Numerical simulation of lowest-order short-crested wave instabilities
NASA Astrophysics Data System (ADS)
Fuhrman, David R.; Madsen, Per A.; Bingham, Harry B.
2006-09-01
A numerical study of doubly periodic deep-water short-crested wave instabilities, arising from various quartet resonant interactions, is conducted using a high-order Boussinesq-type model. The model is first verified through a series of simulations involving classical class I plane wave instabilities. These correctly lead to well-known (nearly symmetric) recurrence cycles below a previously established breaking threshold steepness, and to an asymmetric evolution (characterized by a permanent transfer of energy to the lower side-band) above this threshold, with dissipation from a smoothing filter promoting this behaviour in these cases. A series of class Ia short-crested wave instabilities, near the plane wave limit, are then considered, covering a wide range of incident wave steepness. A close match with theoretical growth rates is demonstrated near the inception. It is shown that the unstable evolution of these initially three-dimensional waves leads to an asymmetric evolution, even for weakly nonlinear cases presumably well below breaking. This is characterized by an energy transfer to the lower side-band, which is also accompanied by a similar transfer to more distant upper side-bands. At larger steepness, the evolution leads to a permanent downshift of both the mean and peak frequencies, driven in part by dissipation, effectively breaking the quasi-recurrence cycle. A single case involving a class Ib short-crested wave instability at relatively large steepness is also considered, which demonstrates a reasonably similar evolution. These simulations consider the simplest physical situations involving three-dimensional instabilities of genuinely three-dimensional progressive waves, revealing qualitative differences from classical two-dimensional descriptions. This study is therefore of fundamental importance in understanding the development of three-dimensional wave spectra.
Characteristics of short-crested waves and currents behind offshore man-made island type power plant
Ikeno, Masaaki; Kajima, Ryoichi; Matsuyama, Masafumi; Sakakiyama, Tsutomu
1995-12-31
This paper describes the diffracted waves with breaking and the nearshore currents caused by short-crested waves, behind a man-made island, on which nuclear power plants are constructed. Firstly, hydraulic model tests with a multi-directional wave maker were performed. Effects of the irregularity and directional spreading of waves, and the effects of cooling water intake flow on diffracted waves and nearshore currents behind a man-made island, were investigated experimentally. Secondly, a numerical model was developed to simulate deformation of multi-directional irregular waves and nearshore currents. The validity of the numerical model was verified through comparison with the experimental results.
Dynamics of momentum entanglement in lowest-order QED
Lamata, L.; Leon, J.; Solano, E.
2006-01-15
We study the dynamics of momentum entanglement generated in the lowest-order QED interaction between two massive spin-(1/2) charged particles, which grows in time as the two fermions exchange virtual photons. We observe that the degree of generated entanglement between interacting particles with initial well-defined momentum can be infinite. We explain this divergence in the context of entanglement theory for continuous variables, and show how to circumvent this apparent paradox. Finally, we discuss two different possibilities of transforming momentum into spin entanglement, through dynamical operations or through Lorentz boosts.
Lowest-order average effect of turbulence on atmospheric profiles derived from radio occultation
NASA Technical Reports Server (NTRS)
Eshleman, V. R.; Haugstad, B. S.
1977-01-01
Turbulence in planetary atmospheres and ionospheres causes changes in angles of refraction of radio waves used in occultation experiments. Atmospheric temperature and pressure profiles, and ionospheric electron concentration profiles, derived from radio occultation measurements of Doppler frequency contain errors due to such angular offsets. The lowest-order average errors are derived from a geometrical-optics treatment of the radio-wave phase advance caused by the addition of uniform turbulence to an initially homogeneous medium. It is concluded that the average profile errors are small and that precise Doppler frequency measurements at two or more wavelengths could be used to help determine characteristics of the turbulence, as well as accuracy limits and possible correction terms for the profiles. However, a more detailed study of both frequency and intensity characteristics in radio and optical occultation measurements of turbulent planetary atmospheres and ionospheres is required to realize the full potential of such measurements.
NASA Astrophysics Data System (ADS)
Zhao, Jinfeng; Bonello, Bernard; Boyko, Olga
2016-05-01
We have investigated the focusing of the lowest-order antisymmetric Lamb mode (A0) behind a positive gradient-index (GRIN) acoustic metalens consisting of air holes drilled in a silicon plate with silicon pillars erected on one face of the lens. We have analyzed the focusing in the near field as the result of the coupling between the flexural resonant mode of the pillars and the vibration mode of the air/silicon phononic crystal. We highlight the role played by the polarization coherence between the resonant mode and the vibration of the plate. We demonstrate both numerically and experimentally the focusing behind the lens over a spot less than half a wavelength, paving a way for performance of acoustic lenses beyond the diffraction limit. Our findings can be easily extended to other types of elastic wave.
carlomat: A program for automatic computation of lowest order cross sections
NASA Astrophysics Data System (ADS)
Kołodziej, Karol
2009-09-01
The current version of carlomat, a program for automatic computation of the lowest order cross sections of multiparticle reactions, is described. The program can be used as the Monte Carlo generator of unweighted events as well. Program summaryProgram title:carlomat Catalogue identifier: AEDQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 101 613 No. of bytes in distributed program, including test data, etc.: 1 092 251 Distribution format: tar.gz Programming language: Fortran 90/95 Computer: all Operating system: Linux Classification: 4.4, 11.2 Nature of problem: Description of two particle scattering reactions with possibly up to 10 particles in the final state with a complete set of the Feynman diagrams in the lowest order of the Standard Model. Solution method: The matrix element for a user specified process and phase space parametrizations, which are necessary for the multichannel Monte Carlo integration of the lowest order cross sections and event generation, are generated automatically. Both the electroweak and quantum chromodynamics lowest order contributions are taken into account. Particle masses are not neglected in the program. Matrix elements are calculated numerically with the helicity amplitude method. Constant widths of unstable particles are implemented by modifying mass parameters in corresponding propagators. Restrictions: The number of external particles is limited to 12. Only the Standard Model is implemented at the moment in the program. No higher order effects are taken into account, except for assuming the fine structure constant and the strong coupling at appropriate scale and partial summation of the one particle irreducible loop corrections by introducing fixed widths of
Lowest-order phase space structure of a simplified beam halo Hamiltonian
Bruhwiler, D.L.
1996-06-01
Hamiltonian perturbation theory is applied to the particle-core model for zero-angular-momentum test-particles in the limit of small mismatch and moderate space charge. A first-order treatment captures the lowest-order averaged dynamics arising from the dominant 2:1 parametric resonance, neglecting any chaotic effects that might arise from the overlap of higher-order resonances. The analysis shows that test-particles from a matched Kapchinskij-Vladimirskij (KV) distribution are driven into the halo by the oscillations of the mismatched core KV distribution, if the mismatch factor exceeds a critical value which depends on the space charge parameter {mu}. This dynamical effect persists, although the time scale grows without bound, even in the limit {mu}{r_arrow}0. A symplectic test-particle code and self-consistent particle simulations both show good agreement with the analysis. {copyright} {ital 1996 American Institute of Physics.}
Kinetic Simulations of the Lowest-order Unstable Mode of Relativistic Magnetostatic Equilibria
NASA Astrophysics Data System (ADS)
Nalewajko, Krzysztof; Zrake, Jonathan; Yuan, Yajie; East, William E.; Blandford, Roger D.
2016-08-01
We present the results of particle-in-cell numerical pair plasma simulations of relativistic two-dimensional magnetostatic equilibria known as the “Arnold–Beltrami–Childress” fields. In particular, we focus on the lowest-order unstable configuration consisting of two minima and two maxima of the magnetic vector potential. Breaking of the initial symmetry leads to exponential growth of the electric energy and to the formation of two current layers, which is consistent with the picture of “X-point collapse” first described by Syrovatskii. Magnetic reconnection within the layers heats a fraction of particles to very high energies. After the saturation of the linear instability, the current layers are disrupted and the system evolves chaotically, diffusing the particle energies in a stochastic second-order Fermi process, leading to the formation of power-law energy distributions. The power-law slopes harden with the increasing mean magnetization, but they are significantly softer than those produced in simulations initiated from Harris-type layers. The maximum particle energy is proportional to the mean magnetization, which is attributed partly to the increase of the effective electric field and partly to the increase of the acceleration timescale. We describe in detail the evolving structure of the dynamical current layers and report on the conservation of magnetic helicity. These results can be applied to highly magnetized astrophysical environments, where ideal plasma instabilities trigger rapid magnetic dissipation with efficient particle acceleration and flares of high-energy radiation.
Kinetic Simulations of the Lowest-order Unstable Mode of Relativistic Magnetostatic Equilibria
NASA Astrophysics Data System (ADS)
Nalewajko, Krzysztof; Zrake, Jonathan; Yuan, Yajie; East, William E.; Blandford, Roger D.
2016-08-01
We present the results of particle-in-cell numerical pair plasma simulations of relativistic two-dimensional magnetostatic equilibria known as the “Arnold-Beltrami-Childress” fields. In particular, we focus on the lowest-order unstable configuration consisting of two minima and two maxima of the magnetic vector potential. Breaking of the initial symmetry leads to exponential growth of the electric energy and to the formation of two current layers, which is consistent with the picture of “X-point collapse” first described by Syrovatskii. Magnetic reconnection within the layers heats a fraction of particles to very high energies. After the saturation of the linear instability, the current layers are disrupted and the system evolves chaotically, diffusing the particle energies in a stochastic second-order Fermi process, leading to the formation of power-law energy distributions. The power-law slopes harden with the increasing mean magnetization, but they are significantly softer than those produced in simulations initiated from Harris-type layers. The maximum particle energy is proportional to the mean magnetization, which is attributed partly to the increase of the effective electric field and partly to the increase of the acceleration timescale. We describe in detail the evolving structure of the dynamical current layers and report on the conservation of magnetic helicity. These results can be applied to highly magnetized astrophysical environments, where ideal plasma instabilities trigger rapid magnetic dissipation with efficient particle acceleration and flares of high-energy radiation.
Four-fermion production at γ γ colliders: 1. Lowest-order predictions and anomalous couplings
NASA Astrophysics Data System (ADS)
Bredenstein, A.; Dittmaier, S.; Roth, M.
2004-08-01
We have constructed a Monte Carlo generator (the corresponding FORTRAN code can be obtained from the authors upon request) for lowest-order predictions for the processes γγto 4f and γγto 4fγ in the standard model and extensions thereof by an effective γγ H coupling as well as anomalous triple and quartic gauge-boson couplings. Polarization is fully supported, and a realistic photon beam spectrum can be taken into account. For the processes γγto 4f all helicity amplitudes are explicitly given in a compact form. The presented numerical results contain, in particular, a survey of cross sections for representative final states and their comparison to results obtained with the program package Whizard/Madgraph. The impact of a realistic beam spectrum on cross sections and distributions is illustrated. Moreover, the size of various contributions to cross sections, such as from weak charged- or neutral-current, or from strong interactions, is analyzed. Particular attention is paid to W-pair production channels γγto W Wto 4f(γ) where we investigate the impact of background diagrams, possible definitions of the W-pair signal, and the issue of gauge-invariance violation caused by finite gauge-boson widths. Finally, the effects of triple and quartic anomalous gauge-boson couplings on cross sections as well as the possibility to constrain these anomalous couplings at future γγ colliders are discussed.
NASA Astrophysics Data System (ADS)
Zhang, Dongbo; Zhao, Jinfeng; Bonello, Bernard; Li, Libing; Wei, Jianxin; Pan, Yongdong; Zhong, Zheng
2016-08-01
In this work, we applied a robust and fully air-coupled method to investigate the propagation of the lowest-order antisymmetric Lamb (A0) mode in both a stubbed and an air-drilled phononic-crystal (PC) plate. By measuring simply the radiative acoustic waves of A0 mode close to the plate surface, we observed the band gaps for the stubbed PC plate caused by either the local resonance or the Bragg scattering, in frequency ranges in good agreement with theoretical predictions. We measured then the complete band gap of A0 mode for the air-drilled PC plate, in good agreement with the band structures. Finally, we compared the measurements made using the air-coupled method with those obtained by the laser ultrasonic technique.
Frolov, Alexei M.; Wardlaw, David M.
2014-09-14
Mass-dependent and field shift components of the isotopic shift are determined to high accuracy for the ground 1{sup 1}S−states of some light two-electron Li{sup +}, Be{sup 2+}, B{sup 3+}, and C{sup 4+} ions. To determine the field components of these isotopic shifts we apply the Racah-Rosental-Breit formula. We also determine the lowest order QED corrections to the isotopic shifts for each of these two-electron ions.
Frolov, Alexei M
2007-03-14
The bound state properties of the ground 1 1S(L=0) state and the lowest triplet 2 3S(L=0) state of the 3He, 4He, and infinityHe helium atoms are determined to very high accuracy from the results of direct numerical computations. To compute the bound state properties of these atoms the author applied his exponential variational expansion in relative/perimetric three-body coordinates. For the ground 1 1S(L=0) state and the lowest triplet 2 3S(L=0) state of the 3He, 4He, and infinityHe atoms the author also determined the lowest order QED corrections and the field component of isotopic shift (=field shift). For the 2 3S(L=0) state of the 3He atom the hyperfine structure splitting is evaluated. The considered properties of the ground 1 1S state and the lowest 2 3S state in the 3He and 4He atoms are of great interest in a number of applications.
NASA Astrophysics Data System (ADS)
Modarres, M.; Younesizadeh, Y.
2012-05-01
In this work, the two-nucleon spectral functions (TNSFs) are defined in terms of the state- and the density-dependent correlation functions in the framework of the lowest-order constrained variational (LOCV) method to calculate the TNSF of the 16O nucleus in the 16O(e,e'NN)14C reaction. The Reid soft-core (Reid68) and the Av18 potentials are used as the internucleon interactions. Since, the short-range correlation effects are imposed on the wave functions for the individual channels (e.g., the 1S0 and 3PJ channels); therefore, the defect wave functions are obtained for various channels such that the high relative momenta (p>4fm-1) are ignored. The resulting TNSFs for the 16O nucleus are compared with those of the dressed random phase approximation (DRPA) calculations of Geurts and the experimental predictions, especially those of Onderwater , (NIKHEF group), where reasonable agreement is found. It is shown that the optimized state-dependent defect wave functions have substantial effects on the TNSF and it is not justified to use the simplified parametrized two-body correlation functions in all of the channels. In agreement with the experimental data of Onderwater , the knockout of a 1S0 pair proton dominates the above reaction cross section. Finally, it is demonstrated that the 0+ and 2+ peaks, which are expected to be observed in the above reaction cross section, are moved to the lower momenta of out-going protons when the state-dependent correlation functions are imposed.
Approximate Schur complement preconditioning of the lowest order nodal discretizations
Moulton, J.D.; Ascher, U.M.; Morel, J.E.
1996-12-31
Particular classes of nodal methods and mixed hybrid finite element methods lead to equivalent, robust and accurate discretizations of 2nd order elliptic PDEs. However, widespread popularity of these discretizations has been hindered by the awkward linear systems which result. The present work exploits this awkwardness, which provides a natural partitioning of the linear system, by defining two optimal preconditioners based on approximate Schur complements. Central to the optimal performance of these preconditioners is their sparsity structure which is compatible with Dendy`s black box multigrid code.
A third-generation wave model for coastal regions: 1. Model description and validation
NASA Astrophysics Data System (ADS)
Booij, N.; Ris, R. C.; Holthuijsen, L. H.
1999-04-01
A third-generation numerical wave model to compute random, short-crested waves in coastal regions with shallow water and ambient currents (Simulating Waves Nearshore (SWAN)) has been developed, implemented, and validated. The model is based on a Eulerian formulation of the discrete spectral balance of action density that accounts for refractive propagation over arbitrary bathymetry and current fields. It is driven by boundary conditions and local winds. As in other third-generation wave models, the processes of wind generation, whitecapping, quadruplet wave-wave interactions, and bottom dissipation are represented explicitly. In SWAN, triad wave-wave interactions and depth-induced wave breaking are added. In contrast to other third-generation wave models, the numerical propagation scheme is implicit, which implies that the computations are more economic in shallow water. The model results agree well with analytical solutions, laboratory observations, and (generalized) field observations.
NASA Astrophysics Data System (ADS)
Qi, Yusheng; Yue, Dick
2015-11-01
We use direct nonlinear phase-resolved simulations based on a High-Order Spectral (HOS) method (Dommermuth & Yue 1987) to understand and quantify wave-breaking dissipation in the evolution of general irregular short-crested wave-fields. We achieve this by incorporating a robust phenomenological-based wave breaking model in HOS simulations to account for energy dissipation. This model can automatically simulate the onset of wave breaking, and the simulated wave-breaking dissipation strength differentiates corresponding to different wave breaking type (such as spilling or plunging breaking waves). The efficacy of this model is confirmed by direct comparisons against measurements for the energy loss in 2D and 3D breaking events. By comparing simulated wave-fields with and without the dissipation model in HOS, we obtain the dissipation field, which provides the times, locations and intensity of wave breaking events. From the dissipation field we further calculate the distribution of total length of breaking wave front per unit surface area per unit increment of breaking velocity (Phillips 1985), and obtain qualitative agreement with Phillips theoretical power-law.
A consistent collinear triad approximation for operational wave models
NASA Astrophysics Data System (ADS)
Salmon, J. E.; Smit, P. B.; Janssen, T. T.; Holthuijsen, L. H.
2016-08-01
In shallow water, the spectral evolution associated with energy transfers due to three-wave (or triad) interactions is important for the prediction of nearshore wave propagation and wave-driven dynamics. The numerical evaluation of these nonlinear interactions involves the evaluation of a weighted convolution integral in both frequency and directional space for each frequency-direction component in the wave field. For reasons of efficiency, operational wave models often rely on a so-called collinear approximation that assumes that energy is only exchanged between wave components travelling in the same direction (collinear propagation) to eliminate the directional convolution. In this work, we show that the collinear approximation as presently implemented in operational models is inconsistent. This causes energy transfers to become unbounded in the limit of unidirectional waves (narrow aperture), and results in the underestimation of energy transfers in short-crested wave conditions. We propose a modification to the collinear approximation to remove this inconsistency and to make it physically more realistic. Through comparison with laboratory observations and results from Monte Carlo simulations, we demonstrate that the proposed modified collinear model is consistent, remains bounded, smoothly converges to the unidirectional limit, and is numerically more robust. Our results show that the modifications proposed here result in a consistent collinear approximation, which remains bounded and can provide an efficient approximation to model nonlinear triad effects in operational wave models.
Bergshoeff, E.A. ); Kallosh, R.; Ortin, T. )
1993-06-15
We present plane-wave-type solutions of the lowest-order superstring effective action which have unbroken space-time supersymmetries. They are given by a stringy generalization of the Brinkmann metric, dialton, axion, and gauge fields. Some conspiracy between the metric and the axion field is required. The [alpha][prime] stringy corrections to the effective on-shell action, to the equations of motion (and therefore to the solutions themselves), and to the supersymmetry transformations are shown to vanish for a special class of these solutions that we call supersymmetric string waves (SSW's). In the SSW solutions, there exists a conspiracy not only between the metric and the axion field, but also between the gauge fields and the metric, since the embedding of the spin connection in the gauge group is required.
Quantifying wave-breaking dissipation using nonlinear phase-resolved wave-field simulations
NASA Astrophysics Data System (ADS)
Qi, Y.; Xiao, W.; Yue, D. K. P.
2014-12-01
We propose to understand and quantify wave-breaking dissipation in the evolution of general irregular short-crested wave-fields using direct nonlinear phase-resolved simulations based on a High-Order Spectral (HOS) method (Dommermuth & Yue 1987). We implement a robust phenomenological-based energy dissipation model in HOS to capture the effect of wave-breaking dissipation on the overall wave-field evolution (Xiao et al 2013). The efficacy of this model is confirmed by direct comparisons against measurements for the energy loss in 2D and 3D breaking events. By comparing simulated wave-fields with and without the dissipation model in HOS, we obtain the dissipation field δ(x,y,t), which provides the times, locations and intensity of wave breaking events (δ>δc). This is validated by comparison of HOS simulations with Airborne Terrain Mapper (ATM) measurements in the recent ONR Hi-Res field experiment. Figure (a) shows one frame of simulated wave-field (with dissipation model). Figure (b) is the corresponding measurement from ATM, where a large wave breaking event was captured. Figure (c) is the 3D view of the simulated wave-field with the colored region representing dissipation with δ>δc. The HOS predicted high-dissipation area is found to agree well with the measured breaking area. Based on HOS predicted high-dissipation area (δ>δc), we calculate Λ(c) (Phillips 1985), the distribution of total length of breaking wave front per unit surface area per unit increment of breaking velocity c. Figure (d) shows the distribution Λ(c) calculated from HOS. For breaking speeds c greater than 5m/s, the simulated Λ(c) is in qualitative agreement with Phillips theoretical power-law of Λ(c)~c-6. From δ(x,y,t), we further quantify wave breaking by calculating the whitecap coverage rate Wr(t) and energy dissipation rate ΔE'(t), and study the evolution of Wr and ΔE' to understand the role of wave breaking in nonlinear wave-field evolution. We obtain HOS simulations
Propagation of time-reversed Lamb waves in bovine cortical bone in vitro.
Lee, Kang Il; Yoon, Suk Wang
2015-01-01
The present study aims to investigate the propagation of time-reversed Lamb waves in bovine cortical bone in vitro. The time-reversed Lamb waves were successfully launched at 200 kHz in 18 bovine tibiae through a time reversal process of Lamb waves. The group velocities of the time-reversed Lamb waves in the bovine tibiae were measured using the axial transmission technique. They showed a significant correlation with the cortical thickness and tended to follow the theoretical group velocity of the lowest order antisymmetrical Lamb wave fairly well, consistent with the behavior of the slow guided wave in long cortical bones.
Space-time extreme wind waves: Observation and analysis of shapes and heights
NASA Astrophysics Data System (ADS)
Benetazzo, Alvise; Barbariol, Francesco; Bergamasco, Filippo; Carniel, Sandro; Sclavo, Mauro
2016-04-01
We analyze here the temporal shape and the maximal height of extreme wind waves, which were obtained from an observational space-time sample of sea surface elevations during a mature and short-crested sea state (Benetazzo et al., 2015). Space-time wave data are processed to detect the largest waves of specific 3-D wave groups close to the apex of their development. First, maximal elevations of the groups are discussed within the framework of space-time (ST) extreme statistical models of random wave fields (Adler and Taylor, 2007; Benetazzo et al., 2015; Fedele, 2012). Results of ST models are also compared with observations and predictions of maxima based on time series of sea surface elevations. Second, the time profile of the extreme waves around the maximal crest height is analyzed and compared with the expectations of the linear (Boccotti, 1983) and second-order nonlinear extension (Arena, 2005) of the Quasi-Determinism (QD) theory. Main purpose is to verify to what extent, using the QD model results, one can estimate the shape and the crest-to-trough height of large waves in a random ST wave field. From the results presented, it emerges that, apart from the displacements around the crest apex, sea surface elevations of very high waves are greatly dispersed around a mean profile. Yet the QD model furnishes, on average, a fair prediction of the wave height of the maximal waves, especially when nonlinearities are taken into account. Moreover, the combination of ST and QD model predictions allow establishing, for a given sea condition, a framework for the representation of waves with very large crest heights. The results have also the potential to be implemented in a phase-averaged numerical wave model (see abstract EGU2016-14008 and Barbariol et al., 2015). - Adler, R.J., Taylor, J.E., 2007. Random fields and geometry. Springer, New York (USA), 448 pp. - Arena, F., 2005. On non-linear very large sea wave groups. Ocean Eng. 32, 1311-1331. - Barbariol, F., Alves, J
Boundary conditions on internal three-body wave functions
Mitchell, Kevin A.; Littlejohn, Robert G.
1999-10-01
For a three-body system, a quantum wave function {Psi}{sub m}{sup {ell}} with definite {ell} and m quantum numbers may be expressed in terms of an internal wave function {chi}{sub k}{sup {ell}} which is a function of three internal coordinates. This article provides necessary and sufficient constraints on {chi}{sub k}{sup {ell}} to ensure that the external wave function {Psi}{sub k}{sup {ell}} is analytic. These constraints effectively amount to boundary conditions on {chi}{sub k}{sup {ell}} and its derivatives at the boundary of the internal space. Such conditions find similarities in the (planar) two-body problem where the wave function (to lowest order) has the form r{sup |m|} at the origin. We expect the boundary conditions to prove useful for constructing singularity free three-body basis sets for the case of nonvanishing angular momentum.
Mediterranean space-time extremes of wind wave sea states
NASA Astrophysics Data System (ADS)
Barbariol, Francesco; Carniel, Sandro; Sclavo, Mauro; Marcello Falcieri, Francesco; Bonaldo, Davide; Bergamasco, Andrea; Benetazzo, Alvise
2014-05-01
Traditionally, wind wave sea states during storms have been observed, modeled, and predicted mostly in the time domain, i.e. at a fixed point. In fact, the standard statistical models used in ocean waves analysis rely on the implicit assumption of long-crested waves. Nevertheless, waves in storms are mainly short-crested. Hence, spatio-temporal features of the wave field are crucial to accurately model the sea state characteristics and to provide reliable predictions, particurly of wave extremes. Indeed, the experimental evidence provided by novel instrumentations, e.g. WASS (Wave Acquisition Stereo System), showed that the maximum sea surface elevation gathered in time over an area, i.e. the space-time extreme, is larger than that one measured in time at a point, i.e. the time extreme. Recently, stochastic models used to estimate maxima of multidimensional Gaussian random fields have been applied to ocean waves statistics. These models are based either on Piterbarg's theorem or Adler and Taylor's Euler Characteristics approach. Besides a probability of exceedance of a certain threshold, they can provide the expected space-time extreme of a sea state, as long as space-time wave features (i.e. some parameters of the directional variance density spectrum) are known. These models have been recently validated against WASS observation from fixed and moving platforms. In this context, our focus was modeling and predicting extremes of wind waves during storms. Thus, to intensively gather space-time extremes data over the Mediterranean region, we used directional spectra provided by the numerical wave model SWAN (Simulating WAves Nearshore). Therefore, we set up a 6x6 km2 resolution grid entailing most of the Mediterranean Sea and we forced it with COSMO-I7 high resolution (7x7 km2) hourly wind fields, within 2007-2013 period. To obtain the space-time features, i.e. the spectral parameters, at each grid node and over the 6 simulated years, we developed a modified version
Electromagnetic plasma wave propagation along a magnetic field. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Olson, C. L.
1970-01-01
The linearized response of a Vlasov plasma to the steady-state excitation of transverse plasma waves along an external magnetic field is examined. Assuming a delta-function excitation mechanism, and performing a detailed Vlasov-Maxwell equation analysis using Fourier-Laplace transforms, the plasma response is found to consist of three terms: a branch-cut term, a free-streaming term, and a dielectric-pole term. Also considered is the phenomenon of plasma wave echoes. The case of longitudinal electrostatic waves is extended to the case of transverse plasma waves that propagate along an external magnetic field. It is shown that a transverse echo results in lowest order only when one excitation is transverse and the other is longitudinal.
ERIC Educational Resources Information Center
DeClark, Tom
2000-01-01
Presents an activity on waves that addresses the state standards and benchmarks of Michigan. Demonstrates waves and studies wave's medium, motion, and frequency. The activity is designed to address different learning styles. (YDS)
Traveling waves in Hall-magnetohydrodynamics and the ion-acoustic shock structure
Hagstrom, George I.; Hameiri, Eliezer
2014-02-15
Hall-magnetohydrodynamics (HMHD) is a mixed hyperbolic-parabolic partial differential equation that describes the dynamics of an ideal two fluid plasma with massless electrons. We study the only shock wave family that exists in this system (the other discontinuities being contact discontinuities and not shocks). We study planar traveling wave solutions and we find solutions with discontinuities in the hydrodynamic variables, which arise due to the presence of real characteristics in Hall-MHD. We introduce a small viscosity into the equations and use the method of matched asymptotic expansions to show that solutions with a discontinuity satisfying the Rankine-Hugoniot conditions and also an entropy condition have continuous shock structures. The lowest order inner equations reduce to the compressible Navier-Stokes equations, plus an equation which implies the constancy of the magnetic field inside the shock structure. We are able to show that the current is discontinuous across the shock, even as the magnetic field is continuous, and that the lowest order outer equations, which are the equations for traveling waves in inviscid Hall-MHD, are exactly integrable. We show that the inner and outer solutions match, which allows us to construct a family of uniformly valid continuous composite solutions that become discontinuous when the diffusivity vanishes.
Plasma equilibrium in a semiclassical plasma due to non-resonant wave particle interactions
Bose, Anirban; Janaki, M. S.
2013-03-15
A nonresonant perturbative approach has been utilized to probe the modification of the equilibrium plasma distribution function due to plasma interaction with externally launched high-frequency large-amplitude RF waves in the presence of quantum effects. The quantum distribution function from the complete Wigner equation has been obtained for a high-frequency wave with constant amplitude. For waves with weak spatial or temporal modulation, the equilibrium distribution function has been obtained by solving the Wigner equation as an initial or boundary-value problem and retaining only lowest-order quantum effects. In the dipole approximation, a higher order diffusion has been identified in addition to quantum modified ponderomotive and quasilinear diffusion effects. Additional terms of the Wigner equation give the impression of higher order diffusion effects in the system.
NASA Astrophysics Data System (ADS)
Nazarenko, Sergey
2015-07-01
Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.
Gryba, T; Lefebvre, J-E; Elmaimouni, L; Ratolojanahary, F E
2015-10-10
An analysis of a ZnO/MgO multiple quantum well (MQW) acousto-optic modulator with Lamb waves is performed. With the MQW thickness in the range of 0.2 times the Lamb wavelength, the only observed Lamb modes are the lowest-order symmetric S_{0} and antisymmetric A_{0} modes. These modes induce strain and electric field components which influence the absorption coefficient of the modulator by the associated variation of the excitonic energies of MQW. The optical absorption coefficient spectra of the modulator as a function of the Lamb waves' power is presented. The Lamb-wave-based modulator gives a better absorption coefficient than the Rayleigh-wave-based one. An analysis of a classical acousto-optic modulator is also performed for comparison of performance. PMID:26479819
Three-dimensional rogue waves in nonstationary parabolic potentials.
Yan, Zhenya; Konotop, V V; Akhmediev, N
2010-09-01
Using symmetry analysis we systematically present a higher-dimensional similarity transformation reducing the (3+1) -dimensional inhomogeneous nonlinear Schrödinger (NLS) equation with variable coefficients and parabolic potential to the (1+1) -dimensional NLS equation with constant coefficients. This transformation allows us to relate certain class of localized exact solutions of the (3+1) -dimensional case to the variety of solutions of integrable NLS equation of the (1+1) -dimensional case. As an example, we illustrated our technique using two lowest-order rational solutions of the NLS equation as seeding functions to obtain rogue wavelike solutions localized in three dimensions that have complicated evolution in time including interactions between two time-dependent rogue wave solutions. The obtained three-dimensional rogue wavelike solutions may raise the possibility of relative experiments and potential applications in nonlinear optics and Bose-Einstein condensates.
Approximate solution to the scalar wave equation for optical waveguides.
Goyal, I C; Gallawa, R L; Ghatak, A K
1991-07-20
We consider an approximate solution to the wave equation appropriate to the optical waveguides encountered in practice. The refractive-index profile may be arbitrary, and the geometry may be two or three dimensional. A circular or a planar waveguide could thus be treated by this method. The technique is more accurate and more useful than the WKB method, which is often used in problems of this type, because the technique is valid even at the turning points, where the WKB solution fails. The fields and the propagation constants of the lowest-order modes for two profiles are calculated, and they compare well with the exact solutions. The solutions that we proposed are, in fact, not new. However, insofar as we know, they are unknown and unused by the optics community.
Atmospheric Science Data Center
2013-04-19
article title: Gravity Waves Ripple over Marine Stratocumulus Clouds ... Imaging SpectroRadiometer (MISR), a fingerprint-like gravity wave feature occurs over a deck of marine stratocumulus clouds. Similar ... that occur when a pebble is thrown into a still pond, such "gravity waves" sometimes appear when the relatively stable and stratified air ...
NASA Technical Reports Server (NTRS)
Fritts, David
1987-01-01
Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.
NASA Technical Reports Server (NTRS)
2007-01-01
With its Multispectral Visible Imaging Camera (MVIC), half of the Ralph instrument, New Horizons captured several pictures of mesoscale gravity waves in Jupiter's equatorial atmosphere. Buoyancy waves of this type are seen frequently on Earth - for example, they can be caused when air flows over a mountain and a regular cloud pattern forms downstream. In Jupiter's case there are no mountains, but if conditions in the atmosphere are just right, it is possible to form long trains of these small waves. The source of the wave excitation seems to lie deep in Jupiter's atmosphere, below the visible cloud layers at depths corresponding to pressures 10 times that at Earth's surface. The New Horizons measurements showed that the waves move about 100 meters per second faster than surrounding clouds; this is about 25% of the speed of sound on Earth and is much greater than current models of these waves predict. Scientists can 'read' the speed and patterns these waves to learn more about activity and stability in the atmospheric layers below.
NASA Technical Reports Server (NTRS)
Thompson, B. J.
1999-01-01
"Moreton waves," named for the observer who popularized them, are a solar phenomenon also known in scientific literature as "Moreton-Ramsey wave," "flare waves," "flare-associated waves," "MHD blast waves," "chromospheric shock fronts" and various other combinations of terms which connote violently propagating impulsive disturbances. It is unclear whether all of the observations to which these terms have been applied pertain to a single physical phenomenon: there has perhaps been some overlap between the observations and the assumed physical properties of the observed occurrence. Moreton waves are ideally observed in the wings of H alpha, and appear as semi-circular fronts propagating at speeds ranging from several hundred to over a thousand km/sec. They form an arc, or "brow shape" which can span up to 180 degrees. Extrapolating the speed and locations of the arc indicates that the phenomenon's origin intersects well with the impulsive phase of the associated H alpha flare (if the flare exhibits an impulsive phase). However, the arc may not form or may not be observable until it is tens of megameters from the flaring region, and subsequently can propagate to distances exceeding 100 megameters. The high speeds and distances of propagation, plus the associated radio and energetic particle observations, provided strong evidence of a coronal, rather than a chromospheric origin. The H alpha manifestation of the wave is assumed to be the "ground track" or "skirt" of a three-dimensional disturbance.
Reflections of AE Waves in Finite Plates: Finite Element Modeling and Experimental Measurements
NASA Technical Reports Server (NTRS)
Prosser, W. H.; Hamstad, M. A.; Gary, J.; OGallagher, A.
1999-01-01
The capability of a three-dimensional dynamic finite element method for predicting far-field acoustic emission signals in thin plates of finite lateral extent, including their reflections from the plate edges, was investigated. A lead break (Hsu-Neilsen) source to simulate AE was modeled and used in the experimental measurements. For the thin plate studied, the signals were primarily composed of the lowest order symmetric (S0) and antisymmetric (A0) Lamb modes. Experimental waveforms were detected with an absolutely calibrated, wideband, conical element transducer. The conditions of lead fractures both on the surface of the plate as well as on the edge of the plate were investigated. Surface lead breaks preferentially generate the A0 mode while edge lead breaks generate the S0 mode. Reflections of developed plate waves from both normal and oblique incidence angles were evaluated. Particularly interesting for the case of the lead break on the plate edge were S0 waves produced by the interaction of a Rayleigh wave with the plate corner and by a bulk shear wave mode converting at the side edge. The Rayleigh wave, in this case, propagated along the specimen edge. For all cases considered, the experimental measurements were in good agreement with the predictions of the finite element model.
NASA Astrophysics Data System (ADS)
Demiray, Hilmi
2014-12-01
The basic equations describing the nonlinear electron-acoustic waves in a plasma composed of a cold electron fluid, hot electrons obeying a trapped/vortex-like distribution, and stationary ions, in the long-wave limit, are re-examined through the use of the modified PLK method. Introducing the concept of strained coordinates and expanding the field variables into a power series of the smallness parameter ɛ, a set of evolution equations is obtained for various order terms in the perturbation expansion. The evolution equation for the lowest order term in the perturbation expansion is characterized by the conventional modified Korteweg-deVries (mKdV) equation, whereas the evolution equations for the higher order terms in the expansion are described by the degenerate(linearized) mKdV equation. By studying the localized traveling wave solution to the evolution equations, the strained coordinate for this order is determined so as to remove possible secularities that might occur in the solution. It is observed that the coefficient of the strained coordinate for this order corresponds to the correction term in the wave speed. The numerical results reveal that the contribution of second order term to the wave amplitude is about 20 %, which cannot be ignored.
Non-WKB Alfven waves in the solar wind: Propagation and reflection of pulses
NASA Technical Reports Server (NTRS)
Hollweg, J. V.
1995-01-01
The non-WKB propagation of Alfven waves has been studied either for harmonic waves, or in terms of the evolution of power spectra. Here we present analytical and numerical solutions for the propagation of pulses, the goal being to understand how waves reflect in a smoothly varying medium. We here limit our discussion to a radial magnetic field. If we launch an outward-propagating delta function, it leaves behind an inward-propagaing signal which is roughly a square wave whose amplitude is proportional to the area under the initial pulse. The inward-propagating signal also reflects, producing an outward propagating pulse which is roughly triangular in shape and which grows with time. These signals also oscillate if v is less than v(A), but they grow if v is greater than v(A). The result reported by us earlier, that the 'ingoing Elsasser variable' can have outgoing phase, is now understood to be a consequence of interference. The inward-propagating signal depends to lowest order on the integral of the outgoing waves which have preceded it. Thus the ingoing signal can be expected to develop as a random walk. This will affect the radial evolution of cross-helicity in the solar wind.
Spherical space Bessel-Legendre-Fourier localized modes solver for electromagnetic waves.
Alzahrani, Mohammed A; Gauthier, Robert C
2015-10-01
Maxwell's vector wave equations are solved for dielectric configurations that match the symmetry of a spherical computational domain. The electric or magnetic field components and the inverse of the dielectric profile are series expansion defined using basis functions composed of the lowest order spherical Bessel function, polar angle single index dependant Legendre polynomials and azimuthal complex exponential (BLF). The series expressions and non-traditional form of the basis functions result in an eigenvalue matrix formulation of Maxwell's equations that are relatively compact and accurately solvable on a desktop PC. The BLF matrix returns the frequencies and field profiles for steady states modes. The key steps leading to the matrix populating expressions are provided. The validity of the numerical technique is confirmed by comparing the results of computations to those published using complementary techniques.
NASA Astrophysics Data System (ADS)
Borges, L. H. C.; Dias, A. G.; Ferrari, A. F.; Nascimento, J. R.; Petrov, A. Yu.
2016-05-01
We study the perturbative generation of higher-derivative Lorentz violating operators as quantum corrections to the photon effective action, originated from a specific Lorentz violation background, which has already been studied in connection with the physics of light pseudoscalars. We calculate the complete one loop effective action of the photon field through the proper-time method, using the zeta function regularization. This result can be used as a starting point to study possible effects of the Lorentz violating background we are considering in photon physics. As an example, we focus on the lowest order corrections and investigate whether they could influence the propagation of electromagnetic waves through the vacuum. We show, however, that no effects of the kind of Lorentz violation we consider can be detected in such a context, so that other aspects of photon physics have to be studied.
Ignatovich, V. K.
2009-01-15
It is shown that neutron surface waves do not exist. The difference between the neutron wave mechanics and the wave physics of electromagnetic and acoustic processes, which allows the existence of surface waves, is analyzed.
Relativistic spherical plasma waves
NASA Astrophysics Data System (ADS)
Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.
2012-02-01
Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.
NASA Astrophysics Data System (ADS)
Newell, Alan C.; Rumpf, Benno
2011-01-01
In this article, we state and review the premises on which a successful asymptotic closure of the moment equations of wave turbulence is based, describe how and why this closure obtains, and examine the nature of solutions of the kinetic equation. We discuss obstacles that limit the theory's validity and suggest how the theory might then be modified. We also compare the experimental evidence with the theory's predictions in a range of applications. Finally, and most importantly, we suggest open challenges and encourage the reader to apply and explore wave turbulence with confidence. The narrative is terse but, we hope, delivered at a speed more akin to the crisp pace of a Hemingway story than the wordjumblingtumbling rate of a Joycean novel.
NASA Astrophysics Data System (ADS)
Sardar, Sankirtan; Bandyopadhyay, Anup; Das, K. P.
2016-07-01
A three-dimensional KP (Kadomtsev Petviashvili) equation is derived here describing the propagation of weakly nonlinear and weakly dispersive dust ion acoustic wave in a collisionless unmagnetized plasma consisting of warm adiabatic ions, static negatively charged dust grains, nonthermal electrons, and isothermal positrons. When the coefficient of the nonlinear term of the KP-equation vanishes an appropriate modified KP (MKP) equation describing the propagation of dust ion acoustic wave is derived. Again when the coefficient of the nonlinear term of this MKP equation vanishes, a further modified KP equation is derived. Finally, the stability of the solitary wave solutions of the KP and the different modified KP equations are investigated by the small-k perturbation expansion method of Rowlands and Infeld [J. Plasma Phys. 3, 567 (1969); 8, 105 (1972); 10, 293 (1973); 33, 171 (1985); 41, 139 (1989); Sov. Phys. - JETP 38, 494 (1974)] at the lowest order of k, where k is the wave number of a long-wavelength plane-wave perturbation. The solitary wave solutions of the different evolution equations are found to be stable at this order.
NASA Technical Reports Server (NTRS)
Vanzandt, T. E.
1985-01-01
Atmospheric parameters fluctuate on all scales. In the mesoscale these fluctuations are occasionally sinusoidal so that they can be interpreted as gravity waves. Usually, however, the fluctuations are noise like, so that their cause is not immediately evident. Results of mesoscale observations in the 20 to 120 m altitude range that are suitable for incorporation into a model atmosphere are very limited. In the stratosphere and lower mesosphere observations are sparse and very little data has been summarized into appropriate form. There is much more data in the upper mesosphere and lower thermosphere, but again very little of it has been summarized. The available mesoscale spectra of horizontal wind u versus vertical wave number m in the 20 to 120 km altitude range are shown together with a spectrum from the lower atmosphere for comparison. Further information about these spectra is given. In spite of the large range of altitudes and latitudes, the spectra from the lower atmosphere (NASA, 1971 and DEWAN, 1984) are remarkably similar in both shape and amplitude. The mean slopes of -2.38 for the NASA spectrum and -2.7 for the Dewan spectra are supported by the mean slope of -2.75 found by ROSENBERG et al. (1974). The mesospheric spectrum is too short to establish a shape. Its amplitude is about an order of magnitude larger than the NASA spectrum in the same wave number range. The NASA and Dewan spectra suggest that the mesoscale spectra in the lower atmosphere are insensitive to meteorological conditions.
NASA Astrophysics Data System (ADS)
Wingqvist, G.; Arapan, L.; Yantchev, V.; Katardjiev, I.
2009-03-01
Micromachined thin film plate acoustic wave resonators (FPARs) utilizing the lowest order symmetric Lamb wave (S0) propagating in highly textured 2 µm thick aluminium nitride (AlN) membranes have been successfully demonstrated (Yantchev and Katardjiev 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 87-95). The proposed devices have a SAW-based design and exhibit Q factors of up to 3000 at a frequency around 900 MHz as well as design flexibility with respect to the required motional resistance. However, a notable drawback of the proposed devices is the non-zero temperature coefficient of frequency (TCF) which lies in the range -20 ppm K-1 to -25 ppm K-1. Thus, despite the promising features demonstrated, further device optimization is required. In this work temperature compensation of thin AlN film Lamb wave resonators is studied and experimentally demonstrated. Temperature compensation while retaining at the same time the device electromechanical coupling is experimentally demonstrated. The zero TCF Lamb wave resonators are fabricated onto composite AlN/SiO2 membranes. Q factors of around 1400 have been measured at a frequency of around 755 MHz. Finally, the impact of technological issues on the device performance is discussed in view of improving the device performance.
Making Waves: Seismic Waves Activities and Demonstrations
NASA Astrophysics Data System (ADS)
Braile, S. J.; Braile, L. W.
2011-12-01
The nature and propagation of seismic waves are fundamental concepts necessary for understanding the exploration of Earth's interior structure and properties, plate tectonics, earthquakes, and seismic hazards. Investigating seismic waves is also an engaging approach to learning basic principles of the physics of waves and wave propagation. Several effective educational activities and demonstrations are available for teaching about seismic waves, including the stretching of a spring to demonstrate elasticity; slinky wave propagation activities for compressional, shear, Rayleigh and Love waves; the human wave activity to demonstrate P- and S- waves in solids and liquids; waves in water in a simple wave tank; seismic wave computer animations; simple shake table demonstrations of model building responses to seismic waves to illustrate earthquake damage to structures; processing and analysis of seismograms using free and easy to use software; and seismic wave simulation software for viewing wave propagation in a spherical Earth. The use of multiple methods for teaching about seismic waves is useful because it provides reinforcement of the fundamental concepts, is adaptable to variable classroom situations and diverse learning styles, and allows one or more methods to be used for authentic assessment. The methods described here have been used effectively with a broad range of audiences, including K-12 students and teachers, undergraduate students in introductory geosciences courses, and geosciences majors.
Drift-Wave Instabilities and Transport in Non - Tokamak Geometry
NASA Astrophysics Data System (ADS)
Hua, Daniel Duc
Motivated by experimental scaling laws that suggest an improvement in the confinement time of fusion plasmas in tokamaks with elongated cross section, we search theoretically for favorable dependence on elongation for drift-wave instabilities, which may be responsible for anomalous transport in tokamaks. First, using thermodynamic methods, we derive upper bounds on thermal diffusivities for drift-wave instabilities in tokamaks but find no elongation dependence to lowest order. Also, compared with experimentally inferred ion thermal diffusivities from the DIIID tokamak, the thermodynamic bounds are as much as 100 times bigger in the plasma core. Second, utilizing a simulation code to calculate linear growth rates, we obtain mixing-length estimates of ion thermal diffusivities for a specific drift wave, the ion-temperature-gradient (ITG) mode, which becomes unstable only if the temperature gradient exceeds a finite threshold value (whereas the thermodynamic constraints allow instability for any value). We find that the simulation growth rates and the diffusivities estimated from them do decrease for increasing elongation, due to finite Larmor radius effects (which do not explicitly appear in the thermodynamic constraints). Compared with the experimentally inferred diffusivities, the simulation diffusivities are similar near the edge but are 10 times bigger in the core. However, a small adjustment in the temperature profile, within experimental and theoretical uncertainties, would produce good agreement everywhere. Therefore, we suggest that for the DIIID experiments studied, the plasma is actually very close to the ITG instability threshold in the core and farther away from threshold near the edge, but not far enough to induce the full thermodynamic level of diffusivities. This conjecture is supported by model transport calculations that reproduce the experimental diffusivity profile fairly well.
MHD simple waves and the divergence wave
Webb, G. M.; Pogorelov, N. V.; Zank, G. P.
2010-03-25
In this paper we investigate magnetohydrodynamic (MHD) simple divergence waves in MHD, for models in which nablacentre dotBnot =0. These models are related to the eight wave Riemann solvers in numerical MHD, in which the eighth wave is the divergence wave associated with nablacentre dotBnot =0. For simple wave solutions, all physical variables (the gas density, pressure, fluid velocity, entropy, and magnetic field induction in the MHD case) depend on a single phase function phi. We consider the form of the MHD equations used by both Powell et al. and Janhunen. It is shown that the Janhunen version of the equations possesses fully nonlinear, exact simple wave solutions for the divergence wave, but no physically meaningful simple divergence wave solution exists for the Powell et al. system. We suggest that the 1D simple, divergence wave solution for the Janhunen system, may be useful for the testing and validation of numerical MHD codes.
Head waves, diving waves, and interface waves at the seafloor
NASA Astrophysics Data System (ADS)
Stephen, Ralph A.
2005-09-01
Brekhovskikh (1960) summarizes the system of waves that arises from reflection and refraction of spherical waves at the interface between homogeneous solid half-spaces. By eliminating the shear wave potential in one half-space, the system for fluid-solid half-spaces like the seafloor is obtained. There are two cases: one where the shear speed in the bottom is less than the compressional speed in the fluid (soft sediments), and the other where the shear speed in the bottom is greater than the compressional speed in the fluid (hard volcanic basement). This model is the basis for defining interface phenomena such as evanescent waves, head waves, pseudo-Rayleigh waves, and Stoneley/Scholte waves. If a positive gradient is introduced into the compressional and shear sound speeds in the bottom, one obtains diving waves and interference head waves (Cerveny and Ravindra, 1971). There are two types of interface waves: pseudo-Rayleigh waves that are evanescent in the bottom but propagate in the water, and Stoneley/Scholte waves that are evanescent in both media. In multi-interface models there are of course normal modes. In actual seafloors, low speed layers, sound and shear speed gradients, and interface and volume lateral heterogeneities affect the characteristics of propagation and scattering. [Work supported by ONR.
Tunable ground states in helical p-wave Josephson junctions
NASA Astrophysics Data System (ADS)
Cheng, Qiang; Zhang, Kunhua; Yu, Dongyang; Chen, Chongju; Zhang, Yinhan; Jin, Biao
2016-07-01
We study new types of Josephson junctions composed of helical p-wave superconductors with {k}x\\hat{x}+/- {k}y\\hat{y} and {k}y\\hat{x}+/- {k}x\\hat{y}-pairing symmetries using quasi-classical Green’s functions with generalized Riccati parametrization. The junctions can host rich ground states: π phase, 0 + π phase, φ 0 phase and φ phase. The phase transition can be tuned by rotating the magnetization in the ferromagnetic interface. We present the phase diagrams in the parameter space formed by the orientation of the magnetization or by the magnitude of the interfacial potentials. The selection rules for the lowest order current which are responsible for the formation of the rich phases are summarized from the current-phase relations based on the numerical calculation. We construct a Ginzburg–Landau type of free energy for the junctions with d-vectors and the magnetization, which not only reveals the interaction forms of spin-triplet superconductivity and ferromagnetism, but can also directly lead to the selection rules. In addition, the energies of the Andreev bound states and the novel symmetries in the current-phase relations are also investigated. Our results are helpful both in the prediction of novel Josephson phases and in the design of quantum circuits.
Turbulence, Transport, and Waves in Ohmic Dead Zones
NASA Astrophysics Data System (ADS)
Gole, Daniel; Simon, Jacob B.; Lubow, Stephen H.; Armitage, Philip J.
2016-07-01
We use local numerical simulations to study a vertically stratified accretion disk with a resistive mid-plane that damps magnetohydrodynamic (MHD) turbulence. This is an idealized model for the dead zones that may be present at some radii in protoplanetary and dwarf novae disks. We vary the relative thickness of the dead and active zones to quantify how forced fluid motions in the dead zone change. We find that the residual Reynolds stress near the mid-plane decreases with increasing dead zone thickness, becoming negligible in cases where the active to dead mass ratio is less than a few percent. This implies that purely Ohmic dead zones would be vulnerable to episodic accretion outbursts via the mechanism of Martin & Lubow. We show that even thick dead zones support a large amount of kinetic energy, but this energy is largely in fluid motions that are inefficient at angular momentum transport. Confirming results from Oishi & Mac Low, the perturbed velocity field in the dead zone is dominated by an oscillatory, vertically extended circulation pattern with a low frequency compared to the orbital frequency. This disturbance has the properties predicted for the lowest order r mode in a hydrodynamic disk. We suggest that in a global disk similar excitations would lead to propagating waves, whose properties would vary with the thickness of the dead zone and the nature of the perturbations (isothermal or adiabatic). Flows with similar amplitudes would buckle settled particle layers and could reduce the efficiency of pebble accretion.
Application of Ultrasonic Guided Waves for Evaluating Aging Wire Insulation
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Madaras, Eric I.
2005-01-01
Aging wiring has become a critical issue to the aerospace and aircraft industries due to Shuttle and aircraft incidents. The problem is that over time the insulation on wire becomes brittle and cracks. This exposes the underlying conductive wire to the potential for short circuits and fire. Popular methods of monitoring aging wire problems focuses on applying electrical sensing techniques that are sensitive to the conductor's condition, but not very sensitive to the wire insulation's condition. Measurement of wire insulation stiffness and ultrasonic properties by ultrasonic guided waves is being examined. Experimental measurements showed that the lowest order extensional mode could be sensitive to stiffness changes in the wire insulation. To test this theory conventional wire samples were heat damaged in an oven, in a range of heating conditions. The samples were 12, 16, and 20 gauge and the heat damage introduced material changes in the wire insulation that made the originally flexible insulation brittle and darker in color. Results showed that extensional mode phase velocity increased for the samples that were exposed to heat for longer duration.
Tunable ground states in helical p-wave Josephson junctions
NASA Astrophysics Data System (ADS)
Cheng, Qiang; Zhang, Kunhua; Yu, Dongyang; Chen, Chongju; Zhang, Yinhan; Jin, Biao
2016-07-01
We study new types of Josephson junctions composed of helical p-wave superconductors with {k}x\\hat{x}+/- {k}y\\hat{y} and {k}y\\hat{x}+/- {k}x\\hat{y}-pairing symmetries using quasi-classical Green’s functions with generalized Riccati parametrization. The junctions can host rich ground states: π phase, 0 + π phase, φ 0 phase and φ phase. The phase transition can be tuned by rotating the magnetization in the ferromagnetic interface. We present the phase diagrams in the parameter space formed by the orientation of the magnetization or by the magnitude of the interfacial potentials. The selection rules for the lowest order current which are responsible for the formation of the rich phases are summarized from the current-phase relations based on the numerical calculation. We construct a Ginzburg-Landau type of free energy for the junctions with d-vectors and the magnetization, which not only reveals the interaction forms of spin-triplet superconductivity and ferromagnetism, but can also directly lead to the selection rules. In addition, the energies of the Andreev bound states and the novel symmetries in the current-phase relations are also investigated. Our results are helpful both in the prediction of novel Josephson phases and in the design of quantum circuits.
ERIC Educational Resources Information Center
Frashure, K. M.; Chen, R. F.; Stephen, R. A.; Bolmer, T.; Lavin, M.; Strohschneider, D.; Maichle, R.; Micozzi, N.; Cramer, C.
2007-01-01
Demonstrating wave processes quantitatively in the classroom using standard classroom tools (such as Slinkys and wave tanks) can be difficult. For example, waves often travel too fast for students to actually measure amplitude or wavelength. Also, when teaching propagating waves, reflections from the ends set up standing waves, which can confuse…
NASA Astrophysics Data System (ADS)
Dunn, M.; Watson, D. K.; Loeser, J. G.
2006-08-01
In this paper, we develop an analytic N-body wave function for identical particles under quantum confinement with a general two-body interaction. A systematic approach to correlation is developed by combining three theoretical methods: dimensional perturbation theory, the FG method of Wilson et. al., and the group theory of the symmetric group. Analytic results are achieved for a completely general interaction potential. Unlike conventional perturbation methods which are applicable only for weakly interacting systems, this analytic approach is applicable to both weakly and strongly interacting systems. This method directly accounts for each two-body interaction, rather than an average interaction so even lowest-order results include beyond-mean-field effects. One major advantage is that N appears as a parameter in the analytical expressions for the energy so results for different N are easy to obtain.
Zhao, J.; Boyko, O.; Bonello, B.
2014-12-15
This work deals with an analytical and numerical study of the focusing of the lowest order anti-symmetric Lamb wave in gradient index phononic crystals. Computing the ray trajectories of the elastic beam allowed us to analyze the lateral dimensions and shape of the focus, either in the inner or behind the phononic crystal-based acoustic lenses, for frequencies within a broad range in the first band. We analyzed and discussed the focusing behaviors inside the acoustic lenses where the focalization at sub-wavelength scale was achieved. The focalization behind the gradient index phononic crystal is shown to be efficient as well: we report on FMHM = 0.63λ at 11MHz.
Quantum Larmor Radiation from a Moving Charge in AN Electromagnetic Plane Wave Background
NASA Astrophysics Data System (ADS)
Nakamura, Gen; Yamamoto, Kazuhiro
2012-09-01
We extend our previous work [Phys. Rev. D83, 045030 (2011)], which investigated the first-order quantum effect in the Larmor radiation from a moving charge in a spatially homogeneous time-dependent electric field. Specifically, we investigate the quantum Larmor radiation from a moving charge in a monochromatic electromagnetic plane wave background based on the scalar quantum electrodynamics at the lowest order of the perturbation theory. Using the in-in formalism, we derive the theoretical formula of the total radiation energy from a charged particle in the initial states being at rest and being in a relativistic motion. Expanding the theoretical formula in terms of the Planck constant ℏ, we obtain the first-order quantum effect on the Larmor radiation. The quantum effect generally suppresses the total radiation energy compared with the prediction of the classical Larmor formula, which is a contrast to the previous work. The reason is explained by the fact that the radiation from a moving charge in a monochromatic electromagnetic plane wave is expressed in terms of the inelastic collisions between an electron and photons of the background electromagnetic waves.
Geometrical versus wave optics under gravitational waves
NASA Astrophysics Data System (ADS)
Angélil, Raymond; Saha, Prasenjit
2015-06-01
We present some new derivations of the effect of a plane gravitational wave on a light ray. A simple interpretation of the results is that a gravitational wave causes a phase modulation of electromagnetic waves. We arrive at this picture from two contrasting directions, namely, null geodesics and Maxwell's equations, or geometric and wave optics. Under geometric optics, we express the geodesic equations in Hamiltonian form and solve perturbatively for the effect of gravitational waves. We find that the well-known time-delay formula for light generalizes trivially to massive particles. We also recover, by way of a Hamilton-Jacobi equation, the phase modulation obtained under wave optics. Turning then to wave optics—rather than solving Maxwell's equations directly for the fields, as in most previous approaches—we derive a perturbed wave equation (perturbed by the gravitational wave) for the electromagnetic four-potential. From this wave equation it follows that the four-potential and the electric and magnetic fields all experience the same phase modulation. Applying such a phase modulation to a superposition of plane waves corresponding to a Gaussian wave packet leads to time delays.
Wave propagation on a random lattice
Sahlmann, Hanno
2010-09-15
Motivated by phenomenological questions in quantum gravity, we consider the propagation of a scalar field on a random lattice. We describe a procedure to calculate the dispersion relation for the field by taking a limit of a periodic lattice. We use this to calculate the lowest order coefficients of the dispersion relation for a specific one-dimensional model.
ERIC Educational Resources Information Center
Temiz, Burak Kagan; Yavuz, Ahmet
2015-01-01
This study was done to develop a simple and inexpensive wave driver that can be used in experiments on string waves. The wave driver was made using a battery-operated toy car, and the apparatus can be used to produce string waves at a fixed frequency. The working principle of the apparatus is as follows: shortly after the car is turned on, the…
Teleseismic S wave microseisms.
Nishida, Kiwamu; Takagi, Ryota
2016-08-26
Although observations of microseisms excited by ocean swells were firmly established in the 1940s, the source locations remain difficult to track. Delineation of the source locations and energy partition of the seismic wave components are key to understanding the excitation mechanisms. Using a seismic array in Japan, we observed both P and S wave microseisms excited by a severe distant storm in the Atlantic Ocean. Although nonlinear forcing of an ocean swell with a one-dimensional Earth model can explain P waves and vertically polarized S waves (SV waves), it cannot explain horizontally polarized S waves (SH waves). The precise source locations may provide a new catalog for exploring Earth's interior.
NASA Technical Reports Server (NTRS)
Gurnett, Donald A.
1993-01-01
The primary types of plasma waves observed in the vicinity of the planets Venus, Mars, Earth, Jupiter, Saturn, Uranus, and Neptune are described. The observations are organized according to the various types of plasma waves observed, ordered according to decreasing distance from the planet, starting from the sunward side of the planet, and ending in the region near the closest approach. The plasma waves observed include: electron plasma oscillations and ion acoustic waves; trapped continuum radiation; electron cyclotron and upper hybrid waves; whistler-mode emissions; electrostatic ion cyclotron waves; and electromagnetic ion cyclotron waves.
Gravity wave transmission diagram
NASA Astrophysics Data System (ADS)
Tomikawa, Yoshihiro
2016-07-01
A possibility of gravity wave propagation from a source region to the airglow layer around the mesopause has been discussed based on the gravity wave blocking diagram taking into account the critical level filtering alone. This paper proposes a new gravity wave transmission diagram in which both the critical level filtering and turning level reflection of gravity waves are considered. It shows a significantly different distribution of gravity wave transmissivity from the blocking diagram.
Photoelectron wave function in photoionization: plane wave or Coulomb wave?
Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I
2015-11-19
The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.
Photoelectron wave function in photoionization: plane wave or Coulomb wave?
Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I
2015-11-19
The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion. PMID:26509428
Mixing of blackbodies: entropy production and dissipation of sound waves in the early Universe
NASA Astrophysics Data System (ADS)
Khatri, R.; Sunyaev, R. A.; Chluba, J.
2012-07-01
Mixing of blackbodies with different temperatures creates a spectral distortion which, at lowest order, is a y-type distortion, indistinguishable from the thermal y-type distortion produced by the scattering of cosmic microwave background (CMB) photons by hot electrons residing in clusters of galaxies. This process occurs in the radiation-pressure dominated early Universe, when the primordial perturbations excite standing sound waves on entering the sound horizon. Photons from different phases of the sound waves, having different temperatures, diffuse through the electron-baryon plasma and mix together. This diffusion, with the length defined by Thomson scattering, dissipates sound waves and creates spectral distortions in the CMB. Of the total dissipated energy, 2/3 raises the average temperature of the blackbody part of spectrum, while 1/3 creates a distortion of y-type. It is well known that at redshifts 105 ≲ z ≲ 2 × 106, comptonization rapidly transforms y-distortions into a Bose-Einstein spectrum. The chemical potential of the Bose-Einstein spectrum is again 1/3 the value we would get if all the dissipated energy was injected into a blackbody spectrum but no extra photons were added. We study the mixing of blackbody spectra, emphasizing the thermodynamic point of view, and identifying spectral distortions with entropy creation. This allows us to obtain the main results connected with the dissipation of sound waves in the early Universe in a very simple way. We also show that mixing of blackbodies in general, and dissipation of sound waves in particular, leads to creation of entropy.
Instability of Wave Trains and Wave Probabilities
NASA Astrophysics Data System (ADS)
Babanin, Alexander
2013-04-01
Centre for Ocean Engineering, Science and Technology, Swinburne University of Technology, Melbourne, Australia, ababanin@swin.edu.au Design criteria in ocean engineering, whether this is one in 50 years or one in 5000 years event, are hardly ever based on measurements, and rather on statistical distributions of relevant metocean properties. Of utmost interest is the tail of distribution, that is rare events such as the highest waves with low probability. Engineers have long since realised that the superposition of linear waves with narrow-banded spectrum as depicted by the Rayleigh distribution underestimates the probability of extreme wave heights and crests, which is a critical shortcoming as far as the engineering design is concerned. Ongoing theoretical and experimental efforts have been under way for decades to address this issue. Typical approach is the treating all possible waves in the ocean or at a particular location as a single ensemble for which some comprehensive solution can be obtained. The oceanographic knowledge, however, now indicates that no single and united comprehensive solution is available. We would expect the probability distributions of wave height to depend on a) whether the waves are at the spectral peak or at the tail; b) on wave spectrum and mean steepness in the wave field; c) on the directional distribution of the peak waves; d) on whether the waves are in deep water, in intermediate depth or in shallow water; e) on wave breaking; f) on the wind, particularly if it is very strong, and on the currents if they have suitable horizontal gradients. Probability distributions in the different circumstances according to these groups of conditions should be different, and by combining them together the inevitable scatter is introduced. The scatter and the accuracy will not improve by increasing the bulk data quality and quantity, and it hides the actual distribution of extremes. The groups have to be separated and their probability
An EMAT-based shear horizontal (SH) wave technique for adhesive bond inspection
NASA Astrophysics Data System (ADS)
Arun, K.; Dhayalan, R.; Balasubramaniam, Krishnan; Maxfield, Bruce; Peres, Patrick; Barnoncel, David
2012-05-01
The evaluation of adhesively bonded structures has been a challenge over the several decades that these structures have been used. Applications within the aerospace industry often call for particularly high performance adhesive bonds. Several techniques have been proposed for the detection of disbonds and cohesive weakness but a reliable NDE method for detecting interfacial weakness (also sometimes called a kissing bond) has been elusive. Different techniques, including ultrasonic, thermal imaging and shearographic methods, have been proposed; all have had some degree of success. In particular, ultrasonic methods, including those based upon shear and guided waves, have been explored for the assessment of interfacial bond quality. Since 3-D guided shear horizontal (SH) waves in plates have predominantly shear displacement at the plate surfaces, we conjectured that SH guided waves should be influenced by interfacial conditions when they propagate between adhesively bonded plates of comparable thickness. This paper describes a new technique based on SH guided waves that propagate within and through a lap joint. Through mechanisms we have yet to fully understand, the propagation of an SH wave through a lap joint gives rise to a reverberation signal that is due to one or more reflections of an SH guided wave mode within that lap joint. Based upon a combination of numerical simulations and measurements, this method shows promise for detecting and classifying interfacial bonds. It is also apparent from our measurements that the SH wave modes can discriminate between adhesive and cohesive bond weakness in both Aluminum-Epoxy-Aluminum and Composite-Epoxy-Composite lap joints. All measurements reported here used periodic permanent magnet (PPM) Electro-Magnetic Acoustic Transducers (EMATs) to generate either or both of the two lowest order SH modes in the plates that comprise the lap joint. This exact configuration has been simulated using finite element (FE) models to
Lamb waves propagation in functionally graded piezoelectric materials by Peano-series method.
Ben Amor, Morched; Ben Ghozlen, Mohamed Hédi
2015-01-01
The Peano-series expansion is used to investigate the propagation of the lowest-order symmetric (S0) and antisymmetric (A0) Lamb wave modes in a functionally graded piezoelectric material (FGPM) plate. Aluminum nitride has been retained for illustration, it is polarized along the thickness axis, and at the same time the material properties change gradually perpendicularly to the plate with an exponential variation. The effects of the gradient variation on the phase velocity and the coupling electromechanical factor are obtained. Appropriate curves are given to reflect their behavior with respect to frequency. The highest value of the electromechanical coupling factor has been observed for S0 mode, it is close to six percent, conversely for A0 mode it does not exceed 1.5%. The coupling factor maxima undergo a shift toward the high frequency area when the corresponding gradient coefficient increases. The Peano-series method computed under Matlab software, gives rapid convergence and accurate phase velocity when analysing Lamb waves in FGPM plate. The obtained numerical results can be used to design different sensors with high performance working at different frequency ranges by adjusting the extent of the gradient property.
Dust-Acoustic Waves: Visible Sound Waves
Merlino, Robert L.
2009-11-10
A historical overview of some of the early theoretical and experimental work on dust acoustic waves is given. The basic physics of the dust acoustic wave and some of the theoretical refinements that have been made, including the effects of collisions, plasma absorption, dust charge fluctuations, particle drifts and strong coupling effects are discussed. Some recent experimental findings and outstanding problems are also presented.
Menikoff, Ralph
2015-12-14
The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic. A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.
NASA Technical Reports Server (NTRS)
Wiley, Scott
2008-01-01
This viewgraph document reviews some mountain wave turbulence and operational hazards while soaring. Maps, photographs, and satellite images of the meteorological phenomena are included. Additionally, photographs of aircraft that sustained mountain wave damage are provided.
ERIC Educational Resources Information Center
Kluger-Bell, Barry
1995-01-01
Describes a traveling-wave demonstration that uses inexpensive materials (crepe-paper streamers) and is simple to assemble and perform. Explains how the properties of light waves are illustrated using the demonstration apparatus. (LZ)
Oceanic wave measurement system
NASA Technical Reports Server (NTRS)
Holmes, J. F.; Miles, R. T. (Inventor)
1980-01-01
An oceanic wave measured system is disclosed wherein wave height is sensed by a barometer mounted on a buoy. The distance between the trough and crest of a wave is monitored by sequentially detecting positive and negative peaks of the output of the barometer and by combining (adding) each set of two successive half cycle peaks. The timing of this measurement is achieved by detecting the period of a half cycle of wave motion.
NASA Astrophysics Data System (ADS)
Abramson, Guillermo
2003-03-01
A spatially extended model of the hantavirus infection in deer mice is analyzed. Traveling waves solutions of the infected and susceptible populations are studied in different regimes, controlled by an environmental parameter. The wave of infection is shown to lag behind the wave of susceptible population, and the delay between the two is analyzed numerically and through a piecewise linearization.
Wave turbulence in annular wave tank
NASA Astrophysics Data System (ADS)
Onorato, Miguel; Stramignoni, Ettore
2014-05-01
We perform experiments in an annular wind wave tank at the Dipartimento di Fisica, Universita' di Torino. The external diameter of the tank is 5 meters while the internal one is 1 meter. The tank is equipped by two air fans which can lead to a wind of maximum 5 m/s. The present set up is capable of studying the generation of waves and the development of wind wave spectra for large duration. We have performed different tests including different wind speeds. For large wind speed we observe the formation of spectra consistent with Kolmogorv-Zakharov predictions.
Smith, F.G.W.; Charlier, R.H.
1981-05-01
Possible means for harnessing the energy contained in ocean waves are considered. Problems associated with the low-grade nature of wave energy and the rate at which wave crests approach are pointed out, and simple devices already in use for the supply of energy to bell buoys, whistle buoys and lighted buoys are noted. Attention is then given to wave energy conversion systems based on the focusing of waves onto a narrow ramp leading to a reservoir from which water is released to power a turbine generator: a slightly submerged circular shell which directs waves into its center cavity where waves act to turn a turbine (the Dam-Atoll), a long vertical pipe with an internal valve allowing water to move in an upward direction (the Isaacs wave-energy pump), a turbine located at the bottom of an open-topped pipe (the Masuda buoy), a completely submerged closed air chamber from which runs a large pipe open to the sea, a wave piston which acts by the compression of air to drive a turbine, a massive structure with upper and lower reservoirs (the Russel rectifier), and devices which consist of floating or submerged objects which transfer wave energy to pumps (the Salter duck and Cockerell raft). It is concluded that although wave-powered generators are not likely to become competitive in the near future or provide more than a small portion of world demand, they may be found useful under special conditions.
NASA Astrophysics Data System (ADS)
Smith, F. G. W.; Charlier, R. H.
1981-06-01
Possible means for harnessing the energy contained in ocean waves are considered. Problems associated with the low-grade nature of wave energy and the rate at which wave crests approach are pointed out, and simple devices already in use for the supply of energy to bell buoys, whistle buoys and lighted buoys are noted. Attention is then given to wave energy conversion systems based on the focusing of waves onto a narrow ramp leading to a reservoir from which water is released to power a turbine generator; a slightly submerged circular shell which directs waves into its center cavity where waves act to turn a turbine (the Dam-Atoll); a long vertical pipe with an internal valve allowing water to move in an upward direction (the Isaacs wave-energy pump); a turbine located at the bottom of an open-topped pipe (the Masuda buoy); a completely submerged closed air chamber from which runs a large pipe open to the sea; a wave piston which acts by the compression of air to drive a turbine; a massive structure with upper and lower reservoirs (the Russel rectifier); and devices which consist of floating or submerged objects which transfer wave energy to pumps (the Salter duck and Cockerell raft.) It is concluded that although wave-powered generators are not likely to become competitive in the near future or provide more than a small portion of world demand, they may be found useful under special conditions.
NASA Astrophysics Data System (ADS)
Okihiro, Michele; Guza, R. T.; Seymour, R. J.
1992-07-01
Model predictions of bound (i.e., nonlinearly forced by and coupled to wave groups) infragravity wave energy are compared with about 2 years of observations in 8- to 13-m depths at Imperial Beach, California, and Barbers Point, Hawaii. Frequency-directional spectra of free waves at sea and swell frequencies, estimated with a small array of four pressure sensors, are used to predict the bound wave spectra below 0.04 Hz. The predicted total bound wave energy is always less than the observed infragravity energy, and the underprediction increases with increasing water depth and especially with decreasing swell energy. At most half, and usually much less, of the observed infragravity energy is bound. Bound wave spectra are also predicted with data from a single wave gage in 183-m depth at Point Conception, California, and the assumption of unidirectional sea and swell. Even with energetic swell, less than 10% of the total observed infragravity energy in 183-m depth is bound. Free waves, either leaky or edge waves, are more energetic than bound waves at both the shallow and deep sites. The low level of infragravity energy observed in 183-m depth compared with 8- to 13-m depths, with similarly moderate sea and swell energy, suggests that leaky (and very high-mode edge) waves contribute less than 10% of the infragravity energy in 8-13 m. Most of the free infragravity energy in shallow water is refractively trapped and does not reach deep water.
Teleseismic S wave microseisms
NASA Astrophysics Data System (ADS)
Nishida, Kiwamu; Takagi, Ryota
2016-08-01
Although observations of microseisms excited by ocean swells were firmly established in the 1940s, the source locations remain difficult to track. Delineation of the source locations and energy partition of the seismic wave components are key to understanding the excitation mechanisms. Using a seismic array in Japan, we observed both P and S wave microseisms excited by a severe distant storm in the Atlantic Ocean. Although nonlinear forcing of an ocean swell with a one-dimensional Earth model can explain P waves and vertically polarized S waves (SV waves), it cannot explain horizontally polarized S waves (SH waves). The precise source locations may provide a new catalog for exploring Earth’s interior.
Tierney, Thomas E; Tierney, Heidi E; Idzorek, George C; Watt, Robert G; Peterson, Robert R; Peterson, Darrell L; Fryer, Christopher L; Lopez, Mike R; Jones, Michael C; Sinars, Daniel; Rochau, Gregory A; Bailey, James E
2008-10-01
The distance radiation waves that supersonically propagate in optically thick, diffusive media are energy sensitive. A blast wave can form in a material when the initially diffusive, supersonic radiation wave becomes transonic. Under specific conditions, the blast wave is visible with radiography as a density perturbation. [Peterson et al., Phys. Plasmas 13, 056901 (2006)] showed that the time-integrated drive energy can be measured using blast wave positions with uncertainties less than 10% at the Z Facility. In some cases, direct measurements of energy loss through diagnostic holes are not possible with bolometric and x-ray radiometric diagnostics. Thus, radiography of high compression blast waves can serve as a complementary technique that provides time-integrated energy loss through apertures. In this paper, we use blast waves to characterize the energy emerging through a 2.4 mm aperture and show experimental results in comparison to simulations. PMID:19044574
Teleseismic S wave microseisms.
Nishida, Kiwamu; Takagi, Ryota
2016-08-26
Although observations of microseisms excited by ocean swells were firmly established in the 1940s, the source locations remain difficult to track. Delineation of the source locations and energy partition of the seismic wave components are key to understanding the excitation mechanisms. Using a seismic array in Japan, we observed both P and S wave microseisms excited by a severe distant storm in the Atlantic Ocean. Although nonlinear forcing of an ocean swell with a one-dimensional Earth model can explain P waves and vertically polarized S waves (SV waves), it cannot explain horizontally polarized S waves (SH waves). The precise source locations may provide a new catalog for exploring Earth's interior. PMID:27563094
Cycloidal Wave Energy Converter
Stefan G. Siegel, Ph.D.
2012-11-30
This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will
NASA Astrophysics Data System (ADS)
Petitjeans, Philippe; Palacios, Carmen; Maurel, Agnès; Pagneux, Vincent
2012-11-01
The phenomenon of water wave deviation in a bended wave-guide has been studied experimentally. We propose a theoretical analogy to electromagnetism, from which we derive the mathematical tools to design a water wave-deviator. To obtain the effect of metamaterial in the case of surface waves, one has to design a water-bed consisting of periodic layers of two different heights inclined with a specific angle with respect to the direction of propagation of waves. We designed and built (using rapid prototyping) deviators with progressively increasing angles of bending, and their homologue wave-guides with a flat bottom. The wave elevation was measured with good accuracy in time and in space by an optical method. Results show a good efficiency of the wave-deviator. The wavefront maintains its original inclination once the wave crosses the bend (in contrary to the wave-guide with a flat bottom), however departs from the predicted behavior as the wavefront advances. The analysis of harmonics shows a reduction of backwards reflection and a strong decrease in higher modes excitation after the bend. The results are optimistic and might open new possibilities; ultimately those regarding the cloaking of floating structures which could, in the future, be used for coastal protection.
NASA Astrophysics Data System (ADS)
Fontana, Giorgio
2005-02-01
There is only one experimental proof that gravitational waves exist. With such a limitation, it may seem premature to suggest the possibility that gravitational waves can became a preferred space propulsion technique. The present understanding of the problem indicates that this is not the case. The emission of gravitational waves from astrophysical sources has been confirmed by observation, the respective detection at large distance from the source is difficult and actually we have no confirmation of a successful detection. Therefore the required preliminary discovery has been already made. This opinion is enforced by many different proposals for building the required powerful gravitational wave generators that have recently appeared in the literature and discussed at conferences. It is no longer reasonable to wait for additional confirmation of the existence of gravitational waves to start a program for building generators and testing their possible application to space travel. A vast literature shows that gravitational waves can be employed for space propulsion. Gravitational wave rockets have been proposed, non-linearity of Einstein equations allows the conversion of gravitational waves to a static gravitational field and ``artificial gravity assist'' may become a new way of travelling in space-time. Different approaches to gravitational wave propulsion are reviewed and compared. Gravitational wave propulsion is also compared to traditional rocket propulsion and an undeniable advantage can be demonstrated in terms of efficiency and performance. Testing the predictions will require gravitational wave generators with high power and wavelength short enough for producing high energy densities. Detectors designed for the specific application must be developed, taking into account that non-linearity effects are expected. The study and development of Gravitational wave propulsion is a very challenging endeavor, involving the most complex theories, sophisticated
Wouters, L.F.
1960-08-30
Radiation waves can be detected by simultaneously measuring radiation- wave intensities at a plurality of space-distributed points and producing therefrom a plot of the wave intensity as a function of time. To this end. a detector system is provided which includes a plurality of nuclear radiation intensity detectors spaced at equal radial increments of distance from a source of nuclear radiation. Means are provided to simultaneously sensitize the detectors at the instant a wave of radiation traverses their positions. the detectors producing electrical pulses indicative of wave intensity. The system further includes means for delaying the pulses from the detectors by amounts proportional to the distance of the detectors from the source to provide an indication of radiation-wave intensity as a function of time.
Hysteresis of ionization waves
Dinklage, A.; Bruhn, B.; Testrich, H.; Wilke, C.
2008-06-15
A quasi-logistic, nonlinear model for ionization wave modes is introduced. Modes are due to finite size of the discharge and current feedback. The model consists of competing coupled modes and it incorporates spatial wave amplitude saturation. The hysteresis of wave mode transitions under current variation is reproduced. Sidebands are predicted by the model and found in experimental data. The ad hoc model is equivalent to a general--so-called universal--approach from bifurcation theory.
Kinesthetic Transverse Wave Demonstration
NASA Astrophysics Data System (ADS)
Pantidos, Panagiotis; Patapis, Stamatis
2005-09-01
This is a variation on the String and Sticky Tape demonstration "The Wave Game," suggested by Ron Edge. A group of students stand side by side, each one holding a card chest high with both hands. The teacher cues the first student to begin raising and lowering his card. When he starts lowering his card, the next student begins to raise his. As succeeding students move their cards up and down, a wave such as that shown in the figure is produced. To facilitate the process, students' motions were synchronized with the ticks of a metronome (without such synchronization it was nearly impossible to generate a satisfactory wave). Our waves typically had a frequency of about 1 Hz and a wavelength of around 3 m. We videotaped the activity so that the students could analyze the motions. The (17-year-old) students had not received any prior instruction regarding wave motion and did not know beforehand the nature of the exercise they were about to carry out. During the activity they were asked what a transverse wave is. Most of them quickly realized, without teacher input, that while the wave propagated horizontally, the only motion of the transmitting medium (them) was vertical. They located the equilibrium points of the oscillations, the crests and troughs of the waves, and identified the wavelength. The teacher defined for them the period of the oscillations of the motion of a card to be the total time for one cycle. The students measured this time and then several asserted that it was the same as the wave period. Knowing the length of the waves and the number of waves per second, the next step can easily be to find the wave speed.
NASA Technical Reports Server (NTRS)
1990-01-01
This photograph, taken in sunglint conditions, captures open ocean internal waves which are diffracting around shoals south of the Seychelle islands (4.5S, 55.5E) and recombining to form interference patterns. The clouds to the north of the waves cover two of the Seychelle islands: Silhouette and Mahe. Mahe is the main island of the archipelago. The small rocky island surrounded by reef around which the waves diffract is Platte Island.
Solli, D R; Ropers, C; Koonath, P; Jalali, B
2007-12-13
Recent observations show that the probability of encountering an extremely large rogue wave in the open ocean is much larger than expected from ordinary wave-amplitude statistics. Although considerable effort has been directed towards understanding the physics behind these mysterious and potentially destructive events, the complete picture remains uncertain. Furthermore, rogue waves have not yet been observed in other physical systems. Here, we introduce the concept of optical rogue waves, a counterpart of the infamous rare water waves. Using a new real-time detection technique, we study a system that exposes extremely steep, large waves as rare outcomes from an almost identically prepared initial population of waves. Specifically, we report the observation of rogue waves in an optical system, based on a microstructured optical fibre, near the threshold of soliton-fission supercontinuum generation--a noise-sensitive nonlinear process in which extremely broadband radiation is generated from a narrowband input. We model the generation of these rogue waves using the generalized nonlinear Schrödinger equation and demonstrate that they arise infrequently from initially smooth pulses owing to power transfer seeded by a small noise perturbation.
NASA Technical Reports Server (NTRS)
Jones, Robert E.; Kramarchuk, Ihor; Williams, Wallace D.; Pouch, John J.; Gilbert, Percy
1989-01-01
Computer-controlled thermal-wave microscope developed to investigate III-V compound semiconductor devices and materials. Is nondestructive technique providing information on subsurface thermal features of solid samples. Furthermore, because this is subsurface technique, three-dimensional imaging also possible. Microscope uses intensity-modulated electron beam of modified scanning electron microscope to generate thermal waves in sample. Acoustic waves generated by thermal waves received by transducer and processed in computer to form images displayed on video display of microscope or recorded on magnetic disk.
NASA Astrophysics Data System (ADS)
Das, Jayasree; Bandyopadhyay, Anup; Das, K. P.; Das
2014-02-01
Schamel's modified Korteweg-de Vries-Zakharov-Kuznetsov (S-ZK) equation, governing the behavior of long wavelength, weak nonlinear ion acoustic waves propagating obliquely to an external uniform static magnetic field in a plasma consisting of warm adiabatic ions and non-thermal electrons (due to the presence of fast energetic electrons) having vortex-like velocity distribution function (due to the presence of trapped electrons), immersed in a uniform (space-independent) and static (time-independent) magnetic field, admits solitary wave solutions having a sech 4 profile. The higher order stability of this solitary wave solution of the S-ZK equation has been analyzed with the help of multiple-scale perturbation expansion method of Allen and Rowlands (Allen, M. A. and Rowlands, G. 1993 J. Plasma Phys. 50, 413; 1995 J. Plasma Phys. 53, 63). The growth rate of instability is obtained correct to the order k 2, where k is the wave number of a long wavelength plane wave perturbation. It is found that the lowest order (at the order k) instability condition is strongly sensitive to the angle of propagation (δ) of the solitary wave with the external uniform static magnetic field, whereas at the next order (at the order k 2) the solitary wave solutions of the S-ZK equation are unstable irrespective of δ. It is also found that the growth rate of instability up to the order k 2 for the electrons having Boltzmann distribution is higher than that of the non-thermal electrons having vortex-like distribution for any fixed δ.
Transient Wave Envelope Elements for Wave Problems
NASA Astrophysics Data System (ADS)
Astley, R. J.
1996-04-01
A novel family of infinite wave envelope elements is described which can be used in conjunction with conventional finite elements to model the transient wave equation in unbounded regions. The elements are obtained by applying an inverse Fourier transformation to a mapped wave envelope formulation in the frequency domain. The discrete transient equations obtained in this way can be applied to two-dimensional and three-dimensional problems without restriction, being valid over a full range of excitation frequencies. The effectiveness and accuracy of the method is demonstrated in application to simple test cases which involve the calculation of transient sound fields generated by pulsating spheres and cylinders excited from rest in an unbounded region. Test solutions are compared to analytic solutions and to finite element solutions obtained by using large computational grids which extend beyond the region influenced by the transient disturbance.
Khaled, E E; Hill, S C; Barber, P W
1994-01-20
The electric energy in a lossless or lossy spherical particle that is illuminated with a plane wave or a Gaussian beam is investigated. The analysis uses a combination of the plane-wave spectrum technique and the T-matrix method. Expressions for the electric energy in any mode as well as the total electric energy inside the particle are given. The amount of energy coupling into the particle for different beam illuminations is also investigated. The high-Q (low-order) resonant modes can dominate the electric energy inside a spherical particle many linewidths away from the resonance location, particularly if the beam is focused at the droplet edge or outside the droplet. If the sphere is lossy, low-order modes can still dominate the electric energy if the beam is focused far enough outside the sphere. As the absorption coefficient of the particle increases, the energy in a high-Q mode decreases much faster at the resonance frequency than it does at near or off-resonance frequencies. The effects of the absorption on the dominance of the internal fields by a high-Q mode decreases as the beam is shifted farther away from the particle. As the beam is shifted farther away from the particle the fraction of the incident energy coupled into the sphere at resonance first increases and then decreases. Although the coupled energy decreases as the beam is shifted farther from the sphere, most of that energy is in the lowest-order mode.
Modal Waves Solved in Complex Wave Number
NASA Astrophysics Data System (ADS)
Xu, W.-J.; Jenot, F.; Ourak, M.
2005-04-01
A numerical algorithm is proposed for the resolution in complex domain of the ultrasonic modal waves from the characteristic equation of elastic structures. The method is applicable to any numerically available function given explicitly or implicitly. The complex root loci of the modal waves are constructed by varying other parameters. Different situations which can cause the roots searching and following failure are analysed and the corresponding solutions are proposed. The computation examples are given for a three layered adhesive joint and a composite plate.
Mazzarella, G.; Giampaolo, S. M.; Illuminati, F.
2006-01-15
For systems of interacting, ultracold spin-zero neutral bosonic atoms, harmonically trapped and subject to an optical lattice potential, we derive an Extended Bose Hubbard (EBH) model by developing a systematic expansion for the Hamiltonian of the system in powers of the lattice parameters and of a scale parameter, the lattice attenuation factor. We identify the dominant terms that need to be retained in realistic experimental conditions, up to nearest-neighbor interactions and nearest-neighbor hoppings conditioned by the on-site occupation numbers. In the mean field approximation, we determine the free energy of the system and study the phase diagram both at zero and at finite temperature. At variance with the standard on site Bose Hubbard model, the zero-temperature phase diagram of the EBH model possesses a dual structure in the Mott insulating regime. Namely, for specific ranges of the lattice parameters, a density wave phase characterizes the system at integer fillings, with domains of alternating mean occupation numbers that are the atomic counterparts of the domains of staggered magnetizations in an antiferromagnetic phase. We show as well that in the EBH model, a zero-temperature quantum phase transition to pair superfluidity is, in principle, possible, but completely suppressed at the lowest order in the lattice attenuation factor. Finally, we determine the possible occurrence of the different phases as a function of the experimentally controllable lattice parameters.
Transmission of Lamb waves and resonance at an adhesive butt joint of plates.
Mori, Naoki; Biwa, Shiro
2016-12-01
The transmission behavior of Lamb waves and the possible occurrence of resonance at an adhesive butt joint of plates are studied experimentally. To this purpose, two 2.5-mm thick aluminum alloy plates are bonded at their edges using cyanoacrylate-based adhesive. Bonded plate specimens with different joint conditions are prepared by changing the bonding procedure. The measurements are performed for the transmission characteristics of the lowest-order symmetric (S0) and antisymmetric (A0) Lamb modes for the frequency range of 0.4-0.6MHz below the cut-off frequency of the higher-order modes. The experimental results show that the transmission coefficients of the S0 and A0 modes exhibit different frequency-dependent characteristics depending on the joint condition. Furthermore, for the incidence of the S0 mode at the center frequency of 1MHz, the transmitted S0 mode in weakly bonded specimens shows a long oscillation tail due to the resonance effect. The experimental results are discussed in the light of the theoretical results based on the spring-type interface model. The interfacial stiffnesses identified from the transmission coefficients are shown to be correlated with the bonding condition of the joint and give reasonable estimates of the resonance frequencies of weakly bonded specimens. PMID:27490207
Eccentric orbit E/IMRI gravitational wave fluxes to 7PN order
NASA Astrophysics Data System (ADS)
Forseth, Erik; Evans, Charles R.; Hopper, Seth
2016-03-01
Knowledge of gravitational wave fluxes (energy and angular momentum, at both infinity and the horizon) from eccentric-orbit inspirals is extended from 3PN to 7PN order at lowest order in small mass ratio. Previous post-Newtonian eccentric-orbit results up to 3PN relative order are confirmed by our new black hole perturbation calculations. The calculations are based on Mano, Suzuki, and Takasugi (MST) analytic function expansions, and results are computed to 200 decimal places of accuracy using Mathematica. Over 1,700 distinct orbits were computed, each with as many as 7,000 Fourier-harmonic modes. A large number of PN coefficients between 3.5PN and 7PN orders were determined, either in exact analytic form or with accurate numerical values, in expansions in powers of a PN compactness parameter and its logarithm, and powers of eccentricity. We show a parametrization that removes singularities in the fluxes as the eccentricity approaches unity, thus making the expansions more convergent at high eccentricity. We also found (nearly) arbitrarily accurate expansions for the previously discussed 1.5PN, 2.5PN, and 3PN hereditary terms.
Oceanic-wave-measurement system
NASA Technical Reports Server (NTRS)
Holmes, J. F.; Miles, R. T.
1980-01-01
Barometer mounted on bouy senses wave heights. As wave motion raises and lowers barometer, pressure differential is proportional to wave height. Monitoring circuit samples barometer output every half cycle of wave motion and adds magnitudes of adjacent positive and negative peaks. Resulting output signals, proportional to wave height, are transmitted to central monitoring station.
Sardon, J-P
2007-03-01
The July-August 2005 issue of Eurosurveillance focused on the impact on mortality of the 2003 heat wave in Europe, with articles that were based on various methods and looked at different time periods [1]. The subject of this letter is to assess, using a unique methodology, the excess mortality related to the 2003 heat wave across the continent. PMID:17439811
Atmospheric Science Data Center
2013-04-16
article title: Waves on White: Ice or Clouds? ... detecting clouds over snow and ice, but also works well over ocean and land. The rippled area on the surface which could have been mistaken ... date: Dec 16, 2004 Images: Waves on Ice location: Antarctica thumbnail: ...
NASA Astrophysics Data System (ADS)
Viswanathan, Koushik; Sundaram, Narayan; Chandrasekar, Srinivasan
Stick-slip, manifest as intermittent tangential motion between two dry solid surfaces, is a friction instability that governs diverse phenomena from automobile brake squeals to earthquakes. We show, using high-speed in situ imaging of an adhesive polymer interface, that low velocity stick-slip is fundamentally of three kinds, corresponding to passage of three different surface waves -- separation pulses, slip pulses and the well-known Schallamach waves. These waves, traveling much slower than elastic waves, have clear distinguishing properties. Separation pulses and Schallamach waves involve local interface separation, and propagate in opposite directions while slip pulses are characterized by a sharp stress front and do not display any interface detachment. A change in the stick-slip mode from separation to slip pulse is effected simply by increasing the normal force. Together, these three waves constitute all possible stick-slip modes in adhesive friction and are shown to have direct analogues in muscular locomotory waves in soft bodied invertebrates. A theory for slow wave propagation is also presented which is capable of explaining the attendant interface displacements, velocities and stresses.
Gravitational waves from inflation
NASA Astrophysics Data System (ADS)
Guzzetti, M. C.; Bartolo, N.; Liguori, M.; Matarrese, S.
2016-09-01
The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index nT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.
ERIC Educational Resources Information Center
Rosencwaig, Allan
1982-01-01
Thermal features of and beneath the surface of a sample can be detected and imaged with a thermal-wave microscope. Various methodologies for the excitation and detection of thermal waves are discussed, and several applications, primarily in microelectronics, are presented. (Author)
Advanced Gravitational Wave Detectors
NASA Astrophysics Data System (ADS)
Blair, D. G.; Howell, E. J.; Ju, L.; Zhao, C.
2012-02-01
Part I. An Introduction to Gravitational Wave Astronomy and Detectors: 1. Gravitational waves D. G. Blair, L. Ju, C. Zhao and E. J. Howell; 2. Sources of gravitational waves D. G. Blair and E. J. Howell; 3. Gravitational wave detectors D. G. Blair, L. Ju, C. Zhao, H. Miao, E. J. Howell, and P. Barriga; 4. Gravitational wave data analysis B. S. Sathyaprakash and B. F. Schutz; 5. Network analysis L. Wen and B. F. Schutz; Part II. Current Laser Interferometer Detectors: Three Case Studies: 6. The Laser Interferometer Gravitational-Wave Observatory P. Fritschel; 7. The VIRGO detector S. Braccini; 8. GEO 600 H. Lück and H. Grote; Part III. Technology for Advanced Gravitational Wave Detectors: 9. Lasers for high optical power interferometers B. Willke and M. Frede; 10. Thermal noise, suspensions and test masses L. Ju, G. Harry and B. Lee; 11. Vibration isolation: Part 1. Seismic isolation for advanced LIGO B. Lantz; Part 2. Passive isolation J-C. Dumas; 12. Interferometer sensing and control P. Barriga; 13. Stabilizing interferometers against high optical power effects C. Zhao, L. Ju, S. Gras and D. G. Blair; Part IV. Technology for Third Generation Gravitational Wave Detectors: 14. Cryogenic interferometers J. Degallaix; 15. Quantum theory of laser-interferometer GW detectors H. Miao and Y. Chen; 16. ET. A third generation observatory M. Punturo and H. Lück; Index.
ERIC Educational Resources Information Center
Houlrik, Jens Madsen
2009-01-01
The Lorentz transformation applies directly to the kinematics of moving particles viewed as geometric points. Wave propagation, on the other hand, involves moving planes which are extended objects defined by simultaneity. By treating a plane wave as a geometric object moving at the phase velocity, novel results are obtained that illustrate the…
ERIC Educational Resources Information Center
Newman, J. N.
1979-01-01
Discussed is the utilization of surface ocean waves as a potential source of power. Simple and large-scale wave power devices and conversion systems are described. Alternative utilizations, environmental impacts, and future prospects of this alternative energy source are detailed. (BT)
Those Elusive Gravitational Waves
ERIC Educational Resources Information Center
MOSAIC, 1976
1976-01-01
The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)
Sculpting Waves (Presentation Recording)
NASA Astrophysics Data System (ADS)
Engheta, Nader
2015-09-01
In electronics controlling and manipulating flow of charged carriers has led to design of numerous functional devices. In photonics, by analogy, this is done through controlling photons and optical waves. However, the challenges and opportunities are different in these two fields. Materials control waves, and as such they can tailor, manipulate, redirect, and scatter electromagnetic waves and photons at will. Recent development in condensed matter physics, nanoscience, and nanotechnology has made it possible to tailor materials with unusual parameters and extreme characteristics and with atomic precision and thickness. One can now construct structures much smaller than the wavelengths of visible light, thus ushering in unprecedented possibilities and novel opportunities for molding fields and waves at the nanoscale with desired functionalities. At such subwavelength scales, sculpting optical fields and waves provides a fertile ground for innovation and discovery. I will discuss some of the exciting opportunities in this area, and forecast some future directions and possibilities.
NASA Astrophysics Data System (ADS)
Busswell, Geoff; Ash, Ellis; Piolle, Jean-Francois; Poulter, David J. S.; Snaith, Helen; Collard, Fabrice; Sheera, Harjit; Pinnock, Simon
2010-12-01
The ESA GlobWave project is a three year initiative, funded by ESA and CNES, to service the needs of satellite wave product users across the globe. Led by Logica UK, with support from CLS, IFREMER, SatOC and NOCS, the project will provide free access to satellite wave data and products in a common format, both historical and in near real time, from various European and American SAR and altimeter missions. Building on the successes of similar projects for Sea Surface Temperature and ocean colour, the project aims to stimulate increased use and analysis of satellite wave products. In addition to common-format satellite data the project will provide comparisons with in situ measurements, interactive data analysis tools and a pilot spatial wave forecast verification scheme for operational forecast production centres. The project will begin operations in January 2010, with direction from regular structured user consultation.
NASA Astrophysics Data System (ADS)
Yan, Zhenya
2011-11-01
The coupled nonlinear volatility and option pricing model presented recently by Ivancevic is investigated, which generates a leverage effect, i.e., stock volatility is (negatively) correlated to stock returns, and can be regarded as a coupled nonlinear wave alternative of the Black-Scholes option pricing model. In this Letter, we analytically propose vector financial rogue waves of the coupled nonlinear volatility and option pricing model without an embedded w-learning. Moreover, we exhibit their dynamical behaviors for chosen different parameters. The vector financial rogue wave (rogon) solutions may be used to describe the possible physical mechanisms for the rogue wave phenomena and to further excite the possibility of relative researches and potential applications of vector rogue waves in the financial markets and other related fields.
Electromagnetic wave energy converter
NASA Technical Reports Server (NTRS)
Bailey, R. L. (Inventor)
1973-01-01
Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.
NASA Astrophysics Data System (ADS)
Groenenboom, P. H. L.
The phenomenon of wave propagation is encountered frequently in a variety of engineering disciplines. It has been realized that for a growing number of problems the solution can only be obtained by discretization of the boundary. Advantages of the Boundary Element Method (BEM) over domain-type methods are related to the reduction of the number of space dimensions and of the modelling effort. It is demonstrated how the BEM can be applied to wave propagation phenomena by establishing the fundamental relationships. A numerical solution procedure is also suggested. In connection with a discussion of the retarded potential formulation, it is shown how the wave propagation problem can be cast into a Boundary Integral Formulation (BIF). The wave propagation problem in the BIF can be solved by time-successive evaluation of the boundary integrals. The example of pressure wave propagation following a sodium-water reaction in a Liquid Metal cooled Fast Breeder Reactor steam generator is discussed.
NASA Astrophysics Data System (ADS)
Lan, Jin; Yu, Weichao; Wu, Ruqian; Xiao, Jiang
2015-10-01
A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound states in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. Our findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.
NASA Astrophysics Data System (ADS)
Shugan, I.; Hwung, Hwung-Hweng; Yang, Ray-Yeng
2012-04-01
The problem of wave interaction with current is still a big challenge in physical oceanography. In spite of numerous numbers of papers devoting to the analysis of the phenomenon some very strong effects are still waiting for its clear description. One of the problems here is the Benjamin-Feir instability in the presence of variable current. Modulation instability is one of the most ubiquitous types of instabilities in nature. In modern nonlinear physics, it is considered as a basic process that classifies the qualitative behavior of modulated waves (``envelope waves'') and may initialize the formation of stable entities such as envelope solitons. We theoretically describe the explosion instability of waves on the adverse blocking current and corresponding frequency downshifting. Waves can be blocked only partly and overpass the opposite current barrier at the lower side band resonance frequency. Theoretical results are compared with available experiments.
Leavitt, M.A.; Lutz, I.C.
1958-08-01
An amplifier circuit is described for amplifying sigmals having an alternating current component superimposed upon a direct current component, without loss of any segnnent of the alternating current component. The general circuit arrangement includes a vibrator, two square wave amplifiers, and recombination means. The amplifier input is connected to the vibrating element of the vibrator and is thereby alternately applied to the input of each square wave amplifier. The detailed circuitry of the recombination means constitutes the novelty of the annplifier and consists of a separate, dual triode amplifier coupled to the output of each square wave amplifier with a recombination connection from the plate of one amplifier section to a grid of one section of the other amplifier. The recombination circuit has provisions for correcting distortion caused by overlapping of the two square wave voltages from the square wave amplifiers.
THz-wave sensing via pump and signal wave detection interacted with evanescent THz waves.
Akiba, Takuya; Kaneko, Naoya; Suizu, Koji; Miyamoto, Katsuhiko; Omatsu, Takashige
2013-09-15
We report a novel sensing technique that uses an evanescent terahertz (THz) wave, without detecting the THz wave directly. When a THz wave generated by Cherenkov phase matching via difference frequency generation undergoes total internal reflection, the evanescent THz wave is subject to a phase change and an amplitude decrease. The reflected THz wave, under the influence of the sample, interferes with the propagating THz wave and the changing electric field of the THz wave interacts with the electric field of the pump waves. We demonstrate a sensing technique for detecting changes in the electric field of near-infrared light, transcribed from changes in the electric field of a THz wave.
Standing Waves on a Shoestring.
ERIC Educational Resources Information Center
Hendrix, Laura
1992-01-01
Describes the construction of a wave generator used to review the algebraic relationships of wave motion. Students calculate and measure the weight needed to create tension to generate standing waves at the first eight harmonics. (MDH)
Multisatellite studies of ULF waves
NASA Technical Reports Server (NTRS)
Takahashi, Kazue
1988-01-01
Multisatellite studies of ULF waves are reviewed, with a special emphasis on compressional Pc 5 waves. The observations of the radial extent, azimuthal wave number and the field-aligned standing wave structure of the waves are described. When combined with plasma data, the waves appear to be consistent with drift-mirror waves originating from the pressure anisotropy of the ring current plasma. The most recent observations revealed some features not considered in previous theories of the drift-mirror wave: antisymmetric standing wave structure and rather small pressure anisotropy that can drive the waves to instability. Recent theoretical work shows that these observations can be explained if the coupling of the drift-mirror wave to the shear Alfven wave is properly treated in a realistic magnetic field geometry.
NASA Astrophysics Data System (ADS)
Löhner-Böttcher, Johannes
2016-03-01
Context: The dynamic atmosphere of the Sun exhibits a wealth of magnetohydrodynamic (MHD) waves. In the presence of strong magnetic fields, most spectacular and powerful waves evolve in the sunspot atmosphere. Allover the sunspot area, continuously propagating waves generate strong oscillations in spectral intensity and velocity. The most prominent and fascinating phenomena are the 'umbral flashes' and 'running penumbral waves' as seen in the sunspot chromosphere. Their nature and relation have been under intense discussion in the last decades. Aims: Waves are suggested to propagate upward along the magnetic field lines of sunspots. An observational study is performed to prove or disprove the field-guided nature and coupling of the prevalent umbral and penumbral waves. Comprehensive spectroscopic observations at high resolution shall provide new insights into the wave characteristics and distribution across the sunspot atmosphere. Methods: Two prime sunspot observations were carried out with the Dunn Solar Telescope at the National Solar Observatory in New Mexico and with the Vacuum Tower Telescope at the Teide Observatory on Tenerife. The two-dimensional spectroscopic observations were performed with the interferometric spectrometers IBIS and TESOS. Multiple spectral lines are scanned co-temporally to sample the dynamics at the photospheric and chromospheric layers. The time series (1 - 2.5 h) taken at high spatial and temporal resolution are analyzed according to their evolution in spectral intensities and Doppler velocities. A wavelet analysis was used to obtain the wave power and dominating wave periods. A reconstruction of the magnetic field inclination based on sunspot oscillations was developed. Results and conclusions: Sunspot oscillations occur continuously in spectral intensity and velocity. The obtained wave characteristics of umbral flashes and running penumbral waves strongly support the scenario of slow-mode magnetoacoustic wave propagation along the
NASA Astrophysics Data System (ADS)
Ewans, Kevin; Feld, Graham; Jonathan, Philip
2014-09-01
The SAAB REX WaveRadar sensor is widely used for platform-based wave measurement systems by the offshore oil and gas industry. It offers in situ surface elevation wave measurements at relatively low operational costs. Furthermore, there is adequate flexibility in sampling rates, allowing in principle sampling frequencies from 1 to 10 Hz, but with an angular microwave beam width of 10° and an implied ocean surface footprint in the order of metres, significant limitations on the spatial and temporal resolution might be expected. Indeed there are reports that the accuracy of the measurements from wave radars may not be as good as expected. We review the functionality of a WaveRadar using numerical simulations to better understand how WaveRadar estimates compare with known surface elevations. In addition, we review recent field measurements made with a WaveRadar set at the maximum sampling frequency, in the light of the expected functionality and the numerical simulations, and we include inter-comparisons between SAAB radars and buoy measurements for locations in the North Sea.
Undamped electrostatic plasma waves
Valentini, F.; Perrone, D.; Veltri, P.; Califano, F.; Pegoraro, F.; Morrison, P. J.; O'Neil, T. M.
2012-09-15
Electrostatic waves in a collision-free unmagnetized plasma of electrons with fixed ions are investigated for electron equilibrium velocity distribution functions that deviate slightly from Maxwellian. Of interest are undamped waves that are the small amplitude limit of nonlinear excitations, such as electron acoustic waves (EAWs). A deviation consisting of a small plateau, a region with zero velocity derivative over a width that is a very small fraction of the electron thermal speed, is shown to give rise to new undamped modes, which here are named corner modes. The presence of the plateau turns off Landau damping and allows oscillations with phase speeds within the plateau. These undamped waves are obtained in a wide region of the (k,{omega}{sub R}) plane ({omega}{sub R} being the real part of the wave frequency and k the wavenumber), away from the well-known 'thumb curve' for Langmuir waves and EAWs based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that corroborate the existence of these modes are described. It is also shown that deviations caused by fattening the tail of the distribution shift roots off of the thumb curve toward lower k-values and chopping the tail shifts them toward higher k-values. In addition, a rule of thumb is obtained for assessing how the existence of a plateau shifts roots off of the thumb curve. Suggestions are made for interpreting experimental observations of electrostatic waves, such as recent ones in nonneutral plasmas.
Lucia, L.V.
1982-03-16
A wave action power plant powered by the action of water waves has a drive shaft rotated by a plurality of drive units, each having a lever pivotally mounted on and extending from said shaft and carrying a weight, in the form of a float, which floats on the waves and rocks the lever up and down on the shaft. A ratchet mechanism causes said shaft to be rotated in one direction by the weight of said float after it has been raised by wave and the wave has passed, leaving said float free to move downwardly by gravity and apply its full weight to pull down on the lever and rotate the drive shaft. There being a large number of said drive units so that there are always some of the weights pulling down on their respective levers while other weights are being lifted by waves and thereby causing continuous rotation of the drive shaft in one direction. The said levers are so mounted that they may be easily raised to bring the weights into a position wherein they are readily accessible for cleaning the bottoms thereof to remove any accumulation of barnacles, mollusks and the like. There is also provided means for preventing the weights from colliding with each other as they independently move up and down on the waves.
Kerschensteiner, Daniel
2016-01-01
Spontaneous activity patterns propagate through many parts of the developing nervous system and shape the wiring of emerging circuits. Prior to vision, waves of activity originating in the retina propagate through the lateral geniculate nucleus (LGN) of the thalamus to primary visual cortex (V1). Retinal waves have been shown to instruct the wiring of ganglion cell axons in LGN and of thalamocortical axons in V1 via correlation-based plasticity rules. Across species, retinal waves mature in three stereotypic stages (I–III), in which distinct circuit mechanisms give rise to unique activity patterns that serve specific functions in visual system refinement. Here, I review insights into the patterns, mechanisms, and functions of stage III retinal waves, which rely on glutamatergic signaling. As glutamatergic waves spread across the retina, neighboring ganglion cells with opposite light responses (ON vs. OFF) are activated sequentially. Recent studies identified lateral excitatory networks in the inner retina that generate and propagate glutamatergic waves, and vertical inhibitory networks that desynchronize the activity of ON and OFF cells in the wavefront. Stage III wave activity patterns may help segregate axons of ON and OFF ganglion cells in the LGN, and could contribute to the emergence of orientation selectivity in V1. PMID:27242446
Atmospheric waves and the ionosphere.
NASA Technical Reports Server (NTRS)
Beer, T.
1972-01-01
A review of evidence supporting the existence of atmospheric waves is presented, and a simple, theoretical approach for describing them is shown. Suggestions for gravity wave sources include equatorial and auroral electrojet, auroral and polar substorm heating, atmospheric jet streams, and large oceanic tides. There are reviewed previous studies dealing with the interaction between ionization and atmospheric waves believed to exist at ionospheric heights. These waves include acoustic waves, evanescent waves, and internal atmospheric gravity waves. It is explained that mode analysis, often employed when an increased number of layers is used for a more complete profile, is inapplicable for waves very close to a source.
Wave-wave interactions in solar type III radio bursts
Thejappa, G.; MacDowall, R. J.
2014-02-11
The high time resolution observations from the STEREO/WAVES experiment show that in type III radio bursts, the Langmuir waves often occur as localized magnetic field aligned coherent wave packets with durations of a few ms and with peak intensities well exceeding the strong turbulence thresholds. Some of these wave packets show spectral signatures of beam-resonant Langmuir waves, down- and up-shifted sidebands, and ion sound waves, with frequencies, wave numbers, and tricoherences satisfying the resonance conditions of the oscillating two stream instability (four wave interaction). The spectra of a few of these wave packets also contain peaks at f{sub pe}, 2f{sub pe} and 3 f{sub pe} (f{sub pe} is the electron plasma frequency), with frequencies, wave numbers and bicoherences (computed using the wavelet based bispectral analysis techniques) satisfying the resonance conditions of three wave interactions: (1) excitation of second harmonic electromagnetic waves as a result of coalescence of two oppositely propagating Langmuir waves, and (2) excitation of third harmonic electromagnetic waves as a result of coalescence of Langmuir waves with second harmonic electromagnetic waves. The implication of these findings is that the strong turbulence processes play major roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation in type III radio bursts.
NASA Astrophysics Data System (ADS)
Gurnett, Donald
2008-11-01
Although low-frequency radio waves of extra-terrestrial origin were known over a century ago, it wasn't until the beginning of the space era fifty years ago that the origin of these waves could be adequately investigated. Since then spacecraft-borne instruments have shown that space plasmas exhibit an almost bewildering variety of wave phenomena, sometimes referred to as the plasma wave zoo. In this talk I will focus on two types of waves that occur in the magnetospheres of the strongly magnetized planets. They are whistler mode emissions and cyclotron maser radiation. Whistler mode emissions are generated in the now famous plasma wave mode known as the whistler mode, and cyclotron maser radiation is emitted mainly in the right-hand polarized free space mode. Both involve a cyclotron resonant interaction and require a perpendicular anisotropy to achieve wave growth. However, the origin of the anisotropy is different in the two cases. Whistler mode emissions occur in planetary radiation belts and are driven by the loss-cone anisotropy imposed by the planet. The resulting waves play a major role in the scattering and loss of radiation belt electrons. In contrast, the cyclotron maser radiation is generated in the auroral regions where parallel electric fields accelerate down-going electrons to high energies. The wave growth is driven by the shell distribution that arises from a combination of the parallel electric field and the magnetic mirror force. The resulting radiation is extremely intense and can be detected at great distances as an escaping radio emission. Both the whistler mode emissions and the cyclotron maser radiation display an amazing amount of fine structure. This structure is thought to be due to nonlinear trapping of the resonant electrons. The exact nonlinear mechanisms involved are still a topic of current study.
Towards Gravitational Wave Astronomy
NASA Astrophysics Data System (ADS)
Losurdo, Giovanni
This chapter is meant to introduce the reader to the forthcoming network of second-generation interferometric detectors of gravitational waves, at a time when their construction is close to completion and there is the ambition to detect gravitational waves for the first time in the next few years and open the way to gravitational wave astronomy. The legacy of first-generation detectors is discussed before giving an overview of the technology challenges that have been faced to make advanced detectors possible. The various aspects outlined here are then discussed in more detail in the subsequent chapters of the book.
Lattice Waves, Spin Waves, and Neutron Scattering
DOE R&D Accomplishments Database
Brockhouse, Bertram N.
1962-03-01
Use of neutron inelastic scattering to study the forces between atoms in solids is treated. One-phonon processes and lattice vibrations are discussed, and experiments that verified the existence of the quantum of lattice vibrations, the phonon, are reviewed. Dispersion curves, phonon frequencies and absorption, and models for dispersion calculations are discussed. Experiments on the crystal dynamics of metals are examined. Dispersion curves are presented and analyzed; theory of lattice dynamics is considered; effects of Fermi surfaces on dispersion curves; electron-phonon interactions, electronic structure influence on lattice vibrations, and phonon lifetimes are explored. The dispersion relation of spin waves in crystals and experiments in which dispersion curves for spin waves in Co-Fe alloy and magnons in magnetite were obtained and the reality of the magnon was demonstrated are discussed. (D.C.W)
Dark- and bright-rogue-wave solutions for media with long-wave-short-wave resonance.
Chen, Shihua; Grelu, Philippe; Soto-Crespo, J M
2014-01-01
Exact explicit rogue-wave solutions of intricate structures are presented for the long-wave-short-wave resonance equation. These vector parametric solutions feature coupled dark- and bright-field counterparts of the Peregrine soliton. Numerical simulations show the robustness of dark and bright rogue waves in spite of the onset of modulational instability. Dark fields originate from the complex interplay between anomalous dispersion and the nonlinearity driven by the coupled long wave. This unusual mechanism, not available in scalar nonlinear wave equation models, can provide a route to the experimental realization of dark rogue waves in, for instance, negative index media or with capillary-gravity waves.
Dark- and bright-rogue-wave solutions for media with long-wave-short-wave resonance.
Chen, Shihua; Grelu, Philippe; Soto-Crespo, J M
2014-01-01
Exact explicit rogue-wave solutions of intricate structures are presented for the long-wave-short-wave resonance equation. These vector parametric solutions feature coupled dark- and bright-field counterparts of the Peregrine soliton. Numerical simulations show the robustness of dark and bright rogue waves in spite of the onset of modulational instability. Dark fields originate from the complex interplay between anomalous dispersion and the nonlinearity driven by the coupled long wave. This unusual mechanism, not available in scalar nonlinear wave equation models, can provide a route to the experimental realization of dark rogue waves in, for instance, negative index media or with capillary-gravity waves. PMID:24580164
Generating gravity waves with matter and electromagnetic waves
Barrabes, C.; Hogan, P A.
2008-05-15
If a homogeneous plane lightlike shell collides head on with a homogeneous plane electromagnetic shock wave having a step-function profile then no backscattered gravitational waves are produced. We demonstrate, by explicit calculation, that if the matter is accompanied by a homogeneous plane electromagnetic shock wave with a step-function profile then backscattered gravitational waves appear after the collision.
Hietala, Vincent M.; Vawter, Gregory A.
1993-01-01
The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.
Hietala, V.M.; Vawter, G.A.
1992-12-31
The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.
ERIC Educational Resources Information Center
Berry, M. V.; Balazs, N. L.
1979-01-01
Explains properties of the Airy packet that show that quantum wave functions correspond to a family of orbits and not to a single particle. Introducing the Airy packet into elementary quantum mechanics courses is recommended. (HM)
Thioglycolate poisoning ... Below are symptoms of cold wave lotion poisoning in different parts of the body. EYES, EARS, NOSE, AND THROAT Mouth irritation Burning and redness of the eyes Possibly serious damage to ...
... heat has caused more deaths than all other weather events, including floods. A heat wave is a ... care for heat- related emergencies … ❏ Listen to local weather forecasts and stay aware of upcoming temperature changes. ❏ ...
Abell, Bradley C; Pyrak-Nolte, Laura J
2013-11-01
The interface between two wedges can be treated as a displacement discontinuity characterized by elastic stiffnesses. By representing the boundary between the two quarter-spaces as a displacement discontinuity, coupled wedge waves were determined theoretically to be dispersive and to depend on the specific stiffness of the non-welded contact between the two wedges. Laboratory experiments on isotropic and anisotropic aluminum confirmed the theoretical prediction that the velocity of coupled wedge waves, for a non-welded interface, ranged continuously from the single wedge wave velocity at low stress to the Rayleigh velocity as the load applied normal to the interface was increased. Elastic waves propagating along the coupled wedges of two quarter-spaces in non-welded contact are found to exist theoretically even when the material properties of the two quarter-spaces are the same.
Sound wave transmission (image)
When sounds waves reach the ear, they are translated into nerve impulses. These impulses then travel to the brain where they are interpreted by the brain as sound. The hearing mechanisms within the inner ear, can ...
NASA Astrophysics Data System (ADS)
seyithocuk; jjeherrera; eltodesukane; GrahamRounce; rloldershaw; Beaker, Dr; Sandhu, G. S.; Ophiuchi
2016-03-01
In reply to the news article on the LIGO collaboration's groundbreaking detection of gravitational waves, first predicted by Einstein 100 years ago, from two black holes colliding (pp5, 6-7 and http://ow.ly/Ylsyt).
Hietala, V.M.; Vawter, G.A.
1993-12-14
The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size. 4 figures.
Weinstein, Alla
2011-11-01
Presentation from the 2011 Water Peer Review includes in which principal investigator Alla Weinstein discusses project progress in development of a floating offshore wind structure - the WindFloat - and incorporation therin of a Spherical Wave Energy Device.
Turbulence generation by waves
Kaftori, D.; Nan, X.S.; Banerjee, S.
1995-12-31
The interaction between two-dimensional mechanically generated waves, and a turbulent stream was investigated experimentally in a horizontal channel, using a 3-D LDA synchronized with a surface position measuring device and a micro-bubble tracers flow visualization with high speed video. Results show that although the wave induced orbital motion reached all the way to the wall, the characteristics of the turbulence wall structures and the turbulence intensity close to the wall were not altered. Nor was the streaky nature of the wall layer. On the other hand, the mean velocity profile became more uniform and the mean friction velocity was increased. Close to the free surface, the turbulence intensity was substantially increased as well. Even in predominantly laminar flows, the introduction of 2-D waves causes three dimensional turbulence. The turbulence enhancement is found to be proportional to the wave strength.
ERIC Educational Resources Information Center
Fisher, Arthur
1983-01-01
Physicists and engineers advance the state of several arts in the design of gravitational-wave detection equipment. Provides background information and discusses the equipment (including laser interferometer), its use, and results of several experimental studies. (JN)
Zhokhov, P A; Zheltikov, A M
2013-05-01
Shock-wave formation is a generic scenario of wave dynamics known in nonlinear acoustics, fluid dynamics, astrophysics, seismology, and detonation physics. Here, we show that, in nonlinear optics, remarkably short, attosecond shock transients can be generated through a strongly coupled spatial and temporal dynamics of ultrashort light pulses, suggesting a pulse self-compression scenario whereby multigigawatt attosecond optical waveforms can be synthesized. PMID:23683197
Périnet, Nicolas; Falcón, Claudio; Chergui, Jalel; Juric, Damir; Shin, Seungwon
2016-06-01
We report on the numerical and theoretical study of the subcritical bifurcation of parametrically amplified waves appearing at the interface between two immiscible incompressible fluids when the layer of the lower fluid is very shallow. As a critical control parameter is surpassed, small amplitude surface waves bifurcate subcritically toward highly nonlinear ones with twice their amplitude. We relate this hysteresis with the change of shear stress using a simple stress balance, in agreement with numerical results.
Sound Waves Levitate Substrates
NASA Technical Reports Server (NTRS)
Lee, M. C.; Wang, T. G.
1982-01-01
System recently tested uses acoustic waves to levitate liquid drops, millimeter-sized glass microballoons, and other objects for coating by vapor deposition or capillary attraction. Cylindrical contactless coating/handling facility employs a cylindrical acoustic focusing radiator and a tapered reflector to generate a specially-shaped standing wave pattern. Article to be processed is captured by the acoustic force field under the reflector and moves as reflector is moved to different work stations.
McCandless, Kathleen; Petersson, Anders; Nilsson, Stefan; Sjogreen, Bjorn
2007-01-08
WPP is a massively parallel, 3D, C++, finite-difference elastodynamic wave propagation code. Typical applications for wave propagation with WPP include: evaluation of seismic event scenarios and damage from earthquakes, non-destructive evaluation of materials, underground facility detection, oil and gas exploration, predicting the electro-magnetic fields in accelerators, and acoustic noise generation. For more information, see Users Manual [1].
NASA Astrophysics Data System (ADS)
López Ariste, A.; Centeno, R.; Khomenko, E.
2016-06-01
Context. Waves in the magnetized solar atmosphere are one of the favourite means of transferring and depositing energy into the solar corona. The study of waves brings information not just on the dynamics of the magnetized plasma, but also on the possible ways in which the corona is heated. Aims: The identification and analysis of the phase singularities or dislocations provide us with a complementary approach to the magnetoacoustic and Aflvén waves propagating in the solar atmosphere. They allow us to identify individual wave modes, shedding light on the probability of excitation or the nature of the triggering mechanism. Methods: We use a time series of Doppler shifts measured in two spectral lines, filtered around the three-minute period region. The data show a propagating magnetoacoustic slow mode with several dislocations and, in particular, a vortex line. We study under what conditions the different wave modes propagating in the umbra can generate the observed dislocations. Results: The observed dislocations can be fully interpreted as a sequence of sausage and kink modes excited sequentially on average during 15 min. Kink and sausage modes appear to be excited independently and sequentially. The transition from one to the other lasts less than three minutes. During the transition we observe and model the appearance of superoscillations inducing large phase gradients and phase mixing. Conclusions: The analysis of the observed wave dislocations leads us to the identification of the propagating wave modes in umbrae. The identification in the data of superoscillatory regions during the transition from one mode to the other may be an important indicator of the location of wave dissipation.
NASA Astrophysics Data System (ADS)
Paton, R. T.; Skews, B. W.; Rubidge, S.; Snow, J.
2013-07-01
The behaviour of conical shock waves imploding axisymmetrically was first studied numerically by Hornung (J Fluid Mech 409:1-12, 2000) and this prompted a limited experimental investigation into these complex flow patterns by Skews et al. (Shock Waves 11:323-326, 2002). Modification of the simulation boundary conditions, resulting in the loss of self-similarity, was necessary to image the flow experimentally. The current tests examine the temporal evolution of these flows utilising a converging conical gap of fixed width fed by a shock wave impinging at its entrance, supported by CFD simulations. The effects of gap thickness, angle and incident shock strength were investigated. The wave initially diffracts around the outer lip of the gap shedding a vortex which, for strong incident shock cases, can contain embedded shocks. The converging shock at exit reflects on the axis of symmetry with the reflected wave propagating outwards resulting in a triple point developing on the incident wave together with the associated shear layer. This axisymmetric shear layer rolls up into a mushroom-shaped toroidal vortex ring and forward-facing jet. For strong shocks, this deforms the Mach disk to the extent of forming a second triple point with the primary shock exhibiting a double bulge. Separate features resembling the Richtmeyer-Meshkov and Kelvin-Helmholtz instabilities were noted in some tests. Aside from the incident wave curvature, the reflection patterns demonstrated correspond well with the V- and DV-types identified by Hornung although type S was not clearly seen, possibly due to the occlusion of the reflection region by the outer diffraction vortex at these early times. Some additional computational work explicitly exploring the limits of the parameter space for such systems has demonstrated the existence of a possible further reflection type, called vN-type, which is similar to the von Neumann reflection for plane waves. It is recommended that the parameter space be
Périnet, Nicolas; Falcón, Claudio; Chergui, Jalel; Juric, Damir; Shin, Seungwon
2016-06-01
We report on the numerical and theoretical study of the subcritical bifurcation of parametrically amplified waves appearing at the interface between two immiscible incompressible fluids when the layer of the lower fluid is very shallow. As a critical control parameter is surpassed, small amplitude surface waves bifurcate subcritically toward highly nonlinear ones with twice their amplitude. We relate this hysteresis with the change of shear stress using a simple stress balance, in agreement with numerical results. PMID:27415365
NASA Technical Reports Server (NTRS)
Kory, Carol L.
1998-01-01
The traveling-wave tube (TWT) is a vacuum device invented in the early 1940's used for amplification at microwave frequencies. Amplification is attained by surrendering kinetic energy from an electron beam to a radio frequency (RF) electromagnetic wave. The demand for vacuum devices has been decreased largely by the advent of solid-state devices. However, although solid state devices have replaced vacuum devices in many areas, there are still many applications such as radar, electronic countermeasures and satellite communications, that require operating characteristics such as high power (Watts to Megawatts), high frequency (below 1 GHz to over 100 GHz) and large bandwidth that only vacuum devices can provide. Vacuum devices are also deemed irreplaceable in the music industry where musicians treasure their tube-based amplifiers claiming that the solid-state and digital counterparts could never provide the same "warmth" (3). The term traveling-wave tube includes both fast-wave and slow-wave devices. This article will concentrate on slow-wave devices as the vast majority of TWTs in operation fall into this category.
Ocean wave electric generators
Rosenberg, H.R.
1986-02-04
This patent describes an apparatus for generating electricity from ocean waves. It consists of: 1.) a hollow buoyant duck positioned in the path of waves including a core about the center axis of which the duck rotates, a lower chamber portion having liquid therein and an upper chamber portion having air therein. The air is alternately compressed and expanded by the liquid in the chamber during the rotational motion of the duck caused by waves. A turbine mounted in the upper portion of the duck is driven by the compressed and expanded air. A generator is coupled to the turbine and operated to produce electrical energy and an air bulb; 2.) a spine having a transverse axial shaft anchoring the spine to the ocean floor. The upper portion of the spine engages the duck to maintain the duck in position. The spine has a curved configuration to concentrate and direct wave energy. The spine configuration acts as a scoop to increase the height of wave peaks and as a foil to increase the depth of wave troughs.
NASA Astrophysics Data System (ADS)
Webb, G. M.; Burrows, R. H.; Ao, X.; Zank, G. P.; Zank
2014-04-01
Models for traveling waves in multi-fluid plasmas give essential insight into fully nonlinear wave structures in plasmas, not readily available from either numerical simulations or from weakly nonlinear wave theories. We illustrate these ideas using one of the simplest models of an electron-proton multi-fluid plasma for the case where there is no magnetic field or a constant normal magnetic field present. We show that the traveling waves can be reduced to a single first-order differential equation governing the dynamics. We also show that the equations admit a multi-symplectic Hamiltonian formulation in which both the space and time variables can act as the evolution variable. An integral equation useful for calculating adiabatic, electrostatic solitary wave signatures for multi-fluid plasmas with arbitrary mass ratios is presented. The integral equation arises naturally from a fluid dynamics approach for a two fluid plasma, with a given mass ratio of the two species (e.g. the plasma could be an electron-proton or an electron-positron plasma). Besides its intrinsic interest, the integral equation solution provides a useful analytical test for numerical codes that include a proton-electron mass ratio as a fundamental constant, such as for particle in cell (PIC) codes. The integral equation is used to delineate the physical characteristics of ion acoustic traveling waves consisting of hot electron and cold proton fluids.
NASA Astrophysics Data System (ADS)
Conklin, John
2016-03-01
With the expected direct detection of gravitational waves by Advanced LIGO and pulsar timing arrays in the near future, and with the recent launch of LISA Pathfinder this can arguably be called the decade of gravitational waves. Low frequency gravitational waves in the mHz range, which can only be observed from space, provide the richest science and complement high frequency observatories on the ground. A space-based observatory will improve our understanding of the formation and growth of massive black holes, create a census of compact binary systems in the Milky Way, test general relativity in extreme conditions, and enable searches for new physics. LISA, by far the most mature concept for detecting gravitational waves from space, has consistently ranked among the nation's top priority large science missions. In 2013, ESA selected the science theme ``The Gravitational Universe'' for its third large mission, L3, under the Cosmic Visions Program, with a planned launch date of 2034. NASA has decided to join with ESA on the L3 mission as a junior partner and has recently assembled a study team to provide advice on how NASA might contribute to the European-led mission. This talk will describe these efforts and the activities of the Gravitational Wave Science Interest Group and the L3 Study Team, which will lead to the first space-based gravitational wave observatory.
Ultrasonic Lamb wave tomography
NASA Astrophysics Data System (ADS)
Leonard, Kevin R.; Malyarenko, Eugene V.; Hinders, Mark K.
2002-12-01
Nondestructive evaluation (NDE) of aerospace structures using traditional methods is a complex, time-consuming process critical to maintaining mission readiness and flight safety. Limited access to corrosion-prone structure and the restricted applicability of available NDE techniques for the detection of hidden corrosion or other damage often compound the challenge. In this paper we discuss our recent work using ultrasonic Lamb wave tomography to address this pressing NDE technology need. Lamb waves are ultrasonic guided waves, which allow large sections of aircraft structures to be rapidly inspected for structural flaws such as disbonds, corrosion and delaminations. Because the velocity of Lamb waves depends on thickness, for example, the travel times of the fundamental Lamb modes can be converted into a thickness map of the inspection region. However, extracting quantitative information from Lamb wave data has always involved highly trained personnel with a detailed knowledge of mechanical waveguide physics. Our work focuses on tomographic reconstruction to produce quantitative maps that can be easily interpreted by technicians or fed directly into structural integrity and lifetime prediction codes. Laboratory measurements discussed here demonstrate that Lamb wave tomography using a square perimeter array of transducers with algebraic reconstruction tomography is appropriate for detecting flaws in aircraft materials. The speed and fidelity of the reconstruction algorithms as well as practical considerations for person-portable array-based systems are discussed in this paper.
Investigating the Use of Ultrasonic Guided Waves for Aging Wire Insulation Assessment
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Madaras, Eric I.
2002-01-01
Aging wiring has become a critical issue to DoD, NASA, FAA, and Industry. The problem is that insulation on environmentally aged wire becomes brittle and cracks. This exposes the underlying conductive wire to the potential for short circuits and fire. The difficulty is that techniques to monitor aging wire problems focus on applying electrical sensing techniques that are not very sensitive to the wire insulation. Thus, the development of methods to quantify and monitor aging wire insulation is highly warranted. Measurement of wire insulation stiffness by ultrasonic guided waves is being examined. Initial laboratory tests were performed on a simple model consisting of a solid cylinder and then a solid cylinder with a polymer coating. Experimental measurements showed that the lowest order axisymmetric mode may be sensitive to stiffness changes in the wire insulation. To test this theory, mil-spec wire samples MIL-W-81381, MIL-W-22759/34, and MIL-W-22759/87 (typically found in aircraft) were heat-damaged in an oven, in a range of heating conditions. The samples were 12, 16, and 20 gauge and the heat-damage introduced material changes in the wire-insulation that made the originally flexible insulation brittle and darker in color. Axisymmetric mode phase velocity increased for the samples that were exposed to heat for longer duration. For example, the phase velocity in the 20-gauge MIL-W-22759/34 wire changed from a baseline value of 2790m/s to 3280m/s and 3530m/s for one-hour exposures to 3490C and 3990C, respectively. Although the heat-damage conditions are not the same as environmental aging, we believe that with further development and refinements, the ultrasonic guided waves can be used to inspect wire-insulation for detrimental environmental aging conditions.
Rain waves-wind waves interaction application to scatterometry
NASA Technical Reports Server (NTRS)
Kharif, C.; Giovanangeli, J. P.; Bliven, L.
1989-01-01
Modulation of a rain wave pattern by longer waves has been studied. An analytical model taking into account capillarity effects and obliquity of short waves has been developed. Modulation rates in wave number and amplitude have been computed. Experiments were carried out in a wave tank. First results agree with theoretical models, but higher values of modulation rates are measured. These results could be taken into account for understanding the radar response from the sea surface during rain.
Various Boussinesq solitary wave solutions
Yates, G.T.
1995-12-31
The generalized Boussinesq (gB) equations have been used to model nonlinear wave evolution over variable topography and wave interactions with structures. Like the KdV equation, the gB equations support a solitary wave solution which propagates without changing shape, and this solitary wave is often used as a primary test case for numerical studies of nonlinear waves using either the gB or other model equations. Nine different approximate solutions of the generalized Boussinesq equations are presented with simple closed form expressions for the wave elevation and wave speed. Each approximates the free propagation of a single solitary wave, and eight of these solutions are newly obtained. The author compares these solutions with the well known KdV solution, Rayleigh`s solution, Laitone`s higher order solution, and ``exact`` numerical integration of the gB equations. Existing experimental data on solitary wave shape and wave speed are compared with these models.
Partial-wave expansions of angular spectra of plane waves.
Lock, James A
2006-11-01
Focused electromagnetic beams are frequently modeled by either an angular spectrum of plane waves or a partial-wave sum of spherical multipole waves. The connection between these two beam models is explored here. The partial-wave expansion of an angular spectrum containing evanescent components is found to possess only odd partial waves. On the other hand, the partial-wave expansion of an alternate angular spectrum constructed so as to be free of evanescent components contains all partial waves but describes a propagating beam with a small amount of standing-wave component mixed in. A procedure is described for minimizing the standing-wave component so as to more accurately model a purely forward propagating experimental beam.
Partial-wave expansions of angular spectra of plane waves
NASA Astrophysics Data System (ADS)
Lock, James A.
2006-11-01
Focused electromagnetic beams are frequently modeled by either an angular spectrum of plane waves or a partial-wave sum of spherical multipole waves. The connection between these two beam models is explored here. The partial-wave expansion of an angular spectrum containing evanescent components is found to possess only odd partial waves. On the other hand, the partial-wave expansion of an alternate angular spectrum constructed so as to be free of evanescent components contains all partial waves but describes a propagating beam with a small amount of standing-wave component mixed in. A procedure is described for minimizing the standing-wave component so as to more accurately model a purely forward propagating experimental beam.
Longitudinal shear wave and transverse dilatational wave in solids.
Catheline, S; Benech, N
2015-02-01
Dilatation wave involves compression and extension and is known as the curl-free solution of the elastodynamic equation. Shear wave on the contrary does not involve any change in volume and is the divergence-free solution. This letter seeks to examine the elastodynamic Green's function through this definition. By separating the Green's function in divergence-free and curl-free terms, it appears first that, strictly speaking, the longitudinal wave is not a pure dilatation wave and the transverse wave is neither a pure shear wave. Second, not only a longitudinal shear wave but also a transverse dilatational wave exists. These waves are shown to be a part of the solution known as coupling terms. Their special motion is carefully described and illustrated.
Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan
2016-01-01
Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system. PMID:26864099
Hurricane, O A; Hammer, J H
2005-10-11
Radiation driven heat waves (Marshak Waves) are ubiquitous in astrophysics and terrestrial laser driven high energy density plasma physics (HEDP) experiments. Generally, the equations describing Marshak waves are so nonlinear, that solutions involving more than one spatial dimension require simulation. However, in this paper we show how one may analytically solve the problem of the two-dimensional nonlinear evolution of a Marshak wave, bounded by lossy walls, using an asymptotic expansion in a parameter related to the wall albedo and a simplification of the heat front equation of motion. Three parameters determine the nonlinear evolution, a modified Markshak diffusion constant, a smallness parameter related to the wall albedo, and the spacing of the walls. The final nonlinear solution shows that the Marshak wave will be both slowed and bent by the non-ideal boundary. In the limit of a perfect boundary, the solution recovers the original diffusion-like solution of Marshak. The analytic solution will be compared to a limited set of simulation results and experimental data.
Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan
2016-01-01
Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system. PMID:26864099
Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan
2016-01-01
Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system.
Dynamics of coupled light waves and electron-acoustic waves.
Shukla, P K; Stenflo, L; Hellberg, M
2002-08-01
The nonlinear interaction between coherent light waves and electron-acoustic waves in a two-electron plasma is considered. The interaction is governed by a pair of equations comprising a Schrödinger-like equation for the light wave envelope and a driven (by the light pressure) electron-acoustic wave equation. The newly derived nonlinear equations are used to study the formation and dynamics of envelope light wave solitons and light wave collapse. The implications of our investigation to space and laser-produced plasmas are pointed out.
NASA Technical Reports Server (NTRS)
Russell, C. T.; Luhmann, J. G.; Schwingenschuh, K.; Riedler, W.; Eroshenko, E.
1992-01-01
Weak, about 0.15 nT, narrow band emissions at the proton gyro frequency are observed by the Phobos magnetometer MAGMA, upstream from the bow shock of Mars. These waves are left-hand elliptically polarized. They may be associated with the pick up of protons from the Martian hydrogen exosphere. Strong turbulence, similar to that observed at the terrestrial bow shock, is found on occasion in the upstream region when the IMF connects to the bow shock. On two occasions this turbulence occurred when the spacecraft crossed the orbit of Phobos. This coincidence raises the possibility that material in the orbits of Phobos interacts with the solar wind in such a way to either affect the direction of the IMF or to cause instabilities in the solar wind plasma. However, since on a third occasion these waves did not occur, these waves may be shock associated rather than Phobos associated.
Surface Acoustic Wave Microfluidics
NASA Astrophysics Data System (ADS)
Yeo, Leslie Y.; Friend, James R.
2014-01-01
Fluid manipulations at the microscale and beyond are powerfully enabled through the use of 10-1,000-MHz acoustic waves. A superior alternative in many cases to other microfluidic actuation techniques, such high-frequency acoustics is almost universally produced by surface acoustic wave devices that employ electromechanical transduction in wafer-scale or thin-film piezoelectric media to generate the kinetic energy needed to transport and manipulate fluids placed in adjacent microfluidic structures. These waves are responsible for a diverse range of complex fluid transport phenomena - from interfacial fluid vibration and drop and confined fluid transport to jetting and atomization - underlying a flourishing research literature spanning fundamental fluid physics to chip-scale engineering applications. We highlight some of this literature to provide the reader with a historical basis, routes for more detailed study, and an impression of the field's future directions.
Tuck, J.L.
1955-03-01
This patent relates to means for ascertaining the instant of arrival of a shock wave in an exploslve charge and apparatus utilizing this means to coordinate the timing of two operations involving a short lnterval of time. A pair of spaced electrodes are inserted along the line of an explosive train with a voltage applied there-across which is insufficient to cause discharge. When it is desired to initiate operation of a device at the time the explosive shock wave reaches a particular point on the explosive line, the device having an inherent time delay, the electrodes are located ahead of the point such that the ionization of the area between the electrodes caused by the traveling explosive shock wave sends a signal to initiate operation of the device to cause it to operate at the proper time. The operated device may be photographic equipment consisting of an x-ray illuminating tube.
Yerganian, Simon Scott
2001-07-17
A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.
Yerganian, Simon Scott
2003-02-11
A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase-shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in the direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.
NASA Astrophysics Data System (ADS)
Matthews, R. K.; Stepanek, S. A.
Electromagnetic wave testing, which represents a relatively new test technique that involves the union of several disciplines (aerothermodynamics, electromagnetics, materials/structures, and advanced diagnostics) is introduced. The essence of this new technique deals with the transmission and possible distortion of electromagnetic waves (RF or IR) as they pass through the bow shock, flow field, and electromagnetic window of a missile flying at hypersonic speeds. Variations in gas density along the optical path can cause significant distortion of the electromagnetic waves and, therefore the missile seeker system may not effectively track the target. Two specific test techniques are described. The first example deals with the combining of a wind tunnel and an RF range while the second example discusses the complexities of evaluating IR seeker system performance.
NASA Technical Reports Server (NTRS)
Goertz, C. K.
1986-01-01
Three planets, the earth, Jupiter and Saturn are known to emit nonthermal radio waves which require coherent radiation processes. The characteristic features (frequency spectrum, polarization, occurrence probability, radiation pattern) are discussed. Radiation which is externally controlled by the solar wind is distinguished from internally controlled radiation which only originates from Jupiter. The efficiency of the externally controlled radiation is roughly the same at all three planets (5 x 10 to the -6th) suggesting that similar processes are active there. The maser radiation mechanism for the generation of the radio waves and general requirements for the mechanism which couples the power generator to the region where the radio waves are generated are briefly discussed.
NASA Technical Reports Server (NTRS)
Anderson, Roger R.; Gurnett, Donald A.; Odem, Daniel L.
1992-01-01
The CRRES plasma wave experiment is designed to provide information on the plasma wave environment and the total plasma density in the Earth's radiation belts and throughout the CRRES orbit. This information is valuable both for studying the naturally occurring wave-particle interactions affecting the plasma and particle environment in the plasmasphere and magnetosphere as well as for studying the chemical releases. The electric field sensors for this instrument consist of two long electric dipole antennas (about 100 m tip-to-tip), and the magnetic field sensor is a search coil magnetometer mounted at the end of a 6-m boom. The instrument has a 14-channel spectrum analyzer covering the frequency range from 5.6 Hz to 10 kHz, and a 128-step sweep frequency receiver covering the frequency range from 100 Hz to 400 kHz.
NASA Technical Reports Server (NTRS)
Connolly, D. J. (Inventor)
1978-01-01
A traveling wave tube (TWT) has a slow wave structure (SWS) which is severed into two or more sections. A signal path, connects the end of an SWS section to the beginning of the following SWS section. The signal path comprises an impedance matching coupler (IMC), followed by an isolator, a variable phase shifter, and a second IMC. The aggregate band pass characteristic of the components in the signal path is chosen to reject, or strongly attenuate, all frequencies outside the desired operating frequency range of the TWT and yet pass, with minimal attenuation in the forward direction, all frequencies within the desired operating frequency range. The isolator is chosen to reject, or strongly attenuate, waves, of all frequencies, which propagate in the backward direction. The aggregate phase shift characteristic of the components in the signal path is chosen to apply signal power to the beginning of the following SWS section with the phase angle yielding maximum efficiency.
Solitary water wave interactions
NASA Astrophysics Data System (ADS)
Craig, W.; Guyenne, P.; Hammack, J.; Henderson, D.; Sulem, C.
2006-05-01
This article concerns the pairwise nonlinear interaction of solitary waves in the free surface of a body of water lying over a horizontal bottom. Unlike solitary waves in many completely integrable model systems, solitary waves for the full Euler equations do not collide elastically; after interactions, there is a nonzero residual wave that trails the post-collision solitary waves. In this report on new numerical and experimental studies of such solitary wave interactions, we verify that this is the case, both in head-on collisions (the counterpropagating case) and overtaking collisions (the copropagating case), quantifying the degree to which interactions are inelastic. In the situation in which two identical solitary waves undergo a head-on collision, we compare the asymptotic predictions of Su and Mirie [J. Fluid Mech. 98, 509 (1980)] and Byatt-Smith [J. Fluid Mech. 49, 625 (1971)], the wavetank experiments of Maxworthy [J. Fluid Mech. 76, 177 (1976)], and the numerical results of Cooker, Weidman, and Bale [J. Fluid Mech. 342, 141 (1997)] with independent numerical simulations, in which we quantify the phase change, the run-up, and the form of the residual wave and its Fourier signature in both small- and large-amplitude interactions. This updates the prior numerical observations of inelastic interactions in Fenton and Rienecker [J. Fluid Mech. 118, 411 (1982)]. In the case of two nonidentical solitary waves, our precision wavetank experiments are compared with numerical simulations, again observing the run-up, phase lag, and generation of a residual from the interaction. Considering overtaking solitary wave interactions, we compare our experimental observations, numerical simulations, and the asymptotic predictions of Zou and Su [Phys. Fluids 29, 2113 (1986)], and again we quantify the inelastic residual after collisions in the simulations. Geometrically, our numerical simulations of overtaking interactions fit into the three categories of Korteweg-deVries two
Graham, T. B.
2010-04-01
The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.
The gravitational wave experiment
NASA Technical Reports Server (NTRS)
Bertotti, B.; Ambrosini, R.; Asmar, S. W.; Brenkle, J. P.; Comoretto, G.; Giampieri, G.; Less, L.; Messeri, A.; Wahlquist, H. D.
1992-01-01
Since the optimum size of a gravitational wave detector is the wave length, interplanetary dimensions are needed for the mHz band of interest. Doppler tracking of Ulysses will provide the most sensitive attempt to date at the detection of gravitational waves in the low frequency band. The driving noise source is the fluctuations in the refractive index of interplanetary plasma. This dictates the timing of the experiment to be near solar opposition and sets the target accuracy for the fractional frequency change at 3.0 x 10 exp -14 for integration times of the order of 1000 sec. The instrumentation utilized by the experiment is distributed between the radio systems on the spacecraft and the seven participating ground stations of the Deep Space Network and Medicina. Preliminary analysis is available of the measurements taken during the Ulysses first opposition test.
Lucas, Timothy S.
1991-01-01
A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.
NASA Astrophysics Data System (ADS)
Farkas, I.; Helbing, D.; Vicsek, T.
2003-12-01
Mexican wave first widely broadcasted during the 1986 World Cup held in Mexico, is a human wave moving along the stands of stadiums as one section of spectators stands up, arms lifting, then sits down as the next section does the same. Here we use variants of models originally developed for the description of excitable media to demonstrate that this collective human behaviour can be quantitatively interpreted by methods of statistical physics. Adequate modelling of reactions to triggering attempts provides a deeper insight into the mechanisms by which a crowd can be stimulated to execute a particular pattern of behaviour and represents a possible tool of control during events involving excited groups of people. Interactive simulations, video recordings and further images are available at the webpage dedicated to this work: http://angel.elte.hu/wave.
NASA Technical Reports Server (NTRS)
Gurnett, Donald A.
1995-01-01
An overview is given of spacecraft observations of plasma waves in the solar system. In situ measurements of plasma phenomena have now been obtained at all of the planets except Mercury and Pluto, and in the interplanetary medium at heliocentric radial distances ranging from 0.29 to 58 AU. To illustrate the range of phenomena involved, we discuss plasma waves in three regions of physical interest: (1) planetary radiation belts, (2) planetary auroral acceleration regions and (3) the solar wind. In each region we describe examples of plasma waves that are of some importance, either due to the role they play in determining the physical properties of the plasma, or to the unique mechanism involved in their generation.
Adaptive multiconfigurational wave functions
Evangelista, Francesco A.
2014-03-28
A method is suggested to build simple multiconfigurational wave functions specified uniquely by an energy cutoff Λ. These are constructed from a model space containing determinants with energy relative to that of the most stable determinant no greater than Λ. The resulting Λ-CI wave function is adaptive, being able to represent both single-reference and multireference electronic states. We also consider a more compact wave function parameterization (Λ+SD-CI), which is based on a small Λ-CI reference and adds a selection of all the singly and doubly excited determinants generated from it. We report two heuristic algorithms to build Λ-CI wave functions. The first is based on an approximate prescreening of the full configuration interaction space, while the second performs a breadth-first search coupled with pruning. The Λ-CI and Λ+SD-CI approaches are used to compute the dissociation curve of N{sub 2} and the potential energy curves for the first three singlet states of C{sub 2}. Special attention is paid to the issue of energy discontinuities caused by changes in the size of the Λ-CI wave function along the potential energy curve. This problem is shown to be solvable by smoothing the matrix elements of the Hamiltonian. Our last example, involving the Cu{sub 2}O{sub 2}{sup 2+} core, illustrates an alternative use of the Λ-CI method: as a tool to both estimate the multireference character of a wave function and to create a compact model space to be used in subsequent high-level multireference coupled cluster computations.
Marsh, S.P.
1988-03-08
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.
Marsh, Stanley P.
1988-01-01
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive.
Marsh, S.P.
1987-03-12
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.
The Virtual Wave Observatory (VWO)
NASA Astrophysics Data System (ADS)
Fung, S. F.; VWO Team
2008-12-01
Heliophysics wave data are currently not easily searchable by computers, making identifying pertinent wave data features for analyses and cross comparisons difficult and laborious. Since wave data analysis requires specialized knowledge about waves, which spans the spectrum of microphysics to macrophysics, researchers having varied expertise cannot easily use wave data. To resolve these difficulties and to allow wave data to contribute more fully to Heliophysics research, we are developing a Virtual Wave Observatory (VWO) whose goal is to enable all Heliophysics wave data to become searchable, understandable and usable by the Heliosphysics community. The VWO objective is to enable search of multiple and distributed wave data (from both active and passive measurements). This presentation provides and overview of the VWO, a new VxO component within the emerging distributed Heliophysics data and model environment.
Shock wave treatment in medicine.
Shrivastava, S K; Kailash
2005-03-01
Extracorporeal shock wave therapy in orthopedics and traumatology is still a young therapy method. Since the last few years the development of shock wave therapy has progressed rapidly. Shock waves have changed the treatment of urolithiasis substantially. Today shock waves are the first choice to treat kidney and urethral stones. Urology has long been the only medical field for shock waves in medicine. Meanwhile shock waves have been used in orthopedics and traumatology to treat insertion tendinitis, avascular necrosis of the head of femur and other necrotic bone alterations. Another field of shock wave application is the treatment of tendons, ligaments and bones on horses in veterinary medicine. In the present paper we discuss the basic theory and application of shock waves and its history in medicine. The idea behind using shock wave therapy for orthopedic diseases is the stimulation of healing in tendons, surrounding tissue and bones. PMID:15933416
Ultrasonic shear wave couplant
Kupperman, David S.; Lanham, Ronald N.
1985-01-01
Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.
Ultrasonic shear wave couplant
Kupperman, D.S.; Lanham, R.N.
1984-04-11
Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.
THERMOPLASTIC WAVES IN MAGNETARS
Beloborodov, Andrei M.; Levin, Yuri E-mail: yuri.levin@monash.edu.au
2014-10-20
Magnetar activity is generated by shear motions of the neutron star surface, which relieve internal magnetic stresses. An analogy with earthquakes and faults is problematic, as the crust is permeated by strong magnetic fields which greatly constrain crustal displacements. We describe a new deformation mechanism that is specific to strongly magnetized neutron stars. The magnetically stressed crust begins to move because of a thermoplastic instability, which launches a wave that shears the crust and burns its magnetic energy. The propagating wave front resembles the deflagration front in combustion physics. We describe the conditions for the instability, the front structure, and velocity, and discuss implications for observed magnetar activity.
NASA Astrophysics Data System (ADS)
Haeri, M. B.; Putterman, S. J.; Garcia, A.; Roberts, P. H.
1993-01-01
The nonlinear quantum kinetic equation for the interaction of sound waves is solved via analytic and numerical techniques. In the classical regime energy cascades to higher frequency (ω) according to the steady-state power law ω-3/2. In the quantum limit, the system prefers a reverse cascade of energy which follows the power law ω-6. Above a critical flux, a new type of spectrum appears which is neither self-similar nor close to equilibrium. This state of nonlinear quantum wave turbulence represents a flow of energy directly from the classical source to the quantum degrees of freedom.
Wouters, L.F.
1958-10-28
The detection of the shape and amplitude of a radiation wave is discussed, particularly an apparatus for automatically indicating at spaced lntervals of time the radiation intensity at a flxed point as a measure of a radiation wave passing the point. The apparatus utilizes a number of photomultiplier tubes surrounding a scintillation type detector, For obtainlng time spaced signals proportional to radiation at predetermined intervals the photolnultiplier tubes are actuated ln sequence following detector incidence of a predetermined radiation level by electronic means. The time spaced signals so produced are then separately amplified and relayed to recording means.
Quantum positron acoustic waves
Metref, Hassina; Tribeche, Mouloud
2014-12-15
Nonlinear quantum positron-acoustic (QPA) waves are investigated for the first time, within the theoretical framework of the quantum hydrodynamic model. In the small but finite amplitude limit, both deformed Korteweg-de Vries and generalized Korteweg-de Vries equations governing, respectively, the dynamics of QPA solitary waves and double-layers are derived. Moreover, a full finite amplitude analysis is undertaken, and a numerical integration of the obtained highly nonlinear equations is carried out. The results complement our previously published results on this problem.
Offshore wave energy experiment
Nielsen, K.; Scholten, N.C.; Soerensen, K.A. |
1995-12-31
This article describes the second phase of the off-shore wave energy experiment, taking place in the Danish part of the North Sea near Hanstholm. The wave power converter is a scale model consisting of a float 2.5 meter in diameter connected by rope to a seabed mounted piston pump installed on 25 meter deep water 2,5 km offshore. The structure, installation procedure results and experience gained during the test period will be presented and compared to calculations based on a computer model.
NASA Astrophysics Data System (ADS)
Mottola, Emil
2016-03-01
General Relativity receives quantum corrections relevant at macroscopic distance scales and near event horizons. These arise from the conformal scalar degree of freedom in the extended effective field theory (EFT) of gravity generated by the trace anomaly of massless quantum fields in curved space. Linearized around flat space this quantum scalar degree of freedom combines with the conformal part of the metric and predicts the existence of scalar spin-0 ``breather'' propagating gravitational waves in addition to the transverse tensor spin-2 waves of classical General Relativity. Estimates of the expected strength of scalar gravitational radiation from compact astrophysical sources are given.
Wave Motion Electric Generator
Jacobi, E. F.; Winkler, R. J.
1983-12-27
Set out herein is an electrical generator conformed for installation in a buoy, the generator comprising an inverted pendulum having two windings formed at the free end thereof and aligned to articulate between two end stops each provided with a magnetic circuit. As the loops thus pass through the magnetic circuit, electrical current is induced which may be rectified through a full way rectifier to charge up a storage battery. The buoy itself may be ballasted to have its fundamental resonance at more than double the wave frequency with the result that during each passing of a wave at least two induction cycles occur.
NASA Astrophysics Data System (ADS)
Gogberashvili, Merab; Mantidze, Irakli; Sakhelashvili, Otari; Shengelia, Tsotne
2016-05-01
The class of nonstationary braneworld models generated by the coupled gravitational and scalar fields is reviewed. The model represents a brane in a spacetime with single time and one large (infinite) and several small (compact) spacelike extra dimensions. In some particular cases the model has the solutions corresponding to the bulk gravi-scalar standing waves bounded by the brane. Pure gravitational localization mechanism of matter particles on the node of standing waves, where the brane is placed, is discussed. Cosmological applications of the model is also considered.
On the generation of internal wave modes by surface waves
NASA Astrophysics Data System (ADS)
Harlander, Uwe; Kirschner, Ian; Maas, Christian; Zaussinger, Florian
2016-04-01
Internal gravity waves play an important role in the ocean since they transport energy and momentum and the can lead to mixing when they break. Surface waves and internal gravity waves can interact. On the one hand, long internal waves imply a slow varying shear current that modifies the propagation of surface waves. Surface waves generated by the atmosphere can, on the other hand, excite internal waves by nonlinear interaction. Thereby a surface wave packet consisting of two close frequencies can resonate with a low frequency internal wave (Phillips, 1966). From a theoretical point of view, the latter has been studied intensively by using a 2-layer model, i.e. a surface layer with a strong density contrast and an internal layer with a comparable weak density contrast (Ball, 1964; Craig et al., 2010). In the present work we analyse the wave coupling for a continuously stratified fluid using a fully non-linear 2D numerical model (OpenFoam) and compare this with laboratory experiments (see Lewis et al. 1974). Surface wave modes are used as initial condition and the time development of the dominant surface and internal waves are studied by spectral and harmonic analysis. For the simple geometry of a box, the results are compared with analytical spectra of surface and gravity waves. Ball, F.K. 1964: Energy transfer between external and internal gravity waves. J. Fluid Mech. 19, 465. Craig, W., Guyenne, P., Sulem, C. 2010: Coupling between internal and surface waves. Natural Hazards 57, 617-642. Lewis, J.E., Lake, B.M., Ko, D.R.S 1974: On the interaction of internal waves and surfacr gravity waves, J. Fluid Mech. 63, 773-800. Phillips, O.M. 1966: The dynamics of the upper ocean, Cambridge University Press, 336pp.
Shear wave transmissivity measurement by color Doppler shear wave imaging
NASA Astrophysics Data System (ADS)
Yamakoshi, Yoshiki; Yamazaki, Mayuko; Kasahara, Toshihiro; Sunaguchi, Naoki; Yuminaka, Yasushi
2016-07-01
Shear wave elastography is a useful method for evaluating tissue stiffness. We have proposed a novel shear wave imaging method (color Doppler shear wave imaging: CD SWI), which utilizes a signal processing unit in ultrasound color flow imaging in order to detect the shear wave wavefront in real time. Shear wave velocity is adopted to characterize tissue stiffness; however, it is difficult to measure tissue stiffness with high spatial resolution because of the artifact produced by shear wave diffraction. Spatial average processing in the image reconstruction method also degrades the spatial resolution. In this paper, we propose a novel measurement method for the shear wave transmissivity of a tissue boundary. Shear wave wavefront maps are acquired by changing the displacement amplitude of the shear wave and the transmissivity of the shear wave, which gives the difference in shear wave velocity between two mediums separated by the boundary, is measured from the ratio of two threshold voltages required to form the shear wave wavefronts in the two mediums. From this method, a high-resolution shear wave amplitude imaging method that reconstructs a tissue boundary is proposed.
The role of Biot slow waves in electroseismic wave phenomena.
Pride, Steven R; Garambois, Stéphane
2002-02-01
The electromagnetic fields that are generated as a spherical seismic wave (either P or S) traverses an interface separating two porous materials are numerically modeled both with and without the generation of Biot slow waves at the interface. In the case of an incident fast-P wave, the predicted electric-field amplitudes when slow waves are neglected can easily be off by as much as an order of magnitude. In the case of an incident S wave, the error is much smaller (typically on the order of 10% or less) because not much S-wave energy gets converted into slow waves. In neglecting the slow waves, only six plane waves (reflected and transmitted fast-P, S, and EM waves) are available with which to match the eight continuity conditions that hold at each interface. This overdetermined problem is solved by placing weights on the eight continuity conditions so that those conditions that are most important for obtaining the proper response are emphasized. It is demonstrated that when slow waves are neglected, it is best to also neglect the continuity of the Darcy flow and fluid pressure across an interface. The principal conclusion of this work is that to properly model the electromagnetic (EM) fields generated at an interface by an incident seismic wave, the full Biot theory that allows for generation of slow waves must be employed.
NASA Astrophysics Data System (ADS)
Nembach, Hans; Shaw, Justin; Boone, Carl; McMichael, Robert; Silva, Tom
2014-03-01
It was recently shown that modes localized at the edges are sensitive to presumed defects. We measured localized spin-wave modes of individual Ni80Fe20 nanomagnets (NMs) with sizes ranging from 100 nm to 400 nm via heterodyne magneto-optical microwave microscopy. Comparison of field-swept spectra with micromagnetic simulations allows for identification of the observed spin-wave modes. One of the modes, the ``center-mode'', extends throughout the NM. The lowest order (highest resonance field) ``end-modes'' are localized at the ends of the nanomagnet. As such, it is expected that the end modes are more susceptible to edge defects. Spectra from nominally identical nanomagnets show that the resonance fields of the two end-modes vary substantially between nanomagnets.. We measured the lateral shape of the NMs with scanning electron microscopy, and then used the measured shapes to simulate the mode-spectra, but shape distortions cannot explain the observed mode distortions. Sidewall angle, re-deposition, and mill-induced edge-damage might also be important to accurately model end-mode distortions.
Wave "Coherency" and Implications for Wave-Particle Interactions
NASA Astrophysics Data System (ADS)
Tsurutani, Bruce; Lakhina, Gurbax; Remya, Banhu; Lee, Lou
2016-04-01
Wave "coherency" was introduced in 2009 by Tsurutani et al. (JGR, doi:10.1029/2008JA013353, 2009) to describe the waves detected in the ~10 to 100 ms duration subelements which are the fundamental components of ~0.1 to 0.5 s chorus "elements". In this talk we will show examples of what we mean by coherency and quasicoherency for: electromagnetic whistler mode chorus, electromagnetic ion cyclotron waves and plasmaspheric hiss waves. We will show how to measure coherency/quasicoherency quantitatively. This will be important for modeling purposes. Perhaps even more important is how coherent waves affect wave-particle interactions. Specific wave examples will be used to show that the pitch angle scattering rate for energetic electrons is roughly 3 orders of magnitude faster than Kennel-Petschek diffusion (which assumes incoherent waves).
Continuous-wave Submillimeter-wave Gyrotrons
Han, Seong-Tae; Griffin, Robert G.; Hu, Kan-Nian; Joo, Chan-Gyu; Joye, Colin D.; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Torrezan, Antonio C.; Woskov, Paul P.
2007-01-01
Recently, dynamic nuclear polarization enhanced nuclear magnetic resonance (DNP/NMR) has emerged as a powerful technique to obtain significant enhancements in spin spectra from biological samples. For DNP in modern NMR systems, a high power continuous-wave source in the submillimeter wavelength range is necessary. Gyrotrons can deliver tens of watts of CW power at submillimeter wavelengths and are well suited for use in DNP/NMR spectrometers. To date, 140 GHz and 250 GHz gyrotrons are being employed in DNP spectrometer experiments at 200 MHz and 380 MHz at MIT. A 460 GHz gyrotron, which has operated with 8 W of CW output power, will soon be installed in a 700 MHz NMR spectrometer. High power radiation with good spectral and spatial resolution from these gyrotrons should provide NMR spectrometers with high signal enhancement through DNP. Also, these tubes operating at submillimeter wavelengths should have important applications in research in physics, chemistry, biology, materials science and medicine. PMID:17404605
Generating electromagnetic waves from gravity waves in cosmology
Hogan, P. A.; O'Farrell, S.
2009-05-15
Examples of test electromagnetic waves on a Friedmann-Lemaitre-Robertson-Walker (FLRW) background are constructed from explicit perturbations of the FLRW space-times describing gravitational waves propagating in the isotropic universes. A possible physical mechanism for the production of the test electromagnetic waves is shown to be the coupling of the gravitational waves with a test magnetic field, confirming the observation of Marklund, Dunsby and Brodin [Phys. Rev. D 62, 101501(R) (2000)].
Submillimeter wave heterodyne receiver
NASA Technical Reports Server (NTRS)
Chattopadhyay, Goutam (Inventor); Manohara, Harish (Inventor); Siegel, Peter H. (Inventor); Ward, John (Inventor)
2011-01-01
In an embodiment, a submillimeter wave heterodyne receiver includes a finline ortho-mode transducer comprising thin tapered metallic fins deposited on a thin dielectric substrate to separate a vertically polarized electromagnetic mode from a horizontally polarized electromagnetic mode. Other embodiments are described and claimed.
NASA Astrophysics Data System (ADS)
Pushin, Dmitry
Most waves encountered in nature can be given a ``twist'', so that their phase winds around an axis parallel to the direction of wave propagation. Such waves are said to possess orbital angular momentum (OAM). For quantum particles such as photons, atoms, and electrons, this corresponds to the particle wavefunction having angular momentum of Lℏ along its propagation axis. Controlled generation and detection of OAM states of photons began in the 1990s, sparking considerable interest in applications of OAM in light and matter waves. OAM states of photons have found diverse applications such as broadband data multiplexing, massive quantum entanglement, optical trapping, microscopy, quantum state determination and teleportation, and interferometry. OAM states of electron beams have been used to rotate nanoparticles, determine the chirality of crystals and for magnetic microscopy. Here I discuss the first demonstration of OAM control of neutrons. Using neutron interferometry with a spatially incoherent input beam, we show the addition and conservation of quantum angular momenta, entanglement between quantum path and OAM degrees of freedom. Neutron-based quantum information science heretofore limited to spin, path, and energy degrees of freedom, now has access to another quantized variable, and OAM modalities of light, x-ray, and electron beams are extended to a massive, penetrating neutral particle. The methods of neutron phase imprinting demonstrated here expand the toolbox available for development of phase-sensitive techniques of neutron imaging. Financial support provided by the NSERC Create and Discovery programs, CERC and the NIST Quantum Information Program is acknowledged.
Characteristics of pressure waves
NASA Technical Reports Server (NTRS)
1977-01-01
Air blast characteristics generated by most types of explosions are discussed. Data cover both negative and positive blast load phases and net transverse pressure as a function of time. The effects of partial or total confinement, atmospheric propagation, absorption of energy by ground shock or cratering, and transmission over irregular terrain on blast wave properties were also considered.
"Hearing" Electromagnetic Waves
ERIC Educational Resources Information Center
Rojo, Marta; Munoz, Juan
2014-01-01
In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…
ERIC Educational Resources Information Center
Tucker, Vance A.
1971-01-01
Capillary and gravity water waves are related to the position, wavelength, and velocity of an object in flowing water. Water patterns are presented for ships and the whirling beetle with an explanation of how the design affects the objects velocity and the observed water wavelengths. (DS)
NASA Astrophysics Data System (ADS)
Muhs, H. P.
1985-07-01
The present low profile seeker front end's slotted waveguide antenna was primarily developed to investigate the feasibility of the application of standard manufacturing techniques to mm-wave hardware. A dual plane monopulse comparator was constructed to mate with the antenna via integrated packaging techniques. The comparator was fabricated by CAD/CAM milling operations.
NASA Technical Reports Server (NTRS)
Ray, Richard D.
1999-01-01
Oceanic internal tides are internal waves with tidal periodicities. They are ubiquitous throughout the ocean, although generally more pronounced near large bathymetric features such as mid-ocean ridges and continental slopes. The internal vertical displacements associated with these waves can be extraordinarily large. Near some shelf breaks where the surface tides are strong, internal displacements (e.g., of an isothermal surface) can exceed 200 meters. Displacements of 10 meters in the open ocean are not uncommon. The associated current velocities are usually comparable to or larger than the currents of the surface tide. On continental shelves internal tides can occasionally generate packets of internal solitons, which are detectable in remote sensing imagery. Other common nonlinear features are generation of higher harmonics (e.g., 6-hr waves) and wave breaking. Internal tides are known to be an important energy source for mixing of shelf waters. Recent research suggests that they may also be a significant energy source for deep-ocean mixing.
Menikoff, Ralph
2012-04-03
Shock initiation in a plastic-bonded explosives (PBX) is due to hot spots. Current reactive burn models are based, at least heuristically, on the ignition and growth concept. The ignition phase occurs when a small localized region of high temperature (or hot spot) burns on a fast time scale. This is followed by a growth phase in which a reactive front spreads out from the hot spot. Propagating reactive fronts are deflagration waves. A key question is the deflagration speed in a PBX compressed and heated by a shock wave that generated the hot spot. Here, the ODEs for a steady deflagration wave profile in a compressible fluid are derived, along with the needed thermodynamic quantities of realistic equations of state corresponding to the reactants and products of a PBX. The properties of the wave profile equations are analyzed and an algorithm is derived for computing the deflagration speed. As an illustrative example, the algorithm is applied to compute the deflagration speed in shock compressed PBX 9501 as a function of shock pressure. The calculated deflagration speed, even at the CJ pressure, is low compared to the detonation speed. The implication of this are briefly discussed.
ERIC Educational Resources Information Center
Bennett, J.
1973-01-01
Discusses wave patterns on the surfaces of ripening wheat and barley crops when the wind is moderately strong. Examines the structure of the turbulence over such natural surfaces and conditions under which the crop may be damaged by the wind. (JR)
Oblique detonation wave ramjet
NASA Technical Reports Server (NTRS)
Morrison, R. B.
1980-01-01
Two conceptual designs of the oblique detonation wave ramjet are presented. The performance is evaluated for stoichiometric hydrogen-air equivalence ratios of phi = 1/3, 2/3 and 1 for a range of flight Mach numbers from 6 to 10.
Elandt, Ryan B; Shakeri, Mostafa; Alam, Mohammad-Reza
2014-02-01
Here we show that a nonlinear resonance between oceanic surface waves caused by small seabed features (the so-called Bragg resonance) can be utilized to create the equivalent of lenses and curved mirrors for surface gravity waves. Such gravity wave lenses, which are merely small changes to the seafloor topography and therefore are surface noninvasive, can focus or defocus the energy of incident waves toward or away from any desired focal point. We further show that for a broadband incident wave spectrum (i.e., a wave group composed of a multitude of different-frequency waves), a polychromatic topography (occupying no more than the area required for a monochromatic lens) can achieve a broadband lensing effect. Gravity wave lenses can be utilized to create localized high-energy wave zones (e.g., for wave energy harvesting or creating artificial surf zones) as well as to disperse waves in order to create protected areas (e.g., harbors or areas near important offshore facilities). In reverse, lensing of oceanic waves may be caused by natural seabed features and may explain the frequent appearance of very high amplitude waves in certain bodies of water. PMID:25353576
Elandt, Ryan B; Shakeri, Mostafa; Alam, Mohammad-Reza
2014-02-01
Here we show that a nonlinear resonance between oceanic surface waves caused by small seabed features (the so-called Bragg resonance) can be utilized to create the equivalent of lenses and curved mirrors for surface gravity waves. Such gravity wave lenses, which are merely small changes to the seafloor topography and therefore are surface noninvasive, can focus or defocus the energy of incident waves toward or away from any desired focal point. We further show that for a broadband incident wave spectrum (i.e., a wave group composed of a multitude of different-frequency waves), a polychromatic topography (occupying no more than the area required for a monochromatic lens) can achieve a broadband lensing effect. Gravity wave lenses can be utilized to create localized high-energy wave zones (e.g., for wave energy harvesting or creating artificial surf zones) as well as to disperse waves in order to create protected areas (e.g., harbors or areas near important offshore facilities). In reverse, lensing of oceanic waves may be caused by natural seabed features and may explain the frequent appearance of very high amplitude waves in certain bodies of water.
Localized coherence of freak waves
NASA Astrophysics Data System (ADS)
Latifah, Arnida L.; van Groesen, E.
2016-09-01
This paper investigates in detail a possible mechanism of energy convergence leading to freak waves. We give examples of a freak wave as a (weak) pseudo-maximal wave to illustrate the importance of phase coherence. Given a time signal at a certain position, we identify parts of the time signal with successive high amplitudes, so-called group events, that may lead to a freak wave using wavelet transform analysis. The local coherence of the critical group event is measured by its time spreading of the most energetic waves. Four types of signals have been investigated: dispersive focusing, normal sea condition, thunderstorm condition and an experimental irregular wave. In all cases presented in this paper, it is shown that a high correlation exists between the local coherence and the appearance of a freak wave. This makes it plausible that freak waves can be developed by local interactions of waves in a wave group and that the effect of waves that are not in the immediate vicinity is minimal. This indicates that a local coherence mechanism within a wave group can be one mechanism that leads to the appearance of a freak wave.
Coded excitation plane wave imaging for shear wave motion detection.
Song, Pengfei; Urban, Matthew W; Manduca, Armando; Greenleaf, James F; Chen, Shigao
2015-07-01
Plane wave imaging has greatly advanced the field of shear wave elastography thanks to its ultrafast imaging frame rate and the large field-of-view (FOV). However, plane wave imaging also has decreased penetration due to lack of transmit focusing, which makes it challenging to use plane waves for shear wave detection in deep tissues and in obese patients. This study investigated the feasibility of implementing coded excitation in plane wave imaging for shear wave detection, with the hypothesis that coded ultrasound signals can provide superior detection penetration and shear wave SNR compared with conventional ultrasound signals. Both phase encoding (Barker code) and frequency encoding (chirp code) methods were studied. A first phantom experiment showed an approximate penetration gain of 2 to 4 cm for the coded pulses. Two subsequent phantom studies showed that all coded pulses outperformed the conventional short imaging pulse by providing superior sensitivity to small motion and robustness to weak ultrasound signals. Finally, an in vivo liver case study on an obese subject (body mass index = 40) demonstrated the feasibility of using the proposed method for in vivo applications, and showed that all coded pulses could provide higher SNR shear wave signals than the conventional short pulse. These findings indicate that by using coded excitation shear wave detection, one can benefit from the ultrafast imaging frame rate and large FOV provided by plane wave imaging while preserving good penetration and shear wave signal quality, which is essential for obtaining robust shear elasticity measurements of tissue.
Marto, Natália
2005-01-01
During the summer of 2003, record high temperatures were reported across Europe, causing thousands of casualties. Heat waves are sporadic recurrent events, characterised by intense and prolonged heat, associated with excess mortality and morbidity. The most frequent cause of death directly attributable to heat is heat stroke but heat waves are known to cause increases in all-cause mortality, specially circulatory and respiratory mortality. Epidemiological studies demonstrate excess casualties cluster in specific risk groups. The elderly, those with chronic medical conditions and the socially isolated are particularly vulnerable. Air conditioning is the strongest protective factor against heat-related disorders. Heat waves cause disease indirectly, by aggravating chronic disorders, and directly, by causing heat-related illnesses (HRI). Classic HRI include skin eruptions, heat cramps, heat syncope, heat exhaustion and heat stroke. Heat stroke is a medical emergency characterised by hyperthermia and central nervous system dysfunction. Treatment includes immediate cooling and support of organ-system function. Despite aggressive treatment, heat stroke is often fatal and permanent neurological damage is frequent in those who survive. Heat related illness and death are preventable through behavioural adaptations, such as use of air conditioning and increased fluid intake. Other adaptation measures include heat emergency warning systems and intervention plans and environmental heat stress reduction. Heat related mortality is expected to rise as a consequence of the increasing proportion of elderly persons, the growing urban population, and the anticipated increase in number and intensity of heat waves associated with global warming. Improvements in surveillance and response capability may limit the adverse health conditions of future heat waves. It is crucial that health professionals are prepared to recognise, prevent and treat HRI and learn to cooperate with local health
NASA Astrophysics Data System (ADS)
Robinett, R. W.
2004-03-01
The numerical prediction, theoretical analysis, and experimental verification of the phenomenon of wave packet revivals in quantum systems has flourished over the last decade and a half. Quantum revivals are characterized by initially localized quantum states which have a short-term, quasi-classical time evolution, which then can spread significantly over several orbits, only to reform later in the form of a quantum revival in which the spreading reverses itself, the wave packet relocalizes, and the semi-classical periodicity is once again evident. Relocalization of the initial wave packet into a number of smaller copies of the initial packet (‘minipackets’ or ‘clones’) is also possible, giving rise to fractional revivals. Systems exhibiting such behavior are a fundamental realization of time-dependent interference phenomena for bound states with quantized energies in quantum mechanics and are therefore of wide interest in the physics and chemistry communities. We review the theoretical machinery of quantum wave packet construction leading to the existence of revivals and fractional revivals, in systems with one (or more) quantum number(s), as well as discussing how information on the classical period and revival time is encoded in the energy eigenvalue spectrum. We discuss a number of one-dimensional model systems which exhibit revival behavior, including the infinite well, the quantum bouncer, and others, as well as several two-dimensional integrable quantum billiard systems. Finally, we briefly review the experimental evidence for wave packet revivals in atomic, molecular, and other systems, and related revival phenomena in condensed matter and optical systems.
Selection of Spiral Waves in Excitable Media with a Phase Wave at the Wave Back
NASA Astrophysics Data System (ADS)
Zykov, V. S.; Oikawa, N.; Bodenschatz, E.
2011-12-01
Universal relationships between the medium excitability and the angular velocity and the core radius of rigidly rotating spiral waves in excitable media are derived for situations where the wave front is a trigger wave and the wave back is a phase wave. Two universal limits restricting the region of existence of spiral waves in the parameter space are demonstrated. The predictions of the free-boundary approach are in good quantitative agreement with results from numerical reaction-diffusion simulations performed on the Kessler-Levine model.
Gravitational Waves: The Evidence Mounts
ERIC Educational Resources Information Center
Wick, Gerald L.
1970-01-01
Reviews the work of Weber and his colleagues in their attempts at detecting extraterrestial gravitational waves. Coincidence events recorded by special detectors provide the evidence for the existence of gravitational waves. Bibliography. (LC)
NASA Astrophysics Data System (ADS)
Russell, C. T.; Wei, H.; Cowee, M.; Neubauer, F. M.; Dougherty, M. K.
2014-12-01
The observation of ion cyclotron waves was generally expected well before Cassini arrived at Titan in 2004, because strong ion cyclotron waves were seen at Io where its atmosphere interacted with the corotating magnetospheric plasma. However, the region of the interaction of the Saturnian magnetospheric plasma with the Titan atmosphere has been quite devoid of ion cyclotron waves. Finally, on pass T63, ion cyclotron waves were seen briefly. More recently, on pass T98, a longer sequence of ion cyclotron waves also occurred. On pass T63, the pick-up ion signature is that of both H+ and H2+, while on pass T98, only H+ ion cyclotron waves are observed. We examine the strength of these waves and their region of occurrence in the light of our previous work on the expected occurrence of these waves.
Curved characteristics behind blast waves.
NASA Technical Reports Server (NTRS)
Laporte, O.; Chang, T. S.
1972-01-01
The behavior of nonisentropic flow behind a propagating blast wave is theoretically studied. Exact solutions, expressed in closed form in terms of elementary functions, are presented for three sets of curved characteristicseind a self-similar, strong blast wave.
ULF waves in the magnetosphere
Takahashi, Kazue )
1991-01-01
Research efforts in the area of magnetospheric ULF waves in the 1987-1990 period are reviewed. Attention is given to externally excited hydromagnetic waves including field line resonance, the global cavity mode, bow-shock-associated upstream waves, and Kelvin-Helmholtz waves. Consideration is given to internally excited Pc 4-5 pulsations and the role of these pulsations in the diffusion of ring-current ions based on the observed properties of the pulsations. 154 refs.
Transient Wave Rotor Performance Investigated
NASA Technical Reports Server (NTRS)
1996-01-01
The NASA Lewis Research Center is investigating the wave rotor for use as a core gas generator in future gas turbine engines. The device, which uses gas-dynamic waves to transfer energy directly to and from the working fluid through which the waves travel, consists of a series of constant-area passages that rotate about an axis. Through rotation, the ends of the passages are periodically exposed to various circumferentially arranged ports that initiate the traveling waves within the passages.
Mirages with atmospheric gravity waves.
Lehn, W H; Silvester, W K; Fraser, D M
1994-07-20
The temperature inversions that produce superior mirages are capable of supporting gravity (buoyancy) waves of very low frequency and long wavelength. This paper describes the optics of single mode gravity waves that propagate in a four-layer atmosphere. Images calculated by ray tracing show that (1) relatively short waves add a fine structure to the basic static mirage, and (2) long waves produce cyclic images, similar to those observed in the field, that display significant variation from a base image.
ULTRASONIC MEASUREMENT MODELS FOR SURFACE WAVE AND PLATE WAVE INSPECTIONS
Schmerr, Lester W. Jr.; Sedov, Alexander
2010-02-22
A complete ultrasonic measurement model for surface and plate wave inspections is obtained, where all the electrical, electromechanical, and acoustic/elastic elements are explicitly described. Reciprocity principles are used to describe the acoustic/elastic elements specifically in terms of an integral of the incident and scattered wave fields over the surface of the flaw. As with the case of bulk waves, if one assumes the incident surface waves or plate waves are locally planar at the flaw surface, the overall measurement model reduces to a very modular form where the far-field scattering amplitude of the flaw appears explicitly.
NASA Technical Reports Server (NTRS)
Fredericks, R. W.
1980-01-01
Topics included in the WISP science objectives are: (1) VLF wave injection experiments; (2) traveling ionospheric disturbances and atmospheric gravity waves; (3) ionospheric bubbles; and (4) plasma wave physics. Flow charts of the WISP investigation organization, the project life cycle and the instrumentation are given.
ERIC Educational Resources Information Center
Ng, Chiu-king
2010-01-01
When one end of a taut horizontal elastic string is shaken repeatedly up and down, a transverse wave (assume sine waveform) will be produced and travel along it. College students know this type of wave motion well. They know when the wave passes by, each element of the string will perform an oscillating up-down motion, which in mechanics is termed…
NASA Technical Reports Server (NTRS)
Gebben, V. D.
1968-01-01
Cardiac R wave detector obtains the systolic contraction signal of the human heart and uses it as a reference signal for the heart-assist pump cycle. It processes the electrocardiac signal /QRS wave complex/ of the natural heart in a sequence of operations which essentially elimates all components from the input signal except the R wave.
Wave/current interaction model
NASA Technical Reports Server (NTRS)
Liu, A. K.
1988-01-01
The wave-current interaction for the application to remote sensing data via numerical simulations and data comparison is modelled. Using the field data of surface current shear, wind condition and ambient wave spectrum, the numerical simulations of directional wave spectrum evolution were used to interpret and to compare with the aircraft data from Radar Ocean Wave Spectrometer (ROWS) and Surface Contour Radar (SCR) across the front during Frontal Air Sea Interaction Experiment (FASINEX). The wave-ice interaction was inspired by the observation of large amplitude waves hundreds of kms inside the ice pack in the Weddell Sea, resulting in breakup of the ice pack. The developed analysis of processes includes the refraction of waves at the pack edge, the effects of pack compression on wave propagation, wave train stability and buckling stability in the ice pack. Sources of pack compression and interaction between wave momentum and pack compression are investigated. Viscous camping of propagating waves in the marginal ice zone are also studied. The analysis suggests an explanation for the change in wave dispersion observed from the ship and the sequence of processes that cause ice pack breakup, pressure ridge formation and the formation of open bands of water.
The Detection of Gravitational Waves
NASA Astrophysics Data System (ADS)
Blair, David G.
2005-10-01
Part I. An Introduction to Gravitational Waves and Methods for their Detection: 1. Gravitational waves in general relativity D. G. Blair; 2. Sources of gravitational waves D. G. Blair; 3. Gravitational wave detectors D. G. Blair; Part II. Gravitational Wave Detectors: 4. Resonant-bar detectors D. G. Blair; 5. Gravity wave dewars W. O. Hamilton; 6. Internal friction in high Q materials J. Ferreirinko; 7. Motion amplifiers and passive transducers J. P. Richard; 8. Parametric transducers P. J. Veitch; 9. Detection of continuous waves K. Tsubono; 10. Data analysis and algorithms for gravitational wave-antennas G. V. Paalottino; Part III. Laser Interferometer Antennas: 11. A Michelson interferometer using delay lines W. Winkler; 12. Fabry-Perot cavity gravity-wave detectors R. W. P. Drever; 13. The stabilisation of lasers for interferometric gravitational wave detectors J. Hough; 14. Vibration isolation for the test masses in interferometric gravitational wave detectors N. A. Robertson; 15. Advanced techniques A. Brillet; 16. Data processing, analysis and storage for interferometric antennas B. F. Schutz; 17. Gravitational wave detection at low and very low frequencies R. W. Hellings.
Generation of long subharmonic internal waves by surface waves
NASA Astrophysics Data System (ADS)
Tahvildari, Navid; Kaihatu, James M.; Saric, William S.
2016-10-01
A new set of Boussinesq equations is derived to study the nonlinear interactions between long waves in a two-layer fluid. The fluid layers are assumed to be homogeneous, inviscid, incompressible, and immiscible. Based on the Boussinesq equations, an analytical model is developed using a second-order perturbation theory and applied to examine the transient evolution of a resonant triad composed of a surface wave and two oblique subharmonic internal waves. Wave damping due to weak viscosity in both layers is considered. The Boussinesq equations and the analytical model are verified. In contrast to previous studies which focus on short internal waves, we examine long waves and investigate some previously unexplored characteristics of this class of triad interaction. In viscous fluids, surface wave amplitudes must be larger than a threshold to overcome viscous damping and trigger internal waves. The dependency of this critical amplitude as well as the growth and damping rates of internal waves on important parameters in a two-fluid system, namely the directional angle of the internal waves, depth, density, and viscosity ratio of the fluid layers, and surface wave amplitude and frequency is investigated.
The wave and wave forecasting in the China Seas
Xu Fuxiang
1993-12-31
The China Seas located at the Southeastern part of the large Eurasia continent, and beside the largest ocean, the Pacific. They are greatly influenced by continent and the ocean. Due to it across the tropical zone, the subtropical zone and the extropical zone, the cold and warm air circulation in Northsouth is a very active exchange. In the summer, the South China Sea and the East China Sea are frequently hit by typhoon waves. In spring and autumn, the bohai sea, the Yellow sea and the East China Seas had series disasters caused by the extropical cyclone wave and the cold air wave. In this paper the time-space distribution and formative cases of wave disaster in the China Seas, and the wave monitoring and prediction system, the wave prediction method, and two automatic systems of numerical wave forecasting are briefly introduced.
The Wave Carpet: An Omnidirectional and Broadband Wave Energy Converter
NASA Astrophysics Data System (ADS)
Alam, M.-Reza
2015-11-01
Inspired by the strong attenuation of ocean surface waves by muddy seafloors, we have designed, theoretically investigated the performance, and experimentally tested the ``Wave Carpet:'' a mud-resembling synthetic seabed-mounted mat composed of vertically-acting linear springs and generators that can be used as an efficient wave energy absorption device. The Wave Carpet is completely under the water surface hence imposes minimal danger to boats and the sea life (i.e. no mammal entanglement). It is survivable against the high momentum of storm surges and in fact can perform even better under very energetic (e.g. stormy) sea conditions when most existing wave energy devices are needed to shelter themselves by going into an idle mode. In this talk I will present an overview of analytical results for the linear problem, direct simulation of highly nonlinear wave fields, and results of the experimental wave tank investigation.
Nonlinear Hysteretic Torsional Waves
NASA Astrophysics Data System (ADS)
Cabaret, J.; Béquin, P.; Theocharis, G.; Andreev, V.; Gusev, V. E.; Tournat, V.
2015-07-01
We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.
Gravity wave initiated convection
NASA Technical Reports Server (NTRS)
Hung, R. J.
1990-01-01
The vertical velocity of convection initiated by gravity waves was investigated. In one particular case, the convective motion-initiated and supported by the gravity wave-induced activity (excluding contributions made by other mechanisms) reached its maximum value about one hour before the production of the funnel clouds. In another case, both rawinsonde and geosynchronous satellite imagery were used to study the life cycles of severe convective storms. Cloud modelling with input sounding data and rapid-scan imagery from GOES were used to investigate storm cloud formation, development and dissipation in terms of growth and collapse of cloud tops, as well as, the life cycles of the penetration of overshooting turrets above the tropopause. The results based on these two approaches are presented and discussed.
Sources of gravitational waves
NASA Technical Reports Server (NTRS)
Schutz, Bernard F.
1989-01-01
Sources of low frequency gravitational radiation are reviewed from an astrophysical point of view. Cosmological sources include the formation of massive black holes in galactic nuclei, the capture by such holes of neutron stars, the coalescence of orbiting pairs of giant black holes, and various means of producing a stochastic background of gravitational waves in the early universe. Sources local to our Galaxy include various kinds of close binaries and coalescing binaries. Gravitational wave astronomy can provide information that no other form of observing can supply; in particular, the positive identification of a cosmological background originating in the early universe would be an event as significant as was the detection of the cosmic microwave background.
Neuenschwander, V. L.
1985-09-03
A wave activated generator utilizes the principle of providing relative movement between a permanent magnet and a coil to induce an electrical current in the coil. The coil is situated in a static tube anchored to the sea bed by means of a ballast tank at the base of the tube and guy wires extending from the tube. A plunger with permanent magnets is mounted in the tube for vertical reciprocation of the plunger, the plunger projecting outwardly from the upper end of the tube and terminating in a hull-shaped float which rides the water surface and provides vertical reciprocation of the plunger responsive to wave motion in order to move the magnets relative to the coil and generate current in the coil.
Millimeter wave nonreciprocal devices
NASA Astrophysics Data System (ADS)
Morgenthaler, F. R.
1983-01-01
The Microwave and Quantum Magnetics Group within the MIT Department of Electrical Engineering and Computer Science and the Research Laboratory of Electronics proposed a three year research program aimed at developing coherent magnetic wave signal-processing techniques for microwave energy which may form either the primary signal or else the intermediate frequency (IF) modulation of millimeter wavelength signals-especially at frequencies in the 50-94 GHz. range. Emphasis has been placed upon developing advanced types of signal processors that make use of quasi-optical propagation of electromagnetic and magnetostatic waves propagating in high quality single crystal ferrite thin films. A strong theoretical effort is required in order to establish valid models useful for predicting device performance. We emphasized new filter and circulator designs that employ combinations of the Faraday effect, field displacement nonreciprocity and magnetostatic resonance and periodic structures.
NASA Astrophysics Data System (ADS)
Finn, L. S.
Astronomers rely on a multiplicity of observational perspectives in order to infer the nature of the Universe. Progress in astronomy has historically been associated with new or improved observational perspectives. Gravitational wave detectors now under construction will provide us with a perspective on the Universe fundamentally different from any we have come to know. With this new perspective comes the hope of new insights and understanding, not just of exotic astrophysical processes, but of "bread-and-butter" astrophysics: e.g., stars and stellar evolution, galaxy formation and evolution, neutron star structure, and cosmology. In this report the author discusses briefly a small subset of the areas of conventional, "bread-and-butter" astrophysics where we can reasonably hope that gravitational wave observations will provide us with valuable new insights and understandings.
Tracy, Eugene R
2009-09-21
Quadratic corrections to the metaplectic formulation of mode conversions. In this work we showed how to systematically deal with quadratic corrections beyond the usual linearization of the dispersion matrix at a conversion. The linearization leads to parabolic cylinder functions as the local approximation to the full-wave behavior, but these do not include the variation in amplitude associated with ray refraction in the neighborhood of the conversion. Hence, the region over which they give a good fit to the incoming and outgoing WKB solutions is small. By including higher order corrections it is possible to provide a much more robust matching. We also showed that it was possible, in principle, to extend these methods to arbitrary order. A new normal form for mode conversion. This is based upon our earlier NSF-DOE-funded work on ray helicity. We have begun efforts to apply these new ideas in practical ray tracing algorithms. Group theoretical foundation of path integrals and phase space representations of wave problems. Using the symbol theory of N. Zobin, we developed a new understanding of path integrals on phase space. The initial goal was to find practical computational tools for dealing with non-standard mode conversions. Along the way we uncovered a new way to represent wave functions directly on phase space without the intermediary of a Wigner function. We are exploring the use of these ideas for numerical studies of conversion, with the goal of eventually incorporating kinetic effects. Wave packet studies of gyroresonance crossing. In earlier work, Huanchun Ye and Allan Kaufman -- building upon ideas due to Lazar Friedland -- had shown that gyroresonance crossings could be treated as a double conversion. This perspective is one we have used for many of our papers since then. We are now performing a detailed numerical comparison between full-wave and ray tracing approaches in the study of minority-ion gyroresonance crossing. In this study, a fast magnetosonic
NASA Technical Reports Server (NTRS)
2006-01-01
Internal waves are waves that travel within the interior of a fluid. The waves propagate at the interface or boundary between two layers with sharp density differences, such as temperature. They occur wherever strong tides or currents and stratification occur in the neighborhood of irregular topography. They can propagate for several hundred kilometers. The ASTER false-color VNIR image off the island of Tsushima in the Korea Strait shows the signatures of several internal wave packets, indicating a northern propagation direction.
With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.
ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.
The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.
The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.
Size: 60 by 120 kilometers (37.2 by 74.4 miles) Location: 34.6 degrees North latitude, 129.5 degrees East longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1
Waves in Space Plasmas Program
NASA Technical Reports Server (NTRS)
Fredricks, R. W.; Taylor, W. W. L.
1981-01-01
The Waves in Space Plasmas (WISP) program is a joint international effort involving instrumentation to be designed and fabricated by funding from NASA and the National Research Council of Canada. The instrumentation, with a tentatively planned payload for 1986, can be used to perturb the plasma with radio waves to solve problems in ionospheric, atmospheric, magnetospheric, and plasma physics. Among the ionospheric and plasma phenomena to be investigated using WISP instrumentation are VLF wave-particle interactions; ELF/VLF propagation; traveling ionospheric disturbances and gravity wave coupling; equatorial plasma bubble phenomena; plasma wave physics such as mode-coupling, dispersion, and instabilities; and plasma physics of the antenna-plasma interactions.
NASA Astrophysics Data System (ADS)
Stigloher, J.; Decker, M.; Körner, H. S.; Tanabe, K.; Moriyama, T.; Taniguchi, T.; Hata, H.; Madami, M.; Gubbiotti, G.; Kobayashi, K.; Ono, T.; Back, C. H.
2016-07-01
We report the experimental observation of Snell's law for magnetostatic spin waves in thin ferromagnetic Permalloy films by imaging incident, refracted, and reflected waves. We use a thickness step as the interface between two media with different dispersion relations. Since the dispersion relation for magnetostatic waves in thin ferromagnetic films is anisotropic, deviations from the isotropic Snell's law known in optics are observed for incidence angles larger than 25 ° with respect to the interface normal between the two magnetic media. Furthermore, we can show that the thickness step modifies the wavelength and the amplitude of the incident waves. Our findings open up a new way of spin wave steering for magnonic applications.
Rogue waves in oceanic turbulence
NASA Astrophysics Data System (ADS)
Fedele, Francesco
2008-08-01
A stochastic model of wave groups is presented to explain the occurrence of exceptionally large waves, usually referred to as rogue waves. The model leads to the description of the non-Gaussian statistics of large waves in oceanic turbulence and to a new asymptotic distribution of their crest heights in a form that generalizes the Tayfun model. The new model explains the unusually large crests observed in flume experiments of narrow-band waves. However, comparisons with realistic oceanic measurements gathered in the North Sea during an intense storm indicate that the generalized model agrees with the original Tayfun distribution.
Wave Engine Topping Cycle Assessment
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
1996-01-01
The performance benefits derived by topping a gas turbine engine with a wave engine are assessed. The wave engine is a wave rotor that produces shaft power by exploiting gas dynamic energy exchange and flow turning. The wave engine is added to the baseline turboshaft engine while keeping high-pressure-turbine inlet conditions, compressor pressure ratio, engine mass flow rate, and cooling flow fractions fixed. Related work has focused on topping with pressure-exchangers (i.e., wave rotors that provide pressure gain with zero net shaft power output); however, more energy can be added to a wave-engine-topped cycle leading to greater engine specific-power-enhancement The energy addition occurs at a lower pressure in the wave-engine-topped cycle; thus the specific-fuel-consumption-enhancement effected by ideal wave engine topping is slightly lower than that effected by ideal pressure-exchanger topping. At a component level, however, flow turning affords the wave engine a degree-of-freedom relative to the pressure-exchanger that enables a more efficient match with the baseline engine. In some cases, therefore, the SFC-enhancement by wave engine topping is greater than that by pressure-exchanger topping. An ideal wave-rotor-characteristic is used to identify key wave engine design parameters and to contrast the wave engine and pressure-exchanger topping approaches. An aerodynamic design procedure is described in which wave engine design-point performance levels are computed using a one-dimensional wave rotor model. Wave engines using various wave cycles are considered including two-port cycles with on-rotor combustion (valved-combustors) and reverse-flow and through-flow four-port cycles with heat addition in conventional burners. A through-flow wave cycle design with symmetric blading is used to assess engine performance benefits. The wave-engine-topped turboshaft engine produces 16% more power than does a pressure-exchanger-topped engine under the specified topping
A statistical study of EMIC waves observed by Cluster. 1. Wave properties. EMIC Wave Properties
Allen, R. C.; Zhang, J. -C.; Kistler, L. M.; Spence, H. E.; Lin, R. -L.; Klecker, B.; Dunlop, M. W.; André, M.; Jordanova, V. K.
2015-07-23
Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In our study, we present a statistical analysis of EMIC wave properties using 10 years (2001–2010) of datamore » from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. Thus, the statistical analysis is presented in two papers. OUr paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.« less
A statistical study of EMIC waves observed by Cluster. 1. Wave properties. EMIC Wave Properties
Allen, R. C.; Zhang, J. -C.; Kistler, L. M.; Spence, H. E.; Lin, R. -L.; Klecker, B.; Dunlop, M. W.; André, M.; Jordanova, V. K.
2015-07-23
Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In our study, we present a statistical analysis of EMIC wave properties using 10 years (2001–2010) of data from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. Thus, the statistical analysis is presented in two papers. OUr paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.
Lamberti, J.
1980-01-22
A water wave energy transducer for converting the motion of a water wave into a controlled mechanical movement such as rotational motion suitable for actuating an electrical generator is disclosed. The transducer comprises a float member floatingly moored in a water body having waves and/or tidal movement, such as a seashore. A power gear is rotatably mounted in a swing block on the float with a power shaft extending from the power gear to laterally spaced drive bevel gears mounted for rotation with the power gear. These drive bevel gears are coupled to a transmission on the float comprising one-way drive clutches transmitting rotational energy to the drive shaft of a generator or the like to provide rotational energy on both up and down movement of the float. A rack is pivotally anchored in the water body, extends up through the float and is slideable with respect to the power gear of the swing block, so that movement of the float with respect to the rack will provide rotation of the power gear.
Wave rotor demonstrator engine assessment
NASA Technical Reports Server (NTRS)
Snyder, Philip H.
1996-01-01
The objective of the program was to determine a wave rotor demonstrator engine concept using the Allison 250 series engine. The results of the NASA LERC wave rotor effort were used as a basis for the wave rotor design. A wave rotor topped gas turbine engine was identified which incorporates five basic requirements of a successful demonstrator engine. Predicted performance maps of the wave rotor cycle were used along with maps of existing gas turbine hardware in a design point study. The effects of wave rotor topping on the engine cycle and the subsequent need to rematch compressor and turbine sections in the topped engine were addressed. Comparison of performance of the resulting engine is made on the basis of wave rotor topped engine versus an appropriate baseline engine using common shaft compressor hardware. The topped engine design clearly demonstrates an impressive improvement in shaft horsepower (+11.4%) and SFC (-22%). Off design part power engine performance for the wave rotor topped engine was similarly improved including that at engine idle conditions. Operation of the engine at off design was closely examined with wave rotor operation at less than design burner outlet temperatures and rotor speeds. Challenges identified in the development of a demonstrator engine are discussed. A preliminary design was made of the demonstrator engine including wave rotor to engine transition ducts. Program cost and schedule for a wave rotor demonstrator engine fabrication and test program were developed.
Transhorizon propagation of decameter waves
NASA Astrophysics Data System (ADS)
Kalinin, Yu. K.; Shchelkalin, A. V.
2013-04-01
Solutions to the problem of the point source field in a spherically layered medium are analyzed. For a three-layer waveguide model, a solution in the form of the Watson integral was used. A consideration of the singularities in the plane of the integration variable made it possible to represent the integral as a superposition of three waves. Two of them are connected with the interaction of the primary spherical wave with the lower convex and upper concave interfaces. The third wave is connected with the alternate action with both interfaces. The fourth wave is caused by the interaction between the primary wave and random inhomogeneities of the external medium (the ionosphere). Here, simulation was carried out based on Green equations. The considered unique data of flight measurements of the point source field strength indicate the efficiency of simulating the transhorizon propagation of decameter waves based on the superposition of all four aforesaid wave packets.
NASA Astrophysics Data System (ADS)
Wang, T. J.
2016-02-01
The corona is visible in the optical band only during a total solar eclipse or with a coronagraph. Coronal loops are believed to be plasma-filled closed magnetic flux anchored in the photosphere. Based on the temperature regime, they are generally classified into cool, warm, and hot loops. The magnetized coronal structures support propagation of various types of magnetohydrodynamics (MHD) waves. This chapter reviews the recent progress made in studies based on observations of four types of wave phenomena mainly occurring in coronal loops of active regions, including: flare-excited slow-mode waves; impulsively excited kink-mode waves; propagating slow magnetoacoustic waves; and ubiquitous propagating kink (Alfvénic) waves. This review not only comprehensively discusses these waves and coronal seismology but also topics that are newly emerging or hotly debated in order to provide the reader with useful guidance on further studies.
NASA Astrophysics Data System (ADS)
Golenitskii, K. Â. Yu.; Koshelev, K. Â. L.; Bogdanov, A. Â. A.
2016-10-01
In this work we develop a theory of surface electromagnetic waves localized at the interface of periodic metal-dielectric structures. We have shown that the anisotropy of plasma frequency in metal layers lifts the degeneracy of plasma oscillations and opens a series of photonic band gaps. This results in appearance of surface waves with singular density of states—we refer to them as Tamm-Langmuir waves. Such naming is natural since we have found that their properties are very similar to the properties of both bulk Langmuir and surface Tamm waves. Depending on the anisotropy parameters, Tamm-Langmuir waves can be either forward or backward waves. Singular density of states and high sensitivity of the dispersion to the anisotropy of the structure makes Tamm-Langmuir waves very promising for potential applications in nanophotonics and biosensing.
Langmuir circulations beneath growing waves
NASA Astrophysics Data System (ADS)
Phillips, W. R. C.
2000-11-01
The instability of a weakly sheared density stratified two dimensional wavy flow to longitudinal vortices is considered. The instability mechanism is Craik-Leibovich type 2, or CL2, and the problem is posited in the context of Langmuir circulations beneath irrotational wind driven surface waves. Of interest is the influence to the instability of growing or decaying waves according to linear theory. The basis for the study is an initial value problem posed by Leibovich & Paolucci (1981) in which the liquid substrate is of semi-infinite extent and the wind driven current is permitted to grow. At zero Richardson number, relative to the solution for neutral waves, it is found that growing waves act to stabilize the instability while decaying waves are destablizing. Furthemore while growing waves act to increase the spanwise wavenumber at onset, decaying waves act to decrease it. The influence of Prandtl and Richardson numbers is also discussed.
Electromagnetic inhomogeneous waves at planar boundaries: tutorial.
Frezza, Fabrizio; Tedeschi, Nicola
2015-08-01
In this review paper, we summarize the fundamental properties of inhomogeneous waves at the planar interface between two media. We point out the main differences between the wave types: lateral waves, surface waves, and leaky waves. We analyze each kind of inhomogeneous wave, giving a quasi-optical description and explaining the physical origin of some of their properties.
Pan Xiaoyin; Slamet, Marlina; Sahni, Viraht
2010-04-15
We extend our prior work on the construction of variational wave functions {psi} that are functionals of functions {chi}:{psi}={psi}[{chi}] rather than simply being functions. In this manner, the space of variations is expanded over those of traditional variational wave functions. In this article we perform the constrained search over the functions {chi} chosen such that the functional {psi}[{chi}] satisfies simultaneously the constraints of normalization and the exact expectation value of an arbitrary single- or two-particle Hermitian operator, while also leading to a rigorous upper bound to the energy. As such the wave function functional is accurate not only in the region of space in which the principal contributions to the energy arise but also in the other region of the space represented by the Hermitian operator. To demonstrate the efficacy of these ideas, we apply such a constrained search to the ground state of the negative ion of atomic hydrogen H{sup -}, the helium atom He, and its positive ions Li{sup +} and Be{sup 2+}. The operators W whose expectations are obtained exactly are the sum of the single-particle operators W={Sigma}{sub i}r{sub i}{sup n},n=-2,-1,1,2, W={Sigma}{sub i{delta}}(r{sub i}), W=-(1/2){Sigma}{sub i{nabla}i}{sup 2}, and the two-particle operators W={Sigma}{sub n}u{sup n},n=-2,-1,1,2, where u=|r{sub i}-r{sub j}|. Comparisons with the method of Lagrangian multipliers and of other constructions of wave-function functionals are made. Finally, we present further insights into the construction of wave-function functionals by studying a previously proposed construction of functionals {psi}[{chi}] that lead to the exact expectation of arbitrary Hermitian operators. We discover that analogous to the solutions of the Schroedinger equation, there exist {psi}[{chi}] that are unphysical in that they lead to singular values for the expectations. We also explain the origin of the singularity.
Generation of rogue waves in a wave tank
NASA Astrophysics Data System (ADS)
Lechuga, A.
2012-04-01
Rogue waves have been reported as causing damages and ship accidents all over the oceans of the world. For this reason in the past decades theoretical studies have been carried out with the double aim of improving the knowledge of their main characteristics and of attempting to predict its sudden appearance. As an effort on this line we are trying to generate them in a water tank. The description of the procedure to do that is the objective of this presentation. After Akhmediev et al. (2011) we use a symmetric spectrum as input on the wave maker to produce waves with a rate(Maximun wave height/ significant wave height) of 2.33 and a kurtosis of 4.77, clearly between the limits of rogue waves. As it was pointed out by Janssen (2003), Onorato et al. (2006) and Kharif, Pelinovsky and Slunyaev (2009) modulation instability is enhanced when waves depart from Gaussian statistics (i.e. big kurtosis) and therefore both numbers enforce the criterion that we are generating genuine rogue waves. The same is confirmed by Shemer (2010) and Dudley et al.(2009) from a different perspective. If besides being symmetrical the spectrum is triangular, following Akhmediev(2011),the generated waves are even more conspicuously rogue waves.
Assessing wave energy effects on biodiversity: the wave hub experience.
Witt, M J; Sheehan, E V; Bearhop, S; Broderick, A C; Conley, D C; Cotterell, S P; Crow, E; Grecian, W J; Halsband, C; Hodgson, D J; Hosegood, P; Inger, R; Miller, P I; Sims, D W; Thompson, R C; Vanstaen, K; Votier, S C; Attrill, M J; Godley, B J
2012-01-28
Marine renewable energy installations harnessing energy from wind, wave and tidal resources are likely to become a large part of the future energy mix worldwide. The potential to gather energy from waves has recently seen increasing interest, with pilot developments in several nations. Although technology to harness wave energy lags behind that of wind and tidal generation, it has the potential to contribute significantly to energy production. As wave energy technology matures and becomes more widespread, it is likely to result in further transformation of our coastal seas. Such changes are accompanied by uncertainty regarding their impacts on biodiversity. To date, impacts have not been assessed, as wave energy converters have yet to be fully developed. Therefore, there is a pressing need to build a framework of understanding regarding the potential impacts of these technologies, underpinned by methodologies that are transferable and scalable across sites to facilitate formal meta-analysis. We first review the potential positive and negative effects of wave energy generation, and then, with specific reference to our work at the Wave Hub (a wave energy test site in southwest England, UK), we set out the methodological approaches needed to assess possible effects of wave energy on biodiversity. We highlight the need for national and international research clusters to accelerate the implementation of wave energy, within a coherent understanding of potential effects-both positive and negative.
Assessing wave energy effects on biodiversity: the wave hub experience.
Witt, M J; Sheehan, E V; Bearhop, S; Broderick, A C; Conley, D C; Cotterell, S P; Crow, E; Grecian, W J; Halsband, C; Hodgson, D J; Hosegood, P; Inger, R; Miller, P I; Sims, D W; Thompson, R C; Vanstaen, K; Votier, S C; Attrill, M J; Godley, B J
2012-01-28
Marine renewable energy installations harnessing energy from wind, wave and tidal resources are likely to become a large part of the future energy mix worldwide. The potential to gather energy from waves has recently seen increasing interest, with pilot developments in several nations. Although technology to harness wave energy lags behind that of wind and tidal generation, it has the potential to contribute significantly to energy production. As wave energy technology matures and becomes more widespread, it is likely to result in further transformation of our coastal seas. Such changes are accompanied by uncertainty regarding their impacts on biodiversity. To date, impacts have not been assessed, as wave energy converters have yet to be fully developed. Therefore, there is a pressing need to build a framework of understanding regarding the potential impacts of these technologies, underpinned by methodologies that are transferable and scalable across sites to facilitate formal meta-analysis. We first review the potential positive and negative effects of wave energy generation, and then, with specific reference to our work at the Wave Hub (a wave energy test site in southwest England, UK), we set out the methodological approaches needed to assess possible effects of wave energy on biodiversity. We highlight the need for national and international research clusters to accelerate the implementation of wave energy, within a coherent understanding of potential effects-both positive and negative. PMID:22184674
Study of Novel Slow Wave Circuit for Miniaturized Millimeter Wave Helical Traveling Wave Tube
NASA Astrophysics Data System (ADS)
Li, Bin; Zhu, Xiaofang; Liao, Li; Yang, Zhonghai; Zeng, Baoqing; Yao, Lieming
2006-07-01
Two kinds of novel helical slow wave circuit, supported by Chemical Vapor Deposition (CVD) diamond, are presented. They are applying in miniaturized millimeter wave helical traveling wave tube. Cold test characteristic of these circuits are simulated by MAFIA code. Higher performances are achieved with smaller size, compared with conventional circuit supported by BeO rods. The nonlinear analysis is implemented by Beam and Wave Interaction (BWI) module, which is a part of TWTCAD Integrated Framework. Results have been found to be consistent with the expectation. It should be wider apply in microwave and millimeter wave vacuum electronic devices.
Satellite observations of the QBO wave driving by Kelvin waves and gravity waves
NASA Astrophysics Data System (ADS)
Ern, Manfred; Preusse, Peter; Kalisch, Silvio; Riese, Martin
2014-05-01
The quasi-biennial oscillation (QBO) of the zonal wind in the tropical stratosphere is an important process in atmospheric dynamics influencing a wide range of altitudes and latitudes. Effects of the QBO are found also in the mesosphere and in the extra-tropics. The QBO even has influence on the surface weather and climate, for example during winter in the northern hemisphere at midlatitudes. Still, climate models have large difficulties in reproducing a realistic QBO. One reason for this deficiency are uncertainties in the wave driving by planetary waves and, in particular, gravity waves that are usually too small-scale to be resolved in global models. Different global equatorial wave modes (e.g., Kelvin waves) have been identified by longitude-time 2D spectral analysis in Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite temperature data, as well as ECMWF temperatures. We find good agreement between SABER satellite observations and ECMWF wave variances in both QBO-related temporal variations and their magnitude. Slow phase speed waves are strongly modulated by the QBO, higher phase speed waves are almost unaffected by the QBO, and ultra-fast equatorial waves can even reach the MLT region. Momentum fluxes and zonal wind drag due to Kelvin waves are derived, and the relative contribution of Kelvin waves to the QBO wind reversal from westward to eastward wind is estimated to be about 30% of the total wave driving. This is in good agreement with the general assumption that gravity waves (GWs) are probably more important for the QBO driving than global-scale waves. This is further supported by SABER and High Resolution Dynamics Limb Sounder (HIRDLS) satellite observations of gravity wave drag in the equatorial region. These observations are compared with the drag still missing in the ECMWF ERA Interim (ERAI) tropical momentum budget after considering zonal wind tendency, Coriolis force, advection terms and drag of resolved global
Relevance of Infragravity Waves in a Wave Dominated Shallow Inlet
NASA Astrophysics Data System (ADS)
Olabarrieta, M.; Bertin, X.
2014-12-01
Infragravity (IG) waves have received a growing attention over the last decade and they have been shown to partly control dune erosion, barrier breaching, development of seiches in harbors or the circulation on fringing reefs. Although the relevance IG waves in surf and swash zone dynamics is well recognized, their dynamics and effects on tidal inlets and estuaries have not been analyzed. This study investigates the importance of IG waves at Albufeira Lagoon Inlet, a shallow wave-dominated inlet located on the western Coast of Portugal. Water levels and currents were measured synchronously during a two-day field experiment carried out at Albufeira Lagoon Inlet in September 2010. Apart from the tidally induced gravity wave modulations and wave induced setup inside the lagoon, an important IG wave contribution was identified. Low frequency oscillations were noticeable in the free surface elevation records and produced fluctuations of up to 100% in current intensities. While IG waves in the ebb shoal were present during the whole tidal cycle, the absence of IG waves characterized the ebbing tide inside the lagoon. The energy in the IG frequency band gradually increased from low tide to high tide, and disappeared during the ebbing tide. The modeling system Xbeach was applied to hindcast the hydrodynamics during the field experiment period. The model captures the main physics related with the IG wave generation and propagation inside the inlet, and reproduced the IG blocking during the ebb as identified in the measurements. This behavior was explained by the combination of advection and wave blocking induced by opposing tidal currents. Both measurements and numerical results suggested the bound wave release as the dominant mechanism responsible for IG wave generation. The fact that IG waves only propagate at flood tide has strong implications on the sediment balance of the inlet and contribute to inlet infilling under energetic wave conditions. It is expected that IG
Coexisting rogue waves within the (2+1)-component long-wave-short-wave resonance.
Chen, Shihua; Soto-Crespo, Jose M; Grelu, Philippe
2014-09-01
The coexistence of two different types of fundamental rogue waves is unveiled, based on the coupled equations describing the (2+1)-component long-wave-short-wave resonance. For a wide range of asymptotic background fields, each family of three rogue wave components can be triggered by using a slight deterministic alteration to the otherwise identical background field. The ability to trigger markedly different rogue wave profiles from similar initial conditions is confirmed by numerical simulations. This remarkable feature, which is absent in the scalar nonlinear Schrödinger equation, is attributed to the specific three-wave interaction process and may be universal for a variety of multicomponent wave dynamics spanning from oceanography to nonlinear optics. PMID:25314555
Coexisting rogue waves within the (2+1)-component long-wave-short-wave resonance.
Chen, Shihua; Soto-Crespo, Jose M; Grelu, Philippe
2014-09-01
The coexistence of two different types of fundamental rogue waves is unveiled, based on the coupled equations describing the (2+1)-component long-wave-short-wave resonance. For a wide range of asymptotic background fields, each family of three rogue wave components can be triggered by using a slight deterministic alteration to the otherwise identical background field. The ability to trigger markedly different rogue wave profiles from similar initial conditions is confirmed by numerical simulations. This remarkable feature, which is absent in the scalar nonlinear Schrödinger equation, is attributed to the specific three-wave interaction process and may be universal for a variety of multicomponent wave dynamics spanning from oceanography to nonlinear optics.
Wave and particle dynamics of the beat-wave accelerator
Gibbon, P. )
1989-10-15
We present two-dimensional wave-envelope studies of the interaction between a plasma beat-wave and the laser pumps which drive it. A new method of focusing is demonstrated which requires the plasma wave to be driven slightly below its resonant frequency. Test particles are employed to investigate possible means of extending the accelerator stage length. {copyright} 1989 American Institute of Physics
Hydrodynamic Performance of a Wave Energy Converter
NASA Astrophysics Data System (ADS)
Yang, Yingchen
2010-11-01
To harvest energy from ocean waves, a new wave energy converter (WEC) was proposed and tested in a wave tank. The WEC freely floats on the water surface and rides waves. It utilizes its wave-driven angular oscillation to convert the mechanical energy of waves into electricity. To gain the maximum possible angular oscillation of the WEC under specified wave conditions, both floatation of the WEC and wave interaction with the WEC play critical roles in a joint fashion. During the experiments, the submersion condition of the WEC and wave condition were varied. The results were analyzed in terms of the oscillation amplitude, stability, auto-orientation capability, and wave frequency dependency.
NASA Astrophysics Data System (ADS)
Trigg, Mark A.; Wilson, Matthew D.; Bates, Paul D.; Horritt, Matthew S.; Alsdorf, Douglas E.; Forsberg, Bruce R.; Vega, Maria C.
2009-07-01
SummaryA bathymetric survey of 575 km of the central Amazon River and one of its tributaries, the Purus, are combined with gauged data to characterise the Amazon flood wave, and for hydraulic modelling of the main channel for the period June 1995-March 1997 with the LISFLOOD-FP and HEC-RAS hydraulic models. Our investigations show that the Amazon flood wave is subcritical and diffusive in character and, due to shallow bed slopes, backwater conditions control significant reach lengths and are present for low and high water states. Comparison of the different models shows that it is necessary to include at least the diffusion term in any model, and the RMSE error in predicted water elevation at all cross sections introduced by ignoring the acceleration and advection terms is of the order of 0.02-0.03 m. The use of a wide rectangular channel approximation introduces an error of 0.10-0.15 m on the predicted water levels. Reducing the bathymetry to a simple bed slope and with mean cross section only, introduces an error in the order of 0.5 m. These results show that when compared to the mean annual amplitude of the Amazon flood wave of 11-12 m, water levels are relatively insensitive to the bathymetry of the channel model. The implication for remote sensing studies of the central Amazon channel, such as those proposed with the Surface Water and Ocean Topography mission (SWOT), is that even relatively crude assumptions regarding the channel bathymetry will be valid in order to derive discharge from water surface slope of the main channel, as long as the mean channel area is approximately correct.
Conversion of borehole Stoneley waves to channel waves in coal
Johnson, P.A.; Albright, J.N.
1987-01-01
Evidence for the mode conversion of borehole Stoneley waves to stratigraphically guided channel waves was discovered in data from a crosswell acoustic experiment conducted between wells penetrating thin coal strata located near Rifle, Colorado. Traveltime moveout observations show that borehole Stoneley waves, excited by a transmitter positioned at substantial distances in one well above and below a coal stratum at 2025 m depth, underwent partial conversion to a channel wave propagating away from the well through the coal. In an adjacent well the channel wave was detected at receiver locations within the coal, and borehole Stoneley waves, arising from a second partial conversion of channel waves, were detected at locations above and below the coal. The observed channel wave is inferred to be the third-higher Rayleigh mode based on comparison of the measured group velocity with theoretically derived dispersion curves. The identification of the mode conversion between borehole and stratigraphically guided waves is significant because coal penetrated by multiple wells may be detected without placing an acoustic transmitter or receiver within the waveguide. 13 refs., 6 figs., 1 tab.
Density wave theory. [interstellar gas dynamics and galactic shock waves
NASA Technical Reports Server (NTRS)
Roberts, W. W., Jr.
1977-01-01
The prospect that density waves and galactic shock waves are present on the large scale in disk shaped galaxies has received support in recent years from both theoretical and observational studies. Large-scale galactic shock waves in the interstellar gas are suggested to play an important governing role in star formation, molecule formation, and the degree of development of spiral structure. Through the dynamics of the interstellar gas and the galactic shock-wave phenomenon, a new insight into the physical basis underlying the morphological classification system of galaxies is suggested.
Gabor Wave Packet Method to Solve Plasma Wave Equations
A. Pletzer; C.K. Phillips; D.N. Smithe
2003-06-18
A numerical method for solving plasma wave equations arising in the context of mode conversion between the fast magnetosonic and the slow (e.g ion Bernstein) wave is presented. The numerical algorithm relies on the expansion of the solution in Gaussian wave packets known as Gabor functions, which have good resolution properties in both real and Fourier space. The wave packets are ideally suited to capture both the large and small wavelength features that characterize mode conversion problems. The accuracy of the scheme is compared with a standard finite element approach.
Comparison of standing-wave and traveling-wave structures
Miller, R.H.
1986-04-01
The controversy over the relative advantages of standing-wave and traveling-wave linear accelerators is now in its fourth decade. It has been fed by a considerable body of misinformation. The author hopes in this paper to shed some light on the subject, and expose some of the falsehoods. The discussion is directed toward the question of which structure to use for short pulse high field electron accelerators since it is almost universally accepted that standing-wave structures are appropriate for CW and long pulse accelerators. Three arguments against standing-wave accelerators are discussed and shown to be invalid.
Helical localized wave solutions of the scalar wave equation.
Overfelt, P L
2001-08-01
A right-handed helical nonorthogonal coordinate system is used to determine helical localized wave solutions of the homogeneous scalar wave equation. Introducing the characteristic variables in the helical system, i.e., u = zeta - ct and v = zeta + ct, where zeta is the coordinate along the helical axis, we can use the bidirectional traveling plane wave representation and obtain sets of elementary bidirectional helical solutions to the wave equation. Not only are these sets bidirectional, i.e., based on a product of plane waves, but they may also be broken up into right-handed and left-handed solutions. The elementary helical solutions may in turn be used to create general superpositions, both Fourier and bidirectional, from which new solutions to the wave equation may be synthesized. These new solutions, based on the helical bidirectional superposition, are members of the class of localized waves. Examples of these new solutions are a helical fundamental Gaussian focus wave mode, a helical Bessel-Gauss pulse, and a helical acoustic directed energy pulse train. Some of these solutions have the interesting feature that their shape and localization properties depend not only on the wave number governing propagation along the longitudinal axis but also on the normalized helical pitch.
Midlatitude Rossby wave forcing of equatorial Kelvin waves
NASA Astrophysics Data System (ADS)
Biello, J. A.; Kiladis, G. N.; Back, A.
2015-12-01
Observations strongly suggest that convectively coupled Kelvin waves can be generated by extratropical wave activity. This mechanism is particularly efficient over Australia, where wave activity appears immediately after the extratropical Rossby waves propagate into the region during the Austral winter. This interaction occurs where the zonal wind is strongly sheared both in the meridional and vertical directions. In order to understand this phenomenon the authors study the linear primitive equations in the presence of barotropic and baroclinic shear and the dispersion characteristics of the sheared Matsuno modes are calculated. Depending on the shear strength, the waves are stable or unstable and can be categorized into three groups. First there are the classical Matsuno modes modified by shear. Second there are extratropical "free" Rossby waves. Third, there are Rossby waves meridionally confined to the shear layer - these latter modes can be unstable, or stable and part of the continuous spectrum. In examples where the zonal winds are barotropically and baroclinically stable, we show that a continuous spectrum of Rossby waves exists. If the zonal winds are strong enough, the Rossby waves in the continuous spectrum have an equatorial signature exactly like the Matsuno Kelvin wave - despite the fact that, in these examples, the Matsuno Kelvin wave also exists on its own and that all modes are stable. For stronger shears, these continuous spectrum modes become unstable. Although the appear similar to Sakai's Rossby/Kelvin instability, their existence arises from a completely different phenomenon. The Sakai instability requires the frequency of a stable equatorial Rossby mode to coincide with the stable Kelvin wave frequency in order for the two modes to create a stable/unstable pair. Our results show that unstable Rossby waves need only have their frequencies Doppler shifted to that of the Kelvin wave frequency by the underlying shear in order that they acquire a
Helical localized wave solutions of the scalar wave equation.
Overfelt, P L
2001-08-01
A right-handed helical nonorthogonal coordinate system is used to determine helical localized wave solutions of the homogeneous scalar wave equation. Introducing the characteristic variables in the helical system, i.e., u = zeta - ct and v = zeta + ct, where zeta is the coordinate along the helical axis, we can use the bidirectional traveling plane wave representation and obtain sets of elementary bidirectional helical solutions to the wave equation. Not only are these sets bidirectional, i.e., based on a product of plane waves, but they may also be broken up into right-handed and left-handed solutions. The elementary helical solutions may in turn be used to create general superpositions, both Fourier and bidirectional, from which new solutions to the wave equation may be synthesized. These new solutions, based on the helical bidirectional superposition, are members of the class of localized waves. Examples of these new solutions are a helical fundamental Gaussian focus wave mode, a helical Bessel-Gauss pulse, and a helical acoustic directed energy pulse train. Some of these solutions have the interesting feature that their shape and localization properties depend not only on the wave number governing propagation along the longitudinal axis but also on the normalized helical pitch. PMID:11488494
NASA Technical Reports Server (NTRS)
Kelly, Bernard J.
2010-01-01
Einstein's General Theory of Relativity is our best classical description of gravity, and informs modern astronomy and astrophysics at all scales: stellar, galactic, and cosmological. Among its surprising predictions is the existence of gravitational waves -- ripples in space-time that carry energy and momentum away from strongly interacting gravitating sources. In my talk, I will give an overview of the properties of this radiation, recent breakthroughs in computational physics allowing us to calculate the waveforms from galactic mergers, and the prospect of direct observation with interferometric detectors such as LIGO and LISA.
Ion wave breaking acceleration
NASA Astrophysics Data System (ADS)
Liu, B.; Meyer-ter-Vehn, J.; Bamberg, K.-U.; Ma, W. J.; Liu, J.; He, X. T.; Yan, X. Q.; Ruhl, H.
2016-07-01
Laser driven ion wave breaking acceleration (IWBA) in plasma wakefields is investigated by means of a one-dimensional (1D) model and 1D/3D particle-in-cell (PIC) simulations. IWBA operates in relativistic transparent plasma for laser intensities in the range of 1020- 1023 W /cm2 . The threshold for IWBA is identified in the plane of plasma density and laser amplitude. In the region just beyond the threshold, self-injection takes place only for a fraction of ions and in a limited time period. This leads to well collimated ion pulses with peaked energy spectra, in particular for 3D geometry.
Riley, Nathan; Geissel, Matthias; Lewis, Sean M; Porter, John L.
2015-03-01
The data described in this document consist of image files of shadowgraphs of astrophysically relevant laser driven blast waves. Supporting files include Mathematica notebooks containing design calculations, tabulated experimental data and notes, and relevant publications from the open research literature. The data was obtained on the Z-Beamlet laser from July to September 2014. Selected images and calculations will be published as part of a PhD dissertation and in associated publications in the open research literature, with Sandia credited as appropriate. The authors are not aware of any restrictions that could affect the release of the data.
NASA Technical Reports Server (NTRS)
Kistler, E. L.
1972-01-01
A working report is presented in order to document early results of research on the stability of laminar boundary layers. The report shows that constitutive equations for a structured continua may be derived by the technique of reinterpreting velocity in the conventional stress to rate-of-strain relationship so as to account for effects of particle rotation. It is demonstrated that accounting for particle structure even at a molecular level makes the fluid viscoelastic with the ability to propagate vector waves. It is shown that particle structure modifies the basic stability equation for the system, which in turn would alter values for critical Reynolds number.
Lipscombe, O. J.; Chen, G. F.; Fang, Chen; Perring, T. G.; Abernathy, Douglas L; Christianson, Andrew D; Egami, Takeshi; Wang, Nanlin; Hu, Jiangping; Dai, Pengcheng
2011-01-01
We use neutron scattering to show that spin waves in the iron chalcogenide Fe{sub 1.05}Te display novel dispersion clearly different from both the first principles density functional calculations and recent observations in the related iron pnictide CaFe{sub 2}As{sub 2}. By fitting to a Heisenberg Hamiltonian, we find that although the nearest-neighbor exchange couplings in the two systems are quite different, their next-nearest-neighbor (NNN) couplings are similar. This suggests that superconductivity in the pnictides and chalcogenides share a common magnetic origin that is intimately associated with the NNN magnetic coupling between the irons.
2015-02-16
The four-dimensional scattering function S(Q,w) obtained by inelastic neutron scattering measurements provides unique "dynamical fingerprints" of the spin state and interactions present in complex magnetic materials. Extracting this information however is currently a slow and complex process that may take an expert -depending on the complexity of the system- up to several weeks of painstaking work to complete. Spin Wave Genie was created to abstract and automate this process. It strives to both reduce the time to complete this analysis and make these calculations more accessible to a broader group of scientists and engineers.
2015-02-16
The four-dimensional scattering function S(Q,w) obtained by inelastic neutron scattering measurements provides unique "dynamical fingerprints" of the spin state and interactions present in complex magnetic materials. Extracting this information however is currently a slow and complex process that may take an expert -depending on the complexity of the system- up to several weeks of painstaking work to complete. Spin Wave Genie was created to abstract and automate this process. It strives to both reduce themore » time to complete this analysis and make these calculations more accessible to a broader group of scientists and engineers.« less
Alfven Waves in Interstellar Gasdynamics
NASA Astrophysics Data System (ADS)
McKee, Christopher F.; Zweibel, Ellen G.
1995-02-01
Magnetohydrodynamic (MHD) waves contribute a significant pressure in both the diffuse interstellar medium and in molecular clouds. Alfvén waves are subject to less damping than compressive MHD waves and are therefore likely to be the dominant mode in astrophysical environments. Provided that the medium in which the waves are propagating is slowly varying, the dynamical effects of ideal MHD waves are governed by equations derived by Dewar. We show that these equations are similar in form to the equations of radiation hydrodynamics to order υ/c, provided that the radiation is nearly isotropic. For the case of Alfvén waves, the pressure due the waves, Pw, is isotropic. Furthermore, Pw is directly observable through the non- thermal line width σnt; for a randomly oriented field, Pw = (3/2)ρσ2nt. In several simple cases, including that in which the Alfvén waves are isotropic, that in which the density is spatially uniform, and that in which the medium undergoes a self-similar contraction or expansion, undamped Alfvén waves behave like a gas with a ratio of specific heats of 3/2; i.e., pressure variations are related to density variations by Δ ln Pw = γwΔ ln ρ with γw = 3/2. In a spatially nonuniform cloud, γw generally depends on position; an explicit expression is given. In the opposite limit of rapid variations, such as in a strong shock, the wave magnetic field behaves like a static field and the wave pressure can increase as fast as ρ2, depending on the orientation of the shock and the polarization of the waves. The jump conditions for a shock in a medium containing MHD waves are given. For strong nonradiative shocks, neither the wave pressure nor the static magnetic field pressure is significant downstream, but for radiative shocks these two pressures can become dominant. Alfvén waves are essential in supporting molecular clouds against gravitational collapse. In a static cloud with a nonuniform density ρ(r), the spatial variation of the wave
Plasma waves near the magnetopause
NASA Technical Reports Server (NTRS)
Anderson, R. R.; Eastman, T. E.; Harvey, C. C.; Hoppe, M. M.; Tsurutani, B. T.; Etcheto, J.
1982-01-01
Plasma waves associated with the magnetosphere from the magnetosheath to the outer magnetosphere are investigated to obtain a clear definition of the boundaries and regions, to characterize the waves observed in these regions, to determine which wave modes are present, and to determine their origin. Emphasis is on high time resolution data and a comparison between measurements by different antenna systems. It is shown that the magnetosheath flux transfer events, the magnetopause current layer, the outer magnetosphere, and the boundary layer can be identified by their magnetic field and plasma wave characteristics, as well as by their plasma and energetic particle signatures. The plasma wave characteristics in the current layer and in the boundary layer are very similar to the features in the flux transfer events, and upon entry into their outer magnetosphere, the plasma wave spectra are dominated by intense electromagnetic chorus bursts and electrostatic emissions.
Crespo, Antonio; García, Javier; Manuel, Fernando
2013-01-01
A simple analytical expression has been derived to calculate the characteristics of a wave that reflects at a stent implanted in a uniform vessel. The stent is characterized by its length and the wave velocity in the stented region. The reflected wave is proportional to the time derivative of the incident wave. The reflection coefficient is a small quantity of the order of the length of the stent divided by the wavelength of the unstented vessel. The results obtained coincide with those obtained numerically by Charonko et al. The main simplifications used are small amplitude of the waves so that equations can be linearized and that the length of the stent is small enough so that the values of the wave functions are nearly uniform along the stent. Both assumptions hold in typical situations. PMID:23516957
Investigation of Pressurized Wave Bearings
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Dimofte, Florin
2003-01-01
The wave bearing has been pioneered and developed by Dr. Dimofte over the past several years. This bearing will be the main focus of this research. It is believed that the wave bearing offers a number of advantages over the foil bearing, which is the bearing that NASA is currently pursuing for turbomachinery applications. The wave bearing is basically a journal bearing whose film thickness varies around the circumference approximately sinusoidally, with usually 3 or 4 waves. Being a rigid geometry bearing, it provides precise control of shaft centerlines. The wave profile also provides good load capacity and makes the bearing very stable. Manufacturing techniques have been devised that should allow the production of wave bearings almost as cheaply as conventional full-circular bearings.
WINDII atmospheric wave airglow imaging
Armstrong, W.T.; Hoppe, U.-P.; Solheim, B.H.; Shepherd, G.G.
1996-12-31
Preliminary WINDII nighttime airglow wave-imaging data in the UARS rolldown attitude has been analyzed with the goal to survey gravity waves near the upper boundary of the middle atmosphere. Wave analysis is performed on O[sub 2](0,0) emissions from a selected 1[sup 0] x 1[sup 0] oblique view of the airglow layer at approximately 95 km altitude, which has no direct earth background and only an atmospheric background which is optically thick for the 0[sub 2](0,0) emission. From a small data set, orbital imaging of atmospheric wave structures is demonstrated, with indication of large variations in wave activity across land and sea. Comparison ground-based imagery is discussed with respect to similarity of wave variations across land/sea boundaries and future orbital mosaic image construction.
Solitary waves in particle beams
Bisognano, J.J.
1996-07-01
Since space charge waves on a particle beam exhibit both dispersive and nonlinear character, solitary waves or solitons are possible. Dispersive, nonlinear wave propagation in high current beams is found to be similar to ion-acoustic waves in plasmas with an analogy between Debye screening and beam pipe shielding. Exact longitudinal solitary wave propagation is found for potentials associated with certain transverse distributions which fill the beam pipe. For weak dispersion, the waves satisfy the Korteweg-deVries (KdV) equation, but for strong dispersion they exhibit breaking. More physically realizable distributions which do not fill the beam pipe are investigated and shown to also satisfy a KdV equation for weak dispersion if averaging over rapid transverse motion is physically justified. Scaling laws are presented to explore likely parameter regimes where these phenomena may be observed experimentally.
Crespo, Antonio; García, Javier; Manuel, Fernando
2013-01-01
A simple analytical expression has been derived to calculate the characteristics of a wave that reflects at a stent implanted in a uniform vessel. The stent is characterized by its length and the wave velocity in the stented region. The reflected wave is proportional to the time derivative of the incident wave. The reflection coefficient is a small quantity of the order of the length of the stent divided by the wavelength of the unstented vessel. The results obtained coincide with those obtained numerically by Charonko et al. The main simplifications used are small amplitude of the waves so that equations can be linearized and that the length of the stent is small enough so that the values of the wave functions are nearly uniform along the stent. Both assumptions hold in typical situations.
A two-scale approximation for wave-wave interactions in an operational wave model
NASA Astrophysics Data System (ADS)
Perrie, Will; Toulany, Bechara; Resio, Donald T.; Roland, Aron; Auclair, Jean-Pierre
2013-10-01
The two-scale approximation (hereafter, TSA) to the full Boltzman integral representation of quadruplet wave-wave interactions has recently been presented as a new method to estimate nonlinear transfer rates in wind waves, and has been tested for idealized spectral data, as well as for observed field measurements. TSA has been shown to perform well for wave spectra from field measurements, even for cases with directional energy shearing, compared to the Discrete Interaction Approximation (DIA), which is used in almost all operational wave forecast models. In this study, TSA is implemented in a modern operational wave model, WAVEWATCHIII®, hereafter WW3. Tests include idealized wave spectra based on field measurements, as well as additional tests for fetch-limited wave growth, and waves generated by hurricane Juan. Generally, TSA is shown to work well when its basic assumptions are met, when its first order, broad-scale term represents most of the spectrum, and its second order term is a perturbation-scale residual representing the rest of the spectrum. These conditions are easily met for test cases involving idealized JONSWAP-type spectra and in time-stepping cases when winds are spatially and temporally constant. To some extent, they also appear to be met in more demanding conditions, when storms move through their life cycles, with winds that change speed and direction, and with complex wave spectra, involving swell-windsea interactions, multiple peaks and directional shears.
Quantum Emulation of Gravitational Waves
Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel
2015-01-01
Gravitational waves, as predicted by Einstein’s general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials. PMID:26169801
Infragravity waves across the oceans
NASA Astrophysics Data System (ADS)
Rawat, Arshad; Ardhuin, Fabrice; Aucan, Jerome
2014-05-01
The propagation of transoceanic Infragravity (IG) wave was investigated using a global spectral wave model together with deep-ocean pressure recorders. IG waves are generated mostly at the shorelines due to non-linear hydrodynamic effects that transfer energy from the main windsea and swell band, with periods of 1 to 25 s, to periods up to 500 s. IG waves are important for the study of near-shore processes and harbor agitation, and can also be a potential source of errors in satellite altimetry measurements. Setting up a global IG model was motivated by the investigation of these errors for the future planned SWOT mission. Despite the fact that the infragravity waves exhibit much smaller vertical amplitudes than the usual high frequency wind-driven waves, of the order of 1 cm in the deep oceans, their propagation throughout the oceans and signature in the wave spectrum can be clearly observed. Using a simplified empirical parameterization of the nearshore source of free IG waves as a function of the incoming wave parameters we extended to WAVEWATCH III model, used so far for windseas and swell, to the IG band, up to periods of 300 s. The spatial and temporal variability of the modeled IG energy was well correlated to the DART station records, making it useful to interpret the records of IG waves. Open ocean IG wave records appear dominated by trans-oceanic events with well defined sources concentrated on a few days, usually on West coasts, and affecting the entire ocean basin, with amplitude patterns very similar to those of tsunamis. Three particular IG bursts during 2008 are studied, 2 in the Pacific Ocean and 1 in the North Atlantic. It was observed that the liberated IG waves can travel long distances often crossing whole oceans with negligible dissipation. The IG signatures are clearly observed at sensors along their propagation paths.
Waves and instabilities in plasmas
Chen, L.
1987-01-01
The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations.
Traveling waves in visual cortex.
Sato, Tatsuo K; Nauhaus, Ian; Carandini, Matteo
2012-07-26
Electrode recordings and imaging studies have revealed that localized visual stimuli elicit waves of activity that travel across primary visual cortex. Traveling waves are present also during spontaneous activity, but they can be greatly reduced by widespread and intensive visual stimulation. In this Review, we summarize the evidence in favor of these traveling waves. We suggest that their substrate may lie in long-range horizontal connections and that their functional role may involve the integration of information over large regions of space.
Quantitative wave-particle duality
NASA Astrophysics Data System (ADS)
Qureshi, Tabish
2016-07-01
The complementary wave and particle character of quantum objects (or quantons) was pointed out by Niels Bohr. This wave-particle duality, in the context of the two-slit experiment, is here described not just as two extreme cases of wave and particle characteristics, but in terms of quantitative measures of these characteristics, known to follow a duality relation. A very simple and intuitive derivation of a closely related duality relation is presented, which should be understandable to the introductory student.
Fundamentals of Seismic Wave Propagation
NASA Astrophysics Data System (ADS)
Chapman, Chris
2004-08-01
Presenting a comprehensive introduction to the propagation of high-frequency body-waves in elastodynamics, this volume develops the theory of seismic wave propagation in acoustic, elastic and anisotropic media to allow seismic waves to be modelled in complex, realistic three-dimensional Earth models. The book is a text for graduate courses in theoretical seismology, and a reference for all academic and industrial seismologists using numerical modelling methods. Exercises and suggestions for further reading are included in each chapter.
Mathematics of oscillations and waves
NASA Astrophysics Data System (ADS)
Antonyuk, P. N.
2016-07-01
Analytical definition of the sine function and the number π which is related to sine function allows to understand, how harmonic oscillations and waves appear. The functional equation for the sine is received. The new fast algorithm of calculation of the π number is formulated. In the elementary case oscillations and waves are harmonious or sinusoidal. The sine function appears not accidentally. This function can be defined as the solution of the functional equation characterizing periodic properties of oscillations and waves.
Quantum Emulation of Gravitational Waves
NASA Astrophysics Data System (ADS)
Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel
2015-07-01
Gravitational waves, as predicted by Einstein’s general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials.
Quantum Emulation of Gravitational Waves.
Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel
2015-07-14
Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials.
Quantum Emulation of Gravitational Waves.
Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel
2015-01-01
Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials. PMID:26169801
Surface waves affect frontogenesis
NASA Astrophysics Data System (ADS)
Suzuki, Nobuhiro; Fox-Kemper, Baylor; Hamlington, Peter E.; Van Roekel, Luke P.
2016-05-01
This paper provides a detailed analysis of momentum, angular momentum, vorticity, and energy budgets of a submesoscale front undergoing frontogenesis driven by an upper-ocean, submesoscale eddy field in a Large Eddy Simulation (LES). The LES solves the wave-averaged, or Craik-Leibovich, equations in order to account for the Stokes forces that result from interactions between nonbreaking surface waves and currents, and resolves both submesoscale eddies and boundary layer turbulence down to 4.9 m × 4.9 m × 1.25 m grid scales. It is found that submesoscale frontogenesis differs from traditional frontogenesis theory due to four effects: Stokes forces, momentum and kinetic energy transfer from submesoscale eddies to frontal secondary circulations, resolved turbulent stresses, and unbalanced torque. In the energy, momentum, angular momentum, and vorticity budgets for the frontal overturning circulation, the Stokes shear force is a leading-order contributor, typically either the second or third largest source of frontal overturning. These effects violate hydrostatic and thermal wind balances during submesoscale frontogenesis. The effect of the Stokes shear force becomes stronger with increasing alignment of the front and Stokes shear and with a nondimensional scaling. The Stokes shear force and momentum transfer from submesoscale eddies significantly energize the frontal secondary circulation along with the buoyancy.
Martinez, D.; Hartigan, P.; Frank, A.; Hansen, E.; Yirak, K.; Liao, A. S.; Graham, P.; Foster, J.; Wilde, B.; Blue, B.; et al
2016-06-01
Supersonic outflows from objects as varied as stellar jets, massive stars, and novae often exhibit multiple shock waves that overlap one another. When the intersection angle between two shock waves exceeds a critical value, the system reconfigures its geometry to create a normal shock known as a Mach stem where the shocks meet. Mach stems are important for interpreting emission-line images of shocked gas because a normal shock produces higher postshock temperatures, and therefore a higher-excitation spectrum than does an oblique shock. In this paper, we summarize the results of a series of numerical simulations and laboratory experiments designed tomore » quantify how Mach stems behave in supersonic plasmas that are the norm in astrophysical flows. The experiments test analytical predictions for critical angles where Mach stems should form, and quantify how Mach stems grow and decay as intersection angles between the incident shock and a surface change. While small Mach stems are destroyed by surface irregularities and subcritical angles, larger ones persist in these situations and can regrow if the intersection angle changes to become more favorable. Furthermore, the experimental and numerical results show that although Mach stems occur only over a limited range of intersection angles and size scales, within these ranges they are relatively robust, and hence are a viable explanation for variable bright knots observed in Hubble Space Telescope images at the intersections of some bow shocks in stellar jets.« less
Volcanoes generate devastating waves
Lockridge, P. )
1988-01-01
Although volcanic eruptions can cause many frightening phenomena, it is often the power of the sea that causes many volcano-related deaths. This destruction comes from tsunamis (huge volcano-generated waves). Roughly one-fourth of the deaths occurring during volcanic eruptions have been the result of tsunamis. Moreover, a tsunami can transmit the volcano's energy to areas well outside the reach of the eruption itself. Some historic records are reviewed. Refined historical data are increasingly useful in predicting future events. The U.S. National Geophysical Data Center/World Data Center A for Solid Earth Geophysics has developed data bases to further tsunami research. These sets of data include marigrams (tide gage records), a wave-damage slide set, digital source data, descriptive material, and a tsunami wall map. A digital file contains information on methods of tsunami generation, location, and magnitude of generating earthquakes, tsunami size, event validity, and references. The data can be used to describe areas mot likely to generate tsunamis and the locations along shores that experience amplified effects from tsunamis.
NASA Astrophysics Data System (ADS)
Walsh, J. E.
1982-11-01
Cerenkov Masers, which are mildly relativistic (100-200 KV), moderate-current, electron-beam (1-20A)-driven dielectric resonators, have been used to produce multihendred kW power levels in the middle part of the mm wavelength range. The devices make use of the fact that the evanescence scale length in the transverse direction of a slow wave is given by (lambda)(beta)(gamma) lambda - wavelength, beta velocity measured in units of the speed of light, gamma = 1/sg. root of(1-beta squared). The scaling (lambda)(beta)(gamma) approx. 1 will maintain good beam-to-wave-coupling in the mm range, while also maintaining convenient transverse resonator dimension. A variety of configurations and modifications are considered and discussed in detail. All experimental results presented pertain to oscillator configurations of the basic device. The basic interaction can, however, be used as the basis of an amplifier and a theoretical analysis of such a device is presented.
Rotational waves in geodynamics
NASA Astrophysics Data System (ADS)
Gerus, Artyom; Vikulin, Alexander
2015-04-01
The rotation model of a geoblock with intrinsic momentum was constructed by A.V. Vikulin and A.G. Ivanchin [9, 10] to describe seismicity within the Pacific Ocean margin. It is based on the idea of a rotational motion of geoblocks as the parts of the rotating body of the Earth that generates rotary deformation waves. The law of the block motion was derived in the form of the sine-Gordon equation (SG) [5, 9]; the dimensionless form of the equation is: δ2θ δ2θ δξ2 - δη2 = sinθ, (1) where θ = β/2, ξ = k0z and η = v0k0t are dimensionless coordinates, z - length of the chain of masses (blocks), t - time, β - turn angle, ν0 - representative velocity of the process, k0 - wave number. Another case analyzed was a chain of nonuniformly rotating blocks, with deviation of force moments from equilibrium positions μ, considering friction forces α along boundaries, which better matched a real-life seismic process. As a result, the authors obtained the law of motion for a block in a chain in the form of the modified SG equation [8]: δ2θ δ2θ δθ- δξ2 - δ η2 = sin θ+ α δη + μδ(ξ)sin θ (2)
Smith, R.W.
1980-08-01
Several new aspects of nonlinear or wave mixing spectroscopy were investigated utilizing the polarization properties of the nonlinear output field and the dependence of this field upon the occurrence of multiple resonances in the nonlinear susceptibility. First, it is shown theoretically that polarization-sensitive detection may be used to either eliminate or controllably reduce the nonresonant background in coherent anti-Stokes Raman spectroscopy, allowing weaker Raman resonances to be studied. The features of multi-resonant four-wave mixing are examined in the case of an inhomogeneously broadened medium. It is found that the linewidth of the nonlinear output narrows considerably (approaching the homogeneous width) when the quantum mechanical expressions for the doubly- and triply-resonant susceptibilities are averaged over a Doppler or strain broadened profile. Experimental studies of nonlinear processes in Pr/sup +3/:LaF/sub 3/ verify this linewidth narrowing, but indicate that this strain broadened system cannot be treated with a single broadening parameter as in the case of Doppler broadening in a gas. Several susceptibilities are measured from which are deduced dipole matrix elements and Raman polarizabilities related to the /sup 3/H/sub 4/, /sup 3/H/sub 6/, and /sup 3/P/sub 0/ levels of the praseodymium ions.
Surfing wave climate variability
NASA Astrophysics Data System (ADS)
Espejo, Antonio; Losada, Iñigo J.; Méndez, Fernando J.
2014-10-01
International surfing destinations are highly dependent on specific combinations of wind-wave formation, thermal conditions and local bathymetry. Surf quality depends on a vast number of geophysical variables, and analyses of surf quality require the consideration of the seasonal, interannual and long-term variability of surf conditions on a global scale. A multivariable standardized index based on expert judgment is proposed for this purpose. This index makes it possible to analyze surf conditions objectively over a global domain. A summary of global surf resources based on a new index integrating existing wave, wind, tides and sea surface temperature databases is presented. According to general atmospheric circulation and swell propagation patterns, results show that west-facing low to middle-latitude coasts are more suitable for surfing, especially those in the Southern Hemisphere. Month-to-month analysis reveals strong seasonal variations in the occurrence of surfable events, enhancing the frequency of such events in the North Atlantic and the North Pacific. Interannual variability was investigated by comparing occurrence values with global and regional modes of low-frequency climate variability such as El Niño and the North Atlantic Oscillation, revealing their strong influence at both the global and the regional scale. Results of the long-term trends demonstrate an increase in the probability of surfable events on west-facing coasts around the world in recent years. The resulting maps provide useful information for surfers, the surf tourism industry and surf-related coastal planners and stakeholders.
NASA Astrophysics Data System (ADS)
Hartigan, P.; Foster, J.; Frank, A.; Hansen, E.; Yirak, K.; Liao, A. S.; Graham, P.; Wilde, B.; Blue, B.; Martinez, D.; Rosen, P.; Farley, D.; Paguio, R.
2016-06-01
Supersonic outflows from objects as varied as stellar jets, massive stars, and novae often exhibit multiple shock waves that overlap one another. When the intersection angle between two shock waves exceeds a critical value, the system reconfigures its geometry to create a normal shock known as a Mach stem where the shocks meet. Mach stems are important for interpreting emission-line images of shocked gas because a normal shock produces higher postshock temperatures, and therefore a higher-excitation spectrum than does an oblique shock. In this paper, we summarize the results of a series of numerical simulations and laboratory experiments designed to quantify how Mach stems behave in supersonic plasmas that are the norm in astrophysical flows. The experiments test analytical predictions for critical angles where Mach stems should form, and quantify how Mach stems grow and decay as intersection angles between the incident shock and a surface change. While small Mach stems are destroyed by surface irregularities and subcritical angles, larger ones persist in these situations and can regrow if the intersection angle changes to become more favorable. The experimental and numerical results show that although Mach stems occur only over a limited range of intersection angles and size scales, within these ranges they are relatively robust, and hence are a viable explanation for variable bright knots observed in Hubble Space Telescope images at the intersections of some bow shocks in stellar jets.
1935-01-01
It is submitted that the thermal action of short-wave therapy does not account for the therapeutic results obtained. The theory is put forward that many of the results obtained can be better explained by the disruptive and dispersive action of the impact of the electromagnetic vibrations. An analogy, indicating such disruptive effects at high frequency, is drawn from the molecular vibrations—transmitted through transformer oil, and excited by the application of high frequency currents to the layers of quartz in the piezo-electric oscillator of quartz. It is submitted that these disruptive and dispersive effects will be greatest where the conductivity of the tissues is low, such as in bones and fat, and it is shown that it is in these regions that the therapeutic action of these currents is most obvious. It is also pointed out that, if effects, comparable to those obtained in the subcutaneous area, are obtained in the deeper tissues and organs, the application of deep-wave therapy would be attended by serious risk. PMID:19990107
Wave propagation in solids and fluids
Davis, J. L.
1988-01-01
The fundamental principles of mathematical analysis for wave phenomena in gases, solids, and liquids are presented in an introduction for scientists and engineers. Chapters are devoted to oscillatory phenomena, the physics of wave propagation, partial differential equations for wave propagation, transverse vibration of strings, water waves, and sound waves. Consideration is given to the dynamics of viscous and inviscid fluids, wave propagation in elastic media, and variational methods in wave phenomena. 41 refs.
Tropical Cyclogenesis in a Tropical Wave Critical Layer: Easterly Waves
NASA Technical Reports Server (NTRS)
Dunkerton, T. J.; Montgomery, M. T.; Wang, Z.
2009-01-01
The development of tropical depressions within tropical waves over the Atlantic and eastern Pacific is usually preceded by a "surface low along the wave" as if to suggest a hybrid wave-vortex structure in which flow streamlines not only undulate with the waves, but form a closed circulation in the lower troposphere surrounding the low. This structure, equatorward of the easterly jet axis, is identified herein as the familiar critical layer of waves in shear flow, a flow configuration which arguably provides the simplest conceptual framework for tropical cyclogenesis resulting from tropical waves, their interaction with the mean flow, and with diabatic processes associated with deep moist convection. The recirculating Kelvin cat's eye within the critical layer represents a sweet spot for tropical cyclogenesis in which a proto-vortex may form and grow within its parent wave. A common location for storm development is given by the intersection of the wave's critical latitude and trough axis at the center of the cat's eye, with analyzed vorticity centroid nearby. The wave and vortex live together for a time, and initially propagate at approximately the same speed. In most cases this coupled propagation continues for a few days after a tropical depression is identified. For easterly waves, as the name suggests, the propagation is westward. It is shown that in order to visualize optimally the associated Lagrangian motions, one should view the flow streamlines, or stream function, in a frame of reference translating horizontally with the phase propagation of the parent wave. In this co-moving frame, streamlines are approximately equivalent to particle trajectories. The closed circulation is quasi-stationary, and a dividing streamline separates air within the cat's eye from air outside.
Wave energy and intertidal productivity
Leigh, Egbert G.; Paine, Robert T.; Quinn, James F.; Suchanek, Thomas H.
1987-01-01
In the northeastern Pacific, intertidal zones of the most wave-beaten shores receive more energy from breaking waves than from the sun. Despite severe mortality from winter storms, communities at some wave-beaten sites produce an extraordinary quantity of dry matter per unit area of shore per year. At wave-beaten sites of Tatoosh Island, WA, sea palms, Postelsia palmaeformis, can produce > 10 kg of dry matter, or 1.5 × 108 J, per m2 in a good year. Extraordinarily productive organisms such as Postelsia are restricted to wave-beaten sites. Intertidal organisms cannot transform wave energy into chemical energy, as photosynthetic plants transform solar energy, nor can intertidal organisms “harness” wave energy. Nonetheless, wave energy enhances the productivity of intertidal organisms. On exposed shores, waves increase the capacity of resident algae to acquire nutrients and use sunlight, augment the competitive ability of productive organisms, and protect intertidal residents by knocking away their enemies or preventing them from feeding. PMID:16593813
Wave characteristics in Lake Peipsi
NASA Astrophysics Data System (ADS)
Nikolkina, Irina; Soomere, Tarmo; Didenkulova, Ira
2013-04-01
The main features of wave properties in relatively large but shallow Lake Peipsi (Estonia/Russia) are determined based on wave measurements at its western coast (58.75°N 27.1°E) in summer and autumn 2005-2007. Although the data set is relatively limited, it still covers 263 days and characterizes well the basic properties of wave climate in this water body. The wave regime is mostly calm, with the long-term average significant wave height below 0.3 m and seas with Hs <0.2 m covering at least 2/3 of the ice-free time. The seasonal variation in wave properties mimics the analogous variation in the wind speed, with the most stormy months October-December. Wave heights are, on average, considerably lower in summer (July-August) than in autumn (October-November). Significant wave heights >1 m were recorded in autumn and covered 3% or the measurement time. The maximum recorded wave height Hs = 1.98 m occurred on October 27, 2005. The mean periods are mostly concentrated in a range of 1.5-2.5 s and exhibit an almost Gaussian distribution.
Delaying vortex breakdown by waves
NASA Astrophysics Data System (ADS)
Yao, M. F.; Jiang, L. B.; Wu, J. Z.; Ma, H. Y.; Pan, J. Y.
1989-03-01
The effect of spiral waves on delaying vortex breakdown in a tube is studied experimentally and theoretically. When a harmonic oscillation was imposed on one of guiding vanes in the tube, the breakdown was observed to be postponed appreciately. According to the generalized Lagrangian mean theory, proper forcing spiral waves may produce an additional streaming momentum, of which the effect is favorable and similar to an axial suction at downstream end. The delayed breakdown position is further predicted by using nonlinear wave theory. Qualitative agreement between theory and experiment is obtained, and experimental comparison of the effects due to forcing spiral wave and axial suction is made.
Guided acoustic wave inspection system
Chinn, Diane J.
2004-10-05
A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.
Source modeling sleep slow waves
Murphy, Michael; Riedner, Brady A.; Huber, Reto; Massimini, Marcello; Ferrarelli, Fabio; Tononi, Giulio
2009-01-01
Slow waves are the most prominent electroencephalographic (EEG) feature of sleep. These waves arise from the synchronization of slow oscillations in the membrane potentials of millions of neurons. Scalp-level studies have indicated that slow waves are not instantaneous events, but rather they travel across the brain. Previous studies of EEG slow waves were limited by the poor spatial resolution of EEGs and by the difficulty of relating scalp potentials to the activity of the underlying cortex. Here we use high-density EEG (hd-EEG) source modeling to show that individual spontaneous slow waves have distinct cortical origins, propagate uniquely across the cortex, and involve unique subsets of cortical structures. However, when the waves are examined en masse, we find that there are diffuse hot spots of slow wave origins centered on the lateral sulci. Furthermore, slow wave propagation along the anterior−posterior axis of the brain is largely mediated by a cingulate highway. As a group, slow waves are associated with large currents in the medial frontal gyrus, the middle frontal gyrus, the inferior frontal gyrus, the anterior cingulate, the precuneus, and the posterior cingulate. These areas overlap with the major connectional backbone of the cortex and with many parts of the default network. PMID:19164756
Przadka, A; Feat, S; Petitjeans, P; Pagneux, V; Maurel, A; Fink, M
2012-08-10
We present time reversal experiments demonstrating refocusing of gravity-capillary waves in a water tank cavity. Owing to the reverberating effect of the cavity, only a few channels are sufficient to reconstruct the surface wave at the point source, even if the absorption is not negligible. Space-time-resolved measurements of the waves during the refocusing allow us to quantitatively demonstrate that the quality of the refocusing increases linearly with the number of reemitting channels. Numerical simulations corresponding to water waves at larger scales, with negligible damping, indicate the possibility of very high quality refocusing.
Stabilized wave segments in an excitable medium with a phase wave at the wave back
NASA Astrophysics Data System (ADS)
Zykov, V. S.; Bodenschatz, E.
2014-04-01
The propagation velocity and the shape of a stationary propagating wave segment are determined analytically for excitable media supporting excitation waves with trigger fronts and phase backs. The general relationships between the medium's excitability and the wave segment parameters are obtained in the framework of the free boundary approach under quite usual assumptions. Two universal limits restricting the region of existence of stabilized wave segments are found. The comparison of the analytical results with numerical simulations of the well-known Kessler-Levine model demonstrates their good quantitative agreement. The findings should be applicable to a wide class of systems, such as the propagation of electrical waves in the cardiac muscle or wave propagation in autocatalytic chemical reactions, due to the generality of the free-boundary approach used.
Topological horseshoes in travelling waves of discretized nonlinear wave equations
Chen, Yi-Chiuan; Chen, Shyan-Shiou; Yuan, Juan-Ming
2014-04-15
Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes.
Vector plane wave spectrum of an arbitrary polarized electromagnetic wave.
Guo, Hanming; Chen, Jiabi; Zhuang, Songlin
2006-03-20
By using the method of modal expansions of the independent transverse fields, a formula of vector plane wave spectrum (VPWS) of an arbitrary polarized electromagnetic wave in a homogenous medium is derived. In this formula VPWS is composed of TM- and TE-mode plane wave spectrum, where the amplitude and unit polarized direction of every plane wave are separable, which has more obviously physical meaning and is more convenient to apply in some cases compared to previous formula of VPWS. As an example, the formula of VPWS is applied to the well-known radially and azimuthally polarized beam. In addition, vector Fourier-Bessel transform pairs of an arbitrary polarized electromagnetic wave with circular symmetry are also derived.
Vector plane wave spectrum of an arbitrary polarized electromagnetic wave
NASA Astrophysics Data System (ADS)
Guo, Hanming; Chen, Jiabi; Zhuang, Songlin
2006-03-01
By using the method of modal expansions of the independent transverse fields, a formula of vector plane wave spectrum (VPWS) of an arbitrary polarized electromagnetic wave in a homogenous medium is derived. In this formula VPWS is composed of TM- and TE-mode plane wave spectrum, where the amplitude and unit polarized direction of every plane wave are separable, which has more obviously physical meaning and is more convenient to apply in some cases compared to previous formula of VPWS. As an example, the formula of VPWS is applied to the well-known radially and azimuthally polarized beam. In addition, vector Fourier-Bessel transform pairs of an arbitrary polarized electromagnetic wave with circular symmetry are also derived.
NASA Astrophysics Data System (ADS)
Ghezali, S.; Taleb, A.
2008-09-01
A research project at the "Laboratoire d'électronique quantique" consists in a theoretical study of the reflection and diffraction phenomena via an atomic mirror. This poster presents the principle of an atomic mirror. Many groups in the world have constructed this type of atom optics experiments such as in Paris-Orsay-Villetaneuse (France), Stanford-Gaithersburg (USA), Munich-Heidelberg (Germany), etc. A laser beam goes into a prism with an incidence bigger than the critical incidence. It undergoes a total reflection on the plane face of the prism and then exits. The transmitted resulting wave out of the prism is evanescent and repulsive as the frequency detuning of the laser beam compared to the atomic transition δ = ωL-ω0 is positive. The cold atomic sample interacts with this evanescent wave and undergoes one or more elastic bounces by passing into backward points in its trajectory because the atoms' kinetic energy (of the order of the μeV) is less than the maximum of the dipolar potential barrier ℏΩ2/Δ where Ω is the Rabi frequency [1]. In fact, the atoms are cooled and captured in a magneto-optical trap placed at a distance of the order of the cm above the prism surface. The dipolar potential with which interact the slow atoms is obtained for a two level atom in a case of a dipolar electric transition (D2 Rubidium transition at a wavelength of 780nm delivered by a Titane-Saphir laser between a fundamental state Jf = l/2 and an excited state Je = 3/2). This potential is corrected by an attractive Van der Waals term which varies as 1/z3 in the Lennard-Jones approximation (typical atomic distance of the order of λ0/2π where λ0 is the laser wavelength) and in 1/z4 if the distance between the atom and its image in the dielectric is big in front of λ0/2π. This last case is obtained in a quantum electrodynamic calculation by taking into account an orthornormal base [2]. We'll examine the role of spontaneous emission for which the rate is inversely
Freak waves: is prediction possible?
NASA Astrophysics Data System (ADS)
Toffoli, A.; Lefevre, J. M.; Lehner, S.; Monbaliu, J.
2003-04-01
Freak waves are individual waves of exceptional height or steepness and more and more they are believed to have caused a large number of casualties to ships and offshore structures. Theoretical and experimental studies have demonstrated their existence and a number of them have been objectively recorded in situ. Ships that founder represent a great disaster both from an economical and a human point of view. Moreover the environmental collateral damages may be enormous. Therefore description of freak waves is not only important for design work but also for operational purposes it would be of great benefit if a warning might be given to mariners. Meteo-centers already add wave forecasts in the weather and sea bulletins, usually in terms of significant wave height, wave period and wave direction both for wind sea and swell conditions. These forecasts are based on spectral wave models. Although a spectrum only gives some average description of the sea-state, and therefore no details about the instantaneous position of the sea surface, it might contain additional information that points at an increased risk for the occurrence of exceptional waves. It is one of the objectives of the EU project MaxWave to investigate this. To this end a database with 650 ship accidents was extracted from the Lloyd’s Marine Information Service (LMIS) and Lloyd’s casualty reports. The database covers serious casualties, including total losses, reported to all propelled sea-going merchant ships in the world of about 100 gross tonnage and above, due to bad weather. For these accidents, wave and wind conditions were downloaded from the ECMWF-archive. The wave information included full spectra allowing to calculate additional parameters from the spectra such as the wave steepness, bandwidth, and directional spread. The correlation between casualties and sea-state may help in identifying situations of increased risk, next to ocean areas more prone to bad weather in general and abnormal waves
Artemyev, A. V.; Mourenas, D.; Krasnoselskikh, V. V.
2015-06-15
In this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare results of test particle simulations and the quasi-linear theory for different spectra of waves to investigate how a fine structure of the wave emission can influence electron resonant scattering. We show that for a realistically wide distribution of wave normal angles θ (i.e., when the dispersion δθ≥0.5{sup °}), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum consisting in well-separated ion cyclotron harmonics. Comparisons of test particle simulations with quasi-linear theory show that for δθ>0.5{sup °}, the quasi-linear approximation describes resonant scattering correctly for a large enough plasma frequency. For a very narrow θ distribution (when δθ∼0.05{sup °}), however, the effect of a fine structure in the wave spectrum becomes important. In this case, quasi-linear theory clearly fails in describing accurately electron scattering by fast magnetosonic waves. We also study the effect of high wave amplitudes on relativistic electron scattering. For typical conditions in the earth's radiation belts, the quasi-linear approximation cannot accurately describe electron scattering for waves with averaged amplitudes >300 pT. We discuss various applications of the obtained results for modeling electron dynamics in the radiation belts and in the Earth's magnetotail.
The role of wave-wave interaction during stratospheric splits
NASA Astrophysics Data System (ADS)
Miller, Andreas; Plumb, Alan
2016-04-01
Sudden Stratospheric Warmings (SSWs) are the most studied example of troposphere-stratosphere coupling. They are often categorized as either splits (dominated by wavenumber 2) or displacements (wavenumber 1) and many studies (e.g. Charlton and Polvani (2007)) found statistically significant differences between the zonal wind fields and associated momentum fluxes. These differences are observed from the stratosphere to the surface. Our study focuses on how wave-wave interactions within the stratosphere can determine the type of SSW. We derive an energy budget for each wavenumber that allows us to quantify the major stratospheric processes within each wavenumber as well as the energy transfer from one wavenumber into another. Calculating these budgets, using MERRA reanalysis data, we find that for many split events the energy flux into the stratosphere is predominantly in wavenumber one. Thus, wave-wave interactions within the stratosphere, which can flux energy between wavenumbers, play a key role in splitting the polar stratospheric vortex. However, the signal is weak when we calculate composites over all splits as the timing of wave-wave interactions is unrelated to classic definitions (e.g. central date) highlighting the need for a dynamically more meaningful definition of SSWs. In order to better understand the role of wave-wave interactions, we employ GFDL's FMS shallow water model to simulate the stratospheric vortex under idealized forcings (similar to Polavani et al. (1994)). Contrary to many other idealized experiments, we are able to simulate both types of warmings with pure wavenumber one or two forcings. We further explore the strength of the necessary forcing to cause stratospheric splits in relation to the state of of the polar vortex. These results are compared to the work of Matthewman and Esler (2011) on splits being a result of resonance. We finally use the energy budget described above to determine the importance of wave-wave interaction in this
Control of optical solitons by light waves.
Grigoryan, V S; Hasegawa, A; Maruta, A
1995-04-15
A new method of controlling optical solitons by means of light wave(s) in fibers is presented. By a proper choice of light wave(s), parametric four-wave mixing can control the soliton shape as well as the soliton parameters (amplitude, frequency, velocity, and position).
Optimization of one-way wave equations.
Lee, M.W.; Suh, S.Y.
1985-01-01
The theory of wave extrapolation is based on the square-root equation or one-way equation. The full wave equation represents waves which propagate in both directions. On the contrary, the square-root equation represents waves propagating in one direction only. A new optimization method presented here improves the dispersion relation of the one-way wave equation. -from Authors
NASA Technical Reports Server (NTRS)
Allen, Kenneth C.
1988-01-01
Progress on millimeter-wave propagation experiments in Hawaii is reported. A short path for measuring attenuation in rain at 9.6, 28.8, 57.6, and 96.1 GHz is in operation. A slant path from Hilo to the top of Mauna Kea is scheduled. On this path, scattering from rain and clouds that may cause interference for satellites closely spaced in geosynchronous orbit will be measured at the same frequencies at 28.8 and 96.1 GHz. In addition the full transmission matrix will be measured at the same frequencies on the slant path. The technique and equipment used to measure the transmission matrix are described.
NASA Technical Reports Server (NTRS)
1999-01-01
This map from the MGS Horizon Sensor Assembly (HORSE) shows middle atmospheric temperatures near the 1 mbar level of Mars between Ls 170 to 175 (approx. July 14 - 23, 1999). Local Mars times between 1:30 and 4:30 AM are included. Infrared radiation measured by the Mars Horizon Sensor Assembly was used to make the map. That device continuously views the 'limb' of Mars in four directions, to help orient the spacecraft instruments to the nadir: straight down.
The map shows thermal wave phenomena that are caused by the large topographic variety of Mars' surface, as well the latitudinally symmetric behavior expected at this time of year near the equinox.
NASA Astrophysics Data System (ADS)
Zhou, Chaoguang
2000-11-01
This study is concerned with geophysical wave tomography techniques that include advanced diffraction tomography, traveltime calculation techniques and simultaneous attenuation and velocity tomography approaches. We propose the source independent approximation, the Modified Quasi-Linear approximation and develop a fast and accurate diffraction tomography algorithm that uses this approximation. Since the Modified Quasi-Linear approximation accounts for the scattering fields within scatterers, this tomography algorithm produces better image quality than conventional Born approximation tomography algorithm does with or without the presence of multiple scatterers and can be used to reconstruct images of high contrast objects. Since iteration is not required, this algorithm is efficient. We improve the finite difference traveltime calculation algorithm proposed by Vidale (1990). The bucket theory is utilized in order to enhance the sorting efficiency, which accounts for about ten percent computing time improvement for large velocity models. Snell's law is employed to solve the causality problem analytically, which enables the modified algorithm to compute traveltimes accurately and rapidly for high velocity contrast media. We also develop two simultaneous attenuation and velocity tomography approaches, which use traveltimes and amplitude spectra of the observed data, and discuss some of their applications. One approach is processing geophysical data that come from one single survey and the other deals with the repeated survey cases. These approaches are nonlinear and therefore more accurate than linear tomography. A linear system for wave propagation and constant-Q media are assumed in order to develop the tomography algorithms. These approaches not only produce attenuation and velocity images at the same time but also can be used to infer the physical rock properties, such as the dielectric permittivity, the electric conductivity, and the porosity. A crosshole radar
Monolithic Millimeter Wave Oscillator
NASA Astrophysics Data System (ADS)
Wang, Nan-Lei
There is an increasing interest in the millimeter -wave spectrum for use in communications and for military and scientific applications. The concept of monolithic integration aims to produce very-high-frequency circuits in a more reliable, reproducible way than conventional electronics, and also at lower cost, with smaller size and lighter weight. In this thesis, a negative resistance device is integrated monolithically with a resonator to produce an effective oscillator. This work fills the void resulting from the exclusion of the local oscillator from the monolithic millimeter-wave integrated circuit (MMMIC) receiver design. For convenience a microwave frequency model was used to design the resonator circuit. A 5 GHz hybrid oscillator was first fabricated to test the design; the necessary GaAs process technology was developed for the fabrication. Negative resistance devices and oscillator theory were studied, and a simple but practical model of the Gunn diode was devised to solve the impedance matching problem. Monolithic oscillators at the Ka band (35 GHz) were built and refined. All devices operated in CW mode. By means of an electric-field probe, the output power was coupled into a metallic waveguide for measurement purposes. The best result was 3.63 mW of power output, the highest efficiency was 0.43% and the frequency stability was better than 10-4. In the future, an IMPATT diode could replace the Gunn device to give much higher power and efficiency. A varactor-tuned circuit also suitable for large-scale integration is under study.
Localized wave pulse experiments
Chambers, D L; Henderson, T L; Krueger, K L; Lewis, D K; Zilkowski, R N
1999-06-01
The Localized Wave project of the Strategic System Support Program has recently finished an experiment in cooperation with the Advanced SONAR group of the Applied Research Laboratory of the University of Texas at Austin. The purpose of the experiment was three-fold. They wanted to see if (1) the LW pulse could propagate over significant distances, to see if (2) a new type of array and drive system specifically designed for the pulse would increase efficiency over single frequency tone bursts, and to see if (3) the complexity of our 24 channel drivers resulted in better efficiency than a single equivalent pulse driving a piston. In the experiment, several LW pulses were launched from the Lake Travis facility and propagated over distances of either 100 feet or 600 feet, through a thermocline for the 600 foot measurements. The results show conclusively that the Localized Wave will propagate past the near field distance. The LW pulses resulted in extremely broad frequency band width pulses with narrow spatial beam patterns and unmeasurable side lobes. Their array gain was better than most tone bursts and further, were better than their equivalent piston pulses. This marks the first test of several Low Diffraction beams against their equivalent piston pulses, as well as the first propagation of LW pulses over appreciable distances. The LW pulse is now proven a useful tool in open water, rather than a laboratory curiosity. The experimental system and array were built by ARL, and the experiments were conducted by ARL staff on their standard test range. The 600 feet measurements were made at the farthest extent of that range.
The Waves and Tsunamis Project
NASA Astrophysics Data System (ADS)
Lavin, M.; Strohschneider, D.; Maichle, R.; Frashure, K.; Micozzi, N.; Stephen, R. A.
2005-12-01
The goals of the Waves and Tsunamis Project are "to make waves real" to middle school students and to teach them some fundamental concepts of waves. The curriculum was designed in Fall 2004 (before the Sumatra Tsunami) and involves an ocean scientist classroom visit, hands-on demonstrations, and an interactive website designed to explain ocean wave properties. The website is called 'The Plymouth Wave Lab' and it has had more than 40,000 hits since the Sumatra event. One inexpensive and interesting demonstration is based on a string composed of alternating elastic bands and paper clips. Washers can be added to the paper clips to construct strings with varying mass. For example, a tapered string with mass decreasing in the wave propagation direction is an analog of tsunami waves propagating from deep to shallow water. The Waves and Tsunamis Project evolved as a collaborative effort involving an ocean science researcher and middle school science teachers. It was carried out through the direction of the Centers of Ocean Science Education Excellence New England (COSEE-NE) Ocean Science Education Institute (OSEI). COSEE-NE is involved in developing models for sustainable involvement of ocean science researchers in K-12 education ( http://necosee.net ). This work is supported by the National Science Foundation.
Compressive passive millimeter wave imager
Gopalsami, Nachappa; Liao, Shaolin; Elmer, Thomas W; Koehl, Eugene R; Heifetz, Alexander; Raptis, Apostolos C
2015-01-27
A compressive scanning approach for millimeter wave imaging and sensing. A Hadamard mask is positioned to receive millimeter waves from an object to be imaged. A subset of the full set of Hadamard acquisitions is sampled. The subset is used to reconstruct an image representing the object.
Wave generation by turbulent convection
NASA Technical Reports Server (NTRS)
Goldreich, Peter; Kumar, Pawan
1990-01-01
Wave generation by turbulent convection in a plane parallel, stratified atmosphere lying in a gravitational field is studied. The turbulent spectrum is related to the convective energy flux via the Kolmogorov scaling and the mixing length hypothesis. Efficiencies for the conversion of the convective energy flux into both trapped and propagating waves are estimated.
ERIC Educational Resources Information Center
Shipman, Bob
2006-01-01
When children first hear the term "sound wave" perhaps they might associate it with the way a hand waves or perhaps the squiggly line image on a television monitor when sound recordings are being made. Research suggests that children tend to think sound somehow travels as a discrete package, a fast-moving invisible thing, and not something that…
Magnetodynamic waves in the air
NASA Astrophysics Data System (ADS)
Korolev, Alexander I.
2013-02-01
The paper describes experiments to search for a variable magnetic field close to a rechargeable conductive flat plate and a ball in the air, as well as an experiment looking for a variable electric field near a rotating permanent magnet. It has been found that variable electric and magnetic fields do not induce each other within the measurement error. It means that rotary Maxwell's equations are not applicable in the near-field zone and the classical concept of displacement current in vacuum (air) has no physical meaning. A conclusion is made on the existence of transverse magnetodynamic waves. Statics and dynamics of the magnetic field near the permanent magnet rod are investigated experimentally. The methods to compute magnetodynamic waves from any source are presented. Four types of polarization of these waves are identified: linear, circular, toroidal and mixed. Concentration and deflection of magnetodynamic waves are observed on introducing inhomogeneity in the form of a ferrite rod into their propagation way, which is similar to diffraction in optics. Secondary magnetodynamic waves from the induced magnetic moments in atoms of ferrite are registered near its surface, which is like reflection in optics. Some ideas for observation of effects similar to dispersion and interference are presented for magnetodynamic waves. The structure and properties of electrodynamic, magnetodynamic and electromagnetic waves are discussed. The ideas of experiments to search for their unknown properties are described. In conclusion, technical applications of magnetodynamic waves such as magnetography, magnetic tomography and other are considered.
Monitoring with Coda Wave Interferometry
NASA Astrophysics Data System (ADS)
Gret, A.; Snieder, R.
2004-12-01
Aki has been a pioneer in monitoring the subsurface with coda waves and with guided waves. His analysis of temporal and spatial variations in coda Q has proven to be a powerful tool for monitoring purposes. We have extended his technique in new method called coda wave interferometry where changes in the full waveforms of coda waves are used to monitor changes in the subsurface. We have developed and implemented the theory to use this technique to monitor the following changes: a change in the seismic velocity, a change in scatterer locations, and a change in the location of earthquakes. As shown by Aki, the seismic coda is dominated by shear waves. Therefore our technique is primarily sensitive to changes in the S-velocity. Aki also worked on wave propagation in volcanoes. We have used coda wave interferometry to monitor two active volcanoes, Arenal (Costa Rica) and Mt. Erebus (Antarctica). I will give several examples to illustrate how coda waves can be used for monitoring purposes.
Rogue Waves and Modulational Instability
NASA Astrophysics Data System (ADS)
Zakharov, V. E.; Dyachenko, A.
2015-12-01
The most plausible cause of rogue wave formation in a deep ocean is development of modulational instability of quasimonochromatic wave trains. An adequate model for study of this phenomenon is the Euler equation for potential flow of incompressible fluid with free surface in 2-D geometry. Numerical integration of these equations confirms completely the conjecture of rogue wave formation from modulational instability but the procedure is time consuming for determination of rogue wave appearance probability for a given shape of wave energy spectrum. This program can be realized in framework of simpler model using replacement of the exact interaction Hamiltonian by more compact Hamiltonian. There is a family of such models. The popular one is the Nonlinear Schrodinger equation (NLSE). This model is completely integrable and suitable for numerical simulation but we consider that it is oversimplified. It misses such important phenomenon as wave breaking. Recently, we elaborated much more reliable model that describes wave breaking but is as suitable as NLSE from the point of numerical modeling. This model allows to perform massive numerical experiments and study statistics of rogue wave formation in details.
Multichannel analysis of surface waves
Park, C.B.; Miller, R.D.; Xia, J.
1999-01-01
The frequency-dependent properties of Rayleigh-type surface waves can be utilized for imaging and characterizing the shallow subsurface. Most surface-wave analysis relies on the accurate calculation of phase velocities for the horizontally traveling fundamental-mode Rayleigh wave acquired by stepping out a pair of receivers at intervals based on calculated ground roll wavelengths. Interference by coherent source-generated noise inhibits the reliability of shear-wave velocities determined through inversion of the whole wave field. Among these nonplanar, nonfundamental-mode Rayleigh waves (noise) are body waves, scattered and nonsource-generated surface waves, and higher-mode surface waves. The degree to which each of these types of noise contaminates the dispersion curve and, ultimately, the inverted shear-wave velocity profile is dependent on frequency as well as distance from the source. Multichannel recording permits effective identification and isolation of noise according to distinctive trace-to-trace coherency in arrival time and amplitude. An added advantage is the speed and redundancy of the measurement process. Decomposition of a multichannel record into a time variable-frequency format, similar to an uncorrelated Vibroseis record, permits analysis and display of each frequency component in a unique and continuous format. Coherent noise contamination can then be examined and its effects appraised in both frequency and offset space. Separation of frequency components permits real-time maximization of the S/N ratio during acquisition and subsequent processing steps. Linear separation of each ground roll frequency component allows calculation of phase velocities by simply measuring the linear slope of each frequency component. Breaks in coherent surface-wave arrivals, observable on the decomposed record, can be compensated for during acquisition and processing. Multichannel recording permits single-measurement surveying of a broad depth range, high levels of
NASA Technical Reports Server (NTRS)
Taylor, W. W. L.
1985-01-01
Waves in space plasmas (WISP) utilizes powerful radio transmitters and sensitive receivers to probe the secrets of the magnetosphere, ionosphere and atmosphere. The scientific objective is to achieve a better understanding of the physical processes occurring in these regions. For example, audio frequency radio waves will be radiated from the long WISP antenna, will travel to the outer reaches of the magnetosphere, and will interact with Van Allen belt particles, releasing some of their energy which amplifies the waves. Study of this interaction will give us a better understanding of a major magnetospheric process, wave particle interactions. Radio waves from WISP at higher frequencies (AM radio and beyond) will be reflected by the ionosphere and will, for example, advance our understanding of bubbles in the equatorial ionosphere which affect satellite communications.
NASA Technical Reports Server (NTRS)
Taylor, W. W. L.
1986-01-01
Waves in space plasmas (WISP) utilizes powerful radio transmitters and sensitive receivers to probe the secrets of the magnetosphere, ionosphere and atmosphere. The scientific objective is to achieve a better understanding of the physical processes occurring in these regions. For example, audio frequency radio waves will be radiated from the long WISP antenna, will travel to the outer reaches of the magnetosphere, and will interact with Van Allen belt particles, releasing some of their energy which amplifies the waves. Study of this interaction will give a better understanding of a major magnetospheric process, wave-particle interactions. Radio waves from WISP at higher frequencies (AM radio and beyond) will be reflected by the ionosphere and will, for example, advance our understanding of bubbles in the equatorial ionosphere which affect satellite communications.
PMP-2: Equatorial wave dynamics
NASA Technical Reports Server (NTRS)
Hirota, I.
1982-01-01
After the discovery of the quasi-biennial oscillation (QBO) in the stratospheric zonal wind, there were, in the last two decades, a large number of observational and theoretical studies on the structure and behavior of the mean zonal wind and waves in the tropical stratosphere. Planetary-scale, vertically propagating equatorial waves play an important role in producing the QBO through the mechanism of wave-mean flow interaction. Concerning the dynamics of the equatorial upper stratosphere and mesosphere, however, little was known about the possible wave motions, except for tides, mainly because of the lack of adequate observations in this region. The main purpose is to provide the nature of various types of equatorial wave modes, with the aid of improved sounding techniques and sophisticated numerical modelings.
Stigloher, J; Decker, M; Körner, H S; Tanabe, K; Moriyama, T; Taniguchi, T; Hata, H; Madami, M; Gubbiotti, G; Kobayashi, K; Ono, T; Back, C H
2016-07-15
We report the experimental observation of Snell's law for magnetostatic spin waves in thin ferromagnetic Permalloy films by imaging incident, refracted, and reflected waves. We use a thickness step as the interface between two media with different dispersion relations. Since the dispersion relation for magnetostatic waves in thin ferromagnetic films is anisotropic, deviations from the isotropic Snell's law known in optics are observed for incidence angles larger than 25° with respect to the interface normal between the two magnetic media. Furthermore, we can show that the thickness step modifies the wavelength and the amplitude of the incident waves. Our findings open up a new way of spin wave steering for magnonic applications. PMID:27472134
Aircraft measurements of wave clouds
NASA Astrophysics Data System (ADS)
Cui, Z.; Blyth, A. M.; Bower, K. N.; Crosier, J.; Choularton, T.
2012-10-01
In this paper, aircraft measurements are presented of liquid phase (ice-free) wave clouds made at temperatures greater than -5°C that formed over Scotland, UK. The horizontal variations of the vertical velocity across wave clouds display a distinct pattern. The maximum updraughts occur at the upshear flanks of the clouds and the strong downdraughts at the downshear flanks. The cloud droplet concentrations were a couple of hundreds per cubic centimetres, and the drops generally had a mean diameter between 15-45 μm. A small proportion of the drops were drizzle. The measurements presented here and in previous recent studies suggest a different interaction of dynamics and microphysics in wave clouds from the accepted model. The results in this paper provide a case for future numerical simulation of wave cloud and the interaction between wave and cloud.
Aircraft measurements of wave cloud
NASA Astrophysics Data System (ADS)
Cui, Z.; Blyth, A. M.; Bower, K. N.; Crosier, J.; Choularton, T.
2012-05-01
In this paper, aircraft measurements are presented of liquid phase (ice-free) wave clouds made at temperatures greater than -5 °C that formed over Scotland, UK. The horizontal variations of the vertical velocity across wave clouds display a distinct pattern. The maximum updraughts occur at the upshear flanks of the clouds and the strong downdraughts at the downshear flanks. The cloud droplet concentrations were a couple of hundreds per cubic centimetres, and the drops generally had a mean diameter between 15-45 μm. A small proportion of the drops were drizzle. A new definition of a mountain-wave cloud is given, based on the measurements presented here and previous studies. The results in this paper provide a case for future numerical simulation of wave cloud and the interaction between wave and clouds.
Decay of capillary wave turbulence.
Deike, Luc; Berhanu, Michael; Falcon, Eric
2012-06-01
We report on the observation of freely decaying capillary wave turbulence on the surface of a fluid. The capillary wave turbulence spectrum decay is found to be self-similar in time with the same power law exponent as the one found in the stationary regime, in agreement with weak turbulence predictions. The amplitude of all Fourier modes are found to decrease exponentially with time at the same damping rate. The longest wavelengths involved in the system are shown to be damped by a viscous surface boundary layer. These long waves play the role of an energy source during the decay that sustains nonlinear interactions to keep capillary waves in a wave turbulent state.
Electrostatic waves in the magnetosphere.
NASA Technical Reports Server (NTRS)
Scarf, F. L.; Fredricks, R. W.
1972-01-01
Electric dipole antennas on magnetospheric spacecraft measure E field components of many kinds of electromagnetic waves. In addition, lower hybrid resonance emissions are frequently observed well above the ionosphere. The Ogo 5 plasma wave experiment has also detected new forms of electrostatic emissions that appear to interact very strongly with the local plasma particles. Greatly enhanced wave amplitudes have been found during the expansion phases of substorms, and analysis indicates that these emissions produce strong pitch angle diffusion. Intense broadband electrostatic turbulence is also detected at current layers containing steep magnetic field gradients. This current-driven instability is operative at the bow shock and also at field null regions just within the magnetosheath, and at the magnetopause near the dayside polar cusp. The plasma turbulence appears to involve ion acoustic waves, and the wave particle scattering provides an important collisionless dissipation mechanism for field merging.
Korneev, Valeri A [LaFayette, CA
2009-05-05
The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.
Longitudinal vortices beneath breaking waves
NASA Astrophysics Data System (ADS)
Nepf, H. M.; Cowen, E. A.; Kimmel, S. J.; Monismith, S. G.
1995-08-01
The formation of longitudinal vortices has been observed in a wavy channel flow and appears to be linked to spilling breaking and/or to vertical vorticity generated by a wave instability at the wave maker. Both conditions were present when the wave slope, ak exceeded 0.25. The wave instability produced velocity jets beneath and just downstream of the plunger that could provide the initial perturbation for the CL2 instability mechanism (Faller and Caponi, 1978). The breaker activity could also contribute to the CL2 production mechanism by eliminating the negative, stabilizing shear observed within the wave maker wake and by providing seed perturbations to the vorticity field. As the cells evolved downstream, they were maintained through interaction with the bottom boundary layer. When the vortices were present, both vertical mixing and turbulent kinetic energy were enhanced. Despite some differences in scale these results suggest that Langmuir circulation may produce similar changes in the mixed layer.
Korneev, Valeri A.; Bakulin, Andrey
2009-10-13
The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.
Tropical cyclogenesis in a tropical wave critical layer: easterly waves
NASA Astrophysics Data System (ADS)
Dunkerton, T. J.; Montgomery, M. T.; Wang, Z.
2009-08-01
The development of tropical depressions within tropical waves over the Atlantic and eastern Pacific is usually preceded by a "surface low along the wave" as if to suggest a hybrid wave-vortex structure in which flow streamlines not only undulate with the waves, but form a closed circulation in the lower troposphere surrounding the low. This structure, equatorward of the easterly jet axis, is identified herein as the familiar critical layer of waves in shear flow, a flow configuration which arguably provides the simplest conceptual framework for tropical cyclogenesis resulting from tropical waves, their interaction with the mean flow, and with diabatic processes associated with deep moist convection. The recirculating Kelvin cat's eye within the critical layer represents a sweet spot for tropical cyclogenesis in which a proto-vortex may form and grow within its parent wave. A common location for storm development is given by the intersection of the wave's critical latitude and trough axis at the center of the cat's eye, with analyzed vorticity centroid nearby. The wave and vortex live together for a time, and initially propagate at approximately the same speed. In most cases this coupled propagation continues for a few days after a tropical depression is identified. For easterly waves, as the name suggests, the propagation is westward. It is shown that in order to visualize optimally the associated Lagrangian motions, one should view the flow streamlines, or stream function, in a frame of reference translating horizontally with the phase propagation of the parent wave. In this co-moving frame, streamlines are approximately equivalent to particle trajectories. The closed circulation is quasi-stationary, and a dividing streamline separates air within the cat's eye from air outside. The critical layer equatorward of the easterly jet axis is important to tropical cyclogenesis because its cat's eye provides (i) a region of cyclonic vorticity and weak deformation by the
Wave-particle interaction in the Faraday waves.
Francois, N; Xia, H; Punzmann, H; Shats, M
2015-10-01
Wave motion in disordered Faraday waves is analysed in terms of oscillons or quasi-particles. The motion of these oscillons is measured using particle tracking tools and it is compared with the motion of fluid particles on the water surface. Both the real floating particles and the oscillons, representing the collective fluid motion, show Brownian-type dispersion exhibiting ballistic and diffusive mean squared displacement at short and long times, respectively. While the floating particles motion has been previously explained in the context of two-dimensional turbulence driven by Faraday waves, no theoretical description exists for the random walk type motion of oscillons. It is found that the r.m.s velocity ⟨μ̃(osc)⟩(rms) of oscillons is directly related to the turbulent r.m.s. velocity ⟨μ̃⟩(rms) of the fluid particles in a broad range of vertical accelerations. The measured ⟨μ̃(osc)⟩(rms) accurately explains the broadening of the frequency spectra of the surface elevation observed in disordered Faraday waves. These results suggest that 2D turbulence is the driving force behind both the randomization of the oscillons motion and the resulting broadening of the wave frequency spectra. The coupling between wave motion and hydrodynamic turbulence demonstrated here offers new perspectives for predicting complex fluid transport from the knowledge of wave field spectra and vice versa. PMID:26420468
Wave "Coherency" and Implications for Wave-Particle Interactions
NASA Astrophysics Data System (ADS)
Tsurutani, Bruce; Singh Lakhina, Gurbax; Bhanu, Remya; Lee, Lou-Chuang
2016-07-01
Wave "coherency" was introduced in 2009 by Tsurutani et al. (JGR, doi:10.1029/2008JA013353, 2009) to describe the waves detected in the ~10 to 100 ms duration subelements which are the fundamental components of ~0.1 to 0.5 s chorus "elements". In this talk we will show examples of what we mean by coherency, quasi-coherency and incoherency for a variety of magnetospheric plasma waves. We will show how to measure coherency/quasicoherency quantitatively for electromagnetic whistler mode chorus, electromagnetic ion cyclotron (EMIC) waves, plasmaspheric hiss and linearly polarized magnetosonic waves. If plasma waves are coherent, their interactions with resonant particles will be substantially different. Specific examples will be used to show that the pitch angle scattering rates for energetic charged particles is roughly 3 orders of magnitude faster than the Kennel-Petschek diffusion (which assumes incoherent waves) rate. We feel that this mechanism is the only one that can explain ~ 0.1- 0.5 s bremsstrahlung x-ray microbursts.
Millimeter-wave generation via plasma three-wave mixing
NASA Astrophysics Data System (ADS)
Schumacher, Robert W.; Santoru, Joseph
1988-06-01
Plasma three-wave mixing is a collective phenomena whereby electron-beam-driven electron plasma waves (EPWs) are nonlinearly coupled to an electromagnetic (EM) radiation field. The basic physics of three-wave mixing is investigated in the mm-wave regime and the scaling of mm-wave characteristics established with beam and plasma parameters. Our approach is to employ two counterinjected electron beams in a plasma-loaded circular waveguide to drive counterstreaming EPWs. The nonlinear coupling of these waves generates an EM waveguide mode which oscillates at twice the plasma frequency and is coupled out into rectangular waveguides. Independent control of the waveguide plasma, beam voltage, and beam current is exercised to allow a careful parametric investigation of beam transport, EPW dynamics and three-wave-mixing physics. The beam-plasma experiment, which employs a wire-anode discharge to generate high-density plasma in a 3.8 cm-diameter waveguide, has been used to generate radiation at frequencies from 7 to 60 GHz. Two cold-cathode, secondary-emission electron guns are used to excite the EPWs. Output radiation is observed only when both beams are injected, and the total beam current exceeds a threshold value of 3 A. The threshold is related to the self-magnetic pinch of each beam which increases the beam density and growth rate of the EPWs.
Wave-particle interaction in the Faraday waves.
Francois, N; Xia, H; Punzmann, H; Shats, M
2015-10-01
Wave motion in disordered Faraday waves is analysed in terms of oscillons or quasi-particles. The motion of these oscillons is measured using particle tracking tools and it is compared with the motion of fluid particles on the water surface. Both the real floating particles and the oscillons, representing the collective fluid motion, show Brownian-type dispersion exhibiting ballistic and diffusive mean squared displacement at short and long times, respectively. While the floating particles motion has been previously explained in the context of two-dimensional turbulence driven by Faraday waves, no theoretical description exists for the random walk type motion of oscillons. It is found that the r.m.s velocity ⟨μ̃(osc)⟩(rms) of oscillons is directly related to the turbulent r.m.s. velocity ⟨μ̃⟩(rms) of the fluid particles in a broad range of vertical accelerations. The measured ⟨μ̃(osc)⟩(rms) accurately explains the broadening of the frequency spectra of the surface elevation observed in disordered Faraday waves. These results suggest that 2D turbulence is the driving force behind both the randomization of the oscillons motion and the resulting broadening of the wave frequency spectra. The coupling between wave motion and hydrodynamic turbulence demonstrated here offers new perspectives for predicting complex fluid transport from the knowledge of wave field spectra and vice versa.
Linear excitation of the trapped waves by an incident wave
NASA Astrophysics Data System (ADS)
Postacioglu, Nazmi; Sinan Özeren, M.
2016-04-01
The excitation of the trapped waves by coastal events such as landslides has been extensively studied. The events in the open sea have in general larger magnitude. However the incident waves produced by these events in the open sea can only excite the the trapped waves through no linearity if the isobaths are straight lines that are in parallel with the coastline. We will show that the imperfections of the coastline can couple the incident and trapped waves using only linear processes. The Coriolis force is neglected in this work . Accordingly the trapped waves are consequence of uneven bathimetry. In the bathimetry we consider, the sea is divided into zones of constant depth and the boundaries between the zones are a family of hyperbolas. The boundary conditions between the zones will lead to an integral equation for the source distribution on the boundaries. The solution will contain both radiating and trapped waves. The trapped waves pose a serious threat for the coastal communities as they can travel long distances along the coastline without losing their energy through geometrical spreading.
Wave chaotic experiments and models for complicated wave scattering systems
NASA Astrophysics Data System (ADS)
Yeh, Jen-Hao
Wave scattering in a complicated environment is a common challenge in many engineering fields because the complexity makes exact solutions impractical to find, and the sensitivity to detail in the short-wavelength limit makes a numerical solution relevant only to a specific realization. On the other hand, wave chaos offers a statistical approach to understand the properties of complicated wave systems through the use of random matrix theory (RMT). A bridge between the theory and practical applications is the random coupling model (RCM) which connects the universal features predicted by RMT and the specific details of a real wave scattering system. The RCM gives a complete model for many wave properties and is beneficial for many physical and engineering fields that involve complicated wave scattering systems. One major contribution of this dissertation is that I have utilized three microwave systems to thoroughly test the RCM in complicated wave systems with varied loss, including a cryogenic system with a superconducting microwave cavity for testing the extremely-low-loss case. I have also experimentally tested an extension of the RCM that includes short-orbit corrections. Another novel result is development of a complete model based on the RCM for the fading phenomenon extensively studied in the wireless communication fields. This fading model encompasses the traditional fading models as its high-loss limit case and further predicts the fading statistics in the low-loss limit. This model provides the first physical explanation for the fitting parameters used in fading models. I have also applied the RCM to additional experimental wave properties of a complicated wave system, such as the impedance matrix, the scattering matrix, the variance ratio, and the thermopower. These predictions are significant for nuclear scattering, atomic physics, quantum transport in condensed matter systems, electromagnetics, acoustics, geophysics, etc.
Firpo, M.-C.; Leyvraz, F.; Attuel, G.
2006-12-15
Under the conditions of weak Langmuir turbulence, a self-consistent wave-particle Hamiltonian models the effective nonlinear interaction of a spectrum of M waves with N resonant out-of-equilibrium tail electrons. In order to address its intrinsically nonlinear time-asymptotic behavior, a Monte Carlo code was built to estimate its equilibrium statistical mechanics in both the canonical and microcanonical ensembles. First, the single wave model is considered in the cold beam-plasma instability and in the O'Neil setting for nonlinear Landau damping. O'Neil's threshold, which separates nonzero time-asymptotic wave amplitude states from zero ones, is associated with a second-order phase transition. These two studies provide both a testbed for the Monte Carlo canonical and microcanonical codes, with the comparison with exact canonical results, and an opportunity to propose quantitative results to longstanding issues in basic nonlinear plasma physics. Then, the properly speaking weak turbulence framework is considered through the case of a large spectrum of waves. Focusing on the small coupling limit as a benchmark for the statistical mechanics of weak Langmuir turbulence, it is shown that Monte Carlo microcanonical results fully agree with an exact microcanonical derivation. The wave spectrum is predicted to collapse towards small wavelengths together with the escape of initially resonant particles towards low bulk plasma thermal speeds. This study reveals the fundamental discrepancy between the long-time dynamics of single waves, which can support finite amplitude steady states, and of wave spectra, which cannot.
Segmented waves from a spatiotemporal transverse wave instability.
Yang, Lingfa; Berenstein, Igal; Epstein, Irving R
2005-07-15
We observe traveling waves emitted from Turing spots in the chlorine dioxide-iodine-malonic acid reaction. The newborn waves are continuous, but they break into segments as they propagate, and the propagation of these segments ultimately gives rise to spatiotemporal chaos. We model the wave-breaking process and the motion of the chaotic segments. We find stable segmented spirals as well. We attribute the segmentation to an interaction between front rippling via a transverse instability and front symmetry breaking by a fast-diffusing inhibitor far from the codimension-2 Hopf-Turing bifurcation, and the chaos to a secondary instability of the periodic segmentation.
Coupled waves at fracture intersections
NASA Astrophysics Data System (ADS)
Abell, B.; Pyrak-Nolte, L. J.
2014-12-01
Fracture intersections play a crucial role in the hydraulic connectivity of flow paths in rock, yet no current techniques exist for characterizing the conditions of an intersection. We demonstrate experimentally and theoretically that elastic waves propagated along fracture intersections are affected by the amount of contact among the blocks forming an intersection. Surface fractures and fracture intersections can be viewed as wedges (corners) coupled through the points of contact along the intersection. An eigenvalue secular equation was derived using displacement discontinuity theory along with the solution for a wedge wave. The velocity and motion of intersection waves are a function of the frequency, material impedance, and specific stiffness of the intersection. For an intersection, several modes are present that represent the coupling between different sets of the wedges and exhibit wave speeds between a single wedge mode and the bulk S wave. A surface fracture supports only one mode of propagation with speeds that range from the single wedge wave to that of the Rayleigh wave. Experiments were performed on intersections made from two or four aluminum samples (0.29 x 0.076 x 0.076 m) to detect intersection waves. Measurements were made under uniaxial and biaxial loading conditions to change the contact area along an intersection. At low loads both the surface fracture and intersection excite wedge waves because the stress between the wedges was not sufficiently high to couple the wedges. As the external load was increased, the wave coupled the wedges and propagated as a Rayleigh wave for the surface fracture, or as a bulk S wave for the intersection. These results indicate that the specific stiffness of the fracture intersection can be estimated based upon the velocity of the wave propagating along the intersection or surface fracture. Using this estimation the flow path(s) along or through the fracture intersection or surface fracture can be characterized and
Tropical cyclogenesis in a tropical wave critical layer: easterly waves
NASA Astrophysics Data System (ADS)
Dunkerton, T. J.; Montgomery, M. T.; Wang, Z.
2008-06-01
The development of tropical depressions within tropical waves over the Atlantic and eastern Pacific is usually preceded by a "surface low along the wave" as if to suggest a hybrid wave-vortex structure in which flow streamlines not only undulate with the waves, but form a closed circulation in the lower troposphere surrounding the low. This structure, equatorward of the easterly jet axis, resembles the familiar critical layer of waves in shear flow, a flow configuration which arguably provides the simplest conceptual framework for tropical cyclogenesis resulting from tropical waves, their interaction with the mean flow, and with diabatic processes associated with deep moist convection. The critical layer represents a sweet spot for tropical cyclogenesis in which a proto-vortex may form and grow within its parent wave. A common location for storm development within the critical layer is given by the intersection of the wave's critical latitude and trough axis, with analyzed vorticity centroid nearby. The wave and vortex live together for a time, and initially propagate at approximately the same speed. In most cases this coupled propagation continues for a few days after a tropical depression is identified. For easterly waves, as the name suggests, the propagation is westward. It is shown that in order to visualize optimally this "marsupial paradigm" one should view the flow streamlines, or stream function, in a frame of reference translating horizontally with the phase propagation of the parent wave. This translation requires an appropriate "gauge" that renders translating streamlines and isopleths of translating stream function approximately equivalent to flow trajectories. In the translating frame, the closed circulation is stationary, and a dividing streamline effectively separates air within the critical layer from air outside. The critical layer equatorward of the easterly jet axis is important to tropical cyclogenesis because it provides (i) a region of
On the improvements to the wave statistics of narrowbanded waves when applied to broadbanded waves
NASA Astrophysics Data System (ADS)
Zheng, Guizhen; Cong, Peixiu; Pei, Yuhua
2006-11-01
On the basis of the narrowband approximation the joint and marginal probability distribution functions (pdf) of local wave heights and periods of ocean surface waves have been derived and have been taken approximately as those of the crest-to-trough wave heights and zero upcrossing periods. Various correction schemes have been proposed to these pdf's in order to apply them to broadband waves. This paper is devoted to taking a close look at these correction schemes. The relationship between the distributions of the local and the discrete wave heights and periods is derived at first. This derivation provides a precise interpretation to the improvements due to Stansell et al. (2004) and Zheng et al. (2004). The resultant relationship is different from the one deduced by Kitano and Mase (1998), on which their improved wave height distribution rests. The unique analysis of Kitano and Mase (1998) leading to this relationship is inspected and their omission is found. The crest-to-trough wave height distribution proposed by Tayfun (1981) is also examined and found to be reasonable only when the spectral bandwidth is infinitesimal. The wind wave data measured in Bohai China in 1997 is analyzed here. The sensitivities of the measured (as opposed to actual) distributions to smoothing timescale and to sampling rate are explored and comparisons of various theoretical pdf's with the measured distributions are made. It is found that (1) the wave height distribution due to Stansell et al. (2004) and Zheng et al. (2004) in which the contributions of negative phase derivatives are taken into account fits best with the 20 Hz sampled, 5-point smoothed data; (2) neglecting the contributions of negative phase derivatives results in an expression of the probability of exceeding large wave heights which is closest to the 20 Hz sampled, 5 or 9-point smoothed data; (3) the Rayleigh distribution generally agrees well with our data; the discrepancy between it and early observations mainly
Dichromatic Langmuir waves in degenerate quantum plasma
Dubinov, A. E. Kitayev, I. N.
2015-06-15
Langmuir waves in fully degenerate quantum plasma are considered. It is shown that, in the linear approximation, Langmuir waves are always dichromatic. The low-frequency component of the waves corresponds to classical Langmuir waves, while the high-frequency component, to free-electron quantum oscillations. The nonlinear problem on the profile of dichromatic Langmuir waves is solved. Solutions in the form of a superposition of waves and in the form of beatings of its components are obtained.
Ultrasonic guided wave nondestructive evaluation using generalized anisotropic interface waves
NASA Astrophysics Data System (ADS)
Gardner, Michael D.
The motivation for this work is a goal to inspect interfaces between thick layers of materials that can be anisotropic. The specific application is a thick composite bonded to a metal substrate. The interface is inspected for disbonds between the metal and composite. The large thickness allows the problem to be modeled as a half space. The theory behind guided waves in plates is presented. This theory includes the calculation and analysis of dispersion curves and the resulting wave structure. It is noted that for high frequency-thickness values, certain modes will converge to the half-space waves, e.g. the Rayleigh wave and the Stoneley wave. Points of high energy, especially shear energy, at the interface are desirable for interfacial inspection. Therefore, the wave structure for all modes and frequencies is searched for ideal inspection points. Interface waves are inherently good modes to use for interface inspection. Results from the dispersion curves and wave structures are verified in the finite element model software package called Abaqus. It is confirmed that the group speeds and wave structures of the modes match the predicted values. A theoretical development of interface waves is given wherein Rayleigh, Stoneley, and generalized interface waves are discussed. This is applied to both isotropic and anisotropic materials. It is shown that the Stoneley wave only exists for a certain range of material parameters. Because the Stoneley wave is the interface wave between two solid half spaces, it might appear that only certain pairs of solids would allow for inspection via interface wave. However, it is shown that for perturbations of the Stoneley-wave-valid material properties, interface waves which leak energy away from the interface can still propagate. They can also be used for inspection. Certain choices of materials will leak less energy and will therefore allow for longer inspection distances. The solutions to the isotropic leaky wave problem exist on
Evaporation waves in superheated dodecane
NASA Astrophysics Data System (ADS)
Simões-Moreira, J. R.; Shepherd, J. E.
1999-03-01
We have observed propagating adiabatic evaporation waves in superheated liquid dodecane, C12H26. Experiments were performed with a rapid decompression apparatus at initial temperatures of 180 300°C. Saturated dodecane in a tube was suddenly depressurized by rupturing a diaphragm. Motion pictures and still photographic images, and pressure and temperature data were obtained during the evaporation event that followed depressurization. Usually, a front or wave of evaporation started at the liquid free surface and propagated into the undisturbed regions of the metastable liquid. The evaporation wave front moved with a steady mean velocity but the front itself was unstable and fluctuating in character. At low superheats, no waves were observed until a threshold superheat was exceeded. At moderate superheats, subsonic downstream states were observed. At higher superheats, the downstream flow was choked, corresponding to a Chapman Jouguet condition. At the most extreme superheat tested, a vapour content of over 90% was estimated from the measured data, indicating a nearly complete evaporation wave. Our results are interpreted by modelling the evaporation wave as a discontinuity, or jump, between a superheated liquid state and a two-phase liquid vapour downstream state. Reasonable agreement is found between the model and observations; however, there is a fundamental indeterminacy that prevents the prediction of the observed wave speeds.
Restless rays, steady wave fronts.
Godin, Oleg A
2007-12-01
Observations of underwater acoustic fields with vertical line arrays and numerical simulations of long-range sound propagation in an ocean perturbed by internal gravity waves indicate that acoustic wave fronts are much more stable than the rays comprising these wave fronts. This paper provides a theoretical explanation of the phenomenon of wave front stability in a medium with weak sound-speed perturbations. It is shown analytically that at propagation ranges that are large compared to the correlation length of the sound-speed perturbations but smaller than ranges at which ray chaos develops, end points of rays launched from a point source and having a given travel time are scattered primarily along the wave front corresponding to the same travel time in the unperturbed environment. The ratio of root mean square displacements of the ray end points along and across the unperturbed wave front increases with range as the ratio of ray length to correlation length of environmental perturbations. An intuitive physical explanation of the theoretical results is proposed. The relative stability of wave fronts compared to rays is shown to follow from Fermat's principle and dimensional considerations. PMID:18247745
Internal waves excited by the marangoni effect
Wierschem; Linde; Velarde
2000-11-01
Traveling periodic internal wave trains are generated in liquid layers during the absorption process of a miscible surface-active substance out of the vapor phase. In our nonstationary experimental runs, internal waves are excited by surface waves, which had been previously generated by a surface-tension-gradient-driven instability. The internal wave trains adjust their wave number by an Eckhaus instability. Close to the instability threshold narrow and extended pulses are observed. Furthermore, the wave trains can alter their traveling direction, i.e., one wave train traveling in one direction yields to another train, in general of different wave number, traveling in the opposite direction. PMID:11101989
COMPRESSION WAVES AND PHASE PLOTS: SIMULATIONS
Orlikowski, D; Minich, R
2011-08-01
Compression wave analysis started nearly 50 years ago with Fowles. Coperthwaite and Williams gave a method that helps identify simple and steady waves. We have been developing a method that gives describes the non-isentropic character of compression waves, in general. One result of that work is a simple analysis tool. Our method helps clearly identify when a compression wave is a simple wave, a steady wave (shock), and when the compression wave is in transition. This affects the analysis of compression wave experiments and the resulting extraction of the high-pressure equation of state.
NASA Astrophysics Data System (ADS)
Russell, C. T.; Wei, H. Y.; Cowee, M. M.; Neubauer, F. M.; Dougherty, M. K.
2016-03-01
During the interaction of Titan's thick atmosphere with the ambient plasma, it was expected that ion cyclotron waves would be generated by the free energy of the highly anisotropic velocity distribution of the freshly ionized atmospheric particles created in the interaction. However, ion cyclotron waves are rarely observed near Titan, due to the long growth times of waves associated with the major ion species from Titan's ionosphere, such as CH4+ and N2+. In the over 100 Titan flybys obtained by Cassini to date, there are only two wave events, for just a few minutes during T63 flyby and for tens of minutes during T98 flyby. These waves occur near the gyrofrequencies of proton and singly ionized molecular hydrogen. They are left-handed, elliptically polarized, and propagate nearly parallel to the field lines. Hybrid simulations are performed to understand the wave growth under various conditions in the Titan environment. The simulations using the plasma and field conditions during T63 show that pickup protons with densities ranging from 0.01 cm-3 to 0.02 cm-3 and singly ionized molecular hydrogens with densities ranging from 0.015 cm-3 to 0.25 cm-3 can drive ion cyclotron waves with amplitudes of ~0.02 nT and of ~0.04 nT within appropriate growth times at Titan, respectively. Since the T98 waves were seen farther upstream than the T63 waves, it is possible that the instability was stronger and grew faster on T98 than T63.
Diffracted and head waves associated with waves on nonseparable surfaces
NASA Technical Reports Server (NTRS)
Barger, Raymond L.
1992-01-01
A theory is presented for computing waves radiated from waves on a smooth surface. With the assumption that attention of the surface wave is due only to radiation and not to dissipation in the surface material, the radiation coefficient is derived in terms of the attenuation factor. The excitation coefficient is determined by the reciprocity condition. Formulas for the shape and the spreading of the radiated wave are derived, and some sample calculations are presented. An investigation of resonant phase matching for nonseparable surfaces is presented with a sample calculation. A discussion of how such calculations might be related to resonant frequencies of nonseparable thin shell structures is included. A description is given of nonseparable surfaces that can be modeled in the vector that facilitates use of the appropriate formulas of differential geometry.
Surface acoustic wave microfluidics
Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S.; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun
2014-01-01
The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering, and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting, and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next. PMID:23900527
Surface acoustic wave microfluidics.
Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun
2013-09-21
The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next.
Principle of least wave change.
Abramson, N
1989-05-01
Fermat's principle of least time has some well-known limitations. It does not, for example, apply to diffraction gratings and holograms, because it does not include the concept of waves. The substitution of least number of waves in flight for least time of flight and the addition of a term that is a function of the grating frequency result in a generalized principle. It is easy to remember because it is based on only the number of waves minus the number of grooves, and it would be especially useful when refraction and diffraction are combined, as, for example, in some holographic optical elements. PMID:2723846
Density waves in granular flow
NASA Astrophysics Data System (ADS)
Herrmann, H. J.; Flekkøy, E.; Nagel, K.; Peng, G.; Ristow, G.
Ample experimental evidence has shown the existence of spontaneous density waves in granular material flowing through pipes or hoppers. Using Molecular Dynamics Simulations we show that several types of waves exist and find that these density fluctuations follow a 1/f spectrum. We compare this behaviour to deterministic one-dimensional traffic models. If positions and velocities are continuous variables the model shows self-organized criticality driven by the slowest car. We also present Lattice Gas and Boltzmann Lattice Models which reproduce the experimentally observed effects. Density waves are spontaneously generated when the viscosity has a nonlinear dependence on density which characterizes granular flow.
Blast waves in rotating media.
NASA Technical Reports Server (NTRS)
Rossner, L. F.
1972-01-01
The model investigated involves a cylindrically symmetric blast wave generated by an infinitely long line explosion in a cold and homogeneous gas rotating rigidly in its self-gravitational field. It is found that within the context of rotation in a gravitational field a blast wave will not adopt the one-zone form familiar from similarity solutions but, rather, a two-zone form. The inner compression zone arises as a response to the presence of the restoring force, which drives a rarefaction wave into the outer compression zone.
Interference of diffusive light waves.
Schmitt, J M; Knüttel, A; Knutson, J R
1992-10-01
We examine interference effects resulting from the superposition of photon-density waves produced by coherently modulated light incident upon a turbid medium. Photon-diffusion theory is used to derive expressions for the ac magnitude and phase of the aggregate diffusive wave produced in full- and half-space volumes by two sources. Using a frequency-domain spectrometer operating at 410 MHz, we verify interference patterns predicted by the model in scattering samples having optical properties similar to those of skin tissue. Potential imaging applications of interfering diffusive waves are discussed in the context of the theoretical and experimental results.
Arterial pulse wave pressure transducer
NASA Technical Reports Server (NTRS)
Kim, C.; Gorelick, D.; Chen, W. (Inventor)
1974-01-01
An arterial pulse wave pressure transducer is introduced. The transducer is comprised of a fluid filled cavity having a flexible membrane disposed over the cavity and adapted to be placed on the skin over an artery. An arterial pulse wave creates pressure pulses in the fluid which are transduced, by a pressure sensitive transistor in direct contact with the fluid, into an electric signal. The electrical signal is representative of the pulse waves and can be recorded so as to monitor changes in the elasticity of the arterial walls.
How Forgetful are Seismic Waves ?
NASA Astrophysics Data System (ADS)
Milkereit, B.
2005-05-01
3D surface seismic and vertical seismic profiling (VSP) techniques can be employed to image crustal structures in complex geological settings. The effects of heterogeneities on seismic wave propagation can be described in terms of different propagation regimes (Wu, 1989): quasi-homogeneous for heterogeneities too small to be seen by seismic waves, Rayleigh scattering, Mie scattering and small-angle scattering. These scattering regimes cause characteristic amplitude, phase and travel time fluctuation, which can be used to obtain estimates of scale length. Horizontal resolution of exploration seismic data is often discussed in terms of Fresnel zone. For surface and VSP data, the Fresnel radius increases with increasing depth of investigation. In addition, the lateral resolution is limited by the effective frequency content of the seismic signal. Based on strong contrast in petrophysical data, crustal exploration targets (such as gas-hydrates, permafrost or massive sulfide ores) should make strong P-wave, S-wave and converted wave reflectors against most background velocity models. In the context of realistic geological models, 3D numerical simulations are required to better assess elastic wave interactions with high acoustic impedance targets. In addition, it is important to study the influence of composition and shape of high acoustic impedance targets on the full scattered wavefield through a series of numerical modeling experiments based on the 3D elastic finite-difference (FD) method. Massive sulfide ores consisting of the end-member sulfide minerals pyrite, sphalerite, and galena, which span the full range of observed P- and S- wave velocities and densities in ore rocks, as well as gabbro inclusions, are investigated for different shapes which represent the complex morphologies often observed for ore deposits. 3D FD modeling reveals that large ore deposits lead to a strong and complex scattering response that is often dominated by shear-wave events (Bohlen et al
Adiabatic nonlinear waves with trapped particles. III. Wave dynamics
Dodin, I. Y.; Fisch, N. J.
2012-01-15
The evolution of adiabatic waves with autoresonant trapped particles is described within the Lagrangian model developed in Paper I, under the assumption that the action distribution of these particles is conserved, and, in particular, that their number within each wavelength is a fixed independent parameter of the problem. One-dimensional nonlinear Langmuir waves with deeply trapped electrons are addressed as a paradigmatic example. For a stationary wave, tunneling into overcritical plasma is explained from the standpoint of the action conservation theorem. For a nonstationary wave, qualitatively different regimes are realized depending on the initial parameter S, which is the ratio of the energy flux carried by trapped particles to that carried by passing particles. At S < 1/2, a wave is stable and exhibits group velocity splitting. At S > 1/2, the trapped-particle modulational instability (TPMI) develops, in contrast with the existing theories of the TPMI yet in agreement with the general sideband instability theory. Remarkably, these effects are not captured by the nonlinear Schroedinger equation, which is traditionally considered as a universal model of wave self-action but misses the trapped-particle oscillation-center inertia.
Waves and wave-driven flow on a coral reef
NASA Astrophysics Data System (ADS)
Monismith, Stephen
2012-11-01
It has been long appreciated that surface wave breaking is a primary mechanism for driving flows over coral reefs and so influences a wide variety of reef ecological processes. In this talk I will discuss measurements of waves and wave-driven flows made on the north shore of Moorea, FP. Despite the steep slope and large wave steepness, integral properties of the waves we observe match linear longwave theory to a remarkable extent, although their vertical structure does seem to differ from what is expected from theory. Our observations also show that the net transport over the reef is carried by both Stokes drift and a mean Eulerian flow, although the portioning changes as the waves shoal, break and dissipate. The balance between mean setup due to breaking, which also matches simple theory, and friction inshore of the surfzone/reef crest sets the overall flow rate. While simple theories match the observations quite well, their predictive value is somewhat reduced by the fact that they include 3 parameters that must be found empirically because they involve the basic geometry of the reef and the complex nature of frictional resistance associated with reef roughness. 0622967 for their support.
Waves in strong centrifugal fields: dissipationless gas
NASA Astrophysics Data System (ADS)
Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.
2015-04-01
Linear waves are investigated in a rotating gas under the condition of strong centrifugal acceleration of the order 106 g realized in gas centrifuges for separation of uranium isotopes. Sound waves split into three families of the waves under these conditions. Dispersion equations are obtained. The characteristics of the waves strongly differ from the conventional sound waves on polarization, velocity of propagation and distribution of energy of the waves in space for two families having frequencies above and below the frequency of the conventional sound waves. The energy of these waves is localized in rarefied region of the gas. The waves of the third family were not specified before. They propagate exactly along the rotational axis with the conventional sound velocity. These waves are polarized only along the rotational axis. Radial and azimuthal motions are not excited. Energy of the waves is concentrated near the wall of the rotor where the density of the gas is largest.
Tails of plane wave spacetimes: Wave-wave scattering in general relativity
NASA Astrophysics Data System (ADS)
Harte, Abraham I.
2013-10-01
One of the most important characteristics of light in flat spacetime is that it satisfies Huygens’ principle: Initial data for the vacuum Maxwell equations evolve sharply along null (and not timelike) geodesics. In flat spacetime, there are no tails which linger behind expanding wavefronts. Tails generically do exist, however, if the background spacetime is curved. The only nonflat vacuum geometries where electromagnetic fields satisfy Huygens’ principle are known to be those associated with gravitational plane waves. This paper investigates whether perturbations to the plane wave geometry itself also propagate without tails. First-order perturbations to all locally constructed curvature scalars are indeed found to satisfy Huygens’ principles. Despite this, gravitational tails do exist. Locally, they can only perturb one plane wave spacetime into another plane wave spacetime. A weak localized beam of gravitational radiation passing through an arbitrarily strong plane wave therefore leaves behind only a slight perturbation to the waveform of the background plane wave. The planar symmetry of that wave cannot be disturbed by any linear tail. These results are obtained by first deriving the retarded Green function for Lorenz-gauge metric perturbations and then analyzing its consequences for generic initial-value problems.
NASA Astrophysics Data System (ADS)
Forgács, Péter; Lukács, Árpád; Romańczukiewicz, Tomasz
2013-12-01
It is shown that in a large class of systems, plane waves act as tractor beams: i.e., an incident plane wave can exert a pulling force on the scatterer. The underlying physical mechanism for the pulling force is due to the sufficiently strong scattering of the incoming wave into another mode carrying more momentum, in which case excess momentum is created behind the scatterer. This tractor beam or negative radiation pressure (NRP) effect, is found to be generic in systems with multiple scattering channels. In a birefringent medium, electromagnetic plane waves incident on a thin plate exert NRP of the same order of magnitude as optical radiation pressure, while in artificial dielectrics (metamaterials), the magnitude of NRP can even be macroscopic. In two dimensions, we study various scattering situations on vortices, and NRP is shown to occur by the scattering of heavy baryons into light leptons off cosmic strings, and by neutron scattering off vortices in the XY model.
Tunnel effect wave energy detection
NASA Technical Reports Server (NTRS)
Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)
1995-01-01
Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.
Electron cyclotron harmonic wave acceleration
NASA Technical Reports Server (NTRS)
Karimabadi, H.; Menyuk, C. R.; Sprangle, P.; Vlahos, L.
1987-01-01
A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts.
Whirling waves in Interference experiments
NASA Astrophysics Data System (ADS)
Sinha, Urbasi; Sawant, Rahul; Samuel, Joseph; Sinha, Aninda; Sinha, Supurna
2014-03-01
In a double slit interference experiment, the wave function at the screen with both slits open is not exactly the sum of the wave functions with the slits individually open one at a time. The three scenarios represent three different boundary conditions and as such, the superposition principle should not be applicable. However, most well- known text books in quantum mechanics implicitly and/or explicitly use this assumption, the wave function hypothesis, which is only approximately true. In our present study, we have used the Feynman path integral formalism to quantify contributions from non-classical paths in interference experiments which provide a measurable deviation from the wave function hypothesis. A direct experimental demonstration for the existence of these non-classical paths is hard. We find that contributions from such paths can be significant and we propose simple three-slit interference experiments to directly confirm their existence. I will also describe some ongoing experimental efforts towards testing our theoretical findings.
Refraction of coastal ocean waves
NASA Technical Reports Server (NTRS)
Shuchman, R. A.; Kasischke, E. S.
1981-01-01
Refraction of gravity waves in the coastal area off Cape Hatteras, NC as documented by synthetic aperture radar (SAR) imagery from Seasat orbit 974 (collected on September 3, 1978) is discussed. An analysis of optical Fourier transforms (OFTs) from more than 70 geographical positions yields estimates of wavelength and wave direction for each position. In addition, independent estimates of the same two quantities are calculated using two simple theoretical wave-refraction models. The OFT results are then compared with the theoretical results. A statistical analysis shows a significant degree of linear correlation between the data sets. This is considered to indicate that the Seasat SAR produces imagery whose clarity is sufficient to show the refraction of gravity waves in shallow water.
Squids, brains and gravity waves
Clarke, J.
1986-03-01
Superconducting quantum interference devices are so sensitive to magnetic flux that they can map the tiny magnetic fields emanating from the human brain and detect the submicroscopic motions of gravity-wave detectors.
Surface-Wave Seismology (Overview)
NASA Astrophysics Data System (ADS)
Levshin, A. L.
2006-12-01
Being involved with surface-wave studies for more than 40 years I am in a position to present a brief review of the progress in this field since it became an essential part of seismology. The existence of surface waves generated by earthquakes was known at least from the beginning of the 20th century. But even fifty years ago, at the time of publication of the outstanding book by M. Ewing, W. Jardetsky, and F. Press "Elastic Waves in Layered Media", where surface wave theory and observations were discussed in detail for the first time, only a few seismologists were interested in surface waves. The main interest was in the field of exploration geophysics where the means for muting "groundroll" noise observed on reflection records were badly needed. Only a few, but very important, studies dedicated to surface waves from earthquakes and their relation to the crustal and upper mantle structure had been performed in 1950s and 1960s. The situation is completely different now when the terms "surface-wave seismology" and "surface-wave tomography" have become regular expressions in the geophysical literature. Surface waves are used extensively for studying the Earth's crust and upper mantle at global and regional scales, for determining the parameters of seismic sources, as well as for evaluating subsurface structures in exploration geophysics and civil engineering. This progress has been achieved due to several reasons: (1) spectacular advances in the theory of surface wave propagation and numerical methods for solving the forward problems in realistic Earth models; (2) rapid development of inversion techniques; (3) availability of broadband digitalseismic records from exploding number of seismic observatories including ocean- bottom stations; and (4) new techniques for multicomponent seismic prospecting on land and on sea bottom. Interferometry techniques using ambient seismic noise are now emerging and are beginning to yield detailed information about the Earth
Mesosphere Dynamics with Gravity Wave Forcing. 2; Planetary Waves
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.; Einaudi, Franco (Technical Monitor)
2000-01-01
We present results from a non-linear, 3D, time dependent numerical spectral model (NSM) which extends from the ground up into the thermosphere and incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GW). Our focal point is the mesosphere where wave interactions are playing a dominant role. We discuss planetary waves in the present paper and diurnal and semi-diurnal tides in the companion paper. Without external time dependent energy or momentum sources, planetary waves (PWs) are generated in the model for zonal wavenumbers 1 to 4, which have amplitudes in the mesosphere above 50 km as large as 30 m/s and periods between 2 and 50 days. The waves are generated primarily during solstice conditions, which indicates that the baroclinic instability (associated with the GW driven reversal in the latitudinal temperature gradient) is playing an important role. Results from a numerical experiment show that GWs are also involved directly in generating the PWs. For the zonal wavenumber m = 1, the predominant wave periods in summer are around 4 days and in winter between 6 and 10 days. For m = 2, the periods are in summer and close to 2.5 and 3.5 days respectively For m = 3, 4 the predominant wave periods are in both seasons close to two days. The latter waves have the characteristics of Rossby gravity waves with meridional winds at equatorial latitudes. A common feature of the PWs (m = 1 to 4) generated in summer and winter is that their vertical wavelengths throughout the mesosphere are large which indicates that the waves are not propagating freely but are generated throughout the region. Another common feature is that the PWs propagate preferentially westward in summer and eastward in winter, being launched from the westward and eastward zonal winds that prevail respectively in summer and winter altitudes below 80 km. During spring and fall, for m = 1 and 2 eastward propagating long period PWs are generated that are launched from the smaller
Multibaseline gravitational wave radiometry
Talukder, Dipongkar; Bose, Sukanta; Mitra, Sanjit
2011-03-15
We present a statistic for the detection of stochastic gravitational wave backgrounds (SGWBs) using radiometry with a network of multiple baselines. We also quantitatively compare the sensitivities of existing baselines and their network to SGWBs. We assess how the measurement accuracy of signal parameters, e.g., the sky position of a localized source, can improve when using a network of baselines, as compared to any of the single participating baselines. The search statistic itself is derived from the likelihood ratio of the cross correlation of the data across all possible baselines in a detector network and is optimal in Gaussian noise. Specifically, it is the likelihood ratio maximized over the strength of the SGWB and is called the maximized-likelihood ratio (MLR). One of the main advantages of using the MLR over past search strategies for inferring the presence or absence of a signal is that the former does not require the deconvolution of the cross correlation statistic. Therefore, it does not suffer from errors inherent to the deconvolution procedure and is especially useful for detecting weak sources. In the limit of a single baseline, it reduces to the detection statistic studied by Ballmer [Classical Quantum Gravity 23, S179 (2006).] and Mitra et al.[Phys. Rev. D 77, 042002 (2008).]. Unlike past studies, here the MLR statistic enables us to compare quantitatively the performances of a variety of baselines searching for a SGWB signal in (simulated) data. Although we use simulated noise and SGWB signals for making these comparisons, our method can be straightforwardly applied on real data.
Seismic waves increase permeability.
Elkhoury, Jean E; Brodsky, Emily E; Agnew, Duncan C
2006-06-29
Earthquakes have been observed to affect hydrological systems in a variety of ways--water well levels can change dramatically, streams can become fuller and spring discharges can increase at the time of earthquakes. Distant earthquakes may even increase the permeability in faults. Most of these hydrological observations can be explained by some form of permeability increase. Here we use the response of water well levels to solid Earth tides to measure permeability over a 20-year period. At the time of each of seven earthquakes in Southern California, we observe transient changes of up to 24 degrees in the phase of the water level response to the dilatational volumetric strain of the semidiurnal tidal components of wells at the Piñon Flat Observatory in Southern California. After the earthquakes, the phase gradually returns to the background value at a rate of less than 0.1 degrees per day. We use a model of axisymmetric flow driven by an imposed head oscillation through a single, laterally extensive, confined, homogeneous and isotropic aquifer to relate the phase response to aquifer properties. We interpret the changes in phase response as due to changes in permeability. At the time of the earthquakes, the permeability at the site increases by a factor as high as three. The permeability increase depends roughly linearly on the amplitude of seismic-wave peak ground velocity in the range of 0.21-2.1 cm s(-1). Such permeability increases are of interest to hydrologists and oil reservoir engineers as they affect fluid flow and might determine long-term evolution of hydrological and oil-bearing systems. They may also be interesting to seismologists, as the resulting pore pressure changes can affect earthquakes by changing normal stresses on faults.
Imaging Supersonic Aircraft Shock Waves
NASA Technical Reports Server (NTRS)
Weinstein, Leonard M.; Stacy, Kathryn; Vieira, Gerald J.; Haering, Edward A., Jr.; Bowers, Albion H.
1997-01-01
A schlieren imaging system that uses the sun as a light source was developed it) obtain direct flow-field images of shock waves of aircraft in flight. This system was used to study how shock waves evolve to form sonic booms. The image quality obtained was limited by several optical and mechanical factors. Converting the photographs to digital images and applying digital image-processing techniques greatly improved the final quality of the images and more clearly showed the shock structures.
NASA Astrophysics Data System (ADS)
Arbutina, B.
2015-04-01
Blast waves appear in many astrophysical phenomena, such as supernovae. In this paper we discuss blast waves with cosmic rays, i.e., with a component with a power-law number density distribution function N( p) ∝ p -Γ that may be particulary important in describing the evolution of supernova remnants. We confirm some previous findings that a significant amount of cosmic ray energy is deposited towards the center of a remnant.
Splash singularity for water waves
Castro, Angel; Córdoba, Diego; Fefferman, Charles L.; Gancedo, Francisco; Gómez-Serrano, Javier
2012-01-01
We exhibit smooth initial data for the two-dimensional (2D) water-wave equation for which we prove that smoothness of the interface breaks down in finite time. Moreover, we show a stability result together with numerical evidence that there exist solutions of the 2D water-wave equation that start from a graph, turn over, and collapse in a splash singularity (self-intersecting curve in one point) in finite time. PMID:22219372
2004-08-01
AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.
Magnetic field waves at Uranus
NASA Technical Reports Server (NTRS)
Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.
1994-01-01
The research efforts funded by the Uranus Data Analysis Program (UDAP) grant to the Bartol Research Institute (BRI) involved the study of magnetic field waves associated with the Uranian bow shock. Upstream wave studies are motivated as a study of the physics of collisionless shocks. Collisionless shocks in plasmas are capable of 'reflecting' a fraction of the incoming thermal particle distribution and directing the resulting energetic particle motion back into the upstream region. Once within the upstream region, the backward streaming energetic particles convey information of the approaching shock to the supersonic flow. This particle population is responsible for the generation of upstream magnetic and electrostatic fluctuations known as 'upstream waves', for slowing the incoming wind prior to the formation of the shock ramp, and for heating of the upstream plasma. The waves produced at Uranus not only differed in several regards from the observations at other planetary bow shocks, but also gave new information regarding the nature of the reflected particle populations which were largely unmeasurable by the particle instruments. Four distinct magnetic field wave types were observed upstream of the Uranian bow shock: low-frequency Alfven or fast magnetosonic waves excited by energetic protons originating at or behind the bow shock; whistler wave bursts driven by gyrating ion distributions within the shock ramp; and two whistler wave types simultaneously observed upstream of the flanks of the shock and argued to arise from resonance with energetic electrons. In addition, observations of energetic particle distributions by the LECP experiment, thermal particle populations observed by the PLS experiment, and electron plasma oscillations recorded by the PWS experiment proved instrumental to this study and are included to some degree in the papers and presentations supported by this grant.
Rhinefrank, Kenneth E.; Lenee-Bluhm, Pukha; Prudell, Joseph H.; Schacher, Alphonse A.; Hammagren, Erik J.; Zhang, Zhe
2013-07-29
The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.
Density waves in Saturn's rings
NASA Astrophysics Data System (ADS)
Cuzzi, J. N.; Lissauer, J. J.; Shu, F. H.
1981-08-01
Certain radial brightness variations in the outer Cassini division of Saturn's rings may be spiral density waves driven by Saturn's large moon Iapetus, in which case a value of approximately 16 g/sq cm for the surface density is calculated in the region where the waves are seen. The kinematic viscosity in the same region is approximately 170 sq cm/s and the vertical scale height of the ring is estimated to be a maximum of approximately 40 m.
Compaction Waves in Granular HMX
E. Kober; R. Menikoff
1999-01-01
Piston driven compaction waves in granular HMX are simulated with a two-dimensional continuum mechanics code in which individual grains are resolved. The constitutive properties of the grains are modeled with a hydrostatic pressure and a simple elastic-plastic model for the shear stress. Parameters are chosen to correspond to inert HMX. For a tightly packed random grain distribution (with initial porosity of 19%) we varied the piston velocity to obtain weak partly compacted waves and stronger fully compacted waves. The average stress and wave speed are compatible with the porous Hugoniot locus for uni- axial strain. However, the heterogeneities give rise to stress concentrations, which lead to localized plastic flow. For weak waves, plastic deformation is the dominant dissipative mechanism and leads to dispersed waves that spread out in time. In addition to dispersion, the granular heterogeneities give rise to subgrain spatial variation in the thermodynamic variables. The peaks in the temperature fluctuations, known as hot spots, are in the range such that they are the critical factor for initiation sensitivity.
Millimeter Waves: Acoustic and Electromagnetic
Ziskin, Marvin C.
2012-01-01
This article is the presentation I gave at the D'Arsonval Award Ceremony on June 14, 2011 at the Bioelectromagnetics Society Annual Meeting in Halifax, Nova Scotia. It summarizes my research activities in acoustic and electromagnetic millimeter waves over the past 47 years. My earliest research involved acoustic millimeter waves, with a special interest in diagnostic ultrasound imaging and its safety. For the last 21 years my research expanded to include electromagnetic millimeter waves, with a special interest in the mechanisms underlying millimeter wave therapy. Millimeter wave therapy has been widely used in the former Soviet Union with great reported success for many diseases, but is virtually unknown to Western physicians. I and the very capable members of my laboratory were able to demonstrate that the local exposure of skin to low intensity millimeter waves caused the release of endogenous opioids, and the transport of these agents by blood flow to all parts of the body resulted in pain relief and other beneficial effects. PMID:22926874
Millimeter waves: acoustic and electromagnetic.
Ziskin, Marvin C
2013-01-01
This article is the presentation I gave at the D'Arsonval Award Ceremony on June 14, 2011 at the Bioelectromagnetics Society Annual Meeting in Halifax, Nova Scotia. It summarizes my research activities in acoustic and electromagnetic millimeter waves over the past 47 years. My earliest research involved acoustic millimeter waves, with a special interest in diagnostic ultrasound imaging and its safety. For the last 21 years my research expanded to include electromagnetic millimeter waves, with a special interest in the mechanisms underlying millimeter wave therapy. Millimeter wave therapy has been widely used in the former Soviet Union with great reported success for many diseases, but is virtually unknown to Western physicians. I and the very capable members of my laboratory were able to demonstrate that the local exposure of skin to low intensity millimeter waves caused the release of endogenous opioids, and the transport of these agents by blood flow to all parts of the body resulted in pain relief and other beneficial effects.
Conceptual Learning Approach to Waves
NASA Astrophysics Data System (ADS)
Cerne, John; Nappo, Frank; Gerfin, Michael
2008-03-01
Waves represent one of the most important concepts in physics, playing a crucial role in topics ranging from acoustical phenomena, electricity and magnetism, optics, Fourier analysis, and even quantum mechanics. However, since waves have both a temporal and spatial dependence (often in more than one dimension) that may be difficult to visualize, many undergraduate and graduate students have a poor understanding of even basic wave concepts. We are creating a web site (electron.physics.buffalo.edu/claw/) that explains many basic wave concepts using dynamic and interactive graphical simulations. Our goal is to create simulations that enable students to visualize how waves behave and better connect this behavior to the equations and concepts that describe the use of waves in applications. There are many excellent web sites using similar graphical interactive tools, but they tend to focus on mechanics, electrostatics, and magnetism. I am actively using this site for my introductory physics courses, as well as a magneto-polarimetry teaching lab that I have created (www.physics.buffalo.edu/cerne/education/mokemanual.pdf).
NASA Astrophysics Data System (ADS)
Waseda, Takuji
2010-03-01
Giant episodic ocean waves that suddenly soar like a wall of water out of an otherwise calm sea are not just a legend. Such waves—which in the past have been called “abnormal,” “exceptional,” “extreme,” and even “vicious killer” waves—are now commonly known as “rogue waves” or “freak waves.” These waves have sunk or severely damaged 22 supercarriers in the world and caused the loss of more than 500 lives in the past 40 years. The largest wave registered by reliable instruments reached 30 meters in height, and the largest wave recorded by visual observation reached about 34 meters, equivalent to the height of an eight-story building. Tales of seafarers from Christopher Columbus to the passengers of luxury cruise ships had long been undervalued by scientists, but in the past 10 or so years, those historical notes and modern testimonies have been scientifically dissected to reveal the nature of these monster waves.
NASA Astrophysics Data System (ADS)
Peacock, Thomas
2014-11-01
Orders of magnitude larger than surface waves, and so powerful that their generation impacts the lunar orbit, internal waves, propagating disturbances of a density-stratified fluid, are ubiquitous throughout the ocean and atmosphere. Following the discovery of the phenomenon of ``dead water'' by early Arctic explorers and the classic laboratory visualizations of the curious St. Andrew's Cross internal wave pattern, there has been a resurgence of interest in internal waves, inspired by their pivotal roles in local environmental and global climate processes, and their profound impact on ocean and aerospace engineering. We detail our widespread pursuit of internal waves through theoretical modeling, laboratory experiments and field studies, from the Pacific Ocean one thousand miles north and south of Hawaii, to the South China Sea, and on to the Arctic Ocean. We also describe our recent expedition to surf the most striking internal wave phenomenon of them all: the Morning Glory cloud in remote Northwest Australia. This work was supported by the National Science Foundation through a CAREER Grant OCE-064559 and through Grants OCE-1129757 and OCE-1357434, and by the Office of Naval Research through Grants N00014-09-1-0282, N00014-08-1-0390 and N00014-05-1-0575.
PMP-2 Report: Equatorial Wave Dynamics
NASA Technical Reports Server (NTRS)
Hirota, I.
1982-01-01
The activities of the pre-MAP project 2 (PMP-2) from 1978 through 1981 are described. The following topics relating to the equatorial middle atmosphere are discussed briefly: (1) the semi-annual oscillation and Kelvin waves; (2) planetary Rossby waves; (3) upper mesospheric waves; and (4) gravity waves.
Three-dimensional modeling of tsunami waves
Mader, C.L.
1985-01-01
Two- and three-dimensional, time-dependent, nonlinear, incompressible, viscous flow calculations of realistic models of tsunami wave formation and run up have been performed using the Los Alamos-developed SOLA-3D code. The results of the SOLA calculations are compared with shallow-water, long-wave calculations for the same problems using the SWAN code. Tsunami wave formation by a continental slope subsidence has been examined using the two numerical models. The SOLA waves were slower than the SWAN waves and the interaction with the shoreline was more complicated for the SOLA waves. In the SOLA calculation, the first wave was generated by the cavity being filled along the shoreline close to the source of motion. The second wave was generated by the cavity being filled from the deep water end. The two waves interacted along the shoreline resulting in the second wave being the largest wave with a velocity greater than the first wave. The second wave overtook the first wave at later times and greater distances from the source. In the SWAN calculation, the second wave was smaller than the first wave. 6 refs.
Polyharmonic transcillator of a running wave
NASA Astrophysics Data System (ADS)
Filippov, A. I.; Mukhametzyanov, E. V.; Leont'ev, A. I.; Sadriev, A. F.
2013-07-01
Heat transfer phenomena initiated by a wave field in a medium are considered. It is shown that the influence of a plane wave on the transfer coefficients is governed to a significant degree by polarization and is preferentially characteristic of transverse waves. The spectral representation obtained makes it possible to construct expressions for the coefficients of transcillator transfer for various wave packets.
Quantum Opportunities in Gravitational Wave Detectors
Mavalvala, Negris
2012-03-14
Direct observation of gravitational waves should open a new window into the Universe. Gravitational wave detectors are the most sensitive position meters ever constructed. The quantum limit in gravitational wave detectors opens up a whole new field of study. Quantum opportunities in gravitational wave detectors include applications of quantum optics techniques and new tools for quantum measurement on truly macroscopic (human) scales.
SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES
Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T.; Arregui, I.; Terradas, J.
2012-07-10
Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.
Green's Functions of Wave Equations in
NASA Astrophysics Data System (ADS)
Deng, Shijin; Wang, Weike; Yu, Shih-Hsien
2015-06-01
We study the d'Alembert equation with a boundary. We introduce the notions of Rayleigh surface wave operators, delayed/advanced mirror images, wave recombinations, and wave cancellations. This allows us to obtain the complete and simple formula of the Green's functions for the wave equation with the presence of various boundary conditions. We are able to determine whether a Rayleigh surface wave is active or virtual, and study the lacunas of the wave equation in three dimensional with the presence of a boundary in the case of a virtual Rayleigh surface wave.
Wave-wave interactions and deep ocean acoustics.
Guralnik, Z; Bourdelais, J; Zabalgogeazcoa, X; Farrell, W E
2013-10-01
Deep ocean acoustics, in the absence of shipping and wildlife, is driven by surface processes. Best understood is the signal generated by non-linear surface wave interactions, the Longuet-Higgins mechanism, which dominates from 0.1 to 10 Hz, and may be significant for another octave. For this source, the spectral matrix of pressure and vector velocity is derived for points near the bottom of a deep ocean resting on an elastic half-space. In the absence of a bottom, the ratios of matrix elements are universal constants. Bottom effects vitiate the usual "standing wave approximation," but a weaker form of the approximation is shown to hold, and this is used for numerical calculations. In the weak standing wave approximation, the ratios of matrix elements are independent of the surface wave spectrum, but depend on frequency and the propagation environment. Data from the Hawaii-2 Observatory are in excellent accord with the theory for frequencies between 0.1 and 1 Hz, less so at higher frequencies. Insensitivity of the spectral ratios to wind, and presumably waves, is indeed observed in the data.
Interaction of Oblique Instability Waves with a Nonlinear Plane Wave
NASA Technical Reports Server (NTRS)
Wundrow, David W.; Hultgren, Lennart S.; Goldstein, M. E.
1994-01-01
This paper is concerned with the downstream evolution of a resonant triad of initially non-interacting linear Instability waves in a boundary layer with a weak adverse pressure gradient. The triad consists of a two-dimensional fundamental mode and a pair of equal-amplitude oblique modes that form a subharmonic standing wave in the spanwise direction. The growth rates are small and there is a well-defined common critical layer for these waves. As in Goldstein & Lee (1992), the wave interaction takes place entirely within this critical layer and is initially of the parametric-resonance type. This enhances the spatial growth rate of the subharmonic but does not affect that of the fundamental. However, in contrast to Goldstein & Lee (1992), the initial subharmonic amplitude is assumed to be small enough so that the fundamental can become nonlinear within its own critical layer before it is affected by the subharmonic. The subharmonic evolution is then dominated by the parametric-resonance effects and occurs on a much shorter streamwise scale than that of the fundamental. The subharmonic amplitude continues to increase during this parametric-resonance stage - even as the growth rate of the fundamental approaches zero - and the subharmonic eventually becomes large enough to influence the fundamental which causes both waves to evolve on the same shorter streamwise scale.
Nonlinear random optical waves: Integrable turbulence, rogue waves and intermittency
NASA Astrophysics Data System (ADS)
Randoux, Stéphane; Walczak, Pierre; Onorato, Miguel; Suret, Pierre
2016-10-01
We examine the general question of statistical changes experienced by ensembles of nonlinear random waves propagating in systems ruled by integrable equations. In our study that enters within the framework of integrable turbulence, we specifically focus on optical fiber systems accurately described by the integrable one-dimensional nonlinear Schrödinger equation. We consider random complex fields having a Gaussian statistics and an infinite extension at initial stage. We use numerical simulations with periodic boundary conditions and optical fiber experiments to investigate spectral and statistical changes experienced by nonlinear waves in focusing and in defocusing propagation regimes. As a result of nonlinear propagation, the power spectrum of the random wave broadens and takes exponential wings both in focusing and in defocusing regimes. Heavy-tailed deviations from Gaussian statistics are observed in focusing regime while low-tailed deviations from Gaussian statistics are observed in defocusing regime. After some transient evolution, the wave system is found to exhibit a statistically stationary state in which neither the probability density function of the wave field nor the spectrum changes with the evolution variable. Separating fluctuations of small scale from fluctuations of large scale both in focusing and defocusing regimes, we reveal the phenomenon of intermittency; i.e., small scales are characterized by large heavy-tailed deviations from Gaussian statistics, while the large ones are almost Gaussian.
On the Nature of Coronal EIT Waves
NASA Astrophysics Data System (ADS)
Ballai, I.; Erdélyi, R.; Pintér, B.
2005-11-01
Large-scale eruption events in the solar atmosphere can generate global waves, i.e., waves that propagate over distances comparable to the solar radius. In the low solar corona, global waves observed by SOHO EIT, generated by coronal mass ejections or flares, are usually referred to as ``EIT waves.'' The nature of these global waves is the subject of strong debate, and opinions are divided between different interpretations (e.g., fast magnetohydrodynamic waves, shock waves, nonwave feature, etc.). In the present Letter, we studied TRACE EUV data to show that these global coronal disturbances are indeed waves with a well-defined period. Supposing that the EIT waves transfer all their energy to interacting loops, we also estimate the minimum energy threshold carried by EIT waves.
Resonant Rossby waves and solar activity
NASA Technical Reports Server (NTRS)
Krivolutsky, A. A.; Loshkova, O. A.
1989-01-01
Large scale transient waves are an essential part of atmospheric dynamics. Some of these waves (like 27 day waves) could have a solar nature. The contribution of the 27 day planetary waves to a total long period spectrum of the atmospheric processes during one solar cycle was investigated. Ivanovsky and Krivolutsky proposed that the 27 day wave has a resonant nature. The real atmospheric processes were investigated. The method of 2-D wave analysis used is described by Krivolutsky. It was concluded that the resonant nature of the 27 day wave is not unicum. There are long periods waves (50 day wave) in stratosphere which belong to the resonant waves, too. It is a very interesting fact for the solar activity-weather problem.
Freaque wave happenings in 2013
NASA Astrophysics Data System (ADS)
Liu, Paul
2014-05-01
Freaque wave happening is always something of interest to observe. Because it is unpredictable and unexpected, no one knows where, when, how, and why a freaque wave happens; whenever a freaque wave case happens, it is usually newsworthy, at least locally. With the prevalent of internet, local news can readily become worldwide accessible. In this paper I wish to present an effort trying to tracking the various happenings of freaque waves in 2013 around the globe from the availability news on the internet. It is found that there have been a total 23 cases of freaque wave happenings in 2013. Among them, based on the happenings in clearly defined physically specific environments: there were 3 cases in deep ocean, 6 in nearshore area, 7 on sandy beaches, and 7 rocky shore cases. Note that most of the academic research has been on deep ocean happenings that only accounts for 13 percent of all happenings. With the majority of reported happenings, 87 percent, are in the near shore or along the beach area which research studies do not seem to, have paid much attention to. Geographically these cases are also fairly evenly spread around different regions of the globe. As up to now there's no general knowledge regarding frequency of occurrence of these freaque waves, 2013 is certainly appearing to be an ordinary year of happenings. May be if we can start to tracking yearly happenings, it might be possible to develop in the future more accurate statistics on what to expect on freaque wave happenings in a given year.
Rainey, R C T
2012-01-28
For a weak point source or dipole, or a small body operating as either, we show that the power from a wave energy converter (WEC) is the product of the particle velocity in the waves, and the wave force (suitably defined). There is a thus a strong analogy with a wind or tidal turbine, where the power is the product of the fluid velocity through the turbine, and the force on it. As a first approximation, the cost of a structure is controlled by the force it has to carry, which governs its strength, and the distance it has to be carried, which governs its size. Thus, WECs are at a disadvantage compared with wind and tidal turbines because the fluid velocities are lower, and hence the forces are higher. On the other hand, the distances involved are lower. As with turbines, the implication is also that a WEC must make the most of its force-carrying ability-ideally, to carry its maximum force all the time, the '100% sweating WEC'. It must be able to limit the wave force on it in larger waves, ultimately becoming near-transparent to them in the survival condition-just like a turbine in extreme conditions, which can stop and feather its blades. A turbine of any force rating can achieve its maximum force in low wind speeds, if its diameter is sufficiently large. This is not possible with a simple monopole or dipole WEC, however, because of the 'nλ/2π' capture width limits. To achieve reasonable 'sweating' in typical wave climates, the force is limited to about 1 MN for a monopole device, or 2 MN for a dipole. The conclusion is that the future of wave energy is in devices that are not simple monopoles or dipoles, but multi-body devices or other shapes equivalent to arrays.
Rainey, R C T
2012-01-28
For a weak point source or dipole, or a small body operating as either, we show that the power from a wave energy converter (WEC) is the product of the particle velocity in the waves, and the wave force (suitably defined). There is a thus a strong analogy with a wind or tidal turbine, where the power is the product of the fluid velocity through the turbine, and the force on it. As a first approximation, the cost of a structure is controlled by the force it has to carry, which governs its strength, and the distance it has to be carried, which governs its size. Thus, WECs are at a disadvantage compared with wind and tidal turbines because the fluid velocities are lower, and hence the forces are higher. On the other hand, the distances involved are lower. As with turbines, the implication is also that a WEC must make the most of its force-carrying ability-ideally, to carry its maximum force all the time, the '100% sweating WEC'. It must be able to limit the wave force on it in larger waves, ultimately becoming near-transparent to them in the survival condition-just like a turbine in extreme conditions, which can stop and feather its blades. A turbine of any force rating can achieve its maximum force in low wind speeds, if its diameter is sufficiently large. This is not possible with a simple monopole or dipole WEC, however, because of the 'nλ/2π' capture width limits. To achieve reasonable 'sweating' in typical wave climates, the force is limited to about 1 MN for a monopole device, or 2 MN for a dipole. The conclusion is that the future of wave energy is in devices that are not simple monopoles or dipoles, but multi-body devices or other shapes equivalent to arrays. PMID:22184669
The wave grouping effect on wave forces on a vertical breakwater
NASA Astrophysics Data System (ADS)
Lin, Wei-Qi; Huang, Pei-Ji
1996-03-01
Linear wave theory and Longuet-Higgins and Steward's (1964) group-induced second-order long wave (GSLW) theory were used in this study on the grouping effect on wave forces acting on a vertical breakwater. The calculated variance of total wave pressure on the vertical breakwater was closer to the measured value if the wave grouping effect was considered.
Fundamental plasma emission involving ion sound waves
NASA Technical Reports Server (NTRS)
Cairns, Iver H.
1987-01-01
The theory for fundamental plasma emission by the three-wave processes L + or - S to T (where L, S and T denote Langmuir, ion sound and transverse waves, respectively) is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes are identified. In addition the rates, path-integrated wave temperatures, and limits on the brightness temperature of the radiation are derived.
Selfsimilar Spherical Compression Waves in Gas Dynamics
NASA Astrophysics Data System (ADS)
Meyer-ter-Vehn, J.; Schalk, C.
1982-08-01
A synopsis of different selfsimilar spherical compression waves is given pointing out their fundamental importance for the gas dynamics of inertial confinement fusion. Strong blast waves, various forms of isentropic compression waves, imploding shock waves and the solution for non-isentropic collapsing hollow spheres are included. A classification is given in terms of six singular points which characterise the different solutions and the relations between them. The presentation closely follows Guderley's original work on imploding shock waves
Standing waves along a microwave generated surface wave plasma
NASA Technical Reports Server (NTRS)
Rogers, J.; Asmussen, J.
1982-01-01
Two surface wave plasma columns, generated by microwave power in argon at gas pressures of 0.05 torr to 330 torr, interact in the same discharge tube to form standing surface waves. Radial electric field and azimuthal magnetic field outside the discharge tube are measured to be 90 deg out of phase with respect to axial position and to decay exponentially with radial distance from the tube axis. Maximum light emission occurs at the position of maximum azimuthal magnetic field and minimum radial electric field. Electron temperature and density are measured at low pressures with double probes inserted into the plasma at a null of radial electric field. Measured electron densities compare well with those predicted by Gould-Trivelpiece surface wave theory.
VLF wave-wave interaction experiments in the magnetosphere
NASA Technical Reports Server (NTRS)
Chang, D. C. D.
1978-01-01
VLF wave-wave interaction experiments were carried out by injecting various forms of VLF pulses into the magnetosphere from a 21.2 km dipole antenna at Siple, Antarctica. The injected signals propagate along a geomagnetic field line and often interact strongly with energetic electrons trapped in the radiation belts near the equator. Signals may be amplified and trigger emissions. These signals may then interact with one another through these energetic electrons. This report is divided into three parts. In the first part, simulations of VLF pulses propagating in the magnetosphere are carried out. In the second part, it is found for the first time that a 10 ms gap in a triggering wave can induce emission, which may then interact with the post-gap signals. In the third part, sideband triggering is reported for the first time.
Ion Bernstein wave heating research
Ono, Masayuki.
1992-03-01
Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW's low phase velocity ({omega}/k{sub {perpendicular}} {approx} V{sub Ti} {much lt} V{sub {alpha}}) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion {alpha}-particles. In addition, the property of IBW's that k{sub {perpendicular}} {rho}{sub i} {approx} 1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW's can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. This paper discusses this research.
Ion Bernstein wave heating research
Ono, Masayuki
1992-03-01
Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW`s low phase velocity ({omega}/k{sub {perpendicular}} {approx} V{sub Ti} {much_lt} V{sub {alpha}}) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion {alpha}-particles. In addition, the property of IBW`s that k{sub {perpendicular}} {rho}{sub i} {approx} 1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW`s can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. This paper discusses this research.
NASA Astrophysics Data System (ADS)
Ng, Chiu-king
2010-01-01
When one end of a taut horizontal elastic string is shaken repeatedly up and down, a transverse wave (assume sine waveform) will be produced and travel along it. College students know this type of wave motion well. They know when the wave passes by, each element of the string will perform an oscillating up-down motion, which in mechanics is termed simple harmonic2. They also know elements of the string at the highest and the lowest positions—the crests and the troughs—are momentarily at rest, while those at the centerline (zero displacement) have the greatest speed, as shown in Fig. 1. Irrespective of this, they are less familiar with the energy associated with the wave. They may fail to answer a question such as, "In a traveling string wave, which elements have respectively the greatest kinetic energy (KE) and the greatest potential energy (PE)?" The answer to the former is not difficult; elements at zero position have the fastest speed and hence their KE, being proportional to the square of speed, is the greatest. To the PE, what immediately comes to their mind may be the simple harmonic motion (SHM), in which the PE is the greatest and the KE is zero at the two turning points. It may thus lead them to think elements at crests or troughs have the greatest PE. Unfortunately, this association is wrong. Thinking that the crests or troughs have the greatest PE is a misconception.3
Langmuir waves across the heliosphere
NASA Astrophysics Data System (ADS)
Briand, C.
2015-04-01
All the bodies of the solar system are embedded in the supersonic flux of energetic particles emitted by the Sun. Since the advent of the space age, the models to describe the interaction of this plasma flow with the planets, asteroids, comets etc. have drastically progressed. The possibilities of in situ measurements of the particle distributions and electromagnetic fields have enabled the plasma theories to be tested under astrophysical conditions. Energy transfer from the Sun to the outermost regions of the heliosphere as well as the processes leading to the dissipation of this energy are central questions for heliophysicists. Understanding the dynamics of the particles is thus critical. It is a particularly complicated subject since the medium is (almost) non-collisional. Thus, next to the description of the particles, the development of waves must be considered. Indeed, they participate to the exchange of energy between different species that would not interact otherwise. In other words, waves may play the role of collisions. This paper concentrates on Langmuir waves for their strong links with the electron dynamics. The basic processes of growth and saturation of the Langmuir waves are reviewed to stress their diagnostic capabilities. Then, the characteristics of the waves are described in the several heliophysical contexts: the planetary environments (in particular the ionosphere, the magnetotail and the foreshock) and in the interplanetary medium (in quiescent conditions of the solar wind or during transient events). A particular emphasis is given to results obtained in the last 15 years.
Modeling waves and wind stress
NASA Astrophysics Data System (ADS)
Donelan, M. A.; Curcic, M.; Chen, S. S.; Magnusson, A. K.
2012-11-01
A model for wave and wind stress prediction is constructed. The source functions that drive the space-time evolution of the energy spectra are developed in form based on theory and laboratory and field experiments. The calibration factors (proportionality constants of the source functions) are determined from a comparison of modeled and observed significant height and mean period. The observations are for the month of January 2005 and are derived from an array of laser range finders mounted on a bridge between two platforms in the Ekofisk oil field in the North Sea. The model calculates the form stress on the waves and adds it vectorially to the sheltering-modified skin stress. The resulting drag coefficient versus wind speed is shown to have the observed structure: low in light winds, increasing in moderate winds, and increasing more slowly in very strong winds. Modeled spectral shapes in the four quadrants of Hurricane Bonnie (1998) match the Scanning Radar Altimeter measurements. Modeled spectral properties in Hurricane Ike (2008) are compared against NDBC buoy estimates with good results. Drag coefficients in the mixed seas produced by hurricanes show dependence on wave age of the wind sea, swell propagation direction, and water depth. The need for wave and stress modeling for atmosphere-ocean coupling is emphasized. The new wave model has all the necessary attributes to be the basis for such a coupler.
The Polar Plasma Wave Instrument
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Persoon, A. M.; Randall, R. F.; Odem, D. L.; Remington, S. L.; Averkamp, T. F.; Debower, M. M.; Hospodarsky, G. B.; Huff, R. L.; Kirchner, D. L.
1995-01-01
The Plasma Wave Instrument on the Polar spacecraft is designed to provide measurements of plasma waves in the Earth's polar regions over the frequency range from 0.1 Hz to 800 kHz. Three orthogonal electric dipole antennas are used to detect electric fields, two in the spin plane and one aligned along the spacecraft spin axis. A magnetic loop antenna and a triaxial magnetic search coil antenna are used to detect magnetic fields. Signals from these antennas are processed by five receiver systems: a wideband receiver, a high-frequency waveform receiver, a low-frequency waveform receiver, two multichannel analyzers; and a pair of sweep frequency receivers. Compared to previous plasma wave instruments, the Polar plasma wave instrument has several new capabilities. These include (1) an expanded frequency range to improve coverage of both low- and high-frequency wave phenomena, (2) the ability to simultaneously capture signals from six orthogonal electric and magnetic field sensors, and (3) a digital wideband receiver with up to 8-bit resolution and sample rates as high as 249k samples s(exp -1).
Godballe, C; Hoeck, H C; Sørensen, J A
1990-01-01
We present a case of transient abnormal Q-waves (TAQ) and a review of the literature. TAQ are defined as abnormal Q-waves, which disappear within ten days. They are most often seen in patients with ischemic heart disease (IHD) but are also seen in other conditions. Brief episodes of myocardial ischemia giving rise to reversible biochemical and ultrastructural myocardial changes, resulting in transient ECG changes, provide an accepted theory for the pathogenesis of TAO. Investigations have shown that the occurrence of exercise-induced TAQ may be a symptom of IHD. It is impossible to distinguish TAQ from Q-waves induced by myocardial infarction. Appearance of TAQ during exercise-testing frequently indicates IHD. PMID:2301045
Gravitational waves from gravitational collapse
Fryer, Christopher L; New, Kimberly C
2008-01-01
Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.
Silivra, A.
1995-12-31
A physical mechanism of interaction of fast electromagnetic wave with slow cyclotron wave of relativistic electron beam in a FEL with helical wiggler field is described. It is shown that: (1) interaction is possible for both group of steady state electron trajectories (2) positive gain is achieved within certain interval of guide field strength (3) operation wavelength for group 1 trajectories ({Omega}{sub 0}/{gamma} < k{omega}{upsilon}{parallel}) is shorter than for the conventional FEL synchronism. A nonlinear analysis shows that efficiency of slow cyclotron FEL is restricted mainly by a breakdown of a single electron synchronism due to dependence of (modified) electron cyclotron frequency on an energy of electron. Nevertheless, as numerical simulation shows, typical efficiency of 15 % order is achieved in millimeter wavelength band for the midrelativistic ({gamma}= 3 {divided_by} 4) slow cyclotron wave FEL. Tapering of magnetic field results in a substantial increase of efficiency.
Solitary waves in diatomic chains
NASA Astrophysics Data System (ADS)
Vainchtein, Anna; Starosvetsky, Yuli; Wright, J. Douglas; Perline, Ron
2016-04-01
We consider the mechanism of formation of isolated localized wave structures in the diatomic Fermi-Pasta-Ulam (FPU) model. Using a singular multiscale asymptotic analysis in the limit of high mass mismatch between the alternating elements, we obtain the typical slow-fast time scale separation and formulate the Fredholm orthogonality condition approximating a sequence of mass ratios supporting the formation of solitary waves in the general type of diatomic FPU models. This condition is made explicit in the case of a diatomic Toda lattice. Results of numerical integration of the full diatomic Toda lattice equations confirm the formation of these genuinely localized wave structures at special values of the mass ratio that are close to the analytical predictions when the ratio is sufficiently small.
Evanescent waves and complex rays
NASA Astrophysics Data System (ADS)
Einziger, P. D.; Felsen, L. B.
1982-07-01
An approximate scheme for determining the configuration of phase paths in implementing evanescent wave theory is discussed. The evanescent wave tracking method is reviewed, the special canonical solution that generates confocal hyperbolic phase paths is generated, and it is shown that these correspond to the complex ray fields generated by a source point at a complex location. The local hyperbolic matching hypothesis is described and its deficiencies are noted. The asymptotic solution is obtained by complex ray tracing and is interpreted physically in terms of the previously described EWT. The limitations of complex ray theory and EWT, especially in regard to strongly evanescent fields, are established by consideration of the rigorously formulated Green's function. The problem of evanescent plane wave and Gaussian beam diffraction by a circular cylinder is reconsidered in the light of the results obtained.
Slow deterministic vector rogue waves
NASA Astrophysics Data System (ADS)
Sergeyev, S. V.; Kolpakov, S. A.; Mou, Ch.; Jacobsen, G.; Popov, S.; Kalashnikov, V.
2016-03-01
For an erbium-doped fiber laser mode-locked by carbon nanotubes, we demonstrate experimentally and theoretically a new type of the vector rogue waves emerging as a result of the chaotic evolution of the trajectories between two orthogonal states of polarization on the Poincare sphere. In terms of fluctuation induced phenomena, by tuning polarization controller for the pump wave and in-cavity polarization controller, we are able to control the Kramers time, i.e. the residence time of the trajectory in vicinity of each orthogonal state of polarization, and so can cause the rare events satisfying rogue wave criteria and having the form of transitions from the state with the long residence time to the state with a short residence time.
Hydroelectric power from ocean waves
NASA Astrophysics Data System (ADS)
Raghavendran, K.
1981-02-01
This paper describes a system which converts the variable energy of ocean waves into a steady supply of energy in a conventional form. The system consists of a set of floats and Persian wheels located off-shore and a storage reservoir on the shore. The floats oscillate vertically as the waves pass below them and turn their respective Persian wheels which lift sea water to a height and deliver to the reservoir through an interconnecting pipeline. The head of water in the reservoir operates a hydraulic turbine which in turn works a generator to supply electricity. Due to the recurrent wave action, water is maintained at the optimum level in the reservoir to ensure continuous power supply.
Electron diffraction by plasmon waves
NASA Astrophysics Data System (ADS)
García de Abajo, F. J.; Barwick, B.; Carbone, F.
2016-07-01
An electron beam traversing a structured plasmonic field is shown to undergo diffraction with characteristic angular patterns of both elastic and inelastic outgoing electron components. In particular, a plasmonic grating (e.g., a standing wave formed by two counterpropagating plasmons in a thin film) produces diffraction orders of the same parity as the net number of exchanged plasmons. Large diffracted beam fractions are predicted to occur for realistic plasmon intensities in attainable geometries due to a combination of phase and amplitude changes locally imprinted on the passing electron wave. Our study opens vistas in the study of multiphoton exchanges between electron beams and evanescent optical fields with unexplored effects related to the transversal component of the electron wave function.
NASA Technical Reports Server (NTRS)
Ahrens, Thomas J.; Johnson, Mary L.
1994-01-01
Shock compression of the materials of planetary interiors yields data which upon comparison with density-pressure and density-sound velocity profiles constrain internal composition and temperature. Other important applications of shock wave data and related properties are found in the impact mechanics of terrestrial planets and solid satellites. Shock wave equation of state, shock-induced dynamic yielding and phase transitions, and shock temperature are discussed. In regions where a substantial phase change in the material does not occur, the relationship between the particle velocity, U(sub p), and the shock velocity, U(sub s), is given by U(sub s) = C(sub 0) + S U(sub p), where C(sub 0) is the shock velocity at infinitesimally small particle velocity, or the ambient pressure bulk sound velocity. Numerical values for the shock wave equation of state for minerals and related materials of the solar system are provided.
NASA Astrophysics Data System (ADS)
Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.
2016-09-01
Impact of the pulsed braking force on the axial gas circulation and gas content in centrifuges for uranium isotope separation was investigated by the method of numerical simulation. Pulsed brake of the rotating gas by the momentum source results into generation of the waves which propagate along the rotor of the centrifuge. The waves almost doubles the axial circulation flux in the working camera in compare with the case of the steady state breaking force with the same average power in the model under the consideration. Flux through the hole in the bottom baffle on 15% exceeds the flux in the stationary case for the same pressure and temperature in the model. We argue that the waves reduce the pressure in the GC on the same 15%.
Huge waves of meteorite origin
NASA Astrophysics Data System (ADS)
Pelinovsky, Efim; Kozelkov, Andrey; Kurkin, Andrey
2016-04-01
Asteroid and meteorite risk is now actively investigated in various aspects. If the meteorite falls in the ocean it can generate huge waves with heights exceeded 10 m. For whole history about 10-20 events related with entry of meteorite in water are known. The last event occurred on February 15, 2013 when the meteorite exploded in sky of Chelyabinsk (Russia) and its big piece entered in the Chebarkul Lake. Very often, huge waves of meteorite origin are computed using the conception of equivalent (parametrical) source, whose parameters are determined through meteorite characteristics. Recently, direct methods based on numerical simulations of the Reynolds-averaged Navier-Stokes equations (RANS) have been applied to study wave processes generated by the entry of meteorite. These approaches and their applications to the historic events are discussed in paper.
Chasman, R.R.
1995-08-01
In the past few years, we developed many-body variational wave functions that allow one to treat pairing and particle-hole two-body interactions on an equal footing. The complexity of these wave functions depends on the number of levels included in the valence space, but does not depend on the number of nucleons in the system. By using residual interaction strengths (e.g. the quadrupole interaction strength or pairing interaction strength) as generator coordinates, one gets many different wave functions, each having a different expectation value for the relevant interaction mode. These wave functions are particularly useful when one is dealing with a situation in which the mean-field approximation is inadequate. Because the same basis states are used in the construction of the many-body wave functions, it is possible to calculate overlaps and interaction matrix elements for the many-body wave functions (which are not in general orthogonal) easily. The valence space can contain a large number of single-particle basis states, when there are constants of motion that can be used to break the levels up into groups. We added a cranking term to the many-body Hamiltonian and modified the projection procedure to get states of good signature before variation. In our present implementation, each group is limited to eight pairs of single-particle levels. We are working on ways of increasing the number of levels that can be included in each group. We are also working on including particle-particle residual interaction modes, in addition to pairing, in our Hamiltonian.
Seismic shear waves as Foucault pendulum
NASA Astrophysics Data System (ADS)
Snieder, Roel; Sens-Schönfelder, Christoph; Ruigrok, Elmer; Shiomi, Katsuhiko
2016-03-01
Earth's rotation causes splitting of normal modes. Wave fronts and rays are, however, not affected by Earth's rotation, as we show theoretically and with observations made with USArray. We derive that the Coriolis force causes a small transverse component for P waves and a small longitudinal component for S waves. More importantly, Earth's rotation leads to a slow rotation of the transverse polarization of S waves; during the propagation of S waves the particle motion behaves just like a Foucault pendulum. The polarization plane of shear waves counteracts Earth's rotation and rotates clockwise in the Northern Hemisphere. The rotation rate is independent of the wave frequency and is purely geometric, like the Berry phase. Using the polarization of ScS and ScS2 waves, we show that the Foucault-like rotation of the S wave polarization can be observed. This can affect the determination of source mechanisms and the interpretation of observed SKS splitting.
Global coherence of dust density waves
Killer, Carsten; Melzer, André
2014-06-15
The coherence of self-excited three-dimensional dust density waves has been experimentally investigated by comparing global and local wave properties. For that purpose, three-dimensional dust clouds have been confined in a radio frequency plasma with thermophoretic levitation. Global wave properties have been measured from the line-of-sight integrated dust density obtained from homogenous light extinction measurements. Local wave properties have been obtained from thin, two-dimensional illuminated laser slices of the cloud. By correlating the simultaneous global and local wave properties, the spatial coherence of the waves has been determined. We find that linear waves with small amplitudes tend to be fragmented, featuring an incoherent wave field. Strongly non-linear waves with large amplitudes, however, feature a strong spatial coherence throughout the dust cloud, indicating a high level of synchronization.
Surface tension effects in wave breaking
NASA Astrophysics Data System (ADS)
Deike, Luc; Melville, W. K.; Popinet, Stephane
2014-11-01
We present a numerical study of wave breaking by solving the full Navier-Stokes equations for two-phase air-water flows using the solver Gerris. We describe a parametric study of the influence of capillary effects on wave breaking using two-dimensional simulations. The onset of wave breaking as a function of the Bond number, Bo, and the initial wave steepness S is determined and a phase diagram in terms of (S,Bo) is presented that distinguishes between non-breaking gravity waves, parasitic capillaries on a gravity wave, spilling breakers and plunging breakers. The wave energy dissipation is computed for each wave regime and is found to be in good agreement with experimental results for breaking waves. Moreover, the enhanced dissipation just by parasitic capillaries is comparable to the dissipation due to breaking. Extending the simulations to three dimensions permits studies of the generation and statistics of bubbles and spray during breaking.
Transversally periodic solitary gravity-capillary waves.
Milewski, Paul A; Wang, Zhan
2014-01-01
When both gravity and surface tension effects are present, surface solitary water waves are known to exist in both two- and three-dimensional infinitely deep fluids. We describe here solutions bridging these two cases: travelling waves which are localized in the propagation direction and periodic in the transverse direction. These transversally periodic gravity-capillary solitary waves are found to be of either elevation or depression type, tend to plane waves below a critical transverse period and tend to solitary lumps as the transverse period tends to infinity. The waves are found numerically in a Hamiltonian system for water waves simplified by a cubic truncation of the Dirichlet-to-Neumann operator. This approximation has been proved to be very accurate for both two- and three-dimensional computations of fully localized gravity-capillary solitary waves. The stability properties of these waves are then investigated via the time evolution of perturbed wave profiles. PMID:24399922
Surface wave chemical detector using optical radiation
Thundat, Thomas G.; Warmack, Robert J.
2007-07-17
A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.
Transversally periodic solitary gravity-capillary waves.
Milewski, Paul A; Wang, Zhan
2014-01-01
When both gravity and surface tension effects are present, surface solitary water waves are known to exist in both two- and three-dimensional infinitely deep fluids. We describe here solutions bridging these two cases: travelling waves which are localized in the propagation direction and periodic in the transverse direction. These transversally periodic gravity-capillary solitary waves are found to be of either elevation or depression type, tend to plane waves below a critical transverse period and tend to solitary lumps as the transverse period tends to infinity. The waves are found numerically in a Hamiltonian system for water waves simplified by a cubic truncation of the Dirichlet-to-Neumann operator. This approximation has been proved to be very accurate for both two- and three-dimensional computations of fully localized gravity-capillary solitary waves. The stability properties of these waves are then investigated via the time evolution of perturbed wave profiles.
Extreme wave runup on a vertical cliff
NASA Astrophysics Data System (ADS)
Carbone, Francesco; Dutykh, Denys; Dudley, John M.; Dias, FréDéRic
2013-06-01
Wave impact and runup onto vertical obstacles are among the most important phenomena which must be taken into account in the design of coastal structures. From linear wave theory, we know that the wave amplitude on a vertical wall is twice the incident wave amplitude with weakly nonlinear theories bringing small corrections to this result. In this present study, however, we show that certain simple wave groups may produce much higher runups than previously predicted, with particular incident wave frequencies resulting in runup heights exceeding the initial wave amplitude by a factor of 5, suggesting that the notion of the design wave used in coastal structure design may need to be revisited. The results presented in this study can be considered as a note of caution for practitioners, on one side, and as a challenging novel material for theoreticians who work in the field of extreme wave-coastal structure interaction.
Determining wave direction using curvature parameters.
de Queiroz, Eduardo Vitarelli; de Carvalho, João Luiz Baptista
2016-01-01
The curvature of the sea wave was tested as a parameter for estimating wave direction in the search for better results in estimates of wave direction in shallow waters, where waves of different sizes, frequencies and directions intersect and it is difficult to characterize. We used numerical simulations of the sea surface to determine wave direction calculated from the curvature of the waves. Using 1000 numerical simulations, the statistical variability of the wave direction was determined. The results showed good performance by the curvature parameter for estimating wave direction. Accuracy in the estimates was improved by including wave slope parameters in addition to curvature. The results indicate that the curvature is a promising technique to estimate wave directions.•In this study, the accuracy and precision of curvature parameters to measure wave direction are analyzed using a model simulation that generates 1000 wave records with directional resolution.•The model allows the simultaneous simulation of time-series wave properties such as sea surface elevation, slope and curvature and they were used to analyze the variability of estimated directions.•The simultaneous acquisition of slope and curvature parameters can contribute to estimates wave direction, thus increasing accuracy and precision of results. PMID:27408830
Basic concepts of kinematic-wave models
Miller, J.E.
1984-01-01
The kinematic-wave model is one of a number of approximations of the dynamic-wave model. The dynamic-wave model describes one-dimensional shallow-water waves (unsteady, gradually varied, open-channel flow). The report provides a basic reference on the theory and application of kinematic-wave models and describes the limitations of the model in relation to the other approximations of the dynamic-wave model. In the kinematic-wave approximation, a number of the terms in the equation of motion are assumed to be insignificant. The equation of motion is replaced by an equation describing uniform flow. Thus, the kinematic-wave model is described by the continuity equation and a uniform flow equation such as the well-known Chezy or Manning formulas. Kinematic-wave models are applicable to overland flow where lateral inflow is continuously added and is a large part of the total flow. For channel-routing applications, the kinematic-wave model always predicts a steeper wave with less dispersion and attenuation than actually occurs. The effect of the accumulation of errors in the kinematic-wave model shows that the approximations made in the development of the kinematic-wave equations are not generally justified for most channel-routing applications. Modified flow-routing models can be used which help to stop the accumulation of error that occurs when the kinematic-wave model is applied. (USGS)
Kartashov, Yaroslav V; Vysloukh, Victor A; Torner, Lluis
2014-07-01
We introduce Bloch-wave beatings in arrays of multimode periodically bent waveguides with a transverse refractive index gradient. The new phenomenon manifests itself in the periodic drastic increase of the amplitude of the Bloch oscillations that accompanies resonant conversion of modes guided by the individual waveguides. The Bloch-wave beatings are found to be most pronounced when the length of the resonant mode conversion substantially exceeds the longitudinal period of the Bloch oscillations. The beating frequency decreases when the amplitude of waveguide bending decreases, while the beating amplitude is restricted by the amplitude of the Bloch oscillations that emerge from the second allowed band of the Floquet-Bloch lattice spectrum.
Le Merrer, Marie; Clanet, Christophe; Quéré, David; Raphaël, Elie; Chevy, Frédéric
2011-09-13
We measure the deceleration of liquid nitrogen drops floating at the surface of a liquid bath. On water, the friction force is found to be about 10 to 100 times larger than on a solid substrate, which is shown to arise from wave resistance. We investigate the influence of the bath viscosity and show that the dissipation decreases as the viscosity is increased, owing to wave damping. The measured resistance is well predicted by a model imposing a vertical force (i.e., the drop weight) on a finite area, as long as the wake can be considered stationary. PMID:21876186
NASA Astrophysics Data System (ADS)
Colas, David; Laussy, Fabrice P.
2016-01-01
We study the propagation of noninteracting polariton wave packets. We show how two qualitatively different concepts of mass that arise from the peculiar polariton dispersion lead to a new type of particlelike object from noninteracting fields—much like self-accelerating beams—shaped by the Rabi coupling out of Gaussian initial states. A divergence and change of sign of the diffusive mass results in a "mass wall" on which polariton wave packets bounce back. Together with the Rabi dynamics, this yields propagation of ultrafast subpackets and ordering of a spacetime crystal.
Plane waves in noncommutative fluids
NASA Astrophysics Data System (ADS)
Abdalla, M. C. B.; Holender, L.; Santos, M. A.; Vancea, I. V.
2013-08-01
We study the dynamics of the noncommutative fluid in the Snyder space perturbatively at the first order in powers of the noncommutative parameter. The linearized noncommutative fluid dynamics is described by a system of coupled linear partial differential equations in which the variables are the fluid density and the fluid potentials. We show that these equations admit a set of solutions that are monochromatic plane waves for the fluid density and two of the potentials and a linear function for the third potential. The energy-momentum tensor of the plane waves is calculated.
Pulse Wave Well Development Demonstration
Burdick, S.
2001-02-23
Conventional methods of well development at the Savannah River Site generate significant volumes of investigative derived waste (IDW) which must be treated and disposed of at a regulated Treatment, Storage, or Disposal (TSD) facility. Pulse Wave technology is a commercial method of well development utilizing bursts of high pressure gas to create strong pressure waves through the well screen zone, extending out into the formation surrounding the well. The patented process is intended to reduce well development time and the amount of IDW generated as well as to micro-fracture the formation to improve well capacity.
A collisionless shock wave experiment
Winske, D.; Jones, M.E.; Sgro, A.G.; Thomas, V.A.
1995-04-01
Collisionless shock waves are a very important heating mechanism for plasmas and are commonly found in space and astrophysical environments. Collisionless shocks were studied in the laboratory more than 20 years ago, and more recently in space via in situ satellite measurements. The authors propose a new laboratory shock wave experiment to address unresolved issues related to the differences in the partition of plasma heating between electrons and ions in space and laboratory plasmas, which can have important implications for a number of physical systems.
Pressure wave: Gun barrel interactions
NASA Astrophysics Data System (ADS)
Crowley, A. B.; King, W. P. C.
1986-01-01
The interaction of pressure waves generated during the internal ballistics cycle with the vibrations of a tank barrel, and the possible effects on accuracy, are described. The investigation is based on codes simulating the complete internal ballistics cycle, including the venting of gases after shot exit, and the longitudinal and flexural vibration modes of the barrel, both of which were developed at the Royal Military College of Science. The computative effects of pressure waves on both accuracy and structural integrity are discussed for a number of different charge and barrel configurations.
GRAVITATIONAL WAVES FROM STELLAR COLLAPSE
C. L. FRYER
2001-01-01
Stellar core-collapse plays an important role in nearly all facets of astronomy: cosmology (as standard candles), formation of compact objects, nucleosynthesis and energy deposition in galaxies. In addition, they release energy in powerful explosions of light over a range of energies, neutrinos, and the subject of this meeting, gravitational waves. Because of this broad range of importance, astronomers have discovered a number of constraints which can be used to help them understand the importance of stellar core-collapse as gravitational wave sources.
Le Merrer, Marie; Clanet, Christophe; Quéré, David; Raphaël, Élie; Chevy, Frédéric
2011-01-01
We measure the deceleration of liquid nitrogen drops floating at the surface of a liquid bath. On water, the friction force is found to be about 10 to 100 times larger than on a solid substrate, which is shown to arise from wave resistance. We investigate the influence of the bath viscosity and show that the dissipation decreases as the viscosity is increased, owing to wave damping. The measured resistance is well predicted by a model imposing a vertical force (i.e., the drop weight) on a finite area, as long as the wake can be considered stationary. PMID:21876186
Le Merrer, Marie; Clanet, Christophe; Quéré, David; Raphaël, Elie; Chevy, Frédéric
2011-09-13
We measure the deceleration of liquid nitrogen drops floating at the surface of a liquid bath. On water, the friction force is found to be about 10 to 100 times larger than on a solid substrate, which is shown to arise from wave resistance. We investigate the influence of the bath viscosity and show that the dissipation decreases as the viscosity is increased, owing to wave damping. The measured resistance is well predicted by a model imposing a vertical force (i.e., the drop weight) on a finite area, as long as the wake can be considered stationary.
NASA Astrophysics Data System (ADS)
Slavnov, D. A.
2015-07-01
The problem of wave-particle duality is considered within the framework of the algebraic approach. Contrary to the widespread belief, we demonstrate that wave-particle duality can be reconciled with the assumption that there exists some local physical reality determining the results of local measurements. A number of quantum experiments—double-slit electron scattering, Wheeler's delayed choice experiment, the past of photons passed through the interferometer—are discussed using the concept of locality. A clear physical interpretation of these experiments that does not contradict classical concepts is provided.
Ocean wave energy converting vessel
Boyce, P.F.
1986-08-26
An ocean wave energy conversion system is described comprised of a four beam quadrapod supported by bouyant members from which is suspended a pendulum. The pendulum contains a vertical generator shaft and a generator, the generator shaft being splined and fitted with two racheted pulleys, the pulleys being looped, one clockwise and one counterclockwise with separate cables. The cables are attached at their ends to the bow and stern of the quadrapod, whereby the generator shaft will pin when the quadrapod rocks over waves and the pendulum tends toward the center of earth.
Self-Interfering Wave Packets.
Colas, David; Laussy, Fabrice P
2016-01-15
We study the propagation of noninteracting polariton wave packets. We show how two qualitatively different concepts of mass that arise from the peculiar polariton dispersion lead to a new type of particlelike object from noninteracting fields-much like self-accelerating beams-shaped by the Rabi coupling out of Gaussian initial states. A divergence and change of sign of the diffusive mass results in a "mass wall" on which polariton wave packets bounce back. Together with the Rabi dynamics, this yields propagation of ultrafast subpackets and ordering of a spacetime crystal. PMID:26824554
NASA Astrophysics Data System (ADS)
Garfinkle, David
1991-08-01
An attempt to solve Einstein's equations by assuming the existence of symmetries and by treating metrics that possess a Killing vector is presented. A spacetime with a null Killing field can be regarded as the history of a disturbance that propagates at the speed of light without changing its amplitude or shape. Such spacetimes are referred to as traveling waves. A new technique for generating solutions of Einstein's equations is then presented. The technique produces a new traveling wave spacetime given an old one. It applies to both the vacuum Einstein equations and Einstein's equations coupled to various types of matter.
Primordial gravitational waves and cosmology.
Krauss, Lawrence M; Dodelson, Scott; Meyer, Stephan
2010-05-21
The observation of primordial gravitational waves could provide a new and unique window on the earliest moments in the history of the universe and on possible new physics at energies many orders of magnitude beyond those accessible at particle accelerators. Such waves might be detectable soon, in current or planned satellite experiments that will probe for characteristic imprints in the polarization of the cosmic microwave background, or later with direct space-based interferometers. A positive detection could provide definitive evidence for inflation in the early universe and would constrain new physics from the grand unification scale to the Planck scale.
WAVE: Interactive Wave-based Sound Propagation for Virtual Environments.
Mehra, Ravish; Rungta, Atul; Golas, Abhinav; Ming Lin; Manocha, Dinesh
2015-04-01
We present an interactive wave-based sound propagation system that generates accurate, realistic sound in virtual environments for dynamic (moving) sources and listeners. We propose a novel algorithm to accurately solve the wave equation for dynamic sources and listeners using a combination of precomputation techniques and GPU-based runtime evaluation. Our system can handle large environments typically used in VR applications, compute spatial sound corresponding to listener's motion (including head tracking) and handle both omnidirectional and directional sources, all at interactive rates. As compared to prior wave-based techniques applied to large scenes with moving sources, we observe significant improvement in runtime memory. The overall sound-propagation and rendering system has been integrated with the Half-Life 2 game engine, Oculus-Rift head-mounted display, and the Xbox game controller to enable users to experience high-quality acoustic effects (e.g., amplification, diffraction low-passing, high-order scattering) and spatial audio, based on their interactions in the VR application. We provide the results of preliminary user evaluations, conducted to study the impact of wave-based acoustic effects and spatial audio on users' navigation performance in virtual environments. PMID:26357093
WAVE: Interactive Wave-based Sound Propagation for Virtual Environments.
Mehra, Ravish; Rungta, Atul; Golas, Abhinav; Ming Lin; Manocha, Dinesh
2015-04-01
We present an interactive wave-based sound propagation system that generates accurate, realistic sound in virtual environments for dynamic (moving) sources and listeners. We propose a novel algorithm to accurately solve the wave equation for dynamic sources and listeners using a combination of precomputation techniques and GPU-based runtime evaluation. Our system can handle large environments typically used in VR applications, compute spatial sound corresponding to listener's motion (including head tracking) and handle both omnidirectional and directional sources, all at interactive rates. As compared to prior wave-based techniques applied to large scenes with moving sources, we observe significant improvement in runtime memory. The overall sound-propagation and rendering system has been integrated with the Half-Life 2 game engine, Oculus-Rift head-mounted display, and the Xbox game controller to enable users to experience high-quality acoustic effects (e.g., amplification, diffraction low-passing, high-order scattering) and spatial audio, based on their interactions in the VR application. We provide the results of preliminary user evaluations, conducted to study the impact of wave-based acoustic effects and spatial audio on users' navigation performance in virtual environments.
Nonlinear Fourier analysis with cnoidal waves
Osborne, A.R.
1996-12-31
Fourier analysis is one of the most useful tools to the ocean engineer. The approach allows one to analyze wave data and thereby to describe a dynamical motion in terms of a linear superposition of ordinary sine waves. Furthermore, the Fourier technique allows one to compute the response function of a fixed or floating structure: each sine wave in the wave or force spectrum yields a sine wave in the response spectrum. The counting of fatigue cycles is another area where the predictable oscillations of sine waves yield procedures for the estimation of the fatigue life of structures. The ocean environment, however, is a source of a number of nonlinear effects which must also be included in structure design. Nonlinearities in ocean waves deform the sinusoidal shapes into other kinds of waves such as the Stokes wave, cnoidal wave or solitary wave. A key question is: Does there exist a generalization of linear Fourier analysis which uses nonlinear basis functions rather than the familiar sine waves? Herein addresses the dynamics of nonlinear wave motion in shallow water where the basis functions are cnoidal waves and discuss nonlinear Fourier analysis in terms of a linear superposition of cnoidal waves plus their mutual nonlinear interactions. He gives a number of simple examples of nonlinear Fourier wave motion and then analyzes an actual surface-wave time series obtained on an offshore platform in the Adriatic Sea. Finally, he briefly discusses application of the cnoidal wave spectral approach to the computation of the frequency response function of a floating vessel. The results given herein will prove useful in future engineering studies for the design of fixed, floating and complaint offshore structures.
Wave envelopes method for description of nonlinear acoustic wave propagation.
Wójcik, J; Nowicki, A; Lewin, P A; Bloomfield, P E; Kujawska, T; Filipczyński, L
2006-07-01
A novel, free from paraxial approximation and computationally efficient numerical algorithm capable of predicting 4D acoustic fields in lossy and nonlinear media from arbitrary shaped sources (relevant to probes used in medical ultrasonic imaging and therapeutic systems) is described. The new WE (wave envelopes) approach to nonlinear propagation modeling is based on the solution of the second order nonlinear differential wave equation reported in [J. Wójcik, J. Acoust. Soc. Am. 104 (1998) 2654-2663; V.P. Kuznetsov, Akust. Zh. 16 (1970) 548-553]. An incremental stepping scheme allows for forward wave propagation. The operator-splitting method accounts independently for the effects of full diffraction, absorption and nonlinear interactions of harmonics. The WE method represents the propagating pulsed acoustic wave as a superposition of wavelet-like sinusoidal pulses with carrier frequencies being the harmonics of the boundary tone burst disturbance. The model is valid for lossy media, arbitrarily shaped plane and focused sources, accounts for the effects of diffraction and can be applied to continuous as well as to pulsed waves. Depending on the source geometry, level of nonlinearity and frequency bandwidth, in comparison with the conventional approach the Time-Averaged Wave Envelopes (TAWE) method shortens computational time of the full 4D nonlinear field calculation by at least an order of magnitude; thus, predictions of nonlinear beam propagation from complex sources (such as phased arrays) can be available within 30-60 min using only a standard PC. The approximate ratio between the computational time costs obtained by using the TAWE method and the conventional approach in calculations of the nonlinear interactions is proportional to 1/N2, and in memory consumption to 1/N where N is the average bandwidth of the individual wavelets. Numerical computations comparing the spatial field distributions obtained by using both the TAWE method and the conventional approach
Wave envelopes method for description of nonlinear acoustic wave propagation.
Wójcik, J; Nowicki, A; Lewin, P A; Bloomfield, P E; Kujawska, T; Filipczyński, L
2006-07-01
A novel, free from paraxial approximation and computationally efficient numerical algorithm capable of predicting 4D acoustic fields in lossy and nonlinear media from arbitrary shaped sources (relevant to probes used in medical ultrasonic imaging and therapeutic systems) is described. The new WE (wave envelopes) approach to nonlinear propagation modeling is based on the solution of the second order nonlinear differential wave equation reported in [J. Wójcik, J. Acoust. Soc. Am. 104 (1998) 2654-2663; V.P. Kuznetsov, Akust. Zh. 16 (1970) 548-553]. An incremental stepping scheme allows for forward wave propagation. The operator-splitting method accounts independently for the effects of full diffraction, absorption and nonlinear interactions of harmonics. The WE method represents the propagating pulsed acoustic wave as a superposition of wavelet-like sinusoidal pulses with carrier frequencies being the harmonics of the boundary tone burst disturbance. The model is valid for lossy media, arbitrarily shaped plane and focused sources, accounts for the effects of diffraction and can be applied to continuous as well as to pulsed waves. Depending on the source geometry, level of nonlinearity and frequency bandwidth, in comparison with the conventional approach the Time-Averaged Wave Envelopes (TAWE) method shortens computational time of the full 4D nonlinear field calculation by at least an order of magnitude; thus, predictions of nonlinear beam propagation from complex sources (such as phased arrays) can be available within 30-60 min using only a standard PC. The approximate ratio between the computational time costs obtained by using the TAWE method and the conventional approach in calculations of the nonlinear interactions is proportional to 1/N2, and in memory consumption to 1/N where N is the average bandwidth of the individual wavelets. Numerical computations comparing the spatial field distributions obtained by using both the TAWE method and the conventional approach
Mynard, Jonathan P; Smolich, Joseph J
2016-04-15
Wave intensity analysis provides detailed insights into factors influencing hemodynamics. However, wave intensity is not a conserved quantity, so it is sensitive to diameter variations and is not distributed among branches of a junction. Moreover, the fundamental relation between waves and hydraulic power is unclear. We, therefore, propose an alternative to wave intensity called "wave power," calculated via incremental changes in pressure and flow (dPdQ) and a novel time-domain separation of hydraulic pressure power and kinetic power into forward and backward wave-related components (ΠP±and ΠQ±). Wave power has several useful properties:1) it is obtained directly from flow measurements, without requiring further calculation of velocity;2) it is a quasi-conserved quantity that may be used to study the relative distribution of waves at junctions; and3) it has the units of power (Watts). We also uncover a simple relationship between wave power and changes in ΠP±and show that wave reflection reduces transmitted power. Absolute values of ΠP±represent wave potential, a recently introduced concept that unifies steady and pulsatile aspects of hemodynamics. We show that wave potential represents the hydraulic energy potential stored in a compliant pressurized vessel, with spatial gradients producing waves that transfer this energy. These techniques and principles are verified numerically and also experimentally with pressure/flow measurements in all branches of a central bifurcation in sheep, under a wide range of hemodynamic conditions. The proposed "wave power analysis," encompassing wave power, wave potential, and wave separation of hydraulic power provides a potent time-domain approach for analyzing hemodynamics. PMID:26873972
Mynard, Jonathan P; Smolich, Joseph J
2016-04-15
Wave intensity analysis provides detailed insights into factors influencing hemodynamics. However, wave intensity is not a conserved quantity, so it is sensitive to diameter variations and is not distributed among branches of a junction. Moreover, the fundamental relation between waves and hydraulic power is unclear. We, therefore, propose an alternative to wave intensity called "wave power," calculated via incremental changes in pressure and flow (dPdQ) and a novel time-domain separation of hydraulic pressure power and kinetic power into forward and backward wave-related components (ΠP±and ΠQ±). Wave power has several useful properties:1) it is obtained directly from flow measurements, without requiring further calculation of velocity;2) it is a quasi-conserved quantity that may be used to study the relative distribution of waves at junctions; and3) it has the units of power (Watts). We also uncover a simple relationship between wave power and changes in ΠP±and show that wave reflection reduces transmitted power. Absolute values of ΠP±represent wave potential, a recently introduced concept that unifies steady and pulsatile aspects of hemodynamics. We show that wave potential represents the hydraulic energy potential stored in a compliant pressurized vessel, with spatial gradients producing waves that transfer this energy. These techniques and principles are verified numerically and also experimentally with pressure/flow measurements in all branches of a central bifurcation in sheep, under a wide range of hemodynamic conditions. The proposed "wave power analysis," encompassing wave power, wave potential, and wave separation of hydraulic power provides a potent time-domain approach for analyzing hemodynamics.
Sati, Priti; Tripathi, V. K.
2012-12-15
Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.
Plasma wave aided two photon decay of an electromagnetic wave in a plasma
Kumar, K. K. Magesh; Singh, Rohtash; Krishan, Vinod
2014-11-15
The presence of a Langmuir wave in an unmagnetized plasma is shown to allow parametric decay of an electromagnetic wave into two electromagnetic waves, which is otherwise not allowed due to wave number mismatch. The decay occurs at plasma densities below one ninth the critical density and the decay waves propagate at finite angles to the pump laser. Above the threshold, the growth rate scales linearly with the amplitude of the Langmuir wave and the amplitude of the pump electromagnetic wave. The frequency ω of the lower frequency decay wave increases with the angle its propagation vector makes with that of the pump. The growth rate, however, decreases with ω.
Modeling the effect of wave-vegetation interaction on wave setup
NASA Astrophysics Data System (ADS)
van Rooijen, A. A.; McCall, R. T.; van Thiel de Vries, J. S. M.; van Dongeren, A. R.; Reniers, A. J. H. M.; Roelvink, J. A.
2016-06-01
Aquatic vegetation in the coastal zone attenuates wave energy and reduces the risk of coastal hazards, e.g., flooding. Besides the attenuation of sea-swell waves, vegetation may also affect infragravity-band (IG) waves and wave setup. To date, knowledge on the effect of vegetation on IG waves and wave setup is lacking, while they are potentially important parameters for coastal risk assessment. In this study, the storm impact model XBeach is extended with formulations for attenuation of sea-swell and IG waves, and wave setup effects in two modes: the sea-swell wave phase-resolving (nonhydrostatic) and the phase-averaged (surfbeat) mode. In surfbeat mode, a wave shape model is implemented to capture the effect of nonlinear wave-vegetation interaction processes on wave setup. Both modeling modes are verified using data from two flume experiments with mimic vegetation and show good skill in computing the sea-swell and IG wave transformation, and wave setup. In surfbeat mode, the wave setup prediction greatly improves when using the wave shape model, while in nonhydrostatic mode (nonlinear) intrawave effects are directly accounted for. Subsequently, the model is used for a range of coastal geomorphological configurations by varying bed slope and vegetation extent. The results indicate that the effect of wave-vegetation interaction on wave setup may be relevant for a range of typical coastal geomorphological configurations (e.g., relatively steep to gentle slope coasts fronted by vegetation).
Developing serpent-type wave generators to create solitary wave simulations with BEM
NASA Astrophysics Data System (ADS)
Weng, Wen-Kai; Shih, Ruey-Syan; Chou, Chung-Ren
2013-10-01
Developing serpent-type wave generators to generate solitary waves in a 3D-basin was investigated in this study. Based on the Lagrangian description with time-marching procedures and finite differences of the time derivative, a 3D multiple directional wave basin with multidirectional piston wave generators was developed to simulate ocean waves by using BEM with quadrilateral elements, and to simulate wave-caused problems with fully nonlinear water surface conditions. The simulations of perpendicular solitary waves were conducted in the first instance to verify this scheme. Furthermore, the comparison of the waveform variations confirms that the estimation of 3D solitary waves is a feasible scheme.
Fast wave stabilization/destabilization of ion temperature gradient drift waves in a tokamak plasma
NASA Astrophysics Data System (ADS)
Panwar, Anuraj; Ryu, Chang-Mo
2015-11-01
A kinetic description is developed for the stabilization/destabilization of ion temperature gradient drift waves by a large amplitude whistler wave. Parametric coupling of a whistler wave with the low frequency drift waves can yields whistler sidebands of their sum and difference frequencies. The whistler pump and sidebands can exert a ponderomotive force on electrons and modify the eigen-frequency of drift waves. This coupling process can lead to the stabilization/destabilization of drift waves, depending on the wave numbers of the interacting waves as well as the whistler pump power. The effectiveness of obliquely propagating whistler pump is also examined.
Particle-Wave Micro-Dynamics in Nonlinear Self-Excited Dust Acoustic Waves
Tsai, C.-Y.; Teng, L.-W.; Liao, C.-T.; I Lin
2008-09-07
The large amplitude dust acoustic wave can be self-excited in a low-pressure dusty plasma. In the wave, the nonlinear wave-particle interaction determines particle motion, which in turn determines the waveform and wave propagation. In this work, the above behaviors are investigated by directly tracking particle motion through video-microscopy. A Lagrangian picture for the wave dynamics is constructed. The wave particle interaction associated with the transition from ordered to disordered particle oscillation, the wave crest trapping and wave heating are demonstrated and discussed.
Chemical-reaction model for Mexican wave
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
2003-05-01
We present a chemical-reaction model to describe the Mexican wave ( La Ola) in football stadia. The spectator's action is described in terms of chemical reactions. The model is governed by three reaction rates k 1, k 2, and k3. We study the nonlinear waves on one- and two-dimensional lattices. The Mexican wave is formulated as a clockwise forwardly propagating wave. Waves are growing or disappear, depending on the values of reaction rates. In the specific case of k1= k2= k3=1, the nonlinear-wave equation produces a propagating pulse like soliton.
Wave-making by whirligig beetles (gyrinidae).
Tucker, V A
1969-11-14
Swimming whirligig beetles (Dineutes carolinus) either make no waves at all or make conspicuous circular or vee-shaped patterns of capillary waves. The beetle's swimming speed can be determined from these wave patterns (or lack of them). Capillary waves precede the beetle for several body lengths, and their reflections may help the beetle avoid solid objects by echolocation. The gravity waves produced by a beetle are always longer than the beetle's hull length. Hence the waves do not interact with the hull to impose an upper limit on speed as they do with conventional ships. Although the beetles swim at high speeds, they apparently do not hydroplane. PMID:17815756
Unidirectional Transition Waves in Bistable Lattices
NASA Astrophysics Data System (ADS)
Nadkarni, Neel; Arrieta, Andres F.; Chong, Christopher; Kochmann, Dennis M.; Daraio, Chiara
2016-06-01
We present a model system for strongly nonlinear transition waves generated in a periodic lattice of bistable members connected by magnetic links. The asymmetry of the on-site energy wells created by the bistable members produces a mechanical diode that supports only unidirectional transition wave propagation with constant wave velocity. We theoretically justify the cause of the unidirectionality of the transition wave and confirm these predictions by experiments and simulations. We further identify how the wave velocity and profile are uniquely linked to the double-well energy landscape, which serves as a blueprint for transition wave control.
Undulations from amplified low frequency surface waves
Coutant, Antonin; Parentani, Renaud
2014-04-15
We study the linear scattering of gravity waves in longitudinal inhomogeneous stationary flows. When the flow becomes supercritical, it is known that counterflow propagating shallow waves are blocked and converted into deep waves. Here we show that in the zero-frequency limit, the reflected waves are amplified in such a way that the free surface develops an undulation, i.e., a zero-frequency wave of large amplitude with nodes located at specific places. This amplification involves negative energy waves and implies that flat surfaces are unstable against incoming perturbations of arbitrary small amplitude. The relation between this instability and black hole radiation (the Hawking effect) is established.
Supersaturation of vertically propagating internal gravity waves
NASA Technical Reports Server (NTRS)
Lindzen, Richard S.
1988-01-01
The usual assumption that vertically propagating internal gravity waves will cease growing with height once their amplitudes are such as to permit convective instability anywhere within the wave is reexamined. Two factors lead to amplitude limitation: (1) wave clipping associated with convective mixing, and (2) energetic constraints associated with the rate at which the wave can supply energy to the convection. It is found that these two factors limit supersaturation to about 50 percent for waves with short horizontal wavelengths and high relative phase speeds. Usually the degree of supersaturation will be much less. These factors also lead to a gradual, rather than sudden, cessation of wave growth with height.
Nonlinear wave dynamics in honeycomb lattices
Bahat-Treidel, Omri; Segev, Mordechai
2011-08-15
We study the nonlinear dynamics of wave packets in honeycomb lattices and show that, in quasi-one-dimensional configurations, the waves propagating in the lattice can be separated into left-moving and right-moving waves, and any wave packet composed of only left (or only right) movers does not change its intensity structure in spite of the nonlinear evolution of its phase. We show that the propagation of a general wave packet can be described, within a good approximation, as a superposition of left- and right-moving self-similar (nonlinear) wave packets. Finally, we find that Klein tunneling is not suppressed by nonlinearity.
Controllable parabolic-cylinder optical rogue wave.
Zhong, Wei-Ping; Chen, Lang; Belić, Milivoj; Petrović, Nikola
2014-10-01
We demonstrate controllable parabolic-cylinder optical rogue waves in certain inhomogeneous media. An analytical rogue wave solution of the generalized nonlinear Schrödinger equation with spatially modulated coefficients and an external potential in the form of modulated quadratic potential is obtained by the similarity transformation. Numerical simulations are performed for comparison with the analytical solutions and to confirm the stability of the rogue wave solution obtained. These optical rogue waves are built by the products of parabolic-cylinder functions and the basic rogue wave solution of the standard nonlinear Schrödinger equation. Such rogue waves may appear in different forms, as the hump and paw profiles.
Experimental evidence of MHD surface waves
Amagishi, Y.
1986-12-01
MND surface waves of m = -1 (poloidal mode number of left-hand rotation) compressional Alfven waves in a cylindrical finite-..beta.. plasma have been observed for the first time to propagate together with shear Alfven waves. These modes also show a distinctive feature of the dispersion merging with that of shear Alfven waves at the center of a plasma column when a limiting frequency below the ion cyclotron frequencey is reached. The experimental results confirm a recent prediction concerning surface-wave properties of the first radial eigenmode of a nonaxisymmetric compressional wave in a plasma surrounded by an insulating boundary.
Equatorial waves in the stratosphere of Uranus
NASA Technical Reports Server (NTRS)
Hinson, David P.; Magalhaes, Julio A.
1991-01-01
Analyses of radio occultation data from Voyager 2 have led to the discovery and characterization of an equatorial wave in the Uranus stratosphere. The observed quasi-periodic vertical atmospheric density variations are in close agreement with theoretical predictions for a wave that propagates vertically through the observed background structure of the stratosphere. Quantitative comparisons between measurements obtained at immersion and at emersion yielded constraints on the meridional and zonal structure of the wave; the fact that the two sets of measurements are correlated suggests a wave of planetary scale. Two equatorial wave models are proposed for the wave.
The Osborn wave in hypothermia.
Gould, L; Gopalaswamy, C; Kim, B S; Patel, C
1985-02-01
A patient is reported who presented with fatal hypothermia. The electrocardiographic changes of a sinus bradycardia, prolonged QT interval and Osborn waves were documented and correlated with body temperature. The possible genesis of these electrocardiographic changes is reviewed in this article. PMID:4025922
NASA Technical Reports Server (NTRS)
Calvert, Wynne
1994-01-01
Activities under this project have included participation in the Waves in Space Plasmas (WISP) program, a study of the data processing requirements for WISP, and theoretical studies of radio sounding, ducting, and magnetoionic theory. An analysis of radio sounding in the magnetosphere was prepared.
The Galileo plasma wave investigation
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Kurth, W. S.; Shaw, R. R.; Roux, A.; Gendrin, R.; Kennel, C. F.; Scarf, F. L.; Shawhan, S. D.
1992-01-01
The purpose of the Galileo plasma wave investigation is to study plasma waves and radio emissions in the magnetosphere of Jupiter. The plasma wave instrument uses an electric dipole antenna to detect electric fields, and two search coil magnetic antennas to detect magnetic fields. The frequency range covered is 5 Hz to 5.6 MHz for electric fields and 5 Hz to 160 kHz for magnetic fields. Low time-resolution survey spectrums are provided by three on-board spectrum analyzers. In the normal mode of operation the frequency resolution is about 10 percent, and the time resolution for a complete set of electric and magnetic field measurements is 37.33 s. High time-resolution spectrums are provided by a wideband receiver. The wideband receiver provides waveform measurements over bandwidths of 1, 10, and 80 kHz. Compared to previous measurements at Jupiter this instrument has several new capabilities. These new capabilities include (1) both electric and magnetic field measurements to distinguish electrostatic and electromagnetic waves, (2) direction finding measurements to determine source locations, and (3) increased bandwidth for the wideband measurements.
Current in wave driven plasmas
Karney, C.F.F.; Fisch, N.J.
1985-06-01
A theory for the generation of current in a toroidal plasma by radio-frequency waves is presented. The effect of an opposing electric field is included, allowing the case of time varying currents to be studied. The key quantities that characterize this regime are identified and numerically calculated. Circuit equations suitable for use in ray-tracing and transport codes are given.
Wave turbulence in quantum fluids
Kolmakov, German V.; McClintock, Peter Vaughan Elsmere; Nazarenko, Sergey V.
2014-01-01
Wave turbulence (WT) occurs in systems of strongly interacting nonlinear waves and can lead to energy flows across length and frequency scales much like those that are well known in vortex turbulence. Typically, the energy passes although a nondissipative inertial range until it reaches a small enough scale that viscosity becomes important and terminates the cascade by dissipating the energy as heat. Wave turbulence in quantum fluids is of particular interest, partly because revealing experiments can be performed on a laboratory scale, and partly because WT among the Kelvin waves on quantized vortices is believed to play a crucial role in the final stages of the decay of (vortex) quantum turbulence. In this short review, we provide a perspective on recent work on WT in quantum fluids, setting it in context and discussing the outlook for the next few years. We outline the theory, review briefly the experiments carried out to date using liquid H2 and liquid 4He, and discuss some nonequilibrium excitonic superfluids in which WT has been predicted but not yet observed experimentally. By way of conclusion, we consider the medium- and longer-term outlook for the field. PMID:24704881
Weak localization of seismic waves.
Larose, E; Margerin, L; Van Tiggelen, B A; Campillo, M
2004-07-23
We report the observation of weak localization of seismic waves in a natural environment. It emerges as a doubling of the seismic energy around the source within a spot of the width of a wavelength, which is several tens of meters in our case. The characteristic time for its onset is the scattering mean-free time that quantifies the internal heterogeneity.
Lee waves, benign and malignant
NASA Technical Reports Server (NTRS)
Wurtele, M. G.; Datta, A.
1992-01-01
The flow of an incompressible, stratified fluid over an obstacle will produce an oscillation in which buoyancy is the restoring force, called a gravity wave. For disturbances of this scale, the atmosphere may be treated as incompressible; and even the linear approximation will explain many of the phenomena observed in the lee of mountains. However, nonlinearities arise in two ways: (1) through the large (scaled) size of the mountain, and (2) from dynamically singular levels in the fluid field. These produce a complicated array of phenomena that present hazards to aircraft and to lee surface areas. If there is no dynamic barrier, these waves can penetrate vertically into the middle atmosphere (30-100 km attitude), where recent observations show them to be of a length scale that must involve the Coriolis force in any modeling. At these altitudes, the amplitude of the waves is very large, and the waves are studied with a view to their potential impact on the projected National Aerospace Plane. This paper presents the results of analyses and state-of-the-art numerical simulations, validated where possible by observational data.