical-absorption properties in good agreement with experimental data. Importantly, the lowest-lying excited states (excitons) are shown to present a much more localized nature than initially anticipated.

  13. Excited singlet states of covalently bound, cofacial dimers and trimers of perylene-3,4:9,10-bis(dicarboximide)s.

    PubMed

    Giaimo, Jovan M; Lockard, Jenny V; Sinks, Louise E; Scott, Amy M; Wilson, Thea M; Wasielewski, Michael R

    2008-03-20

    Perylene-3,4:9,10-bis(dicarboximide) (PDI) and its derivatives are robust organic dyes that strongly absorb visible light and display a strong tendency to self-assemble into ordered aggregates, having significant interest as photoactive materials in a wide variety of organic electronics. To better understand the nature of the electronics states produced by photoexcitation of such aggregates, the photophysics of a series of covalent, cofacially oriented, pi-stacked dimers and trimers of PDI and 1,7-bis(3',5'-di-t-butylphenoxy)perylene-3,4:9,10-bis(dicarboximide) (PPDI) were characterized using both time-resolved absorption and fluorescence spectroscopy. The covalent linkage between the chromophores was accomplished using 9,9-dimethylxanthene spacers. Placing n-octyl groups on the imide nitrogen atoms at the end of the PDI chromophores not attached to the xanthene spacer results in PDI dimers having near optimal pi-stacking, leading to formation of a low-energy excimer-like state, while substituting the more sterically demanding 12-tricosanyl group on the imides causes deviations from the optimum that result in slower formation of an excimer-like excited state having somewhat higher energy. By comparison, PPDI dimers having terminal n-octyl imide groups have two isomers, whose photophysical properties depend on the ability of the phenoxy groups at the 1,7-positions to modify the pi stacking of the PPDI molecules. In general, disruption of optimal pi-stacking by steric interactions of the phenoxy side groups results in excimer-like states that are higher in energy. The corresponding lowest excited singlet states of the PDI and PPDI trimers are dimer-like in nature and suggest that structural distortions that accompany formation of the trimers are sufficient to confine the electronic interaction on two chromophores within these systems. This further suggests that it may be useful to build into oligomeric PDI and PPDI systems some degree of flexibility that allows the

  14. Reverse intersystem crossing from upper triplet levels to excited singlet: a ‘hot excition’ path for organic light-emitting diodes

    PubMed Central

    Hu, Dehua; Yao, Liang; Yang, Bing; Ma, Yuguang

    2015-01-01

    Since researches on the fate of highly excited triplet states demonstrated the existence of reverse intersystem crossing (RISC) from upper triplet levels to singlet manifold in naphthalene, quinoline, isoquinoline, etc. in the 1960s, this unique photophysical process was then found and identified in some other aromatic materials. However, the early investigations mainly focus on exploring the mechanism of this photophysical process; no incorporation of specific application was implemented. Until recently, our group innovatively used this ‘sleeping’ photophysical process to enhance the efficiency of fluorescent organic light-emitting diodes by simultaneously harvesting singlet and triplet excitons. Efforts are devoted to developing materials with high photoluminescence efficiency and effective RISC through appropriate molecular design in a series of donor–acceptor material systems. The experimental and theoretical results indicate that these materials exhibit hybridized local and charge-transfer excited state, which achieve a combination of the high radiation from local excited state and the high Tm→Sn (m≥2, n≥1) conversion along charge-transfer excited state. As expected, the devices exhibited favourable external quantum efficiency and low roll-off, and especially an exciton utilization efficiency exceeding the limit of 25%. Considering the significant progress made in organic light-emitting diodes with this photophysical process, we review the relevant mechanism and material systems, as well as our design principle in materials and device application. PMID:25987570

  15. Time-resolved photoelectron spectroscopy of a dinuclear Pt(II) complex: Tunneling autodetachment from both singlet and triplet excited states of a molecular dianion

    SciTech Connect

    Winghart, Marc-Oliver Unterreiner, Andreas-Neil; Yang, Ji-Ping; Vonderach, Matthias; Huang, Dao-Ling; Wang, Lai-Sheng; Kruppa, Sebastian; Riehn, Christoph; Kappes, Manfred M.

    2016-02-07

    Time-resolved pump-probe photoelectron spectroscopy has been used to study the relaxation dynamics of gaseous [Pt{sub 2}(μ-P{sub 2}O{sub 5}H{sub 2}){sub 4} + 2H]{sup 2−} after population of its first singlet excited state by 388 nm femtosecond laser irradiation. In contrast to the fluorescence and phosphorescence observed in condensed phase, a significant fraction of the photoexcited isolated dianions decays by electron loss to form the corresponding monoanions. Our transient photoelectron data reveal an ultrafast decay of the initially excited singlet {sup 1}A{sub 2u} state and concomitant rise in population of the triplet {sup 3}A{sub 2u} state, via sub-picosecond intersystem crossing (ISC). We find that both of the electronically excited states are metastably bound behind a repulsive Coulomb barrier and can decay via delayed autodetachment to yield electrons with characteristic kinetic energies. While excited state tunneling detachment (ESETD) from the singlet {sup 1}A{sub 2u} state takes only a few picoseconds, ESETD from the triplet {sup 3}A{sub 2u} state is much slower and proceeds on a time scale of hundreds of nanoseconds. The ISC rate in the gas phase is significantly higher than in solution, which can be rationalized in terms of changes to the energy dissipation mechanism in the absence of solvent molecules. [Pt{sub 2}(μ-P{sub 2}O{sub 5}H{sub 2}){sub 4} + 2H]{sup 2−} is the first example of a photoexcited multianion for which ESETD has been observed following ISC.

  16. Estimation of Ground-State and Singlet Excited-State Dipole Moments of Substituted Schiff Bases Containing Oxazolidin-2-one Moiety through Solvatochromic Methods.

    PubMed

    Kumari, Rekha; Varghese, Anitha; George, Louis

    2017-01-01

    Absorption and fluorescence studies on novel Schiff bases (E)-4-(4-(4-nitro benzylideneamino)benzyl)oxazolidin-2-one (NBOA) and (E)-4-(4-(4-chlorobenzylidene amino)benzyl)oxazolidin-2-one (CBOA) were recorded in a series of twelve solvents upon increasing polarity at room temperature. Large Stokes shift indicates bathochromic fluorescence band for both the molecules. The photoluminescence properties of Schiff bases containing electron withdrawing and donating substituents were analyzed. Intramolecular charge transfer behavior can be studied based on the influence of different substituents in Schiff bases. Changes in position and intensity of absorption and fluorescence spectra are responsible for the stabilization of singlet excited-states of Schiff base molecules with different substituents, in polar solvents. This is attributed to the Intramolecular charge transfer (ICT) mechanism. In case of electron donating (-Cl) substituent, ICT contributes largely to positive solvatochromism when compared to electron withdrawing (-NO2) substituent. Ground-state and singlet excited-state dipole moments of NBOA and CBOA were calculated experimentally using solvent polarity function approaches given by Lippert-Mataga, Bakhshiev, Kawskii-Chamma-Viallet and Reichardt. Due to considerable π- electron density redistribution, singlet excited-state dipole moment was found to be greater than ground-state dipole moment. Ground-state dipole moment value which was determined by quantum chemical method was used to estimate excited-state dipole moment using solvatochromic correlations. Kamlet-Abboud-Taft and Catalan multiple linear regression approaches were used to study non-specific solute-solvent interaction and hydrogen bonding interactions in detail. Optimized geometry and HOMO-LUMO energies of NBOA and CBOA have been determined by DFT and TD-DFT/PCM (B3LYP/6-311G (d, p)). Mulliken charges and molecular electrostatic potential have also been evaluated from DFT calculations.

  17. Quantum chemical study on the population of the lowest triplet state of psoralen

    NASA Astrophysics Data System (ADS)

    Serrano-Pérez, Juan José; Merchán, Manuela; Serrano-Andrés, Luis

    2007-01-01

    The efficient population of the low-lying triplet ππ * state of psoralen is studied with the quantum chemical CASPT2 method. Minima, singlet-triplet crossings, conical intersections, and reaction paths on the low-lying singlet and triplet states hypersurfaces of the system have been computed together with electronic energy gaps and spin-orbit coupling terms. A mechanism is proposed, favorable in the gas phase, for efficient deactivation of the initially populated singlet excited ππ * state, starting with an intersystem crossing with an nπ * triplet state and evolving via a conical intersection toward the final lowest-lying ππ * triplet state, protagonist of the reactivity of psoralen.

  18. Effect of a triplet to singlet state interaction on photofragmentation dynamics: highly excited states of HBr probed by VMI and REMPI as a case study.

    PubMed

    Glodic, Pavle; Zaouris, Dimitris; Samartzis, Peter C; Hafliðason, Arnar; Kvaran, Ágúst

    2016-09-21

    Analysis of mass resolved spectra as well as velocity map images derived from resonance enhanced multiphoton ionization (REMPI) of HBr via resonance excitations to mixed Rydberg (6pπ (3)Σ(-)(v' = 0)) and valence (ion-pair) (V (1)Σ(+)(v' = m + 17)) states allows characterization of the effect of a triplet-to-singlet state interaction on further photoexcitation and photoionization processes. The analysis makes use of rotational spectra line shifts, line intensity alterations, kinetic energy release spectra as well as angular distributions. Energy-level-dependent state mixing of the resonance excited states is quantified and photoexcitation processes, leading to H(+) formation, are characterized in terms of the states and fragmentation processes involved, depending on the state mixing.

  19. Density functional theory calculations on rhodamine B and pinacyanol chloride. Optimized ground state, dipole moment, vertical ionization potential, adiabatic electron affinity and lowest excited triplet state.

    PubMed

    Delgado, Juan C; Selsby, Ronald G

    2013-01-01

    The ground state configuration of the gas phase cationic dyes pinacyanol chloride and rhodamine B are optimized with HF/6-311 + G(2d,2p) method and basis set. B3PW91/6-311 + G(2df,2p) functional and basis set is used to calculate the Mulliken atom charge distribution, total molecular energy, the dipole moment, the vertical ionization potential, the adiabatic electron affinity and the lowest excited triplet state, the last three as an energy difference between separately calculated open shell and ground states. The triplet and extra electron states are optimized to find the relaxation energy. In the ground state optimization of both dyes the chloride anion migrates to a position near the center of the chromophore. For rhodamine B the benzoidal group turns perpendicular to the chromophore plane. For both dyes, the LUMO is mostly of π character associated with the aromatic part of the molecule containing the chromophore. The highest occupied MOs consist of three almost degenerate eigenvectors involving the chloride anion coordinated with σ electrons in the molecular framework. The fourth highest MO is of π character. For both molecules in the gas phase ionization process the chloride anion loses the significant fraction of electric charge. In electron capture, the excess charge goes mainly on the dye cation.

  20. Singlet-triplet splittings and electron affinities of selected cyanocarbenes, XCCN (X = H, F, Cl, C 2H, CN): carbenes with a stable excited negative ion state

    NASA Astrophysics Data System (ADS)

    Kalcher, Josef

    2005-02-01

    The title compounds have been investigated using the ROHF-ACPF and CAS(2,2)-ACPF method in conjunction with the aug-cc-pVTZ basis sets. All cyanocarbenes have triplet ground states except FCCN and ClCCN, which conform to the halocarbenes in having singlet ground states. The ground state electron affinities are found to be rather high, i.e., 1.972, 2.061, 2.474, 3.359, 2.301 eV for HCCN, FCCN, ClCCN, C(CN) 2 and (HC 2)CCN, respectively. The existence of bound excited negative ion states has been discovered for the first time within the carbenes.

  1. Ultrafast deactivation mechanism of the excited singlet in the light-induced spin crossover of [Fe(2,2'-bipyridine)3]2+.

    PubMed

    Sousa, Carmen; de Graaf, Coen; Rudavskyi, Andrii; Broer, Ria; Tatchen, Jörg; Etinski, Mihajlo; Marian, Christel M

    2013-12-16

    The mechanism of the light-induced spin crossover of the [Fe(bpy)3](2+) complex (bpy=2,2'-bipyridine) has been studied by combining accurate electronic-structure calculations and time-dependent approaches to calculate intersystem-crossing rates. We investigate how the initially excited metal-to-ligand charge transfer (MLCT) singlet state deactivates to the final metastable high-spin state. Although ultrafast X-ray free-electron spectroscopy has established that the total timescale of this process is on the order of a few tenths of a picosecond, the details of the mechanisms still remain unclear. We determine all the intermediate electronic states along the pathway from low spin to high spin and give estimates for the deactivation times of the different stages. The calculations result in a total deactivation time on the same order of magnitude as the experimentally determined rate and indicate that the complex can reach the final high-spin state by means of different deactivation channels. The optically populated excited singlet state rapidly decays to a triplet state with an Fe d(6)(t(2g)(5)e(g)(1)) configuration either directly or by means of a triplet MLCT state. This triplet ligand-field state could in principle decay directly to the final quintet state, but a much faster channel is provided by internal conversion to a lower-lying triplet state and subsequent intersystem crossing to the high-spin state. The deactivation rate to the low-spin ground state is much smaller, which is in line with the large quantum yield reported for the process.

  2. Existence of a new emitting singlet state of proflavine: femtosecond dynamics of the excited state processes and quantum chemical studies in different solvents.

    PubMed

    Kumar, Karuppannan Senthil; Selvaraju, Chellappan; Malar, Ezekiel Joy Padma; Natarajan, Paramasivam

    2012-01-12

    Proflavine (3,6-diaminoacridine) shows fluorescence emission with lifetime, 4.6 ± 0.2 ns, in all the solvents irrespective of the solvent polarity. To understand this unusual photophysical property, investigations were carried out using steady state and time-resolved fluorescence spectroscopy in the pico- and femtosecond time domain. Molecular geometries in the ground and low-lying excited states of proflavine were examined by complete structural optimization using ab initio quantum chemical computations at HF/6-311++G** and CIS/6-311++G** levels. Time dependent density functional theory (TDDFT) calculations were performed to study the excitation energies in the low-lying excited states. The steady state absorption and emission spectral details of proflavine are found to be influenced by solvents. The femtosecond fluorescence decay of the proflavine in all the solvents follows triexponential function with two ultrafast decay components (τ(1) and τ(2)) in addition to the nanosecond component. The ultrafast decay component, τ(1), is attributed to the solvation dynamics of the particular solvent used. The second ultrafast decay component, τ(2), is found to vary from 50 to 215 ps depending upon the solvent. The amplitudes of the ultrafast decay components vary with the wavelength and show time dependent spectral shift in the emission maximum. The observation is interpreted that the time dependent spectral shift is not only due to solvation dynamics but also due to the existence of more than one emitting state of proflavine in the solvent used. Time resolved area normalized emission spectral (TRANES) analysis shows an isoemissive point, indicating the presence of two emitting states in homogeneous solution. Detailed femtosecond fluorescence decay analysis allows us to isolate the two independent emitting components of the close lying singlet states. The CIS and TDDFT calculations also support the existence of the close lying emitting states. The near constant

  3. LASERS IN MEDICINE: Quantum efficiency of the laser-excited singlet-oxygen-sensitised delayed fluorescence of the zinc complex of tetra(4-tert-butyl)phthalocyanine

    NASA Astrophysics Data System (ADS)

    Bashtanov, M. E.; Drozdova, N. N.; Krasnovskii, A. A.

    1999-12-01

    An investigation was made of the ratios of the intensity Idf of the singlet-oxygen(1O2)-sensitised delayed fluorescence of the zinc complex of tetra(4-tert-butyl)phthalocyanine (ZnTBPc), with the maximum at λ = 685 nm, to the intensity I1270 of the photosensitised phosphorescence of 1O2 with the maximum at λ = 1270 nm in deuterated benzene when excited with λ = 337 nm nitrogen-laser pulses. Depending on the energy density of the laser radiation (0.25 — 0.7 mJ cm-2) and on the concentration of ZnTBPc (0.06 — 3.4 μM), the ratio of the zero-time intensities of the delayed fluorescence of ZnTBPc and of the singlet-oxygen phosphorescence Idf0/I12700 varied from 0.01 to 0.2 in air-saturated solutions of ZnTBPc. The intensity Idf0 decreased fivefold as a result of saturation with oxygen of air-saturated solutions. The quantum efficiency of the delayed fluorescence was represented by the coefficient α =(Idf0/I12700)kr/(γf[1O2]0[ZnTBPc]), where [1O2]0 is the zero-time concentration of 1O2 after a laser shot; kr is the rate constant of radiative deactivation of 1O2 in the investigated solvent; γf is the quantum yield of the ZnTBPc fluorescence. It was established that in the case of air-saturated solutions of ZnTBPc this coefficient was approximately 200 times less than for metal-free tetra(4-tert-butyl)phthalocyanine and its absolute value was ~2 × 1011 M-2 s-1.

  4. Two-Photon Study on the Electronic Interactions between the First Excited Singlet States in Carotenoid-Tetrapyrrole Dyads

    SciTech Connect

    Liao, Pen-Nan; Pillai, Smitha; Gust, Devens; Moore, Thomas A.; Moore, Ana L.; Walla, Peter J.

    2011-03-22

    Electronic interactions between the first excited states (S1) of carotenoids (Car) of different conjugation lengths (8-11 double bonds) and phthalocyanines (Pc) in different Car-Pc dyad molecules were investigated by two-photon spectroscopy and compared with Car S1-chlorophyll (Chl) interactions in photosynthetic light harvesting complexes (LHCs). The observation of Chl/Pc fluorescence after selective two-photon excitation of the Car S1 state allowed sensitive monitoring of the flow of energy between Car S1 and Pc or Chl. It is found that two-photon excitation excites to about 80% to 100% exclusively the carotenoid state Car S1 and that only a small fraction of direct tetrapyrrole two-photon excitation occurs. Amide-linked Car-Pc dyads in tetrahydrofuran demonstrate a molecular gear shift mechanism in that effective Car S1 → Pc energy transfer is observed in a dyad with 9 double bonds in the carotenoid, whereas in similar dyads with 11 double bonds in the carotenoid, the Pc fluorescence is strongly quenched by Pc → Car S1 energy transfer. In phenylamino-linked Car-Pc dyads in toluene extremely large electronic interactions between the Car S1 state and Pc were observed, particularly in the case of a dyad in which the carotenoid contained 10 double bonds. This observation together with previous findings in the same system provides strong evidence for excitonic Car S1-Pc Qy interactions. Very similar results were observed with photosynthetic LHC II complexes in the past, supporting an important role of such interactions in photosynthetic down-regulation.

  5. π-Conjugated Organometallic Isoindigo Oligomer and Polymer Chromophores: Singlet and Triplet Excited State Dynamics and Application in Polymer Solar Cells.

    PubMed

    Goswami, Subhadip; Gish, Melissa K; Wang, Jiliang; Winkel, Russell W; Papanikolas, John M; Schanze, Kirk S

    2015-12-09

    An isoindigo based π-conjugated oligomer and polymer that contain cyclometalated platinum(II) "auxochrome" units were subjected to photophysical characterization, and application of the polymer in bulk heterojunction polymer solar cells with PCBM acceptor was examined. The objective of the study was to explore the effect of the heavy metal centers on the excited state properties, in particular, intersystem crossing to a triplet (exciton) state, and further how this would influence the performance of the organometallic polymer in solar cells. The materials were characterized by electrochemistry, ground state absorption, emission, and picosecond-nanosecond transient absorption spectroscopy. Electrochemical measurements indicate that the cyclometalated units have a significant impact on the HOMO energy level of the chromophores, but little effect on the LUMO, which is consistent with localization of the LUMO on the isoindigo acceptor unit. Picosecond-nanosecond transient absorption spectroscopy reveals a transient with ∼100 ns lifetime that is assigned to a triplet excited state that is produced by intersystem crossing from a singlet state on a time scale of ∼130 ps. This is the first time that a triplet state has been observed for isoindigo π-conjugated chromophores. The performance of the polymer in bulk heterojunction solar cells was explored with PC61BM as an acceptor. The performance of the cells was optimum at a relatively high PCBM loading (1:6, polymer:PCBM), but the overall efficiency was relatively low with power conversion efficiency (PCE) of 0.22%. Atomic force microscopy of blend films reveals that the length scale of the phase separation decreases with increasing PCBM content, suggesting a reason for the increase in PCE with acceptor loading. Energetic considerations show that the triplet state in the polymer is too low in energy to undergo charge separation with PCBM. Further, due to the relatively low LUMO energy of the polymer, charge transfer

  6. Search for Singlet Fission Chromophores

    SciTech Connect

    Havlas, Z.; Akdag, A.; Smith, M. B.; Dron, P.; Johnson, J. C.; Nozik, A. J.; Michl, J.

    2012-01-01

    Singlet fission, in which a singlet excited chromophore shares its energy with a ground-state neighbor and both end up in their triplet states, is of potential interest for solar cells. Only a handful of compounds, mostly alternant hydrocarbons, are known to perform efficiently. In view of the large number of conditions that a successful candidate for a practical cell has to meet, it appears desirable to extend the present list of high performers to additional classes of compounds. We have (i) identified design rules for new singlet fission chromophores and for their coupling to covalent dimers, (ii) synthesized them, and (iii) evaluated their performance as neat solids or covalent dimers.

  7. Excitation Localization/Delocalization Isomerism in a Strongly Coupled Covalent Dimer of 1,3-Diphenylisobenzofuran

    SciTech Connect

    Schrauben, Joel N.; Akdag, Akin; Wen, Jin; Havlas, Zdenek; Ryerson, Joseph L.; Smith, Millie B.; Michl, Josef; Johnson, Justin C.

    2016-05-26

    Two isomers of both the lowest excited singlet (S1) and triplet (T1) states of the directly para, para'-connected covalent dimer of the singlet-fission chromophore 1,3-diphenylisobenzofuran have been observed. In one isomer, excitation is delocalized over both halves of the dimer, and in the other, it is localized on one or the other half. For a covalent dimer in solution, such 'excitation isomerism' is extremely rare. The vibrationally relaxed isomers do not interconvert, and their photophysical properties, including singlet fission, differ significantly.

  8. Quenching Enhancement of the Singlet Excited State of Pheophorbide-a by DNA in the Presence of the Quinone Carboquone

    PubMed Central

    Díaz-Espinosa, Yisaira; Crespo-Hernández, Carlos E.; Alegría, Antonio E.; García, Carmelo; Arce, Rafael

    2011-01-01

    Changes in the emission fluorescence intensity of pheophorbide-a (PHEO) in the presence of carboquone (CARBOQ) were used to obtain the association constant, the number of CARBOQ molecules interacting with PHEO, and the fluorescence quantum yield of the complex. Excitation spectra of mixtures of PHEO and CARBOQ in ethanol (EtOH) show an unresolved doublet in the red-most excitation band of PHEO, indicating the formation of a loose ground-state complex. The 1:1 CARBOQ–PHEO complex shows a higher fluorescence quantum yield in EtOH (0.41 ± 0.02) than in buffer solution (0.089 ± 0.002), which is also higher than that of the PHEO monomer (0.28). Quenching of the PHEO fluorescence by DNA nucleosides and double-stranded oligonucleotides was also observed and the bimolecular quenching rate constants were determined. The quenching rate constant increase as the oxidation potential of the DNA nucleoside increases. Larger quenching constants were obtained in the presence of CARBOQ suggesting that CARBOQ enhances DNA photo-oxidation, presumably by inhibiting the back–electron-transfer reaction from the photoreduced PHEO to the oxidized base. Thus, the enhanced DNA-base photosensitized oxidation by PHEO in the presence of CARBOQ may be related to the large extent by which this quinone covalently binds to DNA, as previously reported. PMID:21138440

  9. A quantitative study of the effect of solvent on the electronic absorption and fluorescence spectra of substituted phenothiazines: evaluation of their ground and excited singlet-state dipole moments

    NASA Astrophysics Data System (ADS)

    Párkányi, C.; Boniface, C.; Aaron, J. J.; Maafi, M.

    1993-11-01

    Electronic absorption and fluorescence excitation and emission spectra of five phenothiazines (phenothiazine, promethazine, thionine, methylene blue and Azure A) were determined at room temperature (293 K) in several solvents of various polarities (cyclohexane, dioxane, ethyl ether, chloroform, ethyl acetate, 1-butanol, 2-propanol, ethanol, methanol, acetonitrile, dimethylformamide and dimethyl sulfoxide). The effect of the solvents upon the spectral characteristics was studied. In combination with the ground state dipole moments of these phenothiazines, the spectral data were used to evaluate their first excited singlet-state dipole moments by means of the solvatochromic shift method (Bakhshiev's and Kawski—Chamma—Viallet correlations). The theoretical ground and excited singlet-state dipole moments for phenothiazines were calculated as a vector sum of the π component (obtained by the Pariser—Parr—Pople method) and the σ component (obtained from σ-bond moments). A reasonable agreement was found with the experimental values. For most phenothiazines under study, excited singlet-state dipole moments were found to be significantly higher than their ground-state counterparts. The application of the Kamlet—Abboud—Taft solvatochromic parameters to the solvent effect on spectral properties of phenothiazines is discussed.

  10. Depopulation of highly excited singlet states of DNA model compounds: quantum yields of 193 and 245 nm photoproducts of pyrimidine monomers and dinucleoside monophosphates.

    PubMed

    Gurzadyan, G G; Görner, H

    1996-02-01

    Formation of uracil and orotic acid photodimers, uridine and 5'-UMP photohydrates, TpT photodimers and (6-4)photoproducts, dCpT photohydrates and (6-4)photoproducts and UpU, CpC and CpU photohydrates were studied in neutral deoxygenated aqueous solution at room temperature upon irradiation at either 193 or 254 nm. The photoproducts were identified and quantified and the contribution from photoionization to substrate decomposition, using lambda irr = 193 nm, was separated. The ratio of the quantum yields of respective stable products, eta = phi 193/phi 254, is indicative of the yield of internal conversion from the second to the first excited singlet state, S2-->S1. For the observed photodimers eta decreases from 0.94 for uracil to 0.7 for TpT and further to 0.55 for orotic acid. For the (6-4)photoproducts of TpT and dCpT eta = 0.5-0.8 and for the photohydrates in the cases of UpU, CpC, CpU and dCpT eta ranges from 0.55 to 1.

  11. Degradation of organic pollutants in/on snow and ice by singlet molecular oxygen (¹O₂*) and an organic triplet excited state.

    PubMed

    Bower, Jonathan P; Anastasio, Cort

    2014-04-01

    Singlet molecular oxygen (¹O₂*) can be a significant sink for a variety of electron-rich pollutants in surface waters and atmospheric drops. We recently found that ¹O₂* concentrations are enhanced by up to a factor of 10(4) on illuminated ice compared to in the equivalent liquid solution, suggesting that ¹O₂* could be an important oxidant for pollutants in snow. To examine this, here we study the degradation of three model organic pollutants: furfuryl alcohol (to represent furans), tryptophan (for aromatic amino acids), and bisphenol A (for phenols). Each compound was studied in illuminated aqueous solution and ice containing Rose Bengal (RB, a sensitizer for ¹O₂*) and sodium chloride (to adjust the concentration of total solutes). The RB-mediated loss of each organic compound is enhanced on illuminated ice compared to in solution, by factors of 6400 for furfuryl alcohol, 8300 for tryptophan, and 50 for bisphenol A for ice containing 0.065 mM total solutes. Rates of loss of furfuryl alcohol and tryptophan decrease at a higher total solute concentration, in qualitative agreement with predictions from freezing-point depression. In contrast, the loss of bisphenol A on ice is independent of total solute concentration. Relative to liquid tests, the enhanced loss of tryptophan on ice during control experiments made with deoxygenated solutions and solutions in D₂O show that the triplet excited state of Rose Bengal may also contribute to loss of pollutants on ice.

  12. The effect of caffeine on the reactions of the excited singlet state of pyrene in micellar sodium lauryl sulfate

    NASA Astrophysics Data System (ADS)

    Hashimoto, Shuichi; Thomas, J. Kerry

    1984-08-01

    The effect of caffeine on a few photo-induced reactions of pyrene in micellar sodium lauryl sulfate (NaLS) has been studied. In these systems caffeine complexes with the pyrene (K asso = 85 ± 10 M -1 and also with the other reactants, e.g. Cu 2+ or TI +. The efficiencies of reactions which involve contact, i.e. pyrene excimer formation, and quenching by TI + ions to give the triplet state of pyrene, are significantly reduced in the presence of caffeine, due to geometric inhibitions formed by the complexation processes. The kinetics of photo-induced electron transfer, e.g. between excited pyrene and Cu 2+, are not affected. However, the subsequent reactions of the products are modified and the yield of ionic products is markedly increased.

  13. Ground and lowest-lying electronic states of CoN. A multiconfigurational study.

    PubMed

    Gobbo, João Paulo; Borin, Antonio Carlos

    2006-12-28

    The lowest-lying X1Sigma+, a3Phi, b3II, c5Delta, A1Phi, and B1II electronic states of CoN have been investigated at the ab initio MRCI and MS-CASPT2 levels, with extended atomic basis sets and inclusion of scalar relativistic effects. Among the singlet states, the A1Phi and B1II states have been described for the first time. Potential energy curves, excitation energies, spectroscopic constants, and bonding character for all states are reported. Comparison with other early transition-metal nitrides (ScN, TiN, VN, and CrN), isoelectronic (NiC) and isovalent (RhN and IrN) species has been made, besides analyzing the B1II <=> X1+ electronic transition in terms of Franck-Condon factors, Einstein coefficients, and radiative lifetimes. At both levels of theory, the following energetic order has been obtained: X1Sigma+, a3Phi, b3II, c5Delta, A1Phi, and B1II, with good agreement with experimental results. In contrast, previous DFT and MRCI calculations predicted the ground state to be the 5Delta state.

  14. Singlet and triplet instability theorems

    SciTech Connect

    Yamada, Tomonori; Hirata, So

    2015-09-21

    A useful definition of orbital degeneracy—form-degeneracy—is introduced, which is distinct from the usual energy-degeneracy: Two canonical spatial orbitals are form-degenerate when the energy expectation value in the restricted Hartree–Fock (RHF) wave function is unaltered upon a two-electron excitation from one of these orbitals to the other. Form-degenerate orbitals tend to have isomorphic electron densities and occur in the highest-occupied and lowest-unoccupied molecular orbitals (HOMOs and LUMOs) of strongly correlated systems. Here, we present a mathematical proof of the existence of a triplet instability in a real or complex RHF wave function of a finite system in the space of real or complex unrestricted Hartree–Fock wave functions when HOMO and LUMO are energy- or form-degenerate. We also show that a singlet instability always exists in a real RHF wave function of a finite system in the space of complex RHF wave functions, when HOMO and LUMO are form-degenerate, but have nonidentical electron densities, or are energy-degenerate. These theorems provide Hartree–Fock-theory-based explanations of Hund’s rule, a singlet instability in Jahn–Teller systems, biradicaloid electronic structures, and a triplet instability during some covalent bond breaking. They also suggest (but not guarantee) the spontaneous formation of a spin density wave (SDW) in a metallic solid. The stability theory underlying these theorems extended to a continuous orbital-energy spectrum proves the existence of an oscillating (nonspiral) SDW instability in one- and three-dimensional homogeneous electron gases, but only at low densities or for strong interactions.

  15. A theoretical study of the ground state and lowest excited states of PuO0/+/+2 and PuO20/+/+2

    SciTech Connect

    Gibson, John K.; La Macchia, Giovanni; Infante, Ivan; Gagliardi, Laura; Raab, Juraj

    2008-12-08

    The ground and excited states of neutral and cationic PuO and PuO2 have been studied with multiconfigurational quantum chemical methods followed by second order perturbation theory, the CASSCF/CASPT2 method. Scalar relativistic effects and spin-orbit coupling have been included in the treatment. As literature values for the ionization energy of PuO2 are in the wide range of ~;;6.6 eV to ~;;10.1 eV, a central goal of the computations was to resolve these discrepancies; the theoretical results indicate that the ionization energy is near the lower end of this range. The calculated ionization energies for PuO, PuO+ and PuO2+ are in good agreement with the experimental values.

  16. Low-lying excited states in armchair polyacene within Pariser-Parr-Pople model: A density matrix renormalization group study

    SciTech Connect

    Das, Mousumi

    2014-03-28

    We studied the nature of the ground state and low-lying excited states of armchair polyacene oligomers (Polyphenanthrene) within long-range Pariser-Parr-Pople model Hamiltonian with up to 14 monomers using symmetrized density matrix renormalization group technique. The ground state of all armchair polyacenes studied is found to be singlet. The results show that lowest singlet dipole allowed excited state has higher energy for armchair polyacenes as compared to linear fused polyacenes. Moreover, unlike linear fused polyacenes, the lowest singlet excited state of these oligomers is always found to lie below the lowest dipole forbidden two-photon state indicating that these armchair polyacene oligomers strongly fluoresce. The calculations of low-lying excitations on singly and triply electron doped armchair polyacene oligomers show a low energy band with strong transition dipole moment that coupled to charge conductivity. This implies armchair polyacene posses novel field-effect transistor properties.

  17. Singlet oxygen generation in PUVA therapy studied using electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Serrano-Pérez, Juan José; Olaso-González, Gloria; Merchán, Manuela; Serrano-Andrés, Luis

    2009-06-01

    The ability of furocoumarins to participate in the PUVA (Psoralen + UV-A) therapy against skin disorders and some types of cancer, is analyzed on quantum chemical grounds. The efficiency of the process relies on its capability to populate its lowest triplet excited state, and then either form adducts with thymine which interfere DNA replication or transfer its energy, generating singlet molecular oxygen damaging the cell membrane in photoactivated tissues. By determining the spin-orbit couplings, shown to be the key property, in the intersystem crossing yielding the triplet state of the furocoumarin, the electronic couplings in the triplet-triplet energy transfer process producing the singlet oxygen, and the reaction rates and lifetimes, the efficiency in the phototherapeutic action of the furocoumarin family is predicted as: khellin < 5-methoxypsoralen (5-MOP) < 8-methoxypsoralen (8-MOP) < psoralen < 4,5‧,8-trimethylpsoralen (TMP) < 3-carbethoxypsoralen (3-CPS), the latter being the most efficient photosensitizer and singlet oxygen generator.

  18. An Analysis of the Torsion-Rotation-Vibration Rotational Spectrum of the Lowest In-Plane Bend and First Excited Torsional State of the C(3V) Internal Rotor C2H5CN

    NASA Technical Reports Server (NTRS)

    Pearson, J. C.; Pickett, Herbert M.; Sastry, K. V. L. N.

    2000-01-01

    C2H5CN (Propionitrile or ethyl cyanide) is a well known interstellar species abundantly observed in hot cores during the onset of star formation. The onset of star formation generally results in elevated temperature, which thermally populates may low lying vibrational states such as the 206/cm in-plane bend and the 212/cm first excited torsional state in C2H5CN. Unfortunately, these two states are strongly coupled through a complex series of torsion-vibration-rotation interactions, which dominate the spectrum. In order to understand the details of these interactions and develop models capable of predicting unmeasured transitions for astronomical observations in C2H5CN and similar molecules, several thousand rotational transitions in the lowest excited in-plane bend and first excited torsional state have been recorded, assigned and analyzed. The analysis reveals very strong a- and b-type Coriolis interactions and a number of other smaller interactions and has a number of important implications for other C3V torsion-rotation-vibration systems. The relative importance and the physical origins of the coupling among the rotational, vibrational and torsional motions will be presented along with a full spectroscopic analysis and supporting astronomical observations.

  19. A high-power tunable Raman fiber ring laser for the investigation of singlet oxygen production from direct laser excitation around 1270 nm.

    PubMed

    Anquez, Francois; Courtade, Emmanuel; Sivéry, Aude; Suret, Pierre; Randoux, Stéphane

    2010-10-25

    We report on the development of a tunable Raman fiber ring laser especially designed for the investigation of the 3Σ(-)(g) →1 Δg transition of molecular oxygen. Singlet oxygen (1Δg) is a reactive species of importance in the fields of biology, photochemistry, and phototherapy. Tunability of the Raman fiber ring laser is achieved without the use of an intracavity tunable bandpass filter and the laser thus achieves a slope efficiency only obtained up to now in Perot-Fabry cavities. A measurement of the action spectrum of a singlet oxygen trap is made in air-saturated ethanol and acetone to demonstrate the practical application of the tunable Raman fiber ring laser for the investigation of the 3Σ(-)(g) →1 Δg transition of molecular oxygen.

  20. The transition from the open minimum to the ring minimum on the ground state and on the lowest excited state of like symmetry in ozone: A configuration interaction study

    DOE PAGES

    Theis, Daniel; Ivanic, Joseph; Windus, Theresa L.; ...

    2016-03-10

    The metastable ring structure of the ozone 11A1 ground state, which theoretical calculations have shown to exist, has so far eluded experimental detection. An accurate prediction for the energy difference between this isomer and the lower open structure is therefore of interest, as is a prediction for the isomerization barrier between them, which results from interactions between the lowest two 1A1 states. In the present work, valence correlated energies of the 11A1 state and the 21A1 state were calculated at the 11A1 open minimum, the 11A1 ring minimum, the transition state between these two minima, the minimum of the 21A1more » state, and the conical intersection between the two states. The geometries were determined at the full-valence multi-configuration self-consistent-field level. Configuration interaction (CI) expansions up to quadruple excitations were calculated with triple-zeta atomic basis sets. The CI expansions based on eight different reference configuration spaces were explored. To obtain some of the quadruple excitation energies, the method of CorrelationEnergy Extrapolation by Intrinsic Scaling was generalized to the simultaneous extrapolation for two states. This extrapolation method was shown to be very accurate. On the other hand, none of the CI expansions were found to have converged to millihartree (mh) accuracy at the quadruple excitation level. The data suggest that convergence to mh accuracy is probably attained at the sextuple excitation level. On the 11A1 state, the present calculations yield the estimates of (ring minimum—open minimum) ~45–50 mh and (transition state—open minimum) ~85–90 mh. For the (21A1–1A1) excitation energy, the estimate of ~130–170 mh is found at the open minimum and 270–310 mh at the ring minimum. At the transition state, the difference (21A1–1A1) is found to be between 1 and 10 mh. The geometry of the transition state on the 11A1 surface and that of the minimum on the 21A1 surface nearly coincide

  1. The transition from the open minimum to the ring minimum on the ground state and on the lowest excited state of like symmetry in ozone: A configuration interaction study.

    PubMed

    Theis, Daniel; Ivanic, Joseph; Windus, Theresa L; Ruedenberg, Klaus

    2016-03-14

    The metastable ring structure of the ozone 1(1)A1 ground state, which theoretical calculations have shown to exist, has so far eluded experimental detection. An accurate prediction for the energy difference between this isomer and the lower open structure is therefore of interest, as is a prediction for the isomerization barrier between them, which results from interactions between the lowest two (1)A1 states. In the present work, valence correlated energies of the 1(1)A1 state and the 2(1)A1 state were calculated at the 1(1)A1 open minimum, the 1(1)A1 ring minimum, the transition state between these two minima, the minimum of the 2(1)A1 state, and the conical intersection between the two states. The geometries were determined at the full-valence multi-configuration self-consistent-field level. Configuration interaction (CI) expansions up to quadruple excitations were calculated with triple-zeta atomic basis sets. The CI expansions based on eight different reference configuration spaces were explored. To obtain some of the quadruple excitation energies, the method of Correlation Energy Extrapolation by Intrinsic Scaling was generalized to the simultaneous extrapolation for two states. This extrapolation method was shown to be very accurate. On the other hand, none of the CI expansions were found to have converged to millihartree (mh) accuracy at the quadruple excitation level. The data suggest that convergence to mh accuracy is probably attained at the sextuple excitation level. On the 1(1)A1 state, the present calculations yield the estimates of (ring minimum-open minimum) ∼45-50 mh and (transition state-open minimum) ∼85-90 mh. For the (2(1)A1-(1)A1) excitation energy, the estimate of ∼130-170 mh is found at the open minimum and 270-310 mh at the ring minimum. At the transition state, the difference (2(1)A1-(1)A1) is found to be between 1 and 10 mh. The geometry of the transition state on the 1(1)A1 surface and that of the minimum on the 2(1)A1 surface

  2. Triplet-singlet conversion in ultracold Cs{sub 2} and production of ground-state molecules

    SciTech Connect

    Bouloufa, Nadia; Aymar, Mireille; Dulieu, Olivier; Pichler, Marin

    2011-02-15

    We propose a process to convert ultracold metastable Cs{sub 2} molecules in their lowest triplet state into (singlet) ground-state molecules in their lowest vibrational levels. Molecules are first pumped into an excited triplet state, and the triplet-singlet conversion is facilitated by a two-step spontaneous decay through the coupled A {sup 1{Sigma}}{sub u}{sup +}-b {sup 3{Pi}}{sub u} states. Using spectroscopic data and accurate quantum chemistry calculations for Cs{sub 2} potential curves and transition dipole moments, we show that this process competes favorably with the single-photon decay back to the lowest triplet state. In addition, we demonstrate that this conversion process represents a loss channel for vibrational cooling of metastable triplet molecules, preventing an efficient optical pumping cycle down to low vibrational levels.

  3. Singlet oxygen in photosensitization.

    PubMed

    Moan, Johan; Juzenas, Petras

    2006-01-01

    Oxygen is a ubiquitous element and a vitally important substance for life on the Earth, and especially for human life. Living organisms need oxygen for most, if not all, of their cellular functions. On the other hand, oxygen can produce metabolites that are toxic and potentially lethal to the same cells. Being reactive and chemically unstable reactive oxygen species (ROS) are the most important metabolites that initiate reduction and oxidation (redox) reactions under physiological conditions. Oxygen in its excited singlet state (1O2) is probably the most important intermediate in such reactions. Since the discovery of oxygen by Joseph Priestley in 1775 it has been recognized that oxygen can be both beneficial and harmful to life.

  4. Singlet molecular oxygen generated by biological hydroperoxides.

    PubMed

    Miyamoto, Sayuri; Martinez, Glaucia R; Medeiros, Marisa H G; Di Mascio, Paolo

    2014-10-05

    The chemistry behind the phenomenon of ultra-weak photon emission has been subject of considerable interest for decades. Great progress has been made on the understanding of the chemical generation of electronically excited states that are involved in these processes. Proposed mechanisms implicated the production of excited carbonyl species and singlet molecular oxygen in the mechanism of generation of chemiluminescence in biological system. In particular, attention has been focused on the potential generation of singlet molecular oxygen in the recombination reaction of peroxyl radicals by the Russell mechanism. In the last ten years, our group has demonstrated the generation of singlet molecular oxygen from reactions involving the decomposition of biologically relevant hydroperoxides, especially from lipid hydroperoxides in the presence of metal ions, peroxynitrite, HOCl and cytochrome c. In this review we will discuss details on the chemical aspects related to the mechanism of singlet molecular oxygen generation from different biological hydroperoxides.

  5. Adsorbate-induced absorption redshift in an organic-inorganic cluster conjugate: Electronic effects of surfactants and organic adsorbates on the lowest excited states of a methanethiol-CdSe conjugate

    NASA Astrophysics Data System (ADS)

    Liu, Christopher; Chung, Sang-Yoon; Lee, Sungyul; Weiss, Shimon; Neuhauser, Daniel

    2009-11-01

    Bioconjugated CdSe quantum dots are promising reagents for bioimaging applications. Experimentally, the binding of a short peptide has been found to redshift the optical absorption of nanoclusters [J. Tsay et al., J. Phys. Chem. B 109, 1669 (2005)]. This study examines this issue by performing density functional theory (DFT) and time-dependent-DFT calculations to study the ground state and low-lying excited states of (CdSe)6[SCH3]-, a transition metal complex built by binding methanethiolate to a CdSe molecular cluster. Natural bond orbital results show that the redshift is caused by ligand-inorganic cluster orbital interaction. The highest occupied molecular orbital (HOMO) of (CdSe)6 is dominated by selenium 4p orbitals; in contrast, the HOMO of (CdSe)6[SCH3]- is dominated by sulfur 3p orbitals. This difference shows that [SCH3]- binding effectively introduces filled sulfur orbitals above the selenium 4p orbitals of (CdSe)6. The resulting smaller HOMO-LUMO gap of (CdSe)6[SCH3]- indeed leads to redshifts in its excitation energies compared to (CdSe)6. In contrast, binding of multiple NH3 destabilizes cadmium 5p orbitals, which contribute significantly to the lowest unoccupied molecular orbital (LUMO) of (CdSe)6, while leaving the selenium 4p orbitals near the HOMO relatively unaffected. This has the effect of widening the HOMO-LUMO gap of (CdSe)6ṡ6NH3 compared to (CdSe)6. As expected, the excitation energies of the passivated (CdSe)6ṡ6NH3 are also blueshifted compared to (CdSe)6. As far as NH3 is a faithful representation of a surfactant, the results clearly illustrate the differences between the electronic effects of an alkylthiolate versus those of surfactant molecules. Surface passivation of (CdSe)6[SCH3]- is then simulated by coating it with multiple NH3 molecules. The results suggest that the [SCH3]- adsorption induces a redshift in the excitation energies in a surfactant environment.

  6. Adsorbate-induced absorption redshift in an organic-inorganic cluster conjugate: Electronic effects of surfactants and organic adsorbates on the lowest excited states of a methanethiol-CdSe conjugate.

    PubMed

    Liu, Christopher; Chung, Sang-Yoon; Lee, Sungyul; Weiss, Shimon; Neuhauser, Daniel

    2009-11-07

    Bioconjugated CdSe quantum dots are promising reagents for bioimaging applications. Experimentally, the binding of a short peptide has been found to redshift the optical absorption of nanoclusters [J. Tsay et al., J. Phys. Chem. B 109, 1669 (2005)]. This study examines this issue by performing density functional theory (DFT) and time-dependent-DFT calculations to study the ground state and low-lying excited states of (CdSe)(6)[SCH(3)](-), a transition metal complex built by binding methanethiolate to a CdSe molecular cluster. Natural bond orbital results show that the redshift is caused by ligand-inorganic cluster orbital interaction. The highest occupied molecular orbital (HOMO) of (CdSe)(6) is dominated by selenium 4p orbitals; in contrast, the HOMO of (CdSe)(6)[SCH(3)](-) is dominated by sulfur 3p orbitals. This difference shows that [SCH(3)](-) binding effectively introduces filled sulfur orbitals above the selenium 4p orbitals of (CdSe)(6). The resulting smaller HOMO-LUMO gap of (CdSe)(6)[SCH(3)](-) indeed leads to redshifts in its excitation energies compared to (CdSe)(6). In contrast, binding of multiple NH(3) destabilizes cadmium 5p orbitals, which contribute significantly to the lowest unoccupied molecular orbital (LUMO) of (CdSe)(6), while leaving the selenium 4p orbitals near the HOMO relatively unaffected. This has the effect of widening the HOMO-LUMO gap of (CdSe)(6)6NH(3) compared to (CdSe)(6). As expected, the excitation energies of the passivated (CdSe)(6)6NH(3) are also blueshifted compared to (CdSe)(6). As far as NH(3) is a faithful representation of a surfactant, the results clearly illustrate the differences between the electronic effects of an alkylthiolate versus those of surfactant molecules. Surface passivation of (CdSe)(6)[SCH(3)](-) is then simulated by coating it with multiple NH(3) molecules. The results suggest that the [SCH(3)](-) adsorption induces a redshift in the excitation energies in a surfactant environment.

  7. The transition from the open minimum to the ring minimum on the ground state and on the lowest excited state of like symmetry in ozone: A configuration interaction study

    SciTech Connect

    Theis, Daniel; Ivanic, Joseph; Windus, Theresa L.; Ruedenberg, Klaus

    2016-03-10

    The metastable ring structure of the ozone 11A1 ground state, which theoretical calculations have shown to exist, has so far eluded experimental detection. An accurate prediction for the energy difference between this isomer and the lower open structure is therefore of interest, as is a prediction for the isomerization barrier between them, which results from interactions between the lowest two 1A1 states. In the present work, valence correlated energies of the 11A1 state and the 21A1 state were calculated at the 11A1 open minimum, the 11A1 ring minimum, the transition state between these two minima, the minimum of the 21A1 state, and the conical intersection between the two states. The geometries were determined at the full-valence multi-configuration self-consistent-field level. Configuration interaction (CI) expansions up to quadruple excitations were calculated with triple-zeta atomic basis sets. The CI expansions based on eight different reference configuration spaces were explored. To obtain some of the quadruple excitation energies, the method of CorrelationEnergy Extrapolation by Intrinsic Scaling was generalized to the simultaneous extrapolation for two states. This extrapolation method was shown to be very accurate. On the other hand, none of the CI expansions were found to have converged to millihartree (mh) accuracy at the quadruple excitation level. The data suggest that convergence to mh accuracy is probably attained at the sextuple excitation level. On the 11A1 state, the present calculations yield the estimates of (ring minimum—open minimum) ~45–50 mh and (transition state—open minimum) ~85–90 mh. For the (21A11A1) excitation energy, the estimate of ~130–170 mh is found at the open minimum and 270–310 mh at the ring minimum. At the

  8. Singlet excited-state behavior of uracil and thymine in aqueous solution: a combined experimental and computational study of 11 uracil derivatives.

    PubMed

    Gustavsson, Thomas; Bányász, Akos; Lazzarotto, Elodie; Markovitsi, Dimitra; Scalmani, Giovanni; Frisch, Michael J; Barone, Vincenzo; Improta, Roberto

    2006-01-18

    The excited-state properties of uracil, thymine, and nine other derivatives of uracil have been studied by steady-state and time-resolved spectroscopy. The excited-state lifetimes were measured using femtosecond fluorescence upconversion in the UV. The absorption and emission spectra of five representative compounds have been computed at the TD-DFT level, using the PBE0 exchange-correlation functional for ground- and excited-state geometry optimization and the Polarizable Continuum Model (PCM) to simulate the aqueous solution. The calculated spectra are in good agreement with the experimental ones. Experiments show that the excited-state lifetimes of all the compounds examined are dominated by an ultrafast (<100 fs) component. Only 5-substituted compounds show more complex behavior than uracil, exhibiting longer excited-state lifetimes and biexponential fluorescence decays. The S(0)/S(1) conical intersection, located at CASSCF (8/8) level, is indeed characterized by pyramidalization and out of plane motion of the substituents on the C5 atom. A thorough analysis of the excited-state Potential Energy Surfaces, performed at the PCM/TD-DFT(PBE0) level in aqueous solution, shows that the energy barrier separating the local S(1) minimum from the conical intersection increases going from uracil through thymine to 5-fluorouracil, in agreement with the ordering of the experimental excited-state lifetime.

  9. Singlet oxygen production in Chlamydomonas reinhardtii under heat stress

    PubMed Central

    Prasad, Ankush; Ferretti, Ursula; Sedlářová, Michaela; Pospíšil, Pavel

    2016-01-01

    In the current study, singlet oxygen formation by lipid peroxidation induced by heat stress (40 °C) was studied in vivo in unicellular green alga Chlamydomonas reinhardtii. Primary and secondary oxidation products of lipid peroxidation, hydroperoxide and malondialdehyde, were generated under heat stress as detected using swallow-tailed perylene derivative fluorescence monitored by confocal laser scanning microscopy and high performance liquid chromatography, respectively. Lipid peroxidation was initiated by enzymatic reaction as inhibition of lipoxygenase by catechol and caffeic acid prevented hydroperoxide formation. Ultra-weak photon emission showed formation of electronically excited species such as triplet excited carbonyl, which, upon transfer of excitation energy, leads to the formation of either singlet excited chlorophyll or singlet oxygen. Alternatively, singlet oxygen is formed by direct decomposition of hydroperoxide via Russell mechanisms. Formation of singlet oxygen was evidenced by the nitroxyl radical 2,2,6,6-tetramethylpiperidine-1-oxyl detected by electron paramagnetic resonance spin-trapping spectroscopy and the imaging of green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. Suppression of singlet oxygen formation by lipoxygenase inhibitors indicates that singlet oxygen may be formed via enzymatic lipid peroxidation initiated by lipoxygenase. PMID:26831215

  10. Singlet fission of hot excitons in π-conjugated polymers.

    PubMed

    Zhai, Yaxin; Sheng, Chuanxiang; Vardeny, Z Valy

    2015-06-28

    We used steady-state photoinduced absorption (PA), excitation dependence (EXPA(ω)) spectrum of the triplet exciton PA band, and its magneto-PA (MPA(B)) response to investigate singlet fission (SF) of hot excitons into two separated triplet excitons, in two luminescent and non-luminescent π-conjugated polymers. From the high energy step in the triplet EXPA(ω) spectrum of the luminescent polymer poly(dioctyloxy)phenylenevinylene (DOO-PPV) films, we identified a hot-exciton SF (HE-SF) process having threshold energy at E≈2E(T) (=2.8 eV, where ET is the energy of the lowest lying triplet exciton), which is about 0.8 eV above the lowest singlet exciton energy. The HE-SF process was confirmed by the triplet MPA(B) response for excitation at E>2E(T), which shows typical SF response. This process is missing in DOO-PPV solution, showing that it is predominantly interchain in nature. By contrast, the triplet EXPA(ω) spectrum in the non-luminescent polymer polydiacetylene (PDA) is flat with an onset at E=E(g) (≈2.25 eV). From this, we infer that intrachain SF that involves a triplet-triplet pair state, also known as the 'dark' 2A(g) exciton, dominates the triplet photogeneration in PDA polymer as E(g)>2E(T). The intrachain SF process was also identified from the MPA(B) response of the triplet PA band in PDA. Our work shows that the SF process in π-conjugated polymers is a much more general process than thought previously.

  11. Estimation of the ground and the first excited singlet-state dipole moments of 1,4-disubstituted anthraquinone dyes by the solvatochromic method.

    PubMed

    Siddlingeshwar, B; Hanagodimath, S M

    2010-04-01

    The both, ground-state (mu(g)) and the excited-state (mu(e)) dipole moments of three 1,4-disubstituted anthraquinones, namely 1,4-diaminoanthracene-9,10-dione (1,4-DAAQ), 1-amino-4-hydroxyanthracene-9,10-dione (1,4-AHAQ), and 1,4-dihydroxyanthracene-9,10-dione (1,4-DHAQ) were estimated in binary solvent mixtures (methylcyclohexane-ethyl acetate and ethyl acetate-acetonitrile). The dipole moments (mu(g) and mu(e)) were estimated from Lippert-Mataga, Bakhshiev, Kawski-Chamma-Viallet, McRae, and Suppan equations by using the variation of Stokes shift with the solvent's relative permittivity and refractive index. The ground-state dipole moments were also calculated theoretically by Gaussian 03 software using B3LYP/6-31 G* level of theory. Further, the change in dipole moment values Deltamu were also calculated by using the variation of Stokes shift with the molecular-microscopic empirical solvent polarity parameter (E(T)(N)). The excited-state dipole moments observed are larger than their ground-state counterparts, indicating a substantial redistribution of the pi-electron densities in a more polar excited state for all the molecules investigated.

  12. Estimation of the ground and the first excited singlet-state dipole moments of 1,4-disubstituted anthraquinone dyes by the solvatochromic method

    NASA Astrophysics Data System (ADS)

    Siddlingeshwar, B.; Hanagodimath, S. M.

    2010-04-01

    The both, ground-state ( μg) and the excited-state ( μe) dipole moments of three 1,4-disubstituted anthraquinones, namely 1,4-diaminoanthracene-9,10-dione (1,4-DAAQ), 1-amino-4-hydroxyanthracene-9,10-dione (1,4-AHAQ), and 1,4-dihydroxyanthracene-9,10-dione (1,4-DHAQ) were estimated in binary solvent mixtures (methylcyclohexane-ethyl acetate and ethyl acetate-acetonitrile). The dipole moments ( μg and μe) were estimated from Lippert-Mataga, Bakhshiev, Kawski-Chamma-Viallet, McRae, and Suppan equations by using the variation of Stokes shift with the solvent's relative permittivity and refractive index. The ground-state dipole moments were also calculated theoretically by Gaussian 03 software using B3LYP/6-31 G* level of theory. Further, the change in dipole moment values Δ μ were also calculated by using the variation of Stokes shift with the molecular-microscopic empirical solvent polarity parameter (ETN). The excited-state dipole moments observed are larger than their ground-state counterparts, indicating a substantial redistribution of the π-electron densities in a more polar excited state for all the molecules investigated.

  13. On the Electronically Excited States of Uracil

    SciTech Connect

    Epifanovsky, Evgeny; Kowalski, Karol; Fan, Peng-Dong; Valiev, Marat; Matsika, Spiridoula; Krylov, Anna

    2008-10-09

    Vertical excitation energies in uracil in the gas phase and in water solution are investigated by the equation-of-motion coupled-cluster and multi-reference configuration interaction methods. Basis set effects are found to be important for converged results. The analysis of electronic wave functions reveals that the lowest singlet states are predominantly of a singly excited character and are therefore well described by single-reference equation-of-motion methods augmented by a perturbative triples correction to account for dynamical correlation. Our best estimates for the vertical excitation energies for the lowest singlet n and are 5.0±0.1 eV and 5.3±0.1 eV, respectively. The solvent effects for these states are estimated to be +0.5 eV and ±0.1 eV, respectively. We attribute the difference between the computed vertical excitations and the maximum of the experimental absorption to strong vibronic interaction between the lowest A00 and A0 states leading to intensity borrowing by the forbidden transition.

  14. Is Nitrate Anion Photodissociation Mediated by Singlet-Triplet Absorption?

    PubMed

    Svoboda, Ondřej; Slavíček, Petr

    2014-06-05

    Photolysis of the nitrate anion is involved in the oxidation processes in the hydrosphere, cryosphere, and stratosphere. While it is known that the nitrate photolysis in the long-wavelength region proceeds with a very low quantum yield, the mechanism of the photodissociation remains elusive. Here, we present the quantitative modeling of singlet-singlet and singlet-triplet absorption spectra in the atmospherically relevant region around 300 nm, and we argue that a spin-forbidden transition between the singlet ground state and the first triplet state contributes non-negligibly to the nitrate anion photolysis. We further propose that the nitrate anion excited into the first singlet excited state relaxes nonradiatively into its ground state. The full understanding of the nitrate anion photolysis can improve modeling of the asymmetric solvation in the atmospheric processes, e.g., photolysis on the surfaces of ice or snow.

  15. Generation of singlet oxygen on the surface of metal oxides

    NASA Astrophysics Data System (ADS)

    Kiselev, V. M.; Kislyakov, I. M.; Burchinov, A. N.

    2016-04-01

    Generation of singlet oxygen on the surface of metal oxides is studied. It is shown that, under conditions of heterogeneous photo-catalysis, along with the conventional mechanism of singlet oxygen formation due to the formation of electron-hole pairs in the oxide structure, there is an additional and more efficient mechanism involving direct optical excitation of molecular oxygen adsorbed on the oxide surface. The excited adsorbate molecule then interacts with the surface or with other adsorbate molecules. It is shown that, with respect to singlet oxygen generation, yttrium oxide is more than an order of magnitude more efficient than other oxides, including titanium dioxide.

  16. Four-electron model for singlet and triplet excitation energy transfers with inclusion of coherence memory, inelastic tunneling and nuclear quantum effects

    NASA Astrophysics Data System (ADS)

    Suzuki, Yosuke; Ebina, Kuniyoshi; Tanaka, Shigenori

    2016-08-01

    A computational scheme to describe the coherent dynamics of excitation energy transfer (EET) in molecular systems is proposed on the basis of generalized master equations with memory kernels. This formalism takes into account those physical effects in electron-bath coupling system such as the spin symmetry of excitons, the inelastic electron tunneling and the quantum features of nuclear motions, thus providing a theoretical framework to perform an ab initio description of EET through molecular simulations for evaluating the spectral density and the temporal correlation function of electronic coupling. Some test calculations have then been carried out to investigate the dependence of exciton population dynamics on coherence memory, inelastic tunneling correlation time, magnitude of electronic coupling, quantum correction to temporal correlation function, reorganization energy and energy gap.

  17. Excited State N-H Tautomer Selectivity in the Singlet Energy Transfer of a Zinc(II)-Porphyrin-Truxene-Corrole Assembly.

    PubMed

    Langlois, Adam; Xu, Hai-Jun; Karsenti, Paul-Ludovic; Gros, Claude P; Harvey, Pierre D

    2017-01-27

    An original corrole-containing polyad for S1 energy transfer, in which one zinc(II)-porphyrin donor is linked to two free-base corrole acceptors by a truxene linker, is reported. This polyad exhibits a rapid zinc(II)-porphyrin*→free-base corrole transfer (4.83×10(10)  s(-1) ; 298 K), even faster than the tautomerization in the excited state processes taking advantage of the good electronic communication provided by the truxene bridge. Importantly, the energy transfer process shows approximately 3-fold selectivity for one corrole N-H tautomer over the other even at low temperature (77 K). This selectivity is due to the difference in the J-integral being effective in both the Förster and Dexter mechanisms. The data are rationalized by DFT computations.

  18. Singlet exciton fission photovoltaics.

    PubMed

    Lee, Jiye; Jadhav, Priya; Reusswig, Philip D; Yost, Shane R; Thompson, Nicholas J; Congreve, Daniel N; Hontz, Eric; Van Voorhis, Troy; Baldo, Marc A

    2013-06-18

    Singlet exciton fission, a process that generates two excitons from a single photon, is perhaps the most efficient of the various multiexciton-generation processes studied to date, offering the potential to increase the efficiency of solar devices. But its unique characteristic, splitting a photogenerated singlet exciton into two dark triplet states, means that the empty absorption region between the singlet and triplet excitons must be filled by adding another material that captures low-energy photons. This has required the development of specialized device architectures. In this Account, we review work to develop devices that harness the theoretical benefits of singlet exciton fission. First, we discuss singlet fission in the archetypal material, pentacene. Pentacene-based photovoltaic devices typically show high external and internal quantum efficiencies. They have enabled researchers to characterize fission, including yield and the impact of competing loss processes, within functional devices. We review in situ probes of singlet fission that modulate the photocurrent using a magnetic field. We also summarize studies of the dissociation of triplet excitons into charge at the pentacene-buckyball (C60) donor-acceptor interface. Multiple independent measurements confirm that pentacene triplet excitons can dissociate at the C60 interface despite their relatively low energy. Because triplet excitons produced by singlet fission each have no more than half the energy of the original photoexcitation, they limit the potential open circuit voltage within a solar cell. Thus, if singlet fission is to increase the overall efficiency of a solar cell and not just double the photocurrent at the cost of halving the voltage, it is necessary to also harvest photons in the absorption gap between the singlet and triplet energies of the singlet fission material. We review two device architectures that attempt this using long-wavelength materials: a three-layer structure that uses

  19. Time-resolved infrared spectroscopy of the lowest triplet state of thymine and thymidine

    PubMed Central

    Hare, Patrick M.; Middleton, Chris T.; Mertel, Kristin I.

    2008-01-01

    Vibrational spectra of the lowest energy triplet states of thymine and its 2’-deoxyribonucleoside, thymidine, are reported for the first time. Time-resolved infrared (TRIR) difference spectra were recorded over seven decades of time from 300 fs – 3 µs using femtosecond and nanosecond pump-probe techniques. The carbonyl stretch bands in the triplet state are seen at 1603 and ~1700 cm−1 in room-temperature acetonitrile-d3 solution. These bands and additional ones observed between 1300 and 1450 cm−1 are quenched by dissolved oxygen on a nanosecond time scale. Density-functional calculations accurately predict the difference spectrum between triplet and singlet IR absorption cross sections, confirming the peak assignments and elucidating the nature of the vibrational modes. In the triplet state, the C4=O carbonyl exhibits substantial single-bond character, explaining the large (~70 cm−1) red shift in this vibration, relative to the singlet ground state. Femtosecond TRIR measurements unambiguously demonstrate that the triplet state is fully formed within the first 10 ps after excitation, ruling out a relaxed 1nπ* state as the triplet precursor. PMID:19936322

  20. Time-resolved infrared spectroscopy of the lowest triplet state of thymine and thymidine

    NASA Astrophysics Data System (ADS)

    Hare, Patrick M.; Middleton, Chris T.; Mertel, Kristin I.; Herbert, John M.; Kohler, Bern

    2008-05-01

    Vibrational spectra of the lowest energy triplet states of thymine and its 2'-deoxyribonucleoside, thymidine, are reported for the first time. Time-resolved infrared (TRIR) difference spectra were recorded over seven decades of time from 300 fs to 3 μs using femtosecond and nanosecond pump-probe techniques. The carbonyl stretch bands in the triplet state are seen at 1603 and ˜1700 cm -1 in room-temperature acetonitrile- d3 solution. These bands and additional ones observed between 1300 and 1450 cm -1 are quenched by dissolved oxygen on a nanosecond time scale. Density-functional calculations accurately predict the difference spectrum between triplet and singlet IR absorption cross sections, confirming the peak assignments and elucidating the nature of the vibrational modes. In the triplet state, the C4 dbnd O carbonyl exhibits substantial single-bond character, explaining the large (˜70 cm -1) red shift in this vibration, relative to the singlet ground state. Femtosecond TRIR measurements unambiguously demonstrate that the triplet state is fully formed within the first 10 ps after excitation, ruling out a relaxed 1nπ ∗ state as the triplet precursor.

  1. Biradical vs singlet oxygen photogeneration in suprofen–cholesterol systems

    PubMed Central

    Palumbo, Fabrizio; Bosca, Francisco; Morera, Isabel Maria

    2016-01-01

    Summary Cholesterol (Ch) is an important lipidic building block and a target for oxidative degradation, which can be induced via free radicals or singlet oxygen (1O2). Suprofen (SP) is a nonsteroidal anti-inflammatory drug that contains the 2-benzoylthiophene (BZT) chromophore and has a π,π* lowest triplet excited state. In the present work, dyads (S)- and (R)-SP-α-Ch (1 and 2), as well as (S)-SP-β-Ch (3) have been prepared from β- or α-Ch and SP to investigate the possible competition between photogeneration of biradicals and 1O2, the key mechanistic steps in Ch photooxidation. Steady-state irradiation of 1 and 2 was performed in dichloromethane, under nitrogen, through Pyrex, using a 400 W medium pressure mercury lamp. The spectral analysis of the separated fractions revealed formation of two photoproducts 4 and 5, respectively. By contrast, under the same conditions, 3 did not give rise to any isolable Ch-derived product. These results point to an intramolecular hydrogen abstraction in 1 and 2 from the C7 position of Ch and subsequent C–C coupling of the generated biradicals. Interestingly, 2 was significantly more photoreactive than 1 indicating a clear stereodifferentiation in the photochemical behavior. Transient absorption spectra obtained for 1–3 were very similar and matched that described for the SP triplet excited state (typical bands with maxima at ca. 350 nm and 600 nm). Direct kinetic analysis of the decay traces at 620 nm led to determination of triplet lifetimes that were ca. 4.1 μs for 1 and 2 and 5.8 μs for 3. From these data, the intramolecular quenching rate constants in 1 and 2 were determined as 0.78 × 105 s−1. The capability of dyads 1–3 to photosensitize the production of singlet oxygen was assessed by time-resolved near infrared emission studies in dichloromethane using perinaphthenone as standard. The quantum yields (ΦΔ) were 0.52 for 1 and 2 and 0.56 for 3. In conclusion, SP-α-Ch dyads are unique in the sense that they

  2. In vivo lactate editing with simultaneous detection of choline, creatine, NAA, and lipid singlets at 1.5 T using PRESS excitation with applications to the study of brain and head and neck tumors.

    PubMed

    Star-Lack, J; Spielman, D; Adalsteinsson, E; Kurhanewicz, J; Terris, D J; Vigneron, D B

    1998-08-01

    Two T2-independent J-difference lactate editing schemes for the PRESS magnetic resonance spectroscopy localization sequence are introduced. The techniques, which allow for simultaneous acquisition of the lactate doublet (1.3 ppm) and edited singlets upfield of and including choline (3.2 ppm), exploit the dependence of the in-phase intensity of the methyl doublet upon the time interval separating two inversion (BASING) pulses applied to its coupling partner after initial excitation. Editing method 1, which allows for echo times TE = n/J (n = 1, 2, 3, . . . . ), alters the BASING carrier frequency for each of two cycles so that, for one cycle, the quartet is inverted, whereas, for the other cycle, the quartet is unaffected. Method 2, which also provides water suppression, allows for editing for TE > 1/J by alternating, between cycles, the time interval separating the inversion pulses. Experimental results were obtained at 1.5 T using a Shinnar Le-Roux-designed maximum phase inversion pulse with a filter transition bandwidth of 55 Hz. Spectra were acquired from phantoms and in vivo from the human brain and neck. In a neck muscle study, the lipid suppression factor, achieved partly through the use of a novel phase regularization algorithm, was measured to be over 10(3). Spectra acquired from a primary brain and a metastatic neck tumor demonstrated the presence of lactate and choline signals consistent with abnormal spectral patterns. The advantages and limitations of the methods are analyzed theoretically and experimentally, and significance of the results is discussed.

  3. Ultrafast spectroscopy and computational study of the photochemistry of diphenylphosphoryl azide: direct spectroscopic observation of a singlet phosphorylnitrene.

    PubMed

    Vyas, Shubham; Muthukrishnan, Sivaramakrishnan; Kubicki, Jacek; McCulla, Ryan D; Burdzinski, Gotard; Sliwa, Michel; Platz, Matthew S; Hadad, Christopher M

    2010-12-01

    The photochemistry of diphenylphosphoryl azide was studied by femtosecond transient absorption spectroscopy, by chemical analysis of light-induced reaction products, and by RI-CC2/TZVP and TD-B3LYP/TZVP computational methods. Theoretical methods predicted two possible mechanisms for singlet diphenylphosphorylnitrene formation from the photoexcited phosphoryl azide. (i) Energy transfer from the (π,π*) singlet excited state, localized on a phenyl ring, to the azide moiety, thereby leading to the formation of the singlet excited azide, which subsequently loses molecular nitrogen to form the singlet diphenylphosphorylnitrene. (ii) Direct irradiation of the azide moiety to form an excited singlet state of the azide, which in turn loses molecular nitrogen to form the singlet diphenylphosphorylnitrene. Two transient species were observed upon ultrafast photolysis (260 nm) of diphenylphosphoryl azide. The first transient absorption, centered at 430 nm (lifetime (τ) ∼ 28 ps), was assigned to a (π,π*) singlet S(1) excited state localized on a phenyl ring, and the second transient observed at 525 nm (τ ∼ 480 ps) was assigned to singlet diphenylphosphorylnitrene. Experimental and computational results obtained from the study of diphenyl phosphoramidate, along with the results obtained with diphenylphosphoryl azide, supported the mechanism of energy transfer from the singlet excited phenyl ring to the azide moiety, followed by nitrogen extrusion to form the singlet phosphorylnitrene. Ultrafast time-resolved studies performed on diphenylphosphoryl azide with the singlet nitrene quencher, tris(trimethylsilyl)silane, confirmed the spectroscopic assignment of singlet diphenylphosphorylnitrene to the 525 nm absorption band.

  4. Using a Spreadsheet to Solve the Schro¨dinger Equations for the Energies of the Ground Electronic State and the Two Lowest Excited States of H[subscript2

    ERIC Educational Resources Information Center

    Ge, Yingbin; Rittenhouse, Robert C.; Buchanan, Jacob C.; Livingston, Benjamin

    2014-01-01

    We have designed an exercise suitable for a lab or project in an undergraduate physical chemistry course that creates a Microsoft Excel spreadsheet to calculate the energy of the S[subscript 0] ground electronic state and the S[subscript 1] and T[subscript 1] excited states of H[subscript 2]. The spreadsheet calculations circumvent the…

  5. Excited state properties of 7-hydroxy-4-methylcoumarin in the gas phase and in solution. A theoretical study.

    PubMed

    Georgieva, I; Trendafilova, N; Aquino, A; Lischka, H

    2005-12-29

    TDDFT/B3LYP and RI-CC2 calculations with different basis sets have been performed for vertical and adiabatic excitations and emission properties of the lowest singlet states for the neutral (enol and keto), protonated and deprotonated forms of 7-hydroxy-4-methylcoumarin (7H4MC) in the gas phase and in solution. The effect of 7H4MC-solvent (water) interactions on the lowest excited and fluorescence states were computed using the Polarizable Continuum Method (PCM), 7H4MC-water clusters and a combination of both approaches. The calculations revealed that in aqueous solution the pi pi* energy is the lowest one for excitation and fluorescence transitions of all forms of 7H4MC studied. The calculated excitation and fluorescence energies in aqueous solution are in good agreement with experiment. It was found that, depending on the polarity of the medium, the solvent shifts vary, leading to a change in the character of the lowest excitation and fluorescence transition. The dipole-moment and electron-density changes of the excited states relative to the ground state correlate with the solvation effect on the singlet excited states and on transition energies, respectively. The calculations show that, in contrast to the ground state, the keto form has a lower energy in the pi pi* state as compared to enol, demonstrating from this point of view the energetic possibility of proton transfer from the enol to the keto form in the excited state.

  6. The nature of singlet excitons in oligoacene molecular crystals

    SciTech Connect

    Yamagata, H.; Norton, J.; Hontz, E.; Olivier, Y.; Beljonne, D.; Bredas, J. L.; Silbey, R. J.; Spano, F. C.

    2011-01-01

    A theory for polarized absorption in crystalline oligoacenes is presented, which includes Frenkel exciton coupling, the coupling between Frenkel and charge-transfer (CT) excitons, and the coupling of all neutral and ionic excited states to the dominant ring-breathing vibrational mode. For tetracene, spectra calculated using all Frenkel couplings among the five lowest energy molecular singlet states predict a Davydov splitting (DS) of the lowest energy (0–0) vibronic band of only -32 cm-1, far smaller than the measured value of 631 cm-1 and of the wrong sign--a negative sign indicating that the polarizations of the lower and upper Davydov components are reversed from experiment. Inclusion of Frenkel-CT coupling dramatically improves the agreement with experiment, yielding a 0–0 DS of 601 cm-1 and a nearly quantitative reproduction of the relative spectral intensities of the 0–n vibronic components. Our analysis also shows that CT mixing increases with the size of the oligoacenes. We discuss the implications of these results on exciton dissociation and transport.

  7. Microscopic theory of singlet exciton fission. III. Crystalline pentacene

    SciTech Connect

    Berkelbach, Timothy C. Reichman, David R.; Hybertsen, Mark S.

    2014-08-21

    We extend our previous work on singlet exciton fission in isolated dimers to the case of crystalline materials, focusing on pentacene as a canonical and concrete example. We discuss the proper interpretation of the character of low-lying excited states of relevance to singlet fission. In particular, we consider a variety of metrics for measuring charge-transfer character, conclusively demonstrating significant charge-transfer character in the low-lying excited states. The impact of this electronic structure on the subsequent singlet fission dynamics is assessed by performing real-time master-equation calculations involving hundreds of quantum states. We make direct comparisons with experimental absorption spectra and singlet fission rates, finding good quantitative agreement in both cases, and we discuss the mechanistic distinctions that exist between small isolated aggregates and bulk systems.

  8. Singlet biradical{yields}singlet zwitterion optical transition in a twisted olefin

    SciTech Connect

    Piotrowiak, P.; Strati, G.; Smirnov, S.N.; Warman, J.M.; Schuddeboom, W.

    1996-09-18

    We report the first direct observation of the singlet biradical $YLD singlet zwitterion transition in a twisted olefin, biphenanthrenylidene. Biphenanthrenylidene (full name, bi-4H-cyclopenta[def]phenanthren-4-ylidene, abbreviated as BPH) is an analogue of tetraphenylethylene (TPE) and stilbene, both of which are the favorite models of photoisomerization reactions. The investigations have been focusing on the dynamics of the twisting motion of the double bond which leads to decoupling of the two halves of the olefin and results in the formation of the D{sub 2d} 90{degree}-twisted zwitterionic or biradical excited state. 13 refs., 2 figs., 1 tab.

  9. Ultrafast dynamics of the lowest-lying neutral states in carbon dioxide

    NASA Astrophysics Data System (ADS)

    Wright, Travis W.; Champenois, Elio G.; Cryan, James P.; Shivaram, Niranjan; Yang, Chan-Shan; Belkacem, Ali

    2017-02-01

    We present a study of the ultrafast dissociation dynamics of the lowest-lying electronic excited states in CO2 by using ultraviolet (UV) and extreme-ultraviolet (XUV) pulses from high-order harmonic generation. We observe two primary dissociation channels: a direct dissociation channel along the Π1g electronically excited manifold, and a second channel which results from the mixing of electronic states. The direct dissociation channel is found to have a lifetime which is shorter than our experimental resolution, whereas the second channel has a significantly longer lifetime of nearly 200 fs. In this long-lived channel we observe a beating of the vibrational populations with a period of ˜133 fs.

  10. Theoretical Study of Tautomerization Reactions for the Ground and First Excited Electronic States of Adenine

    NASA Technical Reports Server (NTRS)

    Salter, Latasha M.; Chaban, Galina M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest singlet excited state potential energy surfaces are studied. Four tautomeric forms are considered, and their energetic order is found to be different on the ground and the excited state potential energy surfaces. Minimum energy reaction paths are obtained for hydrogen atom transfer (tautomerization) reactions in the ground and the lowest excited electronic states. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic states, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. This tautomerization process should become possible in the presence of water or other polar solvent molecules and should play an important role in the photochemistry of adenine.

  11. Singlet Oxygen Generation by Laser Irradiation of Gold Nanoparticles

    PubMed Central

    2016-01-01

    The formation of singlet oxygen by irradiation of gold nanoparticles in their plasmon resonance band with continuous or pulsed laser light has been investigated. Citrate-stabilized nanoparticles were found to facilitate the photogeneration of singlet oxygen, albeit with low quantum yield. The reaction caused by pulsed laser irradiation makes use of the equilibrated hot electrons that can reach temperatures of several thousand degrees during the laser pulse. Although less efficient, continuous irradiation, which acts via the short-lived directly excited primary “hot” electrons only, can produce enough singlet oxygen for photodynamic cancer therapy and has significant advantages for practical applications. However, careful design of the nanoparticles is needed, since even a moderately thick capping layer can completely inhibit singlet oxygen formation. Moreover, the efficiency of the process also depends on the nanoparticle size. PMID:27239247

  12. Photophysics of phenalenone: quantum-mechanical investigation of singlet-triplet intersystem crossing.

    PubMed

    Daza, Martha C; Doerr, Markus; Salzmann, Susanne; Marian, Christel M; Thiel, Walter

    2009-03-21

    We have examined the electronic and molecular structure of 1H-phenalen-1-one (phenalenone) in the electronic ground state and in the lowest excited states, as well as intersystem crossing. The electronic structure was calculated using a combination of density functional theory and multi-reference configuration interaction. Intersystem crossing rates were determined using Fermi's golden rule and taking direct and vibronic spin-orbit coupling into account. The required spin-orbit matrix elements were obtained applying a non-empirical spin-orbit mean-field approximation. Our calculated electronic energies are in good agreement with experimental data. We find the lowest excited singlet states to be of the npi* (S1) and pipi* (S2) type. Energetically accessible from S1 are two triplet states of the pipi* (T1) and npi* (T2) type, the latter being nearly degenerate to S1. This ordering of states is retained when the molecular structure in the electronically excited states is relaxed. We expect very efficient intersystem crossing between S1 and T1. Our calculated intersystem crossing rate is approximately 2 x 10(10) s(-1), which is in excellent agreement with the experimental value of 3.45 x 10(10) s(-1). Our estimated phosphorescence and fluorescence rates are many orders of magnitude smaller. Our results are in agreement with the experimentally observed behavior of phenalenone, including the high efficiency of 1O2 production.

  13. Mechanism of singlet fission in thin films of 1,3-diphenylisobenzofuran.

    PubMed

    Schrauben, Joel N; Ryerson, Joseph L; Michl, Josef; Johnson, Justin C

    2014-05-21

    In order to elucidate the mechanism of singlet fission in thin films of 1,3-diphenylisobenzofuran (1) we have performed ultrafast transient absorption spectroscopy as a function of sample temperature and excitation fluence on polycrystalline thin films composed of two polymorphs. Our earlier investigations revealed that films enriched in a particular polymorph of 1 displayed near 200% efficiency for triplet formation at 77 K, while films composed primarily of a second polymorph had a very low triplet quantum yield. Present data confirm the triplet yield disparities in the two polymorphs and demonstrate the distinct fates of the initially prepared singlets in films of different structure. Singlet fission is inhibited in the more stable polymorph due to rapid excimer formation and trapping. The less stable polymorph undergoes highly efficient singlet fission with a dominant time constant of 10-30 ps and without strong thermal activation. Transient absorption measurements with varying excitation fluence indicate that singlet-singlet annihilation is a primary competitor of singlet fission at higher fluence and that fission from higher-lying states can also contribute to the triplet formation process. Measurements employing different excitation energies and sample temperatures reveal the role that trapping processes play in attenuating the triplet quantum yield to produce the complex temperature dependence of the singlet fission yield. The rate constants for singlet fission itself are essentially temperature independent.

  14. Singlet oxygen kinetics in a double microwave discharge

    NASA Astrophysics Data System (ADS)

    Pitz, Greg A.; Lange, Matthew A.; Perram, Glen P.

    2004-09-01

    Chemical lasers offer the highest powers necessary for many weapons applications, but require significant logistical support in the delivery of specialized fuels to the battlefield. In the Chemical Oxygen-Iodine Laser (COIL), which is the weapon aboard the Airborne Laser (ABL), gaseous chlorine and liquid basic hydrogen peroxide are used to generate the singlet oxygen energy reservoir. The goal of the current multi-university research program is to demonstrate an oxygen-iodine laser with electrical discharge production of singlet oxygen. Typically, oxygen discharges are limited to about 15% yield for singlet oxygen. The electron excitation cross-sections as a function of E/N are well established. However, the kinetics for electron and singlet oxygen interactions is considerably more difficult to study. Optical diagnostics for O2(a, b), and O, have been applied to a double microwave discharge flow tube. By examining the difference in singlet oxygen kinetics between the two discharges in series, considerable information regarding the excited-state, excited-state interactions is obtained. Under certain discharge conditions, the O2(a) concentration significantly increases outside of the discharge, even after thermal effects are accounted.

  15. UV-vis spectra of singlet state cationic polycyclic aromatic hydrocarbons: Time-dependent density functional theory study

    SciTech Connect

    Dominikowska, Justyna Domagala, Malgorzata; Palusiak, Marcin

    2014-01-28

    A theoretical study of singlet state cations of polycyclic aromatic hydrocarbons is performed. Appropriate symmetry suitable for further calculations is chosen for each of the systems studied. The excitation states of such species are obtained by the time dependent density functional theory (TD-DFT) method. The computations are performed using both Pople and electronic response properties basis sets. The results obtained with the use of different basis sets are compared. The electronic transitions are described and the relationships for the lowest-lying transitions states of different species are found. The properties of in-plane and out-of-plane transitions are also delineated. The TD-DFT results are compared with the experimental data available.

  16. Nature of ground and electronic excited states of higher acenes

    PubMed Central

    Yang, Yang; Yang, Weitao

    2016-01-01

    Higher acenes have drawn much attention as promising organic semiconductors with versatile electronic properties. However, the nature of their ground state and electronic excited states is still not fully clear. Their unusual chemical reactivity and instability are the main obstacles for experimental studies, and the potentially prominent diradical character, which might require a multireference description in such large systems, hinders theoretical investigations. Here, we provide a detailed answer with the particle–particle random-phase approximation calculation. The 1Ag ground states of acenes up to decacene are on the closed-shell side of the diradical continuum, whereas the ground state of undecacene and dodecacene tilts more to the open-shell side with a growing polyradical character. The ground state of all acenes has covalent nature with respect to both short and long axes. The lowest triplet state 3B2u is always above the singlet ground state even though the energy gap could be vanishingly small in the polyacene limit. The bright singlet excited state 1B2u is a zwitterionic state to the short axis. The excited 1Ag state gradually switches from a double-excitation state to another zwitterionic state to the short axis, but always keeps its covalent nature to the long axis. An energy crossing between the 1B2u and excited 1Ag states happens between hexacene and heptacene. Further energetic consideration suggests that higher acenes are likely to undergo singlet fission with a low photovoltaic efficiency; however, the efficiency might be improved if a singlet fission into multiple triplets could be achieved. PMID:27528690

  17. Combined phosphorescence-holographic approach for singlet oxygen detection in biological media

    NASA Astrophysics Data System (ADS)

    Semenova, I. V.; Belashov, A. V.; Beltukova, D. M.; Petrov, N. V.; Vasyutinskii, O. S.

    2015-06-01

    The paper presents a novel combined approach aimed to detect and monitor singlet oxygen molecules in biological specimens by means of the simultaneous recording and monitoring of their deactivation dynamics in the two complementary channels: radiative and nonradiative. The approach involves both the direct registration of phosphorescence at the wavelength of about 1270 nm caused by radiative relaxation of excited singlet oxygen molecules and holographic recording of thermal disturbances in the medium produced by their nonradiative relaxation. The data provides a complete set of information on singlet oxygen location and dynamics in the medium. The approach was validated in the case study of photosensitized generation of singlet oxygen in onion cell structures.

  18. Binding of oxygen with titanium dioxide on singlet potential energy surface: An ab initio investigation

    NASA Astrophysics Data System (ADS)

    Bogdanchikov, Georgii A.; Baklanov, Alexey V.

    2017-01-01

    Ab initio calculations have been carried out to investigate interaction of titanium dioxide TiO2 with oxygen O2 in ground triplet and excited singlet states. On a singlet potential energy surface (PES) formation of a stable compound of titanium peroxide TiO4 is revealed which should appear in reaction of TiO2 with singlet oxygen without activation barrier. This peroxide is lower in energy than the ground state of two individual molecules TiO2 + 3O2 by 34.6 kcal/mol. Location of conical intersection between triplet and singlet PESs of TiO2sbnd O2 is also investigated.

  19. The role of chromophore coupling in singlet fission.

    PubMed

    Johnson, Justin C; Nozik, Arthur J; Michl, Josef

    2013-06-18

    Certain organic materials can generate more than one electron-hole pair per absorbed photon, a property that could revolutionize the prospects for solar energy. This process, called singlet fission, is one possible "exciton multiplication" scheme that could be useful in a variety of photovoltaic device designs from dye-sensitized solar cells to solar cell bilayers to bulk heterojunctions. For such applications to be possible, however, singlet fission must occur with near perfect efficiency in compounds that also have other requisite properties such as strong visible light absorption and photostability. Many recent investigations of singlet fission have focused on crystalline polyacenes, which have been known for some time to undergo singlet fission. While these materials have promise, limitations in stability, cost, and performance may hinder practical application of polyacene solar cells, while their complex photophysics may limit our fundamental understanding of singlet fission in crystalline polyacenes. In this Account, we describe rationally designed singlet fission chromophores whose excited state dynamics should be fairly simple and whose coupling can be well controlled through the formation of covalent dimers, aggregates, or polycrystalline films. In principle, investigations of these chromophores should provide the clearest connection to theoretical concepts explaining how an excited state evolves from a singlet (S1) into two triplets (TT). Realizing the promise of efficient singlet fission rests with two tasks: (i) producing an ideal molecular energy level structure and (ii) inducing the correct type and strength of chromophore coupling. In this Account, we offer theoretical guidance for achieving (i) and consider more extensively recent results aimed at (ii). For (i), theoretical guidance suggests that, in addition to alternant hydrocarbons like tetracene and pentacene, biradicals (i.e., molecules with two independent radical centers) may also be used as

  20. Gaugino mass without singlets

    SciTech Connect

    Giudice, Gian F.; Luty, Markus A.; Murayama, Hitoshi; Rattazzi, Riccardo

    1998-12-21

    In models with dynamical supersymmetry breaking in the hidden sector, the gaugino masses in the observable sector have been believed to be extremely suppressed (below 1 keV), unless there is a gauge singlet in the hidden sector with specific couplings to the observable sector gauge multiplets. We point out that there is a pure supergravity contribution to gaugino masses at the quantum level arising from the superconformal anomaly. Our results are valid to all orders in perturbation theory and are related to the ''exact'' beta functions for soft terms. There is also an anomaly contribution to the A terms proportional to the beta function of the corresponding Yukawa coupling. The gaugino masses are proportional to the corresponding gauge beta functions, and so do not satisfy the usual GUT relations.

  1. Density Analysis of Intra- and Intermolecular Vibronic Couplings toward Bath Engineering for Singlet Fission.

    PubMed

    Ito, Soichi; Nagami, Takanori; Nakano, Masayoshi

    2015-12-17

    Vibronic coupling plays a crucial role in singlet fission whereby a singlet exciton splits into two triplet excitons. In order to reveal the physicochemical origin of the vibronic coupling associated with singlet fission as well as to clarify its relationship with chemical structure, we evaluate relevant vibronic couplings from the viewpoint of their spatial contributions described by vibronic coupling density. From the analysis using a model tetracene dimer, a typical singlet fission system, the frequency dependence of vibronic couplings in each electronic state is found to be significantly different from that of another depending on the nature of the electronic structure (intra/intermolecular excitation) and the related vibrational motion. These findings contribute not only to the fundamental understanding of the singlet fission mechanism from the viewpoint of vibronic couplings but also to opening a new path to designing highly efficient singlet fission materials through phonon-bath engineering.

  2. Observation of Two Triplet-Pair Intermediates in Singlet Exciton Fission.

    PubMed

    Pensack, Ryan D; Ostroumov, Evgeny E; Tilley, Andrew J; Mazza, Samuel; Grieco, Christopher; Thorley, Karl J; Asbury, John B; Seferos, Dwight S; Anthony, John E; Scholes, Gregory D

    2016-07-07

    Singlet fission is an excitation multiplication process in molecular systems that can circumvent energy losses and significantly boost solar cell efficiencies; however, the nature of a critical intermediate that enables singlet fission and details of its evolution into multiple product excitations remain obscure. We resolve the initial sequence of events comprising the fission of a singlet exciton in solids of pentacene derivatives using femtosecond transient absorption spectroscopy. We propose a three-step model of singlet fission that includes two triplet-pair intermediates and show how transient spectroscopy can distinguish initially interacting triplet pairs from those that are spatially separated and noninteracting. We find that the interconversion of these two triplet-pair intermediates is limited by the rate of triplet transfer. These results clearly highlight the classical kinetic model of singlet fission and expose subtle details that promise to aid in resolving problems associated with triplet extraction.

  3. Photoinduced C—I bond homolysis of 5-iodouracil: A singlet predissociation pathway

    NASA Astrophysics Data System (ADS)

    Dai, Xiaojuan; Song, Di; Liu, Kunhui; Su, Hongmei

    2017-01-01

    5-Iodouracil (5-IU) can be integrated into DNA and acts as a UV sensitive chromophore suitable for probing DNA structure and DNA-protein interactions based on the photochemical reactions of 5-IU. Here, we perform joint studies of time-resolved Fourier transform infrared (TR-FTIR) spectroscopy and ab initio calculations to examine the state-specific photochemical reaction mechanisms of the 5-IU. The fact that uracil (U) is observed in TR-FTIR spectra after 266 nm irradiation of 5-IU in acetonitrile and ascribed to the product of hydrogen abstraction by the uracil-5-yl radical (U.) provides experimental evidence for the C—I bond homolysis of 5-IU. The excited state potential energy curves are calculated with the complete active space second-order perturbation//complete active space self-consistent field method, from which a singlet predissociation mechanism is elucidated. It is shown that the initially populated 1(ππ*) state crosses with the repulsive 1(πσ*) or 1(nIσ*) state, through which 5-IU undergoes dissociation to the fragments of (U.) radical and iodine atom. In addition, the possibility of intersystem crossing (ISC) is evaluated based on the calculated vertical excitation energies. Although a probable ISC from 1(ππ*) state to 3(nOπ*) and then to the lowest triplet 3(ππ*) could occur in principal, there is little possibility for the excited state populations bifurcating to triplet manifold, given that the singlet state predissociation follows repulsive potential and should occur within dozens to hundreds of femtoseconds. Such low population of triplet states means that the contribution of triplet state to photoreactions of 5-IU should be quite minor. These results demonstrate clearly a physical picture of C—I bond homolysis of 5-IU and provide mechanistic illuminations to the interesting applications of 5-IU as photoprobes and in radiotherapy of cancer.

  4. Wavelength dependence of the fluorescence and singlet oxygen quantum yields of new photosensitizers

    NASA Astrophysics Data System (ADS)

    Lavi, Adina; Johnson, Fred M.; Ehrenberg, Benjamin

    1994-12-01

    The photophysical properties of Mg and Zn tetrabenzoporphyrins and Cd-texaphyrin are presented. These sensitizers have strong absorption bands in the red and near-IR regions that make them good candidates for biological photosensitization. Singlet oxygen quantum yields which were determined in an absolute manner, in several solvents, are reported. We show an unusual behavior regarding adherence to Kasha's and Vavilov's rules: upon excitation to different electronic states, different values of singlet oxygen quantum yields were obtained. We also show an unusual wavelength dependence of singlet oxygen and fluorescence yields upon excitation to different vibrational levels within the same electronic state.

  5. Photodissociation of ozone in the Hartley band: Potential energy surfaces, nonadiabatic couplings, and singlet/triplet branching ratio

    NASA Astrophysics Data System (ADS)

    Schinke, R.; McBane, G. C.

    2010-01-01

    The lowest five A1' states of ozone, involved in the photodissociation with UV light, are analyzed on the basis of multireference configuration interaction electronic structure calculations with emphasis on the various avoided crossings in different regions of coordinate space. Global diabatic potential energy surfaces are constructed for the lowest four states termed X, A, B, and R. In addition, the off-diagonal potentials that couple the initially excited state B with states R and A are constructed to reflect results from additional electronic structure calculations, including the calculation of nonadiabatic coupling matrix elements. The A/X and A/R couplings are also considered, although in a less ambitious manner. The photodissociation dynamics are studied by means of trajectory surface hopping (TSH) calculations with the branching ratio between the singlet, O(D1)+O2(Δ1g), and triplet, O(P3)+O2(Σ3g-), channels being the main focus. The semiclassical branching ratio agrees well with quantum mechanical results except for wavelengths close to the threshold of the singlet channel. The calculated O(D1) quantum yield is approximately 0.90-0.95 across the main part of the Hartley band, in good agreement with experimental data. TSH calculations including all four states show that transitions B→A are relatively unimportant and subsequent transitions A→X/R to the triplet channel are negligible.

  6. Tuning the role of charge-transfer states in intramolecular singlet exciton fission through side-group engineering.

    PubMed

    Lukman, Steven; Chen, Kai; Hodgkiss, Justin M; Turban, David H P; Hine, Nicholas D M; Dong, Shaoqiang; Wu, Jishan; Greenham, Neil C; Musser, Andrew J

    2016-12-07

    Understanding the mechanism of singlet exciton fission, in which a singlet exciton separates into a pair of triplet excitons, is crucial to the development of new chromophores for efficient fission-sensitized solar cells. The challenge of controlling molecular packing and energy levels in the solid state precludes clear determination of the singlet fission pathway. Here, we circumvent this difficulty by utilizing covalent dimers of pentacene with two types of side groups. We report rapid and efficient intramolecular singlet fission in both molecules, in one case via a virtual charge-transfer state and in the other via a distinct charge-transfer intermediate. The singlet fission pathway is governed by the energy gap between singlet and charge-transfer states, which change dynamically with molecular geometry but are primarily set by the side group. These results clearly establish the role of charge-transfer states in singlet fission and highlight the importance of solubilizing groups to optimize excited-state photophysics.

  7. Studies on Valence Fluctuation and Orbital Occupancy in an Impurity Anderson Model with f2 Local-Singlet Ground State

    NASA Astrophysics Data System (ADS)

    Shiina, Ryousuke

    2017-03-01

    An interplay of valence fluctuation and orbital occupancy is studied for a two-orbital impurity Anderson model having f2 singlet ground and triplet excited states in the localized limit. Employing the numerical renormalization group method, we identify the existence of a quantum phase transition between the local-singlet and the Kondo-singlet states in a variation of the c-f hybridization, and clarify how it depends on the f2 singlet-triplet energy splitting. It is found that the transition takes place definitely at a finite strength of the hybridization even when the singlet-triplet splitting is infinitely large. It is also found that as the splitting becomes small, the occupancies of the singlet and triplet states display a drastic change in the vicinity of the transition point. The origin of these findings is discussed in view of the features of valence fluctuation from the local many-body singlet state.

  8. Tuning the role of charge-transfer states in intramolecular singlet exciton fission through side-group engineering

    NASA Astrophysics Data System (ADS)

    Lukman, Steven; Chen, Kai; Hodgkiss, Justin M.; Turban, David H. P.; Hine, Nicholas D. M.; Dong, Shaoqiang; Wu, Jishan; Greenham, Neil C.; Musser, Andrew J.

    2016-12-01

    Understanding the mechanism of singlet exciton fission, in which a singlet exciton separates into a pair of triplet excitons, is crucial to the development of new chromophores for efficient fission-sensitized solar cells. The challenge of controlling molecular packing and energy levels in the solid state precludes clear determination of the singlet fission pathway. Here, we circumvent this difficulty by utilizing covalent dimers of pentacene with two types of side groups. We report rapid and efficient intramolecular singlet fission in both molecules, in one case via a virtual charge-transfer state and in the other via a distinct charge-transfer intermediate. The singlet fission pathway is governed by the energy gap between singlet and charge-transfer states, which change dynamically with molecular geometry but are primarily set by the side group. These results clearly establish the role of charge-transfer states in singlet fission and highlight the importance of solubilizing groups to optimize excited-state photophysics.

  9. Understanding the Control of Singlet-Triplet Splitting for Organic Exciton Manipulating: A Combined Theoretical and Experimental Approach

    PubMed Central

    Chen, Ting; Zheng, Lei; Yuan, Jie; An, Zhongfu; Chen, Runfeng; Tao, Ye; Li, Huanhuan; Xie, Xiaoji; Huang, Wei

    2015-01-01

    Developing organic optoelectronic materials with desired photophysical properties has always been at the forefront of organic electronics. The variation of singlet-triplet splitting (ΔEST) can provide useful means in modulating organic excitons for diversified photophysical phenomena, but controlling ΔEST in a desired manner within a large tuning scope remains a daunting challenge. Here, we demonstrate a convenient and quantitative approach to relate ΔEST to the frontier orbital overlap and separation distance via a set of newly developed parameters using natural transition orbital analysis to consider whole pictures of electron transitions for both the lowest singlet (S1) and triplet (T1) excited states. These critical parameters revealed that both separated S1 and T1 states leads to ultralow ΔEST; separated S1 and overlapped T1 states results in small ΔEST; and both overlapped S1 and T1 states induces large ΔEST. Importantly, we realized a widely-tuned ΔEST in a range from ultralow (0.0003 eV) to extra-large (1.47 eV) via a subtle symmetric control of triazine molecules, based on time-dependent density functional theory calculations combined with experimental explorations. These findings provide keen insights into ΔEST control for feasible excited state tuning, offering valuable guidelines for the construction of molecules with desired optoelectronic properties. PMID:26161684

  10. Cell death induced by direct laser activation of singlet oxygen at 1270 nm

    NASA Astrophysics Data System (ADS)

    Anquez, F.; El Yazidi Belkoura, I.; Suret, P.; Randoux, S.; Courtade, E.

    2013-02-01

    Singlet oxygen plays a major role in many chemical and biological photo-oxidation processes. It has a high chemical reactivity, which is commonly harnessed for therapeutic issues. Indeed, singlet oxygen is recognized as the major cytotoxic agent in photodynamic therapy. In this treatment of cancer, singlet oxygen is created, among other reactive species, by an indirect transfer of energy from light to molecular oxygen via excitation of a photosensitizer. In this paper, we show that the conventional singlet oxygen production scheme can be simplified. Production of singlet oxygen is achieved in living cells from photosensitizer-free 1270 nm laser excitation of the electronic ground state of molecular oxygen. The quantity of singlet oxygen produced in this way is sufficient to induce an oxidative stress leading to cell death. Other effects such as thermal stress are discriminated, and we conclude that cell death is only due to singlet oxygen creation. This new simplified scheme of singlet oxygen activation can be seen as a breakthrough for phototherapies of malignant diseases and/or as a non-invasive possibility to generate reactive oxygen species in a tightly controlled manner.

  11. Determination of ground and excited state dipole moments via electronic Stark spectroscopy: 5-methoxyindole.

    PubMed

    Wilke, Josefin; Wilke, Martin; Meerts, W Leo; Schmitt, Michael

    2016-01-28

    The dipole moments of the ground and lowest electronically excited singlet state of 5-methoxyindole have been determined by means of optical Stark spectroscopy in a molecular beam. The resulting spectra arise from a superposition of different field configurations, one with the static electric field almost parallel to the polarization of the exciting laser radiation, the other nearly perpendicular. Each field configuration leads to different intensities in the rovibronic spectrum. With an automated evolutionary algorithm approach, the spectra can be fit and the ratio of both field configurations can be determined. A simultaneous fit of two spectra with both field configurations improved the precision of the dipole moment determination by a factor of two. We find a reduction of the absolute dipole moment from 1.59(3) D to 1.14(6) D upon electronic excitation to the lowest electronically excited singlet state. At the same time, the dipole moment orientation rotates by 54(∘) showing the importance of the determination of the dipole moment components. The dipole moment in the electronic ground state can approximately be obtained from a vector addition of the indole and the methoxy group dipole moments. However, in the electronically excited state, vector addition completely fails to describe the observed dipole moment. Several reasons for this behavior are discussed.

  12. Direct spectroscopic observation of closed-shell singlet, open-shell singlet, and triplet p-biphenylyloxenium ion.

    PubMed

    Li, Ming-De; Hanway, Patrick J; Albright, Toshia R; Winter, Arthur H; Phillips, David Lee

    2014-09-03

    The photophysics and photochemistry of p-biphenylyl hydroxylamine hydrochloride was studied using laser flash photolysis ranging from the femtosecond to the microsecond time scale. The singlet excited state of this photoprecursor is formed within 350 fs and partitions into three different transients that are assigned to the p-biphenyloxy radical, the open-shell singlet p-biphenylyloxenium ion, and the triplet p-biphenylyloxenium ion, having lifetimes of 40 μs, 45 ps, and 1.6 ns, respectively, in CH3CN. The open-shell singlet p-biphenylyloxenium ion predominantly undergoes internal conversion to produce the closed-shell singlet p-biphenylyloxenium ion, which has a lifetime of 5-20 ns. The longer-lived radical is unambiguously assigned by nanosecond time-resolved resonance Raman (ns-TR(3)) spectroscopy, and the assignment of the short-lived singlet and triplet oxenium ion transient absorptions are supported by matching time-dependent density functional theory (TD-DFT) predictions of the absorptions of these species, as well as by product studies that implicate the intermediacy of charged electrophilic intermediates. Product studies from photolysis give p-biphenylol as the major product and a chloride adduct as the major product when NaCl is added as a trap. Thermolysis studies give p-biphenylol as a major product, as well as water, ammonium, and chloro adducts. These studies provide a rare direct look at a discrete oxenium ion intermediate and the first detection of open-shell singlet and triplet configurations of an oxenium ion, as well as providing an intriguing example of the importance of excited state dynamics in governing the electronic state population of reactive intermediates.

  13. A correlated electron view of singlet fission.

    PubMed

    Zimmerman, Paul M; Musgrave, Charles B; Head-Gordon, Martin

    2013-06-18

    Singlet fission occurs when a single exciton splits into multiple electron-hole pairs, and could dramatically increase the efficiency of organic solar cells by converting high energy photons into multiple charge carriers. Scientists might exploit singlet fission to its full potential by first understanding the underlying mechanism of this quantum mechanical process. The pursuit of this fundamental mechanism has recently benefited from the development and application of new correlated wave function methods. These methods-called restricted active space spin flip-can capture the most important electron interactions in molecular materials, such as acene crystals, at low computational cost. It is unrealistic to use previous wave function methods due to the excessive computational cost involved in simulating realistic molecular structures at a meaningful level of electron correlation. In this Account, we describe how we use these techniques to compute single exciton and multiple exciton excited states in tetracene and pentacene crystals in order to understand how a single exciton generated from photon absorption undergoes fission to generate two triplets. Our studies indicate that an adiabatic charge transfer intermediate is unlikely to contribute significantly to the fission process because it lies too high in energy. Instead, we propose a new mechanism that involves the direct coupling of an optically allowed single exciton to an optically dark multiexciton. This coupling is facilitated by intermolecular motion of two acene monomers that drives nonadiabatic population transfer between the two states. This transfer occurs in the limit of near degeneracies between adiabatic states where the Born-Oppenheimer approximation of fixed nuclei is no longer valid. Existing theories for singlet fission have not considered this type of coupling between states and, therefore, cannot describe this mechanism. The direct mechanism through intermolecular motion describes many

  14. Effect of high-frequency modes on singlet fission dynamics.

    PubMed

    Fujihashi, Yuta; Chen, Lipeng; Ishizaki, Akihito; Wang, Junling; Zhao, Yang

    2017-01-28

    Singlet fission is a spin-allowed energy conversion process whereby a singlet excitation splits into two spin-correlated triplet excitations residing on adjacent molecules and has a potential to dramatically increase the efficiency of organic photovoltaics. Recent time-resolved nonlinear spectra of pentacene derivatives have shown the importance of high frequency vibrational modes in efficient fission. In this work, we explore impacts of vibration-induced fluctuations on fission dynamics through quantum dynamics calculations with parameters from fitting measured linear and nonlinear spectra. We demonstrate that fission dynamics strongly depends on the frequency of the intramolecular vibrational mode. Furthermore, we examine the effect of two vibrational modes on fission dynamics. Inclusion of a second vibrational mode creates an additional fission channel even when its Huang-Rhys factor is relatively small. Addition of more vibrational modes may not enhance the fission per se, but can dramatically affect the interplay between fission dynamics and the dominant vibrational mode.

  15. Effect of high-frequency modes on singlet fission dynamics

    NASA Astrophysics Data System (ADS)

    Fujihashi, Yuta; Chen, Lipeng; Ishizaki, Akihito; Wang, Junling; Zhao, Yang

    2017-01-01

    Singlet fission is a spin-allowed energy conversion process whereby a singlet excitation splits into two spin-correlated triplet excitations residing on adjacent molecules and has a potential to dramatically increase the efficiency of organic photovoltaics. Recent time-resolved nonlinear spectra of pentacene derivatives have shown the importance of high frequency vibrational modes in efficient fission. In this work, we explore impacts of vibration-induced fluctuations on fission dynamics through quantum dynamics calculations with parameters from fitting measured linear and nonlinear spectra. We demonstrate that fission dynamics strongly depends on the frequency of the intramolecular vibrational mode. Furthermore, we examine the effect of two vibrational modes on fission dynamics. Inclusion of a second vibrational mode creates an additional fission channel even when its Huang-Rhys factor is relatively small. Addition of more vibrational modes may not enhance the fission per se, but can dramatically affect the interplay between fission dynamics and the dominant vibrational mode.

  16. Singlet-singlet annihilation kinetics in aggregates and trimers of LHCII.

    PubMed Central

    Barzda, V; Gulbinas, V; Kananavicius, R; Cervinskas, V; van Amerongen, H; van Grondelle, R; Valkunas, L

    2001-01-01

    Singlet-singlet annihilation experiments have been performed on trimeric and aggregated light-harvesting complex II (LHCII) using picosecond spectroscopy to study spatial equilibration times in LHCII preparations, complementing the large amount of data on spectral equilibration available in literature. The annihilation kinetics for trimers can well be described by a statistical approach, and an annihilation rate of (24 ps)(-1) is obtained. In contrast, the annihilation kinetics for aggregates can well be described by a kinetic approach over many hundreds of picoseconds, and it is shown that there is no clear distinction between inter- and intratrimer transfer of excitation energy. With this approach, an annihilation rate of (16 ps)(-1) is obtained after normalization of the annihilation rate per trimer. It is shown that the spatial equilibration in trimeric LHCII between chlorophyll a molecules occurs on a time scale that is an order of magnitude longer than in Photosystem I-core, after correcting for the different number of chlorophyll a molecules in both systems. The slow transfer in LHCII is possibly an important factor in determining excitation trapping in Photosystem II, because it contributes significantly to the overall trapping time. PMID:11325740

  17. Longest-Wavelength Electronic Excitations of Linear Cyanines: The Role of Electron Delocalization and of Approximations in Time-Dependent Density Functional Theory.

    PubMed

    Ii, Barry Moore; Autschbach, Jochen

    2013-11-12

    The lowest-energy/longest-wavelength electronic singlet excitation energies of linear cyanine dyes are examined, using time-dependent density functional theory (TDDFT) and selected wave function methods in comparison with literature data. Variations of the bond-length alternation obtained with different optimized structures produce small differences of the excitation energy in the limit of an infinite chain. Hybrid functionals with range-separated exchange are optimally 'tuned', which is shown to minimize the delocalization error (DE) in the cyanine π systems. Much unlike the case of charge-transfer excitations, small DEs are not strongly correlated with better performance. A representative cyanine is analyzed in detail. Compared with accurate benchmark data, TDDFT with 'pure' local functionals gives too high singlet excitation energies for all systems, but DFT-based ΔSCF calculations with a local functional severely underestimates the energies. TDDFT strongly overestimates the difference between singlet and triplet excitation energies. An analysis points to systematically much too small magnitudes of integrals from the DFT components of the exchange-correlation response kernel as the likely culprit. The findings support previous suggestions that the differential correlation energy between the ground and excited state is not correctly produced by TDDFT with most functionals.

  18. Singlet Oxygen at the Laundromat

    NASA Astrophysics Data System (ADS)

    Keeports, David

    1995-09-01

    Singlet molecular oxygen is an interesting molecule both visually and theoretically, since its red chemiluminescence can be analyzed by the application of simple molecular orbital theory. It can be produced from the reaction of hydrogen peroxide from either chlorine gas or hypochlorite ion from household bleach. Here we demostrate how to produce it using simple laundry cleansers.

  19. Photoexcited singlet and triplet states of a UV absorber ethylhexyl methoxycrylene.

    PubMed

    Kikuchi, Azusa; Hata, Yuki; Kumasaka, Ryo; Nanbu, Yuichi; Yagi, Mikio

    2013-01-01

    The excited states of UV absorber, ethylhexyl methoxycrylene (EHMCR) have been studied through measurements of UV absorption, fluorescence, phosphorescence and electron paramagnetic resonance (EPR) spectra in ethanol. The energy levels of the lowest excited singlet (S1) and triplet (T1) states of EHMCR were determined. The energy levels of the S1 and T1 states of EHMCR are much lower than those of photolabile 4-tert-butyl-4'-methoxydibenzoylmethane. The energy levels of the S1 and T1 states of EHMCR are lower than those of octyl methoxycinnamate. The weak phosphorescence and EPR B(min) signals were observed and the lifetime was estimated to be 93 ms. These facts suggest that the significant proportion of the S1 molecules undergoes intersystem crossing to the T1 state, and the deactivation process from the T1 state is predominantly radiationless. The photostability of EHMCR arises from the (3)ππ* character in the T1 state. The zero-field splitting (ZFS) parameter in the T1 state is D** = 0.113 cm(-1).

  20. Low-Lying ππ* States of Heteroaromatic Molecules: A Challenge for Excited State Methods.

    PubMed

    Prlj, Antonio; Sandoval-Salinas, María Eugenia; Casanova, David; Jacquemin, Denis; Corminboeuf, Clémence

    2016-06-14

    The description of low-lying ππ* states of linear acenes by standard electronic structure methods is known to be challenging. Here, we broaden the framework of this problem by considering a set of fused heteroaromatic rings and demonstrate that standard electronic structure methods do not provide a balanced description of the two (typically) lowest singlet state (La and Lb) excitations. While the Lb state is highly sensitive to correlation effects, La suffers from the same drawbacks as charge transfer excitations. We show that the comparison between CIS/CIS(D) can serve as a diagnostic for detecting the two problematic excited states. Standard TD-DFT and even its spin-flip variant lead to inaccurate excitation energies and interstate gaps, with only a double hybrid functional performing somewhat better. The complication inherent to a balanced description of these states is so important that even CC2 and ADC(2) do not necessarily match the ADC(3) reference.

  1. The excited state antiaromatic benzene ring: a molecular Mr Hyde?

    PubMed

    Papadakis, Raffaello; Ottosson, Henrik

    2015-09-21

    The antiaromatic character of benzene in its first ππ* excited triplet state (T1) was deduced more than four decades ago by Baird using perturbation molecular orbital (PMO) theory [J. Am. Chem. Soc. 1972, 94, 4941], and since then it has been confirmed through a range of high-level quantum chemical calculations. With focus on benzene we now first review theoretical and computational studies that examine and confirm Baird's rule on reversal in the electron count for aromaticity and antiaromaticity of annulenes in their lowest triplet states as compared to Hückel's rule for the ground state (S0). We also note that the rule according to quantum chemical calculations can be extended to the lowest singlet excited state (S1) of benzene. Importantly, Baird, as well as Aihara [Bull. Chem. Soc. Jpn. 1978, 51, 1788], early put forth that the destabilization and excited state antiaromaticity of the benzene ring should be reflected in its photochemical reactivity, yet, today these conclusions are often overlooked. Thus, in the second part of the article we review photochemical reactions of a series of benzene derivatives that to various extents should stem from the excited state antiaromatic character of the benzene ring. We argue that benzene can be viewed as a molecular "Dr Jekyll and Mr Hyde" with its largely unknown excited state antiaromaticity representing its "Mr Hyde" character. The recognition of the "Jekyll and Hyde" split personality feature of the benzene ring can likely be useful in a range of different areas.

  2. The quantum coherent mechanism for singlet fission: experiment and theory.

    PubMed

    Chan, Wai-Lun; Berkelbach, Timothy C; Provorse, Makenzie R; Monahan, Nicholas R; Tritsch, John R; Hybertsen, Mark S; Reichman, David R; Gao, Jiali; Zhu, X-Y

    2013-06-18

    The absorption of one photon by a semiconductor material usually creates one electron-hole pair. However, this general rule breaks down in a few organic semiconductors, such as pentacene and tetracene, where one photon absorption may result in two electron-hole pairs. This process, where a singlet exciton transforms to two triplet excitons, can have quantum yields as high as 200%. Singlet fission may be useful to solar cell technologies to increase the power conversion efficiency beyond the so-called Shockley-Queisser limit. Through time-resolved two-photon photoemission (TR-2PPE) spectroscopy in crystalline pentacene and tetracene, our lab has recently provided the first spectroscopic signatures in singlet fission of a critical intermediate known as the multiexciton state (also called a correlated triplet pair). More importantly, we found that population of the multiexciton state rises at the same time as the singlet state on the ultrafast time scale upon photoexcitation. This observation does not fit with the traditional view of singlet fission involving the incoherent conversion of a singlet to a triplet pair. However, it provides an experimental foundation for a quantum coherent mechanism in which the electronic coupling creates a quantum superposition of the singlet and the multiexciton state immediately after optical excitation. In this Account, we review key experimental findings from TR-2PPE experiments and present a theoretical analysis of the quantum coherent mechanism based on electronic structural and density matrix calculations for crystalline tetracene lattices. Using multistate density functional theory, we find that the direct electronic coupling between singlet and multiexciton states is too weak to explain the experimental observation. Instead, indirect coupling via charge transfer intermediate states is two orders of magnitude stronger, and dominates the dynamics for ultrafast multiexciton formation. Density matrix calculation for the crystalline

  3. Singlet Oxygen Reactions with Flavonoids. A Theoretical – Experimental Study

    PubMed Central

    Morales, Javier; Günther, Germán; Zanocco, Antonio L.; Lemp, Else

    2012-01-01

    Detection of singlet oxygen emission, λmax = 1270 nm, following laser excitation and steady-state methods were employed to measure the total reaction rate constant, kT, and the reactive reaction rate constant, kr, for the reaction between singlet oxygen and several flavonoids. Values of kT determined in deuterated water, ranging from 2.4×107 M−1s−1 to 13.4×107 M−1s−1, for rutin and morin, respectively, and the values measured for kr, ranging from 2.8×105 M−1s−1 to 65.7×105 M−1s−1 for kaempferol and morin, respectively, being epicatechin and catechin chemically unreactive. These results indicate that all the studied flavonoids are good quenchers of singlet oxygen and could be valuable antioxidants in systems under oxidative stress, in particular if a flavonoid-rich diet was previously consumed. Analysis of the dependence of rate constant values with molecular structure in terms of global descriptors and condensed Fukui functions, resulting from electronic structure calculations, supports the formation of a charge transfer exciplex in all studied reactions. The fraction of exciplex giving reaction products evolves through a hydroperoxide and/or an endoperoxide intermediate produced by singlet oxygen attack on the double bond of the ring C of the flavonoid. PMID:22802966

  4. Collective aspects of singlet fission in molecular crystals

    SciTech Connect

    Teichen, Paul E.; Eaves, Joel D.

    2015-07-28

    We present a model to describe collective features of singlet fission in molecular crystals and analyze it using many-body theory. The model we develop allows excitonic states to delocalize over several chromophores which is consistent with the character of the excited states in many molecular crystals, such as the acenes, where singlet fission occurs. As singlet states become more delocalized and triplet states more localized, the rate of singlet fission increases. We also determine the conditions under which the two triplets resulting from fission are correlated. Using the Bethe Ansatz and an entanglement measure for indistinguishable bipartite systems, we calculate the triplet-triplet entanglement as a function of the biexciton interaction strength. The biexciton interaction can produce bound biexciton states and provides a source of entanglement between the two triplets even when the triplets are spatially well separated. Significant entanglement between the triplet pair occurs well below the threshold for bound pair formation. Our results paint a dynamical picture that helps to explain why fission has been observed to be more efficient in molecular crystals than in their covalent dimer analogues and have consequences for photovoltaic efficiency models that assume that the two triplets can be extracted independently.

  5. Excited-State Dynamics in Folic Acid and 6-CARBOXYPTERIN upon Uva Excitation

    NASA Astrophysics Data System (ADS)

    Huang, Huijuan; Vogt, R. Aaron; Crespo-Hernandez, Carlos E.

    2013-06-01

    The excited-state dynamics of folic acid (FA) and 6-carboxypterin (6CP) are poorly understood and work is needed to uncover the relaxation pathways that ultimately lead to their oxidative damage of DNA. In our approach, broad-band transient absorption spectroscopy was used to monitor the evolution of the excited states in FA and 6CP in basic aqueous solution upon excitation at 350 nm. In addition, quantum-chemical calculations were performed to assist in the interpretation of the experimental results and in the postulation of kinetic mechanisms. The combined experimental and computational results support a kinetic model where excitation of FA results in ultrafast charge separation (τ = 0.6 ps), which decays back to the ground state primarily by charge recombination with a lifetime of 2.2 ps. A small fraction of the charge transfer state undergoes intersystem crossing to populate the lowest-energy triplet state with a lifetime of 200 ps. On the other hand, a large fraction of the initially excited singlet state in 6CP decays by fluorescence emission with a lifetime of 100 ps, while intersystem crossing to the triplet state occurs with a lifetime of 4.4 ns. The potential implications of these results to the oxidative damage of DNA by FA and 6CP will be discussed. Funding from the National Science Foundation is gratefully acknowledged (CHE-1255084).

  6. Short-range photoassociation from the inner wall of the lowest triplet potential of 85Rb2

    NASA Astrophysics Data System (ADS)

    Carollo, R. A.; Carini, J. L.; Eyler, E. E.; Gould, P. L.; Stwalley, W. C.

    2016-10-01

    Ultracold photoassociation is typically performed at large internuclear separations, where the scattering wavefunction amplitude is large and Franck-Condon overlap is maximized. Recently, work by this group and others on alkali-metal diatomics has shown that photoassociation can efficiently form molecules at short internuclear distance in both homonuclear and heteronuclear dimers. We propose that this short-range photoassociation is due to excitation near the wavefunction amplitude maximum at the inner wall of the lowest triplet potential. We show that Franck-Condon factors (FCFs) from the highest-energy bound state can almost precisely reproduce FCFs from a low-energy scattering state, and that both calculations match experimental data from the near-zero positive-energy scattering state with reasonable accuracy. We also show that the corresponding photoassociation from the inner wall of the ground-state singlet potential at much shorter internuclear distance is weaker and undetectable under our current experimental conditions. We predict from FCFs that the strongest of these weaker short-range photoassociation transitions are one order of magnitude below our current sensitivity.

  7. Ultrafast Singlet Fission in a Push-Pull Low-Bandgap Polymer Film.

    PubMed

    Kasai, Yukitomo; Tamai, Yasunari; Ohkita, Hideo; Benten, Hiroaki; Ito, Shinzaburo

    2015-12-30

    Excited-state dynamics in poly[4,6-(dodecyl-thieno[3,4-b]thiophene-2-carboxylate)-alt-2,6-(4,8-dioctoxylbenzo[1,2-b:4,5-b]dithiophene)] (PTB1) was studied by transient absorption spectroscopy. Upon photoexcitation at 400 nm, an additional transient species is promptly generated along with singlet excitons and survives up to nanoseconds, while singlet excitons disappear completely. In order to assign the long-lived species, we measured transient absorption spectra over the wide spectral range from 900 to 2500 nm. As a result, we found that the long-lived species is ascribed not to polarons but to triplet excitons, which is formed through the ultrafast singlet fission (SF). We discuss the ultrafast SF mechanism in push-pull low-bandgap polymer PTB1 films on the basis of the excited-state dynamics under various excitation wavelengths and intensities.

  8. Merging Active-Space and Renormalized Coupled-Cluster Methods via the CC(P;Q) Formalism, with Benchmark Calculations for Singlet-Triplet Gaps in Biradical Systems.

    PubMed

    Shen, Jun; Piecuch, Piotr

    2012-12-11

    We have recently developed a flexible form of the method of moments of coupled-cluster (CC) equations and the CC(P;Q) hierarchy, which enable one to correct the CC and equation-of-motion CC energies obtained with unconventional truncations in the cluster and excitation operators [Shen, J.; Piecuch, P. Chem. Phys.2012, 401, 180; J. Chem. Phys.2012, 136, 144104]. One of the CC(P;Q) methods is a novel hybrid scheme, abbreviated as CC(t;3), in which the results of CC calculations with singles, doubles, and active-space triples, termed CCSDt, are corrected for the triple excitations missing in CCSDt using the expressions that are reminiscent of the completely renormalized (CR) CC approach known as CR-CC(2,3). We demonstrate that the total electronic energies of the lowest singlet and triplet states, and the singlet-triplet gaps in biradical systems, including methylene, (HFH)(-), and trimethylenemethane, resulting from the CC(t;3) calculations agree with those obtained with the full CC approach with singles, doubles, and triples to within fractions of a millihartree, improving the results of the noniterative triples CCSD(T), CCSD(2)T, and CR-CC(2,3) and hybrid CCSD(T)-h calculations, and competing with the best multireference CC data.

  9. Bergman kernel from the lowest Landau level

    NASA Astrophysics Data System (ADS)

    Klevtsov, S.

    2009-07-01

    We use path integral representation for the density matrix, projected on the lowest Landau level, to generalize the expansion of the Bergman kernel on Kähler manifold to the case of arbitrary magnetic field.

  10. Entanglement routers using macroscopic singlets.

    PubMed

    Bayat, Abolfazl; Bose, Sougato; Sodano, Pasquale

    2010-10-29

    We propose a mechanism where high entanglement between very distant boundary spins is generated by suddenly connecting two long Kondo spin chains. We show that this procedure provides an efficient way to route entanglement between multiple distant sites. We observe that the key features of the entanglement dynamics of the composite spin chain are well described by a simple model of two singlets, each formed by two spins. The proposed routing mechanism is a footprint of the emergence of a Kondo cloud in a Kondo system and can be engineered and observed in varied physical settings.

  11. Standard Model with a real singlet scalar and inflation

    SciTech Connect

    Enqvist, Kari; Nurmi, Sami; Tenkanen, Tommi; Tuominen, Kimmo E-mail: sami.nurmi@helsinki.fi E-mail: kimmo.i.tuominen@helsinki.fi

    2014-08-01

    We study the post-inflationary dynamics of the Standard Model Higgs and a real singlet scalar s, coupled together through a renormalizable coupling λ{sub sh}h{sup 2}s{sup 2}, in a Z{sub 2} symmetric model that may explain the observed dark matter abundance and/or the origin of baryon asymmetry. The initial values for the Higgs and s condensates are given by inflationary fluctuations, and we follow their dissipation and relaxation to the low energy vacua. We find that both the lowest order perturbative and the non-perturbative decays are blocked by thermal effects and large background fields and that the condensates decay by two-loop thermal effects. Assuming instant reheating at T=10{sup 16} GeV, the characteristic temperature for the Higgs condensate thermalization is found to be T{sub h} ∼ 10{sup 14} GeV, whereas s thermalizes typically around T{sub s} ∼ 10{sup 6} GeV. By that time, the amplitude of the singlet is driven very close to the vacuum value by the expansion of the universe, unless the portal coupling takes a value λ{sub sh}∼< 10{sup -7} and the singlet s never thermalizes. With these values of the coupling, it is possible to slowly produce a sizeable fraction of the observed dark matter abundance via singlet condensate fragmentation and thermal Higgs scattering. Physics also below the electroweak scale can therefore be affected by the non-vacuum initial conditions generated by inflation.

  12. Flavor-singlet baryons in the graded symmetry approach to partially quenched QCD

    NASA Astrophysics Data System (ADS)

    Hall, Jonathan M. M.; Leinweber, Derek B.

    2016-11-01

    Progress in the calculation of the electromagnetic properties of baryon excitations in lattice QCD presents new challenges in the determination of sea-quark loop contributions to matrix elements. A reliable estimation of the sea-quark loop contributions represents a pressing issue in the accurate comparison of lattice QCD results with experiment. In this article, an extension of the graded symmetry approach to partially quenched QCD is presented, which builds on previous theory by explicitly including flavor-singlet baryons in its construction. The formalism takes into account the interactions among both octet and singlet baryons, octet mesons, and their ghost counterparts; the latter enables the isolation of the quark-flow disconnected sea-quark loop contributions. The introduction of flavor-singlet states enables systematic studies of the internal structure of Λ -baryon excitations in lattice QCD, including the topical Λ (1405 ).

  13. Protolytic dissociation of cyanophenols in ground and excited states in alcohol and water solutions

    NASA Astrophysics Data System (ADS)

    Szczepanik, Beata; Styrcz, Stanisław

    2011-08-01

    The effect of cyano substituents on acidity in ground and excited states of mono- and dicyanophenols was investigated. The equilibrium dissociation constants of 3,4-dicyanophenol in ground and lowest excited states in water solution and the change of these constants in the excited state during the transfer to the ground state for o-, m-, p-cyanophenol and 3,4-dicyanophenol in alcohol and water solutions were determined. It was shown that the cyano substitution increases the acidity of ortho-, meta- and dicyano-derivative in ground state in comparison to the phenol, which makes the anions of these derivatives appear in solutions from methanol to 1-butanol. In the excited state the acidity of investigated compounds changes significantly in comparison to the ground state. 3,4-Dicyanophenol is the strongest acid in the lowest excited singlet state, while p-cyanophenol is the weakest one in both alcohol and water solutions. The distribution of the electronic charge and dipole moments of all investigated cyanophenols in ground and excited states were determined on the basis of ab initio calculations using the GAMESS program.

  14. Sigma meson and lowest possible glueball candidate in an extended linear {sigma} model

    SciTech Connect

    Mukherjee, Tamal K.; Huang Mei; Yan Qishu

    2012-10-23

    We formulate an extended linear {sigma} model of a quarkonia nonet and a tetraquark nonet as well as a complex iso-singlet (glueball) field to study the low-lying scalar meson. Chiral symmetry and U{sub A}(1) symmetry and their breaking play important role to shape the scalar meson spectrum in our work. Based on our study we will comment on what may be the mass of the lowest possible scalar and pseudoscalar glueball states. We will also discuss on what may be the nature of the sigma or f{sub 0}(600) meson.

  15. [Photosensitized luminescence of singlet oxygen in aqueous solutions].

    PubMed

    Krasnovskiĭ, A A

    1979-01-01

    The photoluminescence of singlet oxygen has been observed in air saturated solutions of riboflavin in D2O and mixtures of D2O and H2O. The excitation spectrum coincides with the absorption spectrum of the pigment, the emission maximum lies at 1275 nm. In D2O the quantum yield is approximately 1,2 x 10(-7). H2O quenches the luminescence. Analysis of quenching has shown that the quantum yield in H2O is less than in D2O by the factor of 20.

  16. Lowest Landau level diamagnetic fluctuations in niobium

    NASA Astrophysics Data System (ADS)

    Salem-Sugui, Said; Friesen, M.; Alvarenga, A. D.; Schilling, Osvaldo F.; Gandra, F. G.; Doria, M. M.

    2004-08-01

    We have performed a magnetic study of a bulk metallic sample of Nb with critical temperature Tc = 8.5 K. Magnetization measurements taken for magnetic fields greater than 1 kOe show a superconducting transition that becomes broader as the field is increased. The data are well described by lowest Landau level (LLL) fluctuation theory. A scaling analysis yields values for the superconducting transition temperature under field Tc( H) which are consistent with Hc2( T).

  17. First-Principles Quantum Dynamics of Singlet Fission: Coherent versus Thermally Activated Mechanisms Governed by Molecular π Stacking.

    PubMed

    Tamura, Hiroyuki; Huix-Rotllant, Miquel; Burghardt, Irene; Olivier, Yoann; Beljonne, David

    2015-09-04

    Singlet excitons in π-stacked molecular crystals can split into two triplet excitons in a process called singlet fission that opens a route to carrier multiplication in photovoltaics. To resolve controversies about the mechanism of singlet fission, we have developed a first principles nonadiabatic quantum dynamical model that reveals the critical role of molecular stacking symmetry and provides a unified picture of coherent versus thermally activated singlet fission mechanisms in different acenes. The slip-stacked equilibrium packing structure of pentacene derivatives is found to enhance ultrafast singlet fission mediated by a coherent superexchange mechanism via higher-lying charge transfer states. By contrast, the electronic couplings for singlet fission strictly vanish at the C(2h) symmetric equilibrium π stacking of rubrene. In this case, singlet fission is driven by excitations of symmetry-breaking intermolecular vibrations, rationalizing the experimentally observed temperature dependence. Design rules for optimal singlet fission materials therefore need to account for the interplay of molecular π-stacking symmetry and phonon-induced coherent or thermally activated mechanisms.

  18. First-Principles Quantum Dynamics of Singlet Fission: Coherent versus Thermally Activated Mechanisms Governed by Molecular π Stacking

    NASA Astrophysics Data System (ADS)

    Tamura, Hiroyuki; Huix-Rotllant, Miquel; Burghardt, Irene; Olivier, Yoann; Beljonne, David

    2015-09-01

    Singlet excitons in π -stacked molecular crystals can split into two triplet excitons in a process called singlet fission that opens a route to carrier multiplication in photovoltaics. To resolve controversies about the mechanism of singlet fission, we have developed a first principles nonadiabatic quantum dynamical model that reveals the critical role of molecular stacking symmetry and provides a unified picture of coherent versus thermally activated singlet fission mechanisms in different acenes. The slip-stacked equilibrium packing structure of pentacene derivatives is found to enhance ultrafast singlet fission mediated by a coherent superexchange mechanism via higher-lying charge transfer states. By contrast, the electronic couplings for singlet fission strictly vanish at the C2 h symmetric equilibrium π stacking of rubrene. In this case, singlet fission is driven by excitations of symmetry-breaking intermolecular vibrations, rationalizing the experimentally observed temperature dependence. Design rules for optimal singlet fission materials therefore need to account for the interplay of molecular π -stacking symmetry and phonon-induced coherent or thermally activated mechanisms.

  19. Diphotons from electroweak triplet-singlet mixing

    DOE PAGES

    Howe, Kiel; Knapen, Simon; Robinson, Dean J.

    2016-08-23

    The neutral component of a real pseudoscalar electroweak (EW) triplet can produce a diphoton excess at 750 GeV, if it is somewhat mixed with an EW singlet pseudoscalar. This triplet-singlet mixing allows for greater freedom in the diboson branching ratios than the singlet-only case, but it is still possible to probe the parameter space extensively with 300 fb-1. The charged component of the triplet is pair produced at the LHC, which results in a striking signal in the form of a pair of Wγ resonances with an irreducible rate of 0.27 fb. Other signatures include multiboson final states from cascade decays ofmore » the triplet-singlet neutral states. In conclusion, a large class of composite models feature both EW singlet and triplet pseudo-Nambu-Goldstone bosons in their spectrum, with the diboson couplings generated by axial anomalies.« less

  20. Diphotons from electroweak triplet-singlet mixing

    SciTech Connect

    Howe, Kiel; Knapen, Simon; Robinson, Dean J.

    2016-08-23

    The neutral component of a real pseudoscalar electroweak (EW) triplet can produce a diphoton excess at 750 GeV, if it is somewhat mixed with an EW singlet pseudoscalar. This triplet-singlet mixing allows for greater freedom in the diboson branching ratios than the singlet-only case, but it is still possible to probe the parameter space extensively with 300 fb-1. The charged component of the triplet is pair produced at the LHC, which results in a striking signal in the form of a pair of Wγ resonances with an irreducible rate of 0.27 fb. Other signatures include multiboson final states from cascade decays of the triplet-singlet neutral states. In conclusion, a large class of composite models feature both EW singlet and triplet pseudo-Nambu-Goldstone bosons in their spectrum, with the diboson couplings generated by axial anomalies.

  1. Exposure of vitamins to UVB and UVA radiation generates singlet oxygen.

    PubMed

    Knak, Alena; Regensburger, Johannes; Maisch, Tim; Bäumler, Wolfgang

    2014-05-01

    Deleterious effects of UV radiation in tissue are usually attributed to different mechanisms. Absorption of UVB radiation in cell constituents like DNA causes photochemical reactions. Absorption of UVA radiation in endogenous photosensitizers like vitamins generates singlet oxygen via photosensitized reactions. We investigated two further mechanisms that might be involved in UV mediated cell tissue damage. Firstly, UVB radiation and vitamins also generate singlet oxygen. Secondly, UVB radiation may change the chemical structure of vitamins that may change the role of such endogenous photosensitizers in UVA mediated mechanisms. Vitamins were irradiated in solution using monochromatic UVB (308 nm) or UVA (330, 355, or 370 nm) radiation. Singlet oxygen was directly detected and quantified by its luminescence at 1270 nm. All investigated molecules generated singlet oxygen with a quantum yield ranging from 0.007 (vitamin D3) to 0.64 (nicotinamide) independent of the excitation wavelength. Moreover, pre-irradiation of vitamins with UVB changed their absorption in the UVB and UVA spectral range. Subsequently, molecules such as vitamin E and vitamin K1, which normally exhibit no singlet oxygen generation in the UVA, now produce singlet oxygen when exposed to UVA at 355 nm. This interplay of different UV sources is inevitable when applying serial or parallel irradiation with UVA and UVB in experiments in vitro. These results should be of particular importance for parallel irradiation with UVA and UVB in vivo, e.g. when exposing the skin to solar radiation.

  2. Towards building artificial light harvesting complexes: enhanced singlet-singlet energy transfer between donor and acceptor pairs bound to albumins.

    PubMed

    Kumar, Challa V; Duff, Michael R

    2008-12-01

    Specific donor and acceptor pairs have been assembled in bovine serum albumin (BSA), at neutral pH and room temperature, and these dye-protein complexes indicated efficient donor to acceptor singlet-singlet energy transfer. For example, pyrene-1-butyric acid served as the donor and Coumarin 540A served as the acceptor. Both the donor and the acceptor bind to BSA with affinity constants in excess of 2x10(5) M(-1), as measured in absorption and circular dichroism (CD) spectral titrations. Simultaneous binding of both the donor and the acceptor chromophores was supported by CD spectra and one chromophore did not displace the other from the protein host, even when limited concentrations of the host were used. For example, a 1:1:1 complex between the donor, acceptor and the host can be readily formed, and spectral data clearly show that the binding sites are mutually exclusive. The ternary complexes (two different ligands bound to the same protein molecule) provided opportunities to examine singlet-singlet energy transfer between the protein-bound chromophores. Donor emission was quenched by the addition of the acceptor, in the presence of limited amounts of BSA, while no energy transfer was observed in the absence of the protein host, under the same conditions. The excitation spectra of the donor-acceptor-host complexes clearly show the sensitization of acceptor emission by the donor. Protein denaturation, as induced by the addition of urea or increasing the temperature to 360 K, inhibited energy transfer, which indicate that protein structure plays an important role. Sensitization also proceeded at low temperature (77 K) and diffusion of the donor or the acceptor is not required for energy transfer. Stern-Volmer quenching plots show that the quenching constant is (3.1+/-0.2)x10(4) M(-1), at low acceptor concentrations (<35 microM). Other albumins such as human and porcine proteins also served as good hosts for the above experiments. For the first time, non

  3. Singlet-Doublet Dark Matter

    SciTech Connect

    Cohen, Timothy; Kearney, John; Pierce, Aaron; Tucker-Smith, David; /Williams Coll.

    2012-02-15

    In light of recent data from direct detection experiments and the Large Hadron Collider, we explore models of dark matter in which an SU(2){sub L} doublet is mixed with a Standard Model singlet. We impose a thermal history. If the new particles are fermions, this model is already constrained due to null results from XENON100. We comment on remaining regions of parameter space and assess prospects for future discovery. We do the same for the model where the new particles are scalars, which at present is less constrained. Much of the remaining parameter space for both models will be probed by the next generation of direct detection experiments. For the fermion model, DeepCore may also play an important role.

  4. Photo-assisted intersystem crossing: The predominant triplet formation mechanism in some isolated polycyclic aromatic molecules excited with pulsed lasers

    NASA Astrophysics Data System (ADS)

    Johnson, Philip M.; Sears, Trevor J.

    2015-07-01

    Naphthalene, anthracene, and phenanthrene are shown to have very long-lived triplet lifetimes when the isolated molecules are excited with nanosecond pulsed lasers resonant with the lowest singlet state. For naphthalene, triplet state populations are created only during the laser pulse, excluding the possibility of normal intersystem crossing at the one photon level, and all molecules have triplet lifetimes greater than hundreds of microseconds, similar to the behavior previously reported for phenylacetylene. Although containing 7-12 thousand cm-1 of vibrational energy, the triplet molecules have ionization thresholds appropriate to vibrationless T1 states. The laser power dependences (slopes of log-log power plots) of the excited singlet and triplet populations are about 0.7 for naphthalene and about 0.5 for anthracene. Kinetic modeling of the power dependences successfully reproduces the experimental results and suggests that the triplet formation mechanism involves an enhanced spin orbit coupling caused by sigma character in states at the 2-photon level. Symmetry adapted cluster-configuration interaction calculations produced excited state absorption spectra to provide guidance for estimating kinetic rates and the sigma character present in higher electronic states. It is concluded that higher excited state populations are significant when larger molecules are excited with pulsed lasers and need to be taken into account whenever discussing the molecular photodynamics.

  5. Photo-assisted intersystem crossing: The predominant triplet formation mechanism in some isolated polycyclic aromatic molecules excited with pulsed lasers.

    PubMed

    Johnson, Philip M; Sears, Trevor J

    2015-07-28

    Naphthalene, anthracene, and phenanthrene are shown to have very long-lived triplet lifetimes when the isolated molecules are excited with nanosecond pulsed lasers resonant with the lowest singlet state. For naphthalene, triplet state populations are created only during the laser pulse, excluding the possibility of normal intersystem crossing at the one photon level, and all molecules have triplet lifetimes greater than hundreds of microseconds, similar to the behavior previously reported for phenylacetylene. Although containing 7-12 thousand cm(-1) of vibrational energy, the triplet molecules have ionization thresholds appropriate to vibrationless T1 states. The laser power dependences (slopes of log-log power plots) of the excited singlet and triplet populations are about 0.7 for naphthalene and about 0.5 for anthracene. Kinetic modeling of the power dependences successfully reproduces the experimental results and suggests that the triplet formation mechanism involves an enhanced spin orbit coupling caused by sigma character in states at the 2-photon level. Symmetry adapted cluster-configuration interaction calculations produced excited state absorption spectra to provide guidance for estimating kinetic rates and the sigma character present in higher electronic states. It is concluded that higher excited state populations are significant when larger molecules are excited with pulsed lasers and need to be taken into account whenever discussing the molecular photodynamics.

  6. Photo-assisted intersystem crossing: The predominant triplet formation mechanism in some isolated polycyclic aromatic molecules excited with pulsed lasers

    SciTech Connect

    Johnson, Philip M.; Sears, Trevor J.

    2015-07-28

    Naphthalene, anthracene, and phenanthrene are shown to have very long-lived triplet lifetimes when the isolated molecules are excited with nanosecond pulsed lasers resonant with the lowest singlet state. For naphthalene, triplet state populations are created only during the laser pulse, excluding the possibility of normal intersystem crossing at the one photon level, and all molecules have triplet lifetimes greater than hundreds of microseconds, similar to the behavior previously reported for phenylacetylene. Although containing 7–12 thousand cm⁻¹ of vibrational energy, the triplet molecules have ionization thresholds appropriate to vibrationless T₁ states. The laser power dependences (slopes of log-log power plots) of the excited singlet and triplet populations are about 0.7 for naphthalene and about 0.5 for anthracene. Kinetic modeling of the power dependences successfully reproduces the experimental results and suggests that the triplet formation mechanism involves an enhanced spin orbit coupling caused by sigma character in states at the 2-photon level. Symmetry Adapted Cluster-Configuration Interaction calculations produced excited state absorption spectra to provide guidance for estimating kinetic rates and the sigma character present in higher electronic states. It is concluded that higher excited state populations are significant when larger molecules are excited with pulsed lasers and need to be taken into account whenever discussing the molecular photodynamics.

  7. Photo-assisted intersystem crossing: The predominant triplet formation mechanism in some isolated polycyclic aromatic molecules excited with pulsed lasers

    DOE PAGES

    Johnson, Philip M.; Sears, Trevor J.

    2015-07-28

    Naphthalene, anthracene, and phenanthrene are shown to have very long-lived triplet lifetimes when the isolated molecules are excited with nanosecond pulsed lasers resonant with the lowest singlet state. For naphthalene, triplet state populations are created only during the laser pulse, excluding the possibility of normal intersystem crossing at the one photon level, and all molecules have triplet lifetimes greater than hundreds of microseconds, similar to the behavior previously reported for phenylacetylene. Although containing 7–12 thousand cm⁻¹ of vibrational energy, the triplet molecules have ionization thresholds appropriate to vibrationless T₁ states. The laser power dependences (slopes of log-log power plots) ofmore » the excited singlet and triplet populations are about 0.7 for naphthalene and about 0.5 for anthracene. Kinetic modeling of the power dependences successfully reproduces the experimental results and suggests that the triplet formation mechanism involves an enhanced spin orbit coupling caused by sigma character in states at the 2-photon level. Symmetry Adapted Cluster-Configuration Interaction calculations produced excited state absorption spectra to provide guidance for estimating kinetic rates and the sigma character present in higher electronic states. It is concluded that higher excited state populations are significant when larger molecules are excited with pulsed lasers and need to be taken into account whenever discussing the molecular photodynamics.« less

  8. Photo-assisted intersystem crossing: The predominant triplet formation mechanism in some isolated polycyclic aromatic molecules excited with pulsed lasers

    SciTech Connect

    Johnson, Philip M.; Sears, Trevor J.

    2015-07-28

    Naphthalene, anthracene, and phenanthrene are shown to have very long-lived triplet lifetimes when the isolated molecules are excited with nanosecond pulsed lasers resonant with the lowest singlet state. For naphthalene, triplet state populations are created only during the laser pulse, excluding the possibility of normal intersystem crossing at the one photon level, and all molecules have triplet lifetimes greater than hundreds of microseconds, similar to the behavior previously reported for phenylacetylene. Although containing 7–12 thousand cm{sup −1} of vibrational energy, the triplet molecules have ionization thresholds appropriate to vibrationless T{sub 1} states. The laser power dependences (slopes of log-log power plots) of the excited singlet and triplet populations are about 0.7 for naphthalene and about 0.5 for anthracene. Kinetic modeling of the power dependences successfully reproduces the experimental results and suggests that the triplet formation mechanism involves an enhanced spin orbit coupling caused by sigma character in states at the 2-photon level. Symmetry adapted cluster-configuration interaction calculations produced excited state absorption spectra to provide guidance for estimating kinetic rates and the sigma character present in higher electronic states. It is concluded that higher excited state populations are significant when larger molecules are excited with pulsed lasers and need to be taken into account whenever discussing the molecular photodynamics.

  9. Singlet oxygen induced advanced glycation end-product photobleaching of in vivo human fingertip autofluorescence

    NASA Astrophysics Data System (ADS)

    Deng, Bin; Simental, Anabel; Lutz, Patrick; Shaheen, George; Chaiken, Joseph

    2012-01-01

    Nonenzymatic glycation and oxidation of ubiquitous proteins in vivo leads to irreversible formation of advanced glycation end products (AGEs). Due to their relatively long half life and low clearance rate AGEs tend to accumulate within static tissues and the circulatory system. Spectra obtained using 830 nm near-infrared (NIR) excitation suggest that the so-called "autofluorescence" from all tissues has a finite number of sources but the fact that senior and diabetic subjects produce more than other members of the general population suggests that a significant portion of the total autofluorescence from all sources originates from AGEs. Using pentosidine generated in a reaction mixture as described by Monnier as representative, an in vitro study unveiled very similar fluorescence and photobleaching pattern as observed for autofluorescence in vivo. A series of oxygen, air and argon purging experiments on the pentosidine-generating reaction mixture suggests that pentosidine is a singlet oxygen sensitizer and secondary reactions between the pentosidine itself and/or other fluorophores and the photosensitized singlet oxygen explain the observed photobleaching. Ab initio Gaussian calculations on pentosidine reveal the existence of low-lying triplet excited states required for the sensitization of ground state oxygen. A commercially available product known as singlet oxygen sensor green (SOSG) that specifically serves as a singlet oxygen detection reagent confirms the generation of singlet oxygen from NIR irradiated pentosidine trimixture. This study provides one definite chemical mechanism for understanding in vivo human skin autofluorescence and photobleaching.

  10. Tristability arising from singlet-triplet and quartet spin states for dimeric Co(II)salen.

    PubMed

    Min, Kil Sik; Arthur, Jordan; Shum, William W; Bharathy, Muktha; zur Loye, Hans-Conrad; Miller, Joel S

    2009-06-01

    The magnetic behavior of N,N'-ethylenebis(salicylideniminato)cobalt(II) (Co(II)Salen, 1) has been reinvestigated and reveals spin-crossover behavior above 295 K. It has a singlet ground state and a triplet excited state at 30 K (21 cm(-1); 60 cal/mol) above the ground state, and at a higher temperature spin crossover to the quartet, a second excited state occurs.

  11. The lowest ionization potentials of Al2

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Barnes, Leslie A.; Taylor, Peter R.

    1988-01-01

    Potential curves for the lowest two electronic states (X 2 sigma g + and A 2 pi u) of Al2(+) were computed using complete active space SCF/multireference CI wave functions and large Gaussian basis sets. The lowest observable vertical ionization potential (to Al2(+) X 2 sigma g +) of the Al2 X 3 pi u ground state is calculated to occur around 6.1 eV, in excellent agreement with the experimental range of 6.0 to 6.42 eV obtained in recent cluster ionization studies by Cox and co-workers. The second vertical ionization potential (to Al2(+) A 2 pi u) occurs near 6.4 eV, also within the experimental range. The adiabatic IP of 5.90 eV is in good agreement with the value of 5.8 to 6.1 eV deduced by Hanley and co-workers from the difference in thresholds between collision induced dissociation processes of Al3(+). The computed IP values are somewhat larger than those deduced from branching ratios in cluster fragmentation experiments by Jarrold and co-workers. The observation of an ionization threshold below 6.42 eV is shown to be incompatible with an Al2 ground electronic state assignment of 3 sigma g -, but the separation between the two lowest states of Al2 is so small that it is likely that both are populated in the experiments, so that this does not provide unambiguous support for the recent theoretical assignment of the ground state as 3 pi u.

  12. The lowest Landau level in QCD

    NASA Astrophysics Data System (ADS)

    Bruckmann, Falk; Endrőodi, Gergely; Giordano, Matteo; Katz, Sándor D.; Kovács, Tamás G.; Pittler, Ferenc; Wellnhofer, Jacob

    2017-03-01

    The thermodynamics of Quantum Chromodynamics (QCD) in external (electro-)magnetic fields shows some unexpected features like inverse magnetic catalysis, which have been revealed mainly through lattice studies. Many effective descriptions, on the other hand, use Landau levels or approximate the system by just the lowest Landau level (LLL). Analyzing lattice configurations we ask whether such a picture is justified. We find the LLL to be separated from the rest by a spectral gap in the two-dimensional Dirac operator and analyze the corresponding LLL signature in four dimensions. We determine to what extent the quark condensate is LLL dominated at strong magnetic fields.

  13. An experiment on Lowest Unique Integer Games

    NASA Astrophysics Data System (ADS)

    Yamada, Takashi; Hanaki, Nobuyuki

    2016-12-01

    We experimentally study Lowest Unique Integer Games (LUIGs) to determine if and how subjects self-organize into different behavioral classes. In a LUIG, N(≥ 3) players submit a positive integer up to M and the player choosing the smallest number not chosen by anyone else wins. LUIGs are simplified versions of real systems such as Lowest/Highest Unique Bid Auctions that have been attracting attention from scholars, yet experimental studies are scarce. Furthermore, LUIGs offer insights into choice patterns that can shed light on the alleviation of congestion problems. Here, we consider four LUIGs with N = { 3 , 4 } and M = { 3 , 4 } . We find that (a) choices made by more than 1/3 of subjects were not significantly different from what a symmetric mixed-strategy Nash equilibrium (MSE) predicts; however, (b) subjects who behaved significantly differently from what the MSE predicts won the game more frequently. What distinguishes subjects was their tendencies to change their choices following losses.

  14. Mechanism of singlet oxygen deactivation in an electric discharge oxygen - iodine laser

    NASA Astrophysics Data System (ADS)

    Azyazov, V. N.; Mikheyev, P. A.; Pershin, A. A.; Torbin, A. P.; Heaven, M. C.

    2014-12-01

    We have determined the influence of the reaction of molecular singlet oxygen with a vibrationally excited ozone molecule O2(a 1Δ) + O3(ν) → 2O2 + O on the removal rate of O2(a 1Δ) in an electric-discharge-driven oxygen - iodine laser. This reaction has been shown to be a major channel of O2(a 1Δ) loss at the output of an electric-discharge singlet oxygen generator. In addition, it can also contribute significantly to the loss of O2(a 1Δ) in the discharge region of the generator.

  15. Triplet excited states of cyclic disulfides and related compounds: electronic structures, geometries, energies, and decay.

    PubMed

    Ginagunta, Saroja; Bucher, Götz

    2011-02-03

    We have performed a computational study on the properties of a series of heterocycles bearing two adjacent heteroatoms, focusing on the structures and electronic properties of their first excited triplet states. If the heteroatoms are both heavy chalcogens (S, Se, or Te) or isoelectronic species, then the lowest excited triplet state usually has (π*, σ*) character. The triplet energies are fairly low (30-50 kcal mol(-1)). The (π*, σ*) triplet states are characterized by a significantly lengthened bond between the two heteroatoms. Thus, in 1,2-dithiolane (1b), the S-S bond length is calculated to be 2.088 Å in the singlet ground state and 2.568 Å in the first triplet excited state. The spin density is predicted to be localized almost exclusively on the sulfur atoms. Replacing one heavy chalcogen atom by an oxygen atom or an NR group results in a significant destabilization of the (π*, σ*) triplet excited state, which then no longer is lower in energy than an open-chain biradical. The size of the heterocyclic ring also contributes to the stability of the (π*, σ*) triplet state, with five-membered rings being more favorable than six-membered rings. Benzoannulation, finally, usually lowers the energy of the (π*, σ*) triplet excited states. If one of the heteroatoms is an oxygen or nitrogen atom, however, the corresponding lowest triplet states are better described as σ,π-biradicals.

  16. On the population of triplet excited states of 6-aza-2-thiothymine.

    PubMed

    Gobbo, João Paulo; Borin, Antonio Carlos

    2013-07-11

    The mechanisms of population of the lowest excited triplet states of 6-aza-2-thiothymine were investigated by means of CASPT2//CASSCF quantum-chemical calculations, with extensive atomic natural orbital basis sets of double-ζ quality (ANO-L-VDZP). Several key structures corresponding to equilibrium geometries, surface crossings, minimum energy paths, and linear interpolation in internal coordinates were used to explain the ability to sensitize molecular oxygen. After population of the S2(1)(ππ*) state, the system evolves to the state minimum. At this point, and along the minimum energy path of the (1)(ππ*) state, two main mechanisms related to the triplet and singlet manifolds can be visualized, leading the system to the lowest triplet state, T1(3)(ππ*).

  17. Vortex distribution in the lowest Landau level

    SciTech Connect

    Aftalion, Amandine; Blanc, Xavier; Nier, Francis

    2006-01-15

    We study the vortex distribution of the wave functions minimizing the Gross-Pitaevskii energy for a fast rotating condensate in the lowest Landau level (LLL): we prove that the minimizer cannot have a finite number of zeroes, thus the lattice is infinite, but not uniform. This uses the explicit expression of the projector onto the LLL. We also show that any slow varying envelope function can be approximated in the LLL by distorting the lattice. This is used in particular to approximate the inverted parabola and understand the role of 'invisible' vortices: the distortion of the lattice is very small in the Thomas-Fermi region but quite large outside, where the 'invisible' vortices lie.

  18. Stability of meoru (Vitis coignetiea) anthocyanins under photochemically produced singlet oxygen by riboflavin.

    PubMed

    Kim, Moonjung; Yoon, Suk Hoo; Jung, Munyhung; Choe, Eunok

    2010-09-30

    This study investigated the stability of meoru (wild vine grape) anthocyanins in the aqueous solution under singlet oxygen. Freeze-dried meoru (1 kg) contained 179.98 mg anthocyanins including delphinidin-3-glucoside, malvidin-3,5-diglucoside, cyanidin-3,5-diglucoside, malvidin-3-glucoside, and cyanidin-3-glucoside. Malvidin-3,5-diglucoside and cyanidin-3-glucoside were the meoru anthocyanins at the highest and the lowest concentration, respectively. Little decrease in total anthocyanins in the aqueous solution was observed in the dark with or without riboflavin, or with light without riboflavin. Singlet oxygen degraded the meoru anthocyanins in the aqueous solution, which suggested chemical quenching of singlet oxygen by the anthocyanins. Degradation of the meoru anthocyanins was structure-dependent; diglucoside anthocyanins were more stable than monoglucoside. And malvidin glucoside was more stable than delphinidin or cyanidin glucoside, which suggested the number of hydroxy groups in the structure was partly related with the anthocyanin stability under singlet oxygen. This is the first report on anthocyanins stability affected by its structure under singlet oxygen.

  19. Intramolecular Singlet Fission in Oligoacene Heterodimers

    SciTech Connect

    Sanders, Samuel N.; Kumarasamy, Elango; Pun, Andrew B.; Steigerwald, Michael L.; Sfeir, Matthew L.; Campos, Luis M.

    2016-02-02

    In this Communication we investigate singlet fission (SF) in heterodimers comprising a pentacene unit covalently bonded to another acene as we systematically vary the singlet and triplet pair energies. We find that these energies control the SF process, where dimers undergo SF provided that the resulting triplet pair energy is similar or lower in energy than the singlet state. In these systems the singlet energy is determined by the lower energy chromophore, and the rate of SF is found to be relatively independent of the driving force. However, triplet pair recombination in these heterodimers follows the energy gap law. The ability to tune the energies of these materials provides a key strategy to study and design new SF materials – an important process for third generation photovoltaics.

  20. Intramolecular Singlet Fission in Oligoacene Heterodimers

    DOE PAGES

    Sanders, Samuel N.; Kumarasamy, Elango; Pun, Andrew B.; ...

    2016-02-02

    In this Communication we investigate singlet fission (SF) in heterodimers comprising a pentacene unit covalently bonded to another acene as we systematically vary the singlet and triplet pair energies. We find that these energies control the SF process, where dimers undergo SF provided that the resulting triplet pair energy is similar or lower in energy than the singlet state. In these systems the singlet energy is determined by the lower energy chromophore, and the rate of SF is found to be relatively independent of the driving force. However, triplet pair recombination in these heterodimers follows the energy gap law. Themore » ability to tune the energies of these materials provides a key strategy to study and design new SF materials – an important process for third generation photovoltaics.« less

  1. The Antitumor Effect of Singlet Oxygen.

    PubMed

    Bauer, Georg

    2016-11-01

    Tumor cells are protected against intercellular apoptosis-inducing signaling through expression of membrane-associated catalase and superoxide dismutase. Exogenous singlet oxygen derived from activated photosensitizers or from cold atmospheric plasma causes local inactivation of protective catalase which is followed by the generation of secondary extracellular singlet oxygen. This process is specific for tumor cells and is driven by a complex interaction between H2O2 and peroxynitrite. Secondary singlet oxygen has the potential for autoamplification of its generation, resulting in optimal inactivation of protective catalase and reactivation of intercellular apoptosis-inducing signaling. An increase in the endogenous NO concentration also causes inactivation of catalase and autoamplificatory generation of secondary singlet oxygen. This principle is essential for the antitumor activity of secondary plant products, such as cyanidins and other inhibitors of NO dioxygenase. It seems that the action of the established chemotherapeutic taxol and the recently established antitumor effect of certain azoles are based on the same principles.

  2. Solution-processable singlet fission photovoltaic devices.

    PubMed

    Yang, Le; Tabachnyk, Maxim; Bayliss, Sam L; Böhm, Marcus L; Broch, Katharina; Greenham, Neil C; Friend, Richard H; Ehrler, Bruno

    2015-01-14

    We demonstrate the successful incorporation of a solution-processable singlet fission material, 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene), into photovoltaic devices. TIPS-pentacene rapidly converts high-energy singlet excitons into pairs of triplet excitons via singlet fission, potentially doubling the photocurrent from high-energy photons. Low-energy photons are captured by small-bandgap electron-accepting lead chalcogenide nanocrystals. This is the first solution-processable singlet fission system that performs with substantial efficiency with maximum power conversion efficiencies exceeding 4.8%, and external quantum efficiencies of up to 60% in the TIPS-pentacene absorption range. With PbSe nanocrystal of suitable bandgap, its internal quantum efficiency reaches 170 ± 30%.

  3. A Description of Vibrational Modes in Hexaphyrins: Understanding the Aromaticity Reversal in the Lowest Triplet State.

    PubMed

    Sung, Young Mo; Oh, Juwon; Naoda, Koji; Lee, Taegon; Kim, Woojae; Lim, Manho; Osuka, Atsuhiro; Kim, Dongho

    2016-09-19

    Aromaticity reversal in the lowest triplet state, or Baird's rule, has been postulated for the past few decades. Despite numerous theoretical works on aromaticity reversal, experimental study is still at a rudimentary stage. Herein, we investigate the aromaticity reversal in the lowest excited triplet state using a comparable set of [26]- and [28]hexaphyrins by femtosecond time-resolved infrared (IR) spectroscopy. Compared to the relatively simple IR spectra of [26]bis(rhodium) hexaphyrin (R26H), those of [28]bis(rhodium) hexaphyrin (R28H) show complex IR spectra the region for the stretching modes of conjugated rings. Whereas time-resolved IR spectra of R26H in the excited triplet state are dominated by excited state IR absorption peaks, while those of R28H largely show ground state IR bleaching peaks, reflecting the aromaticity reversal in the lowest triplet state. These contrasting IR spectral features serve as new experimental aromaticity indices for Baird's rule.

  4. Transient photocurrent in molecular junctions: singlet switching on and triplet blocking.

    PubMed

    Petrov, E G; Leonov, V O; Snitsarev, V

    2013-05-14

    The kinetic approach adapted to describe charge transmission in molecular junctions, is used for the analysis of the photocurrent under conditions of moderate light intensity of the photochromic molecule. In the framework of the HOMO-LUMO model for the single electron molecular states, the analytic expressions describing the temporary behavior of the transient and steady state sequential (hopping) as well as direct (tunnel) current components have been derived. The conditions at which the current components achieve their maximal values are indicated. It is shown that if the rates of charge transmission in the unbiased molecular diode are much lower than the intramolecular singlet-singlet excitation/de-excitation rate, and the threefold degenerated triplet excited state of the molecule behaves like a trap blocking the charge transmission, a possibility of a large peak-like transient switch-on photocurrent arises.

  5. Assessment of Functionals for TD-DFT Calculations of Singlet-Triplet Transitions.

    PubMed

    Jacquemin, Denis; Perpète, Eric A; Ciofini, Ilaria; Adamo, Carlo

    2010-05-11

    The calculation of transition energies for electronically excited states remains a challenge in quantum chemistry, for which time-dependent density functional theory (TD-DFT) is often viewed as a balanced (computational effort/obtained accuracy) technique. In this study, we benchmark 34 DFT functionals in the specific framework of TD-DFT calculations for singlet-triplet transitions. The results are compared to accurate wave function data reported for the same set of 63 excited-states, and it turns out that, within the selected TD-DFT framework, BMK and M06-2X emerge as the most efficient hybrids. This investigation clearly illustrates that the conclusions drawn for singlet excited states do not necessarily hold for triplet states, even for similar molecular structures.

  6. The excited-state decay mechanism of 2,4-dithiothymine in the gas phase, microsolvated surroundings, and aqueous solution.

    PubMed

    Xie, Bin-Bin; Wang, Qian; Guo, Wei-Wei; Cui, Ganglong

    2017-03-15

    The photophysics of thiothymines has been extensively studied computationally in the past few years due to their significant potential as photosensitizers in photodynamic therapy. However, the corresponding computational studies of the photophysical mechanism of 2,4-dithiothymine are scarce. Herein we have employed the CASPT2//CASSCF and QM(CASPT2//CASSCF)/MM methods to systematically explore the excited-state decay mechanism of 2,4-dithiothymine in isolated, microsolvated, and aqueous surroundings. First, we have optimized minima and conical intersections in and between the lowest six excited singlet and triplet states i.e., , , , , and ; then, based on computed excited-state decay paths and spin-orbit couplings, we have proposed several nonadiabatic pathways that efficiently populate the lowest triplet state to explain the experimentally observed ultrahigh triplet-state quantum yield. Moreover, we have found that the excited-state decay mechanism in microsolvated and aqueous environments is more complicated than that in the gas phase. The solute-solvent interaction has significant effects on the excited-state potential energy surfaces of 2,4-dithiothymine and eventually on its excited-state decay mechanism. Finally, the present computational efforts contribute important mechanistic knowledge to the understanding of the photophysics of thiothymine-based photosensitizers.

  7. Effects of heteroatoms of tetracene and pentacene derivatives on their stability and singlet fission.

    PubMed

    Chen, Yuhan; Shen, Li; Li, Xiyou

    2014-07-31

    The effects of the introduction of an sp(2)-hybridized nitrogen atom (═N-) and thiophene ring on the structure geometries, frontier molecular orbital energies, and excited state energies related to singlet fission (SF) for some tetracene and pentacene derivatives were theoretically investigated by quantum chemical methods. The introduction of a nitrogen atom significantly decreases the energies of frontier molecular orbitals and hence improves their stabilities in air and light illumination. More importantly, it is helpful for reducing the energy loss of the exothermic singlet fission of pentacene derivatives. For fused benzene-thiophene structures, the (α, β) connection pattern could stabilize the frontier molecular orbitals, while the (β, β) connection pattern can promote the thermodynamic driving force of singlet fission. These facts provide a theoretical ground for rational design of SF materials.

  8. Effect of structural distortion and polarization in localization of electronic excitations in organic semiconductor materials

    NASA Astrophysics Data System (ADS)

    Nayyar, Iffat; Batista, Enrique; Tretiak, Sergei; Saxena, Avadh; Smith, Darryl; Martin, Richard

    2012-02-01

    Organic polymers find varied applications in optoelectronic devices such as solar cells, light emitting diodes and lasers. Detailed understanding of charge carrier transport by polarons and excitonic energy transfer producing singlet and triplet excitations is critical to improve their efficiency. We benchmarked the ability of current functional models to describe the spatial extent of self-trapped neutral and charged excitations for MEH-PPV owing to its superior luminescence and experimental evidence. Now we are interested in distinguishing between two distinct origins leading to localization; spatial localization of the wavefunction by itself on the undistorted geometry and localization of the wavefunction assured by distortion of the structure during its relaxation. We suggest localization is produced by electronic rearrangements and character of the functional. We also observe that different functionals place the highest occupied and lowest virtual orbitals at different positions in the energy band diagram based on their ability to predict the extent of localization of these states.

  9. On large amplitude motions of simplest amides in the ground and excited electronic states

    NASA Astrophysics Data System (ADS)

    Tukachev, N. V.; Bataev, V. A.; Godunov, I. A.

    2016-12-01

    For the formamide, acetamide, N-methylformamide and N-methylacetamide molecules in the ground (S0) and lowest excited singlet (S1) and triplet (T1) electronic states equilibrium geometry parameters, harmonic vibrational frequencies, barriers to conformational transitions and conformer energy differences were estimated by means of MP2, CCSD(T), CASSCF, CASPT2 and MRCI ab initio methods. One-, two- and three-dimensional potential energy surface (PES) sections corresponding to different large amplitude motions (LAM) were calculated by means of MP2/aug-cc-pVTZ (S0) and CASPT2/cc-pVTZ (S1,T1). For these molecules, in each excited electronic state six minima were found on 2D PES sections. Using PES sections, different anharmonic vibrational problems were solved and the frequencies of large amplitude vibrations were determined.

  10. Light-induced self-nitrosation of polycyclic phenols with nitrosamine. Excited state proton transfer

    SciTech Connect

    Chow, Y.L.; Wu, Z.Z.

    1987-08-19

    Photoexcitation of polycyclic phenols in the presence of N-nitrosodimethylamine caused the self-nitrosation of the phenols to give 1,2- or 1,4-quinone monooximes. With use of naphthols as models the key step of the photonitrosation was shown to be a dual sensitization process from the lowest singlet excited state of naphthols by proton transfer followed by energy migration within an exciplex to cause the known homolysis of the nitrosamine; it is assumed that the resulting radical species undergo nitrosation of naphtholates. The crucial requirement of the excited state proton transfer (ESPT) reaction is established by quenching of the photonitrosation by general bases, such as water and TEA, with quenching rate constants close to those of naphthol fluorescence by these bases.

  11. Tuning the role of charge-transfer states in intramolecular singlet exciton fission through side-group engineering

    PubMed Central

    Lukman, Steven; Chen, Kai; Hodgkiss, Justin M.; Turban, David H. P.; Hine, Nicholas D. M.; Dong, Shaoqiang; Wu, Jishan; Greenham, Neil C.; Musser, Andrew J.

    2016-01-01

    Understanding the mechanism of singlet exciton fission, in which a singlet exciton separates into a pair of triplet excitons, is crucial to the development of new chromophores for efficient fission-sensitized solar cells. The challenge of controlling molecular packing and energy levels in the solid state precludes clear determination of the singlet fission pathway. Here, we circumvent this difficulty by utilizing covalent dimers of pentacene with two types of side groups. We report rapid and efficient intramolecular singlet fission in both molecules, in one case via a virtual charge-transfer state and in the other via a distinct charge-transfer intermediate. The singlet fission pathway is governed by the energy gap between singlet and charge-transfer states, which change dynamically with molecular geometry but are primarily set by the side group. These results clearly establish the role of charge-transfer states in singlet fission and highlight the importance of solubilizing groups to optimize excited-state photophysics. PMID:27924819

  12. Scope and limitations of the TEMPO/EPR method for singlet oxygen detection: the misleading role of electron transfer.

    PubMed

    Nardi, Giacomo; Manet, Ilse; Monti, Sandra; Miranda, Miguel A; Lhiaubet-Vallet, Virginie

    2014-12-01

    For many biological and biomedical studies, it is essential to detect the production of (1)O2 and quantify its production yield. Among the available methods, detection of the characteristic 1270-nm phosphorescence of singlet oxygen by time-resolved near-infrared (TRNIR) emission constitutes the most direct and unambiguous approach. An alternative indirect method is electron paramagnetic resonance (EPR) in combination with a singlet oxygen probe. This is based on the detection of the TEMPO free radical formed after oxidation of TEMP (2,2,6,6-tetramethylpiperidine) by singlet oxygen. Although the TEMPO/EPR method has been widely employed, it can produce misleading data. This is demonstrated by the present study, in which the quantum yields of singlet oxygen formation obtained by TRNIR emission and by the TEMPO/EPR method are compared for a set of well-known photosensitizers. The results reveal that the TEMPO/EPR method leads to significant overestimation of singlet oxygen yield when the singlet or triplet excited state of the photosensitizer is efficiently quenched by TEMP, acting as electron donor. In such case, generation of the TEMP(+) radical cation, followed by deprotonation and reaction with molecular oxygen, gives rise to an EPR-detectable TEMPO signal that is not associated with singlet oxygen production. This knowledge is essential for an appropriate and error-free application of the TEMPO/EPR method in chemical, biological, and medical studies.

  13. Supramolecular nanoreactors for intracellular singlet-oxygen sensitization

    NASA Astrophysics Data System (ADS)

    Swaminathan, Subramani; Fowley, Colin; Thapaliya, Ek Raj; McCaughan, Bridgeen; Tang, Sicheng; Fraix, Aurore; Burjor, Captain; Sortino, Salvatore; Callan, John F.; Raymo, Françisco M.

    2015-08-01

    An amphiphilic polymer with multiple decyl and oligo(ethylene glycol) chains attached to a common poly(methacrylate) backbone assembles into nanoscaled particles in aqueous environments. Hydrophobic anthracene and borondipyrromethene (BODIPY) chromophores can be co-encapsulated within the self-assembling nanoparticles and transported across hydrophilic media. The reversible character of the noncovalent bonds, holding the supramolecular containers together, permits the exchange of their components with fast kinetics in aqueous solution. Incubation of cervical cancer (HeLA) cells with a mixture of two sets of nanoparticles, pre-loaded independently with anthracene or BODIPY chromophores, results in guest scrambling first and then transport of co-entrapped species to the intracellular space. Alternatively, incubation of cells with the two sets of nanocarriers in consecutive steps permits the sequential transport of the anthracene and BODIPY chromophores across the plasma membrane and only then allows their co-encapsulation within the same supramolecular containers. Both mechanisms position the two sets of chromophores with complementary spectral overlap in close proximity to enable the efficient transfer of energy intracellularly from the anthracene donors to the BODIPY acceptors. In the presence of iodine substituents on the BODIPY platform, intersystem crossing follows energy transfer. The resulting triplet state can transfer energy further to molecular oxygen with the concomitant production of singlet oxygen to induce cell mortality. Furthermore, the donor can be excited with two near-infrared photons simultaneously to permit the photoinduced generation of singlet oxygen intracellularly under illumination conditions compatible with applications in vivo. Thus, these supramolecular strategies to control the excitation dynamics of multichromophoric assemblies in the intracellular environment can evolve into valuable protocols for photodynamic therapy.An amphiphilic

  14. Monitoring of the energy levels by heteroatom substitution to hexacene and controlling over singlet fission and photo-oxidative resistance.

    PubMed

    Sardar, Subhankar

    2017-03-08

    The singlet fission is a spin allowed and extremely fast internal conversion process involved in solar cell by which a photo-excited singlet exciton is splitted into two triplet ones. For effective singlet fission and to increase the efficiency of solar cell, designing of new molecules is an interesting area of research and our current interest. The silicon substituted oligocenes, commonly known as silaoligocenes, are found to be the efficient singlet fission material due to their special characteristics. We have shown the SF energy criteria satisfied by the singlet and triplet states of various silahexacene derivatives, and theoretically predicted whether such molecules exhibit fission properties or not. The fluorine atoms have been substituted to various positions of different silahexacenes to manipulate their singlet and triplet energy levels. As fluorine being the most electro-negative substituent, it is capable of lowering frontier molecular orbital energies effectively. Thus, the material can easily match SF energy criteria to compute the SF driving force or triplet-triplet annihilation possibility. The geometries, electronic structures, frontier molecular orbital energies, optimization of excited state and calculation of energies associated with fission process of the substituted hexacene are investigated with well known quantum mechanical methods.

  15. Electronically excited states of membrane fluorescent probe 4-dimethylaminochalcone. Results of quantum chemical calculations.

    PubMed

    Romanov, Alexey N; Gularyan, Samvel K; Polyak, Boris M; Sakovich, Ruslan A; Dobretsov, Gennady E; Sarkisov, Oleg M

    2011-05-28

    Quantum-chemical calculations of ground and excited states for membrane fluorescent probe 4-dimethylaminochalcone (DMAC) in vacuum were performed. Optimized geometries and dipole moments for lowest-lying singlet and triplet states were obtained. The nature of these electronic transitions and the relaxation path in the excited states were determined; changes in geometry and charge distribution were assessed. It was shown that in vacuum the lowest existed level is of (n, π*) nature, and the closest to it is the level of (π, π*) nature; the energy gap between them is narrow. This led to an effective (1)(π, π*) →(1)(n, π*) relaxation. After photoexcitation the molecule undergoes significant transformations, including changes in bond orders, pyramidalization angle of the dimethylamino group, and planarity of the molecule. Its dipole moment rises from 5.5 Debye in the ground state to 17.1 Debye in the (1)(π, π*) state, and then falls to 2 Debye in the (1)(n, π*) state. The excited (1)(n, π*) state is a short living state; it has a high probability of intersystem crossing into the (3)(π, π*) triplet state. This relaxation path explains the low quantum yield of DMAC fluorescence in non-polar media. It is possible that (3)(π, π*) is responsible for observed DMAC phosphorescence.

  16. TDDFT study on the excited-state proton transfer of 8-hydroxyquinoline: key role of the excited-state hydrogen-bond strengthening.

    PubMed

    Lan, Sheng-Cheng; Liu, Yu-Hui

    2015-03-15

    Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations have been employed to study the excited-state intramolecular proton transfer (ESIPT) reaction of 8-hydroxyquinoline (8HQ). Infrared spectra of 8HQ in both the ground and the lowest singlet excited states have been calculated, revealing a red-shift of the hydroxyl group (-OH) stretching band in the excited state. Hence, the intramolecular hydrogen bond (O-H···N) in 8HQ would be significantly strengthened upon photo-excitation to the S1 state. As the intramolecular proton-transfer reaction occurs through hydrogen bonding, the ESIPT reaction of 8HQ is effectively facilitated by strengthening of the electronic excited-state hydrogen bond (O-H···N). As a result, the intramolecular proton-transfer reaction would occur on an ultrafast timescale with a negligible barrier in the calculated potential energy curve for the ESIPT reaction. Therefore, although the intramolecular proton-transfer reaction is not favorable in the ground state, the ESIPT process is feasible in the excited state. Finally, we have identified that radiationless deactivation via internal conversion (IC) becomes the main dissipative channel for 8HQ by analyzing the energy gaps between the S1 and S0 states for the enol and keto forms.

  17. Theoretical investigation of the lowest-lying electronic structure of LuI molecules

    NASA Astrophysics Data System (ADS)

    Assaf, J.; Taher, F.; Magnier, S.

    2014-01-01

    CASSCF/MRCI calculations using Effective Core Potential (ECP) basis sets for both Lu and I atoms, have been performed for the first 22 electronic states in the representation 2s+1Λ(±) for the LuI molecule. This investigation included the corresponding 43 molecular states in the representation Ω(±) when taking the spin-orbit coupling (SOC) in consideration. Calculated potential energy curves (PECs) have been displayed. Spectroscopic constants Te, ωe, ωeχe, Be and the internuclear distance Re have been calculated for the ground state and for the low-lying electronic states situated below 40,410 cm-1 and for their corresponding components with SOC. The transition dipolar moments between states have been given at the minimum position Re = 2.75 Å of the ground state X1Σ+. The calculated set of singlet and triplet states provides a theoretical prediction for more than 19 yet unobserved electronic states.

  18. Singlet fission in linear chains of molecules

    SciTech Connect

    Ambrosio, Francesco E-mail: A.Troisi@warwick.ac.uk; Troisi, Alessandro E-mail: A.Troisi@warwick.ac.uk

    2014-11-28

    We develop a model configuration interaction Hamiltonian to study the electronic structure of a chain of molecules undergoing singlet fission. We first consider models for dimer and trimer and then we use a matrix partitioning technique to build models of arbitrary size able to describe the relevant electronic structure for singlet fission in linear aggregates. We find that the multi-excitonic state (ME) is stabilized at short inter-monomer distance and the extent of this stabilization depends upon the size of orbital coupling between neighboring monomers. We also find that the coupling between ME states located on different molecules is extremely small leading to bandwidths in the order of ∼10 meV. This observation suggests that multi-exciton states are extremely localized by electron-phonon coupling and that singlet fission involves the transition between a relatively delocalized Frenkel exciton and a strongly localized multi-exciton state. We adopt the methodology commonly used to study non-radiative transitions to describe the singlet fission dynamics in these aggregates and we discuss the limit of validity of the approach. The results indicate that the phenomenology of singlet fission in molecular crystals is different in many important ways from what is observed in isolated dimers.

  19. Exciton Correlations in Intramolecular Singlet Fission

    DOE PAGES

    Sanders, Samuel N.; Kumarasamy, Elango; Pun, Andrew B.; ...

    2016-05-16

    We have synthesized a series of asymmetric pentacene-tetracene heterodimers with a variable-length conjugated bridge that undergo fast and efficient intramolecular singlet fission (iSF). These compounds have distinct singlet and triplet energies, which allow us to study the spatial dynamics of excitons during the iSF process, including the significant role of exciton correlations in promoting triplet pair generation and recombination. We demonstrate that the primary photoexcitations in conjugated dimers are delocalized singlets that enable fast and efficient iSF. However, in these asymmetric dimers, the singlet becomes more localized on the lower energy unit as the length of the bridge is increased,more » slowing down iSF relative to analogous symmetric dimers. We resolve the recombination kinetics of the inequivalent triplets produced via iSF, and find that they primarily decay via concerted processes. By identifying different decay channels, including delayed fluorescence via triplet-triplet annihilation, we can separate transient species corresponding to both correlated triplet pairs and uncorrelated triplets. Recombination of the triplet pair proceeds rapidly despite our experimental and theoretical demonstration that individual triplets are highly localized and unable to be transported across the conjugated linker. In this class of compounds, the rate of formation and yield of uncorrelated triplets increases with bridge length. Overall, these constrained, asymmetric systems provide a unique platform to isolate and study transient species essential for singlet fission, which are otherwise difficult to observe in symmetric dimers or condensed phases.« less

  20. Exciton Correlations in Intramolecular Singlet Fission

    SciTech Connect

    Sanders, Samuel N.; Kumarasamy, Elango; Pun, Andrew B.; Appavoo, Kannatassen; Steigerwald, Michael L.; Campos, Luis M.; Sfeir, Matthew Y.

    2016-05-16

    We have synthesized a series of asymmetric pentacene-tetracene heterodimers with a variable-length conjugated bridge that undergo fast and efficient intramolecular singlet fission (iSF). These compounds have distinct singlet and triplet energies, which allow us to study the spatial dynamics of excitons during the iSF process, including the significant role of exciton correlations in promoting triplet pair generation and recombination. We demonstrate that the primary photoexcitations in conjugated dimers are delocalized singlets that enable fast and efficient iSF. However, in these asymmetric dimers, the singlet becomes more localized on the lower energy unit as the length of the bridge is increased, slowing down iSF relative to analogous symmetric dimers. We resolve the recombination kinetics of the inequivalent triplets produced via iSF, and find that they primarily decay via concerted processes. By identifying different decay channels, including delayed fluorescence via triplet-triplet annihilation, we can separate transient species corresponding to both correlated triplet pairs and uncorrelated triplets. Recombination of the triplet pair proceeds rapidly despite our experimental and theoretical demonstration that individual triplets are highly localized and unable to be transported across the conjugated linker. In this class of compounds, the rate of formation and yield of uncorrelated triplets increases with bridge length. Overall, these constrained, asymmetric systems provide a unique platform to isolate and study transient species essential for singlet fission, which are otherwise difficult to observe in symmetric dimers or condensed phases.

  1. Ab initio reaction pathways for photodissociation and isomerization of nitromethane on four singlet potential energy surfaces with three roaming paths

    SciTech Connect

    Isegawa, Miho; Liu, Fengyi; Morokuma, Keiji; Maeda, Satoshi

    2014-06-28

    Photodissociation pathways of nitromethane following π → π{sup *} electronic excitation are reported. The potential energy surfaces for four lowest singlet states are explored, and structures of many intermediates, dissociation limits, transition states, and minimum energy conical intersections were determined using the automated searching algorism called the global reaction route mapping strategy. Geometries are finally optimized at CASSCF(14e,11o) level and energies are computed at CAS(14o,11e)PT2 level. The calculated preferable pathways and important products qualitatively explain experimental observations. The major photodissociation product CH{sub 3} and NO{sub 2} ({sup 2}B{sub 2}) is formed by direct dissociation from the S{sub 1} state. Important pathways involving S{sub 1} and S{sub 0} states for production of various dissociation products CH{sub 3}NO + O ({sup 1}D), CH{sub 3}O(X{sup 2}E) + NO (X{sup 2}Π), CH{sub 2}NO + OH, and CH{sub 2}O + HNO, as well as various isomerization pathways have been identified. Three roaming processes also have been identified: the O atom roaming in O dissociation from CH{sub 3}NO{sub 2}, the OH radical roaming in OH dissociation from CH{sub 2}N(O)(OH), and the NO roaming in NO dissociation from CH{sub 3}ONO.

  2. Reactions of singlet oxygen with pine pollen.

    NASA Technical Reports Server (NTRS)

    Dowty, B.; Laseter, J. L.; Griffin, G. W.; Politzer, I. R.; Walkinshaw, C. H.

    1973-01-01

    A study was initiated to determine whether viable atmospheric particles such as plant pollens and fungal spores containing unsaturated lipids can interact with singlet oxygen to give oxygenated products that are potentially toxic. The results obtained confirm that surface and near surface components of common viable particulate matter in the atmosphere may be subject to rapid oxidation by singlet oxygen, leading to products which are probably allylic hydroperoxides. In connection with increasing atmospheric pollution, it is important to note that materials toxic to mammalian lung tissue may be oxidatively produced on the surfaces of viable particulate matter.

  3. Theoretical studies on kinetics of singlet oxygen in nonthermal plasma

    NASA Astrophysics Data System (ADS)

    Frolov, Mikhail P.; Ionin, Andrei A.; Kotkov, Andrei A.; Kochetov, Igor V.; Napartovich, Anatolii P.; Podmarkov, Yurii P.; Seleznev, Leonid V.; Sinitsyn, Dmitrii V.; Vagin, Nikolai P.; Yuryshev, Nikolay N.

    2004-09-01

    An idea to replace singlet delta oxygen (SDO) generator working with wet chemistry by electric discharge generator has got much attention last years. Different kinds of discharge were examined for this purpose, but without a great success. The existing theoretical models are not validated by well-characterized experimental data. To describe complicated kinetics in gas discharge with oxygen one needs to know in detail processes involving numerous electronic excited oxygen molecules and atoms. To gain new knowledge about these processes experimental studies were made on electric discharge properties in gas mixture flow with independent control of inlet SDO concentration. The theoretical model extended to include minor additives like oxygen atoms, water molecules, ozone was developed. Comparison with careful experimental measurements of electric characteristics along with gas composition allows us to verify the model and make theoretical predictions more reliable. Results of numerical simulations using this model for an electron-beam sustained discharge are reported and compared with the experimental data.

  4. Production of Singlet Oxygen within a Flow Discharge

    NASA Astrophysics Data System (ADS)

    Lange, Matthew; Pitz, Greg; Perram, Glen

    2008-10-01

    The Airborne laser program is an Air Force sponsored program to place a laser on the battle field for use as a tactical weapon. The chemical oxygen iodine laser offers the powers necessary for this weapons application, but it requires significant logistical support. The goal of this current research program is to demonstrate an oxygen-iodine laser with electrical discharge production of singlet oxygen. Optical diagnostics have been applied to microwave and radio frequency discharges within a pure oxygen flow. The O2(a) emissions within a discharge are complicated by atomic oxygen emission requiring care in determining gas concentrations from optically measured emissions. Thermal effects also complicate optical emissions. The inclusion of vibrationally excited oxygen as a quencher of the O2(a) state appears to be the limiting rate for production of O2(a) within the electric discharge conditions studied in this research.

  5. On the low lying singlet states of BeO

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Lengsfield, B. H.; Yarkony, D. R.

    1980-01-01

    Calculations of the ground and low-lying singlet states of BeO are performed in order to gain an understanding of the techniques needed to treat the excited states of other, more complex, ionic molecules. The MCSCF and CI calculations are based on a Gaussian basis set of slightly better than double zeta plus polarization quality for single configuration descriptions of the states. The calculated X-A and X-B state separations are found to be in agreement with experimental measurements. The 1 Sigma - and 1 Delta states are predicted to lie approximately 40,000 kaysers above the ground state and are identified as the C and D states.The 2 1 Pi state is found to be approximately 15,000 kaysers and the 3 1 Sigma + state is found to be approximately 65,000 kaysers above the ground state.

  6. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    NASA Astrophysics Data System (ADS)

    Azyazov, V. N.; Torbin, A. P.; Pershin, A. A.; Mikheyev, P. A.; Heaven, M. C.

    2015-12-01

    The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O3(υ) formed in O + O2 recombination is thought to be a significant agent in the deactivation of singlet oxygen O2(a1Δ), oxygen atom removal and ozone formation. It is shown that the process O3(υ ⩾ 2) + O2(a1Δ) → 2O2 + O is the main O2(a1Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O2(a1Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  7. Energy Dependence of the Ruthenium(II)-Bipyridine Metal-to-Ligand-Charge-Transfer Excited State Radiative Lifetimes: Effects of ππ*(bipyridine) Mixing.

    PubMed

    Thomas, Ryan A; Tsai, Chia Nung; Mazumder, Shivnath; Lu, I Chen; Lord, Richard L; Schlegel, H Bernhard; Chen, Yuan Jang; Endicott, John F

    2015-06-18

    The variations in band shape with excited state energy found for the triplet metal to ligand charge transfer ((3)MLCT) emission spectra of ruthenium-bipyridine (Ru-bpy) chromophores at 77 K have been postulated to arise from excited state/excited state configurational mixing. This issue is more critically examined through the determination of the excited state energy dependence of the radiative rate constants (kRAD) for these emissions. Experimental values for kRAD were determined relative to known literature references for Ru-bpy complexes. When the lowest energy excited states are metal centered, kRAD can be anomalously small and such complexes have been identified using density functional theory (DFT) modeling. When such complexes are removed from the energy correlation, there is a strong (3)MLCT energy-dependent contribution to kRAD in addition to the expected classical energy cubed factor for complexes with excited state energies greater than 10 000 cm(-1). This correlates with the DFT calculations which show significant excited state electronic delocalization between a π(bpy-orbital) and a half-filled dπ*-(Ru(III)-orbital) for Ru-bpy complexes with (3)MLCT excited state energies greater than about 16 000 cm(-1). Overall, this work implicates the "stealing" of emission bandshapes as well as intensity from the higher energy, strongly allowed bpy-centered singlet ππ* excited state.

  8. A simplified relativistic time-dependent density-functional theory formalism for the calculations of excitation energies including spin-orbit coupling effect.

    PubMed

    Wang, Fan; Ziegler, Tom

    2005-10-15

    In the present work we have proposed an approximate time-dependent density-functional theory (TDDFT) formalism to deal with the influence of spin-orbit coupling effect on the excitation energies for closed-shell systems. In this formalism scalar relativistic TDDFT calculations are first performed to determine the lowest single-group excited states and the spin-orbit coupling operator is applied to these single-group excited states to obtain the excitation energies with spin-orbit coupling effects included. The computational effort of the present method is much smaller than that of the two-component TDDFT formalism and this method can be applied to medium-size systems containing heavy elements. The compositions of the double-group excited states in terms of single-group singlet and triplet excited states are obtained automatically from the calculations. The calculated excitation energies based on the present formalism show that this formalism affords reasonable excitation energies for transitions not involving 5p and 6p orbitals. For transitions involving 5p orbitals, one can still obtain acceptable results for excitations with a small truncation error, while the formalism will fail for transitions involving 6p orbitals, especially 6p1/2 spinors.

  9. Supramolecular nanoreactors for intracellular singlet-oxygen sensitization.

    PubMed

    Swaminathan, Subramani; Fowley, Colin; Thapaliya, Ek Raj; McCaughan, Bridgeen; Tang, Sicheng; Fraix, Aurore; Captain, Burjor; Sortino, Salvatore; Callan, John F; Raymo, Françisco M

    2015-09-07

    An amphiphilic polymer with multiple decyl and oligo(ethylene glycol) chains attached to a common poly(methacrylate) backbone assembles into nanoscaled particles in aqueous environments. Hydrophobic anthracene and borondipyrromethene (BODIPY) chromophores can be co-encapsulated within the self-assembling nanoparticles and transported across hydrophilic media. The reversible character of the noncovalent bonds, holding the supramolecular containers together, permits the exchange of their components with fast kinetics in aqueous solution. Incubation of cervical cancer (HeLA) cells with a mixture of two sets of nanoparticles, pre-loaded independently with anthracene or BODIPY chromophores, results in guest scrambling first and then transport of co-entrapped species to the intracellular space. Alternatively, incubation of cells with the two sets of nanocarriers in consecutive steps permits the sequential transport of the anthracene and BODIPY chromophores across the plasma membrane and only then allows their co-encapsulation within the same supramolecular containers. Both mechanisms position the two sets of chromophores with complementary spectral overlap in close proximity to enable the efficient transfer of energy intracellularly from the anthracene donors to the BODIPY acceptors. In the presence of iodine substituents on the BODIPY platform, intersystem crossing follows energy transfer. The resulting triplet state can transfer energy further to molecular oxygen with the concomitant production of singlet oxygen to induce cell mortality. Furthermore, the donor can be excited with two near-infrared photons simultaneously to permit the photoinduced generation of singlet oxygen intracellularly under illumination conditions compatible with applications in vivo. Thus, these supramolecular strategies to control the excitation dynamics of multichromophoric assemblies in the intracellular environment can evolve into valuable protocols for photodynamic therapy.

  10. Chimeric behavior of excited thioxanthone in protic solvents: I. Experiments.

    PubMed

    Villnow, T; Ryseck, G; Rai-Constapel, V; Marian, C M; Gilch, P

    2014-12-18

    The photophysics of thioxanthone (TX) dissolved in methanol (MeOH) and 2,2,2,-trifluoroethanol (TFE) was studied by time-resolved fluorescence and absorption spectroscopy. The spectrally integrated stimulated emission is seen to lose amplitude within ∼5-10 ps. This is much shorter than the fluorescence lifetimes of the compound (2.7 ns for MeOH and 7.6 ns for TFE). The initial reduction in amplitude is attributed to reversible intersystem crossing between the primarily excited (1)ππ* and a triplet (3)nπ* state. The latter one is energetically slightly (∼0.02 eV) above the former one. Addition of the quencher 1-methylnaphthalene (1-MN) reduces the fluorescence lifetime and yields triplet excited 1-MN, giving further evidence for the equilibrium of singlet and triplet excitations. The depopulation of these two states on the nanosecond time scale results in the rise of the lowest triplet state, a (3)ππ* state. Temperature dependencies attribute this to an activated internal conversion process between the two triplet states. Kinetic and energetic parameters derived from the experimental data will be compared with quantum chemical results in the accompanying paper [Rai-Constapel , V. , Villnow , T. , Ryseck , G. , Gilch , P. , and Marian , C. M. J. Phys. Chem. A 2014 , DOI: 10.1021/jp5099415].

  11. De novo generation of singlet oxygen and ammine ligands by photoactivation of a platinum anticancer complex.

    PubMed

    Zhao, Yao; Farrer, Nicola J; Li, Huilin; Butler, Jennifer S; McQuitty, Ruth J; Habtemariam, Abraha; Wang, Fuyi; Sadler, Peter J

    2013-12-16

    Worth the excitement: Highly reactive oxygen and nitrogen species are generated by photoactivation of the anticancer platinum(IV) complex trans,trans,trans-[Pt(N3 )2 (OH)2 (MA)(Py)] (MA=methylamine, Py=pyridine). Singlet oxygen is formed from the hydroxido ligands and not from dissolved oxygen, and ammine ligands are products from the conversion of azido ligands to nitrenes. Both processes can induce oxidation of guanine.

  12. High-efficiency fluorescent organic light-emitting devices using sensitizing hosts with a small singlet-triplet exchange energy.

    PubMed

    Zhang, Dongdong; Duan, Lian; Li, Chen; Li, Yilang; Li, Haoyuan; Zhang, Deqiang; Qiu, Yong

    2014-08-06

    Materials with small singlet-triplet splits (ΔEST s) are introduced as sensitizing hosts to excite fluorescent dopants, breaking the trade-off between small ΔEST and high radiative decay rates. A highly efficient orange-fluorescent organic light-emitting diode (OLED) is prepared, showing a maximum external quantum efficiency of 12.2%.

  13. Direct Observation of Thermal Equilibrium of Excited Triplet States of 9,10-Phenanthrenequinone. A Time-Resolved Resonance Raman Study.

    PubMed

    Kumar, Venkatraman Ravi; Rajkumar, Nagappan; Ariese, Freek; Umapathy, Siva

    2015-10-08

    The photochemistry of aromatic ketones plays a key role in various physicochemical and biological processes, and solvent polarity can be used to tune their triplet state properties. Therefore, a comprehensive analysis of the conformational structure and the solvent polarity induced energy level reordering of the two lowest triplet states of 9,10-phenanthrenequinone (PQ) was carried out using nanosecond-time-resolved absorption (ns-TRA), time-resolved resonance Raman (TR(3)) spectroscopy, and time dependent-density functional theory (TD-DFT) studies. The ns-TRA of PQ in acetonitrile displays two bands in the visible range, and these two bands decay with similar lifetime at least at longer time scales (μs). Interestingly, TR(3) spectra of these two bands indicate that the kinetics are different at shorter time scales (ns), while at longer time scales they followed the kinetics of ns-TRA spectra. Therefore, we report a real-time observation of the thermal equilibrium between the two lowest triplet excited states of PQ, assigned to nπ* and ππ* of which the ππ* triplet state is formed first through intersystem crossing. Despite the fact that these two states are energetically close and have a similar conformational structure supported by TD-DFT studies, the slow internal conversion (∼2 ns) between the T(2)(1(3)nπ*) and T(1)(1(3)ππ*) triplet states indicates a barrier. Insights from the singlet excited states of PQ in protic solvents [ J. Chem. Phys. 2015 , 142 , 24305 ] suggest that the lowest nπ* and ππ* triplet states should undergo hydrogen bond weakening and strengthening, respectively, relative to the ground state, and these mechanisms are substantiated by TD-DFT calculations. We also hypothesize that the different hydrogen bonding mechanisms exhibited by the two lowest singlet and triplet excited states of PQ could influence its ISC mechanism.

  14. The low-energy, charge-transfer excited states of 4-amino-4-prime-nitrodiphenyl sulfide

    NASA Technical Reports Server (NTRS)

    O'Connor, Donald B.; Scott, Gary W.; Tran, Kim; Coulter, Daniel R.; Miskowski, Vincent M.; Stiegman, Albert E.; Wnek, Gary E.

    1992-01-01

    Absorption and emission spectra of 4-amino-4-prime-nitrodiphenyl sulfide in polar and nonpolar solvents were used to characterize and assign the low-energy excited states of the molecule. Fluorescence-excitation anisotropy spectra and fluorescence quantum yields were also used to characterize the photophysics of these states. The lowest-energy fluorescent singlet state was determined to be an intramolecular charge transfer (ICT) state involving transfer of a full electron charge from the amino to the nitro group yielding a dipole moment of about 50 D. A low-energy, intense absorption band is assigned as a transition to a different ICT state involving a partial electron charge transfer from sulfur to the nitro group.

  15. Metal bacteriochlorins which act as dual singlet oxygen and superoxide generators.

    PubMed

    Fukuzumi, Shunichi; Ohkubo, Kei; Zheng, Xiang; Chen, Yihui; Pandey, Ravindra K; Zhan, Riqiang; Kadish, Karl M

    2008-03-06

    A series of stable free-base, Zn(II) and Pd(II) bacteriochlorins containing a fused six- or five-member diketo- or imide ring have been synthesized as good candidates for photodynamic therapy sensitizers, and their electrochemical, photophysical, and photochemical properties were examined. Photoexcitation of the palladium bacteriochlorin affords the triplet excited state without fluorescence emission, resulting in formation of singlet oxygen with a high quantum yield due to the heavy atom effect of palladium. Electrochemical studies revealed that the zinc bacteriochlorin has the smallest HOMO-LUMO gap of the investigated compounds, and this value is significantly lower than the triplet excited-state energy of the compound in benzonitrile. Such a small HOMO-LUMO gap of the zinc bacteriochlorin enables intermolecular photoinduced electron transfer from the triplet excited state to the ground state to produce both the radical cation and the radical anion. The radical anion thus produced can transfer an electron to molecular oxygen to produce superoxide anion which was detected by electron spin resonance. The same photosensitizer can also act as an efficient singlet oxygen generator. Thus, the same zinc bacteriochlorin can function as a sensitizer with a dual role in that it produces both singlet oxygen and superoxide anion in an aprotic solvent (benzonitrile).

  16. Time-Resolved Insight into the Photosensitized Generation of Singlet Oxygen in Endoperoxides

    PubMed Central

    2014-01-01

    A synergistic approach combining high-level multiconfigurational static calculations and full-dimensional ab initio surface hopping dynamics has been employed to gain insight into the photochemistry of endoperoxides. Electronic excitation of endoperoxides triggers two competing pathways, cycloreversion and O–O homolysis, that result in the generation of singlet oxygen and oxygen diradical rearrangement products. Our results reveal that cycloreversion or the rupture of the two C–O bonds occurs via an asynchronous mechanism that can lead to the population of a ground-state intermediate showing a single C–O bond. Furthermore, singlet oxygen is directly generated in its most stable excited electronic state 1Δg. The triplet states do not intervene in this mechanism, as opposed to the O–O homolysis where the exchange of population between the singlet and triplet manifolds is remarkable. In line with recent experiments performed on the larger anthracene-9,10-endoperoxide, upon excitation to the spectroscopic ππ* electronic states, the primary photoreactive pathway that governs deactivation of endoperoxides is O–O homolysis with a quantum yield of 65%. PMID:25688180

  17. Quintet multiexciton dynamics in singlet fission

    NASA Astrophysics Data System (ADS)

    Tayebjee, Murad J. Y.; Sanders, Samuel N.; Kumarasamy, Elango; Campos, Luis M.; Sfeir, Matthew Y.; McCamey, Dane R.

    2016-10-01

    Singlet fission, in which two triplet excitons are generated from a single absorbed photon, is a key third-generation solar cell concept. Conservation of angular momentum requires that singlet fission populates correlated multiexciton states, which can subsequently dissociate to generate free triplets. However, little is known about electronic and spin correlations in these systems since, due to its typically short lifetime, the multiexciton state is challenging to isolate and study. Here, we use bridged pentacene dimers, which undergo intramolecular singlet fission while isolated in solution and in solid matrices, as a unimolecular model system that can trap long-lived multiexciton states. We combine transient absorption and time-resolved electron spin resonance spectroscopies to show that spin correlations in the multiexciton state persist for hundreds of nanoseconds. Furthermore, we confirm long-standing predictions that singlet fission produces triplet pair states of quintet character. We compare two different pentacene-bridge-pentacene chromophores, systematically tuning the coupling between the pentacenes to understand how differences in molecular structure affect the population and dissociation of multiexciton quintet states.

  18. [Pt(mesBIAN)(tda)]: a near-infrared emitter and singlet oxygen sensitizer.

    PubMed

    Rachford, Aaron A; Hua, Fei; Adams, Christopher J; Castellano, Felix N

    2009-05-28

    The synthesis and subsequent photophysical investigation of [Pt(mesBIAN)(tda)], where mesBIAN is bis(mesitylimino)acenaphthene and tda is tolan-2,2'-diacetylide, reveal excited-state characteristics best described as triplet charge transfer ((3)CT) in nature upon visible light excitation. Large ground-state dipole moments are apparent as the absorption spectrum dramatically red-shifts with decreasing solvent polarity. The (3)CT excited state is significantly lower in energy than the ligand-centered (3)tda excited-state, as confirmed by steady-state and time-resolved techniques. Singlet oxygen sensitization studies demonstrate that (1)O(2) production occurs by diffusive quenching from the photo-excited (3)CT state (Phi(Delta) = 0.24, lambda(max) approximately 1270 nm) in oxygen-saturated dichloromethane.

  19. A singlet oxygen photosensitizer enables photoluminescent monitoring of singlet oxygen doses.

    PubMed

    You, Youngmin; Cho, Eun Jin; Kwon, Hyeokseon; Hwang, Jieun; Lee, Seung Eun

    2016-01-14

    A molecular dyad that can photosensitize and visualize singlet oxygen ((1)O2) was developed. The dual photofunction enables ratiometric photoluminescence monitoring of the progress of (1)O2-induced cell death.

  20. Single-Molecule Spectroscopy Unmasks the Lowest Exciton State of the B850 Assembly in LH2 from Rps. acidophila

    PubMed Central

    Kunz, Ralf; Timpmann, Kõu; Southall, June; Cogdell, Richard J.; Freiberg, Arvi; Köhler, Jürgen

    2014-01-01

    We have recorded fluorescence-excitation and emission spectra from single LH2 complexes from Rhodopseudomonas (Rps.) acidophila. Both types of spectra show strong temporal spectral fluctuations that can be visualized as spectral diffusion plots. Comparison of the excitation and emission spectra reveals that for most of the complexes the lowest exciton transition is not observable in the excitation spectra due to the cutoff of the detection filter characteristics. However, from the spectral diffusion plots we have the full spectral and temporal information at hand and can select those complexes for which the excitation spectra are complete. Correlating the red most spectral feature of the excitation spectrum with the blue most spectral feature of the emission spectrum allows an unambiguous assignment of the lowest exciton state. Hence, application of fluorescence-excitation and emission spectroscopy on the same individual LH2 complex allows us to decipher spectral subtleties that are usually hidden in traditional ensemble spectroscopy. PMID:24806933

  1. Graphene oxide functionalized with methylene blue and its performance in singlet oxygen generation

    SciTech Connect

    Wojtoniszak, M.; Rogińska, D.; Machaliński, B.; Drozdzik, M.; Mijowska, E.

    2013-07-15

    Graphical abstract: - Highlights: • Adsorption of methylene blue (MB) on graphene oxide (GO). • Characterization of graphene oxide–methylene blue nanocomposite (MB–GO). • Examination of MB–GO efficiency in singlet oxygen generation (SOG). • MB–GO performs higher SOG efficiency than pristine MB. - Abstract: Due to unique electronic, mechanical, optical and structural properties, graphene has shown promising applications in many fields, including biomedicine. One of them is noninvasive anticancer therapy – photodynamic therapy (PDT), where singlet oxygen (SO), generated under the irradiation of light with appropriate wavelengths, kills cancer cells. In this study, authors report graphene oxide (GO) noncovalent functionalization with methylene blue (MB). MB molecules underwent adsorption on the surface of GO. Detailed characterization of the obtained material was carried out with UV–vis spectroscopy, Raman spectroscopy, FT-IR spectroscopy, and confocal laser scanning microscopy. Furthermore, its performance in singlet oxygen generation (SOG) under irradiation of laser with excitation wavelengths of 785 nm was investigated. Interestingly, GO functionalized with MB (MB–GO) showed enhanced efficiency in singlet oxygen generation compared to pristine MB. The efficiency in SOG was detected by photobleaching of 9,10-anthracenediyl-bis(methylene)dimalonic acid (ABMDMA). These results indicate the material is promising in PDT anticancer therapy and further in vitro and in vivo studies are required.

  2. Singlet fission/silicon solar cell exceeding 100% EQE (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pazos, Luis M.; Lee, Jumin; Kirch, Anton; Tabachnyk, Maxim; Friend, Richard H.; Ehrler, Bruno

    2016-09-01

    Current matching limits the commercialization of tandem solar cells due to their instability over spectral changes, leading to the need of using solar concentrators and trackers to keep the spectrum stable. We demonstrate that voltage-matched systems show far higher performance over spectral changes; caused by clouds, dust and other variations in atmospheric conditions. Singlet fission is a process in organic semiconductors which has shown very efficient, 200%, down-conversion yield and the generated excitations are long-lived, ideal for solar cells. As a result, the number of publications has grown exponentially in the past 5 years. Yet, so far no one has achieved to combine singlet fission with most low bandgap semiconductors, including crystalline silicon, the dominating solar cell material with a 90% share of the PV Market. Here we show that singlet fission can facilitate the fabrication of voltage-matched systems, opening a simple design route for the effective implementation of down-conversion in commercially available photovoltaic technologies, with no modification of the electronic circuitry of such. The implemention of singlet fission is achieved simply by decoupling the fabrication of the individual subcells. For this demonstration we used an ITO/PEDOT/P3HT/Pentacene/C60/Ag wide-bandgap subcell, and a commercial silicon solar cell as the low-bandgap component. We show that the combination of the two leads to the first tandem silicon solar cell which exceeds 100% external quantum efficiency.

  3. Neutrino masses and scalar singlet dark matter

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Subhaditya; Jana, Sudip; Nandi, S.

    2017-03-01

    We propose a simple extension of the Standard Model (SM) which has a viable dark matter (DM) candidate and can explain the generation of tiny neutrino masses. The DM is an electroweak (EW) singlet scalar S , odd under an imposed exact Z2 symmetry, that interacts with the SM through the "Higgs portal" coupling, while all other particles are even under Z2. The model also has an EW isospin 3 /2 scalar Δ and a pair of EW isospin vectors Σ and Σ ¯, which are responsible for generating tiny neutrino mass via the effective dimension-seven operator. Thanks to the additional interactions with Δ , the scalar singlet DM S survives a large region of parameter space by relic density constraints from WMAP/Planck and direct search bounds from updated LUX data. Constraints on the model from the LHC are also discussed.

  4. Microdischarge Sources of O2(singlet Delta)

    DTIC Science & Technology

    2006-07-15

    Microdischarge Sources of O2(singlet Delta) 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5d. TASK NUMBER 6. AUTHOR(S) Dr. Leanne C Pitchford ...project entitled Microdischarge sources of O2(1∆) Project partners : Leanne Pitchford and Jean-Pierre Boeuf Centre de Physique des Plasmas...et Applications de Toulouse (CPAT) University Paul Sabatier and CNRS, Toulouse, France Vincent Puech Laboratoire de Physique des Gaz et des

  5. Singlet fission: Towards efficient solar cells

    SciTech Connect

    Havlas, Zdeněk; Wen, Jin; Michl, Josef

    2015-12-31

    Singlet fission (SF) offers an opportunity to improve solar cell efficiency, but its practical use is hindered by the limited number of known efficient materials, limited knowledge of SF mechanism, mainly the relation between the dimer structure and SF efficiency and diffusion of the triplet states allowing injection of electrons into the solar cell semiconductor band. Here we report on our attempt to design new classes of chromophores and to study the relation between the structure and SF efficiency.

  6. Configuration interaction with Kohn Sham orbitals and their relation to excited electronic states

    NASA Astrophysics Data System (ADS)

    Bouř, Petr

    2001-09-01

    Kohn-Sham (KS) orbitals in CH 2, formaldehyde and acetone molecules were used as reference states for configuration interaction (CI) instead of the usual Hartree-Fock (HF) orbitals. A little difference in overall accuracy of electronic excitation energies was found between these schemes. However, analysis of the wave functions indicated that Slater determinant with the KS orbitals is more suitable for construction of the electronic states. Typically, the main expansion coefficients for the CI/KS procedure were closer to unity than those for HF. The difference was most pronounced for the lowest-energy transitions, while the two methods provided more comparable results for the higher-energy states. Similar behaviour of singlet and triplet states was observed. The results justify the common practice of using the KS determinant as a wave function, for example in sum-over-states theories.

  7. Singlet-stabilized minimal gauge mediation

    NASA Astrophysics Data System (ADS)

    Curtin, David; Tsai, Yuhsin

    2011-04-01

    We propose singlet-stabilized minimal gauge mediation as a simple Intriligator, Seiberg and Shih-based model of direct gauge mediation which avoids both light gauginos and Landau poles. The hidden sector is a massive s-confining supersymmetric QCD that is distinguished by a minimal SU(5) flavor group. The uplifted vacuum is stabilized by coupling the meson to an additional singlet sector with its own U(1) gauge symmetry via nonrenormalizable interactions suppressed by a higher scale ΛUV in the electric theory. This generates a nonzero vacuum expectation value for the singlet meson via the inverted hierarchy mechanism, but requires tuning to a precision ˜(Λ/ΛUV)2, which is ˜10-4. In the course of this analysis we also outline some simple model-building rules for stabilizing uplifted-ISS models, which lead us to conclude that meson deformations are required (or at least heavily favored) to stabilize the adjoint component of the magnetic meson.

  8. Probing ground and low-lying excited states for HIO2 isomers

    NASA Astrophysics Data System (ADS)

    de Souza, Gabriel L. C.; Brown, Alex

    2014-12-01

    We present a computational study on HIO2 molecules. Ground state properties such as equilibrium structures, relative energetics, vibrational frequencies, and infrared intensities were obtained for all the isomers at the coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)) level of theory with the aug-cc-pVTZ-PP basis set and ECP-28-PP effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. The HOIO structure is confirmed as the lowest energy isomer. The relative energies are shown to be HOIO < HOOI < HI(O)O. The HO(O)I isomer is only stable at the density functional theory (DFT) level of theory. The transition states determined show interconversion of the isomers is possible. In order to facilitate future experimental identification, vibrational frequencies are also determined for all corresponding deuterated species. Vertical excitation energies for the three lowest-lying singlet and triplet excited states were determined using the configuration interaction singles, time-dependent density functional theory (TD-DFT)/B3LYP, TD-DFT/G96PW91, and equation of motion-CCSD approaches with the LANL2DZ basis set plus effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. It is shown that HOIO and HOOI isomers have excited states accessible at solar wavelengths (<4.0 eV) but these states have very small oscillator strengths (<2 × 10-3).

  9. Probing ground and low-lying excited states for HIO2 isomers.

    PubMed

    de Souza, Gabriel L C; Brown, Alex

    2014-12-21

    We present a computational study on HIO2 molecules. Ground state properties such as equilibrium structures, relative energetics, vibrational frequencies, and infrared intensities were obtained for all the isomers at the coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)) level of theory with the aug-cc-pVTZ-PP basis set and ECP-28-PP effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. The HOIO structure is confirmed as the lowest energy isomer. The relative energies are shown to be HOIO < HOOI < HI(O)O. The HO(O)I isomer is only stable at the density functional theory (DFT) level of theory. The transition states determined show interconversion of the isomers is possible. In order to facilitate future experimental identification, vibrational frequencies are also determined for all corresponding deuterated species. Vertical excitation energies for the three lowest-lying singlet and triplet excited states were determined using the configuration interaction singles, time-dependent density functional theory (TD-DFT)/B3LYP, TD-DFT/G96PW91, and equation of motion-CCSD approaches with the LANL2DZ basis set plus effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. It is shown that HOIO and HOOI isomers have excited states accessible at solar wavelengths (<4.0 eV) but these states have very small oscillator strengths (<2 × 10(-3)).

  10. Probing ground and low-lying excited states for HIO{sub 2} isomers

    SciTech Connect

    Souza, Gabriel L. C. de; Brown, Alex

    2014-12-21

    We present a computational study on HIO{sub 2} molecules. Ground state properties such as equilibrium structures, relative energetics, vibrational frequencies, and infrared intensities were obtained for all the isomers at the coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)) level of theory with the aug-cc-pVTZ-PP basis set and ECP-28-PP effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. The HOIO structure is confirmed as the lowest energy isomer. The relative energies are shown to be HOIO < HOOI < HI(O)O. The HO(O)I isomer is only stable at the density functional theory (DFT) level of theory. The transition states determined show interconversion of the isomers is possible. In order to facilitate future experimental identification, vibrational frequencies are also determined for all corresponding deuterated species. Vertical excitation energies for the three lowest-lying singlet and triplet excited states were determined using the configuration interaction singles, time-dependent density functional theory (TD-DFT)/B3LYP, TD-DFT/G96PW91, and equation of motion-CCSD approaches with the LANL2DZ basis set plus effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. It is shown that HOIO and HOOI isomers have excited states accessible at solar wavelengths (<4.0 eV) but these states have very small oscillator strengths (<2 × 10{sup −3})

  11. Structure of excited states and properties of organic dyes

    NASA Astrophysics Data System (ADS)

    Klessinger, M.

    1992-03-01

    Optimized geometries and charge distributions for the ground state and the first allowed π,π* excited singlet state are reported for some polyenes, polyene aldehydes, merocyanines and cyanines, which may be considered as representatives of conjugated chain chromophores of organic dyes. The dependence of excited state properties on molecular structure is discussed in relation to spectroscopic properties of these systems.

  12. Mechanism of singlet oxygen deactivation in an electric discharge oxygen – iodine laser

    SciTech Connect

    Azyazov, V N; Mikheyev, P A; Torbin, A P; Pershin, A A; Heaven, M C

    2014-12-31

    We have determined the influence of the reaction of molecular singlet oxygen with a vibrationally excited ozone molecule O{sub 2}(a {sup 1}Δ) + O{sub 3}(ν) → 2O{sub 2} + O on the removal rate of O{sub 2}(a {sup 1}Δ) in an electric-discharge-driven oxygen – iodine laser. This reaction has been shown to be a major channel of O{sub 2}(a {sup 1}Δ) loss at the output of an electric-discharge singlet oxygen generator. In addition, it can also contribute significantly to the loss of O{sub 2}(a {sup 1}Δ) in the discharge region of the generator. (lasers)

  13. New Theoretical Developments in Exploring Electronically Excited States: Including Localized Configuration Interaction Singles and Application to Large Helium Clusters

    NASA Astrophysics Data System (ADS)

    Closser, Kristina Danielle

    superpositions of atomic states with surface states appearing close to the atomic excitation energies and interior states being blue shifted by up to ≈2 eV. The dynamics resulting from excitation of He_7 were subsequently explored using ab initio molecular dynamics (AIMD). These simulations were performed with classical adiabatic dynamics coupled to a new state-following algorithm on CIS potential energy surfaces. Most clusters were found to completely dissociate and resulted in a single excited atomic state (90%), however, some trajectories formed bound, He*2 (3%), and a few yielded excited trimers (<0.5%). Comparisons were made with available experimental information on much larger clusters. Various applications of this state following algorithm are also presented. In addition to AIMD, these include excited-state geometry optimization and minimal energy path finding via the growing string method. When using state following we demonstrate that more physical results can be obtained with AIMD calculations. Also, the optimized geometries of three excited states of cytosine, two of which were not found without state following, and the minimal energy path between the lowest two singlet excited states of protonated formaldimine are offered as example applications. Finally, to address large clusters, a local variation of CIS was developed. This method exploits the properties of absolutely localized molecular orbitals (ALMOs) to limit the total number of excitations to scaling only linearly with cluster size, which results in formal scaling with the third power of the system size. The derivation of the equations and design of the algorithm are discussed in detail, and computational timings as well as a pilot application to the size dependence of the helium cluster spectrum are presented.

  14. Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy.

    PubMed

    Bakulin, Artem A; Morgan, Sarah E; Kehoe, Tom B; Wilson, Mark W B; Chin, Alex W; Zigmantas, Donatas; Egorova, Dassia; Rao, Akshay

    2016-01-01

    Singlet fission is the spin-allowed conversion of a spin-singlet exciton into a pair of spin-triplet excitons residing on neighbouring molecules. To rationalize this phenomenon, a multiexcitonic spin-zero triplet-pair state has been hypothesized as an intermediate in singlet fission. However, the nature of the intermediate states and the underlying mechanism of ultrafast fission have not been elucidated experimentally. Here, we study a series of pentacene derivatives using ultrafast two-dimensional electronic spectroscopy and unravel the origin of the states involved in fission. Our data reveal the crucial role of vibrational degrees of freedom coupled to electronic excitations that facilitate the mixing of multiexcitonic states with singlet excitons. The resulting manifold of vibronic states drives sub-100 fs fission with unity efficiency. Our results provide a framework for understanding singlet fission and show how the formation of vibronic manifolds with a high density of states facilitates fast and efficient electronic processes in molecular systems.

  15. Intracellular singlet oxygen photosensitizers: on the road to solving the problems of sensitizer degradation, bleaching and relocalization.

    PubMed

    da Silva, Elsa F F; Pimenta, Frederico M; Pedersen, Brian W; Blaikie, Frances H; Bosio, Gabriela N; Breitenbach, Thomas; Westberg, Michael; Bregnhøj, Mikkel; Etzerodt, Michael; Arnaut, Luis G; Ogilby, Peter R

    2016-02-01

    Selected singlet oxygen photosensitizers have been examined from the perspective of obtaining a molecule that is sufficiently stable under conditions currently employed to study singlet oxygen behavior in single mammalian cells. Reasonable predictions about intracellular sensitizer stability can be made based on solution phase experiments that approximate the intracellular environment (e.g., solutions containing proteins). Nevertheless, attempts to construct a stable sensitizer based solely on the expected reactivity of a given functional group with singlet oxygen are generally not sufficient for experiments in cells; it is difficult to construct a suitable chromophore that is impervious to all of the secondary and/or competing degradative processes that are present in the intracellular environment. On the other hand, prospects are reasonably positive when one considers the use of a sensitizer encapsulated in a specific protein; the local environment of the chromophore is controlled, degradation as a consequence of bimolecular reactions can be mitigated, and genetic engineering can be used to localize the encapsulated sensitizer in a given cellular domain. Also, the option of directly exciting oxygen in sensitizer-free experiments provides a useful complementary tool. These latter systems bode well with respect to obtaining more accurate control of the "dose" of singlet oxygen used to perturb a cell; a parameter that currently limits mechanistic studies of singlet-oxygen-mediated cell signaling.

  16. Statistical equilibrium in cometary C2. III - Triplet-singlet, Phillips, Ballik-Ramsay, and Mulliken bands

    NASA Technical Reports Server (NTRS)

    Swamy, K. S. K.; Odell, C. R.

    1981-01-01

    A new series of vibrational bands is predicted which arises from transitions between the lowest electron states of the triplet and singlet states of homonuclear C2. The predictions are useful for C2 identifications and for disentangling congested low resolution spectra that characterize new observations. Predictions are also made for Mulliken, Phillips, and Ballik-Ramsay band sequences, and all calculations are made with the assumed molecular constants and computational methods of KSO-II.

  17. Probing color-singlet exchange at D0

    SciTech Connect

    Abbott, B.; Abolins, M.; Acharya, B.S.; D0 Collaboration

    1997-07-01

    We present latest preliminary results on hard color-singlet exchange in proton-antiproton collisions. The fraction of dijet events produced via color-singlet exchange is measured as a function of jet transverse energy, dijet pseudorapidity separation, and proton-antiproton center-of-mass energy. These results are qualitatively consistent with a color-singlet fraction that increases with increasing quark-initiated processes.

  18. Fully Relativistic Calculations on the Potential Energy Surfaces of the Lowest 23 States of Molecular Chlorine

    SciTech Connect

    Luiz Guilherme M. de Macedo; de Jong, Wibe A.

    2008-01-24

    The electronic structure and spectroscopic properties (Re, ωexe, βe, Te ) of the ground state and the 22 lowest excited states of chlorine molecule were studied within a four component relativistic framework using the MOLFDIR program package. The potential energy curves of all possible 23 covalent states were calculated using relativistic complete open shell configuration interaction (COSCI) approach. In addition, four component multi-reference configuration interaction with singles and doubles excitations (MRCISD) calculations were performed in order to infer the effects due to dynamical correlation in vertical excitations. The calculated properties are in good agreement with the available experimental data.

  19. Decamethylytterbocene Complexes of Bipyridines and Diazabutadienes: Multiconfigurational Ground States and Open-Shell Singlet Formation

    SciTech Connect

    Booth, Corwin H.; Walter, Marc D.; Kazhdan, Daniel; Hu, Yung-Jin; Lukens, Wayne W.; Bauer, Eric D.; Maron, Laurent; Eisenstein, Odile; Andersen, Richard A.

    2009-04-22

    Partial ytterbium f-orbital occupancy (i.e., intermediate valence) and open-shell singlet formation are established for a variety of bipyridine and diazabutadiene adducts with decamethylytterbocene, (C5Me5)2Yb, abbreviated as Cp*2Yb. Data used to support this claim include ytterbium valence measurements using Yb LIII-edge X-ray absorption near-edge structure spectroscopy, magnetic susceptibility, and complete active space self-consistent field (CASSCF) multiconfigurational calculations, as well as structural measurements compared to density functional theory calculations. The CASSCF calculations indicate that the intermediate valence is the result of a multiconfigurational ground-state wave function that has both an open-shell singlet f13(?*)1, where pi* is the lowest unoccupied molecular orbital of the bipyridine or dpiazabutadiene ligands, and a closed-shell singlet f14 component. A number of other competing theories for the unusual magnetism in these materials are ruled out by the lack of temperature dependence of the measured intermediate valence. These results have implications for understanding chemical bonding not only in organolanthanide complexes but also for f-element chemistry in general, as well as understanding magnetic interactions in nanoparticles and devices.

  20. Short-time dynamics and decay mechanism of 2(1H)-pyridinone upon excitation to the light-absorbing S4(21𝝅 𝝅* ) state

    NASA Astrophysics Data System (ADS)

    Zhang, Teng-Shuo; Xue, Jia-Dan; Zheng, Xuming; Xie, Bin-Bin; Fang, Wei-Hai

    2017-03-01

    The excited-state structural dynamics and the decay mechanism of 2(1H)-pyridinone (NHP) after excitation to the S4(21π π* ) light-absorbing state were studied using resonance Raman spectroscopy and complete-active space self-consistent field (CASSCF) calculations. The B-band absorption cross-section and the corresponding absolute resonance Raman cross-sections were simulated using a simple model based on time-dependent wave-packet theory. The geometric structures of the singlet electronic excited states and their curve-crossing points were optimized at the CASSCF level of theory. The obtained short-time structural dynamics in easy-to-visualize internal coordinates were then compared with the CASSCF-predicted structural-parameter changes of S4(21π π* ) /S3 (21nπ* ) -MIN , S4(21π π* ) /S1 (11nπ* ) -MIN , and S4(21π π* ) -MIN . Our results indicate that the initial population of NHP in the S4 state bifurcates in or near the Franck-Condon region, leading to two predominant (S4S3-MIN and S4S1-MIN) internal conversion pathways. The lowest-lying S2(11π π* ) excited state is finally formed via subsequent internal conversions S3(21nπ* ) /S2 (11π π* ) -MIN and S1(11nπ* ) /S2 (11π π* ) -MIN. The enol-keto tautomeric mechanism does not seem to play a role. The decay mechanism in the singlet realm is proposed.

  1. Spin-orbit coupling mechanism of singlet oxygen a1Δg quenching by solvent vibrations

    NASA Astrophysics Data System (ADS)

    Minaev, B. F.

    2017-02-01

    Degenerate character of the O2(a1Δg) state and of the charge-transfer configurations (CTCs) from solvent to the oxygen open-shell orbitals explains the enhancement of spin-orbit coupling (SOC) which is necessary to overcome spin prohibition during singlet oxygen a1Δg quenching. The former mechanism of non-radiative transition O2(a1Δg) → O2(X3 Σg-) based on electronic energy transfer to the solvent vibrational levels (e-v mechanism) is supplemented here by explicit analysis of SOC effects mediated by solvent and O2 vibrations. The SOC matrix element between one component of the initial electronic excited singlet a1Δg state and the final ground triplet X3 Σg- state in the oxygen moiety is not equal to zero (as in free O2) in the collision complex with solvent molecule (M) when all possible CTCs of the type O2- …M+ are accounted for. Intermolecular configuration interaction between CTC and locally excited states obeys a simple symmetry selection rule which provides finally the SOC matrix element with a guarantee of large orbital rotation around the molecular oxygen axis creating a torque. The CTCs admixtures into the singlet and triplet wave functions in the collision complex O2…M ensure the SOC enhancement inside the O2 moiety and let the spin-prohibited singlet oxygen a1Δg quenching to become effectively allowed in terms of e-v mechanism. In the new model the solvent is not only a passive "sink" for the singlet oxygen excitation energy but serves as an active perturber of the oxygen open shell and finally - of the whole spin dynamics in the collision system.

  2. Vibrationally-resolved spectroscopic studies of electronically excited states of 1,8-naphthalic anhydride and 1,8-naphthalimide: a delicate interplay between one ππ* and two nπ* states.

    PubMed

    Maltseva, Elena; Amirjalayer, Saeed; Buma, Wybren Jan

    2017-02-22

    The spectroscopic and dynamic properties of the lower electronically excited states of 1,8-naphthalic anhydride and 1,8-naphthalimide have been studied in supersonically cooled molecular beams using nanosecond Resonance Enhanced MultiPhoton Ionization (REMPI) spectroscopic techniques in combination with quantum chemical calculations. The excitation spectra of these compounds show near - and even below - the apparent 0-0 transition to a strongly allowed electronic state, previously assigned as the S1(2(1)A1(ππ*)) state, a plethora of vibronic transitions that cannot simply be rationalized in terms of the Franck-Condon vibronic activity of that particular state. Instead, it is shown that the (1)B1(nπ*) state, which was previously reported to be S3 for vertical excitation, is adiabatically the lowest excited singlet state. Interactions between this 'dark' state and the 'bright' 2(1)A1(ππ*) state lead to intensity borrowing of transitions to 'dark' state levels that thus show up in the excitation spectra. A complicating factor is that, apart from the coupling of these two singlet states, a relatively strong spin-orbit coupling between the 2(1)A1(ππ*) and (3)B1(nπ*) states is also present. We show that the latter state has a slightly higher adiabatic excitation energy than the former state in 1,8-naphthalic anhydride but lies energetically below the 2(1)A1(ππ*) state in 1,8-naphthalimide. Concurrently, we find that the decay dynamics of the excited states of 1,8-naphthalimide are entirely dominated by intersystem crossing, while in 1,8-naphthalic anhydride both internal conversion to the ground state and intersystem crossing occur, albeit the former loses importance once the excitation energy exceeds that of the (3)B1(nπ*) state.

  3. Doublet-singlet model and unitarity

    NASA Astrophysics Data System (ADS)

    Cynolter, G.; Kovács, J.; Lendvai, E.

    2016-12-01

    We study the renormalizable singlet-doublet fermionic extension of the Standard Model (SM). In this model, the new vector-like fermions couple to the gauge bosons and to the Higgs via new Yukawa couplings that allow for nontrivial mixing in the new sector, providing a stable, neutral dark matter candidate. Approximate analytic formulae are given for the mass spectrum around the blind spots, where the dark matter candidate coupling to h or Z vanishes. We calculate the two particle scattering amplitudes in the model, impose the perturbative unitarity constraints and establish bounds on the Yukawa couplings.

  4. Advanced spray generator of singlet oxygen

    NASA Astrophysics Data System (ADS)

    Spalek, Otomar; Hrubý, Jan; Jirásek, Vít; Čenský, Miroslav; Kodymová, Jarmila; Picková, Irena

    2007-05-01

    A spray type singlet oxygen generator (SOG) for chemical oxygen-iodine laser (COIL) was studied. Mathematical modeling has shown that a high O II(1Δ) yield can be attained with BHP (basic hydrogen peroxide) spray in the Cl II-He atmosphere. It was found experimentally that O II(1Δ) was produced with a >=50% yield at a total pressure up to 50 kPa (375 Torr). A rotating separator was developed that can segregate even very small droplets (>=0.5 μm) from O II(1Δ) flow.

  5. The Nature of Singlet Exciton Fission in Carotenoid Aggregates

    PubMed Central

    2015-01-01

    Singlet exciton fission allows the fast and efficient generation of two spin triplet states from one photoexcited singlet. It has the potential to improve organic photovoltaics, enabling efficient coupling to the blue to ultraviolet region of the solar spectrum to capture the energy generally lost as waste heat. However, many questions remain about the underlying fission mechanism. The relation between intermolecular geometry and singlet fission rate and yield is poorly understood and remains one of the most significant barriers to the design of new singlet fission sensitizers. Here we explore the structure–property relationship and examine the mechanism of singlet fission in aggregates of astaxanthin, a small polyene. We isolate five distinct supramolecular structures of astaxanthin generated through self-assembly in solution. Each is capable of undergoing intermolecular singlet fission, with rates of triplet generation and annihilation that can be correlated with intermolecular coupling strength. In contrast with the conventional model of singlet fission in linear molecules, we demonstrate that no intermediate states are involved in the triplet formation: instead, singlet fission occurs directly from the initial 1Bu photoexcited state on ultrafast time scales. This result demands a re-evaluation of current theories of polyene photophysics and highlights the robustness of carotenoid singlet fission. PMID:25825939

  6. The nature of singlet exciton fission in carotenoid aggregates.

    PubMed

    Musser, Andrew J; Maiuri, Margherita; Brida, Daniele; Cerullo, Giulio; Friend, Richard H; Clark, Jenny

    2015-04-22

    Singlet exciton fission allows the fast and efficient generation of two spin triplet states from one photoexcited singlet. It has the potential to improve organic photovoltaics, enabling efficient coupling to the blue to ultraviolet region of the solar spectrum to capture the energy generally lost as waste heat. However, many questions remain about the underlying fission mechanism. The relation between intermolecular geometry and singlet fission rate and yield is poorly understood and remains one of the most significant barriers to the design of new singlet fission sensitizers. Here we explore the structure-property relationship and examine the mechanism of singlet fission in aggregates of astaxanthin, a small polyene. We isolate five distinct supramolecular structures of astaxanthin generated through self-assembly in solution. Each is capable of undergoing intermolecular singlet fission, with rates of triplet generation and annihilation that can be correlated with intermolecular coupling strength. In contrast with the conventional model of singlet fission in linear molecules, we demonstrate that no intermediate states are involved in the triplet formation: instead, singlet fission occurs directly from the initial 1B(u) photoexcited state on ultrafast time scales. This result demands a re-evaluation of current theories of polyene photophysics and highlights the robustness of carotenoid singlet fission.

  7. Absence of singlet fission and carrier multiplication in a model conjugated polymer: tracking the triplet population through phosphorescence.

    PubMed

    Bange, Sebastian; Scherf, Ullrich; Lupton, John M

    2012-02-01

    Singlet fission, or multiple exciton generation, has been purported to occur in a variety of material systems. Given the current interest in exploiting this process in photovoltaics, we search for the direct signature of singlet fission, phosphorescence from the triplet state, in a model polymeric organic semiconductor for which photoinduced absorption experiments have implied a tripling of the intersystem crossing yield at the onset of fission. Fluorescence and phosphorescence are clearly discriminated using a picosecond gated photoluminescence excitation technique, at variable temperature. At low excitation densities, in a quasi-steady-state experiment, we detect no change of the relative triplet yield to within 4% for photon energies of almost three times the triplet energy of 2.1 eV. Identical results are obtained under nonlinear two-photon excitation. We conclude that assignments of singlet fission based on induced absorptions alone should be treated with caution and may substantially overestimate excited-state intersystem crossing yields, raising questions with regards to the applicability of the process in devices.

  8. Many-body Green's function GW and Bethe-Salpeter study of the optical excitations in a paradigmatic model dipeptide.

    PubMed

    Faber, C; Boulanger, P; Duchemin, I; Attaccalite, C; Blase, X

    2013-11-21

    We study within the many-body Green's function GW and Bethe-Salpeter formalisms the excitation energies of a paradigmatic model dipeptide, focusing on the four lowest-lying local and charge-transfer excitations. Our GW calculations are performed at the self-consistent level, updating first the quasiparticle energies, and further the single-particle wavefunctions within the static Coulomb-hole plus screened-exchange approximation to the GW self-energy operator. Important level crossings, as compared to the starting Kohn-Sham LDA spectrum, are identified. Our final Bethe-Salpeter singlet excitation energies are found to agree, within 0.07 eV, with CASPT2 reference data, except for one charge-transfer state where the discrepancy can be as large as 0.5 eV. Our results agree best with LC-BLYP and CAM-B3LYP calculations with enhanced long-range exchange, with a 0.1 eV mean absolute error. This has been achieved employing a parameter-free formalism applicable to metallic or insulating extended or finite systems.

  9. Non-radiative depletion of the excited electronic states of 9-cyanoanthracene in presence of tetrahydronaphthols

    NASA Astrophysics Data System (ADS)

    Bhattacharya, T.; Misra, T.; Maiti, M.; Saini, R. D.; Chanda, M.; Lahiri, S.; Ganguly, T.

    2003-02-01

    Both steady state and time resolved spectroscopic measurements reveal that the prime process involved in quenching mechanism of the lowest excited singlet (S 1) and triplet (T 1) states of the well known electron acceptor 9-Cyanoanthracene (9CNA) in presence of 5,6,7,8-tetrahydro-1-naphthol (TH1N) or 5,6,7,8-tetrahydro-2-naphthol (TH2N) is H-bonding interaction. It has been confirmed that the fluorescence of 9CNA is not at all affected in presence of 5,6,7,8-tetrahydro-2-methoxy naphthalene (TH2MN) both in non-polar n-heptane (NH) and highly polar acetonitrile (ACN) media. This indicates that the H-bonding interaction is crucial for the occurrence of the quenching phenomenon observed in the present investigations with TH1N (or TH2N) donors and 9CNA acceptor. In ACN solvent both contact ion-pair (CIP) and solvent-separated (or dissociated) ions are formed due to intermolecular H-bonding interactions in the excited electronic states (both singlet and triplet). In NH environment due to stronger H-bonding interactions, the large proton shift within excited charge transfer (CT) or ion-pair complex, 1or3(D +H⋯A -), causes the formation of the neutral radical, 3(D+HA)*, due to the complete detachment of the H-atom. It is hinted that both TH1N and TH2N due to their excellent H-bonding ability could be used as antioxidants.

  10. Excited electronic states and spectroscopy of unsymmetrically substituted polyenes

    NASA Astrophysics Data System (ADS)

    Itoh, Takao

    2013-09-01

    α-Methyl-ω-phenylpolyenes, Me-(CH=CH)N-Ph, (MPPNs) with N = 2, 3, and 4 were synthesized. Fluorescence, absorption, and excitation spectra of MPPNs have been measured under different conditions along with those of β-methylstyrene. It is shown that there is a forbidden singlet (π, π*) excited state located at energies below the absorbing state for MPPNs with N = 3 and 4. Excitation energies of these polyenes are determined as a function of N. Quantitative analysis of the temperature dependence of the relative intensity of the fluorescence spectrum and its solvent shift behavior extract estimates of the various physical parameters that characterize excitation energies and excited-state dynamical behavior of MPPN with N = 3. The singlet excited states of the MPPNs were compared with those of the α,ω-diphenylpolyenes and α,ω-dimethylpolyenes.

  11. Excited electronic states and spectroscopy of unsymmetrically substituted polyenes.

    PubMed

    Itoh, Takao

    2013-09-07

    α-Methyl-ω-phenylpolyenes, Me-(CH=CH)N-Ph, (MPPNs) with N = 2, 3, and 4 were synthesized. Fluorescence, absorption, and excitation spectra of MPPNs have been measured under different conditions along with those of β-methylstyrene. It is shown that there is a forbidden singlet (π, π∗) excited state located at energies below the absorbing state for MPPNs with N = 3 and 4. Excitation energies of these polyenes are determined as a function of N. Quantitative analysis of the temperature dependence of the relative intensity of the fluorescence spectrum and its solvent shift behavior extract estimates of the various physical parameters that characterize excitation energies and excited-state dynamical behavior of MPPN with N = 3. The singlet excited states of the MPPNs were compared with those of the α,ω-diphenylpolyenes and α,ω-dimethylpolyenes.

  12. CASSCF and CASPT2 ab initio electronic structure calculations find singlet methylnitrene is an energy minimum

    SciTech Connect

    Kemnitz, C.R.; Ellison, G.B.; Karney, W.L.; Borden, W.T.

    2000-02-16

    (12/11)CASSCF and (12/11)CASPT2 ab initio electronic structure calculations with both the cc-pVDZ and cc-pVTZ basis sets find that there is a barrier to the very exothermic hydrogen shift that converts singlet methylnitrene, CH{sub 3}N, to methyleneimine, H{sub 2}C{double{underscore}bond}NH. These two energy minima are connected by a transition structure of C{sub s} symmetry, which is computed to lie 3.8 kcal/mol above the reactant at the (12/11)CASPT2/cc-pVTZ//(12/11)CASSCF/cc-pVTZ level of theory. The (12/11)CASSCF/cc-pVTZ value for the lowest frequency vibration in the transition structure is 854 cm{sup {minus}1}, and CASPT2 calculations concur that this a{double{underscore}prime} vibration does indeed have a positive force constant. Thus, there is no evidence that this geometry is actually a mountain top, rather than a transition structure, on the global potential energy surface or that a C{sub 1} pathway of lower energy connects the reactant to the product. Therefore, computational results indicate that the bands seen for singlet methylnitrene in the negative ion photoelectron spectrum of CH{sub 3}N{sup {minus}} are due to singlet methylnitrene being an energy minimum, rather than a transition state. These results also lead to the prediction that, at least in principle, singlet methylnitrene should be an observable intermediate in the formation of methyleneimine.

  13. Excitations and benchmark ensemble density functional theory for two electrons

    SciTech Connect

    Pribram-Jones, Aurora; Burke, Kieron; Yang, Zeng-hui; Ullrich, Carsten A.; Trail, John R.; Needs, Richard J.

    2014-05-14

    A new method for extracting ensemble Kohn-Sham potentials from accurate excited state densities is applied to a variety of two-electron systems, exploring the behavior of exact ensemble density functional theory. The issue of separating the Hartree energy and the choice of degenerate eigenstates is explored. A new approximation, spin eigenstate Hartree-exchange, is derived. Exact conditions that are proven include the signs of the correlation energy components and the asymptotic behavior of the potential for small weights of the excited states. Many energy components are given as a function of the weights for two electrons in a one-dimensional flat box, in a box with a large barrier to create charge transfer excitations, in a three-dimensional harmonic well (Hooke's atom), and for the He atom singlet-triplet ensemble, singlet-triplet-singlet ensemble, and triplet bi-ensemble.

  14. Flavour singlets in gauge theory as permutations

    NASA Astrophysics Data System (ADS)

    Kimura, Yusuke; Ramgoolam, Sanjaye; Suzuki, Ryo

    2016-12-01

    Gauge-invariant operators can be specified by equivalence classes of permutations. We develop this idea concretely for the singlets of the flavour group SO( N f ) in U( N c ) gauge theory by using Gelfand pairs and Schur-Weyl duality. The singlet operators, when specialised at N f = 6, belong to the scalar sector of N=4 SYM. A simple formula is given for the two-point functions in the free field limit of g Y M 2 = 0. The free two-point functions are shown to be equal to the partition function on a 2-complex with boundaries and a defect, in a topological field theory of permutations. The permutation equivalence classes are Fourier transformed to a representation basis which is orthogonal for the two-point functions at finite N c , N f . Counting formulae for the gauge-invariant operators are described. The one-loop mixing matrix is derived as a linear operator on the permutation equivalence classes.

  15. Development of a Mist Singlet Oxygen Generator

    NASA Astrophysics Data System (ADS)

    Muto, Shigeki; Endo, Masamori; Nanri, Kenzo; Fujioka, Tomoo

    2002-08-01

    The singlet oxygen generator (SOG) generates singlet oxygen for a chemical oxygen iodine laser (COIL), using the gas-liquid reaction between basic hydrogen peroxide (BHP) and Cl2 gas. The Jet-SOG has been widely used, wherein jet BHP from small orifices reacts with Cl2 gas, and the BHP utilization is less than 1% in a single pass through the reaction zone. To improve BHP utilization, the reaction surface with Cl2 gas should be increased, and the droplet diameter of BHP should be decreased. In this study, two types of mist generators were tested for the SOG, with which 65-μm- and 15-μm-diameter droplets were generated. In the 65 μm mist generator, BHP utilization was 22.5% at the Cl2 flow rate of 8.3 mmol/s, and in the 15 μm mist generator, BHP utilization was 41.5% at the Cl2 flow rate of 9.0 mmol/s, that is, BHP utilization of the new SOG, Mist-SOG, markedly exceeded that of the conventional Jet-SOG.

  16. Lowest enthalpy polymorph of cold-compressed graphite phase.

    PubMed

    Li, Da; Bao, Kuo; Tian, Fubo; Zeng, Zhenwu; He, Zhi; Liu, Bingbing; Cui, Tian

    2012-04-07

    Based on an ab initio evolutionary algorithm, a novel carbon polymorph with an orthorhombic Cmcm symmetry is predicted, named as C carbon, which has the lowest enthalpy among the previously proposed cold-compressed graphite phases.

  17. Sub-50 fs excited state dynamics of 6-chloroguanine upon deep ultraviolet excitation.

    PubMed

    Mondal, Sayan; Puranik, Mrinalini

    2016-05-18

    The photophysical properties of natural nucleobases and their respective nucleotides are ascribed to the sub-picosecond lifetime of their first singlet states in the UV-B region (260-350 nm). Electronic transitions of the ππ* type, which are stronger than those in the UV-B region, lie at the red edge of the UV-C range (100-260 nm) in all isolated nucleobases. The lowest energetic excited states in the UV-B region of nucleobases have been investigated using a plethora of experimental and theoretical methods in gas and solution phases. The sub-picosecond lifetime of these molecules is not a general attribute of all nucleobases but specific to the five primary nucleobases and a few xanthine and methylated derivatives. To determine the overall UV photostability, we aim to understand the effect of more energetic photons lying in the UV-C region on nucleobases. To determine the UV-C initiated photophysics of a nucleobase system, we chose a halogen substituted purine, 6-chloroguanine (6-ClG), that we had investigated previously using resonance Raman spectroscopy. We have performed quantitative measurements of the resonance Raman cross-section across the Bb absorption band (210-230 nm) and constructed the Raman excitation profiles. We modeled the excitation profiles using Lee and Heller's time-dependent theory of resonance Raman intensities to extract the initial excited state dynamics of 6-ClG within 30-50 fs after photoexcitation. We found that imidazole and pyrimidine rings of 6-ClG undergo expansion and contraction, respectively, following photoexcitation to the Bb state. The amount of distortions of the excited state structure from that of the ground state structure is reflected by the total internal reorganization energy that is determined at 112 cm(-1). The contribution of the inertial component of the solvent response towards the total reorganization energy was obtained at 1220 cm(-1). In addition, our simulation also yields an instantaneous response of the first

  18. Polymorphism influences singlet fission rates in tetracene thin films

    DOE PAGES

    Arias, Dylan H.; Ryerson, Joseph L.; Cook, Jasper D.; ...

    2015-11-06

    Here, we report the effect of crystal structure and crystallite grain size on singlet fission (SF) in polycrystalline tetracene, one of the most widely studied SF and organic semiconductor materials. SF has been comprehensively studied in one polymoprh (Tc I), but not in the other, less stable polymorph (Tc II). Using carefully controlled thermal evaporation deposition conditions and high sensitivity ultrafast transient absorption spectroscopy, we found that for large crystallite size samples, SF in nearly pure Tc II films is significantly faster than SF in Tc I films. We also discovered that crystallite size has a minimal impact on themore » SF rate in Tc II films, but a significant influence in Tc I films. Large crystallites exhibit SF times of 125 ps and 22 ps in Tc I and Tc II, respectively, whereas small crystallites have SF times of 31 ps and 33 ps. Our results demonstrate first, that attention must be paid to polymorphism in obtaining a self-consistent rate picture for SF in tetracene and second, that control of polymorphism can play a significant role towards achieving a mechanistic understanding of SF in polycrystalline systems. In this latter context we show that conventional theory based on non-covalent tetracene couplings is insufficient, thus highlighting the need for models that capture the delocalized and highly mobile nature of excited states in elucidating the full photophysical picture.« less

  19. Polymorphism influences singlet fission rates in tetracene thin films

    SciTech Connect

    Arias, Dylan H.; Ryerson, Joseph L.; Cook, Jasper D.; Damrauer, Niels H.; Johnson, Justin C.

    2015-11-06

    Here, we report the effect of crystal structure and crystallite grain size on singlet fission (SF) in polycrystalline tetracene, one of the most widely studied SF and organic semiconductor materials. SF has been comprehensively studied in one polymoprh (Tc I), but not in the other, less stable polymorph (Tc II). Using carefully controlled thermal evaporation deposition conditions and high sensitivity ultrafast transient absorption spectroscopy, we found that for large crystallite size samples, SF in nearly pure Tc II films is significantly faster than SF in Tc I films. We also discovered that crystallite size has a minimal impact on the SF rate in Tc II films, but a significant influence in Tc I films. Large crystallites exhibit SF times of 125 ps and 22 ps in Tc I and Tc II, respectively, whereas small crystallites have SF times of 31 ps and 33 ps. Our results demonstrate first, that attention must be paid to polymorphism in obtaining a self-consistent rate picture for SF in tetracene and second, that control of polymorphism can play a significant role towards achieving a mechanistic understanding of SF in polycrystalline systems. In this latter context we show that conventional theory based on non-covalent tetracene couplings is insufficient, thus highlighting the need for models that capture the delocalized and highly mobile nature of excited states in elucidating the full photophysical picture.

  20. Chemical quenching of singlet oxygen by carotenoids in plants.

    PubMed

    Ramel, Fanny; Birtic, Simona; Cuiné, Stéphan; Triantaphylidès, Christian; Ravanat, Jean-Luc; Havaux, Michel

    2012-03-01

    Carotenoids are considered to be the first line of defense of plants against singlet oxygen ((1)O(2)) toxicity because of their capacity to quench (1)O(2) as well as triplet chlorophylls through a physical mechanism involving transfer of excitation energy followed by thermal deactivation. Here, we show that leaf carotenoids are also able to quench (1)O(2) by a chemical mechanism involving their oxidation. In vitro oxidation of β-carotene, lutein, and zeaxanthin by (1)O(2) generated various aldehydes and endoperoxides. A search for those molecules in Arabidopsis (Arabidopsis thaliana) leaves revealed the presence of (1)O(2)-specific endoperoxides in low-light-grown plants, indicating chronic oxidation of carotenoids by (1)O(2). β-Carotene endoperoxide, but not xanthophyll endoperoxide, rapidly accumulated during high-light stress, and this accumulation was correlated with the extent of photosystem (PS) II photoinhibition and the expression of various (1)O(2) marker genes. The selective accumulation of β-carotene endoperoxide points at the PSII reaction centers, rather than the PSII chlorophyll antennae, as a major site of (1)O(2) accumulation in plants under high-light stress. β-Carotene endoperoxide was found to have a relatively fast turnover, decaying in the dark with a half time of about 6 h. This carotenoid metabolite provides an early index of (1)O(2) production in leaves, the occurrence of which precedes the accumulation of fatty acid oxidation products.

  1. The predicted spectrum and singlet-triplet interaction of the hypermetallic molecule SrOSr.

    PubMed

    Ostojić, B; Jensen, Per; Schwerdtfeger, P; Bunker, P R

    2013-10-03

    In accordance with previous studies in our group on Be, Mg, and Ca hypermetallic oxides, we find that SrOSr has a linear X̃1Σ(g)+ ground electronic state and a very low lying first excited ã3Σ(u)+ triplet electronic state. No gas-phase spectrum of this molecule has been assigned yet, and to encourage and assist in its discovery we present a complete ab initio simulation, with absolute intensities, of the infrared absorption spectrum for both electronic states. The three-dimensional potential energy surfaces and the electric dipole moment surfaces of the X̃1Σ(g)+ and ã3Σ(u)+ electronic states are calculated using a multireference configuration interaction (MRCISD) approach in combination with internally contracted multireference perturbation theory (RS2C) based on complete active space self-consistent field (CASSCF) wave functions applying a Sadlej pVTZ basis set for both O and Sr and the Stuttgart relativistic small-core effective core potential for Sr. The infrared spectra are simulated using the MORBID program system. We also calculate vertical excitation energies and transition moments for several excited singlet and triplet electronic states in order to predict the positions and intensities of the most prominent singlet and triplet electronic absorption bands. Finally, for this heavy molecule, we calculate the singlet–triplet interaction matrix elements between close-lying vibronic levels of the X̃ and ã electronic states and find them to be very small.

  2. Helical Self-Assembly-Induced Singlet-Triplet Emissive Switching in a Mechanically Sensitive System.

    PubMed

    Wu, Hongwei; Zhou, Yunyun; Yin, Liyuan; Hang, Cheng; Li, Xin; Ågren, Hans; Yi, Tao; Zhang, Qing; Zhu, Liangliang

    2017-01-18

    In nanoscience, chirality has shown a significant ability to tune materials' electronic properties, whereas imposing macrochirality into the regulation of singlet-triplet features of organic optoelectronics remains a challenging research topic. Since the tuning for singlet and triplet excited-state properties in a single π-functional molecule connects to its multicolor luminescent application and potential improvement of internal quantum efficiency, we here report that supramolecular chirality can be employed to toggle the singlet and triplet emissions in a well-designed asterisk-shaped molecule. Employing a hexathiobenzene-based single luminophore as a prototype and functionalizing it with chiral α-lipoiate side groups, we find that helical nanoarchitectures can accordingly form in mixed DMF/H2O solution. On this basis, switching between fluorescence and phosphorescence of the material can be realized upon helical self-assembly and dissociation. Such a behavior can be attributed to a helical-conformation-dependent manipulation of the intersystem crossing. Furthermore, reversible mechanoluminescence of the corresponding solid sample was also observed to rely on an analogous molecular self-assembly alternation. These results can probably provide new visions for the development of next-generation supramolecular chiral functional materials.

  3. Singlet oxygen generation from water-soluble quantum dot-organic dye nanocomposites.

    PubMed

    Shi, Lixin; Hernandez, Billy; Selke, Matthias

    2006-05-17

    Water-soluble quantum dot-organic dye nanocomposites have been prepared via electrostatic interaction. We used CdTe quantum dots with diameters up to 3.4 nm, 2-aminoethanethiol as a stabilizer, and meso-tetra(4-sulfonatophenyl)porphine dihydrochloride (TSPP) as an organic dye. The photophysical properties of the nanocomposite have been investigated. The fluorescence of the parent CdTe quantum dot is largely suppressed. Instead, indirect excitation of the TSPP moiety leads to production of singlet oxygen with a quantum yield of 0.43. The nanocomposite is sufficiently photostable for biological applications.

  4. Singlet Oxygen Photosensitization by EGFP and its Chromophore HBDI

    PubMed Central

    Jiménez-Banzo, Ana; Nonell, Santi; Hofkens, Johan; Flors, Cristina

    2008-01-01

    The photosensitization of reactive oxygen species and, in particular, singlet oxygen by proteins from the green fluorescent protein (GFP) family influences important processes such as photobleaching and genetically targeted chromophore-assisted light inactivation. In this article, we report an investigation of singlet oxygen photoproduction by GFPs using time-resolved detection of the NIR phosphorescence of singlet oxygen at 1275 nm. We have detected singlet oxygen generated by enhanced (E)GFP, and measured a lifetime of 4 μs in deuterated solution. By comparison with the model compound of the EGFP fluorophore 4-hydroxybenzylidene-1,2-dimethylimidazoline (HBDI), our results confirm that the β-can of EGFP provides shielding of the fluorophore and reduces the production of this reactive oxygen species. In addition, our results yield new information about the triplet state of these proteins. The quantum yield for singlet oxygen photosensitization by the model chromophore HBDI is 0.004. PMID:17766345

  5. Pseudogap and singlet formation in organic and cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Merino, J.; Gunnarsson, O.

    2014-06-01

    The pseudogap phase occurring in cuprate and organic superconductors is analyzed based on the dynamical cluster approximation approach to the Hubbard model. In this method a cluster embedded in a self-consistent bath is studied. With increasing Coulomb repulsion, U, the antinodal point [k =(π,0)] displays a gradual suppression of spectral density of states around the Fermi energy which is not observed at the nodal point [k =(π/2,π/2)]. The opening of the antinodal pseudogap is found to be related to the internal structure of the cluster and the much weaker bath-cluster couplings at the antinodal than nodal point. The role played by internal cluster correlations is elucidated from a simple four-level model. For small U, the cluster levels form Kondo singlets with their baths leading to a peak in the spectral density. As U is increased a localized state is formed localizing the electrons in the cluster. If this cluster localized state is nondegenerate, the Kondo effect is destroyed and a pseudogap opens up in the spectra at the antinodal point. The pseudogap can be understood in terms of destructive interference between different paths for electrons hopping between the cluster and the bath. However, electrons at the nodal points remain in Kondo states up to larger U since they are more strongly coupled to the bath. The strong correlation between the (π,0) and the (0,π) cluster levels in the localized state leads to a large correlation energy gain, which is important for localizing electrons and opening up a pseudogap at the antinodal point. Such a scenario is in contrast with two independent Mott transitions found in two-band systems with different bandwidths in which the localized cluster electron does not correlate strongly with any other cluster electron for intermediate U. The important intracluster sector correlations are associated with the resonating valence bond character of the cluster ground state containing d-wave singlet pairs. The low

  6. Color Singlet Production at NNLO in MCFM

    SciTech Connect

    Boughezal, Radja; Campbell, John M.; Ellis, R. Keith; Focke, Christfried; Giele, Walter; Liu, Xiaohui; Petriello, Frank; Williams, Ciaran

    2016-05-25

    We present the implementation of several color-singlet final-state processes at Next-to-Next-to Leading Order (NNLO) accuracy in QCD to the publicly available parton-level Monte Carlo program MCFM. Specifically we discuss the processes $pp\\rightarrow H$, $pp\\rightarrow Z$, $pp\\rightarrow W$, $pp\\rightarrow HZ$, $pp\\rightarrow HW$ and $pp\\rightarrow\\gamma\\gamma$. Decays of the unstable bosons are fully included, resulting in a flexible fully differential Monte Carlo code. The NNLO corrections have been calculated using the non-local $N$-jettiness subtraction approach. Special attention is given to the numerical aspects of running MCFM for these processes at this order. We pay particular attention to the systematic uncertainties due to the power corrections induced by the $N$-jettiness regularization scheme and the evaluation time needed to run the hybrid openMP/MPI version of MCFM at NNLO on multi-processor systems.

  7. Dopant-Catalyzed Singlet Exciton Fission.

    PubMed

    Snamina, Mateusz; Petelenz, Piotr

    2017-01-04

    In acene-based molecular crystals, singlet exciton fission occurs through superexchange mediated by two virtual charge-transfer states. Hence, it is sensitive to their energies, which depend on the local environment. The crucial point is the balance between the charge-quadrupole interactions within the pair of molecules directly involved in the process and those with the surrounding crystal matrix, which are governed by local symmetry and may be influenced by breaking this symmetry. This happens, for example, in the vicinity of a vacancy or an impurity and in the latter case is complemented by polarization energy and potentially by dipolar contributions. Our model calculations indicate that the superexchange coupling is sensitive enough to these factors to enable fission to be catalyzed by judiciously designed dopant molecules. In favorable cases, dipolar dopants are expected to increase the fission rate by an order of magnitude.

  8. Naphthoxazole-based singlet oxygen fluorescent probes.

    PubMed

    Ruiz-González, Rubén; Zanocco, Renzo; Gidi, Yasser; Zanocco, Antonio L; Nonell, Santi; Lemp, Else

    2013-01-01

    In this study, we report the synthesis and photochemical behavior of a new family of photoactive compounds to assess its potential as singlet oxygen ((1)O2) probes. The candidate dyads are composed by a (1)O2 trap plus a naphthoxazole moiety linked directly or through an unsaturated bond to the oxazole ring. In the native state, the inherent great fluorescence of the naphthoxazole moiety is quenched; but in the presence of (1)O2, generated by the addition and appropriate irradiation of an external photosensitizer, a photooxidation reaction occurs leading to the formation of a new chemical entity whose fluorescence is two orders of magnitude higher than that of the initial compound, at the optimal selected wavelength. The presented dyads outperform the commonly used indirect fluorescent (1)O2 probes in terms of fluorescence enhancement maintaining the required specificity for (1)O2 detection in solution.

  9. Molecular dynamics of excited state intramolecular proton transfer: 3-hydroxyflavone in solution

    SciTech Connect

    Bellucci, Michael A.; Coker, David F.

    2012-05-21

    The ultrafast enol-keto photoisomerization in the lowest singlet excited state of 3-hydroxyflavone is investigated using classical molecular dynamics in conjunction with empirical valence bond (EVB) potentials for the description of intramolecular interactions, and a molecular mechanics and variable partial charge model, dependent on transferring proton position, for the description of solute-solvent interactions. A parallel multi-level genetic program was used to accurately fit the EVB potential energy surfaces to high level ab initio data. We have studied the excited state intramolecular proton transfer (ESIPT) reaction in three different solvent environments: methylcyclohexane, acetonitrile, and methanol. The effects of the environment on the proton transfer time and the underlying mechanisms responsible for the varied time scales of the ESIPT reaction rates are analyzed. We find that simulations with our EVB potential energy surfaces accurately reproduce experimentally determined reaction rates, fluorescence spectra, and vibrational frequency spectra in all three solvents. Furthermore, we find that the ultrafast ESIPT process results from a combination of ballistic transfer, and intramolecular vibrational redistribution, which leads to the excitation of a set of low frequency promoting vibrational modes. From this set of promoting modes, we find that an O-O in plane bend and a C-H out of plane bend are present in all three solvents, indicating that they are fundamental to the ultrafast proton transfer. Analysis of the slow proton transfer trajectories reveals a solvent mediated proton transfer mechanism, which is diffusion limited.

  10. W∞-ALGEBRA for Fermions in the Lowest Landau Level

    NASA Astrophysics Data System (ADS)

    Myung, Yun Soo

    We derive the W∞-algebra directly from the cocycle (translational) transformation of fermions in the lowest Landau level. This happens whenever the translational symmetry is unbroken in the ground state. Under the cocycle transformations, the lowest Landau level condition and fermion number are preserved. In the droplet approximation, the algebra of this system is reduced to the classical w∞-algebra (area-preserving deformations) and is related to condensed matter physics. This describes the edge modes of the fractional quantum Hall effect.

  11. Excited state properties of naphtho-homologated xxDNA bases and effect of methanol solution, deoxyribose, and base pairing.

    PubMed

    Zhang, Laibin; Ren, Tingqi; Tian, Jianxiang; Yang, Xiuqin; Zhou, Liuzhu; Li, Xiaoming

    2013-04-18

    Design and synthesis of fluorescent nucleobase analogues for studying structures and dynamics of nucleic acids have attracted much attention in recent years. In the present work, a comprehensive theoretical study of electronic transitions of naphtho-homologated base analogues, namely, xxC, xxT, xxA, and xxG, was performed. The nature of the low-lying excited states was discussed, and the results were compared with those of x-bases. Geometrical characteristics of the lowest excited singlet ππ* states were explored using the CIS method. The calculated excitation maxima are 423, 397, 383, and 357 nm for xxA, xxG, xxC, and xxT, respectively, and they are greatly red-shifted compared with x-bases and natural bases, allowing them to be selectively excited in the presence of the natural bases. In the gas phase, the fluorescence from them would be expected to occur around 497, 461, 457, and 417 nm, respectively. The effects of methanol solution, deoxyribose, and base paring with their complementary natural bases on the relevant absorption and emission spectra of these modified bases were also examined.

  12. Intramolecular excited-state proton-transfer studies on flavones in different environments

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Jain, Sapan K.; Sharma, Neera; Rastogi, Ramesh C.

    2001-02-01

    The absorption and fluorescence spectra of some biologically active flavones have been studied as a function of the acidity (pH/H 0) of the solution. Dissociation constants have been determined for the ground and first excited singlet states. The results are compared with those obtained from Forster-Weller calculations. The acidity constants obtained by fluorimetric titration method are in complete agreement (in most of the systems) with ground state data indicating a excited state deactivation prior to prototropic equilibration. Compared to umbelliferones, flavones are only weakly fluorescent in alkaline solution. This behaviour is explained by the small energy difference between the singlet excited state and triplet excited state giving rise to more efficient intersystem crossing. Most of the flavones studied here undergo adiabatic photodissociation in the singlet excited state indicating the formation of an exciplex or a phototautomer.

  13. Singlet Oxygen Generation by Cyclometalated Complexes and Applications†

    PubMed Central

    Ashen-Garry, David; Selke, Matthias

    2014-01-01

    While cyclometalated complexes have been extensively studied for optoelectronic applications, these compounds also represent a relatively new class of photosensitizers for the production of singlet oxygen. Thus far, singlet oxygen generation from cyclometalated Ir and Pt complexes has been studied in detail. In this review, photophysical data for singlet oxygen generation from these complexes is presented, and the mechanism of 1O2 generation is discussed, including evidence for singlet oxygen generation via an electron transfer mechanism for some of cyclometalated Ir complexes. The period from the first report of singlet oxygen generation by a cyclometalated Ir complex in 2002 through August 2013 is covered in this review. This new class of singlet oxygen photosensitizers may prove to be rather versatile due to the ease of substitution of ancillary ligands without loss of activity. Several cyclometalated complexes have been tethered to zeolites, polystyrene, or quantum dots. Applications for photooxygenation of organic molecules, including “traditional” singlet oxygen reactions (ene reaction, [4+2] and [2+2] cycloadditions) as well as oxidative coupling of amines are presented. Potential biomedical applications are also reviewed. PMID:24344628

  14. 48 CFR 47.306-2 - Lowest overall transportation costs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... transportation costs. 47.306-2 Section 47.306-2 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.306-2 Lowest overall transportation costs. (a) For the evaluation of offers, the transportation officer shall give to the...

  15. 20. WINE CELLAR This is the lowest room in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. WINE CELLAR This is the lowest room in the house, under the service entrance from S Street. Note reinforced concrete floor slab above (reinforced concrete floor slabs were used throughout the house). - Woodrow Wilson House, 2340 South S Street, Northwest, Washington, District of Columbia, DC

  16. Fluctuations in Electronic Energy Affecting Singlet Fission Dynamics and Mixing with Charge-Transfer State: Quantum Dynamics Study.

    PubMed

    Fujihashi, Yuta; Ishizaki, Akihito

    2016-02-04

    Singlet fission is a spin-allowed process by which a singlet excited state is converted to two triplet states. To understand mechanisms of the ultrafast fission via a charge transfer (CT) state, one has investigated the dynamics through quantum-dynamical calculations with the uncorrelated fluctuation model; however, the electronic states are expected to experience the same fluctuations induced by the surrounding molecules because the electronic structure of the triplet pair state is similar to that of the singlet state except for the spin configuration. Therefore, the fluctuations in the electronic energies could be correlated, and the 1D reaction coordinate model may adequately describe the fission dynamics. In this work we develop a model for describing the fission dynamics to explain the experimentally observed behaviors. We also explore impacts of fluctuations in the energy of the CT state on the fission dynamics and the mixing with the CT state. The overall behavior of the dynamics is insensitive to values of the reorganization energy associated with the transition from the singlet state to the CT state, although the coherent oscillation is affected by the fluctuations. This result indicates that the mixing with the CT state is rather robust under the fluctuations in the energy of the CT state as well as the high-lying CT state.

  17. An ab initio investigation of the ground and low-lying singlet and triplet electronic states of XNO{sub 2} and XONO (X = Cl, Br, and I)

    SciTech Connect

    Peterson, Kirk A.; Francisco, Joseph S.

    2014-01-28

    A systematic ab initio treatment of the nitryl halides (XNO{sub 2}) and the cis- and trans- conformers of the halide nitrites (XONO), where X = Cl, Br, and I, have been carried out using highly correlated methods with sequences of correlation consistent basis sets. Equilibrium geometries and harmonic frequencies have been accurately calculated in all cases at the explicitly correlated CCSD(T)-F12b level of theory, including the effects of core-valence correlation for the former. Where experimental values are available for the equilibrium structures (ClNO{sub 2} and BrNO{sub 2}), the present calculations are in excellent agreement; however, the X-O distances are slightly too long by about 0.01 Å due to missing multireference effects. Accurate predictions for the iodine species are made for the first time. The vertical electronic excitation spectra have been calculated using equation-of-motion coupled cluster methods for the low-lying singlet states and multireference configuration interaction for both singlet and triplet states. The latter also included the effects of spin-orbit coupling to provide oscillator strengths for the ground state singlet to excited triplet transitions. While for ClNO{sub 2} the transitions to excited singlet states all occur at wavelengths shorter than 310 nm, there is one longer wavelength singlet transition in BrNO{sub 2} and two in the case of INO{sub 2}. The long wavelength tail in the XNO{sub 2} species is predicted to be dominated by transitions to triplet states. In addition to red-shifting from X = Cl to I, the triplet transitions also increase in oscillator strength, becoming comparable to many of the singlet transitions in the case of INO{sub 2}. Hence in particular, the latter species should be very photolabile. Similar trends are observed and reported for the halogen nitrites, many of which for the first time.

  18. Reduction of the virtual space for coupled-cluster excitation energies of large molecules and embedded systems.

    PubMed

    Send, Robert; Kaila, Ville R I; Sundholm, Dage

    2011-06-07

    We investigate how the reduction of the virtual space affects coupled-cluster excitation energies at the approximate singles and doubles coupled-cluster level (CC2). In this reduced-virtual-space (RVS) approach, all virtual orbitals above a certain energy threshold are omitted in the correlation calculation. The effects of the RVS approach are assessed by calculations on the two lowest excitation energies of 11 biochromophores using different sizes of the virtual space. Our set of biochromophores consists of common model systems for the chromophores of the photoactive yellow protein, the green fluorescent protein, and rhodopsin. The RVS calculations show that most of the high-lying virtual orbitals can be neglected without significantly affecting the accuracy of the obtained excitation energies. Omitting all virtual orbitals above 50 eV in the correlation calculation introduces errors in the excitation energies that are smaller than 0.1 eV. By using a RVS energy threshold of 50 eV, the CC2 calculations using triple-ζ basis sets (TZVP) on protonated Schiff base retinal are accelerated by a factor of 6. We demonstrate the applicability of the RVS approach by performing CC2/TZVP calculations on the lowest singlet excitation energy of a rhodopsin model consisting of 165 atoms using RVS thresholds between 20 eV and 120 eV. The calculations on the rhodopsin model show that the RVS errors determined in the gas-phase are a very good approximation to the RVS errors in the protein environment. The RVS approach thus renders purely quantum mechanical treatments of chromophores in protein environments feasible and offers an ab initio alternative to quantum mechanics/molecular mechanics separation schemes.

  19. Triple-Singlet Mixing in Si_3: the 1^3A_{1}^{''} - {a}{^3}A{^{'}_2} Transition

    NASA Astrophysics Data System (ADS)

    Zhang, Ruohan; Steimle, Timothy C.

    2013-06-01

    The electronic spectrum of the triplet states of the D_{3h} isomer of Si_3 recorded using both mass selected REMPI and LIF spectroscopy was recently reported. In that same study the dispersed laser induced fluorescence (DLIF) spectra resulting from excitation of various bands in the visible range were recorded. The DLIF spectra exhibited a progression with a 505 cm^{-1} spacing, which was assign to the breathing mode of the D_{3h}, equilateral triangle, Si_{3} molecule. In addition, and quite unexpectedly, the DLIF spectra exhibited a progression having a spacing of 173 cm^{-1}. This progression was tentatively assigned to transition involving the bending mode of the ^1A_1 state of the C_{2v} isomer. A possible explanation for the observation of transitions in the singlet manifold is that upon laser excitation in the D_{3h} triplet manifold there is rapid intersystem crossing to the singlet manifold followed by fluorescence to the ground state of C_{2v} isomer. Here we address the issue of possible intersystem crossing by recording the excitation on DLIF spectra in the present of a static magnetic field. Magnetic fields are known to enhance the singlet-triple mixing. Si_{3} was produced using a supersonic pulsed discharge source (900 V, 20 μs, 6kΩ) with a 1% SiH_{4} in argon mixture. Magnetic fields of approximately 500 and 950 Gauss were applied. We will report the interpretation of the magnetic field induced changes to the LIF and DLIF spectra and the implications for the singlet-triple mixing process. N. J. Reilly, X. Zhuang, V. Gupta, R. Nagarajan, R. C. Fortenberry, J. P. Maier, T. C. Steimle, J. F. Stanton, M. C. McCarthy; {J. Chem. Phys., {136(19)}, 194307, (2004). V. I. Makarov, I. V. Khmelinskii; {Advances in Chemical Phisics, {Volume 118}, 45-98, (2001). thanks

  20. Water induced dismutation of superoxide anion generates singlet molecular oxygen.

    PubMed

    Corey, E J; Mehrotra, M M; Khan, A U

    1987-06-15

    Direct spectroscopic measurement of 1268 nm singlet oxygen emission from KO2 suspensions at room temperature in three non-protonic solvents--CCl4, Cl2FCCClF2, and C6F14 by the action of water is reported. The results clearly show that the singlet oxygen generation is due to a water induced reaction, and suggest that one role of the enzyme superoxide dismutase may be the protection of biological structures, for example, lipid membranes, from degradation by singlet oxygen.

  1. Excited-State Dynamics in 6-THIOGUANOSINE from Femtosecond to Microsecond Time Scale

    NASA Astrophysics Data System (ADS)

    Guo, Cao; Reichardt, Christian; Crespo-Hernández, Carlos E.

    2011-06-01

    6-thioguanine is a widely used pro-drug in which the oxygen atom in the carbonyl group of guanine is replaced by a sulfur atom. Previous studies have shown that patients treated with 6-thioguanine can metabolize and incorporate it in DNA as 6-thioguanosine (6tGuo). These patients show a high incidence of skin cancer when they are exposed to extended periods of sunlight irradiation. In this work, the photodynamics of 6tGuo is investigated by broad band time resolved transient spectroscopy. Similar to previously studied 4-thiothymidine, our results show that excitation of 6tGuo with UVA light at 340 nm results in efficient and ultrafast intersystem crossing to the triplet manifold (τ = 0.31±0.05 ps) and a high triplet quantum yield (φ = 0.8±0.2). The triplet state has a lifetime of 720±10 ns in N2-saturated vs. 460±10 ns in air-saturated aqueous solution. In addition, a minor picosecond deactivation channel (80±15 ps) is observed, which is tentatively assigned to internal conversion from the lowest-energy excited singlet state to the ground state. Quantum chemical calculations support the proposed kinetic model. Based on the high triplet quantum yield measured, it is proposed that the phototoxicity of 6tGuo is due to its ability to photosensitized singlet oxygen, which can result in oxidative damage to DNA. P. O'Donovan, C. M. Perrett, X. Zhang, B. Montaner, Y.-Z. Xu, C. A. Harwood, J. M. McGregor, S. L. Walker, F. Hanaoka, P. Karran, Science 309, 1871 (2005). C. Reichardt, C. Guo, C. E. Crespo-Hernández, J. Phys. Chem. B. in press (2011). C. Reichardt, C. E. Crespo-Hernández, J. Phys. Chem. Lett. 1, 2239 (2010) C. Reichardt, C. E. Crespo-Hernández, Chem. Comm. 46, 5963 (2010).

  2. Generation of singlet oxygen from fragmentation of monoactivated 1,1-dihydroperoxides

    PubMed Central

    Hang, Jiliang; Ghorai, Prasanta; Finkenstaedt-Quinn, Solaire A.; Findik, Ilhan; Sliz, Emily; Kuwata, Keith T.; Dussault, Patrick H.

    2012-01-01

    The first singlet excited state of molecular oxygen (1O2) is an important oxidant in chemistry, biology, and medicine. 1O2 is most often generated through photosensitized excitation of ground state oxygen. 1O2 can also be generated chemically through the decomposition of hydrogen peroxide and other peroxides. However, most of these “dark oxygenations” require water-rich media associated with short 1O2 lifetimes, and there is a need for oxygenations able to be conducted in organic solvents. We now report that monoactivated derivatives of 1,1-dihydroperoxides undergo a previously unobserved fragmentation to generate high yields of singlet molecular oxygen (1O2). The fragmentations, which can be conducted in a variety of organic solvents, require a geminal relationship between a peroxyanion and a peroxide activated towards heterolytic cleavage. The reaction is general for a range of skeletal frameworks and activating groups and, via in situ activation, can be applied directly to 1,1-dihydroperoxides. Our investigation suggests the fragmentation involves rate-limiting formation of a peroxyanion that decomposes via a Grob-like process. PMID:22283731

  3. A dynamic model for ALA-PDT of skin: analysis of the correlation of fluorescence and singlet oxygen luminescence to spatial distribution of singlet oxygen

    NASA Astrophysics Data System (ADS)

    Liu, Baochang; Farrell, Thomas J.; Patterson, Michael S.

    2011-02-01

    Both photosensitizer fluorescence photobleaching and singlet oxygen luminescence (SOL) have been measured during ALA-PDT of skin in attempts to estimate PDT dose. However, the relationship of these detected signals to singlet oxygen (1O2) dose in a given volume and to its depth distribution are not well understood and difficult to verify experimentally because of the temporal and spatial variations of the essential parameters in PDT. A model for ALA-PDT of normal human skin was developed to simulate the dynamic progress of PDT. The model incorporates Monte Carlo simulations of excitation light fluence and both SOL and PpIX fluorescence signals, 1O2-mediated photobleaching mechanism, ground-state oxygen (3O2) diffusion and perfusion, a cumulative 1O2-dependent threshold vascular response and any initial distribution of PpIX. The simulated time-resolved evolution of the instantaneous PpIX fluorescence photobleaching and cumulative SOL signals are examined as functions of irradiance and related to both the time-resolved distribution of cumulative 1O2 production at various depths and the average dose in the dermis. The simulations used a green light source at 523 nm. The correlation of SOL signals with the average dose was found to be less irradiance-dependent than that of fluorescence photobleaching, which indicates the great potential of SOL as a clinical dosimetric tool in PDT.

  4. Spin-singlet state formation in the cluster Mott insulator GaNb4S8 studied by μSR and NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Waki, T.; Kajinami, Y.; Tabata, Y.; Nakamura, H.; Yoshida, M.; Takigawa, M.; Watanabe, I.

    2010-01-01

    Muon spin relaxation (μSR) and nuclear magnetic resonance experiments revealed that the spin-singlet state with an excitation gap of ˜200K is realized from S=1/2Nb4 tetrahedral clusters in a cluster Mott insulator GaNb4S8 . The intercluster cooperative phenomenon to the singlet state at TS=32k is triggered by intracluster Jahn-Teller type structural instability developed from ˜3TS . Referring to the lattice symmetry, the formation of Nb8 octamer ( Nb4-Nb4 bond) is suggested.

  5. Effect of H2 binding on the nonadiabatic transition probability between singlet and triplet states of the [NiFe]-hydrogenase active site.

    PubMed

    Kaliakin, Danil S; Zaari, Ryan R; Varganov, Sergey A

    2015-02-12

    We investigate the effect of H2 binding on the spin-forbidden nonadiabatic transition probability between the lowest energy singlet and triplet electronic states of [NiFe]-hydrogenase active site model, using a velocity averaged Landau-Zener theory. Density functional and multireference perturbation theories were used to provide parameters for the Landau-Zener calculations. It was found that variation of the torsion angle between the terminal thiolate ligands around the Ni center induces an intersystem crossing between the lowest energy singlet and triplet electronic states in the bare active site and in the active site with bound H2. Potential energy curves between the singlet and triplet minima along the torsion angle and H2 binding energies to the two spin states were calculated. Upon H2 binding to the active site, there is a decrease in the torsion angle at the minimum energy crossing point between the singlet and triplet states. The probability of nonadiabatic transitions at temperatures between 270 and 370 K ranges from 35% to 32% for the active site with bound H2 and from 42% to 38% for the bare active site, thus indicating the importance of spin-forbidden nonadiabatic pathways for H2 binding on the [NiFe]-hydrogenase active site.

  6. Singlet model interference effects with high scale UV physics

    NASA Astrophysics Data System (ADS)

    Dawson, S.; Lewis, I. M.

    2017-01-01

    One of the simplest extensions of the Standard Model (SM) is the addition of a scalar gauge singlet, S . If S is not forbidden by a symmetry from mixing with the Standard Model Higgs boson, the mixing will generate non-SM rates for Higgs production and decays. In general, there could also be unknown high energy physics that generates additional effective low energy interactions. We show that interference effects between the scalar resonance of the singlet model and the effective field theory (EFT) operators can have significant effects in the Higgs sector. We examine a non-Z2 symmetric scalar singlet model and demonstrate that a fit to the 125 GeV Higgs boson couplings and to limits on high mass resonances, S , exhibit an interesting structure and possible large cancellations of effects between the resonance contribution and the new EFT interactions, that invalidate conclusions based on the renormalizable singlet model alone.

  7. Singlet Oxygen in Aqueous Solution: A Lecture Demonstration

    ERIC Educational Resources Information Center

    Shakhashiri, Bassam Z.; Williams, Lloyd G.

    1976-01-01

    Describes a demonstration that illustrates the red chemiluminescence due to singlet molecular oxygen that can be observed when aqueous solutions of hypochlorite ion and hydrogen peroxide are mixed. (MLH)

  8. Pulsed diode laser-based monitor for singlet molecular oxygen

    PubMed Central

    Lee, Seonkyung; Zhu, Leyun; Minhaj, Ahmed M.; Hinds, Michael F.; Vu, Danthu H.; Rosen, David I.; Davis, Steven J.; Hasan, Tayyaba

    2010-01-01

    Photodynamic therapy (PDT) is a promising cancer treatment. PDT uses the affinity of photosensitizers to be selectively retained in malignant tumors. When tumors, pretreated with the photosensitizer, are irradiated with visible light, a photochemical reaction occurs and tumor cells are destroyed. Oxygen molecules in the metastable singlet delta state O2(1Δ) are believed to be the species that destroys cancerous cells during PDT. Monitoring singlet oxygen produced by PDT may lead to more precise and effective PDT treatments. Our approach uses a pulsed diode laser-based monitor with optical fibers and a fast data acquisition system to monitor singlet oxygen during PDT. We present results of in vitro singlet oxygen detection in solutions and in a rat prostate cancer cell line as well as PDT mechanism modeling. PMID:18601555

  9. Singlet exciton fission in nanostructured organic solar cells.

    PubMed

    Jadhav, Priya J; Mohanty, Aseema; Sussman, Jason; Lee, Jiye; Baldo, Marc A

    2011-04-13

    Singlet exciton fission is an efficient multiexciton generation process in organic molecules. But two concerns must be satisfied before it can be exploited in low-cost solution-processed organic solar cells. Fission must be combined with longer wavelength absorption in a structure that can potentially surpass the single junction limit, and its efficiency must be demonstrated in nanoscale domains within blended devices. Here, we report organic solar cells comprised of tetracene, copper phthalocyanine, and the buckyball C(60). Short wavelength light generates singlet excitons in tetracene. These are subsequently split into two triplet excitons and transported through the phthalocyanine. In addition, the phthalocyanine absorbs photons below the singlet exciton energy of tetracene. To test tetracene in nanostructured blends, we fabricate coevaporated bulk heterojunctions and multilayer heterojunctions of tetracene and C(60). We measure a singlet fission efficiency of (71 ± 18)%, demonstrating that exciton fission can efficiently compete with exciton dissociation on the nanoscale.

  10. Singlet model interference effects with high scale UV physics

    DOE PAGES

    Dawson, S.; Lewis, I. M.

    2017-01-06

    One of the simplest extensions of the Standard Model (SM) is the addition of a scalar gauge singlet, S . If S is not forbidden by a symmetry from mixing with the Standard Model Higgs boson, the mixing will generate non-SM rates for Higgs production and decays. Generally, there could also be unknown high energy physics that generates additional effective low energy interactions. We show that interference effects between the scalar resonance of the singlet model and the effective field theory (EFT) operators can have significant effects in the Higgs sector. Here, we examine a non- Z 2 symmetric scalarmore » singlet model and demonstrate that a fit to the 125 GeV Higgs boson couplings and to limits on high mass resonances, S , exhibit an interesting structure and possible large cancellations of effects between the resonance contribution and the new EFT interactions, that invalidate conclusions based on the renormalizable singlet model alone.« less

  11. Photoluminescence dynamics in singlet fission chromophore liquid melts

    NASA Astrophysics Data System (ADS)

    Piland, Geoffrey B.; Bardeen, Christopher J.

    2017-02-01

    The effect of high temperature melting on the photophysics of three prototypical singlet fission molecules is investigated. Time-resolved photoluminescence is used to look at the melt phase of the molecules tetracene, diphenylhexatriene and rubrene. Chemical decomposition of tetracene precluded any detailed measurements on this molecule. In the diphenylhexatriene melt, a rapid singlet state nonradiative relaxation process outcompetes singlet fission. In the rubrene melt, singlet fission occurs at a rate similar to that of the crystal, but the decay of the delayed fluorescence is much more rapid. The rapid decay of the delayed fluorescence suggests that either the triplet lifetime is shortened, or the fusion probability decreases, or that both factors are operative at higher temperatures.

  12. Detection of singlet oxygen yield from new photosensitizers using luminol

    NASA Astrophysics Data System (ADS)

    Sakai, Harumasa; Oppelaar, Hugo; Baas, Paul; Van Zandwijk, Nico; Stewart, Fiona A.

    1995-03-01

    For the application of photodynamic therapy and diagnosis many different photosensitizers have been developed. It is important to compare these photosensitizers for their activity. It is generally accepted that the most important mechanism of cell killing is via the production of singlet oxygen. We therefore performed basic studies to detect singlet oxygen using a luminol reaction. The relative singlet oxygen yields from 4 photosensitizers (Photofrin, ATX-S10, mTHPC and NPe6) were measured by the detection of luminol chemiluminescence at 445 nm wavelength in Menzel's buffer solution at pH 10.5. NPe6, ATX-S10 and mTHPC all showed singlet oxygen productive abilities. These photosensitizers are new promising photosensitizers. These results show a possibility of comparison of each photosensitizer.

  13. Cryogenic exciter

    DOEpatents

    Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  14. Guanidine and guanidinium cation in the excited state—theoretical investigation

    SciTech Connect

    Antol, Ivana Glasovac, Zoran; Crespo-Otero, Rachel; Barbatti, Mario

    2014-08-21

    Diverse ab initio and density-functional-theory methods were used to investigate geometries, energies, and electronic absorption spectra of guanidine and its protonated form, as well as their photo-deactivation processes. It was shown that the guanidine is a weakly absorbing species with the excitation spectrum consisting mostly of transitions to the Rydberg excited states and one valence n-π{sub 4} state. The lowest energy band has a maximum at ca. 6.9 eV (∼180 nm). The protonation of guanidine affects its excitation spectrum substantially. A major shift of the Rydberg states to higher energies is clearly visible and strongly absorbing transitions from the ground state to the π{sub 3}-π{sub 4} and π{sub 2}-π{sub 4} states appears at 7.8 eV (∼160 nm). Three low-lying conical intersections (two for guanidine and one for protonated guanidine) between the ground state and the first excited singlet state were located. They are accessible from the Franck–Condon region through amino N–H stretching and out-of-plane deformations in guanidine and protonated guanidine, respectively. The relaxation of the π{sub 3}-3s Rydberg state via amino N–H bond stretching was hindered by a barrier. The nondissociated conical intersection in protonated guanidine mediates the radiationless deactivation of the compound after excitation into the π{sub 3}-π{sub 4} state. This fact is detrimental for the photostability of guanidine, since its conjugate acid is stable in aqueous solution over a wide pH range and in protein environment, where guanidinium moiety in arginine is expected to be in a protonated form.

  15. Singlet fission in pentacene through multiple exciton quantum states

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyong; Zimmerman, Paul; Musgrave, Charles

    2010-03-01

    Multi-exciton generation (MEG) has been reported for several materials and may dramatically increase solar cell efficiency. Singlet fission is the molecular analogue of MEG and has been observed in various systems, including tetracene and pentacene, however, no fundamental mechanism for singlet fission has yet been described, although it may govern MEG processes in a variety of materials. Because photoexcited states have single-exciton character, singlet fission to produce a pair of triplet excitons must involve an intermediate state that: (1) exhibits multi-exciton (ME) character, (2) is accessible from S1 and satisfies the fission energy requirement, and (3) efficiently dissociates into multiple electron-hole pairs. Here, we use sophisticated ab initio calculations to show that singlet fission in pentacene proceeds through a dark state (D) of ME character that lies just below S1, satisfies the fission energy requirement (ED>2ET0), and splits into two triplets (2xT0). In tetracene, D lies just above S1, consistent with the observation that singlet fission is thermally activated in tetracene. Rational design of photovoltaic systems that exploit singlet fission will require ab initio analysis of ME states such as D.

  16. Evidence for conical intersection dynamics mediating ultrafast singlet exciton fission

    NASA Astrophysics Data System (ADS)

    Musser, Andrew J.; Liebel, Matz; Schnedermann, Christoph; Wende, Torsten; Kehoe, Tom B.; Rao, Akshay; Kukura, Philipp

    2015-04-01

    Singlet exciton fission is the process in organic semiconductors through which a spin-singlet exciton converts into a pair of spin-triplet excitons residing on different chromophores, entangled in an overall spin-zero state. For some systems, singlet fission has been shown to occur on the 100 fs timescale and with a 200% quantum yield, but the mechanism of this process remains uncertain. Here we study a model singlet fission system, TIPS-pentacene, using ultrafast vibronic spectroscopy. We observe that vibrational coherence in the initially photogenerated singlet state is transferred to the triplet state and show that this behaviour is effectively identical to ultrafast internal conversion for polyenes in solution. This similarity in vibronic dynamics suggests that both multi-molecular singlet fission and single-molecular internal conversion are mediated by the same underlying relaxation processes, based on strong coupling between nuclear and electronic degrees of freedom. In its most efficient form this leads to a conical intersection between the coupled electronic states.

  17. Accurate adiabatic singlet-triplet gaps in atoms and molecules employing the third-order spin-flip algebraic diagrammatic construction scheme for the polarization propagator

    NASA Astrophysics Data System (ADS)

    Lefrancois, Daniel; Rehn, Dirk R.; Dreuw, Andreas

    2016-08-01

    For the calculation of adiabatic singlet-triplet gaps (STG) in diradicaloid systems the spin-flip (SF) variant of the algebraic diagrammatic construction (ADC) scheme for the polarization propagator in third order perturbation theory (SF-ADC(3)) has been applied. Due to the methodology of the SF approach the singlet and triplet states are treated on an equal footing since they are part of the same determinant subspace. This leads to a systematically more accurate description of, e.g., diradicaloid systems than with the corresponding non-SF single-reference methods. Furthermore, using analytical excited state gradients at ADC(3) level, geometry optimizations of the singlet and triplet states were performed leading to a fully consistent description of the systems, leading to only small errors in the calculated STGs ranging between 0.6 and 2.4 kcal/mol with respect to experimental references.

  18. Accurate adiabatic singlet-triplet gaps in atoms and molecules employing the third-order spin-flip algebraic diagrammatic construction scheme for the polarization propagator.

    PubMed

    Lefrancois, Daniel; Rehn, Dirk R; Dreuw, Andreas

    2016-08-28

    For the calculation of adiabatic singlet-triplet gaps (STG) in diradicaloid systems the spin-flip (SF) variant of the algebraic diagrammatic construction (ADC) scheme for the polarization propagator in third order perturbation theory (SF-ADC(3)) has been applied. Due to the methodology of the SF approach the singlet and triplet states are treated on an equal footing since they are part of the same determinant subspace. This leads to a systematically more accurate description of, e.g., diradicaloid systems than with the corresponding non-SF single-reference methods. Furthermore, using analytical excited state gradients at ADC(3) level, geometry optimizations of the singlet and triplet states were performed leading to a fully consistent description of the systems, leading to only small errors in the calculated STGs ranging between 0.6 and 2.4 kcal/mol with respect to experimental references.

  19. Vacuum Ultraviolet Spectroscopy of the Lowest-Lying Electronic State in Sub-Critical and Supercritical Water

    NASA Astrophysics Data System (ADS)

    Marin, Timothy W.; Janik, Ireneusz; Bartels, David M.; Chipman, Dan

    2016-06-01

    We report vacuum ultraviolet absorption spectra for the lowest-lying electronic state of high-temperature and supercritical water, where spectra were measured from room temperature up to the critical temperature, and as a function of density above the critical temperature. Spectra are seen to redshift with increasing temperature, demonstrating gradual breakdown of the hydrogen bond network. Above the critical temperature, tuning the density gives direct insight into the extent of hydrogen bonding in the supercritical regime. The known gas-phase monomer spectrum can be duplicated in the low-density limit, with negligible contribution from hydrogen bonding. With increasing density, the spectrum blue shifts as small water clusters form, increasing the number of hydrogen bonds lowering the ground-state energy. The presence of vibrational structure inherent to the lowest-density gas-phase limit spectrum gradually diminishes with increasing density, giving a reasonable measure of the extent of water monomers having unperturbed electronic structure as a function of density.

  20. New insight into singlet oxygen generation at surface modified nanocrystalline TiO2--the effect of near-infrared irradiation.

    PubMed

    Buchalska, Marta; Labuz, Przemysław; Bujak, Łukasz; Szewczyk, Grzegorz; Sarna, Tadeusz; Maćkowski, Sebastian; Macyk, Wojciech

    2013-07-14

    The generation of singlet oxygen in aqueous colloids of nanocrystalline TiO2 (anatase) modified by organic chelating ligands forming surface Ti(IV) complexes was studied. Detailed studies revealed a plausible and to date unappreciated influence of near-infrared irradiation on singlet oxygen generation at the surface of TiO2. To detect (1)O2, direct and indirect methods have been applied: a photon counting technique enabling time-resolved measurements of (1)O2 phosphorescence, and fluorescence measurements of a product of singlet oxygen interaction with Singlet Oxygen Sensor Green (SOSG). Both methods proved the generation of (1)O2. Nanocrystalline TiO2 modified with salicylic acid appeared to be the most efficient photosensitizer among the tested materials. The measured quantum yield reached the value of 0.012 upon irradiation at 355 nm, while unmodified TiO2 colloids appeared to be substantially less efficient generators of singlet oxygen with the corresponding quantum yield of ca. 0.003. A photocatalytic degradation of 4-chlorophenol, proceeding through oxidation by OH˙, was also monitored. The influence of irradiation conditions (UV, vis, NIR or any combination of these spectral ranges) on the generation of both singlet oxygen and hydroxyl radicals has been tested and discussed. Simultaneous irradiation with visible and NIR light did not accelerate OH˙ formation; however, for TiO2 modified with catechol it influenced (1)O2 generation. Singlet oxygen is presumably formed according to Nosaka's mechanism comprising O2˙(-) oxidation with a strong oxidant (hole, an oxidized ligand); however, the energy transfer from NIR-excited titanium(iii) centers (trapped electrons) plays also a plausible role.

  1. Identifying the lowest electronic states of the chlorophylls in the CP47 core antenna protein of photosystem II.

    PubMed

    De Weerd, Frank L; Palacios, Miguel A; Andrizhiyevskaya, Elena G; Dekker, Jan P; Van Grondelle, Rienk

    2002-12-24

    CP47 is a pigment-protein complex in the core of photosystem II that tranfers excitation energy to the reaction center. Here we report on a spectroscopic investigation of the isolated CP47 complex. By deconvoluting the 77 K absorption and linear dichroism, red-most states at 683 and 690 nm have been identified with oscillator strengths corresponding to approximately 3 and approximately 1 chlorophyll, respectively. Both states contribute to the 4 K emission, and the Stark spectrum shows that they have a large value for the difference polarizability between their ground and excited states. From site-selective polarized triplet-minus-singlet spectra, an excitonic origin for the 683 nm state was found. The red shift of the 690 nm state is most probably due to strong hydrogen bonding to a protein ligand, as follows from the position of the stretch frequency of the chlorophyll 13(1) keto group (1633 cm(-)(1)) in the fluorescence line narrowing spectrum at 4 K upon red-most excitation. We discuss how the 683 and 690 nm states may be linked to specific chlorophylls in the crystal structure [Zouni, A., Witt, H.-T., Kern, J., Fromme, P., Krauss, N., Saenger, W., and Orth, P. (2001) Nature 409, 739-743].

  2. Singlet-singlet energy transfer studies of the internal organization of nucleosomes.

    PubMed

    Eshaghpour, H; Dieterich, A E; Cantor, C R; Crothers, D M

    1980-04-29

    We report the measurement of two specific protein to DNA distances in several conformational states of core nucleosomes by singlet-singlet energy transfer. A distance of 50-53 A separates each DNA terminus from cysteine-110 of chicken erythrocyte histone H3 in the native nucleosome. This cysteine residue must therefore be located very near the center of the nucleosome. The H3-DNA distance remained nearly constant in several unfolded forms of the core particles, as found in very low salt, in 0.6 M NaCl, and in high urea. Furthermore, it was shown that each DNA end lies within 32 A of cysteine-73 of Arbacia lixula sperm histone H4 in both the compact and the low-salt unfolded forms of the nucleosome. Because of the invariance of the two measured distances in the various conformational states of the nucleosome, we conclude that the cysteine-containing C-terminal segments of histones H3 and H4 maintain a very strong and close association with the terminal positions of the 146 base pair nucleosomal DNA. This binding may provide the primary interactions necessary for the folding of DNA into nucleosomes and for protection of 146 base pair nucleosomes from further nuclease digestion.

  3. Erratum - the Lowest Surface Brightness Disc Galaxy Known

    NASA Astrophysics Data System (ADS)

    Davies, J. I.; Phillipps, S.; Disney, M. J.

    1988-11-01

    The paper "The lowest surface brightness disc galaxy known' by J.I. Davies, S. Phillipps and M.J. Disney was published in Mon. Not. R. astr. Soc. (1988), 231, 69p. The declination of the object given in section 2 of the paper is incorrect and should be changed to +19^deg^48'23". Thus the object cannot be identified with GP 1444 as in the original paper. To minimize confusion we propose to refer to the low surface brightness galaxy as GP 1444A.

  4. Dynamics of momentum entanglement in lowest-order QED

    SciTech Connect

    Lamata, L.; Leon, J.; Solano, E.

    2006-01-15

    We study the dynamics of momentum entanglement generated in the lowest-order QED interaction between two massive spin-(1/2) charged particles, which grows in time as the two fermions exchange virtual photons. We observe that the degree of generated entanglement between interacting particles with initial well-defined momentum can be infinite. We explain this divergence in the context of entanglement theory for continuous variables, and show how to circumvent this apparent paradox. Finally, we discuss two different possibilities of transforming momentum into spin entanglement, through dynamical operations or through Lorentz boosts.

  5. Ultrafast excited-state intramolecular proton transfer of aloesaponarin I.

    PubMed

    Nagaoka, Shin-ichi; Uno, Hidemitsu; Huppert, Dan

    2013-04-25

    Time-resolved emission of aloesaponarin I was studied with the fluorescence up-conversion and time-correlated single-photon-counting techniques. The rates of the excited-state intramolecular proton transfer, of the solvent and molecular rearrangements, and of the decay from the excited proton-transferred species were determined and interpreted in the light of time-dependent density functional calculations. These results were discussed in conjunction with UV protection and singlet-oxygen quenching activity of aloe.

  6. Collisionally-Mediated Singlet-Triplet Crossing in ˜{a}1A1 CH_2 Revisited: (010) Coupling

    NASA Astrophysics Data System (ADS)

    Le, Anh T.; Hall, Gregory; Sears, Trevor

    2014-06-01

    Methylene, CH2, possesses a ground ˜{X}3B1 ground electronic state and an excited ˜{a}1A1 state only 3150cm-1 higher in energy. The collision-induced singlet-triplet crossing in the gaseous mixtures is important in determining overall reaction rates and chemical behavior. Accidental near-degeneracies between rotational levels of the singlet state and the vibrationally excited triplet state result in a few gateway rotational levels that mediate collision-induced intersystem crossing. The mixed states can be recognized and quantified by deperturbation, knowing the zero-order singlet and triplet energy levels. Hyperfine structure can be used as alternative indicator of singlet-triplet mixing. Non-zero mixing will induce hyperfine splittings intermediate between the unresolved hyperfine structure of pure singlet and the resolvable (≈50MHz) splittings of pure triplet, arising from the (I\\cdotS) interaction in the ortho states, where nuclear spin I=1. Collision-induced intersystem crossing rates from the (010) state are comparable to those for (000), yet the identities and characters of the presumed gateway states are unknown. A new spectrometer is under construction to investigate triplet mixing rotational levels of ˜{a}1A1(010) by sub-Doppler measurements of perturbation-induced hyperfine splittings. Their observation will permit the identification of gateway states and quantification of the degree of triplet contamination of the singlet wavefunction. Progress in the measurements and the analysis of rotational energy transfer in (010) will be reported. Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. C.-H. Chang, G. E. Hall, T. J. Sears, J. Chem. Phys 133, 144310(2010) G. E. Hall, A. V. Komissarov, and T. J. Sears, J. Phys. Chem. A 108 7922-7927 (2004)

  7. An ab initio study on the four electronically lowest-lying states of CH 2 using the state-averaged complete active space second-order configuration interaction method

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yukio; Schaefer, Henry F., III

    1997-12-01

    Four electronically lowest-lying ( X˜ 3B 1, ã 1A 1, b˜ 1B 1, and c˜ 1A 1) states of CH 2 have been investigated systematically using ab initio electronic structure theory. Complete active space (CAS) self-consistent-field (SCF) second-order configuration interaction (SOCI) and state-averaged (SA) CASSCF-SOCI levels of theory have been employed. The CASSCF reference wave function was constructed by minimizing the total energy of a specified state, while the SACASSCF reference wave function was obtained by minimizing the equally weighted total energy of the four ( X˜ 3B 1, ã 1A 1, b˜ 1B 1, and c˜ 1A 1) states. The third excited state ( c˜ 1A 1 or 2 1A 1) is of particular theoretical interest because it is represented by the second root of CASSCF and SOCI Hamiltonian matrices. Theoretical treatments of states not the lowest of their symmetry require special attention due to their tendency of variational collapse to the lower-lying state(s). For these four lowest-lying states total energies and physical properties including dipole moments, harmonic vibrational frequencies, and associated infrared (IR) intensities were determined and compared with the results from the configuration interaction with single and double excitations (CISD) method and available experimental values. The CASSCF-SOCI method should provide the most reliable energetics and physical properties in the present study owing to its fully variational nature in the molecular orbital (MO) and CI spaces for a given state. It is demonstrated that the SACASSCF-SOCI wave functions produce results which are quite consistent with those from the CASSCF-SOCI method. Thus significantly increased application of the SACASSCF-SOCI method to the excited states of a wide variety of molecular systems is expected.

  8. Rationality, Irrationality and Escalating Behavior in Lowest Unique Bid Auctions

    PubMed Central

    Radicchi, Filippo; Baronchelli, Andrea; Amaral, Luís A. N.

    2012-01-01

    Information technology has revolutionized the traditional structure of markets. The removal of geographical and time constraints has fostered the growth of online auction markets, which now include millions of economic agents worldwide and annual transaction volumes in the billions of dollars. Here, we analyze bid histories of a little studied type of online auctions – lowest unique bid auctions. Similarly to what has been reported for foraging animals searching for scarce food, we find that agents adopt Lévy flight search strategies in their exploration of “bid space”. The Lévy regime, which is characterized by a power-law decaying probability distribution of step lengths, holds over nearly three orders of magnitude. We develop a quantitative model for lowest unique bid online auctions that reveals that agents use nearly optimal bidding strategies. However, agents participating in these auctions do not optimize their financial gain. Indeed, as long as there are many auction participants, a rational profit optimizing agent would choose not to participate in these auction markets. PMID:22279553

  9. Rationality, irrationality and escalating behavior in lowest unique bid auctions.

    PubMed

    Radicchi, Filippo; Baronchelli, Andrea; Amaral, Luís A N

    2012-01-01

    Information technology has revolutionized the traditional structure of markets. The removal of geographical and time constraints has fostered the growth of online auction markets, which now include millions of economic agents worldwide and annual transaction volumes in the billions of dollars. Here, we analyze bid histories of a little studied type of online auctions--lowest unique bid auctions. Similarly to what has been reported for foraging animals searching for scarce food, we find that agents adopt Lévy flight search strategies in their exploration of "bid space". The Lévy regime, which is characterized by a power-law decaying probability distribution of step lengths, holds over nearly three orders of magnitude. We develop a quantitative model for lowest unique bid online auctions that reveals that agents use nearly optimal bidding strategies. However, agents participating in these auctions do not optimize their financial gain. Indeed, as long as there are many auction participants, a rational profit optimizing agent would choose not to participate in these auction markets.

  10. Conformational analysis of N-methylformamide in ground S0 and excited S1 and T1 electronic states

    NASA Astrophysics Data System (ADS)

    Tukachev, N. V.; Bataev, V. A.; Godunov, I. A.

    2016-07-01

    For conformers of the N-methylformamide (HCONHCH3) molecule, calculations of equilibrium geometry parameters, harmonic vibration frequencies, energy differences and potential barriers to conformational transitions were performed in the ground (S0) and lowest excited singlet (S1) and triplet (T1) electronic states. In the S0 state, the molecule exists in trans and cis stable conformations (having Cs symmetry). Our calculations show that the electronic excitations T1←S0 and S1←S0 cause changes in the structure of conformers: both HCON and HNCC fragments become pyramidal and rotate around the CN bond. As a result, in each excited electronic state under consideration, there are 12 minima forming six pairs of equivalent conformers separated by relatively small potential barriers. One- and two-dimensional potential energy surface sections corresponding to different intramolecular large-amplitude motions were calculated using the MP2/aug-cc-pVTZ (S0) and CASPT2/cc-pVTZ (S1 and T1) methods. Anharmonic vibrational problems for large-amplitude motions were solved, and the corresponding frequencies were estimated.

  11. A new analytical potential energy surface for the singlet state of He2H+

    NASA Astrophysics Data System (ADS)

    Liang, Jing-Juan; Yang, Chuan-Lu; Wang, Li-Zhi; Zhang, Qing-Gang

    2012-03-01

    The analytic potential energy surface (APES) for the exchange reaction of HeH+ (X1Σ+) + He at the lowest singlet state 11A/ has been built. The APES is expressed as Aguado-Paniagua function based on the many-body expansion. Using the adaptive non-linear least-squares algorithm, the APES is fitted from 15 682 ab initio energy points calculated with the multireference configuration interaction calculation with a large d-aug-cc-pV5Z basis set. To testify the new APES, we calculate the integral cross sections for He + H+He (v = 0, 1, 2, j = 0) → HeH+ + He by means of quasi-classical trajectory and compare them with the previous result in literature.

  12. Direct participation of DNA in the formation of singlet oxygen and base damage under UVA irradiation.

    PubMed

    Yagura, Teiti; Schuch, André Passaglia; Garcia, Camila Carrião Machado; Rocha, Clarissa Ribeiro Reily; Moreno, Natália Cestari; Angeli, José Pedro Friedmann; Mendes, Davi; Severino, Divinomar; Bianchini Sanchez, Angelica; Di Mascio, Paolo; de Medeiros, Marisa Helena Gennari; Menck, Carlos Frederico Martins

    2017-03-18

    UVA light is hardly absorbed by the DNA molecule, but recent works point to a direct mechanism of DNA lesion by these wavelengths. UVA light also excite endogenous chromophores, which causes DNA damage through ROS. In this study, DNA samples were irradiated with UVA light in different conditions to investigate possible mechanisms involved in the induction of DNA damage. The different types of DNA lesions formed after irradiation were determined through the use of endonucleases, which recognize and cleave sites containing oxidized bases and cyclobutane pyrimidine dimers (CPDs), as well as through antibody recognition. The formation of 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxodG) was also studied in more detail using electrochemical detection. The results show that high NaCl concentration and concentrated DNA are capable of reducing the induction of CPDs. Moreover, concerning damage caused by oxidative stress, the presence of sodium azide and metal chelators reduce their induction, while deuterated water increases the amounts of oxidized bases, confirming the involvement of singlet oxygen in the generation of these lesions. Curiously, however, high concentrations of DNA also enhanced the formation of oxidized bases, in a reaction that paralleled the increase in the formation of singlet oxygen in the solution. This was interpreted as being due to an intrinsic photosensitization mechanism, depending directly on the DNA molecule to absorb UVA and generate singlet oxygen. Therefore, the DNA molecule itself may act as a chromophore for UVA light, locally producing a damaging agent, which may lead to even greater concerns about the deleterious impact of sunlight.

  13. Theoretical Studies of Possible Synthetic Routes for the High Energy Density Material Td N4: Excited Electronic States

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.

    2001-01-01

    Vertical electronic excitation energies for single states have been computed for the high energy density material (HEDM) Td N4 in order to assess possible synthetic routes that originate from excited electronic states of N2 molecules. Several ab initio theoretical approaches have been used, including complete active space self-consistent field (CASSCF), state averaged CASSCF (SA-CASSCF), singles configuration interaction (CIS), CIS with second-order and third-order correlation corrections [CIS(D)) and CIS(3)], and linear response singles and doubles coupled-cluster (LRCCSD), which is the highest level of theory employed. Standard double zeta polarized (DZP) and triple zeta double polarized (TZ2P) one-particle basis sets were used. The CASSCF calculations are found to overestimate the excitation energies, while the SA-CASSCF approach rectifies this error to some extent, but not completely. The accuracy of the CIS calculations varied depending on the particular state, while the CIS(D), CIS(3), and LRCCSD results are in generally good agreement. Based on the LRCCSD calculations, the lowest six excited singlet states are 9.35(l(sup)T1), 10.01(l(sup)T2), 10.04(1(sup)A2), 10.07(1(sup)E), 10.12(2(sup)T1), and 10.42(2(sup)T2) eV above the ground state, respectively. Comparison of these excited state energies with the energies of possible excited states of N2+N2 fragments, leads us to propose that the most likely synthetic route for Td N4 involving this mechanism arises from combination of two bound quintet states of N2.

  14. On the influence of singlet oxygen molecules on characteristics of HCCI combustion: A numerical study

    NASA Astrophysics Data System (ADS)

    Starik, A. M.; Kozlov, V. E.; Titova, N. S.

    2013-08-01

    Mechanisms of homogeneous charge compression ignition (HCCI) combustion enhancement are investigated numerically when excited O2(a 1Δg) molecules are produced at different points in the compression stroke. The analysis is conducted with the use of an extended kinetic model involving the submechanism of nitric oxide formation in the presence of singlet oxygen O2(a 1Δg) or O2(b 1Σg +) molecules in the methane-air mixture. It is demonstrated that the abundance of excited O2(a 1Δg) molecules in the mixture even in a small amounts intensifies the ignition and combustion and allows one to control the ignition event in the HCCI engine. Such a method of energy supply in the HCCI engine is much more effective in advancement of combustion timing than mere heating of the mixture, because it leads to acceleration of the chain-branching mechanism. The excitation of O2 molecules to the a 1Δg electronic state makes it possible to organise the successful combustion in the cylinder at diminished initial temperature of the mixture and increase the effective energy released during HCCI combustion. The advance in the value of this energy is much higher than the energy needed for the excitation of oxygen molecules. Moreover, in this case, the output concentration of NO and CO can be reduced significantly.

  15. Singlet and triplet excitons and charge polarons in cycloparaphenylenes. A density functional theory study

    SciTech Connect

    Liu, Jin; Adamska, Lyudmyla; Doorn, Stephen K.; Tretiak, Sergei

    2015-05-14

    Conformational structure and the electronic properties of various electronic excitations in cycloparaphenylenes (CPPs) are calculated using hybrid Density Functional Theory (DFT). The results demonstrate that wavefunctions of singlet and triplet excitons as well as the positive and negative polarons remain fully delocalized in CPPs. In contrast, these excitations in larger CPP molecules become localized on several phenyl rings, which are locally planarized, while the undeformed ground state geometry is preserved on the rest of the hoop. As evidenced by the measurements of bond-length alternation and dihedral angles, localized regions show stronger hybridization between neighboring bonds and thus enhanced electronic communication. This effect is even more significant in the smaller hoops, where phenyl rings have strong quinoid character in the ground state. Thus, upon excitation, electron–phonon coupling leads to the self-trapping of the electronic wavefunction and release of energy from fractions of an eV up to two eVs, depending on the type of excitation and the size of the hoop. The impact of such localization on electronic and optical properties of CPPs is systematically investigated and compared with the available experimental measurements.

  16. Singlet and triplet excitons and charge polarons in cycloparaphenylenes. A density functional theory study

    DOE PAGES

    Liu, Jin; Adamska, Lyudmyla; Doorn, Stephen K.; ...

    2015-05-14

    Conformational structure and the electronic properties of various electronic excitations in cycloparaphenylenes (CPPs) are calculated using hybrid Density Functional Theory (DFT). The results demonstrate that wavefunctions of singlet and triplet excitons as well as the positive and negative polarons remain fully delocalized in CPPs. In contrast, these excitations in larger CPP molecules become localized on several phenyl rings, which are locally planarized, while the undeformed ground state geometry is preserved on the rest of the hoop. As evidenced by the measurements of bond-length alternation and dihedral angles, localized regions show stronger hybridization between neighboring bonds and thus enhanced electronic communication.more » This effect is even more significant in the smaller hoops, where phenyl rings have strong quinoid character in the ground state. Thus, upon excitation, electron–phonon coupling leads to the self-trapping of the electronic wavefunction and release of energy from fractions of an eV up to two eVs, depending on the type of excitation and the size of the hoop. The impact of such localization on electronic and optical properties of CPPs is systematically investigated and compared with the available experimental measurements.« less

  17. Lowest l=0 proton resonance in {sup 26}Si and implications for nucleosynthesis of {sup 26}Al

    SciTech Connect

    Peplowski, P. N.; Baby, L. T.; Wiedenhoever, I.; Diffenderfer, E.; Hoeflich, P.; Rojas, A.; Volya, A.; Dekat, S. E.; Gay, D. L.; Grubor-Urosevic, O.; Kaye, R. A.; Keeley, N.

    2009-03-15

    Using a beam of the radioactive isotope {sup 25}Al, produced with the new RESOLUT facility, we measured the direct (d,n) proton-transfer reaction leading to low-lying proton resonances in {sup 26}Si. We observed the lowest l=0 proton resonance, identified with the 3{sup +} state at 5.914-MeV excitation energy. This result eliminates the largest uncertainty in astrophysical reaction rates involved in the nucleosynthesis of {sup 26}Al.

  18. Composite Fermi liquids in the lowest Landau level

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Senthil, T.

    2016-12-01

    We study composite Fermi liquid (CFL) states in the lowest Landau level (LLL) limit at a generic filling ν =1/n . We begin with the old observation that, in compressible states, the composite fermion in the lowest Landau level should be viewed as a charge-neutral particle carrying vorticity. This leads to the absence of a Chern-Simons term in the effective theory of the CFL. We argue here that instead a Berry curvature should be enclosed by the Fermi surface of composite fermions, with the total Berry phase fixed by the filling fraction ϕB=-2 π ν . We illustrate this point with the CFL of fermions at filling fractions ν =1 /2 q and (single and two-component) bosons at ν =1 /(2 q +1 ) . The Berry phase leads to sharp consequences in the transport properties including thermal and spin Hall conductances. We emphasize that these results only rely on the LLL limit and do not require particle-hole symmetry, which is present microscopically only for fermions at ν =1 /2 . Nevertheless, we show that the existing LLL theory of the composite Fermi liquid for bosons at ν =1 does have an emergent particle-hole symmetry. We interpret this particle-hole symmetry as a transformation between the empty state at ν =0 and the boson integer quantum hall state at ν =2 . This understanding enables us to define particle-hole conjugates of various bosonic quantum Hall states which we illustrate with the bosonic Jain and Pfaffian states. For bosons at ν =1 we construct paired non-Abelian states distinct from both the standard bosonic Pfaffian and its particle hole conjugate and show how they may arise naturally out of the neutral vortex composite Fermi liquid. The bosonic particle-hole symmetry can be realized exactly on the surface of a three-dimensional boson topological insulator. We also show that with the particle-hole and spin S U (2 ) rotation symmetries, there is no gapped topological phase for bosons at ν =1 . Finally we comment on systems that are not strictly in the

  19. Triplet-triplet energy transfer and protection mechanisms against singlet oxygen in photosynthesis

    NASA Astrophysics Data System (ADS)

    Kihara, Shigeharu

    In photosynthesis, (bacterio)chlorophylls ((B)Chl) play a crucial role in light harvesting and electron transport. (B)Chls, however, are known to be potentially dangerous due to the formation of the triplet excited state which forms the singlet oxygen (1O2*) when exposed to the sunlight. Singlet oxygen is highly reactive and all modern organisms incorporate special protective mechanisms to minimize the oxidative damage. One of the conventional photoprotective mechanisms used by photosynthetic organisms is by the nearby carotenoids quenching the excess energy and releasing it by heat. In this dissertation, two major aspects of this process are studied. First, based on experimental data and model calculations, the oxygen content in a functioning oxygenic photosynthetic oxygen cell was determined. These organisms perform water splitting and as a result significant amount of oxygen can be formed within the organism itself. It was found, that contrary to some published estimates, the excess oxygen concentration generated within an individual cell is extremely low -- 0.025 ... 0.25 microM, i.e. about 103-104 times lower than the oxygen concentration in air saturated water. Such low concentrations imply that the first oxygenic photosynthetic cells that evolved in oxygen-free atmosphere of the Earth ~2.8 billion years ago might have invented the water splitting machinery (photosystem II) without the need for special oxygen-protective mechanisms, and the latter mechanisms could have evolved in the next 500 million years during slow rise of oxygen in the atmosphere. This result also suggests that proteins within photosynthetic membranes are not exposed to significant O2 levels and thus can be studied in vitro under the usual O2 levels. Second, the fate of triplet excited states in the Fenna Matthew Olson (FMO) pigment-protein complex is studied by means of time-resolved nanosecond spectroscopy and exciton model simulations. For the first time, the properties of several

  20. Focal point analysis of the singlet-triplet energy gap of octacene and larger acenes.

    PubMed

    Hajgató, Balázs; Huzak, Matija; Deleuze, Michael S

    2011-08-25

    A benchmark theoretical study of the electronic ground state and of the vertical and adiabatic singlet-triplet (ST) excitation energies of n-acenes (C(4n+2)H(2n+4)) ranging from octacene (n = 8) to undecacene (n = 11) is presented. The T1 diagnostics of coupled cluster theory and further energy-based criteria demonstrate that all investigated systems exhibit predominantly a (1)A(g) singlet closed-shell electronic ground state. Singlet-triplet (S(0)-T(1)) energy gaps can therefore be very accurately determined by applying the principle of a focal point analysis (FPA) onto the results of a series of single-point and symmetry-restricted calculations employing correlation consistent cc-pVXZ basis sets (X = D, T, Q, 5) and single-reference methods [HF, MP2, MP3, MP4SDQ, CCSD, and CCSD(T)] of improving quality. According to our best estimates, which amount to a dual extrapolation of energy differences to the level of coupled cluster theory including single, double, and perturbative estimates of connected triple excitations [CCSD(T)] in the limit of an asymptotically complete basis set (cc-pV∞Z), the S(0)-T(1) vertical (adiabatic) excitation energies of these compounds amount to 13.40 (8.21), 10.72 (6.05), 8.05 (3.67), and 7.10 (2.58) kcal/mol, respectively. In line with the absence of Peierls distortions (bond length alternations), extrapolations of results obtained at this level for benzene (n = 1) and all studied n-acenes so far (n = 2-11) indicate a vanishing S(0)-T(1) energy gap, in the limit of an infinitely large polyacene, within an uncertainty of 1.5 kcal/mol (0.06 eV). Lacking experimental values for the S(0)-T(1) energy gaps of n-acenes larger than hexacene, comparison is made with recent optical and electrochemical determinations of the HOMO-LUMO band gap. Further issues such as scalar relativistic, core correlation, and diagonal Born-Oppenheimer corrections (DBOCs) are tentatively examined.

  1. Autism or autisms? Finding the lowest common denominator.

    PubMed

    Williams, Emily L; Casanova, Manuel F

    2010-01-01

    Previous studies suggest the presence of a minicolumnopathy in autism. Minicolumnar abnormalities as well as certain migratory and proliferative defects, common to autism, may be rooted in the general mechanics of periventricular germinal cell division and maturation. Increased numbers of periventricular germinal cell/radial glia can be mimicked by a variety of different transgenic mouse models and environmental factors. These murine models and environmental factors illustrate how a fairly homogenous neuroanatomical phenotype can diverge at the genetic level. By first defining the lowest common denominator (i.e., the minicolumn) and then examining which pathways are vulnerable to involved genetic and environmental factors, we may gain a greater understanding of the pathophysiologic mechanisms underlying Autism Spectrum Conditions.

  2. Macroscopic Modeling of the singlet oxygen production during PDT

    PubMed Central

    Zhu, Timothy C; Finlay, Jarod C.; Zhou, Xiaodong; Li, Jun

    2015-01-01

    Photodynamic therapy (PDT) dose, D, is defined as the absorbed dose by the photosensitizer during photodynamic therapy. It is proportional to the product of photosensitizer concentration and the light fluence. This quantity can be directly characterized during PDT and is considered to be predictive of photodynamic efficacy under ample oxygen supply. For type-II photodynamic interaction, the cell killing is caused by the reaction of cellular acceptors with singlet oxygen. The production of singlet oxygen can be expressed as ηD, where η is the singlet oxygen quantum yield and is a constant under ample oxygen supply. For most PDT, it is desirable to also take into account the effect of tissue oxygenation. We have modeled the coupled kinetics equation of the concentrations of the singlet oxygen, the photosensitizers in ground and triplet states, the oxygen, and tissue acceptors along with the diffusion equation governing the light transport in turbid medium. We have shown that it is possible to express η as a function of local oxygen concentration during PDT and this expression is a good approximation to predict the production of singlet oxygen during PDT. Theoretical estimation of the correlation between the tissue oxygen concentration and hemoglobin concentration, oxygen saturation, and blood flow is presented. PMID:25983366

  3. Singlet-like Higgs boson in the NMSSM

    NASA Astrophysics Data System (ADS)

    Jeong, Kwang Sik

    2017-01-01

    We study the properties of the singlet-like Higgs boson in the next-to-minimal supersymmetric standard model. Scalar mixing depends on the higgsino mass parameter and the coupling of the singlet to the Higgs bilinear in the superpotential, which are constrained by the Large Electron-Positron Collider bound on the chargino mass and the perturbativity of the model to high energy scales, respectively. Using the relations between these parameters and mixing angles, we examine how strongly the singlet-like Higgs boson can couple to the standard model sector depending on its mass. In this paper, we consider the case in which the observed 125-GeV Higgs boson has properties very close to those predicted in the standard model, for which the singlet-like Higgs boson couples to the standard model sector via mixing with the heavy doublet Higgs boson. Interestingly the mixing turns out to be large either if the singlet-like Higgs boson is below a few hundred GeV or if tan β is moderate or large.

  4. Filter-filter interactions. Photostabilization, triplet quenching and reactivity with singlet oxygen.

    PubMed

    Lhiaubet-Vallet, Virginie; Marin, Mireia; Jimenez, Oscar; Gorchs, Olga; Trullas, Carles; Miranda, Miguel Angel

    2010-04-01

    In most sunscreens, the presence of two UV filters usually leads to synergistic effects regarding both the final performance and photostabilization of the active principles. However, this may also result in an accelerated decomposition if a photoreaction occurs between the single components. Thus, the understanding of photophysics and photochemistry of UV filter combinations is important to improve sunscreen photostability. In this context, photoreactivity of a commonly used UVA filter, namely tert-butylmethoxydibenzoylmethane (BM-DBM, also known as avobenzone, Parsol 1789, etc.), has been studied in the presence of six commercial solar filters: octyl methoxycinnamate, bis-ethylhexyloxyphenol methoxyphenyl triazine, octocrylene, diethylamino hydroxybenzoyl hexyl benzoate, octyl triazone and dioctyl butamido triazone. To achieve this goal, a mechanism-based strategy has been designed in order to investigate the photostability of sunscreens in a more systematic way, taking into account different processes: tautomerization of BM-DBM, formation of triplet excited state of BM-DBM in its diketo form and its quenching in the presence of UV filters, reactivity of UV filters under triplet photosensitization, quenching of singlet oxygen by UV filters and degradation of the latter under singlet oxygenation conditions.

  5. Removal of Water Vapor in a Mist Singlet Oxygen Generator for Chemical Oxygen Iodine Laser

    NASA Astrophysics Data System (ADS)

    Muto, Shigeki; Endo, Masamori; Nanri, Kenzo; Fujioka, Tomoo

    2004-02-01

    The mist singlet oxygen generator (Mist-SOG) for a chemical oxygen iodine laser (COIL) has been developed in order to increase basic hydrogen peroxide (BHP) utilization. It was clarified that the Mist-SOG generated much more water vapor than conventional SOGs because the heat capacity of BHP is small. The water vapor deactivates the excited iodine and depresses the laser power. Therefore, a jet-cold trap was developed in order to remove the water vapor while maintaining a minimum deactivation of singlet oxygen. In this method, a nozzle was used to spray chilled H2O2 at 238 K as a thin layer directly to the gas flow to achieve a large specific surface area for water vapor. As a result, the water vapor mole fraction was reduced to 7% from 18% with the BHP utilization of 21% at the Cl2 consumption rate of 3.5 mmol/s (Cl2 input flow rate of 8.0 mmol/s) for 65-μm-diameter BHP droplets.

  6. Cationic dye-sensitized degradation of sodium hyaluronate through photoinduced electron transfer in the upper excited state.

    PubMed

    Kojima, M; Takahashi, K; Nakamura, K

    2001-09-01

    The formation of ground-state complexes of methylene blue (MB) and thionine (TN) with sodium hyaluronate (NaHA) was clearly observed by means of absorption spectra in aqueous solution. Irradiation of the complexes using 313 nm light caused significant degradation of NaHA under oxygen and argon. However, the use of visible light over 400 nm, which gives the lowest excited singlet state of the cationic dyes, caused no degradation. MB and TN were more efficient sensitizers for the degradation of NaHA than rose bengal (RB), although RB is a more efficient singlet oxygen (1O2) sensitizer than the cationic dyes. Under similar conditions the polysaccharides with carboxyl groups, such as alginic acid and polygalacturonic acid, also photodecomposed. However, the polysaccharides without carboxyl groups, such as pullulan and methyl cellulose, did not. The irradiation of the polysaccharides in the presence of powdered titanium dioxide as a photocatalyst to generate the hydroxyl radical (.OH) in aerated aqueous solution caused the fragmentation of all the polymers. It was confirmed that methyl viologen, an electron-accepting sensitizer, formed a charge-transfer complex with NaHA, the irradiation of which caused the efficient degradation of NaHA. In the presence of beta- and gamma-cyclodextrins the MB- and TN-sensitized photodegradation of NaHA was markedly suppressed. This was probably due to the formation of the inclusion complexes comprising the cationic dyes and the cyclodextrins. On the basis of the results obtained we propose that the cationic dye-sensitized degradation of NaHA involves a photoinduced electron-transfer process between the upper excited dyes and the ground-state NaHA and that .OH and 1O2 do not participate in the degradation.

  7. Reaction of C2H2+ (n.ν2, m.ν5) with NO2: Reaction on the singlet and triplet surfaces

    NASA Astrophysics Data System (ADS)

    Boyle, Jason M.; Bell, David M.; Anderson, Scott L.

    2011-01-01

    Integral cross sections and product recoil velocity distributions were measured for reaction of C2H2+ with NO2, in which the C2H2+ reactant was prepared in its ground state, and with mode-selective excitation in the cis-bend (2ν5) and CC stretch (n.ν2, n = 1, 2). Because both reactants have one unpaired electron, collisions can occur with either singlet or triplet coupling of these unpaired electrons, and the contributions are separated based on distinct recoil dynamics. For singlet coupling, reaction efficiency is near unity, with significant branching to charge transfer (NO2+), O- transfer (NO+), and O transfer (C2H2O+) products. For triplet coupling, reaction efficiency varies between 13% and 19%, depending on collision energy. The only significant triplet channel is NO+ + triplet ketene, generated predominantly by O- transfer, with a possible contribution from dissociative charge transfer at high collision energies. NO2+ formation (charge transfer) can only occur on the singlet surface, and appears to be mediated by a weakly bound complex at low energies. O transfer (C2H2O+) also appears to be dominated by reaction on the singlet surface, but is quite inefficient, suggesting a bottleneck limiting coupling to this product from the singlet reaction coordinate. The dominant channel is O- transfer, producing NO+, with roughly equal contributions from reaction on singlet and triplet surfaces. The effects of C2H2+ vibration are modest, but mode specific. For all three product channels (i.e., charge, O-, and O transfer), excitation of the CC stretch fundamental (ν2) has little effect, 2.ν2 excitation results in ˜50% reduction in reactivity, and excitation of the cis-bend overtone (2.ν5) results in ˜50% enhancement. The fact that all channels have similar mode dependence suggests that the rate-limiting step, where vibrational excitation has its effect, is early on the reaction coordinate, and branching to the individual product channels occurs later.

  8. Exciter switch

    NASA Technical Reports Server (NTRS)

    Mcpeak, W. L.

    1975-01-01

    A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.

  9. Reinvestigation of the triplet-minus-singlet spectrum of chloroplasts

    NASA Astrophysics Data System (ADS)

    Jávorfi, T.; Garab, G.; Razi Naqvi, K.

    2000-01-01

    A comparison of the triplet-minus-singlet (TmS) absorption spectrum of spinach chloroplasts, recorded some thirty years ago, with the more recently published TmS spectrum of isolated Chl a/ b LHCII (light-harvesting complexes associated with photosystem II of higher plants) shows that the two spectra are very similar, which is to be expected, since only the carotenoid pigments contribute to each spectrum. Be that as it may, the comparison also reveals a dissimilarity: photoexcitation of the sample does, or does not, affect the absorbance in the Qy region (650-700 nm), depending on whether the sample is a suspension of chloroplasts or of isolated LHCII. The Qy-signal in the TmS spectrum of LHCII decays, it should be noted, at the same rate as the rest of the difference spectrum, and its most prominent feature is a negative peak. As the carotenoids do not absorb in the Qy region, the presence of a signal in this region calls for an explanation: van der Vos, Carbonera and Hoff, the first to find as well as fathom the phenomenon, attributed the Qy-signal to a change, in the absorption spectrum of a chlorophyll a (Chl a) molecule, brought about by the presence of triplet excitation on a neighbouring carotenoid (Car). The difference in the behaviours of chloroplasts and LHCII, if reproducible, would imply that the Car triplets which give rise to the TmS spectrum of chloroplasts do not influence the absorption spectra of their Chl a neighbours. With a view to reaching a firm conclusion about this vexed issue, spinach chloroplasts and thylakoids have been examined with the aid of the same kinetic spectrometer as that used for investigating LHCII; the TmS spectra of both chloroplasts and thylakoids contain prominent bleaching signals centred at 680 nm, and the triplet decay time in each case is comparable to that of the Chl a/ b LHCII triplets. Results pertaining to other closely related systems are recalled, and it is concluded that, so far as the overall appearance of the

  10. Impurities near an antiferromagnetic-singlet quantum critical point

    DOE PAGES

    Mendes-Santos, T.; Costa, N. C.; Batrouni, G.; ...

    2017-02-15

    Heavy-fermion systems and other strongly correlated electron materials often exhibit a competition between antiferromagnetic (AF) and singlet ground states. We examine the effect of impurities in the vicinity of such an AF-singlet quantum critical point (QCP), through an appropriately defined “impurity susceptibility” χimp, using exact quantum Monte Carlo simulations. Our key finding is a connection within a single calculational framework between AF domains induced on the singlet side of the transition and the behavior of the nuclear magnetic resonance (NMR) relaxation rate 1/T1. Furthermore, we show that local NMR measurements provide a diagnostic for the location of the QCP, whichmore » agrees remarkably well with the vanishing of the AF order parameter and large values of χimp.« less

  11. Probing scalar coupling differences via long-lived singlet states

    NASA Astrophysics Data System (ADS)

    DeVience, Stephen J.; Walsworth, Ronald L.; Rosen, Matthew S.

    2016-01-01

    We probe small scalar coupling differences via the coherent interactions between two nuclear spin singlet states in organic molecules. We show that the spin-lock induced crossing (SLIC) technique enables the coherent transfer of singlet order between one spin pair and another. The transfer is mediated by the difference in syn and anti vicinal or long-range J couplings among the spins. By measuring the transfer rate, we calculate a J coupling difference of 8 ± 2 mHz in phenylalanine-glycine-glycine and 2.57 ± 0.04 Hz in glutamate. We also characterize a coherence between two singlet states in glutamate, which may enable the creation of a long-lived quantum memory.

  12. Impurities near an antiferromagnetic-singlet quantum critical point

    NASA Astrophysics Data System (ADS)

    Mendes-Santos, T.; Costa, N. C.; Batrouni, G.; Curro, N.; dos Santos, R. R.; Paiva, T.; Scalettar, R. T.

    2017-02-01

    Heavy-fermion systems and other strongly correlated electron materials often exhibit a competition between antiferromagnetic (AF) and singlet ground states. Using exact quantum Monte Carlo simulations, we examine the effect of impurities in the vicinity of such an AF-singlet quantum critical point (QCP), through an appropriately defined "impurity susceptibility" χimp. Our key finding is a connection within a single calculational framework between AF domains induced on the singlet side of the transition and the behavior of the nuclear magnetic resonance (NMR) relaxation rate 1 /T1 . We show that local NMR measurements provide a diagnostic for the location of the QCP, which agrees remarkably well with the vanishing of the AF order parameter and large values of χimp.

  13. Recoil detection of the lightest neutralino in MSSM singlet extensions

    SciTech Connect

    Barger, Vernon; Lewis, Ian; McCaskey, Mat; Shaughnessy, Gabe; Yencho, Brian; Langacker, Paul

    2007-06-01

    We investigate the correlated predictions of singlet extended MSSM models for direct detection and the cosmological relic density of the lightest neutralino. To illustrate the general effects of the singlet, we take heavy sleptons and squarks. We apply CERN LEP (g-2){sub {mu}}, and perturbativity constraints. We find that the WMAP upper bound on the cold dark matter density limits much of the parameter space to regions where the lightest neutralino can be discovered in recoil experiments. The results for the next-to-minimal supersymmetric standard model and U(1){sup '}-extended minimal supersymmetric standard model are typically similar to the MSSM since their light neutralinos have similar compositions and masses. In the nearly minimal supersymmetric standard model the neutralino is often very light and its recoil detection is within the reach of the CDMS II experiment. In general, most points in the parameter spaces of the singlet models we consider are accessible to the WARP experiment.

  14. Valence and Ionic Lowest-Lying Electronic States of Isobutyl Formate Studied by High-Resolution Vacuum Ultraviolet Photoabsorption, Photoelectron Spectroscopy, and Ab Initio Calculations.

    PubMed

    Śmiałek, M A; Łabuda, M; Guthmuller, J; Hoffmann, S V; Jones, N C; MacDonald, M A; Zuin, L; Mason, N J; Limão-Vieira, P

    2015-08-13

    The highest resolution vacuum ultraviolet photoabsorption spectrum of isobutyl formate, C5H10O2, yet reported is presented over the energy range 4.5-10.7 eV (275.5-118.0 nm) revealing several new spectral features. Valence and Rydberg transitions and their associated vibronic series observed in the photoabsorption spectrum have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of isobutyl formate and are compared with a newly recorded photoelectron spectrum (from 9.0 to 27.0 eV). The value of the first ionization energy was determined to be 10.508 eV (adiabatic) and 10.837 eV (vertical). New vibrational structure is observed in the first photoelectron band, predominantly resulting from C-O and C═O stretches of the molecule. The photoabsorption cross sections have been used to calculate the photolysis lifetime of isobutyl formate in the upper stratosphere (20-50 km), indicating that the hydroxyl radical processes will be the main loss process for isobutyl formate.

  15. A Comparison of Singlet Oxygen Explicit Dosimetry (SOED) and Singlet Oxygen Luminescence Dosimetry (SOLD) for Photofrin-Mediated Photodynamic Therapy

    PubMed Central

    Kim, Michele M.; Penjweini, Rozhin; Gemmell, Nathan R.; Veilleux, Israel; McCarthy, Aongus; Buller, Gerald S.; Hadfield, Robert H.; Wilson, Brian C.; Zhu, Timothy C.

    2016-01-01

    Accurate photodynamic therapy (PDT) dosimetry is critical for the use of PDT in the treatment of malignant and nonmalignant localized diseases. A singlet oxygen explicit dosimetry (SOED) model has been developed for in vivo purposes. It involves the measurement of the key components in PDT—light fluence (rate), photosensitizer concentration, and ground-state oxygen concentration ([3O2])—to calculate the amount of reacted singlet oxygen ([1O2]rx), the main cytotoxic component in type II PDT. Experiments were performed in phantoms with the photosensitizer Photofrin and in solution using phosphorescence-based singlet oxygen luminescence dosimetry (SOLD) to validate the SOED model. Oxygen concentration and photosensitizer photobleaching versus time were measured during PDT, along with direct SOLD measurements of singlet oxygen and triplet state lifetime (τΔ and τt), for various photosensitizer concentrations to determine necessary photophysical parameters. SOLD-determined cumulative [1O2]rx was compared to SOED-calculated [1O2]rx for various photosensitizer concentrations to show a clear correlation between the two methods. This illustrates that explicit dosimetry can be used when phosphorescence-based dosimetry is not feasible. Using SOED modeling, we have also shown evidence that SOLD-measured [1O2]rx using a 523 nm pulsed laser can be used to correlate to singlet oxygen generated by a 630 nm laser during a clinical malignant pleural mesothelioma (MPM) PDT protocol by using a conversion formula. PMID:27929427

  16. Direct Oxygen Abundances for the Lowest Luminosity LVL Galaxies

    NASA Astrophysics Data System (ADS)

    Berg, Danielle; Skillman, E. D.; Marble, A. R.; van Zee, L.; Engelbracht, C. W.

    2012-01-01

    We present new MMT spectroscopic observations of HII regions in 42 of the lowest luminosity galaxies in the Spitzer Local Volume Legacy (LVL) survey. For 31 of the galaxies in our sample we were able to measure the [OIII] ? auroral line at a strength of 4σ or greater, and thus determine oxygen abundances using the direct method. Direct oxygen abundances were compared to B-band luminosity, 4.5 μm luminosity, and stellar mass to characterize the luminosity-metallicity (L-Z) and mass-metallicity (M-Z) relationships at low-luminosity. We examined a "Combined Select” sample composed of 38 objects, from the present sample and the literature, with direct oxygen abundances and reliable distance determinations (based on the tip of the red giant branch or Cepheid variables). The B-band and 4.5 μm L-Z relationships were found to be 12+log(O/H) = (6.19±0.07) + (-0.12±0.01)MB and 12+log(O/H) = (5.93±0.11) + (-0.11±0.01)M[4.5] with dispersions of σ = 0.17 and σ = 0.14 respectively. Since the slope of the L-Z relationship doesn't seem to vary from the optical to the near-IR, as has been observed in studies of more luminous galaxies, we propose that less extinction due to dust is created in the lowest luminosity galaxies. We subsequently derived a M-Z relationship of 12+log(O/H) = (5.49±0.23) + (0.31±0.03)log M*, with a dispersion of σ = 0.16. None of the relationships seem to hold an advantage with respect to dispersion, supporting the idea of minimized dust. Additionally, the trend of N/O abundance with respect to B-V color and oxygen abundance was examined. Similar to the conclusions of van Zee & Haynes (2006), we find a positive correlation between N/O ratio and B-V color: log(N/O) = 0.92 (B-V) - 1.83. Furthermore, there are no objects with high N/O ratio below 12+log(O/H)=7.9.

  17. Positioning configurations with the lowest GDOP and their classification

    NASA Astrophysics Data System (ADS)

    Xue, Shuqiang; Yang, Yuanxi

    2015-01-01

    The positioning configuration optimization is a basic problem in surveying, and the geometric dilution of precision (GDOP) is a key index to handle this problem. Simplex graphs as regular polygons and regular polyhedrons are the well-known configurations with the lowest GDOP. However, it has been proved that there are at most five kinds of regular polyhedrons. We analytically solve the GDOP minimization problem with arbitrary observational freedom to extend the current knowledge. The configuration optimization framework established is composed of the algebraic and geometric operators (including combination, reflection, collinear mapping, projection and three kinds of equivalence relations), basic properties to GDOP minimization (including continuity, combination invariant, reflection invariant, rotation invariant and collinear invariant) and the lowest GDOP configurations (including cones, regular polygons, regular polyhedrons, Descartes configuration, helical configuration and generalized Walker configuration, and their reflections and combinations). GDOP minimization criterion and D-maximization criterion both reduce to the same criterion matrices that the optimization becomes the problem for solving an underdetermined quadratic equation system. Making use of the concepts for solving underdetermined linear equation system, the concepts of base configuration (single classification) and general configuration (combined classification) are applied to the GDOP minimization to analytically solve the quadratic equation system. Firstly, the problems are divided into two subproblems by two kinds of GDOP to reveal the impact of the clock-offset on the configuration optimization, and it shows that the symmetry and uniformity play a key role in identifying the systematic errors. Then, the solution of the GDOP minimization is classified by the number of symmetry axes, that the base configurations with at least one symmetry axis and the general configurations without symmetry

  18. Electron impact excitation of the ã 3B1u electronic state in C2H4: An experimentally benchmarked system?

    NASA Astrophysics Data System (ADS)

    Do, T. P. T.; Nixon, K. L.; Fuss, M.; García, G.; Blanco, F.; Brunger, M. J.

    2012-05-01

    We report on differential and integral cross section measurements for the electron impact excitation of the lowest-lying triplet electronic state (ã 3B1u) in ethylene (C2H4). The energy range of the present experiments was 9 eV-50 eV, with the angular range of the differential cross section measurements being 15°-90°. As the ground electronic state of C2H4 is a 1Ag state, this singlet → triplet excitation process is expected to be dominated by exchange scattering. The present angular distributions are found to support that assertion. Comparison, where possible, with previous experimental results from the University of Fribourg group shows very good agreement, to within the uncertainties on the measured cross sections. Agreement with the available theories, however, is generally marginal with the theories typically overestimating the magnitude of the differential cross sections. Notwithstanding that, the shapes of the theoretical angular distributions were in fact found to be in good accord with the corresponding experimental results.

  19. Highly efficient spin-conversion effect leading to energy up-converted electroluminescence in singlet fission photovoltaics

    PubMed Central

    Pandey, Ajay K.

    2015-01-01

    Free charge generation in donor-acceptor (D-A) based organic photovoltaic diodes (OPV) progresses through formation of charge-transfer (CT) and charge-separated (CS) states and excitation decay to the triplet level is considered as a terminal loss. On the other hand a direct excitation decay to the triplet state is beneficial for multiexciton harvesting in singlet fission photovoltaics (SF-PV) and the formation of CT-state is considered as a limiting factor for multiple triplet harvesting. These two extremes when present in a D-A system are expected to provide important insights into the mechanism of free charge generation and spin-character of bimolecular recombination in OPVs. Herein, we present the complete cycle of events linked to spin conversion in the model OPV system of rubrene/C60. By tracking the spectral evolution of photocurrent generation at short-circuit and close to open-circuit conditions we are able to capture spectral changes to photocurrent that reveal the triplet character of CT-state. Furthermore, we unveil an energy up-conversion effect that sets in as a consequence of triplet population build-up where triplet-triplet annihilation (TTA) process effectively regenerates the singlet excitation. This detailed balance is shown to enable a rare event of photon emission just above the open-circuit voltage (VOC) in OPVs. PMID:25585937

  20. Vacuum structure of the Higgs complex singlet-doublet model

    NASA Astrophysics Data System (ADS)

    Ferreira, P. M.

    2016-11-01

    The complex singlet-doublet model is a popular theory to account for dark matter and electroweak baryogenesis, wherein the Standard Model particle content is supplemented by a complex scalar gauge singlet, with certain discrete symmetries imposed. The scalar potential which results thereof can have seven different types of minima at tree level, which may coexist for specific choices of parameters. There is therefore the possibility that a given minimum is not global but rather a local one, and may tunnel to a deeper extremum, thus causing vacuum instability. This rich vacuum structure is explained and discussed in detail.

  1. Production of singlet oxygen by the reaction of non-basic hydrogen peroxide with chlorine gas.

    PubMed

    Tian, Wenming; Shi, Wenbo; Yang, Heping; Cui, Rongrong; Deng, Liezheng

    2012-10-14

    Non-basic hydrogen peroxide was found to be very easy to react with Cl(2) to produce singlet oxygen O(2)(a(1)Δ(g)) (i.e. the molecular oxygen in its first electronic excited state) when an H(+) absorbent such as C(5)H(5)N, CH(3)COONH(4), HCOONH(4) or NH(4)F was added into H(2)O(2) aqueous solution, and the long concealed fact that molecular H(2)O(2) can react with Cl(2) to produce O(2)(a(1)Δ(g)) was then uncovered. It is only when an H(+) absorbent has provided a stronger base than H(2)O to absorb the H(+) produced during the reaction that O(2)(a(1)Δ(g)) can be produced.

  2. Collision-free photochemistry of methylazide: Observation of unimolecular decomposition of singlet methylnitrene

    SciTech Connect

    Larson, Christopher; Ji Yuanyuan; Samartzis, Petros; Wodtke, Alec M.; Lee, S.-H.; Lin, Jim Jr-Min; Chaudhuri, Chanchal; Ching, T.-T.

    2006-10-07

    Methylazide photolysis at 248 nm has been investigated by ionizing photofragments with synchrotron radiation in a photofragmentation translational spectroscopy study. CH{sub 3}N and N{sub 2} were the only observed primary products. The translational energy release suggests a simple bond rupture mechanism forming singlet methylnitrene, {sup 1}CH{sub 3}N, and N{sub 2}. Thus, these experiments reveal the unimolecular decomposition of this highly unstable species. We explain our observations through a mechanism which is initiated by the isomerization of {sup 1}CH{sub 3}N to a highly internally excited methanimine H{sub 2}C=NH isomer, which decomposes by 1,1-H{sub 2} elimination forming HNC+H{sub 2} as well as sequential H-atom loss (N-H followed by C-H bond cleavage), to form HCN. No evidence for dynamics on the triplet manifold of surfaces is found.

  3. Enhanced singlet oxygen generation from PLGA loaded with verteporfin and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Deng, Wei; Kautzka, Zofia; Goldys, Ewa M.

    2016-12-01

    In this study, poly(lactic-co-glycolic acid) (PLGA) nanocomposites were developed by incorporating a photosensitizer, verteporfin and gold nanoparticles into this polymeric matrix and utilised for enhanced photoynamic therapy. Both enhanced fluorescence and singlet oxygen generation from verteporfin were observed in this new formulation under both 425nm LED and 405nm laser illumination. A maximum enhancement factor of 2.5 for fluorescence and 1.84 for 1O2 generation was obtained when the molar ratio of gold:VP was 5:1 and excited at 425 nm, compared with PLGA doped with verteporfin only. The experiment results could be explained by the local electric field enhancement of gold nanoparticles. Furthermore, in vitro cell-killing effect on human pancreatic cancer cells was also demonstrated by using this new formulation following light exposure, indicating the utility of these nanocomposites for enhanced photodynamic therapy.

  4. Development of a mist singlet oxygen generator for a chemical oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Muto, Shigeki; Endo, Masamori; Nanri, Kenzo; Fujioka, Tomoo

    2003-11-01

    Mist singlet oxygen generator (Mist-SOG) has been developed in order to increase the BHP utilization. On the other hand, Mist-SOG generates much more water vapor than conventional SOG because the heat capacity of the BHP is small. It is well known that the water vapor deactivates the excited iodine. In order to remove the water vapor, we developed a jet-cold trap. In this method, a nozzle sprayed a chilled H2O2 at 238K with a thin layer form to the gas flow directly in order to get the large specific surface for the water vapor. As a result of experiment, Water vapor partial pressure reduced from 3.3 Torr at the BHP flow rate of 2.2 ml/s and Cl2 flow rate of 3.5 mmol/s for the 65μm BHP droplets.

  5. Abortion rate lowest in United States since '75.

    PubMed

    1998-03-01

    The 1995 US abortion rate of 20/1000 women of reproductive age was the lowest recorded since 1975. In the period 1994-95, the birth rate decreased 1.5%, and the abortion rate decreased 4.5%. Part of the explanation for this decline can be found in the demographic make-up of US women of reproductive age. The number of women in this group has grown since 1980, but the percentage in the most fertile younger age group has declined while that in the less fertile older age group grew. The decline in births and abortions is also due to increased contraceptive usage, especially among adolescents responding to the HIV/AIDS threat. The drop in the abortion rate may also be due to the use of Norplant by adolescents who had given birth and wanted to avoid another birth. Adolescents accounted for 26% of abortions in 1985 and only 20% in 1995. More abortions are being provided at high-volume clinics, and the number of small abortion providers is decreasing. High volume clinics are associated with low complication rates, but women may have to travel further to avail themselves of abortion services. Only 12% of family practice programs nationwide offer abortion training to their residents, and this may contribute to a shortage of abortion providers.

  6. Lowest cost due to highest productivity and highest quality

    NASA Astrophysics Data System (ADS)

    Wenk, Daniel

    2003-03-01

    Since global purchasing in the automotive industry has been taken up all around the world there is one main key factor that makes a TB-supplier today successful: Producing highest quality at lowest cost. The fact that Tailored Blanks, which today may reach up to 1/3 of a car body weight, are purchased on the free market but from different steel suppliers, especially in Europe and NAFTA, the philosophy on OEM side has been changing gradually towards tough evaluation criteria. "No risk at the stamping side" calls for top quality Tailored- or Tubular Blank products. Outsourcing Tailored Blanks has been starting in Japan but up to now without any quality request from the OEM side like ISO 13919-1B (welding quality standard in Europe and USA). Increased competition will automatically push the quality level and the ongoing approach to combine high strength steel with Tailored- and Tubular Blanks will ask for even more reliable system concepts which enables to weld narrow seams at highest speed. Beside producing quality, which is the key to reduce one of the most important cost driver "material scrap," in-line quality systems with true and reliable evaluation is going to be a "must" on all weld systems. Traceability of all process related data submitted to interfaces according to customer request in combination with ghost-shift-operation of TB systems are tomorrow's state-of-the-art solutions of Tailored Blank-facilities.

  7. Identification of singlet oxygen photosensitizes in lambs drinking water in an alveld risk area in West Norway.

    PubMed

    Tønnesen, Hanne Hjorth; Mysterud, Ivar; Karlsen, Jan; Skulberg, Olav M; Laane, Carl M M; Schumacher, Trond

    2013-02-05

    Alveld is a hepatogenous photosensitivity disorder in lambs. Although alveld has been known in Norway for more than 100years, there are still questions related to the cause of the disease. Phytoporphyrin has long been incriminated as the photosensitizer in hepatogenous photosensitivity diseases but previous findings suggest that the photosensitizing mechanism in alveld is more complex, possibly involving other co-factors. The current work investigates the presence of non-hepatogenous photosensitizers originating in lamb's drinking water from various sources. In addition samples of two of the predominent cyanobacteria found in a representative biofilm (i.e. aggregates of microbes) were identified and isolated in axenic (i.e. pure) cultures. Information from the absorption-, fluorescence emission-, and -excitation spectra and the action spectrum for the formation of singlet oxygen was combined in order to identify the chromophores responsible for the formation of singlet oxygen, e.g. phycocyanins from the cyanobacteria. The highest level of singlet oxygen formation was detected in lotic (i.e. flowing) water in the period consistent with the outbreak of the alveld disease in the area. Meteorological data indicate a warm and wet May with a high radiation exposure leading up to a colder and wet June with an even higher solar irradiance. The seasonal variation in the amount of photosensitizers in lamb's drinking water combined meteorological data can be important to predict the outbreak of alveld.

  8. Activity of upper electron-excited states in bioluminescence of coelenterates

    NASA Astrophysics Data System (ADS)

    Belogurova, N. V.; Alieva, R. R.; Kudryasheva, N. S.

    2009-04-01

    The involvement of upper electron-excited states as the primary excited states into bioluminescence of coelenterates was experimentally verified. A series of fluorescent molecules was used as foreign energy acceptors in this bioluminescent reaction. The fluorescent aromatic compounds - pyrene, 2-methoxy-naphtalene, naphthalene, and 1,4-diphenylbutadiene - were selected, with fluorescent state energies ranging from 26,700 to 32,500 cm -1. Excitation of these molecules by Forster singlet-singlet energy transfer from S of bioluminescence emitter and by light absorption were excluded. The weak sensitized fluorescence of three compounds was found in the course of bioluminescent reaction. Energy of the upper electron-excited states of the bioluminescent emitter was located around 31,000 cm -1. Localization of the primary excitation on a carbonyl group of coelenteramide molecule is discussed. Comparison of the primary excitation in bioluminescent processes of coelenterates and bacteria is provided.

  9. Negative Ion Photoelectron Spectroscopy Confirms the Prediction that D-3h Carbontrioxide (CO3) Has a Singlet Ground State

    DOE PAGES

    Hrovat, David; Hou, Gao-Lei; Chen, Bo; ...

    2015-11-13

    The CO3 radical anion (CO3•–) has been formed by electrospraying carbonate dianion (CO32–) into the gas phase. The negative ion photoelectron (NIPE) spectrum of CO3•– shows that, unlike trimethylenemethane [C(CH2)3], carbontrioxide (CO3) has a singlet ground state. From the NIPE spectrum, the electron affinity of CO3 was determined to be EA = 4.06 ± 0.03 eV, and the singlet-triplet energy difference was found to be ΔEST = - 17.8 ± 0.9 kcal/mol. B3LYP, CCSD(T), and CASPT2 calculations all find that the two lowest triplet states of CO3 are very close in energy, a prediction that is confirmed by the relativemore » intensities of the bands in the NIPE spectrum of CO3•–. The 560 cm-1 vibrational progression, seen in the low energy region of the triplet band, enables the identification of the lowest, Jahn-Teller-distorted, triplet state as 3A1, in which both unpaired electrons reside in σ MOs, rather than 3A2, in which one unpaired electron occupies the b2 σ MO, and the other occupies the b1 π MO.« less

  10. Calculation of singlet oxygen formation from one photon absorbing photosensitizers used in PDT

    NASA Astrophysics Data System (ADS)

    Potasek, M.; Parilov, Evgueni; Beeson, K.

    2013-03-01

    Advances in biophotonic medicine require new information on photodynamic mechanisms. In photodynamic therapy (PDT), a photosensitizer (PS) is injected into the body and accumulates at higher concentrations in diseased tissue compared to normal tissue. The PS absorbs light from a light source and generates excited-state triplet states of the PS. The excited triplet states of the PS can then react with ground state molecular oxygen to form excited singlet - state oxygen or form other highly reactive species. The reactive species react with living cells, resulting in cel l death. This treatment is used in many forms of cancer including those in the prostrate, head and neck, lungs, bladder, esophagus and certain skin cancers. We developed a novel numerical method to model the photophysical and photochemical processes in the PS and the subsequent energy transfer to O2, improving the understanding of these processes at a molecular level. Our numerical method simulates light propagation and photo-physics in PS using methods that build on techniques previously developed for optical communications and nonlinear optics applications.

  11. Intermolecular Singlet and Triplet Exciton Transfer Integrals from Many-Body Green's Functions Theory.

    PubMed

    Wehner, Jens; Baumeier, Björn

    2017-03-08

    A general approach to determine orientation and distance-dependent effective intermolecular exciton transfer integrals from many-body Green's functions theory is presented. On the basis of the GW approximation and the Bethe-Salpeter equation (BSE), a projection technique is employed to obtain the excitonic coupling by forming the expectation value of a supramolecular BSE Hamiltonian with electron-hole wave functions for excitations localized on two separated chromophores. Within this approach, accounting for the effects of coupling mediated by intermolecular charge transfer (CT) excitations is possible via perturbation theory or a reduction technique. Application to model configurations of pyrene dimers shows an accurate description of short-range exchange and long-range Coulomb interactions for the coupling of singlet and triplet excitons. Computational parameters, such as the choice of the exchange-correlation functional in the density-functional theory (DFT) calculations that underly the GW-BSE steps and the convergence with the number of included CT excitations, are scrutinized. Finally, an optimal strategy is derived for simulations of full large-scale morphologies by benchmarking various approximations using pairs of dicyanovinyl end-capped oligothiophenes (DCV5T), which are used as donor material in state-of-the-art organic solar cells.

  12. Electronic excitations in long polyenes revisited.

    PubMed

    Schmidt, Maximilian; Tavan, Paul

    2012-03-28

    We apply the valence shell model OM2 [W. Weber and W. Thiel, Theor. Chem. Acc. 103, 495, (2000)] combined with multireference configuration interaction (MRCI) to compute the vertical excitation energies and transition dipole moments of the low-energy singlet excitations in the polyenes with 4 ≤ N ≤ 22π-electrons. We find that the OM2/MRCI descriptions closely resemble those of Pariser-Parr-Pople (PPP) π-electron models [P. Tavan and K. Schulten, Phys. Rev. B 36, 4337, (1987)], if equivalent MRCI procedures and regularly alternating model geometries are used. OM2/MRCI optimized geometries are shown to entail improved descriptions particularly for smaller polyenes (N ≤ 12), for which sizeable deviations from the regular model geometries are found. With configuration interaction active spaces covering also the σ- in addition to the π-electrons, OM2/MRCI excitation energies turn out to become smaller by at most 0.35 eV for the ionic and 0.15 eV for the covalent excitations. The particle-hole (ph) symmetry, which in Pariser-Parr-Pople models arises from the zero-differential overlap approximation, is demonstrated to be only weakly broken in OM2 such that the oscillator strengths of the covalent 1B(u)(-) states, which artificially vanish in ph-symmetric models, are predicted to be very small. According to OM2/MRCI and experimental data the 1B(u)(-) state is the third excited singlet state for N < 12 and becomes the second for N ≥ 14. By comparisons with results of other theoretical approaches and experimental evidence we argue that deficiencies of the particular MRCI method employed by us, which show up in a poor size consistency of the covalent excitations for N > 12, are caused by its restriction to at most doubly excited references.

  13. Electronic excitations in long polyenes revisited

    NASA Astrophysics Data System (ADS)

    Schmidt, Maximilian; Tavan, Paul

    2012-03-01

    We apply the valence shell model OM2 [W. Weber and W. Thiel, Theor. Chem. Acc. 103, 495, (2000), 10.1007/s002149900083] combined with multireference configuration interaction (MRCI) to compute the vertical excitation energies and transition dipole moments of the low-energy singlet excitations in the polyenes with 4 ⩽ N ⩽ 22π-electrons. We find that the OM2/MRCI descriptions closely resemble those of Pariser-Parr-Pople (PPP) π-electron models [P. Tavan and K. Schulten, Phys. Rev. B 36, 4337, (1987)], if equivalent MRCI procedures and regularly alternating model geometries are used. OM2/MRCI optimized geometries are shown to entail improved descriptions particularly for smaller polyenes (N ⩽ 12), for which sizeable deviations from the regular model geometries are found. With configuration interaction active spaces covering also the σ- in addition to the π-electrons, OM2/MRCI excitation energies turn out to become smaller by at most 0.35 eV for the ionic and 0.15 eV for the covalent excitations. The particle-hole (ph) symmetry, which in Pariser-Parr-Pople models arises from the zero-differential overlap approximation, is demonstrated to be only weakly broken in OM2 such that the oscillator strengths of the covalent 1B_u^- states, which artificially vanish in ph-symmetric models, are predicted to be very small. According to OM2/MRCI and experimental data the 1B_u^- state is the third excited singlet state for N < 12 and becomes the second for N ⩾ 14. By comparisons with results of other theoretical approaches and experimental evidence we argue that deficiencies of the particular MRCI method employed by us, which show up in a poor size consistency of the covalent excitations for N > 12, are caused by its restriction to at most doubly excited references.

  14. Cooperative Singlet and Triplet Exciton Transport in Tetracene Crystals Visualized by Ultrafast Microscopys

    SciTech Connect

    Wan, Yan; Guo, Zhi; Zhu, Tong; Yan, Suxia; Johnson, Justin; Huang, Libai

    2015-09-14

    Singlet fission presents an attractive solution to overcome the Shockley–Queisser limit by generating two triplet excitons from one singlet exciton. Although triplet excitons are long-lived, their transport occurs through a Dexter transfer, making them slower than singlet excitons, which travel by means of a Förster mechanism. A thorough understanding of the interplay between singlet fission and exciton transport is therefore necessary to assess the potential and challenges of singlet-fission utilization. We report a direct visualization of exciton transport in single tetracene crystals using transient absorption microscopy with 200 fs time resolution and 50 nm spatial precision. Moreover, these measurements reveal a new singlet-mediated transport mechanism for triplets, which leads to an enhancement in effective triplet exciton diffusion of more than one order of magnitude on picosecond to nanosecond timescales. These results establish that there are optimal energetics of singlet and triplet excitons that benefit both singlet fission and exciton diffusion.

  15. Finding the Elusive Iodocarbene: Fluorescence Excitation and Single Vibronic Level Emission Spectroscopy of Chi

    NASA Astrophysics Data System (ADS)

    Tao, C.; Ebben, C.; Ko, H. T.; Reid, S. A.; Wang, Z.; Sears, T. J.

    2009-06-01

    Among the triatomic halocarbenes, only the iodocarbenes remain to be characterized. The search for these elusive species is motivated by a controversy regarding the multiplicity of the ground state. Photoelectron spectra of Lineberger and co-workers suggest a triplet ground state for CHI, at variance with recent ab initio studies, which suggest a singlet ground state with a singlet-triplet gap of around 4 kcal mol^{-1}. In this work, we have succeeded in finding the spectra of CHI and its deuterated isotopomer using pulsed discharge jet spectroscopy. Rotationally resolved fluorescence excitation spectra are consistent with a singlet-singlet transition, and the derived rotational constants are in good agreement with theoretical predictions. Single vibronic level emission spectra confirm a singlet multiplicity for the ground state, and reveal extensive mixing of the singlet and triplet levels at higher energy. We are able to set a lower limit on the singlet-triplet gap of 4.1 kcal mol^{-1}, in excellent agreement with theory. Extrapolation of the observed bending levels for CHI and CDI to a common origin suggests that the origin of the A^{1}A^'' state lies near 10 500 cm^{-1}, and we will report on high resolution measurements near the electronic origin made at Brookhaven National Laboratory. M. K. Gilles, K. M. Ervin, J. Ho, and W. C. Lineberger, J. Phys. Chem. 96, 1130 (1992).

  16. Properties of flavour-singlet pseudoscalar mesons from lattice QCD

    NASA Astrophysics Data System (ADS)

    Urbach, Carsten

    2017-01-01

    We report on the status of the determination of properties of flavour-singlet pseudoscalar mesons using Wilson twisted mass lattice QCD at maximal twist. As part of project C7, a large number of phenomenologically relevant quantities could be extracted from first principle, from η and η' masses to decay widths of pseudoscalar mesons to two photons.

  17. Singlet oxygen and organic light-emitting diodes

    SciTech Connect

    Jacobs, S.J.; Sinclair, M.B.; Valencia, V.S.; Kepler, R.G.; Clough, R.L.; Scurlock, R.D.; Ogilby, P.R.

    1995-07-01

    The preparation of light emitting diodes employing a new class of materials, 5,10-dihetera 5,10-dihydro-indeno[3,2b]indenes, as hole transport agents is described. These materials have been found to be more resistant to degradation by singlet oxygen than a poly(p-phenylene vinylene) (PPV) derivative.

  18. High throughput jet singlet oxygen generator for multi kilowatt SCOIL

    NASA Astrophysics Data System (ADS)

    Rajesh, R.; Singhal, Gaurav; Mainuddin; Tyagi, R. K.; Dawar, A. L.

    2010-06-01

    A jet flow singlet oxygen generator (JSOG) capable of handling chlorine flows of nearly 1.5 mol s -1 has been designed, developed, and tested. The generator is designed in a modular configuration taking into consideration the practical aspects of handling high throughput flows without catastrophic BHP carry over. While for such high flow rates a cross-flow configuration has been reported, the generator utilized in the present study is a counter flow configuration. A near vertical extraction of singlet oxygen is effected at the generator exit, followed by a 90° rotation of the flow forming a novel verti-horizontal COIL scheme. This allows the COIL to be operated with a vertical extraction SOG followed by the horizontal arrangement of subsequent COIL systems such as supersonic nozzle, cavity, supersonic diffuser, etc. This enables a more uniform weight distribution from point of view of mobile and other platform mounted systems, which is highly relevant for large scale systems. The present study discusses the design aspects of the jet singlet oxygen generator along with its test results for various operating ranges. Typically, for the intended design flow rates, the chlorine utilization and singlet oxygen yield have been observed to be ˜94% and ˜64%, respectively.

  19. First-Principle Characterization for Singlet Fission Couplings.

    PubMed

    Yang, Chou-Hsun; Hsu, Chao-Ping

    2015-05-21

    The electronic coupling for singlet fission, an important parameter for determining the rate, has been found to be too small unless charge-transfer (CT) components were introduced in the diabatic states, mostly through perturbation or a model Hamiltonian. In the present work, the fragment spin difference (FSD) scheme was generalized to calculate the singlet fission coupling. The largest coupling strength obtained was 14.8 meV for two pentacenes in a crystal structure, or 33.7 meV for a transition-state structure, which yielded a singlet fission lifetime of 239 or 37 fs, generally consistent with experimental results (80 fs). Test results with other polyacene molecules are similar. We found that the charge on one fragment in the S1 diabatic state correlates well with FSD coupling, indicating the importance of the CT component. The FSD approach is a useful first-principle method for singlet fission coupling, without the need to include the CT component explicitly.

  20. The many guises of a neutral fermion singlet

    NASA Astrophysics Data System (ADS)

    Ma, Ernest

    2017-03-01

    The addition of a neutral fermion singlet to the Standard Model (SM) of particle interactions leads to many diverse possibilities. It is not necessarily a right-handed neutrino. I discuss many of the simplest and most interesting scenarios of possible new physics with this approach. In particular, I propose the possible spontaneous breaking of baryon number, resulting in the massless “sakharon”.

  1. Singlet CH domain containing human multidomain proteins: an inventory.

    PubMed

    Friedberg, Felix

    2010-03-01

    The actin cytoskeleton presents the basic force in processes such as cytokinesis, endocytosis, vesicular trafficking and cell migration. Here, we list 30 human singlet CH (calpononin homology/actin binding) containing multidomain molecules, each encoded by one gene. We show the domain distributions as given by the SMART program. These mosaic proteins organize geographically the placement of selected proteins in proximity within the cell. In most instances, their precise location, their actin binding capacity by way of the singlet CH (or by other domains?) and their physiological functions need further elucidation. A dendrogram based solely on the relationship for the human singlet CH domains (in terms of AA sequences) for the various molecules that possess the domain, implies that the singlet descended from a common ancestor which in turn sprouted three main branches of protein products. Each branch bifurcated multiple times thus accounting for a cornucopia of products. Wherever, additional (unassigned), highly homologous regions exist in related proteins (e.g., in LIM and LMO7 or in Tangerin and EH/BP1), these unrecognized domain regions await assignment as specific functional domains. Frequently genes coding multidomain proteins duplicated. The varying modular nature within multidomain proteins should have accelerated evolutionary changes to a degree not feasible to achieve by means of mere post-duplication mutational changes.

  2. Excitation spectra of disordered dimer magnets near quantum criticality.

    PubMed

    Vojta, Matthias

    2013-08-30

    For coupled-dimer magnets with quenched disorder, we introduce a generalization of the bond-operator method, appropriate to describe both singlet and magnetically ordered phases. This allows for a numerical calculation of the magnetic excitations at all energies across the phase diagram, including the strongly inhomogeneous Griffiths regime near quantum criticality. We apply the method to the bilayer Heisenberg model with bond randomness and characterize both the broadening of excitations and the transfer of spectral weight induced by disorder. Inside the antiferromagnetic phase this model features the remarkable combination of sharp magnetic Bragg peaks and broad magnons, the latter arising from the tendency to localization of low-energy excitations.

  3. Excitation spectra of circular, few-electron quantum dots

    PubMed

    Kouwenhoven; Oosterkamp; Danoesastro; Eto; Austing; Honda; Tarucha

    1997-12-05

    Studies of the ground and excited states in semiconductor quantum dots containing 1 to 12 electrons showed that the quantum numbers of the states in the excitation spectra can be identified and compared with exact calculations. A magnetic field induces transitions between the ground and excited states. These transitions were analyzed in terms of crossings between single-particle states, singlet-triplet transitions, spin polarization, and Hund's rule. These impurity-free quantum dots allow "atomic physics" experiments to be performed in magnetic field regimes not accessible for atoms.

  4. Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices.

    PubMed

    Wilson, Mark W B; Rao, Akshay; Ehrler, Bruno; Friend, Richard H

    2013-06-18

    Singlet exciton fission is the process in conjugated organic molecules bywhich a photogenerated singlet exciton couples to a nearby chromophore in the ground state, creating a pair of triplet excitons. Researchers first reported this phenomenon in the 1960s, an event that sparked further studies in the following decade. These investigations used fluorescence spectroscopy to establish that exciton fission occurred in single crystals of several acenes. However, research interest has been recently rekindled by the possibility that singlet fission could be used as a carrier multiplication technique to enhance the efficiency of photovoltaic cells. The most successful architecture to-date involves sensitizing a red-absorbing photoactive layer with a blue-absorbing material that undergoes fission, thereby generating additional photocurrent from higher-energy photons. The quest for improved solar cells has spurred a drive to better understand the fission process, which has received timely aid from modern techniques for time-resolved spectroscopy, quantum chemistry, and small-molecule device fabrication. However, the consensus interpretation of the initial studies using ultrafast transient absorption spectroscopy was that exciton fission was suppressed in polycrystalline thin films of pentacene, a material that would be otherwise expected to be an ideal model system, as well as a viable candidate for fission-sensitized photovoltaic devices. In this Account, we review the results of our recent transient absorption and device-based studies of polycrystalline pentacene. We address the controversy surrounding the assignment of spectroscopic features in transient absorption data, and illustrate how a consistent interpretation is possible. This work underpins our conclusion that singlet fission in pentacene is extraordinarily rapid (∼80 fs) and is thus the dominant decay channel for the photoexcited singlet exciton. Further, we discuss our demonstration that triplet excitons

  5. Excited-state dynamics in diketopyrrolopyrrole-based copolymer for organic photovoltaics investigated by transient optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Hiroyuki; Furube, Akihiro; Katoh, Ryuzi; Pratap Singh, Samarendra; Sonar, Prashant; Williams, Evan Laurence; Vijila, Chellappan; Sandhya Subramanian, Gomathy; Gorelik, Sergey; Hobley, Jonathan

    2014-01-01

    We investigate the photoexcited state dynamics in a donor-acceptor copolymer, poly{3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-naphthalene} (pDPP-TNT), by picosecond fluorescence and femtosecond transient absorption spectroscopies. Time-resolved fluorescence lifetime measurements of pDPP-TNT thin films reveal that the lifetime of the singlet excited state is 185 ± 5 ps and that singlet-singlet annihilation occurs at excitation photon densities above 6 × 1017 photons/cm3. From the results of singlet-singlet annihilation analysis, we estimate that the single-singlet annihilation rate constant is (6.0 ± 0.2) × 10-9 cm3 s-1 and the singlet diffusion length is ~7 nm. From the comparison of femtosecond transient absorption measurements and picosecond fluorescence measurements, it is found that the time profile of the photobleaching signal in the charge-transfer (CT) absorption band coincides with that of the fluorescence intensity and there is no indication of long-lived species, which clearly suggests that charged species, such as polaron pairs and triplet excitons, are not effectively photogenerated in the neat pDPP-TNT polymer.

  6. Sea quark matrix elements and flavor singlet spectroscopy on the lattice

    SciTech Connect

    Lagae, J.F.

    1996-12-31

    I summarize the results of three recent lattice studies which use stochastic estimator techniques in order to investigate the flavor singlet dynamics in QCD. These include a measurement of the pion-nucleon {sigma}-term, the computation of the flavor singlet axial coupling constant of the nucleon and a determination of flavor singlet meson screening lengths in finite temperature QCD.

  7. Singlet Fission of Non-polycyclic Aromatic Molecules in Organic Photovoltaics.

    PubMed

    Kawata, So; Pu, Yong-Jin; Saito, Ayaka; Kurashige, Yuki; Beppu, Teruo; Katagiri, Hiroshi; Hada, Masaki; Kido, Junji

    2016-02-24

    Singlet fission of thienoquinoid compounds in organic photovoltaics is demonstrated. The escalation of the thienoquinoid length of the compounds realizes a suitable packing structure and energy levels for singlet fission. The magnetic-field dependence of the photocurrent and the external quantum efficiency of the devices reveal singlet fission of the compounds and dissociation of triplet excitons into charges.

  8. Exciting Pools

    ERIC Educational Resources Information Center

    Wright, Bradford L.

    1975-01-01

    Advocates the creation of swimming pool oscillations as part of a general investigation of mechanical oscillations. Presents the equations, procedure for deriving the slosh modes, and methods of period estimation for exciting swimming pool oscillations. (GS)

  9. Ground-state and excited-state structures of tungsten-benzylidyne complexes.

    PubMed

    Lovaasen, Benjamin M; Lockard, Jenny V; Cohen, Brian W; Yang, Shujiang; Zhang, Xiaoyi; Simpson, Cheslan K; Chen, Lin X; Hopkins, Michael D

    2012-05-21

    The molecular structure of the tungsten-benzylidyne complex trans-W(≡CPh)(dppe)(2)Cl (1; dppe = 1,2-bis(diphenylphosphino)ethane) in the singlet (d(xy))(2) ground state and luminescent triplet (d(xy))(1)(π*(WCPh))(1) excited state (1*) has been studied using X-ray transient absorption spectroscopy, X-ray crystallography, and density functional theory (DFT) calculations. Molecular-orbital considerations suggest that the W-C and W-P bond lengths should increase in the excited state because of the reduction of the formal W-C bond order and decrease in W→P π-backbonding, respectively, between 1 and 1*. This latter conclusion is supported by comparisons among the W-P bond lengths obtained from the X-ray crystal structures of 1, (d(xy))(1)-configured 1(+), and (d(xy))(2) [W(CPh)(dppe)(2)(NCMe)](+) (2(+)). X-ray transient absorption spectroscopic measurements of the excited-state structure of 1* reveal that the W-C bond length is the same (within experimental error) as that determined by X-ray crystallography for the ground state 1, while the average W-P/W-Cl distance increases by 0.04 Å in the excited state. The small excited-state elongation of the W-C bond relative to the M-E distortions found for M(≡E)L(n) (E = O, N) compounds with analogous (d(xy))(1)(π*(ME))(1) excited states is due to the π conjugation within the WCPh unit, which lessens the local W-C π-antibonding character of the π*(WCPh) lowest unoccupied molecular orbital (LUMO). These conclusions are supported by DFT calculations on 1 and 1*. The similar core bond distances of 1, 1(+), and 1* indicates that the inner-sphere reorganization energy associated with ground- and excited-state electron-transfer reactions is small.

  10. Ground-state and excited-state structures of tungsten-benzylidyne complexes

    SciTech Connect

    Lovaasen, B. M.; Lockard, J. V.; Cohen, B. W.; Yang, S.; Zhang, X.; Simpson, C. K.; Chen, L. X.; Hopkins, M. D.

    2012-01-01

    The molecular structure of the tungsten-benzylidyne complex trans-W({triple_bond}CPh)(dppe){sub 2}Cl (1; dppe = 1,2-bis(diphenylphosphino)ethane) in the singlet (d{sub xy}){sup 2} ground state and luminescent triplet (d{sub xy}){sup 1}({pi}*(WCPh)){sup 1} excited state (1*) has been studied using X-ray transient absorption spectroscopy, X-ray crystallography, and density functional theory (DFT) calculations. Molecular-orbital considerations suggest that the W-C and W-P bond lengths should increase in the excited state because of the reduction of the formal W-C bond order and decrease in W {yields} P {pi}-backbonding, respectively, between 1 and 1*. This latter conclusion is supported by comparisons among the W-P bond lengths obtained from the X-ray crystal structures of 1, (d{sub xy}){sup 1}-configured 1{sup +}, and (d{sub xy}){sup 2} [W(CPh)(dppe){sub 2}(NCMe)]{sup +} (2{sup +}). X-ray transient absorption spectroscopic measurements of the excited-state structure of 1* reveal that the W-C bond length is the same (within experimental error) as that determined by X-ray crystallography for the ground state 1, while the average W-P/W-Cl distance increases by 0.04 {angstrom} in the excited state. The small excited-state elongation of the W-C bond relative to the M-E distortions found for M({triple_bond}E)L{sub n} (E = O, N) compounds with analogous (d{sub xy}){sup 1}({pi}*(ME)){sup 1} excited states is due to the {pi} conjugation within the WCPh unit, which lessens the local W-C {pi}-antibonding character of the {pi}*(WCPh) lowest unoccupied molecular orbital (LUMO). These conclusions are supported by DFT calculations on 1 and 1*. The similar core bond distances of 1, 1{sup +}, and 1* indicates that the inner-sphere reorganization energy associated with ground- and excited-state electron-transfer reactions is small.

  11. Intramolecular charge transfer effects on the diradical character and second hyperpolarizabilities of open-shell singlet X-π-X (X = donor/acceptor) systems.

    PubMed

    Fukuda, Kotaro; Nakano, Masayoshi

    2014-05-15

    We investigate the effect of the quadrupole-type intramolecular charge transfer (ICT) in open-shell singlet donor-π-donor (D-π-D) molecules on the singlet open-shell (diradical) character and the longitudinal second hyperpolarizabilities γ (the third-order nonlinear optical (NLO) properties at the molecular scale). For this investigation we used the para-quinodimethane (PQM) with point charges (pc's) model calculated with the unrestricted coupled cluster method including single and double excitations with a perturbative treatment of the triple excitations (UCCSD(T)). In this model, the diradical character y and the amount of the ICT, that is, the D-π-D nature, can be varied primarily by changing the exocyclic carbon-carbon bond (C-C) lengths and the external pc's Q, respectively. It turns out that the increase in the D-π-D nature decreases the y values, moves the y values (ymax) giving the maximum γ (γmax) to the large y region, and enhances the γmax values, for example, the γmax of the singlet diradical PQM with Q = -2.8 au reaches twice that of the singlet diradical PQM without any pc's. This result indicates that open-shell singlet D-π-D systems with ICT are promising candidates for a new class of third-order NLO molecules, whose γ values are more enhanced than those of conventional closed-shell D-π-D systems and of symmetric open-shell singlet systems without the ICT. To confirm this tendency, we examine the boron-disubstituted PQM dianion model, which is found to exhibit further enhancement of γ as compared to the PQM model with intermediate diradical character due to the synergy effects of the intermediate open-shell singlet nature and the strong field-induced ICT nature in the dianionic state of the D-π-D system. Further investigation of the acceptor-π-acceptor (A-π-A) type ICT effect in the PQM-pc model shows that both D-π-D and A-π-A type symmetric ICTs give similar effects on the relationship between y and γ, though there are some

  12. Contributions of a Higher Triplet Excited State to the Emission Properties of a Thermally Activated Delayed-Fluorescence Emitter

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takashi; Niwa, Akitsugu; Takaki, Kensho; Haseyama, Shota; Nagase, Takashi; Goushi, Kenichi; Adachi, Chihaya; Naito, Hiroyoshi

    2017-03-01

    The temperature dependences of photoluminescence (PL) decay rates and the PL spectrum of a thermally activated delayed-fluorescence emitter, 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN), are investigated. It is found that not only the lowest singlet (S1 ) and triplet (T1) excited states but also an additional triplet excited state (Tn) lying between S1 and T1 play an important role in the exciton decay process, particularly around 100 K. At around this temperature, some of the triplet excitons are thermally activated into Tn but not up to S1, and they then decay into the ground state (S0) with phosphorescence emission. Therefore, two kinds of phosphorescence, originating from Tn and T1, are observed. The temperature dependence of the PL decay rates of 4CzIPN can be explained by a four-level model consisting of S1, T1, Tn, and S0, and its energy gaps between Tn and T1 and between S1 and T1 are determined to be 45 ±5 meV and 135 ±10 meV , respectively.

  13. Photostability studies of {pi}-conjugated chromophores with resonant and nonresonant light excitation for long-life polymeric telecommunication devices

    SciTech Connect

    Rezzonico, Daniele; Jazbinsek, Mojca; Guenter, Peter; Bosshard, Christian; Bale, Denise H.; Liao Yi; Dalton, Larry R.; Reid, Philip J.

    2007-09-15

    Theoretical and experimental studies of molecular photodegradation in {pi}-conjugated chromophores with resonant and nonresonant excitation relative to the lowest-energy electronic transition of the chromophore are performed. The limitations of previous photodegradation models are discussed, and new models that overcome these limitations and provide more accurate estimates of chromophore photostability are presented. In particular, the necessity of considering multiple degradation pathways in the analysis of photobleaching studies is shown. Photostability studies of a dihydrofuran thiophene-bridged dicyanomethylene based chromophore (FTC) employing 1.55-{mu}m excitation reveal that the photoinitiated decay kinetics are biphasic. We present what we believe to be a new, double-pathway photodegradation model capable of describing this behavior. Through investigations employing the singlet-oxygen quencher bis(dithiobenzil)nickel, photooxidation is shown to be one of the photodegradation pathways, and the ability of a quencher to inhibit chromophore photooxidation is quantified. The studies presented here provide insight into the mechanism of photochemical degradation of {pi}-conjugated chromophores for devices operating in the visible and at telecommunication wavelengths.

  14. Proton release from Stentor photoreceptors in the excited states.

    PubMed

    Song, P S; Walker, E B; Auerbach, R A; Robinson, G W

    1981-08-01

    Steady-state and picosecond pulse excitations of the photophobic-phototactic receptors isolated from Stentor coeruleus produced anionic species predominantly in the excited singlet state, although neutral photoreceptors in the ground state were exclusively excited. The same photoreceptor in vivo also emits fluorescence from the excited state of its anionic species, with an excitation spectrum identical to the absorption spectrum of the neutral species in the ground state. The excited state dissociation of protons from the photoreceptor chromophore (stentorin; hypericin covalently linked to protein) efficiently occurs in less than 10 ps. A possible role of the transient-proton release from the photoreceptor, in the signal transduction photoresponse of Stentor, is briefly discussed.

  15. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf.

    PubMed

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; Nguyen, Thien An; Alfano, Robert R

    2014-06-01

    Two-photon (2P) excitation of the second singlet (S₂) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S₂ state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S₂ state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.

  16. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf

    NASA Astrophysics Data System (ADS)

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; An Nguyen, Thien; Alfano, Robert R.

    2014-06-01

    Two-photon (2P) excitation of the second singlet (S) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S2 state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.

  17. Carbon dioxide photolysis from 150 to 210 nm: Singlet and triplet channel dynamics, UV-spectrum, and isotope effects

    PubMed Central

    Schmidt, Johan A.; Johnson, Matthew S.; Schinke, Reinhard

    2013-01-01

    We present a first principles study of the carbon dioxide (CO2) photodissociation process in the 150- to 210-nm wavelength range, with emphasis on photolysis below the carbon monoxide + singlet channel threshold at ∼167 nm. The calculations reproduce experimental absorption cross-sections at a resolution of ∼0.5 nm without scaling the intensity. The observed structure in the 150- to 210-nm range is caused by excitation of bending motion supported by the deep wells at bent geometries in the and potential energy surfaces. Predissociation below the singlet channel threshold occurs via spin-orbit coupling to nearby repulsive triplet states. Carbon monoxide vibrational and rotational state distributions in the singlet channel as well as the triplet channel for excitation at 157 nm satisfactorily reproduce experimental data. The cross-sections of individual CO2 isotopologues (12C16O2, 12C17O16O, 12C18O16O, 13C16O2, and 13C18O16O) are calculated, demonstrating that strong isotopic fractionation will occur as a function of wavelength. The calculations provide accurate, detailed insight into CO2 photoabsorption and dissociation dynamics, and greatly extend knowledge of the temperature dependence of the cross-section to cover the range from 0 to 400 K that is useful for calculations of propagation of stellar light in planetary atmospheres. The model is also relevant for the interpretation of laboratory experiments on mass-independent isotopic fractionation. Finally, the model shows that the mass-independent fractionation observed in a series of Hg lamp experiments is not a result of hyperfine interactions making predissociation of 17O containing CO2 more efficient. PMID:23776249

  18. Carbon dioxide photolysis from 150 to 210 nm: singlet and triplet channel dynamics, UV-spectrum, and isotope effects.

    PubMed

    Schmidt, Johan A; Johnson, Matthew S; Schinke, Reinhard

    2013-10-29

    We present a first principles study of the carbon dioxide (CO2) photodissociation process in the 150- to 210-nm wavelength range, with emphasis on photolysis below the carbon monoxide + singlet channel threshold at ~167 nm. The calculations reproduce experimental absorption cross-sections at a resolution of ~0.5 nm without scaling the intensity. The observed structure in the 150- to 210-nm range is caused by excitation of bending motion supported by the deep wells at bent geometries in the and potential energy surfaces. Predissociation below the singlet channel threshold occurs via spin-orbit coupling to nearby repulsive triplet states. Carbon monoxide vibrational and rotational state distributions in the singlet channel as well as the triplet channel for excitation at 157 nm satisfactorily reproduce experimental data. The cross-sections of individual CO2 isotopologues ((12)C(16)O2, (12)C(17)O(16)O, (12)C(18)O(16)O, (13)C(16)O2, and (13)C(18)O(16)O) are calculated, demonstrating that strong isotopic fractionation will occur as a function of wavelength. The calculations provide accurate, detailed insight into CO2 photoabsorption and dissociation dynamics, and greatly extend knowledge of the temperature dependence of the cross-section to cover the range from 0 to 400 K that is useful for calculations of propagation of stellar light in planetary atmospheres. The model is also relevant for the interpretation of laboratory experiments on mass-independent isotopic fractionation. Finally, the model shows that the mass-independent fractionation observed in a series of Hg lamp experiments is not a result of hyperfine interactions making predissociation of (17)O containing CO2 more efficient.

  19. Charge-Transfer Versus Charge-Transfer-Like Excitations Revisited

    SciTech Connect

    Moore, Barry; Sun, Haitao; Govind, Niranjan; Kowalski, Karol; Autschbach, Jochen

    2015-07-14

    Criteria to assess charge-transfer (CT) and `CT-like' character of electronic excitations are examined. Time-dependent density functional theory (TDDFT) with non-hybrid, hybrid, and tuned long-range corrected (LC) functionals is compared with with coupled-cluster (CC) benchmarks. The test set includes an organic CT complex, two `push-pull' donor-acceptor chromophores, a cyanine dye, and several polycyclic aromatic hydrocarbons. Proper CT is easily identified. Excitations with significant density changes upon excitation within regions of close spatial proximity can also be diagnosed. For such excitations, the use of LC functionals in TDDFT sometimes leads to dramatic improvements of the singlet energies, similar to proper CT, which has led to the concept of `CT-like' excitations. However, `CT-like' excitations are not like charge transfer, and the improvements are not obtained for the right reasons. The triplet excitation energies are underestimated for all systems, often severely. For the `CT-like' candidates, when going from a non-hybrid to an LC functional the error in the singlet-triplet (S/T) separation changes from negative to positive, providing error compensation. For the cyanine, the S/T separation is too large with all functionals, leading to the best error compensation for non-hybrid functionals.

  20. Singlet oxygen production in the reaction of superoxide with organic peroxides.

    PubMed

    MacManus-Spencer, Laura A; Edhlund, Betsy L; McNeill, Kristopher

    2006-01-20

    [reaction: see text] A selective chemiluminescent probe for singlet oxygen has been employed to detect and quantify singlet oxygen in the reactions of superoxide with organic peroxides. The production of singlet oxygen has been quantified in the reaction of superoxide with benzoyl peroxide (BP). No singlet oxygen was detected in the reactions of superoxide with cumyl peroxide, tert-butyl peroxide, or tert-butyl hydroperoxide. On the basis of these results and on the temperature dependence of the reaction, we proposed a mechanism for singlet oxygen formation in the reaction of superoxide with BP.

  1. Open-Shell Singlet Character of Stable Derivatives of Nonacene, Hexacene and Teranthene

    SciTech Connect

    Gao, Xingfa; Jiang, Deen; Zhang, Prof. Shengbai; Chen, Zhongfang; Miller, Glen; Hodgson, Jennifer

    2011-01-01

    The electronic ground states of the recently synthesized stable nonacene derivatives (J. Am. Chem. Soc.2010, 132, 1261) are open-shell singlets with a polyradical nature instead of closed-shell singlets as originally assumed, according to the unrestricted broken spin-symmetry density functional theory (UBS-DFT) computations (at B3LYP/6-31G*). It is the bulky protecting groups, not the transfer from the open-shell singlet to closed-shell singlet ground state, that stabilizes these longest characterized acenes. Similar analyses also confirmed the open-shell singlet character of the hexacene and teranthene derivatives.

  2. Up-converted fluorescence from photosynthetic light-harvesting complexes linearly dependent on excitation intensity.

    PubMed

    Leiger, Kristjan; Freiberg, Arvi

    2016-01-01

    Weak up-converted fluorescence related to bacteriochlorophyll a was recorded from various detergent-isolated and membrane-embedded light-harvesting pigment-protein complexes as well as from the functional membranes of photosynthetic purple bacteria under continuous-wave infrared laser excitation at 1064 nm, far outside the optically allowed singlet absorption bands of the chromophore. The fluorescence increases linearly with the excitation power, distinguishing it from the previously observed two-photon excited fluorescence upon femtosecond pulse excitation. Possible mechanisms of this excitation are discussed.

  3. Determination of the lowest-energy structure of Ag{sub 8} from first-principles calculations

    SciTech Connect

    Pereiro, M.; Baldomir, D.

    2005-10-15

    The ground-state electronic and structural properties and the electronic excitations of the lowest-energy isomers of the Ag{sub 8} cluster are calculated using density functional theory (DFT) and time-dependent DFT (TDDFT) in real-time and real-space schemes, respectively. The optical spectra provided by TDDFT predict that the D{sub 2d} dodecahedron isomer is the structural minimum of the Ag{sub 8} cluster. Indeed, it is borne out by the experimental findings.

  4. Diabatic-At-Construction Method for Diabatic and Adiabatic Ground and Excited States Based on Multistate Density Functional Theory.

    PubMed

    Grofe, Adam; Qu, Zexing; Truhlar, Donald G; Li, Hui; Gao, Jiali

    2017-03-14

    We describe a diabatic-at-construction (DAC) strategy for defining diabatic states to determine the adiabatic ground and excited electronic states and their potential energy surfaces using the multistate density functional theory (MSDFT). The DAC approach differs in two fundamental ways from the adiabatic-to-diabatic (ATD) procedures that transform a set of preselected adiabatic electronic states to a new representation. (1) The DAC states are defined in the first computation step to form an active space, whose configuration interaction produces the adiabatic ground and excited states in the second step of MSDFT. Thus, they do not result from a similarity transformation of the adiabatic states as in the ATD procedure; they are the basis for producing the adiabatic states. The appropriateness and completeness of the DAC active space can be validated by comparison with experimental observables of the ground and excited states. (2) The DAC diabatic states are defined using the valence bond characters of the asymptotic dissociation limits of the adiabatic states of interest, and they are strictly maintained at all molecular geometries. Consequently, DAC diabatic states have specific and well-defined physical and chemical meanings that can be used for understanding the nature of the adiabatic states and their energetic components. Here we present results for the four lowest singlet states of LiH and compare them to a well-tested ATD diabatization method, namely the 3-fold way; the comparison reveals both similarities and differences between the ATD diabatic states and the orthogonalized DAC diabatic states. Furthermore, MSDFT can provide a quantitative description of the ground and excited states for LiH with multiple strongly and weakly avoided curve crossings spanning over 10 Å of interatomic separation.

  5. Helicity evolution at small x: Flavor singlet and nonsinglet observables

    DOE PAGES

    Kovchegov, Yuri V.; Pitonyak, Daniel; Sievert, Matthew D.

    2017-01-30

    We extend our earlier results for the quark helicity evolution at small x to derive the small-x asymptotics of the flavor singlet and flavor nonsinglet quark helicity TMDs and PDFs and of the g1 structure function. In the flavor singlet case we rederive the evolution equations obtained in our previous paper on the subject, performing additional cross-checks of our results. In the flavor nonsinglet case we construct new small-x evolution equations by employing the large-Nc limit. Here, all evolution equations resum double-logarithmic powers of αsln2(1/x) in the polarization-dependent evolution along with the single-logarithmic powers of αsln(1/x) in the unpolarized evolutionmore » which includes saturation effects.« less

  6. A transferable model for singlet-fission kinetics.

    PubMed

    Yost, Shane R; Lee, Jiye; Wilson, Mark W B; Wu, Tony; McMahon, David P; Parkhurst, Rebecca R; Thompson, Nicholas J; Congreve, Daniel N; Rao, Akshay; Johnson, Kerr; Sfeir, Matthew Y; Bawendi, Moungi G; Swager, Timothy M; Friend, Richard H; Baldo, Marc A; Van Voorhis, Troy

    2014-06-01

    Exciton fission is a process that occurs in certain organic materials whereby one singlet exciton splits into two independent triplets. In photovoltaic devices these two triplet excitons can each generate an electron, producing quantum yields per photon of >100% and potentially enabling single-junction power efficiencies above 40%. Here, we measure fission dynamics using ultrafast photoinduced absorption and present a first-principles expression that successfully reproduces the fission rate in materials with vastly different structures. Fission is non-adiabatic and Marcus-like in weakly interacting systems, becoming adiabatic and coupling-independent at larger interaction strengths. In neat films, we demonstrate fission yields near unity even when monomers are separated by >5 Å. For efficient solar cells, however, we show that fission must outcompete charge generation from the singlet exciton. This work lays the foundation for tailoring molecular properties like solubility and energy level alignment while maintaining the high fission yield required for photovoltaic applications.

  7. Singlet exciton fission-sensitized infrared quantum dot solar cells.

    PubMed

    Ehrler, Bruno; Wilson, Mark W B; Rao, Akshay; Friend, Richard H; Greenham, Neil C

    2012-02-08

    We demonstrate an organic/inorganic hybrid photovoltaic device architecture that uses singlet exciton fission to permit the collection of two electrons per absorbed high-energy photon while simultaneously harvesting low-energy photons. In this solar cell, infrared photons are absorbed using lead sulfide (PbS) nanocrystals. Visible photons are absorbed in pentacene to create singlet excitons, which undergo rapid exciton fission to produce pairs of triplets. Crucially, we identify that these triplet excitons can be ionized at an organic/inorganic heterointerface. We report internal quantum efficiencies exceeding 50% and power conversion efficiencies approaching 1%. These findings suggest an alternative route to circumvent the Shockley-Queisser limit on the power conversion efficiency of single-junction solar cells.

  8. A transferable model for singlet-fission kinetics

    NASA Astrophysics Data System (ADS)

    Yost, Shane R.; Lee, Jiye; Wilson, Mark W. B.; Wu, Tony; McMahon, David P.; Parkhurst, Rebecca R.; Thompson, Nicholas J.; Congreve, Daniel N.; Rao, Akshay; Johnson, Kerr; Sfeir, Matthew Y.; Bawendi, Moungi G.; Swager, Timothy M.; Friend, Richard H.; Baldo, Marc A.; van Voorhis, Troy

    2014-06-01

    Exciton fission is a process that occurs in certain organic materials whereby one singlet exciton splits into two independent triplets. In photovoltaic devices these two triplet excitons can each generate an electron, producing quantum yields per photon of >100% and potentially enabling single-junction power efficiencies above 40%. Here, we measure fission dynamics using ultrafast photoinduced absorption and present a first-principles expression that successfully reproduces the fission rate in materials with vastly different structures. Fission is non-adiabatic and Marcus-like in weakly interacting systems, becoming adiabatic and coupling-independent at larger interaction strengths. In neat films, we demonstrate fission yields near unity even when monomers are separated by >5 Å. For efficient solar cells, however, we show that fission must outcompete charge generation from the singlet exciton. This work lays the foundation for tailoring molecular properties like solubility and energy level alignment while maintaining the high fission yield required for photovoltaic applications.

  9. Research on Uniform-Droplet Singlet-Oxygen Generator

    NASA Astrophysics Data System (ADS)

    Chen, Wenwu; Jin, Yuqi; Sang, Fengting; Li, Guoqing

    2009-11-01

    The formation of a uniform droplet is the key in a uniform-droplet singlet-oxygen generator (SOG). This paper is mainly on the condition of uniform droplet formation. Factors in uniform-droplet formation, such as basic hydrogen peroxide (BHP) liquid velocity, disturbance frequency, and the pressure distribution in the fluid infusion cavity, were analyzed and optimized in order to improve the performance of the uniform-droplet singlet-oxygen generator. The chlorine utilization, O2(1Δ) yield, H2O concentration, and laser power were measured. The output concentration of O2(1Δ) was as high as 2.94 ×1017/cm3. The maximum power density through the nozzle was 121.3 W/cm2.

  10. Characteristics of prototype mist singlet-oxygen generator for COIL

    NASA Astrophysics Data System (ADS)

    Muto, S.; Tei, Kazuyoku; Nanri, Kenzo; Fujioka, Tomoo

    2005-03-01

    A mist singlet oxygen generator is possible to improve the HO2 utilization at the one pass reaction between basic hydrogen peroxide (BHP) and chlorine. In this investigation, BHP was atomized to small droplets by the gas flow. Chlorine, which is required for stoichiometric reaction with HO2 in the BHP, was used for atomization of BHP in order to reduce the buffer flow rate for atomization. We obtained the results that the conversion efficiency from chlorine to singlet oxygen (Ux Y) was 9.7% with purely chlorine atomization and 16% with x0.93 dilution ratio of nitrogen buffer at 18.7 mmol/s input chlorine flow and 5.8 ml/s BHP flow rate in a free space reaction chamber.

  11. On the mechanisms of triplet excited state population in 8-azaadenine.

    PubMed

    Gobbo, João Paulo; Borin, Antonio Carlos

    2012-12-06

    The photophysics of 8-azaadenine (8-AA) has been studied with the CASPT2//CASSCF protocol and ANO-L double-ζ basis sets. Stationary equilibrium structures, surface crossings, minimum energy paths, and linear interpolations have been used to study possible mechanisms to populate the lowest triplet state, T(1)(3)(ππ*), capable of sensitizing molecular oxygen. Our results show that two main mechanisms can occur after photoexcitation to the S(2)(1)(ππ*) state. The first one is through the S(2)/S(1) conical intersection (((1)ππ*/(1)nπ*)(CI)), leading to the S(1) ((1)nπ*) state minimum, (S(1) ((1)nπ*))(min), where a singlet-triplet crossing, ((1)nπ*/(3)ππ*)(STC), is accessible. The second one starts with the ((1)ππ*/(3)nπ*)(STC) at the (S(2)((1)ππ*))(min), from which the system can evolve to the (T(2) ((3)nπ*))(min), with subsequent population of the T(1) excited electronic state, due to the ((3)nπ*/(3)ππ*)(CI) conical intersection.

  12. Fast and Accurate Electronic Excitations in Cyanines with the Many-Body Bethe-Salpeter Approach.

    PubMed

    Boulanger, Paul; Jacquemin, Denis; Duchemin, Ivan; Blase, Xavier

    2014-03-11

    The accurate prediction of the optical signatures of cyanine derivatives remains an important challenge in theoretical chemistry. Indeed, up to now, only the most expensive quantum chemical methods (CAS-PT2, CC, DMC, etc.) yield consistent and accurate data, impeding the applications on real-life molecules. Here, we investigate the lowest lying singlet excitation energies of increasingly long cyanine dyes within the GW and Bethe-Salpeter Green's function many-body perturbation theory. Our results are in remarkable agreement with available coupled-cluster (exCC3) data, bringing these two single-reference perturbation techniques within a 0.05 eV maximum discrepancy. By comparison, available TD-DFT calculations with various semilocal, global, or range-separated hybrid functionals, overshoot the transition energies by a typical error of 0.3-0.6 eV. The obtained accuracy is achieved with a parameter-free formalism that offers similar accuracy for metallic or insulating, finite size or extended systems.

  13. A systematic approach to vertically excited states of ethylene using configuration interaction and coupled cluster techniques.

    PubMed

    Feller, David; Peterson, Kirk A; Davidson, Ernest R

    2014-09-14

    A systematic sequence of configuration interaction and coupled cluster calculations were used to describe selected low-lying singlet and triplet vertically excited states of ethylene with the goal of approaching the all electron, full configuration interaction/complete basis set limit. Included among these is the notoriously difficult, mixed valence/Rydberg (1)B(1u) V state. Techniques included complete active space and iterative natural orbital configuration interaction with large reference spaces which led to variational spaces of 1.8 × 10(9) parameters. Care was taken to avoid unintentionally biasing the results due to the widely recognized sensitivity of the V state to the details of the calculation. The lowest vertical and adiabatic ionization potentials to the (2)B(3u) and (2)B3 states were also determined. In addition, the heat of formation of twisted ethylene (3)A1 was obtained from large basis set coupled cluster theory calculations including corrections for core/valence, scalar relativistic and higher order correlation recovery.

  14. A systematic approach to vertically excited states of ethylene using configuration interaction and coupled cluster techniques

    SciTech Connect

    Feller, David Peterson, Kirk A.; Davidson, Ernest R.

    2014-09-14

    A systematic sequence of configuration interaction and coupled cluster calculations were used to describe selected low-lying singlet and triplet vertically excited states of ethylene with the goal of approaching the all electron, full configuration interaction/complete basis set limit. Included among these is the notoriously difficult, mixed valence/Rydberg {sup 1}B{sub 1u} V state. Techniques included complete active space and iterative natural orbital configuration interaction with large reference spaces which led to variational spaces of 1.8 × 10{sup 9} parameters. Care was taken to avoid unintentionally biasing the results due to the widely recognized sensitivity of the V state to the details of the calculation. The lowest vertical and adiabatic ionization potentials to the {sup 2}B{sub 3u} and {sup 2}B{sub 3} states were also determined. In addition, the heat of formation of twisted ethylene {sup 3}A{sub 1} was obtained from large basis set coupled cluster theory calculations including corrections for core/valence, scalar relativistic and higher order correlation recovery.

  15. Formation of singlet oxygen and protection against its oxidative damage in Photosystem II under abiotic stress.

    PubMed

    Pospíšil, Pavel; Prasad, Ankush

    2014-08-01

    Photosystem II (PSII) is exposed to various abiotic stresses associated with adverse environmental conditions such as high light, heat, heavy metals or mechanical injury. Distinctive functional response to adverse environmental conditions is formation of singlet oxygen ((1)O2). In this review, recent progress on mechanistic principles on (1)O2 formation under abiotic stresses is summarized. Under high light, (1)O2 is formed by excitation energy transfer from triplet chlorophylls to molecular oxygen formed by the spin conversion via photosensitization Type II reaction in the PSII antenna complex or by the recombination of (1)[P680(+)Pheo(-)] radical pair in the PSII reaction center. Apart from well-described (1)O2 formation by excitation energy transfer, (1)O2 formation by decomposition of dioxetane and tetroxide is summarized as a potential source of (1)O2 in PSII under heat, heavy metals and mechanical stress. The description of mechanistic principles on (1)O2 formation under abiotic stress allows us to understand how plants respond to adverse environmental conditions in vivo.

  16. Direct excitation of the 'dark' b {sup 3{Pi}} state predicted by deperturbation analysis of the A {sup 1}{Sigma}{sup +}-b {sup 3{Pi}} complex in KCs

    SciTech Connect

    Tamanis, M.; Klincare, I.; Kruzins, A.; Nikolayeva, O.; Ferber, R.; Pazyuk, E. A.; Stolyarov, A. V.

    2010-09-15

    The diode-laser-induced fluorescence spectra b {sup 3}{Pi}{sub {Omega}=0}{sup +}{yields}X{sup 1}{Sigma}{sup +} originated from the rovibronic levels of the 'dark' triplet b {sup 3}{Pi}{sub {Omega}=0}{sup +} state of KCs dimers were recorded with a Fourier transform spectrometer with a resolution of 0.03 cm{sup -1}. Term values of 30 rovibronic levels (v{sub b0}*{element_of}[14,18];J{sup '}{element_of}[47,134]) below the minimum of perturbing A {sup 1}{Sigma}{sup +} state were determined with 0.003-0.01 cm{sup -1} uncertainty. The optimal excitation and detection lines for very weak spin-forbidden b {sup 3}{Pi}{sub {Omega}=0}{sup +}-X{sup 1}{Sigma}{sup +} transitions have been properly predicted in the framework of the coupled-channels deperturbation analysis recently performed for the singlet-triplet A {sup 1}{Sigma}{sup +}-b {sup 3}{Pi}{sub {Omega}=0,1,2}{sup +} complex [A. Kruzins et al., Phys. Rev. A 81, 042509 (2010)]. The lowest observed triplet level has only 8.6% of singlet admixture.

  17. Gradient Index Polymer Optics: Achromatic Singlet Lens Design

    DTIC Science & Technology

    2010-01-01

    achromatic singlet lenses. The designs are based on gradient index lenses fabricated from nanolayered polymer materials. Raytraced results confirm the...fabricated from nanolayered polymer materials. Raytraced results confirm the achromatic performance of the designs. OCIS codes: (110.2760) Gradient...lenses in Zemax®. In order to model these lenses, user-defined surfaces had to be developed for the software. RL RG z y • • Δz • tc •n0 n1• Raytrace

  18. Magnetic Field Dependence of Excitations Near Spin-Orbital Quantum Criticality

    NASA Astrophysics Data System (ADS)

    Biffin, A.; Rüegg, Ch.; Embs, J.; Guidi, T.; Cheptiakov, D.; Loidl, A.; Tsurkan, V.; Coldea, R.

    2017-02-01

    The spinel FeSc2 S4 has been proposed to realize a near-critical spin-orbital singlet (SOS) state, where entangled spin and orbital moments fluctuate in a global singlet state on the verge of spin and orbital order. Here we report powder inelastic neutron scattering measurements that observe the full bandwidth of magnetic excitations and we find that spin-orbital triplon excitations of an SOS state can capture well key aspects of the spectrum in both zero and applied magnetic fields up to 8.5 T. The observed shift of low-energy spectral weight to higher energies upon increasing applied field is naturally explained by the entangled spin-orbital character of the magnetic states, a behavior that is in strong contrast to spin-only singlet ground state systems, where the spin gap decreases upon increasing applied field.

  19. Macroscopic singlet oxygen model incorporating photobleaching as an input parameter

    NASA Astrophysics Data System (ADS)

    Kim, Michele M.; Finlay, Jarod C.; Zhu, Timothy C.

    2015-03-01

    A macroscopic singlet oxygen model for photodynamic therapy (PDT) has been used extensively to calculate the reacted singlet oxygen concentration for various photosensitizers. The four photophysical parameters (ξ, σ, β, δ) and threshold singlet oxygen dose ([1O2]r,sh) can be found for various drugs and drug-light intervals using a fitting algorithm. The input parameters for this model include the fluence, photosensitizer concentration, optical properties, and necrosis radius. An additional input variable of photobleaching was implemented in this study to optimize the results. Photobleaching was measured by using the pre-PDT and post-PDT sensitizer concentrations. Using the RIF model of murine fibrosarcoma, mice were treated with a linear source with fluence rates from 12 - 150 mW/cm and total fluences from 24 - 135 J/cm. The two main drugs investigated were benzoporphyrin derivative monoacid ring A (BPD) and 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH). Previously published photophysical parameters were fine-tuned and verified using photobleaching as the additional fitting parameter. Furthermore, photobleaching can be used as an indicator of the robustness of the model for the particular mouse experiment by comparing the experimental and model-calculated photobleaching ratio.

  20. Experimental and Theoretical Study of Centrifugal Flow Singlet Oxygen Generator

    NASA Astrophysics Data System (ADS)

    Shi, Wenbo; Deng, Liezheng; Yang, Heping; Sha, Guohe; Zhang, Cunhao

    2008-07-01

    We designed and realized a novel centrifugal flow singlet oxygen generator (CFSOG) that was originally proposed by Emanuel [Proc. SPIE 5448 (2004) 233]. In this device, singlet oxygen O2(1Δ) is generated by the reaction of gaseous Cl2 with aqueous basic hydrogen peroxide (BHP) that flows rapidly along an arc-shaped concave to form a rotating liquid layer, so that the nascent O2(1Δ) generated in the liquid phase will be separated from it quickly to suppress the collision quenching loss of O2(1Δ) with the help of the enormous centrifugal force produced by the rotating fluid. Our preliminary experiment shows that, because the specific reactive surface area of this novel singlet oxygen generator (SOG) is much larger than that of the jet-type SOG normally used in current chemical oxygen-iodine laser (COIL), enhanced performance of O2(1Δ) yield ˜60%, O2(1Δ) partial pressure ˜31 Torr, and an extremely high chlorine utilization within 96-98% have been realized.

  1. Mechanism of singlet oxygen chemiluminescence enhancement by human serum albumin

    NASA Astrophysics Data System (ADS)

    Zhou, Jing; Xing, Da; Chen, Qun

    2006-02-01

    Fluoresceinyl Cypridina Luciferin Analog (FCLA) is a chemiluminescence (CL) probe for detecting reactive oxygen species (ROS). Its detection efficiency of singlet oxygen can be significantly enhanced in the presence of human serum albumin (HSA). In the current study, the mechanism of the FCLA-HSA CL system is studied by means of direct CL measurement and spectroscopy techniques. Our results show that FCLA can combine with HSA via a single binding site to form a complex. The CL efficiency of the system is largely governed by an inter-system energy transfer between the two components upon interaction with singlet oxygen. The CL production reaches maximum in a synergetic manner when equal amount of FCLA and HSA are present simultaneously, but the production is less efficient at other ratios. This suggests that the FCLA-HSA system maybe used as a singlet oxygen detecting technique with higher sensitivity compared with that of conventional CL techniques. It may also provide a potential new technique for quantitatively analyze the presence of HSA in a sample.

  2. Helicity evolution at small x : Flavor singlet and nonsinglet observables

    NASA Astrophysics Data System (ADS)

    Kovchegov, Yuri V.; Pitonyak, Daniel; Sievert, Matthew D.

    2017-01-01

    We extend our earlier results for the quark helicity evolution at small x [J. High Energy Phys. 01 (2016) 072, 10.1007/JHEP01(2016)072] to derive the small-x asymptotics of the flavor singlet and flavor nonsinglet quark helicity TMDs and PDFs and of the g1 structure function. In the flavor singlet case we rederive the evolution equations obtained in our previous paper on the subject [J. High Energy Phys. 01 (2016) 072, 10.1007/JHEP01(2016)072], performing additional cross-checks of our results. In the flavor nonsinglet case we construct new small-x evolution equations by employing the large-Nc limit. All evolution equations resum double-logarithmic powers of αsln2(1 /x ) in the polarization-dependent evolution along with the single-logarithmic powers of αsln (1 /x ) in the unpolarized evolution which includes saturation effects. We solve the linearized flavor nonsinglet equation analytically, obtaining an intercept which agrees with the one calculated earlier by Bartels, Ermolaev and Ryskin [Z. Phys. C 70, 273 (1996)] using the infrared evolution equations. Our numerical solution of the linearized large-Nc evolution equations for the flavor singlet case is presented in the accompanying Letter [Phys. Rev. Lett. 118, 052001 (2017), 10.1103/PhysRevLett.118.052001] and is further discussed here.

  3. Substituent effects on singlet-triplet gaps and mechanisms of 1,2-rearrangements of 1,3-oxazol-2-ylidenes to 1,3-oxazoles.

    PubMed

    Freeman, Fillmore; Lau, Desirae J; Patel, Atitkumar R; Pavia, Paulo R; Willey, Justin D

    2008-09-18

    Electronic structures, partial atomic charges, singlet-triplet gaps (Delta E ST), substituent effects, and mechanisms of 1,2-rearrangements of 1,3-oxazol-2-ylidene ( 5) and 4,5-dimethyl- ( 6), 4,5-difluoro- ( 7), 4,5-dichloro- ( 8), 4,5-dibromo- ( 9), and 3-methyl-1,3-oxazol-2-ylidene ( 10) to the corresponding 1,3-oxazoles have been studied using complete-basis-set methods (CBS-QB3, CBS-Q, CBS-4M), second-order Møller-Plesset perturbation method (MP2), hybrid density functionals (B3LYP, B3PW91), coupled-cluster theory with single and double excitations (CCSD) and CCSD plus perturbative triple excitations [CCSD(T)], and the quadratic configuration interaction method including single and double excitations (QCISD) and QCISD plus perturbative triple excitations [QCISD(T)]. The 6-311G(d,p), 6-31+G(d,p), 6-311+G(d,p), and correlation-consistent polarized valence double-xi (cc-pVDZ) basis sets were employed. The carbenes have singlet ground states, and the CBS-QB3 and CBS-Q methods predict Delta E ST values for 5- 8 and 10 of 79.9, 79.8, 74.7, 77.0, and 82.0 kcal/mol, respectively. CCSD(T), QCISD(T), B3LYP, and B3PW91 predict smaller Delta E ST values than CBS-QB3 and CBS-Q, with the hybrid density functionals predicting the smallest values. The concerted unimolecular exothermic out-of-plane 1,2-rearrangements of singlet 1,3-oxazol-2-ylidenes to their respective 1,3-oxazoles proceed via cyclic three-center transition states. The CBS-predicted barriers to the 1,2-rearrangements of singlet carbenes 5- 9 to their respective 1,3-oxazoles are 41.4, 40.4, 37.8, 40.4, and 40.5 kcal/mol, respectively. During the 1,2-rearrangements of singlet 1,3-oxazol-2-ylidenes 5- 9, there is a decrease in electron density at oxygen, N3 (the migration origin), and C5 and an increase in electron density at C2 (the migration terminus), C4, and the partially positive migrating hydrogen.

  4. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling.

    PubMed

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-12-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2(.)) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling.

  5. Singlet oxygen signatures are detected independent of light or chloroplasts in response to multiple stresses.

    PubMed

    Mor, Avishai; Koh, Eugene; Weiner, Lev; Rosenwasser, Shilo; Sibony-Benyamini, Hadas; Fluhr, Robert

    2014-05-01

    The production of singlet oxygen is typically associated with inefficient dissipation of photosynthetic energy or can arise from light reactions as a result of accumulation of chlorophyll precursors as observed in fluorescent (flu)-like mutants. Such photodynamic production of singlet oxygen is thought to be involved in stress signaling and programmed cell death. Here we show that transcriptomes of multiple stresses, whether from light or dark treatments, were correlated with the transcriptome of the flu mutant. A core gene set of 118 genes, common to singlet oxygen, biotic and abiotic stresses was defined and confirmed to be activated photodynamically by the photosensitizer Rose Bengal. In addition, induction of the core gene set by abiotic and biotic selected stresses was shown to occur in the dark and in nonphotosynthetic tissue. Furthermore, when subjected to various biotic and abiotic stresses in the dark, the singlet oxygen-specific probe Singlet Oxygen Sensor Green detected rapid production of singlet oxygen in the Arabidopsis (Arabidopsis thaliana) root. Subcellular localization of Singlet Oxygen Sensor Green fluorescence showed its accumulation in mitochondria, peroxisomes, and the nucleus, suggesting several compartments as the possible origins or targets for singlet oxygen. Collectively, the results show that singlet oxygen can be produced by multiple stress pathways and can emanate from compartments other than the chloroplast in a light-independent manner. The results imply that the role of singlet oxygen in plant stress regulation and response is more ubiquitous than previously thought.

  6. Two-dimensional H2O-Cl2 and H2O-Br2 potential surfaces: an ab initio study of ground and valence excited electronic states.

    PubMed

    Hernandez-Lamoneda, Ramón; Rosas, Victor Hugo Uc; Uruchurtu, Margarita I Bernal; Halberstadt, Nadine; Janda, Kenneth C

    2008-01-10

    All electron ab initio calculations for the interaction of H2O with Cl2 and Br2 are reported for the ground state and the lowest triplet and singlet Pi excited states as a function of both the X-X and O-X bond lengths (X = Cl or Br). For the ground state and lowest triplet state, the calculations are performed with the coupled cluster singles, doubles, and perturbative triple excitation level of correlation using an augmented triple-zeta basis set. For the 1Pi state the multireference average quadratic coupled cluster technique was employed. For several points on the potential, the calculations were repeated with the augmented quadruple-zeta basis set. The ground-state well depths were found to be 917 and 1,183 cm-1 for Cl2 and Br2, respectively, with the triple-zeta basis set, and they increased to 982 and 1,273 cm-1 for the quadruple-zeta basis set. At the geometry of the ground-state minimum, the lowest energy state corresponding to the unperturbed 1Pi states of the halogens increases in energy by 637 and 733 cm-1, respectively, relative to the ground-state dissociation limit of the H2O-X2 complex. Adding the attractive ground-state interaction energy to that of the repulsive excited state predicts a blue-shift, relative to that of the free halogen molecules, of approximately 1,600 cm-1 for H2O-Cl2 and approximately 2,000 cm-1 for H2O-Br2. These vertical blue-shifts for the dimers are greater than the shift of the band maximum upon solvation of either halogen in liquid water.

  7. Avoided crossings, conical intersections, and low-lying excited states with a single reference method: The restricted active space spin-flip configuration interaction approach

    NASA Astrophysics Data System (ADS)

    Casanova, David

    2012-08-01

    The restricted active space spin-flip CI (RASCI-SF) performance is tested in the electronic structure computation of the ground and the lowest electronically excited states in the presence of near-degeneracies. The feasibility of the method is demonstrated by analyzing the avoided crossing between the ionic and neutral singlet states of LiF along the molecular dissociation. The two potential energy surfaces (PESs) are explored by means of the energies of computed adiabatic and approximated diabatic states, dipole moments, and natural orbital electronic occupancies of both states. The RASCI-SF methodology is also used to study the ground and first excited singlet surface crossing involved in the double bond isomerization of ethylene, as a model case. The two-dimensional PESs of the ground (S0) and excited (S1) states are calculated for the complete configuration space of torsion and pyramidalization molecular distortions. The parameters that define the state energetics in the vicinity of the S0/S1 conical intersection region are compared to complete active space self-consistent field (CASSCF) results. These examples show that it is possible to describe strongly correlated electronic states using a single reference methodology without the need to expand the wavefunction to high levels of collective excitations. Finally, RASCI is also examined in the electronic structure characterization of the ground and 2^1{A}^-_g, 1^1{B}^+_u, 1^1{B}^-_u, and 1^3{B}^-_u states of all-trans polyenes with two to seven double bonds and beyond. Transition energies are compared to configuration interaction singles, time-dependent density functional theory (TDDFT), CASSCF, and its second-order perturbation correction calculations, and to experimental data. The capability of RASCI-SF to describe the nature and properties of each electronic state is discussed in detail. This example is also used to expose the properties of different truncations of the RASCI wavefunction and to show the

  8. Electronic excited states of CO/sub 2/: An electron impact investigation

    SciTech Connect

    McDiarmid, R.; Doering, J.P.

    1984-01-15

    The electronic excited states of CO/sub 2/ were restudied by variable incident energy, variable angle electron impact spectroscopy. In this study, valence states of mixed configurations were distinguished from pure Rydberg states. Our results are incompatible with the theoretical description of CO/sub 2/, in which only two valence singlet states are located.

  9. Excited baryons

    SciTech Connect

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)

  10. The phototoxicity of polycyclic aromatic hydrocarbons: a theoretical study of excited states and correlation to experiment.

    PubMed

    Betowski, Leon D; Enlow, Mark; Riddick, Lee

    2002-06-01

    Investigators using models to determine the phototoxic effects of sunlight on polycyclic aromatic hydrocarbons (PAHs) have invoked the excited states of the molecule as important in elucidating the mechanism of these reactions. Energies of actual excited states were calculated for ten PAHs by several ab initio methods. The main method used for these calculations was the Configuration Interaction approach, modeling excited states as combinations of single substitutions out of the Hartree-Fock ground state. These calculations correlate well with both experimentally measured singlet and triplet state energies and also previous HOMO-LUMO gap energies that approximate the singlet state energies. The excited state calculations then correlate well with general models of photo-induced toxicity based for the PAHs.

  11. A new analytical potential energy surface for the singlet state of He{sub 2}H{sup +}

    SciTech Connect

    Liang Jingjuan; Zhang Qinggang; Yang Chuanlu; Wang Lizhi

    2012-03-07

    The analytic potential energy surface (APES) for the exchange reaction of HeH{sup +} (X{sup 1}{Sigma}{sup +}) + He at the lowest singlet state 1{sup 1}A{sup /} has been built. The APES is expressed as Aguado-Paniagua function based on the many-body expansion. Using the adaptive non-linear least-squares algorithm, the APES is fitted from 15 682 ab initio energy points calculated with the multireference configuration interaction calculation with a large d-aug-cc-pV5Z basis set. To testify the new APES, we calculate the integral cross sections for He + H{sup +}He (v= 0, 1, 2, j= 0) {yields} HeH{sup +}+ He by means of quasi-classical trajectory and compare them with the previous result in literature.

  12. Singlet oxygen as a reactive intermediate in the photodegradation of an electroluminescent polymer

    SciTech Connect

    Scurlock, R.D.; Wang, B.; Ogilby, P.R.; Sheats, J.R.; Clough, R.L.

    1995-10-18

    Singlet molecular oxygen (a{sup 1}{Delta}{sub g}) is shown to be a reactive intermediate in the photoinduced oxidative decomposition of the electroluminescent material poly(2,5-bis(5,6-dihydrocholestanoxy)-1,4-phenylenevinylene) [BCHA-PPV] in both liquid solutions and solid films. Upon irradiation of this polymer in CS{sub 2}, singlet oxygen is produced by energy transfer from the BCHA-PPV triplet state to ground state oxygen with a quantum yield of nearly 0.025. Singlet oxygen reacts with BCHA-PPV, resulting in extensive chain scission of the macromolecule. The reaction with singlet oxygen is unique to the polymer; the monomeric analog of this system, stilbene, does not appreciably react with singlet oxygen. Polymer degradation is proposed to proceed via addition of singlet oxygen in a{sub {pi}} 2+{sub {pi}}2 cycloaddition reaction to the double bond that connects phenylene groups in the macromolecule. 60 refs., 6 figs.

  13. Excited states and reduced and oxidized forms of a textile diazo dye, naphthol blue black. Spectral characterization using laser flash photolysis and pulse radiolysis studies

    NASA Astrophysics Data System (ADS)

    Nasr, Chouhaid; Vinodgopal, K.; Hotchandani, Surat; Chattopadhyay, A. K.; Kamat, Prashant V.

    1997-01-01

    The excited singlet and triplet states of a diazo textile dye (Naphthol Blue Black) have been investigated by pico and nanosecond flash photolysis. The excited singlet state shows a difference absorption maximum at 500 nm and has a lifetime of 25-30 ps in ethanol. The triplet excited state generated by triplet-triplet energy transfer shows an absorption maxima at 710-730 nm. The oxidized form as well as the reduced form of the diazo dye have been generated pulse radiolytically by reacting with azide and e aq radicals, respectively. Preliminary results of the photoelectrochemical irreversible reduction of Naphthol Blue Black in colloidal TiO 2 are also reported.

  14. Electron scattering by laser-excited barium atoms

    NASA Technical Reports Server (NTRS)

    Register, D. F.; Trajmar, S.; Jensen, S. W.; Poe, R. T.

    1978-01-01

    Inelastic and superelastic scattering of 30- and 100-eV electrons by laser-excited 6s 6p 1P and subsequent cascade-populated 6s 6p 3P, 6s 5d 1D, and 6s 5d 3D Ba atoms have been observed. Absolute differential cross sections for the singlet and relative scattering intensities for the triplet species have been determined in the 5 to 20 deg angular region. Under the present conditions excitations dominate over deexcitations.

  15. Protoporphyrin IX Functionalised AgSiO2 Core-shell Nanoparticle: Plasmonic Enhancement of Fluorescence and Singlet Oxygen Production.

    PubMed

    Lismont, Marjorie; Dreesen, Laurent; Heinrichs, Benoît; Páez, Carlos A

    2015-12-15

    Metal-enhanced processes arising from the coupling of a dye with metallic nanoparticles (NPs) have been widely reported. However, few studies have simultaneously investigated these mechanisms from the viewpoint of dye fluorescence and photoactivity. Herein, protoporphyrin IX (PpIX) is grafted onto the surface of silver core silica shell NPs in order to investigate the effect of silver (Ag) localised surface plasmon resonance (LSPR) on PpIX fluorescence and PpIX singlet oxygen ((1) O2 ) production. Using two Ag core sizes, we report a systematic study of these photophysical processes as a function of silica (SiO2 ) spacer thickness, LSPR band position and excitation wavelength. The excitation of Ag NP LSPR, which overlaps the PpIX absorption band, leads to the concomitant enhancement of PpIX fluorescence and (1) O2 production independently of the Ag core size, but in a more pronounced way for larger Ag cores. These enhancements result from the increase of the PpIX excitation rate through the LSPR excitation and decrease when the distance between PpIX and Ag NPs increases. A maximum fluorescence enhancement of up to 14-fold, together with an increase of photogenerated (1) O2 production of up to 5 times are obtained using 100 nm Ag cores coated with a 5 nm thick silica coating. This article is protected by copyright. All rights reserved.

  16. Anthracene-based fluorescent nanoprobes for singlet oxygen detection in biological media.

    PubMed

    Bresolí-Obach, Roger; Nos, Jaume; Mora, Margarita; Sagristà, Maria Lluïsa; Ruiz-González, Rubén; Nonell, Santi

    2016-10-15

    We have developed a novel singlet oxygen nanoprobe based on 9,10-anthracenedipropionic acid covalently bound to mesoporous silica nanoparticles. The nanoparticle protects the probe from interactions with proteins, which detract from its ability to detect singlet oxygen. In vitro studies show that the nanoprobe is internalized by cells and is distributed throughout the cytoplasm, thus being capable of detecting intracellularly-generated singlet oxygen.

  17. A Direct Mechanism of Ultrafast Intramolecular Singlet Fission in Pentacene Dimers

    DTIC Science & Technology

    2016-08-24

    A Direct Mechanism of Ultrafast Intramolecular Singlet Fission in Pentacene Dimers Eric G. Fuemmeler,†,‡ Samuel N. Sanders,‡,§ Andrew B. Pun...via a direct coupling mechanism that is independent of CT states. We show that a near-degeneracy in electronic state energies induced by vibronic...despite weak direct coupling. Singlet fission, the process by which one singlet exciton splitsinto two triplet excitons, is proving an important

  18. Formation of Singlet Molecular Oxygen on Illuminated Ice and Snow

    NASA Astrophysics Data System (ADS)

    McKellar, S. R.; Anastasio, C.

    2005-12-01

    Pollutants and other trace compounds on snow and ice are transformed both by direct photolysis as well as indirect photoreactions mediated by oxidants such as hydroxyl radical (OH). These reactions likely play a major role in the fate of environmental contaminants in regions with permanent or seasonal snow cover, but we know relatively little about which reactions are important and at what rates they transform trace pollutants. The indirect photodegradation of organics is most likely caused by oxidants such as OH and singlet molecular oxygen (1O2* ), which can be formed in the snowpack by illumination from the sun. While some recent work has characterized the formation of OH in snow, the presence of 1O2* on illuminated snow or ice has not been studied previously. In this study, our goal is to determine the steady state concentrations of singlet molecular oxygen in illuminated snow samples collected from Summit, Greenland during the summer of 2005. We add furfuryl alcohol (FFA), which acts as a chemical probe of singlet molecular oxygen, to ice pellets made from Greenland snow samples and monitor the rate of loss of FFA during illumination. Our initial results indicate that 1O2* is formed in illuminated Summit samples and that the steady-state concentration of 1O2* is much larger on ice (-10 °C) than in liquid solution (°C) using the same prepared sample. We will present our measured steady-state concentrations of 1O2* as well as the impacts of this oxidant on the lifetimes of trace organics such as PAHs and biogenic phenols in Greenland snow.

  19. Singlet-oxygen generation at gas-liquid interfaces: A significant artifact in the measurement of singlet-oxygen yields from ozone-biomolecule reactions

    SciTech Connect

    Kanofsky, J.R.; Sima, P.D. )

    1993-09-01

    Several ozone-biomolecule reactions have previously been shown to generate singlet oxygen in high yields. For some of these ozone-biomolecule reactions, we now show that the apparent singlet-oxygen yields determined from measurements of 1270 nm chemiluminescence were artifactually elevated by production of gas-phase singlet oxygen. The gas-phase singlet oxygen results from the reaction of gas-phase ozone with biomolecules near the surface of the solution. Through the use of a flow system that excludes air from the reaction chamber, accurate singlet-oxygen yields can be obtained. The revised singlet-oxygen yields (mol 1O2 per mol O3) for the reactions of ozone with cysteine, reduced glutathione, NADH, NADPH, human albumin, methionine, uric acid and oxidized glutathione are 0.23 +/- 0.02, 0.26 +/- 0.2, 0.48 +/- 0.04, 0.41 +/- 0.01, 0.53 +/- 0.06, 1.11 +/- 0.04, 0.73 +/- 0.05 and 0.75 +/- 0.01, respectively. These revised singlet-oxygen yields are still substantial.

  20. Coexistence of ferromagnetism and singlet superconductivity via kinetic exchange.

    PubMed

    Cuoco, Mario; Gentile, Paola; Noce, Canio

    2003-11-07

    We propose a novel mechanism for the coexistence of metallic ferromagnetism and singlet superconductivity assuming that the magnetic instability is due to kinetic exchange. Within this scenario, the unpaired electrons which contribute to the magnetization have a positive feedback on the gain of the kinetic energy in the coexisting phase by undressing the effective mass of the carriers involved in the pairing. The evolution of the magnetization and pairing amplitude and the phase diagram are first analyzed for a generic kinetic exchange model and then are determined within a specific case with spin dependent bond-charge occupation.

  1. Tetraphenylhexaazaanthracenes: 16π Weakly Antiaromatic Species with Singlet Ground States.

    PubMed

    Constantinides, Christos P; Zissimou, Georgia A; Berezin, Andrey A; Ioannou, Theodosia A; Manoli, Maria; Tsokkou, Demetra; Theodorou, Eleni; Hayes, Sophia C; Koutentis, Panayiotis A

    2015-08-21

    Tetraphenylhexaazaanthracene, TPHA-1, is a fluorescent zwitterionic biscyanine with a closed-shell singlet ground state. TPHA-1 overcomes its weak 16π antiaromaticity by partitioning its π system into 6π positive and 10π negative cyanines. The synthesis of TPHA-1 is low yielding and accompanied by two analogous TPHA isomers: the deep red, non-charge-separated, quinoidal TPHA-2, and the deep green TPHA-3 that partitions into two equal but oppositely charged 8π cyanines. The three TPHA isomers are compared.

  2. Intermolecular Vibrational Modes Speed Up Singlet Fission in Perylenediimide Crystals.

    PubMed

    Renaud, Nicolas; Grozema, Ferdinand C

    2015-02-05

    We report numerical simulations based on a non-Markovian density matrix propagation scheme of singlet fission (SF) in molecular crystals. Ab initio electronic structure calculations were used to parametrize the exciton and phonon Hamiltonian as well as the interactions between the exciton and the intramolecular and intermolecular vibrational modes. We demonstrate that the interactions of the exciton with intermolecular vibrational modes are highly sensitive to the stacking geometry of the crystal and can, in certain cases, significantly accelerate SF. This result may help in understanding the fast SF experimentally observed in a broad range of molecular crystals and offers a new direction for the engineering of efficient SF sensitizers.

  3. Ultraweak bioluminescence dynamics and singlet oxygen correlations during injury repair in sweet potato

    NASA Astrophysics Data System (ADS)

    Hossu, Marius; Ma, Lun; Chen, Wei

    2011-03-01

    Ultraweak bioluminescence at the level of hundreds of photons per second per square centimeter after cutting injury of sweet potato was investigated. A small emission peak immediate after cutting and a later and higher peak were observed. Selective singlet oxygen inhibitors and sensors have been use to study the contribution of singlet oxygen during the curing process, demonstrating increased presence of singlet oxygen during and after the late bioemission peak. It was confirmed that singlet oxygen has direct contribution to ultraweak bioluminescence but also induces the formation of other exited luminescent species that are responsible for the recorded bioluminescence.

  4. Detection techniques for singlet oxygen production during photodynamic therapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Buhong

    2016-03-01

    Singlet oxygen is widely considered to be the major cytotoxic reactive oxygen species (ROS) generated during photodynamic therapy (PDT). This talk summarizes recent advances and future perspectives in detection techniques for singlet oxygen production, and the advantages and limitations of each technique will be presented. In addition, our custom developed novel configuration of a near-infrared sensitive camera and adaptive optics for in vivo fast imaging of singlet oxygen luminescence around 1270 nm will be highlighted. For clinical PDT application, the challenges for direct measrement of singlet oxygen luminescence will be discussed.

  5. Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3

    NASA Astrophysics Data System (ADS)

    Schreiber, Marko; Silva-Junior, Mario R.; Sauer, Stephan P. A.; Thiel, Walter

    2008-04-01

    A benchmark set of 28 medium-sized organic molecules is assembled that covers the most important classes of chromophores including polyenes and other unsaturated aliphatic compounds, aromatic hydrocarbons, heterocycles, carbonyl compounds, and nucleobases. Vertical excitation energies and one-electron properties are computed for the valence excited states of these molecules using both multiconfigurational second-order perturbation theory, CASPT2, and a hierarchy of coupled cluster methods, CC2, CCSD, and CC3. The calculations are done at identical geometries (MP2/6-31G*) and with the same basis set (TZVP). In most cases, the CC3 results are very close to the CASPT2 results, whereas there are larger deviations with CC2 and CCSD, especially in singlet excited states that are not dominated by single excitations. Statistical evaluations of the calculated vertical excitation energies for 223 states are presented and discussed in order to assess the relative merits of the applied methods. CC2 reproduces the CC3 reference data for the singlets better than CCSD. On the basis of the current computational results and an extensive survey of the literature, we propose best estimates for the energies of 104 singlet and 63 triplet excited states.

  6. Sexual excitement.

    PubMed

    Stoller, R J

    1976-08-01

    Sexual excitement depends on a scenario the person to be aroused has been writing since childhood. The story is an adventure, an autobiography disguised as fiction, in which the hero/heroine hides crucial intrapsychic conflicts, mysteries, screen memories of actual traumatic events and the resolution of these elements into a happy ending, best celebrated by orgasm. The function of the fantasy is to take these painful experiences and convert them to pleasure-triumph. In order to sharpen excitement-the vibration between the fear of original traumas repeating and the hope of a pleasurable conclusion this time-one introduces into the story elements of risk (approximations of the trauma) meant to prevent boredom and safety factors (sub-limnal signals to the storyteller that the risk are not truly dangerous). Sexual fantasy can be studied by means of a person's daydreams (including those chosen in magazines, books, plays, television, movies, and outright pornography), masturbatory behavior, object choice, foreplay, techniques of intercourse, or postcoital behavior.

  7. Unimolecular photodissociation dynamics of ketene (CH{sub 2}CO): The singlet/triplet branching ratio and experimental observation of the vibrational level thresholds of the transition-state

    SciTech Connect

    Kim, S.K.

    1993-05-01

    The rotational distributions of CO products from the dissociation of ketene at photolysis energies 10 cm{sup {minus}1} below, 56, 110, 200, 325, 425, 1,107, 1,435, 1,720, and 2,500 cm{sup {minus}1} above the singlet threshold, are measured in a supersonic free jet of ketene. The CO(v{double_prime} = 0) rotational distributions at 56, 110, 200, 325, and 425 cm{sup {minus}1} are bimodal. The peaks at low J`s, which are due to CO from the singlet channel, show that the product rotational distribution of CO product from ketene dissociation on the singlet surface is well described by phase space theory (PST). For CO(v{double_prime} = 0) rotational distributions at higher excess energies, the singlet and triplet contributions are not clearly resolved, and the singlet/triplet branching ratios are estimated by assuming that PST accurately predicts the CO rotational distribution from the singlet channel and that the distribution from the triplet channel changes little from that at 10 cm{sup {minus}1} below the singlet threshold. At 2,500 cm{sup {minus}1} excess energy, the CO(v{double_prime} = 1) rotational distribution is obtained, and the ratio of CO(v{double_prime} = 1) to CO(v{double_prime} = 0) products for the singlet channel is close to the variational RRKM calculation, 0.038, and the separate statistical ensembles (SSE) prediction, 0.041, but much greater than the PST prediction, 0.016. Rate constants for the dissociation of ketene (CH{sub 2}CO) and deuterated ketene (CD{sub 2}CO) have been measured at the threshold for the production of the CH(D){sub 2} and CO. Sharp peaks observed in photofragment excitation (PHOFEX) spectra probing CO (v = 0, J = 2) product are identified with the C-C-O bending mode of the transition state. RRKM calculations are carried out for two limiting cases for the dynamics of K-mixing in highly vibrationally excited reactant states.

  8. Diurnal Variation of the O2 singlet-Delta Emission during the Mars pre-Aphelion Season

    NASA Astrophysics Data System (ADS)

    Novak, Robert E.; Mumma, M. J.; Villanueva, G.; Hewagama, T.; Sanstead, P.

    2009-09-01

    On Mars, O2 in the excited singlet-Delta state originates from the photolysis of ozone. This metastable state is quenched by carbon dioxide at low altitudes, but radiative decay predominates above 20 km. Since ozone and water are anti-correlated in abundance, the O2 singlet-Delta emission also tests the abundance of water above 20 km. As Mars approaches aphelion, the atmosphere cools and lowers the hygropause below 20 km altitude, permitting increased ozone abundance above the hygropause and thus increased singlet-Delta emission. We report detection of this effect for the first time. We obtained diurnal maps (emission rate versus local time) of the O2 singlet-Delta emission (1.27 microns) on three dates spanning the pre-aphelion season on Mars: Ls = 357o (Jan 16, 2006), Ls = 20o (Jan 19, 2008), and Ls = 50o (Mar 27, 2008). The data were collected using CSHELL at the NASA-IRTF. The slit was positioned North-South on Mars, and spectral/spatial data were taken at 1.0 arc-sec increments stepped East-West across the planet. At Ls = 357o and Ls = 20o, emissions were strong in the polar-regions, but not detected at middle to low latitudes. For Ls = 50o, strong emissions were detected at all latitudes. Models (e.g., Sandor et al. 1997, JGR,102,D7,9013-9028) predict that ozone formed during the night is rapidly destroyed at sunrise; it is then reformed during the daylight hours, peaks near noon local time and is reduced in the late afternoon. All detected emissions show this strong diurnal variation. The strong emission at mid-latitudes in the pre-aphelion season (Ls = 50o) is consistent with a lower hygropause altitude, as predicted by current models (Nair et al.1994, Icarus,111,124-150). We acknowledge support from NSF RUI-Program (AST-0505765 and AST-0805540) and thank the administrators and the staff of the NASA-IRTF for use of the telescope to acquire the data.

  9. An XML file format for exchanging singlet lens specifications

    NASA Astrophysics Data System (ADS)

    Gay, Shawn C.; Gangadhara, Sanjay

    2015-10-01

    Zemax has developed an XML schema for the distribution of singlet lens specifications based on the ISO 10110 standard. In OpticStudio 15, this kind of XML data can be exported from the ISO Element Drawing analysis. The data file is then used in a feature that automates exchange of lens data between designer and manufacturer, the Cost Estimator. This Cost Estimator feature submits the XML data to various manufacturers to obtain cost estimates for prototype lens production. The workflow centered on the XML data exchange facilitates rapid cost estimate retrieval and eliminates the need for redundant manual data entry. The XML Schema Definition (XSD) for the XML format can be used with Microsoft developer tools to automatically create .NET classes to serialize and deserialize the singlet lens data to/from XML files. The format provides flexible unit specification for most parameters. Choosing XML as the basis for the file format has provided several benefits, such as the above mentioned automated serialization capabilities in .NET, a human-readable text-based format, and ready support for consumption by web services.

  10. Athermalization of polymer radial gradient-index singlets

    NASA Astrophysics Data System (ADS)

    Corsetti, James A.; Gardner, Leo R.; Schmidt, Greg R.; Moore, Duncan T.

    2013-11-01

    The article explores the possibility of athermalizing a gradient-index (GRIN) lens so that the effective focal length (EFL) of the element remains constant over a change in temperature. This is accomplished by designing the lens so that the surface curvatures and index profile compensate for one another over a change in temperature to maintain constant optical power. The means to determine how the lens geometry and index profile change with temperature for both a homogeneous and radial GRIN are explained. An analytic model for the purpose of identifying athermalized GRIN singlets is described and validated against the previous work in this field. The model is used to identify an athermalized polymer radial GRIN element and compare it with four other polymer elements of the same focal length but different index profiles, including a homogeneous one. Comparison of these singlets in CODE V optical design software shows that the athermalized GRIN element maintains its nominal EFL over a temperature change the best of the five in the group while the homogeneous element (having no GRIN profile to counteract the effect of temperature on the surface curvatures) has the poorest performance. A numerical model to analyze more complicated GRIN systems is discussed.

  11. Natural NMSSM with a light Singlet Higgs and Singlino LSP

    NASA Astrophysics Data System (ADS)

    Potter, C. T.

    2016-01-01

    Supersymmetry (SUSY) is an attractive extension of the Standard Model (SM) of particle physics which solves the SM hierarchy problem. Motivated by the theoretical μ -term problem of the Minimal Supersymmetric Model (MSSM), the Next-to MSSM (NMSSM) can also account for experimental deviations from the SM like the anomalous muon magnetic moment and the dark matter relic density. Natural SUSY, motivated by naturalness considerations, exhibits small fine tuning and a characteristic phenomenology with light higgsinos, stops, and gluinos. We describe a scan in NMSSM parameter space motivated by Natural SUSY and guided by the phenomenology of an NMSSM with a slightly broken Peccei-Quinn symmetry and a lightly coupled singlet. We identify a scenario which survives experimental constraints with a light singlet Higgs and a singlino lightest SUSY particle. We then discuss how the scenario is not presently excluded by searches at the Large Hadron Collider (LHC) and which channels are promising for discovery at the LHC and International Linear Collider.

  12. Singlet-triplet donor-quantum-dot qubit in silicon

    NASA Astrophysics Data System (ADS)

    Harvey-Collard, Patrick; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael P.; Carroll, Malcolm S.; Pioro-Ladrière, Michel

    2015-03-01

    Electron spins bound to phosphorus (P) donors in silicon (Si) are promising qubits due to their high fidelities, but donor-donor coupling is challenging. We propose an alternative two-electron singlet-triplet quantum-dot (QD) and donor (D) hybrid qubit. A QD is formed at a MOS 28-Si interface and is tunnel-coupled to implanted P. The proposed two-axis system is defined by the exchange and contact hyperfine interactions. We demonstrate that a few electron QD can be formed and tuned to interact with a donor. We investigate the spin filling of the QD-D system through charge-sensed (CS) magnetospectroscopy and identify spin-up loading consistent with a singlet-triplet splitting of ~100 μeV near a QD-D anti-crossing. We also demonstrate an enhanced CS readout contrast and time window due to the restricted relaxation path of the D through the QD. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Investigation of the singlet oxygen generator with the twisted flow

    NASA Astrophysics Data System (ADS)

    Krukovsky, Ivan M.; Adamenkov, Anatoliy A.; Vyskubenko, Boris A.; Deryugin, Yuri N.; Ilyin, Sergei P.; Kudryashov, Evgeniy A.

    2000-05-01

    The results of the Singlet Oxygen Generator with Twisted Aerosol flow (TA-SOG) investigations are presented. The experimental results demonstrate TA-SOG output values exceed those of other types SOGs known from publications. TA-SOG outflow is aerosol-free all over the broadly ranged parameters even at a gas pressure over 100 Torr and velocity 100 m/sec. The maximal chemical efficiency was obtained as 70 percent. The reactor cross-sectional electronic energy flux exceeds 1.5 kW/cm2. Measured Singlet Oxygen (SO) yield was approximately 60 percent at the pressure 12- Torr at the measurement point distant by more than 10 cm of reactor outlet. Chlorine utilization exceeds 90 percent. All the listed parameters were obtained without any buffer at its outlet. It is directly connected to COIL supersonic nozzle not fearing BHP carryover. So, TA-SOG output and nozzle input pressures are almost equal without additional ejectors. TA-SOG model created provides atmospheric pressure of the spent solution at SOG outlet, which simplifies sufficiently the re-circulation system design.

  14. ℤ{sub 3} scalar singlet dark matter

    SciTech Connect

    Bélanger, Geneviève; Kannike, Kristjan; Pukhov, Alexander; Raidal, Martti E-mail: kristjan.kannike@cern.ch E-mail: martti.raidal@cern.ch

    2013-01-01

    We consider the minimal scalar singlet dark matter stabilised by a ℤ{sub 3} symmetry. Due to the cubic term in the scalar potential, semi-annihilations, besides annihilations, contribute to the dark matter relic density. Unlike in the ℤ{sub 2} case, the dark matter spin independent direct detection cross section is no more linked to the annihilation cross section. We study the extrema of the potential and show that a too large cubic term would break the ℤ{sub 3} symmetry spontaneously, implying a lower bound on the direct detection cross section, and allowing the whole parameter space to be tested by XENON1T. In a small region of the parameter space the model can avoid the instability of the standard model vacuum up to the unification scale. If the semi-annihilations are large, however, new physics will be needed at TeV scale because the model becomes non-perturbative. The singlet dark matter mass cannot be lower than 53.8 GeV due to the constraint from Higgs boson decay into dark matter.

  15. Visible to near IR luminescence spectrum of Radachlorin under excitation at 405 nm

    NASA Astrophysics Data System (ADS)

    Belik, V. P.; Gadzhiev, I. M.; Petrenko, M. V.; Petrov, M. A.; Semenova, I. V.; Vasyutinskii, O. S.

    2016-11-01

    The luminescence spectrum of Radachlorin dissolved in water in the 600-1350 nm spectral range excited by 405 nm light has been recorded at the first time. The spectrum contains a wide band with peaks centered at 662, 715, 940, and 1274 nm. Relative contributions to the spectrum from different sources have been evaluated. Ratio of the singlet oxygen signal to the total signal intensity averaged over the 1240-1300 nm spectral range was determined to be 40%. Isolation of the singlet oxygen signal from the total signal at 1274 nm has been achieved by means of a spectral-resolved TCSPC detection technique.

  16. Spectral dependence of the efficiency of direct optical excitation of molecular oxygen in tetrachloromethane

    NASA Astrophysics Data System (ADS)

    Kiselev, V. M.; Kislyakov, I. M.; Bagrov, I. V.

    2016-06-01

    The spectral dependence of the efficiency of direct optical excitation of an oxygen molecule in tetrachloromethane using cw LED sources with different wavelengths and an optical parametric oscillator with single-shot output radiation (tuning range of 415-670 nm) has been studied by recording the phosphorescence of singlet oxygen at the O2(1Δg)-O2(3Σg) transition (λ = 1270 nm). The results show that single-shot irradiation of tetrachloromethane in the short-wavelength spectral range leads to efficient quenching of singlet- oxygen phosphorescence by the products of photolytic decomposition of solvent.

  17. Ultrafast excited state relaxation in long-chain polyenes

    NASA Astrophysics Data System (ADS)

    Antognazza, Maria Rosa; Lüer, Larry; Polli, Dario; Christensen, Ronald L.; Schrock, Richard R.; Lanzani, Guglielmo; Cerullo, Giulio

    2010-07-01

    We present a comprehensive study, by femtosecond pump-probe spectroscopy, of excited state dynamics in a polyene that approaches the infinite chain limit. By excitation with sub-10-fs pulses resonant with the 0-0 S 0 → S 2 transition, we observe rapid loss of stimulated emission from the bright excited state S 2, followed by population of the hot S 1 state within 150 fs. Vibrational cooling of S 1 takes place within 500 fs and is followed by decay back to S 0 with 1 ps time constant. By excitation with excess vibrational energy we also observe the ultrafast formation of a long-living absorption, that is assigned to the triplet state generated by singlet fission.

  18. Generation and suppression of singlet oxygen in hair by photosensitization of melanin.

    PubMed

    Chiarelli-Neto, Orlando; Pavani, Christiane; Ferreira, Alan S; Uchoa, Adjaci F; Severino, Divinomar; Baptista, Maurício S

    2011-09-15

    We have studied the spectroscopic properties of hair (white, blond, red, brown, and black) under illumination with visible light, giving special emphasis to the photoinduced generation of singlet oxygen ((1)O(2)). Irradiation of hair shafts (λ(ex)>400 nm) changed their properties by degrading the melanin. Formation of C3 hydroperoxides in the melanin indol groups was proven by (1)H NMR. After 532-nm excitation, all hair shafts presented the characteristic (1)O(2) emission (λ(em)=1270 nm), whose intensity varied inversely with the melanin content. (1)O(2) lifetime was also shown to vary with hair type, being five times shorter in black hair than in blond hair, indicating the role of melanin as a (1)O(2) suppressor. Lifetime ranged from tenths of a nanosecond to a few microseconds, which is much shorter than the lifetime expected for (1)O(2) in the solvents in which the hair shafts were suspended, indicating that (1)O(2) is generated and suppressed inside the hair structure. Both eumelanin and pheomelanin were shown to produce and to suppress (1)O(2), with similar efficiencies. The higher amount of (1)O(2) generated in blond hair and its longer lifetime is compatible with the stronger damage that light exposure causes in blond hair. We propose a model to explain the formation and suppression of (1)O(2) in hair by photosensitization of melanin with visible light and the deleterious effects that an excess of visible light may cause in hair and skin.

  19. Non-Abelian S U (N -1 ) -singlet fractional quantum Hall states from coupled wires

    NASA Astrophysics Data System (ADS)

    Fuji, Y.; Lecheminant, P.

    2017-03-01

    The construction of fractional quantum Hall (FQH) states from the two-dimensional array of quantum wires provides a useful way to control strong interactions in microscopic models and has been successfully applied to the Laughlin, Moore-Read, and Read-Rezayi states. We extend this construction to the Abelian and non-Abelian S U (N -1 ) -singlet FQH states at filling fraction ν =k (N -1 )/[N +k (N -1 )m ] labeled by integers k and m , which are potentially realized in multicomponent quantum Hall systems or S U (N ) spin systems. Utilizing the bosonization approach and conformal field theory (CFT), we show that their bulk quasiparticles and gapless edge excitations are both described by an (N -1 ) -component free-boson CFT and the S U (N) k/[U(1 ) ] N -1 CFT known as the Gepner parafermion. Their generalization to different filling fractions is also proposed. In addition, we argue possible applications of these results to two kinds of lattice systems: bosons interacting via occupation-dependent correlated hoppings and an S U (N ) Heisenberg model.

  20. Spectroscopic insights on imidazole substituted phthalocyanine photosensitizers: Fluorescence properties, triplet state and singlet oxygen generation

    NASA Astrophysics Data System (ADS)

    Zhang, Xian-Fu; Lin, Yong; Guo, Wenfeng; Zhu, Jingzhong

    2014-12-01

    Imidazole substituted metal phthalocyanine (Pc) complexes were synthesized. UV-vis absorption, steady state and time-resolved fluorescence, as well as laser flash photolysis were used to measure the photophysical and photosensitizing properties. All the imidazole-phthalocyanine conjugates show high ΦT (quantum yield of excited triplet formation), high ΦΔ (singlet oxygen formation yield, >0.50) and good fluorescence properties (quantum yield Φf > 0.20 and lifetime τf > 3.0 ns). Compared to the unsubstituted Pc, both α- and β-imidazole substitutions result in the remarkable decrease in Φf and τf, but the α-substitution is stronger. The imidazole substitution, on the other hand, causes the increase of ΦT, τT, and ΦΔ values. Magnesium phthalocyanine (MgPc) is more susceptible to the substitution than zinc phthalocyanine (ZnPc). The mechanism responsible for the result is suggested based on the involvement of intramolecular photoinduced electron transfer. The high ΦΔ and appropriate fluorescence properties make the Pcs good candidate for PDT photosensitizers.

  1. Cold atmospheric pressure plasma jets as sources of singlet delta oxygen for biomedical applications

    SciTech Connect

    Sousa, J. S.; Niemi, K.; Cox, L. J.; Algwari, Q. Th.; Gans, T.; O'Connell, D.

    2011-06-15

    Absolute densities of singlet delta oxygen (SDO) molecules were measured using infrared optical emission spectroscopy in the flowing effluents of two different atmospheric-pressure plasma jets (APPJs): a capacitively coupled radio-frequency-driven jet (rf-APPJ) and a lower frequency kilohertz-driven dielectric barrier discharge jet. The plasma jets were operated in helium, with small admixtures of molecular oxygen (O{sub 2} < 2%). High absolute SDO densities of up to 6.2 x 10{sup 15} cm{sup -3} were measured at approximately 10 cm downstream. The rf-APPJ seems to be much more efficient in producing SDO. The influence of different parameters, such as gas flows and mixtures and power coupled to the plasmas, on the production of SDO by the two APPJs has been investigated. Despite the considerable differences between the two plasma jets (excitation frequency, electric field direction, inter-electrode distance, plasma propagation), similar dependencies on the oxygen admixture and on the dissipated power were found in both APPJs. However, opposite trends were observed for the gas flow dependence. The results presented in this paper show that the control of the external operating conditions of each APPJ enables the tailoring of the SDO composition of both plasma effluents. This provides scope to tune the plasma jets for desired applications, e.g., in biomedicine.

  2. Efficient singlet exciton fission in pentacene prepared from a soluble precursor

    NASA Astrophysics Data System (ADS)

    Tabachnyk, Maxim; Karani, Arfa H.; Broch, Katharina; Pazos-Outón, Luis M.; Xiao, James; Jellicoe, Tom C.; Novák, Jiří; Harkin, David; Pearson, Andrew J.; Rao, Akshay; Greenham, Neil C.; Böhm, Marcus L.; Friend, Richard H.

    2016-11-01

    Carrier multiplication using singlet exciton fission (SF) to generate a pair of spin-triplet excitons from a single optical excitation has been highlighted as a promising approach to boost the photocurrent in photovoltaics (PVs) thereby allowing PV operation beyond the Shockley-Queisser limit. The applicability of many efficient fission materials, however, is limited due to their poor solubility. For instance, while acene-based organics such as pentacene (Pc) show high SF yields (up to200%), the plain acene backbone renders the organic molecule insoluble in common organic solvents. Previous approaches adding solubilizing side groups such as bis(tri-iso-propylsilylethynyl) to the Pc core resulted in low vertical carrier mobilities due to reduction of the transfer integrals via steric hindrance, which prevented high efficiencies in PVs. Here we show how to achieve good solubility while retaining the advantages of molecular Pc by using a soluble precursor route. The precursor fully converts into molecular Pc through thermal removal of the solubilizing side groups upon annealing above 150 °C in the solid state. The annealed precursor shows small differences in the crystallinity compared to evaporated thin films of Pc, indicating that the Pc adopts the bulk rather than surface polytype. Furthermore, we identify identical SF properties such as sub-100 fs fission time and equally long triplet lifetimes in both samples.

  3. Singlet molecular oxygen-quenching activity of carotenoids: relevance to protection of the skin from photoaging

    PubMed Central

    Terao, Junji; Minami, Yuko; Bando, Noriko

    2011-01-01

    Carotenoids are known to be potent quenchers of singlet molecular oxygen [O2 (1Δg)]. Solar light-induced photooxidative stress causes skin photoaging by accelerating the generation of reactive oxygen species via photodynamic actions in which O2 (1Δg) can be generated by energy transfer from excited sensitizers. Thus, dietary carotenoids seem to participate in the prevention of photooxidative stress by accumulating as antioxidants in the skin. An in vivo study using hairless mice clarified that a O2 (1Δg) oxygenation-specific peroxidation product of cholesterol, cholesterol 5α-hydroperoxide, accumulates in skin lipids due to ultraviolet-A exposure. Matrix metalloproteinase-9, a metalloproteinase family enzyme responsible for the formation of wrinkles and sagging, was enhanced in the skin of ultraviolet-A -irradiated hairless mice. The activation of metalloproteinase-9 and the accumulation of 5α-hydroperoxide, as well as formation of wrinkles and sagging, were lowered in mice fed a β-carotene diet. These results strongly suggest that dietary β-carotene prevents the expression of metalloproteinase-9 (at least in part), by inhibiting the photodynamic action involving the formation of 5α-hydroperoxide in the skin. Intake of β-Carotene therefore appears to be helpful in slowing down ultraviolet-A -induced photoaging in human skin by acting as a O2 (1Δg) quencher. PMID:21297913

  4. Valence and ionic lowest-lying electronic states of ethyl formate as studied by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy, and ab initio calculations

    SciTech Connect

    Śmiałek, M. A.; Duflot, D.; Mason, N. J.; Hoffmann, S. V.; Jones, N. C.; Limão-Vieira, P.

    2014-09-14

    The highest resolution vacuum ultraviolet photoabsorption spectrum of ethyl formate, C{sub 2}H{sub 5}OCHO, yet reported is presented over the wavelength range 115.0–275.5 nm (10.75–4.5 eV) revealing several new spectral features. Valence and Rydberg transitions and their associated vibronic series, observed in the photoabsorption spectrum, have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of ethyl formate and are compared with a newly recorded He(I) photoelectron spectrum (from 10.1 to 16.1 eV). New vibrational structure is observed in the first photoelectron band. The photoabsorption cross sections have been used to calculate the photolysis lifetime of ethyl formate in the upper stratosphere (20–50 km)

  5. Valence and ionic lowest-lying electronic states of ethyl formate as studied by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy, and ab initio calculations.

    PubMed

    Śmiałek, M A; Łabuda, M; Guthmuller, J; Hubin-Franskin, M-J; Delwiche, J; Duflot, D; Mason, N J; Hoffmann, S V; Jones, N C; Limão-Vieira, P

    2014-09-14

    The highest resolution vacuum ultraviolet photoabsorption spectrum of ethyl formate, C2H5OCHO, yet reported is presented over the wavelength range 115.0-275.5 nm (10.75-4.5 eV) revealing several new spectral features. Valence and Rydberg transitions and their associated vibronic series, observed in the photoabsorption spectrum, have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of ethyl formate and are compared with a newly recorded He(I) photoelectron spectrum (from 10.1 to 16.1 eV). New vibrational structure is observed in the first photoelectron band. The photoabsorption cross sections have been used to calculate the photolysis lifetime of ethyl formate in the upper stratosphere (20-50 km).

  6. Singlet oxygen-sensitized delayed emissions from hydrogen peroxide/gallic acid/potassium ferricyanide systems containing organic solvents

    NASA Astrophysics Data System (ADS)

    Ishii, Hiroshi; Tsukino, Kazuo; Sekine, Masahiko; Nakata, Munetaka

    2009-06-01

    Fourier-transform chemiluminescence spectra of H 2O 2/gallic acid/K 3[Fe(CN) 6] systems containing organic solvents were measured. Emission bands with peaks around 530 and 700 nm were observed in systems containing solvents with a carbonyl group such as N, N-dimethylformamide, and those with a hydroxyl group such as methanol, respectively. The relative band intensities depended strongly on the concentration of these organic solvents. The emission species are attributed to gallic acid-ferricyanide complexes excited by energy transfer from singlet oxygen dimol, ( 1O 2) 2. The effects of organic solvents are interpreted in terms of intermolecular interactions of gallic acid-ferricyanide complexes, water molecules and organic solvents.

  7. Correlation-Enhanced Odd-Parity Interorbital Singlet Pairing in the Iron-Pnictide Superconductor LiFeAs.

    PubMed

    Nourafkan, R; Kotliar, G; Tremblay, A-M S

    2016-09-23

    The rich variety of iron-based superconductors and their complex electronic structure lead to a wide range of possibilities for gap symmetry and pairing components. Here we solve in the two-Fe Brillouin zone the full frequency-dependent linearized Eliashberg equations to investigate spin-fluctuations mediated Cooper pairing for LiFeAs. The magnetic excitations are calculated with the random phase approximation on a correlated electronic structure obtained with density functional theory and dynamical mean field theory. The interaction between electrons through Hund's coupling promotes both the intraorbital d_{xz(yz)} and the interorbital magnetic susceptibility. As a consequence, the leading pairing channel, conventional s^{+-}, acquires sizable interorbital d_{xy}-d_{xz(yz)} singlet pairing with odd parity under glide-plane symmetry. The combination of intra- and interorbital components makes the results consistent with available experiments on the angular dependence of the gaps observed on the different Fermi surfaces.

  8. Correlation-Enhanced Odd-Parity Interorbital Singlet Pairing in the Iron-Pnictide Superconductor LiFeAs

    NASA Astrophysics Data System (ADS)

    Nourafkan, R.; Kotliar, G.; Tremblay, A.-M. S.

    2016-09-01

    The rich variety of iron-based superconductors and their complex electronic structure lead to a wide range of possibilities for gap symmetry and pairing components. Here we solve in the two-Fe Brillouin zone the full frequency-dependent linearized Eliashberg equations to investigate spin-fluctuations mediated Cooper pairing for LiFeAs. The magnetic excitations are calculated with the random phase approximation on a correlated electronic structure obtained with density functional theory and dynamical mean field theory. The interaction between electrons through Hund's coupling promotes both the intraorbital dx z (y z ) and the interorbital magnetic susceptibility. As a consequence, the leading pairing channel, conventional s+- , acquires sizable interorbital dx y-dx z (y z ) singlet pairing with odd parity under glide-plane symmetry. The combination of intra- and interorbital components makes the results consistent with available experiments on the angular dependence of the gaps observed on the different Fermi surfaces.

  9. Electron momentum distribution and singlet-singlet annihilation in the organic anthracene molecular crystals using positron 2D-ACAR and fluorescence spectroscopy.

    PubMed

    Selvakumar, Sellaiyan; Sivaji, Krishnan; Arulchakkaravarthi, Arjunan; Sankar, Sambasivam

    2014-08-14

    We present the mapping of electron momentum distribution (EMD) in a single crystal of anthracene by two-dimensional angular correlation of positron annihilation radiation (2D-ACAR). The projected EMD is explained on the basis of the crystallographic features of the material. The EMD spectra provide information about the positron states and their behavior and also about the hindrance of the positronium (Ps) formation in this material. The EMD has exhibited evidence for the absence of free volume defects. The characteristic EMD features regarding the delocalized electronic states are explained. Further, scintillation characteristics such as fluorescence and time-correlated single photon counting have also been studied. The emission peaks are attributed to vibrational bands of fluorescence emission from the singlet excitons and lifetime components are observed to be due to singlet fission and the singlet-singlet excitons annihilation.

  10. Pentacyano-N,N-dimethylaniline in the excited state. Only locally excited state emission, in spite of the large electron affinity of the pentacyanobenzene subgroup.

    PubMed

    Zachariasse, Klaas A; Druzhinin, Sergey I; Galievsky, Victor A; Demeter, Attila; Allonas, Xavier; Kovalenko, Sergey A; Senyushkina, Tamara A

    2010-12-23

    Pentacyano-N,N-dimethylaniline (PCDMA) does not undergo an intramolecular charge transfer (ICT) reaction, even in the strongly polar solvent acetonitrile (MeCN), in clear contrast to 4-(dimethylamino)benzonitrile (DMABN). Within the twisted ICT (TICT) model, this is unexpected, as the electron affinity of the pentacyanobenzene moiety of PCDMA is much larger than that of the benzonitrile subgroup in DMABN. According to the TICT model, the energy of the ICT state of PCDMA would be 2.05 eV (∼16550 cm(-1)) lower than that of DMABN, on the basis of the reduction potentials E(A(-)/A) of pentacyanobenzene (-0.29 V vs saturated calomel electrode (SCE)) and benzonitrile (-2.36 V vs SCE), more than enough to compensate for the decrease in energy of the locally excited (LE) state of PCDMA (E(S(1)) = 19990 cm(-1)) relative to that of DMABN (E(S(1)) = 29990 cm(-1)). This absence of a LE → ICT reaction shows that the TICT hypothesis does not hold for PCDMA in the singlet excited state, similar to what was found for DMABN, N-phenylpyrrole, and their derivatives. In this connection, the six dicyano-substituted dimethylanilines are also discussed. The energy gap ΔE(S(1),S(2)) between the two lowest singlet excited states is, at 7170 cm(-1) for PCDMA in MeCN, considerably larger than that for DMABN (2700 cm(-1) in n-hexane, smaller in MeCN). The absence of ICT is therefore in accord with the planar ICT (PICT) model, which considers a sufficiently small ΔE(S(1),S(2)) to be an important condition determining whether an ICT reaction will take place. The fluorescence quantum yield of PCDMA is very small: Φ(LE) = 0.0006 in MeCN at 25 °C, predominantly due to LE → S(0) internal conversion (IC), as the intersystem crossing yield Φ(ISC) is practically zero (<0.01). From the LE fluorescence decay time of 27 ps for PCDMA in MeCN at 25 °C, a radiative rate constant k(f)(LE) = 2 × 10(7) s(-1) results, comparable to the k(f)(LE) of DMABN (6.5 × 10(7) s(-1)) and 2,4,6-tricyano

  11. Full-dimensional ground- and excited-state potential energy surfaces and state couplings for photodissociation of thioanisole

    NASA Astrophysics Data System (ADS)

    Li, Shaohong L.; Truhlar, Donald G.

    2017-02-01

    Analytic potential energy surfaces (PESs) and state couplings of the ground and two lowest singlet excited states of thioanisole (C6H5SCH3) are constructed in a diabatic representation based on electronic structure calculations including dynamic correlation. They cover all 42 internal degrees of freedom and a wide range of geometries including the Franck-Condon region and the reaction valley along the breaking S-CH3 bond with the full ranges of the torsion angles. The parameters in the PESs and couplings are fitted to the results of smooth diabatic electronic structure calculations including dynamic electron correlation by the extended multi-configurational quasi-degenerate perturbation theory method for the adiabatic state energies followed by diabatization by the fourfold way. The fit is accomplished by the anchor points reactive potential method with two reactive coordinates and 40 nonreactive degrees of freedom, where the anchor-point force fields are obtained with a locally modified version of the QuickFF package. The PESs and couplings are suitable for study of the topography of the trilayer potential energy landscape and for electronically nonadiabatic molecular dynamics simulations of the photodissociation of the S-CH3 bond.

  12. Combining classical molecular dynamics and quantum mechanical methods for the description of electronic excitations: The case of carotenoids.

    PubMed

    Prandi, Ingrid G; Viani, Lucas; Andreussi, Oliviero; Mennucci, Benedetta

    2016-04-30

    Carotenoids are important actors both in light-harvesting (LH) and in photoprotection functions of photosynthetic pigment-protein complexes. A deep theoretical investigation of this multiple role is still missing owing to the difficulty of describing the delicate interplay between electronic and nuclear degrees of freedom. A possible strategy is to combine accurate quantum mechanical (QM) methods with classical molecular dynamics. To do this, however, accurate force-fields (FF) are necessary. This article presents a new FF for the different carotenoids present in LH complexes of plants. The results show that all the important structural properties described by the new FF are in very good agreement with QM reference values. This increased accuracy in the simulation of the structural fluctuations is also reflected in the description of excited states. Both the energy order and the different nature of the lowest singlet states are preserved during the dynamics when the new FF is used, whereas an unphysical mixing is found when a standard FF is used.

  13. Full-dimensional ground- and excited-state potential energy surfaces and state couplings for photodissociation of thioanisole.

    PubMed

    Li, Shaohong L; Truhlar, Donald G

    2017-02-14

    Analytic potential energy surfaces (PESs) and state couplings of the ground and two lowest singlet excited states of thioanisole (C6H5SCH3) are constructed in a diabatic representation based on electronic structure calculations including dynamic correlation. They cover all 42 internal degrees of freedom and a wide range of geometries including the Franck-Condon region and the reaction valley along the breaking S-CH3 bond with the full ranges of the torsion angles. The parameters in the PESs and couplings are fitted to the results of smooth diabatic electronic structure calculations including dynamic electron correlation by the extended multi-configurational quasi-degenerate perturbation theory method for the adiabatic state energies followed by diabatization by the fourfold way. The fit is accomplished by the anchor points reactive potential method with two reactive coordinates and 40 nonreactive degrees of freedom, where the anchor-point force fields are obtained with a locally modified version of the QuickFF package. The PESs and couplings are suitable for study of the topography of the trilayer potential energy landscape and for electronically nonadiabatic molecular dynamics simulations of the photodissociation of the S-CH3 bond.

  14. Computing electronic structures: A new multiconfiguration approach for excited states

    NASA Astrophysics Data System (ADS)

    Cancès, Éric; Galicher, Hervé; Lewin, Mathieu

    2006-02-01

    We present a new method for the computation of electronic excited states of molecular systems. This method is based upon a recent theoretical definition of multiconfiguration excited states [due to one of us, see M. Lewin, Solutions of the multiconfiguration equations in quantum chemistry, Arch. Rat. Mech. Anal. 171 (2004) 83-114]. Our algorithm, dedicated to the computation of the first excited state, always converges to a stationary state of the multiconfiguration model, which can be interpreted as an approximate excited state of the molecule. The definition of this approximate excited state is variational. An interesting feature is that it satisfies a non-linear Hylleraas-Undheim-MacDonald type principle: the energy of the approximate excited state is an upper bound to the true excited state energy of the N-body Hamiltonian. To compute the first excited state, one has to deform paths on a manifold, like this is usually done in the search for transition states between reactants and products on potential energy surfaces. We propose here a general method for the deformation of paths which could also be useful in other settings. We also compare our method to other approaches used in Quantum Chemistry and give some explanation of the unsatisfactory behaviours which are sometimes observed when using the latters. Numerical results for the special case of two-electron systems are provided: we compute the first singlet excited state potential energy surface of the H2 molecule.

  15. Computing electronic structures: A new multiconfiguration approach for excited states

    SciTech Connect

    Cances, Eric . E-mail: cances@cermics.enpc.fr; Galicher, Herve . E-mail: galicher@cermics.enpc.fr; Lewin, Mathieu . E-mail: lewin@cermic.enpc.fr

    2006-02-10

    We present a new method for the computation of electronic excited states of molecular systems. This method is based upon a recent theoretical definition of multiconfiguration excited states [due to one of us, see M. Lewin, Solutions of the multiconfiguration equations in quantum chemistry, Arch. Rat. Mech. Anal. 171 (2004) 83-114]. Our algorithm, dedicated to the computation of the first excited state, always converges to a stationary state of the multiconfiguration model, which can be interpreted as an approximate excited state of the molecule. The definition of this approximate excited state is variational. An interesting feature is that it satisfies a non-linear Hylleraas-Undheim-MacDonald type principle: the energy of the approximate excited state is an upper bound to the true excited state energy of the N-body Hamiltonian. To compute the first excited state, one has to deform paths on a manifold, like this is usually done in the search for transition states between reactants and products on potential energy surfaces. We propose here a general method for the deformation of paths which could also be useful in other settings. We also compare our method to other approaches used in Quantum Chemistry and give some explanation of the unsatisfactory behaviours which are sometimes observed when using the latter. Numerical results for the special case of two-electron systems are provided: we compute the first singlet excited state potential energy surface of the H {sub 2} molecule.

  16. Acetylene bridged porphyrin-monophthalocyaninato ytterbium(III) hybrids with strong two-photon absorption and high singlet oxygen quantum yield.

    PubMed

    Ke, Hanzhong; Li, Wenbin; Zhang, Tao; Zhu, Xunjin; Tam, Hoi-Lam; Hou, Anxin; Kwong, Daniel W J; Wong, Wai-Kwok

    2012-04-21

    Several acetylene bridged porphyrin-monophthalocyaninato ytterbium(III) hybrids, PZn-PcYb, PH(2)-PcYb and PPd-PcYb, have been prepared and characterized by (1)H and (31)P NMR, mass spectrometry, and UV-vis spectroscopy. Their photophysical and photochemical properties, especially the relative singlet oxygen ((1)O(2)) quantum yields and the two-photon absorption cross-section (σ(2)), were investigated. These three newly synthesized compounds exhibited very large σ(2) values and substantial (1)O(2) quantum yields upon photo-excitation, making them potential candidates as one- and two-photon photodynamic therapeutic agents.

  17. Two Birds with One Stone: Tailoring Singlet Fission for Both Triplet Yield and Exciton Diffusion Length.

    PubMed

    Zhu, Tong; Wan, Yan; Guo, Zhi; Johnson, Justin; Huang, Libai

    2016-09-01

    By direct imaging of singlet and triplet populations with ultrafast microscopy, it is shown that the triplet diffusion length and singlet fission yield can be simultaneously optimized for tetracene and its derivatives, making them ideal structures for application in bilayer solar cells.

  18. Two Birds with One Stone: Tailoring Singlet Fission for Both Triplet Yield and Exciton Diffusion Length

    SciTech Connect

    Zhu, Tong; Wan, Yan; Guo, Zhi; Johnson, Justin; Huang, Libai

    2016-06-27

    By direct imaging of singlet and triplet populations with ultrafast microscopy, it is shown that the triplet diffusion length and singlet fission yield can be simultaneously optimized for tetracene and its derivatives, making them ideal structures for application in bilayer solar cells.

  19. Detection of singlet oxygen in photoexcited porous silicon nanocrystals by photoluminescence measurements

    SciTech Connect

    Gongalsky, M. B. Konstantinova, E. A.; Osminkina, L. A.; Timoshenko, V. Yu.

    2010-01-15

    Luminescence of gas-phase singlet oxygen optically sensitized by microporous silicon at room temperature is detected for the first time. At the same time, a photoinduced increase in the photoluminescence intensity of defects at the sample surface in oxygen atmosphere is observed. It is shown that mechanical grinding of porous silicon layers yields a decrease in the amount of photogenerated singlet oxygen.

  20. Singlet Oxygen Delivery Through the Porous Cap of a Hollow-Core Fiber Optic Device†

    PubMed Central

    Zamadar, Matibur; Aebisher, David

    2012-01-01

    The development of the first photosensitizer/fiber optic device is reported. An oxygen-flowing fiber-capped configuration is used for the application of heterogeneous, spatially confined singlet oxygen delivery in aqueous media. This is a unique device, unlike other heterogeneous photosensitizers, in which local concentrations of singlet oxygen can be delivered via introduction and withdrawal of the fiber tip. PMID:19929010

  1. Exciton delocalization drives rapid singlet fission in nanoparticles of acene derivatives.

    PubMed

    Pensack, Ryan D; Tilley, Andrew J; Parkin, Sean R; Lee, Tia S; Payne, Marcia M; Gao, Dong; Jahnke, Ashlee A; Oblinsky, Daniel G; Li, Peng-Fei; Anthony, John E; Seferos, Dwight S; Scholes, Gregory D

    2015-06-03

    We compare the singlet fission dynamics of five pentacene derivatives precipitated to form nanoparticles. Two nanoparticle types were distinguished by differences in their solid-state order and kinetics of triplet formation. Nanoparticles that comprise primarily weakly coupled chromophores lack the bulk structural order of the single crystal and exhibit nonexponential triplet formation kinetics (Type I), while nanoparticles that comprise primarily more strongly coupled chromophores exhibit order resembling that of the bulk crystal and triplet formation kinetics associated with the intrinsic singlet fission rates (Type II). In the highly ordered nanoparticles, singlet fission occurs most rapidly. We relate the molecular packing arrangement derived from the crystal structure of the pentacene derivatives to their singlet fission dynamics and find that slip stacking leads to rapid, subpicosecond singlet fission. We present evidence that exciton delocalization, coincident with an increased relative admixture of charge-transfer configurations in the description of the exciton wave function, facilitates rapid triplet pair formation in the case of single-step singlet fission. We extend the study to include two hexacene derivatives and find that these conclusions are generally applicable. This work highlights acene derivatives as versatile singlet fission chromophores and shows how chemical functionalization affects both solid-state order and exciton interactions and how these attributes in turn affect the rate of singlet fission.

  2. Mechanistic investigations of the novel non-heme vanadium bromoperoxidases. Evidence for singlet oxygen production.

    PubMed

    Everett, R R; Kanofsky, J R; Butler, A

    1990-03-25

    Three newly discovered non-heme bromoperoxidases isolated from marine algae were found to catalyze the production of singlet oxygen in reactions composed of the bromoperoxidase, hydrogen peroxide, and bromide. The bromoperoxidases studied were vanadium bromoperoxidase (V-BrPO) from Ascophyllum nodosum, native non-heme bromoperoxidase from Corallina vancouveriensis (which contains vanadium and iron), and the vanadium-reconstituted bromoperoxidase derivative from C. vancouveriensis. These enzyme systems generated near infrared emission, characteristic of singlet oxygen. The emission had a peak intensity near 1268 nm, was greatly increased in 2H2O-containing buffers, and was greatly decreased by the singlet oxygen quenchers, histidine and azide. The yield of singlet oxygen was approximately 80% of the theoretical yield. A unique feature of the non-heme bromoperoxidases distinct from the iron heme haloperoxidases, was the remarkable stability of the non-heme enzymes in the presence of singlet oxygen and oxidized bromine species. V-BrPO turned over multiple aliquots of 2 mM hydrogen peroxide without losing efficiency. In contrast, iron heme lactoperoxidase was completely inactivated after turnover of the first aliquot of 2 mM hydrogen peroxide, and iron heme chloroperoxidase was 50% deactivated. The profile of singlet oxygen formation by V-BrPO and the near stoichiometric yield of singlet oxygen suggest that the mechanism of singlet oxygen formation is the same as the mechanism of dioxygen formation determined by oxygen probe measurements.

  3. Cooperative singlet and triplet exciton transport in tetracene crystals visualized by ultrafast microscopy

    NASA Astrophysics Data System (ADS)

    Wan, Yan; Guo, Zhi; Zhu, Tong; Yan, Suxia; Johnson, Justin; Huang, Libai

    2015-10-01

    Singlet fission presents an attractive solution to overcome the Shockley-Queisser limit by generating two triplet excitons from one singlet exciton. However, although triplet excitons are long-lived, their transport occurs through a Dexter transfer, making them slower than singlet excitons, which travel by means of a Förster mechanism. A thorough understanding of the interplay between singlet fission and exciton transport is therefore necessary to assess the potential and challenges of singlet-fission utilization. Here, we report a direct visualization of exciton transport in single tetracene crystals using transient absorption microscopy with 200 fs time resolution and 50 nm spatial precision. These measurements reveal a new singlet-mediated transport mechanism for triplets, which leads to an enhancement in effective triplet exciton diffusion of more than one order of magnitude on picosecond to nanosecond timescales. These results establish that there are optimal energetics of singlet and triplet excitons that benefit both singlet fission and exciton diffusion.

  4. Temperature Dependence of the Reaction O(singlet S) + CO2,

    DTIC Science & Technology

    The temperature dependence of the collisional deactivation of O(singlet S) has been investigated in the range 153-500K. O(singlet S) was produced in...of time after the production pulse. Rate constants were derived from the decay rate of the Osinglet S) concentration. The temperature dependence was found to follow the Arrhenius equation. (Modified author abstract)

  5. Magnetic Excitations from the Exotic Ground State of the Quantum FCC Antiferromagnet Ba2YMoO6

    SciTech Connect

    Carlo, Jeremy P; Clancy, James P; Aharen, T.; Yamani, Zahra; Ruff, Jacob; Wagman, J.; Van Gastel, G. J.; Noad, H. M.; Granroth, Garrett E; Greedan, John E; Dabkowska, H. A.; Gaulin, Bruce D.

    2011-01-01

    The geometrically frustrated double perovskite Ba{sub 2}YMoO{sub 6} is characterized by quantum s = 1/2 spins at the Mo{sup 5+} sites of an undistorted fcc lattice. Previous low-temperature characterization revealed an absence of static long-range magnetic order and suggested a nonmagnetic spin-singlet ground state. We report unique time-of-flight and triple-axis neutron spectroscopy of Ba{sub 2}YMoO{sub 6} that shows a 28 meV spin excitation with a bandwidth of {approx}4 meV, which vanishes above {approx}125 K. We identify this as the singlet-triplet excitation that arises out of a singlet ground state, and further identify a weaker continuum of magnetic states within the gap, reminiscent of spin-polaron states arising due to weak disorder.

  6. Excitation Energy Transfer Dynamics and Excited-State Structure in Chlorosomes of Chlorobium phaeobacteroides

    PubMed Central

    Pšenčík, Jakub; Ma, Ying-Zhong; Arellano, Juan B.; Hála, Jan; Gillbro, Tomas

    2003-01-01

    The excited-state relaxation within bacteriochlorophyll (BChl) e and a in chlorosomes of Chlorobium phaeobacteroides has been studied by femtosecond transient absorption spectroscopy at room temperature. Singlet-singlet annihilation was observed to strongly influence both the isotropic and anisotropic decays. Pump intensities in the order of 1011 photons × pulse−1 × cm−2 were required to obtain annihilation-free conditions. The most important consequence of applied very low excitation doses is an observation of a subpicosecond process within the BChl e manifold (∼200–500 fs), manifesting itself as a rise in the red part of the Qy absorption band of the BChl e aggregates. The subsequent decay of the kinetics measured in the BChl e region and the corresponding rise in the baseplate BChl a is not single-exponential, and at least two components are necessary to fit the data, corresponding to several BChl e→BChl a transfer steps. Under annihilation-free conditions, the anisotropic kinetics show a generally slow decay within the BChl e band (10–20 ps) whereas it decays more rapidly in the BChl a region (∼1 ps). Analysis of the experimental data gives a detailed picture of the overall time evolution of the energy relaxation and energy transfer processes within the chlorosome. The results are interpreted within an exciton model based on the proposed structure. PMID:12547796

  7. Nonlinear optical spectra having characteristics of Fano interferences in coherently coupled lowest exciton biexciton states in semiconductor quantum dots

    SciTech Connect

    Gotoh, Hideki Sanada, Haruki; Yamaguchi, Hiroshi; Sogawa, Tetsuomi

    2014-10-15

    Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL) method in a coherently coupled exciton-biexciton system in a single quantum dot (QD). PL and photoluminescence excitation spectroscopy (PLE) are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicate that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.

  8. Plasmonic Nanoparticle-based Hybrid Photosensitizers with Broadened Excitation Profile for Photodynamic Therapy of Cancer Cells

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Tang, Hong; Zhang, Peng

    2016-10-01

    Photodynamic therapy combining nanotechnology has shown great potential with improved therapeutic efficacy and fewer side effects. Ideal photosensitizers for cancer treatment should both have good singlet oxygen production capability and be excitable by light illuminations with deep tissue penetration. Here we report a type of hybrid photosensitizers consisting of plasmonic silver nanoparticles and photosensitizing molecules, where strong resonance coupling between the two leads to a broadened excitation profile and exceptionally high singlet oxygen production under both visible light and infrared light excitations. Our results indicate that the hybrid photosensitizers display low cytotoxicity without light illumination yet highly enhanced photodynamic inhibition efficacy against Hela cells under a broad spectrum of light illuminations including the near-infrared light, which has great implication in photodynamic therapy of deep-tissue cancers.

  9. Photo-ionization and photo-excitation of curcumin investigated by laser flash photolysis.

    PubMed

    Qian, Tingting; Kun, Li; Gao, Bo; Zhu, Rongrong; Wu, Xianzheng; Wang, Shilong

    2013-12-01

    Curcumin (Cur) has putative antitumor properties. In the current study, we examined photophysical and photochemical properties of Cur using laser flash photolysis. The results demonstrated that Cur could be photo-ionized at 355 nm laser pulse to produce radical cation (Cur(+)) and solvated electron e(sol)(-) in 7:3 ethanol-water mixtures. The quantum yield of Cur photo-ionization and the ratio of photo-ionization to photo-excitation were also determined. Cur(+) could be transferred into neutral radical of Cur (Cur) via deprotonation with the pKa 4.13. The excited singlet of Cur ((1)Cur* could be transferred into excited triplet ((3)Cur*, which could be quenched by oxygen to produce singlet oxygen (1)O2*. Reaction of (3)Cur* with tryptophan was confirmed. The results encourage developing curcumin as a photosensitive antitumor agent.

  10. Relative and absolute level populations in beam-foil-excited neutral helium

    NASA Technical Reports Server (NTRS)

    Davidson, J.

    1975-01-01

    Relative and absolute populations of 19 levels in beam-foil-excited neutral helium at 0.275 MeV have been measured. The singlet angular-momentum sequences show dependences on principal quantum number consistent with n to the -3rd power, but the triplet sequences do not. Singlet and triplet angular-momentum sequences show similar dependences on level excitation energy. Excitation functions for six representative levels were measured in the range from 0.160 to 0.500 MeV. The absolute level populations increase with energy, whereas the neutral fraction of the beam decreases with energy. Further, the P angular-momentum levels are found to be overpopulated with respect to the S and D levels. The overpopulation decreases with increasing principal quantum number.

  11. Plasmonic Nanoparticle-based Hybrid Photosensitizers with Broadened Excitation Profile for Photodynamic Therapy of Cancer Cells

    PubMed Central

    Wang, Peng; Tang, Hong; Zhang, Peng

    2016-01-01

    Photodynamic therapy combining nanotechnology has shown great potential with improved therapeutic efficacy and fewer side effects. Ideal photosensitizers for cancer treatment should both have good singlet oxygen production capability and be excitable by light illuminations with deep tissue penetration. Here we report a type of hybrid photosensitizers consisting of plasmonic silver nanoparticles and photosensitizing molecules, where strong resonance coupling between the two leads to a broadened excitation profile and exceptionally high singlet oxygen production under both visible light and infrared light excitations. Our results indicate that the hybrid photosensitizers display low cytotoxicity without light illumination yet highly enhanced photodynamic inhibition efficacy against Hela cells under a broad spectrum of light illuminations including the near-infrared light, which has great implication in photodynamic therapy of deep-tissue cancers. PMID:27725746

  12. Design Principles of Electronic Couplings for Intramolecular Singlet Fission in Covalently-Linked Systems.

    PubMed

    Ito, Soichi; Nagami, Takanori; Nakano, Masayoshi

    2016-08-11

    We theoretically investigate the singlet fission in three types of covalently-linked systems, that is, ortho-, meta- and para-linked pentacene dimers, where these are shown to have significantly different singlet fission rates. Each molecule is composed of two chromophores (pentacenes), which are active sites for singlet fission, and covalent bridges linking them. We clarify the origin of the difference in the electronic couplings in these systems, which are found to well support a recent experimental observation. It is also found that the next-nearest-neighbor interaction is indispensable for intramolecular singlet fission in these systems. On the basis of these results, we present design principles for efficient intramolecular singlet fission in covalently-linked systems and demonstrate the performance by using several novel conjugated linkers.

  13. WIMP dark matter and unitarity-conserving inflation via a gauge singlet scalar

    SciTech Connect

    Kahlhoefer, Felix; McDonald, John E-mail: j.mcdonald@lancaster.ac.uk

    2015-11-01

    A gauge singlet scalar with non-minimal coupling to gravity can drive inflation and later freeze out to become cold dark matter. We explore this idea by revisiting inflation in the singlet direction (S-inflation) and Higgs Portal Dark Matter in light of the Higgs discovery, limits from LUX and observations by Planck. We show that large regions of parameter space remain viable, so that successful inflation is possible and the dark matter relic abundance can be reproduced. Moreover, the scalar singlet can stabilise the electroweak vacuum and at the same time overcome the problem of unitarity-violation during inflation encountered by Higgs Inflation, provided the singlet is a real scalar. The 2-σ Planck upper bound on n{sub s} imposes that the singlet mass is below 2 TeV, so that almost the entire allowed parameter range can be probed by XENON1T.

  14. Excited state correlations of the finite Heisenberg chain

    NASA Astrophysics Data System (ADS)

    Pozsgay, Balázs

    2017-02-01

    We consider short range correlations in excited states of the finite XXZ and XXX Heisenberg spin chains. We conjecture that the known results for the factorized ground state correlations can be applied to the excited states too, if the so-called physical part of the construction is changed appropriately. For the ground state we derive simple algebraic expressions for the physical part; the formulas only use the ground state Bethe roots as an input. We conjecture that the same formulas can be applied to the excited states as well, if the exact Bethe roots of the excited states are used instead. In the XXZ chain the results are expected to be valid for all states (except certain singular cases where regularization is needed), whereas in the XXX case they only apply to singlet states or group invariant operators. Our conjectures are tested against numerical data from exact diagonalization and coordinate Bethe Ansatz calculations, and perfect agreement is found in all cases. In the XXX case we also derive a new result for the nearest-neighbour correlator < σ 1zσ 2z> , which is valid for non-singlet states as well. Our results build a bridge between the known theory of factorized correlations, and the recently conjectured TBA-like description for the building blocks of the construction.

  15. 48 CFR 15.101-2 - Lowest price technically acceptable source selection process.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) When using the lowest price technically acceptable process, the following apply: (1) The evaluation... evaluation factor in lowest price technically acceptable source selections. If the contracting officer elects to consider past performance as an evaluation factor, it shall be evaluated in accordance with...

  16. Photodecomposition profiles of beta-bond cleavage of phenylphenacyl derivatives in the higher triplet excited states during stepwise two-color two-laser flash photolysis.

    PubMed

    Yamaji, Minoru; Cai, Xichen; Sakamoto, Masanori; Fujitsuka, Mamoru; Majima, Tetsuro

    2008-11-13

    Photochemical properties of p-phenylphenacyl derivatives (PP-X) having C-halide, C-S, and C-O bonds in the lowest (T 1) and higher (T n ) triplet excited states were investigated in solution by using single-color and stepwise two-color two-laser flash photolysis techniques. PP-Xs (X = Br, SH, and SPh) undergo beta-bond dissociation in the lowest singlet excited states (S 1) while the C-X bonds of other PP-Xs are stable upon 266-nm laser photolysis. The T 1(pi,pi*) states of PP-X were efficiently produced during 355-nm laser photolysis of benzophenone as a triplet sensitizer. Triplet PP-Xs deactivate to the ground state without photochemical reactions. Upon 430-nm laser photolysis of the T 1 states of PP-X (X = Br, Cl, SH, SPh, OH, OMe, and OPh), decomposition of PP-X in the T n states was found. On the basis of the changes in the transient absorption, quantum yields (Phi dec) of the decomposition of PP-X in the T n states were determined, while bond dissociation energies (BDE) of the C-X bonds were calculated by computations. According to the relationship between the Phi dec and BDE values, it was shown that the decomposition of PP-X in the T n state is due to beta-cleavage of the corresponding C-X bond, and that the state energy of the reactive T n for the C-O bond cleavage differs from that for the C-halide and C-S bond cleavage. The reaction profiles of the C-X bond cleavage of PP-X in the T n states were discussed.

  17. Two-singlet model for light cold dark matter

    SciTech Connect

    Abada, Abdessamad; Ghaffor, Djamal; Nasri, Salah

    2011-05-01

    We extend the standard model by adding two gauge-singlet Z{sub 2}-symmetric scalar fields that interact with visible matter only through the Higgs particle. One is a stable dark matter WIMP, and the other one undergoes a spontaneous breaking of the symmetry that opens new channels for the dark matter annihilation, hence lowering the mass of the WIMP. We study the effects of the observed dark matter relic abundance on the WIMP annihilation cross section and find that in most regions of the parameters' space, light dark matter is viable. We also compare the elastic-scattering cross section of our dark matter candidate off a nucleus with existing (CDMSII and XENON100) and projected (SuperCDMS and XENON1T) experimental exclusion bounds. We find that most of the allowed mass range for light dark matter will be probed by the projected sensitivity of the XENON1T experiment.

  18. Singlet oxygen signaling links photosynthesis to translation and plant growth.

    PubMed

    Reinbothe, Christiane; Pollmann, Stephan; Reinbothe, Steffen

    2010-09-01

    Translation is a major target of metabolic and growth control in animals and plants. Changes in the phosphorylation status of ribosomal protein S6 are responsible for rapid adjustments in the growth pattern of higher plants in response to changes in the environment. In this review, we illuminate some common and unique aspects of translational control in animals and plants and discuss recent studies that link photosynthesis to growth via specific signal transduction cascades, one of which relies on singlet oxygen and the plant growth regulator jasmonic acid (JA). It is the aim of this review to discuss the role of the target of rapamycin (TOR) signaling network in plants and what mechanisms could contribute to growth control in response to the changing environment.

  19. Staggered fermions, zero modes, and flavor-singlet mesons

    DOE PAGES

    Donald, Gordon C; Davies, Christine T.H.; Follana, Eduardo; ...

    2011-09-12

    We examine the taste structure of eigenvectors of the staggered-fermion Dirac operator. We derive a set of conditions on the eigenvectors of modes with small eigenvalues (near-zero modes), such that staggered fermions reproduce the 't Hooft vertex in the continuum limit. We also show that, assuming these conditions, the correlators of flavor-singlet mesons are free of contributions singular in 1/m, where m is the quark mass. This conclusion holds also when a single flavor of sea quark is represented by the fourth root of the staggered-fermion determinant. We then test numerically, using the HISQ action, whether these conditions hold onmore » realistic lattice gauge fields. We find that the needed structure does indeed emerge.« less

  20. Staggered fermions, zero modes, and flavor-singlet mesons

    SciTech Connect

    Donald, Gordon C; Davies, Christine T.H.; Follana, Eduardo; Kronfeld, Andreas S.

    2011-09-12

    We examine the taste structure of eigenvectors of the staggered-fermion Dirac operator. We derive a set of conditions on the eigenvectors of modes with small eigenvalues (near-zero modes), such that staggered fermions reproduce the 't Hooft vertex in the continuum limit. We also show that, assuming these conditions, the correlators of flavor-singlet mesons are free of contributions singular in 1/m, where m is the quark mass. This conclusion holds also when a single flavor of sea quark is represented by the fourth root of the staggered-fermion determinant. We then test numerically, using the HISQ action, whether these conditions hold on realistic lattice gauge fields. We find that the needed structure does indeed emerge.