Science.gov

Sample records for lps-induced inducible nitric

  1. Progesterone modulates the LPS-induced nitric oxide production by a progesterone-receptor independent mechanism.

    PubMed

    Wolfson, Manuel Luis; Schander, Julieta Aylen; Bariani, María Victoria; Correa, Fernando; Franchi, Ana María

    2015-12-15

    Genital tract infections caused by Gram-negative bacteria induce miscarriage and are one of the most common complications of human pregnancy. LPS administration to 7-day pregnant mice induces embryo resorption after 24h, with nitric oxide playing a fundamental role in this process. We have previously shown that progesterone exerts protective effects on the embryo by modulating the inflammatory reaction triggered by LPS. Here we sought to investigate whether the in vivo administration of progesterone modulated the LPS-induced nitric oxide production from peripheral blood mononuclear cells from pregnant and non-pregnant mice. We found that progesterone downregulated LPS-induced nitric oxide production by a progesterone receptor-independent mechanism. Moreover, our results suggest a possible participation of glucocorticoid receptors in at least some of the anti-inflammatory effects of progesterone.

  2. Lycopene inhibits LPS-induced proinflammatory mediator inducible nitric oxide synthase in mouse macrophage cells.

    PubMed

    Rafi, Mohamed M; Yadav, Prem Narayan; Reyes, Marynell

    2007-01-01

    Lycopene is a fat-soluble red-orange carotenoid found primarily in tomatoes and tomato-derived products, including tomato sauce, tomato paste, and ketchup, and other dietary sources, including dried apricots, guava, watermelon, papaya, and pink grapefruit. In this study, we have demonstrated the molecular mechanism underlying the anti-inflammatory properties of lycopene using a mouse macrophage cell line (RAW 264.7). Treatment with lycopene (10 microM) inhibited lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production (40% compared with the control). Western blotting and reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that lycopene treatment decreased LPS-induced inducible nitric oxide synthase (iNOS) protein and mRNA expression in RAW 264.7 cells, respectively. These results suggest that lycopene has anti-inflammatory activity by inhibiting iNOS proteins and mRNA expressions in mouse macrophage cell lines. Furthermore, cyclooxygenase-2 (COX-2) protein and mRNA expression were not affected by treatment with lycopene.

  3. Inhibition of nitric oxide production rescues LPS-induced fetal abortion in mice.

    PubMed

    Athanassakis, I; Aifantis, I; Ranella, A; Giouremou, K; Vassiliadis, S

    1999-06-01

    In this report, we examined the involvement of the cytokines tumor necrosis factor (TNF)-alpha, interferon (IFN)-gamma, interleukin (IL)-4, and IL-10 as well as nitric oxide (NO) in the lipopolysaccharide (LPS)-induced experimental abortion model in BALB/c mice. Although in vivo administration of LPS in pregnant mice showed a 72% decrease of serum IL-10, no significant difference in serum TNF-alpha, IFN-gamma, and IL-4 levels, compared to controls, could be detected. At the same time, a correlation of fetal abortion and maternal splenomegaly with an important increase of NO synthesis in the serum was obtained. Simultaneous administration of LPS and aminoguanidine (AG; an inhibitor to NO synthase) rescued the LPS-induced fetal abortion, reduced maternal spleen weight to physiological levels, and decreased serum NO concentration to control levels. In vitro experiments showed that LPS directly induced NO production in primary placental cells and the TPOPHO-1 trophoblast cell line by stimulating the inducible isoform of NO synthase, which ultimately could be blocked by the NO synthase inhibitors AG and L-NAME. The results indicate that LPS, despite its beneficial involvement in intracellular infections, participates in inflammatory/autoimmune damage during pregnancy, leading to embryotoxicity, which is closely linked to the NO pathway.

  4. Lignans from Arctium lappa and their inhibition of LPS-induced nitric oxide production.

    PubMed

    Park, So Young; Hong, Seong Su; Han, Xiang Hua; Hwang, Ji Sang; Lee, Dongho; Ro, Jai Seup; Hwang, Bang Yeon

    2007-01-01

    A new butyrolactone sesquilignan, isolappaol C (1), together with four known lignans, lappaol C (2), lappaol D (3), lappaol F (4), and diarctigenin (5), were isolated from the methanolic extract of the seeds from the Arctium lappa plant. The structure of isolappaol C (1) was determined by spectral analysis including 1D- and 2D-NMR. All the isolates were evaluated for their inhibitory effects on the LPS-induced nitric oxide production using murine macrophage RAW264.7 cells. Lappaol F (4) and diarctigenin (5) strongly inhibited NO production in the LPS-stimulated RAW264.7 cells with IC(50) values of 9.5 and 9.6 microM, respectively.

  5. Nitric oxide mediates effects of acute, not chronic, naltrexone on LPS-induced hepatic encephalopathy in cirrhotic rats.

    PubMed

    Ghiassy, Bentolhoda; Rahimi, Nastaran; Javadi-Paydar, Mehrak; Gharedaghi, Mohammad Hadi; Norouzi-Javidan, Abbas; Dehpour, Ahmad R

    2017-01-01

    Recent studies suggest endogenous opioids and nitric oxide (NO) are involved in the pathophysiology of hepatic encephalopathy (HE). In this study, the interaction between the opioid receptor antagonist and NO was investigated on lipopolysaccharide (LPS)-induced HE in cirrhotic rats. Male rats were divided in the sham- and bile duct ligation (BDL)-operated groups. Animals were treated with saline; naltrexone (10 mg/kg, i.p.); or L-NAME (3 mg/kg, i.p.), alone or in combination with naltrexone. To induce HE, LPS (1 mg/kg, i.p.) was injected 1 h after the final drug treatment. HE scoring, hepatic histology, and plasma NO metabolites levels and mortality rate were recorded. Deteriorated level of consciousness and mortality after LPS administration significantly ameliorated following both acute and chronic treatment with naltrexone in cirrhotic rats. However, acute and chronic administration of L-NAME did not change HE scores in cirrhotic rats. The effects of acute but not chronic treatment of naltrexone on HE parameters were reversed by L-NAME. Plasma NOx concentrations elevated in BDL rats, which were decreased after acute and chronic treatment by naltrexone or L-NAME, significantly. We suggest both acute and chronic treatment with naltrexone improved LPS-induced HE. But, only acute treatment with naltrexone may affect through NO pathway.

  6. Melampolides from the leaves of Smallanthus sonchifolius and their inhibitory activity of lps-induced nitric oxide production.

    PubMed

    Hong, Seong Su; Lee, Seon A; Han, Xiang Hua; Lee, Min Hee; Hwang, Ji Sang; Park, Jeong Sook; Oh, Ki-Wan; Han, Kun; Lee, Myung Koo; Lee, Heesoon; Kim, Wook; Lee, Dongho; Hwang, Bang Yeon

    2008-02-01

    Two new melampolide-type sesquiterpene lactones, 8beta-epoxyangeloyloxy-9alpha-ethoxy-14-oxo-acanthospermolide (1) and 8beta-angeloyloxy-9alpha-ethoxy-14-oxo-acanthospermolide (2), were isolated from the leaves of yacon [Smallanthus sonchifolia (POEPP. et ENDL.) H. Robinson] along with eleven known melampolides, allo-schkuhriolide (3), enhydrin (4), polymatin A (5), fluctuanin (6), 8beta-angeloyloxy-9alpha-acetoxy-14-oxo-acanthospermolide (7), 8beta-angeloyloxy-14-oxo-acanthospermolide (8), 8beta-methacryloyloxymelampolid-14-oic acid methyl ester (9), uvedalin (10), polymatin B (11), 8beta-tigloyloxymelampolid-14-oic acid methyl ester (12), and sonchifolin (13). Their structures were established on the basis of spectroscopic evidence including 1D- and 2D-NMR experiments. All isolates were evaluated for inhibition of LPS-induced nitric oxide production in murine macrophage RAW 264.7 cells.

  7. Chemical constituents isolated from the Mongolian medicinal plant Sophora alopecuroides L. and their inhibitory effects on LPS-induced nitric oxide production in RAW 264.7 macrophages.

    PubMed

    Kwon, Jaeyoung; Basnet, Sunita; Lee, Jin Woo; Seo, Eun-Kyoung; Tsevegsuren, Nanzad; Hwang, Bang Yeon; Lee, Dongho

    2015-08-15

    Three new flavonostilbenes, alopecurones M-O (1-3), were isolated from the root bark of Sophora alopecuroides L. together with 21 known compounds. The structures of the isolated compounds were elucidated by using NMR, MS, and CD spectroscopic data. All isolates were evaluated for their potential to inhibit LPS-induced nitric oxide production in RAW 264.7 cells.

  8. Nitric oxide suppresses LPS-induced inflammation in a mouse asthma model by attenuating the interaction of IKK and Hsp90

    PubMed Central

    Lee, Ming-Yung; Sun, Kuang-Hui; Chiang, Chien-Ping; Huang, Ching-Feng; Sun, Guang-Huan; Tsou, Yu-Chi; Liu, Huan-Yun

    2015-01-01

    A feature of allergic airway disease is the observed increase of nitric oxide (NO) in exhaled breath. Gram-negative bacterial infections have also been linked with asthma exacerbations. However, the role of NO in asthma exacerbations with gram-negative bacterial infections is still unclear. In this study, we examined the role of NO in lipopolysaccharide (LPS)-induced inflammation in an ovalbumin (OVA)-challenged mouse asthma model. To determine whether NO affected the LPS-induced response, a NO donor (S-nitroso-N-acetylpenicillamine, SNAP) or a selective inhibitor of NO synthase (1400W) was injected intraperitoneally into the mice before the LPS stimulation. Decreased levels of proinflammatory cytokines were demonstrated in the bronchoalveolar lavage fluid from mice treated with SNAP, whereas increased levels of cytokines were found in the 1400W-treated mice. To further explore the molecular mechanism of NO-mediated inhibition of proinflammatory responses in macrophages, RAW 264.7 cells were treated with 1400W or SNAP before LPS stimulation. LPS-induced inflammation in the cells was attenuated by the presence of NO. The LPS-induced IκB kinase (IKK) activation and the expression of IKK were reduced by NO through attenuation of the interaction between Hsp90 and IKK in the cells. The IKK decrease in the lung immunohistopathology was verified in SNAP-treated asthma mice, whereas IKK increased in the 1400W-treated group. We report for the first time that NO attenuates the interaction between Hsp90 and IKK, decreasing the stability of IKK and causing the down-regulation of the proinflammatory response. Furthermore, the results suggest that NO may repress LPS-stimulated innate immunity to promote pulmonary bacterial infection in asthma patients. PMID:25519430

  9. Hypericum triquetrifolium-Derived Factors Downregulate the Production Levels of LPS-Induced Nitric Oxide and Tumor Necrosis Factor-α in THP-1 Cells.

    PubMed

    Saad, Bashar; Abouatta, Bernadette Soudah; Basha, Walid; Hmade, Alaa; Kmail, Abdalsalam; Khasib, Said; Said, Omar

    2011-01-01

    Based on knowledge from traditional Arab herbal medicine, this in vitro study aims to examine the anti-inflammatory mechanism of Hypericum triquetrifolium by measuring the expression and release of pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukine-6 (IL-6), and inducible nitric oxide synthase (iNOS) in human monocytic cells, THP-1. The effects were assessed by measuring the levels of secretory proteins and mRNA of TNF-α and IL-6, the levels of nitric oxide (NO) secretion and the expression of iNOS in THP-1 cells. Cells were treated with 5 μg lipopolysaccharide/ml (LPS) in the presence and absence of increasing concentrations of extracts from the aerial parts of H. triquetrifolium. During the entire experimental period, we used extract concentrations (up to 250 μg mL(-1)) that had no cytotoxic effects, as measured with MTT and LDH assays. Hypericum triquetrifolium extracts remarkably suppressed the LPS-induced NO release, significantly attenuated the LPS-induced transcription of iNOS and inhibited in a dose-dependent manner the expression and release of TNF-α. No significant effects were observed on the release of IL-6. Taken together, these results suggest that H. triquetrifolium probably exerts anti-inflammatory effects through the suppression of TNF-α and iNOS expressions.

  10. Activin suppresses LPS-induced Toll-like receptor, cytokine and inducible nitric oxide synthase expression in normal human melanocytes by inhibiting NF-κB and MAPK pathway activation.

    PubMed

    Kim, Young Il; Park, Seung-Won; Kang, In Jung; Shin, Min Kyung; Lee, Mu-Hyoung

    2015-10-01

    Activins are dimeric growth and differentiation factors that belong to the transforming growth factor (TGF)-β superfamily of structurally related signaling proteins. In the present study, we examined the mechanisms through which activin regulates the lipopolysaccharide (LPS)-induced transcription of Toll-like receptors (TLRs), cytokines and inducible nitric oxide synthase (iNOS) in human melanocytes, as well as the involvement of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling. Cell proliferation was analyzed by cell viability assay, mRNA expression was detected by RT-qPCR, and protein expression was measured by western blot analysis. LPS increased the mRNA expression of TLRs (TLR1-10) and cytokines [interleukin (IL)-1β, IL-6, IL-8 and TNF-α], as well as the mRNA and protein expression of iNOS. Activin decreased the LPS-induced TLR and cytokine mRNA expression, as well as the LPS-induced iNOS mRNA and protein expression. In addition, activin suppressed NF-κB p65 activation and blocked inhibitor of NF-κB (IκBα) degradation in LPS-stimulated melanocytes, and reduced LPS-induced p38 MAPK and MEK/ERK activation. On the whole, our results demonstrated that activin inhibited TLR and cytokine expression in LPS-activated normal human melanocytes and suppressed LPS-induced iNOS gene expression. Moreover, the anti-inflammatory effects of activin were shown to be mediated through the suppression of NF-κB and MAPK signaling, resulting in reduced TLR and iNOS expression, and in the inhibition of inflammatory cytokine expression.

  11. Natural isoprenoids inhibit LPS-induced-production of cytokines and nitric oxide in aminobisphosphonate-treated monocytes.

    PubMed

    Marcuzzi, Annalisa; Tommasini, Alberto; Crovella, Sergio; Pontillo, Alessandra

    2010-06-01

    The inhibition of mevalonate pathway through genetic defects (mevalonate kinase deficiency, MKD) or pharmacologic drugs (aminobisphosphonates) causes a shortage of intermediate compounds and, in particular, of geranylgeranyl-pyrophosphate (GGPP) associated to the activation of caspase-1 and IL-1beta release. Geraniol (GOH), farnesol (FOH), geranylgeraniol (GGOH) and menthol (MOH), due to their isoprenoid structure, are supposed to enter the mevalonate pathway and to by-pass the biochemical block, reconstituting the pathway. Considering the already known side effects of aminobisphosphonates, and the lack of a specific treatment for MKD, we evaluated the impact of these natural isoprenoids compounds in a RAW cell lines chemically treated with the aminobisphosphonate alendronate, and in monocytes isolated from 2 patients affected by MKD. GOH, FOH, GGOH and MOH were all capable to diminish inflammatory marker levels induced by LPS. These natural isoprenoids could be proposed as novel therapeutic approach for the still orphan drug MKD, but also considered for the evaluation of possible inflammatory side effects of aminobisphosphonates.

  12. Synthesis of New Tricyclic and Tetracyclic Fused Coumarin Sulfonate Derivatives and Their Inhibitory Effects on LPS-Induced Nitric Oxide and PGE2 Productions in RAW 264.7 Macrophages: Part 2.

    PubMed

    El-Gamal, Mohammed I; Lee, Woo-Seok; Shin, Ji-Sun; Oh, Chang-Hyun; Lee, Kyung-Tae; Choi, Jungseung; Myoung, Nohsun; Baek, Daejin

    2016-11-01

    The synthesis of a new series of 21 fused coumarin derivatives is described, and the biological evaluation of their in vitro antiinflammatory effects as inhibitors of lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E2 (PGE2 ) production in RAW 264.7 macrophages. The target compounds 1a-u were first tested for cytotoxicity to determine a non-toxic concentration for antiinflammatory screening, so that the inhibitory effects against NO and PGE2 production would not be caused by cytotoxicity. Compounds 1f and 1p were the most active PGE2 inhibitors with IC50 values of 0.89 and 0.95 µM, respectively. Western blot and cell-free COX-2 screening showed that their effects were due to inhibition of both COX-2 protein expression and COX-2 enzyme activity. Their IC50 values against the COX-2 enzyme were 0.67 and 0.85 µM, respectively, which is more potent than etoricoxib. The selectivity indexes of compounds 1f and 1p against COX-2 compared to COX-1 were 41.1 and 42.5, respectively. Compound 1f showed strong inhibitory effects at 5 µM concentration on COX-2 mRNA expression in LPS-induced RAW 264.7 macrophages. Moreover, the tricyclic compounds 1l and 1n as well as the tetracyclic analog 1u were the most potent NO inhibitors, with one-digit micromolar IC50 values. They showed dose-dependent inhibition of inducible nitric oxide synthase (iNOS) protein expression. The tetracyclic derivative 1u was the most potent inhibitor of NO production. It also exhibited a strong inhibitory effect on iNOS mRNA expression in LPS-induced RAW 264.7 macrophages.

  13. Caffeine prevents LPS-induced inflammatory responses in RAW264.7 cells and zebrafish.

    PubMed

    Hwang, Ji-Hyun; Kim, Kui-Jin; Ryu, Su-Jung; Lee, Boo-Yong

    2016-03-25

    Caffeine is a white crystalline xanthine alkaloid found in the seeds of coffee plants and leaves of the tea bush. In this study, we evaluated whether caffeine exerts anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation both in vitro and in vivo. RAW264.7 cells were treated with various concentrations of caffeine in the presence or absence of LPS. Caffeine decreased the LPS-induced inflammatory mediator, nitric oxide (NO). Caffeine treatment also reduced the expression of pro-inflammatory genes, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-3, IL-6 and IL-12, and decreased both IL-6 secretion and phosphorylated p38MAPK expression in LPS-treated RAW264.7 cells. Caffeine inhibited nuclear translocation of nuclear factor κB (NF-κB) via IκBα phosphorylation. In addition, caffeine inhibited LPS-induced NO production in zebrafish. These results suggest that caffeine may suppress LPS-induced inflammatory responses in RAW264.7 cells by regulating NF-κB activation and MAPK phosphorylation.

  14. Beta-phenylethyl and 8-methylsulphinyloctyl isothiocyanates, constituents of watercress, suppress LPS induced production of nitric oxide and prostaglandin E2 in RAW 264.7 macrophages.

    PubMed

    Rose, Peter; Won, Yen Kim; Ong, Choon Nam; Whiteman, Matt

    2005-06-01

    Beta-phenylethyl (PEITC) and 8-methylsulphinyloctyl isothiocyanates (MSO) represent two phytochemical constituents present in watercress Rorripa nasturtium aquaticum, with known chemopreventative properties. In the present investigation, we examined whether PEITC and MSO could modulate the inflammatory response of Raw 264.7 macrophages to bacterial lipopolysaccharide (LPS) by assessment of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Overproduction of both nitric oxide (NO) and prostaglandins (PGE) has been associated with numerous pathological conditions including chronic inflammation and cancer. Our results demonstrate that LPS (1 microg/ml approximately 24 h) induced nitrite and prostaglandin E2 (PGE-2) synthesis in Raw 264.7 cells was attenuated by both isothiocyanates (ITCs) in a concentration-dependent manner. Both PEITC and MSO decreased (iNOS) and (COX-2) protein expression levels leading to reduced secretion of both pro-inflammatory mediators. Interestingly, the reduction in both iNOS and COX-2 expression were associated with the inactivation of nuclear factor-kappaB and stabilization of IkappaBalpha. Taken together our data gives further insight into the possible chemopreventative properties of two dietary derived isothiocyanates from watercress.

  15. Platelet Supernatant Suppresses LPS-Induced Nitric Oxide Production from Macrophages Accompanied by Inhibition of NF-κB Signaling and Increased Arginase-1 Expression

    PubMed Central

    2016-01-01

    We previously reported that mouse bone marrow-derived macrophages (BMDMs) that had been co-cultured with platelets exhibited lower susceptibility to bacterial lipopolysaccharide (LPS) and produced lower levels of nitric oxide (NO) and inflammatory cytokines including TNF-α and IL-6. The suppression of macrophage responses was mediated, at least in part, by platelet supernatant. In the present study, we assessed phenotypic changes of BMDMs induced by incubation with the supernatant from thrombin-activated platelets (PLT-sup) and found that BMDMs cultured with PLT-sup (PLT-BMDMs) expressed a lower level of inducible NO synthase (iNOS) and a higher level of arginase-1, both of which are involved in the L-arginine metabolism, upon stimulation with LPS or zymosan. We also examined possible modulation of the NF-κB signaling pathway and observed suppression of IκBα phosphorylation and a decrease of NF-κB p65 expression in LPS-stimulated PLT-BMDMs. These results suggest that PLT-sup suppresses inflammatory responses of BMDMs via negative regulation of NF-κB signaling leading to lowered expression of iNOS and enhanced L-arginine catabolism by arginase-1. PMID:27588757

  16. Antioxidant, inhibition of α-glucosidase and suppression of nitric oxide production in LPS-induced murine macrophages by different fractions of Actinidia arguta stem

    PubMed Central

    Lee, Jaehak; Sowndhararajan, Kandhasamy; Kim, Mihae; Kim, Jaehun; Kim, Daeho; Kim, Sunpyo; Kim, Gur-Yoo; Kim, Songmun; Jhoo, Jin-Woo

    2014-01-01

    In traditional systems of medicine, fruits, leaves, and stems of Actinidia arguta (Sieb. et Zucc.) Planch. ex Miq. have been used to treat various inflammatory diseases. The present study determined the proximate composition, antioxidant, anti-inflammatory, and hypoglycemic potential of A. arguta stem. Phenolic composition of hot water extract and its sub-fractions was determined by Folin–Ciocalteu’s reagent method. In vitro antioxidant activities of the samples were evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging assays. Anti-inflammatory activity of different fractions was investigated through the inhibition of nitric oxide (NO) production in lipopolysaccharide (1 μg/ml) stimulated RAW 264.7 cells. In addition, inhibition of α-glucosidase activity of hot water extract was determined using p-nitrophenyl-α-d-glucopyranoside (pNPG) as a substrate. Ethyl acetate (557.23 mg GAE/g) fraction contains higher level of total phenolic content. The antioxidant activity evaluated by DPPH radical scavenging assay showed a strong activity for ethyl acetate (IC50 of 14.28 μg/ml) and n-butanol fractions (IC50 of 48.27 μg/ml). Further, ethyl acetate fraction effectively inhibited NO production in RAW 264.7 cells induced by lipopolysaccharide (LPS) than other fractions (nitrite level to 32.14 μM at 200 μg/ml). In addition, hot water extract of A. arguta stem exhibited appreciable inhibitory activity against α-glucosidase enzyme with IC50 of 1.71 mg/ml. The obtained results have important consequence of using A. arguta stem toward the development of effective anti-inflammatory drugs. PMID:25473361

  17. Kavain Involvement in LPS-Induced Signaling Pathways.

    PubMed

    Tang, Xiaoren; Amar, Salomon

    2016-10-01

    Kavain, a compound extracted from the Kava plant, Piper methysticum, is found to be involved in TNF-α expression in human and mouse cells via regulation of transcriptional factors such as NF-kB and LITAF. LITAF is known to activate the transcription of more than 20 cytokines that are involved in a variety of cellular processes and is associated with many inflammatory diseases, including angiogenesis, cancer, arthritis, and more. The modulation of LITAF is expected to positively affect cytokine-mediated diseases. Thus, intensive efforts have been deployed in search of LITAF inhibitors. In this work, we found that, in vitro, Kavain reduced LPS- induced TNF-α secretion in mouse macrophages, mouse bone marrow macrophages (BMM), and human peripheral blood mononuclear cells (HPBMC). We also found that Kavain treatment in RAW264.7 cells deactivated MyD88 and Akt, inhibited LITAF, and reduced the production of TNF-α, IL-27, and MIG in response to LPS. Similarly, it had a significant in vivo anti-inflammatory effect on wild-type (WT) mice that developed Collagen Antibody Induced Arthritis (CAIA). Overall, MyD88 was found to be an important mediator of the LPS-induced inflammatory response that can be distinguished from the NF-κB pathway. We also found that MyD88 is involved in the pathway linking LPS/LITAF to TNF-α. Therefore, given that Kavain modulates LPS-induced signaling pathways leading to cytokine expression, therapeutic interventions involving Kavain in inflammatory diseases are warranted. J. Cell. Biochem. 117: 2272-2280, 2016. © 2016 Wiley Periodicals, Inc.

  18. Trapa japonica Pericarp Extract Reduces LPS-Induced Inflammation in Macrophages and Acute Lung Injury in Mice.

    PubMed

    Kim, Yon-Suk; Hwang, Jin-Woo; Jang, Jae-Hyuk; Son, Sangkeun; Seo, Il-Bok; Jeong, Jae-Hyun; Kim, Ee-Hwa; Moon, Sang-Ho; Jeon, Byong-Tae; Park, Pyo-Jam

    2016-03-21

    In this study, we found that chloroform fraction (CF) from TJP ethanolic extract inhibited lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and intracellular ROS in RAW264.7 cells. In addition, expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) genes was reduced, as evidenced by western blot. Our results indicate that CF exerts anti-inflammatory effects by down-regulating expression of iNOS and COX-2 genes through inhibition of MAPK (ERK, JNK and p38) and NF-κB signaling. Similarly we also evaluated the effects of CF on LPS-induced acute lung injury. Male Balb/c mice were pretreated with dexamethasone or CF 1 h before intranasal instillation of LPS. Eight hours after LPS administration, the inflammatory cells in the bronchoalveolar lavage fluid (BALF) were determined. The results indicated that CF inhibited LPS-induced TNF-α and IL-6 production in a dose dependent manner. It was also observed that CF attenuated LPS-induced lung histopathologic changes. In conclusion, these data demonstrate that the protective effect of CF on LPS-induced acute lung injury (ALI) in mice might relate to the suppression of excessive inflammatory responses in lung tissue. Thus, it can be suggested that CF might be a potential therapeutic agent for ALI.

  19. Cordycepin inhibits LPS-induced inflammatory and matrix degradation in the intervertebral disc

    PubMed Central

    Mao, Lu; Han, Xiuguo; Zhang, Kai; Zhao, Changqing

    2016-01-01

    Cordycepin is a component of the extract obtained from Cordyceps militaris and has many biological activities, including anti-cancer, anti-metastatic and anti-inflammatory effects. Intervertebral disc degeneration (IDD) is a degenerative disease that is closely related to the inflammation of nucleus pulposus (NP) cells. The effect of cordycepin on NP cells in relation to inflammation and degeneration has not yet been studied. In our study, we used a rat NP cell culture and an intervertebral disc (IVD) organ culture model to examine the inhibitory effects of cordycepin on lipopolysaccharide (LPS)-induced gene expression and the production of matrix degradation enzymes (MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5) and oxidative stress-associated factors (nitric oxide and PGE2). We found a protective effect of cordycepin on NP cells and IVDs against LPS-induced matrix degradation and macrophage infiltration. In addition, western blot and luciferase assay results demonstrated that pretreatment with cordycepin significantly suppressed the LPS-induced activation of the NF-κB pathway. Taken together, the results of our research suggest that cordycepin could exert anti-inflammatory and anti-degenerative effects on NP cells and IVDs by inhibiting the activation of the NF-κB pathway. Therefore, cordycepin may be a potential treatment for IDD in the future. PMID:27190710

  20. TIIA attenuates LPS-induced mouse endometritis by suppressing the NF-κB signaling pathway.

    PubMed

    Lv, Xiaopei; Fu, Kaiqiang; Li, Weishi; Wang, Yu; Wang, Jifang; Li, Huatao; Tian, Wenru; Cao, Rongfeng

    2015-11-01

    Endometritis is one of the main diseases that harms the dairy cow industry. Tanshinone IIA (TIIA), a fat-soluble alkaloid isolated from Salviae miltiorrhizae, has been reported to have potent anti-inflammatory properties. However, the anti-inflammatory effects of TIIA on a mouse model of lipopolysaccharide (LPS)-induced endometritis remain to be elucidated. The purpose of the present study was to investigate the effects of TIIA on LPS-induced mouse endometritis. TIIA was intraperitoneally injected 1 h before and 12 h after perfusion of LPS into the uterus. A histological examination was then performed, and the concentrations of myeloperoxidase (MPO) and nitric oxide (NO) in the uterine tissue were determined. The levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in a homogenate of the uterus were detected by enzyme-linked immunosorbent assay. The extent of phosphorylation of IκBα and p65 was detected by Western blotting. TIIA markedly reduced the infiltration of neutrophils, suppressed MPO activity and the concentration of NO, and attenuated the expression of TNF-α and IL-1β. Furthermore, TIIA inhibited the phosphorylation of the nuclear factor-kappa B (NF-κB) p65 subunit and the degradation of its inhibitor IκBα. All the results suggest that TIIA has strong anti-inflammatory effects on LPS-induced mouse endometritis.

  1. Inhibition of IRAK-4 activity for rescuing endotoxin LPS-induced septic mortality in mice by lonicerae flos extract

    SciTech Connect

    Park, Sun Hong; Roh, Eunmiri; Kim, Hyun Soo; Baek, Seung-Il; Choi, Nam Song; Kim, Narae; Hwang, Bang Yeon; Han, Sang-Bae; Kim, Youngsoo

    2013-12-13

    Highlights: •Lonicerae flos extract (HS-23) is a clinical candidate, Phase I for sepsis treatment. •Here, HS-23 or its major constituents rescued LPS-induced septic mortality in mice. •As a mechanism, they directly inhibited IRAK-4-catalyzed kinase activity. •Thus, they suppressed LPS-induced expression of NF-κB/AP-1-target inflammatory genes. -- Abstract: Lonicerae flos extract (HS-23) is a clinical candidate currently undergoing Phase I trial in lipopolysaccharide (LPS)-injected healthy human volunteers, but its molecular basis remains to be defined. Here, we investigated protective effects of HS-23 or its major constituents on Escherichia coli LPS-induced septic mortality in mice. Intravenous treatment with HS-23 rescued LPS-intoxicated C57BL/6J mice under septic conditions, and decreased the levels of cytokines such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β and high-mobility group box-1 (HMGB-1) in the blood. Chlorogenic acid (CGA) and its isomers were assigned as major constituents of HS-23 in the protection against endotoxemia. As a molecular mechanism, HS-23 or CGA isomers inhibited endotoxin LPS-induced autophosphorylation of the IL-1 receptor-associated kinase 4 (IRAK-4) in mouse peritoneal macrophages as well as the kinase activity of IRAK-4 in cell-free reactions. HS-23 consequently suppressed downstream pathways critical for LPS-induced activation of nuclear factor (NF)-κB or activating protein 1 (AP-1) in the peritoneal macrophages. HS-23 also inhibited various toll-like receptor agonists-induced nitric oxide (NO) production, and down-regulated LPS-induced expression of NF-κB/AP-1-target inflammatory genes in the cells. Taken together, HS-23 or CGA isomers exhibited anti-inflammatory therapy against LPS-induced septic mortality in mice, at least in part, mediated through the inhibition of IRAK-4.

  2. Carabrol suppresses LPS-induced nitric oxide synthase expression by inactivation of p38 and JNK via inhibition of I-{kappa}B{alpha} degradation in RAW 264.7 cells

    SciTech Connect

    Lee, Hwa Jin; Lim, Hyo Jin; Lee, Da Yeon; Jung, Hyeyoun; Kim, Mi-Ran; Moon, Dong-Cheul; Kim, Keun Il; Lee, Myeong-Sok; Ryu, Jae-Ha

    2010-01-15

    Carabrol, isolated from Carpesium macrocephalum, showed anti-inflammatory potential in LPS-induced RAW 264.7 murine macrophages. In present study, carabrol demonstrated the inhibitory activity on pro-inflammatory cytokines such as IL-1{beta}, IL-6 and TNF-{alpha}. In addition, mRNA and protein levels of iNOS and COX-2 were reduced by carabrol. Molecular analysis revealed that these suppressive effects were correlated with the inactivation of p38 and JNK via inhibition of NF-{kappa}B activation. Immunoblotting showed that carabrol suppressed LPS-induced degradation of I-{kappa}B{alpha} and decreased nuclear translocation of p65. Taken together, these results suggest that carabrol can be a modulator of pro-inflammatory signal transduction pathway in RAW 264.7 cells.

  3. Molecular Mechanisms Regulating LPS-Induced Inflammation in the Brain

    PubMed Central

    Lykhmus, Olena; Mishra, Nibha; Koval, Lyudmyla; Kalashnyk, Olena; Gergalova, Galyna; Uspenska, Kateryna; Komisarenko, Serghiy; Soreq, Hermona; Skok, Maryna

    2016-01-01

    Neuro-inflammation, one of the pathogenic causes of neurodegenerative diseases, is regulated through the cholinergic anti-inflammatory pathway via the α7 nicotinic acetylcholine receptor (α7 nAChR). We previously showed that either bacterial lipopolysaccharide (LPS) or immunization with the α7(1–208) nAChR fragment decrease α7 nAChRs density in the mouse brain, exacerbating chronic inflammation, beta-amyloid accumulation and episodic memory decline, which mimic the early stages of Alzheimer’s disease (AD). To study the molecular mechanisms underlying the LPS and antibody effects in the brain, we employed an in vivo model of acute LPS-induced inflammation and an in vitro model of cultured glioblastoma U373 cells. Here, we report that LPS challenge decreased the levels of α7 nAChR RNA and protein and of acetylcholinesterase (AChE) RNA and activity in distinct mouse brain regions, sensitized brain mitochondria to the apoptogenic effect of Ca2+ and modified brain microRNA profiles, including the cholinergic-regulatory CholinomiRs-132/212, in favor of anti-inflammatory and pro-apoptotic ones. Adding α7(1–208)-specific antibodies to the LPS challenge prevented elevation of both the anti-inflammatory and pro-apoptotic miRNAs while supporting the resistance of brain mitochondria to Ca2+ and maintaining α7 nAChR/AChE decreases. In U373 cells, α7-specific antibodies and LPS both stimulated interleukin-6 production through the p38/Src-dependent pathway. Our findings demonstrate that acute LPS-induced inflammation induces the cholinergic anti-inflammatory pathway in the brain, that α7 nAChR down-regulation limits this pathway, and that α7-specific antibodies aggravate neuroinflammation by inducing the pro-inflammatory interleukin-6 and dampening anti-inflammatory miRNAs; however, these antibodies may protect brain mitochondria and decrease the levels of pro-apoptotic miRNAs, preventing LPS-induced neurodegeneration. PMID:27013966

  4. Suppression of LPS-induced inflammatory activities by Rosmarinus officinalis L.

    PubMed

    Yu, Mi-Hee; Choi, Jun-Hyeok; Chae, In-Gyeong; Im, Hyo-Gwon; Yang, Seun-Ah; More, Kunal; Lee, In-Seon; Lee, Jinho

    2013-01-15

    Rosemary (Rosmarinus officinalis L.) has been used in folk medicine to treat headaches, epilepsy, poor circulation, and many other ailments. It was found that rosemary could act as a stimulant and mild analgesic and could reduce inflammation. However, the mechanisms underlying the anti-inflammatory effects of rosemary need more study to be established. Therefore, in this study, the effects of rosemary on the activation of nuclear factor kappa beta (NF-kB) and mitogen-activated protein kinases (MAPKs), the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and the production of nitric oxide (NO), prostaglandin E(2) (PGE(2)), and cytokine in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells were investigated. A methanol extract of rosemary and its hexane fraction reduced NO generation with an IC(50) of 2.75 and 2.83 μg/ml, respectively. Also, the methanol extract and the hexane fraction inhibited LPS-induced MAPKs and NF-kB activation associated with the inhibition of iNOS or COX-2 expression. LPS-induced production of PGE(2) and tumour necrosis factor-alpha (TNF-α) were blocked by rosemary. Rosemary extract and its hexane fraction are important for the prevention of phosphorylation of MAPKs, thereby blocking NF-kB activation, which in turn leads to decreased expression of iNOS and COX-2, thus preventing inflammation.

  5. TLR4 mediates LPS-induced VEGF expression in odontoblasts.

    PubMed

    Botero, Tatiana M; Shelburne, Charles E; Holland, G Rex; Hanks, Carl T; Nör, Jacques E

    2006-10-01

    Lipopolysaccharide (LPS) from gram-negative bacteria cell walls such as Prevotella intermedia and Escherichia coli induce vascular endothelial growth factor (VEGF) expression in odontoblasts, but not in undifferentiated dental pulp cells. CD14 and TLR4 are responsible for LPS signaling in macrophages, but their expression levels and function in dental pulp cells are unknown. We showed here that murine odontoblast-like cells (MDPC-23) express CD14 and TLR4 by immunohistochemistry and flow cytometry. In contrast, undifferentiated dental pulp cells (OD-21) presented low or no expression of these two receptors. MDPC-23 cells showed CD14 and TLR4 up-regulation upon exposure to LPS, as determined by real time PCR. Dominant negative murine TLR4 (DN-mTLR4) transfected MDPC-23 cells did not show upregulated VEGF expression in response to LPS stimulation. These results demonstrate that odontoblast-like cells express CD14 and TLR4, and that LPS-induced VEGF expression is mediated, at least in part, by TLR4 signaling.

  6. Intermedin attenuates LPS-induced inflammation in the rat testis.

    PubMed

    Li, Lei; Ma, Ping; Liu, Yongjun; Huang, Chen; O, Wai-sum; Tang, Fai; Zhang, Jian V

    2013-01-01

    First reported as a vasoactive peptide in the cardiovascular system, intermedin (IMD), also known as adrenomedullin 2 (ADM2), is a hormone with multiple potent roles, including its antioxidant action on the pulmonary, central nervous, cardiovascular and renal systems. Though IMD may play certain roles in trophoblast cell invasion, early embryonic development and cumulus cell-oocyte interaction, the role of IMD in the male reproductive system has yet to be investigated. This paper reports our findings on the gene expression of IMD, its receptor components and its protein localization in the testes. In a rat model, bacterial lippolysaccharide (LPS) induced atypical orchitis, and LPS treatment upregulated the expression of IMD and one of its receptor component proteins, i.e. receptor activity modifying protein 2 (RAMP2). IMD decreased both plasma and testicular levels of reactive oxygen species (ROS) production, attenuated the increase in the gene expression of the proinflammatory cytokines tumor necrosis factor alpha (TNFα), interleukin 6 (IL6) and interleukin 1 beta (IL1β), rescued spermatogenesis, and prevented the decrease in plasma testosterone levels caused by LPS. The restorative effect of IMD on steroidogenesis was also observed in hydrogen peroxide-treated rat primary Leydig cells culture. Our results indicate IMD plays an important protective role in spermatogenesis and steroidogenesis, suggesting therapeutic potential for IMD in pathological conditions such as orchitis.

  7. Endothelial cell tetrahydrobiopterin deficiency attenuates LPS-induced vascular dysfunction and hypotension☆

    PubMed Central

    Chuaiphichai, Surawee; Starr, Anna; Nandi, Manasi; Channon, Keith M.; McNeill, Eileen

    2016-01-01

    Overproduction of nitric oxide (NO) is thought to be a key mediator of the vascular dysfunction and severe hypotension in patients with endotoxaemia and septic shock. The contribution of NO produced directly in the vasculature by endothelial cells to the hypotension seen in these conditions, vs. the broader systemic increase in NO, is unclear. To determine the specific role of endothelium derived NO in lipopolysaccharide (LPS)-induced vascular dysfunction we administered LPS to mice deficient in endothelial cell tetrahydrobiopterin (BH4), the essential co-factor for NO production by NOS enzymes. Mice deficient in endothelial BH4 production, through loss of the essential biosynthesis enzyme Gch1 (Gch1fl/flTie2cre mice) received a 24 hour challenge with LPS or saline control. In vivo LPS treatment increased vascular GTP cyclohydrolase and BH4 levels in aortas, lungs and hearts, but this increase was significantly attenuated in Gch1fl/flTie2cre mice, which were also partially protected from the LPS-induced hypotension. In isometric tension studies, in vivo LPS treatment reduced the vasoconstriction response and impaired endothelium-dependent and independent vasodilatations in mesenteric arteries from wild-type mice, but not in Gch1fl/flTie2cre mesenteric arteries. Ex vivo LPS treatment decreased vasoconstriction response to phenylephrine in aortic rings from wild-type and not in Gch1fl/flTie2cre mice, even in the context of significant eNOS and iNOS upregulation. These data provide direct evidence that endothelial cell NO has a significant contribution to LPS-induced vascular dysfunction and hypotension and may provide a novel therapeutic target for the treatment of systemic inflammation and patients with septic shock. PMID:26276526

  8. Endothelial cell tetrahydrobiopterin deficiency attenuates LPS-induced vascular dysfunction and hypotension.

    PubMed

    Chuaiphichai, Surawee; Starr, Anna; Nandi, Manasi; Channon, Keith M; McNeill, Eileen

    2016-02-01

    Overproduction of nitric oxide (NO) is thought to be a key mediator of the vascular dysfunction and severe hypotension in patients with endotoxaemia and septic shock. The contribution of NO produced directly in the vasculature by endothelial cells to the hypotension seen in these conditions, vs. the broader systemic increase in NO, is unclear. To determine the specific role of endothelium derived NO in lipopolysaccharide (LPS)-induced vascular dysfunction we administered LPS to mice deficient in endothelial cell tetrahydrobiopterin (BH4), the essential co-factor for NO production by NOS enzymes. Mice deficient in endothelial BH4 production, through loss of the essential biosynthesis enzyme Gch1 (Gch1(fl/fl)Tie2cre mice) received a 24hour challenge with LPS or saline control. In vivo LPS treatment increased vascular GTP cyclohydrolase and BH4 levels in aortas, lungs and hearts, but this increase was significantly attenuated in Gch1(fl/fl)Tie2cre mice, which were also partially protected from the LPS-induced hypotension. In isometric tension studies, in vivo LPS treatment reduced the vasoconstriction response and impaired endothelium-dependent and independent vasodilatations in mesenteric arteries from wild-type mice, but not in Gch1(fl/fl)Tie2cre mesenteric arteries. Ex vivo LPS treatment decreased vasoconstriction response to phenylephrine in aortic rings from wild-type and not in Gch1(fl/fl)Tie2cre mice, even in the context of significant eNOS and iNOS upregulation. These data provide direct evidence that endothelial cell NO has a significant contribution to LPS-induced vascular dysfunction and hypotension and may provide a novel therapeutic target for the treatment of systemic inflammation and patients with septic shock.

  9. Morin hydrate augments phagocytosis mechanism and inhibits LPS induced autophagic signaling in murine macrophage.

    PubMed

    Jakhar, Rekha; Paul, Souren; Chauhan, Anil Kumar; Kang, Sun Chul

    2014-10-01

    Morin, a natural flavonoid that is the primary bioactive constituent of the family Moraceae, has been found to be associated with many therapeutic properties. In this study, we evaluated the immunomodulatory activities of increasing concentration of morin hydrate in vitro. Three different concentrations of morin hydrate (5, 10, and 15μM) were used to evaluate their effect on splenocyte proliferation, phagocytic activity of macrophages, cytokine secretion and complement inhibition. We also evaluated the role of morin hydrate on lipopolysaccharide (LPS) induced autophagy. Our study demonstrated that morin hydrate elicited a significant increase in splenocyte proliferation, phagocytic capacity and suppressed the production of cytokines and nitric oxide in activated macrophages. Humoral immunity measured by anti-complement activity showed an increase in inhibition of the complement system after the addition of morin hydrate, where morin hydrate at 15μM concentration induced a significant inhibition. Depending on our results, we can also conclude that morin hydrate protects macrophages from LPS induced autophagic cell death. Our findings suggest that morin hydrate represents a structurally diverse class of flavonoid and this structural variability can profoundly affect its cell-type specificity and its biological activities. Supplementation of immune cells with morin hydrate has an upregulating and immunoprotective effect that shows potential as a countermeasure to the immune dysfunction and suggests an interesting use in inflammation related diseases.

  10. Fermented guava leaf extract inhibits LPS-induced COX-2 and iNOS expression in Mouse macrophage cells by inhibition of transcription factor NF-kappaB.

    PubMed

    Choi, Soo-Youn; Hwang, Joon-Ho; Park, Soo-Young; Jin, Yeong-Jun; Ko, Hee-Chul; Moon, Sang-Wook; Kim, Se-Jae

    2008-08-01

    The goal of this study was to elucidate the antiinflammatory activities of Psidium guajava L. (guava) leaf. To improve the functionality of guava leaf, it was fermented with Phellinus linteus mycelia, Lactobacillus plantarum and Saccharomyces cerevisiae. The ethanol extract from fermented guava leaf inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production. Western blot analysis showed that fermented guava leaf extract decreased LPS-induced inducible nitric oxide synthase (iNOS) and the cyclooxygenase-2 (COX-2) protein level in RAW 264.7 cells. To investigate the mechanism involved, the study examined the effect of fermented guava leaf extract on LPS-induced nuclear factor-kappaB (NF-kappaB) activation. Fermented guava leaf extract significantly inhibited LPS-induced NF-kappaB transcriptional activity. Immunochemical analysis revealed that fermented guava leaf extract suppressed LPS-induced degradation of I-kappaBalpha. Taken together, the data indicate that fermented guava leaf extract is involved in the inhibition of iNOS and COX-2 via the down-regulation of NF-kappaB pathway, revealing a partial molecular basis for the antiinflammatory properties of fermented guava leaf extract.

  11. Inhibitory effect of carnosine and N-acetyl carnosine on LPS-induced microglial oxidative stress and inflammation.

    PubMed

    Fleisher-Berkovich, Sigal; Abramovitch-Dahan, Chen; Ben-Shabat, Shimon; Apte, Ron; Beit-Yannai, Elie

    2009-07-01

    Chronic inflammation and oxidative stress have been implicated in the pathogenesis of neurodegenerative diseases. A growing body of research focuses on the role of microglia, the primary immune cells in the brain, in modulating brain inflammation and oxidative stress. One of the most abundant antioxidants in the brain, particularly in glia, is the dipeptide carnosine, beta-alanyl-L-histidine. Carnosine is believed to be involved in cellular defense such as free radical detoxification and inhibition of protein cross-linking. The more stable N-acetyl derivative of carnosine has also been identified in the brain. The aim of the present study was to examine the role of carnosine and N-acetyl carnosine in the regulation of lipopolysaccharide (LPS)-induced microglial inflammation and oxidative damage. In this study, BV2 microglial cells were stimulated with bacterial LPS, a potent inflammatory stimulus. The data shows that both carnosine and N-acetyl carnosine significantly attenuated the LPS-induced nitric oxide synthesis and the expression of inducible nitric oxide synthase by 60% and 70%, respectively. By competitive spectrophotometric measurement and electrospray mass spectrometry analysis, we demonstrated a direct interaction of N-acetyl carnosine with nitric oxide. LPS-induced TNFalpha secretion and carbonyl formation were also significantly attenuated by both compounds. N-acetyl carnosine was more potent than carnosine in inhibiting the release of the inflammatory and oxidative stress mediators. These observations suggest the presence of a novel regulatory pathway through which carnosine and N-acetyl carnosine inhibit the synthesis of microglial inflammatory and oxidative stress mediators, and thus may prove to play a role in brain inflammation.

  12. Capsaicin attenuates LPS-induced inflammatory cytokine production by upregulation of LXRα.

    PubMed

    Tang, Jing; Luo, Kang; Li, Yan; Chen, Quan; Tang, Dan; Wang, Deming; Xiao, Ji

    2015-09-01

    Here, we investigated the role of LXRα in capsaicin mediated anti-inflammatory effects. Results revealed that capsaicin inhibits LPS-induced IL-1β, IL-6 and TNF-α production in a time- and dose-dependent manner. Moreover, capsaicin increases LXRα expression through PPARγ pathway. Inhibition of LXRα activation by siRNA diminished the inhibitory action of capsaicin on LPS-induced IL-1β, IL-6 and TNF-α production. Additionally, LXRα siRNA abrogated the inhibitory action of capsaicin on p65 NF-κB protein expression. Thus, we propose that the anti-inflammatory effects of capsaicin are LXRα dependent, and LXRα may potentially link the capsaicin mediated PPARγ activation and NF-κB inhibition in LPS-induced inflammatory response.

  13. AS-703026 Inhibits LPS-Induced TNFα Production through MEK/ERK Dependent and Independent Mechanisms

    PubMed Central

    Li, Ping; Wu, Yonghong; Li, Manxiang; Qiu, Xiaojuan; Bai, Xiaoyan; Zhao, Xiaojing

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by intense lung infiltrations of immune cells (macrophages and monocytes). Lipopolysaccharide (LPS) activates macrophages/monocytes, leading to production of tumor necrosis factor α (TNFα) and other cytokines, which cause subsequent lung damages. In the current study, our results demonstrated that AS-703026, a novel MEK/ERK inhibitor, suppressed LPS-induced TNFα mRNA expression and protein secretion in RAW 264.7 murine macrophages, and in murine bone marrow-derived macrophages (BMDMs). Meanwhile, TNFα production in LPS-stimulated COPD patents’ peripheral blood mononuclear cells (PBMCs) was also repressed by AS-703026. At the molecular level, we showed that AS-703026 blocked LPS-induced MEK/ERK activation in above macrophages/monocytes. However, restoring ERK activation in AS-703026-treated RAW 264.7 cells by introducing a constitutive-actively (CA)-ERK1 only partially reinstated LPS-mediated TNFα production. Meanwhile, AS-703026 could still inhibit TNFα response in ERK1/2-depleted (by shRNA) RAW 264.7 cells. Significantly, we found that AS-703026 inhibited LPS-induced nuclear factor κB (NFκB) activation in above macrophages and COPD patients’ PBMCs. In vivo, oral administration of AS-703026 inhibited LPS-induced TNFα production and endotoxin shock in BALB/c mice. Together, we show that AS-703026 in vitro inhibits LPS-induced TNFα production in macrophages/monocytes, and in vivo protects mice from LPS-induced endotoxin shock. Thus, it could be further studied as a useful anti-inflammatory therapy for COPD patients. PMID:26381508

  14. Inhibition of LPS-induced NO production and NF-kappaB activation by a sesquiterpene from Saussurea lappa.

    PubMed

    Jin, M; Lee, H J; Ryu, J H; Chung, K S

    2000-02-01

    To elucidate the molecular mechanisms for the suppression of LPS-induced nitric oxide (NO) production by a dehydrocostus lactone (DL) from Saussurea lappa, we examined the preventive effect of this compound on NF-kappaB activation in LPS-treated RAW 264.7 macrophages and U937 human monocytic cells. The results suggest that the suppression of NO production is mediated by the inhibitory action on the i-NOS gene expression through the inactivation of NF-kappaB and this sesquiterpene lactone can act as a pharmacological inhibitor of the NF-kappaB activation.

  15. Mulberry fruit prevents LPS-induced NF-κB/pERK/MAPK signals in macrophages and suppresses acute colitis and colorectal tumorigenesis in mice

    PubMed Central

    Qian, Zhengjiang; Wu, Zhiqin; Huang, Lian; Qiu, Huiling; Wang, Liyan; Li, Li; Yao, Lijun; Kang, Kang; Qu, Junle; Wu, Yonghou; Luo, Jun; Liu, Johnson J.; Yang, Yi; Yang, Wancai; Gou, Deming

    2015-01-01

    Here, we investigated the impact of mulberry fruit (MBF) extracts on lipopolysaccharide (LPS)-induced inflammatory responses in RAW 264.7 macrophages, and the therapeutic efficacy of MBF diet in mice with dextran sulfate sodium (DSS)-induced acute colitis and MUC2−/− mice with colorectal cancer. In vitro, LPS-induced nitric oxide (NO) production was significantly inhibited by MBF extracts via suppressing the expression of proinflammatory molecules, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1 beta (IL-β) and IL-6. Particularly, a dose-dependent inhibition on LPS-induced inflammatory responses was observed following treatment with MBF dichloromethane extract (MBF-DE), in which linoleic acid and ethyl linolenate were identified as two active compounds. Moreover, we elucidated that MBF-DE attenuated LPS-induced inflammatory responses by blocking activation of both NF-κB/p65 and pERK/MAPK pathways. In vivo, DSS-induced acute colitis was significantly ameliorated in MBF-fed mice as gauged by weight loss, colon morphology and histological damage. In addition, MBF-fed MUC2−/− mice displayed significant decrease in intestinal tumor and inflammation incidence compared to control diet-fed group. Overall, our results demonstrated that MBF suppressed the development of intestinal inflammation and tumorgenesis both in vitro and in vivo, and supports the potential of MBF as a therapeutic functional food for testing in human clinical trials. PMID:26615818

  16. The anti-inflammatory effect of TR6 on LPS-induced mastitis in mice.

    PubMed

    Hu, Xiaoyu; Fu, Yunhe; Tian, Yuan; Zhang, Zecai; Zhang, Wenlong; Gao, Xuejiao; Lu, Xiaojie; Cao, Yongguo; Zhang, Naisheng

    2016-01-01

    [TRIAP]-derived decoy peptides have anti-inflammatory properties. In this study, we synthesized a TRIAP-derived decoy peptide (TR6) containing, the N-terminal portion of the third helical region of the [TIRAP] TIR domain (sequence "N"-RQIKIWFQNRRMKWK and -KPGFLRDPWCKYQML-"C"). We evaluated the effects of TR6 on lipopolysaccharide-induced mastitis in mice. In vivo, the mastitis model was induced by LPS administration for 24h, and TR6 treatment was initiated 1h before or after induction of LPS. In vitro, primary mouse mammary epithelial cells and neutrophils were used to investigate the effects of TR6 on LPS-induced inflammatory responses. The results showed that TR6 significantly inhibited mammary gland hisopathologic changes, MPO activity, and LPS-induced production of TNF-α, IL-1β and IL-6. In vitro, TR6 significantly inhibited LPS-induced TNF-α and IL-6 production and phosphorylation of NF-κB and MAPKs. In conclusion, this study demonstrated that the anti-inflammatory effect of TR6 against LPS-induced mastitis may be due to its ability to inhibit TLR4-mediated NF-κB and MAPK signaling pathways. TR6 may be a promising therapeutic reagent for mastitis treatment.

  17. Kavain Inhibition of LPS-Induced TNF-α via ERK/LITAF

    PubMed Central

    Tang, Xiaoren; Amar, Salomon

    2015-01-01

    Kavain, an extract from the shrub Piper Methysticum, was recently reported to modulate TNF-α expression in both human and mouse cells via regulation of LPS-Induced TNF-Alpha Factor (LITAF). The purpose of the present study was to define the molecular pathway(s) associated with Kavain effects on TNF modulation. In vitro studies using WT mouse primary macrophages showed that Kavain significantly reduced E.coli LPS-induced TNF-α production but this effect was almost abrogated in LITAF−/− and ERK2−/− cells. Therefore we reintroduced the ERK2 gene in ERK2−/− cells and partially restored E.coli LPS-induced LITAF-mediated TNF-α production. The translocation of LITAF into to nucleus was found to be dependent on ERK2 S206 residue. Kavain inhibits LITAF/TNF-α expression via dephosphorylation of ERK2 in response to E.coli LPS. Finally, in vivo, Kavain had a significant anti-inflammatory effect on wild type mice that developed Collagen Antibody Induced Arthritis (CAIA), but only a minor effect in ERK2−/− mice also affected by CAIA. Based on these findings, we concluded that ERK2 may be the kinase upstream of LITAF with its Serine residue 206 being crucial for the regulation of LPS-induced TNF-α. PMID:26918116

  18. Kavain Inhibition of LPS-Induced TNF-α via ERK/LITAF.

    PubMed

    Tang, Xiaoren; Amar, Salomon

    2016-01-01

    Kavain, an extract from the shrub Piper Methysticum, was recently reported to modulate TNF-α expression in both human and mouse cells via regulation of LPS-Induced TNF-Alpha Factor (LITAF). The purpose of the present study was to define the molecular pathway(s) associated with Kavain effects on TNF modulation. In vitro studies using WT mouse primary macrophages showed that Kavain significantly reduced E.coli LPS-induced TNF-α production but this effect was almost abrogated in LITAF(-/-) and ERK2(-/-) cells. Therefore we reintroduced the ERK2 gene in ERK2(-/-) cells and partially restored E.coli LPS-induced LITAF-mediated TNF-α production. The translocation of LITAF into to nucleus was found to be dependent on ERK2 S206 residue. Kavain inhibits LITAF/TNF-α expression via dephosphorylation of ERK2 in response to E.coli LPS. Finally, in vivo, Kavain had a significant anti-inflammatory effect on wild type mice that developed Collagen Antibody Induced Arthritis (CAIA), but only a minor effect in ERK2(-/-) mice also affected by CAIA. Based on these findings, we concluded that ERK2 may be the kinase upstream of LITAF with its Serine residue 206 being crucial for the regulation of LPS-induced TNF-α.

  19. A central role for the mammalian target of rapamycin in LPS-induced anorexia in mice.

    PubMed

    Yue, Yunshuang; Wang, Yi; Li, Dan; Song, Zhigang; Jiao, Hongchao; Lin, Hai

    2015-01-01

    Bacterial lipopolysaccharide (LPS), also known as endotoxin, induces profound anorexia. However, the LPS-provoked pro-inflammatory signaling cascades and the neural mechanisms underlying the development of anorexia are not clear. Mammalian target of rapamycin (mTOR) is a key regulator of metabolism, cell growth, and protein synthesis. This study aimed to determine whether the mTOR pathway is involved in LPS-induced anorexia. Effects of LPS on hypothalamic gene/protein expression in mice were measured by RT-PCR or western blotting analysis. To determine whether inhibition of mTOR signaling could attenuate LPS-induced anorexia, we administered an i.c.v. injection of rapamycin, an mTOR inhibitor, on LPS-treated male mice. In this study, we showed that LPS stimulates the mTOR signaling pathway through the enhanced phosphorylation of mTOR(Ser2448) and p70S6K(Thr389). We also showed that LPS administration increased the phosphorylation of FOXO1(Ser256), the p65 subunit of nuclear factor kappa B (P<0.05), and FOXO1/3a(Thr) (24) (/) (32) (P<0.01). Blocking the mTOR pathway significantly attenuated the LPS-induced anorexia by decreasing the phosphorylation of p70S6K(Thr389), FOXO1(Ser256), and FOXO1/3a(Thr) (24) (/) (32). These results suggest promising approaches for the prevention and treatment of LPS-induced anorexia.

  20. Shizukaol B, an active sesquiterpene from Chloranthus henryi, attenuates LPS-induced inflammatory responses in BV2 microglial cells.

    PubMed

    Pan, Li-Long; Xu, Peng; Luo, Xiao-Ling; Wang, Li-Jun; Liu, Si-Yu; Zhu, Yi-Zhun; Hu, Jin-Feng; Liu, Xin-Hua

    2017-04-01

    The objective of the current study was to evaluate the anti-inflammatory effects of shizukaol B, a lindenane-type dimeric sesquiterpene isolated from the whole plant of Chloranthus henryi, on lipopolysaccharide (LPS)-induced activation of BV2 microglial cells in vitro. Our data showed that shizukaol B concentration-dependently suppressed expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), production of nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in LPS-stimulated BV2 microglia. Meanwhile, shizukaol B concentration- and time-dependently inhibited LPS-mediated c-Jun N-terminal kinase 1/2 (JNK) activation, but had little effect on extracellular signal-regulated kinase 1/2 or p38 phosphorylation. Furthermore, shizukaol B significantly blocked LPS-induced activator protein-1 (AP-1) activation, evidenced by reduced phosphorylation and nuclear translocation of c-Jun and DNA binding activity of AP-1. Taken together, our findings suggest that shizukaol B exerts anti-inflammatory effects in LPS-activated microglia partly by modulating JNK-AP-1 signaling pathway.

  1. NEUTROPHILS PLAY A CRITICAL ROLE IN THE DEVELOPMENT OF LPS-INDUCED AIRWAY DISEASE

    EPA Science Inventory

    ETD-02-045 (GAVETT) GPRA # 10108

    Neutrophils Play a Critical Role in the Development of LPS-Induced Airway Disease.
    Jordan D. Savov, Stephen H. Gavett*, David M. Brass, Daniel L. Costa*, and David A. Schwartz

    ABSTRACT
    We investigated the role of neutrophils...

  2. EFFECTS OF SYSTEMIC NEUTROPHIL DEPLETION ON LPS-INDUCED AIRWAY DISEASE

    EPA Science Inventory

    Effects of Systemic Neutrophil Depletion on LPS-induced Airway Disease
    Jordan D. Savov, Stephen H. Gavett*, David M. Brass, Daniel L. Costa*, David A. Schwartz
    Pulmonary and Critical Care Division, Dept of Medicine ? Duke University Medical Center
    * National Health and E...

  3. Treatment with the hyaluronic Acid synthesis inhibitor 4-methylumbelliferone suppresses LPS-induced lung inflammation.

    PubMed

    McKallip, Robert J; Ban, Hao; Uchakina, Olga N

    2015-01-01

    Exposure to bacterial endotoxins, such as lipopolysaccharide (LPS), can lead to the induction of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). To date, there are no known effective treatments for LPS-induced inflammation. In the current study, we investigated the potential use of the hyaluronic acid (HA) synthesis inhibitor 4-methylumbelliferone (4-MU) on LPS-induced acute lung inflammation. Culturing LPS-activated immune cells with 4-MU led to reduced proliferation, reduced cytokine production, and an increase in apoptosis when compared to untreated cells. Treatment of mice with 4-MU led to protection from LPS-induced lung injury. Specifically, 4-MU treatment led to a reduction in LPS-induced hyaluronic acid synthase (HAS) messenger RNA (mRNA) levels, reduction in lung permeability, and reduction in proinflammatory cytokine production. Taken together, these results suggest that use of 4-MU to target HA production may be an effective treatment for the inflammatory response following exposure to LPS.

  4. Benznidazole, a drug used in Chagas' disease, ameliorates LPS-induced inflammatory response in mice.

    PubMed

    Pascutti, María Fernanda; Pitashny, Milena; Nocito, Ana Lía; Guermonprez, Pierre; Amigorena, Sebastian; Wietzerbin, Juana; Serra, Esteban; Bottasso, Oscar; Revelli, Silvia

    2004-12-24

    Benznidazole (BZL) is a drug currently used for treating Chagas' disease. Given our earlier demonstration in which BZL downregulated cytokine and nitric oxide (NO) synthesis by LPS and/or IFN-gamma-stimulated murine macrophages, we have now analysed whether this compound could exert beneficial effects in a model of LPS-induced inflammation in C57BL/6 mice. The lethal model consisted of two LPS intraperitoneal injections, 200 microg each separated by 2 h, with BZL given orally at a dose of 200 mg/kg, 18 and 2 h before the first challenge and 20 and 44 hr following the second one. In this model, BZL treatment led to a significantly decreased mortality in comparison with untreated counterparts. Remaining experiments were carried out in mice given a unique LPS dose, pretreated with BZL or not, since those subjected to the lethal protocol were unsuitable for laboratory handling. Analysis of IL-1beta, IL-6, TNF-alpha, IL-12 and iNOS mRNA expression in liver samples taken at 90 min post-LPS showed a marked reduction of the two latter mRNAs in BZL-treated mice. These animals also displayed significantly decreased peaks levels of serum TNF-alpha and IL-6, accompanied by a diminished number of IL-6-producing peritoneal macrophages. Present effects may broaden the potential usefulness of BZL in situations accompanied by an excessive inflammatory response.

  5. Glycyrrhiza glabra L. Extract Inhibits LPS-Induced Inflammation in RAW Macrophages.

    PubMed

    Li, Chunmei; Eom, Taekil; Jeong, Yoonhwa

    2015-01-01

    Glycyrrhiza glabra has been used in medicine for thousands of years. Our previous study revealed that the methanolic extract of Glycyrrhiza glabra L. (EGGR) exhibits significant nitric oxide (NO) inhibitory effect on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages among 100 other extracts. Accordingly, the aim of the present study was to investigate the potential anti-inflammatory effect of EGGR. The anti-inflammatory effect of EGGR on LPS-stimulated RAW 264.7 macrophages was measured by MTT assay, NO content analysis, reactive oxygen species (ROS) level analysis, RT-PCR, Western blot analysis, and ELISA assay. Low doses of EGGR were non-toxic to macrophages and imparted protective effect against LPS induced cell death. Incubation of LPS-treated macrophages with 100 μg/mL EGGR led to an increase in cell viability from 66.6 to 99%. Moreover, EGGR led to down regulation of NO (NO2+NO3) and ROS productions in a dose-dependent manner. In particular, 100 μg/mL EGGR led to a reduction in NO2+NO3 level from 336.2 to 24.1 pM/mL, and ROS level from 483.5 to 128.4%. Consistent with the result related to NO production, EGGR suppressed the ability of LPS to induce mRNA and protein expressions of nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) cytokines, tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), and IL-6 productions which were analyzed by an ELISA assay. These results provide a comprehensive approach into the anti-inflammatory effect of EGGR on LPS-stimulated macrophages; however, efforts are underway on gaining detailed insight into anti-inflammatory signaling pathways.

  6. Okanin, effective constituent of the flower tea Coreopsis tinctoria, attenuates LPS-induced microglial activation through inhibition of the TLR4/NF-κB signaling pathways

    PubMed Central

    Hou, Yue; Li, Guoxun; Wang, Jian; Pan, Yingni; Jiao, Kun; Du, Juan; Chen, Ru; Wang, Bing; Li, Ning

    2017-01-01

    The EtOAc extract of Coreopsis tinctoria Nutt. significantly inhibited LPS-induced nitric oxide (NO) production, as judged by the Griess reaction, and attenuated the LPS-induced elevation in iNOS, COX-2, IL-1β, IL-6 and TNF-α mRNA levels, as determined by quantitative real-time PCR, when incubated with BV-2 microglial cells. Immunohistochemical results showed that the EtOAc extract significantly decreased the number of Iba-1-positive cells in the hippocampal region of LPS-treated mouse brains. The major effective constituent of the EtOAc extract, okanin, was further investigated. Okanin significantly suppressed LPS-induced iNOS expression and also inhibited IL-6 and TNF-α production and mRNA expression in LPS-stimulated BV-2 cells. Western blot analysis indicated that okanin suppressed LPS-induced activation of the NF-κB signaling pathway by inhibiting the phosphorylation of IκBα and decreasing the level of nuclear NF-κB p65 after LPS treatment. Immunofluorescence staining results showed that okanin inhibited the translocation of the NF-κB p65 subunit from the cytosol to the nucleus. Moreover, okanin significantly inhibited LPS-induced TLR4 expression in BV-2 cells. In summary, okanin attenuates LPS-induced activation of microglia. This effect may be associated with its capacity to inhibit the TLR4/NF-κB signaling pathways. These results suggest that okanin may have potential as a nutritional preventive strategy for neurodegenerative disorders. PMID:28367982

  7. Leonurine exerts anti-inflammatory effect by regulating inflammatory signaling pathways and cytokines in LPS-induced mouse mastitis.

    PubMed

    Song, Xiaojing; Wang, Tiancheng; Zhang, Zecai; Jiang, Haichao; Wang, Wei; Cao, Yongguo; Zhang, Naisheng

    2015-02-01

    Bovine mastitis is defined as the inflammation of mammary gland and is the most multiple diseases in dairy cattle. There is still no effective treatment now. Leonurine, extracted from Leonurus cardiaca, has been proved to have anti-inflammatory effect. In the present study, we utilized a mouse mastitis model to study the effect of leonurine on LPS-induced mastitis. Leonurine was administered three times during the 24 h after inducing infection in the mammary gland. The results showed that leonurine significantly alleviated LPS-induced histopathological changes, downregulated the levels of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), upregulated the level of anti-inflammatory cytokine interleukin-10 (IL-10), and inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Further study revealed that leonurine inhibited the expression of Toll-like receptor 4 (TLR4) and the activation of nuclear factor-kappaB (NF-κB) and the phosphorylation of p38, extracellular signal-regulated kinase (ERK), and Jun N-terminal kinase (JNK). Therefore, the results demonstrated that leonurine could downregulate the expression of TNF-α, IL-6, iNOS, and COX-2 and upregulate the expression of IL-10 mainly by inhibiting the expression of TLR4 and the activation of NF-κB and the phosphorylation of p38, ERK, and JNK. Leonurine may be a potential agent for mastitis therapy.

  8. Resveratrol ameliorates LPS-induced acute lung injury via NLRP3 inflammasome modulation.

    PubMed

    Jiang, Lei; Zhang, Lei; Kang, Kai; Fei, Dongsheng; Gong, Rui; Cao, Yanhui; Pan, Shangha; Zhao, Mingran; Zhao, Mingyan

    2016-12-01

    NLRP3 inflammasome plays a pivotal role in the development of acute lung injury (ALI), accelerating IL-1β and IL-18 release and inducing lung inflammation. Resveratrol, a natural phytoalexin, has anti-inflammatory properties via inhibition of oxidation, leukocyte priming, and production of inflammatory mediators. In this study, we aimed to investigate the effect of resveratrol on NLRP3 inflammasome in lipopolysaccharide-induced ALI. Mice were intratracheally instilled with 3mg/kg lipopolysaccharide (LPS) to induce ALI. Resveratrol treatment alleviated the LPS-induced lung pathological damage, lung edema and neutrophil infiltration. In addition, resveratrol reversed the LPS-mediated elevation of IL-1β and IL-18 level in the BAL fluids. In lung tissue, resveratrol also inhibited the LPS-induced NLRP3, ASC, caspase-1 mRNA and protein expression, and NLRP3 inflammasome activation. Moreover, resveratrol administration not only suppressed the NF-κB p65 nuclear translocation, NF-κB activity and ROS production in the LPS-treated mice, but also inhibited the LPS-induced thioredoxin-interacting protein (TXNIP) protein expression and interaction of TXNIP-NLRP3 in lung tissue. Meanwhile, resveratrol obviously induced SIRT1 mRNA and protein expression in the LPS-challenged mice. Taken together, our study suggests that resveratrol protects against LPS-induced lung injury by NLRP3 inflammasome inhibition. These findings further suggest that resveratrol may be of great value in the treatment of ALI and a potential and an effective pharmacological agent for inflammasome-relevant diseases.

  9. Cerium oxide nanoparticles alleviate oxidative stress and decreases Nrf-2/HO-1 in D-GALN/LPS induced hepatotoxicity.

    PubMed

    Hashem, Reem M; Rashd, Laila A; Hashem, Khalid S; Soliman, Hatem M

    2015-07-01

    Translocation of the master regulator of antioxidant-response element-driven antioxidant gene, nuclear factor erythroid 2 (Nrf-2) from the cytoplasm into the nucleus and triggering the transcription of hemoxygenase-1 (HO-1) to counteract the oxidative stress is a key feature in D-galactoseamine and lipopolysaccharide (D-GALN/LPS) induced hepatotoxicity. We mainly aimed to study the effect of cerium oxide (CeO2) nanoparticles on Nrf-2/HO-1 pathway whereas; it has previously shown to have an antioxidant effect in liver models. Administration of CeO2 nanoparticles significantly decreased the translocation of the cytoplasmic Nrf-2 with a concomitant decrement in the gene expression of HO-1 as it reveals a powerful antioxidative effect as indicated by the significant increase in the levels of glutathione (GSH), glutathione peroxidase (GPX1), glutathione reductase (GR), superoxide dismutase (SOD) and catalase. In synchronization, a substantial decrement in the levels of inducible nitric oxide synthase (iNOS), TBARS and percentage of DNA fragmentation was established. These results were confirmed by histopathology examination which showed a severe degeneration, haemorrhages, widened sinusoids and focal leukocyte infiltration in D-GALN/LPS treatment and these features were alleviated with CeO2 administration. In conclusion, CeO2 is a potential antioxidant that can effectively decrease the translocation of the cytoplasmic Nrf-2 into the nucleus and decrease HO-1 in D-GALN/LPS induced hepatotoxicity.

  10. Mechanism for Prenatal LPS-Induced DA Neuron Loss

    DTIC Science & Technology

    2005-03-01

    enter the human chorioamniotic environment of the fetus in women with bacterial vaginosis (BV). BV increases pro-inflammatory cytokines, including...occur receptor-4, is a well known inducer of pro-inflammatory had their mother had bacterial vaginosis , would be at in- cytokines and has been shown...etiology of PD. We hypothesized that individuals born to mothers with bacterial vaginosis (BV), a well known Although genetic factors account for some cases

  11. Piracetam Attenuates LPS-Induced Neuroinflammation and Cognitive Impairment in Rats.

    PubMed

    Tripathi, Alok; Paliwal, Pankaj; Krishnamurthy, Sairam

    2017-02-07

    The present study was performed to investigate the effect of piracetam on neuroinflammation induced by lipopolysaccharide (LPS) and resulting changes in cognitive behavior. Neuroinflammation was induced by a single dose of LPS solution infused into each of the lateral cerebral ventricles in concentrations of 1 μg/μl, at a rate of 1 μl/min over a 5-min period, with a 5-min waiting period between the two infusions. Piracetam in doses of 50, 100, and 200 mg/kg i.p. was administered 30 min before LPS infusion and continued for 9 days. On ninth day, the behavioral test for memory and anxiety was done followed by blood collection and microdissection of the hippocampus (HIP) and prefrontal cortex brain regions. Piracetam attenuated the LPS-induced decrease in coping strategy to novel environment indicating anxiolytic activity. It also reversed the LPS-induced changes in the known arm and novel arm entries in the Y-maze test indicating amelioration of spatial memory impairment. Further, piracetam moderated LPS-induced decrease in the mitochondrial complex enzyme activities (I, II, IV, and V) and mitochondrial membrane potential. It ameliorated changes in hippocampal lipid peroxidation and nitrite levels including the activity of superoxide dismutase. Piracetam region specifically ameliorated LPS-induced increase in the level of IL-6 in HIP indicating anti-neuroinflammatory effect. Further, piracetam reduced HIP Aβ (1-40) and increased blood Aβ level suggesting efflux of Aβ from HIP to blood. Therefore, the present study indicates preclinical evidence for the use of piracetam in the treatment of neuroinflammatory disorders.

  12. LPS-induced inflammatory response is suppressed by Wnt inhibitors, Dickkopf-1 and LGK974

    PubMed Central

    Jang, Jaewoong; Jung, Yoonju; Kim, Youngeun; Jho, Eek-hoon; Yoon, Yoosik

    2017-01-01

    In this study, LPS-induced inflammatory responses in BEAS-2B human bronchial epithelial cells and human umbilical vein endothelial cell (HUVEC)s were found to be prevented by Dickkopf-1 (DKK-1), a secreted Wnt antagonist, and LGK974, a small molecular inhibitor of the Wnt secretion. LPS-induced IκB degradation and NF-κB nuclear translocation as well as the expressions of pro-inflammatory genes including IL-6, IL-8, TNF- α, IL-1β, MCP-1, MMP-9, COX-2 and iNOS, were all suppressed by DKK-1 and LGK974 in a dose-dependent manner. The suppressive effects of LGK974 on NF-κB, IκB, and pro-inflammatory gene expression were rescued by ectopic expression of β-catenin, suggesting that the anti-inflammatory activity of LGK974 is mediated by modulation of the Wnt/β-catenin pathway and not by unrelated side effects. When Wnt recombinant proteins were treated to cells, Wnt3a and Wnt5a significantly induced pro-inflammatory gene expressions, while Wnt7a and Wnt10b showed little effects. It was also found that Wnt3a and Wnt5a expressions were significantly induced by LPS treatment. Consistently, knockdown of Wnt3a and Wnt5a blocked LPS-induced inflammatory responses, while treatment of recombinant Wnt3a and Wnt5a proteins rescued the inhibition of inflammatory responses by LGK974. Findings of this study showed that DKK-1 and LGK974 suppress LPS-induced inflammatory response by modulating Wnt/β-catenin pathway. PMID:28128299

  13. β-Glucan Reverses the Epigenetic State of LPS-Induced Immunological Tolerance.

    PubMed

    Novakovic, Boris; Habibi, Ehsan; Wang, Shuang-Yin; Arts, Rob J W; Davar, Robab; Megchelenbrink, Wout; Kim, Bowon; Kuznetsova, Tatyana; Kox, Matthijs; Zwaag, Jelle; Matarese, Filomena; van Heeringen, Simon J; Janssen-Megens, Eva M; Sharifi, Nilofar; Wang, Cheng; Keramati, Farid; Schoonenberg, Vivien; Flicek, Paul; Clarke, Laura; Pickkers, Peter; Heath, Simon; Gut, Ivo; Netea, Mihai G; Martens, Joost H A; Logie, Colin; Stunnenberg, Hendrik G

    2016-11-17

    Innate immune memory is the phenomenon whereby innate immune cells such as monocytes or macrophages undergo functional reprogramming after exposure to microbial components such as lipopolysaccharide (LPS). We apply an integrated epigenomic approach to characterize the molecular events involved in LPS-induced tolerance in a time-dependent manner. Mechanistically, LPS-treated monocytes fail to accumulate active histone marks at promoter and enhancers of genes in the lipid metabolism and phagocytic pathways. Transcriptional inactivity in response to a second LPS exposure in tolerized macrophages is accompanied by failure to deposit active histone marks at promoters of tolerized genes. In contrast, β-glucan partially reverses the LPS-induced tolerance in vitro. Importantly, ex vivo β-glucan treatment of monocytes from volunteers with experimental endotoxemia re-instates their capacity for cytokine production. Tolerance is reversed at the level of distal element histone modification and transcriptional reactivation of otherwise unresponsive genes. VIDEO ABSTRACT.

  14. Liver X receptor agonist prevents LPS-induced mastitis in mice.

    PubMed

    Fu, Yunhe; Tian, Yuan; Wei, Zhengkai; Liu, Hui; Song, Xiaojing; Liu, Wenbo; Zhang, Wenlong; Wang, Wei; Cao, Yongguo; Zhang, Naisheng

    2014-10-01

    Liver X receptor-α (LXR-α) which belongs to the nuclear receptor superfamily, is a ligand-activated transcription factor. Best known for its ability to regulate lipid metabolism and transport, LXRs have recently also been implicated in regulation of inflammatory response. The aim of this study was to investigate the preventive effects of synthetic LXR-α agonist T0901317 on LPS-induced mastitis in mice. The mouse model of mastitis was induced by injection of LPS through the duct of mammary gland. T0901317 was injected 1h before and 12h after induction of LPS intraperitoneally. The results showed that T0901317 significantly attenuated the infiltration of neutrophilic granulocytes, and the activation of myeloperoxidase (MPO); down-regulated the level of pro-inflammatory mediators including TNF-α, IL-1β, IL-6, COX-2 and PEG2; inhibited the phosphorylation of IκB-α and NF-κB p65, caused by LPS. Moreover, we report for the first time that LXR-α activation impaired LPS-induced mastitis. Taken together, these data indicated that T0901317 had protective effect on mastitis and the anti-inflammatory mechanism of T0901317 on LPS induced mastitis in mice may be due to its ability to inhibit NF-κB signaling pathway. LXR-α activation can be used as a therapeutic approach to treat mastitis.

  15. Protection against LPS-induced cartilage inflammation and degradation provided by a biological extract of Mentha spicata

    PubMed Central

    2010-01-01

    Background A variety of mint [Mentha spicata] has been bred which over-expresses Rosmarinic acid (RA) by approximately 20-fold. RA has demonstrated significant anti-inflammatory activity in vitro and in small rodents; thus it was hypothesized that this plant would demonstrate significant anti-inflammatory activity in vitro. The objectives of this study were: a) to develop an in vitro extraction procedure which mimics digestion and hepatic metabolism, b) to compare anti-inflammatory properties of High-Rosmarinic-Acid Mentha spicata (HRAM) with wild-type control M. spicata (CM), and c) to quantify the relative contributions of RA and three of its hepatic metabolites [ferulic acid (FA), caffeic acid (CA), coumaric acid (CO)] to anti-inflammatory activity of HRAM. Methods HRAM and CM were incubated in simulated gastric and intestinal fluid, liver microsomes (from male rat) and NADPH. Concentrations of RA, CA, CO, and FA in simulated digest of HRAM (HRAMsim) and CM (CMsim) were determined (HPLC) and compared with concentrations in aqueous extracts of HRAM and CM. Cartilage explants (porcine) were cultured with LPS (0 or 3 μg/mL) and test article [HRAMsim (0, 8, 40, 80, 240, or 400 μg/mL), or CMsim (0, 1, 5 or 10 mg/mL), or RA (0.640 μg/mL), or CA (0.384 μg/mL), or CO (0.057 μg/mL) or FA (0.038 μg/mL)] for 96 h. Media samples were analyzed for prostaglandin E2 (PGE2), interleukin 1β (IL-1), glycosaminoglycan (GAG), nitric oxide (NO) and cell viability (differential live-dead cell staining). Results RA concentration of HRAMsim and CMsim was 49.3 and 0.4 μg/mL, respectively. CA, FA and CO were identified in HRAMsim but not in aqueous extract of HRAM. HRAMsim (≥ 8 μg/mL) inhibited LPS-induced PGE2 and NO; HRAMsim (≥ 80 μg/mL) inhibited LPS-induced GAG release. RA inhibited LPS-induced GAG release. No anti-inflammatory or chondroprotective effects of RA metabolites on cartilage explants were identified. Conclusions Our biological extraction procedure produces a

  16. Isoalantolactone inhibits LPS-induced inflammation via NF-κB inactivation in peritoneal macrophages and improves survival in sepsis.

    PubMed

    He, Guodong; Zhang, Xu; Chen, Yanhua; Chen, Jing; Li, Li; Xie, Yubo

    2017-04-10

    Sepsis, a clinical syndrome occurring in patients following infection or injury, is a leading cause of mortality worldwide. It involves uncontrolled inflammatory response resulting in multi-organ failure and even death. Isoalantolactone (IAL), a sesquiterpene lactone, is known for its anti-cancer effects. Nevertheless, little is known about the anti-inflammatory effects of IAL, and the role of IAL in sepsis is unclear. In this study, we demonstrated that IAL decreased lipopolysaccharide (LPS)-mediated production of nitric oxide, PEG2 and cytokines (IL-6, TNF-α) in peritoneal macrophages and RAW 264.7 macrophages. Moreover, molecular mechanism studies indicated that IAL plays an anti-inflammatory role by inhibiting LPS-induced activation of NF-κB pathway in peritoneal macrophages. In vivo, IAL reduced the secretion of IL-6 and TNF-α in serum, and increased the survival rate of mice with LPS-induced sepsis. In addition, IAL attenuated the activation of NF-κB pathway in liver. Taken together, our data suggest that IAL may represent a potentially new drug candidate for the treatment of sepsis.

  17. Terpenoids from Tripterygium hypoglaucum and their inhibition of LPS-induced NO production.

    PubMed

    Zhao, Peng; Wang, Hao; Jin, Da-Qing; Ohizumi, Yasushi; Xu, Jing; Guo, Yuanqiang

    2014-01-01

    One new (1) and three known (2-4) sesquiterpenes and four known diterpenes (5-8) were isolated from the root bark of Tripterygium hypoglaucum. Their structures were elucidated on the basis of extensive spectroscopic analyses (IR, ESI-MS, HR-ESI-MS, 1D-NMR, and 2D-NMR). The inhibitory activity toward LPS-induced NO production of these terpenoids was evaluated, all the compounds showing inhibitory effects.

  18. Bovine dialyzable leukocyte extract protects against LPS-induced, murine endotoxic shock.

    PubMed

    Franco-Molina, Moisés A; Mendoza-Gamboa, Edgar; Castillo-León, Leonardo; Tamez-Guerra, Reyes S; Rodríguez-Padilla, Cristina

    2004-12-15

    The pathophysiology of endotoxic shock is characterized by the activation of multiple pro-inflammatory genes and their products which initiate the inflammatory process. Endotoxic shock is a serious condition with high mortality. Bovine dialyzable leukocyte extract (bDLE) is a dialyzate of a heterogeneous mixture of low molecular weight substances released from disintegrated leukocytes of the blood or lymphoid tissue obtained from homogenized bovine spleen. bDLE is clinically effective for a broad spectrum of diseases. To determine whether bDLE improves survival and modulates the expression of pro-inflammatory cytokine genes in LPS-induced, murine endotoxic shock, Balb/C mice were treated with bDLE (1 U) after pretreatment with LPS (17 mg/kg). The bDLE improved survival (90%), suppressed IL-10 and IL-6, and decreased IL-1beta, TNF-alpha, and IL-12p40 mRNA expression; and decreased the production of IL-10 (P<0.01), TNF-alpha (P<0.01), and IL-6 (P<0.01) in LPS-induced, murine endotoxic shock. Our results demonstrate that bDLE leads to improved survival in LPS-induced endotoxic shock in mice, modulating the pro-inflammatory cytokine gene expression, suggesting that bDLE is an effective therapeutic agent for inflammatory illnesses associated with an unbalanced expression of pro-inflammatory cytokine genes such as in endotoxic shock, rheumatic arthritis and other diseases.

  19. RAGE Plays a Role in LPS-Induced NF-κB Activation and Endothelial Hyperpermeability.

    PubMed

    Wang, Liqun; Wu, Jie; Guo, Xiaohua; Huang, Xuliang; Huang, Qiaobing

    2017-03-30

    Endothelial functional dysregulation and barrier disruption contribute to the initiation and development of sepsis. The receptor for advanced glycation end products (RAGE) has been demonstrated to be involved in the pathogenesis of sepsis. The present study aimed to investigate the role of RAGE in lipopolysaccharide (LPS)-induced nuclear factor-κB (NF-κB) activation in endothelial cells and the consequent endothelial hyperpermeability. LPS-induced upregulation of RAGE protein expression in human umbilical vein endothelial cells (HUVECs) was detected by western blotting. Activation of NF-κB was revealed using western blotting and immunofluorescent staining. LPS-elicited endothelial hyperpermeability was explored by transendothelial electrical resistance (TER) assay and endothelial monolayer permeability assay. The blocking antibody specific to RAGE was used to confirm the role of RAGE in LPS-mediated NF-κB activation and endothelial barrier disruption. We found that LPS upregulated the protein expression of RAGE in a dose- and time-dependent manner in HUVECs. Moreover, LPS triggered a significant phosphorylation and degradation of IκBα, as well as NF-κB p65 nuclear translocation. Moreover, we observed a significant increase in endothelial permeability after LPS treatment. However, the RAGE blocking antibody attenuated LPS-evoked NF-κB activation and endothelial hyperpermeability. Our results suggest that RAGE plays an important role in LPS-induced NF-κB activation and endothelial barrier dysfunction.

  20. Pulmonary epithelial CCR3 promotes LPS-induced lung inflammation by mediating release of IL-8.

    PubMed

    Li, Bo; Dong, Chunling; Wang, Guifang; Zheng, Huiru; Wang, Xiangdong; Bai, Chunxue

    2011-09-01

    Interleukin (IL)-8 from pulmonary epithelial cells has been suggested to play an important role in the airway inflammation, although the mechanism remains unclear. We envisioned a possibility that pulmonary epithelial CCR3 could be involved in secretion and regulation of IL-8 and promote lipopolysaccharide (LPS)-induced lung inflammation. Human bronchial epithelial cell line NCI-H292 and alveolar type II epithelial cell line A549 were used to test role of CCR3 in production of IL-8 at cellular level. In vivo studies were performed on C57/BL6 mice instilled intratracheally with LPS in a model of acute lung injury (ALI). The activity of a CCR3-specific inhibitor (SB-328437) was measured in both in vitro and in vivo systems. We found that expression of CCR3 in NCI-H292 and A549 cells were increased by 23% and 16%, respectively, 24 h after the challenge with LPS. LPS increased the expression of CCR3 in NCI-H292 and A549 cells in a time-dependent manner, which was inhibited significantly by SB-328437. SB-328437 also diminished neutrophil recruitment in alveolar airspaces and improved LPS-induced ALI and production of IL-8 in bronchoalveolar lavage fluid. These results suggest that pulmonary epithelial CCR3 be involved in progression of LPS-induced lung inflammation by mediating release of IL-8. CCR3 in pulmonary epithelia may be an attractive target for development of therapies for ALI.

  1. Cannabidiol improves lung function and inflammation in mice submitted to LPS-induced acute lung injury.

    PubMed

    Ribeiro, A; Almeida, V I; Costola-de-Souza, C; Ferraz-de-Paula, V; Pinheiro, M L; Vitoretti, L B; Gimenes-Junior, J A; Akamine, A T; Crippa, J A; Tavares-de-Lima, W; Palermo-Neto, J

    2015-02-01

    We have previously shown that the prophylactic treatment with cannabidiol (CBD) reduces inflammation in a model of acute lung injury (ALI). In this work we analyzed the effects of the therapeutic treatment with CBD in mice subjected to the model of lipopolysaccharide (LPS)-induced ALI on pulmonary mechanics and inflammation. CBD (20 and 80 mg/kg) was administered (i.p.) to mice 6 h after LPS-induced lung inflammation. One day (24 h) after the induction of inflammation the assessment of pulmonary mechanics and inflammation were analyzed. The results show that CBD decreased total lung resistance and elastance, leukocyte migration into the lungs, myeloperoxidase activity in the lung tissue, protein concentration and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) in the bronchoalveolar lavage supernatant. Thus, we conclude that CBD administered therapeutically, i.e. during an ongoing inflammatory process, has a potent anti-inflammatory effect and also improves the lung function in mice submitted to LPS-induced ALI. Therefore the present and previous data suggest that in the future cannabidiol might become a useful therapeutic tool for the attenuation and treatment of inflammatory lung diseases.

  2. (+)-Catechin Attenuates NF-κB Activation Through Regulation of Akt, MAPK, and AMPK Signaling Pathways in LPS-Induced BV-2 Microglial Cells.

    PubMed

    Syed Hussein, Sharifah Salwa; Kamarudin, Muhamad Noor Alfarizal; Kadir, Habsah Abdul

    2015-01-01

    (+)-Catechin is a flavanol that possesses various health and medicinal values, which include neuroprotection, anti-oxidation, antitumor and antihepatitis activities. This study investigated the modulatory effects of (+)-catechin on the lipopolysaccharides (LPS)-stimulated BV-2 cells. (+)-catechin attenuated LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and inhibited microglial NO and ROS production. Additionally, (+)-catechin suppressed the production of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6, while augmenting IL-4. (+)-catechin attenuated LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation via the inhibition of IκB-α phosphorylation. Moreover, (+)-catechin blocked the activation of Akt and its inhibition was shown to play a crucial role in LPS-induced inflammation in BV-2 microglial cells. (+)-catechin also attenuated the LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK1/2), and p-38 mitogen activated protein kinases (p38 MAPK) and specific inhibitors of ERK1/2 (UO126) and p38 MAPK (SB202190) subsequently down-regulated the expression of the proinflammatory mediators iNOS and COX-2. Further mechanistic study revealed that (+)-catechin acted through the amelioration of the LPS-induced suppression of adenosine monophosphate-activated protein kinase (AMPK) activity. Taken together, our data indicate that (+)-catechin exhibits anti-inflammatory effects in BV-2 cells by suppressing the production of proinflammatory mediators and mitigation of NF-κB through Akt, ERK, p38 MAPK, and AMPK pathways.

  3. Anti-Inflammatory Activity of Heterocarpin from the Salt Marsh Plant Corydalis heterocarpa in LPS-Induced RAW 264.7 Macrophage Cells.

    PubMed

    Kim, You Ah; Kong, Chang-Suk; Park, Hyo Hyun; Lee, Eunkyung; Jang, Mi-Soon; Nam, Ki-Ho; Seo, Youngwan

    2015-08-10

    The inhibitory effect of three chromones 1-3 and two coumarins 4-5 on the production of nitric oxide (NO) was evaluated in LPS-induced RAW 264.7 macrophage cells. Among the compounds tested heterocarpin (1), a furochromone, significantly inhibited its production in a dose-dependent manner. In addition, heterocarpin suppressed prostaglandin E2 (PGE2) production and expression of cytokines such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6).

  4. Wedelolactone inhibits LPS-induced pro-inflammation via NF-kappaB Pathway in RAW 264.7 cells

    PubMed Central

    2013-01-01

    Background Wedelolactone (WEL), a major coumestan ingredient in Wedelia chinensis, has been used to treat septic shock, hepatitis and venom poisoning in traditional Chinese medicines. The objective of the study was to elucidate the anti-inflammatory effects and mechanism of WEL with a cellular model of lipopolysaccharide (LPS)-induced RAW 264.7 cells. Results To study the role of WEL in pro-inflammation, we measured key inflammation mediators and end products including nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and tumor necrosis factor-α (TNF-α) by using the Griess method, enzyme linked immunosorbent assay (ELISA) and Western blotting. Nuclear factor-kappaB (NF-κB) transcription activity was detected by luciferase reporter assay. The important pro-inflammatory transcription factors, NF-κB p65 and inhibitory kappaB alpha (IκB-α); and mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK (p38) were analyzed by Western blotting. Our study showed that WEL (0.1, 1, 10 μM) significantly inhibited the protein expression levels of iNOS and COX-2 in LPS-stimulated cells, as well as the downstream products, including NO, PGE2 and TNF-α. Moreover, WEL also inhibited LPS-induced NF-κB p65 activation via the degradation and phosphorylation of IκB-α and subsequent translocation of the NF-κB p65 subunit to the nucleus. Conclusions Our results revealed that WEL has a potential to be a novel anti-inflammatory agent targeting on the NF-κB signaling pathway. PMID:24176090

  5. Anti-inflammatory activity of the oriental herb medicine, Arisaema cum Bile, in LPS-induced PMA-differentiated THP-1 cells.

    PubMed

    Ahn, Chang-Bum; Je, Jae-Young

    2012-06-01

    Arisaema cum Bile is widely used as a folk medicine in Korea. However, the systematic biological properties of Arisaema cum Bile have seldom been addressed. In this study, we evaluated the anti-inflammatory activity of Arisaema cum Bile extract on lipopolysaccharide (LPS)-induced inflammation in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 macrophages. The Arisaema cum Bile extract markedly inhibited the production of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, and also suppressed the mRNA and protein expressions of these cytokines. Furthermore, the Arisaema cum Bile extract also inhibited LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and gene expressions in PMA-differentiaed THP-1 macrophages. These results suggest that Arisaema cum Bile extract may have potential for development into an effective anti-inflammatory agent, and/or as an ingredient of functional foods.

  6. Asef mediates HGF protective effects against LPS-induced lung injury and endothelial barrier dysfunction.

    PubMed

    Meng, Fanyong; Meliton, Angelo; Moldobaeva, Nurgul; Mutlu, Gokhan; Kawasaki, Yoshihiro; Akiyama, Tetsu; Birukova, Anna A

    2015-03-01

    Increased vascular endothelial permeability and inflammation are major pathological mechanisms of pulmonary edema and its life-threatening complication, the acute respiratory distress syndrome (ARDS). We have previously described potent protective effects of hepatocyte growth factor (HGF) against thrombin-induced hyperpermeability and identified the Rac pathway as a key mechanism of HGF-mediated endothelial barrier protection. However, anti-inflammatory effects of HGF are less understood. This study examined effects of HGF on the pulmonary endothelial cell (EC) inflammatory activation and barrier dysfunction caused by the gram-negative bacterial pathogen lipopolysaccharide (LPS). We tested involvement of the novel Rac-specific guanine nucleotide exchange factor Asef in the HGF anti-inflammatory effects. HGF protected the pulmonary EC monolayer against LPS-induced hyperpermeability, disruption of monolayer integrity, activation of NF-kB signaling, expression of adhesion molecules intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, and production of IL-8. These effects were critically dependent on Asef. Small-interfering RNA-induced downregulation of Asef attenuated HGF protective effects against LPS-induced EC barrier failure. Protective effects of HGF against LPS-induced lung inflammation and vascular leak were also diminished in Asef knockout mice. Taken together, these results demonstrate potent anti-inflammatory effects by HGF and delineate a key role of Asef in the mediation of the HGF barrier protective and anti-inflammatory effects. Modulation of Asef activity may have important implications in therapeutic strategies aimed at the treatment of sepsis and acute lung injury/ARDS-induced gram-negative bacterial pathogens.

  7. Anti-Inflammatory Effect of Apigenin on LPS-Induced Pro-Inflammatory Mediators and AP-1 Factors in Human Lung Epithelial Cells.

    PubMed

    Patil, Rajeshwari H; Babu, R L; Naveen Kumar, M; Kiran Kumar, K M; Hegde, Shubha M; Nagesh, Rashmi; Ramesh, Govindarajan T; Sharma, S Chidananda

    2016-02-01

    Apigenin is one of the plant flavonoids present in fruits and vegetables, acting as an important nutraceutical component. It is recognized as a potential antioxidant, antimicrobial, and anti-inflammatory molecule. In the present study, the mechanism of anti-inflammatory action of apigenin on lipopolysaccharide (LPS)-induced pro-inflammatory cytokines and activator protein-1 (AP-1) factors in human lung A549 cells was investigated. The anti-inflammatory activity of apigenin on LPS-induced inflammation was determined by analyzing the expression of pro-inflammatory cytokines, nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and different AP-1 factors. Apigenin significantly inhibited the LPS-induced expression of iNOS, COX-2, expression of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, and TNF-α), and AP-1 proteins (c-Jun, c-Fos, and JunB) including nitric oxide production. Study confirms the anti-inflammatory effect of apigenin by inhibiting the expression of inflammatory mediators and AP-1 factors involved in the inflammation and its importance in the treatment of lung inflammatory diseases.

  8. α-Solanine Isolated From Solanum Tuberosum L. cv Jayoung Abrogates LPS-Induced Inflammatory Responses Via NF-κB Inactivation in RAW 264.7 Macrophages and Endotoxin-Induced Shock Model in Mice.

    PubMed

    Shin, Ji-Sun; Lee, Kyoung-Goo; Lee, Hwi-Ho; Lee, Hae Jun; An, Hyo-Jin; Nam, Jung-Hwan; Jang, Dae Sik; Lee, Kyung-Tae

    2016-10-01

    α-Solanine, a trisaccharide glycoalkaloid, has been reported to possess anti-cancer effects. In this study, we investigated the anti-inflammatory effects of α-solanine isolated from "Jayoung" a dark purple-fleshed potato by examining its in vitro inhibitory effects on inducible nitric-oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines in LPS-induced RAW 264.7 macrophages and its in vivo effects on LPS-induced septic shock in a mouse model. α-Solanine suppressed the expression of iNOS and COX-2 both at protein and mRNA levels and consequently inhibited nitric oxide (NO) and prostaglandin E2 (PGE2 ) production in LPS-induced RAW 264.7 macrophages. α-Solanine also reduced the production and mRNA expression of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) induced by LPS. Furthermore, molecular mechanism studies indicated that α-solanine inhibited LPS-induced activation of nuclear factor-κB (NF-κB) by reducing nuclear translocation of p65, degradation of inhibitory κBα (IκBα), and phosphorylation of IκB kinaseα/β (IKKα/β). In an in vivo experiment of LPS-induced endotoxemia, treatment with α-solanine suppressed mRNA expressions of iNOS, COX-2, IL-6, TNF-α, and IL-1β, and the activation of NF-κB in liver. Importantly, α-solanine increased the survival rate of mice in LPS-induced endotoxemia and polymicrobial sepsis models. Taken together, our data suggest that the α-solanine may be a promising therapeutic against inflammatory diseases by inhibiting the NF-κB signaling pathway. J. Cell. Biochem. 117: 2327-2339, 2016. © 2016 Wiley Periodicals, Inc.

  9. Manganese Potentiates LPS-Induced Heme-Oxygenase 1 in Microglia but not Dopaminergic Cells: Role in Controlling Microglial Hydrogen Peroxide and Inflammatory Cytokine Output

    PubMed Central

    Dodd, Celia A.; Filipov, Nikolay M.

    2012-01-01

    Excessive manganese (Mn) exposure increases output of glial-derived inflammatory products, which may indirectly contribute to the neurotoxic effects of this essential metal. In microglia, Mn increases hydrogen peroxide (H2O2) release and potentiates lipopolysaccharide (LPS)-induced cytokines (TNF-α, IL-6) and nitric oxide (NO). Inducible heme-oxygenase (HO-1) plays a role in the regulation of inflammation and its expression is upregulated in response to oxidative stressors, including metals and LPS. Because Mn can oxidatively affect neurons both directly and indirectly, we investigated the effect of Mn exposure on the induction of HO-1 in resting and LPS-activated microglia (N9) and dopaminergic neurons (N27). In microglia, 24 h exposure to Mn (up to 250 μM) had minimal effects on its own, but it markedly potentiated LPS (100 ng/ml)-induced HO-1protein and mRNA. Inhibition of microglial HO-1 activity with two different inhibitors indicated that HO-1 is a positive regulator of the Mn-potentiated cytokine output and a negative regulator of the Mn-induced H2O2 output. Mn enhancement of LPS-induced HO-1 does not appear to be dependent on H2O2 or NO, as Mn+LPS-induced H2O2 release was not greater than the increase induced by Mn alone and inhibition of iNOS did not change Mn potentiation of HO-1. However, because Mn exposure potentiated the LPS-induced nuclear expression of small Maf proteins, this may be one mechanism Mn uses to affect the expression of HO-1 in activated microglia. Finally, the potentiating effects of Mn on HO-1 appear to be glia-specific for Mn, LPS, or Mn+LPS did not induce HO-1 in N27 neuronal cells. PMID:21963524

  10. Effects of PPAR-γ agonist treatment on LPS-induced mastitis in rats.

    PubMed

    Mingfeng, Ding; Xiaodong, Ming; Yue, Liu; Taikui, Piao; Lei, Xiao; Ming, Liu

    2014-12-01

    PPAR-γ, a member of the nuclear receptor superfamily, plays an important role in lipid metabolism and inflammation. The aim of this study was to investigate the preventive effects of synthetic PPAR-γ agonist rosiglitazone on lipopolysaccharide (LPS)-induced mastitis in rats. The mouse model of mastitis was induced by the injection of LPS through the duct of the mammary gland. Rosiglitazone was injected 1 h before the induction of LPS intraperitoneally. The results showed that rosiglitazone attenuated the infiltration of inflammatory cells, the activity of myeloperoxidase (MPO), and the production of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in a dose-dependent manner. Additionally, Western blotting showed that rosiglitazone inhibited the phosphorylation of IκB-α and NF-κB p65. These results indicated that rosiglitazone has a protective effect on mastitis, and the anti-inflammatory mechanism of rosiglitazone on LPS-induced mastitis in rats may be due to its ability to inhibit NF-κB signaling pathways. PPAR-γ may be a potential therapeutic target against mastitis.

  11. Capsaicin pretreatment attenuates LPS-induced hypothermia through TRPV1-independent mechanisms in chicken.

    PubMed

    Nikami, Hideki; Mahmoud, Motamed Elsayed; Shimizu, Yasutake; Shiina, Takahiko; Hirayama, Haruko; Iwami, Momoe; Dosoky, Reem Mahmoud; Ahmed, Moustafa Mohamed; Takewaki, Tadashi

    2008-06-06

    It has been demonstrated that chicken TRPV1 (transient receptor potential vanilloid of subtype-1) is insensitive to capsaicin (CAP), and therefore, a chicken model is suitable to analyze the CAP-sensitive TRPV1-independent pathway. We elucidated here the possible involvement of the pathway in hypothermia induced by bacterial endotoxin (lipopolysaccharide, LPS) in chickens. Chicks were pretreated with CAP (10 mg/kg, iv) at 1, 2 and 3 days of age to desensitize them towards the CAP-sensitive pathway. An intravenous injection of LPS in 4-day-old chicks caused progressive hypothermia, ending with collapse and 78% mortality within 12 h after injection. The CAP pretreatment rescued the LPS-induced endotoxin shock and hypothermia in chicks. LPS-induced iNOS expression as well as NO production in liver and lung was suppressed by CAP pretreatment. CAP pretreatment also attenuated hypothermia due to exposure of chicks to cold ambient temperature. These findings suggest that a CAP-sensitive TRPV1-independent pathway may be involved in pathophysiological hypothermic reactions through the mediation of NO in chickens.

  12. Cannabidiol (CBD) enhances lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice.

    PubMed

    Karmaus, Peer W F; Wagner, James G; Harkema, Jack R; Kaminski, Norbert E; Kaplan, Barbara L F

    2013-01-01

    Cannabidiol (CBD) is a plant-derived cannabinoid that has been predominantly characterized as anti-inflammatory. However, it is clear that immune effects of cannabinoids can vary with cannabinoid concentration, or type or magnitude of immune stimulus. The present studies demonstrate that oral administration of CBD enhanced lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice. The enhanced inflammatory cell infiltrate as observed in bronchoalveolar lavage fluid (BALF) was comprised mainly of neutrophils, with some monocytes. Concomitantly, CBD enhanced pro-inflammatory cytokine mRNA production, including tumor necrosis factor-α (Tnfa), interleukins (IL)-5 and -23 (Il6, Il23), and granulocyte colony stimulating factor (Gcsf). These results demonstrate that the CBD-mediated enhancement of LPS-induced pulmonary inflammation is mediated at the level of transcription of a variety of pro-inflammatory genes. The significance of these studies is that CBD is part of a therapeutic currently in use for spasticity and pain in multiple sclerosis patients, and therefore it is important to further understand mechanisms by which CBD alters immune function.

  13. Red Blood Cell Supernatant Potentiates LPS-Induced Proinflammatory Cytokine Response From Peripheral Blood Mononuclear Cells

    PubMed Central

    Nydam, Trevor L.; Clarke, Jason H.; Banerjee, Anirban; Silliman, Christopher C.; McCarter, Martin D.

    2009-01-01

    Allogeneic blood transfusion has an immunomodulatory capacity on its recipients through accumulation of immunologically active substances with blood storage, and prestorage leukoreduction reduces many of these mediators. We investigated lipopolysaccharide (LPS)-induced cytokine response of peripheral blood mononuclear cells (PBMCs) exposed to packed red blood cell (PRBC) supernatants from leukoreduced (LR) or non-leukoreduced (NLR) units with variable duration of storage. PRBC units were collected with or without leukoreduction on Day 0 before routine storage. The plasma fraction (supernatant) was isolated from LR and NLR units after 1 day (D1) or 42 days (D42) of storage and exposed to PBMCs versus control media for 24 h, then with LPS for an additional 24 h. Cell supernatants were analyzed for IL-1β, IL-6, IL-8, IL-10, and TNF-α by cytokine bead array. IL-1β, TNF-α, and IL-6 were significantly elevated in PRBC groups versus control. D42 NLR PRBC supernatant significantly increased secretion of IL-1β and IL-6 compared to D1 NLR PRBC supernatant. LR significantly attenuated the cytokine response of IL-1β. Thus, PRBC supernatant potentiates proinflammatory LPS-induced cytokine secretion from PBMCs. This response is accentuated with storage duration and partially attenuated with leukoreduction. These findings may partially explain the immune activation seen clinically after blood transfusion. PMID:19441884

  14. Cannabidiol (CBD) Enhances Lipopolysaccharide (LPS)-Induced Pulmonary Inflammation in C57BL/6 Mice

    PubMed Central

    Karmaus, Peer W. F.; Wagner, James G.; Harkema, Jack R.; Kaminski, Norbert E.; Kaplan, Barbara L.F.

    2012-01-01

    Cannabidiol (CBD) is a plant-derived cannabinoid that has been predominantly characterized as anti-inflammatory. However, it is clear that immune effects of cannabinoids can vary with cannabinoid concentration, or type or magnitude of immune stimulus. The present studies demonstrate that oral administration of CBD enhanced lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice. The enhanced inflammatory cell infiltrate as observed in bronchoalveolar lavage fluid (BALF) was comprised mainly of neutrophils, with some monocytes. Concomitantly, CBD enhanced pro-inflammatory cytokine mRNA production, including tumor necrosis factor-α (Tnfa), interleukins (IL) 6 and 23 (Il6, Il23), and granulocyte colony stimulating factor (Gcsf). These results demonstrate that the CBD-mediated enhancement of LPS-induced pulmonary inflammation is mediated at the level of transcription of a variety of pro-inflammatory genes. The significance of these studies is that CBD is part of a therapeutic currently in use for spasticity and pain in multiple sclerosis patients, and therefore it is important to further understand mechanisms by which CBD alters immune function. PMID:23173851

  15. Mesenchymal Stem Cell-Educated Macrophages Ameliorate LPS-Induced Systemic Response

    PubMed Central

    Hu, Yaoqin; Qin, Chaojin; Zheng, Guoping; Tao, Huikang; Zhang, Yan; Qiu, Guanguan; Ge, Menghua; Huang, Lanfang; Chen, Lina; Cheng, Baoli

    2016-01-01

    Both bone marrow and adipose-derived mesenchymal stem cells (ASCs) have immunomodulatory effects. The goal of this study was to determine whether ASCs-educated macrophages could directly ameliorate LPS-induced systemic response in a mouse model. Mouse peritoneal macrophages were cocultured with ASCs in a Transwell system for 2 days to educate macrophages. Mice were divided into 5 groups: control, LPS, LPS + ASCs, LPS + untreated macrophages, and LPS + educated macrophages. Educated macrophages decreased lung inflammation, weight loss, pulmonary edema, and inflammatory cytokine response. In vitro, ASCs increased expression of M2 macrophages independent of direct cell-to-cell contact when macrophages were treated with LPS or serum from patients with acute respiratory distress syndrome (ARDS). When macrophages were cultured with serum from ARDS patients who were treated with ASCs or placebo in our previous clinical trial, there was no difference in M2 macrophage levels before and after ASCs treatment indicating a suboptimal response to the treatment protocol. ASCs also reduced the levels of LPS-induced proinflammatory cytokines in vitro which were mimicked by IL-10 and blocked by antibodies for IL-10 and IL-10 receptor supporting the notion that educated macrophages exert their anti-inflammatory effects via IL-10-dependent mechanisms. PMID:27546994

  16. miR-135b-5p inhibits LPS-induced TNFα production via silencing AMPK phosphatase Ppm1e

    PubMed Central

    Li, Ping; Fan, Jian-bo; Gao, Yanxia; Zhang, Ming; Zhang, Li; Yang, Ning; Zhao, Xiaojing

    2016-01-01

    AMPK activation in monocytes could suppress lipopolysaccharide (LPS)-induced tissue-damaging TNFa production. We are set to provoke AMPK activation via microRNA (“miRNA”) downregulating its phosphatase Ppm1e. In human U937 and THP-1 monocytes, forced expression of microRNA-135b-5p (“miR-135b-5p”) downregulated Ppm1e and activated AMPK signaling. Further, LPS-induced TNFα production in above cells was dramatically attenuated. Ppm1e shRNA knockdown in U937 cells also activated AMPK and inhibited TNFα production by LPS. AMPK activation is required for miR-135b-induced actions in monocytes, AMPKα shRNA knockdown or T172A dominant negative mutation almost abolished miR-135b-5p's suppression on LPS-induced TNFα production. Significantly, miR-135b-5p inhibited LPS-induced reactive oxygen species (ROS) production, NFκB activation and TNFα mRNA expression in human macrophages. AMPKα knockdown or mutation again abolished above actions by miR-135b-5p. We conclude that miR-135b-5p expression downregulates Ppm1e to activate AMPK signaling, which inhibits LPS-induced TNFα production via suppressing ROS production and NFκB activation. PMID:27793001

  17. Quercetin Inhibits LPS-Induced Inflammation and ox-LDL-Induced Lipid Deposition.

    PubMed

    Xue, Feng; Nie, Xiaobo; Shi, Jianping; Liu, Qingxue; Wang, Ziwei; Li, Xiting; Zhou, Jinqiu; Su, Jia; Xue, Mingming; Chen, Wei-Dong; Wang, Yan-Dong

    2017-01-01

    Aberrant activation of inflammation and excess accumulation of lipids play crucial role in the occurrence and progression of atherosclerosis (AS). Quercetin (QCT) has been tested effectively to cure AS. It is widely distributed in plant foods and has been proved to have potential antioxidative and anticancer activities. However, the underlying molecular mechanisms of OCT in AS are not completely understood. In the present study, we stimulated murine RAW264.7 cells with lipopolysaccharide (LPS) or oxidized low-density lipoproteins (ox-LDL) to mimic the development of AS. The data show that QCT treatment leads to an obvious decrease of multiple inflammatory cytokines in transcript level, including interleukin (IL)-1α, IL-1β, IL-2, IL-10, macrophage chemoattractant protein-1 (MCP-1), and cyclooxygenase-2 (COX-2) induced by LPS. Moreover, expressions of other factors that contribute to the AS development, such as matrix metalloproteinase-1 (MMP-1) and suppressor of cytokine signaling 3 (SOCS3) induced by LPS are also downregulated by QCT. Furthermore, we found that QCT suppressed LPS-induced the phosphorylation of STAT3. Meanwhile, QCT could ameliorate lipid deposition and overproduction of reactive oxygen species induced by ox-LDL, and block the expression of lectin-like oxidized LDL receptor-1 (LOX-1) in cultured macrophages. Taken together, our data reveal that QCT has obvious anti-inflammatory and antioxidant virtues and could be a therapeutic agent for the prevention and treatment of AS.

  18. Quercetin Inhibits LPS-Induced Inflammation and ox-LDL-Induced Lipid Deposition

    PubMed Central

    Xue, Feng; Nie, Xiaobo; Shi, Jianping; Liu, Qingxue; Wang, Ziwei; Li, Xiting; Zhou, Jinqiu; Su, Jia; Xue, Mingming; Chen, Wei-Dong; Wang, Yan-Dong

    2017-01-01

    Aberrant activation of inflammation and excess accumulation of lipids play crucial role in the occurrence and progression of atherosclerosis (AS). Quercetin (QCT) has been tested effectively to cure AS. It is widely distributed in plant foods and has been proved to have potential antioxidative and anticancer activities. However, the underlying molecular mechanisms of OCT in AS are not completely understood. In the present study, we stimulated murine RAW264.7 cells with lipopolysaccharide (LPS) or oxidized low-density lipoproteins (ox-LDL) to mimic the development of AS. The data show that QCT treatment leads to an obvious decrease of multiple inflammatory cytokines in transcript level, including interleukin (IL)-1α, IL-1β, IL-2, IL-10, macrophage chemoattractant protein-1 (MCP-1), and cyclooxygenase-2 (COX-2) induced by LPS. Moreover, expressions of other factors that contribute to the AS development, such as matrix metalloproteinase-1 (MMP-1) and suppressor of cytokine signaling 3 (SOCS3) induced by LPS are also downregulated by QCT. Furthermore, we found that QCT suppressed LPS-induced the phosphorylation of STAT3. Meanwhile, QCT could ameliorate lipid deposition and overproduction of reactive oxygen species induced by ox-LDL, and block the expression of lectin-like oxidized LDL receptor-1 (LOX-1) in cultured macrophages. Taken together, our data reveal that QCT has obvious anti-inflammatory and antioxidant virtues and could be a therapeutic agent for the prevention and treatment of AS. PMID:28217098

  19. Eriodictyol, a plant flavonoid, attenuates LPS-induced acute lung injury through its antioxidative and anti-inflammatory activity

    PubMed Central

    ZHU, GUANG-FA; GUO, HONG-JUAN; HUANG, YAN; WU, CHUN-TING; ZHANG, XIANG-FENG

    2015-01-01

    Acute lung injury (ALI) is characterized by excessive inflammatory responses and oxidative injury in the lung tissue. It has been suggested that anti-inflammatory or antioxidative agents could have therapeutic effects in ALI, and eriodictyol has been reported to exhibit antioxidative and anti-inflammatory activity in vitro. The aim of the present study was to investigate the effect of eriodictyol on lipopolysaccharide (LPS)-induced ALI in a mouse model. The mice were divided into four groups: Phosphate-buffered saline-treated healthy control, LPS-induced ALI, vehicle-treated ALI (LPS + vehicle) and eriodictyol-treated ALI (LPS + eriodictyol). Eriodictyol (30 mg/kg) was administered orally once, 2 days before the induction of ALI. The data showed that eriodictyol pretreatment attenuated LPS-induced ALI through its antioxidative and anti-inflammatory activity. Furthermore, the eriodictyol pretreatment activated the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway in the ALI mouse model, which attenuated the oxidative injury and inhibited the inflammatory cytokine expression in macrophages. In combination, the results of the present study demonstrated that eriodictyol could alleviate the LPS-induced lung injury in mice by regulating the Nrf2 pathway and inhibiting the expression of inflammatory cytokines in macrophages, suggesting that eriodictyol could be used as a potential drug for the treatment of LPS-induced lung injury. PMID:26668626

  20. Punicalagin inhibits inflammation in LPS-induced RAW264.7 macrophages via the suppression of TLR4-mediated MAPKs and NF-κB activation.

    PubMed

    Xu, Xiaolong; Yin, Peng; Wan, Changrong; Chong, Xinlu; Liu, Mingjiang; Cheng, Peng; Chen, Jiajia; Liu, Fenghua; Xu, Jianqin

    2014-06-01

    Punicalagin (2,3,hexahydroxydiphenoyl-gallagyl-D-glucose and referred to as PUN) is a bioactive ellagitannin isolated from pomegranate, which is widely used for the treatment of inflammatory bowel disease (IBD), diarrhea, and ulcers in Chinese traditional medicine. In this study, we detected the anti-inflammation potentials of PUN in lipopolysaccharide (LPS)-induced macrophages and tried to uncover the underlying mechanism. Results demonstrated that PUN (25, 50, or 100 μM) treatment could significantly decrease the LPS-induced production of nitric oxide), prostaglandin E2 (PGE2), interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in RAW264.7 cells. Molecular research showed that PUN inhibited the activation of upstream mediator nuclear factor-κB by suppressing the phosphorylation of IκBα and p65. Results also indicated that PUN could suppress the phosphorylation of mitogen-activated protein kinase including p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase. In conclusion, we observed that PUN could inhibit LPS-induced inflammation, and it may be a potential choice for the treatment of inflammation diseases.

  1. The disintegrin, trimucrin, suppresses LPS-induced activation of phagocytes primarily through blockade of NF-κB and MAPK activation.

    PubMed

    Hung, Yu-Chun; Hsu, Chun-Chieh; Chung, Ching-Hu; Huang, Tur-Fu

    2016-07-01

    In addition to antiplatelet activity, disintegrin, a small-mass RGD-containing polypeptide, has been shown to exert anti-inflammatory effects but the mechanism involved remains unclear. In this study, we report that trimucrin, a disintegrin from the venom of Trimeresurus mucrosquamatus, inhibits lipopolysaccharide (LPS)-induced stimulation of THP-1 and RAW 264.7 cells. We also investigate the underlying mechanism. Trimucrin decreased the release of proinflammatory cytokines including tumor necrosis factor α (TNFα), interleukin-6 (IL-6), nitric oxide, and reactive oxygen species (ROS), and inhibited the adhesion and migration of LPS-activated phagocytes. Trimucrin significantly blocked the expression of nuclear factor kappaB (NF-κB)-related downstream inducible enzymes such as inducible nitric oxide synthase (iNOS) and COX-2. In addition, its anti-inflammatory effect was associated with the decreased mitogen-activated protein kinase (MAPK) phosphorylation. Furthermore, trimucrin concentration dependently inhibited LPS-induced phosphorylation of focal adhesion kinase (FAK), PI3K, and Akt. Trimucrin also reversed the DNA-binding activity of NF-κB by suppressing the LPS-induced nuclear translocation of p65 and the cytosolic IκB release. Flow cytometric analyses showed that trimucrin bound to cells in a concentration-dependent manner. The anti-αVβ3 mAb also specifically decreased the binding of fluorescein isothiocyanate (FITC)-conjugated trimucrin. Binding assays demonstrated that integrin αVβ3 was the binding site for trimucrin on THP-1 and RAW 264.7 cells. In conclusion, we showed that trimucrin decreases the inflammatory reaction through the attenuation of iNOS expression and nitric oxide (NO) production by blocking MAP kinase and the NF-κB activation in LPS-stimulated THP-1 and RAW 264.7 cells.

  2. Alpinia katsumadai H(AYATA) seed extract inhibit LPS-induced inflammation by induction of heme oxygenase-1 in RAW264.7 cells.

    PubMed

    Lee, Mee-Young; Seo, Chang-Seob; Lee, Jin-Ah; Shin, In-Sik; Kim, Su-Jeong; Ha, HeyKyung; Shin, Hyeun-Kyoo

    2012-04-01

    In the present study, we investigated the effects of Alpinia katsumadai H(AYATA) (Zingiberaceae) seed ethanolic extract (AKEE) and its three components on the production of inflammatory mediators and some potential underlying mechanisms in lipopolysaccharide (LPS)-induced inflammation RAW264.7 cells. The whole formula, AKEE, and three major component compounds were then evaluated for their effects on inflammation-related parameters using LPS-induced RAW264.7 cells. Production of namely nitric oxide (NO) and cytokine levels were measured by the Griess reagent and ELISA, respectively. To investigate the underlying mechanisms of anti-inflammatory activities of AKEE, protein expression of nitric oxide synthase (inducible nitric oxide synthase, iNOS), heme oxygenase-1 (HO-1), and nuclear factor-kappa B (NF-κB) were evaluated by western blot analysis. AKEE and the major group of compounds in AKEE (alpinetin, cardamonin, and pinocembrin) complement exert anti-inflammatory effects for NO and PGE(2) production. In addition, AKEE treatment significantly inhibited the LPS-induced production of interleukin-6 and tumor necrosis factor (TNF)-α, as well as the expression of iNOS. AKEE also induced HO-1 expression in RAW264.7 cells and inhibited the nuclear translocation of NF-κB by preventing degradation of the inhibitor kappa B-alpha. We also demonstrated that the effects of AKEE on TNF-α production were partially reversed by the HO-1 inhibitor tin protoporphyrin. These results indicate that AKEE and its major component may have anti-inflammatory activity via induction of HO-1 expression was partly responsible for the anti-inflammatory effects.

  3. Lugrandoside attenuates LPS-induced acute respiratory distress syndrome by anti-inflammation and anti-apoptosis in mice

    PubMed Central

    Li, Chengbao; Huang, Ying; Yao, Xueya; Hu, Baoji; Wu, Suzhen; Chen, Guannan; Lv, Xin; Tian, Fubo

    2016-01-01

    This study aimed to investigate the protective effects and specific mechanisms of lugrandoside (LG) on lipopolysaccharides (LPS)-induced acute respiratory distress syndrome (ARDS). LG is a novel phenylpropanoid glycoside with many biological properties, isolated from the culinary leaves of Digitalis lutea L. and Digitalis grandiflora Miller. The primary indicators to assess the lung injury were infiltration of inflammatory cells; pulmonary edema; expression of proinflammatory cytokines, cyclo-oxygenase 2, and intracellular adhesion molecule 1; activation of nuclear factor-κB pathways; and cellular apoptosis. The results showed that LG evidently alleviated the inflammatory response, decreased the apoptosis of alveolar macrophages, and improved the lung injury in mice with LPS-induced ARDS. In conclusion, LG improved LPS-induced ARDS by anti-inflammation and anti-apoptosis and might be a promising pharmacological therapy for ARDS. PMID:28078026

  4. Chikusetsusaponin IVa Methyl Ester Isolated from the Roots of Achyranthes japonica Suppresses LPS-Induced iNOS, TNF-α, IL-6, and IL-1β Expression by NF-κB and AP-1 Inactivation.

    PubMed

    Lee, Hae-Jun; Shin, Ji-Sun; Lee, Woo-Seok; Shim, Heon-Yong; Park, Ji-Min; Jang, Dae-Sik; Lee, Kyung-Tae

    2016-01-01

    We investigated the effect of chikusetsusaponin IVa (CS) and chikusetsusaponin IVa methyl ester (CS-ME) from the roots of Achyranthes japonica NAKAI on lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production in RAW264.7 macrophages. CS-ME more potently inhibited LPS-induced NO and PGE2 production than CS. CS-ME concentration-dependently inhibited LPS-induced tumor necrosis factor (TNF)-α and interleukin (IL)-6 and IL-1β production in RAW264.7 macrophages and mouse peritoneal macrophages. Consistent with these findings, CS-ME suppressed LPS-induced expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 at protein level as well as iNOS, COX-2, TNF-α, IL-6, and IL-1β at mRNA level. In addition, CS-ME suppressed LPS-induced transcriptional activity of nuclear factor (NF)-κB and activator protein (AP)-1. The anti-inflammatory properties of CS-ME might result from suppression of iNOS, COX-2, TNF-α, IL-6, and IL-1β expression through downregulation of NF-κB and AP-1 in macrophages.

  5. Transiently enhanced LPS-induced fever following hyperthermic stress in rabbits

    NASA Astrophysics Data System (ADS)

    Shibata, Masaaki; Uno, Tadashi; Riedel, Walter; Nishimaki, Michiyo; Watanabe, Kaori

    2005-11-01

    Hyperthermia has been shown to induce an enhanced febrile response to the bacterial-derived endotoxin lipopolysaccharide (LPS). The aim of the present study was to test the hypothesis that the enhanced LPS-induced fever seen in heat stressed (HS) animals is caused by leakage of intestinal bacterial LPS into the circulation. Male rabbits were rendered transiently hyperthermic (a maximum rectal temperature of 43°C) and divided into three groups. They were then allowed to recover in a room at 24°C for 1, 2 or 3 days post-HS. One day after injection with LPS, the post-HS rabbits exhibited significantly higher fevers than the controls, though this was not seen in rabbits at either 2 or 3 days post-HS. The plasma levels of endogenous LPS were significantly increased during the HS as compared to those seen in normothermic rabbits prior to HS. LPS fevers were not induced in these animals. One day post-HS, rabbits that had been pretreated with oral antibiotics exhibited significantly attenuated LPS levels. When challenged with human recombinant interleukin-1β instead of LPS, the 1-day post-HS rabbits did not respond with enhanced fevers. The plasma levels of TNFα increased similarly during LPS-induced fevers in both the control and 1-day post-HS rabbits, while the plasma levels of corticosterone and the osmolality of the 1-day post-HS rabbits showed no significant differences to those seen prior to the HS. These results suggest that the enhanced fever in the 1-day post-HS rabbits is LPS specific, and may be caused by increased leakage of intestinal endotoxin into blood circulation.

  6. Protein tyrosine phosphatase-1B contributes to LPS-induced leptin resistance in male rats.

    PubMed

    Borges, Beatriz de Carvalho; Rorato, Rodrigo C; Uchoa, Ernane Torres; Marangon, Paula B; Elias, Carol F; Antunes-Rodrigues, Jose; Elias, Lucila L K

    2015-01-01

    Leptin resistance is induced by the feedback inhibitors tyrosine phosphatase-1B (PTP1B) and decreased Src homology 2 domain-containing tyrosine phosphatase-2 (SHP-2) signaling. To investigate the participation of PTP1B and SHP-2 in LPS-induced leptin resistance, we injected repeated (6-LPS) intraperitoneal LPS doses (100 μg/kg ip) for comparison with a single (1-LPS) treatment and evaluated the expression of SHP-2, PTP1B, p-ERK1/2, and p-STAT3 in the hypothalamus of male Wistar rats. The single LPS treatment increased the expression of p-STAT3 and PTP1B but not SHP-2. The repeated LPS treatment reduced SHP-2, increased PTP1B, and did not change p-STAT3. We observed that the PTP1B expression induced by the endotoxin was highly colocalized with leptin receptor cells in the hypothalamus of LepRb-IRES-Cre-tdTomato reporter mice. The single, but not the repeated, LPS treatment decreased the food intake and body weight. Leptin had no stimulatory effect on the hypophagia, body weight loss, or pSTAT3 expression in 6-LPS rats, indicating leptin unresponsiveness. Notably, the PTP1B inhibitor (3.0 nmol/rat in 5 μl icv) restored the LPS-induced hypophagia in 6-LPS rats and restored the ability of leptin to reduce food intake and body weight as well as to phosphorylate STAT3 in the arcuate, paraventricular, and ventromedial nuclei of the hypothalamus. The present data suggest that an increased PTP1B expression in the hypothalamus underlies the development of leptin resistance during repeated exposure to LPS. Our findings contribute to understanding the mechanisms involved in leptin resistance during low-grade inflammation as seen in obesity.

  7. Activation of MTOR in pulmonary epithelium promotes LPS-induced acute lung injury.

    PubMed

    Hu, Yue; Lou, Jian; Mao, Yuan-Yuan; Lai, Tian-Wen; Liu, Li-Yao; Zhu, Chen; Zhang, Chao; Liu, Juan; Li, Yu-Yan; Zhang, Fan; Li, Wen; Ying, Song-Min; Chen, Zhi-Hua; Shen, Hua-Hao

    2016-12-01

    MTOR (mechanistic target of rapamycin [serine/threonine kinase]) plays a crucial role in many major cellular processes including metabolism, proliferation and macroautophagy/autophagy induction, and is also implicated in a growing number of proliferative and metabolic diseases. Both MTOR and autophagy have been suggested to be involved in lung disorders, however, little is known about the role of MTOR and autophagy in pulmonary epithelium in the context of acute lung injury (ALI). In the present study, we observed that lipopolysaccharide (LPS) stimulation induced MTOR phosphorylation and decreased the expression of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β)-II, a hallmark of autophagy, in mouse lung epithelium and in human bronchial epithelial (HBE) cells. The activation of MTOR in HBE cells was mediated by TLR4 (toll-like receptor 4) signaling. Genetic knockdown of MTOR or overexpression of autophagy-related proteins significantly attenuated, whereas inhibition of autophagy further augmented, LPS-induced expression of IL6 (interleukin 6) and IL8, through NFKB signaling in HBE cells. Mice with specific knockdown of Mtor in bronchial or alveolar epithelial cells exhibited significantly attenuated airway inflammation, barrier disruption, and lung edema, and displayed prolonged survival in response to LPS exposure. Taken together, our results demonstrate that activation of MTOR in the epithelium promotes LPS-induced ALI, likely through downregulation of autophagy and the subsequent activation of NFKB. Thus, inhibition of MTOR in pulmonary epithelial cells may represent a novel therapeutic strategy for preventing ALI induced by certain bacteria.

  8. Adenosine A2A receptor signaling attenuates LPS-induced pro-inflammatory cytokine formation of mouse macrophages by inducing the expression of DUSP1.

    PubMed

    Köröskényi, Krisztina; Kiss, Beáta; Szondy, Zsuzsa

    2016-07-01

    Adenosine is known to reduce inflammation by suppressing the activity of most immune cells. Previous studies have shown that lipopolysaccharide (LPS) stimulated mouse macrophages produce adenosine, and the adenosine A2A receptor (A2AR) signaling activated in an autocrine manner attenuates LPS-induced pro-inflammatory cytokine formation. It has been suggested that A2AR signaling inhibits LPS-induced pro-inflammatory cytokine production through a unique cAMP-dependent, but PKA- and Epac-independent signaling pathway. However, the mechanism of inhibition was not identified so far. Here we report that LPS stimulation enhances A2AR expression in mouse bone marrow derived macrophages, and loss of A2ARs results in enhanced LPS-induced pro-inflammatory response. Loss of A2ARs in A2AR null macrophages did not alter the LPS-induced NF-κB activation, but an enhanced basal and LPS-induced phosphorylation of MAP kinases (especially that of JNKs) was detected in A2AR null cells. A2AR signaling did not alter the LPS-induced phosphorylation of their upstream kinases, but by regulating adenylate cyclase activity it enhanced the expression of dual specific phosphatase (DUSP)1, a negative regulator of MAP kinases. As a result, lower basal and LPS-induced DUSP1 mRNA and protein levels can be detected in A2AR null macrophages. Silencing of DUSP1 mRNA expression resulted in higher basal and LPS-induced JNK phosphorylation and LPS-induced pro-inflammatory cytokine formation in wild type macrophages, but had no effect on that in A2AR null cells. Our data indicate that A2AR signaling regulates both basal and LPS-induced DUSP1 levels in macrophages via activating the adenylate cyclase pathway.

  9. A TLR4-interacting SPA4 peptide inhibits LPS-induced lung inflammation.

    PubMed

    Ramani, Vijay; Madhusoodhanan, Rakhesh; Kosanke, Stanley; Awasthi, Shanjana

    2013-12-01

    The interaction between surfactant protein-A (SP-A) and TLR4 is important for host defense. We have recently identified an SPA4 peptide region from the interface of SP-A-TLR4 complex. Here, we studied the involvement of the SPA4 peptide region in SP-A-TLR4 interaction using a two-hybrid system, and biological effects of SPA4 peptide in cell systems and a mouse model. HEK293 cells were transfected with plasmid DNAs encoding SP-A or a SP-A-mutant lacking SPA4 peptide region and TLR4. Luciferase activity was measured as the end-point of SP-A-TLR4 interaction. NF-κB activity was also assessed simultaneously. Next, the dendritic cells or mice were challenged with Escherichia coli-derived LPS and treated with SPA4 peptide. Endotoxic shock-like symptoms and inflammatory parameters (TNF-α, NF-κB, leukocyte influx) were assessed. Our results reveal that the SPA4 peptide region contributes to the SP-A-TLR4 interaction and inhibits the LPS-induced NF-κB activity and TNF-α. We also observed that the SPA4 peptide inhibits LPS-induced expression of TNF-α, nuclear localization of NF-κB-p65 and cell influx, and alleviates the endotoxic shock-like symptoms in a mouse model. Our results suggest that the anti-inflammatory activity of the SPA4 peptide through its binding to TLR4 can be of therapeutic benefit.

  10. Osmotin attenuates LPS-induced neuroinflammation and memory impairments via the TLR4/NFκB signaling pathway

    PubMed Central

    Badshah, Haroon; Ali, Tahir; Kim, Myeong Ok

    2016-01-01

    Toll-like receptor 4 (TLR4) signaling in the brain mediates autoimmune responses and induces neuroinflammation that results in neurodegenerative diseases, such as Alzheimer’s disease (AD). The plant hormone osmotin inhibited lipopolysaccharide (LPS)-induced TLR4 downstream signaling, including activation of TLR4, CD14, IKKα/β, and NFκB, and the release of inflammatory mediators, such as COX-2, TNF-α, iNOS, and IL-1β. Immunoprecipitation demonstrated colocalization of TLR4 and AdipoR1 receptors in BV2 microglial cells, which suggests that osmotin binds to AdipoR1 and inhibits downstream TLR4 signaling. Furthermore, osmotin treatment reversed LPS-induced behavioral and memory disturbances and attenuated LPS-induced increases in the expression of AD markers, such as Aβ, APP, BACE-1, and p-Tau. Osmotin improved synaptic functionality via enhancing the activity of pre- and post-synaptic markers, like PSD-95, SNAP-25, and syntaxin-1. Osmotin also prevented LPS-induced apoptotic neurodegeneration via inhibition of PARP-1 and caspase-3. Overall, our studies demonstrated that osmotin prevented neuroinflammation-associated memory impairment and neurodegeneration and suggest AdipoR1 as a therapeutic target for the treatment of neuroinflammation and neurological disorders, such as AD. PMID:27093924

  11. Necroptosis suppresses inflammation via termination of TNF- or LPS-induced cytokine and chemokine production.

    PubMed

    Kearney, C J; Cullen, S P; Tynan, G A; Henry, C M; Clancy, D; Lavelle, E C; Martin, S J

    2015-08-01

    TNF promotes a regulated form of necrosis, called necroptosis, upon inhibition of caspase activity in cells expressing RIPK3. Because necrosis is generally more pro-inflammatory than apoptosis, it is widely presumed that TNF-induced necroptosis may be detrimental in vivo due to excessive inflammation. However, because TNF is intrinsically highly pro-inflammatory, due to its ability to trigger the production of multiple cytokines and chemokines, rapid cell death via necroptosis may blunt rather than enhance TNF-induced inflammation. Here we show that TNF-induced necroptosis potently suppressed the production of multiple TNF-induced pro-inflammatory factors due to RIPK3-dependent cell death. Similarly, necroptosis also suppressed LPS-induced pro-inflammatory cytokine production. Consistent with these observations, supernatants from TNF-stimulated cells were more pro-inflammatory than those from TNF-induced necroptotic cells in vivo. Thus necroptosis attenuates TNF- and LPS-driven inflammation, which may benefit intracellular pathogens that evoke this mode of cell death by suppressing host immune responses.

  12. Moringa fruit inhibits LPS-induced NO/iNOS expression through suppressing the NF-κ B activation in RAW264.7 cells.

    PubMed

    Lee, Hyo-Jin; Jeong, Yun-Jeong; Lee, Tae-Sung; Park, Yoon-Yub; Chae, Whi-Gun; Chung, Il-Kyung; Chang, Hyeun-Wook; Kim, Cheorl-Ho; Choi, Yung-Hyun; Kim, Wun-Jae; Moon, Sung-Kwon; Chang, Young-Chae

    2013-01-01

    In this study, we evaluated the anti-inflammatory effects of moringa (Moringa oleifera Lam.), a natural biologically active substance, by determining its inhibitory effects on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated macrophage RAW264.7 cells. Extracts from different parts of moringa (root, leaf, and fruit) reduced LPS-induced nitric oxide (NO) release in a dose-dependent manner. The moringa fruit extract most effectively inhibited LPS-induced NO production and levels of inducible nitric oxide synthase (iNOS). The moringa fruit extract also was shown to suppress the production of inflammatory cytokines including IL-1β, TNF-α, and IL-6. Furthermore, moringa fruit extract inhibited the cytoplasmic degradation of I κ B -α and the nuclear translocation of p65 proteins, resulting in lower levels of NF -κ B transactivation. Collectively, the results of this study demonstrate that moringa fruit extract reduces the levels of pro-inflammatory mediators including NO , IL-1β, TNF-α, and IL-6 via the inhibition of NF -κ B activation in RAW264.7 cells. These findings reveal, in part, the molecular basis underlying the anti-inflammatory properties of moringa fruit extract.

  13. Effects of Lutein and Zeaxanthin on LPS-Induced Secretion of IL-8 by Uveal Melanocytes and Relevant Signal Pathways.

    PubMed

    Chao, Shih-Chun; Vagaggini, Tommaso; Nien, Chan-Wei; Huang, Sheng-Chieh; Lin, Hung-Yu

    2015-01-01

    The effects of lutein and zeaxanthin on lipopolysaccharide- (LPS-) induced secretion of IL-8 by uveal melanocytes (UM) were tested in cultured human UM. MTT assay revealed that LPS (0.01-1 μg/mL) and lutein and zeaxanthin (1-10 μM) did not influence the cell viability of cultured UM. LPS caused a dose-dependent increase of secretion of IL-8 by cultured UM. Lutein and zeaxanthin did not affect the constitutive secretion of IL-8. However, lutein and zeaxanthin decreased LPS-induced secretion of IL-8 in cultured UM in a dose-dependent manner. LPS significantly increased NF-κB levels in cell nuclear extracts and p-JNK levels in the cell lysates from UM, but not p-p38 MAPK and p-ERG. Lutein or zeaxanthin significantly reduced LPS-induced increase of NF-κB and p-JNK levels, but not p38 MAPK and ERG levels. The present study demonstrated that lutein and zeaxanthin inhibited LPS-induced secretion of IL-8 in cultured UM via JNK and NF-κB signal pathways. The anti-inflammatory effects of lutein and zeaxanthin might be explored as a therapeutic approach in the management of uveitis and other inflammatory diseases of the eye.

  14. Effects of Lutein and Zeaxanthin on LPS-Induced Secretion of IL-8 by Uveal Melanocytes and Relevant Signal Pathways

    PubMed Central

    Chao, Shih-Chun; Vagaggini, Tommaso; Nien, Chan-Wei; Huang, Sheng-Chieh; Lin, Hung-Yu

    2015-01-01

    The effects of lutein and zeaxanthin on lipopolysaccharide- (LPS-) induced secretion of IL-8 by uveal melanocytes (UM) were tested in cultured human UM. MTT assay revealed that LPS (0.01–1 μg/mL) and lutein and zeaxanthin (1–10 μM) did not influence the cell viability of cultured UM. LPS caused a dose-dependent increase of secretion of IL-8 by cultured UM. Lutein and zeaxanthin did not affect the constitutive secretion of IL-8. However, lutein and zeaxanthin decreased LPS-induced secretion of IL-8 in cultured UM in a dose-dependent manner. LPS significantly increased NF-κB levels in cell nuclear extracts and p-JNK levels in the cell lysates from UM, but not p-p38 MAPK and p-ERG. Lutein or zeaxanthin significantly reduced LPS-induced increase of NF-κB and p-JNK levels, but not p38 MAPK and ERG levels. The present study demonstrated that lutein and zeaxanthin inhibited LPS-induced secretion of IL-8 in cultured UM via JNK and NF-κB signal pathways. The anti-inflammatory effects of lutein and zeaxanthin might be explored as a therapeutic approach in the management of uveitis and other inflammatory diseases of the eye. PMID:26609426

  15. Mycobacterium tuberculosis lipoarabinomannan enhances LPS-induced TNF-α production and inhibits NO secretion by engaging scavenger receptors.

    PubMed

    Józefowski, Szczepan; Sobota, Andrzej; Pawłowski, Andrzej; Kwiatkowska, Katarzyna

    2011-06-01

    Lipoarabinomannan capped with terminal oligomannosides (ManLAM) is a component of mycobacteria cell wall enabling Mycobacterium tuberculosis to infect macrophages. We found that short treatment (3.5h) of macrophage-like J774 cells and thioglycollate-elicited peritoneal murine macrophages with ManLAM and its deacylated form enhanced LPS-stimulated release of tumor necrosis factor-α (TNF-α). In contrast, prolong incubation of J774 cells with ManLAM (16h) led to inhibition of LPS-stimulated TNF-α production. LPS-triggered secretion of nitric oxide (NO) was suppressed by ManLAM and its deacylated form. Effects of ManLAM and its deacylated derivative were mimicked by dextran sulfate, a general ligand of scavenger receptors. The enhancement of LPS-induced TNF-α production by dextran sulfate was partially reversed by an antibody neutralizing scavenger receptor SR-PSOX/CXCL16 while the stimulatory activity of deacylated ManLAM was reversed by an antibody neutralizing class B scavenger receptor CD36. Our data suggest that CD36 mediates the activity of ManLAM and its deacylated form leading to TNF-α release in LPS-stimulated J774 cells and peritoneal murine macrophages, while NO production is modulated by unknown scavenger receptors.

  16. Emodin suppresses LPS-induced inflammation in RAW264.7 cells through a PPARγ-dependent pathway.

    PubMed

    Zhu, Tao; Zhang, Wei; Feng, She-jun; Yu, Hua-peng

    2016-05-01

    Inflammation is a defense and protective response to multiple harmful stimuli. Over and uncontrolled inflammation can lead to local tissues or even systemic damages and injuries. Actually, uncontrolled and self-amplified inflammation is the fundament of the pathogenesis of a variety of inflammatory diseases, including sepsis shock, acute lung injury and acute respiratory distress syndrome (ALI/ARDS). Our recent study showed that emodin, the main active component of Radix rhizoma Rhei, could significantly ameliorate LPS-induced ALI/ARDS in mice. However, its underlying signal pathway was not still very clear. Then, the aim of current study was to explore whether emodin could attenuate LPS-induced inflammation in RAW264.7 cells, and its involved potential mechanism. The mRNA and protein expression of ICAM-1, MCP-1 and PPARγ were measured by qRCR and western blotting, the production of TNF-α was evaluated by ELISA. Then, the phosphorylation of NF-κB p65 was also detected by western blotting. And NF-κB p65 DNA binding activity was analyzed by ELISA as well. Meanwhile, siRNA-PPARγ transfection was performed to knockdown PPARγ expression in cells. Our data revealed that LPS-induced the up-regulation of ICAM-1, MCP-1 and TNF-α, LPS-induced the down-regulation of PPARγ, and LPS-enhanced NF-κB p65 activation and DNA binding activity were substantially suppressed by emdoin in RAW264.7 cells. Furthermore, our data also figured out that these effects of emdoin were largely abrogated by siRNA-PPARγ transfection. Taken together, our results indicated that LPS-induced inflammation were potently compromised by emodin very likely through the PPARγ-dependent inactivation of NF-κB in RAW264.7 cells.

  17. Biflorin, Isolated from the Flower Buds of Syzygium aromaticum L., Suppresses LPS-Induced Inflammatory Mediators via STAT1 Inactivation in Macrophages and Protects Mice from Endotoxin Shock.

    PubMed

    Lee, Hwi-Ho; Shin, Ji-Sun; Lee, Woo-Seok; Ryu, Byeol; Jang, Dae Sik; Lee, Kyung-Tae

    2016-04-22

    Two chromone C-glucosides, biflorin (1) and isobiflorin (2), were isolated from the flower buds of Syzygium aromaticum L. (Myrtaceae). Here, inhibitory effects of 1 and 2 on lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2) in RAW 264.7 macrophages were evaluated, and 1 (IC50 = 51.7 and 37.1 μM, respectively) was more potent than 2 (IC50 > 60 and 46.0 μM). The suppression of NO and PGE2 production by 1 correlated with inhibition of iNOS and COX-2 protein expression. Compound 1 reduced inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA expression via inhibition of their promoter activities. Compound 1 inhibited the LPS-induced production and mRNA expression of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6. Furthermore, 1 reduced p-STAT1 and p-p38 expression but did not affect the activity of nuclear factor κ light-chain enhancer of activated B cells (NF-κB) or activator protein 1 (AP-1). In a mouse model of LPS-induced endotoxemia, 1 reduced the mRNA levels of iNOS, COX-2, and TNF-α, and the phosphorylation-mediated activation of the signal transducer and activator of transcription 1 (STAT1), consequently improving the survival rates of mice. Compound 1 showed a significant anti-inflammatory effect on carrageenan-induced paw edema and croton-oil-induced ear edema in rats. The collective data indicate that the suppression of pro-inflammatory gene expression via p38 mitogen-activated protein kinase and STAT1 inactivation may be a mechanism for the anti-inflammatory activity of 1.

  18. Hydrogen Sulfide Delays LPS-Induced Preterm Birth in Mice via Anti-Inflammatory Pathways

    PubMed Central

    Liu, Weina; Xu, Chen; You, Xingji; Olson, David M.; Chemtob, Sylvain; Gao, Lu; Ni, Xin

    2016-01-01

    A major cause of preterm labor in pregnant women is intra-amniotic infection, which is mediated by an inflammatory process. Hydrogen sulfide (H2S), a gaseous transmitter, has been implicated to be involved in inflammatory responses. We sought to investigate whether H2S affects infectious preterm birth using the mouse model of lipopolysaccharides (LPS)-induced preterm birth. Administration of LPS at 0.4 mg/kg with two injections intraperitoneally (i.p.) on gestational day 14.5 induced preterm labor. LPS significantly increased leukocyte infiltration in uterus, stimulated the expression of pro-inflammatory cytokines interleukin 1β (IL-1β), IL-6, tumor necrosis factor α (TNF-α), CCL2 and CXCL15 in myometrium. Administration of NaHS (i.p.) delayed the onset of labor induced by LPS in a dose-dependent manner. NaHS prevented leukocyte infiltration into intrauterine tissues and inhibited the production of pro-inflammatory cytokines in myometrium and decreased the levels of these cytokines in maternal circulation. H2S also decreased LPS-activated extracellular signal-regulated kinase (ERK) 1/2/ nuclear factor (NF)-κB signaling pathways in myometrium. This study provides new in vivo evidence for the roles of H2S in attenuating inflammation, and a potential novel therapeutic strategy for infection-related preterm labor. PMID:27035826

  19. Hydrogen Sulfide Delays LPS-Induced Preterm Birth in Mice via Anti-Inflammatory Pathways.

    PubMed

    Liu, Weina; Xu, Chen; You, Xingji; Olson, David M; Chemtob, Sylvain; Gao, Lu; Ni, Xin

    2016-01-01

    A major cause of preterm labor in pregnant women is intra-amniotic infection, which is mediated by an inflammatory process. Hydrogen sulfide (H2S), a gaseous transmitter, has been implicated to be involved in inflammatory responses. We sought to investigate whether H2S affects infectious preterm birth using the mouse model of lipopolysaccharides (LPS)-induced preterm birth. Administration of LPS at 0.4 mg/kg with two injections intraperitoneally (i.p.) on gestational day 14.5 induced preterm labor. LPS significantly increased leukocyte infiltration in uterus, stimulated the expression of pro-inflammatory cytokines interleukin 1β (IL-1β), IL-6, tumor necrosis factor α (TNF-α), CCL2 and CXCL15 in myometrium. Administration of NaHS (i.p.) delayed the onset of labor induced by LPS in a dose-dependent manner. NaHS prevented leukocyte infiltration into intrauterine tissues and inhibited the production of pro-inflammatory cytokines in myometrium and decreased the levels of these cytokines in maternal circulation. H2S also decreased LPS-activated extracellular signal-regulated kinase (ERK) 1/2/ nuclear factor (NF)-κB signaling pathways in myometrium. This study provides new in vivo evidence for the roles of H2S in attenuating inflammation, and a potential novel therapeutic strategy for infection-related preterm labor.

  20. Herbal medicine IMOD suppresses LPS-induced production of proinflammatory cytokines in human dendritic cells

    PubMed Central

    Mirzaee, Saeedeh; Drewniak, Agata; Sarrami-Forooshani, Ramin; Kaptein, Tanja M.; Gharibdoost, Farhad; Geijtenbeek, Teunis B. H.

    2015-01-01

    Traditional medicines that stimulate or modulate the immune system can be used as innovative approaches to treat immunological diseases. The herbal medicine IMOD has been shown to strongly modulate immune responses in several animal studies as well as in clinical trials. However, little is known about the mechanisms of IMOD to modulate immunity. Here we have investigated whether IMOD modulates the immunological function of human dendritic cells (DCs). IMOD alone did not induce DC maturation nor production of cytokines. Notably, IMOD decreased the production of pro-inflammatory cytokines IL-6, IL-12 p70, and TNFα by LPS-activated DCs at both mRNA and protein levels in a dose dependent manner. In contrast, treatment with IMOD did not affect LPS induced-production of the anti-inflammatory cytokine IL-10. Furthermore, IMOD inhibited T cell activation/proliferation by LPS-treated DCs and skewed T-cells responses toward the T helper type 2 polarization. These data strongly indicate that IMOD has a potent immunomodulatory ability that affects TLR signaling and thereby modulates DC function. Insight into the immunomodulatory effect of herbal medicine IMOD may provide innovative strategies to affect the immune system and to help combat various diseases. PMID:25870561

  1. Granzyme K synergistically potentiates LPS-induced cytokine responses in human monocytes

    PubMed Central

    Wensink, Annette C.; Kemp, Vera; Fermie, Job; García Laorden, M. Isabel; van der Poll, Tom; Hack, C. Erik; Bovenschen, Niels

    2014-01-01

    Granzymes are serine proteases released by cytotoxic lymphocytes to induce apoptosis in virus-infected cells and tumor cells. Evidence is emerging that granzymes also play a role in controlling inflammation. Granzyme serum levels are elevated in patients with autoimmune diseases and infections, including sepsis. However, the function of extracellular granzymes in inflammation largely remains unknown. Here, we show that granzyme K (GrK) binds to Gram-negative bacteria and their cell-wall component lipopolysaccharide (LPS). GrK synergistically enhances LPS-induced cytokine release in vitro from primary human monocytes and in vivo in a mouse model of LPS challenge. Intriguingly, these extracellular effects are independent of GrK catalytic activity. GrK disaggregates LPS from micelles and augments LPS–CD14 complex formation, thereby likely boosting monocyte activation by LPS. We conclude that extracellular GrK is an unexpected direct modulator of LPS–TLR4 signaling during the antimicrobial innate immune response. PMID:24711407

  2. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    NASA Astrophysics Data System (ADS)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  3. Granzymes A and K differentially potentiate LPS-induced cytokine response

    PubMed Central

    Wensink, Annette C; Kok, Helena M; Meeldijk, Jan; Fermie, Job; Froelich, Christopher J; Hack, C Erik; Bovenschen, Niels

    2016-01-01

    Granzymes are serine proteases that, upon release from cytotoxic cells, induce apoptosis in tumor cells and virally infected cells. In addition, a role of granzymes in inflammation is emerging. Recently, we have demonstrated that extracellular granzyme K (GrK) potentiates lipopolysaccharide (LPS)-induced cytokine response from monocytes. GrK interacts with LPS, disaggregates LPS micelles, and stimulates LPS-CD14 binding and Toll-like receptor signaling. Here we show that human GrA also potentiates cytokine responses in human monocytes initiated by LPS or Gram-negative bacteria. Similar to GrK, this effect is independent of GrA catalytic activity. Unlike GrK, however, GrA does not bind to LPS, has little influence on LPS micelle disaggregation, and does not augment LPS-CD14 complex formation. We conclude that GrA and GrK differentially modulate LPS-Toll-like receptor signaling in monocytes, suggesting functional redundancy among cytotoxic lymphocyte proteases in the anti-bacterial innate immune response. PMID:28028441

  4. A(1) and A(3) adenosine receptors inhibit LPS-induced hypoxia-inducible factor-1 accumulation in murine astrocytes.

    PubMed

    Gessi, Stefania; Merighi, Stefania; Stefanelli, Angela; Fazzi, Debora; Varani, Katia; Borea, Pier Andrea

    2013-10-01

    Adenosine (Ado) exerts neuroprotective and anti-inflammatory functions by acting through four receptor subtypes A1, A2A, A2B and A3. Astrocytes are one of its targets in the central nervous system. Hypoxia-inducible factor-1 (HIF-1), a master regulator of oxygen homeostasis, is induced after hypoxia, ischemia and inflammation and plays an important role in brain injury. HIF-1 is expressed by astrocytes, however the regulatory role played by Ado on HIF-1α modulation induced by inflammatory and hypoxic conditions has not been investigated. Primary murine astrocytes were activated with lipopolysaccharide (LPS) with or without Ado, Ado receptor agonists, antagonists and receptor silencing, before exposure to normoxia or hypoxia. HIF-1α accumulation and downstream genes regulation were determined. Ado inhibited LPS-increased HIF-1α accumulation under both normoxic and hypoxic conditions, through activation of A1 and A3 receptors. In cells incubated with the blockers of p44/42 MAPK and Akt, LPS-induced HIF-1α accumulation was significantly decreased in normoxia and hypoxia, suggesting the involvement of p44/42 MAPK and Akt in this effect and Ado inhibited kinases phosphorylation. A series of angiogenesis and metabolism related genes were modulated by hypoxia in an HIF-1 dependent way, but not further increased by LPS, with the exception of GLUT-1 and hexochinase II that were elevated by LPS only in normoxia and inhibited by Ado receptors. Instead, genes involved in inflammation, like inducible nitric-oxide synthase (iNOS) and A2B receptors, were increased by LPS in normoxia, strongly stimulated by LPS in concert with hypoxia and inhibited by Ado, through A1 and A3 receptor subtypes. In conclusion A1 and A3 receptors reduce the LPS-mediated HIF-1α accumulation in murine astrocytes, resulting in a downregulation of genes involved in inflammation and hypoxic injury, like iNOS and A2B receptors, in both normoxic and hypoxic conditions.

  5. Euscaphic acid isolated from roots of Rosa rugosa inhibits LPS-induced inflammatory responses via TLR4-mediated NF-κB inactivation in RAW 264.7 macrophages.

    PubMed

    Kim, In-Tae; Ryu, Suran; Shin, Ji-Sun; Choi, Jung-Hye; Park, Hee-Juhn; Lee, Kyung-Tae

    2012-06-01

    As an attempt to search for bioactive natural products exerting anti-inflammatory activity, we have evaluated the anti-inflammatory effects of euscaphic acid (19α-hydroxyursane-type triterpenoids, EA) isolated from roots of Rosa rugosa and its underlying molecular mechanisms in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. EA concentration-dependently reduced the production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) induced by LPS in RAW 264.7 macgophages. Consistent with these data, expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and iNOS, COX-2, TNF-α, and IL-1β mRNA were inhibited by EA in a concentration-dependent manner. In addition, EA attenuated LPS-induced DNA binding and transcriptional activity of nuclear factor-kappa B (NF-κB), which was accompanied by a parallel reduction of degradation and phosphorylation of inhibitory kappa Bα (IκBα) and consequently by decreased nuclear translocation of p65 subunit of NF-κB. Pretreatment with EA significantly inhibited the LPS-induced phosphorylation of IκB kinase β (IKKβ), p38, and JNK, whereas the phosphorylation of ERK1/2 was unaffected. Furthermore, EA interfered with the LPS-induced clustering of TNF receptor-associated factor 6 (TRAF6) with interleukin receptor associated kinase 1 (IRAK1) and transforming growth factor-β-activated kinase 1 (TAK1). Taken together, these results suggest that EA inhibits LPS-induced inflammatory responses by interference with the clustering of TRAF6 with IRAK1 and TAK1, resulting in blocking the activation of IKK and MAPKs signal transduction to downregulate NF-κB activations.

  6. Polyphenols from blueberries modulate inflammation cytokines in LPS-induced RAW264.7 macrophages.

    PubMed

    Cheng, Anwei; Yan, Haiqing; Han, Caijing; Wang, Wenliang; Tian, Yaoqi; Chen, Xiangyan

    2014-08-01

    Polyphenols including 3-glucoside/arabinoside/galactoside-based polymers of delphinidins, petunidins, peonidins, malvidins and cyanidins are one type of biological macromolecules, which are extraordinarily rich in blueberries. Anti-inflammatory activity of blueberry polyphenols (BPPs) was investigated by using lipopolysaccharide (LPS) induced RAW264.7 macrophages. The results showed that BPPs suppressed the gene expression of IL-1β (interleukin-1β), IL-6 and IL-12p35. The inhibition effect on IL-1β and IL-6 mRNA was most obvious at the concentration of 10-200μg/mL BPPs. But the inhibition effect on IL-12p35 mRNA was increased with the increasing concentration of BPPs. When fixed at 100μg/mL BPPs, the most significant inhibition on IL-1β, IL-6 and IL-12p35 mRNA expression was detected at 12-48h. In conclusion, BPPs exhibit anti-inflammation activity by mediating and modulating the balances in pro-inflammatory cytokines of IL-1β, IL-6, and IL-12.

  7. Eukaryotic elongation factor 2 controls TNF-α translation in LPS-induced hepatitis

    PubMed Central

    González-Terán, Bárbara; Cortés, José R.; Manieri, Elisa; Matesanz, Nuria; Verdugo, ρngeles; Rodríguez, María E.; González-Rodríguez, ρgueda; Valverde, ρngela; Martín, Pilar; Davis, Roger J.; Sabio, Guadalupe

    2012-01-01

    Bacterial LPS (endotoxin) has been implicated in the pathogenesis of acute liver disease through its induction of the proinflammatory cytokine TNF-α. TNF-α is a key determinant of the outcome in a well-established mouse model of acute liver failure during septic shock. One possible mechanism for regulating TNF-α expression is through the control of protein elongation during translation, which would allow rapid cell adaptation to physiological changes. However, the regulation of translational elongation is poorly understood. We found that expression of p38γ/δ MAPK proteins is required for the elongation of nascent TNF-α protein in macrophages. The MKK3/6-p38γ/δ pathway mediated an inhibitory phosphorylation of eukaryotic elongation factor 2 (eEF2) kinase, which in turn promoted eEF2 activation (dephosphorylation) and subsequent TNF-α elongation. These results identify a new signaling pathway that regulates TNF-α production in LPS-induced liver damage and suggest potential cell-specific therapeutic targets for liver diseases in which TNF-α production is involved. PMID:23202732

  8. T4 Phage Tail Adhesin Gp12 Counteracts LPS-Induced Inflammation In Vivo

    PubMed Central

    Miernikiewicz, Paulina; Kłopot, Anna; Soluch, Ryszard; Szkuta, Piotr; Kęska, Weronika; Hodyra-Stefaniak, Katarzyna; Konopka, Agnieszka; Nowak, Marcin; Lecion, Dorota; Kaźmierczak, Zuzanna; Majewska, Joanna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2016-01-01

    Bacteriophages that infect Gram-negative bacteria often bind to the bacterial surface by interaction of specific proteins with lipopolysaccharide (LPS). Short tail fiber proteins (tail adhesin, gp12) mediate adsorption of T4-like bacteriophages to Escherichia coli, binding surface proteins or LPS. Produced as a recombinant protein, gp12 retains its ability to bind LPS. Since LPS is able to exert a major impact on the immune response in animals and in humans, we have tested LPS-binding phage protein gp12 as a potential modulator of the LPS-induced immune response. We have produced tail adhesin gp12 in a bacterial expression system and confirmed its ability to form trimers and to bind LPS in vitro by dynamic light scattering. This product had no negative effect on mammalian cell proliferation in vitro. Further, no harmful effects of this protein were observed in mice. Thus, gp12 was used in combination with LPS in a murine model, and it decreased the inflammatory response to LPS in vivo, as assessed by serum levels of cytokines IL-1 alpha and IL-6 and by histopathological analysis of spleen, liver, kidney and lungs. Thus, in future studies gp12 may be considered as a potential tool for modulating and specifically for counteracting LPS-related physiological effects in vivo. PMID:27471503

  9. LPS-induced microvascular leukocytosis can be assessed by blue-field entoptic phenomenon.

    PubMed

    Kolodjaschna, Julia; Berisha, Fatmire; Lung, Solveig; Schaller, Georg; Polska, Elzbieta; Jilma, Bernd; Wolzt, Michael; Schmetterer, Leopold

    2004-08-01

    Administration of low doses of Escherichia coli endotoxin [a lipopolysaccharide (LPS)] to humans enables the study of inflammatory mechanisms. The purpose of the present study was to investigate whether the blue-field entoptic technique may be used to quantify the increase in circulating leukocytes in the ocular microvasculature after LPS infusion. In addition, combined laser Doppler velocimetry and retinal vessel size measurement were used to study red blood cell movement. Twelve healthy male volunteers received 20 IU/kg iv LPS as a bolus infusion. Outcome parameters were measured at baseline and 4 h after LPS administration. In the first protocol (n = 6 subjects), ocular hemodynamic effects were assessed with the blue-field entoptic technique, the retinal vessel analyzer, and laser Doppler velocimetry. In the second protocol (n = 6 subjects), white blood cell (WBC) counts from peripheral blood samples and blue-field entoptic technique measurements were performed. LPS caused peripheral blood leukocytosis and increased WBC density in ocular microvessels (by 49%; P = 0.036) but did not change WBC velocity. In addition, retinal venous diameter was increased (by 9%; P = 0.008), but red blood cell velocity remained unchanged. The LPS-induced changes in retinal WBC density and leukocyte counts were significantly correlated (r = 0.87). The present study indicates that the blue-field entoptic technique can be used to assess microvascular leukocyte recruitment in vivo. In addition, our data indicate retinal venous dilation in response to endotoxin.

  10. Pavlovian conditioning of LPS-induced responses: effects on corticosterone, splenic NE, and IL-2 production.

    PubMed

    Janz, L J; Green-Johnson, J; Murray, L; Vriend, C Y; Nance, D M; Greenberg, A H; Dyck, D G

    1996-06-01

    The present study used a taste aversion paradigm to condition lipopolysaccharide (LPS)-induced suppression of splenic lymphocyte interleukin-2 (IL-2) production, with concurrent measurement of corticosterone production and splenic norepinephrine (NE) content). In training, two groups of rats received saccharin and IP LPS in a paired (P) manner and a third group in a specifically unpaired (U) manner. In the test, the unpaired group (group U) and one of the paired (group P) groups were re-exposed (R) to the cue and the other not (NR). An additional group controlled for the effects of cues (conditional stimulus) and fluid deprivation (negative control; NC). A robust taste aversion in the P-R group was accompanied by suppression of IL-2 production, reduced splenic NE content, and elevated corticosterone production, relative to combined controls (i.e., groups U-R, P-NR, and NC). The conditioned modulation of IL-2 secretion, along with the concomitant alteration of adrenocortical and sympathetic mediators, supports the involvement of bidirectional central nervous-immune system pathways in this paradigm.

  11. Exogenous rhTRX reduces lipid accumulation under LPS-induced inflammation

    PubMed Central

    Han, Gi-Yeon; Lee, Eun-Kyung; Park, Hey-won; Kim, Hyun-Jung; Kim, Chan-Wha

    2014-01-01

    Redox-regulating molecule, recombinant human thioredoxin (rhTRX) which shows anti-inflammatory, and anti-oxidative effects against lipopolysaccharide (LPS)-stimulated inflammation and regulate protein expression levels. LPS-induced reactive oxygen intermediates (ROI) and NO production were inhibited by exogenous rhTRX. We identified up/downregulated intracellular proteins under the LPS-treated condition in exogenous rhTRX-treated A375 cells compared with non-LPS-treated cells via 2-DE proteomic analysis. Also, we quantitatively measured cytokines of in vivo mouse inflammation models using cytometry bead array. Exogenous rhTRX inhibited LPS-stimulated production of ROI and NO levels. TIP47 and ATP synthase may influence the inflammation-related lipid accumulation by affecting lipid metabolism. The modulation of skin redox environments during inflammation is most likely to prevent alterations in lipid metabolism through upregulation of TIP47 and ATP synthase and downregulation of inflammatory cytokines. Our results demonstrate that exogenous rhTRX has anti-inflammatory properties and intracellular regulatory activity in vivo and in vitro. Monitoring of LPS-stimulated pro-inflammatory conditions treated with rhTRX in A375 cells could be useful for diagnosis and follow-up of inflammation reduction related with candidate proteins. These results have a therapeutic role in skin inflammation therapy. PMID:24406320

  12. Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-κB pathways.

    PubMed

    Park, Junghyung; Min, Ju-Sik; Kim, Bokyung; Chae, Un-Bin; Yun, Jong Won; Choi, Myung-Sook; Kong, Il-Keun; Chang, Kyu-Tae; Lee, Dong-Seok

    2015-01-01

    Activation of microglia cells in the brain contributes to neurodegenerative processes promoted by many neurotoxic factors such as pro-inflammatory cytokines and nitric oxide (NO). Reactive oxygen species (ROS) actively affect microglia-associated neurodegenerative diseases through their role as pro-inflammatory molecules and modulators of pro-inflammatory processes. Although the ROS which involved in microglia activation are thought to be generated primarily by NADPH oxidase (NOX) and involved in the immune response, mitochondrial ROS have also been proposed as important regulators of the inflammatory response in the innate immune system. However, the role of mitochondrial ROS in microglial activation has yet to be fully elucidated. In this study, we demonstrate that inhibition of mitochondrial ROS by treatment with Mito-TEMPO effectively suppressed the level of mitochondrial and intracellular ROS. Mito-TEMPO treatment also significantly prevented LPS-induced increase in the TNF-α, IL-1β, IL-6, iNOS and Cox-2 in BV-2 and primary microglia cells. Furthermore, LPS-induced suppression of mitochondrial ROS generation not only affected LPS-stimulated activation of MAPKs, including ERK, JNK, and p38, but also regulated IκB activation and NF-κB nuclear localization. These results indicate that mitochondria constitute a major source of ROS generation in LPS-mediated activated microglia cells. Additionally, suppression of LPS-induced mitochondrial ROS plays a role in modulating the production of pro-inflammatory mediators by preventing MAPK and NF-κB activation in microglia cells. Our findings suggest that a potential strategy in the development of therapy for inflammation-associated degenerative neurological diseases involves targeting the regulation of mitochondrial ROS in microglial cells.

  13. Progesterone Is Essential for Protecting against LPS-Induced Pregnancy Loss. LIF as a Potential Mediator of the Anti-inflammatory Effect of Progesterone

    PubMed Central

    Aisemberg, Julieta; Vercelli, Claudia A.; Bariani, María V.; Billi, Silvia C.; Wolfson, Manuel L.; Franchi, Ana M.

    2013-01-01

    Lipopolysaccharide (LPS) administration to mice on day 7 of gestation led to 100% embryonic resorption after 24 h. In this model, nitric oxide is fundamental for the resorption process. Progesterone may be responsible, at least in part, for a Th2 switch in the feto-maternal interface, inducing active immune tolerance against fetal antigens. Th2 cells promote the development of T cells, producing leukemia inhibitory factor (LIF), which seems to be important due to its immunomodulatory action during early pregnancy. Our aim was to evaluate the involvement of progesterone in the mechanism of LPS-induced embryonic resorption, and whether LIF can mediate hormonal action. Using in vivo and in vitro models, we provide evidence that circulating progesterone is an important component of the process by which infection causes embryonic resorption in mice. Also, LIF seems to be a mediator of the progesterone effect under inflammatory conditions. We found that serum progesterone fell to very low levels after 24 h of LPS exposure. Moreover, progesterone supplementation prevented embryonic resorption and LPS-induced increase of uterine nitric oxide levels in vivo. Results show that LPS diminished the expression of the nuclear progesterone receptor in the uterus after 6 and 12 h of treatment. We investigated the expression of LIF in uterine tissue from pregnant mice and found that progesterone up-regulates LIF mRNA expression in vitro. We observed that LIF was able to modulate the levels of nitric oxide induced by LPS in vitro, suggesting that it could be a potential mediator of the inflammatory action of progesterone. Our observations support the view that progesterone plays a critical role in a successful pregnancy as an anti-inflammatory agent, and that it could have possible therapeutic applications in the prevention of early reproductive failure associated with inflammatory disorders. PMID:23409146

  14. Orientin Ameliorates LPS-Induced Inflammatory Responses through the Inhibitory of the NF-κB Pathway and NLRP3 Inflammasome

    PubMed Central

    Xiao, Qingfei; Zhao, Ying; Yang, Liming

    2017-01-01

    Inflammation is a complex response to diverse pathological conditions, resulting in negative rather than protective effects when uncontrolled. Orientin (Ori), a flavonoid component isolated from natural plants, possesses abundant properties. Thus, we aimed to discover the potential therapeutic effects of orientin on lipopolysaccharide- (LPS-) induced inflammation in RAW 264.7 cells and the underlying mechanisms. In our studies, we evaluated the effects of Ori on proinflammatory mediator production stimulated by LPS, including tumor necrosis factor- (TNF-) α, interleukin- (IL-) 6, IL-18, and IL-1β, along with prostaglandin E2 (PGE2) and NO. Our data indicated that orientin dramatically inhibited the levels of these mediators. Consistent with these results, the expression levels of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were also reduced. Further study demonstrated that such inhibitory effects of Ori were due to suppression of the nuclear factor-kappa B (NF-κB) pathway and nucleotide-binding domain- (NOD-) like receptor protein 3 (NLRP3) inflammasome activation, which may contribute to its anti-inflammatory effects. Together, these findings show that Ori may be an effective candidate for ameliorating LPS-induced inflammatory responses. PMID:28197210

  15. Involvement of mitogen-activated protein kinases and NF{kappa}B in LPS-induced CD40 expression on human monocytic cells

    SciTech Connect

    Wu Weidong | Alexis, Neil E. |; Chen Xian |; Bromberg, Philip A. |; Peden, David B. ||

    2008-04-15

    CD40 is a costimulatory molecule linking innate and adaptive immune responses to bacterial stimuli, as well as a critical regulator of functions of other costimulatory molecules. The mechanisms regulating lipopolysaccharide (LPS)-induced CD40 expression have not been adequately characterized in human monocytic cells. In this study we used a human monocytic cell line, THP-1, to investigate the possible mechanisms of CD40 expression following LPS exposure. Exposure to LPS resulted in a dose- and time-dependent increase in CD40 expression. Further studies using immunoblotting and pharmacological inhibitors revealed that mitogen-activated protein kinases (MAPKs) and NF{kappa}B were activated by LPS exposure and involved in LPS-induced CD40 expression. Activation of MAPKs was not responsible for LPS-induced NF{kappa}B activation. TLR4 was expressed on THP-1 cells and pretreatment of cells with a Toll-like receptor 4 (TLR4) neutralizing antibody (HTA125) significantly blunted LPS-induced MAPK and NF{kappa}B activation and ensuing CD40 expression. Additional studies with murine macrophages expressing wild type and mutated TLR4 showed that TLR4 was implicated in LPS-induced ERK and NF{kappa}B activation, and CD40 expression. Moreover, blockage of MAPK and NF{kappa}B activation inhibited LPS-induced TLR4 expression. In summary, LPS-induced CD40 expression in monocytic cells involves MAPKs and NF{kappa}B.

  16. Effect of D-003, a Mixture of High Molecular Weight Aliphatic Acids, on Glucocorticoid- and Lipopolysaccharides (LPS)-Induced Osteonecrosis.

    PubMed

    Noa, Miriam; Más, Rosa; Valle, Maikel; Mendoza, Sarahí; Mendoza, Nilda

    2012-01-01

    Osteonecrosis (ON) is characterized through the impairment of osseous blood flow that leads to the collapse of femur head. Corticoid-induced ON in rats and lipopolysaccharide (LPS)-induced in rabbits are useful models to assess the efficacy of potential treatments on this disease. D-003 inhibits the mevalonate pathway, lipid peroxidation and prevents osteoporosis in rats through increasing the osteoclast apoptosis. This study investigated the effects of D-003 on corticoid- and LPS-induced ON in rats and rabbits. Corticoid-induced ON: Rats were randomized into five groups. A negative control and four groups treated with prednisolone 6 mg/Kg: a positive control and three treated with D-003 (5, 25 and 200 mg/Kg) for 80 days. All positive controls presented ON areas. D-003 significantly reduced the numbers and proportions of ON lesions, as compared to the positive control group. LPS-induced ON in rabbits: Rabbits were randomized into five groups: a negative control and four injected with a single intra-venous injection of LPS (10 μg/Kg) including a positive control and three with D-003 (5, 25 and 200 mg/Kg) for 30 days. ON was seen in all positive controls. The incidence of ON and the number of ON lesions in the groups treated with D-003 (25 and 200 mg/Kg) was significantly lower compared to the positive controls. LPS injection significantly increased the size of bone marrow fat cells in positive controls and such increase was significantly decreased by D-003. In conclusion, D-003 reduced ON lesions in corticoid-and LPS-induced ON and also the size of bone marrow fat cells in rabbits with LPS.

  17. Flavones Inhibit LPS-Induced Atrogin-1/MAFbx Expression in Mouse C2C12 Skeletal Myotubes.

    PubMed

    Shiota, Chieko; Abe, Tomoki; Kawai, Nobuhiko; Ohno, Ayako; Teshima-Kondo, Shigetada; Mori, Hiroyo; Terao, Junji; Tanaka, Eiji; Nikawa, Takeshi

    2015-01-01

    Muscle atrophy is a complex process that occurs as a consequence of various stress events. Muscle atrophy-associated genes (atrogenes) such as atrogin-1/MAFbx and MuRF-1 are induced early in the atrophy process, and the increase in their expression precedes the loss of muscle weight. Although antioxidative nutrients suppress atrogene expression in skeletal muscle cells, the inhibitory effects of flavonoids on inflammation-induced atrogin-1/MAFbx expression have not been clarified. Here, we investigated the inhibitory effects of flavonoids on lipopolysaccharide (LPS)-induced atrogin-1/MAFbx expression. We examined whether nine flavonoids belonging to six flavonoid categories inhibited atrogin-1/MAFbx expression in mouse C2C12 myotubes. Two major flavones, apigenin and luteolin, displayed potent inhibitory effects on atrogin-1/MAFbx expression. The pretreatment with apigenin and luteolin significantly prevented the decrease in C2C12 myotube diameter caused by LPS stimulation. Importantly, the pretreatment of LPS-stimulated myoblasts with these flavones significantly inhibited LPS-induced JNK phosphorylation in C2C12 myotubes, resulting in the significant suppression of atrogin-1/MAFbx promoter activity. These results suggest that apigenin and luteolin, prevent LPS-mediated atrogin-1/MAFbx expression through the inhibition of the JNK signaling pathway in C2C12 myotubes. Thus, these flavones, apigenin and luteolin, may be promising agents to prevent LPS-induced muscle atrophy.

  18. LPS induces HUVEC angiogenesis in vitro through miR-146a-mediated TGF-β1 inhibition

    PubMed Central

    Li, Yize; Zhu, Huayu; Wei, Xu; Li, Heng; Yu, Zhicao; Zhang, Hongmei; Liu, Wenchao

    2017-01-01

    Angiogenesis is an essential process for tissue growth and embryo development. However, inflammation, abnormal wound healing, vascular diseases, and tumor development and progression can result from inappropriate angiogenesis. Lipopolysaccharide (LPS) can activate various cells and alter endothelium function and angiogenesis. This study investigated the underlying molecular events involved in LPS-induced angiogenesis and revealed a novel strategy for controlling abnormal angiogenesis. LPS treatment promoted wound healing and tube formation in human umbilical vein endothelial cell (HUVEC) cultures and induced their expression of miR-146a. miR-146a was previously shown to regulate angiogenesis in HUVECs. Knockdown of miR-146a expression antagonized LPS-induced angiogenesis in vitro. Moreover, bioinformatic analyses predicted TGF-β1 as a target gene for miR-146a, which was confirmed by aluciferase reporter assay. Expression of miR-146a in HUVECs resulted in downregulation of TGF-β1 in HUVECs, whereas a miR-146a inhibitor upregulated the expression of TGF-β1 and TGF-β1 downstream proteins, such as phosphoraylation-Smad2 and plasminogen activator inhibitor type 1 (PAI-1). Furthermore, the TGF-β1 signaling inhibitor SB431542 impaired the ability of miR-146a knockdown to suppress LPS-induced angiogenesis. Thus, LPS-induced angiogenesis of HUVECs functions through miR-146a upregulation and TGF-β1 inhibition. This study suggests that knockdown of miR-146a could activate TGF-β1 signaling to inhibit angiogenesis as a potential therapy for angiogenesis-related diseases. PMID:28337286

  19. LPS-Induced Delayed Preconditioning Is Mediated by Hsp90 and Involves the Heat Shock Response in Mouse Kidney

    PubMed Central

    Kaucsár, Tamás; Bodor, Csaba; Godó, Mária; Szalay, Csaba; Révész, Csaba; Németh, Zalán; Mózes, Miklós; Szénási, Gábor; Rosivall, László; Sőti, Csaba; Hamar, Péter

    2014-01-01

    Introduction We and others demonstrated previously that preconditioning with endotoxin (LPS) protected from a subsequent lethal LPS challenge or from renal ischemia-reperfusion injury (IRI). LPS is effective in evoking the heat shock response, an ancient and essential cellular defense mechanism, which plays a role in resistance to, and recovery from diseases. Here, by using the pharmacological Hsp90 inhibitor novobiocin (NB), we investigated the role of Hsp90 and the heat shock response in LPS-induced delayed renal preconditioning. Methods Male C57BL/6 mice were treated with preconditioning (P: 2 mg/kg, ip.) and subsequent lethal (L: 10 mg/kg, ip.) doses of LPS alone or in combination with NB (100 mg/kg, ip.). Controls received saline (C) or NB. Results Preconditioning LPS conferred protection from a subsequent lethal LPS treatment. Importantly, the protective effect of LPS preconditioning was completely abolished by a concomitant treatment with NB. LPS induced a marked heat shock protein increase as demonstrated by Western blots of Hsp70 and Hsp90. NB alone also stimulated Hsp70 and Hsp90 mRNA but not protein expression. However, Hsp70 and Hsp90 protein induction in LPS-treated mice was abolished by a concomitant NB treatment, demonstrating a NB-induced impairment of the heat shock response to LPS preconditioning. Conclusion LPS-induced heat shock protein induction and tolerance to a subsequent lethal LPS treatment was prevented by the Hsp90 inhibitor, novobiocin. Our findings demonstrate a critical role of Hsp90 in LPS signaling, and a potential involvement of the heat shock response in LPS-induced preconditioning. PMID:24646925

  20. Myeloid depletion of SOCS3 enhances LPS-induced acute lung injury through CCAAT/enhancer binding protein δ pathway

    PubMed Central

    Yan, Chunguang; Ward, Peter A.; Wang, Ximo; Gao, Hongwei

    2013-01-01

    Although uncontrolled inflammatory response plays a central role in the pathogenesis of acute lung injury (ALI), the precise molecular mechanisms underlying the development of this disorder remain poorly understood. SOCS3 is an important negative regulator of IL-6-type cytokine signaling. SOCS3 is induced in lung during LPS-induced lung injury, suggesting that generation of SOCS3 may represent a regulatory product during ALI. In the current study, we created mice lacking SOCS3 expression in macrophages and neutrophils (LysM-cre SOCS3fl/fl). We evaluated the lung inflammatory response to LPS in both LysM-cre SOCS3fl/fl mice and the wild-type (WT) mice (SOCS3fl/fl). LysM-cre SOCS3fl/fl mice displayed significant increase of the lung permeability index (lung vascular leak of albumin), neutrophils, lung neutrophil accumulation (myeloperoxidase activity), and proinflammatory cytokines/chemokines in bronchial alveolar lavage fluids compared to WT mice. These phenotypes were consistent with morphological evaluation of lung, which showed enhanced inflammatory cell influx and intra-alveolar hemorrhage. We further identify the transcription factor, CCAAT/enhancer-binding protein (C/EBP) δ as a critical downstream target of SOCS3 in LPS-induced ALI. These results indicate that SOCS3 has a protective role in LPS-induced ALI by suppressing C/EBPδ activity in the lung. Elucidating the function of SOCS3 would represent prospective targets for a new generation of drugs needed to treat ALI.—Yan, C., Ward, P. A., Wang, X., Gao, H. Myeloid depletion of SOCS3 enhances LPS-induced acute lung injury through CCAAT/enhancer binding protein δ pathway. PMID:23585399

  1. The Fusarium toxin deoxynivalenol (DON) modulates the LPS induced acute phase reaction in pigs.

    PubMed

    Dänicke, Sven; Brosig, Bianca; Kersten, Susanne; Kluess, Jeannette; Kahlert, Stefan; Panther, Patricia; Diesing, Anne-Kathrin; Rothkötter, Hermann-Josef

    2013-07-04

    The systemic effects of the Fusarium toxin deoxynivalenol (DON) and of bacterial lipopolysaccharides (LPS) were studied in male castrated pigs (40.4 ± 3.7 kg) infused intravenously with either DON or LPS alone (100 μg DON/kg/h, 7.5 μg/LPS/kg/h), or together (100 μg DON plus 7.5 μg/LPS/kg/h). The Control group received a saline infusion (n=6/treatment, 24h observation period). An additional DON infusion did not exacerbate the clinical signs observed in LPS-infused pigs. For example, rectal temperature climaxed after 4h (40.4 ± 0.2°C) and 5h (40.1 ± 0.3°C), in the LPS and LPS+DON group, respectively. Saline and DON alone did not induce an acute phase reaction as indicated by unaltered plasma levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) while LPS caused a significant rise of both cytokines. TNF-alpha plasma peak concentrations were significantly higher in the LPS compared to the DON+LPS group (94.3 ± 17.2 ng/mL vs. 79.2 ± 15.7 ng/mL) while IL-6 climaxed earlier in the latter group (3h p.i. vs. 2h p.i.). From the tested clinical-chemical plasma characteristics the total bilirubin concentration and the ASAT activity were strongly elevated by the LPS infusion and additionally increased and decreased by DON, respectively. In conclusion, the LPS-induced effects were only marginally modified by DON.

  2. The binding capability of plasma phospholipid transfer protein, but not HDL pool size, is critical to repress LPS induced inflammation

    PubMed Central

    Yu, Yang; Cui, Yingjie; Zhao, Yanan; Liu, Shuai; Song, Guohua; Jiao, Peng; Li, Bin; Luo, Tian; Guo, Shoudong; Zhang, Xiangjian; Wang, Hao; Jiang, Xian-Cheng; Qin, Shucun

    2016-01-01

    Phospholipid transfer protein (PLTP) participates in high density lipoprotein (HDL) metabolism. Increased plasma PLTP activity was observed in lipopolysaccharide (LPS) triggered acute inflammatory diseases. This study aimed to determine the exact role of PLTP in LPS induced inflammation. HDL pool size was shrunk both in PLTP deficient mice (PLTP−/−) and PLTP transgenic mice (PLTP-Tg). PLTP displayed a strong protective effect on lethal endotoxemia in mice survival study. Furthermore, after LPS stimulation, the expression of pro-inflammatory cytokines were increased in bone marrow derived macrophage (BMDM) from PLTP−/−, while decreased in BMDM from PLTP-Tg compared with BMDM from wild-type mice (WT). Moreover, LPS induced nuclear factor kappa-B (NFκB) activation was enhanced in PLTP−/− BMDM or PLTP knockdown RAW264.7. Conversely, PLTP overexpression countered the NFκB activation in LPS challenged BMDM. Additionally, the activation of toll like receptor 4 (TLR4) induced by LPS showed no alteration in PLTP−/− BMDM. Finally, PLTP could bind to LPS, attenuate the pro-inflammatory effects of LPS, and improve the cell viability in vitro. To sum up, these findings elucidated that PLTP repressed LPS induced inflammation due to extracellular LPS binding capability, and the protective effects were not related to HDL pool size in mice. PMID:26857615

  3. SOX6 and PDCD4 enhance cardiomyocyte apoptosis through LPS-induced miR-499 inhibition.

    PubMed

    Jia, Zhuqing; Wang, Jiaji; Shi, Qiong; Liu, Siyu; Wang, Weiping; Tian, Yuyao; Lu, Qin; Chen, Ping; Ma, Kangtao; Zhou, Chunyan

    2016-02-01

    Sepsis-induced cardiac apoptosis is one of the major pathogenic factors in myocardial dysfunction. As it enhances numerous proinflammatory factors, lipopolysaccharide (LPS) is considered the principal mediator in this pathological process. However, the detailed mechanisms involved are unclear. In this study, we attempted to explore the mechanisms involved in LPS-induced cardiomyocyte apoptosis. We found that LPS stimulation inhibited microRNA (miR)-499 expression and thereby upregulated the expression of SOX6 and PDCD4 in neonatal rat cardiomyocytes. We demonstrate that SOX6 and PDCD4 are target genes of miR-499, and they enhance LPS-induced cardiomyocyte apoptosis by activating the BCL-2 family pathway. The apoptosis process enhanced by overexpression of SOX6 or PDCD4, was rescued by the cardiac-abundant miR-499. Overexpression of miR-499 protected the cardiomyocytes against LPS-induced apoptosis. In brief, our results demonstrate the existence of a miR-499-SOX6/PDCD4-BCL-2 family pathway in cardiomyocytes in response to LPS stimulation.

  4. Investigations on Leucas cephalotes (Roth.) Spreng. for inhibition of LPS-induced pro-inflammatory mediators in murine macrophages and in rat model

    PubMed Central

    Patel, Neeraj K.; Khan, Mohd. Shahid; Bhutani, Kamlesh K.

    2015-01-01

    Silica gel column chromatography fractionation of the dichloromethane extract (LCD) of Leucas cephalotes (Roth.) Spreng. led to the isolation of five compounds namely β-sitosterol (1) + stigmasterol (2), lupeol (3), oleanolic acid (4) and laballenic acid (5). Also, gas chromatography-mass spectrometry (GC-MS) analysis of sub-fraction (LCD-F1) of this extract showed the presence of eleven (6-16) compounds. In addition to this, 3-5 and LCD-F1 were evaluated for lipopolysachharide (LPS)-induced nitric oxide (NO), tumor necrosis factor (TNF)-α and interleukin (IL)-1β production in RAW 264.7 and J774A.1 cells. Results directed that 4 and 5 were found to inhibit these mediators at half maximal inhibitory concentration of 17.12 to 57.20 μM while IC50 for LCD-F1 was found to be 15.56 to 31.71 μg/mL. Furthermore, LCD at a dose of 50, 100 and 400 mg/Kg was found to reduce significantly LPS induced tumor necrosis factor (TNF)-α and interleukin (IL)-1β production in female Sprague Dawley (SD) rats. All the results findings evoked that the anti-inflammatory effects of Leucas cephalotes is partially mediated through the suppression of pro-inflammatory mediators and hence can be utilized for the development of anti-inflammatory candidates. PMID:26535039

  5. Obovatol attenuates LPS-induced memory impairments in mice via inhibition of NF-κB signaling pathway.

    PubMed

    Choi, Dong-Young; Lee, Jae Woong; Lin, Guihua; Lee, Yong Kyung; Lee, Yeon Hee; Choi, Im Seop; Han, Sang Bae; Jung, Jae Kyung; Kim, Young Hee; Kim, Ki Ho; Oh, Ki-Wan; Hong, Jin Tae; Lee, Moon Soon

    2012-01-01

    Neuroinflammation and accumulation of β-amyloid are critical pathogenic mechanisms of Alzheimer's disease (AD). In the previous study, we have shown that systemic lipopolysaccharide (LPS) caused neuroinflammation with concomitant increase in β-amyloid and memory impairments in mice. In an attempt to investigate anti-neuroinflammatory properties of obovatol isolated from Magnolia obovata, we administered obovatol (0.2, 0.5 and 1.0 mg/kg/day, p.o.) to animals for 21 days before injection of LPS (0.25 mg/kg, i.p.). We found that obovatol dose-dependently attenuates LPS-induced memory deficit in the Morris water maze and passive avoidance tasks. Consistent with the results of memory tasks, the compound prevented LPS-induced increases in Aβ₁₋₄₂ formation, β- and γ-secretases activities and levels of amyloid precursor protein, neuronal β-secretase 1 (BACE1), and C99 (a product of BACE1) in the cortex and hippocampus. The LPS-mediated neuroinflammation as determined by Western blots and immunostainings was significantly ameliorated by the compound. Furthermore, LPS-induced nuclear factor (NF)-κB DNA binding activity was drastically abolished by obovatol as shown by the electrophoretic mobility shift assay. The anti-neuroinflammation and anti-amyloidogenesis by obovatol were replicated in in vitro studies. These results show that obovatol mitigates LPS-induced amyloidogenesis and memory impairment via inhibiting NF-κB signal pathway, suggesting that the compound might be plausible therapeutic intervention for neuroinflammation-related diseases such as AD.

  6. Resolvin D1 reduces deterioration of tight junction proteins by upregulating HO-1 in LPS-induced mice.

    PubMed

    Xie, Wanli; Wang, Huiqing; Wang, Lei; Yao, Chengye; Yuan, Ruixia; Wu, Qingping

    2013-09-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) is characterized by increased pulmonary permeability with high mortality. Resolvin D1 (RvD1), which has potent anti-inflammatory and pro-resolving activity, can attenuate pulmonary edema in the animal model of ALI. However, the mechanism underlying the protection of RvD1 on pulmonary edema is still unknown. Here we explore the effects and mechanism of RvD1 on the disruption of tight junction protein that results in the permeability edema in a model of lipopolysaccharide (LPS)-induced ALI. The severity of pulmonary edema was assessed by wet-to-dry rate and Evans blue infiltration; expressions of tight junction (TJ) proteins occludin and zona occludin-1 (ZO-1) were examined by immunofluorescence staining and western blot; mRNA in lung tissue was studied by real time-PCR; the TUNEL kit was performed for the detection of apoptosis of pulmonary barrier. Twenty-four hours after LPS inhalation by mice, wet-to-dry rate and Evans blue infiltration indicated that pretreatment with RvD1 relieved the pulmonary edema and pulmonary capillary permeability. Moreover, RvD1 attenuated the LPS-induced deterioration of TJ protein ZO-1 and occludin significantly. And we found that RvD1 increased heme oxygenase-1 (HO-1) expression contributed to the protection on the deterioration of TJs. In addition, we found that RvD1 could reduce pulmonary cellular apoptosis in LPS-induced mice. In conclusion, RvD1 possesses the ability that relieves the pulmonary edema and restores pulmonary capillary permeability and reduces disruption of TJs in LPS-induced ALI of mice, at least in part, by upregulating HO-1 expression.

  7. Kaempferol slows intervertebral disc degeneration by modifying LPS-induced osteogenesis/adipogenesis imbalance and inflammation response in BMSCs.

    PubMed

    Zhu, Jun; Tang, Haoyu; Zhang, Zhenhua; Zhang, Yong; Qiu, Chengfeng; Zhang, Ling; Huang, Pinge; Li, Feng

    2017-02-01

    Intervertebral disc (IVD) degeneration is a common disease that represents a significant cause of socio-economic problems. Bone marrow-derived mesenchymal stem cells (BMSCs) are a potential autologous stem cell source for the nucleus pulposus regeneration. Kaempferol has been reported to exert protective effects against both osteoporosis and obesity. This study explored the effect of kaempferol on BMSCs differentiation and inflammation. The results demonstrated that kaempferol did not show any cytotoxicity at concentrations of 20, 60 and 100μM. Kaempferol enhanced cell viability by counteracting the lipopolysaccharide (LPS)-induced cell apoptosis and increasing cell proliferation. Western blot analysis of mitosis-associated nuclear antigen (Ki67) and proliferation cell nuclear antigen (PCNA) further confirmed the increased effect of kaempferol on LPS-induced decreased viability of BMSCs. Besides, kaempferol elevated LPS-induced reduced level of chondrogenic markers (SOX-9, Collagen II and Aggrecan), decreased the level of matrix-degrading enzymes, i.e., matrix metalloprotease (MMP)-3 and MMP-13, suggesting the osteogenesis of BMSC under kaempferol treatment. On the other hand, kaempferol enhanced LPS-induced decreased expression of lipid catabolism-related genes, i.e., carnitine palmitoyl transferase-1 (CPT-1). Kaempferol also suppressed the expression of lipid anabolism-related genes, i.e., peroxisome proliferators-activated receptor-γ (PPAR-γ). The Oil red O staining further convinced the inhibition effect of kaempferol on BMSCs adipogenesis. In addition, kaempferol alleviated inflammatory by reducing the level of pro-inflammatory cytokines (i.e., interleukin (IL)-6) and increasing anti-inflammatory cytokine (IL-10) via inhibiting the nucleus translocation of nuclear transcription factor (NF)-κB p65. Taken together, our research indicated that kaempferol may serve as a novel target for treatment of IVD degeneration.

  8. Peripheral Blood Mononuclear Cells Infiltration Downregulates Decidual FAAH Activity in an LPS-Induced Embryo Resorption Model.

    PubMed

    Wolfson, Manuel Luis; Aisemberg, Julieta; Correa, Fernando; Franchi, Ana María

    2017-06-01

    Maternal infections with gram-negative bacteria are associated with miscarriage and are one of the most common complications during pregnancy. Previous studies from our group have shown that lipopolysaccharide (LPS)-activated infiltrating peripheral blood mononuclear cells (PBMC) into decidual tissue plays an important role in the establishment of a local inflammatory process that results in embryo cytotoxicity and early embryo resorption. Moreover, we have also shown that an increased endocannabinoid tone mediates LPS-induced deleterious effects during early pregnancy loss. Here, we sought to investigate whether the infiltrating PBMC modulates the decidual endocannabinoid tone and the molecular mechanisms involved. PBMC isolated from 7-day pregnant mice subjected to different treatments were co-cultured in a transwell system with decidual tissue from control 7-day pregnant mice. Decidual fatty acid amide hydrolase (FAAH) activity was measured by radioconvertion, total decidual protein nitration by Western blot (WB), and decidual FAAH nitration by immunoprecipitation followed by WB. We found that co-culture of PBMC obtained from LPS-treated mice increased the level of nitration of decidual FAAH, which resulted in a negative modulation of decidual FAAH activity. Interestingly, co-treatment with progesterone or aminoguanidine prevented this effect. We found that LPS-treated PBMC release high amounts of nitric oxide (NO) which causes tyrosine nitration of decidual FAAH, diminishing its enzymatic activity. Inactivation of FAAH, the main degrading enzyme of anandamide and similar endocannabinoids, could lead to an increased decidual endocannabinoid tone with embryotoxic effects. J. Cell. Physiol. 232: 1441-1447, 2017. © 2016 Wiley Periodicals, Inc.

  9. Ivy leaves dry extract EA 575® decreases LPS-induced IL-6 release from murine macrophages.

    PubMed

    Schulte-Michels, J; Runkel, F; Gokorsch, S; Häberlein, H

    2016-03-01

    IL-6 plays a key role in the course of inflammatory processes as well as in the regulation of immune responses by the release of different cytokines. IL-6 is produced e.g. by macrophages recruited to the airways in response to a variety of inflammatory stimuli like allergens and respiratory viruses. Patients with inflammatory airway diseases therefore may benefit from therapies targeting the IL-6 pathway, e.g. reduction of the IL-6 release. Within this context, we tested the influence of the ivy leaves dry extract EA 575® on the LPS-induced release of IL-6 from murine macrophages (J774.2). One point seven µg/ml (5 µM) corticosterone served as positive control and was able to reduce LPS-induced IL-6 release by 46 ± 4%. EA 575® was tested in concentrations between 40 and 400 µg/ml. EA 575® decreased the LPS-induced IL-6 release in a dose-dependent manner and statistically significant by 25 ± 4%, 32 ± 4%, and 40 ± 7% in concentrations of 80, 160, and 400 µg/ml, respectively. The present data suggest an anti-inflammatory effect of EA 575® used in therapy of chronic- and acute inflammatory airway diseases accompanied with cough.

  10. Licocoumarone isolated from Glycyrrhiza uralensis selectively alters LPS-induced inflammatory responses in RAW 264.7 macrophages.

    PubMed

    Wu, Lehao; Fan, Yunpeng; Fan, Chao; Yu, Yang; Sun, Lei; Jin, Yu; Zhang, Yan; Ye, Richard D

    2017-04-15

    The effects of licocoumarone (LC) isolated from Glycyrrhiza uralensis were studied in LPS-stimulated RAW 264.7 macrophages. Our study demonstrated that LC dose-dependently attenuated LPS-induced NO production by down-regulating iNOS expression. Additionally, the treatment with LC inhibited LPS-induced expression of cytokines including IL-1β, IL-6 and IL-10, but not TNF-α, at both mRNA and protein levels. Similar suppressive effects of LC were observed on LPS-stimulated murine peritoneal macrophages as well. Furthermore, LC significantly reduced LPS-stimulated NF-κB activation by inhibition of IκBα degradation and p65 phosphorylation. The results from NF-κB-luc reporter gene assay further support the inhibitory effect of LC on NF-κB activation. Further studies showed that LC also interfered with the MAPKs and STAT3 signaling pathways, which are typical inflammatory signaling pathways triggered by LPS. Taken together, these results show that LC attenuates LPS-induced cytokine gene expression in RAW 264.7 macrophages through mechanisms that involve NF-κB, MAPKs and STAT3 signaling pathways, but the pattern of inhibition differs from that of a global immunosuppresant. Our study indicates that LC is a functional constituent of Glycyrrhiza uralensis with potential implications in infectious and immune-related diseases.

  11. Extract from Acanthopanax senticosus prevents LPS-induced monocytic cell adhesion via suppression of LFA-1 and Mac-1.

    PubMed

    Kim, Hyun Jeong; McLean, Danielle; Pyee, Jaeho; Kim, Jongmin; Park, Heonyong

    2014-04-01

    A crude extract from Acanthopanax senticosus (AS) has drawn increased attention because of its potentially beneficial activities, including anti-fatigue, anti-stress, anti-gastric-ulcer, and immunoenhancing effects. We previously reported that AS crude extract exerts anti-inflammatory activity through blockade of monocytic adhesion to endothelial cells. However, the underlying mechanisms remained unknown, and so this study was designed to investigate the pathways involved. It was confirmed that AS extract inhibited lipopolysaccharide (LPS)-induced adhesion of monocytes to endothelial cells, and we found that whole extract was superior to eleutheroside E, a principal functional component of AS. A series of PCR experiments revealed that AS extract inhibited LPS-induced expression of genes encoding lymphocyte function-associated antigen-1 (LFA-1) and macrophage-1 antigen (Mac-1) in THP-1 cells. Consistently, protein levels and cell surface expression of LFA-1 and Mac-1 were noticeably reduced upon treatment with AS extract. This inhibitory effect was mediated by the suppression of LPS-induced degradation of IκB-α, a known inhibitor of nuclear factor-κB (NF-κB). In conclusion, AS extract exerts anti-inflammatory activity via the suppression of LFA-1 and Mac-1, lending itself as a potential therapeutic galenical for the prevention and treatment of various inflammatory diseases.

  12. Phosphocreatine protects against LPS-induced human umbilical vein endothelial cell apoptosis by regulating mitochondrial oxidative phosphorylation.

    PubMed

    Sun, Zhengwu; Lan, Xiaoyan; Ahsan, Anil; Xi, Yalin; Liu, Shumin; Zhang, Zonghui; Chu, Peng; Song, Yushu; Piao, Fengyuan; Peng, Jinyong; Lin, Yuan; Han, Guozhu; Tang, Zeyao

    2016-03-01

    Phosphocreatine (PCr) is an exogenous energy substance, which provides phosphate groups for adenosine triphosphate (ATP) cycle and promotes energy metabolism in cells. However, it is still unclear whether PCr has influenced on mitochondrial energy metabolism as well as oxidative phosphorylation (OXPHO) in previous studies. Therefore, the aim of the present study was to investigate the regulation of PCr on lipopolsaccharide (LPS)-induced human umbilical vein endothelial cells (HUVECs) and mitochondrial OXPHO pathway. PCr protected HUVECs against LPS-induced apoptosis by suppressing the mitochondrial permeability transition, cytosolic release of cytochrome c (Cyt C), Ca(2+), reactive oxygen species and subsequent activation of caspases, and increasing Bcl2 expression, while suppressing Bax expression. More importantly, PCr significantly improved mitochondrial swelling and membrane potential, enhanced the activities of ATP synthase and mitochondrial creatine kinase (CKmt) in creatine shuttle, influenced on respiratory chain enzymes, respiratory control ratio, phosphorus/oxygen ratio and ATP production of OXPHO. Above PCr-mediated mitochondrial events were effectively more favorable to reduced form of flavin adenine dinucleotide (FADH2) pathway than reduced form of nicotinamide-adenine dinucleotid pathway in the mitochondrial respiratory chain. Our results revealed that PCr protects against LPS-induced HUVECs apoptosis, which probably related to stabilization of intracellular energy metabolism, especially for FADH2 pathway in mitochondrial respiratory chain, ATP synthase and CKmt. Our findings suggest that PCr may play a certain role in the treatment of atherosclerosis via protecting endothelial cell function.

  13. Exploring New Inflammatory Biomarkers and Pathways during LPS-Induced M1 Polarization.

    PubMed

    Cunha, Carolina; Gomes, Cátia; Vaz, Ana Rita; Brites, Dora

    2016-01-01

    Identification of mediators triggering microglia activation and transference of noncoding microRNA (miRNA) into exosomes are critical to dissect the mechanisms underlying neurodegeneration. We used lipopolysaccharide- (LPS-) induced N9 microglia activation to explore new biomarkers/signaling pathways and to identify inflammatory miRNA (inflamma-miR) in cells and their derived exosomes. Upregulation of iNOS and MHC-II (M1-markers) and downregulation of arginase 1, FIZZ1 (M2-markers), and CX3CR1 (M0/M2 polarization) confirmed the switch of N9 LPS-treated cells into the M1 phenotype, as described for macrophages/microglia. Cells showed increased proliferation, activated TLR4/TLR2/NF-κB pathway, and enhanced phagocytosis, further corroborated by upregulated MFG-E8. We found NLRP3-inflammasome activation in these cells, probably accounting for the increased extracellular content of the cytokine HMGB1 and of the MMP-9 we have observed. We demonstrate for the first time that the inflamma-miR profiling (upregulated miR-155 and miR-146a plus downregulated miR-124) in M1 polarized N9 cells, noticed by others in activated macrophages/microglia, was replicated in their derived exosomes, likely regulating the inflammatory response of recipient cells and dissemination processes. Data show that LPS-treated N9 cells behave like M1 polarized microglia/macrophages, while providing new targets for drug discovery. In particular, the study yields novel insights into the exosomal circulating miRNA during neuroinflammation important for emerging therapeutic approaches targeting microglia activation.

  14. Tissue heme oxygenase-1 exerts anti-inflammatory effects on LPS-induced pulmonary inflammation.

    PubMed

    Konrad, F M; Knausberg, U; Höne, R; Ngamsri, K-C; Reutershan, J

    2016-01-01

    Heme oxygenase-1 (HO-1) has been shown to display anti-inflammatory properties in models of acute pulmonary inflammation. For the first time, we investigated the role of leukocytic HO-1 using a model of HO-1(flox/flox) mice lacking leukocytic HO-1 that were subjected to lipopolysaccharide (LPS)-induced acute pulmonary inflammation. Immunohistology and flow cytometry demonstrated that activation of HO-1 using hemin decreased migration of polymorphonuclear leukocytes (PMNs) to the lung interstitium and bronchoalveolar lavage (BAL) in the wild-type and, surprisingly, also in HO-1(flox/flox) mice, emphasizing the anti-inflammatory potential of nonmyeloid HO-1. Nevertheless, hemin reduced the CXCL1, CXCL2/3, tumor necrosis factor-α (TNFα), and interleukin 6 (IL6) levels in both animal strains. Microvascular permeability was attenuated by hemin in wild-type and HO-1(flox/flox) mice, indicating a crucial role of non-myeloid HO-1 in endothelial integrity. The determination of the activity of HO-1 in mouse lungs revealed no compensatory increase in the HO-1(flox/flox) mice. Topical administration of hemin via inhalation reduced the dose required to attenuate PMN migration and microvascular permeability by a factor of 40, emphasizing its clinical potential. In addition, HO-1 stimulation was protective against pulmonary inflammation when initiated after the inflammatory stimulus. In conclusion, nonmyeloid HO-1 is crucial for the anti-inflammatory effect of this enzyme on PMN migration to different compartments of the lung and on microvascular permeability.

  15. Exploring New Inflammatory Biomarkers and Pathways during LPS-Induced M1 Polarization

    PubMed Central

    2016-01-01

    Identification of mediators triggering microglia activation and transference of noncoding microRNA (miRNA) into exosomes are critical to dissect the mechanisms underlying neurodegeneration. We used lipopolysaccharide- (LPS-) induced N9 microglia activation to explore new biomarkers/signaling pathways and to identify inflammatory miRNA (inflamma-miR) in cells and their derived exosomes. Upregulation of iNOS and MHC-II (M1-markers) and downregulation of arginase 1, FIZZ1 (M2-markers), and CX3CR1 (M0/M2 polarization) confirmed the switch of N9 LPS-treated cells into the M1 phenotype, as described for macrophages/microglia. Cells showed increased proliferation, activated TLR4/TLR2/NF-κB pathway, and enhanced phagocytosis, further corroborated by upregulated MFG-E8. We found NLRP3-inflammasome activation in these cells, probably accounting for the increased extracellular content of the cytokine HMGB1 and of the MMP-9 we have observed. We demonstrate for the first time that the inflamma-miR profiling (upregulated miR-155 and miR-146a plus downregulated miR-124) in M1 polarized N9 cells, noticed by others in activated macrophages/microglia, was replicated in their derived exosomes, likely regulating the inflammatory response of recipient cells and dissemination processes. Data show that LPS-treated N9 cells behave like M1 polarized microglia/macrophages, while providing new targets for drug discovery. In particular, the study yields novel insights into the exosomal circulating miRNA during neuroinflammation important for emerging therapeutic approaches targeting microglia activation. PMID:28096568

  16. Eleutherococcus senticosus extract attenuates LPS-induced iNOS expression through the inhibition of Akt and JNK pathways in murine macrophage.

    PubMed

    Jung, Chang Hwa; Jung, Hee; Shin, Yong-Cheol; Park, Jong-Hyeong; Jun, Chan-Yong; Kim, Hyung-Min; Yim, Hee-Sun; Shin, Min-Gyu; Bae, Hyun-Soo; Kim, Sung-Hoon; Ko, Seong-Gyu

    2007-08-15

    Eleutherococcus senticosus (Araliaceae) is immunological modulator which has been successfully used for anti-inflammatory effectors on anti-rheumatic diseases in oriental medicine. Mitogen-activated protein kinases (MAPKs) and Akt modulate the transcription of many genes involved in the inflammatory process. In this study, we investigated the inhibitory effects of Eleutherococcus senticosus on the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharides (LPS)-activated macrophages. Finally, we studied the involvement of MAPKs and Akt signaling in the protective effect of Eleutherococcus senticosus in LPS-activated macrophages. Eleutherococcus senticosus significantly attenuated LPS-induced iNOS expression but not COX-2 expression. In using the standard inhibitors (MAPKs and Akt), our results show that Eleutherococcus senticosus downregulates inflammatory iNOS expression by blocking JNK and Akt activation.

  17. Ghrelin inhibits LPS-induced release of IL-6 from mouse dopaminergic neurones

    PubMed Central

    2013-01-01

    Background Ghrelin is an orexigenic stomach hormone that acts centrally to increase mid-brain dopamine neurone activity, amplify dopamine signaling and protect against neurotoxin-induced dopamine cell death in the mouse substantia nigra pars compacta (SNpc). In addition, ghrelin inhibits the lipopolysaccharide (LPS)-induced release of pro-inflammatory cytokines from peripheral macrophages, T-cells and from LPS stimulated microglia. Here we sought to determine whether ghrelin attenuates pro-inflammatory cytokine release from dopaminergic neurones. Findings The dopaminergic SN4741 cell-line, which derives from the mouse substantia nigra (SN) and expresses the ghrelin-receptor (growth hormone secretagogue receptor (GHS-R)) and the ghrelin-O-acyl transferase (GOAT) enzyme, was used to determine the neuro-immunomodulatory action of ghrelin. We induced innate immune activation via LPS challenge (1 μg/ml) of SN4741 neurones that had been pre-cultured in the presence or absence of ghrelin (1, 10, 100 nM) for 4 h. After 24 h supernatants were collected for detection of IL-1 beta (IL-1β ), TNF alpha (TNF-α) and IL-6 cytokines via enzyme linked immunosorbent assay (ELISA) analysis. Nuclear translocation of the transcription factor nuclear factor kappa B (NF-κB) was analyzed by Western blotting, and to determine viability of treatments a cell viability assay and caspase-3 immunohistochemistry were performed. We provide evidence that while IL-1β and TNF-α were not detectable under any conditions, SN4741 neurones constitutively released IL-6 under basal conditions and treatment with LPS significantly increased IL-6 secretion. Pre-treatment of neurones with ghrelin attenuated LPS-mediated IL-6 release at 24 h, an affect that was inhibited by the GHS-R antagonist [D-Lys3]-GHRP-6. However, while ghrelin pre-treatment attenuated the LPS-mediated increase in NF-κB, there was no alteration in its nuclear translocation. Cell viability assay and caspase-3 immunocytochemistry

  18. Dissociation of lipopolysaccharide (LPS)-inducible gene expression in murine macrophages pretreated with smooth LPS versus monophosphoryl lipid A.

    PubMed Central

    Henricson, B E; Manthey, C L; Perera, P Y; Hamilton, T A; Vogel, S N

    1993-01-01

    Lipopolysaccharide (LPS) and the nontoxic derivative of lipid A, monophosphoryl lipid A (MPL), were employed to assess the relationship between expression of LPS-inducible inflammatory genes and the induction of tolerance to LPS in murine macrophages. Both LPS and MPL induced expression (as assessed by increased steady-state mRNA levels) of a panel of seven "early" inflammatory genes including the tumor necrosis factor alpha (TNF-alpha), interleukin-1 beta, type 2 TNF receptor (TNFR-2), IP-10, D3, D8, and D2 genes (the last four represent LPS-inducible early genes whose functions remain unknown). In addition, LPS and MPL were both capable of inducing tolerance to LPS. The two stimuli differed in the relative concentration required to induce various outcome measures, with LPS being 100- to 1,000-fold more potent on a mass concentration basis. Characterization of the tolerant state identified three distinct categories of responsiveness. Two genes (IP-10 and D8) exhibited strong desensitization in macrophages pretreated with tolerance-inducing concentrations of either LPS or MPL. In macrophages rendered tolerant by pretreatment with LPS or MPL, a second group of inducible mRNAs (TNF-alpha, interleukin-1 beta, and D3) showed moderate suppression of response to secondary stimulation by LPS. The third category of inducible genes (TNFR-2 and D2) showed increased expression in macrophages pretreated with tolerance-inducing concentrations of either LPS or MPL. All of the LPS-inducible genes examined exhibited modest superinduction with less than tolerance-inducing concentrations of either stimulus, suggesting a priming effect of these adjuvants at low concentration. The differential behavior of the members of this panel of endotoxin-responsive genes thus offers insight into molecular events associated with acquisition of transient tolerance to LPS. PMID:8388859

  19. Apigenin-7-O-β-D-glucuronide inhibits LPS-induced inflammation through the inactivation of AP-1 and MAPK signaling pathways in RAW 264.7 macrophages and protects mice against endotoxin shock.

    PubMed

    Hu, Weicheng; Wang, Xinfeng; Wu, Lei; Shen, Ting; Ji, Lilian; Zhao, Xihong; Si, Chuan-Ling; Jiang, Yunyao; Wang, Gongcheng

    2016-02-01

    Apigenin-7-O-β-D-glucuronide (AG), an active flavonoid derivative isolated from the agricultural residue of Juglans sigillata fruit husks, possesses multiple pharmacological activities, including anti-oxidant, anti-complement, and aldose reductase inhibitory activities. To date, no report has identified the anti-inflammatory mechanisms of AG. This study was therefore designed to characterize the molecular mechanisms of AG on lipopolysaccharide (LPS)-induced inflammatory cytokines in RAW 264.7 cells and on endotoxin-induced shock in mice. AG suppressed the release of nitric oxide (NO), prostaglandin E2 (PGE2), and tumour necrosis factor-α (TNF-α) in LPS-stimulated RAW 264.7 macrophages in a dose-dependent manner without affecting cell viability. Additionally, AG suppressed LPS-induced mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-α. AG treatment decreased the translocation of c-Jun into the nucleus, and decreased activator protein-1 (AP-1)-mediated luciferase activity through the inhibition of both p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) phosphorylation. Consistent with the in vitro observations, AG protected mice from LPS-induced endotoxin shock by inhibiting proinflammatory cytokine production. Taken together, these results suggest that AG may be used as a source of anti-inflammatory agents as well as a dietary complement for health promotion.

  20. Dissociation of LPS-induced monocytic ex vivo production of granulocyte colony-stimulating factor (G-CSF) and TNF-alpha in patients with septic shock.

    PubMed

    Weiss, M; Fischer, G; Barth, E; Boneberg, E; Schneider, E M; Georgieff, M; Hartung, T

    2001-01-07

    Over a 6 month period, in 192 patients admitted to the intensive care unit (ICU), a longitudinal analysis of whole blood lipopolysaccharide (LPS)-induced ex vivo cytokine production was performed on a daily basis until discharge from the ICU or death. Twenty-one patients with proven infections were in septic shock for the first time and for at least 3 days' duration. Ex vivo LPS-inducible release of granulocyte colony-stimulating factor (G-CSF) was upregulated and that of TNF-alpha was downregulated in patients with septic shock, regardless whether they survived or died. In conclusion, LPS-induced ex vivo TNF-alpha and G-CSF cytokine release by monocytes is regulated differentially in patients with septic shock. Since upregulation of LPS-induced production of G-CSF occurred earlier in survivors than in non-survivors, rapidly elevated and sustained G-CSF responsiveness may contribute to survival in septic shock.

  1. 2-phenylethynesulfonamide Prevents Induction of Pro-inflammatory Factors and Attenuates LPS-induced Liver Injury by Targeting NHE1-Hsp70 Complex in Mice.

    PubMed

    Huang, Chao; Wang, Jia; Chen, Zhuo; Wang, Yuzhe; Zhang, Wei

    2013-01-01

    The endotoxin-mediated production of pro-inflammatory cytokines plays an important role in the pathogenesis of liver disorders. Heat shock protein (Hsp70) overexpression has established functions in lipopolysaccharide (LPS)-mediated inflammatory response. However, little is known about the role of Hsp70 activity in LPS signaling. We hypothesized that inhibition of Hsp70 substrate binding activity can ameliorate LPS-induced liver injury by decreasing induction of pro-inflammatory factors. In this study, C57/BL6 mice were injected intraperitoneally with LPS and 2-phenylethynesulfonamide (PES), an inhibitor of Hsp70 substrate binding activity. We found that i. PES prevented LPS-induced increase in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity, infiltration of inflammatory cells, and liver cell apoptosis; ii. PES reduced inducible nitric oxide synthase (iNOS) protein expression as well as serum nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) content in LPS-stimulated mice; iii. PES reduced the mRNA level of iNOS, TNF-α, and IL-6 in LPS-stimulated liver. iiii. PES attenuated the degradation of inhibitor of κB-α (IκB-α) as well as the phosphorylation and nuclear translocation of nuclear factor-κB (NF-κB) in LPS-stimulated liver. Similar changes in the protein expression of inflammatory markers, IκB-α degradation, and NF-κB phosphorylation and nuclear translocation were observed in RAW 264.7 cells. Further mechanistic studies revealed that PES remarkably reduced the elevation of [Ca(2+)]i and intracellular pH value (pHi) in LPS-stimulated RAW 264.7 cells. Furthermore, PES significantly reduced the increase in Na(+)/H(+) exchanger 1 (NHE1) association to Hsp70 in LPS-stimulated macrophages and liver, suggesting that NHE1-Hsp70 interaction is required for the involvement of NHE1 in the inflammation response. In conclusion, inhibition of Hsp70 substrate binding activity in vivo reduces the

  2. Anthemis wiedemanniana essential oil prevents LPS-induced production of NO in RAW 264.7 macrophages and exerts antiproliferative and antibacterial activities in vitro.

    PubMed

    Conforti, Filomena; Menichini, Federica; Formisano, Carmen; Rigano, Daniela; Senatore, Felice; Bruno, Maurizio; Rosselli, Sergio; Celik, Sezgin

    2012-01-01

    Anthemis wiedemanniana is known in folk medicine for the treatment of microbial infections, cancer and also urinary and pulmonary problems. In this study, the chemical composition of the essential oil from A. wiedemanniana was evaluated and its antibacterial activity was tested against 10 bacterial strains. The oil was also tested for its potentiality to inhibit nitric oxide production in RAW 264.7 macrophages and for its cytotoxicity against four human cancer cell lines. A. wiedemanniana oil, rich of oxygenated monoterpenes (25.4%), showed a good antibacterial activity against Gram-positive bacteria and a good activity against the two Gram-negative bacteria, Escherichia coli and Proteus vulgaris. Besides that, it exhibited a high inhibitory effect on the LPS-induced nitrite production and a strong cytotoxic activity, especially against amelanotic melanoma (C32) and large lung cell carcinoma (COR-L23) cell lines.

  3. 4,7-Dimethoxy-5-methyl-1,3-benzodioxole from Antrodia camphorata inhibits LPS-induced inflammation via suppression of NF-κB and induction HO-1 in RAW264.7 cells.

    PubMed

    Shie, Pei-Hsin; Wang, Sheng-Yang; Lay, Horng-Liang; Huang, Guan-Jhong

    2016-02-01

    Several benzenoid compounds have been isolated from Antrodia camphorata are known to have excellent anti-inflammatory activity. In this study, we investigated the anti-inflammatory potential of 4,7-dimethoxy-5-methyl-1,3-benzodioxole (DMB), one of the major benzenoid compounds isolated from the mycelia of A. camphorata. DMB significantly decreased the LPS-induced production of pro-inflammatory molecules, such as nitric oxide (NO), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in RAW264.7 cells. In addition, DMB suppressed the protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose dependent manner. Moreover, DMB significantly suppressed LPS-induced nuclear translocation of nuclear factor-κB (NF-κB), and this inhibition was found to be associated with decreases in the phosphorylation and degradation of its inhibitor, inhibitory κB-α (IκB-α). Moreover, we found that DMB markedly inhibited the protein expression level of Toll-like receptor 4 (TLR4). Furthermore, treatment with DMB significantly increased hemoxygenase-1 (HO-1) expression in RAW264.7 cells, which is further confirmed by hemin, a HO-1 enhancer, significantly attenuated the LPS-induced pro-inflammatory molecules and iNOS and TLR4 protein levels. Taken together, the present study suggests that DMB may have therapeutic potential for the treatment of inflammatory diseases.

  4. IL-1beta and LPS induce anorexia by distinct mechanisms differentially dependent on microsomal prostaglandin E synthase-1.

    PubMed

    Elander, Louise; Engström, Linda; Hallbeck, Martin; Blomqvist, Anders

    2007-01-01

    Recent work demonstrated that the febrile response to peripheral immune stimulation with proinflammatory cytokine IL-1beta or bacterial wall lipopolysaccharide (LPS) is mediated by induced synthesis of prostaglandin E(2) by the terminal enzyme microsomal prostaglandin E synthase-1 (mPGES-1). The present study examined whether a similar mechanism might also mediate the anorexia induced by these inflammatory agents. Transgenic mice with a deletion of the Ptges gene, which encodes mPGES-1, and wild-type controls were injected intraperitoneally with IL-1beta, LPS, or saline. Mice were free fed, and food intake was continuously monitored with an automated system for 12 h. Body weight was recorded every 24 h for 4 days. The IL-1beta induced anorexia in wild-type but not knock-out mice, and so it was almost completely dependent on mPGES-1. In contrast, LPS induced anorexia of the same magnitude in both phenotypes, and hence it was independent of mPGES-1. However, when the mice were prestarved for 22 h, LPS induced anorexia and concomitant body weight loss in the knock-out animals that was attenuated compared with the wild-type controls. These data suggest that IL-1beta and LPS induce anorexia by distinct immune-to-brain signaling pathways and that the anorexia induced by LPS is mediated by a mechanism different from the fever induced by LPS. However, nutritional state and/or motivational factors also seem to influence the pathways for immune signaling to the brain. Furthermore, both IL-1beta and LPS caused reduced meal size but not meal frequency, suggesting that both agents exerted an anhedonic effect during these experimental conditions.

  5. Intranuclear interactomic inhibition of NF-κB suppresses LPS-induced severe sepsis

    SciTech Connect

    Park, Sung-Dong; Cheon, So Yeong; Park, Tae-Yoon; Shin, Bo-Young; Oh, Hyunju; Ghosh, Sankar; Koo, Bon-Nyeo; Lee, Sang-Kyou

    2015-08-28

    Suppression of nuclear factor-κB (NF-κB) activation, which is best known as a major regulator of innate and adaptive immune responses, is a potent strategy for the treatment of endotoxic sepsis. To inhibit NF-κB functions, we designed the intra-nuclear transducible form of transcription modulation domain (TMD) of RelA (p65), called nt-p65-TMD, which can be delivered effectively into the nucleus without influencing the cell viability, and work as interactomic inhibitors via disruption of the endogenous p65-mediated transcription complex. nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines, including TNF-α, IL-1β, or IL-6 from BV2 microglia cells stimulated by lipopolysaccharide (LPS). nt-p65-TMD did not inhibit tyrosine phosphorylation of signaling mediators such as ZAP-70, p38, JNK, or ERK involved in T cell activation, but was capable of suppressing the transcriptional activity of NF-κB without the functional effect on that of NFAT upon T-cell receptor (TCR) stimulation. The transduced nt-p65-TMD in T cell did not affect the expression of CD69, however significantly inhibited the secretion of T cell-specific cytokines such as IL-2, IFN-γ, IL-4, IL-17A, or IL-10. Systemic administration of nt-p65-TMD showed a significant therapeutic effect on LPS-induced sepsis model by inhibiting pro-inflammatory cytokines secretion. Therefore, nt-p65-TMD can be a novel therapeutics for the treatment of various inflammatory diseases, including sepsis, where a transcription factor has a key role in pathogenesis, and further allows us to discover new functions of p65 under normal physiological condition without genetic alteration. - Highlights: • The nt-p65-TMD is intra-nuclear interactomic inhibitor of endogenous p65. • The nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines. • The excellent therapeutic potential of nt-p65-TMD was confirmed in sepsis model.

  6. Early LPS-induced ERK activation in retinal pigment epithelium cells is dependent on PIP 2 -PLC.

    PubMed

    Mateos, Melina V; Kamerbeek, Constanza B; Giusto, Norma M; Salvador, Gabriela A

    2016-06-01

    This article presents additional data regarding the study "The phospholipase D pathway mediates the inflammatory response of the retinal pigment epithelium" [1]. The new data presented here show that short exposure of RPE cells to lipopolysaccharide (LPS) induces an early and transient activation of the extracellular signal-regulated kinase (ERK1/2). This early ERK1/2 activation is dependent on phosphatidylinositol bisphosphate-phospholipase C (PIP2-PLC). On the contrary, neither the phospholipase D 1 (PLD1) nor the PLD2 inhibition is able to modulate the early ERK1/2 activation induced by LPS in RPE cells.

  7. Cobalt protoporphyrin accelerates TFEB activation and lysosome reformation during LPS-induced septic insults in the rat heart.

    PubMed

    Unuma, Kana; Aki, Toshihiko; Funakoshi, Takeshi; Yoshida, Ken-ichi; Uemura, Koichi

    2013-01-01

    Lipopolysaccharide (LPS)-induced myocardial dysfunction is caused, at least in part, by mitochondrial dysfunction. Mitochondrial dysfunction and the oxidative damage associated with it are scavenged through various cellular defense systems such as autophagy to prevent harmful effects. Our recent study has demonstrated that cobalt protoporphyrin IX (CoPPIX), a potent inducer of heme oxygenase-1 (HO-1), ameliorates septic liver injuries by enhancing mitochondrial autophagy in rats. In our current study, we show that CoPPIX (5 mg/kg s.c.) not only accelerates the autophagic response but also promotes lysosome reformation in the rat heart treated with LPS (15 mg/kg i.p.). Lysosomal membrane-associated protein-2 (LAMP2), which is essential to the maintenance of lysosomal functions in the heart, is depleted transiently but restored rapidly during LPS administration in the rat. Activation of transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy, was also observed, indicating a hyper consumption and subsequent reformation of the lysosome to meet the increased demand for autophagosome cleaning. CoPPIX was found to promote these processes and tended to restore the LPS-induced suppression of cardiac performances whilst chloroquine (CQ; 20 mg/kg i.p.), an inhibitor of lysosomes and autophagic protein degradation, abrogates these beneficial effects. The cardioprotective effect of CoPPIX against LPS toxicity was also observed via decreased levels of cardiac releasing enzymes in the plasma. Taken together, our current data indicate that lysosome reformation mediated by TFEB may be involved in cardioprotection against LPS-induced septic insults, and serve as a novel mechanism by which CoPPIX protects the heart against oxidative stress.

  8. LPS induces the TNF-alpha-mediated downregulation of rat liver aquaporin-8: role in sepsis-associated cholestasis.

    PubMed

    Lehmann, Guillermo L; Carreras, Flavia I; Soria, Leandro R; Gradilone, Sergio A; Marinelli, Raúl A

    2008-02-01

    Although bacterial lipopolysaccharides (LPS) are known to cause cholestasis in sepsis, the molecular mechanisms accounting for this effect are only partially known. Because aquaporin-8 (AQP8) seems to facilitate the canalicular osmotic water movement during hepatocyte bile formation, we studied its gene and functional expression in LPS-induced cholestasis. By subcellular fractionation and immunoblotting analysis, we found that 34-kDa AQP8 was significantly decreased by 70% in plasma (canalicular) and intracellular (vesicular) liver membranes. However, expression and subcellular localization of hepatocyte sinusoidal AQP9 were unaffected. Immunohistochemistry for liver AQPs confirmed these observations. Osmotic water permeability (P(f)) of canalicular membranes, measured by stopped-flow spectrophotometry, was significantly reduced (65 +/- 1 vs. 49 +/- 1 microm/s) by LPS, consistent with defective canalicular AQP8 functional expression. By Northern blot analysis, we found that 1.5-kb AQP8 mRNA expression was increased by 80%, suggesting a posttranscriptional mechanism of protein reduction. The tumor necrosis factor-alpha (TNF-alpha) receptor fusion protein TNFp75:Fc prevented the LPS-induced impairment of AQP8 expression and bile flow, suggesting the cytokine TNF-alpha as a major mediator of LPS effect. Accordingly, studies in hepatocyte primary cultures indicated that recombinant TNF-alpha downregulated AQP8. The effect of TNF-alpha was prevented by the lysosomal protease inhibitors leupeptin or chloroquine or by the proteasome inhibitors MG132 or lactacystin, suggesting a cytokine-induced AQP8 proteolysis. In conclusion, our data suggest that LPS induces the TNF-alpha-mediated posttranscriptional downregulation of AQP8 functional expression in hepatocytes, a mechanism potentially relevant to the molecular pathogenesis of sepsis-associated cholestasis.

  9. Inhibitory effects of cyclic AMP elevating agents on lipopolysaccharide (LPS)-induced microvascular permeability change in mouse skin.

    PubMed

    Irie, K; Fujii, E; Ishida, H; Wada, K; Suganuma, T; Nishikori, T; Yoshioka, T; Muraki, T

    2001-05-01

    Anti-inflammatory effects of cyclic AMP elevating agents were examined in a mouse model of lipopolysaccharide (LPS)-induced microvascular permeability change. Vascular permeability on the back skin was measured by the local accumulation of Pontamine sky blue (PSB) after subcutaneous injection of LPS (400 microg site-1) from Salmonella typhimurium. Dye leakage in the skin was significantly increased 2 h after injection of LPS. This LPS-induced dye leakage was suppressed by phosphodiesterase inhibitors, including pentoxifylline (160 mg kg-1), milrinone (5 - 10 mg kg-1), rolipram (0.5 - 10 mg kg-1) and zaprinast (5 - 10 mg kg-1). The dye leakage was also inhibited by beta-adrenoceptor agonists, including isoproterenol (0.5 - 5 mg kg-1) and salbutamol (0.05 - 5 mg kg-1), an adenylate cyclase activator, forskolin (5 mg kg-1), and a cell permeable cyclic AMP analogue, 8-bromo-cyclic AMP (8-Br-cAMP, 10 mg kg-1). LPS caused a transient increase in serum TNF-alpha level peaking at 1 h after the injection. This increase in serum TNF-alpha was completely blocked by a pretreatment with pentoxifylline (160 mg kg-1), milrinone (5 mg kg-1), rolipram (1 mg kg-1), zaprinast (10 mg kg-1), salbutamol (0.5 mg kg-1), forskolin (1 mg kg-1) and 8-Br-cAMP (10 mg kg-1). LPS caused an increase in serum IL-1alpha level peaking at 3 h after injection. This increase in serum IL-1alpha was not significantly suppressed by the cyclic AMP elevating agents. Our study suggests that cyclic AMP elevating agents attenuate LPS-induced microvascular permeability change by suppressing TNF-alpha up regulation.

  10. Minocycline ameliorates LPS-induced inflammation in human monocytes by novel mechanisms including LOX-1, Nur77 and LITAF inhibition

    PubMed Central

    Pang, Tao; Wang, Juan; Benicky, Julius; Saavedra, Juan M.

    2012-01-01

    Background Minocycline exhibits anti-inflammatory properties independent of its antibiotic activity, ameliorating inflammatory responses in monocytes and macrophages. However, the mechanisms of minocycline anti-inflammatory effects are only partially understood. Methods Human circulating monocytes were cultured in the presence of lipopolysaccharide (LPS), 50 ng/ml, and minocycline (10–40 µM). Gene expression was determined by RT-PCR, cytokine and prostaglandin E2 (PGE2) release by ELISA, protein expression, phosphorylation and nuclear translocation by Western blotting. Results Minocycline significantly reduced the inflammatory response in LPS-challenged monocytes, decreasing LPS-induced transcription of pro-inflammatory tumor-necrosis factor alpha (TNF-α), interleukin-1 beta, interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2), and the LPS-stimulated TNF-α, IL-6 and PGE2 release. Minocycline inhibited LPS-induced activation of the lectin-like oxidized low density lipoprotein receptor-1 (LOX-1), NF-κB, LPS-induced TNF-α factor (LITAF) and the Nur77 nuclear receptor. Mechanisms involved in the anti-inflammatory effects of minocycline include a reduction of LPS-stimulated p38 mitogen-activated protein kinase (p38 MAPK) activation and stimulation of the phosphoinositide 3-kinase (PI3K)/Akt pathway. Conclusions We provide novel evidence demonstrating that the anti-inflammatory effects of minocycline in human monocytes include, in addition to decreased NF-κB activation, abrogation of the LPS-stimulated LOX-1, LITAF, Nur77 pathways, p38 MAPK inhibition and PI3K/Akt activation. Our results reveal that minocycline inhibits points of convergence of distinct and interacting signaling pathways mediating multiple inflammatory signals which may influence monocyte activation, traffic and recruitment into the brain. General significance Our results in primary human monocytes contribute to explain the profound anti-inflammatory and protective effects of minocycline in

  11. Suppressive effects of Mimosa pudica (L.) constituents on the production of LPS-induced pro-inflammatory mediators

    PubMed Central

    Patel, Neeraj K.; Bhutani, Kamlesh K.

    2014-01-01

    The present study deals with the isolation of fourteen compounds from the active ethyl acetate (MPE) extract of M. pudica (L.) whole plant and their subsequent evaluation for the nitric oxide (NO), tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1ß) inhibitory activities in lipopolysaccharide (LPS) stimulated RAW 264.7 and J774A.1 cells. Among the tested compounds, L-mimosine (12; IC50 = 19.23 to 21.15 µM), crocetin (4; IC50 = 23.45 to 25.57 µM), crocin (14; IC50 = 27.16 to 31.53 µM) and jasmonic acid (11; IC50 = 21.32 to 29.42 µM) were identified as potent NO inhibitor when tested on the macrophages. Similarly, towards TNF-α and IL-1ß inhibition, including these four compounds, and ethyl gallate (3), gallic acid (10) and caffeic acid (7) were found to be more active with half maximal concentration, 17.32 to 62.32 µM whereas the other compounds depicted moderate and mild effects (IC50 = 59.32 to 95.01 µM). Also, at a dose of 40 mg/Kg, L-mimosine (12), jasmonic acid (11), crocin (14) and its de-esterified form, crocetin (4) were found to significantly (p < 0.05 and 0.001) reduce 60.7 %, 48.9 %, 48.4 % and 43.6 % respectively of TNF-de-esterified production in female Sprague Dawley rats. However, in case of IL-1ß, with the same dose (40 mg/Kg), jasmonic acid (11) exhibited significant reduction with 54.2 % followed by crocin (14) (50.2 %) and crocetin (4) (39.8 %) while L-mimosine (12) was found to reduce only 16.3 %. Based on the results, it can be estimated that these compounds imparting greatly to anti-inflammatory effects of M. pudica in vitro as well as in vivo through reduction of LPS-induced pro-inflammatory mediators which affirm the ethno-pharmacological use of this plant for prevention of inflammatory-related disorders. PMID:26417317

  12. Evidence that PGE2 in the dorsal and median raphe nuclei is involved in LPS-induced anorexia in rats.

    PubMed

    Kopf, Brigitte S; Langhans, Wolfgang; Geary, Nori; Hrupka, Brian; Asarian, Lori

    2011-09-01

    Anorexia is an element of the acute-phase immune response. Its mechanisms remain poorly understood. Activation of inducible cyclooxygenase-2 (COX-2) in blood-brain-barrier endothelial cells and subsequent release of prostaglandins (e.g., prostaglandin E2, PGE2) may be involved. Therefore, we sought to relate the effects of prostaglandins on the anorexia following gram-negative bacterial lipopolysaccharide treatment (LPS) to neural activity in the dorsal and median raphe nuclei (DRN and MnR) in rats. COX-2 antagonist (NS-398, 10mg/kg; IP) administration prior to LPS (100μg/kg; IP) prevented anorexia and reduced c-Fos expression the DRN, MnR, nucleus tractus solitarii and several related forebrain areas. These data indicate that COX-2-mediated prostaglandin synthesis is necessary for LPS anorexia and much of the initial LPS-induced neural activation. Injection of NS-398 into the DRN and MnR (1ng/site) attenuated LPS-induced anorexia to nearly the same extent as IP NS-398, suggesting that prostaglandin signaling in these areas is necessary for LPS anorexia. Because the DRN and MnR are sources of major serotonergic projections to the forebrain, these data suggest that serotonergic neurons originating in the midbrain raphe play an important role in acute-phase response anorexia.

  13. Polymethoxyflavone Apigenin-Trimethylether Suppresses LPS-Induced Inflammatory Response in Nontransformed Porcine Intestinal Cell Line IPEC-J2.

    PubMed

    Farkas, Orsolya; Palócz, Orsolya; Pászti-Gere, Erzsébet; Gálfi, Péter

    2015-01-01

    The in vitro anti-inflammatory effect of apigenin and its trimethylated analogue (apigenin-trimethylether) has been investigated in order to evaluate whether these flavonoids could attenuate LPS-induced inflammation in IPEC-J2 non-transformed intestinal epithelial cells. Levels of IL-6, IL-8, TNF-α, and COX-2 mRNA were measured as a marker of inflammatory response. The extracellular H2O2 level in IPEC-J2 cells was also monitored by Amplex Red assay. Our data revealed that both compounds had significant lowering effect on the inflammatory response. Apigenin (at 25 μM) significantly decreased gene expression of IL-6 in LPS-treated cells, while apigenin-trimethylether in the same concentration did not influence IL-6 mRNA level. Both apigenin and apigenin-trimethylether reduced IL-8 gene expression significantly. TNF-α mRNA level was decreased by apigenin-trimethylether, which was not influenced by apigenin. Treatment with both flavonoids caused significant reduction in the mRNA level of COX-2, but the anti-inflammatory effect of the methylated analogue was more effective than the unmethylated one. Furthermore, both flavonoids reduced significantly the level of extracellular H2O2 compared to the control cells. In conclusion, the methylated apigenin analogue could avoid LPS-induced intestinal inflammation and it could be applied in the future as an effective anti-inflammatory compound.

  14. The role of microglial mtDNA damage in age-dependent prolonged LPS-induced sickness behavior.

    PubMed

    Nakanishi, Hiroshi; Hayashi, Yoshinori; Wu, Zhou

    2011-02-01

    Microglia are the main cellular source of oxidation products and inflammatory molecules in the brain during aging. The accumulation of mitochondrial DNA (mtDNA) oxidative damage in microglia during aging results in the increased production of reactive oxygen species (ROS). The increased intracellular ROS, in turn, activates a redox-sensitive nuclear factor-κB (NF-κB) to provoke excessive neuroinflammation, resulting in memory deficits and the prolonged behavioral consequence of infection. Besides its role in regulating the gene copy number, mitochondrial transcription factor A (TFAM) is closely associated with the stabilization of mtDNA structures. Lipopolysaccharide (LPS) induces the generation of ROS from the actively respirating mitochondria as well as NADPH oxidase, and leads to the subsequent activation of the NF-κB-dependent inflammatory pathway in aging microglia. The overexpression of human TFAM improves the age-dependent prolonged LPS-induced sickness behaviors by ameliorating the mtDNA damage and reducing the resultant redox-regulated inflammatory responses. Therefore, 'microglia-aging' plays important roles in the age-dependent enhanced behavioral consequences of infection.

  15. Activation of AMPK attenuates LPS-induced acute lung injury by upregulation of PGC1α and SOD1

    PubMed Central

    Wang, Guizuo; Song, Yang; Feng, Wei; Liu, Lu; Zhu, Yanting; Xie, Xinming; Pan, Yilin; Ke, Rui; Li, Shaojun; Li, Fangwei; Yang, Lan; Li, Manxiang

    2016-01-01

    Evidence suggests that an imbalance between oxidation and antioxidation is involved in the pathogenesis of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Activation of AMP-activated protein kinase (AMPK) has been shown to inhibit the occurrence of ALI/ARDS. However, it is unknown whether activation of AMPK benefits ALI/ARDS by restoration of the oxidant and antioxidant balance, and which mechanisms are responsible for this process. The present study aimed to address these issues. Lipopolysaccharide (LPS) induced pronounced pathological changes of ALI in mice; these were accompanied by elevated production of malondialdehyde (MDA) and decreased activity of superoxide dismutase (SOD) compared with control mice. Prior treatment of mice with the AMPK agonist metformin significantly suppressed the LPS-induced development of ALI, reduced the elevation of MDA and increased the activity of SOD. Further analysis indicated that activation of AMPK also stimulated the protein expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) and superoxide dismutase 1 (SOD1). This study suggests that activation of AMPK by metformin inhibits oxidative stress by upregulation of PGC1α and SOD1, thereby suppressing the development of ALI/ARDS, and has potential value in the clinical treatment of such conditions. PMID:27602077

  16. A TLR4/MD2 fusion protein inhibits LPS-induced pro-inflammatory signaling in hepatic stellate cells

    SciTech Connect

    Schnabl, Bernd Brandl, Katharina; Fink, Marina; Gross, Philipp; Taura, Kojiro; Gaebele, Erwin; Hellerbrand, Claus; Falk, Werner

    2008-10-17

    Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrogenesis. In injured liver they are the main extracellular matrix protein producing cell type and further perpetuate hepatic injury by secretion of pro-inflammatory mediators. Since LPS-mediated signaling through toll-like receptor 4 (TLR4) has been identified as key fibrogenic signal in HSCs we aimed to test TLR4 as potential target of therapy via ligand-binding soluble receptors. Incubation of human HSCs with a fusion protein between the extracellular domain of TLR4 and MD2 which binds LPS inhibited LPS-induced NF{kappa}B and JNK activation. TLR4/MD2 abolished LPS-induced secretion of IL-6, IL-8, MCP1, and RANTES in HSCs. In addition, TLR4/MD2 fused to human IgG-Fc neutralized LPS activity. Since TLR4 mutant mice are resistant to liver fibrosis, the TLR4/MD2 soluble receptor might represent a new therapeutic molecule for liver fibrogenesis in vivo.

  17. Adrenaline stimulates the proliferation and migration of mesenchymal stem cells towards the LPS-induced lung injury.

    PubMed

    Wu, Xiaodan; Wang, Zhiming; Qian, Mengjia; Wang, Lingyan; Bai, Chunxue; Wang, Xiangdong

    2014-08-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) could modulate inflammation in experimental lung injury. On the other hand, adrenergic receptor agonists could increase DNA synthesis of stem cells. Therefore, we investigated the therapeutic role of adrenaline-stimulated BMSCs on lipopolysaccharide (LPS)-induced lung injury. BMSCs were cultured with adrenergic receptor agonists or antagonists. Suspensions of lung cells or sliced lung tissue from animals with or without LPS-induced injury were co-cultured with BMSCs. LPS-stimulated alveolar macrophages were co-cultured with BMSCs (with adrenaline stimulation or not) in Transwell for 6 hrs. A preliminary animal experiment was conducted to validate the findings in ex vivo study. We found that adrenaline at 10 μM enhanced proliferation of BMSCs through both α- and β-adrenergic receptors. Adrenaline promoted the migration of BMSCs towards LPS-injured lung cells or lung tissue. Adrenaline-stimulated BMSCs decreased the inflammation of LPS-stimulated macrophages, probably through the expression and secretion of several paracrine factors. Adrenaline reduced the extent of injury in LPS-injured rats. Our data indicate that adrenaline-stimulated BMSCs might contribute to the prevention from acute lung injury through the activation of adrenergic receptors, promotion of proliferation and migration towards injured lung, and modulation of inflammation.

  18. Polymethoxyflavone Apigenin-Trimethylether Suppresses LPS-Induced Inflammatory Response in Nontransformed Porcine Intestinal Cell Line IPEC-J2

    PubMed Central

    Farkas, Orsolya; Palócz, Orsolya; Pászti-Gere, Erzsébet; Gálfi, Péter

    2015-01-01

    The in vitro anti-inflammatory effect of apigenin and its trimethylated analogue (apigenin-trimethylether) has been investigated in order to evaluate whether these flavonoids could attenuate LPS-induced inflammation in IPEC-J2 non-transformed intestinal epithelial cells. Levels of IL-6, IL-8, TNF-α, and COX-2 mRNA were measured as a marker of inflammatory response. The extracellular H2O2 level in IPEC-J2 cells was also monitored by Amplex Red assay. Our data revealed that both compounds had significant lowering effect on the inflammatory response. Apigenin (at 25 μM) significantly decreased gene expression of IL-6 in LPS-treated cells, while apigenin-trimethylether in the same concentration did not influence IL-6 mRNA level. Both apigenin and apigenin-trimethylether reduced IL-8 gene expression significantly. TNF-α mRNA level was decreased by apigenin-trimethylether, which was not influenced by apigenin. Treatment with both flavonoids caused significant reduction in the mRNA level of COX-2, but the anti-inflammatory effect of the methylated analogue was more effective than the unmethylated one. Furthermore, both flavonoids reduced significantly the level of extracellular H2O2 compared to the control cells. In conclusion, the methylated apigenin analogue could avoid LPS-induced intestinal inflammation and it could be applied in the future as an effective anti-inflammatory compound. PMID:26180592

  19. Apigenin Protects Endothelial Cells from Lipopolysaccharide (LPS)-Induced Inflammation by Decreasing Caspase-3 Activation and Modulating Mitochondrial Function

    PubMed Central

    Duarte, Silvia; Arango, Daniel; Parihar, Arti; Hamel, Patrice; Yasmeen, Rumana; Doseff, Andrea I.

    2013-01-01

    Acute and chronic inflammation is characterized by increased reactive oxygen species (ROS) production, dysregulation of mitochondrial metabolism and abnormal immune function contributing to cardiovascular diseases and sepsis. Clinical and epidemiological studies suggest potential beneficial effects of dietary interventions in inflammatory diseases but understanding of how nutrients work remains insufficient. In the present study, we evaluated the effects of apigenin, an anti-inflammatory flavonoid abundantly found in our diet, in endothelial cells during inflammation. Here, we show that apigenin reduced lipopolysaccharide (LPS)-induced apoptosis by decreasing ROS production and the activity of caspase-3 in endothelial cells. Apigenin conferred protection against LPS-induced mitochondrial dysfunction and reestablished normal mitochondrial complex I activity, a major site of electron leakage and superoxide production, suggesting its ability to modulate endothelial cell metabolic function during inflammation. Collectively, these findings indicate that the dietary compound apigenin stabilizes mitochondrial function during inflammation preventing endothelial cell damage and thus provide new translational opportunities for the use of dietary components in the prevention and treatment of inflammatory diseases. PMID:23989609

  20. LYRM03, an ubenimex derivative, attenuates LPS-induced acute lung injury in mice by suppressing the TLR4 signaling pathway

    PubMed Central

    He, Hui-qiong; Wu, Ya-xian; Nie, Yun-juan; Wang, Jun; Ge, Mei; Qian, Feng

    2017-01-01

    Toll-like receptor 4 (TLR4)-mediated signaling plays a critical role in sepsis-induced acute lung injury (ALI). LYRM03 (3-amino-2-hydroxy-4-phenyl-valyl-isoleucine) is a novel derivative of ubenimex, a widely used antineoplastic medicine. We previously found that LYRM03 has anti-inflammatory effects in cecal ligation puncture mouse model. In this study we determined whether LYRM03 attenuated LPS-induced ALI in mice. LPS-induced ALI mouse model was established by challenging the mice with intratracheal injection of LPS (5 mg/kg), which was subsequently treated with LYRM03 (10 mg/kg, ip). LYRM03 administration significantly alleviated LPS-induced lung edema, inflammatory cell (neutrophils and macrophages) infiltration and myeloperoxidase (MPO) activity, decreased pro-inflammatory and chemotactic cytokine (TNF-α, IL-6, IL-1β, MIP-2) generation and reduced iNOS and COX-2 expression in the lung tissues. In cultured mouse alveolar macrophages in vitro, pretreatment with LYRM03 (100 μmol/L) suppressed LPS-induced macrophage activation by reducing Myd88 expression, increasing IκB stability and inhibiting p38 phosphorylation. These results suggest that LYRM03 effectively attenuates LPS-induced ALI by inhibiting the expression of pro-inflammatory mediators and Myd88-dependent TLR4 signaling pathways in alveolar macrophages. LYRM03 may serve as a potential treatment for sepsis-mediated lung injuries. PMID:28112185

  1. Tenuigenin exhibits protective effects against LPS-induced acute kidney injury via inhibiting TLR4/NF-κB signaling pathway.

    PubMed

    Fu, Haiyan; Hu, Zhansheng; Di, Xingwei; Zhang, Qiuhong; Zhou, Rongbin; Du, Hongyang

    2016-11-15

    Tenuigenin (TNG) has been reported to have various pharmacological activities, such as anti-oxidative and anti-inflammatory activities. However, the protective effects of TNG on lipopolysaccharides (LPS)-induced acute kidney injury (AKI) are still not clear. The aim of this study was to investigate the protective effects and mechanism of TGN on LPS-induced AKI in mice. The kidney histological change, levels of blood urea nitrogen (BUN), and creatinine were measured to assess the protective effects of TNG on LPS-induced AKI. The levels of TNF-α, IL-1β, and IL-6 in serum and kidney tissues were detected by ELISA. The extent of nuclear factor kappa-B (NF-κB) p65 and the expression of Toll-like receptor-4 (TLR4) were detected by western blot analysis. The results showed that TNG markedly attenuated the histological alterations, BUN and creatinine levels in kidney. TNG also suppressed LPS-induced TNF-α, IL-1β, and IL-6 production. Furthermore, the expression of TLR4 and NF-κB activation induced by LPS were markedly inhibited by TNG. In conclusion, this study demonstrated that TNG protected against LPS-induced AKI by inhibiting TLR4/NF-κB signaling pathway.

  2. A comparative study on hulled adlay and unhulled adlay through evaluation of their LPS-induced anti-inflammatory effects, and isolation of pure compounds.

    PubMed

    Choi, Goeun; Han, Ah-Reum; Lee, Joo Hee; Park, Ji-Youn; Kang, Unwoo; Hong, Jongki; Kim, Yeong Shik; Seo, Eun-Kyoung

    2015-03-01

    Coicis semen (=the hulled seed of Coix lacryma-jobi L. var. ma-yuen (Rom.Caill.) Stapf; Gramineae), commonly known as adlay and Job's tears, is widely used in traditional medicine and as a nutritious food. Bioassay-guided fractionation of the AcOEt fraction of unhulled adlays, using measurement of nitric oxide (NO) production on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells, led to the isolation and identification of two new stereoisomers, (+)-(7'S,8'R,7″S,8″R)-guaiacylglycerol β-O-4'-dihydrodisinapyl ether (1) and (+)-(7'S,8'R,7″R,8″R)-guaiacylglycerol β-O-4'-dihydrodisinapyl ether (2), together with six known compounds, 3-8. Compounds 3 and 4 exhibited inhibitory activities on LPS-induced NO production with IC50 values of 1.4 and 3.7 μM, respectively, and suppressed inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expressions in RAW 264.7 macrophage cells. Simple high-performance liquid chromatography with ultraviolet detection (HPLC/UV) was used to compare the AcOEt fraction of unhulled adlays responsible for the anti-inflammatory activity in RAW 264.7 cells and the inactive AcOEt fraction of hulled adlays.

  3. Polysaccharides from Smilax glabra inhibit the pro-inflammatory mediators via ERK1/2 and JNK pathways in LPS-induced RAW264.7 cells.

    PubMed

    Lu, Chuan-li; Wei, Zhu; Min, Wang; Hu, Meng-mei; Chen, Wen-long; Xu, Xiao-jie; Lu, Chuan-jian

    2015-05-20

    The rhizomes of Smilax glabra have been used as both food and folk medicine in many countries for a long time. However, little research has been reported on polysaccharides of S. glabra. In the present study, two polysaccharide fractions, SGP-1 and SGP-2, were isolated from the rhizomes of S. glabra with the number average molecular weights of 1.72 × 10(2)kDa and 1.31 × 10(2)kDa, and the weight average molecular weights of 1.31 × 10(5)kDa and 1.18 × 10(5)kDa, respectively, and their mainly monosaccharide compositions were both galactose and rhamnose (2.5:1). Both SGP-1 and SGP-2 significantly suppressed the release of nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) from LPS-induced RAW 264.7 cells, as well as the mRNA expression of inducible nitric oxide synthase (iNOS), TNF-α and IL-6. Additionally, SGP-1 and SGP-2 repressed the extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK). These findings strongly suggested polysaccharides were also the anti-inflammatory active ingredient for S. glabra, and the potential of SGP-1 and SGP-2 as the anti-inflammatory agents.

  4. Anti-inflammatory effect of procyanidins from wild grape (Vitis amurensis) seeds in LPS-induced RAW 264.7 cells.

    PubMed

    Bak, Min-Ji; Truong, Van Long; Kang, Hey-Sook; Jun, Mira; Jeong, Woo-Sik

    2013-01-01

    In the present study, the anti-inflammatory effect and underlying mechanisms of wild grape seeds procyanidins (WGP) were examined using lipopolysaccharide- (LPS-) stimulated RAW 264.7 cells. We used nitric oxide (NO) and prostaglandin E2 (PGE2) and reactive oxygen species (ROS) assays to examine inhibitory effect of WGP and further investigated the mechanisms of WGP suppressed LPS-mediated genes and upstream expression by Western blot and confocal microscopy analysis. Our data indicate that WGP significantly reduced NO, PGE2, and ROS production and also inhibited the expression of proinflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expressions. Consistently, WGP significantly reduced LPS-stimulated expression of proinflammatory cytokines such as tumor necrosis factor α (TNF-α) and interleukin- (IL-) 1 β . Moreover, WGP prevented nuclear translocation of nuclear factor- κ B (NF κ B) p65 subunit by reducing inhibitory κ B- α (I κ B α) and NF κ B phosphorylation. Furthermore, we found that WGP inhibited LPS-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK). Taken together, our results demonstrated that WGP exerts potent anti-inflammatory activity through the inhibition of iNOS and COX-2 by regulating NF κ B and p38 MAPK pathway.

  5. Fenoterol inhibits LPS-induced AMPK activation and inflammatory cytokine production through β-arrestin-2 in THP-1 cell line

    SciTech Connect

    Wang, Wei; Zhang, Yuan; Xu, Ming; Zhang, You-Yi; He, Bei

    2015-06-26

    The AMP-activated protein kinase (AMPK) pathway is involved in regulating inflammation in several cell lines. We reported that fenoterol, a β{sub 2}-adrenergic receptor (β{sub 2}-AR) agonist, had anti-inflammatory effects in THP-1 cells, a monocytic cell line. Whether the fenoterol anti-inflammatory effect involves the AMPK pathway is unknown. In this study, we explored the mechanism of β{sub 2}-AR stimulation with fenoterol in a lipopolysaccharide (LPS)-induced inflammatory cytokine secretion in THP-1 cells. We studied whether fenoterol and β-arrestin-2 or AMPKα1 subunit knockdown could affect LPS-induced AMPK activation, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion. LPS-induced AMPK activation and interleukin 1β (IL-1β) release were reduced with fenoterol pretreatment of THP-1 cells. SiRNA knockdown of β-arrestin-2 abolished the fenoterol inhibition of LPS-induced AMPK activation and interleukin 1β (IL-1β) release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol on LPS-treated THP-1 cells. In addition, siRNA knockdown of AMPKα1 significantly attenuated the LPS-induced NF-κB activation and IL-1β release, so AMPKα1 was a key signaling molecule involved in LPS-induced inflammatory cytokine production. These results suggested the β{sub 2}-AR agonist fenoterol inhibited LPS-induced AMPK activation and IL-1β release via β-arrestin-2 in THP-1 cells. The exploration of these mechanisms may help optimize therapeutic agents targeting these pathways in inflammatory diseases. - Highlights: • β{sub 2}-AR agonist fenoterol exerts its protective effect on LPS-treated THP-1 cells. • Fenoterol inhibits LPS-induced AMPK activation and IL-1β production. • β-arrestin2 mediates fenoterol-inhibited AMPK activation and IL-1β release. • AMPKα1 is involved in LPS-induced NF-κB activation and IL-1β production.

  6. The Protective Effects of HJB-1, a Derivative of 17-Hydroxy-Jolkinolide B, on LPS-Induced Acute Distress Respiratory Syndrome Mice.

    PubMed

    Xu, Xiaohan; Liu, Ning; Zhang, Yu-Xin; Cao, Jinjin; Wu, Donglin; Peng, Qisheng; Wang, Hong-Bing; Sun, Wan-Chun

    2016-01-11

    Acute respiratory distress syndrome (ARDS),which is inflammatory disorder of the lung, which is caused by pneumonia, aspiration of gastric contents, trauma and sepsis, results in widespread lung inflammation and increased pulmonary vascular permeability. Its pathogenesis is complicated and the mortality is high. Thus, there is a tremendous need for new therapies. We have reported that HJB-1, a 17-hydroxy-jolkinolide B derivative, exhibited strong anti-inflammatory effects in vitro. In this study, we investigated its impacts on LPS-induced ARDS mice. We found that HJB-1 significantly alleviated LPS-induced pulmonary histological alterations, inflammatory cells infiltration, lung edema, as well as the generation of inflammatory cytokines TNF-α, IL-1β and IL-6 in BALF. In addition, HJB-1 markedly suppressed LPS-induced IκB-α degradation, nuclear accumulation of NF-κB p65 subunit and MAPK phosphorylation. These results suggested that HJB-1 improved LPS-induced ARDS by suppressing LPS-induced NF-κB and MAPK activation.

  7. Artesunate Inhibits RANKL-induced Osteoclastogenesis and Bone Resorption In Vitro and Prevents LPS-induced Bone Loss In Vivo.

    PubMed

    Wei, Cheng-Ming; Liu, Qian; Song, Fang-Ming; Lin, Xi-Xi; Su, Yi-Ji; Xu, Jiake; Huang, Lin; Zong, Shao-Hui; Zhao, Jin-Min

    2017-03-15

    Osteoclasts are multinuclear giant cells responsible for bone resorption in lytic bone diseases such as osteoporosis, arthritis, periodontitis, and bone tumors. Due to the severe side-effects caused by the currently available drugs, a continuous search for novel bone-protective therapies is essential. Artesunate (Art), the water-soluble derivative of artemisinin has been investigated owing to its anti-malarial properties. However, its effects in osteoclastogenesis have not yet been reported. In this study, Art was shown to inhibit the nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis, the mRNA expression of osteoclastic-specific genes, and resorption pit formation in a dose-dependent manner in primary bone marrow-derived macrophages cells (BMMs). Furthermore, Art markedly blocked the RANKL-induced osteoclastogenesis by attenuating the degradation of IκB and phosphorylation of NF-κB p65. Consistent with the in vitro results, Art inhibited lipopolysaccharide (LPS)-induced bone resorption by suppressing the osteoclastogenesis. Together our data demonstrated that Art inhibits RANKL-induced osteoclastogenesis by suppressing the NF-κB signaling pathway and that it is a promising agent for the treatment of osteolytic diseases. This article is protected by copyright. All rights reserved.

  8. Anandamide, Acting via CB2 Receptors, Alleviates LPS-Induced Neuroinflammation in Rat Primary Microglial Cultures

    PubMed Central

    Malek, Natalia; Popiolek-Barczyk, Katarzyna; Mika, Joanna; Przewlocka, Barbara; Starowicz, Katarzyna

    2015-01-01

    Microglial activation is a polarized process divided into potentially neuroprotective phenotype M2 and neurotoxic phenotype M1, predominant during chronic neuroinflammation. Endocannabinoid system provides an attractive target to control the balance between microglial phenotypes. Anandamide as an immune modulator in the central nervous system acts via not only cannabinoid receptors (CB1 and CB2) but also other targets (e.g., GPR18/GPR55). We studied the effect of anandamide on lipopolysaccharide-induced changes in rat primary microglial cultures. Microglial activation was assessed based on nitric oxide (NO) production. Analysis of mRNA was conducted for M1 and M2 phenotype markers possibly affected by the treatment. Our results showed that lipopolysaccharide-induced NO release in microglia was significantly attenuated, with concomitant downregulation of M1 phenotypic markers, after pretreatment with anandamide. This effect was not sensitive to CB1 or GPR18/GPR55 antagonism. Administration of CB2 antagonist partially abolished the effects of anandamide on microglia. Interestingly, administration of a GPR18/GPR55 antagonist by itself suppressed NO release. In summary, we showed that the endocannabinoid system plays a crucial role in the management of neuroinflammation by dampening the activation of an M1 phenotype. This effect was primarily controlled by the CB2 receptor, although functional cross talk with GPR18/GPR55 may occur. PMID:26090232

  9. Dissection of LPS-induced signaling pathways in murine macrophages using LPS analogs, LPS mimetics, and agents unrelated to LPS.

    PubMed

    Vogel, S N; Manthey, C L; Perera, P Y; Li, Z Y; Henricson, B E

    1995-01-01

    The model in Figure 3 summarizes the data presented above. Using the induction of the select panel of LPS-inducible genes and the phosphorylation on tyrosine of specific MAP kinases, we have been able to dissociate three signaling pathways shared by LPS and its analogs and mimetics: a pathway that leads to tyrosine phosphorylation, one that leads to the induction of a gene subset including TNF alpha, TNFR-2, and IL-1 beta, and a pathway that results in induction of IP-10, D3, and D8 gene expression. It is still unclear if macrophage activation by non-LPS products occurs entirely through distinct yet redundant pathways or if other signaling receptors ultimately tie into the same intermediate pathways. This approach may identify particular stimuli as tools to induce specific pathways leading to select gene subsets and/or tyrosine kinase activation and, perhaps, identify a pathway deficient in C3H/HeJ macrophages.

  10. Salvia miltiorrhiza water-soluble extract, but not its constituent salvianolic acid B, abrogates LPS-induced NF-κB signalling in intestinal epithelial cells

    PubMed Central

    Kim, J S; Narula, A S; Jobin, C

    2005-01-01

    Herbal medicine has become an increasing popular therapeutic alternative among patients suffering from various inflammatory disorders. The Salvia miltiorrhizae water-soluble extract (SME) have been shown to possess antioxidant and anti-inflammatory properties in vitro. However, the mechanism of action and impact of SME on LPS-induced gene expression is still unknown. We report that SME significantly abrogated LPS-induced IκB phosphorylation/degradation, NF-κB transcriptional activity and ICAM-1 gene expression in rat IEC-18 cells. Chromatin immunoprecipitation assay demonstrated that LPS-induced RelA recruitment to the ICAM-1 gene promoter was inhibited by SME. Moreover, in vitro kinase assay showed that SME directly inhibits LPS induced IκB kinase (IKK) activity in IEC-18 cells. To investigate the physiological relevance of SME inhibitory activity on NF-κB signalling, we used small intestinal explants and primary intestinal epithelial cells derived from a transgenic mouse expressing the enhanced green fluorescent protein (EGFP) under the transcriptional control of NF-κB cis-elements (cis-NF-κBEGFP). SME significantly blocked LPS-induced EGFP expression and IκBα phosphorylation in intestinal explants and primary IECs, respectively. However, salvianolic acid B, an activate component of SME did not inhibit NF-κB transcriptional activity and IκB phosphorylation/degradation in IEC-18 cells. These results indicate that SME blocks LPS-induced NF-κB signalling pathway by targeting the IKK complex in intestinal epithelial cells. Modulation of bacterial product-mediated NF-κB signalling by natural plant extracts may represent an attractive strategy towards the prevention and treatment of intestinal inflammation. PMID:15996193

  11. Salvia miltiorrhiza water-soluble extract, but not its constituent salvianolic acid B, abrogates LPS-induced NF-kappaB signalling in intestinal epithelial cells.

    PubMed

    Kim, J S; Narula, A S; Jobin, C

    2005-08-01

    Herbal medicine has become an increasing popular therapeutic alternative among patients suffering from various inflammatory disorders. The Salvia miltiorrhizae water-soluble extract (SME) have been shown to possess antioxidant and anti-inflammatory properties in vitro. However, the mechanism of action and impact of SME on LPS-induced gene expression is still unknown. We report that SME significantly abrogated LPS-induced IkappaB phosphorylation/degradation, NF-kappaB transcriptional activity and ICAM-1 gene expression in rat IEC-18 cells. Chromatin immunoprecipitation assay demonstrated that LPS-induced RelA recruitment to the ICAM-1 gene promoter was inhibited by SME. Moreover, in vitro kinase assay showed that SME directly inhibits LPS induced IkappaB kinase (IKK) activity in IEC-18 cells. To investigate the physiological relevance of SME inhibitory activity on NF-kappaB signalling, we used small intestinal explants and primary intestinal epithelial cells derived from a transgenic mouse expressing the enhanced green fluorescent protein (EGFP) under the transcriptional control of NF-kappaB cis-elements (cis-NF-kappaB(EGFP)). SME significantly blocked LPS-induced EGFP expression and IkappaBalpha phosphorylation in intestinal explants and primary IECs, respectively. However, salvianolic acid B, an activate component of SME did not inhibit NF-kappaB transcriptional activity and IkappaB phosphorylation/degradation in IEC-18 cells. These results indicate that SME blocks LPS-induced NF-kappaB signalling pathway by targeting the IKK complex in intestinal epithelial cells. Modulation of bacterial product-mediated NF-kappaB signalling by natural plant extracts may represent an attractive strategy towards the prevention and treatment of intestinal inflammation.

  12. Cinnamaldehyde modulates LPS-induced systemic inflammatory response syndrome through TRPA1-dependent and independent mechanisms.

    PubMed

    Mendes, Saulo J F; Sousa, Fernanda I A B; Pereira, Domingos M S; Ferro, Thiago A F; Pereira, Ione C P; Silva, Bruna L R; Pinheiro, Aruanã J M C R; Mouchrek, Adriana Q S; Monteiro-Neto, Valério; Costa, Soraia K P; Nascimento, José L M; Grisotto, Marcos A G; da Costa, Robson; Fernandes, Elizabeth S

    2016-05-01

    Cinnamaldehyde is a natural essential oil suggested to possess anti-bacterial and anti-inflammatory properties; and to activate transient receptor potential ankyrin 1 (TRPA1) channels expressed on neuronal and non-neuronal cells. Here, we investigated the immunomodulatory effects of cinnamaldehyde in an in vivo model of systemic inflammatory response syndrome (SIRS) induced by lipopolysaccharide. Swiss mice received a single oral treatment with cinnamaldehyde 1 h before LPS injection. To investigate whether cinnamaldehyde effects are dependent on TRPA1 activation, animals were treated subcutaneously with the selective TRPA1 antagonist HC-030031 5 min prior to cinnamaldehyde administration. Vehicle-treated mice were used as controls. Cinnamaldehyde ameliorated SIRS severity in LPS-injected animals. Diminished numbers of circulating mononuclear cells and increased numbers of peritoneal mononuclear and polymorphonuclear cell numbers were also observed. Cinnamaldehyde augmented the number of peritoneal Ly6C(high) and Ly6C(low) monocyte/macrophage cells in LPS-injected mice. Reduced levels of nitric oxide, plasma TNFα and plasma and peritoneal IL-10 were also detected. Additionally, IL-1β levels were increased in the same animals. TRPA1 antagonism by HC-030031 reversed the changes in the number of circulating and peritoneal leukocytes in cinnamaldehyde-treated animals, whilst increasing the levels of peritoneal IL-10 and reducing peritoneal IL-1β. Overall, cinnamaldehyde modulates SIRS through TRPA1-dependent and independent mechanisms.

  13. 5-HT2A receptors control body temperature in mice during LPS-induced inflammation via regulation of NO production.

    PubMed

    Voronova, Irina P; Khramova, Galina M; Kulikova, Elizabeth A; Petrovskii, Dmitrii V; Bazovkina, Daria V; Kulikov, Alexander V

    2016-01-01

    G protein-coupled 5-HT2A receptors are involved in the regulation of numerous normal and pathological physiological functions. At the same time, its involvement in the regulation of body temperature (Tb) in normal conditions is obscure. Here we study the effect of the 5-HT2A receptor activation or blockade on Tb in sick animals. The experiments were carried out on adult C57BL/6 mouse males. Systemic inflammation and sickness were produced by lipopolysaccharide (LPS, 0.1mg/kg, ip), while the 5-HT2A receptor was stimulated or blocked through the administration of the receptor agonist DOI or antagonist ketanserin (1mg/kg), respectively. LPS, DOI or ketanserin alone produced no effect on Tb. However, administration of LPS together with a peripheral or central ketanserin injection reduced Tb (32.2°C). Ketanserin reversed the LPS-induced expression of inducible NO synthase in the brain. Consequently, an involvement of NO in the mechanism of the hypothermic effect of ketanserin in sick mice was hypothesized. Administration of LPS together with NO synthase inhibitor, l-nitro-arginine methyl ester (60mg/kg, ip) resulted in deep (28.5°C) and prolonged (8h) hypothermia, while administration of l-nitro-arginine methyl ester alone produced no effect on Tb. Thus, 5-HT2A receptors play a key role in Tb control in sick mice. Blockade of this GPCR produces hypothermia in mice with systemic inflammation via attenuation of LPS-induced NO production. These results indicate an unexpected role of 5-HT2A receptors in inflammation and NO production and have a considerable biological impact on understanding the mechanism of animal adaptation to pathogens and parasites. Moreover, adverse side effects of 5-HT2A receptor antagonists in patients with inflammation may be expected.

  14. Aloe vera downregulates LPS-induced inflammatory cytokine production and expression of NLRP3 inflammasome in human macrophages.

    PubMed

    Budai, Marietta M; Varga, Aliz; Milesz, Sándor; Tőzsér, József; Benkő, Szilvia

    2013-12-01

    Aloe vera has been used in traditional herbal medicine as an immunomodulatory agent inducing anti-inflammatory effects. However, its role on the IL-1β inflammatory cytokine production has not been studied. IL-1β production is strictly regulated both at transcriptional and posttranslational levels through the activity of Nlrp3 inflammasome. In this study we aimed to determine the effect of Aloe vera on the molecular mechanisms of Nlrp3 inflammasome-mediated IL-1β production in LPS-activated human THP-1 cells and monocyte-derived macrophages. Our results show that Aloe vera significantly reduced IL-8, TNFα, IL-6 and IL-1β cytokine production in a dose dependent manner. The inhibitory effect was substantially more pronounced in the primary cells. We found that Aloe vera inhibited the expression of pro-IL-1β, Nlrp3, caspase-1 as well as that of the P2X7 receptor in the LPS-induced primary macrophages. Furthermore, LPS-induced activation of signaling pathways like NF-κB, p38, JNK and ERK were inhibited by Aloe vera in these cells. Altogether, we show for the first time that Aloe vera-mediated strong reduction of IL-1β appears to be the consequence of the reduced expression of both pro-IL-1β as well as Nlrp3 inflammasome components via suppressing specific signal transduction pathways. Furthermore, we show that the expression of the ATP sensor P2X7 receptor is also downregulated by Aloe vera that could also contribute to the attenuated IL-1β cytokine secretion. These results may provide a new therapeutic approach to regulate inflammasome-mediated responses.

  15. Effects of endogenous and exogenous catecholamines on LPS-induced neutrophil trafficking and activation.

    PubMed

    Abraham, E; Kaneko, D J; Shenkar, R

    1999-01-01

    Endotoxemia produces elevations in catecholamine levels in the pulmonary and systemic circulation as well as rapid increases in neutrophil number and proinflammatory cytokine expression in the lungs. In the present experiments, we examined the effects of endogenous and exogenous adrenergic stimulation on endotoxin-induced lung neutrophil accumulation and activation. Levels of interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha, and macrophage inflammatory protein (MIP)-2 mRNAs were increased in lung neutrophils from endotoxemic mice compared with those present in lung neutrophils from control mice or in peripheral blood neutrophils from endotoxemic or control mice. Treatment with the beta-adrenergic antagonist propranolol before endotoxin administration did not affect trafficking of neutrophils to the lungs or the expression of IL-1beta, TNF-alpha, or MIP-2 by lung neutrophils. Administration of the alpha-adrenergic antagonist phentolamine before endotoxemia did not alter lung neutrophil accumulation as measured by myeloperoxidase (MPO) levels but did result in significant increases in IL-1beta, TNF-alpha, and MIP-2 mRNA expression by lung neutrophils compared with endotoxemia alone. Administration of the alpha1-adrenergic agonist phenylephrine before endotoxin did not affect trafficking of neutrophils to the lungs but was associated with significantly increased expression of TNF-alpha and MIP-2 mRNAs by lung neutrophils compared with that found after endotoxin alone. In contrast, treatment with the alpha2-adrenergic agonist UK-14304 prevented endotoxin-induced increases in lung MPO and lung neutrophil cytokine mRNA levels. The suppressive effects of UK-14304 on endotoxin-induced increases in lung MPO were not affected by administration of the nitric oxide synthase inhibitor N-nitro-L-arginine methyl ester. These data demonstrate that the initial accumulation and activation of neutrophils in the lungs after endotoxemia can be significantly diminished by alpha

  16. The regulation of cytochrome P450 2E1 during LPS-induced inflammation in the rat

    SciTech Connect

    Abdulla, Dalya; Goralski, Kerry B.; Renton, Kenneth W. . E-mail: Ken.Renton@dal.ca

    2006-10-01

    It is well known that inflammatory and infectious conditions differentially regulate cytochrome P450 (P450)-mediated drug metabolism in the liver. We have previously outlined a potential pathway for the downregulation in hepatic cytochrome P450 following LPS-mediated inflammation in the CNS (Abdulla, D., Goralski, K.B., Garcia Del Busto Cano, E., Renton, K.W., 2005. The signal transduction pathways involved in hepatic cytochrome P450 regulation in the rat during an LPS-induced model of CNS inflammation. Drug Metab. Dispos). The purpose of this study was to outline the effects of LPS-induced peripheral and central nervous system inflammation on hepatic cytochrome P450 2E1 (CYP2E1) in vivo, an enzyme that plays an important role in various physiological and pathological states. We report an increase in hepatic mRNA expression of CYP2E1 that occurred as early as 2-3 h following either the intraperitoneal (i.p.) injection of 5 mg/kg LPS or i.c.v. administration of 25 {mu}g of LPS. This increase in CYP2E1 mRNA expression was sustained for 24 h. In sharp contrast to the increase in hepatic CYP2E1 mRNA, we observed a significant reduction in the catalytic activity of this enzyme 24 h following either the i.c.v. or i.p. administration of LPS. Cycloheximide or actinomycin-D did not change the LPS-mediated downregulation in hepatic CYP2E1 catalytic activity. Our results support the idea that LPS acts at two different levels to regulate hepatic CYP2E1: a transcriptional level to increase CYP2E1 mRNA expression and a post-transcriptional level to regulate CYP2E1 protein and activity.

  17. C5L2, the Second C5a Anaphylatoxin Receptor, Suppresses LPS-Induced Acute Lung Injury.

    PubMed

    Wang, Ruobing; Lu, Bao; Gerard, Craig; Gerard, Norma P

    2016-11-01

    LPS-induced lung injury in the mouse is one of the most robust experimental models used for studies of acute lung injury (ALI) and acute respiratory distress syndrome in humans. Prior clinical and experimental studies support an important role for complement activation, particularly production of C5a, in the pathophysiology of human ALI/acute respiratory distress syndrome. In the mouse model, however, the precise role of C5a and its receptors is unclear. C5L2, an enigmatic second receptor for C5a, has been characterized, and results have generated substantial debate regarding its in vivo function. Our previous work with human neutrophils revealed a unique role for C5L2 in negatively modulating C5a-C5a receptor (C5aR)-mediated cellular activation, in which antibody-mediated blockade of C5L2 resulted in augmented C5a-C5aR responses. Here, we demonstrate that C5L2(-/-) mice (BALB/c background) administered intranasal LPS exhibit significantly more airway edema and hemorrhage than do wild-type animals. Bronchoalveolar lavage fluid and lung homogenates have significantly more neutrophils and myeloperoxidase activity, as well as proinflammatory cytokines and chemokines. When a blocking antibody against the C5aR was administered before LPS administration, the increased neutrophilic infiltration and cytokine levels were reversed. Thus, our data show not only that C5a contributes significantly to LPS-induced ALI in the mouse, but also that C5L2 plays an important antiinflammatory role in this model through actions resulting at least in part from negative modulation of C5a receptor activation.

  18. Lentiviral-Mediated Overexpression of the 18 kDa Translocator Protein (TSPO) in the Hippocampal Dentate Gyrus Ameliorates LPS-Induced Cognitive Impairment in Mice

    PubMed Central

    Wang, Wei; Zhang, Liming; Zhang, Xiaoying; Xue, Rui; Li, Lei; Zhao, Weixing; Fu, Qiang; Mi, Weidong; Li, Yunfeng

    2016-01-01

    The 18 kDa translocator protein (TSPO) is involved in the immune/inflammatory response. However, the exact role that TSPO plays in neuroinflammation-induced cognitive impairment is still elusive. The purpose of our present study was to investigate the effects of lentiviral-mediated hippocampal overexpression of the TSPO in a mouse model of LPS-induced cognitive impairment. We established a mouse cognitive impairment model using systematic daily administration of lipopolysaccharide (LPS) (0.5 mg/kg). Microinjection of the dentate gyrus of the mouse with lentiviral vectors, which contained a cDNA targeting TSPO (Lv-TSPO), resulted in a significant increase in TSPO expression and allopregnanolone production. Mice treated with LPS showed cognitive deficits in the novel object recognition test and the Morris water maze test that could be ameliorated by TSPO overexpression. In addition, TSPO overexpression reversed LPS-induced microglial activation and accumulation of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α. Moreover, TSPO overexpression attenuated the LPS-induced impairment of hippocampal neurogenesis. Our results suggest that local overexpression of TSPO in the hippocampal dentate gyrus alleviated LPS-induced cognitive deficits, and its effects might be mediated by the attenuation of inflammatory cytokines, inhibition of microglial activation, and promotion of neurogenesis. PMID:27803668

  19. Santamarin, a sesquiterpene lactone isolated from Saussurea lappa, represses LPS-induced inflammatory responses via expression of heme oxygenase-1 in murine macrophage cells.

    PubMed

    Choi, Hyun-Gyu; Lee, Dong-Sung; Li, Bin; Choi, Yeon Ho; Lee, Seung-Ho; Kim, Youn-Chul

    2012-07-01

    Saussurea lappa C.B. Clarke (Compositae) is indigenous to India and Pakistan. The dried root of S. lappa has been traditionally used for alleviating pain in abdominal distention and tenesmus, indigestion with anorexia, dysentery, nausea, and vomiting. Santamarin is a sesquiterpene lactone isolated from S. lappa. In the present study, santamarin inhibited inducible nitric oxide synthase (iNOS) protein, reduced iNOS-derived nitric oxide (NO), suppressed COX-2 protein and reduced COX-derived PGE(2) production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and murine peritoneal macrophages. Similarly, santamarin reduced tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) production. In addition, santamarin suppressed the phosphorylation and degradation of IκB-α as well as the nuclear translocation of p65 in response to LPS in RAW264.7 cells. Furthermore, santamarin induced heme oxygenase (HO)-1 expression mRNA and protein level that plays a cytoprotective role against inflammation. The induction of HO-1 is primarily regulated at the transcriptional level, and its induction by various agents is mediated by the nuclear transcription factor E2-related factor 2 (Nrf2), master regulator of antioxidant responses. Unbound Nrf2 translocates into the nucleus and binds to the antioxidant response element (ARE) in the upstream promoter region of many antioxidative genes, where it initiates their transcription. The effects of santamarin on LPS-induced NO, PGE(2), TNF-α, and IL-1β production were partially reversed by the HO-1 inhibitor, tin protoporphyrin (SnPP). Therefore, our data suggest that the anti-inflammatory effect of santamarin in macrophages may be exerted through a novel mechanism that involves HO-1 expression.

  20. Tumor necrosis factor receptor-1 is essential for LPS-induced sensitization and tolerance to oxygen-glucose deprivation in murine neonatal organotypic hippocampal slices.

    PubMed

    Markus, Tina; Cronberg, Tobias; Cilio, Corrado; Pronk, Cornelis; Wieloch, Tadeusz; Ley, David

    2009-01-01

    Inflammation and ischemia have a synergistic damaging effect in the immature brain. The role of tumor necrosis factor (TNF) receptors 1 and 2 in lipopolysaccharide (LPS)-induced sensitization and tolerance to oxygen-glucose deprivation (OGD) was evaluated in neonatal murine hippocampal organotypic slices. Hippocampal slices from balb/c, C57BL/6 TNFR1(-/-), TNFR2(-/-), and wild-type (WT) mice obtained at P6 were grown in vitro for 9 days. Preexposure to LPS immediately before OGD increased propidium iodide-determined cell death in regions CA1, CA3, and dentate gyrus from 4 up to 48 h after OGD (P<0.001). Extending the time interval between LPS exposure and OGD to 72 h resulted in tolerance, that is reduced neuronal cell death after OGD (P<0.05). Slices from TNFR1(-/-) mice showed neither LPS-induced sensitization nor LPS-induced tolerance to OGD, whereas both effects were present in slices from TNFR2(-/-) and WT mice. Cytokine secretion (TNFalpha and interleukin-6) during LPS exposure was decreased in TNFR1(-/-) slices and increased in TNFR2(-/-) as compared with WT slices. We conclude that LPS induces sensitization or tolerance to OGD depending on the time interval between exposure to LPS and OGD in murine hippocampal slice cultures. Both paradigms are dependent on signaling through TNFR1.

  1. Protective Effect of Amygdalin on LPS-Induced Acute Lung Injury by Inhibiting NF-κB and NLRP3 Signaling Pathways.

    PubMed

    Zhang, Ao; Pan, Weiyun; Lv, Juan; Wu, Hui

    2017-03-16

    The acute lung injury (ALI) is a leading cause of morbidity and mortality in critically ill patients. Amygdalin is derived from the bitter apricot kernel, an efficacious Chinese herbal medicine. Although amygdalin is used by many cancer patients as an antitumor agent, there is no report about the effect of amygdalin on acute lung injury. Here we explored the protective effect of amygdalin on ALI using lipopolysaccharide (LPS)-induced murine model by detecting the lung wet/dry ratio, the myeloperoxidase (MPO) in lung tissues, inflammatory cells in the bronchoalveolar lavage fluid (BALF), inflammatory cytokines production, as well as NLRP3 and NF-κB signaling pathways. The results showed that amygdalin significantly reduced LPS-induced infiltration of inflammatory cells and the production of TNF-α, IL-1β, and IL-6 in the BALF. The activity of MPO and lung wet/dry ratio were also attenuated by amygdalin. Furthermore, the western blotting analysis showed that amygdalin remarkably inhibited LPS-induced NF-κB and NLRP3 activation. These findings indicate that amygdalin has a protective effect on LPS-induced ALI in mice. The mechanism may be related to the inhibition of NF-κB and NLRP3 signaling pathways.

  2. Chebulagic acid inhibits the LPS-induced expression of TNF-α and IL-1β in endothelial cells by suppressing MAPK activation.

    PubMed

    Liu, Yueying; Bao, Luer; Xuan, Liying; Song, Baohua; Lin, Lin; Han, Hao

    2015-07-01

    Inflammatory response in the vasculature, including the overexpression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β, has been demonstrated to increase the risk of thrombosis development. Chebulagic acid (CA) is a key chemical component in the traditional Mongolian anti-thrombotic drug Garidi-13, and has been suggested to exert anti-inflammatory and anti-infective effects. The present study aimed to evaluate the regulatory impact of CA on a number of biological processes, including lipopolysaccharide (LPS)-induced inflammation, LPS-promoted mitogen-activated protein kinase (MAPK) activation and the expression of toll-like receptor (TLR)4 in EA.hy926 human endothelial cells. The results indicated that CA significantly inhibited the LPS-induced upregulation of TNF-α and IL-1β in a dose- and time-dependent manner. Furthermore, LPS-activated MAPK signaling was inhibited by CA treatment in the EA.hy926 cells. However, TLR4, which serves a key function in LPS-induced inflammation as the receptor of LPS, was not regulated by the CA treatment. In summary, the results of the present study indicate that CA inhibits the LPS-induced promotion of TNF-α and IL-1β in endothelial cells by suppressing MAPK activation, which may contribute to the anti-thrombotic effect of Garidi-13.

  3. Curcumin abrogates LPS-induced proinflammatory cytokines in RAW 264.7 macrophages. Evidence for novel mechanisms involving SOCS-1, -3 and p38 MAPK

    PubMed Central

    Guimarães, Morgana Rodrigues; Leite, Fábio Renato Manzoli; Spolidorio, Luís Carlos; Kirkwood, Keith Lough; Rossa, Carlos

    2013-01-01

    Curcumin is the active compound in the extract of Curcuma longa rhizomes with anti-inflammatory properties mediated by inhibition of intracellular signalling. SOCS and MAPKinases are involved in the signalling events controlling the expression of IL-6, TNF-α and PGE2, which have important roles on chronic inflammatory diseases. The aim was to assess if these pathways are involved in curcumin-mediated effects on LPS-induced expression of these cytokines in macrophages. RAW 264.7 murine macrophages were stimulated with Escherichia coli LPS in the presence and absence of non-cytotoxic concentrations of curcumin. Curcumin potently inhibited LPS-induced expression of IL-6, TNF-α and COX-2 mRNA and prevented LPS-induced inhibition of SOCS-1 and -3 expression and the inhibition of the activation of p38 MAPKinase by modulation of its nuclear translocation. In conclusion, curcumin potently inhibits expression of LPS-induced inflammatory cytokines in macrophages via mechanisms that involve modulation of expression and activity of SOCS-1 and SOCS-3 and of p38 MAPK. PMID:24011306

  4. Ferulic acid prevents LPS-induced up-regulation of PDE4B and stimulates the cAMP/CREB signaling pathway in PC12 cells

    PubMed Central

    Huang, Hao; Hong, Qian; Tan, Hong-ling; Xiao, Cheng-rong; Gao, Yue

    2016-01-01

    Aim: Phosphodiesterase 4 (PDE4) isozymes are involved in different functions, depending on their patterns of distribution in the brain. The PDE4 subtypes are distributed in different inflammatory cells, and appear to be important regulators of inflammatory processes. In this study we examined the effects of ferulic acid (FA), a plant component with strong anti-oxidant and anti-inflammatory activities, on lipopolysaccharide (LPS)-induced up-regulation of phosphodiesterase 4B (PDE4B) in PC12 cells, which in turn regulated cellular cAMP levels and the cAMP/cAMP response element binding protein (CREB) pathway in the cells. Methods: PC12 cells were treated with LPS (1 μg/mL) for 8 h, and the changes of F-actin were detected using laser scanning confocal microscopy. The levels of pro-inflammatory cytokines were measured suing ELISA kits, and PDE4B-specific enzymatic activity was assessed with a PDE4B assay kit. The mRNA levels of PDE4B were analyzed with Q-PCR, and the protein levels of CREB and phosphorylated CREB (pCREB) were determined using immunoblotting. Furthermore, molecular docking was used to identify the interaction between PDE4B2 and FA. Results: Treatment of PC12 cells with LPS induced thick bundles of actin filaments appearing in the F-actin cytoskeleton, which were ameliorated by pretreatment with FA (10–40 μmol/L) or with a PDE4B inhibitor rolipram (30 μmol/L). Pretreatment with FA dose-dependently inhibited the LPS-induced production of TNF-α and IL-1β in PC12 cells. Furthermore, pretreatment with FA dose-dependently attenuated the LPS-induced up-regulation of PDE4 activity in PC12 cells. Moreover, pretreatment with FA decreased LPS-induced up-regulation of the PDE4B mRNA, and reversed LPS-induced down-regulation of CREB and pCREB in PC12 cells. The molecular docking results revealed electrostatic and hydrophobic interactions between FA and PDE4B2. Conclusion: The beneficial effects of FA in PC12 cells might be conferred through inhibition of LPS-induced

  5. Functional Toll-like receptor 4 expressed in lactotrophs mediates LPS-induced proliferation in experimental pituitary hyperplasia

    SciTech Connect

    Sabatino, María Eugenia; Sosa, Liliana del Valle; Petiti, Juan Pablo; Mukdsi, Jorge Humberto; Mascanfroni, Iván Darío; Pellizas, Claudia Gabriela; Gutiérrez, Silvina; Torres, Alicia Inés; De Paul, Ana Lucía

    2013-11-15

    Toll like receptor 4 (TLR4) has been characterized for its ability to recognize bacterial endotoxin lipopolysaccharide (LPS). Considering that infections or inflammatory processes might contribute to the progression of pituitary tumors, we analyzed the TLR4 functional role by evaluating the LPS effect on lactotroph proliferation in primary cultures from experimental pituitary tumors, and examined the involvement of PI3K-Akt and NF-κB activation in this effect. In addition, the role of 17β-estradiol as a possible modulator of LPS-induced PRL cell proliferation was further investigated. In estrogen-induced hyperplasic pituitaries, LPS triggered lactotroph cell proliferation. However, endotoxin failed to increase the number of lactotrophs taking up BrdU in normal pituitaries. Moreover, incubation with anti-TLR4 antibody significantly reduced LPS-induced lactotroph proliferation, suggesting a functional role of this receptor. As a sign of TLR4 activation, an LPS challenge increased IL-6 release in normal and tumoral cells. By flow cytometry, TLR4 baseline expression was revealed at the plasma membrane of tumoral lactotrophs, without changes noted in the percentage of double PRL/TLR4 positive cells after LPS stimulus. Increases in TLR4 intracellular expression were detected as well as rises in CD14, p-Akt and NF-κB after an LPS challenge, as assessed by western blotting. The TLR4/PRL and PRL/NF-κB co-localization was also corroborated by immunofluorescence and the involvement of PI3K/Akt signaling in lactotroph proliferation and IL-6 release was revealed through the PI3K inhibitor Ly-294002. In addition, 17β-estradiol attenuated the LPS-evoked increase in tumoral lactotroph proliferation and IL-6 release. Collectively these results demonstrate the presence of functional TLR4 in lactotrophs from estrogen-induced hyperplasic pituitaries, which responded to the proliferative stimulation and IL-6 release induced by LPS through TLR4/CD14, with a contribution of the PI3K

  6. Proteomic dissection of LPS-inducible, PHF8-dependent secretome reveals novel roles of PHF8 in TLR4-induced acute inflammation and T cell proliferation

    PubMed Central

    Erdoğan, Özgün; Xie, Ling; Wang, Li; Wu, Bing; Kong, Qing; Wan, Yisong; Chen, Xian

    2016-01-01

    Endotoxin (LPS)-induced changes in histone lysine methylation contribute to the gene-specific transcription for control of inflammation. Still unidentified are the chromatin regulators that drive the transition from a transcriptional-repressive to a transcriptional-active chromatin state of pro-inflammatory genes. Here, using combined approaches to analyze LPS-induced changes in both gene-specific transcription and protein secretion to the extracellular compartment, we characterize novel functions of the lysine demethylase PHF8 as a pro-inflammatory, gene-specific chromatin regulator. First, in the LPS-induced, acute-inflamed macrophages, PHF8 knockdown led to both a reduction of pro-inflammatory factors and an increase in a transcriptional-repressive code (H3K9me2) written by the methyltransferase G9a. Through unbiased quantitative secretome screening we discovered that LPS induces the secretion of a cluster of PHF8-dependent, ‘tolerizable’ proteins that are related to diverse extracellular pathways/processes including those for the activation of adaptive immunity. Specifically, we determined that PHF8 promotes T-cell activation and proliferation, thus providing the first link between the epigenetic regulation of inflammation and adaptive immunity. Further, we found that, in the acute-inflamed macrophages, the acute-active PHF8 opposes the H3K9me1/2-writing activity of G9a to activate specific protein secretions that are suppressed by G9a in the endotoxin-tolerant cells, revealing the inflammatory-phenotypic chromatin drivers that regulate the gene-specific chromatin plasticity. PMID:27112199

  7. SIGNR1-mediated phagocytosis, but not SIGNR1-mediated endocytosis or cell adhesion, suppresses LPS-induced secretion of IL-6 from murine macrophages.

    PubMed

    Kawauchi, Yoko; Takagi, Hideaki; Hanafusa, Kei; Kono, Mirei; Yamatani, Minami; Kojima, Naoya

    2015-01-01

    C-type lectin receptors (CLRs) serve as phagocytosis receptors for pathogens and also function as adhesion molecules and in the recognition and endocytosis of glycosylated self-antigens. In the present study, we demonstrated that phagocytosis mediated by a mouse mannose-binding CLR, SIGNR1 significantly suppressed the LPS-induced secretion of the specific pro-inflammatory cytokines from the resident peritoneal macrophages and the mouse macrophage-like cells that express SIGNR1 (RAW-SIGNR1). LPS-induced secretion of IL-6 from peritoneal macrophages suppressed in response to uptake of oligomannose-coated liposomes (OMLs), and the suppression was partly inhibited by treatment with an anti-SIGNR1 antibody. LPS-induced secretion of IL-6 from RAW-SIGNR1 cells was also clearly inhibited by treatment of the cells with OMLs >0.4μm in diameter, but treatment with OMLs <0.4μm in diameter did not affect the IL-6 secretion. In contrast, LPS-induced TNF-α secretion from the cells was not affected on treatment of the cells with OMLs. Suppression of the IL-6 secretion was not observed following treatment with oligomannose-containing soluble polymers or when cells were bound to an oligomannose-coated solid phase. Phagocytosis of oligomannose-coated liposomes did not interfere with the transcription of IL-6 mRNA, but did affect IL-6 mRNA stability, leading to suppression of IL-6 secretion. Interestingly, treatment of the cells with Ly290042, a PI3 kinase inhibitor, partly blocked the suppression of LPS-induced secretion of IL-6 by OML. Thus, we conclude that SIGNR1-mediated phagocytosis but not SIGNR1-mediated endocytosis and cell adhesion, suppresses the TLR4-mediated production of specific proinflammatory cytokines via PI3 kinase signaling.

  8. aged black garlic exerts anti-inflammatory effects by decreasing no and proinflammatory cytokine production with less cytoxicity in LPS-stimulated raw 264.7 macrophages and LPS-induced septicemia mice.

    PubMed

    Kim, Min Jee; Yoo, Yung Choon; Kim, Hyun Jung; Shin, Suk Kyung; Sohn, Eun Jeong; Min, A Young; Sung, Nak Yun; Kim, Mee Ree

    2014-10-01

    In this study, the anti-inflammatory and antisepticemic activities of a water extract of aged black garlic (AGE), which is not pungent, were compared with those of raw garlic extract (RGE). The methyl thiazolyl tetrazolium (MTT) assay showed that AGE was not toxic up to 1000 μg/mL and was at least four times less cytotoxic than RGE. AGE significantly suppressed the production of nitric oxide (NO), tumor-necrosis factor-α (TNF-α), and prostaglandin (PG)-E2 in a dose-dependent manner in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Furthermore, the inhibitory effect of AGE on LPS-induced inflammation was confirmed by downregulation of inducible NO synthase and TNF-α mRNA expression, as well as cyclooxygenase-2 protein expression. The anti-inflammatory activities of AGE were similar to those of RGE at nontoxic concentrations up to 250 μg/mL. Signal transduction pathway studies further indicated that both garlic extracts inhibited activation of mitogen-activated protein kinase and nuclear factor-κB induced by LPS stimulation. Treatment with both AGE and RGE in an in vivo experiment of LPS-induced endotoxemia significantly reduced the level of TNF-α and interleukin-6 in serum and completely protected against LPS-induced lethal shock in C57BL/6 mice. The results suggest that AGE is a more promising nutraceutical or medicinal agent to prevent or cure inflammation-related diseases for safety aspects compared with RGE.

  9. Mesenchymal stem cells improves survival in LPS-induced acute lung injury acting through inhibition of NETs formation.

    PubMed

    Pedrazza, Leonardo; Cunha, Aline Andrea; Luft, Carolina; Nunes, Nailê Karine; Schimitz, Felipe; Gassen, Rodrigo Benedetti; Breda, Ricardo Vaz; Donadio, Marcio Vinícius Fagundes; de Souza Wyse, Angela Terezinha; Pitrez, Paulo Marcio Condessa; Rosa, Jose Luis; de Oliveira, Jarbas Rodrigues

    2017-01-23

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are syndromes of acute hypoxemic respiratory failure resulting from a variety of direct and indirect injuries to the gas exchange parenchyma of the lungs. During the ALI, we have an increase release of proinflammatory cytokines and high reactive oxygen species (ROS) formation. These factors are responsible for the release and activation of neutrophil-derived proteases and the formation of neutrophil extracellular traps (NETs). The excessive increase in the release of NETs cause damage to lung tissue. Recent studies have studies involving the administration of mesenchymal stem cells (MSCs) for the treatment of experimental ALI has shown promising results. In this way, the objective of our study is to evaluate the ability of MSCs, in a lipopolysaccharide (LPS)-induced ALI model, to reduce inflammation, oxidative damage, and consequently decrease the release of NETs. Mice were submitted lung injury induced by intratracheal instillation of LPS and subsequently treated or not with MSCs. Treatment with MSCs was able to modulate pulmonary inflammation, decrease oxidative damage, and reduce the release of NETs. These benefits from treatment are evident when we observe a significant increase in the survival curve in the treated animals. Our results demonstrate that MSCs treatment is effective for the treatment of ALI. For the first time, it is described that MSCs can reduce the formation of NETs and an experimental model of ALI. This finding is directly related to these cells modulate the inflammatory response and oxidative damage in the course of the pathology.

  10. Analgesic and anti-hyperalgesic effects of epidural morphine in an equine LPS-induced acute synovitis model.

    PubMed

    van Loon, Johannes P A M; Menke, Eveline S; L'ami, Jiske J; Jonckheer-Sheehy, Valerie S M; Back, Willem; René van Weeren, P

    2012-08-01

    Epidural morphine is widely used in veterinary medicine, but there is no information about the anti-hyperalgesic and anti-inflammatory effects in acute inflammatory joint disease in horses. The analgesic, anti-hyperalgesic and anti-inflammatory effects of epidural morphine (100mg/animal or 0.17 ± 0.02 mg/kg) were therefore investigated in horses with acute synovitis. In a cross-over study, synovitis was induced in the talocrural joint by intra-articular lipopolysaccharide (LPS). The effect of epidural morphine was evaluated using physiological, kinematic and behavioural variables. Ranges of motion (ROM) of the metatarsophalangeal and talocrural joints were measured, clinical lameness scores and mechanical nociceptive thresholds (MNTs) were assessed and synovial fluid inflammatory markers were measured. The injection of LPS induced transient synovitis, resulting in clinical lameness, decreased ranges of motion in the talocrural and metatarsophalangeal joints, decreased limb loading at rest and increased composite pain scores. Epidural morphine resulted in a significant improvement in clinical lameness, increased ROM and improved loading of the LPS-injected limb at rest, with no effects on synovial fluid inflammatory markers. Morphine prevented a decrease in MNT and, hence, inhibited the development of hyperalgesia close to the dorsal aspect of inflamed talocrural joints. This study showed that epidural morphine provides analgesic and anti-hyperalgesic effects in horses with acute synovitis, without exerting peripheral anti-inflammatory effects.

  11. Anti-inflammatory effect of strawberry extract against LPS-induced stress in RAW 264.7 macrophages.

    PubMed

    Gasparrini, Massimiliano; Forbes-Hernandez, Tamara Y; Giampieri, Francesca; Afrin, Sadia; Alvarez-Suarez, Josè M; Mazzoni, Luca; Mezzetti, Bruno; Quiles, Josè L; Battino, Maurizio

    2017-04-01

    A common denominator in the pathogenesis of most chronic inflammatory diseases is the involvement of oxidative stress, related to ROS production by all aerobic organisms. Dietary antioxidants from plant foods represent an efficient strategy to counteract this condition. The aim of the present study was to evaluate the protective effects of strawberry extracts on inflammatory status induced by E. Coli LPS on RAW 264.7 macrophages by measuring the main oxidative and inflammatory biomarkers and investigating the molecular pathways involved. Strawberry pre-treatment efficiently counteracted LPS-induced oxidative stress reducing the amount of ROS and nitrite production, stimulating endogenous antioxidant enzyme activities and enhancing protection against lipid, protein and DNA damage (P < 0.05). Strawberry pre-treatment exerted these protective effects primarily through the activation of the Nrf2 pathway, which is markedly AMPK-dependent and also by the modulation of the NF-kB signalling pathway. Finally, an improvement in mitochondria functionality was also detected. The results obtained in this work highlight the health benefit of strawberries against inflammatory and oxidative stress in LPS-stimulated RAW 264.7 macrophages, investigating for the first time the possible involved molecular mechanisms.

  12. Modulation of arginine and asymmetric dimethylarginine concentrations in liver and plasma by exogenous hydrogen sulfide in LPS-induced endotoxemia.

    PubMed

    Bekpinar, Seldag; Develi-Is, Seval; Unlucerci, Yesim; Kusku-Kiraz, Zeynep; Uysal, Mujdat; Gurdol, Figen

    2013-12-01

    Plasma levels of asymmetric dimethylarginine (ADMA) are known to be elevated under pathological conditions, but reports on intracellular ADMA levels are scarce. In this study, we investigated whether lipopolysaccharide (LPS)-induced endotoxemia alters the intra- and extra-cellular partition of l-arginine and ADMA. The effect of H2S pretreatment was also researched. Wistar rats were given sodium hydrogen sulfide (NaHS, 1 mg·(kg body mass)(-1)) one hour before the LPS injections (20 mg·kg(-1)). Six hours after the LPS treatment, the animals were sacrificed. Myeloperoxidase (MPO) and dimethylarginine dimethylaminohydrolase (DDAH) activities and levels of hypoxia-inducible factor (HIF)-1α were measured in the liver. ADMA and arginine levels were determined using HPLC. LPS injection caused liver injury, as evidenced by the activities of alanine transaminase, aspartate transaminase, and arginase. LPS increased l-arginine content and decreased DDAH activity in the rat liver. MPO activity and HIF-1α levels indicated inflammation and hypoxia. Despite the accumulation of ADMA in the plasma, the level remained unchanged in the liver. NaHS pretreatment restored both the DDAH activity and intracellular l-arginine levels. It is concluded that increased H2S generation has a potency to restore hepatic l-arginine levels and ADMA handling in endotoxemia. Extra- and intra-cellular partitions of ADMA seem to depend on transport proteins as well as the DDAH activity.

  13. Alliin, a garlic (Allium sativum) compound, prevents LPS-induced inflammation in 3T3-L1 adipocytes.

    PubMed

    Quintero-Fabián, Saray; Ortuño-Sahagún, Daniel; Vázquez-Carrera, Manuel; López-Roa, Rocío Ivette

    2013-01-01

    Garlic (Allium sativum L.) has been used to alleviate a variety of health problems due to its high content of organosulfur compounds and antioxidant activity. The main active component is alliin (S-allyl cysteine sulfoxide), a potent antioxidant with cardioprotective and neuroprotective actions. In addition, it helps to decrease serum levels of glucose, insulin, triglycerides, and uric acid, as well as insulin resistance, and reduces cytokine levels. However its potential anti-inflammatory effect is unknown. We examined the effects of alliin in lipopolysaccharide- (LPS-) stimulated 3T3-L1 adipocytes by RT-PCR, Western blot, and microarrays analysis of 22,000 genes. Incubation of cells for 24 h with 100 μmol/L alliin prevented the increase in the expression of proinflammatory genes, IL-6, MCP-1, and Egr-1 in 3T3-L1 adipocytes exposed to 100 ng/mL LPS for 1 h. Interestingly, the phosphorylation of ERK1/2, which is involved in LPS-induced inflammation in adipocytes, was decreased following alliin treatment. Furthermore, the gene expression profile by microarrays evidentiate an upregulation of genes involved in immune response and downregulation of genes related with cancer. The present results have shown that alliin is able to suppress the LPS inflammatory signals by generating an anti-inflammatory gene expression profile and by modifying adipocyte metabolic profile.

  14. Maprotiline inhibits LPS-induced expression of adhesion molecules (ICAM-1 and VCAM-1) in human endothelial cells

    PubMed Central

    Rafiee, Laleh; Hajhashemi, Valiollah; Javanmard, Shaghayegh Haghjooy

    2016-01-01

    Regardless of the known anti-inflammatory potential of heterocyclic antidepressants, the mechanisms concerning their modulating effects are not completely known. In our earlier work, maprotiline, a heterocyclic antidepressants, considerably inhibited infiltration of polymorphonuclear cell leucocytes into the inflamed paw. To understand the mechanism involved, we evaluated the effect of vascular cell adhesion molecule (VCAM-1), intracellular adhesion molecule (ICAM-1) expression in stimulated endothelial cells. Endothelial cells were stimulated with lipopolysaccharide (LPS) in the presence and absence of maprotiline (10-8 to 10-6 M) and ICAM-1 and VCAM-1 expression were measured using real-time quantitative reverse transcription polymerase chain reaction. Maprotiline significantly decreased the LPS-induced expression of VCAM-1 at all applied concentrations. The expression of ICAM-1 decreased in the presence of maprotiline at 10-6 M concentration (P<0.05). Since maprotiline inhibits the expression of adhesion molecules, ICAM-1 and VCAM-1 in LPS-stimulated human endothelial cells, it can be a possible way through which maprotiline exerts its anti-inflammatory properties. PMID:27168753

  15. Alliin, a Garlic (Allium sativum) Compound, Prevents LPS-Induced Inflammation in 3T3-L1 Adipocytes

    PubMed Central

    Quintero-Fabián, Saray; Ortuño-Sahagún, Daniel; Vázquez-Carrera, Manuel; López-Roa, Rocío Ivette

    2013-01-01

    Garlic (Allium sativum L.) has been used to alleviate a variety of health problems due to its high content of organosulfur compounds and antioxidant activity. The main active component is alliin (S-allyl cysteine sulfoxide), a potent antioxidant with cardioprotective and neuroprotective actions. In addition, it helps to decrease serum levels of glucose, insulin, triglycerides, and uric acid, as well as insulin resistance, and reduces cytokine levels. However its potential anti-inflammatory effect is unknown. We examined the effects of alliin in lipopolysaccharide- (LPS-) stimulated 3T3-L1 adipocytes by RT-PCR, Western blot, and microarrays analysis of 22,000 genes. Incubation of cells for 24 h with 100 μmol/L alliin prevented the increase in the expression of proinflammatory genes, IL-6, MCP-1, and Egr-1 in 3T3-L1 adipocytes exposed to 100 ng/mL LPS for 1 h. Interestingly, the phosphorylation of ERK1/2, which is involved in LPS-induced inflammation in adipocytes, was decreased following alliin treatment. Furthermore, the gene expression profile by microarrays evidentiate an upregulation of genes involved in immune response and downregulation of genes related with cancer. The present results have shown that alliin is able to suppress the LPS inflammatory signals by generating an anti-inflammatory gene expression profile and by modifying adipocyte metabolic profile. PMID:24453416

  16. Effect of a Soluble Epoxide Hydrolase Inhibitor, UC1728, on LPS-Induced Uveitis in the Rabbit

    PubMed Central

    McLellan, Gillian J.; Aktas, Zeynep; Hennes-Beean, Elizabeth; Kolb, Aaron W.; Larsen, Inna V.; Schmitz, Emily J.; Clausius, Hilary R.; Yang, Jun; Hwang, Sung Hee; Morisseau, Christophe; Inceoglu, Bora; Hammock, Bruce D.; Brandt, Curtis R.

    2016-01-01

    Cytochrome P450 epoxygenase isozymes convert free arachidonic acid into eicosanoids named epoxyeicosatrienoic acids (EETs) that have roles in regulating inflammation. EETs are rapidly converted to dihydroxyeicosatrienoic acids (DiHETs) by soluble epoxide hydrolase (sEH). Little is known about the potential role of these metabolites in uveitis, but conversion of EETs to DiHETs could contribute to the inflammation. We tested a potent and orally available inhibitor of sEH for its ability to reduce ocular inflammation in a rabbit LPS-induced model of uveitis. Rabbits were treated by subcutaneous injection with the sEH inhibitor (UC1728, 3 mg/kg), or the vehicle control (PEG400) and uveitis was assessed at 6, 24 and 48 h post-intracameral LPS injection using a modified Hackett-McDonald scoring system. Eyes treated by intra-cameral injection of PBS, or by aseptic preparation served as further controls. Signs of inflammation in this model were mild and transient. Treatment with UC1728 did not significantly reduce inflammation compared to animals treated with the PEG400 vehicle. Blood levels of UC1728 were a thousand fold higher than the in vitro determined inhibitory potency (IC50) of the compound suggesting a significant degree of inhibition of sEH in the rabbit. The lack of efficacy suggests that sEH or its substrates the EETs may not be involved in mediating inflammation in this model of uveitis. PMID:28066796

  17. In vitro Modulation of the LPS-Induced Proinflammatory Profile of Hepatocytes and Macrophages- Approaches for Intervention in Obesity?

    PubMed Central

    Kheder, Ramiar K.; Hobkirk, James; Stover, Cordula M.

    2016-01-01

    Low grade endotoxemia is a feature of obesity which is linked to development of steatohepatitis in non-alcoholic fatty liver disease. In this study, macrophages (J774) and hepatocytes (HepG2) were stimulated with lipopolysaccharide (LPS) from E. coli 0111: B4 and analyzed for modulation of this response when preconditioned or stimulated subsequent to LPS, with different doses of Vitamin D3 or docosahexaenoic acid (DHA) over a time period of 1 and 5 days. Pro-inflammatory TNFα and pro-fibrotic TGFβ released into the supernatants were measured by ELISA; qPCR was performed for Srebp-1c and PPARα mRNA (genes for products involved in fatty acid synthesis and catabolism, respectively). Vitamin D3 and DHA exerted a consistent, dose dependent anti-inflammatory effect, and increased PPARα relative to Srebp-1c in both cell types. By contrast, addition of free fatty acids (FFA, oleic acid/palmitic acid 2:1) caused aggravation of LPS-induced inflammatory reaction and an increase of Srebp-1c relative to PPARα. Our results argue in favor of dietary supplementation of Vitamin D3 or DHA (and avoidance of monounsaturated/saturated fatty acids) to alleviate development of fatty liver disease. PMID:27446914

  18. Anti-inflammatory effect of Capuli cherry against LPS-induced cytotoxic damage in RAW 264.7 macrophages.

    PubMed

    Alvarez-Suarez, José M; Carrillo-Perdomo, Estefanía; Aller, Angel; Giampieri, Francesca; Gasparrini, Massimiliano; González-Pérez, Lien; Beltrán-Ayala, Pablo; Battino, Maurizio

    2017-04-01

    Capuli cherry (Prunus serotina Ehr. subsp. capuli (Cav.) McVaugh) fruits from the inter-Andean region of Ecuador were analysed to determine their bioactive compounds content, total antioxidant capacity, radical scavenging activity and their anti-inflammatory and protective effects against the cytotoxic damage mediated by lipopolysaccharide (LPS) in RAW 264.7 macrophages. Capuli fruits proved to be a natural source of bioactive compounds such as anthocyanins, vitamin C and β-carotene as well as to present an important total antioxidant capacity and radical scavenging activities. RAW 264.7 macrophages were incubated with different concentration of Capuli crude extract and subsequently activated by LPS to determine the markers related to oxidative damage and the proinflammatory cytokine production. The markers of oxidative damage, nitrite levels, the interleukin 1β messenger RNA levels and the tumor necrosis factor α mRNA levels and secretion were significantly decreased after the pre-incubated with Capuli extract and subsequently stimulated with LPS. In summary, Capuli extract attenuated the LPS-induced damage in RAW 264.7 macrophages due to its antioxidant and anti-inflammatory properties, showing that Capuli fruits may represent a relevant source of bioactive compounds with promising benefits for human health.

  19. Modulation of hepatic PPAR expression during Ft LVS LPS-induced protection from Francisella tularensis LVS infection

    PubMed Central

    2010-01-01

    Background It has been shown previously that administration of Francisella tularensis (Ft) Live Vaccine Strain (LVS) lipopolysaccharide (LPS) protects mice against subsequent challenge with Ft LVS and blunts the pro-inflammatory cytokine response. Methods To further investigate the molecular mechanisms that underlie Ft LVS LPS-mediated protection, we profiled global hepatic gene expression following Ft LVS LPS or saline pre-treatment and subsequent Ft LVS challenge using Affymetrix arrays. Results A large number of genes (> 3,000) were differentially expressed at 48 hours post-infection. The degree of modulation of inflammatory genes by infection was clearly attenuated by pre-treatment with Ft LVS LPS in the surviving mice. However, Ft LVS LPS alone had a subtle effect on the gene expression profile of the uninfected mice. By employing gene set enrichment analysis, we discovered significant up-regulation of the fatty acid metabolism pathway, which is regulated by peroxisome proliferator activated receptors (PPARs). Conclusions We hypothesize that the LPS-induced blunting of pro-inflammatory response in mouse is, in part, mediated by PPARs (α and γ). PMID:20082697

  20. Inhibition of miR-155 Protects Against LPS-induced Cardiac Dysfunction and Apoptosis in Mice

    PubMed Central

    Wang, Hui; Bei, Yihua; Huang, Peipei; Zhou, Qiulian; Shi, Jing; Sun, Qi; Zhong, Jiuchang; Li, Xinli; Kong, Xiangqing; Xiao, Junjie

    2016-01-01

    Sepsis-induced myocardial dysfunction represents a major cause of death in intensive care units. Dysregulated microRNAs (miR)-155 has been implicated in multiple cardiovascular diseases and miR-155 can be induced by lipopolysaccharide (LPS). However, the role of miR-155 in LPS-induced cardiac dysfunction is unclear. Septic cardiac dysfunction in mice was induced by intraperitoneal injection of LPS (5 mg/kg) and miR-155 was found to be significantly increased in heart challenged with LPS. Pharmacological inhibition of miR-155 using antagomiR improved cardiac function and suppressed cardiac apoptosis induced by LPS in mice as determined by echocardiography, terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) assay, and Western blot for Bax and Bcl-2, while overexpression of miR-155 using agomiR had inverse effects. Pea15a was identified as a target gene of miR-155, mediating its effects in controlling apoptosis of cardiomyocytes as evidenced by luciferase reporter assays, quantitative real time-polymerase chain reaction, Western blot, and TUNEL staining. Noteworthy, miR-155 was also found to be upregulated in the plasma of patients with septic cardiac dysfunction compared to sepsis patients without cardiac dysfunction, indicating a potential clinical relevance of miR-155. The receiver-operator characteristic curve indicated that plasma miR-155 might be a biomarker for sepsis patients developing cardiac dysfunction. Therefore, inhibition of miR-155 represents a novel therapy for septic myocardial dysfunction. PMID:27727247

  1. Socs1 and Socs3 degrades Traf6 via polyubiquitination in LPS-induced acute necrotizing pancreatitis

    PubMed Central

    Zhou, X; Liu, Z; Cheng, X; Zheng, Y; Zeng, F; He, Y

    2015-01-01

    Mechanisms involved in inflammatory development during acute pancreatitis (AP) are largely vague, especially in the transformation of acute edematous pancreatitis (AEP) into acute necrotizing pancreatitis (ANP). This current study aims to investigate the functions of Traf6 in different AP models in vitro and in vivo, and to identify the possible regulatory mechanism in the progression of inflammation from mild to severe. Our data revealed that the level of Traf6 expression was significantly increased in the mild AP induced by caerulein, and the upregulation of Traf6 played a protective role in acinar cells against caerulein-induced apoptosis. In contrast, only Traf6 protein but not mRNA was downregulated in the severe ANP induced by combination treatment of caerulein and LPS. Mechanistic studies showed that LPS upregulated the levels of Socs1 and Socs3 expressions in acinar cells, Socs1 and Socs3 interacted Traf6 directly and degraded Traf6 protein via polyubiquitination, thereby counteracted the protective function of Traf6. In vivo study further showed that combination treatment of caerulein and LPS failed to induce an ANP model in the TLR4 knockout mice, and the level of Traf6 expression in the pancreatic tissues remained the same as that from the acute edematous pancreatitis (AEP) mouse. Taken together, our study reveals that Traf6 functioned as a protective factor in the progression of AP, and LPS-induced Socs1 and Socs3 exacerbate mild AP to severe AP, which provides evidence for developing a new therapeutic target to combat AP. PMID:26633718

  2. Chronic morphine treatment inhibits LPS-induced angiogenesis: implications in wound healing.

    PubMed

    Martin, Josephine L; Charboneau, Richard; Barke, Roderick A; Roy, Sabita

    2010-01-01

    Delayed wound healing is a chronic problem in opioid drug abusers. We investigated the role chronic morphine plays on later stages of wound healing events using an angiogenesis model. Our results show that morphine treatment resulted in a significant decrease in inflammation induced angiogenesis. To delineate the mechanisms involved we investigate the role of hypoxia inducible factor 1 alpha (HIF-1 alpha), a potent inducer of angiogenic growth factor. Morphine treatment resulted in a significant decrease in the expression and nuclear translocation of HIF-1 alpha with a concurrent suppression in vascular endothelial growth factor (VEGF) synthesis. Cells of the innate immune system play a dominant role in the angiogenic process. Morphine treatment inhibited early recruitment of both neutrophils and monocytes towards an inflammatory signal with a significant decrease in the monocyte chemoattractant MCP-1. Taken together, our studies show that morphine regulates the wound repair process on multiple levels. Morphine acts both directly and indirectly in suppressing angiogenesis.

  3. POLYCHLORINATED BIPHENYL MIXTURES (AROCLORS) INHIBIT LPS-INDUCED MURINE SPLENOCYTE PROLIFERATION IN VITRO. (R826687)

    EPA Science Inventory

    Abstract

    The immune system is believed to be a sensitive indicator for adverse polychlorinated biphenyl (PCB)-induced health effects. Four commercial PCB mixtures (Aroclors) or six individual PCB congeners were evaluated for their effect on splenocyte viability and lip...

  4. Auranofin, as an anti-rheumatic gold compound, suppresses LPS-induced homodimerization of TLR4.

    PubMed

    Youn, Hyung S; Lee, Joo Y; Saitoh, Shin I; Miyake, Kensuke; Hwang, Daniel H

    2006-12-01

    Toll-like receptors (TLRs), which are activated by invading microorganisms or endogenous molecules, evoke immune and inflammatory responses. TLR activation is closely linked to the development of many chronic inflammatory diseases including rheumatoid arthritis. Auranofin, an Au(I) compound, is a well-known and long-used anti-rheumatic drug. However, the mechanism as to how auranofin relieves the symptom of rheumatoid arthritis has not been fully clarified. Our results demonstrated that auranofin suppressed TLR4-mediated activation of transcription factors, NF-kappaB and IRF3, and expression of COX-2, a pro-inflammatory enzyme. This suppression was well correlated with the inhibitory effect of auranofin on the homodimerization of TLR4 induced by an agonist. Furthermore, auranofin inhibited NF-kappaB activation induced by MyD88-dependent downstream signaling components of TLR4, MyD88, IKKbeta, and p65. IRF3 activation induced by MyD88-independent signaling components, TRIF and TBK1, was also downregulated by auranofin. Our results first demonstrate that auranofin suppresses the multiple steps in TLR4 signaling, especially the homodimerization of TLR4. The results suggest that the suppression of TLR4 activity by auranofin may be the molecular mechanism through which auranofin exerts anti-rheumatic activity.

  5. Alterations of lung microbiota in a mouse model of LPS-induced lung injury

    PubMed Central

    Meng, Fanyong; Meliton, Angelo; Afonyushkin, Taras; Ulanov, Alexander; Semenyuk, Ekaterina; Latif, Omar; Tesic, Vera; Birukova, Anna A.; Birukov, Konstantin G.

    2015-01-01

    Acute lung injury (ALI) and the more severe acute respiratory distress syndrome are common responses to a variety of infectious and noninfectious insults. We used a mouse model of ALI induced by intratracheal administration of sterile bacterial wall lipopolysaccharide (LPS) to investigate the changes in innate lung microbiota and study microbial community reaction to lung inflammation and barrier dysfunction induced by endotoxin insult. One group of C57BL/6J mice received LPS via intratracheal injection (n = 6), and another received sterile water (n = 7). Bronchoalveolar lavage (BAL) was performed at 72 h after treatment. Bacterial DNA was extracted and used for qPCR and 16S rRNA gene-tag (V3–V4) sequencing (Illumina). The bacterial load in BAL from ALI mice was increased fivefold (P = 0.03). The community complexity remained unchanged (Simpson index, P = 0.7); the Shannon diversity index indicated the increase of community evenness in response to ALI (P = 0.07). Principal coordinate analysis and analysis of similarity (ANOSIM) test (P = 0.005) revealed a significant difference between microbiota of control and ALI groups. Bacteria from families Xanthomonadaceae and Brucellaceae increased their abundance in the ALI group as determined by Metastats test (P < 0.02). In concordance with the 16s-tag data, Stenotrohomonas maltophilia (Xanthomonadaceae) and Ochrobactrum anthropi (Brucellaceae) were isolated from lungs of mice from both groups. Metabolic profiling of BAL detected the presence of bacterial substrates suitable for both isolates. Additionally, microbiota from LPS-treated mice intensified IL-6-induced lung inflammation in naive mice. We conclude that the morbid transformation of ALI microbiota was attributed to the set of inborn opportunistic pathogens thriving in the environment of inflamed lung, rather than the external infectious agents. PMID:25957290

  6. Alterations of lung microbiota in a mouse model of LPS-induced lung injury.

    PubMed

    Poroyko, Valeriy; Meng, Fanyong; Meliton, Angelo; Afonyushkin, Taras; Ulanov, Alexander; Semenyuk, Ekaterina; Latif, Omar; Tesic, Vera; Birukova, Anna A; Birukov, Konstantin G

    2015-07-01

    Acute lung injury (ALI) and the more severe acute respiratory distress syndrome are common responses to a variety of infectious and noninfectious insults. We used a mouse model of ALI induced by intratracheal administration of sterile bacterial wall lipopolysaccharide (LPS) to investigate the changes in innate lung microbiota and study microbial community reaction to lung inflammation and barrier dysfunction induced by endotoxin insult. One group of C57BL/6J mice received LPS via intratracheal injection (n = 6), and another received sterile water (n = 7). Bronchoalveolar lavage (BAL) was performed at 72 h after treatment. Bacterial DNA was extracted and used for qPCR and 16S rRNA gene-tag (V3-V4) sequencing (Illumina). The bacterial load in BAL from ALI mice was increased fivefold (P = 0.03). The community complexity remained unchanged (Simpson index, P = 0.7); the Shannon diversity index indicated the increase of community evenness in response to ALI (P = 0.07). Principal coordinate analysis and analysis of similarity (ANOSIM) test (P = 0.005) revealed a significant difference between microbiota of control and ALI groups. Bacteria from families Xanthomonadaceae and Brucellaceae increased their abundance in the ALI group as determined by Metastats test (P < 0.02). In concordance with the 16s-tag data, Stenotrohomonas maltophilia (Xanthomonadaceae) and Ochrobactrum anthropi (Brucellaceae) were isolated from lungs of mice from both groups. Metabolic profiling of BAL detected the presence of bacterial substrates suitable for both isolates. Additionally, microbiota from LPS-treated mice intensified IL-6-induced lung inflammation in naive mice. We conclude that the morbid transformation of ALI microbiota was attributed to the set of inborn opportunistic pathogens thriving in the environment of inflamed lung, rather than the external infectious agents.

  7. Prostaglandin EP2 and EP4 receptors modulate expression of the chemokine CCL2 (MCP-1) in response to LPS-induced renal glomerular inflammation.

    PubMed

    Zahner, Gunther; Schaper, Melanie; Panzer, Ulf; Kluger, Malte; Stahl, Rolf A K; Thaiss, Friedrich; Schneider, André

    2009-08-27

    The pro-inflammatory chemokine CCL2 [chemokine (Cys-Cys motif) ligand 2; also known as MCP-1 (monocyte chemotactic protein-1)] is up-regulated in the glomerular compartment during the early phase of LPS (lipopolysaccharide)-induced nephritis. This up-regulation also occurs in cultured MCs (mesangial cells) and is more pronounced in MCs lacking the PGE2 (prostaglandin E2) receptor EP2 or in MCs treated with a prostaglandin EP4 receptor antagonist. To examine a possible feedback mechanism of EP receptor stimulation on CCL2 expression, we used an in vitro model of MCs with down-regulated EP receptor expression. Selectively overexpressing the various EP receptors in these cells then allows the effects on the LPS-induced CCL2 expression to be examined. Cells were stimulated with LPS and CCL2 gene expression was examined and compared with LPS-stimulated, mock-transfected PTGS2 [prostaglandin-endoperoxide synthase 2, also known as COX-2 (cyclo-oxygenase-2)]-positive cells. Overexpression of EP1, as well as EP3, had no effect on LPS-induced Ccl2 mRNA expression. In contrast, overexpression of EP2, as well as EP4, significantly decreased LPS-induced CCL2 expression. These results support the hypothesis that PTGS2-derived prostaglandins, when strongly induced, counter-balance inflammatory processes through the EP2 and EP4 receptors in MCs.

  8. Astrocyte hepcidin is a key factor in LPS-induced neuronal apoptosis.

    PubMed

    You, Lin-Hao; Yan, Cai-Zhen; Zheng, Bing-Jie; Ci, Yun-Zhe; Chang, Shi-Yang; Yu, Peng; Gao, Guo-Fen; Li, Hai-Yan; Dong, Tian-Yu; Chang, Yan-Zhong

    2017-03-16

    Inflammatory responses involving microglia and astrocytes contribute to the pathogenesis of neurodegenerative diseases (NDs). In addition, inflammation is tightly linked to iron metabolism dysregulation. However, it is not clear whether the brain inflammation-induced iron metabolism dysregulation contributes to the NDs pathogenesis. Herein, we demonstrate that the expression of the systemic iron regulatory hormone, hepcidin, is induced by lipopolysaccharide (LPS) through the IL-6/STAT3 pathway in the cortex and hippocampus. In this paradigm, activated glial cells are the source of IL-6, which was essential in the iron overload-activated apoptosis of neurons. Disrupting astrocyte hepcidin expression prevented the apoptosis of neurons, which were able to maintain levels of FPN1 adequate to avoid iron accumulation. Together, our data are consistent with a model whereby inflammation initiates an intercellular signaling cascade in which activated microglia, through IL-6 signaling, stimulate astrocytes to release hepcidin which, in turn, signals to neurons, via hepcidin, to prevent their iron release. Such a pathway is relevant to NDs in that it links inflammation, microglia and astrocytes to neuronal damage.

  9. Anti-Inflammatory Effects of a Pomegranate Leaf Extract in LPS-Induced Peritonitis.

    PubMed

    Marques, Lucia C F; Pinheiro, Aruanã J M C R; Araújo, João G G; de Oliveira, Raimundo A G; Silva, Selma N; Abreu, Iracelle C; de Sousa, Eduardo M; Fernandes, Elizabeth S; Luchessi, André D; Silbiger, Vivian N; Nicolete, Roberto; Lima-Neto, Lidio G

    2016-11-01

    Folk medicine suggests that pomegranate (peels, seeds and leaves) has anti-inflammatory properties; however, the precise mechanisms by which this plant affects the inflammatory process remain unclear. Herein, we analyzed the anti-inflammatory properties of a hydroalcoholic extract prepared from pomegranate leaves using a rat model of lipopolysaccharide-induced acute peritonitis. Male Wistar rats were treated with either the hydroalcoholic extract, sodium diclofenac, or saline, and 1 h later received an intraperitoneal injection of lipopolysaccharides. Saline-injected animals (i. p.) were used as controls. Animals were culled 4 h after peritonitis induction, and peritoneal lavage and peripheral blood samples were collected. Serum and peritoneal lavage levels of TNF-α as well as TNF-α mRNA expression in peritoneal lavage leukocytes were quantified. Total and differential leukocyte populations were analyzed in peritoneal lavage samples. Lipopolysaccharide-induced increases of both TNF-α mRNA and protein levels were diminished by treatment with either pomegranate leaf hydroalcoholic extract (57 % and 48 % mean reduction, respectively) or sodium diclofenac (41 % and 33 % reduction, respectively). Additionally, the numbers of peritoneal leukocytes, especially neutrophils, were markedly reduced in hydroalcoholic extract-treated rats with acute peritonitis. These results demonstrate that pomegranate leaf extract may be used as an anti-inflammatory drug which suppresses the levels of TNF-α in acute inflammation.

  10. Bufexamac ameliorates LPS-induced acute lung injury in mice by targeting LTA4H

    PubMed Central

    Xiao, Qiang; Dong, Ningning; Yao, Xue; Wu, Dang; Lu, Yanli; Mao, Fei; Zhu, Jin; Li, Jian; Huang, Jin; Chen, Aifang; Huang, Lu; Wang, Xuehai; Yang, Guangxiao; He, Guangyuan; Xu, Yong; Lu, Weiqiang

    2016-01-01

    Neutrophils play an important role in the occurrence and development of acute lung injury (ALI). Leukotriene B4 (LTB4), a hydrolysis product of epoxide leukotriene A4 (LTA4) catalyzed by LTA4 hydrolase (LTA4H), is one of the most potent chemoattractants for neutrophil. Bufexamac is a drug widely used as an anti-inflammatory agent on the skin, however, the mechanism of action is still not fully understood. In this study, we found bufexamac was capable of specifically inhibiting LTA4H enzymatic activity and revealed the mode of interaction of bufexamac and LTA4H using X-ray crystallography. Moreover, bufexamac significantly prevented the production of LTB4 in neutrophil and inhibited the fMLP-induced neutrophil migration through inhibition of LTA4H. Finally, bufexamac significantly attenuated lung inflammation as reflected by reduced LTB4 levels and weakened neutrophil infiltration in bronchoalveolar lavage fluid from a lipopolysaccharide-induced ALI mouse model. In summary, our study indicates that bufexamac acts as an inhibitor of LTB4 biosynthesis and may have potential clinical applications for the treatment of ALI. PMID:27126280

  11. LPS-Induced Macrophage Activation and Plasma Membrane Fluidity Changes are Inhibited Under Oxidative Stress.

    PubMed

    de la Haba, Carlos; Morros, Antoni; Martínez, Paz; Palacio, José R

    2016-12-01

    Macrophage activation is essential for a correct and efficient response of innate immunity. During oxidative stress membrane receptors and/or membrane lipid dynamics can be altered, leading to dysfunctional cell responses. Our aim is to analyze membrane fluidity modifications and cell function under oxidative stress in LPS-activated macrophages. Membrane fluidity of individual living THP-1 macrophages was evaluated by the technique two-photon microscopy. LPS-activated macrophage function was determined by TNFα secretion. It was shown that LPS activation causes fluidification of macrophage plasma membrane and production of TNFα. However, oxidative stress induces rigidification of macrophage plasma membrane and inhibition of cell activation, which is evidenced by a decrease of TNFα secretion. Thus, under oxidative conditions macrophage proinflammatory response might develop in an inefficient manner.

  12. Target deletion of complement component 9 attenuates antibody-mediated hemolysis and lipopolysaccharide (LPS)-induced acute shock in mice

    PubMed Central

    Fu, Xiaoyan; Ju, Jiyu; Lin, Zhijuan; Xiao, Weiling; Li, Xiaofang; Zhuang, Baoxiang; Zhang, Tingting; Ma, Xiaojun; Li, Xiangyu; Ma, Chao; Su, Weiliang; Wang, Yuqi; Qin, Xuebin; Liang, Shujuan

    2016-01-01

    Terminal complement membrane attack complex (MAC) formation is induced initially by C5b, followed by the sequential condensation of the C6, C7, C8. Polymerization of C9 to the C5b-8 complex forms the C5b-9 (or MAC). The C5b-9 forms lytic or non lytic pores in the cell membrane destroys membrane integrity. The biological functionalities of MAC has been previously investigated by using either the mice deficient in C5 and C6, or MAC’s regulator CD59. However, there is no available C9 deficient mice (mC9−/−) for directly dissecting the role of C5b-9 in the pathogenesis of human diseases. Further, since C5b-7 and C5b-8 complexes form non lytic pore, it may also plays biological functionality. To better understand the role of terminal complement cascades, here we report a successful generation of mC9−/−. We demonstrated that lack of C9 attenuates anti-erythrocyte antibody-mediated hemolysis or LPS-induced acute shock. Further, the rescuing effect on the acute shock correlates with the less release of IL-1β in mC9−/−, which is associated with suppression of MAC-mediated inflammasome activation in mC9−/−. Taken together, these results not only confirm the critical role of C5b-9 in complement-mediated hemolysis and but also highlight the critical role of C5b-9 in inflammasome activation. PMID:27444648

  13. NF-κB inhibition attenuates LPS-induced TLR4 activation in monocyte cells

    PubMed Central

    Wan, Jian; Shan, Yi; Fan, Yibo; Fan, Conghui; Chen, Song; Sun, Jie; Zhu, Lili; Qin, Long; Yu, Mengjin; Lin, Zhaofen

    2016-01-01

    Toll-like receptor (TLR) family are receptors for extracellular or intracellular signaling, such as lipopolysaccharide (LPS), or 12-O-tetradecanoylphorbol-13-acetate. TLR induces the differentiation of human myeloid monocytic-leukemia cells (THP-1) to macrophages. However, the relationship between extracellular or intracellular signaling and the TLR protein level remain to be determined. Using RT-PCR and western blot analysis, the aim of the present study was to determine whether TLR4, a major TLR family member, could be moderately upregulated by high concentration of LPS and whether it promoted the maturation of THP1 cells. The results showed that, upregulated TLR4 at the protein level and mRNA level enriched the TLR4 modulation style. In addition, TLR4 expression was blocked by nuclear factor (NF)-κB inhibitor, and LPS stimulated NF-κB binding in the TLR4 gene promoter. Therefore, the increased expression of TLR4 in the responsiveness of LPS-treated THP1 cells occurred in response to the upregulation of their respective receptors, as well as a tight binding of NF-κB in the TLR4 gene promoter. PMID:27748869

  14. LPS-induced renal inflammation is prevented by (-)-epicatechin in rats.

    PubMed

    Prince, Paula Denise; Fischerman, Laura; Toblli, Jorge E; Fraga, Cesar G; Galleano, Monica

    2017-04-01

    This work investigated the capacity of (-)-epicatechin to prevent the renal damage induced by LPS administration in rats. Male Sprague Dawley rats were fed for 4 days a diet without or with supplementation with (-)-epicatechin (80mg/kg BW/d), and subsequently i.p. injected with lipopolysaccharide (LPS). Six hours after injection, LPS-treated rats exhibited increased plasma creatinine and urea levels as indicators of impaired renal function. The renal cortex of the LPS-treated rats showed: i) increased expression of inflammatory molecules (TNF-α, iNOS and IL-6); ii) activation of several steps of NF-κB pathway; iii) overexpression of TLR4, and iv) higher superoxide anion production and lipid peroxidation index in association with increased levels of gp91(phox) and p47(phox) (NOX2) and NOX4. Pretreatment with dietary (-)-epicatechin prevented the adverse effects of LPS challenge essentially by inhibiting TLR4 upregulation and NOX activation and the consequent downstream events, e.g. NF-kB activation.

  15. LPS-inducible factor(s) from activated macrophages mediates cytolysis of Naegleria fowleri amoebae

    SciTech Connect

    Cleary, S.F.; Marciano-Cabral, F.

    1986-03-01

    Soluble cytolytic factors of macrophage origin have previously been described with respect to their tumoricidal activity. The purpose of this study was to investigate the mechanism and possible factor(s) responsible for cytolysis of the amoeba Naegleria fowleri by activated peritoneal macrophages from B6C3F1 mice. Macrophages or conditioned medium (CM) from macrophage cultures were incubated with /sup 3/H-Uridine labeled amoebae. Percent specific release of label served as an index of cytolysis. Bacille Calmette-Guerin (BCG) and Corynebacterium parvum macrophages demonstrated significant cytolysis of amoebae at 24 h with an effector to target ratio of 10:1. Treatment of macrophages with inhibitors of RNA or protein synthesis blocked amoebicidal activity. Interposition of a 1 ..mu..m pore membrane between macrophages and amoebae inhibited killing. Inhibition in the presence of the membrane was overcome by stimulating the macrophages with LPS. CM from SPS-stimulated, but not unstimulated, cultures of activated macrophages was cytotoxic for amoebae. The activity was heat sensitive and was recovered from ammonium sulfate precipitation of the CM. Results indicate that amoebicidal activity is mediated by a protein(s) of macrophage origin induced by target cell contact or stimulation with LPS.

  16. Fucoidan inhibits LPS-induced inflammation in vitro and during the acute response in vivo.

    PubMed

    Park, Jisang; Cha, Jeong-Dan; Choi, Kyung-Min; Lee, Kyung-Yeol; Han, Kang Min; Jang, Yong-Suk

    2017-02-01

    Studies have been focused on natural products with antibacterial and anti-inflammatory activities, such as fucoidan. Many in vivo studies have evaluated the effect of fucoidan on tumor growth, diabetes, obesity, ischemia reperfusion, and oxidative stress. However, the effects of fucoidan on bacteria-induced gingival inflammation and periodontitis have not been reported. We previously characterized the anti-inflammatory effect of fucoidan in vitro. Here, we confirmed the anti-inflammatory activity of fucoidan in a macrophage cell line in terms of its inhibition of the expression of inflammatory mediators and pro-inflammatory cytokines. Additionally, we confirmed the ability of fucoidan to inhibit gingival inflammation, expression of pro-inflammatory cytokines, and neutrophil recruitment in the gingival tissue of mice injected with LPS prepared from P. gingivalis. Interestingly, however, fucoidan did not inhibit the expression of pro-inflammatory cytokines in a P. gingivalis-infected mouse model of periodontitis. Additionally, fucoidan treatment did not lead to clearance of P. gingivalis or improvement of P. gingivalis infection-mediated bone loss in the periodontitis model. We conclude that fucoidan exerts anti-inflammatory effects in vitro and in vivo, together with a limited antibacterial effect in vivo.

  17. Cloning and analysis of gene regulation of a novel LPS-inducible cDNA.

    PubMed

    Lee, C G; Jenkins, N A; Gilbert, D J; Copeland, N G; O'Brien, W E

    1995-01-01

    The expression of many genes is altered upon the activation of macrophages by bacterial LPS. These genes play a crucial role in the orchestration of various responses to protect the host against infection. A novel 2.3 kilobase (kb) cDNA, designated IRG1, was obtained from a cDNA library prepared with RNA isolated from RAW 264.7 following lipopolysaccharide stimulation. Sequence analysis of the clone revealed no identity to any known genes but showed the presence of many potential phosphorylation sites suggesting that IRG1 protein product may be regulated at this level. Furthermore, IRG1 contains the motif for glycosaminoglycan attachment site, implying that IRG1 may be a proteoglycan. By interspecific back-cross analysis, Irg1 was mapped to mouse chromosome 14 linked to Tyrp2 and Rap2a. The IRG1 message appears 1.5 h following LPS exposure and its induction was not dependent on new protein synthesis. In fact, cycloheximide induced the expression of IRG1, suggesting that a protein repressor prevents the expression of IRG1 when uninduced. The role of the protein kinase A pathway in regulating the induction of IRG1 by LPS is questionable, because although forskolin inhibited its induction, neither dibutyrl-cAMP nor 8-(4-chlorophenylthio)-cAMP had much effect on its expression. In contrast, activation of protein kinase C potentiated the LPS response. Chelation of extracellular calcium inhibited IRG1 4 h after LPS induction, while increasing intracellular calcium had little effect on the levels of the IRG1 transcript. Inhibiting tyrosine phosphorylation abrogated the induction of IRG1 by LPS. Hence, the induction of IRG1 by LPS is mediated by tyrosine kinase and protein kinase C pathway.

  18. Epidural analgesia with morphine or buprenorphine in ponies with lipopolysaccharide (LPS)-induced carpal synovitis.

    PubMed

    Freitas, Gabrielle C; Carregaro, Adriano B; Gehrcke, Martielo I; De La Côrte, Flávio D; Lara, Valéria M; Pozzobon, Ricardo; Brass, Karin E

    2011-04-01

    This study evaluated the analgesia effects of the epidural administration of 0.1 mg/kg bodyweight (BW) of morphine or 5 μg/kg BW of buprenorphine in ponies with radiocarpal joint synovitis. Six ponies were submitted to 3 epidural treatments: the control group (C) received 0.15 mL/kg BW of a 0.9% sodium chloride (NaCl) solution; group M was administered 0.1 mg/kg BW of morphine; and group B was administered 5 μg/kg BW of buprenorphine, both diluted in 0.9% NaCl to a total volume of 0.15 mL/kg BW administered epidurally at 10 s/mL. The synovitis model was induced by injecting 0.5 ng of lipopolysaccharide (LPS) in the left or right radiocarpal joint. An epidural catheter was later introduced in the lumbosacral space and advanced up to the thoracolumbar level. The treatment started 6 h after synovitis induction. Lameness, maximum angle of carpal flexion, heart rate, systolic arterial pressure, respiratory rate, temperature, and intestinal motility were evaluated before LPS injection (baseline), 6 h after LPS injection (time 0), and 0.5, 1, 2, 4, 6, 8, 10, 12, 16, 20, and 24 h after treatments. Although the model of synovitis produced clear clinical signs of inflammation, the lameness scores in group C were different from the baseline for only up to 12 h. Both morphine and buprenorphine showed a reduction in the degree of lameness starting at 0.5 and 6 h, respectively. Reduced intestinal motility was observed at 0.5 h in group M and at 0.5 to 1 h in group B. Epidural morphine was a more effective analgesic that lasted for more than 12 h and without side effects. It was concluded that morphine would be a valuable analgesic option to alleviate joint pain in the thoracic limbs in ponies.

  19. Cloning and analysis of gene regulation of a novel LPS-inducible cDNA

    SciTech Connect

    Lee, C.G.L.; O`Brien, W.E.; Jenkins, N.A.; Gilbert, D.J.; Copeland, N.G.

    1995-03-01

    The expression of many genes is altered upon the activation of macrophages by bacterial LPS. These genes play a crucial role in the orchestration of various responses to protect the host against infection. A novel 2.3 kilobase (kb) cDNA, designated IRG1, was obtained from a cDNA library prepared with RNA isolated from RAW 264.7 following lipopolysaccharide stimulation. Sequence analysis of the clone revealed no identity to any known genes but showed the presence of many potential phosphorylation sites suggesting that IRG1 protein product may be regulated at this level. Furthermore, IRG1 contains the motif for glycosaminoglycan attachment site, implying that IRG1 may be a proteoglycan. By interspecific backcross analysis, IRG1 was mapped to mouse chromosome 14 linked to Tyrp2 and Rap2a. The IRG1 message appears 1.5 h following LPS exposure and its induction was not dependent on new protein synthesis. In fact, cycloheximide induced the expression of IRG1, suggesting that a protein repressor prevents the expression of IRG1 when uninduced. The role of the protein kinase A pathway in regulating the induction of IRG1 by LPS is questionable, because although forskolin inhibited its induction, neither dibutyrl-cAMP nor 8-(4-chlorophenylthio)-cAMP had much effect on its expression. In contrast, activation of protein kinase C potentiated the LPS response. Chelation of extracellular calcium inhibited IRG1 4 h after LPS induction, while increasing intracellular calcium had little effect on the levels of the IRG1 transcript. Inhibiting tyrosine phosphorylation abrogated the induction of IRG1 by LPS. Hence, the induction of IRG1 by LPS is mediated by tyrosine kinase and protein kinase C pathway. 80 refs., 5 figs.

  20. Epidural analgesia with morphine or buprenorphine in ponies with lipopolysaccharide (LPS)-induced carpal synovitis

    PubMed Central

    Freitas, Gabrielle C.; Carregaro, Adriano B.; Gehrcke, Martielo I.; De La Côrte, Flávio D.; Lara, Valéria M.; Pozzobon, Ricardo; Brass, Karin E.

    2011-01-01

    This study evaluated the analgesia effects of the epidural administration of 0.1 mg/kg bodyweight (BW) of morphine or 5 μg/kg BW of buprenorphine in ponies with radiocarpal joint synovitis. Six ponies were submitted to 3 epidural treatments: the control group (C) received 0.15 mL/kg BW of a 0.9% sodium chloride (NaCl) solution; group M was administered 0.1 mg/kg BW of morphine; and group B was administered 5 μg/kg BW of buprenorphine, both diluted in 0.9% NaCl to a total volume of 0.15 mL/kg BW administered epidurally at 10 s/mL. The synovitis model was induced by injecting 0.5 ng of lipopolysaccharide (LPS) in the left or right radiocarpal joint. An epidural catheter was later introduced in the lumbosacral space and advanced up to the thoracolumbar level. The treatment started 6 h after synovitis induction. Lameness, maximum angle of carpal flexion, heart rate, systolic arterial pressure, respiratory rate, temperature, and intestinal motility were evaluated before LPS injection (baseline), 6 h after LPS injection (time 0), and 0.5, 1, 2, 4, 6, 8, 10, 12, 16, 20, and 24 h after treatments. Although the model of synovitis produced clear clinical signs of inflammation, the lameness scores in group C were different from the baseline for only up to 12 h. Both morphine and buprenorphine showed a reduction in the degree of lameness starting at 0.5 and 6 h, respectively. Reduced intestinal motility was observed at 0.5 h in group M and at 0.5 to 1 h in group B. Epidural morphine was a more effective analgesic that lasted for more than 12 h and without side effects. It was concluded that morphine would be a valuable analgesic option to alleviate joint pain in the thoracic limbs in ponies. PMID:21731186

  1. Ugonin M, a Helminthostachys zeylanica Constituent, Prevents LPS-Induced Acute Lung Injury through TLR4-Mediated MAPK and NF-κB Signaling Pathways.

    PubMed

    Wu, Kun-Chang; Huang, Shyh-Shyun; Kuo, Yueh-Hsiung; Ho, Yu-Ling; Yang, Chang-Syun; Chang, Yuan-Shiun; Huang, Guan-Jhong

    2017-04-01

    Helminthostachys zeylanica (L.) Hook. is plant that has been used in traditional Chinese medicine for centuries for the treatment of inflammation, fever, pneumonia, and various disorders. The aims of the present study are to figure out the possible effectiveness of the component Ugonin M, a unique flavonoid isolated from H. zeylanica, and to elucidate the mechanism(s) by which it works in the LPS-induced ALI model. In this study, Ugonin M not only inhibited the production of pro-inflammatory mediators such as NO, TNF-α, IL-1β, and IL-6, as well as infiltrated cellular counts and protein content in the bronchoalveolar lavage fluid (BALF) of lipopolysaccharides (LPS)-induced acute lung injury (ALI) mice, but also ameliorated the severity of pulmonary edemas through the score of a histological examination and the ratio of wet to dry weight of lung. Moreover, Ugonin M was observed to significantly suppress LPS-stimulated protein levels of iNOS and COX-2. In addition, we found that Ugonin M not only obviously suppressed NF-κB and MAPK activation via the degradation of NF-κB and IκB-α as well as ERK and p38MAPK active phosphorylation but also inhibited the protein expression level of TLR4. Further, Ugonin M treatment also suppressed the protein levels of MPO and enhanced the protein expressions of HO-1 and antioxidant enzymes (SOD, GPx, and CAT) in lung tissue of LPS-induced ALI mice. It is anticipated that through our findings, there is strong evidence that Ugonin M may exert a potential effect against LPS-induced ALI mice. Hence, Ugonin M could be one of the major effective components of H. zeylanica in the treatment of inflammatory disorders.

  2. Increased resistance to LPS-induced myocardial dysfunction in the Brown Norway rats versus Dahl S rats: roles of inflammatory cytokines and nuclear factor kappaB pathway.

    PubMed

    Du, Jianhai; An, Jianzhong; Wei, Na; Guan, Tongju; Pritchard, Kirkwood A; Shi, Yang

    2010-03-01

    We previously demonstrated that hearts from Brown Norway (BN) rats were more resistant to ischemic injury than hearts from Dahl S (SS) rats. Here we determined the susceptibility to LPS-induced cardiomyopathy in these rats and examined the involvement of inflammatory signaling. Both strains were treated with LPS (20 mg/kg) via i.p. injection for 6 h. Myocardial function was assessed by the Langendorff system, and proinflammatory cytokines were measured by the enzyme-linked immunosorbent assay. LPS significantly reduced left ventricular developed pressure in both strains. Interestingly, the decrease of left ventricular developed pressure in BN rat hearts was approximately 25% less than that in SS rat hearts. Furthermore, LPS significantly reduced the peak rate of contraction and the peak rate of relaxation in SS hearts but not in BN hearts. No differences in LPS-induced decreases in coronary flow rate were observed between BN and SS rats. In addition, LPS-induced increases in proinflammatory cytokines, TNF-alpha, IL-1beta, and IL-6, were significantly lower in both plasma and hearts of BN rats compared with production in SS rats. LPS notably up-regulated the expression of proinflammatory enzymes, iNOS and cyclooxygenase 2, in SS hearts but not in BN hearts. Interestingly, LPS did not stimulate Toll-like receptor 4 or its adaptor myeloid differentiation factor 88 expression in the hearts of either strain but did increase IkappaB and P65 phosphorylation, less prominently in BN hearts than in SS hearts. These data indicate that reduced production of proinflammatory cytokines and diminished nuclear factor kappaB activation are major mechanisms by which BN hearts are more resistant to LPS-induced myocardial dysfunction than SS hearts.

  3. Decitabine and 5-azacitidine both alleviate LPS induced ARDS through anti-inflammatory/antioxidant activity and protection of glycocalyx and inhibition of MAPK pathways in mice.

    PubMed

    Huang, Xiao; Kong, Guiqing; Li, Yan; Zhu, Weiwei; Xu, Haixiao; Zhang, Xiaohua; Li, Jiankui; Wang, Lipeng; Zhang, Zhongwen; Wu, Yaru; Liu, Xiangyong; Wang, Xiaozhi

    2016-12-01

    Decitabine (5-aza-2'-deoxycytidine, DAC) and 5-azacitidine (Aza), an inhibitor of DNA methyltransferases, possess a wide range of anti-metabolic and anti-cancer activities. This study examined the effects of DAC and Aza on inflammatory and oxidative injuries, as well as on glycocalyx and MAPK signaling pathways, in a LPS-stimulated ARDS mouse model. Results of ELISA revealed that DAC and Aza significantly inhibited the production of TNF-α and IL-1β and prevented LPS-induced elevation of myeloperoxidase and malondialdehyde levels in serum. The W/D ratio of lung and histopathologic examination with hematoxylin and eosin staining showed that DAC and Aza pretreatment substantially improved lung tissue injury. DAC and Aza reduced the level of glycocalyx degradation products (e.g., heparan sulfate and haluronic acid) and protected glycocalyx integrity. Western blot assay demonstrated that DAC and Aza both significantly suppressed LPS-induced activation of the MAPK signaling pathways by blocking the phosphorylation of JNK, ERK and P38 in lung tissues. Bisulfite sequencing PCR and real time-PCR showed that DAC reversed the RASSF1A promoter hypermethylation and furthermore elevated the expression of RASSF1A, which is a tumor suppressor that regulates MAPK signaling pathway. These results suggested that DAC inhibited the MAPK signaling pathway in LPS-induced ARDS mice might via demethylation in RASSF1A promoter region and by restoring its expression. This study highlighted the close relationship between DNA methylation and the development and progression of ARDS.

  4. Brazilein Suppresses Inflammation through Inactivation of IRAK4-NF-κB Pathway in LPS-Induced Raw264.7 Macrophage Cells

    PubMed Central

    Kim, Kui-Jin; Yoon, Kye-Yoon; Yoon, Hyung-Sun; Oh, Sei-Ryang; Lee, Boo-Yong

    2015-01-01

    The medicinal herbal plant has been commonly used for prevention and intervention of disease and health promotions worldwide. Brazilein is a bioactive compound extracted from Caesalpinia sappan Linn. Several studies have showed that brazilein exhibited the immune suppressive effect and anti-oxidative function. However, the molecular targets of brazilein for inflammation prevention have remained elusive. Here, we investigated the mechanism underlying the inhibitory effect of brazilein on LPS-induced inflammatory response in Raw264.7 macrophage cells. We demonstrated that brazilein decreased the expression of IRAK4 protein led to the suppression of MAPK signaling and IKKβ, and subsequent inactivation of NF-κB and COX2 thus promoting the expression of the downstream target pro-inflammatory cytokines such as IL-1β, MCP-1, MIP-2, and IL-6 in LPS-induced Raw264.7 macrophage cells. Moreover, we observed that brazilein reduced the production of nitrite compared to the control in LPS-induced Raw264.7. Thus, we suggest that brazilein might be a useful bioactive compound for the prevention of IRAK-NF-κB pathway associated chronic diseases. PMID:26593910

  5. α₁ adrenoceptor activation by norepinephrine inhibits LPS-induced cardiomyocyte TNF-α production via modulating ERK1/2 and NF-κB pathway.

    PubMed

    Yu, Xiaohui; Jia, Baoyin; Wang, Faqiang; Lv, Xiuxiu; Peng, Xuemei; Wang, Yiyang; Li, Hongmei; Wang, Yanping; Lu, Daxiang; Wang, Huadong

    2014-02-01

    Cardiomyocyte tumour necrosis factor α (TNF-α) production contributes to myocardial depression during sepsis. This study was designed to observe the effect of norepinephrine (NE) on lipopolysaccharide (LPS)-induced cardiomyocyte TNF-α expression and to further investigate the underlying mechanisms in neonatal rat cardiomyocytes and endotoxaemic mice. In cultured neonatal rat cardiomyocytes, NE inhibited LPS-induced TNF-α production in a dose-dependent manner. α₁- adrenoceptor (AR) antagonist (prazosin), but neither β₁- nor β₂-AR antagonist, abrogated the inhibitory effect of NE on LPS-stimulated TNF-α production. Furthermore, phenylephrine (PE), an α₁-AR agonist, also suppressed LPS-induced TNF-α production. NE inhibited p38 phosphorylation and NF-κB activation, but enhanced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and c-Fos expression in LPS-treated cardiomyocytes, all of which were reversed by prazosin pre-treatment. To determine whether ERK1/2 regulates c-Fos expression, p38 phosphorylation, NF-κB activation and TNF-α production, cardiomyocytes were also treated with U0126, a selective ERK1/2 inhibitor. Treatment with U0126 reversed the effects of NE on c-Fos expression, p38 mitogen-activated protein kinase (MAPK) phosphorylation and TNF-α production, but not NF-κB activation in LPS-challenged cardiomyocytes. In addition, pre-treatment with SB202190, a p38 MAPK inhibitor, partly inhibited LPS-induced TNF-α production in cardiomyocytes. In endotoxaemic mice, PE promoted myocardial ERK1/2 phosphorylation and c-Fos expression, inhibited p38 phosphorylation and IκBα degradation, reduced myocardial TNF-α production and prevented LPS-provoked cardiac dysfunction. Altogether, these findings indicate that activation of α₁-AR by NE suppresses LPS-induced cardiomyocyte TNF-α expression and improves cardiac dysfunction during endotoxaemia via promoting myocardial ERK phosphorylation and suppressing NF-κB activation.

  6. BQ-123 prevents LPS-induced preterm birth in mice via the induction of uterine and placental IL-10

    SciTech Connect

    Olgun, Nicole S.; Hanna, Nazeeh; Reznik, Sandra E.

    2015-02-01

    Preterm birth (PTB), defined as any delivery occurring prior to the completion of 37 weeks' gestation, currently accounts for 11–12% of all births in the United States. Maternal genito-urinary infections account for up to 40% of all PTBS and induce a pro-inflammatory state in the host. The potent vasoconstrictor Endothelin-1 (ET-1) is known to be upregulated in the setting of infection, and elicits its effect by binding to the ET{sub A} receptor. We have previously shown that antagonism of the ET{sub A} receptor with BQ-123 is capable of preventing LPS-induced PTB in mice. We hypothesize that the administration of BQ-123 post LPS exposure will dismantle a positive feedback loop observed with pro-inflammatory cytokines upstream of ET-1. On GD 15.5, pregnant C57BL/6 mice were injected with PBS, LPS, BQ-123, or LPS + BQ-123. Changes at both the level of transcription and translation were observed in uterus and placenta in the ET-1 axis and in pro- and anti-inflammatory cytokines over the course of 12 h. We discovered that BQ-123, when administered 10 h post LPS, is capable of increasing production of uterine and placental Interleukin-10, causing a shift away from the pro-inflammatory state. We also observed that antagonism of the ET{sub A} receptor decreased IL-1β and TNFα in the placenta while also decreasing transcription of ET-1 in the uterus. Our results reinforce the role of ET-1 at the maternal fetal interface and highlight the potential benefit of ET{sub A} receptor blockade via the suppression of ET-1, and induction of a Th2 cytokine dominant state. - Highlights: • The pro-inflammatory response to LPS in the uterus and placenta is ET-1 dependent. • ET{sub A} blockade triggers up-regulation of IL-10 in uterus and placenta. • A positive feedback loop drives ET-1 expression in gestational tissue.

  7. Probucol inhibits LPS-induced microglia activation and ameliorates brain ischemic injury in normal and hyperlipidemic mice

    PubMed Central

    Jung, Yeon Suk; Park, Jung Hwa; Kim, Hyunha; Kim, So Young; Hwang, Ji Young; Hong, Ki Whan; Bae, Sun Sik; Choi, Byung Tae; Lee, Sae-Won; Shin, Hwa Kyoung

    2016-01-01

    Aim: Increasing evidence suggests that probucol, a lipid-lowering agent with anti-oxidant activities, may be useful for the treatment of ischemic stroke with hyperlipidemia via reduction in cholesterol and neuroinflammation. In this study we examined whether probucol could protect against brain ischemic injury via anti-neuroinflammatory action in normal and hyperlipidemic mice. Methods: Primary mouse microglia and murine BV2 microglia were exposed to lipopolysaccharide (LPS) for 3 h, and the release NO, PGE2, IL-1β and IL-6, as well as the changes in NF-κB, MAPK and AP-1 signaling pathways were assessed. ApoE KO mice were fed a high-fat diet containing 0.004%, 0.02%, 0.1% (wt/wt) probucol for 10 weeks, whereas normal C57BL/6J mice received probucol (3, 10, 30 mg·kg-1·d-1, po) for 4 d. Then all the mice were subjected to focal cerebral ischemia through middle cerebral artery occlusion (MCAO). The neurological deficits were scored 24 h after the surgery, and then brains were removed for measuring the cerebral infarct size and the production of pro-inflammatory mediators. Results: In LPS-treated BV2 cells and primary microglial cells, pretreatment with probucol (1, 5, 10 μmol/L) dose-dependently inhibited the release of NO, PGE2, IL-1β and IL-6, which occurred at the transcription levels. Furthermore, the inhibitory actions of probucol were associated with the downregulation of the NF-κB, MAPK and AP-1 signaling pathways. In the normal mice with MCAO, pre-administration of probucol dose-dependently decreased the infarct volume and improved neurological function. These effects were accompanied by the decreased production of pro-inflammatory mediators (iNOS, COX-2, IL-1, IL-6). In ApoE KO mice fed a high-fat diet, pre-administration of 0.1% probucol significantly reduced the infarct volume, improved the neurological deficits following MCAO, and decreased the total- and LDL-cholesterol levels. Conclusion: Probucol inhibits LPS-induced microglia activation and

  8. The effect of PARS inhibition on ileal histopathology, apoptosis and lipid peroxidation in LPS-induced obstructive jaundice.

    PubMed

    Dirlik, Musa; Caglikulekci, Mehmet; Cinel, Ismail; Cinel, Leyla; Tamer, Lülüfer; Pata, Cengiz; Kanik, Arzu; Ocal, Koray; Ogetman, Zekai; Aydin, Süha

    2003-08-01

    In our experimental study, we investigated the protective effect of 3-aminobenzamide (3-AB), the poly (ADP-ribose) synthetase (PARS inhibitor), on the ileal histopathology and the apoptosis in lipopolysaccharide (LPS)-induced inflammation in rats with obstructive jaundice (OJ). We randomized 40 rats into five groups. Group 1: sham group; Group 2: OJ group; Group 3: OJ+LPS; Group 4: OJ+3-AB+LPS; Group 5: OJ+LPS+3-AB. At the fifth day; the rats were jaundiced. In Group 3; 10 mg kg(-1) LPS was injected intraperitoneally at the fifth day and then after 6h the rats were sacrificed. In Group 4; 10 mg kg(-1) 3-AB was administrated intraperitoneally at the fifth day and repeated daily for 3 days and at the eighth day, 10 mg kg(-1) LPS was injected intraperitoneally. In Group 5, 10 mg kg(-1) LPS was injected intraperitoneally at the fifth day and after 6h 10 mg kg(-1) 3-AB was administrated intraperitoneally and repeated daily for 3 days. At the eighth day, rats were sacrificed. Blood samples were taken for detection of serum MDA levels. Ileum samples were taken after relaparotomy for histopathological examination to evaluate the endotoxin-related intestinal injury and Caspase-3 apoptosis and for detection of tissue MDA and ATPase activities. There was marked destruction of villous and crypt epithelial cells and extensive apoptosis in Groups 3 and 5 in histopathological examination. In Group 4, the scores of intestinal mucosal damage and apoptotic cells were reduced significantly (P<0.05). On the other hand, the scores of intestinal mucosal damage and apoptotic cells were not improved in Group 5. After the administration of 3-AB (Group 4), serum and ileal MDA levels decreased, ileal ATPase increased as compared to Groups 1 and 2. Our study showed that 3-AB prevented the mucosal damage and apoptotic loss of intestinal epithelial cells significantly if it was administrated before LPS. However, 3-AB failed to prevent the mucosal damage and apoptotic loss of intestinal

  9. Adiponectin Inhibits LPS-Induced HMGB1 Release through an AMP Kinase and Heme Oxygenase-1-Dependent Pathway in RAW 264 Macrophage Cells

    PubMed Central

    Kaede, Ryuji; Okamatsu-Ogura, Yuko

    2016-01-01

    High mobility group protein B1 (HMGB1) is a late inflammatory mediator that exaggerates septic symptoms. Adiponectin, an adipokine, has potent anti-inflammatory properties. However, possible effects of adiponectin on lipopolysaccharide- (LPS-) induced HMGB1 release are unknown. The aim of this study was to investigate effects of full length adiponectin on HMGB1 release in LPS-stimulated RAW 264 macrophage cells. Treatment of the cells with LPS alone significantly induced HMGB1 release associated with HMGB1 translocation from the nucleus to the cytosol. However, prior treatment with adiponectin suppressed LPS-induced HMGB1 release and translocation. The anti-inflammatory cytokine interleukin- (IL-) 10 similarly suppressed LPS-induced HMGB1 release. Adiponectin treatment decreased toll-like receptor 4 (TLR4) mRNA expression and increased heme oxygenase- (HO-) 1 mRNA expression without inducing IL-10 mRNA, while IL-10 treatment decreased TLR2 and HMGB1 mRNA expression and increased the expression of IL-10 and HO-1 mRNA. Treatment with the HO-1 inhibitor ZnPP completely prevented the suppression of HMGB1 release by adiponectin but only partially inhibited that induced by IL-10. Treatment with compound C, an AMP kinase (AMPK) inhibitor, abolished the increase in HO-1 expression and the suppression of HMGB1 release mediated by adiponectin. In conclusion, our results indicate that adiponectin suppresses HMGB1 release by LPS through an AMPK-mediated and HO-1-dependent IL-10-independent pathway. PMID:27313399

  10. PPARγ ameliorated LPS induced inflammation of HEK cell line expressing both human Toll-like receptor 4 (TLR4) and MD2.

    PubMed

    Darehgazani, Reyhaneh; Peymani, Maryam; Hashemi, Motahare-Sadat; Omrani, Mir Davood; Movafagh, Abolfazl; Ghaedi, Kamran; Nasr-Esfahani, Mohammad Hossein

    2016-08-01

    TLR4 is transmembrane pattern-recognition receptor that initiates signals in response to diverse pathogen-associated molecular patterns especially LPS. Recently, there have been an increasing number of studies about the role of TLRs in the pathogenesis of several disorders as well as the therapeutic potential of TLR intervention in such diseases. Peroxisome proliferator-activated receptor-gamma (PPARγ) is a ligand-activated transcription factor with numerous biological effects. PPARγ has been shown to exert a potential anti-inflammatory effect through suppression of TLR4-mediated inflammation. Therefore, PPARγ agonists may have a potential to combat inflammatory conditions in pathologic states. The current study aims to show the decrease of inflammation by overexpression of PPARγ in a cell reporter model. To reach this goal, recombinant pBudCE4.1 (+) containing encoding sequences of human TLR4 and MD2 was constructed and used to transfect HEK cells. Subsequently, inflammation was induced by LPS treatment as control group. In the treatment group, overexpression of PPARγ prior to inflammation was performed and the expression of inflammatory markers was assessed in this condition. The expression of inflammatory markers (TNFα and iNOS) was defined by quantitative real time PCR and the amount of phosphorylated NF-κB was measured by western blot. Data indicated expression of TNFα and iNOS increased in LPS induced inflammation of stably transformed HEK cells with MD2 and TLR4. In this cell reporter model overexpression of PPARγ dramatically prevented LPS-induced inflammation through the blocking of TLR4/NF-κB signaling. PPARγ was shown to negatively regulate TLR4 activity and therefore exerts its anti-inflammatory action against LPS induced inflammation.

  11. Gypenoside XLIX, a naturally occurring gynosaponin, PPAR-alpha dependently inhibits LPS-induced tissue factor expression and activity in human THP-1 monocytic cells

    SciTech Connect

    Huang, Tom Hsun-Wei; Van Hoan Tran; Roufogalis, Basil D.; Li Yuhao . E-mail: yuhao@pharm.usyd.edu.au

    2007-01-01

    Tissue factor (TF) is involved not only in the progression of atherosclerosis and other cardiovascular diseases, but is also associated with tumor growth, metastasis, and angiogenesis and hence may be an attractive target for directed cancer therapeutics. Gynostemma pentaphyllum (GP) is widely used in the treatment of various cardiovascular diseases including atherosclerosis, as well as cancers. Gypenoside (Gyp) XLIX, a dammarane-type glycoside, is one of the prominent components in GP. We have recently reported Gyp XLIX to be a potent peroxisome proliferator-activated receptor (PPAR)-alpha activator. Here we demonstrate that Gyp XLIX (0-300 {mu}M) concentration dependently inhibited TF promoter activity after induction by the inflammatory stimulus lipopolysaccharide (LPS) in human monocytic THP-1 cells transfected with promoter reporter constructs pTF-LUC. Furthermore, Gyp XLIX inhibited LPS-induced TF mRNA and protein overexpression in THP-1 monocyte cells. Its inhibition of LPS-induced TF hyperactivity was further confirmed by chromogenic enzyme activity assay. The activities of Gyp XLIX reported in this study were similar to those of Wy-14643, a potent synthetic PPAR-alpha activator. Furthermore, the Gyp XLIX-induced inhibitory effect on TF luciferase activity was completely abolished in the presence of the PPAR-alpha selective antagonist MK-886. The present findings suggest that Gyp XLIX inhibits LPS-induced TF overexpression and enhancement of its activity in human THP-1 monocytic cells via PPAR-alpha-dependent pathways. The data provide new insights into the basis of the use of the traditional Chinese herbal medicine G. pentaphyllum for the treatment of cardiovascular and inflammatory diseases, as well as cancers.

  12. LPS-induced TNF-α factor mediates pro-inflammatory and pro-fibrogenic pattern in non-alcoholic fatty liver disease.

    PubMed

    Ceccarelli, Sara; Panera, Nadia; Mina, Marco; Gnani, Daniela; De Stefanis, Cristiano; Crudele, Annalisa; Rychlicki, Chiara; Petrini, Stefania; Bruscalupi, Giovannella; Agostinelli, Laura; Stronati, Laura; Cucchiara, Salvatore; Musso, Giovanni; Furlanello, Cesare; Svegliati-Baroni, Gianluca; Nobili, Valerio; Alisi, Anna

    2015-12-08

    Lipopolysaccharide (LPS) is currently considered one of the major players in non-alcoholic fatty liver disease (NAFLD) pathogenesis and progression. Here, we aim to investigate the possible role of LPS-induced TNF-α factor (LITAF) in inducing a pro-inflammatory and pro-fibrogenic phenotype of non-alcoholic steatohepatitis (NASH).We found that children with NAFLD displayed, in different liver-resident cells, an increased expression of LITAF which correlated with histological traits of hepatic inflammation and fibrosis. Total and nuclear LITAF expression increased in mouse and human hepatic stellate cells (HSCs). Moreover, LPS induced LITAF-dependent transcription of IL-1β, IL-6 and TNF-α in the clonal myofibroblastic HSC LX-2 cell line, and this effect was hampered by LITAF silencing. We showed, for the first time in HSCs, that LITAF recruitment to these cytokine promoters is LPS dependent. However, preventing LITAF nuclear translocation by p38MAPK inhibitor, the expression of IL-6 and TNF-α was significantly reduced with the aid of p65NF-ĸB, while IL-1β transcription exclusively required LITAF expression/activity. Finally, IL-1β levels in plasma mirrored those in the liver and correlated with LPS levels and LITAF-positive HSCs in children with NASH.In conclusion, a more severe histological profile in paediatric NAFLD is associated with LITAF over-expression in HSCs, which in turn correlates with hepatic and circulating IL-1β levels outlining a panel of potential biomarkers of NASH-related liver damage. The in vitro study highlights the role of LITAF as a key regulator of the LPS-induced pro-inflammatory pattern in HSCs and suggests p38MAPK inhibitors as a possible therapeutic approach against hepatic inflammation in NASH.

  13. Lipopolysaccharide (LPS)-binding protein and soluble CD14 function as accessory molecules for LPS-induced changes in endothelial barrier function, in vitro.

    PubMed Central

    Goldblum, S E; Brann, T W; Ding, X; Pugin, J; Tobias, P S

    1994-01-01

    Bacterial LPS induces endothelial cell (EC) injury both in vivo and in vitro. We studied the effect of Escherichia coli 0111:B4 LPS on movement of 14C-BSA across bovine pulmonary artery EC monolayers. In the presence of serum, a 6-h LPS exposure augmented (P < 0.001) transendothelial 14C-BSA flux compared with the media control at concentrations > or = 0.5 ng/ml, and LPS (10 ng/ml) exposures of > or = 2-h increased (P < 0.005) the flux. In the absence of serum, LPS concentrations of up to 10 micrograms/ml failed to increase 14C-BSA flux at 6 h. The addition of 10% serum increased EC sensitivity to the LPS stimulus by > 10,000-fold. LPS (10 ng/ml, 6 h) failed to increase 14C-BSA flux at serum concentrations < 0.5%, and maximum LPS-induced increments could be generated in the presence of > or = 2.5%. LPS-binding protein (LBP) and soluble CD14 (sCD14) could each satisfy this serum requirement; either anti-LBP or anti-CD14 antibody each totally blocked (P < 0.00005) the LPS-induced changes in endothelial barrier function. LPS-LBP had a more rapid onset than did LPS-sCD14. The LPS effect in the presence of both LBP and sCD14 exceeded the effect in the presence of either protein alone. These data suggest that LBP and sCD14 each independently functions as an accessory molecule for LPS presentation to the non-CD14-bearing endothelial surface. However, in the presence of serum both molecules are required. Images PMID:7509346

  14. Ambroxol inhalation ameliorates LPS-induced airway inflammation and mucus secretion through the extracellular signal-regulated kinase 1/2 signaling pathway.

    PubMed

    Zhang, Shui-juan; Jiang, Juan-xia; Ren, Qian-qian; Jia, Yong-liang; Shen, Jian; Shen, Hui-juan; Lin, Xi-xi; Lu, Hong; Xie, Qiang-min

    2016-03-15

    Ambroxol, a metabolite of bromhexine, is shown to exert several pharmacological activities, including secretolytic, anti-inflammatory and antioxidant actions. Oral and intravenous administration of ambroxol is useful for the airway inflammatory diseases. However, little is known about its potential in inhalation therapy for lipopolysaccharide (LPS)-induced mucous hypersecretion and inflammatory response. In the present study, we compared the pharmacological effects of ambroxol by inhalation with intravenous administration and preliminarily explored its mechanism of action. Our results demonstrated that ambroxol administered by inhalation inhibited MUC5AC expression, reduced glycosaminoglycan levels, enhanced the function of mucociliary clearance and promoted sputum excretion, suggesting that ambroxol increases expectoration of sputum by reducing its viscosity. Moreover, ambroxol significantly alleviated LPS-induced the influx of inflammatory cells and the extracellular signal-regulated kinase 1/2 (Erk 1/2) expression in lung tissues, and inhibited increases in the mRNA expression of the pro-inflammatory cytokines tumor necrosis factor (TNF)-α, CCL-2 (monocyte chemotactic protein-1), KC (keratinocyte cell protein) and interleukin (IL)-1β in lung tissues. The secretolytic and anti-inflammatory effects of inhaled ambroxol at a dose of 7.5 mg/ml was comparable to that of ambroxol at 20 mg/ml i.v. and dexamethasone at 0.5 mg/kg i.p. In addition, we found that ambroxol dose-dependently inhibited LPS-induced increases in the mRNA expression of MUC5AC, TNF-α, and IL-1β in human bronchial epithelial cell (NCI-H292) by inhibiting the Erk signaling pathway. These results demonstrate the beneficial effects of ambroxol in inhalation therapy for the airway inflammatory diseases.

  15. uPA Attenuated LPS-induced Inflammatory Osteoclastogenesis through the Plasmin/PAR-1/Ca2+/CaMKK/AMPK Axis

    PubMed Central

    Kanno, Yosuke; Ishisaki, Akira; Kawashita, Eri; Kuretake, Hiromi; Ikeda, Kanako; Matsuo, Osamu

    2016-01-01

    Chronic inflammatory diseases, such as rheumatoid arthritis and periodontitis-caused bone destruction, results from an increase of bone-resorbing osteoclasts (OCs) induced by inflammation. However, the detailed mechanisms underlying this disorder remain unclear. We herein investigated that the effect of urokinase-type plasminogen activator (uPA) on inflammatory osteoclastogenesis induced by lipopolysaccharide (LPS), which is a potent stimulator of bone resorption in inflammatory diseases. We found that the uPA deficiency promoted inflammatory osteoclastogenesis and bone loss induced by LPS. We also showed that LPS induced the expression of uPA, and the uPA treatment attenuated the LPS-induced inflammatory osteoclastogenesis of RAW264.7 mouse monocyte/macrophage lineage cells. Additionally, we showed that the uPA-attenuated inflammatory osteoclastgenesis is associated with the activation of plasmin/protease-activated receptor (PAR)-1 axis by uPA. Moreover, we examined the mechanism underlying the effect of uPA on inflammatory osteoclastogenesis, and found that uPA/plasmin/PAR-1 activated the adenosine monophosphate-activated protein kinase (AMPK) pathway through Ca2+/calmodulin dependent protein kinase kinase (CaMKK) activation, and attenuated inflammatory osteoclastogenesis by inactivation of NF-κB in RAW264.7 cells. These data suggest that uPA attenuated inflammatory osteoclastogenesis through the plasmin/PAR-1/Ca2+/CaMKK/AMPK axis. Our findings may provide a novel therapeutic approach to bone loss caused by inflammatory diseases. PMID:26722218

  16. CXC195 suppresses proliferation and inflammatory response in LPS-induced human hepatocellular carcinoma cells via regulating TLR4-MyD88-TAK1-mediated NF-κB and MAPK pathway

    SciTech Connect

    Wang, Yiting; Tu, Qunfei; Yan, Wei; Xiao, Dan; Zeng, Zhimin; Ouyang, Yuming; Huang, Long; Cai, Jing; Zeng, Xiaoli; Chen, Ya-Jie; Liu, Anwen

    2015-01-02

    Highlights: • CXC195 exhibited significant anti-proliferative effect and induced cell cycle arrest in LPS-induced HepG2 cells. • CXC195 suppressed the release of pro-inflammatory mediators in LPS-induced HepG2 cells. • CXC195 regulated TLR4-MyD88-TAK1-mediated NF-κB and MAPK pathway in LPS-induced HepG2 cells. - Abstract: CXC195 showed strong protective effects in neuronal apoptosis by exerting its antioxidant activity. However, the anti-cancer effects of CXC195 is still with limited acquaintance. Here, we investigated the role of CXC195 in lipopolysaccharide (LPS)-induced human hepatocellular carcinoma (HCC) cells lines (HepG2) and the possible signaling pathways. CXC195 exhibited significant anti-proliferative effect and induced cell cycle arrest in LPS-induced HepG2 cells. In addition, CXC195 suppressed the release of pro-inflammatory mediators in LPS-induced HepG2 cells, including TNF-α, iNOS, IL-1β, IL-6, CC chemokine ligand (CCL)-2, CCL-22 and epidermal growth factor receptor (EGFR). Moreover, CXC195 inhibited the expressions and interactions of TLR4, MyD88 and TAK1, NF-κB translocation to nucleus and its DNA binding activity, phosphorylation of ERK1/2, p38 and JNK. Our results suggested that treatment with CXC195 could attenuate the TLR4-mediated proliferation and inflammatory response in LPS-induced HepG2 cells, thus might be beneficial for the treatment of HCC.

  17. Mechanism of anti-inflammatory effect of tricin, a flavonoid isolated from Njavara rice bran in LPS induced hPBMCs and carrageenan induced rats.

    PubMed

    Shalini, V; Jayalekshmi, Ananthasankaran; Helen, A

    2015-08-01

    Njavara is an indigenous medicinal rice variety traditionally used in Ayurvedic system of medicine practiced in Kerala, India. Tricin is a bioflavonoid present in significantly higher levels in rice bran of Njavara. Present study attempted to identify the molecular target of tricin in TLR mediated signaling pathways by using lipopolysaccharide (LPS) induced human peripheral blood mononuclear cells (hPBMCs) and carrageenan induced paw edema in rats as experimental models. Tricin acted upstream in the activation of inflammation cascade by interfering with TLR4 activation, preferably by blocking the LPS induced activation of TLR4, MYD88 and TRIF proteins in hPBMCs. Subsequently, tricin significantly blocked the activation of downstream kinases like p38MAPK, JNK1/2 and IRF3. Thus the inhibitory effect of tricin on NF-κB and IRF3 together confirms the specific inhibition of both MYD88 dependent and TRIF dependent pathways. Tricin treatment also inhibited the pro-inflammatory effect of LPS by blocking the TLR4 signaling mediated activation of cytosolic phospholipase A2 (cPLA2), which is confirmed by specific inhibition of COX-2. Results demonstrated that in addition to NF-κB, tricin can prevent the activation of STAT proteins by significantly inhibiting the activation of both STAT1 and STAT3 via the down regulation of upstream phosphorylating enzymes like JAK1 and JAK2. The protective anti-inflammatory effect of tricin was also confirmed by in vivo experiments. Thus, this study provides strong evidence that tricin exerts its anti-inflammatory effect via a mechanism involving the TLR4/NF-κB/STAT signaling cascade.

  18. Aqueous extract of Gracilaria tenuistipitata suppresses LPS-induced NF-κB and MAPK activation in RAW 264.7 and rat peritoneal macrophages and exerts hepatoprotective effects on carbon tetrachloride-treated rat.

    PubMed

    Tseng, Chin-Kai; Lin, Chun-Kuang; Chang, Hsueh-Wei; Wu, Yu-Hsuan; Yen, Feng-Lin; Chang, Fang-Rong; Chen, Wei-Chun; Yeh, Chi-Chen; Lee, Jin-Ching

    2014-01-01

    In addition to the previous investigations of bioactivity of aqueous extract of the edible Gracilaria tenuistipitata (AEGT) against H2O2-induced DNA damage and hepatitis C virus replication, the purpose of this study is to evaluate the potential therapeutic properties of AEGT against inflammation and hepatotoxicity using lipopolysaccharide (LPS)-stimulated mouse RAW 264.7 cells, primary rat peritoneal macrophages and carbon tetrachloride (CCl4)-induced acute hepatitis model in rats. AEGT concentration-dependently inhibited the elevated RNA and protein levels of inducible nitric oxide synthase and cyclooxygenase-2, thereby reducing nitric oxide and prostaglandin E2 levels, respectively. Moreover, AEGT significantly suppressed the production of LPS-induced proinflammatory cytokines, including interleukin (IL)-1β, IL-6 and tumor necrosis factor-α. These inhibitory effects were associated with the suppression of nuclear factor-kappa B activation and mitogen-activated protein kinase phosphorylation by AEGT in LPS-stimulated cells. In addition, we highlighted the hepatoprotective and curative effects of AEGT in a rat model of CCl4-intoxicated acute liver injury, which was evident from reduction in the elevated serum aspartate aminotransferase and alanine aminotransferase levels as well as amelioration of histological damage by pre-treatment or post-treatment of AEGT. In conclusion, the results demonstrate that AEGT may serve as a potential supplement in the prevention or amelioration of inflammatory diseases.

  19. Aqueous Extract of Gracilaria tenuistipitata Suppresses LPS-Induced NF-κB and MAPK Activation in RAW 264.7 and Rat Peritoneal Macrophages and Exerts Hepatoprotective Effects on Carbon Tetrachloride-Treated Rat

    PubMed Central

    Tseng, Chin-Kai; Lin, Chun-Kuang; Chang, Hsueh-Wei; Wu, Yu-Hsuan; Yen, Feng-Lin; Chang, Fang-Rong; Chen, Wei-Chun; Yeh, Chi-Chen; Lee, Jin-Ching

    2014-01-01

    In addition to the previous investigations of bioactivity of aqueous extract of the edible Gracilaria tenuistipitata (AEGT) against H2O2-induced DNA damage and hepatitis C virus replication, the purpose of this study is to evaluate the potential therapeutic properties of AEGT against inflammation and hepatotoxicity using lipopolysaccharide (LPS)-stimulated mouse RAW 264.7 cells, primary rat peritoneal macrophages and carbon tetrachloride (CCl4)-induced acute hepatitis model in rats. AEGT concentration-dependently inhibited the elevated RNA and protein levels of inducible nitric oxide synthase and cyclooxygenase-2, thereby reducing nitric oxide and prostaglandin E2 levels, respectively. Moreover, AEGT significantly suppressed the production of LPS-induced proinflammatory cytokines, including interleukin (IL)-1β, IL-6 and tumor necrosis factor-α. These inhibitory effects were associated with the suppression of nuclear factor-kappa B activation and mitogen-activated protein kinase phosphorylation by AEGT in LPS-stimulated cells. In addition, we highlighted the hepatoprotective and curative effects of AEGT in a rat model of CCl4-intoxicated acute liver injury, which was evident from reduction in the elevated serum aspartate aminotransferase and alanine aminotransferase levels as well as amelioration of histological damage by pre-treatment or post-treatment of AEGT. In conclusion, the results demonstrate that AEGT may serve as a potential supplement in the prevention or amelioration of inflammatory diseases. PMID:24475143

  20. Oxymatrine lightened the inflammatory response of LPS-induced mastitis in mice through affecting NF-κB and MAPKs signaling pathways.

    PubMed

    Yang, Zhengtao; Yin, Ronglan; Cong, Yunfeng; Yang, Zhanqing; Zhou, Ershun; Wei, Zhengkai; Liu, Zhicheng; Cao, Yongguo; Zhang, Naisheng

    2014-12-01

    Mastitis, an inflammatory reaction of the mammary gland, is recognized as one of the most costly diseases in dairy cattle. Oxymatrine, one of the alkaloids extracted from Chinese herb Sophora flavescens Ait, has been reported to have many biological activities, such as anti-inflammatory, anti-virus, and anti-hepatic fibrosis properties. The aim of this study was to investigate the protective effect and the anti-inflammatory mechanism of oxymatrine on lipopolysaccharide (LPS)-induced mastitis in mice. The mouse mastitis was induced by 10 μg of LPS for 24 h. Oxymatrine was intraperitoneally administered with the dose of 30, 60, and 120 mg/kg 1 h before and 12 h after LPS induction. The results showed that oxymatrine significantly attenuated the damage of the mammary gland induced by LPS. Oxymatrine inhibited the phosphorylation of NF-κB p65 and IκB in NF-κB signal pathway and reduced the phosphorylation of p38, ERK, and JNK in mitogen-activated protein kinase (MAPKs) signal pathway. The results showed that oxymatrine had a protective effect on LPS-induced mastitis, and the anti-inflammatory mechanism of oxymatrine was related to the inhibition of NF-κB and MAPKs signal pathways.

  1. Regulation of LPS-induced mRNA expression of pro-inflammatory cytokines via alteration of NF-κB activity in mouse peritoneal macrophages exposed to fluoride.

    PubMed

    Tian, Yuhu; Huo, Meijun; Li, Guangsheng; Li, Yanyan; Wang, Jundong

    2016-10-01

    F toxicity to immune system, especially to macrophage, has been studied a lot recently. Nuclear factor-kappa B (NF-κB), as a transcription factor, plays a central role in immune and inflammatory responses via the regulation of downstream gene expression. Recent studies indicated that fluoride effect on inflammatory cytokine secretion, however, the molecular mechanism was less understood. In our study, peritoneal macrophages (PMs) were divided several groups and were administrated sodium fluoride (NaF, 50, 100, 200, 400, 800 μM) and/or lipopolysaccharide (LPS, 30 ng/mg). The mRNA expression of p65, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in macrophages exposed to fluoride was determined by quantitative real-time RT-PCR respectively. The translocation of NF-κB from cytoplasm to nucleus, which in a way reflects NF-κB activity, was demonstrated by Immunofluorescence and ELISA. Our results showed that fluoride had a dose-dependent effect on NF-κB activity, which coincided with LPS-induced mRNA expression of its downstream genes, iNOS and IL-1β. Fluoride alone causes no effect on gene expression. However, the mRNA expression of TNF-α showed non-NF-κB-dependent manner. Therefore, we come to the conclusion that fluoride can regulate LPS-induced mRNA expression of iNOS and IL-1β via NF-κB pathway in mouse peritoneal macrophages.

  2. Bergenin Plays an Anti-Inflammatory Role via the Modulation of MAPK and NF-κB Signaling Pathways in a Mouse Model of LPS-Induced Mastitis.

    PubMed

    Gao, Xue-jiao; Guo, Meng-yao; Zhang, Ze-cai; Wang, Tian-cheng; Cao, Yong-guo; Zhang, Nai-sheng

    2015-01-01

    Mastitis is a major disease in humans and other animals and is characterized by mammary gland inflammation. It is a major disease of the dairy industry. Bergenin is an active constituent of the plants of genus Bergenia. Research indicates that bergenin has multiple biological activities, including anti-inflammatory and immunomodulatory properties. The objective of this study was to evaluate the protective effects and mechanism of bergenin on the mammary glands during lipopolysaccharide (LPS)-induced mastitis. In this study, mice were treated with LPS to induce mammary gland mastitis as a model for the disease. Bergenin treatment was initiated after LPS stimulation for 24 h. The results indicated that bergenin attenuated inflammatory cell infiltration and decreased the concentration of NO, TNF-α, IL-1β, and IL-6, which were increased in LPS-induced mouse mastitis. Furthermore, bergenin downregulated the phosphorylation of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPK) signaling pathway proteins in mammary glands with mastitis. In conclusion, bergenin reduced the expression of NO, TNF-α, IL-1β, and IL-6 proinflammatory cytokines by inhibiting the activation of the NF-κB and MAPKs signaling pathways, and it may represent a novel treatment strategy for mastitis.

  3. Baicalein attenuates inflammatory responses by suppressing TLR4 mediated NF-κB and MAPK signaling pathways in LPS-induced mastitis in mice.

    PubMed

    He, Xuexiu; Wei, Zhengkai; Zhou, Ershun; Chen, Libin; Kou, Jinhua; Wang, Jingjing; Yang, Zhengtao

    2015-09-01

    Baicalein is a phenolic flavonoid presented in the dry roots of Scutellaria baicalensis Georgi. It has been reported that baicalein possesses a number of biological properties, such as antiviral, antioxidative, anti-inflammatory, antithrombotic, and anticancer properties. However, the effect of baicalein on mastitis has not yet been reported. This research aims to detect the effect of baicalein on lipopolysaccharide (LPS)-induced mastitis in mice and to investigate the molecular mechanisms. Baicalein was administered intraperitoneally 1h before and 12h after LPS treatment. The results indicated that baicalein treatment markedly attenuated the damage of the mammary gland induced by LPS, suppressed the activity of myeloperoxidase (MPO) and the levels of tumor necrosis factor (TNF-α) and interleukin (IL-1β) in mice with LPS-induced mastitis. Besides, baicalein blocked the expression of Toll-like receptor 4 (TLR4) and then suppressed the phosphorylation of nuclear transcription factor-kappaB (NF-κB) p65 and degradation inhibitor of NF-κBα (IκBα) and, and inhibited the phosphorylation of p38, extracellular signal-regulated kinase (ERK) and c-jun NH2-terminal kinase (JNK) in mitogen-activated protein kinase (MAPK) signal pathway. These findings suggested that baicalein may have a potential prospect against mastitis.

  4. A critical role for suppressors of cytokine signaling 3 in regulating LPS-induced transcriptional activation of matrix metalloproteinase-13 in osteoblasts

    PubMed Central

    Gao, Anqi; Kantarci, Alpdogan; Herrera, Bruno Schneider; Gao, Hongwei

    2013-01-01

    Suppressor of cytokine signaling 3 (SOCS3) is a key regulator of cytokine signaling in macrophages and T cells. Although SOCS3 seems to contribute to the balance between the pro-inflammatory actions of IL-6 family of cytokines and anti-inflammatory signaling of IL-10 by negatively regulating gp130/Jak/Stat3 signal transduction, how and the molecular mechanisms whereby SOCS3 controls the downstream impact of TLR4 are largely unknown and current data are controversial. Furthermore, very little is known regarding SOCS3 function in cells other than myeloid cells and T cells. Our previous study demonstrates that SOCS3 is expressed in osteoblasts and functions as a critical inhibitor of LPS-induced IL-6 expression. However, the function of SOCS3 in osteoblasts remains largely unknown. In the current study, we report for the first time that LPS stimulation of osteoblasts induces the transcriptional activation of matrix metalloproteinase (MMP)-13, a central regulator of bone resorption. Importantly, we demonstrate that SOCS3 overexpression leads to a significant decrease of LPS-induced MMP-13 expression in both primary murine calvariae osteoblasts and a mouse osteoblast-like cell line, MC3T3-E1. Our findings implicate SOCS3 as an important regulatory mediator in bone inflammatory diseases by targeting MMP-13. PMID:23638389

  5. Macrolide antibiotics promote the LPS-induced upregulation of prostaglandin E receptor EP2 and thus attenuate macrolide suppression of IL-6 production.

    PubMed

    Sato, Yoshinori; Kaneko, Kenichi; Inoue, Matsuhisa

    2007-03-01

    We studied the influence of the inhibitory effect of clarithromycin (CAM) and erythromycin (EM) on the production of macrophage inflammatory protein (MIP)-2, interleukin-6 (IL-6), and prostaglandin E(2) (PGE(2)), as well as PGE(2) receptor (EP(2)) expression, by LPS-stimulated RAW264.7 cells. Production of IL-6 was significantly decreased by treatment with CAM or EM in a dose-dependent manner, but the inhibitory effect of CAM was significantly weaker than that of EM. In contrast, the production of MIP-2 and PGE(2) was inhibited to the same extent by CAM and EM. LPS induced the expression of EP(2) mRNA and its expression was promoted further by treatment with CAM or EM. In particular, CAM significantly upregulated EP(2) mRNA expression compared with that after stimulation by LPS alone. After treatment with a nonselective cyclooxygenase (COX) inhibitor (indomethacin), a selective COX-2 inhibitor (NS398), or an EP(2)/EP(4) receptor antagonist (AH6809), the inhibitory effect of CAM and EM on LPS-induced IL-6 production was equalized. These results indicate that macrolide antibiotics upregulate the expression of EP(2), which then attenuates the suppressive effect on IL-6 production of these antibiotics, suggesting that these drugs have a variable anti-inflammatory effect that could influence host defenses.

  6. MD-2 interacts with Lyn kinase and is tyrosine phosphorylated following LPS-induced activation of the Toll-like receptor 4 signaling pathway

    PubMed Central

    Gray, Pearl; Dagvadorj, Jargalsaikhan; Michelsen, Kathrin S.; Brikos, Constantinos; Rentsendorj, Altan; Town, Terrence; Crother, Timothy R.; Arditi, Moshe

    2011-01-01

    Stimulation with LPS induces tyrosine phosphorylation of numerous proteins involved in the TLR signaling pathway. In this study, we demonstrate that MD-2 is also tyrosine phosphorylated following LPS stimulation. LPS-induced tyrosine phosphorylation of MD-2 is specific, it is blocked by the tyrosine kinase inhibitor, Herbimycin A, and by an inhibitor of endocytosis, Cytochalsin-D, suggesting that MD-2 phosphorylation occurs during trafficking of MD2 and not on cell surface. Furthermore, we identify two possible phospho-accepting tyrosine residues at positions 22 and 131. Mutant proteins in which these tyrosines were changed to phenylalanine have reduced phosphorylation and significantly diminished ability to activate NF-κB in response to LPS. In addition, MD2 co-precipitates and colocalizes with Lyn kinase, most likely in ER. A Lyn-binding peptide inhibitor abolished MD2 tyrosine phosphorylation, suggesting that Lyn is a likely candidate to be the kinase required for MD-2 tyrosine phophorylation. Our study demonstrates that tyrosine phosphorylation of MD-2 is important for signaling following exposure to LPS and underscores the importance of this event in mediating an efficient and prompt immune response. PMID:21918188

  7. Anti-inflammatory action of high molecular weight Mytilus edulis hydrolysates fraction in LPS-induced RAW264.7 macrophage via NF-κB and MAPK pathways.

    PubMed

    Kim, Young-Sang; Ahn, Chang-Bum; Je, Jae-Young

    2016-07-01

    Anti-inflammatory Mytilus edulis hydrolysates (MEHs) were prepared by peptic hydrolysis and MEH was further fractionated into three fractions based on molecular weight, namely >5kDa, 1-5kDa, and <1kDa. The >5kDa peptide fraction exerted the highest nitric oxide (NO) inhibitory activity and inhibited prostaglandin E2 (PGE2) secretion in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Pretreatment with the >5kDa peptide fraction markedly inhibited LPS-stimulated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and gene expressions. Stimulation by LPS induced the production of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and -1β (IL-1β), whereas co-treatment with the >5kDa peptide fraction suppressed pro-inflammatory cytokine production. The >5kDa peptide fraction inhibited the translocation of NF-κB (nuclear factor-kappa B) through the prevention of IκBα (inhibitory factor kappa B alpha) phosphorylation and degradation and also inhibited the MAPK signaling pathway in LPS-stimulated RAW264.7 macrophages.

  8. Isofraxidin exhibited anti-inflammatory effects in vivo and inhibited TNF-α production in LPS-induced mouse peritoneal macrophages in vitro via the MAPK pathway.

    PubMed

    Niu, Xiaofeng; Xing, Wei; Li, Weifeng; Fan, Ting; Hu, Hua; Li, Yongmei

    2012-10-01

    Isofraxidin (IF) is a Coumarin compound that can be isolated from medicinal plants, such as Sarcandra glabra (Thunb.). Nakai is widely used in Asian countries for the treatment of anti-bacterial, anti-inflammatory and anti-tumour action. The present investigation was designed to evaluate the effect of IF on inflammation and nociception. In addition, we investigated a potential novel mechanism to explain the anti-inflammatory properties of IF. In vivo, xylene-induced mouse ear edema, carrageenan-induced rat paw edema, LPS-induced mouse endotoxic shock, acetic acid-induced mice writhing and formalin-induced mouse pain models were used to evaluate the anti-inflammatory activity of IF. In vitro, we examined the effects of IF inhibition on TNF-α production and the regulation of ERK1/2 and p38 phosphorylation activity in LPS-induced mouse peritoneal macrophages. Our results demonstrated that IF can significantly decrease xylene-induced ear edema, carrageenan-induced paw edema, acetic acid-induced writhing and formalin-induced pain. Moreover, IF greatly inhibited the production of TNF-α in the serum of LPS-stimulated mice and peritoneal macrophages, and it decreased phospho-p38 and ERK1/2 protein expression in LPS-stimulated mouse peritoneal macrophages. Overall, our data suggest that IF possesses significant analgesic and anti-inflammatory activities that may be mediated through the regulation of pro-inflammatory cytokines, TNF-α and the phosphorylation of p38 and ERK1/2.

  9. Zinc Oxide Nanoparticles Suppress LPS-Induced NF-κB Activation by Inducing A20, a Negative Regulator of NF-κB, in RAW 264.7 Macrophages.

    PubMed

    Kim, Min-Ho; Jeong, Hyun-Ja

    2015-09-01

    Zinc contained in solar salt and bamboo salt plays a critical role in various immune responses. Zinc oxide is a source of zinc, and recently it has been reported that zinc oxide nanoparticles (ZO-NP) more effectively decrease allergic inflammatory reactions than zinc oxide bulk material. The aim of this work was to investigate the regulatory effect of ZO-NP on interferon (IFN)-γ plus lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. ZO-NP (0.1-10 μg/mL) did not affect cell viability but toxicity was evident at a ZO-NP concentration of 100 μg/mL. ZO-NP (10 μg/mL) inhibited the IFN-γ plus LPS-induced production of nitric oxide and the protein expressions of inducible nitric oxide synthase and cyclooxygenase-2. The productions of inflammatory cytokines, such as, interleukin (IL)-1β and tumor necrosis factor (TNF)-α were increased by IFN-γ plus LPS but down-regulated by ZO-NP treatment. Furthermore, the up-regulations of IL-1β and TNF-α mRNAs by IFN-γ plus LPS were reduced by ZO-NP at low (0.1 μg/mL) and high (10 μg/mL) concentrations. ZO-NP (0.1, 1, and 10 μg/mL) inhibited the nuclear translocation of nuclear factor-κB by blocking IκBα phosphorylation and degradation. In addition, ZO-NP induced the expression of A20, a zinc finger protein and negative regulator of NF-κB. In conclusion, the present study demonstrated that ZO-NP offer a potential means of treating inflammatory diseases.

  10. Quince (Cydonia oblonga Miller) peel polyphenols modulate LPS-induced inflammation in human THP-1-derived macrophages through NF-{kappa}B, p38MAPK and Akt inhibition

    SciTech Connect

    Essafi-Benkhadir, Khadija; Refai, Amira; Riahi, Ichrak; Fattouch, Sami; Karoui, Habib; Essafi, Makram

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Quince peel polyphenols inhibit LPS-induced secretion of TNF-{alpha} and IL-8. Black-Right-Pointing-Pointer Quince peel polyphenols augment LPS-induced secretion of IL-10 and IL-6. Black-Right-Pointing-Pointer Quince peel polyphenols-mediated inhibition of LPS-induced secretion of TNF-{alpha} is partially mediated by IL-6. Black-Right-Pointing-Pointer The anti-inflammatory effects of quince polyphenols pass through NF-{kappa}B, p38MAPK and Akt inhibition. -- Abstract: Chronic inflammation is a hallmark of several pathologies, such as rheumatoid arthritis, gastritis, inflammatory bowel disease, atherosclerosis and cancer. A wide range of anti-inflammatory chemicals have been used to treat such diseases while presenting high toxicity and numerous side effects. Here, we report the anti-inflammatory effect of a non-toxic, cost-effective natural agent, polyphenolic extract from the Tunisian quince Cydonia oblonga Miller. Lipopolysaccharide (LPS) treatment of human THP-1-derived macrophages induced the secretion of high levels of the pro-inflammatory cytokine TNF-{alpha} and the chemokine IL-8, which was inhibited by quince peel polyphenolic extract in a dose-dependent manner. Concomitantly, quince polyphenols enhanced the level of the anti-inflammatory cytokine IL-10 secreted by LPS-treated macrophages. We further demonstrated that the unexpected increase in IL-6 secretion that occurred when quince polyphenols were associated with LPS treatment was partially responsible for the polyphenols-mediated inhibition of TNF-{alpha} secretion. Biochemical analysis showed that quince polyphenols extract inhibited the LPS-mediated activation of three major cellular pro-inflammatory effectors, nuclear factor-kappa B (NF-{kappa}B), p38MAPK and Akt. Overall, our data indicate that quince peel polyphenolic extract induces a potent anti-inflammatory effect that may prove useful for the treatment of inflammatory diseases and that a quince

  11. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis.

    PubMed

    Lv, Hongming; Liu, Qinmei; Wen, Zhongmei; Feng, Haihua; Deng, Xuming; Ci, Xinxin

    2017-03-02

    Abundant natural flavonoids can induce nuclear factor-erythroid 2 related factor 2 (Nrf2) and/or AMP-activated protein kinase (AMPK) activation, which play crucial roles in the amelioration of various inflammation- and oxidative stress-induced diseases, including acute lung injury (ALI). Xanthohumol (Xn), a principal prenylflavonoid, possesses anti-inflammation and anti-oxidant activities. However, whether Xn could protect from LPS-induced ALI through inducing AMPK/Nrf2 activation and its downstream signals, are still poorly elucidated. Accordingly, we focused on exploring the protective effect of Xn in the context of ALI and the involvement of underlying molecular mechanisms. Our findings indicated that Xn effectively alleviated lung injury by reduction of lung W/D ratio and protein levels, neutrophil infiltration, MDA and MPO formation, and SOD and GSH depletion. Meanwhile, Xn significantly lessened histopathological changes, reactive oxygen species (ROS) generation, several cytokines secretion, and iNOS and HMGB1 expression, and inhibited Txnip/NLRP3 inflammasome and NF-κB signaling pathway activation. Additionally, Xn evidently decreased t-BHP-stimulated cell apoptosis, ROS generation and GSH depletion but increased various anti-oxidative enzymes expression regulated by Keap1-Nrf2/ARE activation, which may be associated with AMPK and GSK3β phosphorylation. However, Xn-mediated inflammatory cytokines and ROS production, histopathological changes, Txnip/NLRP3 inflammasome and NF-κB signaling pathway in WT mice were remarkably abrogated in Nrf2(-/-) mice. Our experimental results firstly provided a support that Xn effectively protected LPS-induced ALI against oxidative stress and inflammation damage which are largely dependent upon upregulation of the Nrf2 pathway via activation of AMPK/GSK3β, thereby suppressing LPS-activated Txnip/NLRP3 inflammasome and NF-κB signaling pathway.

  12. PF-04886847 (an inhibitor of plasma kallikrein) attenuates inflammatory mediators and activation of blood coagulation in rat model of lipopolysaccharide (LPS)-induced sepsis.

    PubMed

    Kolte, D; Bryant, J W; Gibson, G W; Wang, J; Shariat-Madar, Z

    2012-06-01

    The plasma kallikrein-mediated proteolysis regulates both thrombosis and inflammation. Previous study has shown that PF-04886847 is a potent and competitive inhibitor of kallikrein, suggesting that it might be useful for the treatment of kallikrein-kinin mediated inflammatory and thrombotic disorders. In the rat model of lipopolysaccharide (LPS) -induced sepsis used in this study, pretreatment of rats with PF-04886847 (1 mg/kg) prior to LPS (10 mg/kg) prevented endotoxin-induced increase in granulocyte count in the systemic circulation. PF-04886847 significantly reduced the elevated plasma 6-keto PGF1α levels in LPS treated rats, suggesting that PF-04886847 could be useful in preventing hypotensive shock during sepsis. PF-04886847 did not inhibit LPS-induced increase in plasma TNF-α level. Pretreatment of rats with PF-04886847 prior to LPS did not attenuate endotoxin-induced decrease in platelet count and plasma fibrinogen levels as well as increase in plasma D-dimer levels. PF-04886847 did not protect the animals against LPS-mediated acute hepatic and renal injury and disseminated intravascular coagulation (DIC). Since prekallikrein (the zymogen form of plasma kallikrein) deficient patients have prolonged activated partial thromboplastin time (aPTT) without having any bleeding disorder, the anti-thrombotic property and mechanism of action of PF-04886847 was assessed. In a rabbit balloon injury model designed to mimic clinical conditions of acute thrombotic events, PF-04886847 reduced thrombus mass dose-dependently. PF-04886847 (1 mg/kg) prolonged both aPTT and prothrombin time (PT) in a dose-dependent manner. Although the findings of this study indicate that PF-04886847 possesses limited anti-thrombotic and anti-inflammatory effects, PF-04886847 may have therapeutic potential in other kallikrein-kinin mediated diseases.

  13. Role of CD14 and TLR4 in type I, type III collagen expression, synthesis and secretion in LPS-induced normal human skin fibroblasts

    PubMed Central

    Yang, Hongming; Li, Juncong; Wang, Yihe; Hu, Quan

    2015-01-01

    Objectives: The primary aim of this study was to investigate the role of CD14 and TLR4 in type I, type III collagen expression, synthesis and secretion in LPS-induced normal human skin fibroblasts. The secondary aim was to provide theoretical basis for the molecular mechanisms of scar formation induced by LPS. Methods: The normal skin fibroblasts cultured in vitro were randomly divided into four groups: 0.1 μg/mL LPS reference group, CD14 pretreatment + LPS, TLR4 pretreatment + LPS, CD14 and TLR4 pretreatment + LPS. The collagen DNA synthesis was assessed by 3H-proline incorporation method. Real-time Quantitative PCR was used to detect type I, type III collagen mRNA expression. Results: Similar results were revealed for mRNA expression levels. The immunofluorescence staining suggested that type I and type III collagen were expressed in all investigated groups and that the expression was differentially downregulated in groups B, C, D. ELISA demonstrated markedly decreased levels in secreting type I, type III collagens and hydroxyproline in groups B, C, D (P<0.05), and the lowest level was detected in group D (P<0.01). Conclusion: Pretreatment with CD14 or TLR4 alone or their combination can significantly reduce the levels of type I and type III collagen expression, synthesis and secretion, with the most notable reduction detected in case of CD14 and TLR4 combined. We could thus conclude that both CD14 and TLR4 are involved in type I and type III collagen expression, synthesis and secretion in LPS-induced skin fibroblasts. PMID:25932184

  14. Effects of baicalin on alveolar fluid clearance and α-ENaC expression in rats with LPS-induced acute lung injury.

    PubMed

    Deng, Jia; Wang, Dao-Xin; Liang, Ai-Ling; Tang, Jing; Xiang, Da-Kai

    2017-02-01

    Baicalin has been reported to attenuate lung edema in the process of lung injury. However, the effect of baicalin on alveolar fluid clearance (AFC) and epithelial sodium channel (ENaC) expression has not been tested. Sprague-Dawley rats were anesthetized and intratracheally injected with either 1 mg/kg lipopolysaccharide (LPS) or saline vehicle. Baicalin with various concentrations (10, 50, and 100 mg/kg) was injected intraperitoneally 30 min before administration of LPS. Then lungs were isolated for measurement of AFC, cyclic adenosine monophosphate (cAMP) level, and cellular localization of α-ENaC. Moreover, mouse alveolar type II (ATII) epithelial cell line was incubated with baicalin (30 μmol/L), adenylate cyclase inhibitor SQ22536 (10 μmol/L), or cAMP-dependent protein kinase inhibitor (PKA) KT5720 (0.3 μmol/L) 15 min before LPS (1 μg/mL) incubation. Protein expression of α-ENaC was detected by Western blot. Baicalin increased cAMP concentration and AFC in a dose-dependent manner in rats with LPS-induced acute lung injury. The increase of AFC induced by baicalin was associated with an increase in the abundance of α-ENaC protein. SQ22536 and KT5720 prevented the increase of α-ENaC expression caused by baicalin in vitro. These findings suggest that baicalin prevents LPS-induced reduction of AFC by upregulating α-ENaC protein expression, which is activated by stimulating cAMP/PKA signaling pathway.

  15. LPS-induced production of TNF-α and IL-6 in mast cells is dependent on p38 but independent of TTP.

    PubMed

    Hochdörfer, Thomas; Tiedje, Christopher; Stumpo, Deborah J; Blackshear, Perry J; Gaestel, Matthias; Huber, Michael

    2013-06-01

    The production of the proinflammatory cytokines TNF-α and IL-6 is regulated by various mRNA-binding proteins, influencing stability and translation of the respective transcripts. Research in macrophages has shown the importance of the p38-MK2-tristetraprolin (TTP) axis for regulation of TNF-α mRNA stability and translation. In the current study we examined a possible involvement of p38 and TTP in LPS-induced cytokine production in bone marrow-derived mast cells (BMMCs). Using pharmacological inhibitors we initially found a strong dependence of LPS-induced TNF-α and IL-6 production on p38 activation, whereas activation of the Erk pathway appeared dispensable. LPS treatment also induced p38-dependent expression of the TTP gene. This prompted us to analyze the proinflammatory cytokine response in BMMCs generated from TTP-deficient mice. Unexpectedly, there were no significant differences in cytokine production between TTP-deficient and WT BMMCs in response to LPS. Gene expression and cytokine production of TNF-α and IL-6 as well as stability of the TNF-α transcript were comparable between TTP-deficient and WT BMMCs. In contrast to TTP mRNA expression, TTP protein expression could not be detected in BMMCs. While we successfully precipitated and detected TTP from lysates of LPS-stimulated RAW 264.7 macrophages, this was not accomplished from BMMC lysates. In contrast, we found mRNA and protein expressions of the other TIS11 family members connected to regulation of mRNA stability, BRF1 and BRF2, and detected their interaction with 14-3-3 proteins. These data suggest that control of cytokine mRNA stability and translation in MCs is exerted by proteins different from TTP.

  16. Cordycepin inhibits lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α production via activating amp-activated protein kinase (AMPK) signaling.

    PubMed

    Zhang, Jian-Li; Xu, Ying; Shen, Jie

    2014-07-08

    Tumor necrosis factor (TNF)-α is elevated during the acute phase of Kawasaki disease (KD), which damages vascular endothelial cells to cause systemic vasculitis. In the current study, we investigated the potential role of cordycepin on TNFα expression in both lipopolysaccharide (LPS)-stimulated macrophages and ex vivo cultured peripheral blood mononuclear cells (PBMCs) of KD patients. We found that cordycepin significantly suppressed LPS-induced TNFα expression and production in mouse macrophages (RAW 264.7 cells and bone marrow-derived macrophages (BMDMs)). Meanwhile, cordycepin alleviated TNFα production in KD patients' PBMCs. PBMCs from healthy controls had a much lower level of basal TNF-α content than that of KD patients. LPS-induced TNF-α production in healthy controls' PBMCs was also inhibited by cordycepin. For the mechanism study, we discovered that cordycepin activated AMP-activated protein kinase (AMPK) signaling in both KD patients' PBMCs and LPS-stimulated macrophages, which mediated cordycepin-induced inhibition against TNFα production. AMPK inhibition by its inhibitor (compound C) or by siRNA depletion alleviated cordycepin's effect on TNFα production. Further, we found that cordycepin inhibited reactive oxygen species (ROS) production and nuclear factor kappa B (NF-κB) activation in LPS-stimulate RAW 264.7 cells or healthy controls' PBMCs. PBMCs of KD patients showed higher basal level of ROS and NF-κB activation, which was also inhibited by cordycepin co-treatment. In conclusion, our data showed that cordycepin inhibited TNFα production, which was associated with AMPK activation as well as ROS and NF-κB inhibition. The results of this study should have significant translational relevance in managing this devastating disease.

  17. The Anti-inflammatory Effect of the CXCR4 Antagonist-N15P Peptide and Its Modulation on Inflammation-Associated Mediators in LPS-Induced PBMC.

    PubMed

    Mo, Xue-mei; Sun, Han-xiao

    2015-01-01

    Inflammation was the important pathological process of many disease developments, but current therapeutic means for inflammatory diseases are not satisfactory. Chemokines and their receptors represent valuable targets for anti-inflammatory drug discovery. The N15P polypeptide (sequence: LGASWHRPDKCCLGY) is independently developed by our research group, it is a new CXCR4 antagonist drug derived from viral macrophage inflammatory protein-II (vMIP-II). This study aims to clarify the anti-inflammatory potency of N15P polypeptide on the lipopolysaccharide (LPS)-induced inflammation in vitro. In this study, we evaluated the anti-inflammatory effects of N15P polypeptide by the LPS-induced peripheral blood mononuclear cell (PBMC) model and measured the level of inflammatory factors (tumor necrosis factor alpha (TNF-α), IL-6, IL-8, nuclear factor kappaB (NF-κB), cyclooxygenase-2 (COX-2), Toll-like receptor 4 (TLR4), MyD88, phosphoinositide 3-kinase (PI3K), and Akt). The messenger RNA (mRNA) expressions of inflammatory factors were analyzed by real-time PCR (RT-PCR) microarray analysis, and the production of inflammatory factors was measured further by enzyme-linked immunosorbent assay (ELISA) and Western blot. The results showed that the expression of inflammatory factors (TNF-α, IL-6, IL-8, NF-κB, COX-2, TLR4, MyD88, PI3K, and Akt) was downregulated by N15P peptide, suggesting that N15P peptide has a strong inhibitory effect on the inflammatory responses induced by LPS.

  18. Dopamine inhibits lipopolysaccharide-induced nitric oxide production through the formation of dopamine quinone in murine microglia BV-2 cells.

    PubMed

    Yoshioka, Yasuhiro; Sugino, Yuta; Tozawa, Azusa; Yamamuro, Akiko; Kasai, Atsushi; Ishimaru, Yuki; Maeda, Sadaaki

    2016-02-01

    Dopamine (DA) has been suggested to modulate functions of glial cells including microglial cells. To reveal the regulatory role of DA in microglial function, in the present study, we investigated the effect of DA on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in murine microglial cell line BV-2. Pretreatment with DA for 24 h concentration-dependently attenuated LPS-induced NO production in BV-2 cells. The inhibitory effect of DA on LPS-induced NO production was not inhibited by SCH-23390 and sulpiride, D1-like and D2-like DA receptor antagonists, respectively. In addition, pretreatment with (-)-(6aR,12bR)-4,6,6a,7,8,12b-Hexahydro-7-methylindolo[4,3-a]phenanthridin (CY 208-243) and bromocriptine, D1-like and D2-like DA receptor agonists, respectively, did not affect the LPS-induced NO production. N-Acetylcysteine, which inhibits DA oxidation, completely inhibited the effect of DA. Tyrosinase, which catalyzes the oxidation of DA to DA quionone (DAQ), accelerated the inhibitory effect of DA on LPS-induced NO production. These results suggest that DA attenuates LPS-induced NO production through the formation of DAQ in BV-2 cells.

  19. Chitosan oligosaccharides suppress production of nitric oxide in lipopolysaccharide-induced N9 murine microglial cells in vitro.

    PubMed

    Wei, Peng; Ma, Pan; Xu, Qing-Song; Bai, Qun-Hua; Gu, Jian-Guo; Xi, Hao; Du, Yu-Guang; Yu, Chao

    2012-08-01

    Chitosan oligosaccharides (COS) have been reported to exert many biological activities, such as antioxidant, antitumor and anti-inflammatory effects. In the present study, we examined the effect of COS on nitric oxide (NO) production in LPS induced N9 microglial cells. Pretreatment with COS (50~200 μg/ml) could markedly inhibit NO production by suppressing inducible nitric oxide synthase (iNOS) expression in activated microglial cells. Signal transduction studies showed that COS remarkably inhibited LPS-induced phosphorylation of p38 MAPK and ERK1/2. COS pretreatment could also inhibit the activation of both nuclear factor-κB (NF-κB) and activator protein-1 (AP-1). In conclusion, our results suggest that COS could suppress the production of NO in LPS-induced N9 microglial cells, mediated by p38 MAPK and ERK1/2 pathways.

  20. Monoacylglycerol lipase promotes Fcγ receptor-mediated phagocytosis in microglia but does not regulate LPS-induced upregulation of inflammatory cytokines.

    PubMed

    Kouchi, Zen

    2015-08-21

    Monoacylglycerol lipase (MAGL) is important for neuroinflammation. However, the regulatory mechanisms underlying its expression and function remain unknown. Lipopolysaccharide (LPS) treatment post-translationally upregulated MAGL expression, whereas it downregulated MAGL transcription through a Stat6-mediated mechanism in microglia. Neither MAGL knockdown nor JZL-184, a selective MAGL inhibitor, suppressed LPS-induced upregulation of inflammatory cytokines in microglia. Moreover, exogenous expression of MAGL in BV-2 microglial cell line, which lacks endogenous MAGL, did not promote the induction of inflammatory cytokines by LPS treatment. Interestingly, MAGL knockdown reduced Fcγ receptor-mediated phagocytosis in primary microglia, and introduction of MAGL into the BV-2 cells increased Fcγ receptor-mediated phagocytosis. Collectively, these results suggest that MAGL regulates phagocytosis, but not LPS-mediated cytokine induction in microglia.

  1. Loss of Jak2 selectively suppresses DC-mediated innate immune response and protects mice from lethal dose of LPS-induced septic shock.

    PubMed

    Zhong, Jixin; Yang, Ping; Muta, Kenjiro; Dong, Robert; Marrero, Mario; Gong, Feili; Wang, Cong-Yi

    2010-03-09

    Given the importance of Jak2 in cell signaling, a critical role for Jak2 in immune cells especially dendritic cells (DCs) has long been proposed. The exact function for Jak2 in DCs, however, remained poorly understood as Jak2 deficiency leads to embryonic lethality. Here we established Jak2 deficiency in adult Cre(+/+)Jak2(fl/fl) mice by tamoxifen induction. Loss of Jak2 significantly impaired DC development as manifested by reduced BMDC yield, smaller spleen size and reduced percentage of DCs in total splenocytes. Jak2 was also crucial for the capacity of DCs to mediate innate immune response. Jak2(-/-) DCs were less potent in response to inflammatory stimuli and showed reduced capacity to secrete proinflammatory cytokines such as TNFalpha and IL-12. As a result, Jak2(-/-) mice were defective for the early clearance of Listeria after infection. However, their potency to mediate adaptive immune response was not affected. Unlike DCs, Jak2(-/-) macrophages showed similar capacity secretion of proinflammatory cytokines, suggesting that Jak2 selectively modulates innate immune response in a DC-dependent manner. Consistent with these results, Jak2(-/-) mice were remarkably resistant to lethal dose of LPS-induced septic shock, a deadly sepsis characterized by the excessive innate immune response, and adoptive transfer of normal DCs restored their susceptibility to LPS-induced septic shock. Mechanistic studies revealed that Jak2/SATA5 signaling is pivotal for DC development and maturation, while the capacity for DCs secretion of proinflammatory cytokines is regulated by both Jak2/STAT5 and Jak2/STAT6 signaling.

  2. Qing Hua Chang Yin inhibits the LPS-induced activation of the IL-6/STAT3 signaling pathway in human intestinal Caco-2 cells.

    PubMed

    Ke, Xiao; Hu, Guanghong; Fang, Wenyi; Chen, Jintuan; Zhang, Xin; Yang, Chunbo; Peng, Jun; Chen, Youqin; Sferra, Thomas J

    2015-04-01

    Increasing evidence indicates that the pathogenesis of ulcerative colitis (UC) is highly regulated by the interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) pathway and its negative feedback regulator, suppressor of cytokine signaling 3 (SOCS3). Therefore, modulating the signaling feedback loop of IL-6/STAT3/SOCS3 may prove to be a novel therapeutic approach for the treatment of UC. Qing Hua Chang Yin (QHCY) is a traditional Chinese formulation that has long been used in clinic for the treatment of UC. We have previously reported that QHCY ameliorates acute intestinal inflammation in vivo and in vitro through the suppression of the nuclear factor-κB (NF-κB) pathway. In the present study, in order to further elucidate the mechanisms responsible for the anti-inflammatory activities of QHCY, we stimulated human intestinal Caco-2 cells with lipopolysaccharide (LPS) to create an in vitro model of an inflamed human intestinal epithelium, and evaluated the effects of QHCY on the IL-6/STAT3/SOCS3 signaling network in inflamed Caco-2 cells. The levels of IL-6 were measured by ELISA and the levels of STAT3 and SOCS3 were measured by western blot analysis. We found that QHCY significantly inhibited the LPS-induced secretion of pro-inflammatory IL-6 in the Caco-2 cells in a dose-dependent manner. Moreover, QHCY profoundly suppressed the LPS-induced phosphorylation of Janus-activated kinase 1 (JAK1), JAK2 and STAT3. Furthermore, treatment with QHCY markedly augmented the expression of SOCS3. Taken together, the findings of the present study suggest that the modulation of the IL-6/STAT3/SOCS3 signaling network may be one of the mechanisms through which QHCY exerts its anti-inflammatory effects.

  3. Protective effect of naringin against the LPS-induced apoptosis of PC12 cells: Implications for the treatment of neurodegenerative disorders

    PubMed Central

    Wang, Hui; Xu, You Song; Wang, Miao Lin; Cheng, Chao; Bian, Rui; Yuan, Hao; Wang, Yi; Guo, Ting; Zhu, Lin Lin; Zhou, Hang

    2017-01-01

    Several studies have demonstrated that increased apoptosis plays an essential role in neurodegenerative disorders. It has been demonstrated that lipopolysaccharide (LPS) induces apoptosis largely through the production of intracellular reactive oxygen species (ROS) and inflammatory mediators. In this study, we investigated the potential protective mechanisms of naringin (Nar), a pummelo peel extract, on LPS-induced PC12 cell apoptosis. Nar pre-conditioning prior to stimulation with LPS for 18 h was a prerequisite for evaluating PC12 cell viability and the protective mechanisms of Nar. Nar significantly improved cell survival in a time- and concentration-dependent manner. On the one hand, Nar downregulated cytochrome P450 2E1 (CYP2E1), inhibited the release of ROS, mitigated the stimulation of oxidative stress, and rectified the antioxidant protein contents of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), superoxide dismutase (SOD)2 and glutathione synthetase (GSS). On the other hand, Nar down-regulated inflammatory gene and protein expression, including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, HMGB1, high mobility group box 1 protein (HMGB1), cyclo-oxygenase-2 (COX-2), the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 88 (MyD88)-TNF receptor-associated factor 6 (TRAF6) path way and downstream mitogen activated protein kinase (MAPK) phosphorylation, activator protein transcription factor-1 (AP-1) and nuclear factor (NF)-κB. Moroever, Nar markedly attenuated the cytochrome c shift from the mitochondria to the cytosol and regulated caspase-3-related protein expression. To the best of our knowledge, this is the first study to report the antioxidant, anti-inflammatory and anti-apoptotic effects of Nar in neuronal-like PC12 cells. These results suggest that Nar can be utilized as a potential drug for the treatment of neurodegenerative disorders. PMID:28260042

  4. MD-2 as the target of a novel small molecule, L6H21, in the attenuation of LPS-induced inflammatory response and sepsis

    PubMed Central

    Wang, Yi; Shan, Xiaoou; Chen, Gaozhi; Jiang, Lili; Wang, Zhe; Fang, Qilu; Liu, Xing; Wang, Jingying; Zhang, Yali; Wu, Wencan; Liang, Guang

    2015-01-01

    Background and Purpose Myeloid differentiation 2 (MD-2) recognizes LPS, which is required for TLR4 activation, and represents an attractive therapeutic target for severe inflammatory disorders. We previously found that a chalcone derivative, L6H21, could inhibit LPS-induced overexpression of TNF-α and IL-6 in macrophages. Here, we performed a series of biochemical experiments to investigate whether L6H21 specifically targets MD-2 and inhibits the interaction and signalling transduction of LPS-TLR4/MD-2. Experimental Approach The binding affinity of L6H21 to MD-2 protein was analysed using computer docking, surface plasmon resonance analysis, elisa, fluorescence measurements and flow cytometric analysis. The effects of L6H21 on MAPK and NF-κB signalling were determined using EMSA, fluorescence staining, Western blotting and immunoprecipitation. The anti-inflammatory effects of L6H21 were confirmed using elisa and RT-qPCR in vitro. The anti-inflammatory effects of L6H21 were also evaluated in septic C57BL/6 mice. Key Results Compound L6H21 inserted into the hydrophobic region of the MD-2 pocket, forming hydrogen bonds with Arg90 and Tyr102 in the MD-2 pocket. In vitro, L6H21 subsequently suppressed MAPK phosphorylation, NF-κB activation and cytokine expression in macrophages stimulated by LPS. In vivo, L6H21 pretreatment improved survival, prevented lung injury, decreased serum and hepatic cytokine levels in mice subjected to LPS. In addition, mice with MD-2 gene knockout were universally protected from the effects of LPS-induced septic shock. Conclusions and Implications Overall, this work demonstrated that the new chalcone derivative, L6H21, is a potential candidate for the treatment of sepsis. More importantly, the data confirmed that MD-2 is an important therapeutic target for inflammatory disorders. PMID:26076332

  5. The Fab Fragment of a Human Anti-Siglec-9 Monoclonal Antibody Suppresses LPS-Induced Inflammatory Responses in Human Macrophages

    PubMed Central

    Chu, Sasa; Zhu, Xuhui; You, Na; Zhang, Wei; Zheng, Feng; Cai, Binggang; Zhou, Tingting; Wang, Yiwen; Sun, Qiannan; Yang, Zhiguo; Zhang, Xin; Wang, Changjun; Nie, Shinan; Zhu, Jin; Wang, Maorong

    2016-01-01

    Sepsis is a major cause of death for hospitalized patients and is characterized by massive overreaction of immune responses to invading pathogens which is mediated by cytokines. For decades, there has been no effective treatment for sepsis. Sialic acid-binding, Ig-like lectin-9 (Siglec-9), is an immunomodulatory receptor expressed primarily on hematopoietic cells which is involved in various aspects of inflammatory responses and is a potential target for treatment of sepsis. The aim of the present study was to develop a human anti-Siglec-9 Fab fragment, which was named hS9-Fab03 and investigate its immune activity in human macrophages. We began by constructing the hS9-Fab03 prokaryotic expression vector from human antibody library and phage display. Then, we utilized a multitude of assays, including SDS-PAGE, Western blotting, ELISA, affinity, and kinetics assay to evaluate the binding affinity and specificity of hS9-Fab03. Results demonstrated that hS9-Fab03 specifically bind to Siglec-9 antigen with high affinity, and pretreatment with hS9-Fab03 could attenuate lipopolysaccharide (LPS)-induced TNF-α, IL-6, IL-1β, IL-8, and IFN-β production in human PBMC-derived macrophages, but slightly increased IL-10 production in an early time point. We also observed similar results in human THP-1-differentiated macrophages. Collectively, we prepared the hS9-Fab03 with efficient activity for blocking LPS-induced pro-inflammatory cytokines production in human macrophages. These results indicated that ligation of Siglec-9 with hS9-Fab03 might be a novel anti-inflammatory therapeutic strategy for sepsis. PMID:28082984

  6. Demethoxycurcumin, a natural derivative of curcumin attenuates LPS-induced pro-inflammatory responses through down-regulation of intracellular ROS-related MAPK/NF-kappaB signaling pathways in N9 microglia induced by lipopolysaccharide.

    PubMed

    Zhang, Lijia; Wu, Chunfu; Zhao, Siqi; Yuan, Dan; Lian, Guoning; Wang, Xiaoxiao; Wang, Lihui; Yang, Jingyu

    2010-03-01

    Our previous report has showed that demethoxycurcumin (DMC), a natural derivative of curcumin (Cur), exhibited stronger inhibitory activity on nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha) production compared with Cur in lipopolysaccharide (LPS) activated rat primary microglia. In the present study, the effect and possible mechanism of DMC on the production of pro-inflammatory mediators in LPS-activated N9 microglial cells were further investigated. The results showed that DMC significantly suppressed the NO production induced by LPS in N9 microglial cells through inhibiting the protein and mRNA expression of inducible NO synthase (iNOS). DMC also decreased LPS-induced TNF-alpha and IL-1beta expression at both transcriptional and protein level in a concentration-dependent manner. Further studies revealed that DMC blocked IkappaBalpha phosphorylation and degradation, inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs). Moreover, the level of intracellular reactive oxygen species (iROS) was significantly increased by LPS, which is mainly mediated by the up-regulated expression of gp91phox, the catalytic subunit of nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase. Both DMC and Cur could markedly decrease iROS production and the expression of NADPH oxidase induced by LPS, with more potent inhibitory activity of DMC. In summary, these data suggest that DMC exerts its in vitro anti-inflammatory effect in LPS-activated N9 microglial cells by blocking nuclear factor-kappaB (NF-kappaB) and MAPKs activation, which may be partly due to its potent down-regulation of the NADPH-derived iROS production.

  7. Lysophosphatidylcholine Triggers TLR2- and TLR4-Mediated Signaling Pathways but Counteracts LPS-Induced NO Synthesis in Peritoneal Macrophages by Inhibiting NF-κB Translocation and MAPK/ERK Phosphorylation

    PubMed Central

    Carneiro, Alan Brito; Iaciura, Bruna Maria Ferreira; Nohara, Lilian Lie; Lopes, Carla Duque; Veas, Esteban Mauricio Cordero; Mariano, Vania Sammartino; Bozza, Patricia Torres; Lopes, Ulisses Gazos; Atella, Georgia Correa; Almeida, Igor Correia; Silva-Neto, Mário Alberto Cardoso

    2013-01-01

    Background Lysophosphatidylcholine (LPC) is the main phospholipid component of oxidized low-density lipoprotein (oxLDL) and is usually noted as a marker of several human diseases, such as atherosclerosis, cancer and diabetes. Some studies suggest that oxLDL modulates Toll-like receptor (TLR) signaling. However, effector molecules that are present in oxLDL particles and can trigger TLR signaling are not yet clear. LPC was previously described as an attenuator of sepsis and as an immune suppressor. In the present study, we have evaluated the role of LPC as a dual modulator of the TLR-mediated signaling pathway. Methodology/Principal Findings HEK 293A cells were transfected with TLR expression constructs and stimulated with LPC molecules with different fatty acid chain lengths and saturation levels. All LPC molecules activated both TLR4 and TLR2-1 signaling, as evaluated by NF-қB activation and IL-8 production. These data were confirmed by Western blot analysis of NF-қB translocation in isolated nuclei of peritoneal murine macrophages. However, LPC counteracted the TLR4 signaling induced by LPS. In this case, NF-қB translocation, nitric oxide (NO) synthesis and the expression of inducible nitric oxide synthase (iNOS) were blocked. Moreover, LPC activated the MAP Kinases p38 and JNK, but not ERK, in murine macrophages. Interestingly, LPC blocked LPS-induced ERK activation in peritoneal macrophages but not in TLR-transfected cells. Conclusions/Significance The above results indicate that LPC is a dual-activity ligand molecule. It is able to trigger a classical proinflammatory phenotype by activating TLR4- and TLR2-1-mediated signaling. However, in the presence of classical TLR ligands, LPC counteracts some of the TLR-mediated intracellular responses, ultimately inducing an anti-inflammatory phenotype; LPC may thus play a role in the regulation of cell immune responses and disease progression. PMID:24312681

  8. A minocycline derivative reduces nerve injury-induced allodynia, LPS-induced prostaglandin E2 microglial production and signaling via toll-like receptors 2 and 4

    PubMed Central

    Bastos, Leandro F. S.; Godin, Adriana M.; Zhang, Yingning; Jarussophon, Suwatchai; Ferreira, Bruno C. S.; Machado, Renes R.; Maier, Steven F.; Konishi, Yasuo; de Freitas, Rossimiriam P.; Fiebich, Bernd L.; Watkins, Linda R.; Coelho, Márcio M.; Moraes, Márcio F. D.

    2013-01-01

    Many studies have shown that minocycline, an antibacterial tetracycline, suppresses experimental pain. While minocycline’s positive effects on pain resolution suggest that clinical use of such drugs may prove beneficial, minocycline’s antibiotic actions and divalent cation (Ca2+; Mg2+) chelating effects detract from its potential utility. Thus, we tested the antiallodynic effect induced by a non-antibacterial, non-chelating minocycline derivative in a model of neuropathic pain and performed an initial investigation of its anti-inflammatory effects in vitro. Intraperitoneal minocycline (100 mg/kg) and 12S-hydroxy-1,12-pyrazolinominocycline (PMIN; 23.75, 47.50 or 95.00 mg/kg) reduce the mechanical allodynia induced by chronic constriction injury of mouse sciatic nerve. PMIN reduces the LPS-induced production of PGE2 by primary microglial cell cultures. Human embryonic kidney cells were transfected to express human toll-like receptors 2 and 4, and the signaling via both receptors stimulated with PAM3CSK4 or LPS (respectively) was affected either by minocycline or PMIN. Importantly, these treatments did not affect the cell viability, as assessed by MTT test. Altogether, these results reinforce the evidence that the anti-inflammatory and experimental pain suppressive effects induced by tetracyclines are neither necessarily linked to antibacterial nor to Ca2+ chelating activities. This study supports the evaluation of the potential usefulness of PMIN in the management of neuropathic pain, as its lack of antibacterial and Ca2+ chelating activities might confer greater safety over conventional tetracyclines. PMID:23523650

  9. A minocycline derivative reduces nerve injury-induced allodynia, LPS-induced prostaglandin E2 microglial production and signaling via toll-like receptors 2 and 4.

    PubMed

    Bastos, Leandro F S; Godin, Adriana M; Zhang, Yingning; Jarussophon, Suwatchai; Ferreira, Bruno C S; Machado, Renes R; Maier, Steven F; Konishi, Yasuo; de Freitas, Rossimiriam P; Fiebich, Bernd L; Watkins, Linda R; Coelho, Márcio M; Moraes, Márcio F D

    2013-05-24

    Many studies have shown that minocycline, an antibacterial tetracycline, suppresses experimental pain. While minocycline's positive effects on pain resolution suggest that clinical use of such drugs may prove beneficial, minocycline's antibiotic actions and divalent cation (Ca(2+); Mg(2+)) chelating effects detract from its potential utility. Thus, we tested the antiallodynic effect induced by a non-antibacterial, non-chelating minocycline derivative in a model of neuropathic pain and performed an initial investigation of its anti-inflammatory effects in vitro. Intraperitoneal minocycline (100mg/kg) and 12S-hydroxy-1,12-pyrazolinominocycline (PMIN; 23.75 mg/kg, 47.50mg/kg or 95.00 mg/kg) reduce the mechanical allodynia induced by chronic constriction injury of mouse sciatic nerve. PMIN reduces the LPS-induced production of PGE2 by primary microglial cell cultures. Human embryonic kidney cells were transfected to express human toll-like receptors 2 and 4, and the signaling via both receptors stimulated with PAM3CSK4 or LPS (respectively) was affected either by minocycline or PMIN. Importantly, these treatments did not affect the cell viability, as assessed by MTT test. Altogether, these results reinforce the evidence that the anti-inflammatory and experimental pain suppressive effects induced by tetracyclines are neither necessarily linked to antibacterial nor to Ca(2+) chelating activities. This study supports the evaluation of the potential usefulness of PMIN in the management of neuropathic pain, as its lack of antibacterial and Ca(2+) chelating activities might confer greater safety over conventional tetracyclines.

  10. Propofol pretreatment attenuates LPS-induced granulocyte-macrophage colony-stimulating factor production in cultured hepatocytes by suppressing MAPK/ERK activity and NF-{kappa}B translocation

    SciTech Connect

    Jawan, Bruno; Kao, Y.-H.; Goto, Shigeru; Pan, M.-C.; Lin, Y.-C.; Hsu, L.-W.; Nakano, Toshiaki; Lai, C.-Y.; Sun, C.-K.; Cheng, Y.-F.; Tai, M.-H.

    2008-06-15

    Propofol (PPF), a widely used intravenous anesthetic for induction and maintenance of anesthesia during surgeries, was found to possess suppressive effect on host immunity. This study aimed at investigating whether PPF plays a modulatory role in the lipopolysaccharide (LPS)-induced inflammatory cytokine expression in a cell line of rat hepatocytes. Morphological observation and viability assay showed that PPF exhibits no cytotoxicity at concentrations up to 300 {mu}M after 48 h incubation. Pretreatment with 100 {mu}M PPF for 24 h prior to LPS stimulation was performed to investigate the modulatory effect on LPS-induced inflammatory gene production. The results of semi-quantitative RT-PCR demonstrated that PPF pretreatment significantly suppressed the LPS-induced toll-like receptor (TLR)-4, CD14, tumor necrosis factor (TNF)-{alpha}, and granulocyte-macrophage colony-stimulating factor (GM-CSF) gene expression. Western blotting analysis showed that PPF pretreatment potentiated the LPS-induced TLR-4 downregulation. Flow cytometrical analysis revealed that PPF pretreatment showed no modulatory effect on the LPS-upregulated CD14 expression on hepatocytes. In addition, PPF pretreatment attenuated the phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and I{kappa}B{alpha}, as well as the nuclear translocation of NF-{kappa}B primed by LPS. Moreover, addition of PD98059, a MAPK kinase inhibitor, significantly suppressed the LPS-induced NF-{kappa}B nuclear translocation and GM-CSF production, suggesting that the PPF-attenuated GM-CSF production in hepatocytes may be attributed to its suppressive effect on MAPK/ERK signaling pathway. In conclusion, PPF as an anesthetic may clinically benefit those patients who are vulnerable to sepsis by alleviating sepsis-related inflammatory response in livers.

  11. The fatty acid amide hydrolase (FAAH) inhibitor PF-3845 acts in the nervous system to reverse LPS-induced tactile allodynia in mice

    PubMed Central

    Booker, Lamont; Kinsey, Steven G; Abdullah, Rehab A; Blankman, Jacqueline L; Long, Jonathan Z; Ezzili, Cyrine; Boger, Dale L; Cravatt, Benjamin F; Lichtman, Aron H

    2012-01-01

    BACKGROUND AND PURPOSE Inflammatory pain presents a problem of clinical relevance and often elicits allodynia, a condition in which non-noxious stimuli are perceived as painful. One potential target to treat inflammatory pain is the endogenous cannabinoid (endocannabinoid) system, which is comprised of CB1 and CB2 cannabinoid receptors and several endogenous ligands, including anandamide (AEA). Blockade of the catabolic enzyme fatty acid amide hydrolase (FAAH) elevates AEA levels and elicits antinociceptive effects, without the psychomimetic side effects associated with Δ9-tetrahydrocannabinol (THC). EXPERIMENTAL APPROACH Allodynia was induced by intraplantar injection of LPS. Complementary genetic and pharmacological approaches were used to determine the strategy of blocking FAAH to reverse LPS-induced allodynia. Endocannabinoid levels were quantified using mass spectroscopy analyses. KEY RESULTS FAAH (−/−) mice or wild-type mice treated with FAAH inhibitors (URB597, OL-135 and PF-3845) displayed an anti-allodynic phenotype. Furthermore, i.p. PF-3845 increased AEA levels in the brain and spinal cord. Additionally, intraplantar PF-3845 produced a partial reduction in allodynia. However, the anti-allodynic phenotype was absent in mice expressing FAAH exclusively in the nervous system under a neural specific enolase promoter, implicating the involvement of neuronal fatty acid amides (FAAs). The anti-allodynic effects of FAAH-compromised mice required activation of both CB1 and CB2 receptors, but other potential targets of FAA substrates (i.e. µ-opioid, TRPV1 and PPARα receptors) had no apparent role. CONCLUSIONS AND IMPLICATIONS AEA is the primary FAAH substrate reducing LPS-induced tactile allodynia. Blockade of neuronal FAAH reverses allodynia through the activation of both cannabinoid receptors and represents a promising target to treat inflammatory pain. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To

  12. Abolition of mitochondrial substrate-level phosphorylation by itaconic acid produced by LPS-induced Irg1 expression in cells of murine macrophage lineage.

    PubMed

    Németh, Beáta; Doczi, Judit; Csete, Dániel; Kacso, Gergely; Ravasz, Dora; Adams, Daniel; Kiss, Gergely; Nagy, Adam M; Horvath, Gergo; Tretter, Laszlo; Mócsai, Attila; Csépányi-Kömi, Roland; Iordanov, Iordan; Adam-Vizi, Vera; Chinopoulos, Christos

    2016-01-01

    Itaconate is a nonamino organic acid exhibiting antimicrobial effects. It has been recently identified in cells of macrophage lineage as a product of an enzyme encoded by immunoresponsive gene 1 (Irg1), acting on the citric acid cycle intermediate cis-aconitate. In mitochondria, itaconate can be converted by succinate-coenzyme A (CoA) ligase to itaconyl-CoA at the expense of ATP (or GTP), and is also a weak competitive inhibitor of complex II. Here, we investigated specific bioenergetic effects of increased itaconate production mediated by LPS-induced stimulation of Irg1 in murine bone marrow-derived macrophages (BMDM) and RAW-264.7 cells. In rotenone-treated macrophage cells, stimulation by LPS led to impairment in substrate-level phosphorylation (SLP) of in situ mitochondria, deduced by a reversal in the directionality of the adenine nucleotide translocase operation. In RAW-264.7 cells, the LPS-induced impairment in SLP was reversed by short-interfering RNA(siRNA)-but not scrambled siRNA-treatment directed against Irg1. LPS dose-dependently inhibited oxygen consumption rates (61-91%) and elevated glycolysis rates (>21%) in BMDM but not RAW-264.7 cells, studied under various metabolic conditions. In isolated mouse liver mitochondria treated with rotenone, itaconate dose-dependently (0.5-2 mM) reversed the operation of adenine nucleotide translocase, implying impairment in SLP, an effect that was partially mimicked by malonate. However, malonate yielded greater ADP-induced depolarizations (3-19%) than itaconate. We postulate that itaconate abolishes SLP due to 1) a "CoA trap" in the form of itaconyl-CoA that negatively affects the upstream supply of succinyl-CoA from the α-ketoglutarate dehydrogenase complex; 2) depletion of ATP (or GTP), which are required for the thioesterification by succinate-CoA ligase; and 3) inhibition of complex II leading to a buildup of succinate which shifts succinate-CoA ligase equilibrium toward ATP (or GTP) utilization. Our results

  13. Low-intensity pulsed ultrasound (LIPUS) inhibits LPS-induced inflammatory responses of osteoblasts through TLR4-MyD88 dissociation.

    PubMed

    Nakao, Juna; Fujii, Yasuyuki; Kusuyama, Joji; Bandow, Kenjiro; Kakimoto, Kyoko; Ohnishi, Tomokazu; Matsuguchi, Tetsuya

    2014-01-01

    Previous reports have shown that osteoblasts are mechano-sensitive. Low-intensity pulsed ultrasound (LIPUS) induces osteoblast differentiation and is an established therapy for bone fracture. Here we have examined how LIPUS affects inflammatory responses of osteoblasts to LPS. LPS rapidly induced mRNA expression of several chemokines including CCL2, CXCL1, and CXCL10 in both mouse osteoblast cell line and calvaria-derived osteoblasts. Simultaneous treatment by LIPUS significantly inhibited mRNA induction of CXCL1 and CXCL10 by LPS. LPS-induced phosphorylation of ERKs, p38 kinases, MEK1/2, MKK3/6, IKKs, TBK1, and Akt was decreased in LIPUS-treated osteoblasts. Furthermore, LIPUS inhibited the transcriptional activation of NF-κB responsive element and Interferon-sensitive response element (ISRE) by LPS. In a transient transfection experiment, LIPUS significantly inhibited TLR4-MyD88 complex formation. Thus LIPUS exerts anti-inflammatory effects on LPS-stimulated osteoblasts by inhibiting TLR4 signal transduction.

  14. Chlorogenic Acid Combined with Lactobacillus plantarum 2142 Reduced LPS-Induced Intestinal Inflammation and Oxidative Stress in IPEC-J2 Cells

    PubMed Central

    Palócz, Orsolya; Pászti-Gere, Erzsébet; Gálfi, Péter

    2016-01-01

    This study was carried out to investigate protective effect of chlorogenic acid against lipopolysaccharide-induced inflammation and oxidative stress in intestinal epithelial cells. As a marker of inflammatory response, IL-6, IL-8, TNF-α mRNA and protein levels, furthermore, COX-2 mRNA level were followed up. Intracellular redox status and extracellular H2O2 level were also monitored by two fluorescent assays (DCFH-DA, Amplex Red). Moreover, the effect of gut microbiota metabolites in the above mentioned processes was taken into account in our model using Lactobacillus plantarum 2142 bacterial strain. Our data revealed that chlorogenic acid had significant lowering effect on the inflammatory response. Treatment with chlorogenic acid (25–50 μM) significantly decreased gene expression and concentration of proinflammatory cytokines IL-6 and IL-8 compared to LPS-treated cells. COX-2 and TNF-α mRNA levels were also reduced. Furthermore, chlorogenic acid reduced the level of reactive oxygen species in IPEC-J2 cells. Simultaneous application of chlorogenic acid and Lactobacillus plantarum 2142 supernatant resulted protective effect against LPS-induced inflammation and oxidative stress as well. PMID:27861533

  15. Exogenous carbon monoxide inhibits neutrophil infiltration in LPS-induced sepsis by interfering with FPR1 via p38 MAPK but not GRK2

    PubMed Central

    Wang, Xu; Qin, Weiting; Song, Mingming; Zhang, Yisen; Sun, Bingwei

    2016-01-01

    Excessive neutrophil infiltration in vital organs is life-threatening to patients who suffer from sepsis. We identified a critical role of exogenous carbon monoxide (CO) in the inhibition of neutrophil infiltration during lipopolysaccharide (LPS)-induced sepsis. CO delivered from carbon monoxide-releasing molecule 2 (CORM-2) dramatically increased the survival rate of C57BL/6 mice subjected to LPS in vivo. CORM-2 significantly suppressed neutrophil infiltration in liver and lung as well as markers of inflammatory responses. Affymetrix GeneChip array analysis revealed that the increased expression of chemoattractant receptor formyl peptide receptor 1 (FPR1) may contribute to the excessive neutrophil infiltration. The under agarose migration assay demonstrated that LPS stimulation promoted migration to the ligand of FPR1, N-Formyl-Met-Leu-Phe (fMLP) but that CORM-2 treatment inhibited this promotion. Further studies demonstrated that CORM-2 internalized FPR1 by inhibiting p38 mitogen-activated protein kinase (MAPK) but not G protein-coupled receptor kinase 2 (GRK2), which may explain the inhibitory effect of CORM-2 on LPS-stimulated neutrophils. In summary, our study demonstrates that exogenous CO inhibits sepsis-induced neutrophil infiltration by interfering with FPR1 via p38 MAPK but not GRK2. PMID:27144520

  16. Berberine inhibits cytosolic phospholipase A2 and protects against LPS-induced lung injury and lethality independent of the alpha2-adrenergic receptor in mice.

    PubMed

    Zhang, Hao-qing; Wang, Hua-dong; Lu, Da-xiang; Qi, Ren-bin; Wang, Yan-ping; Yan, Yu-xia; Fu, Yong-mei

    2008-05-01

    Acute lung injury is still a significant clinical problem having a high mortality rate despite significant advances in antimicrobial therapy and supportive care made in the past few years. Our previous study demonstrated that berberine (Ber) remarkably decreased mortality and attenuated the lung injury in mice challenged with LPS, but the mechanism behind this remains unclear. Here, we report that pretreatment with Ber significantly reduced pulmonary edema, neutrophil infiltration, and histopathological alterations; inhibited protein expression and phosphorylation of cytosolic phospholipase A2; and decreased thromboxane A2 release induced by LPS. Yohimbine, an alpha2-adrenergic receptor antagonist, did not antagonize these actions of Ber. Furthermore, pretreatment with Ber decreased TNF-alpha production and mortality in mice challenged with LPS, which were enhanced by yohimbine, and Ber combined with yohimbine also improved survival rate in mice subjected to cecal ligation and puncture. Taken together, these observations indicate that Ber attenuates LPS-induced lung injury by inhibiting TNF-alpha production and cytosolic phospholipase A2 expression and activation in an alpha2-adrenoceptor-independent manner. Berberine combined with yohimbine might provide an effective therapeutic approach to acute lung injury during sepsis.

  17. Chilean Strawberry Consumption Protects against LPS-Induced Liver Injury by Anti-Inflammatory and Antioxidant Capability in Sprague-Dawley Rats

    PubMed Central

    Molinett, Sebastian; Nuñez, Francisca; Moya-León, María Alejandra; Zúñiga-Hernández, Jessica

    2015-01-01

    The Chilean strawberry fruit has high content of antioxidants and polyphenols. Previous studies evidenced antioxidant properties by in vitro methods. However, the antioxidant effect and its impact as functional food on animal health have not been evaluated. In this study, rats were fed with a Chilean strawberry aqueous extract (4 g/kg of animal per day) and then subjected to LPS-induced liver injury (5 mg/kg). Transaminases and histological studies revealed a reduction in liver injury in rats fed with strawberry aqueous extract compared with the control group. Additionally, white strawberry supplementation significantly reduced the serum levels and gene expression of TNF-α, IL-6, and IL-1β cytokines compared with nonsupplemented rats. The level of F2-isoprostanes and GSH/GSSG indicated a reduction in liver oxidative stress by the consumption of strawberry aqueous extract. Altogether, the evidence suggests that dietary supplementation of rats with a Chilean white strawberry aqueous extract favours the normalization of oxidative and inflammatory responses after a liver injury induced by LPS. PMID:26457108

  18. Surfactant lipids regulate LPS-induced interleukin-8 production in A549 lung epithelial cells by inhibiting translocation of TLR4 into lipid raft domains

    PubMed Central

    Abate, Wondwossen; Alghaithy, Abdulaziz A.; Parton, Joan; Jones, Kenneth P.; Jackson, Simon K.

    2010-01-01

    In addition to providing mechanical stability, growing evidence suggests that surfactant lipid components can modulate inflammatory responses in the lung. However, little is known of the molecular mechanisms involved in the immunomodulatory action of surfactant lipids. This study investigates the effect of the lipid-rich surfactant preparations Survanta®, Curosurf®, and the major surfactant phospholipid dipalmitoylphosphatidylcholine (DPPC) on interleukin-8 (IL-8) gene and protein expression in human A549 lung epithelial cells using immunoassay and PCR techniques. To examine potential mechanisms of the surfactant lipid effects, Toll-like receptor 4 (TLR4) expression was analyzed by flow cytometry, and membrane lipid raft domains were separated by density gradient ultracentrifugation and analyzed by immunoblotting with anti-TLR4 antibody. The lipid-rich surfactant preparations Survanta®, Curosurf®, and DPPC, at physiological concentrations, significantly downregulated lipopolysaccharide (LPS)-induced IL-8 expression in A549 cells both at the mRNA and protein levels. The surfactant preparations did not affect the cell surface expression of TLR4 or the binding of LPS to the cells. However, LPS treatment induced translocation of TLR4 into membrane lipid raft microdomains, and this translocation was inhibited by incubation of the cells with the surfactant lipid. This study provides important mechanistic details of the immune-modulating action of pulmonary surfactant lipids. PMID:19648651

  19. Discovery of new MD2 inhibitor from chalcone derivatives with anti-inflammatory effects in LPS-induced acute lung injury

    PubMed Central

    Zhang, Yali; Wu, Jianzhang; Ying, Shilong; Chen, Gaozhi; Wu, Beibei; Xu, Tingting; Liu, Zhiguo; Liu, Xing; Huang, Lehao; Shan, Xiaoou; Dai, Yuanrong; Liang, Guang

    2016-01-01

    Acute lung injury (ALI) is a life-threatening acute inflammatory disease with limited options available for therapy. Myeloid differentiation protein 2, a co-receptor of TLR4, is absolutely required for TLR4 sense LPS, and represents an attractive target for treating severe inflammatory diseases. In this study, we designed and synthesized 31 chalcone derivatives that contain the moiety of (E)-4-phenylbut-3-en-2-one, which we consider the core structure of current MD2 inhibitors. We first evaluated the anti-inflammatory activities of these compounds in MPMs. For the most active compound 20, we confirmed that it is a specific MD2 inhibitor through a series of biochemical experiments and elucidated that it binds to the hydrophobic pocket of MD2 via hydrogen bonds with Arg90 and Tyr102 residues. Compound 20 also blocked the LPS-induced activation of TLR4/MD2 -downstream pro-inflammatory MAPKs/NF-κB signaling pathways. In a rat model with ALI induced by intracheal LPS instillation, administration with compound 20 exhibited significant protective effect against ALI, accompanied by the inhibition of TLR4/MD2 complex formation in lung tissues. Taken together, the results of this study suggest the specific MD2 inhibitor from chalcone derivatives we identified is a potential candidate for treating acute inflammatory diseases. PMID:27118147

  20. Anti-inflammatory effects of hydrophilic and lipophilic statins with hyaluronic acid against LPS-induced inflammation in porcine articular chondrocytes.

    PubMed

    Chang, Chih-Hung; Hsu, Yuan-Ming; Chen, Yu-Chun; Lin, Feng-Huei; Sadhasivam, Subramaniam; Loo, Siow-Tung; Savitha, Sivasubramanian

    2014-04-01

    The objective of the study is to understand the therapeutic effects of lipophilic (simvastatin) and hydrophilic statins (pravastatin) combined with/without hyaluronic acid for osteoarthritis by an in vitro LPS-induced inflammatory model of articular chondrocytes. HA in combination with different doses of simvastatin or pravastatin were used. Beside cytotoxicity, the influence of statins on NO production, pro-inflammatory cytokine, inflammatory mediators, and NF-κB p50 protein were analyzed. Finally, TUNEL assay was performed to detect DNA strand breakage. Two statins were less able to lower NF-κB activity when they were administrated along without HA. The gene expression demonstrates that simvastatin and pravastatin had the ability to decrease pro-inflammatory and inflammatory mediator levels. High dose simvastatin with or without HA down regulated inflammatory cytokines, but resulted in higher cytotoxicity. TUNEL assay confirms the regulatory effect of statins with or without HA over the apoptosis of chondrocytes, especially in hydrophilic statins. The significant down-regulation of inflammatory mediators suggests that intra-articular injection of HA in combination with statins might feasibly slow the progress of osteoarthritis. Administration of simvastatin or pravastatin with hyaluronic acid may produce beneficial effects for OA treatment, but with better results when hydrophilic statin was used.

  1. Anethole, a Medicinal Plant Compound, Decreases the Production of Pro-Inflammatory TNF-α and IL-1β in a Rat Model of LPS-Induced Periodontitis

    PubMed Central

    Moradi, Janet; Abbasipour, Fatemeh; Zaringhalam, Jalal; Maleki, Bita; Ziaee, Narges; Khodadoustan, Amin; Janahmadi, Mahyar

    2014-01-01

    Periodontitis (PD) is known to be one of most prevalent worldwide chronic inflammatory diseases. There are several treatments including antibiotics for PD; however, since drug resistance is an increasing problem, new drugs particularly derived from plants with fewer side effects are required. The effects of trans-anethole on IL-1 β and TNF-α level in a rat model of PD were investigated and compared to ketoprofen. Eschericia coli lipopolysaccharide (LPS, 30 µg) was injected bilaterally into the palatal gingiva (3 µL/site) between the upper first and second molars every two days for 10 days in anesthetized rats. Administration of either trans-anethole (10 or 50 mg/Kg, i.p.) or ketoprofen (10 mg/Kg, i.p.) was started 20 minute before LPS injection and continued for 10 days. Then, IL-1β and TNF-α levels were measured in blood samples by ELISA at day 0 (control) and at day 10. Anethole at both concentrations significantly suppressed IL-1β and TNF-α production when compared to LPS-treated rats. The suppressive effects of anethole on LPS-induced pro-inflammatory cytokines were almost similar as seen with ketoprofen. In conclusion, the present results suggest that anethole may have a potent inhibitory effect on PD through suppression of pro-inflammatory molecules; therefore it could be a novel therapeutic strategy for PD. PMID:25587321

  2. Chebulagic acid (CA) attenuates LPS-induced inflammation by suppressing NF-{kappa}B and MAPK activation in RAW 264.7 macrophages

    SciTech Connect

    Reddy, D. Bharat; Reddanna, Pallu

    2009-03-27

    Chebulagic acid (CA), a natural anti-oxidant, showed potent anti-inflammatory effects in LPS-stimulated RAW 264.7, a mouse macrophage cell line. These effects were exerted via inhibition of NO and PGE{sub 2} production and down-regulation of iNOS, COX-2, 5-LOX, TNF-{alpha} and IL-6. CA inhibited NF-{kappa}B activation by LPS, and this was associated with the abrogation of I{kappa}B-{alpha} phosphorylation and subsequent decreases in nuclear p50 and p65 protein levels. Further, the phosphorylation of p38, ERK 1/2 and JNK in LPS-stimulated RAW 264.7 cells was suppressed by CA in a concentration-dependent manner. LPS-induced generation of reactive oxygen species (ROS) was also effectively inhibited by CA. These results suggest that CA exerts anti-inflammatory effects in LPS-stimulated RAW 264.7 macrophages by inhibition of NF-{kappa}B activation and MAP kinase phosphorylation.

  3. Flavonoid fraction of Bergamot juice reduces LPS-induced inflammatory response through SIRT1-mediated NF-κB inhibition in THP-1 monocytes.

    PubMed

    Risitano, Roberto; Currò, Monica; Cirmi, Santa; Ferlazzo, Nadia; Campiglia, Pietro; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele

    2014-01-01

    Plant polyphenols exert anti-inflammatory activity through both anti-oxidant effects and modulation of pivotal pro-inflammatory genes. Recently, Citrus bergamia has been studied as a natural source of bioactive molecules with antioxidant activity, but few studies have focused on molecular mechanisms underlying their potential beneficial effects. Several findings have suggested that polyphenols could influence cellular function by acting as activators of SIRT1, a nuclear histone deacetylase, involved in the inhibition of NF-κB signaling. On the basis of these observations we studied the anti-inflammatory effects produced by the flavonoid fraction of the bergamot juice (BJe) in a model of LPS-stimulated THP-1 cell line, focusing on SIRT1-mediated NF-κB inhibition. We demonstrated that BJe inhibited both gene expression and secretion of LPS-induced pro-inflammatory cytokines (IL-6, IL-1β, TNF-α) by a mechanism involving the inhibition of NF-κB activation. In addition, we showed that BJe treatment reversed the LPS-enhanced acetylation of p65 in THP-1 cells. Interestingly, increasing concentrations of Sirtinol were able to suppress the inhibitory effect of BJe via p65 acetylation, underscoring that NF-κB-mediated inflammatory cytokine production may be directly linked to SIRT1 activity. These results suggest that BJe may be useful for the development of alternative pharmacological strategies aimed at reducing the inflammatory process.

  4. Protective Role of Ternatin Anthocyanins and Quercetin Glycosides from Butterfly Pea (Clitoria ternatea Leguminosae) Blue Flower Petals against Lipopolysaccharide (LPS)-Induced Inflammation in Macrophage Cells.

    PubMed

    Nair, Vimal; Bang, Woo Young; Schreckinger, Elisa; Andarwulan, Nuri; Cisneros-Zevallos, Luis

    2015-07-22

    Twelve phenolic metabolites (nine ternatin anthocyanins and three glycosylated quercetins) were identified from the blue flowers of Clitoria ternatea by high-performance liquid chromatography diode array detection and electrospray ionization/mass spectrometry (HPLC-DAD-ESI/MS(n)). Three anthocyanins not reported in this species before show fragmentation pattern of the ternatin class. Extracts were fractionated in fractions containing flavonols (F3) and ternatin anthocyanins (F4). In general, C. ternatea polyphenols showed anti-inflammatory properties in lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells with distinct molecular targets. Flavonols (F3) showed strong inhibition of COX-2 activity and partial ROS suppression. On the other hand, the ternatin anthocyanins (F4) inhibited nuclear NF-κB translocation, iNOS protein expression, and NO production through a non-ROS suppression mechanism. Accordingly, quercetin glycosides and ternatin anthocyanins from the blue flower petals of C. ternatea may be useful in developing drugs or nutraceuticals for protection against chronic inflammatory diseases by suppressing the excessive production of pro-inflammatory mediators from macrophage cells.

  5. LPS-induced NO inhibition and antioxidant activities of ethanol extracts and their solvent partitioned fractions from four brown seaweeds

    NASA Astrophysics Data System (ADS)

    Cho, Myoung Lae; Lee, Dong-Jin; Lee, Hyi-Seung; Lee, Yeon-Ju; You, Sang Guan

    2013-12-01

    The nitric oxide inhibitory (NOI) and antioxidant (ABTS and DPPH radical scavenging effects with reducing power) activities of the ethanol (EtOH) extracts and solvent partitioned fractions from Scytosiphon lomentaria, Chorda filum, Agarum cribrosum, and Desmarestia viridis were investigated, and the correlation between biological activity and total phenolic (TP) and phlorotannin (TPT) content was determined by PCA analysis. The yield of EtOH extracts from four brown seaweeds ranged from 2.6 to 6.6% with the highest yield from D. viridis, and the predominant compounds in their solvent partitioned fractions had medium and/or less polarity. The TP and TPT content of the EtOH extracts were in the ranges of 25.0-44.1 mg GAE/g sample and 0.2-4.6 mg PG/g sample, respectively, which were mostly included in the organic solvent partitioned fractions. Strong NOI activity was observed in the EtOH extracts and their solvent partitioned fractions from D. viridis and C. filum. In addition, the EtOH extract and its solvent partitioned fractions of D. viridis exhibited little cytotoxicity to Raw 264.7 cells. The most potent ABTS and DPPH radical scavenging capacity was shown in the EtOH extracts and their solvent partitioned fractions from S. lomentaria and C. filum, and both also exhibited strong reducing ability. In the PCA analysis the content of TPT had a good correlation with DPPH ( r = 0.62), ABTS ( r = 0.69) and reducing power ( r = 0.65), however, an unfair correlation was observed between the contents of TP and TPT and NOI, suggesting that the phlorotannins might be responsible for the DPPH and ABTS radical scavenging activities.

  6. INVOLVEMENT OF TOLL-LIKE RECEPTOR 4 AND MAPK PATHWAYS IN LPS-INDUCED CD40 EXPRESSION IN MONOCYTIC CELLS

    EPA Science Inventory

    CD40 is a co-stimulatory surface molecule actively expressed on mature dendritic cells (DC). Recent studies suggest that endotoxin (LPS) inhalation induces DC maturation in the airways of healthy volunteers. To characterize the effect of LPS on CD40 expression and underlying mech...

  7. GYF-17, a chloride substituted 2-(2-phenethyl)-chromone, suppresses LPS-induced inflammatory mediator production in RAW264.7 cells by inhibiting STAT1/3 and ERK1/2 signaling pathways.

    PubMed

    Zhu, Zhixiang; Gu, Yufan; Zhao, Yunfang; Song, Yuelin; Li, Jun; Tu, Pengfei

    2016-06-01

    GYF-17, a 2-(2-phenethyl)-chromone derivative, was isolated from agarwood and showed superior activity of inhibiting NO production of RAW264.7 cells induced by LPS in our preliminary pharmacodynamic screening. In order to develop novel therapeutic drug for acute and chronic inflammatory disorders, the anti-inflammatory activity and underlying mechanism of GYF-17 were investigated in LPS-induced RAW264.7 cells. The results showed that GYF-17 could reduce LPS-induced expression of iNOS and then result in the decrement of NO production. More meaningful, the expression and secretion of key pro-inflammatory factors, including TNF-α, IL-6 and IL-1β, were intensively inhibited by GYF-17. Furthermore, GYF-17 also down regulated the expression of COX2 and the production of PGE2 which plays important role in causing algesthesia during inflammatory response. In mechanism study, GYF-17 selectively suppressed phosphorylation of STAT1/3 and ERK1/2 during the activation of NF-κB, MAPK and STAT signaling pathways induced by LPS. Collectively, GYF-17 can intensively suppress the production of LPS-induced inflammatory mediators in RAW264.7 cells by inhibiting STAT1/3 and ERK1/2 signaling pathways and thereby shows great potential to be developed into therapeutic drug for inflammatory diseases.

  8. Effect of Heme Oxygenase-1 on Mitofusin-1 protein in LPS-induced ALI/ARDS in rats

    PubMed Central

    Yu, Jianbo; Wang, Ying; Li, Zhen; Dong, Shuan; Wang, Dan; Gong, Lirong; Shi, Jia; Zhang, Yuan; Liu, Daquan; Mu, Rui

    2016-01-01

    Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common and important oxidative stress in the lung. Mitochondrial fusion responds to the normal morphology and function of cells and is finely regulated by mitochondrial fusion proteins, such as mitofusin-1 protein (Mfn1), mitofusin-2 protein (Mfn2) and optical atrophy 1 (OPA1). Additionally, Mfn1 has been identified as the most important protein in mitochondrial fusion. Heme oxygenase-1 (HO-1) is a stress-inducible protein that plays a critical role in protecting against oxidative stress. However, whether the protection of HO-1 is related to mitochondrial fusion is still a question. Thus, our in vitro and in vivo experiments aimed to identify the relationship between HO-1 and Mfn1. Here, we used Hemin and ZnPP-IX as treatments in an in vivo experiment. Then, HO-1 and Mfn1 were measured using RT-PCR and Western blotting. Supernatants were analyzed for MDA, SOD, and ROS. Our results implied that HO-1 upregulation suppressed oxidative stress induced by LPS, and the possible mechanism could be associated with Mfn1 and the PI3K/Akt pathway. PMID:27830717

  9. Microglia-Derived Cytokines/Chemokines Are Involved in the Enhancement of LPS-Induced Loss of Nigrostriatal Dopaminergic Neurons in DJ-1 Knockout Mice

    PubMed Central

    Chien, Chia-Hung; Lee, Ming-Jen; Liou, Houng-Chi; Liou, Horng-Huei; Fu, Wen-Mei

    2016-01-01

    Mutation of DJ-1 (PARK7) has been linked to the development of early-onset Parkinson’s disease (PD). However, the underlying molecular mechanism is still unclear. This study is aimed to compare the sensitivity of nigrostriatal dopaminergic neurons to lipopolysaccharide (LPS) challenge between DJ-1 knockout (KO) and wild-type (WT) mice, and explore the underlying cellular and molecular mechanisms. Our results found that the basal levels of interferon (IFN)-γ (the hub cytokine) and interferon-inducible T-cell alpha chemoattractant (I-TAC) (a downstream mediator) were elevated in the substantia nigra of DJ-1 KO mice and in microglia cells with DJ-1 deficiency, and the release of cytokine/chemokine was greatly enhanced following LPS administration in the DJ-1 deficient conditions. In addition, direct intranigral LPS challenge caused a greater loss of nigrostriatal dopaminergic neurons and striatal dopamine content in DJ-1 KO mice than in WT mice. Furthermore, the sensitization of microglia cells to LPS challenge to release IFN-γ and I-TAC was via the enhancement of NF-κB signaling, which was antagonized by NF-κB inhibitors. LPS-induced increase in neuronal death in the neuron-glia co-culture was enhanced by DJ-1 deficiency in microglia, which was antagonized by the neutralizing antibodies against IFN-γ or I-TAC. These results indicate that DJ-1 deficiency sensitizes microglia cells to release IFN-γ and I-TAC and causes inflammatory damage to dopaminergic neurons. The interaction between the genetic defect (i.e. DJ-1) and inflammatory factors (e.g. LPS) may contribute to the development of PD. PMID:26982707

  10. Intracellular NAD+ levels are associated with LPS-induced TNF-α release in pro-inflammatory macrophages

    PubMed Central

    Al-Shabany, Abbas Jawad; Moody, Alan John; Foey, Andrew David; Billington, Richard Andrew

    2016-01-01

    Metabolism and immune responses have been shown to be closely linked and as our understanding increases, so do the intricacies of the level of linkage. NAD+ has previously been shown to regulate tumour necrosis factor-α (TNF-α) synthesis and TNF-α has been shown to regulate NAD+ homoeostasis providing a link between a pro-inflammatory response and redox status. In the present study, we have used THP-1 differentiation into pro- (M1-like) and anti- (M2-like) inflammatory macrophage subset models to investigate this link further. Pro- and anti-inflammatory macrophages showed different resting NAD+ levels and expression levels of NAD+ homoeostasis enzymes. Challenge with bacterial lipopolysaccharide, a pro-inflammatory stimulus for macrophages, caused a large, biphasic and transient increase in NAD+ levels in pro- but not anti-inflammatory macrophages that were correlated with TNF-α release and inhibition of certain NAD+ synthesis pathways blocked TNF-α release. Lipopolysaccharide stimulation also caused changes in mRNA levels of some NAD+ homoeostasis enzymes in M1-like cells. Surprisingly, despite M2-like cells not releasing TNF-α or changing NAD+ levels in response to lipopolysaccharide, they showed similar mRNA changes compared with M1-like cells. These data further strengthen the link between pro-inflammatory responses in macrophages and NAD+. The agonist-induced rise in NAD+ shows striking parallels to well-known second messengers and raises the possibility that NAD+ is acting in a similar manner in this model. PMID:26764408

  11. Intracellular NAD+ levels are associated with LPS-induced TNF-α release in pro-inflammatory macrophages.

    PubMed

    Al-Shabany, Abbas Jawad; Moody, Alan John; Foey, Andrew David; Billington, Richard Andrew

    2016-01-13

    Metabolism and immune responses have been shown to be closely linked and as our understanding increases, so do the intricacies of the level of linkage. NAD(+) has previously been shown to regulate tumour necrosis factor-α (TNF-α) synthesis and TNF-α has been shown to regulate NAD(+) homoeostasis providing a link between a pro-inflammatory response and redox status. In the present study, we have used THP-1 differentiation into pro- (M1-like) and anti- (M2-like) inflammatory macrophage subset models to investigate this link further. Pro- and anti-inflammatory macrophages showed different resting NAD(+) levels and expression levels of NAD(+) homoeostasis enzymes. Challenge with bacterial lipopolysaccharide, a pro-inflammatory stimulus for macrophages, caused a large, biphasic and transient increase in NAD(+) levels in pro- but not anti-inflammatory macrophages that were correlated with TNF-α release and inhibition of certain NAD(+) synthesis pathways blocked TNF-α release. Lipopolysaccharide stimulation also caused changes in mRNA levels of some NAD(+) homoeostasis enzymes in M1-like cells. Surprisingly, despite M2-like cells not releasing TNF-α or changing NAD(+) levels in response to lipopolysaccharide, they showed similar mRNA changes compared with M1-like cells. These data further strengthen the link between pro-inflammatory responses in macrophages and NAD(+). The agonist-induced rise in NAD(+) shows striking parallels to well-known second messengers and raises the possibility that NAD(+) is acting in a similar manner in this model.

  12. Fasudil inhibits LPS-induced migration of retinal microglial cells via regulating p38-MAPK signaling pathway

    PubMed Central

    Xu, Fan; Xu, Yue; Zhu, Liqiong; Rao, Pinhong; Wen, Jiamin; Sang, Yunyun; Shang, Fu

    2016-01-01

    Purpose To investigate the effect and possible molecular mechanisms of fasudil on retinal microglial (RMG) cell migration. Methods Primary cultured RMG cells were incubated with lipopolysaccharide (LPS), fasudil, and/or SB203580 (a p38 inhibitor). RMG cell motility was determined with the scratch wound assay and the Transwell migration assay. The phosphorylation of p38 and levels of matrix metalloproteinase 2 (MMP-2) and MMP-9 were measured with western blot. Results In the scratch-induced migration assay, as well as in the Transwell migration assay, the results indicated that LPS stimulated the migratory potential of RMG cells and fasudil significantly reduced LPS-stimulated RMG cell migration in a concentration-dependent manner. However, fasudil had no effect on RMG cell migration in the absence of LPS stimulation. Moreover, fasudil reduced the level of phosphor-p38 mitogen-activated protein kinase (p-p38-MAPK) in a concentration-dependent manner, without effects on the levels of phospho-p44/42 (p-ERK1/2) and phospho-c-Jun N-terminal kinase (p-JNK). Cotreatment with SB203580 (a p38 inhibitor) and fasudil resulted in the synergistic reduction of MMP-2, MMP-9, and p-p38-MAPK, as well as a reduction in the LPS-stimulated migration capabilities of the RMG cells, suggesting fasudil suppresses the LPS-stimulated migration of RMG cells via directly downregulating the p38-MAPK signaling pathway. Conclusions Our studies indicated that fasudil inhibited LPS-stimulated RMG cell migration via suppression of the p38-MAPK signaling pathway. PMID:27441000

  13. TLR4-MyD88-TRAF6-TAK1 Complex-Mediated NF-κB Activation Contribute to the Anti-Inflammatory Effect of V8 in LPS-Induced Human Cervical Cancer SiHa Cells.

    PubMed

    He, Aiqin; Ji, Rui; Shao, Jia; He, Chenyun; Jin, Ming; Xu, Yunzhao

    2016-02-01

    The synthetic compound 7-4-[Bis-(2-hydroxyethyl)-amino]-butoxy-5-hydroxy-8-methoxy-2-phenylchromen-4-one (V8) is a novel flavonoid-derived compound. In this study, we investigated the effects of V8 on Toll-like receptor 4 (TLR4)-mediated inflammatory reaction in human cervical cancer SiHa cells and lipopolysaccharide (LPS)-induced TLR4 activity in cervical cancer SiHa (HPV16+) cells, but not in HeLa (HPV18+) and C33A (HPV-) cells. In addition, V8 inhibited LPS-induced expression of TLR4, MyD88, TRAF6 and phosphorylation of TAK1, and their interaction with TLR4 in SiHa cells, resulting in an inhibition of TLR4-MyD88-TRAF6-TAK1 complex. Moreover, V8 blocked LPS-induced phosphorylation of IκB and IKK, resulting in inhibition of the nuclear translocation of P65-NF-κB in SiHa cells. We also found that V8 reduced the expression of NF-κB target genes, such as those for COX-2, iNOS, IL-6, IL-8, CCL-2, and TNF-α in LPS-stimulated SiHa cells. These results suggested that V8 exerted an anti-inflammatory effect on SiHa cells by inhibiting the TLR4-MyD88-TRAF6-TAK1 complex-mediated NF-κB activation.

  14. Oleoylethanolamide exerts anti-inflammatory effects on LPS-induced THP-1 cells by enhancing PPARα signaling and inhibiting the NF-κB and ERK1/2/AP-1/STAT3 pathways

    PubMed Central

    Yang, Lichao; Guo, Han; Li, Ying; Meng, Xianglan; Yan, Lu; Dan Zhang; Wu, Sangang; Zhou, Hao; Peng, Lu; Xie, Qiang; Jin, Xin

    2016-01-01

    The present study aimed to examine the anti-inflammatory actions of oleoylethanolamide (OEA) in lipopolysaccharide (LPS)-induced THP-1 cells. The cells were stimulated with LPS (1 μg/ml) in the presence or absence of OEA (10, 20 and 40 μM). The pro-inflammatory cytokines were evaluated by qRT-PCR and ELISA. The THP-1 cells were transiently transfected with PPARα small-interfering RNA, and TLR4 activity was determined with a blocking test using anti-TLR4 antibody. Additionally, a special inhibitor was used to analyse the intracellular signaling pathway. OEA exerted a potent anti-inflammatory effect by reducing the production of pro-inflammatory cytokines and TLR4 expression, and by enhancing PPARα expression. The modulatory effects of OEA on LPS-induced inflammation depended on PPARα and TLR4. Importantly, OEA inhibited LPS-induced NF-κB activation, IκBα degradation, expression of AP-1, and the phosphorylation of ERK1/2 and STAT3. In summary, our results demonstrated that OEA exerts anti-inflammatory effects by enhancing PPARα signaling, inhibiting the TLR4-mediated NF-κB signaling pathway, and interfering with the ERK1/2-dependent signaling cascade (TLR4/ERK1/2/AP-1/STAT3), which suggests that OEA may be a therapeutic agent for inflammatory diseases. PMID:27721381

  15. Study of Protein Phosphatase 2A (PP2A) Activity in LPS-Induced Tolerance Using Fluorescence-Based and Immunoprecipitation-Aided Methodology.

    PubMed

    Sun, Lei; Ii, Adlai L Pappy; Pham, Tiffany T; Shanley, Thomas P

    2015-06-29

    Protein phosphatase 2A (PP2A) is one of the most abundant intracellular serine/threonine (Ser/Thr) phosphatases accounting for 1% of the total cellular protein content. PP2A is comprised of a heterodimeric core enzyme and a substrate-specific regulatory subunit. Potentially, at least seventy different compositions of PP2A exist because of variable regulatory subunit binding that accounts for various activity modulating numerous cell functions. Due to the constitutive phosphatase activity present inside cells, a sensitive assay is required to detect the changes of PP2A activity under various experimental conditions. We optimized a fluorescence assay (DIFMU assay) by combining it with prior anti-PP2A immunoprecipitation to quantify PP2A-specific phosphatase activity. It is also known that prior exposure to lipopolysaccharides (LPS) induces "immune tolerance" of the cells to subsequent stimulation. Herein we report that PP2A activity is upregulated in tolerized peritoneal macrophages, corresponding to decreased TNF-α secretion upon second LPS stimulation. We further examined the role of PP2A in the tolerance effect by using PP2ACαl°xl°x;lyM-Cre conditional knockout macrophages. We found that PP2A phosphatase activity cannot be further increased by tolerance. TNF-α secretion from tolerized PP2ACαl°xl°x;lyM-Cre macrophages is higher than tolerized control macrophages. Furthermore, we showed that the increased TNF-α secretion may be due to an epigenetic transcriptionally active signature on the promoter of TNF-α gene rather than regulation of the NFκB/IκB signaling pathway. These results suggest a role for increased PP2A activity in the regulation of immune tolerance.

  16. Exploring LPS-induced sepsis in rats and mice as a model to study potential protective effects of the nociceptin/orphanin FQ system.

    PubMed

    Thomas, Roisin C; Bath, Michael F; Stover, Cordula M; Lambert, David G; Thompson, Jonathan P

    2014-11-01

    The nociceptin receptor (NOP) and its ligand nociceptin/orphanin FQ (N/OFQ) have been shown to exert a modulatory effect on immune cells during sepsis. We evaluated the suitability of an experimental lipopolysaccharide (LPS)-induced sepsis model for studying changes in the nociceptin system. C57BL/6 mice BALB/c mice and Wistar rats were inoculated with different doses of LPS with or without a nociceptin receptor antagonist (UFP-101 or SB-612111). In C57BL/6 mice LPS 0.85 mg/kg injection produced no septic response, whereas 1.2mg/kg produced a profound response within 5h. In BALB/c mice, LPS 4 mg/kg produced no response, whereas 7 mg/kg resulted in a profound response within 24h. In Wistar rats LPS 15 mg/kg caused no septic response in 6/10 animals, whereas 25mg/kg resulted in marked lethargy before 24h. Splenic interleukin-1β mRNA in BALB/c mice, and serum TNF-α concentrations in Wistar rats increased after LPS injection in a dose-dependent manner, but were undetectable in control animals, indicating that LPS had stimulated an inflammatory reaction. IL-1β and TNF-α concentrations in LPS-treated animals were unaffected by administration of a NOP antagonist. Similarly NOP antagonists had no effect on survival or expression of mRNA for NOP or ppN/OFQ (the N/OFQ precursor) in a variety of tissues. In these animal models, the dose-response curve for LPS was too steep to allow use in survival studies and no changes in the N/OFQ system occurred within 24h. We conclude that LPS-inoculation in rodents is an unsuitable model for studying possible changes in the NOP-N/OFQ system in sepsis.

  17. Protective effects of pogostone against LPS-induced acute lung injury in mice via regulation of Keap1-Nrf2/NF-κB signaling pathways.

    PubMed

    Sun, Chao-Yue; Xu, Lie-Qiang; Zhang, Zhen-Biao; Chen, Chao-Hui; Huang, Yong-Zhong; Su, Zu-Qing; Guo, Hui-Zhen; Chen, Xiao-Ying; Zhang, Xie; Liu, Yu-Hong; Chen, Jian-Nan; Lai, Xiao-Ping; Li, Yu-Cui; Su, Zi-Ren

    2016-03-01

    Pogostone, a major component of Pogostemon cablin, has been demonstrated to possess antibacterial, anti-fungal, immunosuppressive and anti-inflammatory properties. To investigate the potential therapeutic effect of pogostone on lipopolysaccharide (LPS)-induced acute lung injury (ALI), mice were pretreated with pogostone prior to LPS exposure. After LPS challenge, the lungs were excised and the histological changes, wet to dry weight ratios, MPO activity reflecting neutrophil infiltration, and MDA activity reflecting oxidative stress were examined. The inflammatory cytokines in the BALF were determined by ELISA assay. Moreover, the expressions of p65 and phosphorylated p65 subunit of NF-κB, and Nrf2 in the nucleus in lung tissues were measured by Western blot analysis, and meanwhile the dependent genes of NF-κB and Nrf2 were assessed by RT-qPCR. The results showed that pretreatment with pogostone markedly improved survival rate, attenuated the histological alterations in the lung, reduced the MPO and MDA levels, decreased the wet/dry weight ratio of lungs, down-regulated the level of pro-inflammatory mediators including TNF-a, IL-1β and IL-6. Furthermore, pretreatment with pogostone enhanced the Nrf2 dependent genes including NQO-1, GCLC and HO-1 but suppressed NF-κB regulated genes including TNF-α, IL-1β and IL-6. The mechanism behind the protective effect was correlated with its regulation on the balance between Keap1-Nrf2 and NF-κB signaling pathways. Therefore, pogostone may be considered as a potential therapeutic agent for preventing and treating ALI.

  18. LPS-induced NF-{kappa}B expression in THP-1Blue cells correlates with neopterin production and activity of indoleamine 2,3-dioxygenase

    SciTech Connect

    Schroecksnadel, Sebastian; Jenny, Marcel; Kurz, Katharina; Klein, Angela; Ledochowski, Maximilian; Uberall, Florian; Fuchs, Dietmar

    2010-09-03

    Research highlights: {yields} LPS induces NF-{kappa}B, neopterin formation and tryptophan degradation in THP-1 cells. {yields} Close dose- and time-dependent correlations exist between these biochemical events. {yields} Data provides some evidence for a parallel induction of them upon TLR stimulation. {yields} Results can be of considerable relevance also in vivo. -- Abstract: Neopterin production is induced in human monocyte-derived macrophages and dendritic cells upon stimulation with Th1-type cytokine interferon-{gamma} (IFN-{gamma}). In parallel, IFN-{gamma} induces the tryptophan-(trp)-degrading enzyme indoleamine 2,3-dioxygenase (IDO) and triggers the formation of reactive oxygen species (ROS). Translocation of the signal transduction element nuclear factor-{kappa}B (NF-{kappa}B) is induced by ROS and accelerates the pro-inflammatory response by activation of other pro-inflammatory pathways. Therefore, a close relationship between NF-{kappa}B expression, the production of neopterin and the degradation of trp can be assumed, although this has not been demonstrated so far. In the present in vitro study we compared the influence of lipopolysaccharide (LPS) on NF-{kappa}B activation, neopterin formation and the degradation of trp in THP-1Blue cells, which represent the human myelomonocytic cell line THP-1 stably transfected with an NF-{kappa}B inducible reporter system. In cells stimulated with LPS, a significant induction of NF-{kappa}B was observed, and this was paralleled by an increase of kynureunine (kyn) and neopterin concentrations and a decline of trp. The increase of the kyn to trp quotient indicates accelerated IDO activity. Higher LPS concentrations and longer incubation of cells were associated with higher activities of all three biochemical pathways and significant correlations existed between NF-{kappa}B activation, neopterin release and trp degradation (all p < 0.001). We conclude that there is a parallel induction of NF-{kappa}B, neopterin

  19. Effect of Adlay ( Coix lachryma-jobi L. var. ma-yuen Stapf) Testa and its phenolic components on Cu2+-treated low-density lipoprotein (LDL) oxidation and lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophages.

    PubMed

    Huang, Din-Wen; Kuo, Yueh-Hsiung; Lin, Fang-Yi; Lin, Yun-Lian; Chiang, Wenchang

    2009-03-25

    The aims of this study were to investigate the effects of adlay testa (AT) on Cu(2+)-treated low-density lipoprotein (LDL) oxidation, 2,2'-diphenyl-1-picrylhydrazyl (DPPH)-scavenging capacity, and lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophages and determine its active components. The AT ethanolic extract (ATE) was partitioned into four fractions by various solvents as follows: n-hexane (ATE-Hex), ethyl acetate (ATE-Ea), n-butanol (ATE-Bu), and water (ATE-H(2)O). ATE-Ea and ATE-Bu were further fractionated into ATE-Ea-a-ATE-Ea-h and ATE-Bu-A-ATE-Bu-F, respectively, by column chromatography. Results showed that ATE-Ea, ATE-Bu, ATE-Ea-e, and ATE-Bu-C expressed antiradical, antioxidative, and anti-inflammatory activities with respect to the DPPH-scavenging capacity, LDL protection effect, and nitric oxide (NO) inhibitory activity. Inflammation was further modulated by ATE-Ea, ATE-Bu, ATE-Ea-e, and ATE-Bu-C through downregulating the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) proteins. The following components were found in ATE-Ea-e and ATE-Bu-C after purification and high-performance liquid chromatographic analysis: chlorogenic acid (CGA), vanillic acid (VA), caffeic acid (CA), p-coumaric acid (PCA), ferulic acid (FA), and 2-O-beta-glucopyranosyl-7-methoxy-4((2)H)-benzoxazin-3-one (GMBO). Results showed that CGA, CA, and FA were the major components responsible for the antioxidative and anti-inflammatory activities of ATE-Ea-e and ATE-Bu-C. Subsequently, each gram of ATE-Bu-C had 30.3 mg of CGA, 9.02 mg of CA, and 189 mg of GMBO, while each gram of ATE-Ea-e had 1.31 mg of VA, 3.89 mg of PCA, and 47.6 microg of FA. In conclusion, ATE has antioxidative and anti-inflammatory activities, and its effects are partially related to its phenolic components. Thus, ATE has the potential to be developed as a functional food targeting chronic diseases.

  20. Synthesis and effects of new caffeic acid derivatives on nitric oxide production in lipopolysaccharide-induced RAW 264.7 macrophages

    PubMed Central

    Zhang, Jie; Xu, Liu-Xin; Xu, Xu-Sheng; Li, Bo-Wei; Wang, Rui; Fu, Jian-Jun

    2014-01-01

    In this study, 20 new derivatives of caffeic acid esters were synthesized and their inhibitory activities against the lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW264.7 macrophages were determined. Compounds 3l, 3r, 3s and 3t were found to decrease nitrite levels in a dose-dependent manner in LPS-induced cells and showed potent inhibitory activities against the NO production in RAW264.7 macrophages with IC50 values of 7.4, 5.9, 3.3 and 2.2 μM, respectively. They could be selected as compromising compounds for the later pharmacological study. PMID:24955176

  1. Attenuation of the LPS-induced, ERK-mediated upregulation of fibrosis-related factors FGF-2, uPA, MMP-2, and MMP-9 by Carthamus tinctorius L in cardiomyoblasts.

    PubMed

    Han, Chien-Kuo; Tien, Yun-Chen; Jine-Yuan Hsieh, Dennis; Ho, Tsung-Jung; Lai, Chao-Hung; Yeh, Yu-Lan; Hsuan Day, Cecilia; Shen, Chia-Yao; Hsu, Hsi-Hsien; Lin, Jing-Ying; Huang, Chih-Yang

    2017-03-01

    Severe and potentially fatal hypotension and cardiac contractile dysfunction are common symptoms in patients with sepsis. LPS was previously found to dramatically upregulate expression of fibrosis-related factors FGF-2, uPA, MMP-2, and MMP-9 in primary cardiac fibroblasts. MMPs are capable of denaturing and degrading fibrillar collagens and other components of the extracellular matrix (ECM). Studies have shown that dysregulation of expression of MMPs is associated with development of myocardial extracellular matrix remodeling and cardiac fibrosis, which contribute to progression of heart failure. In this study, H9c2 cells and cardiac fibroblasts were divided into five treatment groups: control, LPS (1 μg/mL) and three concentrations of FCEtOH (Carthami Flos ethanolic extract) (31.25, 62.5, and 125 μg/mL). Phosphorylation of ERK-1/2 was observed to be rapidly induced upon treatment with LPS. In contrast, it was significantly suppressed by the administration of FCEtOH (125 μg/mL). Effects of FCEtOH on LPS-induced MMP-2 and MMP-9 expression in H9c2 cells occurred directly through ERK1/2 were determined. H9c2 cells were therefore pretreated with EGF-R to activate ERK pathway. Both protein levels of MMP-2 and MMP-9 and immunefluorescent signals of MMP-9 were significantly enhanced by EGFR. In contrast, MMP-2 and MMP-9 were significantly reduced after FCEtOH administration. Based on these findings, the authors concluded that FCEtOH elicits a protective effect against LPS-induced cardio-fibrosis through the ERK1/2 pathway. Carthamus tinctorius L may potentially serve as a cardio-protective agent against LPS- induced cardiac fibrosis. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 754-763, 2017.

  2. autoregulatory role of endothelium-derived nitric oxide (NO) on Lipopolysaccharide-induced vascular inducible NO synthase expression and function.

    PubMed

    Vo, Phuong A; Lad, Bhavini; Tomlinson, James A P; Francis, Stephanie; Ahluwalia, Amrita

    2005-02-25

    Nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) is responsible for sepsis-induced hypotension and plays a major contributory role in the ensuing multiorgan failure. The present study aimed to elucidate the role of endothelial NO in lipopolysaccharide (LPS)-induced iNOS expression, in isolated rat aortic rings. Exposure to LPS (1 mug/ml, 5 h) resulted in a reversal of phenylephrine precontracted tone in aortic rings (70.7 +/- 3.2%). This relaxation was associated with iNOS expression and NF-kappaB activation. Positive immunoreactivity for iNOS protein was localized in medial and adventitial layers of LPS-treated aortic rings. Removal of the endothelium rendered aortic rings resistant to LPS-induced relaxation (8.9 +/- 4.5%). Western blotting of these rings demonstrated an absence of iNOS expression. However, treatment of endothelium-denuded rings with the NO donor, diethylamine-NONOate (0.1 mum), restored LPS-induced relaxation (61.6 +/- 6.6%) and iNOS expression to levels comparable with arteries with intact endothelium. Blockade of endothelial NOS (eNOS) activation using geldanamycin and radicicol, inhibitors of heat shock protein 90, in endothelium-intact arteries suppressed both LPS-induced relaxation and LPS-induced iNOS expression (9.0 +/- 8.0% and 2.0 +/- 6.2%, respectively). Moreover, LPS treatment (12.5 mg/kg, intravenous, 15 h) of wild-type mice resulted in profound elevation of plasma [NO(x)] measurements that were reduced by approximately 50% in eNOS knock-out animals. Furthermore, LPS-induced changes in vascular reactivity and iNOS expression evident in wild-type tissues were profoundly suppressed in tissues taken from eNOS knockout animals. Together, these data suggest that eNOS-derived NO, in part via activation of NF-kappaB, regulates iNOS-induction by LPS. This study provides the first demonstration of a proinflammatory role of vascular eNOS in sepsis.

  3. Rifampicin Inhibits the LPS-induced Expression of Toll-like Receptor 2 via the Suppression of NF-kappaB DNA-binding Activity in RAW 264.7 Cells.

    PubMed

    Kim, Seong Keun; Kim, Young Mi; Yeum, Chung Eun; Jin, Song-Hyo; Chae, Gue Tae; Lee, Seong-Beom

    2009-12-01

    Rifampicin is a macrocyclic antibiotic which is used extensively for treatment against Mycobacterium tuberculosis and other mycobacterial infections. Recently, a number of studies have focused on the immune-regulatory effects of rifampicin. Therefore, we hypothesized that rifampicin may influence the TLR2 expression in LPS-activated RAW 264.7 cells. In this study, we determined that rifampicin suppresses LPS-induced TLR2 mRNA expression. The down-regulation of TLR2 expression coincided with decreased production of TNF-alpha. Since NF-kappaB is a major transcription factor that regulates genes for TLR2 and TNF-alpha, we examined the effect of rifampicin on the LPS-induced NF-kappaB activation. Rifampicin inhibited NF-kappaB DNA-binding activity in LPS-activated RAW 264.7 cells, while it did not affect IKKalpha/beta activity. However, rifampicin slightly inhibited the nuclear translocation of NF-kappaB p65. In addition, rifampicin increased physical interaction between pregnane X receptor, a receptor for rifampicin, and NF-kappaB p65, suggesting pregnane X receptor interferes with NF-kappaB binding to DNA. Taken together, our results demonstrate that rifampicin inhibits LPS-induced TLR2 expression, at least in part, via the suppression of NF-kappaB DNA-binding activity in RAW 264.7 cells. Thus, the present results suggest that the rifampicin-mediated inhibition of TLR2 via the suppression of NF-kappaB DNA-binding activity may be a novel mechanism of the immune-suppressive effects of rifampicin.

  4. Differential sensitivity to LPS-induced myocardial dysfunction in the isolated brown Norway and Dahl S rat hearts: roles of mitochondrial function, NF-κB activation, and TNF-α production.

    PubMed

    An, Jianzhong; Du, Jianhai; Wei, Na; Guan, Tongju; Camara, Amadou K S; Shi, Yang

    2012-03-01

    Recently, we reported that Brown Norway (BN) rats were more resistant to lipopolysaccharide (LPS)-induced myocardial dysfunction than Dahl S (SS) rats. This differential sensitivity was exemplified by reduced production of proinflammatory cytokines and diminished nuclear factor-κB pathway activation. To further clarify the mechanisms of different susceptibility of these two strains to endotoxin, this study was designed to examine the alterations of cardiac and mitochondrial bioenergetics, proinflammatory cytokines, and signaling pathways after hearts were isolated and exposed to LPS ex vivo. Isolated BN and SS hearts were perfused with LPS (4 μg/mL) for 30 min in the Langendorff preparation. Lipopolysaccharide depressed cardiac function as evident by reduced left ventricular developed pressure and decreased peak rate of contraction and relaxation in SS hearts but not in BN hearts. These findings are consistent with our previous in-vivo data. Under complex I substrates, a higher oxygen consumption and hydrogen peroxide (H2O2) production were observed in mitochondria from SS hearts than those from BN hearts. Lipopolysaccharide significantly increased H2O2 levels in both SS and BN heart mitochondria; however, the increase in oxygen consumption and H2O2 production in BN heart mitochondria was much lower than that in SS heart mitochondria. In addition, LPS significantly decreased complex I activity in SS hearts but not in BN hearts. Furthermore, LPS induced higher levels of tumor necrosis factor-α and increased phosphorylation of IκκB and p65 more in SS hearts than in BN hearts. Our results clearly demonstrate that less mitochondrial dysfunction combined with a reduced production of tumor necrosis factor-α and diminished activation of nuclear factor-κB are involved in the mechanisms by which isolated BN hearts were more resistant to LPS-induced myocardial dysfunction.

  5. Evaluation of 5-HT7 Receptor Trafficking on In Vivo and In Vitro Model of Lipopolysaccharide (LPS)-Induced Inflammatory Cell Injury in Rats and LPS-Treated A549 Cells.

    PubMed

    Ayaz, Gulsen; Halici, Zekai; Albayrak, Abdulmecit; Karakus, Emre; Cadirci, Elif

    2017-02-01

    This study aimed to investigate the effects of the 5-HT7 receptor agonist (LP44) and antagonist (SB269970) on LPS-induced in vivo tissue damage and cell culture by molecular methods. This study was conducted in two steps. For in vivo studies, 24 female rats were divided into four groups. Group I: healthy; II (2nd h): LPS 5 mg/kg administered intraperitoneally (i.p.); III (4th h): LPS 5 mg/kg administered i.p.; IV (8th h): LPS 5 mg/kg administered i.p. For in vitro studies, we used the A549 cell line. Groups: I control (healthy) (2-4 h); II LPS: 1 µg/ml E. Coli O55:B5 strain (2-4 h); III agonist (LP44) 10(-9) M (2-4 h); IV antagonist (SB269970) 10(-9) M (2-4 h); V LPS+agonist 10(-9) M (LP44 1 µg/ml) (2-4 h); VI LPS+antagonist 10(-9) M (2-4 h). In molecular analyses, we determined increased TNF-α, IL-1β, NF-κB, and 5-HT7 mRNA expressions in rat lung tissues and increased TNF-α, iNOS, and 5-HT7 mRNA expressions in the A549 cell line. In in vitro parameters, LP44 agonist administration-related decrease was observed. Our study showed that lung 5-HT7 receptor expression is increased in LPS-induced endotoxemia. All this data suggest that 5-HT7 receptor overexpression is an important protective mechanism during LPS-induced sepsis-related cell damage.

  6. Ethanol extract of Synurus deltoides (Aiton) Nakai suppresses in vitro LPS-induced cytokine production in RAW 264.7 macrophages and in vivo acute inflammatory symptoms

    PubMed Central

    Jiang, Yunyao

    2014-01-01

    Synurus deltoides (Aiton) Nakai, belonging to the Compositae family, is an edible plant widely distributed in Northeast Asia. In this study, we examined the mechanisms underlying the immunomodulative effects of the ethanol extract of S. deltoides (SDE). The SDE extract strongly down-regulated the mRNA expression of the inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumour necrosis factor (TNF)-α, thereby inhibiting the production of nitric oxide (NO), prostaglandin E2 (PGE2), and TNF-α in the lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Furthermore, SDE also suppressed the nuclear translocation of the activation protein (AP)-1 and the nuclear factor-κB (NF-κB), and simultaneously decreased the phosphorylation of extracellular signal-regulated protein kinases (ERK), p38, and Akt. In agreement with the in vitro observations, the orally administered SDE ameliorated the acute inflammatory symptoms in the arachidonic acid-induced ear edema and the EtOH/HCl-induced gastritis in mice. Therefore, S. deltoides have a potential anti-inflammatory capacity in vitro and in vivo, suggesting the potential therapeutic use in the inflammation-associated disorders. PMID:24611100

  7. Ghrelin Protection against Lipopolysaccharide-Induced Gastric Mucosal Cell Apoptosis Involves Constitutive Nitric Oxide Synthase-Mediated Caspase-3 S-Nitrosylation

    PubMed Central

    Slomiany, Bronislaw L.; Slomiany, Amalia

    2010-01-01

    Ghrelin, a peptide hormone produced mainly in the stomach, has emerged as an important modulator of the inflammatory responses that are of significance to the maintenance of gastric mucosal integrity. Here, we report on the role of ghrelin in controlling the apoptotic processes induced in gastric mucosal cells by H. pylori lipopolysaccharide (LPS). The countering effect of ghrelin on the LPS-induced mucosal cell apoptosis was associated with the increase in constitutive nitric oxide synthase (cNOS) activity, and the reduction in caspase-3 and inducible nitric oxide synthase (NOS-2). The loss in countering effect of ghrelin on the LPS-induced changes in apoptosis and caspase-3 activity was attained with Src kinase inhibitor, PP2, as well as Akt inhibitor, SH-5, and cNOS inhibitor, L-NAME. Moreover, the effect of ghrelin on the LPS-induced changes in cNOS activity was reflected in the increased cNOS phosphorylation that was sensitive to SH-5. Furthermore, the ghrelin-induced up-regulation in cNOS activity was associated with the increase in caspase-3 S-nitrosylation that was susceptible to the blockage by L-NAME. Therefore, ghrelin protection of gastric mucosal cells against H. pylori LPS-induced apoptosis involves Src/Akt-mediated up-regulation in cNOS activation that leads to the apoptotic signal inhibition through the NO-induced caspase-3 S-nitrosylation. PMID:20369000

  8. Short-term heating reduces the anti-inflammatory effects of fresh raw garlic extracts on the LPS-induced production of NO and pro-inflammatory cytokines by downregulating allicin activity in RAW 264.7 macrophages.

    PubMed

    Shin, Jung-Hye; Ryu, Ji Hyeon; Kang, Min Jung; Hwang, Cho Rong; Han, Jaehee; Kang, Dawon

    2013-08-01

    Garlic has a variety of biologic activities, including anti-inflammatory properties. Although garlic has several biologic activities, some people dislike eating fresh raw garlic because of its strong taste and smell. Therefore, garlic formulations involving heating procedures have been developed. In this study, we investigated whether short-term heating affects the anti-inflammatory properties of garlic. Fresh and heated raw garlic extracts (FRGE and HRGE) were prepared with incubation at 25 °C and 95 °C, respectively, for 2 h. Treatment with FRGE and HRGE significantly reduced the LPS-induced increase in the pro-inflammatory cytokine concentration (TNF-α, IL-1β, and IL-6) and NO through HO-1 upregulation in RAW 264.7 macrophages. The anti-inflammatory effect was greater in FRGE than in HRGE. The allicin concentration was higher in FRGE than in HRGE. Allicin treatment showed reduced production of pro-inflammatory cytokines and NO and increased HO-1 activity. The results show that the decrease in LPS-induced NO and pro-inflammatory cytokines in RAW 264.7 macrophages through HO-1 induction was greater for FRGE compared with HRGE. Additionally, the results indicate that allicin is responsible for the anti-inflammatory effect of FRGE. Our results suggest a potential therapeutic use of allicin in the treatment of chronic inflammatory disease.

  9. LPS-induced iNOS expression in N9 microglial cells is suppressed by geniposide via ERK, p38 and nuclear factor-κB signaling pathways.

    PubMed

    Zhang, Gu; He, Jun-Lin; Xie, Xiao-Yan; Yu, Chao

    2012-09-01

    Activated microglia producing reactive nitrogen species, inflammatory factors, reactive oxygen species (ROS) and other neurovirulent factors, can lead to the development of neurodegenerative diseases. Certain compounds can inhibit the activation of microglia. However, the mechanisms remain unclear. In the present study, we investigated the inhibitory effect of geniposide on the production of ROS and inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated N9 murine microglial cells through the p38, ERK1/2 and nuclear factor-κB (NF-κB) signaling pathways. After the N9 cells were pre-treated with the vehicle or geniposide and exposed to LPS for the time indicated, the MTT conversion test was used to assess cell viability. Suitable concentrations were chosen and adjusted according to the experiments. Extracellular nitric oxide (NO) release was measured by Griess reaction. The formation of ROS and intracellular NO was evaluated by fluorescence imaging. NOS activities were determined using commercially available kits. The morphology of the N9 cells was examined by hematoxylin and eosin staining. The expression of iNOS mRNA was examined by RT-PCR. The protein levels of iNOS, p38 mitogen-activated protein kinase (MAPK), ERK1/2 and NF-κB, inhibitory factor-κB-α (IκB-α) were determined by western blot analysis. The results showed that geniposide attenuated the activation of N9 cells and inhibited the overproduction of NO, intracellular ROS and the expression of iNOS induced by LPS in the cells. In addition, geniposide blocked the phosphorylation of p38, ERK1/2 and inhibited the drop-off of IκB induced by LPS in the cells. These data indicate that geniposide has therapeutic potential for the treatment of neurodegenerative diseases, and that it exerts its effects by inhibiting inflammation.

  10. Globular Adiponectin Causes Tolerance to LPS-Induced TNF-α Expression via Autophagy Induction in RAW 264.7 Macrophages: Involvement of SIRT1/FoxO3A Axis.

    PubMed

    Pun, Nirmala Tilija; Subedi, Amit; Kim, Mi Jin; Park, Pil-Hoon

    2015-01-01

    Adiponectin, an adipokine predominantly produced from adipose tissue, exhibited potent anti-inflammatory properties. In particular, it inhibits production of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), in macrophages. Autophagy, an intracellular self-digestion process, has been recently shown to regulate inflammatory responses. In the present study, we investigated the role of autophagy induction in the suppression of Lipopolysaccharide (LPS) -induced TNF-α expression by globular adiponectin (gAcrp) and its potential mechanisms. Herein, we found that gAcrp treatment increased expression of genes related with autophagy, including Atg5 and microtubule-associated protein light chain (LC3B), induced autophagosome formation and autophagy flux in RAW 264.7 macrophages. Similar results were observed in primary macrophages isolated peritoneum of mice. Interestingly, inhibition of autophagy by pretreatment with Bafilomycin A1 or knocking down of LC3B gene restored suppression of TNF-α expression, tumor necrosis factor receptor- associated factor 6 (TRAF6) expression and p38MAPK phosphorylation by gAcrp, implying a critical role of autophagy induction in the development of tolerance to LPS-induced TNF-α expression by gAcrp. We also found that knocking-down of FoxO3A, a forkhead box O member of transcription factor, blocked gAcrp-induced expression of LC3II and Atg5. Moreover, gene silencing of Silent information regulator 1 (SIRT1) blocked both gAcrp-induced nuclear translocation of FoxO3A and LC3II expression. Finally, pretreatment with ROS inhibitors, prevented gAcrp-induced SIRT1 expression and further generated inhibitory effects on gAcrp-induced autophagy, indicating a role of ROS production in gAcrp-induced SIRT1 expression and subsequent autophagy induction. Taken together, these findings indicate that globular adiponectin suppresses LPS-induced TNF-α expression, at least in part, via autophagy activation. Furthermore, SIRT1-FoxO3A

  11. Amomum tsao-ko fruit extract suppresses lipopolysaccharide-induced inducible nitric oxide synthase by inducing heme oxygenase-1 in macrophages and in septic mice.

    PubMed

    Shin, Ji-Sun; Ryu, Suran; Jang, Dae Sik; Cho, Young-Wuk; Chung, Eun Kyung; Lee, Kyung-Tae

    2015-12-01

    Amomum tsao-ko Crevost et Lemarié (Zingiberaceae) has traditionally been used to treat inflammatory and infectious diseases, such as throat infections, malaria, abdominal pain and diarrhoea. This study was designed to assess the anti-inflammatory effects and the molecular mechanisms of the methanol extract of A. tsao-ko (AOM) in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages and in a murine model of sepsis. In LPS-induced RAW 264.7 macrophages, AOM reduced the production of nitric oxide (NO) by inhibiting inducible nitric oxide synthase (iNOS) expression, and increased heme oxygenase-1 (HO-1) expression at the protein and mRNA levels. Pretreatment with SnPP (a selective inhibitor of HO-1) and silencing HO-1 using siRNA prevented the AOM-mediated inhibition of NO production and iNOS expression. Furthermore, AOM increased the expression and nuclear accumulation of NF-E2-related factor 2 (Nrf2), which enhanced Nrf2 binding to antioxidant response element (ARE). In addition, AOM induced the phosphorylation of extracellular regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) and generated reactive oxygen species (ROS). Furthermore, pretreatment with N-acetyl-l-cysteine (NAC; a ROS scavenger) diminished the AOM-induced phosphorylation of ERK and JNK and AOM-induced HO-1 expression, suggesting that ERK and JNK are downstream mediators of ROS during the AOM-induced signalling of HO-1 expression. In LPS-induced endotoxaemic mice, pretreatment with AOM reduced NO serum levels and liver iNOS expression and increased HO-1 expression and survival rates. These results indicate that AOM strongly inhibits LPS-induced NO production by activating the ROS/MAPKs/Nrf2-mediated HO-1 signalling pathway, and supports its pharmacological effects on inflammatory diseases.

  12. Inhibition of LPS-induced TNF-α and NO production in mouse macrophage and inflammatory response in rat animal models by a novel Ayurvedic formulation, BV-9238.

    PubMed

    Dey, Debendranath; Chaskar, Sunetra; Athavale, Nitin; Chitre, Deepa

    2014-10-01

    Rheumatoid arthritis is a chronic crippling disease, where protein-based tumor necrosis factor-alpha (TNF-α) inhibitors show significant relief, but with potentially fatal side effects. A need for a safe, oral, cost-effective small molecule or phyto-pharmaceutical is warranted. BV-9238 is an Ayurvedic poly-herbal formulation containing specialized standardized extracts of Withania somnifera, Boswellia serrata, Zingiber officinale and Curcuma longa. The anti-inflammatory and anti-arthritic effects of BV-9238 were evaluated for inhibition of TNF-α and nitric oxide (NO) production, in lipopolysaccharide-stimulated, RAW 264.7, mouse macrophage cell line. BV-9238 reduced TNF-α and NO production, without any cytotoxic effects. Subsequently, the formulation was tested in adjuvant-induced arthritis (AIA) and carrageenan-induced paw edema (CPE) rat animal models. AIA was induced in rats by injecting Freund's complete adjuvant intra-dermally in the paw, and BV-9238 and controls were administered orally for 21 days. Arthritic scores in AIA study and inflamed paw volume in CPE study were significantly reduced upon treatment with BV-9238. These results suggest that the anti-inflammatory and anti-arthritic effects of BV-9238 are due to its inhibition of TNF-α, and NO, and this formulation shows promise as an alternate therapy for inflammatory disorders where TNF-α and NO play important roles.

  13. NCX 4040, a nitric oxide-donating aspirin derivative, inhibits Prevotella intermedia lipopolysaccharide-induced production of proinflammatory mediators in murine macrophages.

    PubMed

    Choi, Eun-Young; Choe, So-Hui; Hyeon, Jin-Yi; Park, Hae Ryoun; Choi, Jeom-Il; Choi, In Soon; Kim, Sung-Jo

    2015-12-05

    In this study, the effects and underlying mechanisms of NCX 4040, a nitric oxide (NO)-donating aspirin derivative, on the production of proinflammatory mediators were examined using murine macrophages exposed to lipopolysaccharide (LPS) from Prevotella intermedia, a pathogen implicated in the etiology of periodontal disease. NCX 4040 significantly reduced P. intermedia LPS-induced production of inducible NO synthase (iNOS)-derived NO, IL-1β and IL-6 as well as their mRNA expression in RAW264.7 cells. Notably, NCX 4040 was much more effective than the parental compound aspirin in reducing LPS-induced production of inflammatory mediators. NCX 4040 induced the expression of heme oxygenase-1 (HO-1) in cells treated with P. intermedia LPS, and the suppressive effect of NCX 4040 on LPS-induced NO production was significantly reversed by SnPP, a competitive HO-1 inhibitor. NCX 4040 did not influence LPS-induced phosphorylation of JNK and p38. IκB-α degradation as well as nuclear translocation and DNA-binding activities of NF-κB p65 and p50 subunits induced by P. intermedia LPS were significantly reduced by NCX 4040. Besides, LPS-induced phosphorylation of STAT1 and STAT3 was significantly down-regulated by NCX 4040. Further, NCX 4040 elevated the SOCS1 mRNA in cells stimulated with LPS. This study indicates that NCX 4040 inhibits P. intermedia LPS-induced production of NO, IL-1β and IL-6 in murine macrophages through anti-inflammatory HO-1 induction and suppression of NF-κB, STAT1 and STAT3 activation, which is associated with the activation of SOCS1 signaling. NCX 4040 could potentially be a promising tool in the treatment of periodontal disease, although further studies are required to verify this.

  14. Sonchus asper extract inhibits LPS-induced oxidative stress and pro-inflammatory cytokine production in RAW264.7 macrophages

    PubMed Central

    Wang, Lan; Xu, Ming Lu; Liu, Jie; Wang, You; Hu, Jian He

    2015-01-01

    BACKGROUND/OBJECTIVES Sonchus asper is used extensively as an herbal anti-inflammatory for treatment of bronchitis, asthma, wounds, burns, and cough; however, further investigation is needed in order to understand the underlying mechanism. To determine its mechanism of action, we examined the effects of an ethyl acetate fraction (EAF) of S. asper on nitric oxide (NO) production and prostaglandin-E2 levels in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. MATERIALS/METHODS An in vitro culture of RAW264.7 macrophages was treated with LPS to induce inflammation. RESULTS Treatment with EAF resulted in significant suppression of oxidative stress in RAW264.7 macrophages as demonstrated by increased endogenous superoxide dismutase (SOD) activity and intracellular glutathione levels, decreased generation of reactive oxygen species and lipid peroxidation, and restoration of the mitochondrial membrane potential. To confirm its anti-inflammatory effects, analysis of expression of inducible NO synthase, cyclooxygenase-2, tumor necrosis factor-α, and the anti-inflammatory cytokines IL-1β and IL-6 was performed using semi-quantitative RT-PCR. EAF treatment resulted in significantly reduced dose-dependent expression of all of these factors, and enhanced expression of the antioxidants MnSOD and heme oxygenase-1. In addition, HPLC fingerprint results suggest that rutin, caffeic acid, and quercetin may be the active ingredients in EAF. CONCLUSIONS Taken together, findings of this study imply that the anti-inflammatory effect of EAF on LPS-stimulated RAW264.7 cells is mediated by suppression of oxidative stress. PMID:26634045

  15. Constitutively expressed Siglec-9 inhibits LPS-induced CCR7, but enhances IL-4-induced CD200R expression in human macrophages.

    PubMed

    Higuchi, Hiroshi; Shoji, Toru; Iijima, Shinji; Nishijima, Ken-Ichi

    2016-06-01

    Siglecs recognize the sialic acid moiety and regulate various immune responses. In the present study, we compared the expression levels of Siglecs in human monocytes and macrophages using a quantitative real-time reverse transcription-polymerase chain reaction analysis. The differentiation of monocytes into macrophages by macrophage colony-stimulating factor or granulocyte macrophage colony-stimulating factor enhanced the expression of Siglec-7 and Siglec-9. The differentiated macrophages were stimulated by lipopolysaccharide (LPS) plus interferon (IFN)-γ or interleukin (IL)-4. The expression of Siglec-10 was enhanced by IL-4, whereas that of Siglec-7 was reduced by LPS plus IFN-γ. The expression of Siglec-9 was not affected by these stimuli. The knockdown of Siglec-9 enhanced the expression of CCR7 induced by the LPS or the LPS plus IFN-γ stimulation, and decreased the IL-4-induced expression of CD200R. These results suggest that Siglec-9 is one of the main Siglecs in human blood monocytes/macrophages and modulates innate immunity.

  16. SILAC-MS Based Characterization of LPS and Resveratrol Induced Changes in Adipocyte Proteomics – Resveratrol as Ameliorating Factor on LPS Induced Changes

    PubMed Central

    Kroager, Toke P.; Sanggaard, Kristian W.; Knudsen, Anders D.; Stensballe, Allan; Enghild, Jan J.; Ølholm, Jens; Richelsen, Bjørn; Pedersen, Steen B.

    2016-01-01

    Adipose tissue inflammation is believed to play a pivotal role in the development obesity-related morbidities such as insulin resistance. However, it is not known how this (low-grade) inflammatory state develops. It has been proposed that the leakage of lipopolysaccharides (LPS), originating from the gut microbiota, through the gut epithelium could drive initiation of inflammation. To get a better understanding of which proteins and intracellular pathways are affected by LPS in adipocytes, we performed SILAC proteomic analysis and identified proteins that were altered in expression. Furthermore, we tested the anti-inflammatory compound resveratrol. A total of 927 proteins were quantified by the SILAC method and of these 57- and 64 were significantly up- and downregulated by LPS, respectively. Bioinformatic analysis (GO analysis) revealed that the upregulated proteins were especially involved in the pathways of respiratory electron transport chain and inflammation. The downregulated proteins were especially involved in protein glycosylation. One of the latter proteins, GALNT2, has previously been described to regulate the expression of liver lipases such as ANGPTL3 and apoC-III affecting lipid metabolism. Furthermore, LPS treatment reduced the protein levels of the insulin sensitizing adipokine, adiponectin, and proteins participating in the final steps of triglyceride- and cholesterol synthesis. Generally, resveratrol opposed the effect induced by LPS and, as such, functioning as an ameliorating factor in disease state. Using an unbiased proteomic approach, we present novel insight of how the proteome is altered in adipocytes in response to LPS as seen in obesity. We suggest that LPS partly exerts its detrimental effects by altering glycosylation processes of the cell, which is starting to emerge as important posttranscriptional regulators of protein expression. Furthermore, resveratrol could be a prime candidate in ameliorating dysfunctioning adipose tissue

  17. Comparison of stress-induced and LPS-induced depressive-like behaviors and the alterations of central proinflammatory cytokines mRNA in rats.

    PubMed

    Guan, Xi-Ting; Lin, Wen-Juan; Tang, Ming-Ming

    2015-09-01

    Although proinflammatory cytokine changes in depression have been studied widely, few investigations have searched for specific and common changes in cytokines. In the present study, two animal models of depression were compared: a chronic stress model using forced swim stress and an immune activation model using repeated central lipopolysaccharide (LPS) infusion. The levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 mRNA were examined in the brain regions of the prefrontal cortex, amygdala, and hippocampus using real-time polymerase chain reaction (RT-PCR). It was found that both chronic swim stress and repeated central LPS infusion induced depressive-like behaviors, including decreased body weight, reduced saccharin preference, and increased immobility time or shortened latency of immobility in the tail suspension test. Central TNF-α mRNA expression was elevated in both models and central IL-6 mRNA expression was unchanged in both models. Central IL-1β mRNA expression was increased only in the chronic immune activation model. The findings from this study suggest that TNF-α may be a common risk factor for inflammation in depressive disorders.

  18. Pepsin-pancreatin protein hydrolysates from extruded amaranth inhibit markers of atherosclerosis in LPS-induced THP-1 macrophages-like human cells by reducing expression of proteins in LOX-1 signaling pathway

    PubMed Central

    2014-01-01

    Background Atherosclerosis is considered a progressive disease that affects arteries that bring blood to the heart, to the brain and to the lower end. It derives from endothelial dysfunction and inflammation, which play an important role in the thrombotic complications of atherosclerosis. Cardiovascular disease is the leading cause of death around the world and one factor that can contribute to its progression and prevention is diet. Our previous study found that amaranth hydrolysates inhibited LPS-induced inflammation in human and mouse macrophages by preventing activation of NF-κB signaling. Furthermore, extrusion improved the anti-inflammatory effect of amaranth protein hydrolysates in both cell lines, probably attributed to the production of bioactive peptides during processing. Therefore, the objective of this study was to compare the anti-atherosclerotic potential of pepsin-pancreatin hydrolysates from unprocessed and extruded amaranth in THP-1 lipopolysaccharide-induced human macrophages and suggest the mechanism of action. Results Unprocessed amaranth hydrolysate (UAH) and extruded amaranth hydrolysate (EAH) showed a significant reduction in the expression of interleukin-4 (IL-4) (69% and 100%, respectively), interleukin-6 (IL-6) (64% and 52%, respectively), interleukin-22 (IL-22) (55% and 70%, respectively). Likewise, UAH and EAH showed a reduction in the expression of monocyte-chemo attractant protein-1 (MCP-1) (35% and 42%, respectively), transferrin receptor-1 (TfR-1) (48% and 61%, respectively), granulocyte-macrophage colony-stimulating factor (GM-CSF) (59% and 63%, respectively), and tumor necrosis factor-α (TNF-α) (60% and 63%, respectively). Also, EAH reduced the expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) (27%), intracellular adhesion molecule-1 (ICAM-1) (28%) and matrix metalloproteinase-9 (MMP-9) (19%), important molecular markers in the atherosclerosis pathway. EAH, led to a reduction of 58, 52 and 79% for

  19. Methane limit LPS-induced NF-κB/MAPKs signal in macrophages and suppress immune response in mice by enhancing PI3K/AKT/GSK-3β-mediated IL-10 expression

    PubMed Central

    Zhang, Xu; Li, Na; Shao, Han; Meng, Yan; Wang, Liping; Wu, Qian; Yao, Ying; Li, Jinbao; Bian, Jinjun; Zhang, Yan; Deng, Xiaoming

    2016-01-01

    Inflammatory diseases such as sepsis and autoimmune colitis, characterized by an overwhelming activation of the immune system and the counteracting anti-inflammatory response, remain a major health problem in worldwide. Emerging evidence suggests that methane have a protective effect on many animal models, like ischaemia reperfusion injury and diabetes-associated diseases. Whether methane could modulating inflammatory diseases remains largely unknown. Here we show that methane-rich saline (MS) ip treatment (16 ml/kg) alleviated endotoxin shock, bacteria-induced sepsis and dextran-sulfate-sodium-induced colitis in mice via decreased production of TNF-α and IL-6. In MS-treated macrophages, LPS-induced activation of NF-κb/MAPKs was attenuated. Interestingly, MS treatment significantly elevated the levels of IL-10 both in vitro and in vivo. Neutralization of IL-10 abrogated the therapeutic effect of MS. Moreover, anti-IL10 blockade partially restored the MS-mediated attenuation of NF-κb/MAPKs phosphorylation. We further found that MS resulted in markedly enhanced phosphorylation of GSK-3β and AKT, which both mediate the release of Il-10. Additionally, inhibition of PI3K attenuated MS-mediated p-GSK-3β and IL-10 production and reversed the suppressed activation of NF-κb/ MAPKs in response to LPS. Our results reveal a novel effect and mechanisms of methane and support the potential value of MS as a therapeutic approach in innate inflammatory diseases. PMID:27405597

  20. Carbon monoxide-releasing molecule-3 suppresses Prevotella intermedia lipopolysaccharide-induced production of nitric oxide and interleukin-1β in murine macrophages.

    PubMed

    Choi, Eun-Young; Choe, So-Hui; Hyeon, Jin-Yi; Choi, Jeom-Il; Choi, In Soon; Kim, Sung-Jo

    2015-10-05

    This study was performed to analyze the effect of carbon monoxide (CO)-releasing molecule-3 (CORM-3) in alleviating the production of proinflammatory mediators in macrophages treated with lipopolysaccharide (LPS) from Prevotella intermedia, a pathogen associated with periodontal disease, and its possible mechanisms of action. LPS was isolated using the hot phenol-water method. Culture supernatants were assayed for nitric oxide (NO) and interleukin-1β (IL-1β). Gene expression was quantified by real-time PCR, and protein expression by immunoblotting. DNA-binding activities of NF-κB subunits were determined using an ELISA-based kit. CORM-3 suppressed the production of inducible NO synthase (iNOS)-derived NO and IL-1β at both gene transcription and translation levels in P. intermedia LPS-activated RAW264.7 cells. CORM-3 enhanced heme oxygenase-1 (HO-1) expression in cells stimulated with P. intermedia LPS, and inhibition of HO-1 activity by SnPP notably reversed the suppressive effect of CORM-3 on LPS-induced production of NO. LPS-induced phosphorylation of p38 and JNK was not affected by CORM-3. CORM-3 did not influence P. intermedia LPS-induced degradation of IκB-α. Instead, nuclear translocation of NF-κB p65 and p50 subunits was blocked by CORM-3 in LPS-treated cells. In addition, CORM-3 reduced LPS-induced p65 and p50 binding to DNA. Besides, CORM-3 significantly suppressed P. intermedia LPS-induced phosphorylation of STAT1. Overall, this study indicates that CORM-3 suppresses the production of NO and IL-1β in P. intermedia LPS-activated murine macrophages via HO-1 induction and inhibition of NF-κB and STAT1 pathways. The modulation of host inflammatory response by CORM-3 would be an attractive therapeutic approach to attenuate the progression of periodontal disease.

  1. The presence of MOMA-2+ macrophages in the outer B cell zone and protection of the splenic micro-architecture from LPS-induced destruction depend on secreted IgM.

    PubMed

    Fischer, Michael B; Rüger, Beate; Vaculik, Christine; Becherer, Alexander; Wadsak, Wolfgang; Yanagida, Genya; Losert, Udo M; Chen, Jianzhu; Carroll, Michael C; Eibl, Martha M

    2007-10-01

    The role secretory IgM has in protecting splenic tissue from LPS-induced damage was assessed in mice incapable of secreting IgM but able to express surface IgM and IgD. Within seconds after LPS challenge, 99% of the (131)I-labeled LPS was found in the liver and the spleen of both sIgM-deficient and wild-type mice. In the spleen FITC-labeled LPS was found on the surface of 2F8(+) scavenger receptor macrophages localized in the outer marginal zone, while none of the labeled LPS could be detected on marginal zone ER-TR9(+) and MOMA-1(+) macrophages. An additional population of macrophages, MOMA-2(+), were capable of producing C3 locally in the T and B cell zone after LPS challenge. Local C3 production was regulated, as no C3 was found in splenic tissue of unchallenged mice. Interestingly, in the absence of circulating and locally produced secretory IgM, MOMA-2(+) macrophages of the T and B cell zone failed to establish an additional ring of C3-producing macrophages in the outer B cell zone close to the marginal zone upon LPS challenge. The consequence was a massive destruction of the microarchitecture of the spleen where marginal zones disorganized, lymphoid follicles and T cell zones disrupted and follicular DC (FDC) networks disappeared.

  2. Effects of phenylethanoid glycosides from Digitalis purpurea L. on the expression of inducible nitric oxide synthase.

    PubMed

    Oh, Jae Wook; Lee, Jeong Yong; Han, Song Hee; Moon, Young Hee; Kim, Yoon Gyoon; Woo, Eun-Rhan; Kang, Keon Wook

    2005-07-01

    We have isolated four different phenylethanoid glycosides (purpureaside A, desrhamnosyl acteoside, calceolarioside B and plantainoside D) from the leaves of Digitalis purpurea (foxglove). The effects of these glycosides on activator protein-1 (AP-1)-mediated inducible nitric oxide synthase (iNOS) gene expression in the Raw264.7 macrophage cell line have been studied. Of these four glycosides, purpureaside A potently inhibited iNOS induction by lipopolysaccharide (LPS). Increase in iNOS mRNA by LPS was completely suppressed by purpureaside A. Purpureaside A did not significantly affect LPS-inducible nuclear factor-kappaB (NF-kappaB) activation or the nuclear translocation of p65. Moreover, a reporter gene assay using AP-1 specific luciferase reporter revealed that the enhanced activity of AP-1 by LPS was completely abolished in cells treated with purpureaside A. These results demonstrated that purpureaside A inhibited LPS-inducible iNOS expression in macrophages through the suppression of AP-1, but not of NF-kappaB.

  3. Activin A Inhibits MPTP and LPS-Induced Increases in Inflammatory Cell Populations and Loss of Dopamine Neurons in the Mouse Midbrain In Vivo

    PubMed Central

    Stayte, Sandy; Rentsch, Peggy; Tröscher, Anna R.; Bamberger, Maximilian; Li, Kong M.; Vissel, Bryce

    2017-01-01

    Parkinson’s disease is a chronic neurodegenerative disease characterized by a significant loss of dopaminergic neurons within the substantia nigra pars compacta region and a subsequent loss of dopamine within the striatum. A promising avenue of research has been the administration of growth factors to promote the survival of remaining midbrain neurons, although the mechanism by which they provide neuroprotection is not understood. Activin A, a member of the transforming growth factor β superfamily, has been shown to be a potent anti-inflammatory following acute brain injury and has been demonstrated to play a role in the neuroprotection of midbrain neurons against MPP+-induced degeneration in vitro. We hypothesized that activin A may offer similar anti-inflammatory and neuroprotective effects in in vivo mouse models of Parkinson’s disease. We found that activin A significantly attenuated the inflammatory response induced by both MPTP and intranigral administration of lipopolysaccharide in C57BL/6 mice. We found that administration of activin A promoted survival of dopaminergic and total neuron populations in the pars compacta region both 8 days and 8 weeks after MPTP-induced degeneration. Surprisingly, no corresponding protection of striatal dopamine levels was found. Furthermore, activin A failed to protect against loss of striatal dopamine transporter expression in the striatum, suggesting the neuroprotective action of activin A may be localized to the substantia nigra. Together, these results provide the first evidence that activin A exerts potent neuroprotection and anti-inflammatory effects in the MPTP and lipopolysaccharide mouse models of Parkinson’s disease. PMID:28121982

  4. The activation of μ-opioid receptor potentiates LPS-induced NF-kB promoting an inflammatory phenotype in microglia.

    PubMed

    Gessi, Stefania; Borea, Pier Andrea; Bencivenni, Serena; Fazzi, Debora; Varani, Katia; Merighi, Stefania

    2016-09-01

    Increased production of proinflammatory cytokines has a prominent role in tolerance to opioids. The objectives of this study were to examine whether μ-opioid receptor affects proinflammatory signalling through the activation of NF-kB in microglia. The novelty of the described research is that a low dose of morphine, exerting its effects via the μ-opioid receptor, increases the DNA-binding activity of NF-kB via PKCε, while a high dose of morphine triggers a nonopiate receptor response mediated by TLR4 and, interestingly, PKCε signalling. The identification of morphine as a crucial upstream regulator of PKCε-NF-κB signalling in microglia argues for a central role of these pathways in neuroinflammation development and progression. Therefore, the morphine-PKCε-NF-κB pathway may provide novel targets to induce neuroprotective mechanisms, thereby reducing tolerance to opioids.

  5. MR imaging and targeting of a specific alveolar macrophage subpopulation in LPS-induced COPD animal model using antibody-conjugated magnetic nanoparticles

    PubMed Central

    Al Faraj, Achraf; Shaik, Asma Sultana; Afzal, Sibtain; Al Sayed, Baraa; Halwani, Rabih

    2014-01-01

    Purpose Targeting and noninvasive imaging of a specific alveolar macrophage subpopulation in the lung has revealed the importance for early and better diagnosis and therapy of chronic obstructive pulmonary disease (COPD). In this study, the in vivo effect of pulmonary administration of iron oxide nanoparticles on the polarization profile of macrophages was assessed, and a noninvasive free-breathing magnetic resonance imaging (MRI) protocol coupled with the use of biocompatible antibody-conjugated superparamagnetic iron oxide (SPIO) nanoparticles was developed to enable specific targeting and imaging of a particular macrophage subpopulation in lipopolysaccharide-induced COPD mice model. Materials and methods Enzyme-linked immunosorbent assay, Real-time polymerase chain reaction, and flow cytometry analysis were performed to assess the biocompatibility of PEGylated dextran-coated SPIO nanoparticles. Specific biomarkers for M1 and M2 macrophages subsets were selected for conjugation with magnetic nanoparticles. MRI protocol using ultra-short echo time sequence was optimized to enable simultaneous detection of inflammation progress in the lung and detection of macrophages subsets. Flow cytometry and immunohistochemistry analysis were finally performed to confirm MRI readouts and to characterize the polarization profile of targeted macrophages. Results The tested SPIO nanoparticles, under the current experimental conditions, were found to be biocompatible for lung administration in preclinical settings. Cluster of differentiation (CD)86- and CD206-conjugated magnetic nanoparticles enabled successful noninvasive detection of M1 and M2 macrophage subpopulations, respectively, and were found to co-localize with inflammatory regions induced by lipopolysaccharide challenge. No variation in the polarization profile of targeted macrophages was observed, even though a continuum switch in their polarization might occur. However, further confirmatory studies are required to

  6. 6-Hydroxydopamine and lipopolysaccharides induced DNA damage in astrocytes: involvement of nitric oxide and mitochondria.

    PubMed

    Gupta, Sonam; Goswami, Poonam; Biswas, Joyshree; Joshi, Neeraj; Sharma, Sharad; Nath, C; Singh, Sarika

    2015-01-15

    The present study was conducted to investigate the effect of the neurotoxins 6-hydroxydopamine and lipopolysaccharide on astrocytes. Rat astrocyte C6 cells were treated with different concentration of 6-hydroxydopamine (6-OHDA)/lipopolysaccharides (LPS) for 24 h. Both neurotoxins significantly decreased the viability of astrocytes, augmented the expression of inducible nitric oxide synthase (iNOS) and the astrocyte marker--glial fibrillar acidic protein. A significantly decreased mitochondrial dehydrogenase activity, mitochondrial membrane potential, augmented reactive oxygen species (ROS) level, caspase-3 mRNA level, chromatin condensation and DNA damage was observed in 6-OHDA/LPS treated astroglial cells. 6-OHDA/LPS treatment also caused the significantly increased expression of iNOS and nitrite level. Findings showed that 6-OHDA/LPS treatment caused mitochondrial dysfunction mediated death of astrocytes, which significantly involve the nitric oxide. Since we have observed significantly increased level of iNOS along with mitochondrial impairment and apoptotic cell death in astrocytes, therefore to validate the role of iNOS, the cells were co-treated with iNOS inhibitor aminoguanidine (AG, 100 μM). Co-treatment of AG significantly attenuated the 6-OHDA/LPS induced cell death, mitochondrial activity, augmented ROS level, chromatin condensation and DNA damage. GFAP and caspase-3 expression were also inhibited with co-treatment of AG, although the extent of inhibition was different in both experimental sets. In conclusion, the findings showed that iNOS mediated increased level of nitric oxide acts as a key regulatory molecule in 6-OHDA/LPS induced mitochondrial dysfunction, DNA damage and apoptotic death of astrocytes.

  7. Identification of a LPS-induced TNF-α factor (LITAF) from mollusk Solen grandis and its expression pattern towards PAMPs stimulation.

    PubMed

    Yang, Dinglong; Wei, Xiumei; Yang, Jianmin; Yang, Jialong; Xu, Jie; Fang, Jinghui; Wang, Sheng; Liu, Xiangquan

    2013-10-01

    Lipopolysaccharide-induced TNF-α factor (LITAF) is one of the most important transcription factors mediating TNF-α transcription. In the present study, a LITAF gene (designated as SgLITAF) was identified from razor clams Solen grandis. The full-length cDNA of SgLITAF was of 1476 bp, encoding a polypeptide of 130 amino acids showed high similarity to other known LITAFs. SgLITAF encoded a LITAF domain and the Zn(2+)-binding motifs in the domain were well conserved. The mRNA transcripts of SgLITAF were detected in all tested tissues of healthy razor clams, including mantle, gill, gonad, hemocytes, muscle and hepatopancreas, and with the highest expression level in hepatopancreas. The expression level of SgLITAF in hemocytes was significantly up-regulated (P < 0.01) after razor clams were stimulated by LPS or β-1, 3-glucan, but no obvious fluctuation of SgLITAF mRNA expression was observed after PGN stimulation. All the results indicated that there might be a LITAF-regulated TNF-α signaling pathway existing in S. grandis, which involved in the immune response not only against gram-negative bacteria but also towards fungi.

  8. TLR4 antagonist FP7 inhibits LPS-induced cytokine production and glycolytic reprogramming in dendritic cells, and protects mice from lethal influenza infection

    PubMed Central

    Perrin-Cocon, Laure; Aublin-Gex, Anne; Sestito, Stefania E.; Shirey, Kari Ann; Patel, Mira C.; André, Patrice; Blanco, Jorge C.; Vogel, Stefanie N.; Peri, Francesco; Lotteau, Vincent

    2017-01-01

    Dysregulated Toll-like receptor (TLR)-4 activation is involved in acute systemic sepsis, chronic inflammatory diseases, such as atherosclerosis and diabetes, and in viral infections, such as influenza infection. Thus, therapeutic control of the TLR4 signalling pathway is of major interest. Here we tested the activity of the small-molecule synthetic TLR4 antagonist, FP7, in vitro on human monocytes and monocyte-derived dendritic cells (DCs) and in vivo during influenza virus infection of mice. Our results indicate that FP7 antagonized the secretion of proinflammatory cytokines (IL-6, IL-8, and MIP-1β) by monocytes and DCs (IC50 < 1 μM) and prevented DC maturation upon TLR4 activation by ultrapure lipopolysaccharide (LPS). FP7 selectively blocked TLR4 stimulation, but not TLR1/2, TLR2/6, or TLR3 activation. TLR4 stimulation of human DCs resulted in increased glycolytic activity that was also antagonized by FP7. FP7 protected mice from influenza virus-induced lethality and reduced both proinflammatory cytokine gene expression in the lungs and acute lung injury (ALI). Therefore, FP7 can antagonize TLR4 activation in vitro and protect mice from severe influenza infection, most likely by reducing TLR4-dependent cytokine storm mediated by damage-associated molecular patterns (DAMPs) like HMGB1. PMID:28106157

  9. Microvascular and interstitial oxygen tension in the renal cortex and medulla studied in a 4-h rat model of LPS-induced endotoxemia.

    PubMed

    Dyson, Alex; Bezemer, Rick; Legrand, Matthieu; Balestra, Gianmarco; Singer, Mervyn; Ince, Can

    2011-07-01

    The pathophysiology of sepsis-induced acute kidney injury remains poorly understood. As changes in renal perfusion and oxygenation have been shown, we aimed to study the short-term effects of endotoxemia on microvascular and interstitial oxygenation in the cortex and medulla, in conjunction with global and renal hemodynamics. In a 4-h rat model of endotoxemia, we simultaneously assessed renal artery blood flow and microvascular and interstitial oxygen tensions in the renal cortex and medulla using ultrasonic flowmetry, dual wavelength phosphorimetry, and tissue oxygen tension monitoring, respectively. Whereas medullary microvascular and interstitial oxygen tensions decreased promptly in line with macrovascular blood flow, changes in cortical oxygenation were only seen later on. During the entire experimental protocol, the gradient between microvascular PO₂ and tissue oxygen tension remained unchanged in both cortex and outer medulla. At study end, urine output was significantly decreased despite a maintained oxygen consumption rate. In this 4-h rat model of endotoxemia, total renal oxygen consumption and the gradient between microvascular PO₂ and tissue oxygen tension remained unaltered, despite falls in renal perfusion and oxygen delivery and urine output. Taken in conjunction with the decrease in urine output, our results could represent either a functional renal impairment or an adaptive response.

  10. Outer membrane vesicles derived from Salmonella Typhimurium mutants with truncated LPS induce cross-protective immune responses against infection of Salmonella enterica serovars in the mouse model.

    PubMed

    Liu, Qiong; Liu, Qing; Yi, Jie; Liang, Kang; Liu, Tian; Roland, Kenneth L; Jiang, Yanlong; Kong, Qingke

    2016-12-01

    Salmonella enterica cause diarrheal and systemic diseases and are of considerable concern worldwide. Vaccines that are cross-protective against multiple serovars could provide effective control of Salmonella-mediated diseases. Bacteria-derived outer membrane vesicles (OMVs) are highly immunogenic and are capable of eliciting protective immune responses. Alterations in lipopolysaccharide (LPS) length can result in outer membrane remodeling and composition of outer membrane proteins (OMPs) changing. In this study, we investigated the impact of truncated LPS on both the production and immunogenicity of Salmonella OMVs, including the ability of OMVs to elicit cross-protection against challenge by heterologous Salmonella strains. We found that mutations in waaJ and rfbP enhanced vesiculation, while mutations in waaC, waaF and waaG inhibited this process. Animal experiments indicated that OMVs from waaC, rfaH and rfbP mutants induced stronger serum immune responses compared to OMVs from the parent strain, while all elicited protective responses against the wild-type S. Typhimurium challenge. Furthermore, intranasal or intraperitoneal immunization with OMVs derived from the waaC and rfbP mutants elicited significantly higher cross-reactive IgG responses and provided enhanced cross-protection against S. Choleraesuis and S. Enteritidis challenge than the wild-type OMVs. These results indicate that truncated-LPS OMVs are capable of conferring cross protection against multiple serotypes of Salmonella infection.

  11. Fluoxetine up-regulates expression of cellular FLICE-inhibitory protein and inhibits LPS-induced apoptosis in hippocampus-derived neural stem cell

    SciTech Connect

    Chiou, S.-H. . E-mail: shchiou@vghtpe.gov.tw; Chen, S.-J. . E-mail: sjchen@vghtpe.gov.tw; Peng, C-H.; Chang, Y.-L.; Ku, H.-H.; Hsu, W.-M.; Ho, Larry L.-T.; Lee, C.-H.

    2006-05-05

    Fluoxetine is a widely used antidepressant compound which inhibits the reuptake of serotonin in the central nervous system. Recent studies have shown that fluoxetine can promote neurogenesis and improve the survival rate of neurons. However, whether fluoxetine modulates the proliferation or neuroprotection effects of neural stem cells (NSCs) needs to be elucidated. In this study, we demonstrated that 20 {mu}M fluoxetine can increase the cell proliferation of NSCs derived from the hippocampus of adult rats by MTT test. The up-regulated expression of Bcl-2, Bcl-xL and the cellular FLICE-inhibitory protein (c-FLIP) in fluoxetine-treated NSCs was detected by real-time RT-PCR. Our results further showed that fluoxetine protects the lipopolysaccharide-induced apoptosis in NSCs, in part, by activating the expression of c-FLIP. Moreover, c-FLIP induction by fluoxetine requires the activation of the c-FLIP promoter region spanning nucleotides -414 to -133, including CREB and SP1 sites. This effect appeared to involve the phosphatidylinositol-3-kinase-dependent pathway. Furthermore, fluoxetine treatment significantly inhibited the induction of proinflammatory factor IL-1{beta}, IL-6, and TNF-{alpha} in the culture medium of LPS-treated NSCs (p < 0.01). The results of high performance liquid chromatography coupled to electrochemical detection further confirmed that fluoxentine increased the functional production of serotonin in NSCs. Together, these data demonstrate the specific activation of c-FLIP by fluoxetine and indicate the novel role of fluoxetine for neuroprotection in the treatment of depression.

  12. Microarray and Pathway Analysis Reveal Distinct Mechanisms Underlying Cannabinoid-Mediated Modulation of LPS-Induced Activation of BV-2 Microglial Cells

    PubMed Central

    Juknat, Ana; Kozela, Ewa; Rimmerman, Neta; Levy, Rivka; Gao, Fuying; Coppola, Giovanni; Geschwind, Daniel; Vogel, Zvi

    2013-01-01

    Cannabinoids are known to exert immunosuppressive activities. However, the mechanisms which contribute to these effects are unknown. Using lipopolysaccharide (LPS) to activate BV-2 microglial cells, we examined how Δ9-tetrahydrocannabinol (THC), the major psychoactive component of marijuana, and cannabidiol (CBD) the non-psychoactive component, modulate the inflammatory response. Microarray analysis of genome-wide mRNA levels was performed using Illumina platform and the resulting expression patterns analyzed using the Ingenuity Pathway Analysis to identify functional subsets of genes, and the Ingenuity System Database to denote the gene networks regulated by CBD and THC. From the 5338 transcripts that were differentially expressed across treatments, 400 transcripts were found to be upregulated by LPS, 502 by CBD+LPS and 424 by THC+LPS, while 145 were downregulated by LPS, 297 by CBD+LPS and 149 by THC+LPS, by 2-fold or more (p≤0.005). Results clearly link the effects of CBD and THC to inflammatory signaling pathways and identify new cannabinoid targets in the MAPK pathway (Dusp1, Dusp8, Dusp2), cell cycle related (Cdkn2b, Gadd45a) as well as JAK/STAT regulatory molecules (Socs3, Cish, Stat1). The impact of CBD on LPS-stimulated gene expression was greater than that of THC. We attribute this difference to the fact that CBD highly upregulated several genes encoding negative regulators of both NFκB and AP-1 transcriptional activities, such as Trib3 and Dusp1 known to be modulated through Nrf2 activation. The CBD-specific expression profile reflected changes associated with oxidative stress and glutathione depletion via Trib3 and expression of ATF4 target genes. Furthermore, the CBD affected genes were shown to be controlled by nuclear factors usually involved in regulation of stress response and inflammation, mainly via Nrf2/Hmox1 axis and the Nrf2/ATF4-Trib3 pathway. These observations indicate that CBD, and less so THC, induce a cellular stress response and

  13. Bioactive compounds from liverworts: Inhibition of lipopolysaccharide-induced inducible NOS mRNA in RAW 264.7 cells by herbertenoids and cuparenoids.

    PubMed

    Harinantenaina, Liva; Quang, Dang Ngoc; Nishizawa, Takashi; Hashimoto, Toshihiro; Kohchi, Chie; Soma, Gen-Ichiro; Asakawa, Yoshinori

    2007-08-01

    The inhibition of lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) by herbertenoids and cuparenoids isolated from liverworts in RAW 264.7 macrophages was evaluated. Among compounds tested, herbertenediol, cuparenediol, 1,2-diacetoxyherbertene and 2-hydroxy-4-methoxycuparene exhibited significant activity. For 2-hydroxy-4-methoxycuparene, chosen as representative compound, the strong inhibitory activity was related to the inhibition on LPS-induced iNOS mRNA. The structure-activity relationship will be discussed.

  14. Bifunctional effects of fucoidan on the expression of inducible nitric oxide synthase

    SciTech Connect

    Yang, Jin Won; Yoon, Se Young; Oh, Soo Jin; Kim, Sang Kyum; Kang, Keon Wook . E-mail: kwkang@chosun.ac.kr

    2006-07-21

    Algal fucoidan is a marine sulfated polysaccharide with a wide variety of biological activities including anti-thrombotic and anti-inflammatory effects. This study evaluated the effect of fucoidan on the expression of inducible nitric oxide synthase (iNOS) in a macrophage cell line, RAW264.7. Low concentration range of fucoidan (10 {mu}g/ml) increased the basal expression level of iNOS in quiescent macrophages. However, we found for the first time that fucoidan inhibited the release of nitric oxide (NO) in RAW264.7 cells stimulated with lipopolysaccharide (LPS). Western blot analysis revealed that fucoidan suppressed the LPS-induced expression of the inducible nitric oxide synthase (iNOS) gene. Moreover, the activation of both nuclear factor-{kappa}B (NF-{kappa}B) and activator protein 1 (AP-1) are key steps in the transcriptional activation of the iNOS gene. Here, it was revealed that fucoidan selectively suppressed AP-1 activation, and that the activation of AP-1 appears to be essential for the induction of iNOS in activated macrophages. This inhibitory effect on AP-1 activation by fucoidan might be associated with its NO blocking and anti-inflammatory effects.

  15. Inhibition of Caspase 3 Abrogates Lipopolysaccharide-Induced Nitric Oxide Production by Preventing Activation of NF-κB and c-Jun NH2-Terminal Kinase/Stress-Activated Protein Kinase in RAW 264.7 Murine Macrophage Cells

    PubMed Central

    Chakravortty, Dipshikha; Kato, Yutaka; Sugiyama, Tsuyoshi; Koide, Naoki; Mu, Mya Mya; Yoshida, Tomoaki; Yokochi, Takashi

    2001-01-01

    The effect of caspase inhibitors on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 267.4 murine macrophage cells was investigated. Pretreatment of RAW cells with a broad caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD-FMK), resulted in a striking reduction in LPS-induced NO production. Z-VAD-FMK inhibited LPS-induced NF-κB activation. Furthermore, it blocked phosphorylation of c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) but not that of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinases. Similarly, a caspase 3-specific inhibitor, Z-Asp-Glu-Val-Asp-fluoromethylketone, inhibited NO production, NF-κB activation, and JNK/SAPK phosphorylation in LPS-stimulated RAW cells. The attenuated NO production was due to inhibition of the expression of an inducible-type NO synthase (iNOS). The overexpression of the dominant negative mutant of JNK/SAPK and the addition of a JNK/SAPK inhibitor blocked iNOS expression but did not block LPS-induced caspase 3 activation. It was therefore suggested that the inhibition of caspase 3 might abrogate LPS-induced NO production by preventing the activation of NF-κB and JNK/SAPK. The caspase family, especially caspase 3, is likely to play an important role in the signal transduction for iNOS-mediated NO production in LPS-stimulated mouse macrophages. PMID:11179293

  16. Dehydrocostuslactone inhibits LPS-induced inflammation by p38MAPK-dependent induction of hemeoxygenase-1 in vitro and improves survival of mice in CLP-induced sepsis in vivo.

    PubMed

    Park, Eun Jung; Park, Sang Won; Kim, Hye Jung; Kwak, Jong-Hwan; Lee, Dong-Ung; Chang, Ki Churl

    2014-10-01

    We investigated the hypothesis that the administration of dehydrocostuslactone (DL), a sesquiterpene lactone found in Saussurea lappa Clarke (Compositae), might reduce organ failure and increase survival in a cecal ligation and puncture (CLP)-induced mouse model of sepsis due to HO-1 induction. Treatment of RAW264.7 cells with DL increased HO-1 expression in a time- and concentration-dependent manner, and this up-regulation of HO-1 by DL was significantly inhibited by silencing either Nrf2 and p38 or treating cells with SB203580 (a p38MAPK inhibitor), but it was not inhibited in the presence of SP600125 (an ERK inhibitor), PD98059 (a JNK inhibitor), or LY294002 (PI3K inhibitor). As expected, DL concentration dependently inhibited the expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2), and the productions of NO and PGE2 in LPS-activated cells, and these inhibitions were reversed by silencing HO-1. Most importantly, administration of DL significantly reduced mortality and reduced serum IL-1β and TNF-α and the infiltration of macrophages into liver tissues of CLP-mice. Inducible NOS expression in lung and liver tissues of CLP-mice was reduced by DL, which was reversed by the co-administration of zinc-protoporphyrin IX (ZnPPIX; a competitive inhibitor of HO-1). Our findings indicate that DL might be useful for the treatment of sepsis.

  17. Rosmarinic Acid in Prunella vulgaris Ethanol Extract Inhibits LPS-induced Prostaglandin E2 and Nitric Oxide in RAW264.7 Mouse Macrophages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prunella vulgaris has been used therapeutically for inflammation related conditions for centuries, but systematic studies of its anti-inflammatory activity are lacking and no specific active components have been identified. In this study, water and ethanol extracts of four P. vulgaris accessions we...

  18. Sasa quelpaertensis phenylpropanoid derivative suppresses lipopolysaccharide-induced nitric oxide synthase and cyclo-oxygenase-2 expressions in RAW 264.7 cells.

    PubMed

    Moon, Ji-Young; Yang, Eun-Jin; Kim, Sang Suk; Kang, Ji-Yong; Kim, Gi-Ok; Lee, Nam Ho; Hyun, Chang-Gu

    2011-01-01

    3-O-p-Coumaroyl-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-O-β-D-gulcopyranosylpropanol (ESQ10) is a naturally occurring phenylpropanoid derivative isolated from Sasa quelpaertensis (Gramineae). In the present study, we discovered that ESQ10 inhibits nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. ESQ10 attenuated LPS-induced synthesis of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in parallel and inhibited LPS-induced interleukin-6 production, as determined by an enzyme-linked immunosorbent assay in the macrophages. The mechanism of the antiinflammatory action of ESQ10, i.e., suppression of nuclear factor (NF)-κB and mitogen-activated protein kinase activation, has been documented. However, ESQ10 could not influence LPS-mediated IκB-α degradation and extracellular signal-regulated kinase/c-Jun amino-terminal kinase phosphorylation at concentrations of up to 373 µM. To test the potential application of ESQ10 as a topical material, we also conducted a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on human HaCaT keratinocytes as well as human dermal fibroblast cells. In this assay, ESQ10 did not induce cytotoxicity. Taken together, the results suggest that ESQ10 may be considered an antiinflammatory candidate for treating inflammatory and skin diseases.

  19. Vitamin D3 pretreatment alleviates renal oxidative stress in lipopolysaccharide-induced acute kidney injury.

    PubMed

    Xu, Shen; Chen, Yuan-Hua; Tan, Zhu-Xia; Xie, Dong-Dong; Zhang, Cheng; Xia, Mi-Zhen; Wang, Hua; Zhao, Hui; Xu, De-Xiang; Yu, De-Xin

    2015-08-01

    Increasing evidence demonstrates that reactive oxygen species plays important roles in sepsis-induced acute kidney injury. This study investigated the effects of VitD3 pretreatment on renal oxidative stress in sepsis-induced acute kidney injury. Mice were intraperitoneally injected with lipopolysaccharide (LPS, 2.0mg/kg) to establish an animal model of sepsis-induced acute kidney injury. In VitD3+LPS group, mice were orally pretreated with three doses of VitD3 (25 μg/kg) at 1, 24 and 48 h before LPS injection. As expected, oral pretreatment with three daily recommended doses of VitD3 markedly elevated serum 25(OH)D concentration and efficiently activated renal VDR signaling. Interestingly, LPS-induced renal GSH depletion and lipid peroxidation were markedly alleviated in VitD3-pretreated mice. LPS-induced serum and renal nitric oxide (NO) production was obviously suppressed by VitD3 pretreatment. In addition, LPS-induced renal protein nitration, as determined by 3-nitrotyrosine residue, was obviously attenuated by VitD3 pretreatment. Further analysis showed that LPS-induced up-regulation of renal inducible nitric oxide synthase (inos) was repressed in VitD3-pretreated mice. LPS-induced up-regulation of renal p47phox and gp91phox, two NADPH oxidase subunits, were normalized by VitD3 pretreatment. In addition, LPS-induced down-regulation of renal superoxide dismutase (sod) 1 and sod2, two antioxidant enzyme genes, was reversed in VitD3-pretreated mice. Finally, LPS-induced tubular epithelial cell apoptosis, as determined by TUNEL, was alleviated by VitD3 pretreatment. Taken together, these results suggest that VitD3 pretreatment alleviates LPS-induced renal oxidative stress through regulating oxidant and antioxidant enzyme genes.

  20. Puerarin suppresses production of nitric oxide and inducible nitric oxide synthase in lipopolysaccharide-induced N9 microglial cells through regulating MAPK phosphorylation, O-GlcNAcylation and NF-κB translocation.

    PubMed

    Zheng, Gao-Ming; Yu, Chao; Yang, Zhu

    2012-05-01

    Microglial cells play a critical role in mediating central nervous system inflammatory processes. Activated microglial cells induced by proinflammatory factor, such as lipopolysaccharide (LPS), release many kinds of neurotoxic cytokines including reactive oxygen species (ROS) which contributes to the pathogenesis of neurodegenerative diseases. Puerarin, extracted from kudzu root, possesses the characteristic of neuroprotection, antioxidation and anticancer. In the present study, we observed that LPS induced over-production of nitric oxide (NO) and increased the level of intracellular ROS in N9 microglial cells, but it was inhibited by puerarin. Furthermore, treatment with puerarin on N9 cells suppressed the over-expression of inducible nitric oxide synthase (iNOS) induced by LPS which is implicated in intracellular O-linked β-N-acetylglucosamine (O-GlcNAc) level, phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) signaling pathway. We also observed that the enhanced phosphorylation of p38, JNK and ERK1/2 in N9 cells induced by LPS were inhibited by puerarin, otherwise the down-regulation of O-GlcNAcylation level of protein in N9 cell induced by LPS was up-regulated by pretreatment with puerarin. These results indicate that puerarin effectively inhibits microglia activation induced by LPS through inhibiting expression of iNOS, production of NO and ROS which was mediated via regulating O-GlcNAcylation, phosphorylation of MAPK and NF-κB translocation.

  1. Isobutyrylshikonin inhibits lipopolysaccharide-induced nitric oxide and prostaglandin E2 production in BV2 microglial cells by suppressing the PI3K/Akt-mediated nuclear transcription factor-κB pathway.

    PubMed

    Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Lee, Kyoung-Tae; Kang, Chang-Hee; Dilshara, Matharage Gayani; Lee, Hak-Ju; Choi, Yung Hyun; Choi, Il-Whan; Kim, Gi-Young

    2014-12-01

    Microglia are important macrophages to defend against pathogens in the central nervous system (CNS); however, persistent or acute inflammation of microglia lead to CNS disorders via neuronal cell death. Therefore, we theorized that a good strategy for the treatment of CNS disorders would be to target inflammatory mediators from microglia in disease. Consequently, we investigated whether isobutyrylshikonin (IBS) attenuates the production of proinflammatory mediators, such as nitric oxide (NO) and prostaglandin E2, in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Treatment with IBS inhibited the secretion of NO and prostaglandin E2 (as well as the expression of their key regulatory genes), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). Isobutyrylshikonin also suppressed LPS-induced DNA-binding activity of nuclear transcription factor-κB (NF-κB), by inhibiting the nuclear translocation of p50 and p65 in addition to blocking the phosphorylation and degradation of IκBα. Pretreatment with pyrrolidine dithiocarbamate, a specific NF-κB inhibitor, showed the down-regulation of LPS-induced iNOS and COX-2 messenger RNA by suppressing NF-κB activity. This indirectly suggests that IBS-mediated NF-κB inhibition is the main signaling pathway involved in the inhibition of iNOS and COX-2 expression. In addition, IBS attenuated LPS-induced phosphorylation of PI3K and Akt, which are upstream molecules of NF-κB, in LPS-stimulated BV2 microglial cells. The functional aspects of the PI3K/Akt signaling pathway were analyzed with LY294002, which is a specific PI3K/Akt inhibitor that attenuated LPS-induced iNOS and COX-2 expression by suppressing NF-κB activity. These data suggest that an IBS-mediated anti-inflammatory effect may be involved in suppressing the PI3K/Akt-mediated NF-κB signaling pathway.

  2. Cordycepin induces human lung cancer cell apoptosis by inhibiting nitric oxide mediated ERK/Slug signaling pathway

    PubMed Central

    Hwang, Jung Hoo; Park, Soo Jung; Ko, Won Gyu; Kang, Seong-Mun; Lee, Da Bin; Bang, Junho; Park, Byung-Joo; Wee, Chung-Beum; Kim, Dae Joon; Jang, Ik-Soon; Ko, Jae-Hong

    2017-01-01

    Nitric oxide (NO) is an important signaling molecule and a component of the inflammatory cascade. Besides, it is also involved in tumorigenesis. Aberrant upregulation and activation of the ERK cascade by NO often leads to tumor cell development. However, the role of ERK inactivation induced by the negative regulation of NO during apoptosis is not completely understood. In this study, treatment of A549 and PC9 human lung adenocarcinoma cell lines with cordycepin led to a reduction in their viability. Analysis of the effect of cordycepin treatment on ERK/Slug signaling activity in the A549 cell line revealed that LPS-induced inflammatory microenvironments could stimulate the expression of TNF-α, CCL5, IL-1β, IL-6, IL-8 and upregulate NO, phospho-ERK (p-ERK), and Slug expression. In addition, constitutive expression of NO was observed. Cordycepin inhibited LPS-induced stimulation of iNOS, NO, p-ERK, and Slug expression. L-NAME, an inhibitor of NOS, inhibited p-ERK and Slug expression. It was also found that cordycepin-mediated inhibition of ERK downregulated Slug, whereas overexpression of ERK led to an upregulation of Slug levels in the cordycepin-treated A549 cells. Inhibition of Slug by siRNA induced Bax and caspase-3, leading to cordycepin-induced apoptosis. Cordycepin-mediated inhibition of ERK led to a reduction in phospho-GSK3β (p-GSK3β) and Slug levels, whereas LiCl, an inhibitor of GSK3β, upregulated p-GSK3β and Slug. Overall, the results obtained indicate that cordycepin inhibits the ERK/Slug signaling pathway through the activation of GSK3β which, in turn, upregulates Bax, leading to apoptosis of the lung cancer cells.

  3. α-Dihydroxychalcone-glycoside (α-DHC) isolated from the heartwood of Pterocarpus marsupium inhibits LPS induced MAPK activation and up regulates HO-1 expression in murine RAW 264.7 macrophage

    SciTech Connect

    Chakraborty, Prarthana; Saraswat, Ghungroo; Kabir, Syed N.

    2014-05-15

    Three phenolic glycosides isolated from the heartwood of Pterocarpus marsupium showed significant free radical and superoxide ion scavenging activity and antioxidant potential that were comparable to, or several folds higher than those of standard antioxidants, trolox and ascorbic acid. The effective concentrations of these compounds were far below their cytotoxic levels. Compound 3, which was characterized to be α-dihydroxychalcone-glycoside (α-DHC), was the most potent one. Subsequent studies demonstrated that α-DHC effectively reduced nitric oxide and cytokine production by the LPS stimulated RAW 264.7 mouse macrophage cell line. The compound effectively attenuated the expression of inflammation-mediating enzymes COX-2 and iNOS at the mRNA as well as protein levels in a concentration dependent manner. It prevented phosphorylation of all the three MAPKs (JNK, ERK, p38) and eventually blocked the activation of downstream elements contributing to inflammation. Phosphorylation of IκB-α and subsequent translocation of NF-κB into the nucleus were restricted, while the expression of stress responsive gene HO-1 was up-regulated. α-DHC targeted Keap-1 by modifying its cysteine thiols, dissociating it from Nrf-2 and facilitating nuclear entry of the latter; and this in turn induced HO-1 expression. Thus α-DHC exerts its anti-inflammatory activity in a dual manner: by down regulating MAPKs and restricting nuclear stabilization of NF-κB at one end, and by disrupting Nrf-2–Keap-1 complex on the other. In conclusion, the anti-inflammatory potential together with its high therapeutic index envisages α-DHC as a prospective candidate molecule for the development of therapeutic strategy against inflammatory disorders. - Highlights: • α-DHC isolated from Pterocarpus marsupium has significant antioxidant potential. • α-DHC inhibits NO, IL-6, IL-1β, TNF-α production in LPS-stimulated RAW 264.7 cells. • α-DHC down-regulates of COX-2, iNOS expression in LPS

  4. The NADPH oxidase inhibitor apocynin induces nitric oxide synthesis via oxidative stress

    SciTech Connect

    Riganti, Chiara

    2008-05-01

    We have recently shown that apocynin elicits an oxidative stress in N11 mouse glial cells and other cell types. Here we report that apocynin increased the accumulation of nitrite, the stable derivative of nitric oxide (NO), in the extracellular medium of N11 cell cultures, and the NO synthase (NOS) activity in cell lysates. The increased synthesis of NO was associated with increased expression of inducible NOS (iNOS) mRNA, increased nuclear translocation of the redox-sensitive transcription factor NF-{kappa}B and decreased intracellular level of its inhibitor IkB{alpha}. These effects, accompanied by increased production of H{sub 2}O{sub 2}, were very similar to those observed after incubation with bacterial lipopolysaccharide (LPS) and were inhibited by catalase. These results suggest that apocynin, similarly to LPS, induces increased NO synthesis by eliciting a generation of reactive oxygen species (ROS), which in turn causes NF-{kappa}B activation and increased expression of iNOS. Therefore, the increased bioavailability of NO reported in the literature after in vivo or in vitro treatments with apocynin might depend, at least partly, on the drug-elicited induction of iNOS, and not only on the inhibition of NADPH oxidase and the subsequent decreased scavenging of NO by oxidase-derived ROS, as it is often supposed.

  5. Interleukin-13 inhibits inducible nitric oxide synthase expression in human mesangial cells.

    PubMed Central

    Saura, M; Martínez-Dalmau, R; Minty, A; Pérez-Sala, D; Lamas, S

    1996-01-01

    The synthesis of nitric oxide in inflammatory situations requires the expression of an inducible isoform of nitric oxide synthase (iNOS). Human mesangial cells (HMC) express an iNOS enzyme after exposure to multiple co-stimuli. In this study we have observed that while tumour necrosis factor-alpha, interleukin (IL)-1 beta, interferon-gamma and bacterial lipopolysaccharide (LPS) were unable to significantly induce NO synthesis when used alone, they induced an evident stimulation of NO synthesis when used in various combinations. A mixture of the three cytokines (CM) and LPS resulted in a 10-15-fold stimulation of NO synthesis over control values which started to be significant after 16 h. The addition of IL-13, a cytokine with anti-inflammatory properties, inhibited CM/LPS-induced NO synthesis in a concentration-dependent manner. A marked inhibitory effect (60-65%) could be observed when HMC were treated with IL-13 (10 ng/ml) 24 h before, at the same time as, or even 4 h after the addition of CM/LPS. This inhibitory effect was still significant (25%) when IL-13 was added 16 h after CM/LPS. Northern analysis showed that IL-13-mediated iNOS inhibition was closely correlated with the suppression of iNOS mRNA expression. These results identify IL-13 as a powerful regulatory tool for the inhibition of NO synthesis in human cells, a property which may be pathophysiologically relevant in NO-related inflammatory processes. PMID:8573104

  6. Identification and characterization of a novel NOD-like receptor family CARD domain containing 3 gene in response to extracellular ATP stimulation and its role in regulating LPS-induced innate immune response in Japanese flounder (Paralichthys olivaceus) head kidney macrophages.

    PubMed

    Li, Shuo; Chen, Xiaoli; Hao, Gaixiang; Geng, Xuyun; Zhan, Wenbin; Sun, Jinsheng

    2016-03-01

    Nucleotide oligomerization domain (NOD)-like receptor (NLR) family with a caspase activation and recruitment domain (CARD) containing 3 (NLRC3) protein is an important cytosolic pattern recognition receptor that negatively regulates innate immune response in mammals. Hitherto, the immunological significance of NLRC3 protein in fish remains largely uncharacterized. Here we identified and characterized a novel NLRC3 gene (named poNLRC3) implicated in regulation of fish innate immunity from Japanese flounder Paralichthys olivaceus. The poNLRC3 protein is a cytoplasmic protein with an undefined N-terminal domain, a NACHT domain, a fish-specific NACHT associated domain, six LRR motifs, and a C-terminal fish-specific PYR/SPYR (B30.2) domain but only shares less than 40% sequence identities with the known Japanese flounder NLRC proteins. poNLRC3 gene is ubiquitously expressed in all tested tissues and is dominantly expressed in the Japanese flounder head kidney macrophages (HKMs). We for the first time showed that poNLRC3 expression was significantly modulated by the stimulation of extracellular ATP, an important danger/damage-associated molecular pattern in activating innate immunity in P. olivaceus. Importantly, we revealed that poNLRC3 plays an important role in positively regulating ATP-induced IL-1beta and IL-6 gene expression, suggesting the involvement of poNLRC3 in extracellular ATP-mediated immune signaling. In addition, we showed that poNLRC3 mRNA expression was up-regulated in response to LPS and Edwardsiella tarda immune challenges. Finally, we showed that down-regulating the endogenous poNLRC3 expression with small interfering RNA significantly reduced LPS-induced proinflammatory cytokine gene expression in the Japanese flounder HKM cells. Altogether, we have identified a novel inducible fish NLR member, poNLRC3, which is involved in extracellular ATP-mediated immune signaling and may positively regulate the LPS-induced innate immune response in the Japanese

  7. A phenolic acid phenethyl urea compound inhibits lipopolysaccharide-induced production of nitric oxide and pro-inflammatory cytokines in cell culture.

    PubMed

    Hwang, Jung-Min; Yu, Ji-Yeon; Jang, Young-Oh; Kim, Beom-Tae; Hwang, Ki-Jun; Jeon, Young-Mi; Lee, Jeong-Chae

    2010-04-01

    We previously used the Curtius rearrangement to synthesize various phenolic acid phenethyl urea compounds from phenolic acids and demonstrated their beneficial anti-oxidant and anti-cancer effects. Here, we investigated the effects of one of these synthetic compounds, (E)-1-(3,4-dihydroxystyryl)-3-(4-hydroxyphenethyl)urea (DSHP-U), on nitric oxide (NO) production, inducible nitric oxide synthase (iNOS) expression, and cytokine secretion in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. DSHP-U suppressed LPS-induced NO production and iNOS expression at a concentration of 50 microM and inhibited LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 kinase. Inhibitors of phosphorylated (p)-ERK and p-p38, but not of p-JNK, reduced LPS-stimulated NO production. DSHP-U also prevented the nuclear translocation of the Rel A (p65) subunit and DNA-NF-kappaB binding by suppressing IkappaBalpha phosphorylation and by the degradation of IkappaBalpha in LPS-stimulated cells. Furthermore, DSHP-U decreased the production of tumor necrosis factor-alpha, interleukin (IL)-1beta, and IL-6 in LPS-treated macrophages. However, the LPS-stimulated expression of LPS receptors, such as Toll-like receptor 4, myeloid differentiation factor-2, and CD14, was unchanged after DSHP-U treatment at significantly high levels. Our data suggest that DSHP-U blocks NO and inflammatory cytokine production in LPS-stimulated macrophages and that these effects are mainly mediated through the inhibition of the ERK/p38- and NF-kappaB signaling pathways.

  8. Regulatory role of nitric oxide in lipopolysaccharides-triggered plant innate immunity.

    PubMed

    Sun, Aizhen; Li, Zhe

    2013-01-01

    Recent studies have suggested that lipopolysaccharides (LPS) induce nitric oxide (NO) production and defense gene expression in plants. Our current work investigated the signaling mechanism of NO and the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) in LPS-induced innate immunity of Arabidopsis (Arabidopsis thaliana). We have provided evidence that LPS-elicited NO generation as well as increased antioxidant enzyme activities capable of maintaining the redox state could be important to protect plants against oxidative damage from pathogen attack. In addition, LPS-activated defense responses, including callose deposition and defense-related gene expression, are regulated through an NPR1-dependent signaling pathway. Our results contribute to elucidation of the signaling mechanism of NO and highlight an important role of NPR1 in modulating LPS-triggered innate immunity in plants. However, further research is necessary to clarify the cross-talk between mitochondria and NO on activating LPS-induced defense responses, and the regulatory mechanism of NO in LPS-induced innate immunity needs further improvement.

  9. Potentiation of LPS-Induced Apoptotic Cell Death in Human Hepatoma HepG2 Cells by Aspirin via ROS and Mitochondrial Dysfunction: Protection by N-Acetyl Cysteine

    PubMed Central

    Raza, Haider; John, Annie; Shafarin, Jasmin

    2016-01-01

    Cytotoxicity and inflammation-associated toxic responses have been observed to be induced by bacterial lipopolysaccharides (LPS) in vitro and in vivo respectively. Use of nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin, has been reported to be beneficial in inflammation-associated diseases like cancer, diabetes and cardiovascular disorders. Their precise molecular mechanisms, however, are not clearly understood. Our previous studies on aspirin treated HepG2 cells strongly suggest cell cycle arrest and induction of apoptosis associated with mitochondrial dysfunction. In the present study, we have further demonstrated that HepG2 cells treated with LPS alone or in combination with aspirin induces subcellular toxic responses which are accompanied by increase in reactive oxygen species (ROS) production, oxidative stress, mitochondrial respiratory dysfunction and apoptosis. The LPS/Aspirin induced toxicity was attenuated by pre-treatment of cells with N-acetyl cysteine (NAC). Alterations in oxidative stress and glutathione-dependent redox-homeostasis were more pronounced in mitochondria compared to extra- mitochondrial cellular compartments. Pre-treatment of HepG2 cells with NAC exhibited a selective protection in redox homeostasis and mitochondrial dysfunction. Our results suggest that the altered redox metabolism, oxidative stress and mitochondrial function in HepG2 cells play a critical role in LPS/aspirin-induced cytotoxicity. These results may help in better understanding the pharmacological, toxicological and therapeutic properties of NSAIDs in cancer cells exposed to bacterial endotoxins. PMID:27441638

  10. Endotoxin-induced nitric oxide production rescues airway growth and maturation in atrophic fetal rat lung explants

    SciTech Connect

    Rae, C.; Cherry, J.I.; Land, F.M.; Land, S.C. . E-mail: s.c.land@dundee.ac.uk

    2006-10-13

    Inflammation induces premature maturation of the fetal lung but the signals causing this effect remain unclear. We determined if nitric oxide (NO) synthesis, evoked by Escherichia coli lipopolysaccharide (LPS, 2 {mu}g ml{sup -1}), participated in this process. Fetal rat lung airway surface complexity rose 2.5-fold over 96 h in response to LPS and was associated with increased iNOS protein expression and activity. iNOS inhibition by N6-(1-iminoethyl)-L-lysine-2HCl (L-NIL) abolished this and induced airway atrophy similar to untreated explants. Surfactant protein-C (SP-C) expression was also induced by LPS and abolished by L-NIL. As TGF{beta} suppresses iNOS activity, we determined if feedback regulation modulated NO-dependent maturation. LPS induced TGF{beta}1 release and SMAD4 nuclear translocation 96 h after treatment. Treatment of explants with a blocking antibody against TGF{beta}1 sustained NO production and airway morphogenesis whereas recombinant TGF{beta}1 antagonized these effects. Feedback regulation of NO synthesis by TGF{beta} may, thus, modulate airway branching and maturation of the fetal lung.

  11. Sildenafil attenuates LPS-induced pro-inflammatory responses through down-regulation of intracellular ROS-related MAPK/NF-κB signaling pathways in N9 microglia.

    PubMed

    Zhao, Siqi; Zhang, Lijia; Lian, Guoning; Wang, Xiaoxiao; Zhang, Haotian; Yao, Xuechun; Yang, Jingyu; Wu, Chunfu

    2011-04-01

    Excessive activation of microglial cells has been implicated in various neuroinflammation. The present study showed that sildenafil, a PDE5 inhibitor, significantly suppressed NO, interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) production induced by LPS in microglial cells through decreasing the protein and/or mRNA expressions of inducible NO synthase (iNOS), IL-1β and TNF-α in a concentration-dependent manner. Sildenafil also blocked IκBα phosphorylation and degradation, inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), p38 MAPK, and c-Jun N-terminal kinase (JNK). Moreover, the increase of the expression of gp91phox, a critical and catalytic subunit of NADPH oxidase, and the levels of intracellular reactive oxygen species (iROS) induced by LPS were markedly inhibited by sildenafil. In summary, these data suggest that sildenafil exerts its in vitro anti-inflammatory effect in LPS-activated N9 microglial cells by blocking nuclear factor-κB (NF-κB) and MAPKs activation, which may be partly due to its potent down-regulation of the NADPH-derived iROS production.

  12. A novel compound DSC suppresses lipopolysaccharide-induced inflammatory responses by inhibition of Akt/NF-κB signalling in macrophages.

    PubMed

    Liu, Xin-Hua; Pan, Li-Long; Jia, Yao-Ling; Wu, Dan; Xiong, Qing-Hui; Wang, Yang; Zhu, Yi-Zhun

    2013-05-15

    A novel compound [4-(2-acetoxy-3-((R)-3-(benzylthio)-1-methoxy-1-oxopropan-2-ylamino)-3-oxopropyl)-1,2-phenylene diacetate (DSC)], derived from Danshensu, exerted cytoprotective effects by anti-oxidative and anti-apoptotic activities in vitro. Herein, we reported the protective effects of DSC on lipopolysaccharide (LPS)-induced inflammatory responses in murine RAW264.7 macrophages and the underlying mechanisms. We showed that DSC concentration-dependently attenuated nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression with less cytotoxicity. Signal transduction studies indicated that DSC significantly inhibited LPS-induced phosphorylation of Akt, but not c-Jun N-terminal kinase 1/2, p38, or extracellular signal-regulated kinase 1/2. Meanwhile, LPS-induced nuclear translocation of nuclear factor-κB (NF-κB) p65 was decreased by DSC. Furthermore, a phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 significantly suppressed LPS-induced NF-κB p65 nuclear translocation, iNOS expression, and NO production, which was also mimicked by pretreatment with DSC. These results suggested that DSC attenuated LPS-induced inflammatory response in macrophages, at least in part, through suppression of PI3K/Akt signaling and NF-κB activation.

  13. Transcriptional basis for hyporesponsiveness of the human inducible nitric oxide synthase gene to lipopolysaccharide/interferon-gamma.

    PubMed

    Zhang, X; Laubach, V E; Alley, E W; Edwards, K A; Sherman, P A; Russell, S W; Murphy, W J

    1996-04-01

    The work reported here resolves, at the level of gene regulation, the controversy as to whether or not human monocytes/macrophages can produce nitric oxide (NO) when stimulated with lipopolysaccharide (LPS), with or without co-stimulation by interferon-gamma (IFN-gamma). Studies included structural comparison of the promoters for human and mouse inducible NO synthase (iNOS) genes, transfection and assay of human and mouse iNOS promoter regions in response to LPS +/- IFN-gamma, and electrophoretic mobility shift assays of kappa B response elements. Two explanations for hyporesponsiveness of the human iNOS promoter to LPS +/- IFN-gamma were found: (1) multiple inactivating nucleotide substitutions in the human counterpart of the enhancer element that has been shown to regulate LPS/IFN-gamma induced expression of the mouse iNOS gene; and (2) and absence of one or more nuclear factors in human macrophages (e.g., an LPS-inducible nuclear factor-kappa B/Rel complex), that is (are) required for maximal expression of the gene. The importance of resolution of this controversy is that future research in this area should be directed toward the understanding of alternative mechanisms that can result in the successful production of NO.

  14. Adenosine modulates LPS-induced cytokine production in porcine monocytes.

    PubMed

    Ondrackova, Petra; Kovaru, Hana; Kovaru, Frantisek; Leva, Lenka; Faldyna, Martin

    2013-03-01

    Adenosine plays an important role during inflammation, particularly through modulation of monocyte function. The objective of the present study was to evaluate the effect of synthetic adenosine analogs on cytokine production by porcine monocytes. The LPS-stimulated cytokine production was measured by flow cytometry and quantitative real-time PCR. Adenosine receptor expression was measured by quantitative real-time PCR. The present study demonstrates that adenosine analog N-ethylcarboxyamidoadenosine (NECA) down-regulates TNF-α production and up-regulates IL-8 production by LPS-stimulated porcine monocytes. The effect was more pronounced in CD163(-) subset of monocytes compared to the CD163(+) subset. Although both monocyte subsets express mRNA for A1, A2A, A2B and A3 adenosine receptors, the treatment of monocytes with various adenosine receptor agonists and antagonists proved that the effect of adenosine is mediated preferentially via A2A adenosine receptor. Moreover, the study suggests that the effect of NECA on porcine monocytes alters the levels of the cytokines which could play a role in the differentiation of naive T cells into Th17 cells. The results suggest that adenosine plays an important role in modulation of cytokine production by porcine monocytes.

  15. Mechanism for Prenatal LPS-Induced DA Neuron Loss

    DTIC Science & Technology

    2006-09-01

    Chen, S. Y.; Chen, R. C . Environmental risk factors and Parkinson’s disease: A case-control study in Taiwan.2005. 42 . Holtz, P.; Heise, R.; Ludtke...Miller, D. M.; Blakely, R. D. C . elegans : A novel pharmacogenetic model to study Parkinson’s dis-rons in the postnatal rat midbrain. Mov. Disord. 17...in duplicate, and GCS and GS activity were reported as nmol/min/mg protein. 42 B R A I N R E S E A R C H 1 0 9 0 ( 2 0 0 6 ) 3 5 – 4 44.6.2. GPx

  16. Inducible nitric oxide synthase in the myocard.

    PubMed

    Buchwalow, I B; Schulze, W; Karczewski, P; Kostic, M M; Wallukat, G; Morwinski, R; Krause, E G; Müller, J; Paul, M; Slezak, J; Luft, F C; Haller, H

    2001-01-01

    Recognition of significance of nitric oxide synthases (NOS) in cardiovascular regulations has led to intensive research and development of therapies focused on NOS as potential therapeutic targets. However, the NOS isoform profile of cardiac tissue and subcellular localization of NOS isoforms remain a matter of debate. The aim of this study was to investigate the localization of an inducible NOS isoform (NOS2) in cardiomyocytes. Employing a novel immunocytochemical technique of a catalyzed reporter deposition system with tyramide and electron microscopical immunocytochemistry complemented with Western blotting and RT-PCR, we detected NOS2 both in rat neonatal and adult cultured cardiomyocytes and in the normal myocard of adult rats as well as in the human myocard of patients with dilative cardiomyopathy. NOS2 was targeted predominantly to a particulate component of the cardiomyocyte--along contractile fibers, in the plasma membrane including T-tubules, as well as in the nuclear envelope, mitochondria and Golgi complex. Our results point to an involvement of NOS2 in maintaining cardiac homeostasis and contradict to the notion that NOS2 is expressed in cardiac tissue only in response to various physiological and pathogenic factors. NOS2 targeting to mitochondria and contractile fibers suggests a relationship of NO with contractile function and energy production in the cardiac muscle.

  17. Preparation and biological evaluation of enzyme-assisted extracts from edible seaweed (Enteromorpha prolifera) as antioxidant, anti-acetylcholinesterase and inhibition of lipopolysaccharide-induced nitric oxide production in murine macrophages.

    PubMed

    Ahn, Chang-Bum; Park, Pyo-Jam; Je, Jae-Young

    2012-03-01

    The multifunctional bioactive materials were prepared from Enteromorpha prolifera by enzyme-assisted extraction using four proteases and seven carbohydrases, and the biological activities of the enzyme-assisted extracts were evaluated as antioxidant, anti-acetylcholinesterase (AChE) and anti-inflammatory effect as the measures of inhibition of lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW264.7 cells. The enzyme-assisted extracts were rich in polyphenols in the range 124 ± 4.2 to 844 ± 9.1 mg/100 g and flavonoids in the range 453 ± 6.0 to 675 ± 5.2 mg/100 g, and Protamex and Viscozyme extracts, which were rich in polyphenols and flavonoids, showed the highest 2,2-diphenyl-1-picrylhydrazyl scavenging, hydrogen peroxide scavenging, ferrous ion chelating and reducing power. Flavourzyme extract (89.92%) and Promozyme extract (93.64%) showed the highest AChE inhibitory activities at the concentration of 1.0 mg/ml. All enzyme-assisted extracts showed no cytotoxic effect on RAW264.7 cells at the tested concentration and significantly inhibited the LPS-induced NO production in RAW264.7 cells.

  18. Effect of methanolic extract of Asparagus racemosus Willd. on lipopolysaccharide induced-oxidative stress in rats.

    PubMed

    Ahmad, Mohammad Parwez; Hussain, Arshad; Siddiqui, Hefazat Hussain; Wahab, Shadma; Adak, Manoranjan

    2015-03-01

    Lipopolysaccharide (LPS) induced oxidative stress and impairment of normal physiological function generally categorized by increased anxiety and reduced mobility. Therefore, the present study was to find out the effect Methanolic extract of Asparagus racemosus (MEAR ) in lipopolysaccharide (LPS)-induced oxidative stress in rats . LPS-induced oxidative stress in rats was measured by locomotor activity by photoactometer test, anxiety with elevated plus maze test and also studied the oxidative stress markers, nitric oxide and cytokines. The obtained data shows that LPS markedly exhausted (p<0.001) brain- reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) significantly increased (p<0.001) the level of malondialdehyde (MDA), nitric oxide and the activity of cytokines in the brain. MEAR supplementation resulted in normalization of brain GSH and CAT and SOD and decreases in the levels of MDA with reduction of nitric oxide and cytokines in the brain. The action of the extract at dose of 200 mg/kg was almost similar to the standard drug, quercetin (100mg/kg, p.o.). These present study conclude that MEAR administration significantly (P<0.05) reduced LPS- induced oxidative-stress and intensely suggest that Asparagus racemosus Willd. is a functionally newer type of cerebroprotective agent.

  19. n-Propyl gallate suppresses lipopolysaccharide-induced inducible nitric oxide synthase activation through protein kinase Cδ-mediated up-regulation of heme oxygenase-1 in RAW264.7 macrophages.

    PubMed

    Jeon, Wookwang; Park, Seong Ji; Kim, Byung-Chul

    2017-04-15

    n-Propyl gallate is a synthetic phenolic antioxidant with potential anti-inflammatory effects. However, the underlying mechanism remains largely unknown. In the present study, we showed that n-propyl gallate increases the expression and activity of the heme oxygenase-1 (HO-1), a stress-inducible protein with potent anti-inflammatory activity, in RAW264.7 macrophages. The inhibition of the HO-1 activity by treatment with zinc (II) protoporphyrin IX (ZnPP) or by knockdown of the HO-1 expression with small interference RNA significantly reversed the inhibitory effect of n-Propyl gallate on activations of nuclear factor-κB (NF-κB) and inducible nitric oxide synthase (iNOS) induced by lipopolysaccharide (LPS). An additional mechanism study using inhibitors of signaling kinases revealed the involvement of protein kinase Cδ (PKCδ) in the expression of HO-1 induced by n-Propyl gallate. Consistent with these results, n-Propyl gallate increased the intracellular levels of phosphorylated PKCδ in concentration- and time-dependent manners. The inhibitory effects of n-Propyl gallate on LPS-induced iNOS expression and nitric oxide production were also significantly attenuated by pretreatment with the PKCδ inhibitor, rottlerin, or by transfection with PKCδ (K376R), a kinase-inactive form of PKCδ. Taken together, these findings provide the first evidence that n-Propyl gallate exerts its anti-inflammatory effect through PKCδ-mediated up-regulation of HO-1 in macrophages.

  20. Effects of sesquiterpenes and amino acid-sesquiterpene conjugates from the roots of Saussurea lappa on inducible nitric oxide synthase and heat shock protein in lipopolysaccharide-activated macrophages.

    PubMed

    Matsuda, Hisashi; Toguchida, Iwao; Ninomiya, Kiyofumi; Kageura, Tadashi; Morikawa, Toshio; Yoshikawa, Masayuki

    2003-03-06

    The methanolic extract of the roots of Saussurea lappa CLARKE, a Chinese medicinal herb Saussureae Radix, was found to inhibit nitric oxide (NO) production in lipopolysaccharide (LPS)-activated mouse peritoneal macrophages. Among the constituents from the methanolic extract, two sesquiterpene lactones (costunolide and dehydrocostus lactone) and two amino acid-sesquiterpene conjugates (saussureamines A and B) potently inhibited LPS-induced NO production (IC(50)=1.2-2.8 microM). Saussureamines A and B in addition to costunolide and dehydrocostus lactone did not inhibit iNOS enzyme activity, but they inhibited both induction of inducible NO synthase and activation of nuclear factor-kappaB in accordance with induction of heat shock protein 72.

  1. Zinc protoporphyrin inhibition of lipopolysaccharide-, lipoteichoic acid-, and peptidoglycan-induced nitric oxide production through stimulating iNOS protein ubiquitination

    SciTech Connect

    Chow, J.-M.; Lin, H.-Y.; Shen, S.-C.; Wu, M.-S.; Lin, C.-W.; Chiu, W.-T.; Lin, C.-H. Chen, Y.-C.

    2009-06-15

    In the present study, zinc protoporphyrin (ZnPP), but not ferric protoporphyrin (FePP), tin protoporphyrin (SnPP), or zinc chloride (ZnCl{sub 2}), at the doses of 0.5, 1, and 2 {mu}M, dose-dependently inhibited lipopolysaccharide- (LPS), lipoteichoic acid (LTA), and peptidoglycan (PGN)-induced inducible nitric oxide (iNOS) and nitric oxide (NO) production with an increase in heme oxygenase 1 (HO-1) protein in RAW264.7 macrophages in a serum-free condition. NO inhibition and HO-1 induction by ZnPP were blocked by the separate addition of fetal bovine serum (FBS) and bovine serum albumin (BSA). A decrease in the iNOS/NO ratio and an increase in HO-1 protein by ZnPP were identified in three different conditions including ZnPP pretreatment, ZnPP co-treatment, and ZnPP post-treatment with LPS and LTA. Activation of c-Jun N-terminal kinases (JNKs) and extracellular regulated kinases (ERKs) were detected in LPS-, LTA-, and PGN-treated RAW264.7 cells, and iNOS/NO production was blocked by adding the JNK inhibitor, SP600125, but not the ERK inhibitor, PD98059. However, ZnPP addition potentiated ERK and JNK protein phosphorylation stimulated by LPS, LTA, and PGN. Increases in total protein ubiquitination and ubiquitinated iNOS proteins were detected in ZnPP-treated macrophages elicited by LPS according to Western and immunoprecipitation/Western blotting assays, respectively. The decrease in LPS-induced iNOS protein by ZnPP was reversed by adding the proteasome inhibitors MG132 and lactacystin. The reduction in HO-1 protein induced by ZnPP via transfection of HO-1 small interfering RNA did not affect the inhibitory effect of ZnPP against LPS-induced iNOS/NO production and protein ubiquitination induced by ZnPP in macrophages. Data of the present study provide the first evidence to support ZnPP effectively inhibiting inflammatory iNOS/NO production through activation of protein ubiquitination in a HO-1-independent manner in macrophages.

  2. Zinc protoporphyrin inhibition of lipopolysaccharide-, lipoteichoic acid-, and peptidoglycan-induced nitric oxide production through stimulating iNOS protein ubiquitination.

    PubMed

    Chow, Jyh-Ming; Lin, Hui-Yi; Shen, Shing-Chuan; Wu, Ming-Shun; Lin, Cheng-Wei; Chiu, Wen-Ta; Lin, Chien-Huang; Chen, Yen-Chou

    2009-06-15

    In the present study, zinc protoporphyrin (ZnPP), but not ferric protoporphyrin (FePP), tin protoporphyrin (SnPP), or zinc chloride (ZnCl(2)), at the doses of 0.5, 1, and 2 microM, dose-dependently inhibited lipopolysaccharide- (LPS), lipoteichoic acid (LTA), and peptidoglycan (PGN)-induced inducible nitric oxide (iNOS) and nitric oxide (NO) production with an increase in heme oxygenase 1 (HO-1) protein in RAW264.7 macrophages in a serum-free condition. NO inhibition and HO-1 induction by ZnPP were blocked by the separate addition of fetal bovine serum (FBS) and bovine serum albumin (BSA). A decrease in the iNOS/NO ratio and an increase in HO-1 protein by ZnPP were identified in three different conditions including ZnPP pretreatment, ZnPP co-treatment, and ZnPP post-treatment with LPS and LTA. Activation of c-Jun N-terminal kinases (JNKs) and extracellular regulated kinases (ERKs) were detected in LPS-, LTA-, and PGN-treated RAW264.7 cells, and iNOS/NO production was blocked by adding the JNK inhibitor, SP600125, but not the ERK inhibitor, PD98059. However, ZnPP addition potentiated ERK and JNK protein phosphorylation stimulated by LPS, LTA, and PGN. Increases in total protein ubiquitination and ubiquitinated iNOS proteins were detected in ZnPP-treated macrophages elicited by LPS according to Western and immunoprecipitation/Western blotting assays, respectively. The decrease in LPS-induced iNOS protein by ZnPP was reversed by adding the proteasome inhibitors MG132 and lactacystin. The reduction in HO-1 protein induced by ZnPP via transfection of HO-1 small interfering RNA did not affect the inhibitory effect of ZnPP against LPS-induced iNOS/NO production and protein ubiquitination induced by ZnPP in macrophages. Data of the present study provide the first evidence to support ZnPP effectively inhibiting inflammatory iNOS/NO production through activation of protein ubiquitination in a HO-1-independent manner in macrophages.

  3. Fucosterol isolated from Undaria pinnatifida inhibits lipopolysaccharide-induced production of nitric oxide and pro-inflammatory cytokines via the inactivation of nuclear factor-κB and p38 mitogen-activated protein kinase in RAW264.7 macrophages.

    PubMed

    Yoo, Min-Sang; Shin, Ji-Sun; Choi, Hye-Eun; Cho, Young-Wuk; Bang, Myun-Ho; Baek, Nam-In; Lee, Kyung-Tae

    2012-12-01

    It has been reported that fucosterol has anti-diabetic, anti-oxidant, and anti-osteoporotic effects. We investigated the anti-inflammatory effects and the underlying molecular mechanism of fucosterol in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Fucosterol suppressed the expressions of inducible nitric oxide synthase (iNOS), tumour necrosis factor-α (TNF-α), and interleukin-6 (IL-6) by downregulating their transcriptions, and subsequently inhibited the productions of nitric oxide, TNF-α, and IL-6. In addition, fucosterol attenuated LPS-induced DNA binding and the transcriptional activity of nuclear factor-κB (NF-κB). These reductions were accompanied by parallel reductions in the phosphorylation and nuclear translocation of NF-κB. Furthermore, fucosterol attenuated the phosphorylations of mitogen-activated protein kinase kinases 3/6 (MKK3/6) and mitogen-activated protein kinase-activated protein kinase 2 (MK2), which are both involved in the p38 MAPK pathway. These results suggest that the anti-inflammatory effects of fucosterol are associated with the suppression of the NF-κB and p38 MAPK pathways.

  4. Inhibitory effects of salidroside on nitric oxide and prostaglandin E₂ production in lipopolysaccharide-stimulated RAW 264.7 macrophages.

    PubMed

    Song, Bocui; Huang, Guoren; Xiong, Ying; Liu, Jingbo; Xu, Linli; Wang, Zhenning; Li, Gen; Lu, Jing; Guan, Shuang

    2013-11-01

    The aim of this study was to evaluate the effect of salidroside on lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E₂ (PGE₂) production in RAW 264.7 macrophages and related anti-inflammatory mechanism. PGE₂ production was measured by enzyme-linked immunosorbent assay (ELISA); NO production was tested by Griess reagent. Inducible nitric oxidesynthase (iNOS) and COX-2 were determined by RT-PCR and Western blot analysis; IκB and P-IκB protein express were detected by Western blot analysis; cytosolic free Ca²⁺ ([Ca²⁺](i)) was measured by a fluorescent microscope. The data showed salidroside inhibited LPS-induced NO and PGE₂ production and reduced iNOS and COX-2 protein expression in RAW 264.7 macrophages. Consistent with these observations, salidroside inhibited LPS-induced cytosolic free Ca²⁺ concentration ([Ca²⁺](i)) elevation. In addition, we further investigated signal transduction mechanisms and found that the activation of NF-κB was suppressed by salidroside in a dose-dependent manner. These results suggest that salidroside suppresses NO and PGE₂ production by inhibiting iNOS and COX-2 protein expression, level of [Ca²⁺](i), and activation of NF-κB signal transduction pathway.

  5. 12-oxo-phytodienoic acid, a plant-derived oxylipin, attenuates lipopolysaccharide-induced inflammation in microglia.

    PubMed

    Taki-Nakano, Nozomi; Kotera, Jun; Ohta, Hiroyuki

    2016-05-13

    Jasmonates are plant lipid-derived oxylipins that act as key signaling compounds in plant immunity, germination, and development. Although some physiological activities of natural jasmonates in mammalian cells have been investigated, their anti-inflammatory actions in mammalian cells remain unclear. Here, we investigated whether jasmonates protect mouse microglial MG5 cells against lipopolysaccharide (LPS)-induced inflammation. Among the jasmonates tested, only 12-oxo-phytodienoic acid (OPDA) suppressed LPS-induced expression of the typical inflammatory cytokines interleukin-6 and tumor necrosis factor α. In addition, only OPDA reduced LPS-induced nitric oxide production through a decrease in the level of inducible nitric oxide synthase. Further mechanistic studies showed that OPDA suppressed neuroinflammation by inhibiting nuclear factor κB and p38 mitogen-activated protein kinase signaling in LPS-activated MG5 cells. In addition, OPDA induced expression of suppressor of cytokine signaling-1 (SOCS-1), a negative regulator of inflammation, in MG5 cells. Finally, we found that the nuclear factor erythroid 2-related factor 2 signaling cascade induced by OPDA is not involved in the anti-inflammatory effects of OPDA. These results demonstrate that OPDA inhibited LPS-induced cell inflammation in mouse microglial cells via multiple pathways, including suppression of nuclear factor κB, inhibition of p38, and activation of SOCS-1 signaling.

  6. Nitric oxide-induced calcium release: activation of type 1 ryanodine receptor by endogenous nitric oxide.

    PubMed

    Kakizawa, Sho; Yamazawa, Toshiko; Iino, Masamitsu

    2013-01-01

    Ryanodine receptors (RyRs), located in the sarcoplasmic/endoplasmic reticulum (SR/ER) membrane, are required for intracellular Ca2+ release that is involved in a wide range of cellular functions. In addition to Ca2+-induced Ca2+ release in cardiac cells and voltage-induced Ca2+ release in skeletal muscle cells, we recently identified another mode of intracellular Ca2+ mobilization mediated by RyR, i.e., nitric oxide-induced Ca2+ release (NICR), in cerebellar Purkinje cells. NICR is evoked by neuronal activity, is dependent on S-nitrosylation of type 1 RyR (RyR1) and is involved in the induction of long-term potentiation (LTP) of cerebellar synapses. In this addendum, we examined whether peroxynitrite, which is produced by the reaction of nitric oxide with superoxide, may also have an effect on the Ca2+ release via RyR1 and the cerebellar LTP. We found that scavengers of peroxynitrite have no significant effect either on the Ca2+ release via RyR1 or on the cerebellar LTP. We also found that an application of a high concentration of peroxynitrite does not reproduce neuronal activity-dependent Ca2+ release in Purkinje cells. These results support that NICR is induced by endogenous nitric oxide produced by neuronal activity through S-nitrosylation of RyR1.

  7. Inhibition of endogenous heat shock protein 70 attenuates inducible nitric oxide synthase induction via disruption of heat shock protein 70/Na(+) /H(+) exchanger 1-Ca(2+) -calcium-calmodulin-dependent protein kinase II/transforming growth factor β-activated kinase 1-nuclear factor-κB signals in BV-2 microglia.

    PubMed

    Huang, Chao; Lu, Xu; Wang, Jia; Tong, Lijuan; Jiang, Bo; Zhang, Wei

    2015-08-01

    Inducible nitric oxide synthase (iNOS) critically contributes to inflammation and host defense. The inhibition of heat shock protein 70 (Hsp70) prevents iNOS induction in lipopolysaccharide (LPS)-stimulated macrophages. However, the role and mechanism of endogenous Hsp70 in iNOS induction in microglia remains unclear. This study addresses this issue in BV-2 microglia, showing that Hsp70 inhibition or knockdown prevents LPS-induced iNOS protein expression and nitric oxide production. Real-time PCR experiments showed that LPS-induced iNOS mRNA transcription was blocked by Hsp70 inhibition. Further studies revealed that the inhibition of Hsp70 attenuated LPS-stimulated nuclear translocation and phosphorylation of nuclear factor (NF)-κB as well as the degradation of inhibitor of κB (IκB)-α and phosphorylation of IκB kinase β (IKKβ). This prevention effect of Hsp70 inhibition on IKKβ-NF-κB activation was found to be dependent on the Ca(2+) /calcium-calmodulin-dependent protein kinase II (CaMKII)/transforming growth factor β-activated kinase 1 (TAK1) signals based on the following observations: 1) chelation of intracellular Ca(2+) or inhibition of CaMKII reduced LPS-induced increases in TAK1 phosphorylation and 2) Hsp70 inhibition reduced LPS-induced increases in CaMKII/TAK1 phosphorylation, intracellular pH value, [Ca(2+) ]i , and CaMKII/TAK1 association. Mechanistic studies showed that Hsp70 inhibition disrupted the association between Hsp70 and Na(+) /H(+) exchanger 1 (NHE1), which is an important exchanger responsible for Ca(2+) influx in LPS-stimulated cells. These studies demonstrate that the inhibition of endogenous Hsp70 attenuates the induction of iNOS, which likely occurs through the disruption of NHE1/Hsp70-Ca(2+) -CaMKII/TAK1-NF-κB signals in BV-2 microglia, providing further insight into the functions of Hsp70 in the CNS.

  8. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage.

    PubMed

    Gokay, Nevzat Selim; Yilmaz, Ibrahim; Komur, Baran; Demiroz, Ahu Senem; Gokce, Alper; Dervisoglu, Sergülen; Gokay, Banu Vural

    2016-01-01

    The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg), inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg), or nitric oxide precursor L-arginine (200 mg/kg). After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P = 0.044) positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders.

  9. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    PubMed Central

    Gokay, Nevzat Selim; Yilmaz, Ibrahim; Demiroz, Ahu Senem; Gokce, Alper; Dervisoglu, Sergülen; Gokay, Banu Vural

    2016-01-01

    The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg), inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg), or nitric oxide precursor L-arginine (200 mg/kg). After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P = 0.044) positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders. PMID:27382570

  10. UV Induced Oxidation of Nitric Oxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde, F. (Inventor); Luecke, Dale E. (Inventor)

    2007-01-01

    Nitric oxide in a gaseous stream is converted to nitrogen dioxide using oxidizing species generated at least in part using in situ UV radiation sources. The sources of the oxidizing species include oxygen and/or hydrogen peroxide. The oxygen may be a component of the gaseous stream or added to the gaseous stream, preferably near a UV radiation source, and is converted to ozone by the UV irradiation. The hydrogen peroxide is decomposed through a combination of vaporization and UV irradiation. The hydrogen peroxide is preferably stored at stable concentration levels, i.e., approximately 50% by volume and increased in concentration in a continuous process preceding vaporization within the flow channel of the gaseous stream and in the presence of the UV radiation sources.

  11. Inhaled nitric oxide alleviates hyperoxia suppressed phosphatidylcholine synthesis in endotoxin-induced injury in mature rat lungs

    PubMed Central

    Gong, Xiaohui; Guo, Chunbao; Huang, Shibing; Sun, Bo

    2006-01-01

    Background We investigated efficacy of inhaled nitric oxide (NO) in modulation of metabolism of phosphatidylcholine (PC) of pulmonary surfactant and in anti-inflammatory mechanism of mature lungs with inflammatory injury. Methods Healthy adult rats were divided into a group of lung inflammation induced by i.v. lipopolysaccharides (LPS) or a normal control (C) for 24 h, and then exposed to: room air (Air), 95% oxygen (O), NO (20 parts per million, NO), both O and NO (ONO) as subgroups, whereas [3H]-choline was injected i.v. for incorporation into PC of the lungs which were processed subsequently at 10 min, 4, 8, 12 and 24 h, respectively, for measurement of PC synthesis and proinflammatory cytokine production. Results LPS-NO subgroup had the lowest level of labeled PC in total phospholipids and disaturated PC in bronchoalveolar lavage fluid and lung tissue (decreased by 46–59%), along with the lowest activity of cytidine triphosphate: phosphocholine cytidylyltransferase (-14–18%) in the lungs, compared to all other subgroups at 4 h (p < 0.01), but not at 8 and 12 h. After 24-h, all LPS-subgroups had lower labeled PC than the corresponding C-subgroups (p < 0.05). LPS-ONO had higher labeled PC in total phospholipids and disaturated PC, activity of cytidylyltransferase, and lower activity of nuclear transcription factor-κB and expression of proinflammatory cytokine mRNA, than that in the LPS-O subgroup (p < 0.05). Conclusion In LPS-induced lung inflammation in association with hyperoxia, depressed PC synthesis and enhanced proinflammatory cytokine production may be alleviated by iNO. NO alone only transiently suppressed the PC synthesis as a result of lower activity of cytidylyltransferase. PMID:16403237

  12. Nitric oxide inhibition sustains vasopressin-induced vasoconstriction.

    PubMed Central

    Dworkin, M. J.; Carnochan, P.; Allen-Mersh, T. G.

    1995-01-01

    Hepatic parenchymal vasoconstriction increases cytotoxic drug uptake into hepatic metastases by increasing the tumour to liver blood flow ratio. Prolonged infusion of the vasoconstrictor vasopressin does not result in sustained vasoconstriction, and this may limit the benefit of vasopressin in infusional chemotherapy. We have assessed whether loss of vasopressin-induced vasoconstriction is mediated by nitric oxide. Hepatic and tumour blood flow were continuously monitored, in an animal hepatic tumour model, by laser Doppler flowmetry. The response to regionally infused vasopressin and the nitric oxide inhibitor N-nitro-L-arginine methyl ester (L-NAME) were assessed over a 30 min infusion period. The vasopressin-induced vasoconstrictor effect diminished after 15 min despite continued infusion. Vasoconstriction was significantly prolonged when L-NAME was infused in addition to vasopressin. The increase in tumour to normal blood flow ratio was greater over the infusion period when L-NAME was co-administered with vasopressin. Our results suggest that the loss of vasopressin-induced vasoconstriction seen in liver parenchyma after regional infusion is prevented by the nitric oxide synthase inhibitor L-name and may be mediated by nitric oxide. PMID:7734317

  13. Ampelopsin attenuates lipopolysaccharide-induced inflammatory response through the inhibition of the NF-κB and JAK2/STAT3 signaling pathways in microglia.

    PubMed

    Weng, Leihua; Zhang, He; Li, Xiaoxi; Zhan, Hui; Chen, Fan; Han, Lijuan; Xu, Yun; Cao, Xiang

    2017-03-01

    Increasing evidence suggests that microglia are a major cellular contributor to neuroinflammation. The present study investigated whether Ampelopsin (Amp), a type of flavanonol derivative from Ampelopsis grossedentata, may exert an anti-inflammatory effect on lipopolysaccharide (LPS)-induced BV2 and primary microglia cells. We found that pre-treatment of microglia cells with Amp before LPS with a non-cytotoxic concentration range decreased the production of nitric oxide (NO) and prostaglandin E2 (PGE2). Amp also suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the mRNA and protein levels. In addition, LPS-induced production of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) was obviously reduced by Amp. Our mechanistic study indicated that Amp suppressed LPS-induced activation of the IκB/NF-κB inflammation pathway without affecting changes in the phosphorylation levels of mitogen-activated protein kinases (MAPKs) in BV2 cells. Further studies revealed that Amp markedly reduced the phosphorylation levels of JAK2-STAT3 and STAT3 nuclear translocation. Overall, our data suggest that Amp can suppress the LPS-induced inflammatory response of microglial cells, indicating that Amp has potential for the treatment of inflammation-mediated neurodegenerative diseases.

  14. Antrodia camphorata suppresses lipopolysaccharide-induced nuclear factor-kappaB activation in transgenic mice evaluated by bioluminescence imaging.

    PubMed

    Hseu, You-Cheng; Huang, Hui-Chi; Hsiang, Chien-Yun

    2010-01-01

    In an earlier study, we found that Antrodia camphorata inhibited the production of lipopolysaccharide (LPS)-induced cytokines, inducible nitric oxide synthase, and cyclooxygenase-2 by blocking nuclear factor-kappaB (NF-kappaB) activation in cultured RAW 264.7 macrophages. This study was aimed at evaluating the inhibitory effects of the fermented culture broth of A. camphorata in terms of LPS-induced NF-kappaB activation in transgenic mice by using a non-invasive, real-time NF-kappaB bioluminescence imaging technique. Transgenic mice carrying the luciferase gene under the control of NF-kappaB were given A. camphorata (570 mg/kg, p.o.) for three consecutive days and then injected with LPS (4 mg/kg, i.p.). In vivo imaging showed that treatment with LPS increased the luminescent signal, whereas A. camphorata suppressed the LPS-induced inflammatory response significantly. Ex vivo imaging showed that A. camphorata suppressed LPS-induced NF-kappaB activity in the small intestine, mesenteric lymph nodes, liver, spleen, and kidney. Immunohistochemical staining revealed that A. camphorata suppressed production of the LPS-induced tumour necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), and NF-kappaB p65 subunit in these organs. Furthermore, A. camphorata attenuated the productions of LPS-induced TNF-alpha and IL-1beta in serum from transgenic mice. We report the first confirmation of the anti-inflammatory action in vivo of this potentially beneficial mushroom.

  15. Lipopolysaccharide-induced overproduction of nitric oxide and overexpression of iNOS and interleukin-1β proteins in zinc-deficient rats.

    PubMed

    Miyazaki, Takashi; Takenaka, Tsuneo; Inoue, Tsutomu; Sato, Makiko; Miyajima, Yuka; Nodera, Makoto; Hanyu, Mayuko; Ohno, Yoichi; Shibazaki, Satomi; Suzuki, Hiromichi

    2012-03-01

    Zinc deficiency leads to decreased cellular immune responses. The overproduction of nitrogen species derived from inducible nitric oxide synthase (iNOS), its enzyme, and interleukine-1 beta (IL-1β), and inflammatory cytokine have been implicated in immune responses. The goal of this study was to investigate the effects of lipopolysaccharide (LPS)-induced changes in NO metabolites, iNOS, and IL-1β protein expression in the lungs of zinc-deficient rats. Male Sprague-Dawley rats (body weight, 100 g) were divided into two groups and were fed either a zinc-deficient diet (ZnD) or a zinc-containing diet (Cont). After 4 weeks on these diets, rats received a 10-mg/kg dose of LPS injected via the tail vein and were then maintained for an additional 72 h. To determine total NO concentrations in the blood, serum zinc concentration, iNOS protein expression, IL-1β, and iNOS immunohistochemistry, blood and lung samples were obtained at pre-LPS injection, 5, 24, and 72 h after injection. Total NO levels were significantly increased at 5, at 24, and at 72 h after LPS injection compared with pre-LPS injection level in ZnD group; significant changes in total NO levels was elevated at 5 h from at pre-LPS level but not significant changes from basal level at 24 and 72 h in the control group. Based on western blot analyses and immunohistochemistry, clear bands indicating iNOS and IL-1β protein expression and iNOS antibody-stained inflammatory cells were detected at 5 and 24 h in the ZnD group and 5 h in the Cont group, not observed at 24 and 72 h in the control group. These results suggest that zinc deficiency induces overexpression of iNOS and IL-1β proteins from inflammatory cells around the alveolar blood vessels, resulting in overproduction of total NO and persisted inflammatory response in the zinc-deficient rat lung. Taken together, overexpression of LPS-induced iNOS, overproduction of iNOS-derived NO, and overexpression of IL-1β may induce nitrosative and oxidative

  16. Protein kinase C and tyrosine kinase pathways regulate lipopolysaccharide-induced nitric oxide synthase activity in RAW 264.7 murine macrophages.

    PubMed Central

    Paul, A; Pendreigh, R H; Plevin, R

    1995-01-01

    1. In RAW 264.7 macrophages, lipopolysaccharide (LPS) and gamma-interferon (IFN gamma) alone or in combination stimulated the induction of nitric oxide synthase (iNOS) activity and increased the expression of the 130 kDa isoform of NOS. 2. LPS-induced NOS activity was reduced by incubation with CD14 neutralising antibodies and abolished in macrophages deprived of serum. 3. LPS stimulated a small increase in protein kinase C (PKC) activity in RAW 264.7 macrophages which was dependent on the presence of serum. However, IFN gamma did not potentiate LPS-stimulated PKC activity. 4. The protein kinase C inhibitor, Ro-318220, abolished both LPS- and IFN gamma-stimulated protein kinase C activity and the induction of NOS activity. 5. LPS- and IFN gamma-induced NOS activity was reduced by the tyrosine kinase inhibitor genestein. Genestein also reduced LPS-stimulated protein kinase C activity but did not affect the response to the protein kinase C activator, tetradecanoylphorbol acetate (TPA). 6. Nicotinamide, an inhibitor of poly-ADP ribosylation, abolished LPS- and IFN gamma-induced NOS activity. 7. Brefeldin A, an inhibitor of a factor which stimulates nucleotide exchange activity on the 21 kDa ADP-ribosylation factor, ARF, reduced LPS- and IFN gamma-induced NOS activity by approximately 80%. 8. These results suggest the involvement of protein kinase C, tyrosine kinase and poly-ADP ribosylation pathways in the regulation of the induction of nitric oxide synthase in RAW 264.7 macrophages by LPS and IFN gamma. Images Figure 2 PMID:7533621

  17. Antioxidant and nitric oxide inhibition activities of Thai medicinal plants.

    PubMed

    Makchuchit, Sunita; Itharat, Arunporn; Tewtrakul, Supinya

    2010-12-01

    Nineteen Thai medicinal plants used in Thai traditional medicine preparation to treat colds, asthma and fever were studied for their antioxidant and NO inhibitory activities. Three extracts were obtained from each plant. First extract obtained by macerating the plant part in 95% ethanol (Et) residue was boiled in water, where water extract (EW) was obtained. The third extract (HW) was obtained by boiling each plant in water similar to that of Thai traditional medicine practice. These extracts were tested for their antioxidant activity using DPPH assay, and anti-inflammatory activity by determination of inhibitory activity on lipopolysaccharide (LPS) induced nitric oxide (NO) production in RAW 264.7 cell lines using Griess reagent. Results indicated that Et, EW and HW of Syzygium aromaticum showed the highest antioxidant activity (EC50 = 6.56, 4.73 and 5.30 microg/ml, respectively). Et of Atractylodes lancea exhibited the most potent inhibitory activity on lipopolysaccharide (LPS) induced nitric oxide (NO) production in RAW 264.7 cells, with IC50 value of 9.70 microg/ml, followed by Et of Angelica sinensis and Cuminum cyminum (IC50 = 12.52 and 13.56 microg/ml, respectively) but water extract (EW, HW) of all plants were apparently inactive. These results of anti-inflammatory activity of these plants correspond with the traditional use for fever; cold, allergic-related diseases and inflammatory-related diseases.

  18. Nitric oxide-donor SNAP induces Xenopus eggs activation.

    PubMed

    Jeseta, Michal; Marin, Matthieu; Tichovska, Hana; Melicharova, Petra; Cailliau-Maggio, Katia; Martoriati, Alain; Lescuyer-Rousseau, Arlette; Beaujois, Rémy; Petr, Jaroslav; Sedmikova, Marketa; Bodart, Jean-François

    2012-01-01

    Nitric oxide (NO) is identified as a signaling molecule involved in many cellular or physiological functions including meiotic maturation and parthenogenetic activation of mammalian oocytes. We observed that nitric oxide donor SNAP was potent to induce parthenogenetic activation in Xenopus eggs. NO-scavenger CPTIO impaired the effects of SNAP, providing evidence for the effects of the latter to be specific upon NO release. In Xenopus eggs, SNAP treatment induced pigment rearrangement, pronucleus formation and exocytosis of cortical granules. At a biochemical level, SNAP exposure lead to MAPK and Rsk inactivation within 30 minutes whereas MPF remained active, in contrast to calcium ionophore control where MPF activity dropped rapidly. MAPK inactivation could be correlated to pronuclear envelope reformation observed. In SNAP-treated eggs, a strong increase in intracellular calcium level was observed. NO effects were impaired in calcium-free or calcium limited medium, suggesting that that parthenogenetic activation of Xenopus oocytes with a NO donor was mainly calcium-dependent.

  19. Regulatory Mechanisms of Vitamin D3 on Production of Nitric Oxide and Pro-inflammatory Cytokines in Microglial BV-2 Cells.

    PubMed

    Dulla, Yevgeny Aster T; Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Shudo, Koichi; Katsuki, Hiroshi

    2016-11-01

    Inhibition of pro-inflammatory functions of microglia has been considered a promising strategy to prevent pathogenic events in the central nervous system under neurodegenerative conditions. Here we examined potential inhibitory effects of nuclear receptor ligands on lipopolysaccharide (LPS)-induced inflammatory responses in microglial BV-2 cells. We demonstrate that a vitamin D receptor agonist 1,25-dihydroxyvitamin D3 (VD3) and a retinoid X receptor agonist HX630 affect LPS-induced expression of pro-inflammatory factors. Specifically, both VD3 and HX630 inhibited expression of mRNAs encoding inducible nitric oxide synthase (iNOS) and IL-6, whereas expression of IL-1β mRNA was inhibited only by VD3. The inhibitory effect of VD3 and HX630 on expression of iNOS and IL-6 mRNAs was additive. Effect of VD3 and HX630 was also observed for inhibition of iNOS protein expression and nitric oxide production. Moreover, VD3 and HX630 inhibited LPS-induced activation of extracellular signal-regulated kinase (ERK) and nuclear translocation of nuclear factor κB (NF-κB). PD98059, an inhibitor of ERK kinase, attenuated LPS-induced nuclear translocation of NF-κB and induction of mRNAs for iNOS, IL-1β and IL-6. These results indicate that VD3 can inhibit production of several pro-inflammatory molecules from microglia, and that suppression of ERK activation is at least in part involved in the anti-inflammatory effect of VD3.

  20. Role of nitric oxide produced by iNOS through NF-κB pathway in migration of cerebellar granule neurons induced by Lipopolysaccharide.

    PubMed

    Arias-Salvatierra, Daniela; Silbergeld, Ellen K; Acosta-Saavedra, Leonor C; Calderon-Aranda, Emma S

    2011-02-01

    Inflammatory stimulus during development increases the risk for adverse neurologic outcome. One possible mechanism is disrupting neuronal migration. Using lipopolysaccharide (LPS)-treatment to assess inflammatory stimulus on neuronal migration of cerebellar granule neurons, we previously found that LPS-activation increased the neuronal migration. The precise mechanisms behind these effects have not been investigated. Independently, it was shown that nitric oxide (NO(•-)) regulates neuronal migration during development, that NO(•-) is produced by inducible nitric oxide synthase (iNOS) in response to LPS through the activation of nuclear factor (NF)-κB, and that LPS induce the expression of genes under the transcriptional control of NF-κB in primary cultures from developing mouse cerebellum. To investigate the relationship between these events, we used this culture model to study the role of NO(•-) produced by iNOS through NF-κB signaling pathway, in the effect of LPS on neuron migration. LPS increased NO(•-) production, iNOS protein levels and NF-κB nuclear levels; concomitantly with NO(•-) production, LPS increased the neuronal migration as compared to non stimulated cultures. The necessary roles of the NO(•-) and iNOS were demonstrated by chelating of NO(•-) with hemoglobin and the inhibition of iNOS by 1400W. Each of these treatments reduced neuronal migration induced by LPS. The role of NF-κB was showed by using the inhibitor JSH-23, which decreased NO(•-) production and neuronal migration in LPS activated cultures. These results suggest that neuronal migration during development is susceptible to be modified by pro-inflammatory stimulus such as LPS through intracellular pathways associated with their receptors.

  1. Acanthopanax koreanum fruit waste inhibits lipopolysaccharide-induced production of nitric oxide and prostaglandin E2 in RAW 264.7 macrophages.

    PubMed

    Yang, Eun-Jin; Moon, Ji-Young; Lee, Jung-Soon; Koh, Jaesook; Lee, Nam Ho; Hyun, Chang-Gu

    2010-01-01

    The Acanthopanax koreanum fruit is a popular fruit in Jeju Island, but the byproducts of the alcoholic beverage prepared using this fruit are major agricultural wastes. The fermentability of this waste causes many economic and environmental problems. Therefore, we investigated the suitability of using A. koreanum fruit waste (AFW) as a source of antiinflammatory agents. AFWs were extracted with 80% EtOH. The ethanolic extract was then successively partitioned with hexane, CH(2)Cl(2), EtOAc, BuOH, and water. The results indicate that the CH(2)Cl(2) fraction (100 microg/mL) of AFW inhibited the LPS-induced nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production in RAW 264.7 cells by 79.6% and 39.7%, respectively. These inhibitory effects of the CH(2)Cl(2) fraction of AFWs were accompanied by decreases in the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins and iNOS and COX-2 mRNA in a dose-dependent pattern. The CH(2)Cl(2) fraction of AFWs also prevented degradation of IkappaB-alpha in a dose-dependent manner. Ursolic acid was identified as major compound present in AFW, and CH(2)Cl(2) extracts by high performance liquid chromatography (HPLC). Furthermore using pure ursolic acid as standard and by HPLC, AFW and CH(2)Cl(2) extracts was found to contain 1.58 mg/g and 1.75 mg/g, respectively. Moreover, we tested the potential application of AFW extracts as a cosmetic material by performing human skin primary irritation tests. In these tests, AFW extracts did not induce any adverse reactions. Based on these results, we suggest that AFW extracts be considered possible anti-inflammatory candidates for topical application.

  2. Supercritical extract of Seabuckthorn Leaves (SCE200ET) inhibited endotoxemia by reducing inflammatory cytokines and nitric oxide synthase 2 expression.

    PubMed

    Jayashankar, Bindhya; Mishra, K P; Ganju, L; Singh, S B

    2014-05-01

    Endotoxins from infectious organisms lead to sepsis, a systemic inflammatory response, and a major cause of death. Numerous studies have shown the potential role of plants and plant-derived compounds in the suppression of LPS induced endotoxemia in vivo. In the present study, we have identified a plant namely Seabuckthorn (Hippophae rhamnoides L.) as a potent agent for the treatment of endotoxemia. The objective of the study was to investigate the influence of Supercritical Extract of Seabuckthorn Leaves (SCE200ET) and its active component Isorhamnetin (IR) on the LPS induced endotoxemia in Balb/c mice by measuring the level of nitric oxide (NO), TNF-α and IL-6. Expression of COX-2 and iNOS was measured to understand the involvement of various pathways in the mechanism of action of SCE200ET and IR. The results indicated that SCE200ET and IR inhibited LPS induced NO production by peritoneal macrophages. Cytokines mediated effector functions were influenced by the reduction of IL-6 and TNF-α production and CD40 expression was also markedly diminished in the extract or IR treated groups. In addition, the anti-inflammatory properties were further characterized by decreased expression of COX-2 and iNOS proteins. Fractionation and phytochemical analysis of the extract by RP-HPLC led to identification of isorhamnetin, as bioactive component. Thus, SCE200ET extract and its active component Isorhamnetin could be potential therapeutic agents for the treatment of endotoxin induced sepsis.

  3. Melatonin inhibits Prevotella intermedia lipopolysaccharide-induced production of nitric oxide and interleukin-6 in murine macrophages by suppressing NF-κB and STAT1 activity.

    PubMed

    Choi, Eun-Young; Jin, Ji-Young; Lee, Ju-Youn; Choi, Jeom-Il; Choi, In Soon; Kim, Sung-Jo

    2011-03-01

    Although a range of biological and pharmacological activities of melatonin have been reported, little is known about its potential anti-inflammatory efficacy in periodontal disease. In this study, we investigated the effects of melatonin on the production of inflammatory mediators by murine macrophages stimulated with lipopolysaccharide (LPS) from Prevotella intermedia, a major cause of inflammatory reactions in the periodontium, and sought to determine the underlying mechanisms of action. Melatonin suppressed the production of nitric oxide (NO) and interleukin-6 (IL-6) at both gene transcription and translation levels in P. intermedia LPS-activated RAW264.7 cells. P. intermedia LPS-induced NF-κB-dependent luciferase activity was significantly inhibited by melatonin. Melatonin did not reduce NF-κB transcriptional activity at the level of IκB-α degradation. Melatonin blocked NF-κB signaling through the inhibition of nuclear translocation and DNA-binding activity of NF-κB p50 subunit and suppressed STAT1 signaling. Although further research is required to clarify the detailed mechanism of action, we conclude that melatonin may contribute to blockade of the host-destructive processes mediated by these two proinflammatory mediators and could be a highly efficient modulator of host response in the treatment of inflammatory periodontal disease.

  4. Effect of Three-spot Seahorse Petroleum Ether Extract on Lipopolysaccharide Induced Macrophage RAW264.7 Inflammatory Cytokine Nitric Oxide and Composition Analysis.

    PubMed

    Chen, LiPing; Shen, XuanRi; Chen, GuoHua; Cao, XianYing; Yang, Jian

    2015-01-01

    Three-Spot seahorse is a traditional medicine in Asian countries. However, the alcohol extract is largely unknown for its anti-inflammatory activity. This study aimed at elucidating fraction of potent anti-inflammatory activity of seahorse. A systematic solvent extraction method of liquid-liquid fractionation of ethanol crude extract gave four fractions petroleum ether (PE), and ethyl acetate (EtOAc), water saturated butanol (n-BuOH), water (H2O). In this study, PE extract was selected for further study after preliminary screening test, and was connected to silica column chromatography and eluted with different polarity of mobile phases, and obtained four active fractions (Fr I, Fr II, Fr III, Fr IV). Effect of separated fractions on inflammation was investigated in lipopolysaccharide (LPS) stimulated murine RAW264.7 cells in vitro. The result shows that seahorse extract was capable of inhibiting the production of nitric oxide (NO) significantly in a dose dependent manner and exhibited no notable cytotoxicity on cell viability. IC50 of fraction IV was 36.31 μg/mL, indicating that separated fraction possessed potent NO inhibitory activity against LPS-induced inflammatory response, thus, demonstrated its in vitro anti-inflammatory potentiality, it may be at least partially explained by the presence of anti-inflammation active substances, phenolic compounds, phospholipids and polyunsaturated fatty acids, especially phospholipids and polyunsaturated fatty acids. It could be suggested that seahorse lipid-soluble components could be used in functional food and anti-inflammatory drug preparations.

  5. Expression of inducible nitric oxide in human lung epithelial cells.

    PubMed

    Robbins, R A; Barnes, P J; Springall, D R; Warren, J B; Kwon, O J; Buttery, L D; Wilson, A J; Geller, D A; Polak, J M

    1994-08-30

    Nitric oxide (NO) is increased in the exhaled air of subjects with several airway disorders. To determine if cytokines could stimulate epithelial cells accounting for the increased NO, the capacity of the proinflammatory cytokines (cytomix: tumor necrosis factor-alpha, interleukin-1 beta, and interferon-gamma) to increase inducible nitric oxide synthase (iNOS) was investigated in A549 and primary cultures of human bronchial epithelial cells. Cytomix induced a time-dependent increase in nitrite levels in culture supernatant fluids (p < 0.05). Increased numbers of cells stained for iNOS and increased iNOS mRNA was detected in the cytokine-stimulated cells compared to control (p < 0.05). Dexamethasone diminished the cytokine-induced increase in nitrite, iNOS by immunocytochemistry, and iNOS mRNA. These data demonstrate that cytokines, such as those released by mononuclear cells, can induce lung epithelial iNOS expression and NO release, and that this is attenuated by dexamethasone.

  6. Nitric oxide synthases and cyclophosphamide-induced cystitis in rats.

    PubMed

    Alfieri, A B; Malave, A; Cubeddu, L X

    2001-03-01

    The role of inducible (iNOS) and neuronal nitric oxide (nNOS) synthases and of tachykinin NK1 receptors on the pathogenesis of cyclophosphamide (CYP)-induced cystitis was investigated, in rats. CYP-induced cystitis was characterized by large increases in bladder-protein plasma extravasation (PPE), increases in the urinary excretion of nitric oxide (NO) metabolites and histological evidences of urothelial damage, edema, extensive white blood cell infiltrates and vascular congestion of the bladder. The specific iNOS inhibitor, S-methylthiourea (MITU), produced marked inhibition (>90%) of CYP-induced increases in PPE associated with amelioration of tissue inflammatory changes. Treatment with 7-nitroindazole (7-NI; 20, 40 and 80 mg/kg), a selective nNOS inhibitor, did not significantly reduce CYP-induced increases in PPE and failed to produce histological improvement. In addition, treatment with MITU, but not with 7-NI, inhibited the increases in the urinary excretion of NO metabolites induced by CYP treatment. WIN 51,708 (17-beta-hydroxy-17-alpha-ethynyl-androstano[3,2-b]pyrimido[1,2-a]benzimidazole; WIN), a selective NK1-receptor antagonist, reduced the increases in EPP and ameliorated the inflammatory changes in the bladder induced by CYP. However, the maximal degree of protection achieved with WIN was significantly less than that produced by MITU. Combined treatment with the iNOS inhibitor and the NK1 antagonist produced no greater effect than that produced by the iNOS inhibitor alone. Our results suggest that NO plays a fundamental role in the production of the cystitis associated with CYP treatment. The iNOS, and not nNOS, seems responsible for the inflammatory changes. Part of the increases in NO may due to activation of NK1 receptors by neuropeptides such as substance P possibly released from primary afferent fibers.

  7. The role of nitric oxide in experimental cerulein induced pancreatitis.

    PubMed

    Um, Soon Ho; Kwon, Yong Dae; Kim, Chang Duck; Lee, Hong Sik; Jeen, Yoon Tae; Chun, Hoon Jai; Lee, Sang Woo; Choi, Jae Hyun; Ryu, Ho Sang; Hyun, Jin Hai

    2003-08-01

    An enhanced formation of nitric oxide (NO), due to the induction of inducible nitric oxide synthase (iNOS), has been implicated in the pathogenesis of shock and inflammation, but its role in acute pancreatitis still remains controversial. To clarify the role of NO in acute pancreatitis, the present experiment investigated the expression of iNOS and the effect of NOS inhibition on cerulein-induced pancreatitis in rats. Group I received intraperitoneal (ip) injection of normal saline. Group II received two ip injections of cerulein (20 microgram/kg). Group III received injections of N(G)-nitro-L-arginine methyl ester (L-NAME) (30 mg/kg) with cerulein. Group IV received L-arginine (250 mg/kg) with cerulein and L-NAME. The expression of iNOS in the pancreas was examined by western blot analysis. The plasma concentration of NO metabolites was measured. The severity of pancreatitis was assessed by measuring serum amylase, pancreas water content and histopathological examination. Compared with controls, the cerulein group displayed significantly increased expression of iNOS and raised plasma NO metabolites. Treatment with L-NAME significantly decreased hyperamylasemia, plasma NO level, and the extent of pancreatic injury. Treatment with L-arginine reversed the effects of L-NAME. These findings suggest that an enhanced formation of NO by iNOS plays an important role in the development of acute pancreatitis, and inhibition of NO production has the beneficial effects in reducing pancreas injury.

  8. Inhibitory constituents of the heartwood of Dalbergia odorifera on nitric oxide production in RAW 264.7 macrophages.

    PubMed

    Lee, Chul; Lee, Jin Woo; Jin, Qinghao; Jang, Dae Sik; Lee, Sung-Joon; Lee, Dongho; Hong, Jin Tae; Kim, Youngsoo; Lee, Mi Kyeong; Hwang, Bang Yeon

    2013-07-15

    Two new isoflavanones (1 and 13), along with 25 known compounds (2-12, 14-27), were isolated from the EtOAc-soluble fraction of the heartwood of Dalbergia odorifera by following their potential to inhibit the LPS-induced nitric oxide production in RAW 264.7 cells. The structures of the isolated compounds were established by spectroscopic data such as (1)D, (2)D NMR and MS spectrometry. Among the isolated compounds, (2S)-pinocembrin (26), showed the most potent inhibitory effect with IC50 value of 18.1μM.

  9. Chemical constituents of malagasy Liverworts. 6. A myltaylane caffeate with nitric oxide inhibitory activity from Bazzania nitida.

    PubMed

    Harinantenaina, Liva; Asakawa, Yoshinori

    2007-05-01

    The phytochemical investigation of the Malagasy liverwort, Bazzania nitida, led to the isolation of (+)-(lS,4R)-7-hydroxycalamenene (1), together with a new myltayl-4(12)-ene-2-caffeate (2). Although cyclomyltaylane sesquiterpenoids have been known to be present in Bazzania species, this is the second isolation of myltaylane-type sesuiterpenoids from the genus. Biosynthetically, myltaylane sesquiterpenoids are proposed to be derived from chamigrene with a route different from those of cyclomyltaylanoids. The chemosystematics of Bazzania species is also discussed. Compound 2 showed potent inhibition of nitric oxide in LPS-induced RAW 264.7 cells (IC50 = 6.3 microM).

  10. Hypergravity upregulates renal inducible nitric oxide synthase expression and nitric oxide production

    PubMed Central

    Yoon, Gun; Oh, Choong Sik; Kim, Hyun-Soo

    2016-01-01

    Exposure to hypergravity severely decreases renal blood flow, potentially causing renal dysfunction. Nitric oxide (NO), which is endogenously synthesized by inducible NO synthase (iNOS), plays an important role in the regulation of renal function. The purpose of this study was to examine the effect of hypergravity exposure on the production of NO in kidneys. To determine whether hypergravity induces renal hypoxia and alters renal iNOS expression and NO production, mice were exposed to short-term hypergravity at +3Gz for 1 h. The time course of iNOS mRNA expression, hypoxia-inducible factor (HIF)-1α expression, and NO production was examined. Renal HIF-1α levels were significantly elevated immediately after centrifugation, and this increase was sustained for 3 h post-exposure. iNOS mRNA levels were also significantly increased immediately after exposure and were maintained during the reoxygenation period. Immunohistochemical staining for iNOS revealed that the cortical tubular epithelium exhibited moderate to strong cytoplasmic iNOS immunoreactivity immediately after hypergravity exposure and during the reoxygenation period. The time course of NO production was similar to that of iNOS expression. Our results suggest that both hypoxia and reoxygenation might be involved in the upregulation of HIF-1α in the kidneys of mice exposed to hypergravity. Significant increases in renocortical iNOS expression immediately after centrifugation and during the reoxygenation period suggest that iNOS expression induced by hypergravity exposure might play a protective role against hypoxia/reoxygenation injury in the renal cortex. Further investigations are necessary to clarify the role of iNOS and NO in kidneys exposed to hypergravity. PMID:27174912

  11. Nitric Oxide Signaling in Hypergravity-Induced Neuronal Plasticity

    NASA Technical Reports Server (NTRS)

    Holstein, Gay R.

    2003-01-01

    The goal of this research project was to identify the neurons and circuits in the vestibular nuclei and nucleus prepositus hypoglossi that utilize nitric oxide (NO) for intercellular signaling during gravity-induced plasticity. This objective was pursued using histochemical and immunocytochemical approaches to localize NO-producing neurons and characterize the fine morphology of the cells in ground-based studies of normal rats, rats adapted to hypergravity, and rats adapted to hypergravity and then re-adapted to the 1G environment. NO-producing neurons were identified and studied using four methodologies: i) immunocytochemistry employing polyclonal antibodies directed against neuronal nitric oxide synthase (nNOS), to provide an indication of the capacity of a cell for NO production; ii) immunocytochemistry employing a monoclonal antibody directed against L-citrulline, to provide an indirect index of the enzyme's activity; iii) histochemistry based on the NADPH-diaphorase reaction, for fuI1 cytological visualization of neurons; and iv) double immunofluorescence to co-localize nNOS and L-citrulline in individual vestibular nuclei (VN) and neurons.

  12. Lipopolysaccharide inhibits ghrelin-excited neurons of the arcuate nucleus and reduces food intake via central nitric oxide signaling.

    PubMed

    Borner, Tito; Pinkernell, Sarah; Lutz, Thomas A; Riediger, Thomas

    2012-08-01

    Lipopolysaccharide (LPS) induces anorexia and expression of inducible nitric oxide synthase (iNOS) in the hypothalamic arcuate nucleus (Arc). Peripheral administration of the iNOS inhibitor 1400 W counteracts the anorectic effects of LPS. Here we investigated the role of central NO signaling in LPS anorexia. In electrophysiological studies we tested whether 1400 W counteracts the iNOS-dependent inhibition of Arc neurons triggered by in vivo or in vitro stimulation with LPS. We used the hormone ghrelin as a functional reference stimulus because ghrelin is known to activate orexigenic Arc neurons. Further, we investigated whether in vitro LPS stimulation induces an iNOS-mediated formation of the second messenger cGMP. Since the STAT1 pathway contributes to the regulation of iNOS expression we investigated whether LPS treatment induces STAT1 phosphorylation in the Arc. Finally we tested the effect of intracerebroventricular injection of 1400 W on LPS-induced anorexia. Superfusion with 1400 W (10(-4) M) increased neuronal activity in 37% of neurons in Arc slices from LPS treated (100 μg/kg ip) but not from saline treated rats. Similarly, 1400 W excited 45% of Arc neurons after in vitro stimulation with LPS (100 ng/ml). In both approaches, a considerable percentage of 1400 W sensitive neurons were excited by ghrelin (10(-8)M; 50% and 75%, respectively). In vitro stimulation with LPS induced cGMP formation in the Arc, which was blocked by co-incubation with 1400 W. LPS treatment elicited a pSTAT1 response in the Arc of mice. Central 1400 W injection (4 μg/rat) attenuated LPS-induced anorexia and counteracted the LPS-dependent decrease in respiratory quotient and energy expenditure. In conclusion, the current findings substantiate a role of central iNOS dependent NO formation in LPS-induced effects on eating and energy homeostasis. A pharmacological blockade of NO formation might be a therapeutic approach to ameliorate disease-related anorexia.

  13. Expression and activity of inducible nitric oxide synthase and endothelial nitric oxide synthase correlate with ethanol-induced liver injury

    PubMed Central

    Yuan, Guang-Jin; Zhou, Xiao-Rong; Gong, Zuo-Jiong; Zhang, Pin; Sun, Xiao-Mei; Zheng, Shi-Hua

    2006-01-01

    AIM: To study the expression and activity of inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) in rats with ethanol-induced liver injury and their relation with liver damage, activation of nuclear factor-κB (NF-κB) and tumor necrosis factor-α (TNF-α) expression in the liver. METHODS: Female Sprague-Dawley rats were given fish oil (0.5 mL) along with ethanol or isocaloric dextrose daily via gastrogavage for 4 or 6 wk. Liver injury was assessed using serum alanine aminotransferase (ALT) activity and pathological analysis. Liver malondialdehyde (MDA), nitric oxide contents, iNOS and eNOS activity were determined. NF-κB p65,iNOS, eNOS and TNF-α protein or mRNA expression in the liver were detected by immunohistochemistry or reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS: Chronic ethanol gavage for 4 wk caused steatosis, inflammation and necrosis in the liver, and elevated serum ALT activity. Prolonged ethanol administration (6 wk) enhanced the liver damage. These responses were accompanied with increased lipid peroxidation, NO contents, iNOS activity and reduced eNOS activity. NF-κB p65, iNOS and TNF-α protein or mRNA expression were markedly induced after chronic ethanol gavage, whereas eNOS mRNA expression remained unchanged. The enhanced iNOS activity and expression were positively correlated with the liver damage, especially the necro-inflammation, activation of NF-κB, and TNF-α mRNA expression. CONCLUSION: iNOS expression and activity are induced in the liver after chronic ethanol exposure in rats, which are correlated with the liver damage, especially the necro-inflammation, activation of NF-κB and TNF-α expression. eNOS activity is reduced, but its mRNA expression is not affected. PMID:16688828

  14. Troglitazone inhibits the expression of inducible nitric oxide synthase in adipocytes in vitro and in vivo study in 3T3-L1 cells and Otsuka Long-Evans Tokushima Fatty rats.

    PubMed

    Dobashi, K; Asayama, K; Nakane, T; Kodera, K; Hayashibe, H; Nakazawa, S

    2000-09-15

    The aim of this study was to determine the mechanism of troglitazone action on nitric oxide (NO) production via inducible NO synthase (iNOS) in adipocytes in vitro and in vivo. The treatment of 3T3-L1 adipocytes with the combination of lipopolysaccharide (LPS), tumor necrosis factor-alpha and interferon-gamma synergistically induced de novo iNOS expression leading to enhanced NO production. The NO production was inhibited by co-treatment with aminoguanidine or N-nitro-L-arginine methylester hydrochloride. Troglitazone inhibited the NO production in a dose dependent manner by the suppression of iNOS expression. In the 24 week-old Otsuka Long-Evans Tokushima Fatty (OLETF) rats, the mean weight and the blood glucose were 21% and 30%, respectively, higher than in their lean counterparts. The serum nitrite concentration was increased after injection of LPS (4 mg/kg, i.p.), more markedly in OLETF rats than in the lean rats. The epididymal fats from LPS-injected groups, but not the ones from the non-injected groups, expressed mRNA and protein of iNOS. Troglitazone pre-treatment blocked the LPS-induced expression of iNOS in adipose tissue and the increase in serum nitrite concentration. These results suggest that troglitazone inhibits the cytokine-induced NO production in adipocytes by blocking iNOS expression both in vitro and in vivo.

  15. Oxalomalate affects the inducible nitric oxide synthase expression and activity.

    PubMed

    Irace, Carlo; Esposito, Giuseppe; Maffettone, Carmen; Rossi, Antonietta; Festa, Michela; Iuvone, Teresa; Santamaria, Rita; Sautebin, Lidia; Carnuccio, Rosa; Colonna, Alfredo

    2007-03-13

    Inducible nitric oxide synthase (iNOS) is an homodimeric enzyme which produces large amounts of nitric oxide (NO) in response to inflammatory stimuli. Several factors affect the synthesis and catalytic activity of iNOS. Particularly, dimerization of NOS monomers is promoted by heme, whereas an intracellular depletion of heme and/or L-arginine considerably decreases NOS resistance to proteolysis. In this study, we found that oxalomalate (OMA, oxalomalic acid, alpha-hydroxy-beta-oxalosuccinic acid), an inhibitor of both aconitase and NADP-dependent isocitrate dehydrogenase, inhibited nitrite production and iNOS protein expression in lipopolysaccharide (LPS)-activated J774 macrophages, without affecting iNOS mRNA content. Furthermore, injection of OMA precursors to LPS-stimulated rats also decreased nitrite production and iNOS expression in isolated peritoneal macrophages. Interestingly, alpha-ketoglutarate or succinyl-CoA administration reversed OMA effect on NO production, thus correlating NO biosynthesis with the anabolic capacity of Krebs cycle. When protein synthesis was blocked by cycloheximide in LPS-activated J774 cells treated with OMA, iNOS protein levels, evaluated by Western blot analysis and (35)S-metabolic labelling, were decreased, suggesting that OMA reduces iNOS biosynthesis and induces an increase in the degradation rate of iNOS protein. Moreover, we showed that OMA inhibits the activity of the iNOS from lung of LPS-treated rats by enzymatic assay. Our results, demonstrating that OMA acts regulating synthesis, catalytic activity and degradation of iNOS, suggest that this compound might have a potential role in reducing the NO overproduction occurring in some pathological conditions.

  16. Functional link between TNF biosynthesis and CaM-dependent activation of inducible nitric oxide synthase in RAW 264.7 macrophages

    SciTech Connect

    Weber, Thomas J; Smallwood, Heather S; Kathmann, Loel E; Markillie, Lye MENG; Squier, Thomas C; Thrall, Brian D

    2006-01-18

    Inflammatory responses stimulated by bacterial endotoxin (lipopolysaccharide, LPS) involve calcium-mediated signaling, yet the cellular sensors that determine cell fate in response to LPS remain poorly understood. We report that exposure of RAW 264.7 macrophage-like cells to LPS induces a rapid increase in calmodulin (CaM) abundance, which is associated with the modulation of the inflammatory response. Increases in CaM abundance precedes nuclear localization of key transcription factors (i.e., NFκB p65 subunit, phospho-c-Jun, and Sp1) and subsequent increases in the pro-inflammatory cytokine tumor necrosis factor α (TNF) and inducible nitric oxide synthase (iNOS). Cellular apoptosis following LPS challenge is blocked following inhibition of iNOS activity, whether accomplished using the pharmacological inhibitor 1400W, through gene silencing of TNFα, or by increasing the level of cellular CaM by stable transfection. Increasing CaM expression also results in reductions in the cellular release of TNFα and iNOS, and activation of their transcriptional regulators, indicating the level of available CaM plays a key role in determining the expression of the pro-inflammatory and pro-apoptotic cascade during cellular activation by LPS. These results indicate a previously unrecognized central role for CaM in maintaining cellular homeostasis in response to LPS, such that under resting conditions cellular concentrations of CaM are sufficient to inhibit the biosynthesis of proinflammatory mediators associated with macrophage activation. Although CaM and iNOS protein levels are coordinately increased as part of the oxidative burst, limiting cellular concentrations of CaM due to association with iNOS (and other high-affinity binders) commit the cell to an unchecked inflammatory cascade leading to apoptosis.

  17. Nitric Oxide-Induced Conformational Changes in Soluble Guanylate Cyclase

    PubMed Central

    Underbakke, Eric S.; Iavarone, Anthony T.; Chalmers, Michael J.; Pascal, Bruce D.; Novick, Scott; Griffin, Patrick R.; Marletta, Michael A.

    2014-01-01

    SUMMARY Soluble guanylate cyclase (sGC) is the primary mediator of nitric oxide (NO) signaling. NO binds the sGC heme cofactor stimulating synthesis of the second messenger cyclic-GMP (cGMP). As the central hub of NO/cGMP signaling pathways, sGC is important in diverse physiological processes such as vasodilation and neurotransmission. Nevertheless, the mechanisms underlying NO-induced cyclase activation in sGC remain unclear. Here, hydrogen/deuterium exchange mass spectrometry (HDX-MS) was employed to probe the NO-induced conformational changes of sGC. HDX-MS revealed NO-induced effects in several discrete regions. NO binding to the heme-NO/O2-binding (H-NOX) domain perturbs a signaling surface implicated in Per/Arnt/Sim (PAS) domain interactions. Furthermore, NO elicits striking conformational changes in the junction between the PAS and helical domains that propagate as perturbations throughout the adjoining helices. Ultimately, NO-binding stimulates the catalytic domain by contracting the active site pocket. Together, these conformational changes delineate an allosteric pathway linking NO-binding to activation of the catalytic domain. PMID:24560804

  18. Nitric oxide synthase is induced in sporulation of Physarum polycephalum

    PubMed Central

    Golderer, Georg; Werner, Ernst R.; Leitner, Stefan; Gröbner, Peter; Werner-Felmayer, Gabriele

    2001-01-01

    The myxomycete Physarum polycephalum expresses a calcium-independent nitric oxide (NO) synthase (NOS) resembling the inducible NOS isoenzyme in mammals. We have now cloned and sequenced this, the first nonanimal NOS to be identified, showing that it shares < 39% amino acid identity with known NOSs but contains conserved binding motifs for all NOS cofactors. It lacks the sequence insert responsible for calcium dependence in the calcium-dependent NOS isoenzymes. NOS expression was strongly up-regulated in Physarum macroplasmodia during the 5-day starvation period needed to induce sporulation competence. Induction of both NOS and sporulation competence were inhibited by glucose, a growth signal and known repressor of sporulation, and by l-N6–(1-iminoethyl)-lysine (NIL), an inhibitor of inducible NOS. Sporulation, which is triggered after the starvation period by light exposure, was also prevented by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of NO-sensitive guanylate cyclase. In addition, also expression of lig1, a sporulation-specific gene, was strongly attenuated by NIL or ODQ. 8-Bromo-cGMP, added 2 h before the light exposure, restored the capacity of NIL-treated macroplasmodia to express lig1 and to sporulate. This indicates that the second messenger used for NO signaling in sporulation of Physarum is cGMP and links this signaling pathway to expression of lig1. PMID:11358872

  19. Antioxidant properties of lutein contribute to the protection against lipopolysaccharide-induced uveitis in mice

    PubMed Central

    2011-01-01

    Background Lutein is an important eye-protective nutrient. This study investigates the protective effects and mechanisms of lutein on lipopolysaccharides (LPS)-induced uveitis in mice. Methods Lutein, suspended in drinking water at a final concentration of 12.5 and 25 mg/mL, was administered to mice at 0.1 mL/10 g body weight for five consecutive days. Control and model group received drinking water only. Uveitis was induced by injecting LPS (100 mg per mouse) into the footpad in the model and lutein groups on day 5 after the last drug administration. Eyes of the mice were collected 24 hours after the LPS injection for the detection of indicators using commercial kits and reverse transcription-polymerase chain reaction. Results LPS-induced uveitis was confirmed by significant pathological damage and increased the nitric oxide level in eye tissue of BALB/C mice 24 hours after the footpad injection. The elevated nitric oxide level was significantly reduced by oral administration of lutein (125 and 500 mg/kg/d for five days) before LPS injection. Moreover, lutein decreased the malondialdehyde content, increased the oxygen radical absorbance capacity level, glutathione, the vitamin C contents and total superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. Lutein further increased expressions of copper-zinc SOD, manganese SOD and GPx mRNA. Conclusion The antioxidant properties of lutein contribute to the protection against LPS-induced uveitis, partially through the intervention of inflammation process. PMID:22040935

  20. Extracellular signal-regulated kinase mediates expression of arginase II but not inducible nitric-oxide synthase in lipopolysaccharide-stimulated macrophages.

    PubMed

    Jin, Yi; Liu, Yusen; Nelin, Leif D

    2015-01-23

    The mitogen-activated protein kinases (MAPK) have been shown to participate in iNOS induction following lipopolysaccharide (LPS) stimulation, while the role of MAPKs in the regulation of arginase remains unclear. We hypothesized that different MAPK family members are involved in iNOS and arginase expression following LPS stimulation. LPS-stimulated RAW 264.7 cells exhibited increased protein and mRNA levels for iNOS, arginase I, and arginase II; although the induction of arginase II was more robust than that for arginase I. A p38 inhibitor completely prevented iNOS expression while it only attenuated arginase II induction. In contrast, a MEK1/2 inhibitor (ERK pathway) completely abolished arginase II expression while actually enhancing iNOS induction in LPS-stimulated cells. Arginase II promoter activity was increased by ∼4-fold following LPS-stimulation, which was prevented by the ERK pathway inhibitor. Arginase II promoter activity was unaffected by a p38 inhibitor or JNK pathway interference. Transfection with a construct expressing a constitutively active RAS mutant increased LPS-induced arginase II promoter activity, while transfection with a vector expressing a dominant negative ERK2 mutant or a vector expressing MKP-3 inhibited the arginase II promoter activity. LPS-stimulated nitric oxide (NO) production was increased following siRNA-mediated knockdown of arginase II and decreased when arginase II was overexpressed. Our results demonstrate that while both the ERK and p38 pathways regulate arginase II induction in LPS-stimulated macrophages, iNOS induction by LPS is dependent on p38 activation. These results suggest that differential inhibition of the MAPK pathway may be a potential therapeutic strategy to regulate macrophage phenotype.

  1. Potential role of punicalagin against oxidative stress induced testicular damage

    PubMed Central

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg−1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility. PMID:26763544

  2. Potential role of punicalagin against oxidative stress induced testicular damage.

    PubMed

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg-1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility.

  3. Aurintricarboxylic acid protects against cell death caused by lipopolysaccharide in macrophages by decreasing inducible nitric-oxide synthase induction via IkappaB kinase, extracellular signal-regulated kinase, and p38 mitogen-activated protein kinase inhibition.

    PubMed

    Tsi, Chin-Ju; Chao, Yee; Chen, Ching-Wen; Lin, Wan Wan

    2002-07-01

    To elucidate the mechanisms involved in cell protection by aurintricarboxylic acid (ATA), an endonuclease inhibitor, high nitric oxide (NO)-induced macrophage apoptosis was studied. In RAW 264.7 macrophages, a high level of NO production accompanied by cell apoptosis was apparent with lipopolysaccharide (LPS) treatment. Direct NO donor sodium nitroprusside (SNP) also dramatically induced cell death, with an EC(50) of 1 mM. Coincubation of ATA (1-500 microM) in LPS-stimulated RAW 264.7 cells resulted in a striking reduction of NO production and cell apoptosis, whereas only a partial cell protection was achieved in response to SNP. This suggests that abrogation of inducible nitric-oxide synthase (iNOS)-dependent NO production might contribute to ATA protection of LPS-treated cells. Immunoblotting and reverse transcription-polymerase chain reaction analysis revealed that ATA down-regulated iNOS protein through transcriptional inhibition of iNOS gene expression but was unrelated to iNOS protein stability. ATA not only inhibited nuclear factor-kappaB (NF-kappaB) activation through impairment of the targeting and degradation of IkappaBs but also reduced LPS-induced activator protein-1 (AP-1) activation. These actions of ATA were not caused by the influence on LPS binding to macrophage membrane. Kinase assays indicated that ATA inhibited IkappaB kinase (IKK), extracellular signal-regulated kinase (ERK), and p38 mitogen-activated protein kinase (MAPK) activity both in vivo and in vitro, suggesting a direct interaction between ATA and these signaling molecules. Taken together, these results provide novel action targets of ATA and indicate that ATA protection of macrophages from LPS-mediated cell death is primarily the result of its inhibition of NO production, which closely relates to the inactivation of NF-kappaB and AP-1 and inhibition of IKK, ERK and p38 MAPK.

  4. Inducible nitric oxide synthase is expressed in synovial fluid granulocytes.

    PubMed

    Cedergren, J; Forslund, T; Sundqvist, T; Skogh, T

    2002-10-01

    The objective of the study was to evaluate the NO-producing potential of synovial fluid (SF) cells. SF from 15 patients with arthritis was compared with blood from the same individuals and with blood from 10 healthy controls. Cellular expression of inducible nitric oxide synthase (iNOS) was analysed by flow cytometry. High-performance liquid chromatography was used to measure l-arginine and l-citrulline. Nitrite and nitrate were measured colourimetrically utilizing the Griess' reaction. Compared to whole blood granulocytes in patients with chronic arthritis, a prominent iNOS expression was observed in SF granulocytes (P < 0.001). A slight, but statistically significant, increase in iNOS expression was also recorded in lymphocytes and monocytes from SF. l-arginine was elevated in SF compared to serum (257 +/- 78 versus 176 +/- 65 micro mol/l, P = 0.008), whereas a slight increase in l-citrulline (33 +/- 11 versus 26 +/- 9 micro mol/l), did not reach statistical significance. Great variations but no significant differences were observed comparing serum and SF levels of nitrite and nitrate, respectively, although the sum of nitrite and nitrate tended to be elevated in SF (19.2 +/- 20.7 versus 8.6 +/- 6.5 micro mol/l, P = 0.054). Synovial fluid leucocytes, in particular granulocytes, express iNOS and may thus contribute to intra-articular NO production in arthritis.

  5. Cytokines induce nitric oxide production in mouse osteoblasts.

    PubMed

    Damoulis, P D; Hauschka, P V

    1994-06-15

    MC3T3-E1 mouse clonal osteogenic cells were incubated with interferon-gamma, interleukin-1 beta, tumor necrosis factor-alpha, and E. coli lipopolysaccharide. TNF alpha, IL-1 beta, and LPS caused a dose- and time-dependent increase of nitrite (NO2-), the stable metabolite of nitric oxide (NO), in conditioned media over 48 hours, while IFN gamma had a minimal effect. Different combinations of the same factors caused a synergistic enhancement of NO2- accumulation, except for IL-1 beta with LPS. The earliest detectable NO2- production was at 6-9 hours, with continued accumulation over 48 hours. NO2- production was inhibited dose-dependently by three arginine analogs known to be specific inhibitors of NO synthase, as well as by actinomycin D, cycloheximide, and dexamethasone; EGTA or indomethacin had a small inhibitory effect. It is concluded that osteoblast-like cells can be induced by proinflammatory cytokines and bacterial endotoxin to produce NO, which can play an important role in bone pathophysiology.

  6. Inducible nitric oxide synthase as a possible target in hypertension.

    PubMed

    Oliveira-Paula, Gustavo H; Lacchini, Riccardo; Tanus-Santos, Jose E

    2014-02-01

    Nitric oxide (NO) is an important vasodilator produced by vascular endothelium. Its enzymatic formation is derived from three different synthases: neuronal (nNOS), endothelial (eNOS) and inducible (iNOS) synthases. While relatively small amounts of NO produced by eNOS are important to cardiovascular homeostasis, high NO levels produced associated with iNOS activity may have detrimental consequences to the cardiovascular system and contribute to hypertension. In this article, we reviewed current literature and found mounting evidence indicating that increased iNOS expression and activity contribute to the pathogenesis of hypertension and its complications. Excessive amounts of NO produced by iNOS up-regulation can react with superoxide anions forming peroxynitrite, thereby promoting nitrosative stress and endothelial dysfunction. In addition, abnormal iNOS activity can up-regulate arginase activity, allowing it to compete with eNOS for L-arginine, thereby resulting in reduced NO bioavailability. This may also lead to eNOS uncoupling with enhanced production of superoxide anions instead of NO. All these alterations mediated by iNOS apparently contribute to hypertension and its complications. We also reviewed current evidence showing the effects of iNOS inhibitors on different animal models of hypertension. iNOS inhibition apparently exerts antihypertensive effects, decreases oxidative and nitrosative stress, and improves vascular function. Together, these studies highlight the possibility that iNOS is a potential pharmacological target in hypertension.

  7. In vivo Expression of Inducible Nitric Oxide Synthase in Experimentally Induced Neurologic Diseases

    NASA Astrophysics Data System (ADS)

    Koprowski, Hilary; Zheng, Yong Mu; Heber-Katz, Ellen; Fraser, Nigel; Rorke, Lucy; Fu, Zhen Fang; Hanlon, Cathleen; Dietzschold, Bernhard

    1993-04-01

    The purpose of this study was to investigate the induction of inducible nitric oxide synthase (iNOS) mRNA in the brain tissue of rats and mice under the following experimental conditions: in rats infected with borna disease virus and rabies virus, in mice infected with herpes simplex virus, and in rats after the induction of experimental allergic encephalitis. The results showed that iNOS mRNA, normally nondetectable in the brain, was present in animals after viral infection or after induction of experimental allergic encephalitis. The induction of iNOS mRNA coincided with the severity of clinical signs and in some cases with the presence of inflammatory cells in the brain. The results indicate that nitric oxide produced by cells induced by iNOS may be the toxic factor accounting for cell damage and this may open the door to approaches to the study of the pathogenesis of neurological diseases.

  8. Pulmonary hypertension triggered by lipopolysaccharide in ascites-susceptible and -resistant broilers is not amplified by aminoguanidine, a specific inhibitor of inducible nitric oxide synthase.

    PubMed

    Bowen, O T; Erf, G F; Anthony, N B; Wideman, R F

    2006-03-01

    Nitric oxide (NO) is a potent pulmonary vasodilator that modulates the pulmonary vasoconstriction and pulmonary hypertension (PH) triggered by bacterial lipopolysaccharide (LPS) in broilers. The amplitude and duration of the LPS-induced PH are markedly enhanced following pretreatment with N(omega)-nitro-L-arginine methyl ester (L-NAME), which inhibits NO synthesis by both the constitutive (endothelial) and inducible (inflammatory) forms of nitric oxide synthase (eNOS and iNOS, respectively). In the present study L-NAME and the selective iNOS inhibitor aminoguanidine (AG) were administered to differentiate between iNOS and eNOS as the primary source of NO that attenuates the pulmonary vascular response to LPS. Clinically healthy male progeny from ascites-susceptible and ascites-resistant lines were anesthetized, and their pulmonary artery was cannulated. The initial pulmonary arterial pressure (PAP) was recorded, then the broilers either remained untreated (control group) or were injected i.v. with AG. Ten minutes later all birds received an i.v. injection of LPS, followed 40 min later by an i.v. injection of L-NAME. When compared with untreated controls, AG neither increased the baseline PAP nor did it increase or prolong the PH response to LPS. The ascites-susceptible broilers maintained a higher PAP than the ascites-resistant broilers throughout the experiment, and the ascites-resistant broilers exhibited greater relative increases in PAP in response to LPS than did the ascites-susceptible broilers. Within 40 min after the LPS injection, PAP subsided to a level that did not differ from the respective preinjection value for each line. Injecting L-NAME reversed the decline in PAP, and within 5 min PAP returned to hypertensive levels approaching the maximum peak PH response to LPS. The absence of any impact of AG coupled with the profound response to L-NAME indicates that NO synthesized by eNOS rather than iNOS likely modulated the acute (within 1 h) PH elicited by

  9. Inducible nitric oxide synthase suppresses the development of allograft arteriosclerosis.

    PubMed Central

    Shears, L L; Kawaharada, N; Tzeng, E; Billiar, T R; Watkins, S C; Kovesdi, I; Lizonova, A; Pham, S M

    1997-01-01

    In cardiac transplantation, chronic rejection takes the form of an occlusive vasculopathy. The mechanism underlying this disorder remains unclear. The purpose of this study was to investigate the role nitric oxide (NO) may play in the development of allograft arteriosclerosis. Rat aortic allografts from ACI donors to Wistar Furth recipients with a strong genetic disparity in both major and minor histocompatibility antigens were used for transplantation. Allografts collected at 28 d were found to have significant increases in both inducible NO synthase (iNOS) mRNA and protein as well as in intimal thickness when compared with isografts. Inhibiting NO production with an iNOS inhibitor increased the intimal thickening by 57.2%, indicating that NO suppresses the development of allograft arteriosclerosis. Next, we evaluated the effect of cyclosporine (CsA) on iNOS expression and allograft arteriosclerosis. CsA (10 mg/kg/d) suppressed the expression of iNOS in response to balloon-induced aortic injury. Similarly, CsA inhibited iNOS expression in the aortic allografts, associated with a 65% increase in intimal thickening. Finally, we investigated the effect of adenoviral-mediated iNOS gene transfer on allograft arteriosclerosis. Transduction with iNOS using an adenoviral vector suppressed completely the development of allograft arteriosclerosis in both untreated recipients and recipients treated with CsA. These results suggest that the early immune-mediated upregulation in iNOS expression partially protects aortic allografts from the development of allograft arteriosclerosis, and that iNOS gene transfer strategies may prove useful in preventing the development of this otherwise untreatable disease process. PMID:9329968

  10. Arctigenin Protects against Lipopolysaccharide-Induced Pulmonary Oxidative Stress and Inflammation in a Mouse Model via Suppression of MAPK, HO-1, and iNOS Signaling.

    PubMed

    Zhang, Wen-zhou; Jiang, Zheng-kui; He, Bao-xia; Liu, Xian-ben

    2015-08-01

    Arctigenin, a bioactive component of Arctium lappa (Nubang), has anti-inflammatory activity. Here, we investigated the effects of arctigenin on lipopolysaccharide (LPS)-induced acute lung injury. Mice were divided into four groups: control, LPS, LPS + DMSO, and LPS + Arctigenin. Mice in the LPS + Arctigenin group were injected intraperitoneally with 50 mg/kg of arctigenin 1 h before an intratracheal administration of LPS (5 mg/kg). Lung tissues and bronchoalveolar lavage fluids (BALFs) were collected. Histological changes of the lung were analyzed by hematoxylin and eosin staining. Arctigenin decreased LPS-induced acute lung inflammation, infiltration of inflammatory cells into BALF, and production of pro-inflammatory cytokines. Moreover, arctigenin pretreatment reduced the malondialdehyde level and increased superoxide dismutase and catalase activities and glutathione peroxidase/glutathione disulfide ratio in the lung. Mechanically, arctigenin significantly reduced the production of nitric oxygen and inducible nitric oxygen synthase (iNOS) expression, enhanced the expression of heme oxygenase-1, and decreased the phosphorylation of mitogen-activated protein kinases (MAPKs). Arctigenin has anti-inflammatory and antioxidative effects on LPS-induced acute lung injury, which are associated with modulation of MAPK, HO-1, and iNOS signaling.

  11. Oxidized low density lipoprotein suppresses lipopolysaccharide-induced inflammatory responses in microglia: Oxidative stress acts through control of inflammation

    SciTech Connect

    Kim, Ohn Soon; Lee, Chang Seok; Joe, Eun-hye; Jou, Ilo . E-mail: jouilo@ajou.ac.kr

    2006-03-31

    Low density lipoprotein (LDL) is readily oxidized under certain conditions, resulting in the formation of oxidized LDL (oxLDL). Despite numerous in vitro reports that reveal the pathogenic role of oxidative stress, anti-oxidative strategies have underperformed in the clinic. In this study, we examine the role of oxLDL in brain inflammatory responses using cultured rat brain microglia. We demonstrate that oxLDL inhibits lipopolysaccharide (LPS)-induced inflammatory responses in these cells. It also decreases LPS-induced expression of inducible nitric oxide synthase and production of nitric oxide, and reduces LPS-induced secretion of tumor necrosis factor-{alpha} and monocyte chemoattractant protein-1. Oxysterols, known components of oxLDL and endogenous agonists of liver X receptor, can simulate the inhibitory effects of oxLDL in LPS-activated microglia. In addition, their inhibitory effects were mimicked by liver X receptor (LXR) agonists and potentiated by a retinoid X receptor agonist, suggesting these molecules heterodimerize to function as oxysterol receptors. Taken together, our results demonstrate that oxLDL inhibits LPS-induced inflammatory responses in brain microglia and that these inhibitory effects are mediated by oxysterols and, at least in part, by the nuclear receptor LXR. Our results suggest an additional mechanism of action for oxidative stress that acts indirectly via modulation of inflammatory responses. Although further studies are needed, these results answer in part the question of why anti-oxidative strategies have not been successful in clinical situations. Moreover, as brain inflammation participates in the initiation and progression of several neurodegenerative disorders, the present data provide information that should prove a useful guide for designing therapeutic strategies to combat oxidative brain diseases.

  12. Inducible nitric oxide synthase haplotype associated with migraine and aura.

    PubMed

    de O S Mansur, Thiago; Gonçalves, Flavia M; Martins-Oliveira, Alisson; Speciali, Jose G; Dach, Fabiola; Lacchini, Riccardo; Tanus-Santos, Jose E

    2012-05-01

    Migraine is a complex neurological disorder with a clear neurogenic inflammatory component apparently including enhanced nitric oxide (NO) formation. Excessive NO amounts possibly contributing to migraine are derived from increased expression and activity of inducible NO synthase (iNOS). We tested the hypothesis that two functional, clinically relevant iNOS genetic polymorphisms (C(-1026)A-rs2779249 and G2087A-rs2297518) are associated with migraine with or without aura. We studied 142 healthy women without migraine (control group) and 200 women with migraine divided into two groups: 148 with migraine without aura (MWA) and 52 with aura (MA). Genotypes were determined by real-time polymerase chain reaction using the Taqman(®) allele discrimination assays. The PHASE 2.1 software was used to estimate the haplotypes. The A allele for the G2087A polymorphism was more commonly found in the MA group than in the MWA group (28 vs. 18%; P < 0.05). No other significant differences in the alleles or genotypes distributions were found (P > 0.05). The haplotype combining both A alleles for the two polymorphisms was more commonly found in the MA group than in the control group or in the MWA group (19 vs. 10 or 8%; P = 0.0245 or 0.0027, respectively). Our findings indicate that the G2087A and the C(-1026)A polymorphism in the iNOS gene affect the susceptibility to migraine with aura when their effects are combined within haplotypes, whereas the G2087A affects the susceptibility to aura in migraine patients. These finding may have therapeutic implications when examining the effects of selective iNOS inhibitors.

  13. The effect of N-acetylcysteine (NAC) on liver and renal tissue inducible nitric oxide synthase (iNOS) and tissue lipid peroxidation in obstructive jaundice stimulated by lipopolysaccharide (LPS).

    PubMed

    Cağlikülekci, Mehmet; Pata, Cengiz; Apa, Duygu Dusmez; Dirlik, Musa; Tamer, Lulufer; Yaylak, Faik; Kanik, Arzu; Aydin, Suha

    2004-03-01

    Morbidity and mortality rates are very high in obstructive jaundice when it is associated with sepsis and multiple organ failure. Nitric oxide (NO) formation and increased expression of inducible nitric oxide synthase (iNOS) also take place in obstructive jaundice (OJ). N-Acetylcysteine (NAC) has a beneficial effect by demonstrating anti-inflammatory activity such as inhibits cytokine expression/release, inhibiting the adhesion molecule expression and inhibiting nuclear factor kappa B (NFkappaB). The aim of this study was to investigate the effects of NAC on liver and renal tissue iNOS, and liver tissue lipid peroxidation in lipopolysaccharide (LPS) induced obstructive jaundice. We randomized 48 rats into six groups. Group A: Sham group; group B: OJ group; group C: OJ+NAC; group D: OJ+LPS (Escherichia coli LPS serotype L-2630, 100mg, Sigma) group E: OJ+NAC+LPS; group F: OJ+LPS+NAC. NAC was started subcutaneously 100mg/kg. LPS was injected intraperitoneally and then at the tenth day we sacrificed the rats. Liver malondialdehyde (MDA) increased and liver ATPase decreased in groups B-D when compared to group A. After the administration of NAC (groups C-E), liver MDA levels decreased, tissue ATPase levels increased as compared to other groups. The liver and renal tissue iNOS expression was increased in groups B, D, and F. After the administration of NAC (groups C-E) the liver and renal tissue iNOS expression were decreased. Our results indicated that NAC prevented the deleterious effects of LPS in OJ by reducing iNOS expression via lipid peroxidation in liver and renal tissue; if it was administrated before LPS. But NAC failed to prevent the iNOS expression and lipid peroxidation if there was established endotoxemia in OJ.

  14. Inhibition of ornithine decarboxylase potentiates nitric oxide production in LPS-activated J774 cells

    PubMed Central

    Baydoun, Anwar R; Morgan, David M L

    1998-01-01

    We have examined whether modulation of the polyamine biosynthetic pathway, through inhibition by α-difluoromethylornithine (DFMO) of the rate limiting enzyme, ornithine decarboxylase (ODC), modulates NO synthesis in J774 macrophages.DFMO potentiated LPS-stimulated nitrite production in both a concentration- and time-dependent manner, increasing nitrite levels by 48±5% at 10 mM. This effect was observed in cells pre-treated with DFMO for 24 h prior to stimulation with LPS. Addition of DFMO 12 h after LPS failed to potentiate LPS-induced nitrite production.Supplementation of the culture medium with horse serum (10%) in place of foetal calf serum (10%) caused no significant change in either LPS-induced nitrite production or in the ability of DFMO (10  mM) to potentiate LPS-induced NO synthesis.Metabolism of L-[3H]arginine to L-[3H]citrulline by partially purified inducible nitric oxide synthase (iNOS) was not significantly altered by either DFMO (1–10 mM) or by putrescine (0.001–1 mM), spermidine (0.001–1 mM) or spermine (0.001–1 mM). iNOS activity was also unaffected by 1 mM EGTA but was markedly attenuated (70±0.07%) by L-NMMA (100 μM).Pre-incubation of cells with DFMO (10 mM; 24 h) prior to activation with LPS resulted in enhanced (∼2 fold) iNOS protein expression.These results show that DFMO potentiates LPS-induced nitrite production in the murine macrophage cell line J774. Since the only known mechanism of action of DFMO is inhibition of ODC, and thus polyamine biosynthesis, we conclude that expression of iNOS can be critically regulated by endogenous polyamines. PMID:9884080

  15. Inducible nitric oxide synthase in Theiler's murine encephalomyelitis virus infection.

    PubMed Central

    Oleszak, E L; Katsetos, C D; Kuzmak, J; Varadhachary, A

    1997-01-01

    We investigated the role of inducible nitric oxide synthase (iNOS) in Theiler's murine encephalomyelitis virus (TMEV) infection of susceptible (SJL) and resistant (C57BL/6 [B6]) strains of mice. TMEV is an excellent model of virus-induced demyelinating disease, such as multiple sclerosis (MS). Previous studies of others have suggested that NO may play a role in the pathogenesis of demyelinating disease. The presence and level of iNOS were determined in the brains and spinal cords of SJL and B6 TMEV-infected mice by the following methods: (i) PCR amplification of iNOS transcripts, followed by Southern blotting with an iNOS-specific probe, and (ii) immunohistochemical staining with an anti-iNOS-specific affinity-purified rabbit antibody. iNOS-specific transcripts were determined in the brains and spinal cord of both SJL and B6 TMEV-infected mice on days 0 (control), days 3, 6, and 10 (encephalitic stage of disease), and days 39 to 42, 66, and 180 (demyelinating phase) postinfection (p.i.). iNOS-specific transcripts were found in the brains and spinal cords of both SJL and B6 TMEV-infected mice at 6, 10, and 39 (SJL) days p.i., but they were absent in mock-infected mice and in TMEV-infected SJL and B6 mice at 0, 3, 66, and 180 days p.i. Immunohistochemical staining confirmed the presence of iNOS protein in both TMEV-infected SJL and B6 mice at days 6 and 10 p.i., but not at days 0, 3, 66, and 180 days p.i. Weak iNOS staining was also observed in TMEV-infected SJL mice at 42 days p.i. iNOS-positive staining was found in reactive astrocytes surrounding areas of necrotizing inflammation, particularly in the midbrain. Weak iNOS staining was also observed in cells of the monocyte/macrophage lineage in areas of parenchymal inflammation and necrosis (mesencephalon) and in leptomeningeal and white matter perivascular infiltrates of the spinal cord. Rod-shaped microglia-like cells and foamy macrophages (myelin-laden) were iNOS negative. These results suggest that NO does not

  16. Energetic particle-induced enhancements of stratospheric nitric acid

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1994-01-01

    Inclusion of complete ion chemistry in the calculation of minor species production during energetic particle deposition events leads to significant enhancement in the calculated nitric acid concentration during precipitation. An ionization rate of 1.2 x 10(exp 3)/cu cm/s imposed for 1 day increases HNO3 from 3 x 10(exp 5) to 6 x 10(exp 7)/cu cm at 50 km. With an ionization rate of 600 cu cm/s, the maximum HNO3 is 3 x 10(exp 7)/cu cm. Calculations which neglect negative ions predict the nitric acid will fall during precipitation events. The decay time for converting HNO3 into odd nitrogen and hydrogen is more than 1 day for equinoctial periods at 70 deg latitude. Examination of nitric acid data should yield important information on the magnitude and frequency of charged particle events.

  17. Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages.

    PubMed

    Pahan, K; Sheikh, F G; Namboodiri, A M; Singh, I

    1997-12-01

    This study explores the role of mevalonate inhibitors in the activation of NF-kbeta and the induction of inducible nitric oxide synthase (iNOS) and cytokines (TNF-alpha, IL-1beta, and IL-6) in rat primary astrocytes, microglia, and macrophages. Lovastatin and sodium phenylacetate (NaPA) were found to inhibit LPS- and cytokine-mediated production of NO and expression of iNOS in rat primary astrocytes; this inhibition was not due to depletion of end products of mevalonate pathway (e.g., cholesterol and ubiquinone). Reversal of the inhibitory effect of lovastatin on LPS-induced iNOS expression by mevalonate and farnesyl pyrophosphate and reversal of the inhibitory effect of NaPA on LPS-induced iNOS expression by farnesyl pyrophosphate, however, suggests a role of farnesylation in the LPS-mediated induction of iNOS. The inhibition of LPS-mediated induction of iNOS by FPT inhibitor II, an inhibitor of Ras farnesyl protein transferase, suggests that farnesylation of p21(ras) or other proteins regulates the induction of iNOS. Inhibition of LPS-mediated activation of NF-kbeta by lovastatin, NaPA, and FPT inhibitor II in astrocytes indicates that the observed inhibition of iNOS expression is mediated via inhibition of NF-kbeta activation. In addition to iNOS, lovastatin and NaPA also inhibited LPS-induced expression of TNF-alpha, IL-1beta, and IL-6 in rat primary astrocytes, microglia, and macrophages. This study delineates a novel role of the mevalonate pathway in controlling the expression of iNOS and different cytokines in rat astrocytes, microglia, and macrophages that may be important in developing therapeutics against cytokine- and NO-mediated neurodegenerative diseases.

  18. Methanol extract of Antrodia camphorata protects against lipopolysaccharide-induced acute lung injury by suppressing NF-κB and MAPK pathways in mice.

    PubMed

    Huang, Guan-Jhong; Deng, Jeng-Shyan; Chen, Chin-Chu; Huang, Ching-Jang; Sung, Ping-Jyun; Huang, Shyh-Shyun; Kuo, Yueh-Hsiung

    2014-06-11

    Antrodia camphorata (AC) has been used as a herbal medicine for drug intoxication for the treatment of inflammation syndromes and liver-related diseases in Taiwan. This study demonstrates the protective effect of the methanol extract of AC (MAC) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. Mice were treated with MAC 1 h before the intratracheal (I.T.) instillation of LPS challenge model. Lung injury was evaluated 6 h after LPS induction. Pretreatment with MAC markedly improved LPS-induced histological alterations and edema in lung tissues. Moreover, MAC also inhibited the release of pro-inflammatory mediators such as nitric oxide (NO), tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and IL-6 at 6 h in the bronchoalveolar lavage fluid (BALF) during LPS-induced lung injury. Furthermore, MAC reduced total cell number and protein concentrations in the BALF the pulmonary wet/dry weight (W/D) ratio, and myeloperoxidase activity and enhanced superoxide dismutase (SOD) activity in lung tissues. MAC also efficiently blocked protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and phosphorylation of mitogen-activated protein kinases (MAPKs) and inhibited the degradation of nuclear factor-kappa B (NF-κB) and IκBα. This is the first investigation in which MAC inhibited acute lung edema effectively, which may provide a potential target for treating ALI. MAC may utilize the NF-κB and MAPKs pathways and the regulation of SOD activity to attenuate LPS-induced nonspecific pulmonary inflammation.

  19. Protective effects of leucine against lipopolysaccharide-induced inflammatory response in Labeo rohita fingerlings.

    PubMed

    Giri, Sib Sankar; Sen, Shib Sankar; Jun, Jin Woo; Sukumaran, Venkatachalam; Park, Se Chang

    2016-05-01

    The present study investigated the protective effects of leucine against lipopolysaccharide (LPS)-induced inflammatory responses in Labeo rohita (rohu) in vivo and in vitro. Primary hepatocytes, isolated from the hepatopancreas, were exposed to different concentrations of LPS for 24 h to induce an inflammatory response, and the protective effects of leucine against LPS-induced inflammation were studied. Finally, we investigated the efficiency of dietary leucine supplementation in attenuating an immune challenge induced by LPS in vivo. Exposure of cells to 10-25 μg mL(-1) of LPS for 24 h resulted in a significant production of nitric oxide and release of lactate dehydrogenase to the medium, whereas cell viability and protein content were reduced (p < 0.05). LPS exposure (10 μg mL(-1)) increased mRNA levels of the pro-inflammatory cytokines TNF-α, IL-1β and IL-8 in vitro (p < 0.05). However, pretreatment with leucine prevented the LPS-induced upregulation of TNF-α, IL-1β and IL-8 mRNAs by downregulating TLR4, MyD88, NF-κBp65, and MAPKp38 mRNA expression. Interestingly, mRNA expression of the anti-inflammatory cytokine, IL-10, which was increased by LPS treatment, was further enhanced (p < 0.05) by leucine pretreatment. The enhanced expression of IL-10 might inhibit the production of other pro-inflammatory cytokines. It was found that leucine pretreatment attenuated the excessive activation of LPS-induced TLR4-MyD88 signaling as manifested by lower level of TLR4, MyD88, MAPKp38, NF-κBp65 and increased level of IκB-α protein in leucine pre-treatment group. In vivo experiments demonstrated that leucine pre-supplementation could protect fish against LPS-induced inflammation through an attenuation of TLR4-MyD88 signaling pathway. Taken together, we propose that leucine pre-supplementation decreases LPS-induced immune damage in rohu by enhancing the expression of IL-10 and by regulating the TLR4-MyD88 signaling pathways.

  20. Mice lacking inducible nitric oxide synthase are not resistant to lipopolysaccharide-induced death.

    PubMed Central

    Laubach, V E; Shesely, E G; Smithies, O; Sherman, P A

    1995-01-01

    Nitric oxide produced by cytokine-inducible nitric oxide synthase (iNOS) is thought to be important in the pathogenesis of septic shock. To further our understanding of the role of iNOS in normal biology and in a variety of inflammatory disorders, including septic shock, we have used gene targeting to generate a mouse strain that lacks iNOS. Mice lacking iNOS were indistinguishable from wild-type mice in appearance and histology. Upon treatment with lipopolysaccharide and interferon gamma, peritoneal macrophages from the mutant mice did not produce nitric oxide measured as nitrite in the culture medium. In addition, lysates of these cells did not contain iNOS protein by immunoblot analysis or iNOS enzyme activity. In a Northern analysis of total RNA, no iNOS transcript of the correct size was detected. No increases in serum nitrite plus nitrate levels were observed in homozygous mutant mice treated with a lethal dose of lipopolysaccharide, but the mutant mice exhibited no significant survival advantage over wild-type mice. These results show that lack of iNOS activity does not prevent mortality in this murine model for septic shock. Images Fig. 2 Fig. 3 PMID:7479866

  1. Tyrosol attenuates ischemia-reperfusion-induced kidney injury via inhibition of inducible nitric oxide synthase.

    PubMed

    Wang, Pengqi; Zhu, Qingjun; Wu, Nan; Siow, Yaw L; Aukema, Harold; O, Karmin

    2013-04-17

    Tyrosol is a natural phenolic antioxidant compound. Oxidative stress represents one of the important mechanisms underlying ischemia-reperfusion-induced kidney injury. The aim of this study was to investigate the effect of tyrosol against ischemia-reperfusion-induced acute kidney injury. The left kidney of Sprague-Dawley rats was subjected to 45 min of ischemia followed by reperfusion for 6 h. Ischemia-reperfusion caused an increase in peroxynitrite formation and lipid peroxidation. The level of nitric oxide (NO) metabolites and the mRNA of inducible nitric oxide synthase (iNOS) were elevated in ischemia-reperfused kidneys. Administration of tyrosol (100 mg/kg body weight) to rats prior to the induction of ischemia significantly reduced peroxynitrite formation, lipid peroxidation, and the level of NO metabolites. Tyrosol administration also attenuated ischemia-reperfusion-induced NF-κB activation and iNOS expression. Such a treatment improved kidney function. Results suggest that tyrosol may have a protective effect against acute kidney injury through inhibition of iNOS-mediated oxidative stress.

  2. Susceptibility to cerulein-induced pancreatitis in inducible nitric oxide synthase-deficient mice.

    PubMed

    Qui, B; Mei, Q B; Ma, J J; Korsten, M A

    2001-07-01

    Production of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) has been proposed as a pathogenic factor in acute pancreatitis, but its role has still not been fully examined. The present study explored the role of iNOS in cerulein-induced acute pancreatitis using iNOS-deficient mice. Twelve- to 14-week-old male mice (C57B1/6 and iNOS-deficient) were administered cerulein by intraperitoneal (i.p.) injection at hourly intervals for 7 hours and killed 24 hours later after the first dose. Pancreatic wet weight, pancreatic myeloperoxidase (MPO) activity, and levels of plasma nitrite and serum amylase were measured. In another experiment isosorbide dinitrate (an NO donor) was given by oral gavage every 6 hours for 24 hours beginning simultaneously with cerulein injections in iNOS-deficient mice. Cerulein administration dose-dependently increased pancreatic wet weight, myeloperoxidase activity, and levels of nitrite and amylase in C57B1/6 mice. These parameters (except nitrite levels) were significantly intensified in iNOS-deficient mice. At the dose employed, cerulein failed to increase nitrite levels in iNOS-deficient mice. The susceptibility to cerulein toxicity in iNOS-deficient mice was abolished by NO donor treatment. NO release from an iNOS source appears to play a protective role in cerulein-induced pancreatitis. At least in part, NO may prevent neutrophil accumulation after cerulein administration.

  3. Prunella vulgaris extract and rosmarinic acid suppress lipopolysaccharide-induced alteration in human gingival fibroblasts.

    PubMed

    Zdarilová, A; Svobodová, A; Simánek, V; Ulrichová, J

    2009-04-01

    Periodontitis is a chronic disease associated with inflammation of the tooth-supporting tissues. The inflammation is initiated by a group of gram-negative anaerobic bacteria. These express a number of irritating factors including a lipopolysaccharide (LPS), which plays a key role in periodontal disease development. Plant extracts with anti-inflammatory and anti-microbial properties have been shown to inhibit bacterial plaque formation and thus prevent chronic gingivitis. In this study we tested effects of Prunella vulgaris L. extract (PVE; 5, 10, 25microg/ml) and its component rosmarinic acid (RA; 1microg/ml) on LPS-induced oxidative damage and inflammation in human gingival fibroblasts. PVE and RA reduced reactive oxygen species (ROS) production, intracellular glutathione (GSH) depletion as well as lipid peroxidation in LPS-treated cells. Treatment with PVE and RA also inhibited LPS-induced up-regulation of interleukin 1beta (IL-1beta), interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-alpha) and suppressed expression of inducible nitric oxide synthase (iNOS). The results indicate that PVE and RA are able to suppress LPS-induced biological changes in gingival fibroblasts. The effects of PVE and RA are presumably linked to their anti-inflammatory activities and thus use of PVE and RA may be relevant in modulating the inflammation process, including periodontal disease.

  4. Dietary selenium deficiency exacerbates lipopolysaccharide-induced inflammatory response in mouse mastitis models.

    PubMed

    Wei, Zhengkai; Yao, Minjun; Li, Yimeng; He, Xuexiu; Yang, Zhengtao

    2014-12-01

    Selenium (Se) is an essential micronutrient that plays a critical role in anti-inflammatory processes and antioxidant defense system. In this study, we investigated the effects of dietary selenium deficiency on lipopolysaccharide (LPS)-induced mastitis in mouse models. Se content in the liver was assessed by fluorescent atomic absorption spectrometry. Glutathione peroxidase (GPx) activity in the blood, myeloperoxidase (MPO) activity, tumor necrosis actor alpha (TNF-α), and interleukin (IL)-1β in the supernatant of the mammary tissue were determined according to the corresponding kits. Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions were evaluated by Western blotting. The results showed that the Se-deficient mouse model was successfully replicated, and selenium deficiency exacerbated mammary gland histopathology, increased the expressions of TNF-α and IL-1β, and facilitated the activation of iNOS and COX-2 in LPS-induced mouse mastitis. In conclusion, our studies demonstrated that selenium deficiency resulted in more severe inflammatory response in LPS-induced mouse mastitis.

  5. Arctigenin promotes degradation of inducible nitric oxide synthase through CHIP-associated proteasome pathway and suppresses its enzyme activity.

    PubMed

    Yao, Xiangyang; Li, Guilan; Lü, Chaotian; Xu, Hui; Yin, Zhimin

    2012-10-01

    Arctigenin, a natural dibenzylbutyrolactone lignan compound, has been reported to possess anti-inflammatory properties. Previous works showed that arctigenin decreased lipopolysaccharide (LPS)-induced iNOS at transcription level. However, whether arctigenin could regulate iNOS at the post-translational level is still unclear. In the present study, we demonstrated that arctigenin promoted the degradation of iNOS which is expressed under LPS stimulation in murine macrophage-like RAW 264.7 cells. Such degradation of iNOS protein is due to CHIP-associated ubiquitination and proteasome-dependency. Furthermore, arctigenin decreased iNOS phosphorylation through inhibiting ERK and Src activation, subsequently suppressed iNOS enzyme activity. In conclusion, our research displays a new finding that arctigenin can promote the ubiqitination and degradation of iNOS after LPS stimulation. iNOS activity regulated by arctigenin is likely to involve a multitude of crosstalking mechanisms.

  6. Characterization and functional analysis of the human inducible nitric oxide synthase gene promoter.

    PubMed Central

    Spitsin, S. V.; Koprowski, H.; Michaels, F. H.

    1996-01-01

    BACKGROUND: Nitric oxide has a wide variety of homeostatic and pathological effects. Control of the production of nitric oxide by the inducible form of the enzyme resides in the 5' promoter region of the gene. Although control of the murine isoform has been investigated, little is known about the functional aspects of the human analog. MATERIALS AND METHODS: A 3.9-kb 5' nontranslated region of the human gene was cloned, sequenced, and several reporter constructs prepared. The promoter-reporter constructs were transfected into human or murine monocytoid cells and reporter expression quantified following cytokine activation of the cells. The production of nitric oxide was also monitored. RESULTS: Although a murine promoter-reporter functioned efficiently in both human and mouse cells, the human constructs functioned only in human cells. The activity of the mouse construct increased progressively with the addition of activating cytokines, but the human promoter-reporter did not. Although interleukin 1 beta drove expression of the human inducible nitric oxide synthase reporter, actual expression of nitric oxide required both interleukin 1 beta and interferon-gamma. CONCLUSIONS: The data indicate that despite the significant homology between the human and mouse inducible nitric oxide synthase promoter sequence, control of the two genes is quite different. In addition to being more efficient in promoter activity, the murine promoter responds increasingly to cytokines that are not effective for the human analog. It is also apparent that human inducible nitric oxide synthase is controlled at both the level of transcription and post-translationally. PMID:8726465

  7. p38 MAP kinase mediates nitric oxide-induced apoptosis of neural progenitor cells.

    PubMed

    Cheng, A; Chan, S L; Milhavet, O; Wang, S; Mattson, M P

    2001-11-16

    Neural progenitor cells (NPC) can proliferate, differentiate into neurons or glial cells, or undergo a form of programmed cell death called apoptosis. Although death of NPC occurs during development of the nervous system and in the adult, the underlying mechanisms are unknown. Here we show that nitric oxide (NO) can induce death of C17.2 NPC by a mechanism requiring activation of p38 MAP kinase, poly(ADP-ribose) polymerase, and caspase-3. Nitric oxide causes release of cytochrome c from mitochondria, and Bcl-2 protects the neural progenitor cells against nitric oxide-induced death, consistent with a pivotal role for mitochondrial changes in controlling the cell death process. Inhibition of p38 MAP kinase by SB203580 abolished NO-induced cell death, cytochrome c release, and activation of caspase-3, indicating that p38 activation serves as an upstream mediator in the cell death process. The anti-apoptotic protein Bcl-2 protected NPC against nitric oxide-induced apoptosis and suppressed activation of p38 MAP kinase. The ability of nitric oxide to trigger death of NPC by a mechanism involving p38 MAP kinase suggests that this diffusible gas may regulate NPC fate in physiological and pathological settings in which NO is produced.

  8. Dependence of pathogen molecule-induced toll-like receptor activation and cell function on Neu1 sialidase.

    PubMed

    Amith, Schammim Ray; Jayanth, Preethi; Franchuk, Susan; Siddiqui, Sarah; Seyrantepe, Volkan; Gee, Katrina; Basta, Sameh; Beyaert, Rudi; Pshezhetsky, Alexey V; Szewczuk, Myron R

    2009-12-01

    The signaling pathways of mammalian Toll-like receptors (TLR) are well characterized, but the initial molecular mechanisms activated following ligand interactions with the receptors remain poorly defined. Here, we show a membrane controlling mechanism that is initiated by ligand binding to TLR-2, -3 and-4 to induce Neu1 sialidase activity within minutes in live primary bone marrow (BM) macrophage cells and macrophage and dendritic cell lines. Central to this process is that Neu1 and not Neu2,-3 and-4 forms a complex with TLR-2,-3 and-4 on the cell surface of naïve macrophage cells. Neuraminidase inhibitors BCX1827, 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA), zanamivir and oseltamivir carboxylate have a limited significant inhibition of the LPS-induced sialidase activity in live BMC-2 macrophage cells but Tamiflu (oseltamivir phosphate) completely blocks this activity. Tamiflu inhibits LPS-induced sialidase activity in live BMC-2 cells with an IC(50) of 1.2 microM compared to an IC(50) of 1015 microM for its hydrolytic metabolite oseltamivir carboxylate. Tamiflu blockage of LPS-induced Neu1 sialidase activity is not affected in BMC-2 cells pretreated with anticarboxylesterase agent clopidogrel. Endotoxin LPS binding to TLR4 induces Neu1 with subsequent activation of NFkappaB and the production of nitric oxide and pro-inflammatory IL-6 and TNFalpha cytokines in primary and macrophage cell lines. Hypomorphic cathepsin A mice with a secondary Neu1 deficiency respond poorly to LPS-induced pro-inflammatory cytokines compared to the wild-type or hypomorphic cathepsin A with normal Neu1 mice. Our findings establish an unprecedented mechanism for pathogen molecule-induced TLR activation and cell function, which is critically dependent on Neu1 sialidase activity associated with TLR ligand treated live primary macrophage cells and macrophage and dendritic cell lines.

  9. GW274150 and GW273629 are potent and highly selective inhibitors of inducible nitric oxide synthase in vitro and in vivo

    PubMed Central

    Alderton, Wendy K; Angell, Anthony D R; Craig, Caroline; Dawson, John; Garvey, Edward; Moncada, Salvador; Monkhouse, Jayne; Rees, Daryl; Russell, Linda J; Russell, Rachel J; Schwartz, Sheila; Waslidge, Neil; Knowles, Richard G

    2005-01-01

    GW274150 ([2-[(1-iminoethyl) amino]ethyl]-L-homocysteine) and GW273629 (3-[[2-[(1-iminoethyl)amino]ethyl]sulphonyl]-L-alanine) are potent, time-dependent, highly selective inhibitors of human inducible nitric oxide synthase (iNOS) vs endothelial NOS (eNOS) (>100-fold) or neuronal NOS (nNOS) (>80-fold). GW274150 and GW273629 are arginine competitive, NADPH-dependent inhibitors of human iNOS with steady state Kd values of <40 and <90 nM, respectively.GW274150 and GW273629 inhibited intracellular iNOS in J774 cells in a time-dependent manner, reaching IC50 values of 0.2±0.04 and 1.3±0.16 μM, respectively. They were also acutely selective in intact rat tissues: GW274150 was >260-fold and 219-fold selective for iNOS against eNOS and nNOS, respectively, while GW273629 was >150-fold and 365-fold selective for iNOS against eNOS and nNOS, respectively.The pharmacokinetic profile of GW274150 was biphasic in healthy rats and mice with a terminal half-life of ∼6 h. That of GW273629 was also biphasic in rats, producing a terminal half-life of ∼3 h. In mice however, elimination of GW273629 appeared monophasic and more rapid (∼10 min). Both compounds show a high oral bioavailability (>90%) in rats and mice.GW274150 was effective in inhibiting LPS-induced plasma NOx levels in mice with an ED50 of 3.2±0.7 mg kg−1 after 14 h intraperitoneally (i.p.) and 3.8±1.5 mg kg−1 after 14 h when administered orally. GW273629 showed shorter-lived effects on plasma NOx and an ED50 of 9±2 mg kg−1 after 2 h when administered i.p.The effects of GW274150 and GW273629 in vivo were consistent with high selectivity for iNOS, as these inhibitors were of low potency against nNOS in the rat cerebellum and did not cause significant effects on blood pressure in instrumented mice. PMID:15778742

  10. Regulation of prostaglandin production by nitric oxide; an in vivo analysis.

    PubMed Central

    Salvemini, D; Settle, S L; Masferrer, J L; Seibert, K; Currie, M G; Needleman, P

    1995-01-01

    1. Endotoxin E. Coli lipopolysaccharide (LPS)-treatment in conscious, restrained rats increased plasma and urinary prostaglandin (PG) and nitric oxide (NO) production. Inducible cyclo-oxygenase (COX-2) and nitric oxide synthase (iNOS) expression accounted for the LPS-induced PG and NO release since the glucocorticoid, dexamethasone inhibited both effects. Thus, LPS (4 mg kg-1) increased the plasma levels of nitrite/nitrate from 14 +/- 1 to 84 +/- 7 microM within 3 h and this rise was inhibited to 35 +/- 1 microM by dexamethasone. Levels of 6-keto PGF1 alpha in the plasma were below the detection limit of the assay (< 0.2 ng ml-1). However, 3 h after the injection of LPS these levels rose to 2.6 +/- 0.2 ng ml-1 and to 0.7 +/- 0.01 ng ml-1 after LPS in rats that received dexamethasone. 2. The induced enzymes were inhibited in vivo with selective COX and NOS inhibitors. Furthermore, NOS inhibitors, that did not affect COX activity in vitro markedly suppressed PG production in the LPS-treated animals. For instance, the LPS-induced increased in plasma nitrite/nitrate and 6-keto PGF1 alpha at 3 h was decreased to 18 +/- 2 microM and 0.5 +/- 0.02 ng ml-1, 23 +/- 1 microM and 0.7 +/- 0.01 ng ml-1, 29 +/- 2 microM and 1 +/- 0.01 ng ml-1 in rats treated with LPS in the presence of the NOS inhibitors NG-monomethyl-L-arginine, NG-nitro arginine methyl ester and aminoguanidine, respectively.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7542531

  11. Sesamin Attenuates Lipopolysaccharide-Induced Acute Lung Injury by Inhibition of TLR4 Signaling Pathways.

    PubMed

    Qiang, Li; Yuan, Jiang; Shouyin, Jiang; Yulin, Li; Libing, Jiang; Jian-An, Wang

    2016-02-01

    Recent studies suggested that TLR4 signaling pathways played an important role in the development of LPS-induced acute lung injury (ALI). Sesamin, a sesame lignan exacted from sesame seeds, has been shown to exhibit significant anti-inflammatory activity. The purpose of this study was to investigate the anti-inflammatory effects of sesamin on LPS-induced ALI in mice. Mice ALI model was induced by intratracheal instillation of LPS. Sesamin was given 1 h after LPS challenge. Our results showed that sesamin inhibited LPS-induced lung pathological change, edema, and myeloperoxidase (MPO) activity. Sesamin suppressed LPS-induced inflammatory cytokines TNF-α, IL-6, and IL-1β production. Furthermore, sesamin inhibited LPS-induced TLR4 expression and NF-κB activation. In conclusion, the results of this study indicated that sesamin protected against LPS-induced ALI by inhibition of TLR4 signaling pathways.

  12. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages

    SciTech Connect

    Lee, Ae Sin; Jung, Yu Jin; Kim, Dal; Nguyen-Thanh, Tung; Kang, Kyung Pyo; Lee, Sik; Park, Sung Kwang; Kim, Won

    2014-08-08

    Highlights: • Knockout of SIRT2 attenuates lipopolysaccharide-induced iNOS expression. • Lipopolysaccharide-induced NO production is decreased in SIRT2 KO macrophage. • SIRT2 deficiency suppresses lipopolysaccharide-induced ROS production in macrophage. • M1-macrophage related factors are decreased in SIRT2 deficient cells. • SIRT2 deficiency decreases lipopolysaccharide-induced activation of NFκB. - Abstract: Introduction: SIRT2 is a NAD(+)-dependent deacetylases and associated with numerous processes such as infection, carcinogenesis, DNA damage and cell cycle regulation. However, the role of SIRT2 in inflammatory process in macrophage remains unclear. Materials and methods: In the present study, we have evaluated the regulatory effects of SIRT2 in lipopolysaccharide (LPS)-stimulated macrophages isolated from SIRT2 knockout (KO) and wild type (WT) mice or Raw264.7 macrophage cells. As inflammatory parameters, expression of inducible nitric oxide synthase (iNOS), the productions of nitric oxide, reactive oxygen species (ROS) and M1-macrophage-related factors were evaluated. We also examined the effects of SIRT2 on activation of nuclear factor-kappaB (NFκB) signaling. Results: SIRT2 deficiency inhibits LPS-induced iNOS mRNA and protein expression in bone marrow derived macrophages. SIRT2-siRNA transfection also suppressed LPS-induced iNOS expression in Raw264.7 macrophage cells. Bone marrow derived macrophages isolated from SIRT2 KO mice produced lower nitric oxide and expressed lower levels of M1-macrophage related markers including iNOS and CD86 in response to LPS than WT mice. Decrease of SIRT2 reduced the LPS-induced reactive oxygen species production. Deficiency of SIRT2 resulted in inhibition of NFκB activation through reducing the phosphorylation and degradation of IκBα. The phosphorylation and nuclear translocation of p65 was significantly decreased in SIRT2-deficient macrophages after LPS stimulation. Discussion: Our data suggested that

  13. Lectin-like domain of thrombomodulin binds to its specific ligand Lewis Y antigen and neutralizes lipopolysaccharide-induced inflammatory response

    PubMed Central

    Shi, Chung-Sheng; Hsiao, Shi-Ming; Kao, Yuan-Chung; Kuo, Kuan-Lin; Ma, Chih-Yuan; Kuo, Cheng-Hsiang; Chang, Bi-Ing; Chang, Chuan-Fa; Lin, Chun-Hung; Wong, Chi-Huey

    2008-01-01

    Thrombomodulin (TM), a widely expressing glycoprotein originally identified in vascular endothelium, is an important cofactor in the protein C anticoagulant system. TM appears to exhibit anti-inflammatory ability through both protein C–dependent and –independent pathways. We presently have demonstrated that recombinant N-terminal lectinlike domain of TM (rTMD1) functions as a protective agent against sepsis caused by Gram-negative bacterial infections. rTMD1 caused agglutination of Escherichia coli and Klebsiella pneumoniae and enhanced the macrophage phagocytosis of these Gram-negative bacteria. Moreover, rTMD1 bound to the Klebsiella pneumoniae and lipopolysaccharide (LPS) by specifically interacting with Lewis Y antigen. rTMD1 inhibited LPS-induced inflammatory mediator production via interference with CD14 and LPS binding. Furthermore, rTMD1 modulated LPS-induced mitogen-activated protein kinase and nuclear factor-κB signaling pathway activations and inducible nitric oxide synthase expression in macrophages. Administration of rTMD1 protected the host by suppressing inflammatory responses induced by LPS and Gram-negative bacteria, and enhanced LPS and bacterial clearance in sepsis. Thus, rTMD1 can be used to defend against bacterial infection and inhibit LPS-induced inflammatory responses, suggesting that rTMD1 may be valuable in the treatment of severe inflammation in sepsis, especially in Gram-negative bacterial infections. PMID:18711002

  14. The Protective Effect of Alpha-Lipoic Acid in Lipopolysaccharide-Induced Acute Lung Injury Is Mediated by Heme Oxygenase-1

    PubMed Central

    Lin, Yu-Chieh; Lai, Yuan-Shu; Chou, Tz-Chong

    2013-01-01

    Alpha-lipoic acid (ALA), occurring naturally in human food, is known to possess antioxidative and anti-inflammatory activities. Induction of heme oxygenase-1 (HO-1) has been reported to exhibit a therapeutic effect in several inflammatory diseases. The aim of study was to test the hypothesis that the protection of ALA against lipopolysaccharide-(LPS-) induced acute lung injury (ALI) is mediated by HO-1. Pre- or posttreatment with ALA significantly inhibited LPS-induced histological alterations of ALI, lung tissue edema, and production of proinflammatory cytokine, cytokine inducible neutrophil chemoattractant-3, and nitrite/nitrate in bronchoalveolar lavage fluid. In addition, the inflammatory responses including elevation of superoxide formation, myeloperoxidase activity, polymorphonuclear neutrophils infiltration, nitrotyrosine, inducible nitric oxide synthase expression and nuclear factor-kappa B (NF-κB) activation in lung tissues of LPS-instilled rats were also markedly reduced by ALA. Interestingly, treatment with ALA significantly increased nuclear factor-erythroid 2-related factor 2 (Nrf2) activation and HO-1 expression in lungs of ALI. However, blocking HO-1 activity by tin protoporphyrin IX (SnPP), an HO-1 inhibitor, markedly abolished these beneficial effects of ALA in LPS-induced ALI. These results suggest that the protection mechanism of ALA may be through HO-1 induction and in turn suppressing NF-κB-mediated inflammatory responses. PMID:23573137

  15. S-Propargyl-cysteine (SPRC) attenuated lipopolysaccharide-induced inflammatory response in H9c2 cells involved in a hydrogen sulfide-dependent mechanism.

    PubMed

    Pan, Li-Long; Liu, Xin-Hua; Gong, Qi-Hai; Zhu, Yi-Zhun

    2011-06-01

    The present study attempts to investigate the effects of S-propargyl-cysteine (SPRC), a sulfur-containing amino acid, on lipopolysaccharide (LPS)-induced inflammatory response in H9c2 cardiac myocytes. We found that SPRC prevented nuclear factor-κB (NF-κB) activation assessed by NF-κB p65 phosphorylation and IκBα degradation, suppressed LPS-induced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and intracellular reactive oxygen species (ROS) production. Furthermore, incubation of H9c2 cells with SPRC induced phosphorylation of Akt in a time- and concentration-dependent manner. In addition, SPRC attenuated LPS-induced mRNA and protein expression of tumor necrosis factor-α (TNF-α), and mRNA expression of intercellular adhesion molecule-1 (ICAM-1) and inducible nitric oxide synthase (iNOS). The effects of SPRC were abolished by cystathionine γ-lyase [CSE-an enzyme that synthesizes hydrogen sulfide (H(2)S)] inhibitor, DL: -propargylglycine (PAG), SPRC-induced Akt phosphorylation and TNF-α release was also abolished by the phosphoinositide 3-kinase (PI3K) inhibitor LY294002. Furthermore, SPRC also increased LPS-induced down-regulation expression of CSE and H(2)S level in H9c2 cells. PAG abolished SPRC-induced up-regulation of H(2)S level. Therefore, we concluded that SPRC produced an anti-inflammatory effect in LPS-stimulated H9c2 cells partly through the CSE/H(2)S pathway by impairing IκBα/NF-κB signaling and by activating PI3K/Akt signaling pathway.

  16. Use of aminoguanidine, a selective inducible nitric oxide synthase inhibitor, to evaluate the role of nitric oxide in periapical inflammation.

    PubMed

    Farhad, Ali R; Razavi, Seyedmohammad; Jahadi, Sanaz; Saatchi, Masoud

    2011-06-01