Science.gov

Sample records for lps-induced pro-inflammatory signaling

  1. Adenosine A2A receptor signaling attenuates LPS-induced pro-inflammatory cytokine formation of mouse macrophages by inducing the expression of DUSP1.

    PubMed

    Köröskényi, Krisztina; Kiss, Beáta; Szondy, Zsuzsa

    2016-07-01

    Adenosine is known to reduce inflammation by suppressing the activity of most immune cells. Previous studies have shown that lipopolysaccharide (LPS) stimulated mouse macrophages produce adenosine, and the adenosine A2A receptor (A2AR) signaling activated in an autocrine manner attenuates LPS-induced pro-inflammatory cytokine formation. It has been suggested that A2AR signaling inhibits LPS-induced pro-inflammatory cytokine production through a unique cAMP-dependent, but PKA- and Epac-independent signaling pathway. However, the mechanism of inhibition was not identified so far. Here we report that LPS stimulation enhances A2AR expression in mouse bone marrow derived macrophages, and loss of A2ARs results in enhanced LPS-induced pro-inflammatory response. Loss of A2ARs in A2AR null macrophages did not alter the LPS-induced NF-κB activation, but an enhanced basal and LPS-induced phosphorylation of MAP kinases (especially that of JNKs) was detected in A2AR null cells. A2AR signaling did not alter the LPS-induced phosphorylation of their upstream kinases, but by regulating adenylate cyclase activity it enhanced the expression of dual specific phosphatase (DUSP)1, a negative regulator of MAP kinases. As a result, lower basal and LPS-induced DUSP1 mRNA and protein levels can be detected in A2AR null macrophages. Silencing of DUSP1 mRNA expression resulted in higher basal and LPS-induced JNK phosphorylation and LPS-induced pro-inflammatory cytokine formation in wild type macrophages, but had no effect on that in A2AR null cells. Our data indicate that A2AR signaling regulates both basal and LPS-induced DUSP1 levels in macrophages via activating the adenylate cyclase pathway.

  2. A TLR4/MD2 fusion protein inhibits LPS-induced pro-inflammatory signaling in hepatic stellate cells

    SciTech Connect

    Schnabl, Bernd Brandl, Katharina; Fink, Marina; Gross, Philipp; Taura, Kojiro; Gaebele, Erwin; Hellerbrand, Claus; Falk, Werner

    2008-10-17

    Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrogenesis. In injured liver they are the main extracellular matrix protein producing cell type and further perpetuate hepatic injury by secretion of pro-inflammatory mediators. Since LPS-mediated signaling through toll-like receptor 4 (TLR4) has been identified as key fibrogenic signal in HSCs we aimed to test TLR4 as potential target of therapy via ligand-binding soluble receptors. Incubation of human HSCs with a fusion protein between the extracellular domain of TLR4 and MD2 which binds LPS inhibited LPS-induced NF{kappa}B and JNK activation. TLR4/MD2 abolished LPS-induced secretion of IL-6, IL-8, MCP1, and RANTES in HSCs. In addition, TLR4/MD2 fused to human IgG-Fc neutralized LPS activity. Since TLR4 mutant mice are resistant to liver fibrosis, the TLR4/MD2 soluble receptor might represent a new therapeutic molecule for liver fibrogenesis in vivo.

  3. LPS induces pro-inflammatory response in mastitis mice and mammary epithelial cells: Possible involvement of NF-κB signaling and OPN.

    PubMed

    Xiao, H-B; Wang, C-R; Liu, Z-K; Wang, J-Y

    2015-02-01

    Lipopolysaccharide (LPS) has pro-inflammatory properties. This study was conducted to determine whether the LPS induced pro-inflammatory response in a model of mastitis and in mouse mammary epithelial cells (MEC). To investigate the effects of LPS in vivo, 50 μL of a solution of LPS (20 ng/μL) were infused into the mammary glands of mice. To study the effects of LPS in vitro, MEC were exposed to LPS (20 μg/mL) for 24h. Activation of nuclear factor kB (NF-κB) and myeloperoxidase (MPO) were studied. Production of pro-inflammatory cytokines (interleukin-6 [IL-6], tumor necrosis factor-alpha [TNF-alpha], interleukin-1 beta [IL-1 beta]) and expression of osteopontin (OPN) were also evaluated. After LPS administration, route of NF-κB signaling is activated and the activity of MPO is increased. Furthermore, LPS increases the expression of OPN and production of TNF-alpha, IL-6 and IL-1 beta. Present results demonstrate that LPS induces a pro-inflammatory response in a murine model of mastitis and suggest the involvement of the NF-κB pathway and OPN. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Ganglioside GD1a suppresses LPS-induced pro-inflammatory cytokines in RAW264.7 macrophages by reducing MAPKs and NF-κB signaling pathways through TLR4.

    PubMed

    Wang, Yiren; Cui, Yuting; Cao, Fayang; Qin, Yiyang; Li, Wenjing; Zhang, Jinghai

    2015-09-01

    Gangliosides, sialic acid-containing glycosphingolipids, have been considered to be involved in the development, differentiation, and function of nervous systems in vertebrates. However, the mechanisms for anti-inflammation caused by gangliosides are not clear. In this paper, we investigated the anti-inflammation effects of ganglioside GD1a by using RAW264.7 macrophages. Our data demonstrated that treatment of macrophages with lipopolysaccharide significantly increased the production of NO and pro-inflammatory cytokines. GD1a suppressed the induction of iNOS and COX-2 mRNA and protein expression and secretory pro-inflammatory cytokines in culture medium, such as TNFα, IL-1α and IL-1β. In addition, LPS-induced phosphorylation of mitogen-activating protein kinases and IκBα degradation followed by translocation of the NF-κB from the cytoplasm to the nucleus were attenuated after GD1a treatment. Furthermore, GD1a probably inhibited LPS binding to macrophages and LPS-induced accumulation between TLR4 and MyD88. Taken together, the results demonstrated that ganglioside GD1a inhibited LPS-induced inflammation in RAW 264.7 macrophages by suppressing phosphorylation of mitogen-activating protein kinases and activation of NF-κB through repressing the Toll-like receptor 4 signaling pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Demethoxycurcumin, a natural derivative of curcumin attenuates LPS-induced pro-inflammatory responses through down-regulation of intracellular ROS-related MAPK/NF-kappaB signaling pathways in N9 microglia induced by lipopolysaccharide.

    PubMed

    Zhang, Lijia; Wu, Chunfu; Zhao, Siqi; Yuan, Dan; Lian, Guoning; Wang, Xiaoxiao; Wang, Lihui; Yang, Jingyu

    2010-03-01

    Our previous report has showed that demethoxycurcumin (DMC), a natural derivative of curcumin (Cur), exhibited stronger inhibitory activity on nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha) production compared with Cur in lipopolysaccharide (LPS) activated rat primary microglia. In the present study, the effect and possible mechanism of DMC on the production of pro-inflammatory mediators in LPS-activated N9 microglial cells were further investigated. The results showed that DMC significantly suppressed the NO production induced by LPS in N9 microglial cells through inhibiting the protein and mRNA expression of inducible NO synthase (iNOS). DMC also decreased LPS-induced TNF-alpha and IL-1beta expression at both transcriptional and protein level in a concentration-dependent manner. Further studies revealed that DMC blocked IkappaBalpha phosphorylation and degradation, inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs). Moreover, the level of intracellular reactive oxygen species (iROS) was significantly increased by LPS, which is mainly mediated by the up-regulated expression of gp91phox, the catalytic subunit of nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase. Both DMC and Cur could markedly decrease iROS production and the expression of NADPH oxidase induced by LPS, with more potent inhibitory activity of DMC. In summary, these data suggest that DMC exerts its in vitro anti-inflammatory effect in LPS-activated N9 microglial cells by blocking nuclear factor-kappaB (NF-kappaB) and MAPKs activation, which may be partly due to its potent down-regulation of the NADPH-derived iROS production.

  6. MRTF-A mediates LPS-induced pro-inflammatory transcription by interacting with the COMPASS complex.

    PubMed

    Yu, Liming; Weng, Xinyu; Liang, Peng; Dai, Xin; Wu, Xiaoyan; Xu, Huihui; Fang, Mingming; Fang, Fei; Xu, Yong

    2014-11-01

    Chronic inflammation underscores the pathogenesis of a range of human diseases. Lipopolysaccharide (LPS) elicits strong pro-inflammatory responses in macrophages through the transcription factor NF-κB. The epigenetic mechanism underlying LPS-induced pro-inflammatory transcription is not fully understood. Herein, we describe a role for myocardin-related transcription factor A (MRTF-A, also known as MKL1) in this process. MRTF-A overexpression enhanced NF-κB-dependent pro-inflammatory transcription, whereas MRTF-A silencing inhibited this process. MRTF-A deficiency also reduced the synthesis of pro-inflammatory mediators in a mouse model of colitis. LPS promoted the recruitment of MRTF-A to the promoters of pro-inflammatory genes in an NF-κB-dependent manner. Reciprocally, MRTF-A influenced the nuclear enrichment and target binding of NF-κB. Mechanistically, MRTF-A was necessary for the accumulation of active histone modifications on NF-κB target promoters by communicating with the histone H3K4 methyltransferase complex (COMPASS). Silencing of individual members of COMPASS, including ASH2, WDR5 and SET1 (also known as SETD1A), downregulated the production of pro-inflammatory mediators and impaired the NF-κB kinetics. In summary, our work has uncovered a previously unknown function for MRTF-A and provided insights into the rationalized development of anti-inflammatory therapeutic strategies. © 2014. Published by The Company of Biologists Ltd.

  7. Salidroside attenuates LPS-induced pro-inflammatory cytokine responses and improves survival in murine endotoxemia.

    PubMed

    Guan, Shuang; Feng, Haihua; Song, Bocui; Guo, Weixiao; Xiong, Ying; Huang, Guoren; Zhong, Weiting; Huo, Meixia; Chen, Na; Lu, Jing; Deng, Xuming

    2011-12-01

    Salidroside is a major component isolated from the Rhodiola rosea. In the present study, we investigated the anti-inflammatory effects of salidroside on cytokine production by lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages in vitro, and the results showed that salidroside reduced tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) secretions. This inspired us to further study the effects of salidroside in vivo. Salidroside significantly attenuated TNF-α, IL-1β and IL-6 productions in serum from mice challenged with LPS, and consistent with the results in vitro. In the murine model of endotoxemia, mice were treated with salidroside prior to or after LPS challenge. The results showed that salidroside significantly increased mouse survival. Further studies revealed that salidroside could downregulate LPS-induced nuclear transcription factor-қB (NF-қB) DNA-binding activation and ERK/MAPKs signal transduction pathways production in RAW 264.7 macrophages. These observations indicated that salidroside modulated early cytokine responses by blocking NF-қB and ERK/MAPKs activation, and thus, increased mouse survival. These effects of salidroside may be of potential usefulness in the treatment of inflammation-mediated endotoxemia. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. 6-7-Dimethoxy-4-methylcoumarin suppresses pro-inflammatory mediator expression through inactivation of the NF-κB and MAPK pathways in LPS-induced RAW 264.7 cells

    PubMed Central

    Kim, Kil-Nam; Yang, Hye-Won; Ko, Seok-Chun; Ko, Yeong-Jong; Kim, Eun-A; Roh, Seong Woon; Ko, Eun-Yi; Ahn, Ginnae; Heo, Soo-Jin; Jeon, You-Jin; Yoon, Weon-Jong; Hyun, Chang-Gu; Kim, Daekyung

    2014-01-01

    In this study, we investigated the ability of 6,7-dimethoxy-4-methylcoumarin (DMC) to inhibit lipopolysaccharide (LPS)-induced expression of pro-inflammatory mediators in mouse macrophage (RAW 264.7) cells, and the molecular mechanism through which this inhibition occurred. Our results indicated that DMC downregulated LPS-induced nitric oxide (NO) synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, thereby reducing the production of NO and prostaglandin E2 (PGE2) in LPS-activated RAW 264.7 cells. Furthermore, DMC suppressed LPS-induced production of pro-inflammatory cytokines such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α. To elucidate the mechanism underlying the anti-inflammatory activity of DMC, we assessed its effects on the mitogen-activated protein kinase (MAPK) pathway and the activity and expression of nuclear transcription factor kappa-B (NF-κB). The experiments demonstrated that DMC inhibited LPS-induced phosphorylation of extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinase (JNK), and p38. In addition, it attenuated LPS-induced NF-κB activation via the inhibition of IκB-α phosphorylation. Taken together, these data suggest that DMC exerts its anti-inflammatory effects in RAW 264.7 cells through the inhibition of LPS-stimulated NF-κB and MAPK signaling, thereby downregulating the expression of pro-inflammatory mediators. PMID:26417302

  9. 2-phenylethynesulfonamide Prevents Induction of Pro-inflammatory Factors and Attenuates LPS-induced Liver Injury by Targeting NHE1-Hsp70 Complex in Mice

    PubMed Central

    Huang, Chao; Wang, Jia; Chen, Zhuo; Wang, Yuzhe; Zhang, Wei

    2013-01-01

    The endotoxin-mediated production of pro-inflammatory cytokines plays an important role in the pathogenesis of liver disorders. Heat shock protein (Hsp70) overexpression has established functions in lipopolysaccharide (LPS)-mediated inflammatory response. However, little is known about the role of Hsp70 activity in LPS signaling. We hypothesized that inhibition of Hsp70 substrate binding activity can ameliorate LPS-induced liver injury by decreasing induction of pro-inflammatory factors. In this study, C57/BL6 mice were injected intraperitoneally with LPS and 2-phenylethynesulfonamide (PES), an inhibitor of Hsp70 substrate binding activity. We found that i. PES prevented LPS-induced increase in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity, infiltration of inflammatory cells, and liver cell apoptosis; ii. PES reduced inducible nitric oxide synthase (iNOS) protein expression as well as serum nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) content in LPS-stimulated mice; iii. PES reduced the mRNA level of iNOS, TNF-α, and IL-6 in LPS-stimulated liver. iiii. PES attenuated the degradation of inhibitor of κB-α (IκB-α) as well as the phosphorylation and nuclear translocation of nuclear factor-κB (NF-κB) in LPS-stimulated liver. Similar changes in the protein expression of inflammatory markers, IκB-α degradation, and NF-κB phosphorylation and nuclear translocation were observed in RAW 264.7 cells. Further mechanistic studies revealed that PES remarkably reduced the elevation of [Ca2+]i and intracellular pH value (pHi) in LPS-stimulated RAW 264.7 cells. Furthermore, PES significantly reduced the increase in Na+/H+ exchanger 1 (NHE1) association to Hsp70 in LPS-stimulated macrophages and liver, suggesting that NHE1-Hsp70 interaction is required for the involvement of NHE1 in the inflammation response. In conclusion, inhibition of Hsp70 substrate binding activity in vivo reduces the induction of

  10. 2-phenylethynesulfonamide Prevents Induction of Pro-inflammatory Factors and Attenuates LPS-induced Liver Injury by Targeting NHE1-Hsp70 Complex in Mice.

    PubMed

    Huang, Chao; Wang, Jia; Chen, Zhuo; Wang, Yuzhe; Zhang, Wei

    2013-01-01

    The endotoxin-mediated production of pro-inflammatory cytokines plays an important role in the pathogenesis of liver disorders. Heat shock protein (Hsp70) overexpression has established functions in lipopolysaccharide (LPS)-mediated inflammatory response. However, little is known about the role of Hsp70 activity in LPS signaling. We hypothesized that inhibition of Hsp70 substrate binding activity can ameliorate LPS-induced liver injury by decreasing induction of pro-inflammatory factors. In this study, C57/BL6 mice were injected intraperitoneally with LPS and 2-phenylethynesulfonamide (PES), an inhibitor of Hsp70 substrate binding activity. We found that i. PES prevented LPS-induced increase in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity, infiltration of inflammatory cells, and liver cell apoptosis; ii. PES reduced inducible nitric oxide synthase (iNOS) protein expression as well as serum nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) content in LPS-stimulated mice; iii. PES reduced the mRNA level of iNOS, TNF-α, and IL-6 in LPS-stimulated liver. iiii. PES attenuated the degradation of inhibitor of κB-α (IκB-α) as well as the phosphorylation and nuclear translocation of nuclear factor-κB (NF-κB) in LPS-stimulated liver. Similar changes in the protein expression of inflammatory markers, IκB-α degradation, and NF-κB phosphorylation and nuclear translocation were observed in RAW 264.7 cells. Further mechanistic studies revealed that PES remarkably reduced the elevation of [Ca(2+)]i and intracellular pH value (pHi) in LPS-stimulated RAW 264.7 cells. Furthermore, PES significantly reduced the increase in Na(+)/H(+) exchanger 1 (NHE1) association to Hsp70 in LPS-stimulated macrophages and liver, suggesting that NHE1-Hsp70 interaction is required for the involvement of NHE1 in the inflammation response. In conclusion, inhibition of Hsp70 substrate binding activity in vivo reduces the

  11. Autotaxin downregulates LPS-induced microglia activation and pro-inflammatory cytokines production.

    PubMed

    Awada, Rana; Saulnier-Blache, Jean Sébastien; Grès, Sandra; Bourdon, Emmanuel; Rondeau, Philippe; Parimisetty, Avinash; Orihuela, Ruben; Harry, G Jean; d'Hellencourt, Christian Lefebvre

    2014-12-01

    Inflammation is essential in defense against infection or injury. It is tightly regulated, as over-response can be detrimental, especially in immune-privileged organs such as the central nervous system (CNS). Microglia constitutes the major source of inflammatory factors, but are also involved in the regulation of the inflammation and in the reparation. Autotaxin (ATX), a phospholipase D, converts lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA) and is upregulated in several CNS injuries. LPA, a pleiotropic immunomodulatory factor, can induce multiple cellular processes including morphological changes, proliferation, death, and survival. We investigated ATX effects on microglia inflammatory response to lipopolysaccharide (LPS), mimicking gram-negative infection. Murine BV-2 microglia and stable transfected, overexpressing ATX-BV-2 (A +) microglia were treated with LPS. Tumor necrosis factor α (TNFα), interleukin (IL)-6, and IL-10 mRNA and proteins levels were examined by qRT-PCR and ELISA, respectively. Secreted LPA was quantified by a radioenzymatic assay and microglial activation markers (CD11b, CD14, B7.1, and B7.2) were determined by flow cytometry. ATX expression and LPA production were significantly enhanced in LPS treated BV-2 cells. LPS induction of mRNA and protein level for TNFα and IL-6 were inhibited in A+ cells, while IL-10 was increased. CD11b, CD14, and B7.1, and B7.2 expressions were reduced in A+ cells. Our results strongly suggest deactivation of microglia and an IL-10 inhibitory of ATX with LPS induced microglia activation. © 2014 Wiley Periodicals, Inc.

  12. The ethyl acetate fraction from Physalis alkekengi inhibits LPS-induced pro-inflammatory mediators in BV2 cells and inflammatory pain in mice.

    PubMed

    Moniruzzaman, Md; Bose, Shambhunath; Kim, Young-Mi; Chin, Young-Won; Cho, Jungsook

    2016-04-02

    Physalis alkekengi is an edible herb whose fruit and calyx are traditionally used to treat a wide range of diseases including inflammation, toothache, and rheumatism. However, the effects of Physalis alkekengi fruit along with its calyx (PAF) on neuroinflammation and inflammatory pain behavior have not been reported yet. This study evaluated the anti-inflammatory effect of PAF on lipopolysaccharide (LPS)-induced neuroinflammation and several in vivo model of inflammatory pain in mice. Here, first we studied the effects of PAF fractions on the production of pro-inflammatory mediators in LPS-treated BV2 microglial cells using enzyme-linked immunosorbent assay. The translocation of nuclear factor-kappa B (NF-κB) and the involvements of Akt and mitogen-activated protein (MAP) kinases in ethyl acetate fraction of PAF (PAF-EA)-mediated anti-inflammatory effect were measured using Western blotting. In in vivo experiments, the efficacy of PAF-EA was evaluated at the doses of 100 and 200mg/kg using several chemical-induced models of inflammatory pain such as acetic acid-induced writhing, formalin-induced paw licking and edema. We found that compared to other fractions, the PAF-EA more potently inhibited the LPS-induced generation of nitric oxide, tumor necrosis factor-α, interleukin-6 and reactive oxygen species. It also inhibited LPS-induced nuclear translocation of NF-κB. These actions of EA fraction were found to be associated with a disruption of Akt and MAP kinases signaling pathways. The EA fraction also significantly inhibited acetic acid-induced writhing, formalin-induced licking time and edema in mice. Our findings support the ethnopharmacological use of P. alkekengi fruit along with its calyx as an anti-inflammatory agent and suggest that the EA fraction of PAF may serve as a potential candidate to treat different neurological disorders and pain associated with inflammation. Copyright © 2016. Published by Elsevier Ireland Ltd.

  13. Sildenafil attenuates LPS-induced pro-inflammatory responses through down-regulation of intracellular ROS-related MAPK/NF-κB signaling pathways in N9 microglia.

    PubMed

    Zhao, Siqi; Zhang, Lijia; Lian, Guoning; Wang, Xiaoxiao; Zhang, Haotian; Yao, Xuechun; Yang, Jingyu; Wu, Chunfu

    2011-04-01

    Excessive activation of microglial cells has been implicated in various neuroinflammation. The present study showed that sildenafil, a PDE5 inhibitor, significantly suppressed NO, interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) production induced by LPS in microglial cells through decreasing the protein and/or mRNA expressions of inducible NO synthase (iNOS), IL-1β and TNF-α in a concentration-dependent manner. Sildenafil also blocked IκBα phosphorylation and degradation, inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), p38 MAPK, and c-Jun N-terminal kinase (JNK). Moreover, the increase of the expression of gp91phox, a critical and catalytic subunit of NADPH oxidase, and the levels of intracellular reactive oxygen species (iROS) induced by LPS were markedly inhibited by sildenafil. In summary, these data suggest that sildenafil exerts its in vitro anti-inflammatory effect in LPS-activated N9 microglial cells by blocking nuclear factor-κB (NF-κB) and MAPKs activation, which may be partly due to its potent down-regulation of the NADPH-derived iROS production.

  14. Niacin attenuates the production of pro-inflammatory cytokines in LPS-induced mouse alveolar macrophages by HCA2 dependent mechanisms.

    PubMed

    Zhou, Ershun; Li, Yimeng; Yao, Minjun; Wei, Zhengkai; Fu, Yunhe; Yang, Zhengtao

    2014-11-01

    Niacin has been reported to have potent anti-inflammatory effects in LPS-induced acute lung injury. However, the molecular mechanism of niacin has not been fully understood. The aim of the present study was to investigate the effects of niacin on the production of pro-inflammatory cytokines TNF-α, IL-6 and IL-1β in LPS-induced mouse alveolar macrophages and explore its underlying mechanism. Mouse alveolar macrophages were incubated in the presence or absence of various concentrations of niacin (1, 10, 100 μmol/l) 1h before LPS (1 μg/ml) challenge. The results showed that niacin reduced the levels of TNF-α, IL-6 and IL-1β in LPS-challenged alveolar macrophages. Furthermore, NF-κB activation was inhibited by niacin through blocking the phosphorylation of NF-κB p65 and IκBα. In addition, silencing HCA2 abrogated the effect of niacin on the production of pro-inflammatory cytokines. These findings suggested that niacin attenuated the LPS-induced pro-inflammatory cytokines possibly mediated by HCA2 in LPS-challenged alveolar macrophages.

  15. Anti-Inflammatory Effect of Apigenin on LPS-Induced Pro-Inflammatory Mediators and AP-1 Factors in Human Lung Epithelial Cells.

    PubMed

    Patil, Rajeshwari H; Babu, R L; Naveen Kumar, M; Kiran Kumar, K M; Hegde, Shubha M; Nagesh, Rashmi; Ramesh, Govindarajan T; Sharma, S Chidananda

    2016-02-01

    Apigenin is one of the plant flavonoids present in fruits and vegetables, acting as an important nutraceutical component. It is recognized as a potential antioxidant, antimicrobial, and anti-inflammatory molecule. In the present study, the mechanism of anti-inflammatory action of apigenin on lipopolysaccharide (LPS)-induced pro-inflammatory cytokines and activator protein-1 (AP-1) factors in human lung A549 cells was investigated. The anti-inflammatory activity of apigenin on LPS-induced inflammation was determined by analyzing the expression of pro-inflammatory cytokines, nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and different AP-1 factors. Apigenin significantly inhibited the LPS-induced expression of iNOS, COX-2, expression of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, and TNF-α), and AP-1 proteins (c-Jun, c-Fos, and JunB) including nitric oxide production. Study confirms the anti-inflammatory effect of apigenin by inhibiting the expression of inflammatory mediators and AP-1 factors involved in the inflammation and its importance in the treatment of lung inflammatory diseases.

  16. Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-κB pathways.

    PubMed

    Park, Junghyung; Min, Ju-Sik; Kim, Bokyung; Chae, Un-Bin; Yun, Jong Won; Choi, Myung-Sook; Kong, Il-Keun; Chang, Kyu-Tae; Lee, Dong-Seok

    2015-01-01

    Activation of microglia cells in the brain contributes to neurodegenerative processes promoted by many neurotoxic factors such as pro-inflammatory cytokines and nitric oxide (NO). Reactive oxygen species (ROS) actively affect microglia-associated neurodegenerative diseases through their role as pro-inflammatory molecules and modulators of pro-inflammatory processes. Although the ROS which involved in microglia activation are thought to be generated primarily by NADPH oxidase (NOX) and involved in the immune response, mitochondrial ROS have also been proposed as important regulators of the inflammatory response in the innate immune system. However, the role of mitochondrial ROS in microglial activation has yet to be fully elucidated. In this study, we demonstrate that inhibition of mitochondrial ROS by treatment with Mito-TEMPO effectively suppressed the level of mitochondrial and intracellular ROS. Mito-TEMPO treatment also significantly prevented LPS-induced increase in the TNF-α, IL-1β, IL-6, iNOS and Cox-2 in BV-2 and primary microglia cells. Furthermore, LPS-induced suppression of mitochondrial ROS generation not only affected LPS-stimulated activation of MAPKs, including ERK, JNK, and p38, but also regulated IκB activation and NF-κB nuclear localization. These results indicate that mitochondria constitute a major source of ROS generation in LPS-mediated activated microglia cells. Additionally, suppression of LPS-induced mitochondrial ROS plays a role in modulating the production of pro-inflammatory mediators by preventing MAPK and NF-κB activation in microglia cells. Our findings suggest that a potential strategy in the development of therapy for inflammation-associated degenerative neurological diseases involves targeting the regulation of mitochondrial ROS in microglial cells.

  17. Suppressive effects of Mimosa pudica (L.) constituents on the production of LPS-induced pro-inflammatory mediators.

    PubMed

    Patel, Neeraj K; Bhutani, Kamlesh K

    2014-01-01

    The present study deals with the isolation of fourteen compounds from the active ethyl acetate (MPE) extract of M. pudica (L.) whole plant and their subsequent evaluation for the nitric oxide (NO), tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1ß) inhibitory activities in lipopolysaccharide (LPS) stimulated RAW 264.7 and J774A.1 cells. Among the tested compounds, L-mimosine (12; IC50 = 19.23 to 21.15 µM), crocetin (4; IC50 = 23.45 to 25.57 µM), crocin (14; IC50 = 27.16 to 31.53 µM) and jasmonic acid (11; IC50 = 21.32 to 29.42 µM) were identified as potent NO inhibitor when tested on the macrophages. Similarly, towards TNF-α and IL-1ß inhibition, including these four compounds, and ethyl gallate (3), gallic acid (10) and caffeic acid (7) were found to be more active with half maximal concentration, 17.32 to 62.32 µM whereas the other compounds depicted moderate and mild effects (IC50 = 59.32 to 95.01 µM). Also, at a dose of 40 mg/Kg, L-mimosine (12), jasmonic acid (11), crocin (14) and its de-esterified form, crocetin (4) were found to significantly (p < 0.05 and 0.001) reduce 60.7 %, 48.9 %, 48.4 % and 43.6 % respectively of TNF-de-esterified production in female Sprague Dawley rats. However, in case of IL-1ß, with the same dose (40 mg/Kg), jasmonic acid (11) exhibited significant reduction with 54.2 % followed by crocin (14) (50.2 %) and crocetin (4) (39.8 %) while L-mimosine (12) was found to reduce only 16.3 %. Based on the results, it can be estimated that these compounds imparting greatly to anti-inflammatory effects of M. pudica in vitro as well as in vivo through reduction of LPS-induced pro-inflammatory mediators which affirm the ethno-pharmacological use of this plant for prevention of inflammatory-related disorders.

  18. Suppressive effects of Mimosa pudica (L.) constituents on the production of LPS-induced pro-inflammatory mediators

    PubMed Central

    Patel, Neeraj K.; Bhutani, Kamlesh K.

    2014-01-01

    The present study deals with the isolation of fourteen compounds from the active ethyl acetate (MPE) extract of M. pudica (L.) whole plant and their subsequent evaluation for the nitric oxide (NO), tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1ß) inhibitory activities in lipopolysaccharide (LPS) stimulated RAW 264.7 and J774A.1 cells. Among the tested compounds, L-mimosine (12; IC50 = 19.23 to 21.15 µM), crocetin (4; IC50 = 23.45 to 25.57 µM), crocin (14; IC50 = 27.16 to 31.53 µM) and jasmonic acid (11; IC50 = 21.32 to 29.42 µM) were identified as potent NO inhibitor when tested on the macrophages. Similarly, towards TNF-α and IL-1ß inhibition, including these four compounds, and ethyl gallate (3), gallic acid (10) and caffeic acid (7) were found to be more active with half maximal concentration, 17.32 to 62.32 µM whereas the other compounds depicted moderate and mild effects (IC50 = 59.32 to 95.01 µM). Also, at a dose of 40 mg/Kg, L-mimosine (12), jasmonic acid (11), crocin (14) and its de-esterified form, crocetin (4) were found to significantly (p < 0.05 and 0.001) reduce 60.7 %, 48.9 %, 48.4 % and 43.6 % respectively of TNF-de-esterified production in female Sprague Dawley rats. However, in case of IL-1ß, with the same dose (40 mg/Kg), jasmonic acid (11) exhibited significant reduction with 54.2 % followed by crocin (14) (50.2 %) and crocetin (4) (39.8 %) while L-mimosine (12) was found to reduce only 16.3 %. Based on the results, it can be estimated that these compounds imparting greatly to anti-inflammatory effects of M. pudica in vitro as well as in vivo through reduction of LPS-induced pro-inflammatory mediators which affirm the ethno-pharmacological use of this plant for prevention of inflammatory-related disorders. PMID:26417317

  19. LPS-induced TNF-α factor mediates pro-inflammatory and pro-fibrogenic pattern in non-alcoholic fatty liver disease.

    PubMed

    Ceccarelli, Sara; Panera, Nadia; Mina, Marco; Gnani, Daniela; De Stefanis, Cristiano; Crudele, Annalisa; Rychlicki, Chiara; Petrini, Stefania; Bruscalupi, Giovannella; Agostinelli, Laura; Stronati, Laura; Cucchiara, Salvatore; Musso, Giovanni; Furlanello, Cesare; Svegliati-Baroni, Gianluca; Nobili, Valerio; Alisi, Anna

    2015-12-08

    Lipopolysaccharide (LPS) is currently considered one of the major players in non-alcoholic fatty liver disease (NAFLD) pathogenesis and progression. Here, we aim to investigate the possible role of LPS-induced TNF-α factor (LITAF) in inducing a pro-inflammatory and pro-fibrogenic phenotype of non-alcoholic steatohepatitis (NASH).We found that children with NAFLD displayed, in different liver-resident cells, an increased expression of LITAF which correlated with histological traits of hepatic inflammation and fibrosis. Total and nuclear LITAF expression increased in mouse and human hepatic stellate cells (HSCs). Moreover, LPS induced LITAF-dependent transcription of IL-1β, IL-6 and TNF-α in the clonal myofibroblastic HSC LX-2 cell line, and this effect was hampered by LITAF silencing. We showed, for the first time in HSCs, that LITAF recruitment to these cytokine promoters is LPS dependent. However, preventing LITAF nuclear translocation by p38MAPK inhibitor, the expression of IL-6 and TNF-α was significantly reduced with the aid of p65NF-ĸB, while IL-1β transcription exclusively required LITAF expression/activity. Finally, IL-1β levels in plasma mirrored those in the liver and correlated with LPS levels and LITAF-positive HSCs in children with NASH.In conclusion, a more severe histological profile in paediatric NAFLD is associated with LITAF over-expression in HSCs, which in turn correlates with hepatic and circulating IL-1β levels outlining a panel of potential biomarkers of NASH-related liver damage. The in vitro study highlights the role of LITAF as a key regulator of the LPS-induced pro-inflammatory pattern in HSCs and suggests p38MAPK inhibitors as a possible therapeutic approach against hepatic inflammation in NASH.

  20. Intracellular NAD+ levels are associated with LPS-induced TNF-α release in pro-inflammatory macrophages.

    PubMed

    Al-Shabany, Abbas Jawad; Moody, Alan John; Foey, Andrew David; Billington, Richard Andrew

    2016-01-13

    Metabolism and immune responses have been shown to be closely linked and as our understanding increases, so do the intricacies of the level of linkage. NAD(+) has previously been shown to regulate tumour necrosis factor-α (TNF-α) synthesis and TNF-α has been shown to regulate NAD(+) homoeostasis providing a link between a pro-inflammatory response and redox status. In the present study, we have used THP-1 differentiation into pro- (M1-like) and anti- (M2-like) inflammatory macrophage subset models to investigate this link further. Pro- and anti-inflammatory macrophages showed different resting NAD(+) levels and expression levels of NAD(+) homoeostasis enzymes. Challenge with bacterial lipopolysaccharide, a pro-inflammatory stimulus for macrophages, caused a large, biphasic and transient increase in NAD(+) levels in pro- but not anti-inflammatory macrophages that were correlated with TNF-α release and inhibition of certain NAD(+) synthesis pathways blocked TNF-α release. Lipopolysaccharide stimulation also caused changes in mRNA levels of some NAD(+) homoeostasis enzymes in M1-like cells. Surprisingly, despite M2-like cells not releasing TNF-α or changing NAD(+) levels in response to lipopolysaccharide, they showed similar mRNA changes compared with M1-like cells. These data further strengthen the link between pro-inflammatory responses in macrophages and NAD(+). The agonist-induced rise in NAD(+) shows striking parallels to well-known second messengers and raises the possibility that NAD(+) is acting in a similar manner in this model.

  1. Intracellular NAD+ levels are associated with LPS-induced TNF-α release in pro-inflammatory macrophages

    PubMed Central

    Al-Shabany, Abbas Jawad; Moody, Alan John; Foey, Andrew David; Billington, Richard Andrew

    2016-01-01

    Metabolism and immune responses have been shown to be closely linked and as our understanding increases, so do the intricacies of the level of linkage. NAD+ has previously been shown to regulate tumour necrosis factor-α (TNF-α) synthesis and TNF-α has been shown to regulate NAD+ homoeostasis providing a link between a pro-inflammatory response and redox status. In the present study, we have used THP-1 differentiation into pro- (M1-like) and anti- (M2-like) inflammatory macrophage subset models to investigate this link further. Pro- and anti-inflammatory macrophages showed different resting NAD+ levels and expression levels of NAD+ homoeostasis enzymes. Challenge with bacterial lipopolysaccharide, a pro-inflammatory stimulus for macrophages, caused a large, biphasic and transient increase in NAD+ levels in pro- but not anti-inflammatory macrophages that were correlated with TNF-α release and inhibition of certain NAD+ synthesis pathways blocked TNF-α release. Lipopolysaccharide stimulation also caused changes in mRNA levels of some NAD+ homoeostasis enzymes in M1-like cells. Surprisingly, despite M2-like cells not releasing TNF-α or changing NAD+ levels in response to lipopolysaccharide, they showed similar mRNA changes compared with M1-like cells. These data further strengthen the link between pro-inflammatory responses in macrophages and NAD+. The agonist-induced rise in NAD+ shows striking parallels to well-known second messengers and raises the possibility that NAD+ is acting in a similar manner in this model. PMID:26764408

  2. Anethole, a Medicinal Plant Compound, Decreases the Production of Pro-Inflammatory TNF-α and IL-1β in a Rat Model of LPS-Induced Periodontitis

    PubMed Central

    Moradi, Janet; Abbasipour, Fatemeh; Zaringhalam, Jalal; Maleki, Bita; Ziaee, Narges; Khodadoustan, Amin; Janahmadi, Mahyar

    2014-01-01

    Periodontitis (PD) is known to be one of most prevalent worldwide chronic inflammatory diseases. There are several treatments including antibiotics for PD; however, since drug resistance is an increasing problem, new drugs particularly derived from plants with fewer side effects are required. The effects of trans-anethole on IL-1 β and TNF-α level in a rat model of PD were investigated and compared to ketoprofen. Eschericia coli lipopolysaccharide (LPS, 30 µg) was injected bilaterally into the palatal gingiva (3 µL/site) between the upper first and second molars every two days for 10 days in anesthetized rats. Administration of either trans-anethole (10 or 50 mg/Kg, i.p.) or ketoprofen (10 mg/Kg, i.p.) was started 20 minute before LPS injection and continued for 10 days. Then, IL-1β and TNF-α levels were measured in blood samples by ELISA at day 0 (control) and at day 10. Anethole at both concentrations significantly suppressed IL-1β and TNF-α production when compared to LPS-treated rats. The suppressive effects of anethole on LPS-induced pro-inflammatory cytokines were almost similar as seen with ketoprofen. In conclusion, the present results suggest that anethole may have a potent inhibitory effect on PD through suppression of pro-inflammatory molecules; therefore it could be a novel therapeutic strategy for PD. PMID:25587321

  3. Investigations on Leucas cephalotes (Roth.) Spreng. for inhibition of LPS-induced pro-inflammatory mediators in murine macrophages and in rat model

    PubMed Central

    Patel, Neeraj K.; Khan, Mohd. Shahid; Bhutani, Kamlesh K.

    2015-01-01

    Silica gel column chromatography fractionation of the dichloromethane extract (LCD) of Leucas cephalotes (Roth.) Spreng. led to the isolation of five compounds namely β-sitosterol (1) + stigmasterol (2), lupeol (3), oleanolic acid (4) and laballenic acid (5). Also, gas chromatography-mass spectrometry (GC-MS) analysis of sub-fraction (LCD-F1) of this extract showed the presence of eleven (6-16) compounds. In addition to this, 3-5 and LCD-F1 were evaluated for lipopolysachharide (LPS)-induced nitric oxide (NO), tumor necrosis factor (TNF)-α and interleukin (IL)-1β production in RAW 264.7 and J774A.1 cells. Results directed that 4 and 5 were found to inhibit these mediators at half maximal inhibitory concentration of 17.12 to 57.20 μM while IC50 for LCD-F1 was found to be 15.56 to 31.71 μg/mL. Furthermore, LCD at a dose of 50, 100 and 400 mg/Kg was found to reduce significantly LPS induced tumor necrosis factor (TNF)-α and interleukin (IL)-1β production in female Sprague Dawley (SD) rats. All the results findings evoked that the anti-inflammatory effects of Leucas cephalotes is partially mediated through the suppression of pro-inflammatory mediators and hence can be utilized for the development of anti-inflammatory candidates. PMID:26535039

  4. Inhibiting IκBβ–NFκB signaling attenuates the expression of select pro-inflammatory genes

    PubMed Central

    McKenna, Sarah; Wright, Clyde J.

    2015-01-01

    ABSTRACT Multiple mediators of septic shock are regulated by the transcription factor nuclear factor κB (NFκB). However, complete NFκB inhibition can exacerbate disease, necessitating evaluation of targeted strategies to attenuate the pro-inflammatory response. Here, we demonstrate that in murine macrophages, low-dose NFκB inhibitors specifically attenuates lipopolysaccharide (LPS)-induced IκBβ degradation and the expression of a select subset of target genes (encoding IL1β, IL6, IL12β). Gain- and loss-of-function experiments demonstrate the necessary and sufficient role of inhibitor of NFκB family member IκBβ (also known as NFKBIB) in the expression of these genes. Furthermore, both fibroblasts and macrophages isolated from IκBβ overexpressing mice demonstrate attenuated LPS-induced IκBβ–NFκB signaling and IL1β, IL6 and IL12β expression. Further confirming the role of IκBβ and its NFκB subunit binding partner cRel in LPS-induced gene expression, pre-treatment of wild-type mouse embryonic fibroblasts with a cell-permeable peptide containing the cRel nuclear localization sequence attenuated IL6 expression. We prove that LPS-induced IκBβ–NFκB signaling can be selectively modulated to attenuate the expression of select pro-inflammatory target genes, thus providing therapeutic insights for patients exposed to systemic inflammatory stress. PMID:25908863

  5. Short-term heating reduces the anti-inflammatory effects of fresh raw garlic extracts on the LPS-induced production of NO and pro-inflammatory cytokines by downregulating allicin activity in RAW 264.7 macrophages.

    PubMed

    Shin, Jung-Hye; Ryu, Ji Hyeon; Kang, Min Jung; Hwang, Cho Rong; Han, Jaehee; Kang, Dawon

    2013-08-01

    Garlic has a variety of biologic activities, including anti-inflammatory properties. Although garlic has several biologic activities, some people dislike eating fresh raw garlic because of its strong taste and smell. Therefore, garlic formulations involving heating procedures have been developed. In this study, we investigated whether short-term heating affects the anti-inflammatory properties of garlic. Fresh and heated raw garlic extracts (FRGE and HRGE) were prepared with incubation at 25 °C and 95 °C, respectively, for 2 h. Treatment with FRGE and HRGE significantly reduced the LPS-induced increase in the pro-inflammatory cytokine concentration (TNF-α, IL-1β, and IL-6) and NO through HO-1 upregulation in RAW 264.7 macrophages. The anti-inflammatory effect was greater in FRGE than in HRGE. The allicin concentration was higher in FRGE than in HRGE. Allicin treatment showed reduced production of pro-inflammatory cytokines and NO and increased HO-1 activity. The results show that the decrease in LPS-induced NO and pro-inflammatory cytokines in RAW 264.7 macrophages through HO-1 induction was greater for FRGE compared with HRGE. Additionally, the results indicate that allicin is responsible for the anti-inflammatory effect of FRGE. Our results suggest a potential therapeutic use of allicin in the treatment of chronic inflammatory disease.

  6. LYRM03, an ubenimex derivative, attenuates LPS-induced acute lung injury in mice by suppressing the TLR4 signaling pathway

    PubMed Central

    He, Hui-qiong; Wu, Ya-xian; Nie, Yun-juan; Wang, Jun; Ge, Mei; Qian, Feng

    2017-01-01

    Toll-like receptor 4 (TLR4)-mediated signaling plays a critical role in sepsis-induced acute lung injury (ALI). LYRM03 (3-amino-2-hydroxy-4-phenyl-valyl-isoleucine) is a novel derivative of ubenimex, a widely used antineoplastic medicine. We previously found that LYRM03 has anti-inflammatory effects in cecal ligation puncture mouse model. In this study we determined whether LYRM03 attenuated LPS-induced ALI in mice. LPS-induced ALI mouse model was established by challenging the mice with intratracheal injection of LPS (5 mg/kg), which was subsequently treated with LYRM03 (10 mg/kg, ip). LYRM03 administration significantly alleviated LPS-induced lung edema, inflammatory cell (neutrophils and macrophages) infiltration and myeloperoxidase (MPO) activity, decreased pro-inflammatory and chemotactic cytokine (TNF-α, IL-6, IL-1β, MIP-2) generation and reduced iNOS and COX-2 expression in the lung tissues. In cultured mouse alveolar macrophages in vitro, pretreatment with LYRM03 (100 μmol/L) suppressed LPS-induced macrophage activation by reducing Myd88 expression, increasing IκB stability and inhibiting p38 phosphorylation. These results suggest that LYRM03 effectively attenuates LPS-induced ALI by inhibiting the expression of pro-inflammatory mediators and Myd88-dependent TLR4 signaling pathways in alveolar macrophages. LYRM03 may serve as a potential treatment for sepsis-mediated lung injuries. PMID:28112185

  7. Kavain Involvement in LPS-Induced Signaling Pathways.

    PubMed

    Tang, Xiaoren; Amar, Salomon

    2016-10-01

    Kavain, a compound extracted from the Kava plant, Piper methysticum, is found to be involved in TNF-α expression in human and mouse cells via regulation of transcriptional factors such as NF-kB and LITAF. LITAF is known to activate the transcription of more than 20 cytokines that are involved in a variety of cellular processes and is associated with many inflammatory diseases, including angiogenesis, cancer, arthritis, and more. The modulation of LITAF is expected to positively affect cytokine-mediated diseases. Thus, intensive efforts have been deployed in search of LITAF inhibitors. In this work, we found that, in vitro, Kavain reduced LPS- induced TNF-α secretion in mouse macrophages, mouse bone marrow macrophages (BMM), and human peripheral blood mononuclear cells (HPBMC). We also found that Kavain treatment in RAW264.7 cells deactivated MyD88 and Akt, inhibited LITAF, and reduced the production of TNF-α, IL-27, and MIG in response to LPS. Similarly, it had a significant in vivo anti-inflammatory effect on wild-type (WT) mice that developed Collagen Antibody Induced Arthritis (CAIA). Overall, MyD88 was found to be an important mediator of the LPS-induced inflammatory response that can be distinguished from the NF-κB pathway. We also found that MyD88 is involved in the pathway linking LPS/LITAF to TNF-α. Therefore, given that Kavain modulates LPS-induced signaling pathways leading to cytokine expression, therapeutic interventions involving Kavain in inflammatory diseases are warranted. J. Cell. Biochem. 117: 2272-2280, 2016. © 2016 Wiley Periodicals, Inc.

  8. Polysaccharides from Smilax glabra inhibit the pro-inflammatory mediators via ERK1/2 and JNK pathways in LPS-induced RAW264.7 cells.

    PubMed

    Lu, Chuan-li; Wei, Zhu; Min, Wang; Hu, Meng-mei; Chen, Wen-long; Xu, Xiao-jie; Lu, Chuan-jian

    2015-05-20

    The rhizomes of Smilax glabra have been used as both food and folk medicine in many countries for a long time. However, little research has been reported on polysaccharides of S. glabra. In the present study, two polysaccharide fractions, SGP-1 and SGP-2, were isolated from the rhizomes of S. glabra with the number average molecular weights of 1.72 × 10(2)kDa and 1.31 × 10(2)kDa, and the weight average molecular weights of 1.31 × 10(5)kDa and 1.18 × 10(5)kDa, respectively, and their mainly monosaccharide compositions were both galactose and rhamnose (2.5:1). Both SGP-1 and SGP-2 significantly suppressed the release of nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) from LPS-induced RAW 264.7 cells, as well as the mRNA expression of inducible nitric oxide synthase (iNOS), TNF-α and IL-6. Additionally, SGP-1 and SGP-2 repressed the extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK). These findings strongly suggested polysaccharides were also the anti-inflammatory active ingredient for S. glabra, and the potential of SGP-1 and SGP-2 as the anti-inflammatory agents.

  9. The Receptor CMRF35-Like Molecule-1 (CLM-1) Enhances the Production of LPS-Induced Pro-Inflammatory Mediators during Microglial Activation.

    PubMed

    Ejarque-Ortiz, Aroa; Solà, Carme; Martínez-Barriocanal, Águeda; Schwartz, Simó; Martín, Margarita; Peluffo, Hugo; Sayós, Joan

    2015-01-01

    CMRF35-like molecule-1 (CLM-1) belongs to a receptor family mainly expressed in myeloid cells that include activating and inhibitory receptors. CLM-1 contains two ITIMs and a single immunoreceptor tyrosine-based switch motif (ITSM), although also displays a binding site for p85α regulatory subunit of PI3K. By using murine primary microglial cultures, we show the presence of all CLM members in microglial cells and characterize the expression of CLM-1 both in basal conditions and during microglial activation. The TLR4 agonist lipopolysaccharide (LPS) and the TLR3 agonist polyinosinic-polycytidylic acid (Poly I:C) induce an increase in microglial CLM-1 mRNA levels in vitro, whereas the TLR2/6 heterodimer agonist peptidoglycan (PGN) produces a marked decrease. In this study we also describe a new soluble isoform of CLM-1 that is detected at mRNA and protein levels in basal conditions in primary microglial cultures. Interestingly, CLM-1 engagement enhances the transcription of the pro-inflammatory mediators TNFα, COX-2 and NOS-2 in microglial cells challenged with LPS. These results reveal that CLM-1 can acts as a co-activating receptor and suggest that this receptor could play a key role in the regulation of microglial activation.

  10. The Receptor CMRF35-Like Molecule-1 (CLM-1) Enhances the Production of LPS-Induced Pro-Inflammatory Mediators during Microglial Activation

    PubMed Central

    Ejarque-Ortiz, Aroa; Solà, Carme; Martínez-Barriocanal, Águeda; Schwartz, Simó; Martín, Margarita; Peluffo, Hugo; Sayós, Joan

    2015-01-01

    CMRF35-like molecule-1 (CLM-1) belongs to a receptor family mainly expressed in myeloid cells that include activating and inhibitory receptors. CLM-1 contains two ITIMs and a single immunoreceptor tyrosine-based switch motif (ITSM), although also displays a binding site for p85α regulatory subunit of PI3K. By using murine primary microglial cultures, we show the presence of all CLM members in microglial cells and characterize the expression of CLM-1 both in basal conditions and during microglial activation. The TLR4 agonist lipopolysaccharide (LPS) and the TLR3 agonist polyinosinic–polycytidylic acid (Poly I:C) induce an increase in microglial CLM-1 mRNA levels in vitro, whereas the TLR2/6 heterodimer agonist peptidoglycan (PGN) produces a marked decrease. In this study we also describe a new soluble isoform of CLM-1 that is detected at mRNA and protein levels in basal conditions in primary microglial cultures. Interestingly, CLM-1 engagement enhances the transcription of the pro-inflammatory mediators TNFα, COX-2 and NOS-2 in microglial cells challenged with LPS. These results reveal that CLM-1 can acts as a co-activating receptor and suggest that this receptor could play a key role in the regulation of microglial activation. PMID:25927603

  11. GSK-3Beta-Dependent Activation of GEF-H1/ROCK Signaling Promotes LPS-Induced Lung Vascular Endothelial Barrier Dysfunction and Acute Lung Injury.

    PubMed

    Yi, Lei; Huang, Xiaoqin; Guo, Feng; Zhou, Zengding; Chang, Mengling; Huan, Jingning

    2017-01-01

    The bacterial endotoxin or lipopolysaccharide (LPS) leads to the extensive vascular endothelial cells (EC) injury under septic conditions. Guanine nucleotide exchange factor-H1 (GEF-H1)/ROCK signaling not only involved in LPS-induced overexpression of pro-inflammatory mediator in ECs but also implicated in LPS-induced endothelial hyper-permeability. However, the mechanisms behind LPS-induced GEF-H1/ROCK signaling activation in the progress of EC injury remain incompletely understood. GEF-H1 localized on microtubules (MT) and is suppressed in its MT-bound state. MT disassembly promotes GEF-H1 release from MT and stimulates downstream ROCK-specific GEF activity. Since glycogen synthase kinase (GSK-3beta) participates in regulating MT dynamics under pathologic conditions, we examined the pivotal roles for GSK-3beta in modulating LPS-induced activation of GEF-H1/ROCK, increase of vascular endothelial permeability and severity of acute lung injury (ALI). In this study, we found that LPS induced human pulmonary endothelial cell (HPMEC) monolayers disruption accompanied by increase in GSK-3beta activity, activation of GEF-H1/ROCK signaling and decrease in beta-catenin and ZO-1 expression. Inhibition of GSK-3beta reduced HPMEC monolayers hyper-permeability and GEF-H1/ROCK activity in response to LPS. GSK-3beta/GEF-H1/ROCK signaling is implicated in regulating the expression of beta-catenin and ZO-1. In vivo, GSK-3beta inhibition attenuated LPS-induced activation of GEF-H1/ROCK pathway, lung edema and subsequent ALI. These findings present a new mechanism of GSK-3beta-dependent exacerbation of lung micro-vascular hyper-permeability and escalation of ALI via activation of GEF-H1/ROCK signaling and disruption of intracellular junctional proteins under septic condition.

  12. Leonurine exerts anti-inflammatory effect by regulating inflammatory signaling pathways and cytokines in LPS-induced mouse mastitis.

    PubMed

    Song, Xiaojing; Wang, Tiancheng; Zhang, Zecai; Jiang, Haichao; Wang, Wei; Cao, Yongguo; Zhang, Naisheng

    2015-02-01

    Bovine mastitis is defined as the inflammation of mammary gland and is the most multiple diseases in dairy cattle. There is still no effective treatment now. Leonurine, extracted from Leonurus cardiaca, has been proved to have anti-inflammatory effect. In the present study, we utilized a mouse mastitis model to study the effect of leonurine on LPS-induced mastitis. Leonurine was administered three times during the 24 h after inducing infection in the mammary gland. The results showed that leonurine significantly alleviated LPS-induced histopathological changes, downregulated the levels of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), upregulated the level of anti-inflammatory cytokine interleukin-10 (IL-10), and inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Further study revealed that leonurine inhibited the expression of Toll-like receptor 4 (TLR4) and the activation of nuclear factor-kappaB (NF-κB) and the phosphorylation of p38, extracellular signal-regulated kinase (ERK), and Jun N-terminal kinase (JNK). Therefore, the results demonstrated that leonurine could downregulate the expression of TNF-α, IL-6, iNOS, and COX-2 and upregulate the expression of IL-10 mainly by inhibiting the expression of TLR4 and the activation of NF-κB and the phosphorylation of p38, ERK, and JNK. Leonurine may be a potential agent for mastitis therapy.

  13. ErbB4 signaling stimulates pro-inflammatory macrophage apoptosis and limits colonic inflammation

    PubMed Central

    Schumacher, Michael A; Hedl, Matija; Abraham, Clara; Bernard, Jessica K; Lozano, Patricia R; Hsieh, Jonathan J; Almohazey, Dana; Bucar, Edie B; Punit, Shivesh; Dempsey, Peter J; Frey, Mark R

    2017-01-01

    Efficient clearance of pro-inflammatory macrophages from tissues after resolution of a challenge is critical to prevent prolonged inflammation. Defects in clearance can contribute to conditions such as inflammatory bowel disease, and thus may be therapeutically targetable. However, the signaling pathways that induce termination of pro-inflammatory macrophages are incompletely defined. We tested whether the ErbB4 receptor tyrosine kinase, previously not known to have role in macrophage biology, is involved in this process. In vitro, pro-inflammatory activation of cultured murine and human macrophages induced ErbB4 expression; in contrast, other ErbB family members were not induced in pro-inflammatory cells, and other innate immune lineages (dendritic cells, neutrophils) did not express detectable ErbB4 levels. Treatment of activated pro-inflammatory macrophages with the ErbB4 ligand neuregulin-4 (NRG4) induced apoptosis. ErbB4 localized to the mitochondria in these cells. Apoptosis was accompanied by loss of mitochondrial membrane potential, and was dependent upon the proteases that generate the cleaved ErbB4 intracellular domain fragment, suggesting a requirement for this fragment and mitochondrial pathway apoptosis. In vivo, ErbB4 was highly expressed on pro-inflammatory macrophages but not neutrophils during experimental DSS colitis in C57Bl/6 mice. Active inflammation in this model suppressed NRG4 expression, which may allow for macrophage persistence and ongoing inflammation. Consistent with this notion, NRG4 levels rebounded during the recovery phase, and administration of exogenous NRG4 during colitis reduced colonic macrophage numbers and ameliorated inflammation. These data define a novel role for ErbB4 in macrophage apoptosis, and outline a mechanism of feedback inhibition that may promote resolution of colitis. PMID:28230865

  14. Host Intracellular Signaling Events and Pro-inflammatory Cytokine Production in African Trypanosomiasis

    PubMed Central

    Kuriakose, Shiby M.; Singh, Rani; Uzonna, Jude E.

    2016-01-01

    Pathogens, such as bacteria, viruses, and parasites, possess specific molecules or proteins that are recognized by several host innate immune receptors, leading to the activation of several intracellular signaling molecules and pathways. The magnitude and quality of these events significantly affect the outcome of infection. African trypanosomes, including Trypanosoma congolense, are capable of manipulating the host immune response, including the activity of macrophages, which are the key immune cells that contribute to the immunopathogenesis of African trypanosomiasis. Although it is known that immune hyperactivation and excessive pro-inflammatory cytokine production are the hallmarks of African trypanosomiasis, the mechanisms through which these events are triggered are poorly defined. However, it is known that macrophages may play a significant role in these processes, because phagocytosis of trypanosomes by macrophages initiates intracellular signal transduction cascades that lead to the release of pro-inflammatory cytokines and alteration in cell function. This review highlights recent progress in our understanding of the innate immune receptors, signaling pathways, and transcription factors involved in T. congolense-induced pro-inflammatory cytokine production in macrophages. It will reveal the existence of complex signaling events through which the parasite modulates the host immune response, thus identifying novel targets that could aid in designing strategies to effectively control the disease. PMID:27242788

  15. Ferulic acid prevents LPS-induced up-regulation of PDE4B and stimulates the cAMP/CREB signaling pathway in PC12 cells

    PubMed Central

    Huang, Hao; Hong, Qian; Tan, Hong-ling; Xiao, Cheng-rong; Gao, Yue

    2016-01-01

    Aim: Phosphodiesterase 4 (PDE4) isozymes are involved in different functions, depending on their patterns of distribution in the brain. The PDE4 subtypes are distributed in different inflammatory cells, and appear to be important regulators of inflammatory processes. In this study we examined the effects of ferulic acid (FA), a plant component with strong anti-oxidant and anti-inflammatory activities, on lipopolysaccharide (LPS)-induced up-regulation of phosphodiesterase 4B (PDE4B) in PC12 cells, which in turn regulated cellular cAMP levels and the cAMP/cAMP response element binding protein (CREB) pathway in the cells. Methods: PC12 cells were treated with LPS (1 μg/mL) for 8 h, and the changes of F-actin were detected using laser scanning confocal microscopy. The levels of pro-inflammatory cytokines were measured suing ELISA kits, and PDE4B-specific enzymatic activity was assessed with a PDE4B assay kit. The mRNA levels of PDE4B were analyzed with Q-PCR, and the protein levels of CREB and phosphorylated CREB (pCREB) were determined using immunoblotting. Furthermore, molecular docking was used to identify the interaction between PDE4B2 and FA. Results: Treatment of PC12 cells with LPS induced thick bundles of actin filaments appearing in the F-actin cytoskeleton, which were ameliorated by pretreatment with FA (10–40 μmol/L) or with a PDE4B inhibitor rolipram (30 μmol/L). Pretreatment with FA dose-dependently inhibited the LPS-induced production of TNF-α and IL-1β in PC12 cells. Furthermore, pretreatment with FA dose-dependently attenuated the LPS-induced up-regulation of PDE4 activity in PC12 cells. Moreover, pretreatment with FA decreased LPS-induced up-regulation of the PDE4B mRNA, and reversed LPS-induced down-regulation of CREB and pCREB in PC12 cells. The molecular docking results revealed electrostatic and hydrophobic interactions between FA and PDE4B2. Conclusion: The beneficial effects of FA in PC12 cells might be conferred through inhibition of LPS-induced

  16. Ambroxol inhalation ameliorates LPS-induced airway inflammation and mucus secretion through the extracellular signal-regulated kinase 1/2 signaling pathway.

    PubMed

    Zhang, Shui-juan; Jiang, Juan-xia; Ren, Qian-qian; Jia, Yong-liang; Shen, Jian; Shen, Hui-juan; Lin, Xi-xi; Lu, Hong; Xie, Qiang-min

    2016-03-15

    Ambroxol, a metabolite of bromhexine, is shown to exert several pharmacological activities, including secretolytic, anti-inflammatory and antioxidant actions. Oral and intravenous administration of ambroxol is useful for the airway inflammatory diseases. However, little is known about its potential in inhalation therapy for lipopolysaccharide (LPS)-induced mucous hypersecretion and inflammatory response. In the present study, we compared the pharmacological effects of ambroxol by inhalation with intravenous administration and preliminarily explored its mechanism of action. Our results demonstrated that ambroxol administered by inhalation inhibited MUC5AC expression, reduced glycosaminoglycan levels, enhanced the function of mucociliary clearance and promoted sputum excretion, suggesting that ambroxol increases expectoration of sputum by reducing its viscosity. Moreover, ambroxol significantly alleviated LPS-induced the influx of inflammatory cells and the extracellular signal-regulated kinase 1/2 (Erk 1/2) expression in lung tissues, and inhibited increases in the mRNA expression of the pro-inflammatory cytokines tumor necrosis factor (TNF)-α, CCL-2 (monocyte chemotactic protein-1), KC (keratinocyte cell protein) and interleukin (IL)-1β in lung tissues. The secretolytic and anti-inflammatory effects of inhaled ambroxol at a dose of 7.5 mg/ml was comparable to that of ambroxol at 20 mg/ml i.v. and dexamethasone at 0.5 mg/kg i.p. In addition, we found that ambroxol dose-dependently inhibited LPS-induced increases in the mRNA expression of MUC5AC, TNF-α, and IL-1β in human bronchial epithelial cell (NCI-H292) by inhibiting the Erk signaling pathway. These results demonstrate the beneficial effects of ambroxol in inhalation therapy for the airway inflammatory diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Oleoylethanolamide exerts anti-inflammatory effects on LPS-induced THP-1 cells by enhancing PPARα signaling and inhibiting the NF-κB and ERK1/2/AP-1/STAT3 pathways.

    PubMed

    Yang, Lichao; Guo, Han; Li, Ying; Meng, Xianglan; Yan, Lu; Dan Zhang; Wu, Sangang; Zhou, Hao; Peng, Lu; Xie, Qiang; Jin, Xin

    2016-10-10

    The present study aimed to examine the anti-inflammatory actions of oleoylethanolamide (OEA) in lipopolysaccharide (LPS)-induced THP-1 cells. The cells were stimulated with LPS (1 μg/ml) in the presence or absence of OEA (10, 20 and 40 μM). The pro-inflammatory cytokines were evaluated by qRT-PCR and ELISA. The THP-1 cells were transiently transfected with PPARα small-interfering RNA, and TLR4 activity was determined with a blocking test using anti-TLR4 antibody. Additionally, a special inhibitor was used to analyse the intracellular signaling pathway. OEA exerted a potent anti-inflammatory effect by reducing the production of pro-inflammatory cytokines and TLR4 expression, and by enhancing PPARα expression. The modulatory effects of OEA on LPS-induced inflammation depended on PPARα and TLR4. Importantly, OEA inhibited LPS-induced NF-κB activation, IκBα degradation, expression of AP-1, and the phosphorylation of ERK1/2 and STAT3. In summary, our results demonstrated that OEA exerts anti-inflammatory effects by enhancing PPARα signaling, inhibiting the TLR4-mediated NF-κB signaling pathway, and interfering with the ERK1/2-dependent signaling cascade (TLR4/ERK1/2/AP-1/STAT3), which suggests that OEA may be a therapeutic agent for inflammatory diseases.

  18. Oleoylethanolamide exerts anti-inflammatory effects on LPS-induced THP-1 cells by enhancing PPARα signaling and inhibiting the NF-κB and ERK1/2/AP-1/STAT3 pathways

    PubMed Central

    Yang, Lichao; Guo, Han; Li, Ying; Meng, Xianglan; Yan, Lu; Dan Zhang; Wu, Sangang; Zhou, Hao; Peng, Lu; Xie, Qiang; Jin, Xin

    2016-01-01

    The present study aimed to examine the anti-inflammatory actions of oleoylethanolamide (OEA) in lipopolysaccharide (LPS)-induced THP-1 cells. The cells were stimulated with LPS (1 μg/ml) in the presence or absence of OEA (10, 20 and 40 μM). The pro-inflammatory cytokines were evaluated by qRT-PCR and ELISA. The THP-1 cells were transiently transfected with PPARα small-interfering RNA, and TLR4 activity was determined with a blocking test using anti-TLR4 antibody. Additionally, a special inhibitor was used to analyse the intracellular signaling pathway. OEA exerted a potent anti-inflammatory effect by reducing the production of pro-inflammatory cytokines and TLR4 expression, and by enhancing PPARα expression. The modulatory effects of OEA on LPS-induced inflammation depended on PPARα and TLR4. Importantly, OEA inhibited LPS-induced NF-κB activation, IκBα degradation, expression of AP-1, and the phosphorylation of ERK1/2 and STAT3. In summary, our results demonstrated that OEA exerts anti-inflammatory effects by enhancing PPARα signaling, inhibiting the TLR4-mediated NF-κB signaling pathway, and interfering with the ERK1/2-dependent signaling cascade (TLR4/ERK1/2/AP-1/STAT3), which suggests that OEA may be a therapeutic agent for inflammatory diseases. PMID:27721381

  19. A critical role for suppressors of cytokine signaling 3 in regulating LPS-induced transcriptional activation of matrix metalloproteinase-13 in osteoblasts

    PubMed Central

    Gao, Anqi; Kantarci, Alpdogan; Herrera, Bruno Schneider; Gao, Hongwei

    2013-01-01

    Suppressor of cytokine signaling 3 (SOCS3) is a key regulator of cytokine signaling in macrophages and T cells. Although SOCS3 seems to contribute to the balance between the pro-inflammatory actions of IL-6 family of cytokines and anti-inflammatory signaling of IL-10 by negatively regulating gp130/Jak/Stat3 signal transduction, how and the molecular mechanisms whereby SOCS3 controls the downstream impact of TLR4 are largely unknown and current data are controversial. Furthermore, very little is known regarding SOCS3 function in cells other than myeloid cells and T cells. Our previous study demonstrates that SOCS3 is expressed in osteoblasts and functions as a critical inhibitor of LPS-induced IL-6 expression. However, the function of SOCS3 in osteoblasts remains largely unknown. In the current study, we report for the first time that LPS stimulation of osteoblasts induces the transcriptional activation of matrix metalloproteinase (MMP)-13, a central regulator of bone resorption. Importantly, we demonstrate that SOCS3 overexpression leads to a significant decrease of LPS-induced MMP-13 expression in both primary murine calvariae osteoblasts and a mouse osteoblast-like cell line, MC3T3-E1. Our findings implicate SOCS3 as an important regulatory mediator in bone inflammatory diseases by targeting MMP-13. PMID:23638389

  20. Rationale and Means to Target Pro-Inflammatory Interleukin-8 (CXCL8) Signaling in Cancer

    PubMed Central

    Campbell, Laura M.; Maxwell, Pamela J.; Waugh, David J.J.

    2013-01-01

    It is well established that chronic inflammation underpins the development of a number of human cancers, with pro-inflammatory signaling within the tumor microenvironment contributing to tumor progression and metastasis. CXCL8 is an ELR+ pro-inflammatory CXC-chemokine which mediates its effects via signaling through two G protein-coupled receptors, CXCR1 and CXCR2. Elevated CXCL8-CXCR1/2 signaling within the tumor microenvironment of numerous cancers is known to enhance tumor progression via activation of signaling pathways promoting proliferation, angiogenesis, migration, invasion and cell survival. This review provides an overview of established roles of CXCL8-CXCR1/2 signaling in cancer and subsequently, discusses the possible strategies of targeting CXCL8-CXCR1/2 signaling in cancer, covering indirect strategies (e.g., anti-inflammatories, NFκB inhibitors) and direct CXCL8 or CXCR1/2 inhibition (e.g., neutralizing antibodies, small molecule receptor antagonists, pepducin inhibitors and siRNA strategies). Reports of pre-clinical cancer studies and clinical trials using CXCL8-CXCR1/2-targeting strategies for the treatment of inflammatory diseases will be discussed. The future translational opportunities for use of such agents in oncology will be discussed, with emphasis on exploitation in stratified populations. PMID:24276377

  1. Signaling pathways and mediators in LPS-induced lung inflammation in diabetic rats: role of insulin.

    PubMed

    Martins, Joilson O; Ferracini, Matheus; Anger, Denise B C; Martins, Daniel O; Ribeiro, Luciano F; Sannomiya, Paulina; Jancar, Sonia

    2010-01-01

    Diabetic patients are more susceptible to infections, and their inflammatory response is impaired. This is restored by insulin treatment. In the present study, we investigated the effect of insulin on LPS-induced signaling pathways and mediators in the lung of diabetic rats. Diabetic male Wistar rats (alloxan, 42 mg/kg i.v., 10 days) and control rats received intratracheal instillation of LPS (750 microg/0.4 mL) or saline. Some diabetic rats were given neutral protamine Hagedorn insulin (4 IU s.c.) 2 h before LPS. After 6 h, bronchoalveolar lavage was performed for the release of mediators, and lung tissue was homogenized for analysis of LPS-induced signaling pathways. Relative to control rats, diabetic rats exhibited a significant reduction in the LPS-induced phosphorylation of extracellular signal-regulated kinase (64%), p38 (70%), protein kinase B (67%), and protein kinase C alpha (57%) and delta (65%) and in the expression of iNOS (32%) and cyclooxygenase 2 (67%) in the lung homogenates. The bronchoalveolar lavage fluid concentrations of NO (47%) and IL-6 (49%) were also reduced in diabetic rats, whereas the cytokine-induced neutrophil chemoattractant 2 (CINC-2) levels were increased 23%, and CINC-1 was not different from control animals. Treatment of diabetic rats with insulin completely or partially restored all these parameters. In conclusion, data presented show that insulin regulates mitogen-activated protein kinase, phosphatidylinositol 3'-kinase, protein kinase C pathways, expression of the inducible enzymes, cyclooxygenase 2 and iNOS, and levels of IL-6 and CINC-2 in LPS-induced lung inflammation in diabetic rats. These results suggest that the protective effect of insulin in sepsis could be due to modulation of cellular signal transduction factors.

  2. Expression of tak1 and tram induces synergistic pro-inflammatory signalling and adjuvants DNA vaccines.

    PubMed

    Larsen, Karen Colbjørn; Spencer, Alexandra J; Goodman, Anna L; Gilchrist, Ashley; Furze, Julie; Rollier, Christine S; Kiss-Toth, Endre; Gilbert, Sarah C; Bregu, Migena; Soilleux, Elizabeth J; Hill, Adrian V S; Wyllie, David H

    2009-09-18

    Improving vaccine immunogenicity remains a major challenge in the fight against developing country diseases like malaria and AIDS. We describe a novel strategy to identify new DNA vaccine adjuvants. We have screened components of the Toll-like receptor signalling pathways for their ability to activate pro-inflammatory target genes in transient transfection assays and assessed in vivo adjuvant activity by expressing the activators from the DNA backbone of vaccines. We find that a robust increase in the immune response necessitates co-expression of two activators. Accordingly, the combination of tak1 and tram elicits synergistic reporter activation in transient transfection assays. In a mouse model this combination, but not the individual molecules, induced approximately twofold increases in CD8+ T-cell immune responses. These results indicate that optimal immunogenicity may require activation of distinct innate immune signalling pathways. Thus this strategy offers a novel route to the discovery of a new generation of adjuvants.

  3. MCPIP1 Negatively Regulates Toll-like Receptor 4 Signaling and Protects Mice from LPS-induced Septic Shock

    PubMed Central

    Huang, Shengping; Miao, Ruidong; Zhou, Zhou; Wang, Tianyi; Liu, Jianguo; Liu, Gang; Chen, Y. Eugene; Xin, Hong-Bo; Zhang, Jifeng; Fu, Mingui

    2013-01-01

    Septic shock is one of leading causes of morbidity and mortality in hospital patients. However, genetic factors predisposing to septic shock are not fully understood. Our previous work showed that MCP-induced protein 1 (MCPIP1) was induced by lipopolysaccharides (LPS), which then negatively regulates LPS-induced inflammatory signaling in vitro. Here we report that although MCPIP1 was induced by various toll-like receptor (TLR) ligands in macrophages, MCPIP1-deficient mice are extremely susceptible to TLR4 ligand (LPS)-induced septic shock and death, but not to the TLR2, 3, 5 and 9 ligands-induced septic shock. Consistently, LPS induced tumor necrosis factor α (TNFα) production in MCPIP1-deficient mice was 20-fold greater than that in their wild-type littermates. Further analysis revealed that MCPIP1-deficient mice developed severe acute lung injury after LPS injection and JNK signaling was highly activated in MCPIP1-deificient lungs after LPS stimulation. Finally, macrophage-specific MCPIP1 transgenic mice were partially protected from LPS-induced septic shock, suggesting that inflammatory cytokines from sources other than macrophages may significantly contribute to the pathogenesis of LPS-induced septic shock. Taken together, these results suggest that MCPIP1 selectively suppresses TLR4 signaling pathway and protects mice from LPS-induced septic shock. PMID:23422584

  4. LYATK1 potently inhibits LPS-mediated pro-inflammatory response

    SciTech Connect

    Xi, Feng; Liu, Yuan; Wang, Xiujuan; Kong, Wei; Zhao, Feng

    2016-01-29

    Lipopolysaccharide (LPS)-primed monocytes/macrophages produce pro-inflammatory cytokines, which could lead to endotoxin shock. TGF-β-activated kinase1 (TAK1) activation is involved in the process. In the current study, we studied the potential effect of a selective TAK1 inhibitor, LYTAK1, on LPS-stimulated response both in vitro and in vivo. We demonstrated that LYTAK1 inhibited LPS-induced mRNA expression and production of several pro-inflammatory cytokines [interleukin 1β (IL-1β), tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6)] in RAW 264.7 macrophages. LYTAK1's activity was almost nullified with TAK1 shRNA-knockdown. Meanwhile, in both primary mouse bone marrow derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs), LPS-induced pro-inflammatory cytokine production was again attenuated with LYTAK1 co-treatment. Molecularly, LYTAK1 dramatically inhibited LPS-induced TAK1-nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (Erk, Jnk and p38) activation in RAW 264.7 cells, mouse BMDMs and human PBMCs. In vivo, oral administration of LYTAK1 inhibited LPS-induced activation of TAK1-NFκB-p38 in ex-vivo cultured PBMCs, and cytokine production and endotoxin shock in mice. Together, these results demonstrate that LYTAK1 inhibits LPS-induced production of several pro-inflammatory cytokines and endotoxin shock probably through blocking TAK1-regulated signalings. - Highlights: • LYTAK1 inhibits LPS-induced pro-inflammatory cytokine production in RAW 264.7 cells. • The effect by LYTAK1 is more potent than other known TAK1 inhibitors. • LYTAK1 inhibits LPS-induced cytokine production in primary macrophages/monocytes. • LYTAK1 inhibits LPS-induced TAK1-NFκB and MAPK activation in macrophages/monocytes. • LYTAK1 gavage inhibits LPS-induced endotoxin shock and cytokine production in mice.

  5. Qing Hua Chang Yin inhibits the LPS-induced activation of the IL-6/STAT3 signaling pathway in human intestinal Caco-2 cells.

    PubMed

    Ke, Xiao; Hu, Guanghong; Fang, Wenyi; Chen, Jintuan; Zhang, Xin; Yang, Chunbo; Peng, Jun; Chen, Youqin; Sferra, Thomas J

    2015-04-01

    Increasing evidence indicates that the pathogenesis of ulcerative colitis (UC) is highly regulated by the interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) pathway and its negative feedback regulator, suppressor of cytokine signaling 3 (SOCS3). Therefore, modulating the signaling feedback loop of IL-6/STAT3/SOCS3 may prove to be a novel therapeutic approach for the treatment of UC. Qing Hua Chang Yin (QHCY) is a traditional Chinese formulation that has long been used in clinic for the treatment of UC. We have previously reported that QHCY ameliorates acute intestinal inflammation in vivo and in vitro through the suppression of the nuclear factor-κB (NF-κB) pathway. In the present study, in order to further elucidate the mechanisms responsible for the anti-inflammatory activities of QHCY, we stimulated human intestinal Caco-2 cells with lipopolysaccharide (LPS) to create an in vitro model of an inflamed human intestinal epithelium, and evaluated the effects of QHCY on the IL-6/STAT3/SOCS3 signaling network in inflamed Caco-2 cells. The levels of IL-6 were measured by ELISA and the levels of STAT3 and SOCS3 were measured by western blot analysis. We found that QHCY significantly inhibited the LPS-induced secretion of pro-inflammatory IL-6 in the Caco-2 cells in a dose-dependent manner. Moreover, QHCY profoundly suppressed the LPS-induced phosphorylation of Janus-activated kinase 1 (JAK1), JAK2 and STAT3. Furthermore, treatment with QHCY markedly augmented the expression of SOCS3. Taken together, the findings of the present study suggest that the modulation of the IL-6/STAT3/SOCS3 signaling network may be one of the mechanisms through which QHCY exerts its anti-inflammatory effects.

  6. GYF-17, a chloride substituted 2-(2-phenethyl)-chromone, suppresses LPS-induced inflammatory mediator production in RAW264.7 cells by inhibiting STAT1/3 and ERK1/2 signaling pathways.

    PubMed

    Zhu, Zhixiang; Gu, Yufan; Zhao, Yunfang; Song, Yuelin; Li, Jun; Tu, Pengfei

    2016-06-01

    GYF-17, a 2-(2-phenethyl)-chromone derivative, was isolated from agarwood and showed superior activity of inhibiting NO production of RAW264.7 cells induced by LPS in our preliminary pharmacodynamic screening. In order to develop novel therapeutic drug for acute and chronic inflammatory disorders, the anti-inflammatory activity and underlying mechanism of GYF-17 were investigated in LPS-induced RAW264.7 cells. The results showed that GYF-17 could reduce LPS-induced expression of iNOS and then result in the decrement of NO production. More meaningful, the expression and secretion of key pro-inflammatory factors, including TNF-α, IL-6 and IL-1β, were intensively inhibited by GYF-17. Furthermore, GYF-17 also down regulated the expression of COX2 and the production of PGE2 which plays important role in causing algesthesia during inflammatory response. In mechanism study, GYF-17 selectively suppressed phosphorylation of STAT1/3 and ERK1/2 during the activation of NF-κB, MAPK and STAT signaling pathways induced by LPS. Collectively, GYF-17 can intensively suppress the production of LPS-induced inflammatory mediators in RAW264.7 cells by inhibiting STAT1/3 and ERK1/2 signaling pathways and thereby shows great potential to be developed into therapeutic drug for inflammatory diseases.

  7. Cerebral mTOR signal and pro-inflammatory cytokines in Alzheimer’s disease rats

    PubMed Central

    Wang, Xu; Li, Guang-Jian; Hu, Hai-Xia; Ma, Chi; Ma, Di-Hui; Liu, Xiao-Liang

    2016-01-01

    Abstract As a part of Alzheimer’s disease (AD) development the mammalian target of rapamycin (mTOR) has been reported to play a crucial role in regulating cognition and can be used as a neuronal marker. Neuro-inflammation is also a cause of the pathophysiological process in AD. Thus, we examined the protein expression levels of mTOR and its downstream pathways as well as pro-inflammatory cytokines (PICs) in the brain of AD rats. We further examined the effects of blocking mTOR on PICs, namely IL-1β, IL-6 and TNF-α. Our results showed that the protein expression of p-mTOR, mTOR-mediated phosphorylation of 4E-binding protein 4 (4E-BP1) and p70 ribosomal S6 protein kinase 1 (S6K1) pathways were amplified in the hippocampus of AD rats compared with controls. Blocking mTOR by using rapamycin selectively enhanced activities of IL-6 and TNF-α signaling pathways, which was accompanied with an increase of Caspase-3, indicating cellular apoptosis and worsened learning performance. In conclusion, our data for the first time revealed specific signaling pathways engaged in the development of AD, including a regulatory role by the activation of mTOR in PIC mechanisms. Stimulation of mTOR is likely to play a beneficial role in modulating neurological deficits in AD.Targeting one or more of these signaling molecules may present with new opportunities for treatment and clinical management of AD PMID:28123835

  8. Regulation of LPS-induced mRNA expression of pro-inflammatory cytokines via alteration of NF-κB activity in mouse peritoneal macrophages exposed to fluoride.

    PubMed

    Tian, Yuhu; Huo, Meijun; Li, Guangsheng; Li, Yanyan; Wang, Jundong

    2016-10-01

    F toxicity to immune system, especially to macrophage, has been studied a lot recently. Nuclear factor-kappa B (NF-κB), as a transcription factor, plays a central role in immune and inflammatory responses via the regulation of downstream gene expression. Recent studies indicated that fluoride effect on inflammatory cytokine secretion, however, the molecular mechanism was less understood. In our study, peritoneal macrophages (PMs) were divided several groups and were administrated sodium fluoride (NaF, 50, 100, 200, 400, 800 μM) and/or lipopolysaccharide (LPS, 30 ng/mg). The mRNA expression of p65, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in macrophages exposed to fluoride was determined by quantitative real-time RT-PCR respectively. The translocation of NF-κB from cytoplasm to nucleus, which in a way reflects NF-κB activity, was demonstrated by Immunofluorescence and ELISA. Our results showed that fluoride had a dose-dependent effect on NF-κB activity, which coincided with LPS-induced mRNA expression of its downstream genes, iNOS and IL-1β. Fluoride alone causes no effect on gene expression. However, the mRNA expression of TNF-α showed non-NF-κB-dependent manner. Therefore, we come to the conclusion that fluoride can regulate LPS-induced mRNA expression of iNOS and IL-1β via NF-κB pathway in mouse peritoneal macrophages.

  9. Osmotin attenuates LPS-induced neuroinflammation and memory impairments via the TLR4/NFκB signaling pathway

    PubMed Central

    Badshah, Haroon; Ali, Tahir; Kim, Myeong Ok

    2016-01-01

    Toll-like receptor 4 (TLR4) signaling in the brain mediates autoimmune responses and induces neuroinflammation that results in neurodegenerative diseases, such as Alzheimer’s disease (AD). The plant hormone osmotin inhibited lipopolysaccharide (LPS)-induced TLR4 downstream signaling, including activation of TLR4, CD14, IKKα/β, and NFκB, and the release of inflammatory mediators, such as COX-2, TNF-α, iNOS, and IL-1β. Immunoprecipitation demonstrated colocalization of TLR4 and AdipoR1 receptors in BV2 microglial cells, which suggests that osmotin binds to AdipoR1 and inhibits downstream TLR4 signaling. Furthermore, osmotin treatment reversed LPS-induced behavioral and memory disturbances and attenuated LPS-induced increases in the expression of AD markers, such as Aβ, APP, BACE-1, and p-Tau. Osmotin improved synaptic functionality via enhancing the activity of pre- and post-synaptic markers, like PSD-95, SNAP-25, and syntaxin-1. Osmotin also prevented LPS-induced apoptotic neurodegeneration via inhibition of PARP-1 and caspase-3. Overall, our studies demonstrated that osmotin prevented neuroinflammation-associated memory impairment and neurodegeneration and suggest AdipoR1 as a therapeutic target for the treatment of neuroinflammation and neurological disorders, such as AD. PMID:27093924

  10. 5-Bromo-2-hydroxy-4-methyl-benzaldehyde inhibited LPS-induced production of pro-inflammatory mediators through the inactivation of ERK, p38, and NF-κB pathways in RAW 264.7 macrophages.

    PubMed

    Kim, Kil-Nam; Ko, Seok-Chun; Ye, Bo-Ram; Kim, Min-Sun; Kim, Junseong; Ko, Eun-Yi; Cho, Su-Hyeon; Kim, Daekyung; Heo, Soo-Jin; Jung, Won-Kyo

    2016-10-25

    The aim of the present study was to investigate the effects of 5-bromo-2-hydroxy-4-methyl-benzaldehyde (BHMB) on inflammatory responses to lipopolysaccharide (LPS) in RAW 264.7 cells and the associated mechanism of action. BHMB concentration-dependently suppressed protein and mRNA expressions of iNOS and COX-2, thereby inhibiting the production of NO and PGE2 in LPS-stimulated RAW 264.7 cells. BHMB also reduced the mRNA expression of TNF-α, IL-6, and IL-1β in LPS-stimulated RAW 264.7 cells. To elucidate the mechanism underlying the anti-inflammatory activity of BHMB, we investigated the effects of BHMB on the mitogen-activated protein kinase and nuclear factor-kappa B (NF-κB) pathways. BHMB suppressed the phosphorylation and degradation of IκB-α and markedly inhibited the nuclear translocation of p65 and p50 in LPS-stimulated RAW 264.7 cells. The compound also inhibited the LPS-stimulated phosphorylation of ERK and p38. Taken together, these results illustrated that BHMB suppresses pro-inflammatory mediator and cytokine expression in LPS-stimulated RAW 264.7 cells by inhibiting the phosphorylation of ERK and p38 and the activation of NF-κB. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. RUNX1c regulates hematopoietic differentiation of human pluripotent stem cells possibly in cooperation with pro-inflammatory signaling.

    PubMed

    Navarro-Montero, Oscar; Ayllon, Veronica; Lamolda, Mar; López-Onieva, Lourdes; Montes, Rosa; Bueno, Clara; Ng, Elizabeth; Guerrero-Carreno, Xiomara; Romero, Tamara; Romero-Moya, Damià; Stanley, Ed; Elefanty, Andrew; Ramos-Mejia, Verónica; Menendez, Pablo; Real, Pedro J

    2017-09-04

    Runx1 is a master hematopoietic transcription factor essential for hematopoietic stem cell (HSC) emergence. Runx1-deficient mice die during early embryogenesis due to the inability to establish definitive hematopoiesis. Here we have used hPSCs as model to study the role of RUNX1 in human embryonic hematopoiesis. Although the three RUNX1 isoforms a, b and c were induced in CD45+ hematopoietic cells, RUNX1c was the only isoform induced in hemato-endothelial progenitors (HEPs)/hemogenic endothelium. Constitutive expression of RUNX1c in hESCs enhanced the appearance of HEPs, including hemogenic (CD43+) HEPs and promoted subsequent differentiation into blood cells. Conversely, specific deletion of RUNX1c dramatically reduced the generation of hematopoietic cells from HEPs, indicating that RUNX1c is a master regulator of human hematopoietic development. Gene expression profiling of HEPs revealed a RUNX1c-induced pro-inflammatory molecular signature, supporting previous studies demonstrating pro-inflammatory signaling as a regulator of HSC emergence. Collectively, RUNX1c orchestrates hematopoietic specification of hPSCs, possibly in cooperation with pro-inflammatory signaling. This article is protected by copyright. All rights reserved. © 2017 AlphaMed Press.

  12. IL-8 signaling does not mediate intra-amniotic LPS-induced inflammation and maturation in preterm fetal lamb lung.

    PubMed

    Kallapur, Suhas G; Moss, Timothy J M; Auten, Richard L; Nitsos, Ilias; Pillow, J Jane; Kramer, Boris W; Maeda, Dean Y; Newnham, John P; Ikegami, Machiko; Jobe, Alan H

    2009-09-01

    Preterm infants exposed to chorioamnionitis and preterm sheep fetuses exposed to intra-amniotic (IA) LPS have lung inflammation, increased IL-8 levels, and lung maturation. We tested the hypothesis that IL-8 signaling mediates IA LPS-induced lung inflammation and lung maturation. Two strategies were used: 1) we tested if IA injection of recombinant sheep IL-8 (rsIL-8) induced fetal inflammation and 2) if IL-8 signaling was blocked by a novel CXCR2 receptor blocker, nicotinanilide thioglycolate methyl ester (NTME). To test effects of IL-8 in the fetus, rsIL-8 was given intravascularly (50 microg) at 124 +/- 1 day of gestation (term = 150 days). A separate group of sheep was given IA rsIL-8 (100 microg) and delivered 5 h to 7 days later at 124 +/- 1 day of gestation. After confirming efficacy of the CXCR2 inhibitor, effects of IL-8 blockade were tested by injecting fetal sheep intramuscularly with NTME (10 mg) before IA injection of Escherichia coli LPS (10 mg). Sheep fetuses were delivered 1 or 7 days after injections at 124 +/- 1 day of gestation. IA rsIL-8 induced a modest fivefold increase in bronchoalveolar lavage (BAL) monocytes and neutrophils and increased lung monocyte hydrogen peroxide generation. However, rsIL-8 did not induce lung maturation. Intravascular rsIL-8 did not change fetal cardiovascular variables, blood pH, or blood leukocyte counts. Inhibition of CXCR2 decreased IA LPS-induced increases in BAL proteins at 1 day but not at 7 days. NTME did not significantly decrease IA LPS-induced BAL leukocyte influx and lung cytokine mRNA expression. Inhibition of CXCR2 did not change IA LPS-induced lung maturation. IL-8 signaling does not mediate LPS-induced lung inflammation and lung maturation.

  13. Effects of Lutein and Zeaxanthin on LPS-Induced Secretion of IL-8 by Uveal Melanocytes and Relevant Signal Pathways.

    PubMed

    Chao, Shih-Chun; Vagaggini, Tommaso; Nien, Chan-Wei; Huang, Sheng-Chieh; Lin, Hung-Yu

    2015-01-01

    The effects of lutein and zeaxanthin on lipopolysaccharide- (LPS-) induced secretion of IL-8 by uveal melanocytes (UM) were tested in cultured human UM. MTT assay revealed that LPS (0.01-1 μg/mL) and lutein and zeaxanthin (1-10 μM) did not influence the cell viability of cultured UM. LPS caused a dose-dependent increase of secretion of IL-8 by cultured UM. Lutein and zeaxanthin did not affect the constitutive secretion of IL-8. However, lutein and zeaxanthin decreased LPS-induced secretion of IL-8 in cultured UM in a dose-dependent manner. LPS significantly increased NF-κB levels in cell nuclear extracts and p-JNK levels in the cell lysates from UM, but not p-p38 MAPK and p-ERG. Lutein or zeaxanthin significantly reduced LPS-induced increase of NF-κB and p-JNK levels, but not p38 MAPK and ERG levels. The present study demonstrated that lutein and zeaxanthin inhibited LPS-induced secretion of IL-8 in cultured UM via JNK and NF-κB signal pathways. The anti-inflammatory effects of lutein and zeaxanthin might be explored as a therapeutic approach in the management of uveitis and other inflammatory diseases of the eye.

  14. Effects of Lutein and Zeaxanthin on LPS-Induced Secretion of IL-8 by Uveal Melanocytes and Relevant Signal Pathways

    PubMed Central

    Chao, Shih-Chun; Vagaggini, Tommaso; Nien, Chan-Wei; Huang, Sheng-Chieh; Lin, Hung-Yu

    2015-01-01

    The effects of lutein and zeaxanthin on lipopolysaccharide- (LPS-) induced secretion of IL-8 by uveal melanocytes (UM) were tested in cultured human UM. MTT assay revealed that LPS (0.01–1 μg/mL) and lutein and zeaxanthin (1–10 μM) did not influence the cell viability of cultured UM. LPS caused a dose-dependent increase of secretion of IL-8 by cultured UM. Lutein and zeaxanthin did not affect the constitutive secretion of IL-8. However, lutein and zeaxanthin decreased LPS-induced secretion of IL-8 in cultured UM in a dose-dependent manner. LPS significantly increased NF-κB levels in cell nuclear extracts and p-JNK levels in the cell lysates from UM, but not p-p38 MAPK and p-ERG. Lutein or zeaxanthin significantly reduced LPS-induced increase of NF-κB and p-JNK levels, but not p38 MAPK and ERG levels. The present study demonstrated that lutein and zeaxanthin inhibited LPS-induced secretion of IL-8 in cultured UM via JNK and NF-κB signal pathways. The anti-inflammatory effects of lutein and zeaxanthin might be explored as a therapeutic approach in the management of uveitis and other inflammatory diseases of the eye. PMID:26609426

  15. Hedgehog Signaling Non-Canonical Activated by Pro-Inflammatory Cytokines in Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Wang, Yuqiong; Jin, Gang; Li, Quanjiang; Wang, Zhiping; Hu, Weimin; Li, Ping; Li, Shude; Wu, Hongyu; Kong, Xiangyu; Gao, Jun; Li, Zhaoshen

    2016-01-01

    Hedgehog(HH) pathway is found to be activated through a manner of canonical, or the non-canonical HH pathways. Distinct hyperplasia stroma around tumor cells is supposed to express pro-inflammatory cytokines abundantly, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), etc. in pancreatic ductal adenocarcinoma (PDAC) tissues. In this study we observed the effects of TNF-α and IL-1β on HH pathway activation in PDAC cells, and explored their activation manners. Our results showed that pro-inflammatory cytokines, TNF-α and IL-1β, could up-regulate the expression of GLI1 gene, increase its nuclear protein expression and promote malignant cell behaviors including migration, invasion, epithelial-mesenchymal transition (EMT) and drug resistance as well. Moreover, GLI1 promoter-reporter assay in combination with blocking either NF-κB or Smoothened (SMO) suggested that TNF-α and IL-1β could transcriptionally up-regulate expression of GLI1 completely via NF-κB, whereas ablation of SMO could not completely attenuate the regulation effects of TNF-α and IL-1β on GLI1 expression. Collectively, our results indicated that TNF-α and IL-1β in hyperplasia stroma can promote the PDAC cell development by activating HH pathway, through both the canonical and non-canonical HH activation ways. PMID:27877222

  16. Blockade of nociceptin/orphanin FQ receptor signaling reverses LPS-induced depressive-like behavior in mice.

    PubMed

    Medeiros, Iris U; Ruzza, Chiara; Asth, Laila; Guerrini, Remo; Romão, Pedro R T; Gavioli, Elaine C; Calo, Girolamo

    2015-10-01

    Nociceptin/orphanin FQ is the natural ligand of a Gi-protein coupled receptor named NOP. This peptidergic system is involved in the regulation of mood states and inflammatory responses. The present study aimed to investigate the consequences of blocking NOP signaling in lipopolysaccharide (LPS)-induced sickness and depressive-like behaviors in mice. LPS 0.8mg/kg, ip, significantly induced sickness signs such as weight loss, decrease of water and food intake and depressive-like behavior in the tail suspension test. Nortriptyline (ip, 60min prior the test) reversed the LPS-induced depressive states. The NOP receptor antagonist SB-612111, 30min prior LPS, did not modify LPS-induced sickness signs and depressive-like behavior. However, when injected 24h after LPS, NOP antagonists (UFP-101, icv, and SB-612111, ip) significantly reversed the mood effects of LPS. LPS evoked similar sickness signs and significantly increased tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) plasma levels 6h post-injection in wild-type ((NOP(+/+)) and NOP knockout ((NOP(-/-)) mice. However, LPS treatment elicited depressive-like effects in NOP(+/+) but not in NOP(-/-) mice. In conclusion, the pharmacological and genetic blockade of NOP signaling does not affect LPS evoked sickness signs while reversing depressive-like behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Obovatol attenuates LPS-induced memory impairments in mice via inhibition of NF-κB signaling pathway.

    PubMed

    Choi, Dong-Young; Lee, Jae Woong; Lin, Guihua; Lee, Yong Kyung; Lee, Yeon Hee; Choi, Im Seop; Han, Sang Bae; Jung, Jae Kyung; Kim, Young Hee; Kim, Ki Ho; Oh, Ki-Wan; Hong, Jin Tae; Lee, Moon Soon

    2012-01-01

    Neuroinflammation and accumulation of β-amyloid are critical pathogenic mechanisms of Alzheimer's disease (AD). In the previous study, we have shown that systemic lipopolysaccharide (LPS) caused neuroinflammation with concomitant increase in β-amyloid and memory impairments in mice. In an attempt to investigate anti-neuroinflammatory properties of obovatol isolated from Magnolia obovata, we administered obovatol (0.2, 0.5 and 1.0 mg/kg/day, p.o.) to animals for 21 days before injection of LPS (0.25 mg/kg, i.p.). We found that obovatol dose-dependently attenuates LPS-induced memory deficit in the Morris water maze and passive avoidance tasks. Consistent with the results of memory tasks, the compound prevented LPS-induced increases in Aβ₁₋₄₂ formation, β- and γ-secretases activities and levels of amyloid precursor protein, neuronal β-secretase 1 (BACE1), and C99 (a product of BACE1) in the cortex and hippocampus. The LPS-mediated neuroinflammation as determined by Western blots and immunostainings was significantly ameliorated by the compound. Furthermore, LPS-induced nuclear factor (NF)-κB DNA binding activity was drastically abolished by obovatol as shown by the electrophoretic mobility shift assay. The anti-neuroinflammation and anti-amyloidogenesis by obovatol were replicated in in vitro studies. These results show that obovatol mitigates LPS-induced amyloidogenesis and memory impairment via inhibiting NF-κB signal pathway, suggesting that the compound might be plausible therapeutic intervention for neuroinflammation-related diseases such as AD.

  18. Disparate roles of marrow- and parenchymal cell-derived TLR4 signaling in murine LPS-induced systemic inflammation

    PubMed Central

    Juskewitch, Justin E.; Platt, Jeffrey L.; Knudsen, Bruce E.; Knutson, Keith L.; Brunn, Gregory J.; Grande, Joseph P.

    2012-01-01

    Systemic inflammatory response syndrome (SIRS) occurs in a range of infectious and non-infectious disease processes. Toll-like receptors (TLRs) initiate such responses. We have shown that parenchymal cell TLR4 activation drives LPS-induced systemic inflammation; SIRS does not develop in mice lacking TLR4 expression on parenchymal cells. The parenchymal cell types whose TLR4 activation directs this process have not been identified. Employing a bone marrow transplant model to compartmentalize TLR4 signaling, we characterized blood neutrophil and cytokine responses, NF-κB1 activation, and Tnf-α, Il6, and Ccl2 induction in several organs (spleen, aorta, liver, lung) near the time of LPS-induced symptom onset. Aorta, liver, and lung gene responses corresponded with both LPS-induced symptom onset patterns and plasma cytokine/chemokine levels. Parenchymal cells in aorta, liver, and lung bearing TLR4 responded to LPS with chemokine generation and were associated with increased plasma chemokine levels. We propose that parenchymal cells direct SIRS in response to LPS. PMID:23213355

  19. TIIA attenuates LPS-induced mouse endometritis by suppressing the NF-κB signaling pathway.

    PubMed

    Lv, Xiaopei; Fu, Kaiqiang; Li, Weishi; Wang, Yu; Wang, Jifang; Li, Huatao; Tian, Wenru; Cao, Rongfeng

    2015-11-01

    Endometritis is one of the main diseases that harms the dairy cow industry. Tanshinone IIA (TIIA), a fat-soluble alkaloid isolated from Salviae miltiorrhizae, has been reported to have potent anti-inflammatory properties. However, the anti-inflammatory effects of TIIA on a mouse model of lipopolysaccharide (LPS)-induced endometritis remain to be elucidated. The purpose of the present study was to investigate the effects of TIIA on LPS-induced mouse endometritis. TIIA was intraperitoneally injected 1 h before and 12 h after perfusion of LPS into the uterus. A histological examination was then performed, and the concentrations of myeloperoxidase (MPO) and nitric oxide (NO) in the uterine tissue were determined. The levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in a homogenate of the uterus were detected by enzyme-linked immunosorbent assay. The extent of phosphorylation of IκBα and p65 was detected by Western blotting. TIIA markedly reduced the infiltration of neutrophils, suppressed MPO activity and the concentration of NO, and attenuated the expression of TNF-α and IL-1β. Furthermore, TIIA inhibited the phosphorylation of the nuclear factor-kappa B (NF-κB) p65 subunit and the degradation of its inhibitor IκBα. All the results suggest that TIIA has strong anti-inflammatory effects on LPS-induced mouse endometritis.

  20. Protective effects of pogostone against LPS-induced acute lung injury in mice via regulation of Keap1-Nrf2/NF-κB signaling pathways.

    PubMed

    Sun, Chao-Yue; Xu, Lie-Qiang; Zhang, Zhen-Biao; Chen, Chao-Hui; Huang, Yong-Zhong; Su, Zu-Qing; Guo, Hui-Zhen; Chen, Xiao-Ying; Zhang, Xie; Liu, Yu-Hong; Chen, Jian-Nan; Lai, Xiao-Ping; Li, Yu-Cui; Su, Zi-Ren

    2016-03-01

    Pogostone, a major component of Pogostemon cablin, has been demonstrated to possess antibacterial, anti-fungal, immunosuppressive and anti-inflammatory properties. To investigate the potential therapeutic effect of pogostone on lipopolysaccharide (LPS)-induced acute lung injury (ALI), mice were pretreated with pogostone prior to LPS exposure. After LPS challenge, the lungs were excised and the histological changes, wet to dry weight ratios, MPO activity reflecting neutrophil infiltration, and MDA activity reflecting oxidative stress were examined. The inflammatory cytokines in the BALF were determined by ELISA assay. Moreover, the expressions of p65 and phosphorylated p65 subunit of NF-κB, and Nrf2 in the nucleus in lung tissues were measured by Western blot analysis, and meanwhile the dependent genes of NF-κB and Nrf2 were assessed by RT-qPCR. The results showed that pretreatment with pogostone markedly improved survival rate, attenuated the histological alterations in the lung, reduced the MPO and MDA levels, decreased the wet/dry weight ratio of lungs, down-regulated the level of pro-inflammatory mediators including TNF-a, IL-1β and IL-6. Furthermore, pretreatment with pogostone enhanced the Nrf2 dependent genes including NQO-1, GCLC and HO-1 but suppressed NF-κB regulated genes including TNF-α, IL-1β and IL-6. The mechanism behind the protective effect was correlated with its regulation on the balance between Keap1-Nrf2 and NF-κB signaling pathways. Therefore, pogostone may be considered as a potential therapeutic agent for preventing and treating ALI.

  1. Targeting apoptotic signalling pathway and pro-inflammatory cytokine expression as therapeutic intervention in TPE induced lung damage.

    PubMed

    Narayanan, Kishore; Krishnamoorthy, Bhavani; Ezhilarasan, Ravesanker; Miyamoto, Shigeki; Balakrishnan, Arun

    2003-01-01

    Tropical pulmonary eosinophilia (TPE) is an occult manifestation of filariasis, brought about by helminth parasites Wuchereria bancrofti and Brugia malayi. Treatment of patients suffering from TPE involves the administration of diethyl carbamazine and Ivermectin. Although the drugs are able to block acute inflammation, they are not able to alleviate chronic basal inflammation. We have attempted to examine the disease by targeting two important components; namely filarial parasitic sheath proteins (FPP) induced apoptosis and pro-inflammatory cytokine response in human laryngeal carcinoma cells of epithelial origin (HEp-2) cells an epithelial cell line. Earlier studies by us have shown that FPP exposure induced apoptosis in these cells. In this study with hydrocortisone, calpain inhibitor (ALLN) and phorbol myristate acetate (PMA) treatments we demonstrate that apoptosis is inhibited as shown by [3H] thymidine incorporation studies, propidium iodide staining and Annexin V staining. Hydrocortisone at a dose, which inhibits cell death also down regulated, the expression of pro-inflammatory cytokines IL-6 and IL-8. These findings give us insights into the multifaceted approach one may adopt to target critical signalling molecules using appropriate inhibitors, which could eventually be used to reduce lung damage in TPE.

  2. Notch Activation Induces Endothelial Cell Senescence and Pro-inflammatory Response: Implication of Notch Signaling in Atherosclerosis

    PubMed Central

    Liu, Zhao-Jun; Tan, Yurong; Beecham, Gary W.; Seo, David M.; Tian, Runxia; Li, Yan; Vazquez-Padron, Roberto I.; Pericak-Vance, Margaret; Vance, Jeffery M.; Goldschmidt-Clermont, Pascal J.; Livingstone, Alan S.; Velazquez, Omaida C.

    2012-01-01

    Objective Notch signaling plays pivotal roles in the pathogenesis of vascular disease. However, little is known about its role in atherosclerosis. We sought to investigate the potential involvement of the Notch signaling in atherosclerosis. Methods Expression of Notch pathway components in mouse and human aorta with or without atherosclerosis plaque was examined by immuno-histochemistry. Expression of Notch target genes in young versus aged human endothelial cells (EC) was examined by PCRArray and immunoblot. In vitro loss- and gain-of-function approaches were utilized to evaluate the role of Notch signaling in inducing EC senescence and secretion of pro-inflammatory cytokines by ProteinArray. Notch gene profile was studied in 1054 blood samples of patients with coronary artery disease (CAD). Genotyping was performed using the Genome-Wide Single Nucleotide Polymorphism (SNP) Array. Results Notch pathway components were upregulated in luminal EC at atherosclerotic lesions from mouse and human aortas. In addition, the Notch pathway was activated in aged but not young human EC. Enforced Notch activation resulted in EC senescence and significantly upregulated expression of several molecules implicated in the inflammatory response (IL-6/IL-8/IL-1α/RANTES/ICAM-1). The upregulated IL-6 was partially responsible for mediating leukocyte transendothelial migration. Genetic association analysis detected, of 82 SNPs across 6 Notch pathway genes analyzed, 4 SNPs with nominal association with CAD burden. Conclusion Notch pathway is activated in luminal EC at atherosclerotic plaques and results in pro-inflammatory response and senescence of EC. Notch signaling may be linked to human CAD risk. These findings implicate a potential involvement of Notch signaling in atherosclerosis. PMID:23078884

  3. Human SR-BII mediates SAA uptake and contributes to SAA pro-inflammatory signaling in vitro and in vivo.

    PubMed

    Baranova, Irina N; Souza, Ana C P; Bocharov, Alexander V; Vishnyakova, Tatyana G; Hu, Xuzhen; Vaisman, Boris L; Amar, Marcelo J; Chen, Zhigang; Remaley, Alan T; Patterson, Amy P; Yuen, Peter S T; Star, Robert A; Eggerman, Thomas L

    2017-01-01

    Serum amyloid A (SAA) is an acute phase protein with cytokine-like and chemotactic properties, that is markedly up-regulated during various inflammatory conditions. Several receptors, including FPRL-1, TLR2, TLR4, RAGE, class B scavenger receptors, SR-BI and CD36, have been identified as SAA receptors. This study provides new evidence that SR-BII, splice variant of SR-BI, could function as an SAA receptor mediating its uptake and pro-inflammatory signaling. The uptake of Alexa Fluor488 SAA was markedly (~3 fold) increased in hSR-BII-expressing HeLa cells when compared with mock-transfected cells. The levels of SAA-induced interleukin-8 secretion by hSR-BII-expressing HEK293 cells were also significantly (~3-3.5 fold) higher than those detected in control cells. Moderately enhanced levels of phosphorylation of all three mitogen-activated protein kinases, ERK1/2, and p38 and JNK, were observed in hSR-BII-expressing cells following SAA stimulation when compared with control wild type cells. Transgenic mice with pLiv-11-directed liver/kidney overexpression of hSR-BI or hSR-BII were used to assess the in vivo role of each receptor in SAA-induced pro-inflammatory response in these organs. Six hours after intraperitoneal SAA injection both groups of transgenic mice demonstrated markedly higher (~2-5-fold) expression levels of inflammatory mediators in the liver and kidney compared to wild type mice. Histological examinations of hepatic and renal tissue from SAA-treated mice revealed moderate level of damage in the liver of both transgenic but not in the wild type mice. Activities of plasma transaminases, biomarkers of liver injury, were also moderately higher in hSR-B transgenic mice when compared to wild type mice. Our findings identify hSR-BII as a functional SAA receptor that mediates SAA uptake and contributes to its pro-inflammatory signaling via the MAPKs-mediated signaling pathways.

  4. Human SR-BII mediates SAA uptake and contributes to SAA pro-inflammatory signaling in vitro and in vivo

    PubMed Central

    Souza, Ana C. P.; Bocharov, Alexander V.; Vishnyakova, Tatyana G.; Hu, Xuzhen; Vaisman, Boris L.; Amar, Marcelo J.; Chen, Zhigang; Remaley, Alan T.; Patterson, Amy P.; Yuen, Peter S. T.; Star, Robert A.; Eggerman, Thomas L.

    2017-01-01

    Serum amyloid A (SAA) is an acute phase protein with cytokine-like and chemotactic properties, that is markedly up-regulated during various inflammatory conditions. Several receptors, including FPRL-1, TLR2, TLR4, RAGE, class B scavenger receptors, SR-BI and CD36, have been identified as SAA receptors. This study provides new evidence that SR-BII, splice variant of SR-BI, could function as an SAA receptor mediating its uptake and pro-inflammatory signaling. The uptake of Alexa Fluor488 SAA was markedly (~3 fold) increased in hSR-BII-expressing HeLa cells when compared with mock-transfected cells. The levels of SAA-induced interleukin-8 secretion by hSR-BII-expressing HEK293 cells were also significantly (~3–3.5 fold) higher than those detected in control cells. Moderately enhanced levels of phosphorylation of all three mitogen-activated protein kinases, ERK1/2, and p38 and JNK, were observed in hSR-BII-expressing cells following SAA stimulation when compared with control wild type cells. Transgenic mice with pLiv-11-directed liver/kidney overexpression of hSR-BI or hSR-BII were used to assess the in vivo role of each receptor in SAA-induced pro-inflammatory response in these organs. Six hours after intraperitoneal SAA injection both groups of transgenic mice demonstrated markedly higher (~2-5-fold) expression levels of inflammatory mediators in the liver and kidney compared to wild type mice. Histological examinations of hepatic and renal tissue from SAA-treated mice revealed moderate level of damage in the liver of both transgenic but not in the wild type mice. Activities of plasma transaminases, biomarkers of liver injury, were also moderately higher in hSR-B transgenic mice when compared to wild type mice. Our findings identify hSR-BII as a functional SAA receptor that mediates SAA uptake and contributes to its pro-inflammatory signaling via the MAPKs-mediated signaling pathways. PMID:28423002

  5. Morin hydrate augments phagocytosis mechanism and inhibits LPS induced autophagic signaling in murine macrophage.

    PubMed

    Jakhar, Rekha; Paul, Souren; Chauhan, Anil Kumar; Kang, Sun Chul

    2014-10-01

    Morin, a natural flavonoid that is the primary bioactive constituent of the family Moraceae, has been found to be associated with many therapeutic properties. In this study, we evaluated the immunomodulatory activities of increasing concentration of morin hydrate in vitro. Three different concentrations of morin hydrate (5, 10, and 15μM) were used to evaluate their effect on splenocyte proliferation, phagocytic activity of macrophages, cytokine secretion and complement inhibition. We also evaluated the role of morin hydrate on lipopolysaccharide (LPS) induced autophagy. Our study demonstrated that morin hydrate elicited a significant increase in splenocyte proliferation, phagocytic capacity and suppressed the production of cytokines and nitric oxide in activated macrophages. Humoral immunity measured by anti-complement activity showed an increase in inhibition of the complement system after the addition of morin hydrate, where morin hydrate at 15μM concentration induced a significant inhibition. Depending on our results, we can also conclude that morin hydrate protects macrophages from LPS induced autophagic cell death. Our findings suggest that morin hydrate represents a structurally diverse class of flavonoid and this structural variability can profoundly affect its cell-type specificity and its biological activities. Supplementation of immune cells with morin hydrate has an upregulating and immunoprotective effect that shows potential as a countermeasure to the immune dysfunction and suggests an interesting use in inflammation related diseases.

  6. Role of ceramide in lipopolysaccharide (LPS)-induced signaling. LPS increases ceramide rather than acting as a structural homolog.

    PubMed

    MacKichan, M L; DeFranco, A L

    1999-01-15

    Ceramide and ceramide-activated enzymes have been implicated in responses to bacterial lipopolysaccharide (LPS) and the proinflammatory cytokines tumor necrosis factor-alpha (TNF) and interleukin-1beta (IL-1). Although TNF and IL-1 cause elevation of cellular ceramide, which is thought to act as a second messenger, LPS has been proposed to signal by virtue of structural similarity to ceramide. We have investigated the relationship between ceramide and LPS by comparing the effects of a cell-permeable ceramide analog (C2-ceramide) and LPS on murine macrophage cell lines and by measuring ceramide levels in macrophages exposed to LPS. We found that while both C2-ceramide and LPS activated c-Jun N-terminal kinase (JNK), only LPS also activated extracellular signal-regulated kinases (ERKs). C2-ceramide was also unable to activate NF-kappaB, a transcription factor important for LPS-induced gene expression. Upon measurement of cellular ceramide in macrophage lines, we observed a small but rapid rise in ceramide, similar to that seen upon IL-1 or TNF treatment, suggesting LPS induces an increase in ceramide rather than interacting directly with ceramide-responsive enzymes. We found that C2-ceramide activated JNK and induced growth arrest in macrophages cell lines from both normal mice (Lpsn) and mice genetically unresponsive to LPS (Lpsd), whereas only Lpsn macrophages made these responses to LPS. Surprisingly, LPS treatment of Lpsd macrophages induced a rise in ceramide similar to that observed in LPS-responsive cells. These results indicate that the wild type Lps allele is not required for LPS-induced ceramide generation and suggest that ceramide elevation alone is insufficent stimulus for most responses to LPS.

  7. Wogonin inhibits LPS-induced tumor angiogenesis via suppressing PI3K/Akt/NF-κB signaling.

    PubMed

    Zhao, Kai; Song, Xiuming; Huang, Yujie; Yao, Jing; Zhou, Mi; Li, Zhiyu; You, Qidong; Guo, Qinglong; Lu, Na

    2014-08-15

    Wogonin has been shown to have anti-angiogenesis and anti-tumor effects. However, whether wogonin inhibits LPS-induced tumor angiogenesis is not well known. In this study, we investigated the effect of wogonin on inhibiting LPS-induced tumor angiogenesis and further probed the underlying mechanisms. ELISA results revealed that wogonin could suppress LPS-induced VEGF secretion from tumor cells. Transwell assay, tube formation assay, rat aortic ring assay and CAM model were used to evaluate the effect of wogonin on angiogenesis induced by MCF-7 cell (treated with LPS) in vitro and in vivo. The inhibitory effect of wogonin on angiogenesis in LPS-treated MCF-7 cells was then confirmed by the above in vitro and in vivo assays. The study of the molecular mechanism showed that wogonin could suppress PI3K/Akt signaling activation. Moreover, wogonin inhibited nuclear translocation of NF-κB and its binding to DNA. The result of real-time PCR and luciferase reporter assay suggested that VEGF expression was down-regulated by wogonin primarily at the transcriptional level. IGF-1 and p65 expression plasmid were used to activate PI3K/Akt and NF-κB pathways, and to observe the effect of wogonin on the simualtion of PI3K/Akt/NF-κB signaling. Taken together, the result suggested that wogonin was a potent inhibitor of tumor angiogenesis and provided a new insight into the mechanisms of wogonin against cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Ugonin M, a Helminthostachys zeylanica Constituent, Prevents LPS-Induced Acute Lung Injury through TLR4-Mediated MAPK and NF-κB Signaling Pathways.

    PubMed

    Wu, Kun-Chang; Huang, Shyh-Shyun; Kuo, Yueh-Hsiung; Ho, Yu-Ling; Yang, Chang-Syun; Chang, Yuan-Shiun; Huang, Guan-Jhong

    2017-04-01

    Helminthostachys zeylanica (L.) Hook. is plant that has been used in traditional Chinese medicine for centuries for the treatment of inflammation, fever, pneumonia, and various disorders. The aims of the present study are to figure out the possible effectiveness of the component Ugonin M, a unique flavonoid isolated from H. zeylanica, and to elucidate the mechanism(s) by which it works in the LPS-induced ALI model. In this study, Ugonin M not only inhibited the production of pro-inflammatory mediators such as NO, TNF-α, IL-1β, and IL-6, as well as infiltrated cellular counts and protein content in the bronchoalveolar lavage fluid (BALF) of lipopolysaccharides (LPS)-induced acute lung injury (ALI) mice, but also ameliorated the severity of pulmonary edemas through the score of a histological examination and the ratio of wet to dry weight of lung. Moreover, Ugonin M was observed to significantly suppress LPS-stimulated protein levels of iNOS and COX-2. In addition, we found that Ugonin M not only obviously suppressed NF-κB and MAPK activation via the degradation of NF-κB and IκB-α as well as ERK and p38MAPK active phosphorylation but also inhibited the protein expression level of TLR4. Further, Ugonin M treatment also suppressed the protein levels of MPO and enhanced the protein expressions of HO-1 and antioxidant enzymes (SOD, GPx, and CAT) in lung tissue of LPS-induced ALI mice. It is anticipated that through our findings, there is strong evidence that Ugonin M may exert a potential effect against LPS-induced ALI mice. Hence, Ugonin M could be one of the major effective components of H. zeylanica in the treatment of inflammatory disorders.

  9. N(6)-(2-Hydroxyethyl)adenosine in the Medicinal Mushroom Cordyceps cicadae Attenuates Lipopolysaccharide-Stimulated Pro-inflammatory Responses by Suppressing TLR4-Mediated NF-κB Signaling Pathways.

    PubMed

    Lu, Meng-Ying; Chen, Chin-Chu; Lee, Li-Ya; Lin, Ting-Wei; Kuo, Chia-Feng

    2015-10-23

    Natural products play an important role in promoting health with relation to the prevention of chronic inflammation. N(6)-(2-Hydroxyethyl)adenosine (HEA), a physiologically active compound in the medicinal mushroom Cordyceps cicadae, has been identified as a Ca(2+) antagonist and shown to control circulation and possess sedative activity in pharmacological tests. The fruiting body of C. cicadae has been widely applied in Chinese medicine. However, neither the anti-inflammatory activities of HEA nor the fruiting bodies of C. cicadae have been carefully examined. In this study, we first cultured the fruiting bodies of C. cicadae and then investigated the anti-inflammatory activities of water and methanol extracts of wild and artificially cultured C. cicadae fruiting bodies. Next, we determined the amount of three bioactive compounds, adenosine, cordycepin, and HEA, in the extracts and evaluated their synergistic anti-inflammatory effects. Moreover, the possible mechanism involved in anti-inflammatory action of HEA isolated from C. cicadae was investigated. The results indicate that cordycepin is more potent than adenosine and HEA in suppressing the lipopolysaccharide (LPS)-stimulated release of pro-inflammatory cytokines by RAW 264.7 macrophages; however, no synergistic effect was observed with these three compounds. HEA attenuated the LPS-induced pro-inflammatory responses by suppressing the toll-like receptor (TLR)4-mediated nuclear factor-κB (NF-κB) signaling pathway. This result will support the use of HEA as an anti-inflammatory agent and C. cicadae fruiting bodies as an anti-inflammatory mushroom.

  10. Suppressor of cytokine signaling 3 inhibits LPS-induced IL-6 expression in osteoblasts by suppressing CCAAT/enhancer-binding protein ß activity

    USDA-ARS?s Scientific Manuscript database

    Suppressors of cytokine signaling 3 (SOCS3) is an important intracellular regulator of TLR4 signaling and has been implicated in several inflammatory diseases. Although SOCS3 seems to contribute to the balance between the pro-inflammatory effects of IL-6 and antiinflammatory signaling of IL-10 by ne...

  11. Differential pro-inflammatory responses of TNF-α receptors (TNFR1 and TNFR2) on LOX-1 signalling.

    PubMed

    Arjuman, Albina; Chandra, Nimai C

    2015-06-01

    TNF-α potently induces LOX-1 expression in THP-1 macrophages at concentrations between 1.25-50 ng/mL. The interplay between the two TNF receptors (TNFR1 and TNFR2) was apparent in the expression pattern of LOX-1 in response to TNF-α. Interestingly, R1 signal abrogation depleted both TNFR2 as well as LOX-1 transcript expression, suggesting that TNFR1 holds priority in the relative signaling mechanism between TNFR1 and TNFR2. TNF-α was also found to abrogate the oxidized-LDL (ox-LDL) mediated increase in intracellular pool of NO, a known downstream intermediate of LOX-1 pro-inflammatory signaling cascade. At the level of ox-LDL clearance, TNF-α inhibited the uptake (scavenging) of ox-LDL via LOX-1. Our study demonstrates the ability of TNF-α to enhance the signaling propensity of LOX-1 by increasing its expression and inhibiting its scavenging property.

  12. Indirubin Inhibits LPS-Induced Inflammation via TLR4 Abrogation Mediated by the NF-kB and MAPK Signaling Pathways.

    PubMed

    Lai, Jin-Lun; Liu, Yu-Hui; Liu, Chang; Qi, Ming-Pu; Liu, Rui-Ning; Zhu, Xi-Fang; Zhou, Qiu-Ge; Chen, Ying-Yu; Guo, Ai-Zhen; Hu, Chang-Min

    2017-02-01

    Indirubin plays an important role in the treatment of many chronic diseases and exhibits strong anti-inflammatory activity. However, the molecular mode of action during mastitis prophylaxis remains poorly understood. In this study, a lipopolysaccharide (LPS)-induced mastitis mouse model showed that indirubin attenuated histopathological changes in the mammary gland, local tissue necrosis, and neutrophil infiltration. Moreover, indirubin significantly downregulated the production of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α). We explored the mechanism whereby indirubin exerts protective effects against LPS-induced inflammation of mouse mammary epithelial cells (MMECs). The addition of different concentrations of indirubin before exposure of cells to LPS for 1 h significantly attenuated inflammation and reduced the concentrations of the three inflammatory cytokines in a dose-dependent manner. Indirubin downregulated LPS-induced cyclooxygenase-2 (COX-2) and Toll-like receptor 4 (TLR4) expression, inhibited phosphorylation of the LPS-induced nuclear transcription factor-kappa B (NF-kB) P65 protein and its inhibitor IkBα of the NF-kB signaling pathway. Furthermore, indirubin suppressed phosphorylation of P38, extracellular signal-regulated kinase (ERK), and c-Jun NH2-terminal kinase (JNK) of the mitogen-activated protein kinase (MAPK) signal pathways. Thus, indirubin effectively suppressed LPS-induced inflammation via TLR4 abrogation mediated by the NF-kB and MAPK signaling pathways and may be useful for mastitis prophylaxis.

  13. Dissection of LPS-induced signaling pathways in murine macrophages using LPS analogs, LPS mimetics, and agents unrelated to LPS.

    PubMed

    Vogel, S N; Manthey, C L; Perera, P Y; Li, Z Y; Henricson, B E

    1995-01-01

    The model in Figure 3 summarizes the data presented above. Using the induction of the select panel of LPS-inducible genes and the phosphorylation on tyrosine of specific MAP kinases, we have been able to dissociate three signaling pathways shared by LPS and its analogs and mimetics: a pathway that leads to tyrosine phosphorylation, one that leads to the induction of a gene subset including TNF alpha, TNFR-2, and IL-1 beta, and a pathway that results in induction of IP-10, D3, and D8 gene expression. It is still unclear if macrophage activation by non-LPS products occurs entirely through distinct yet redundant pathways or if other signaling receptors ultimately tie into the same intermediate pathways. This approach may identify particular stimuli as tools to induce specific pathways leading to select gene subsets and/or tyrosine kinase activation and, perhaps, identify a pathway deficient in C3H/HeJ macrophages.

  14. Extracellular poly(ADP-ribose) is a pro-inflammatory signal for macrophages

    PubMed Central

    Krukenberg, Kristin A.; Kim, Sujeong; Tan, Edwin S.; Maliga, Zoltan; Mitchison, Timothy J.

    2015-01-01

    Summary Poly(ADP-ribose) polymerase 1 (PARP1) synthesizes poly(ADP-ribose) (PAR), an essential post-translational modification whose function is important in many cellular processes including DNA damage signalling, cell death, and inflammation. All known PAR biology is intracellular, but we suspected it might also play a role in cell-to-cell communication during inflammation. We found that PAR activated cytokine release in human and mouse macrophages, a hallmark of innate immune activation, and determined structure-activity relationships. PAR was rapidly internalized by murine macrophages, while the monomer, ADP-ribose, was not. Inhibitors of TLR2 and TLR4 signaling blocked macrophage responses to PAR, and PAR induced TLR2 and TLR4 signaling in reporter cell lines suggesting it was recognized by these TLRs, much like bacterial pathogens. We propose that PAR acts as an extracellular “Damage Associated Molecular Pattern” (DAMP) that drives inflammatory signaling. PMID:25865309

  15. The pro-inflammatory signalling regulator Stat4 promotes vasculogenesis of great vessels derived from endothelial precursors

    PubMed Central

    Meng, Zhao-Zheng; Liu, Wei; Xia, Yu; Yin, Hui-Min; Zhang, Chi-Yuan; Su, Dan; Yan, Li-Feng; Gu, Ai-Hua; Zhou, Yong

    2017-01-01

    Vasculogenic defects of great vessels (GVs) are a major cause of congenital cardiovascular diseases. However, genetic regulators of endothelial precursors in GV vasculogenesis remain largely unknown. Here we show that Stat4, a transcription factor known for its regulatory role of pro-inflammatory signalling, promotes GV vasculogenesis in zebrafish. We find stat4 transcripts highly enriched in nkx2.5+ endothelial precursors in the pharynx and demonstrate that genetic ablation of stat4 causes stenosis of pharyngeal arch arteries (PAAs) by suppressing PAAs 3–6 angioblast development. We further show that stat4 is a downstream target of nkx2.5 and that it autonomously promotes proliferation of endothelial precursors of the mesoderm. Mechanistically, stat4 regulates the emerging PAA angioblasts by inhibiting the expression of hdac3 and counteracting the effect of stat1a. Altogether, our study establishes a role for Stat4 in zebrafish great vessel development, and suggests that Stat4 may serve as a therapeutic target for GV defects. PMID:28256502

  16. Tenuigenin exhibits protective effects against LPS-induced acute kidney injury via inhibiting TLR4/NF-κB signaling pathway.

    PubMed

    Fu, Haiyan; Hu, Zhansheng; Di, Xingwei; Zhang, Qiuhong; Zhou, Rongbin; Du, Hongyang

    2016-11-15

    Tenuigenin (TNG) has been reported to have various pharmacological activities, such as anti-oxidative and anti-inflammatory activities. However, the protective effects of TNG on lipopolysaccharides (LPS)-induced acute kidney injury (AKI) are still not clear. The aim of this study was to investigate the protective effects and mechanism of TGN on LPS-induced AKI in mice. The kidney histological change, levels of blood urea nitrogen (BUN), and creatinine were measured to assess the protective effects of TNG on LPS-induced AKI. The levels of TNF-α, IL-1β, and IL-6 in serum and kidney tissues were detected by ELISA. The extent of nuclear factor kappa-B (NF-κB) p65 and the expression of Toll-like receptor-4 (TLR4) were detected by western blot analysis. The results showed that TNG markedly attenuated the histological alterations, BUN and creatinine levels in kidney. TNG also suppressed LPS-induced TNF-α, IL-1β, and IL-6 production. Furthermore, the expression of TLR4 and NF-κB activation induced by LPS were markedly inhibited by TNG. In conclusion, this study demonstrated that TNG protected against LPS-induced AKI by inhibiting TLR4/NF-κB signaling pathway.

  17. Salvia miltiorrhiza water-soluble extract, but not its constituent salvianolic acid B, abrogates LPS-induced NF-κB signalling in intestinal epithelial cells

    PubMed Central

    Kim, J S; Narula, A S; Jobin, C

    2005-01-01

    Herbal medicine has become an increasing popular therapeutic alternative among patients suffering from various inflammatory disorders. The Salvia miltiorrhizae water-soluble extract (SME) have been shown to possess antioxidant and anti-inflammatory properties in vitro. However, the mechanism of action and impact of SME on LPS-induced gene expression is still unknown. We report that SME significantly abrogated LPS-induced IκB phosphorylation/degradation, NF-κB transcriptional activity and ICAM-1 gene expression in rat IEC-18 cells. Chromatin immunoprecipitation assay demonstrated that LPS-induced RelA recruitment to the ICAM-1 gene promoter was inhibited by SME. Moreover, in vitro kinase assay showed that SME directly inhibits LPS induced IκB kinase (IKK) activity in IEC-18 cells. To investigate the physiological relevance of SME inhibitory activity on NF-κB signalling, we used small intestinal explants and primary intestinal epithelial cells derived from a transgenic mouse expressing the enhanced green fluorescent protein (EGFP) under the transcriptional control of NF-κB cis-elements (cis-NF-κBEGFP). SME significantly blocked LPS-induced EGFP expression and IκBα phosphorylation in intestinal explants and primary IECs, respectively. However, salvianolic acid B, an activate component of SME did not inhibit NF-κB transcriptional activity and IκB phosphorylation/degradation in IEC-18 cells. These results indicate that SME blocks LPS-induced NF-κB signalling pathway by targeting the IKK complex in intestinal epithelial cells. Modulation of bacterial product-mediated NF-κB signalling by natural plant extracts may represent an attractive strategy towards the prevention and treatment of intestinal inflammation. PMID:15996193

  18. Salvia miltiorrhiza water-soluble extract, but not its constituent salvianolic acid B, abrogates LPS-induced NF-kappaB signalling in intestinal epithelial cells.

    PubMed

    Kim, J S; Narula, A S; Jobin, C

    2005-08-01

    Herbal medicine has become an increasing popular therapeutic alternative among patients suffering from various inflammatory disorders. The Salvia miltiorrhizae water-soluble extract (SME) have been shown to possess antioxidant and anti-inflammatory properties in vitro. However, the mechanism of action and impact of SME on LPS-induced gene expression is still unknown. We report that SME significantly abrogated LPS-induced IkappaB phosphorylation/degradation, NF-kappaB transcriptional activity and ICAM-1 gene expression in rat IEC-18 cells. Chromatin immunoprecipitation assay demonstrated that LPS-induced RelA recruitment to the ICAM-1 gene promoter was inhibited by SME. Moreover, in vitro kinase assay showed that SME directly inhibits LPS induced IkappaB kinase (IKK) activity in IEC-18 cells. To investigate the physiological relevance of SME inhibitory activity on NF-kappaB signalling, we used small intestinal explants and primary intestinal epithelial cells derived from a transgenic mouse expressing the enhanced green fluorescent protein (EGFP) under the transcriptional control of NF-kappaB cis-elements (cis-NF-kappaB(EGFP)). SME significantly blocked LPS-induced EGFP expression and IkappaBalpha phosphorylation in intestinal explants and primary IECs, respectively. However, salvianolic acid B, an activate component of SME did not inhibit NF-kappaB transcriptional activity and IkappaB phosphorylation/degradation in IEC-18 cells. These results indicate that SME blocks LPS-induced NF-kappaB signalling pathway by targeting the IKK complex in intestinal epithelial cells. Modulation of bacterial product-mediated NF-kappaB signalling by natural plant extracts may represent an attractive strategy towards the prevention and treatment of intestinal inflammation.

  19. ABCB5 maintains melanoma-initiating cells through a pro-inflammatory cytokine signaling circuit

    PubMed Central

    Wilson, Brian J.; Saab, Karim R.; Ma, Jie; Schatton, Tobias; Pütz, Pablo; Zhan, Qian; Murphy, George F.; Gasser, Martin; Waaga-Gasser, Ana Maria; Frank, Natasha Y.; Frank, Markus H.

    2014-01-01

    The drug efflux transporter ABCB5 identifies cancer stem-like cells (CSC) in diverse human malignancies, where its expression is associated with clinical disease progression and tumor recurrence. ABCB5 confers therapeutic resistance but other functions in tumorigenesis independent of drug efflux have not been described that might help explain why it is so broadly overexpressed in human cancer. Here we show that in melanoma-initiating cells ABCB5 controls IL-1β secretion which serves to maintain slow-cycling, chemoresistant cells through an IL-1β/IL8/CXCR1 cytokine signaling circuit. This CSC maintenance circuit involved reciprocal paracrine interactions with ABCB5-negative cancer cell populations. ABCB5 blockade induced cellular differentiation, reversed resistance to multiple chemotherapeutic agents, and impaired tumor growth in vivo. Together, our results defined a novel function for ABCB5 in CSC maintenance and tumor growth. PMID:24934811

  20. Xanomeline suppresses excessive pro-inflammatory cytokine responses through neural signal-mediated pathways and improves survival in lethal inflammation

    PubMed Central

    Rosas-Ballina, Mauricio; Ferrer, Sergio Valdés; Dancho, Meghan; Ochani, Mahendar; Katz, David; Cheng, Kai Fan; Olofsson, Peder S.; Chavan, Sangeeta S.; Al-Abed, Yousef; Tracey, Kevin J.; Pavlov, Valentin A.

    2014-01-01

    Inflammatory conditions characterized by excessive immune cell activation and cytokine release, are associated with bidirectional immune system-brain communication, underlying sickness behavior and other physiological responses. The vagus nerve has an important role in this communication by conveying sensory information to the brain, and brain-derived immunoregulatory signals that suppress peripheral cytokine levels and inflammation. Brain muscarinic acetylcholine receptor (mAChR)-mediated cholinergic signaling has been implicated in this regulation. However, the possibility of controlling inflammation by peripheral administration of centrally-acting mAChR agonists is unexplored. To provide insight we used the centrally-acting M1 mAChR agonist xanomeline, previously developed in the context of Alzheimer’s disease and schizophrenia. Intraperitoneal administration of xanomeline significantly suppressed serum and splenic TNF levels, alleviated sickness behavior, and increased survival during lethal murine endotoxemia. The anti-inflammatory effects of xanomeline were brain mAChR-mediated and required intact vagus nerve and splenic nerve signaling. The anti-inflammatory efficacy of xanomeline was retained for at least 20h, associated with alterations in splenic lymphocyte, and dendritic cell proportions, and decreased splenocyte responsiveness to endotoxin. These results highlight an important role of the M1 mAChR in a neural circuitry to spleen in which brain cholinergic activation lowers peripheral pro-inflammatory cytokines to levels favoring survival. The therapeutic efficacy of xanomeline was also manifested by significantly improved survival in preclinical settings of severe sepsis. These findings are of interest for strategizing novel therapeutic approaches in inflammatory diseases. PMID:25063706

  1. Okanin, effective constituent of the flower tea Coreopsis tinctoria, attenuates LPS-induced microglial activation through inhibition of the TLR4/NF-κB signaling pathways

    PubMed Central

    Hou, Yue; Li, Guoxun; Wang, Jian; Pan, Yingni; Jiao, Kun; Du, Juan; Chen, Ru; Wang, Bing; Li, Ning

    2017-01-01

    The EtOAc extract of Coreopsis tinctoria Nutt. significantly inhibited LPS-induced nitric oxide (NO) production, as judged by the Griess reaction, and attenuated the LPS-induced elevation in iNOS, COX-2, IL-1β, IL-6 and TNF-α mRNA levels, as determined by quantitative real-time PCR, when incubated with BV-2 microglial cells. Immunohistochemical results showed that the EtOAc extract significantly decreased the number of Iba-1-positive cells in the hippocampal region of LPS-treated mouse brains. The major effective constituent of the EtOAc extract, okanin, was further investigated. Okanin significantly suppressed LPS-induced iNOS expression and also inhibited IL-6 and TNF-α production and mRNA expression in LPS-stimulated BV-2 cells. Western blot analysis indicated that okanin suppressed LPS-induced activation of the NF-κB signaling pathway by inhibiting the phosphorylation of IκBα and decreasing the level of nuclear NF-κB p65 after LPS treatment. Immunofluorescence staining results showed that okanin inhibited the translocation of the NF-κB p65 subunit from the cytosol to the nucleus. Moreover, okanin significantly inhibited LPS-induced TLR4 expression in BV-2 cells. In summary, okanin attenuates LPS-induced activation of microglia. This effect may be associated with its capacity to inhibit the TLR4/NF-κB signaling pathways. These results suggest that okanin may have potential as a nutritional preventive strategy for neurodegenerative disorders. PMID:28367982

  2. Okanin, effective constituent of the flower tea Coreopsis tinctoria, attenuates LPS-induced microglial activation through inhibition of the TLR4/NF-κB signaling pathways

    NASA Astrophysics Data System (ADS)

    Hou, Yue; Li, Guoxun; Wang, Jian; Pan, Yingni; Jiao, Kun; Du, Juan; Chen, Ru; Wang, Bing; Li, Ning

    2017-04-01

    The EtOAc extract of Coreopsis tinctoria Nutt. significantly inhibited LPS-induced nitric oxide (NO) production, as judged by the Griess reaction, and attenuated the LPS-induced elevation in iNOS, COX-2, IL-1β, IL-6 and TNF-α mRNA levels, as determined by quantitative real-time PCR, when incubated with BV-2 microglial cells. Immunohistochemical results showed that the EtOAc extract significantly decreased the number of Iba-1-positive cells in the hippocampal region of LPS-treated mouse brains. The major effective constituent of the EtOAc extract, okanin, was further investigated. Okanin significantly suppressed LPS-induced iNOS expression and also inhibited IL-6 and TNF-α production and mRNA expression in LPS-stimulated BV-2 cells. Western blot analysis indicated that okanin suppressed LPS-induced activation of the NF-κB signaling pathway by inhibiting the phosphorylation of IκBα and decreasing the level of nuclear NF-κB p65 after LPS treatment. Immunofluorescence staining results showed that okanin inhibited the translocation of the NF-κB p65 subunit from the cytosol to the nucleus. Moreover, okanin significantly inhibited LPS-induced TLR4 expression in BV-2 cells. In summary, okanin attenuates LPS-induced activation of microglia. This effect may be associated with its capacity to inhibit the TLR4/NF-κB signaling pathways. These results suggest that okanin may have potential as a nutritional preventive strategy for neurodegenerative disorders.

  3. Cinnamaldehyde inhibits pro-inflammatory cytokines secretion from monocytes/macrophages through suppression of intracellular signaling.

    PubMed

    Chao, Louis Kuoping; Hua, Kuo-Feng; Hsu, Hsien-Yeh; Cheng, Sen-Sung; Lin, I-Fan; Chen, Chia-Jung; Chen, Shui-Tein; Chang, Shang-Tzen

    2008-01-01

    We investigated the in vitro anti-inflammatory effects of Cinnamaldehyde, a cytokine production inhibitor isolated from an essential oil produced from the leaves of Cinnamomum osmophloeum Kaneh, and its mechanism of action. Although Cinnamaldehyde has been reported to have contact sensitizing properties at high concentration (mM), we found that low concentration of Cinnamaldehyde (muM) inhibited the secretion of interleukin-1beta and tumor necrosis factor alpha within lipopolysaccharide (LPS) or lipoteichoic acid (LTA) stimulated murine J774A.1 macrophages. Cinnamaldehyde also suppressed the production of these cytokines from LPS stimulated human blood monocytes derived primary macrophages and human THP-1 monocytes. Furthermore, Cinnamaldehyde also inhibited the production of prointerleukin-1beta within LPS or LTA stimulated human THP-1 monocytes. Reactive oxygen species release from LPS stimulated J774A.1 macrophages was reduced by Cinnamaldehyde. The phosphorylation of extracellular signal-regulated kinase 1/2 and c-Jun N-terminal kinase 1/2 induced by LPS was also inhibited by Cinnamaldehyde; however, Cinnamaldehyde neither antagonize the binding of LPS to the cells nor alter the cell surface expression of toll-like receptor 4 and CD14. In addition, we also noted that Cinnamaldehyde appeared to elicit no cytotoxic effect upon J774A.1 macrophages under our experimental conditions, although Cinnamaldehyde reduced J774A.1 macrophages proliferation as analysed by MTT assay. Our current results have demonstrated the anti-oxidation and anti-inflammatory properties of Cinnamaldehyde that could provide the possibility for Cinnamaldehyde's future pharmaceutical application in the realm of immuno-modulation.

  4. Small RNAs induce the activation of the pro-inflammatory TLR7 signaling pathway in aged rat kidney.

    PubMed

    Lee, Eun Kyeong; Chung, Ki Wung; Kim, Ye Ra; Ha, Sugyeong; Kim, Sung Dae; Kim, Dae Hyun; Jung, Kyung Jin; Lee, Bonggi; Im, Eunok; Yu, Byung Pal; Chung, Hae Young

    2017-10-01

    We have recently reported that TLR-related genes, including TLR7, are upregulated during aging. However, the role of TLR7 and its endogenous ligand in inflammation related to aging is not well defined. Here, we established that small RNAs trigger age-related renal inflammation via TLR7 signaling pathway. We first investigated the expression changes of nine different TLRs in kidney of 6-month-old young rats and 20-month-old aged rats. The results revealed that the expression of TLR7 was the highest among nine TLRs in kidney of old rats compared to the young aged rats. Next, to assess the role of cellular RNA as a TLR7 ligand, we treated a renal tubular epithelial cell line with total RNA isolated from the kidney of young and old rats. The results showed that RNA isolated from old rats showed higher expression of TLR7, IL1β, and TNFα compared to that from young rats. Furthermore, RNA isolated from old rats induced IKKα/β/JNK/NF-κB activation. To identify RNA that activates TLR7, we isolated small and large RNAs from old rat kidney and found that small RNAs increased TLR7 expression in cells. Finally, to investigate the local inflammatory response by small RNA, C57B/L6 mice were intraperitoneally injected with small RNAs isolated from young and old rats; thereby, RNA isolated from old rats induced higher inflammatory responses. Our study demonstrates that renal small RNAs from aged rats induce pro-inflammatory processes via the activation of the TLR7/IKKα/β/JNK/NF-κB signaling pathway, and highlights its causative role as a possible therapeutic target in age-related chronic renal inflammation. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  5. Pinellia ternata lectin exerts a pro-inflammatory effect on macrophages by inducing the release of pro-inflammatory cytokines, the activation of the nuclear factor-κB signaling pathway and the overproduction of reactive oxygen species.

    PubMed

    Yu, Hong-Li; Zhao, Teng-Fei; Wu, Hao; Pan, Yao-Zong; Zhang, Qian; Wang, Kui-Long; Zhang, Chen-Chao; Jin, Yang-Ping

    2015-10-01

    Pinellia ternata (PT) is a widely used traditional Chinese medicine. The raw material has a throat-irritating toxicity that is associated with the PT lectin (PTL). PTL is a monocot lectin isolated from the tubers of PT, which exhibits mouse peritoneal acute inflammatory effects in vivo. The present study aimed to investigate the pro-inflammatory effect of PTL on macrophages. PTL (50 µg/ml)‑stimulated macrophages enhanced the chemotactic activity of neutrophils. PTL (50, 100, 200 and 400 µg/ml) significantly elevated the production of cytokines [tumor necrosis factor‑α (TNF-α) , interleukin (IL)‑1β and IL‑6]. PTL (25, 50 and 100 µg/ml) induced intracellular reactive oxygen species (ROS) overproduction. PTL also caused transfer of p65 from the macrophage cytoplasm to the nucleus and activated the nuclear factor‑κB (NF‑κB) signaling pathway. Scanning electron microscope images revealed severe cell swelling and membrane integrity defection of macrophages following PTL (100 µg/ml) stimulation, which was also associated with inflammation. PTL had pro‑inflammatory activity, involving induced neutrophil migration, cytokine release, ROS overproduction and the activation of the NF-κB signaling pathway, which was associated with the activation of macrophages.

  6. Protective Effect of Amygdalin on LPS-Induced Acute Lung Injury by Inhibiting NF-κB and NLRP3 Signaling Pathways.

    PubMed

    Zhang, Ao; Pan, Weiyun; Lv, Juan; Wu, Hui

    2017-03-16

    The acute lung injury (ALI) is a leading cause of morbidity and mortality in critically ill patients. Amygdalin is derived from the bitter apricot kernel, an efficacious Chinese herbal medicine. Although amygdalin is used by many cancer patients as an antitumor agent, there is no report about the effect of amygdalin on acute lung injury. Here we explored the protective effect of amygdalin on ALI using lipopolysaccharide (LPS)-induced murine model by detecting the lung wet/dry ratio, the myeloperoxidase (MPO) in lung tissues, inflammatory cells in the bronchoalveolar lavage fluid (BALF), inflammatory cytokines production, as well as NLRP3 and NF-κB signaling pathways. The results showed that amygdalin significantly reduced LPS-induced infiltration of inflammatory cells and the production of TNF-α, IL-1β, and IL-6 in the BALF. The activity of MPO and lung wet/dry ratio were also attenuated by amygdalin. Furthermore, the western blotting analysis showed that amygdalin remarkably inhibited LPS-induced NF-κB and NLRP3 activation. These findings indicate that amygdalin has a protective effect on LPS-induced ALI in mice. The mechanism may be related to the inhibition of NF-κB and NLRP3 signaling pathways.

  7. High-Density Lipoproteins Exert Pro-inflammatory Effects on Macrophages via Passive Cholesterol Depletion and PKC-NF-κB/STAT1-IRF1 Signaling.

    PubMed

    van der Vorst, Emiel P C; Theodorou, Kosta; Wu, Yongzheng; Hoeksema, Marten A; Goossens, Pieter; Bursill, Christina A; Aliyev, Taghi; Huitema, Leonie F A; Tas, Sander W; Wolfs, Ine M J; Kuijpers, Marijke J E; Gijbels, Marion J; Schalkwijk, Casper G; Koonen, Debby P Y; Abdollahi-Roodsaz, Shahla; McDaniels, Kimberly; Wang, Chih-Chieh; Leitges, Michael; Lawrence, Toby; Plat, Jogchum; Van Eck, Miranda; Rye, Kerry-Anne; Touqui, Lhousseine; de Winther, Menno P J; Biessen, Erik A L; Donners, Marjo M P C

    2017-01-10

    Membrane cholesterol modulates a variety of cell signaling pathways and functions. While cholesterol depletion by high-density lipoproteins (HDLs) has potent anti-inflammatory effects in various cell types, its effects on inflammatory responses in macrophages remain elusive. Here we show overt pro-inflammatory effects of HDL-mediated passive cholesterol depletion and lipid raft disruption in murine and human primary macrophages in vitro. These pro-inflammatory effects were confirmed in vivo in peritoneal macrophages from apoA-I transgenic mice, which have elevated HDL levels. In line with these findings, the innate immune responses required for clearance of P. aeruginosa bacterial infection in lung were compromised in mice with low HDL levels. Expression analysis, ChIP-PCR, and combinatorial pharmacological and genetic intervention studies unveiled that both native and reconstituted HDL enhance Toll-like-receptor-induced signaling by activating a PKC-NF-κB/STAT1-IRF1 axis, leading to increased inflammatory cytokine expression. HDL's pro-inflammatory activity supports proper functioning of macrophage immune responses. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Aromatic-turmerone Attenuates LPS-Induced Neuroinflammation and Consequent Memory Impairment by Targeting TLR4-Dependent Signaling Pathway.

    PubMed

    Chen, Min; Chang, Yuan-Yuan; Huang, Shun; Xiao, Li-Hang; Zhou, Wei; Zhang, Lan-Yue; Li, Chun; Zhou, Ren-Ping; Tang, Jian; Lin, Li; Du, Zhi-Yun; Zhang, Kun

    2017-08-28

    Curcuma longa (turmeric) is a folk medicine in South and Southeast Asia, which has been widely used to alleviate chronic inflammation. Aromatic-turmerone is one of the main components abundant in turmeric essential oil. However, little information is available from controlled studies regarding its biological activities and underlying molecular mechanisms against chronic inflammation in the brain. In the current study, we employed a classical lipopolysaccharide (LPS) model to study the effect and mechanism of aromatic-turmerone on neuroinflammation. The effects of aromatic-turmerone were studied in LPS-treated mice and BV2 cells. The cognitive function assays, protein analyses, and histological examination were performed. Oral administration of aromatic-turmerone could reverse LPS-induced memory disturbance and normalize glucose intake and metabolism in the brains of mice. Moreover, aromatic-turmerone significantly limited brain damage, through inhibiting the activation of microglia and generation of inflammatory cytokines. Further study in vitro revealed that aromatic-turmerone targeted Toll-like receptor 4 (TLR4)-mediated downstream signaling, and lowered the release of inflammatory mediators. These observations indicate that aromatic-turmerone is effective in preventing brain damage caused by neuroinflammation and may be useful in the treatment of neuronal inflammatory diseases. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Pro-inflammatory cytokine regulation of cyclic AMP-phosphodiesterase 4 signaling in microglia in vitro and following CNS injury

    PubMed Central

    Ghosh, Mousumi; Garcia-Castillo, Daniela; Aguirre, Vladimir; Golshani, Roozbeh; Atkins, Coleen M.; Bramlett, Helen M.; Dietrich, W. Dalton; Pearse, Damien D.

    2015-01-01

    Cyclic AMP suppresses immune cell activation and inflammation. The positive feedback loop of pro-inflammatory cytokine production and immune activation implies that cytokines may not only be regulated by cyclic AMP but conversely regulate cyclic AMP. This study examined the effects of TNF-α and IL-1β on cyclic AMP-phosphodiesterase (PDE) signaling in microglia in vitro and after spinal cord or traumatic brain injury (SCI, TBI). TNF-α or IL-1β stimulation produced a profound reduction (>90%) of cyclic AMP within EOC2 microglia from 30min that then recovered after IL-1β but remained suppressed with TNF-α through 24h. Cyclic AMP was also reduced in TNF-α-stimulated primary microglia, albeit to a lesser extent. Accompanying TNF-α-induced cyclic AMP reductions, but not IL-1β, was increased cyclic AMP-PDE activity. The role of PDE4 activity in cyclic AMP reductions was confirmed by using Rolipram. Examination of pde4 mRNA revealed an immediate, persistent increase in pde4b with TNF-α; IL-1β increased all pde4 mRNAs. Immunoblotting for PDE4 showed that both cytokines increased PDE4A1, but only TNF-α increased PDE4B2. Immunocytochemistry revealed PDE4B nuclear translocation with TNF-α but not IL-1β. Acutely after SCI/TBI, where cyclic AMP levels are reduced, PDE4B was localized to activated OX-42+ microglia; PDE4B was absent in OX-42+ cells in uninjured spinal cord/cortex or inactive microglia. Immunoblotting showed PDE4B2 up-regulation from 24h to 1wk post-SCI, the peak of microglia activation. These studies show that TNF-α and IL-1β differentially affect cyclic AMP-PDE signaling in microglia. Targeting PDE4B2 may be a putative therapeutic direction for reducing microglia activation in CNS injury and neurodegenerative diseases. PMID:22865690

  10. Isorhamnetin ameliorates LPS-induced inflammatory response through downregulation of NF-κB signaling.

    PubMed

    Li, Yang; Chi, Gefu; Shen, Bingyu; Tian, Ye; Feng, Haihua

    2016-08-01

    Isorhamnetin, a flavonoid mainly found in Hippophae fhamnoides L. fruit, has been known for its antioxidant activity and its ability to regulate immune response. In this study, we investigated whether isorhamnetin exerts potent antiinflammatory effects in RAW264.7 cell and mouse model stimulated by LPS. The cytokine (TNF-α, IL-1β, and IL-6) levels were determined. In the mouse model of acute lung injury, the phosphorylation of NF-κB proteins was analyzed and inhibitor of NF-κB signaling (PDTC) was used on mice. Our results showed that isorhamnetin markedly decreased TNF-α, IL-1β, and IL-6 concentrations and suppressed the activation of NF-κB signaling. Meanwhile, isorhamnetin reduced the amount of inflammatory cells, the lung wet-to-dry weight ratio, protein leakage, and myeloperoxidase activity. Interference with specific inhibitor revealed that isorhamnetin-mediated suppression of cytokines and protein was via NF-κB signaling. So, it suggests that isorhamnetin might be a potential therapeutic agent for preventing inflammatory diseases.

  11. Crocin Inhibits Oxidative Stress and Pro-inflammatory Response of Microglial Cells Associated with Diabetic Retinopathy Through the Activation of PI3K/Akt Signaling Pathway.

    PubMed

    Yang, Xinguang; Huo, Fuquan; Liu, Bei; Liu, Jing; Chen, Tao; Li, Junping; Zhu, Zhongqiao; Lv, Bochang

    2017-02-25

    Diabetic retinopathy (DR) is a serious microvascular complication of diabetes mellitus that is closely associated with the degeneration and loss of retinal ganglion cells (RGCs) caused by diabetic microangiopathy and subsequent oxidative stress and an inflammatory response. Microglial cells are classed as neurogliocytes and play a significant role in neurodegenerative diseases. Over-activated microglial cells may cause neurotoxicity and induce the death and apoptosis of RGCs. Crocin is one of the two most pharmacologically bioactive constituents in saffron. In the present study, we focused on the role of microglial cells in DR, suggesting that DR may cause the over-activation of microglial cells and induce oxidative stress and the release of pro-inflammatory factors. Microglial cells BV-2 and N9 were cultured, and high-glucose (HG) and free fatty acid (FFA) were used to simulate diabetes. The results showed that HG-FFA co-treatment caused the up-regulated expression of CD11b and Iba-1, indicating that BV-2 and N9 cells were over-activated. Moreover, oxidative stress markers and pro-inflammatory factors were significantly enhanced by HG-FFA treatment. We found that crocin prevented the oxidative stress and pro-inflammatory response induced by HG-FFA co-treatment. Moreover, using the PI3K/Akt inhibitor LY294002, we revealed that PI3K/Akt signaling plays a significant role in blocking oxidative stress, suppressing the pro-inflammatory response, and maintaining the neuroprotective effects of crocin. In total, these results provide a new insight into DR and DR-induced oxidative stress and the inflammatory response, which provide a potential therapeutic target for neuronal damage, vision loss, and other DR-induced complications.

  12. Stevioside protects LPS-induced acute lung injury in mice.

    PubMed

    Yingkun, Nie; Zhenyu, Wang; Jing, Lin; Xiuyun, Lu; Huimin, Yu

    2013-02-01

    Stevioside, a diterpene glycoside component of Stevia rebaudiana, has been known to exhibit anti-inflammatory properties. To evaluate the effect and the possible mechanism of stevioside in lipopolysaccharide (LPS)-induced acute lung injury, male BALB/c mice were pretreated with stevioside or dexamethasone 1 h before intranasal instillation of LPS. Seven hours later, tumor necrosis factor-α, interleukin-1β, and interleukin-6 in bronchoalveolar lavage fluid (BALF) were measured by using enzyme-linked immunosorbent assay. The number of total cells, neutrophils, and macrophages in the BALF were also determined. The right lung was excised for histological examination and analysis of myeloperoxidase activity and nitrate/nitrite content. Cyclooxygenase 2 (COX-2), inducible NO synthase (iNOS), nuclear factor-kappa B (NF-κB), inhibitory kappa B protein were detected by western blot. The results showed that stevioside markedly attenuated the LPS-induced histological alterations in the lung. Stevioside inhibited the production of pro-inflammatory cytokines and the expression of COX-2 and iNOS induced by LPS. In addition, not only was the wet-to-dry weight ratio of lung tissue significantly decreased, the number of total cells, neutrophils, and macrophages in the BALF were also significantly reduced after treatment with stevioside. Moreover, western blotting showed that stevioside inhibited the phosphorylation of IκB-α and NF-κB caused by LPS. Taken together, our results suggest that anti-inflammatory effect of stevioside against the LPS-induced acute lung injury may be due to its ability of inhibition of the NF-κB signaling pathway. Stevioside may be a promising potential therapeutic reagent for acute lung injury treatment.

  13. GuaLou GuiZhi decoction inhibits LPS-induced microglial cell motility through the MAPK signaling pathway.

    PubMed

    Hu, Haixia; Li, Zuanfang; Zhu, Xiaoqin; Lin, Ruhui; Peng, Jun; Tao, Jing; Chen, Lidian

    2013-12-01

    Microglial activation plays an important role in neroinflammation following ischemic stroke. Activated microglial cells can then migrate to the site of injury to proliferate and release substances which induce secondary brain damage. It has been shown that microglial migration is associated with the activation of the mitogen-activated protein kinase (MAPK) signaling pathways. The Chinese formula, GuaLou GuiZhi decoction (GLGZD), has long been administered in clinical practice for the treatment of post-stroke disabilities, such as muscular spasticity. In a previous study, we demonstrated that the anti-inflammtory effects of GLGZD were mediated by the TLR4/NF-κB pathway in lipopolysaccharide (LPS)-stimulated microglial cells. Therefore, in this study, we evaluated the role of GLGZD in microglial migration by performing scratch wound assays and migration assays. We wished to elucidate the cellular and molecular mechanisms elicited by this TCM formula in microglial-induced inflammation by evaluating the release and expression of chemotactic cytokines [monocyte chemo-attractant protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α) and interleukin (IL)-8] by ELISA and quantitative PCR. Our results revealed that the migration of microglial cells was enhanced in the presence of LPS (100 ng/ml); however, GLGZD (100 µg/ml) significantly inhibited cell motility and the production of chemokines through the inhibition of the activation of the p38 and c-Jun N-terminal protein kinase (JNK) signaling pathway. We demonstrate the potential of GLGZD in the modulation of microglial motility by investigating the effects of GLGZD on microglial migration induced by LPS. Taken together, our data suggest that GLGZD per se cannot trigger microglial motility, whereas GLGZD impedes LPS-induced microglial migration through the activation of the MAPK signaling pathway. These results provide further evidence of the anti-inflammatory effects of GLGZD and its potential for use in

  14. LPS-induced chorioamnionitis and antenatal corticosteroids modulate Shh signaling in the ovine fetal lung

    PubMed Central

    Collins, Jennifer J. P.; Kuypers, Elke; Nitsos, Ilias; Jane Pillow, J.; Polglase, Graeme R.; Kemp, Matthew W.; Newnham, John P.; Cleutjens, Jack P.; Frints, Suzanna G. M.; Kallapur, Suhas G.; Jobe, Alan H.

    2012-01-01

    Chorioamnionitis and antenatal corticosteroids mature the fetal lung functionally but disrupt late-gestation lung development. Because Sonic Hedgehog (Shh) signaling is a major pathway directing lung development, we hypothesized that chorioamnionitis and antenatal corticosteroids modulated Shh signaling, resulting in an altered fetal lung structure. Time-mated ewes with singleton ovine fetuses received an intra-amniotic injection of lipopolysaccharide (LPS) and/or maternal intramuscular betamethasone 7 and/or 14 days before delivery at 120 days gestational age (GA) (term = 150 days GA). Intra-amniotic LPS exposure decreased Shh mRNA levels and Gli1 protein expression, which was counteracted by both betamethasone pre- or posttreatment. mRNA and protein levels of fibroblast growth factor 10 and bone morphogenetic protein 4, which are important mediators of lung development, increased 2-fold and 3.5-fold, respectively, 14 days after LPS exposure. Both 7-day and 14-day exposure to LPS changed the mRNA levels of elastin (ELN) and collagen type I alpha 1 (Col1A1) and 2 (Col1A2), which resulted in fewer elastin foci and increased collagen type I deposition in the alveolar septa. Corticosteroid posttreatment prevented the decrease in ELN mRNA and increased elastin foci and decreased collagen type I deposition in the fetal lung. In conclusion, fetal lung exposure to LPS was accompanied by changes in key modulators of lung development resulting in abnormal lung structure. Betamethasone treatment partially prevented the changes in developmental processes and lung structure. This study provides new insights into clinically relevant prenatal exposures and fetal lung development. PMID:22962010

  15. (+)-Catechin Attenuates NF-κB Activation Through Regulation of Akt, MAPK, and AMPK Signaling Pathways in LPS-Induced BV-2 Microglial Cells.

    PubMed

    Syed Hussein, Sharifah Salwa; Kamarudin, Muhamad Noor Alfarizal; Kadir, Habsah Abdul

    2015-01-01

    (+)-Catechin is a flavanol that possesses various health and medicinal values, which include neuroprotection, anti-oxidation, antitumor and antihepatitis activities. This study investigated the modulatory effects of (+)-catechin on the lipopolysaccharides (LPS)-stimulated BV-2 cells. (+)-catechin attenuated LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and inhibited microglial NO and ROS production. Additionally, (+)-catechin suppressed the production of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6, while augmenting IL-4. (+)-catechin attenuated LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation via the inhibition of IκB-α phosphorylation. Moreover, (+)-catechin blocked the activation of Akt and its inhibition was shown to play a crucial role in LPS-induced inflammation in BV-2 microglial cells. (+)-catechin also attenuated the LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK1/2), and p-38 mitogen activated protein kinases (p38 MAPK) and specific inhibitors of ERK1/2 (UO126) and p38 MAPK (SB202190) subsequently down-regulated the expression of the proinflammatory mediators iNOS and COX-2. Further mechanistic study revealed that (+)-catechin acted through the amelioration of the LPS-induced suppression of adenosine monophosphate-activated protein kinase (AMPK) activity. Taken together, our data indicate that (+)-catechin exhibits anti-inflammatory effects in BV-2 cells by suppressing the production of proinflammatory mediators and mitigation of NF-κB through Akt, ERK, p38 MAPK, and AMPK pathways.

  16. Lactate Inhibits the Pro-Inflammatory Response and Metabolic Reprogramming in Murine Macrophages in a GPR81-Independent Manner

    PubMed Central

    Marchetti, Philippe; Tang, Cong; Kluza, Jerome; Offermanns, Stefan; Sirard, Jean-Claude; Rumbo, Martin

    2016-01-01

    Lactate is an essential component of carbon metabolism in mammals. Recently, lactate was shown to signal through the G protein coupled receptor 81 (GPR81) and to thus modulate inflammatory processes. This study demonstrates that lactate inhibits pro-inflammatory signaling in a GPR81-independent fashion. While lipopolysaccharide (LPS) triggered expression of IL-6 and IL-12 p40, and CD40 in bone marrow-derived macrophages, lactate was able to abrogate these responses in a dose dependent manner in Gpr81-/- cells as well as in wild type cells. Macrophage activation was impaired when glycolysis was blocked by chemical inhibitors. Remarkably, lactate was found to inhibit LPS-induced glycolysis in wild type as well as in Gpr81-/- cells. In conclusion, our study suggests that lactate can induce GPR81-independent metabolic changes that modulate macrophage pro-inflammatory activation. PMID:27846210

  17. Ultrafine particles from diesel vehicle emissions at different driving cycles induce differential vascular pro-inflammatory responses: Implication of chemical components and NF-κB signaling

    PubMed Central

    2010-01-01

    Background Epidemiological evidence supports the association between exposure to ambient particulate matter (PM) and cardiovascular diseases. Chronic exposure to ultrafine particles (UFP; Dp <100 nm) is reported to promote atherosclerosis in ApoE knockout mice. Atherogenesis-prone factors induce endothelial dysfunction that contributes to the initiation and progression of atherosclerosis. We previously demonstrated that UFP induced oxidative stress via c-Jun N-terminal Kinases (JNK) activation in endothelial cells. In this study, we investigated pro-inflammatory responses of human aortic endothelial cells (HAEC) exposed to UFP emitted from a diesel truck under an idling mode (UFP1) and an urban dynamometer driving schedule (UFP2), respectively. We hypothesize that UFP1 and UFP2 with distinct chemical compositions induce differential pro-inflammatory responses in endothelial cells. Results UFP2 contained a higher level of redox active organic compounds and metals on a per PM mass basis than UFP1. While both UFP1 and UFP2 induced superoxide production and up-regulated stress response genes such as heme oxygenease-1 (HO-1), OKL38, and tissue factor (TF), only UFP2 induced the expression of pro-inflammatory genes such as IL-8 (2.8 ± 0.3-fold), MCP-1 (3.9 ± 0.4-fold), and VCAM (6.5 ± 1.1-fold) (n = 3, P < 0.05). UFP2-exposed HAEC also bound to a higher number of monocytes than UFP1-exposed HAEC (Control = 70 ± 7.5, UFP1 = 106.7 ± 12.5, UFP2 = 137.0 ± 8.0, n = 3, P < 0.05). Adenovirus NF-κB Luciferase reporter assays revealed that UFP2, but not UFP1, significantly induced NF-κB activities. NF-κB inhibitor, CAY10512, significantly abrogated UFP2-induced pro-inflammatory gene expression and monocyte binding. Conclusion While UFP1 induced higher level of oxidative stress and stress response gene expression, only UFP2, with higher levels of redox active organic compounds and metals, induced pro-inflammatory responses via NF-κB signaling. Thus, UFP with distinct

  18. Pretreatment of lipopolysaccharide (LPS) ameliorates D-GalN/LPS induced acute liver failure through TLR4 signaling pathway.

    PubMed

    Zhang, Sainan; Yang, Naibin; Ni, Shunlan; Li, Wenyuan; Xu, Lanman; Dong, Peihong; Lu, Mingqin

    2014-01-01

    Endotoxin tolerance (ET) is an important phenomenon, which affects inflammation and phagocytosis. Pretreatment with low dose of lipopolysaccharide (LPS) can protect liver injury from various hepatotoxicants such as acetaminophen and pseudomonas aeruginosa exotoxin A. The current study aimed to investigate the protecting mechanisms of endotoxin tolerance in acute liver failure induced by D-galactosamine (D-GalN)/LPS and possible role of toll-like receptors 4 (TLR4) signaling pathway in this phenomenon. Acute liver failure was induced by Injection of D-GalN/LPS. To mimic endotoxin tolerance, male Sprague-Dawley rats were treated with low dose of LPS (0.1 mg/kg once a day intraperitoneally for consecutive five days) before subsequent injection of D-GalN/LPS. Rat survival was determined by survival rate. Liver injury was confirmed by serum biochemical and liver histopathological examination. Inflammatory cytokines were determined by ELISA and nuclear factor-kappa B (NF-κB) (P65), toll-like receptors 4 (TLR4) and Interleukin-1 receptor-associated kinase-1 (IRAK-1) were measured by reverse transcriptase polymerase chain reaction and western blot respectively. Pretreatment of LPS significantly improved rat survival. Moreover, rats pretreated with LPS exhibited lower serum enzyme (ALT, AST and TBiL) level, lower production of inflammatory cytokines and more minor liver histopathological damage than rats without pretreatment of LPS. LPS pretreatment suppressed production of TLR4 and IRAK-1. LPS pretreatment also inhibited activation of hepatic NF-κB. These results indicated that endotoxin tolerance contributed to liver protection against D-GalN/LPS induced acute liver failure through down-regulation of TLR4 and NF-κB pathway.

  19. Pretreatment of lipopolysaccharide (LPS) ameliorates D-GalN/LPS induced acute liver failure through TLR4 signaling pathway

    PubMed Central

    Zhang, Sainan; Yang, Naibin; Ni, Shunlan; Li, Wenyuan; Xu, Lanman; Dong, Peihong; Lu, Mingqin

    2014-01-01

    Endotoxin tolerance (ET) is an important phenomenon, which affects inflammation and phagocytosis. Pretreatment with low dose of lipopolysaccharide (LPS) can protect liver injury from various hepatotoxicants such as acetaminophen and pseudomonas aeruginosa exotoxin A. The current study aimed to investigate the protecting mechanisms of endotoxin tolerance in acute liver failure induced by D-galactosamine (D-GalN)/LPS and possible role of toll-like receptors 4 (TLR4) signaling pathway in this phenomenon. Acute liver failure was induced by Injection of D-GalN/LPS. To mimic endotoxin tolerance, male Sprague-Dawley rats were treated with low dose of LPS (0.1 mg/kg once a day intraperitoneally for consecutive five days) before subsequent injection of D-GalN/LPS. Rat survival was determined by survival rate. Liver injury was confirmed by serum biochemical and liver histopathological examination. Inflammatory cytokines were determined by ELISA and nuclear factor-kappa B (NF-κB) (P65), toll-like receptors 4 (TLR4) and Interleukin-1 receptor-associated kinase-1 (IRAK-1) were measured by reverse transcriptase polymerase chain reaction and western blot respectively. Pretreatment of LPS significantly improved rat survival. Moreover, rats pretreated with LPS exhibited lower serum enzyme (ALT, AST and TBiL) level, lower production of inflammatory cytokines and more minor liver histopathological damage than rats without pretreatment of LPS. LPS pretreatment suppressed production of TLR4 and IRAK-1. LPS pretreatment also inhibited activation of hepatic NF-κB. These results indicated that endotoxin tolerance contributed to liver protection against D-GalN/LPS induced acute liver failure through down-regulation of TLR4 and NF-κB pathway. PMID:25400741

  20. Peroxiredoxin 5 (Prx5) decreases LPS-induced microglial activation through regulation of Ca(2+)/calcineurin-Drp1-dependent mitochondrial fission.

    PubMed

    Park, Junghyung; Choi, Hoonsung; Kim, Bokyung; Chae, Unbin; Lee, Dong Gil; Lee, Sang-Rae; Lee, Seunghoon; Lee, Hyun-Shik; Lee, Dong-Seok

    2016-10-01

    Microglial activation is a hallmark of neurodegenerative diseases. ROS activates microglia by regulating transcription factors to express pro-inflammatory genes and is associated with disruption of Ca(2+) homeostasis through thiol redox modulation. Recently, we reported that Prx5 can regulate activation of microglia cells by governing ROS. In addition, LPS leads to excessive mitochondrial fission, and regulation of mitochondrial dynamics involved in a pro-inflammatory response is important for the maintenance of microglial activation. However, the precise relationship among these signals and the role of Prx5 in mitochondrial dynamics and microglial activation is still unknown. In this study, we demonstrated that Ca(2+)/calcineurin-dependent de-phosphorylation of Drp1 induces mitochondrial fission and regulates mitochondrial ROS production, which influences the expression of pro-inflammatory mediators in LPS-induced microglia cells. Moreover, it is likely that cytosolic and Nox-derived ROS were upstream of mitochondrial fission and mitochondrial ROS generation in activated microglia cells. Prx5 regulates LPS-induced mitochondrial fission through modulation of Ca(2+)/calcineurin-dependent Drp1 de-phosphorylation by eliminating Nox-derived and cytosolic ROS. Therefore, we suggest that mitochondrial dynamics may be essential for understanding pro-inflammatory responses and that Prx5 may be used as a new therapeutic target to prevent neuroinflammation and neurodegenerative diseases.

  1. Maternal warmth buffers the effects of low early-life socioeconomic status on pro-inflammatory signaling in adulthood.

    PubMed

    Chen, E; Miller, G E; Kobor, M S; Cole, S W

    2011-07-01

    The notion that family support may buffer individuals under adversity from poor outcomes has been theorized to have important implications for mental and physical health, but little is known about the biological mechanisms that explain these links. We hypothesized that adults who grew up in low socioeconomic status (SES) households but who experienced high levels of maternal warmth would be protected from the pro-inflammatory states typically associated with low SES. A total of 53 healthy adults (aged 25-40 years) low in SES early in life were assessed on markers of immune activation and systemic inflammation. Genome-wide transcriptional profiling also was conducted. Low early-life SES individuals who had mothers, who expressed high warmth toward them, exhibited less Toll-like receptor-stimulated production of interleukin 6, and reduced bioinformatic indications of pro-inflammatory transcription factor activity (NF-κB) and immune activating transcription factor activity (AP-1) compared to those who were low in SES early in life but experienced low maternal warmth. To the extent that such effects are causal, they suggest the possibility that the detrimental immunologic effects of low early-life SES environments may be partly diminished through supportive family climates.

  2. Fibroblast growth factor signalling in multiple sclerosis: inhibition of myelination and induction of pro-inflammatory environment by FGF9.

    PubMed

    Lindner, Maren; Thümmler, Katja; Arthur, Ariel; Brunner, Sarah; Elliott, Christina; McElroy, Daniel; Mohan, Hema; Williams, Anna; Edgar, Julia M; Schuh, Cornelia; Stadelmann, Christine; Barnett, Susan C; Lassmann, Hans; Mücklisch, Steve; Mudaliar, Manikhandan; Schaeren-Wiemers, Nicole; Meinl, Edgar; Linington, Christopher

    2015-07-01

    Remyelination failure plays an important role in the pathophysiology of multiple sclerosis, but the underlying cellular and molecular mechanisms remain poorly understood. We now report actively demyelinating lesions in patients with multiple sclerosis are associated with increased glial expression of fibroblast growth factor 9 (FGF9), which we demonstrate inhibits myelination and remyelination in vitro. This inhibitory activity is associated with the appearance of multi-branched 'pre-myelinating' MBP+ / PLP+ oligodendrocytes that interact with axons but fail to assemble myelin sheaths; an oligodendrocyte phenotype described previously in chronically demyelinated multiple sclerosis lesions. This inhibitory activity is not due to a direct effect of FGF9 on cells of the oligodendrocyte lineage but is mediated by factors secreted by astrocytes. Transcriptional profiling and functional validation studies demonstrate that these include effects dependent on increased expression of tissue inhibitor of metalloproteinase-sensitive proteases, enzymes more commonly associated with extracellular matrix remodelling. Further, we found that FGF9 induces expression of Ccl2 and Ccl7, two pro-inflammatory chemokines that contribute to recruitment of microglia and macrophages into multiple sclerosis lesions. These data indicate glial expression of FGF9 can initiate a complex astrocyte-dependent response that contributes to two distinct pathogenic pathways involved in the development of multiple sclerosis lesions. Namely, induction of a pro-inflammatory environment and failure of remyelination; a combination of effects predicted to exacerbate axonal injury and loss in patients.

  3. B and T lymphocyte attenuator inhibits LPS-induced endotoxic shock by suppressing Toll-like receptor 4 signaling in innate immune cells.

    PubMed

    Kobayashi, Yoshihisa; Iwata, Arifumi; Suzuki, Kotaro; Suto, Akira; Kawashima, Saki; Saito, Yukari; Owada, Takayoshi; Kobayashi, Midori; Watanabe, Norihiko; Nakajima, Hiroshi

    2013-03-26

    Although innate immune responses are necessary for the initiation of acquired immune responses and the subsequent successful elimination of pathogens, excessive responses occasionally result in lethal endotoxic shock accompanied by a cytokine storm. B and T lymphocyte attenuator (BTLA), a coinhibitory receptor with similarities to cytotoxic T-lymphocyte antigen (CTLA)-4 and programmed death (PD)-1, is expressed in not only B and T cells but also dendritic cells (DCs) and macrophages (Mϕs). Recently, several studies have reported that BTLA-deficient (BTLA(-/-)) mice show enhanced pathogen clearance compared with WT mice in early phase of infections. However, the roles of BTLA expressed on innate cells in overwhelming and uncontrolled immune responses remain unclear. Here, we found that BTLA(-/-) mice were highly susceptible to LPS-induced endotoxic shock. LPS-induced TNF-α and IL-12 production in DCs and Mϕs was significantly enhanced in BTLA(-/-) mice. BTLA(-/-) DCs also produced high levels of TNF-α on stimulation with Pam3CSK4 but not poly(I:C) or CpG, suggesting that BTLA functions as an inhibitory molecule on Toll-like receptor signaling at cell surface but not endosome. Moreover, BTLA(-/-) DCs showed enhanced MyD88- and toll/IL-1R domain-containing adaptor inducing IFN (TRIF)-dependent signaling on LPS stimulation, which is associated with impaired accumulation of Src homology 2-containing protein tyrosine phosphatase in lipid rafts. Finally, we found that an agonistic anti-BTLA antibody rescued mice from LPS-induced endotoxic shock, even if the antibody was given to mice that had developed a sign of endotoxic shock. These results suggest that BTLA directly inhibits LPS responses in DCs and Mϕs and that agonistic agents for BTLA might have therapeutic potential for LPS-induced endotoxic shock.

  4. B and T lymphocyte attenuator inhibits LPS-induced endotoxic shock by suppressing Toll-like receptor 4 signaling in innate immune cells

    PubMed Central

    Kobayashi, Yoshihisa; Iwata, Arifumi; Suzuki, Kotaro; Suto, Akira; Kawashima, Saki; Saito, Yukari; Owada, Takayoshi; Kobayashi, Midori; Watanabe, Norihiko; Nakajima, Hiroshi

    2013-01-01

    Although innate immune responses are necessary for the initiation of acquired immune responses and the subsequent successful elimination of pathogens, excessive responses occasionally result in lethal endotoxic shock accompanied by a cytokine storm. B and T lymphocyte attenuator (BTLA), a coinhibitory receptor with similarities to cytotoxic T-lymphocyte antigen (CTLA)-4 and programmed death (PD)-1, is expressed in not only B and T cells but also dendritic cells (DCs) and macrophages (Mϕs). Recently, several studies have reported that BTLA-deficient (BTLA−/−) mice show enhanced pathogen clearance compared with WT mice in early phase of infections. However, the roles of BTLA expressed on innate cells in overwhelming and uncontrolled immune responses remain unclear. Here, we found that BTLA−/− mice were highly susceptible to LPS-induced endotoxic shock. LPS-induced TNF-α and IL-12 production in DCs and Mϕs was significantly enhanced in BTLA−/− mice. BTLA−/− DCs also produced high levels of TNF-α on stimulation with Pam3CSK4 but not poly(I:C) or CpG, suggesting that BTLA functions as an inhibitory molecule on Toll-like receptor signaling at cell surface but not endosome. Moreover, BTLA−/− DCs showed enhanced MyD88- and toll/IL-1R domain-containing adaptor inducing IFN (TRIF)-dependent signaling on LPS stimulation, which is associated with impaired accumulation of Src homology 2-containing protein tyrosine phosphatase in lipid rafts. Finally, we found that an agonistic anti-BTLA antibody rescued mice from LPS-induced endotoxic shock, even if the antibody was given to mice that had developed a sign of endotoxic shock. These results suggest that BTLA directly inhibits LPS responses in DCs and Mϕs and that agonistic agents for BTLA might have therapeutic potential for LPS-induced endotoxic shock. PMID:23479601

  5. Daphnetin reduces endotoxin lethality in mice and decreases LPS-induced inflammation in Raw264.7 cells via suppressing JAK/STATs activation and ROS production.

    PubMed

    Shen, Lei; Zhou, Ting; Wang, Jing; Sang, Xiumei; Lan, Lei; Luo, Lan; Yin, Zhimin

    2017-07-01

    Here, we used various approaches to investigate the suppressive role of daphnetin in LPS-induced inflammatory response, with the goal to understand the underlining molecular mechanism by which daphnetin regulated these processes. We examined the survival rate and the lung injury in the mice model of LPS-induced endotoxemia. The production of pro-inflammatory factors including tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), IL-6, nitric oxide (NO), and prostaglandin E2 (PGE2) was measured by ELISA and nitrite analysis, respectively. The expression of inducible NO synthase (iNOS), cyclooxygenase 2 (COX-2), and the activation of signaling molecules was determined by immunoblotting. The production of reactive oxygen species (ROS) was measured by the ROS assay. In vivo study showed that daphnetin enhanced the survival rate and reduced the lung injury in mice with LPS-induced endotoxemia. Both in vivo and in vitro study showed that daphnetin prevented the production of pro-inflammatory factors including TNF-α, IL-1β, IL-6, NO, and PGE2 after LPS challenge. In Raw264.7 cells, we found that daphnetin reduced LPS-induced expression of iNOS and COX-2, and suppressed LPS-induced ROS production. In addition, we found that daphnetin suppressed the activation of JAK/STATs pathway and inhibited the nucleus import of STAT1 and STAT3. Here, our results indicate that daphnetin shows anti-inflammatory properties, at least in part, through suppressing LPS-induced activation of JAK/STATs cascades and ROS production.

  6. Wnt/β-catenin signaling in T-cells drives epigenetic imprinting of pro-inflammatory properties and promotes colitis and colon cancer

    PubMed Central

    Keerthivasan, Shilpa; Aghajani, Katayoun; Dose, Marei; Molinero, Luciana; Khan, Mohammad W.; Venkatesvaran, Vysak; Weber, Christopher; Emmanuel, Akinola Olumide; Sun, Tianjao; Ramos, Elena M.; Keshavarzian, Ali; Mulcahy, Mary; Blatner, Nichole; Khazaie, Khashayarsha; Gounari, Fotini

    2014-01-01

    The density and type of lymphocytes that infiltrate colon tumors are predictive of the clinical outcome of colon cancer. High densities of TH17 cells and inflammation predict poor outcome, while infiltration by Tregs that naturally suppress inflammation is associated with longer patient survival. However, the role of Tregs in cancer remains controversial. We recently reported that Tregs in colon cancer patients can become pro-inflammatory and tumor promoting. These properties were directly linked with their expression of RORγt, the signature transcription factor of TH17 cells. Here, we report that Wnt/β-catenin signaling in T-cells promotes expression of RORγt. Expression of β-catenin was elevated in T-cells and Tregs of patients with colitis and colon cancer. Genetically engineered activation of β-catenin in mouse T-cells resulted in enhanced chromatin accessibility in the proximity of Tcf-1 binding sites genome-wide, induced expression of TH17 signature genes including RORγt, and promoted TH17-mediated inflammation. Strikingly, the mice had inflammation of intestine and colon and developed lesions indistinguishable from colitis-induced cancer. Activation of β-catenin only in Tregs was sufficient to produce inflammation and initiate cancer. Based on these findings we conclude that activation of Wnt/β-catenin signaling in T-cells and/or Tregs is causatively linked with the imprinting of pro-inflammatory properties and the promotion of colon cancer. PMID:24574339

  7. Modulation of lipopolysaccharide-induced pro-inflammatory mediators by an extract of Glycyrrhiza glabra and its phytoconstituents.

    PubMed

    Thiyagarajan, P; Chandrasekaran, C V; Deepak, H B; Agarwal, Amit

    2011-08-01

    To evaluate the inhibitory property of de-glycyrrhizinated extract of Glycyrrhiza glabra root and its phytoconstituents (glabridin, isoliquiritigenin and glycyrrhizin) on LPS-induced production of pro-inflammatory mediators. Inhibitory effect of G. glabra extract and its phytoconstituents were studied on lipopolysaccharide (LPS)-induced nitric oxide (NO), interleukin-1 beta (IL-1 beta) and interleukin-6 (IL-6) levels in J774A.1 murine macrophages. G. glabra and isoliquiritigenin significantly inhibited LPS stimulated NO, IL-1 beta and IL-6 production. Glabridin showed significant inhibition of NO and IL-1 beta release, but failed to attenuate IL-6 levels at the tested concentrations. In addition, glycyrrhizin did not exhibit inhibitory response towards any of the LPS-induced pro-inflammatory mediators at the tested concentrations. From the results we speculate that the inhibitory effect of G. glabra extract on LPS-induced pro-inflammatory mediators is influenced by glabridin and isoliquiritigenin and is not contributed by glycyrrhizin.

  8. Pro-inflammatory Signaling in a 3D Organotypic Skin Model after Low LET Irradiation-NF-κB, COX-2 Activation, and Impact on Cell Differentiation.

    PubMed

    Acheva, Anna; Schettino, Giuseppe; Prise, Kevin M

    2017-01-01

    Nearly 85% of radiotherapy patients develop acute radiation dermatitis, which is an inflammatory reaction of the skin at the treatment field and in the surrounding area. The aims of this study were to unravel the mechanisms of radiation-induced inflammatory responses after localized irradiation in a human 3D organotypic skin culture model. This could provide possible inflammatory targets for reduction of skin side effects. 3D organotypic skin cultures were set up and locally irradiated with 225 kVp X-rays, using a combination of full exposure and partial shielding (50%) of the cultures. The secretion of pro-inflammatory cytokines, the phenotype, and the differentiation markers expression of the cultures were assessed up to 10 days postirradiation. The pro-inflammatory transcription factor nuclear factor kappa B (NF-κB) and cyclooxygenase-2 (COX-2) pathways have been studied. The results showed fast activation of NF-κB, most likely triggered by DNA damage in the irradiated cells, followed by upregulation of p38 MAPK and COX-2 in the irradiated and surrounding, non-irradiated, areas of the 3D cultures. The application of the COX-2 inhibitor sc-236 was effective at reducing the COX-2 mRNA levels 4 h postirradiation. The same inhibitor also suppressed the PGE2 secretion significantly 72 h after the treatment. The expression of a pro-inflammatory phenotype and abnormal differentiation markers of the cultures were also reduced. However, the use of an NF-κB inhibitor (Bay 11-7085) did not have the predicted positive effect on the cultures phenotype postirradiation. Radiation-induced pro-inflammatory responses have been observed in the 3D skin model. The activated signaling pathways involved NF-κB transcription factor and its downstream target COX-2. Further experiments aiming to suppress the inflammatory response via specific inhibitors showed that COX-2 is a suitable target for reduction of the normal skin inflammatory responses at radiotherapy, while NF

  9. Pro-inflammatory Signaling in a 3D Organotypic Skin Model after Low LET Irradiation—NF-κB, COX-2 Activation, and Impact on Cell Differentiation

    PubMed Central

    Acheva, Anna; Schettino, Giuseppe; Prise, Kevin M.

    2017-01-01

    Nearly 85% of radiotherapy patients develop acute radiation dermatitis, which is an inflammatory reaction of the skin at the treatment field and in the surrounding area. The aims of this study were to unravel the mechanisms of radiation-induced inflammatory responses after localized irradiation in a human 3D organotypic skin culture model. This could provide possible inflammatory targets for reduction of skin side effects. 3D organotypic skin cultures were set up and locally irradiated with 225 kVp X-rays, using a combination of full exposure and partial shielding (50%) of the cultures. The secretion of pro-inflammatory cytokines, the phenotype, and the differentiation markers expression of the cultures were assessed up to 10 days postirradiation. The pro-inflammatory transcription factor nuclear factor kappa B (NF-κB) and cyclooxygenase-2 (COX-2) pathways have been studied. The results showed fast activation of NF-κB, most likely triggered by DNA damage in the irradiated cells, followed by upregulation of p38 MAPK and COX-2 in the irradiated and surrounding, non-irradiated, areas of the 3D cultures. The application of the COX-2 inhibitor sc-236 was effective at reducing the COX-2 mRNA levels 4 h postirradiation. The same inhibitor also suppressed the PGE2 secretion significantly 72 h after the treatment. The expression of a pro-inflammatory phenotype and abnormal differentiation markers of the cultures were also reduced. However, the use of an NF-κB inhibitor (Bay 11-7085) did not have the predicted positive effect on the cultures phenotype postirradiation. Radiation-induced pro-inflammatory responses have been observed in the 3D skin model. The activated signaling pathways involved NF-κB transcription factor and its downstream target COX-2. Further experiments aiming to suppress the inflammatory response via specific inhibitors showed that COX-2 is a suitable target for reduction of the normal skin inflammatory responses at radiotherapy, while NF

  10. Regulatory Mechanisms of Vitamin D3 on Production of Nitric Oxide and Pro-inflammatory Cytokines in Microglial BV-2 Cells.

    PubMed

    Dulla, Yevgeny Aster T; Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Shudo, Koichi; Katsuki, Hiroshi

    2016-11-01

    Inhibition of pro-inflammatory functions of microglia has been considered a promising strategy to prevent pathogenic events in the central nervous system under neurodegenerative conditions. Here we examined potential inhibitory effects of nuclear receptor ligands on lipopolysaccharide (LPS)-induced inflammatory responses in microglial BV-2 cells. We demonstrate that a vitamin D receptor agonist 1,25-dihydroxyvitamin D3 (VD3) and a retinoid X receptor agonist HX630 affect LPS-induced expression of pro-inflammatory factors. Specifically, both VD3 and HX630 inhibited expression of mRNAs encoding inducible nitric oxide synthase (iNOS) and IL-6, whereas expression of IL-1β mRNA was inhibited only by VD3. The inhibitory effect of VD3 and HX630 on expression of iNOS and IL-6 mRNAs was additive. Effect of VD3 and HX630 was also observed for inhibition of iNOS protein expression and nitric oxide production. Moreover, VD3 and HX630 inhibited LPS-induced activation of extracellular signal-regulated kinase (ERK) and nuclear translocation of nuclear factor κB (NF-κB). PD98059, an inhibitor of ERK kinase, attenuated LPS-induced nuclear translocation of NF-κB and induction of mRNAs for iNOS, IL-1β and IL-6. These results indicate that VD3 can inhibit production of several pro-inflammatory molecules from microglia, and that suppression of ERK activation is at least in part involved in the anti-inflammatory effect of VD3.

  11. Carabrol suppresses LPS-induced nitric oxide synthase expression by inactivation of p38 and JNK via inhibition of I-{kappa}B{alpha} degradation in RAW 264.7 cells

    SciTech Connect

    Lee, Hwa Jin; Lim, Hyo Jin; Lee, Da Yeon; Jung, Hyeyoun; Kim, Mi-Ran; Moon, Dong-Cheul; Kim, Keun Il; Lee, Myeong-Sok; Ryu, Jae-Ha

    2010-01-15

    Carabrol, isolated from Carpesium macrocephalum, showed anti-inflammatory potential in LPS-induced RAW 264.7 murine macrophages. In present study, carabrol demonstrated the inhibitory activity on pro-inflammatory cytokines such as IL-1{beta}, IL-6 and TNF-{alpha}. In addition, mRNA and protein levels of iNOS and COX-2 were reduced by carabrol. Molecular analysis revealed that these suppressive effects were correlated with the inactivation of p38 and JNK via inhibition of NF-{kappa}B activation. Immunoblotting showed that carabrol suppressed LPS-induced degradation of I-{kappa}B{alpha} and decreased nuclear translocation of p65. Taken together, these results suggest that carabrol can be a modulator of pro-inflammatory signal transduction pathway in RAW 264.7 cells.

  12. Liver X receptor agonist prevents LPS-induced mastitis in mice.

    PubMed

    Fu, Yunhe; Tian, Yuan; Wei, Zhengkai; Liu, Hui; Song, Xiaojing; Liu, Wenbo; Zhang, Wenlong; Wang, Wei; Cao, Yongguo; Zhang, Naisheng

    2014-10-01

    Liver X receptor-α (LXR-α) which belongs to the nuclear receptor superfamily, is a ligand-activated transcription factor. Best known for its ability to regulate lipid metabolism and transport, LXRs have recently also been implicated in regulation of inflammatory response. The aim of this study was to investigate the preventive effects of synthetic LXR-α agonist T0901317 on LPS-induced mastitis in mice. The mouse model of mastitis was induced by injection of LPS through the duct of mammary gland. T0901317 was injected 1h before and 12h after induction of LPS intraperitoneally. The results showed that T0901317 significantly attenuated the infiltration of neutrophilic granulocytes, and the activation of myeloperoxidase (MPO); down-regulated the level of pro-inflammatory mediators including TNF-α, IL-1β, IL-6, COX-2 and PEG2; inhibited the phosphorylation of IκB-α and NF-κB p65, caused by LPS. Moreover, we report for the first time that LXR-α activation impaired LPS-induced mastitis. Taken together, these data indicated that T0901317 had protective effect on mastitis and the anti-inflammatory mechanism of T0901317 on LPS induced mastitis in mice may be due to its ability to inhibit NF-κB signaling pathway. LXR-α activation can be used as a therapeutic approach to treat mastitis.

  13. Oxidative stress and pro-inflammatory cytokines may act as one of the signals for regulating microRNAs expression in Alzheimer's disease.

    PubMed

    Prasad, Kedar N

    2017-03-01

    Oxidative stress and chronic inflammation are one of the earliest defects that initiate and promote Alzheimer's disease (AD). Studies showed that expressions of microRNAs were upregulated or downregulated in AD. Therefore, these biochemical defects may influence the levels of microRNAs. The up-regulated microRNAs cause neurodegeneration by: (a) decreasing the levels of a nuclear transcriptional factor-2 (Nrf2), (b) reducing the levels of α-secretase ADM10; and (c) reducing the levels of phosphatases. The down-regulated microRNAs cause neurodegeneration by: (a) increasing the levels of β-secretase, (b) increasing the levels of tau kinase; (c) elevating the levels of tau proteins; (d) increasing the levels of APP; and (e) increasing the levels of nuclear factor-kappaB (NF-kB). Antioxidants protect neurons by reducing oxidative stress and chronic inflammation. Therefore, they may also influence the levels of microRNAs. This review briefly describes the studies on changes in the expressions of microRNAs in the pathogenesis of AD. It proposes a hypothesis that free radicals and pro-inflammatory cytokines act as one of the signals that upregulate or downregulate the levels of microRNAs by influencing their transcription, processing or stability leading to neurodegeneration in AD. Antioxidants that reduce oxidative stress and pro-inflammatory cytokines also regulate the levels of microRNAs.

  14. A central role for the mammalian target of rapamycin in LPS-induced anorexia in mice.

    PubMed

    Yue, Yunshuang; Wang, Yi; Li, Dan; Song, Zhigang; Jiao, Hongchao; Lin, Hai

    2015-01-01

    Bacterial lipopolysaccharide (LPS), also known as endotoxin, induces profound anorexia. However, the LPS-provoked pro-inflammatory signaling cascades and the neural mechanisms underlying the development of anorexia are not clear. Mammalian target of rapamycin (mTOR) is a key regulator of metabolism, cell growth, and protein synthesis. This study aimed to determine whether the mTOR pathway is involved in LPS-induced anorexia. Effects of LPS on hypothalamic gene/protein expression in mice were measured by RT-PCR or western blotting analysis. To determine whether inhibition of mTOR signaling could attenuate LPS-induced anorexia, we administered an i.c.v. injection of rapamycin, an mTOR inhibitor, on LPS-treated male mice. In this study, we showed that LPS stimulates the mTOR signaling pathway through the enhanced phosphorylation of mTOR(Ser2448) and p70S6K(Thr389). We also showed that LPS administration increased the phosphorylation of FOXO1(Ser256), the p65 subunit of nuclear factor kappa B (P<0.05), and FOXO1/3a(Thr) (24) (/) (32) (P<0.01). Blocking the mTOR pathway significantly attenuated the LPS-induced anorexia by decreasing the phosphorylation of p70S6K(Thr389), FOXO1(Ser256), and FOXO1/3a(Thr) (24) (/) (32). These results suggest promising approaches for the prevention and treatment of LPS-induced anorexia. © 2015 Society for Endocrinology.

  15. CXC195 suppresses proliferation and inflammatory response in LPS-induced human hepatocellular carcinoma cells via regulating TLR4-MyD88-TAK1-mediated NF-κB and MAPK pathway

    SciTech Connect

    Wang, Yiting; Tu, Qunfei; Yan, Wei; Xiao, Dan; Zeng, Zhimin; Ouyang, Yuming; Huang, Long; Cai, Jing; Zeng, Xiaoli; Chen, Ya-Jie; Liu, Anwen

    2015-01-02

    Highlights: • CXC195 exhibited significant anti-proliferative effect and induced cell cycle arrest in LPS-induced HepG2 cells. • CXC195 suppressed the release of pro-inflammatory mediators in LPS-induced HepG2 cells. • CXC195 regulated TLR4-MyD88-TAK1-mediated NF-κB and MAPK pathway in LPS-induced HepG2 cells. - Abstract: CXC195 showed strong protective effects in neuronal apoptosis by exerting its antioxidant activity. However, the anti-cancer effects of CXC195 is still with limited acquaintance. Here, we investigated the role of CXC195 in lipopolysaccharide (LPS)-induced human hepatocellular carcinoma (HCC) cells lines (HepG2) and the possible signaling pathways. CXC195 exhibited significant anti-proliferative effect and induced cell cycle arrest in LPS-induced HepG2 cells. In addition, CXC195 suppressed the release of pro-inflammatory mediators in LPS-induced HepG2 cells, including TNF-α, iNOS, IL-1β, IL-6, CC chemokine ligand (CCL)-2, CCL-22 and epidermal growth factor receptor (EGFR). Moreover, CXC195 inhibited the expressions and interactions of TLR4, MyD88 and TAK1, NF-κB translocation to nucleus and its DNA binding activity, phosphorylation of ERK1/2, p38 and JNK. Our results suggested that treatment with CXC195 could attenuate the TLR4-mediated proliferation and inflammatory response in LPS-induced HepG2 cells, thus might be beneficial for the treatment of HCC.

  16. ISA-2011B, a Phosphatidylinositol 4-Phosphate 5-Kinase α Inhibitor, Impairs CD28-Dependent Costimulatory and Pro-inflammatory Signals in Human T Lymphocytes

    PubMed Central

    Kunkl, Martina; Porciello, Nicla; Mastrogiovanni, Marta; Capuano, Cristina; Lucantoni, Federica; Moretti, Chiara; Persson, Jenny L.; Galandrini, Ricciarda; Buzzetti, Raffaella; Tuosto, Loretta

    2017-01-01

    Phosphatidylinositol 4,5-biphosphate (PIP2) is a membrane phospholipid that controls the activity of several proteins regulating cytoskeleton reorganization, cytokine gene expression, T cell survival, proliferation, and differentiation. Phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks) are the main enzymes involved in PIP2 biosynthesis by phosphorylating phosphatidylinositol 4-monophosphate (PI4P) at the D5 position of the inositol ring. In human T lymphocytes, we recently found that CD28 costimulatory molecule is pivotal for PIP2 turnover by recruiting and activating PIP5Kα. We also found that PIP5Kα is the main regulator of both CD28 costimulatory signals integrating those delivered by TCR as well as CD28 autonomous signals regulating the expression of pro-inflammatory genes. Given emerging studies linking alterations of PIP2 metabolism to immune-based diseases, PIP5Kα may represent a promising target to modulate immunity and inflammation. Herewith, we characterized a recently discovered inhibitor of PIP5Kα, ISA-2011B, for its inhibitory effects on T lymphocyte functions. We found that the inhibition of PIP5Kα lipid-kinase activity by ISA-2011B significantly impaired CD28 costimulatory signals necessary for TCR-mediated Ca2+ influx, NF-AT transcriptional activity, and IL-2 gene expression as well as CD28 autonomous signals regulating the activation of NF-κB and the transcription of pro-inflammatory cytokine and chemokine genes. Moreover, our data on the inhibitory effects of ISA-2011B on CD28-mediated upregulation of inflammatory cytokines related to Th17 cell phenotype in type 1 diabetes patients suggest ISA-2011B as a promising anti-inflammatory drug. PMID:28491063

  17. Oxymatrine lightened the inflammatory response of LPS-induced mastitis in mice through affecting NF-κB and MAPKs signaling pathways.

    PubMed

    Yang, Zhengtao; Yin, Ronglan; Cong, Yunfeng; Yang, Zhanqing; Zhou, Ershun; Wei, Zhengkai; Liu, Zhicheng; Cao, Yongguo; Zhang, Naisheng

    2014-12-01

    Mastitis, an inflammatory reaction of the mammary gland, is recognized as one of the most costly diseases in dairy cattle. Oxymatrine, one of the alkaloids extracted from Chinese herb Sophora flavescens Ait, has been reported to have many biological activities, such as anti-inflammatory, anti-virus, and anti-hepatic fibrosis properties. The aim of this study was to investigate the protective effect and the anti-inflammatory mechanism of oxymatrine on lipopolysaccharide (LPS)-induced mastitis in mice. The mouse mastitis was induced by 10 μg of LPS for 24 h. Oxymatrine was intraperitoneally administered with the dose of 30, 60, and 120 mg/kg 1 h before and 12 h after LPS induction. The results showed that oxymatrine significantly attenuated the damage of the mammary gland induced by LPS. Oxymatrine inhibited the phosphorylation of NF-κB p65 and IκB in NF-κB signal pathway and reduced the phosphorylation of p38, ERK, and JNK in mitogen-activated protein kinase (MAPKs) signal pathway. The results showed that oxymatrine had a protective effect on LPS-induced mastitis, and the anti-inflammatory mechanism of oxymatrine was related to the inhibition of NF-κB and MAPKs signal pathways.

  18. Bergenin Plays an Anti-Inflammatory Role via the Modulation of MAPK and NF-κB Signaling Pathways in a Mouse Model of LPS-Induced Mastitis.

    PubMed

    Gao, Xue-jiao; Guo, Meng-yao; Zhang, Ze-cai; Wang, Tian-cheng; Cao, Yong-guo; Zhang, Nai-sheng

    2015-01-01

    Mastitis is a major disease in humans and other animals and is characterized by mammary gland inflammation. It is a major disease of the dairy industry. Bergenin is an active constituent of the plants of genus Bergenia. Research indicates that bergenin has multiple biological activities, including anti-inflammatory and immunomodulatory properties. The objective of this study was to evaluate the protective effects and mechanism of bergenin on the mammary glands during lipopolysaccharide (LPS)-induced mastitis. In this study, mice were treated with LPS to induce mammary gland mastitis as a model for the disease. Bergenin treatment was initiated after LPS stimulation for 24 h. The results indicated that bergenin attenuated inflammatory cell infiltration and decreased the concentration of NO, TNF-α, IL-1β, and IL-6, which were increased in LPS-induced mouse mastitis. Furthermore, bergenin downregulated the phosphorylation of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPK) signaling pathway proteins in mammary glands with mastitis. In conclusion, bergenin reduced the expression of NO, TNF-α, IL-1β, and IL-6 proinflammatory cytokines by inhibiting the activation of the NF-κB and MAPKs signaling pathways, and it may represent a novel treatment strategy for mastitis.

  19. Baicalein attenuates inflammatory responses by suppressing TLR4 mediated NF-κB and MAPK signaling pathways in LPS-induced mastitis in mice.

    PubMed

    He, Xuexiu; Wei, Zhengkai; Zhou, Ershun; Chen, Libin; Kou, Jinhua; Wang, Jingjing; Yang, Zhengtao

    2015-09-01

    Baicalein is a phenolic flavonoid presented in the dry roots of Scutellaria baicalensis Georgi. It has been reported that baicalein possesses a number of biological properties, such as antiviral, antioxidative, anti-inflammatory, antithrombotic, and anticancer properties. However, the effect of baicalein on mastitis has not yet been reported. This research aims to detect the effect of baicalein on lipopolysaccharide (LPS)-induced mastitis in mice and to investigate the molecular mechanisms. Baicalein was administered intraperitoneally 1h before and 12h after LPS treatment. The results indicated that baicalein treatment markedly attenuated the damage of the mammary gland induced by LPS, suppressed the activity of myeloperoxidase (MPO) and the levels of tumor necrosis factor (TNF-α) and interleukin (IL-1β) in mice with LPS-induced mastitis. Besides, baicalein blocked the expression of Toll-like receptor 4 (TLR4) and then suppressed the phosphorylation of nuclear transcription factor-kappaB (NF-κB) p65 and degradation inhibitor of NF-κBα (IκBα) and, and inhibited the phosphorylation of p38, extracellular signal-regulated kinase (ERK) and c-jun NH2-terminal kinase (JNK) in mitogen-activated protein kinase (MAPK) signal pathway. These findings suggested that baicalein may have a potential prospect against mastitis.

  20. MD-2 interacts with Lyn kinase and is tyrosine phosphorylated following LPS-induced activation of the Toll-like receptor 4 signaling pathway

    PubMed Central

    Gray, Pearl; Dagvadorj, Jargalsaikhan; Michelsen, Kathrin S.; Brikos, Constantinos; Rentsendorj, Altan; Town, Terrence; Crother, Timothy R.; Arditi, Moshe

    2011-01-01

    Stimulation with LPS induces tyrosine phosphorylation of numerous proteins involved in the TLR signaling pathway. In this study, we demonstrate that MD-2 is also tyrosine phosphorylated following LPS stimulation. LPS-induced tyrosine phosphorylation of MD-2 is specific, it is blocked by the tyrosine kinase inhibitor, Herbimycin A, and by an inhibitor of endocytosis, Cytochalsin-D, suggesting that MD-2 phosphorylation occurs during trafficking of MD2 and not on cell surface. Furthermore, we identify two possible phospho-accepting tyrosine residues at positions 22 and 131. Mutant proteins in which these tyrosines were changed to phenylalanine have reduced phosphorylation and significantly diminished ability to activate NF-κB in response to LPS. In addition, MD2 co-precipitates and colocalizes with Lyn kinase, most likely in ER. A Lyn-binding peptide inhibitor abolished MD2 tyrosine phosphorylation, suggesting that Lyn is a likely candidate to be the kinase required for MD-2 tyrosine phophorylation. Our study demonstrates that tyrosine phosphorylation of MD-2 is important for signaling following exposure to LPS and underscores the importance of this event in mediating an efficient and prompt immune response. PMID:21918188

  1. Oral administration of geraniol ameliorates acute experimental murine colitis by inhibiting pro-inflammatory cytokines and NF-κB signaling.

    PubMed

    Medicherla, Kanakaraju; Sahu, Bidya Dhar; Kuncha, Madhusudana; Kumar, Jerald Mahesh; Sudhakar, Godi; Sistla, Ramakrishna

    2015-09-01

    Ulcerative colitis is associated with a considerable reduction in the quality of life of patients. The use of phyto-ingredients is becoming an increasingly attractive approach for the management of colitis. Geraniol is a monoterpene with anti-inflammatory and antioxidative properties. In this study, we investigated the therapeutic potential of geraniol as a complementary and alternative medicine against dextran sulphate sodium (DSS)-induced ulcerative colitis in mice. Disease activity indices (DAI) comprising body weight loss, presence of occult blood and stool consistency were assessed for evaluation of colitis symptoms. Intestinal damage was assessed by evaluating colon length and its histology. Pre-treatment with geraniol significantly reduced the DAI score, improved stool consistency (without occult blood) and increased the colon length. The amount of pro-inflammatory cytokines, specifically TNF-α, IL-1β and IL-6 and the activity of myeloperoxidase in colon tissue were significantly decreased in geraniol pre-treated mice. Western blot analyses revealed that geraniol interfered with NF-κB signaling by inhibiting NF-κB (p65)-DNA binding, and IκBα phosphorylation, degradation and subsequent increase in nuclear translocation. Moreover, the expressions of downstream target pro-inflammatory enzymes such as iNOS and COX-2 were significantly reduced by geraniol. Pre-treatment with geraniol also restored the DSS-induced decline in antioxidant parameters such as reduced glutathione and superoxide dismutase activity and attenuated the increase in lipid peroxidation marker, thiobarbituric acid reactive substances and nitrative stress marker, nitrites in colon tissue. Thus, our results suggest that geraniol is a potential therapeutic agent for inflammatory bowel disease.

  2. Pro-inflammatory mechanisms in sepsis.

    PubMed

    Chong, Deborah L W; Sriskandan, Shiranee

    2011-01-01

    Sepsis is characterised by a hyper-inflammatory response due to microbial infection. We here review our current understanding of host mechanisms employed to mediate this hyper-inflammatory response, drawing together current knowledge pertaining to pathogen recognition and host pro-inflammatory response. Recognition of microbial derived ligands by pattern recognition receptors (PRRs) is a key step in initiating pro-inflammatory signalling pathways. Examples of PRRs linked to the aetiology of sepsis include Toll-like, C-type lectin, RIG-1-like and also Nod-like receptors, which are involved in the formation of the inflammasome, crucial for the maturation of some pro-inflammatory cytokines. Bacterial superantigens have evolved to exploit host MHC class II and T cell receptors (normally considered part of the adaptive immune response) as innate PRRs to propagate a so-called 'cytokine storm', while synergy between different microbial ligands and host-derived alarmins can augment the inflammatory response still further through as yet poorly understood interactions. The host pro-inflammatory response results in the characteristic features of inflammation: rubor, calor, dolor, and tumor. We will review herein the key mediators of inflammation in sepsis, identifying their overlapping and intersecting roles in vascular changes in tone, endothelial permeability, coagulation and contact activation, leukocyte mobilisation and activation. Copyright © 2011 S. Karger AG, Basel.

  3. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis.

    PubMed

    Lv, Hongming; Liu, Qinmei; Wen, Zhongmei; Feng, Haihua; Deng, Xuming; Ci, Xinxin

    2017-03-02

    Abundant natural flavonoids can induce nuclear factor-erythroid 2 related factor 2 (Nrf2) and/or AMP-activated protein kinase (AMPK) activation, which play crucial roles in the amelioration of various inflammation- and oxidative stress-induced diseases, including acute lung injury (ALI). Xanthohumol (Xn), a principal prenylflavonoid, possesses anti-inflammation and anti-oxidant activities. However, whether Xn could protect from LPS-induced ALI through inducing AMPK/Nrf2 activation and its downstream signals, are still poorly elucidated. Accordingly, we focused on exploring the protective effect of Xn in the context of ALI and the involvement of underlying molecular mechanisms. Our findings indicated that Xn effectively alleviated lung injury by reduction of lung W/D ratio and protein levels, neutrophil infiltration, MDA and MPO formation, and SOD and GSH depletion. Meanwhile, Xn significantly lessened histopathological changes, reactive oxygen species (ROS) generation, several cytokines secretion, and iNOS and HMGB1 expression, and inhibited Txnip/NLRP3 inflammasome and NF-κB signaling pathway activation. Additionally, Xn evidently decreased t-BHP-stimulated cell apoptosis, ROS generation and GSH depletion but increased various anti-oxidative enzymes expression regulated by Keap1-Nrf2/ARE activation, which may be associated with AMPK and GSK3β phosphorylation. However, Xn-mediated inflammatory cytokines and ROS production, histopathological changes, Txnip/NLRP3 inflammasome and NF-κB signaling pathway in WT mice were remarkably abrogated in Nrf2(-/-) mice. Our experimental results firstly provided a support that Xn effectively protected LPS-induced ALI against oxidative stress and inflammation damage which are largely dependent upon upregulation of the Nrf2 pathway via activation of AMPK/GSK3β, thereby suppressing LPS-activated Txnip/NLRP3 inflammasome and NF-κB signaling pathway.

  4. Prokineticin 1 induces a pro-inflammatory response in murine fetal membranes but does not induce preterm delivery.

    PubMed

    Lannagan, Tamsin R M; Wilson, Martin R; Denison, Fiona; Norman, Jane E; Catalano, Rob D; Jabbour, Henry N

    2013-12-01

    The mechanisms that regulate the induction of term or preterm delivery (PTD) are not fully understood. Infection is known to play a role in the induction of pro-inflammatory cascades in uteroplacental tissues associated with preterm pathological parturition. Similar but not identical cascades are evident in term labour. In the current study, we used a mouse model to evaluate the role of prokineticins in term and preterm parturition. Prokineticins are multi-functioning secreted proteins that signal through G-protein-coupled receptors to induce gene expression, including genes important in inflammatory responses. Expression of prokineticins (Prok1 and Prok2) was quantified in murine uteroplacental tissues by QPCR in the days preceding labour (days 16-19). Prok1 mRNA expression increased significantly on D18 in fetal membranes (compared with D16) but not in uterus or placenta. Intrauterine injection of PROK1 on D17 induced fetal membrane mRNA expression of the pro-inflammatory mediators Il6, Il1b, Tnf, Cxcl2 and Cxcl5, which are not normally up-regulated until D19 of pregnancy. However, intrauterine injection of PROK1 did not result in PTD. As expected, injection of lipopolysaccharide (LPS) induced PTD, but this was not associated with changes in expression of Prok1 or its receptor (Prokr1) in fetal membranes. These results suggest that although Prok1 exhibits dynamic mRNA regulation in fetal membranes preceding labour and induces a pro-inflammatory response when injected into the uterus on D17, it is insufficient to induce PTD. Additionally, prokineticin up-regulation appears not to be part of the LPS-induced inflammatory response in mouse fetal membranes.

  5. Prokineticin 1 induces a pro-inflammatory response in murine fetal membranes but does not induce preterm delivery

    PubMed Central

    Lannagan, Tamsin R M; Wilson, Martin R; Denison, Fiona; Norman, Jane E; Catalano, Rob D; Jabbour, Henry N

    2013-01-01

    The mechanisms that regulate the induction of term or preterm delivery (PTD) are not fully understood. Infection is known to play a role in the induction of pro-inflammatory cascades in uteroplacental tissues associated with preterm pathological parturition. Similar but not identical cascades are evident in term labour. In the current study, we used a mouse model to evaluate the role of prokineticins in term and preterm parturition. Prokineticins are multi-functioning secreted proteins that signal through G-protein-coupled receptors to induce gene expression, including genes important in inflammatory responses. Expression of prokineticins (Prok1 and Prok2) was quantified in murine uteroplacental tissues by QPCR in the days preceding labour (days 16–19). Prok1 mRNA expression increased significantly on D18 in fetal membranes (compared with D16) but not in uterus or placenta. Intrauterine injection of PROK1 on D17 induced fetal membrane mRNA expression of the pro-inflammatory mediators Il6, Il1b, Tnf, Cxcl2 and Cxcl5, which are not normally up-regulated until D19 of pregnancy. However, intrauterine injection of PROK1 did not result in PTD. As expected, injection of lipopolysaccharide (LPS) induced PTD, but this was not associated with changes in expression of Prok1 or its receptor (Prokr1) in fetal membranes. These results suggest that although Prok1 exhibits dynamic mRNA regulation in fetal membranes preceding labour and induces a pro-inflammatory response when injected into the uterus on D17, it is insufficient to induce PTD. Additionally, prokineticin up-regulation appears not to be part of the LPS-induced inflammatory response in mouse fetal membranes. PMID:24051059

  6. Role of actin cytoskeleton in LPS-induced NF-kappaB activation and nitric oxide production in murine macrophages.

    PubMed

    Eswarappa, Sandeepa M; Pareek, Vidhi; Chakravortty, Dipshikha

    2008-10-01

    Lipopolysaccharide (LPS) is a major cell wall component of Gram-negative bacteria and is known to cause actin cytoskeleton reorganization in a variety of cells including macrophages. Actin cytoskeleton dynamics influence many cell signaling pathways including the NF-kappaB pathway. LPS is also known to induce the expression of many pro-inflammatory genes via the NF-kappaB pathway. Here, we have investigated the role of actin cytoskeleton in LPS-induced NF-kappaB activation and signaling leading to the expression of iNOS and nitric oxide production. Using murine macrophages, we show that disruption of actin cytoskeleton by either cytochalasin D (CytD) or latrunculin B (LanB) does not affect LPS-induced NF-kappaB activation and the expression of iNOS, a NF-kappaB target gene. However, disruption of actin cytoskeleton caused significant reduction in LPS-induced nitric oxide production indicating a role of actin cytoskeleton in the post-translational regulation of iNOS.

  7. Hydrogen Sulfide Delays LPS-Induced Preterm Birth in Mice via Anti-Inflammatory Pathways

    PubMed Central

    Liu, Weina; Xu, Chen; You, Xingji; Olson, David M.; Chemtob, Sylvain; Gao, Lu; Ni, Xin

    2016-01-01

    A major cause of preterm labor in pregnant women is intra-amniotic infection, which is mediated by an inflammatory process. Hydrogen sulfide (H2S), a gaseous transmitter, has been implicated to be involved in inflammatory responses. We sought to investigate whether H2S affects infectious preterm birth using the mouse model of lipopolysaccharides (LPS)-induced preterm birth. Administration of LPS at 0.4 mg/kg with two injections intraperitoneally (i.p.) on gestational day 14.5 induced preterm labor. LPS significantly increased leukocyte infiltration in uterus, stimulated the expression of pro-inflammatory cytokines interleukin 1β (IL-1β), IL-6, tumor necrosis factor α (TNF-α), CCL2 and CXCL15 in myometrium. Administration of NaHS (i.p.) delayed the onset of labor induced by LPS in a dose-dependent manner. NaHS prevented leukocyte infiltration into intrauterine tissues and inhibited the production of pro-inflammatory cytokines in myometrium and decreased the levels of these cytokines in maternal circulation. H2S also decreased LPS-activated extracellular signal-regulated kinase (ERK) 1/2/ nuclear factor (NF)-κB signaling pathways in myometrium. This study provides new in vivo evidence for the roles of H2S in attenuating inflammation, and a potential novel therapeutic strategy for infection-related preterm labor. PMID:27035826

  8. Hydrogen Sulfide Delays LPS-Induced Preterm Birth in Mice via Anti-Inflammatory Pathways.

    PubMed

    Liu, Weina; Xu, Chen; You, Xingji; Olson, David M; Chemtob, Sylvain; Gao, Lu; Ni, Xin

    2016-01-01

    A major cause of preterm labor in pregnant women is intra-amniotic infection, which is mediated by an inflammatory process. Hydrogen sulfide (H2S), a gaseous transmitter, has been implicated to be involved in inflammatory responses. We sought to investigate whether H2S affects infectious preterm birth using the mouse model of lipopolysaccharides (LPS)-induced preterm birth. Administration of LPS at 0.4 mg/kg with two injections intraperitoneally (i.p.) on gestational day 14.5 induced preterm labor. LPS significantly increased leukocyte infiltration in uterus, stimulated the expression of pro-inflammatory cytokines interleukin 1β (IL-1β), IL-6, tumor necrosis factor α (TNF-α), CCL2 and CXCL15 in myometrium. Administration of NaHS (i.p.) delayed the onset of labor induced by LPS in a dose-dependent manner. NaHS prevented leukocyte infiltration into intrauterine tissues and inhibited the production of pro-inflammatory cytokines in myometrium and decreased the levels of these cytokines in maternal circulation. H2S also decreased LPS-activated extracellular signal-regulated kinase (ERK) 1/2/ nuclear factor (NF)-κB signaling pathways in myometrium. This study provides new in vivo evidence for the roles of H2S in attenuating inflammation, and a potential novel therapeutic strategy for infection-related preterm labor.

  9. Cordycepin inhibits lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α production via activating amp-activated protein kinase (AMPK) signaling.

    PubMed

    Zhang, Jian-Li; Xu, Ying; Shen, Jie

    2014-07-08

    Tumor necrosis factor (TNF)-α is elevated during the acute phase of Kawasaki disease (KD), which damages vascular endothelial cells to cause systemic vasculitis. In the current study, we investigated the potential role of cordycepin on TNFα expression in both lipopolysaccharide (LPS)-stimulated macrophages and ex vivo cultured peripheral blood mononuclear cells (PBMCs) of KD patients. We found that cordycepin significantly suppressed LPS-induced TNFα expression and production in mouse macrophages (RAW 264.7 cells and bone marrow-derived macrophages (BMDMs)). Meanwhile, cordycepin alleviated TNFα production in KD patients' PBMCs. PBMCs from healthy controls had a much lower level of basal TNF-α content than that of KD patients. LPS-induced TNF-α production in healthy controls' PBMCs was also inhibited by cordycepin. For the mechanism study, we discovered that cordycepin activated AMP-activated protein kinase (AMPK) signaling in both KD patients' PBMCs and LPS-stimulated macrophages, which mediated cordycepin-induced inhibition against TNFα production. AMPK inhibition by its inhibitor (compound C) or by siRNA depletion alleviated cordycepin's effect on TNFα production. Further, we found that cordycepin inhibited reactive oxygen species (ROS) production and nuclear factor kappa B (NF-κB) activation in LPS-stimulate RAW 264.7 cells or healthy controls' PBMCs. PBMCs of KD patients showed higher basal level of ROS and NF-κB activation, which was also inhibited by cordycepin co-treatment. In conclusion, our data showed that cordycepin inhibited TNFα production, which was associated with AMPK activation as well as ROS and NF-κB inhibition. The results of this study should have significant translational relevance in managing this devastating disease.

  10. Resveratrol modulates phorbol ester-induced pro-inflammatory signal transduction pathways in mouse skin in vivo: NF-kappaB and AP-1 as prime targets.

    PubMed

    Kundu, Joydeb Kumar; Shin, Young Kee; Surh, Young-Joon

    2006-11-30

    Functional abnormalities of intracellular signaling network cause the disruption in homeostasis maintained by critical cellular components, thereby accelerating premalignant and malignant transformation. Multiple lines of evidence suggest that an elevated expression of cyclooxygenase-2 (COX-2) is causally linked to tumorigenesis. The exposure to oxidative/pro-inflammatory stimuli turns on signaling arrays mediated by diverse classes of kinases and transcription factors, which may lead to aberrant expression of COX-2. We have attempted to unravel the signal transduction pathways involved in elevated COX-2 expression in mouse skin stimulated with a prototype tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) and its modulation by resveratrol, a phytoalexin known to exert potential chemopreventive effects. Our study revealed that topical application of TPA induced COX-2 expression in mouse skin via activation of nuclear factor-kappaB (NF-kappaB), which is regulated by upstream IkappaB kinase (IKK) or differentially by mitogen-activated protein (MAP) kinases. Besides NF-kappaB, the p38 MAP kinase-mediated activation of activator protein-1 (AP-1) has also been attributed to TPA-induced COX-2 expression in mouse skin. Among the MAP kinases, extracellular signal-regulated protein kinase (ERK) and p38 MAP kinase have been shown to regulate TPA-induced NF-kappaB activation, while p38 MAP kinase and c-Jun-N-terminal kinase are preferentially involved in TPA-induced activation of AP-1 in mouse skin in vivo. This commentary focuses on resveratrol modulation of intracellular signaling pathways involved in aberrant COX-2 expression in TPA-stimulated mouse skin to delineate molecular mechanisms underlying antitumor promoting effects of resveratrol.

  11. Chromofungin (CHR: CHGA47-66) is downregulated in persons with active ulcerative colitis and suppresses pro-inflammatory macrophage function through the inhibition of NF-κB signaling.

    PubMed

    Eissa, Nour; Hussein, Hayam; Kermarrec, Laëtitia; Elgazzar, Omar; Metz-Boutigue, Marie-Helene; Bernstein, Charles N; Ghia, Jean-Eric

    2017-08-19

    Chromogranin-A (CHGA) is a prohormone secreted by neuroendocrine cells and is a precursor of several bioactive peptides, which are implicated in different and distinctive biological and immune functions. Chromofungin (CHR: CHGA47-66) is a short peptide with antimicrobial effects and encodes from CHGA exon-IV. Inflammatory bowel disease (IBD) is characterized by alterations in the activation of pro-inflammatory pathways, pro-inflammatory macrophages (M1), and nuclear transcription factor kappa B (NF-κB) signaling leading to the perpetuation of the inflammatory process. Here, we investigated the activity of CHR (CHGA Exon-IV) in persons with active ulcerative colitis (UC) and the underlying mechanisms in dextran sulfate sodium (DSS)-colitis in regard to macrophages activation and migration. Tissue mRNA expression of CHR (CHGA Exon-IV) was down regulated in active UC compared to healthy individuals and negatively correlated with pro-inflammatory macrophages (M1) cytokines, toll-like receptors (TLR)-4, and pNF-κB activity. In DSS colitis, CHR (CHGA Exon-IV) expression was reduced, and exogenous CHR treatment decreased the severity of colitis associated with a reduction of M1 macrophages markers and pNF-κB. In vitro, CHR treatment reduced macrophages migration, decreased pro-inflammatory cytokines production and pNF-κB. Targeting CHR may represent a promising new direction in research to define new therapeutic targets and biomarkers associated with IBD. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Potential of flavonoids as anti-inflammatory agents: modulation of pro-inflammatory gene expression and signal transduction pathways.

    PubMed

    Tuñón, M J; García-Mediavilla, M V; Sánchez-Campos, S; González-Gallego, J

    2009-03-01

    Flavonoids are a large class of naturally occurring compounds widely present in fruits, vegetables, and beverages derived from plants. Reports have suggested that these compounds might be useful for the prevention of a number of diseases, partly due to their anti-inflammatory properties. It has been demonstrated that flavonoids are able to inhibit expression of isoforms of inducible nitric oxide synthase, ciclooxygenase and lipooxygenase, which are responsible for the production of a great amount of nitric oxide, prostanoids and leukotrienes, as well as other mediators of the inflammatory process such as cytokines, chemokines or adhesion molecules. Modulation of the cascade of molecular events leading to the over-expression of those mediators include inhibition of transcription factors such as nuclear factor kappa B, activator protein 1, signal transducers and activators of transcription, CCAAT/enhancer binding protein and others. Effects on the binding capacity of transcription factors may be regulated through the inhibition of protein kinases involved in signal transduction, such as mitogen activated protein kinases. Although the numerous studies published with in vitro approaches allow identifying molecular mechanisms of flavonoid effects, the limited bioavailability of these molecules makes necessary validation in humans. Whatever the case, the data available make clear the potential utility of dietary flavonoids or new flavonoid-based agents for the possible treatment of inflammatory diseases. The present review summarizes recent research data focusing on the modulation of the expression of different inflammatory mediators by flavonoids and the effects on cell signaling pathways responsible for their anti-inflammatory activity.

  13. Suppressive effects of extracts from the aerial part of Coriandrum sativum L. on LPS-induced inflammatory responses in murine RAW 264.7 macrophages.

    PubMed

    Wu, Trang-Tiau; Tsai, Chia-Wen; Yao, Hsien-Tsung; Lii, Chong-Kuei; Chen, Haw-Wen; Wu, Yu-Ling; Chen, Pei-Yin; Liu, Kai-Li

    2010-08-30

    Coriandrum sativum is used not only as a spice to aid flavour and taste values in food, but also as a folk medicine in many countries. Since little is known about the anti-inflammatory ability of the aerial parts (stem and leaf) of C. sativum, the present study investigated the effect of aerial parts of C. sativum on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We further explored the molecular mechanism underlying these pharmacological properties of C. sativum. Ethanolic extracts from both stem and leaf of C. sativum (CSEE) significantly decreased LPS-induced nitric oxide and prostaglandin E(2) production as well as inducible nitric oxide synthase, cyclooxygenase-2, and pro-interleukin-1beta expression. Moreover, LPS-induced IkappaB-alpha phosphorylation and nuclear p65 protein expression as well as nuclear factor-kappaB (NF-kappaB) nuclear protein-DNA binding affinity and reporter gene activity were dramatically inhibited by aerial parts of CSEE. Exogenous addition of CSEE stem and leaf significantly reduced LPS-induced expression of phosphorylated mitogen-activated protein kinases (MAPKs). Our data demonstrated that aerial parts of CSEE have a strong anti-inflammatory property which inhibits pro-inflammatory mediator expression by suppressing NF-kappaB activation and MAPK signal transduction pathway in LPS-induced macrophages. Copyright (c) 2010 Society of Chemical Industry.

  14. A CD47-associated super-enhancer links pro-inflammatory signalling to CD47 upregulation in breast cancer.

    PubMed

    Betancur, Paola A; Abraham, Brian J; Yiu, Ying Y; Willingham, Stephen B; Khameneh, Farnaz; Zarnegar, Mark; Kuo, Angera H; McKenna, Kelly; Kojima, Yoko; Leeper, Nicholas J; Ho, Po; Gip, Phung; Swigut, Tomek; Sherwood, Richard I; Clarke, Michael F; Somlo, George; Young, Richard A; Weissman, Irving L

    2017-04-05

    CD47 is a cell surface molecule that inhibits phagocytosis of cells that express it by binding to its receptor, SIRPα, on macrophages and other immune cells. CD47 is expressed at different levels by neoplastic and normal cells. Here, to reveal mechanisms by which different neoplastic cells generate this dominant 'don't eat me' signal, we analyse the CD47 regulatory genomic landscape. We identify two distinct super-enhancers (SEs) associated with CD47 in certain cancer cell types. We show that a set of active constituent enhancers, located within the two CD47 SEs, regulate CD47 expression in different cancer cell types and that disruption of CD47 SEs reduces CD47 gene expression. Finally we report that the TNF-NFKB1 signalling pathway directly regulates CD47 by interacting with a constituent enhancer located within a CD47-associated SE specific to breast cancer. These results suggest that cancers can evolve SE to drive CD47 overexpression to escape immune surveillance.

  15. Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptor pathways to activate pro-inflammatory signals.

    PubMed

    Bulut, Yonca; Michelsen, Kathrin S; Hayrapetian, Linda; Naiki, Yoshikazu; Spallek, Ralf; Singh, Mahavir; Arditi, Moshe

    2005-06-03

    Although the Toll-like receptors used by Mycobacterium tuberculosis membrane and secreted factors are known, the pathways activated by M. tuberculosis heat shock proteins are not. An efficient immune response against the intracellular pathogen M. tuberculosis is critically dependent on rapid detection of the invading pathogen by the innate immune system and coordinated activation of the adaptive immune response. Macrophage phagocytosis of M. tuberculosis is accompanied by activation of the transcription factor NF-kappaB and secretion of inflammatory mediators that play an important role in granuloma formation and immune protection during M. tuberculosis infection. The interaction between M. tuberculosis and the various Toll-like receptors is complex, and it appears that distinct mycobacterial components may interact with different members of the Toll-like receptor family. Here we show that recombinant, purified, mycobacterial heat shock proteins 65 and 70 induce NF-kappaB activity in a dose-dependent manner in human endothelial cells. Furthermore, we show that whereas mycobacterial heat shock protein 65 signals exclusively through Toll-like receptor 4, heat shock protein 70 also signals through Toll-like receptor 2. Mycobacterial heat shock protein 65-induced NF-kappaB activation was MyD88-, TIRAP-, TRIF-, and TRAM-dependent and required the presence of MD-2. A better understanding of the recognition of mycobacterial heat shock proteins and their role in the host immune response to the pathogen may open the way to a better understanding of the immunological processes induced by this important human pathogen and the host-pathogen interactions and may help in the rational design of more effective vaccines or vaccine adjuvants.

  16. Dietary Fish Oil Inhibits Pro-Inflammatory and ER Stress Signalling Pathways in the Liver of Sows during Lactation

    PubMed Central

    Gessner, Denise K.; Gröne, Birthe; Couturier, Aline; Rosenbaum, Susann; Hillen, Sonja; Becker, Sabrina; Erhardt, Georg; Reiner, Gerald; Ringseis, Robert; Eder, Klaus

    2015-01-01

    Lactating sows have been shown to develop typical signs of an inflammatory condition in the liver during the transition from pregnancy to lactation. Hepatic inflammation is considered critical due to the induction of an acute phase response and the activation of stress signaling pathways like the endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR), both of which impair animal´s health and performance. Whether ER stress-induced UPR is also activated in the liver of lactating sows and whether dietary fish oil as a source of anti-inflammatory effects n-3 PUFA is able to attenuate hepatic inflammation and ER stress-induced UPR in the liver of sows is currently unknown. Based on this, two experiments with lactating sows were performed. The first experiment revealed that ER stress-induced UPR occurs also in the liver of sows during lactation. This was evident from the up-regulation of a set of genes regulated by the UPR and numerically increased phosphorylation of the ER stress-transducer PERK and PERK-mediated phosphorylation of eIF2α and IκB. The second experiment showed that fish oil inhibits ER stress-induced UPR in the liver of lactating sows. This was demonstrated by decreased mRNA levels of a number of UPR-regulated genes and reduced phosphorylation of PERK and PERK-mediated phosphorylation of eIF2α and IκB in the liver of the fish oil group. The mRNA levels of various nuclear factor-κB-regulated genes encoding inflammatory mediators and acute phase proteins in the liver of lactating sows were also reduced in the fish oil group. In line with this, the plasma levels of acute phase proteins were reduced in the fish oil group, although differences to the control group were not significant. In conclusion, ER stress-induced UPR is present in the liver of lactating sows and fish oil is able to inhibit inflammatory signaling pathways and ER stress-induced UPR in the liver. PMID:26351857

  17. Dietary Fish Oil Inhibits Pro-Inflammatory and ER Stress Signalling Pathways in the Liver of Sows during Lactation.

    PubMed

    Gessner, Denise K; Gröne, Birthe; Couturier, Aline; Rosenbaum, Susann; Hillen, Sonja; Becker, Sabrina; Erhardt, Georg; Reiner, Gerald; Ringseis, Robert; Eder, Klaus

    2015-01-01

    Lactating sows have been shown to develop typical signs of an inflammatory condition in the liver during the transition from pregnancy to lactation. Hepatic inflammation is considered critical due to the induction of an acute phase response and the activation of stress signaling pathways like the endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR), both of which impair animal's health and performance. Whether ER stress-induced UPR is also activated in the liver of lactating sows and whether dietary fish oil as a source of anti-inflammatory effects n-3 PUFA is able to attenuate hepatic inflammation and ER stress-induced UPR in the liver of sows is currently unknown. Based on this, two experiments with lactating sows were performed. The first experiment revealed that ER stress-induced UPR occurs also in the liver of sows during lactation. This was evident from the up-regulation of a set of genes regulated by the UPR and numerically increased phosphorylation of the ER stress-transducer PERK and PERK-mediated phosphorylation of eIF2α and IκB. The second experiment showed that fish oil inhibits ER stress-induced UPR in the liver of lactating sows. This was demonstrated by decreased mRNA levels of a number of UPR-regulated genes and reduced phosphorylation of PERK and PERK-mediated phosphorylation of eIF2α and IκB in the liver of the fish oil group. The mRNA levels of various nuclear factor-κB-regulated genes encoding inflammatory mediators and acute phase proteins in the liver of lactating sows were also reduced in the fish oil group. In line with this, the plasma levels of acute phase proteins were reduced in the fish oil group, although differences to the control group were not significant. In conclusion, ER stress-induced UPR is present in the liver of lactating sows and fish oil is able to inhibit inflammatory signaling pathways and ER stress-induced UPR in the liver.

  18. The oxytocin receptor antagonist, Atosiban, activates pro-inflammatory pathways in human amnion via G(αi) signalling.

    PubMed

    Kim, Sung Hye; MacIntyre, David A; Hanyaloglu, Aylin C; Blanks, Andrew M; Thornton, Steven; Bennett, Phillip R; Terzidou, Vasso

    2016-01-15

    Oxytocin (OT) plays an important role in the onset of human labour by stimulating uterine contractions and promoting prostaglandin/inflammatory cytokine synthesis in amnion via oxytocin receptor (OTR) coupling. The OTR-antagonist, Atosiban, is widely used as a tocolytic for the management of acute preterm labour. We found that in primary human amniocytes, Atosiban (10 μM) signals via PTX-sensitive Gαi to activate transcription factor NF-κB p65, ERK1/2, and p38 which subsequently drives upregulation of the prostaglandin synthesis enzymes, COX-2 and phospho-cPLA2 and excretion of prostaglandins (PGE2) (n = 6; p < 0.05, ANOVA). Moreover, Atosiban treatment increased expression and excretion of the inflammatory cytokines, IL-6 and CCL5. We also showed that OT-simulated activation of NF-κB, ERK1/2, and p38 and subsequent prostaglandin and inflammatory cytokine synthesis is via Gαi-2 and Gαi-3 but not Gαq, and is not inhibited by Atosiban. Activation or exacerbation of inflammation is not a desirable effect of tocolytics. Therefore therapeutic modulation of the OT/OTR system for clinical management of term/preterm labour should consider the effects of differential G-protein coupling of the OTR and the role of OT or selective OTR agonists/antagonists in activating proinflammatory pathways.

  19. Progressive Obesity Alters Ovarian Folliculogenesis with Impacts on Pro-Inflammatory and Steroidogenic Signaling in Female Mice1

    PubMed Central

    Nteeba, Jackson; Ganesan, Shanthi; Keating, Aileen F.

    2014-01-01

    ABSTRACT Diet-induced obesity induces immune cell infiltration and inflammation in peri-ovarian adipose tissue and mRNA expression of inflammatory markers in ovarian tissue. Whether these changes are associated with obesity-related ovarian dysfunction remains unknown. In the present study, qRT-PCR and Western blotting techniques were used to compare mRNA and protein abundance of ovarian immune cell and inflammation markers, along with NF-kappaB and steroidogenic pathway members in normal wild-type non-agouti (a/a; lean) and lethal yellow mice (KK.CG-Ay/J; obese) at 6, 12, 18, or 24 wk of age. Our data revealed that, beginning at 12 wk of age, NF-kappaB inflammatory signaling members were elevated (P < 0.05) in obese females. Interestingly obesity had opposing and temporal effects on the steroidogenic enzyme pathway. Obesity decreased (P < 0.05) STAR protein at 12, 18, and 24 wk of age. CYP11A1 and CYP19A1 proteins were increased (P < 0.05) at 12 wk but were decreased (P < 0.05) at 18 and 24 wk. Interestingly, CYP19A1 was increased in lethal yellow mouse ovaries at 6 wk of age, potentially indicating early puberty onset. These data demonstrate that obesity alters expression of ovarian inflammatory and steroidogenic pathway genes in ways which could adversely affect ovarian function. PMID:25143355

  20. Identification of a novel human MD-2 splice variant that negatively regulates LPS-induced Toll-like receptor 4 signaling

    PubMed Central

    Gray, Pearl; Michelsen, Kathrin S.; Sirois, Cherilyn M.; Lowe, Emily; Shimada, Kenichi; Crother, Timothy R.; Chen, Shuang; Brikos, Constantinos; Bulut, Yonca; Latz, Eicke; Underhill, David; Arditi, Moshe

    2011-01-01

    Myeloid differentiation factor 2 (MD-2) is a secreted glycoprotein that assembles with Toll-like receptor 4 (TLR4) to form a functional signaling receptor for bacterial lipopolysaccharide (LPS). In this study we have identified a novel alternatively spliced isoform of human MD-2, termed MD-2 short (MD-2s), which lacks the region encoded by exon 2 of the MD-2 gene. Similar to MD-2, MD-2s is glycosylated and secreted. MD-2s also interacted with LPS and TLR4, but failed to mediate LPS-induced NF-κB activation and interleukin-8 production. We show that MD-2s is upregulated upon IFN-γ, IL-6 and TLR stimulation and negatively regulates LPS-mediated TLR4 signaling. Furthermore, MD-2s competitively inhibited binding of MD-2 to TLR4. Our study therefore pinpoints a mechanism that may be employed to regulate TLR4 activation at the onset of signaling and identifies MD-2s as a potential therapeutic candidate to treat human diseases characterized by an overly exuberant or chronic immune response to LPS. PMID:20435923

  1. Epigenetic regulation of pro-inflammatory cytokine secretion by sphingosine 1-phosphate (S1P) in acute lung injury: Role of S1P lyase.

    PubMed

    Ebenezer, David L; Fu, Panfeng; Suryadevara, Vidyani; Zhao, Yutong; Natarajan, Viswanathan

    2017-01-01

    Cellular level of sphingosine-1-phosphate (S1P), the simplest bioactive sphingolipid, is tightly regulated by its synthesis catalyzed by sphingosine kinases (SphKs) 1 & 2 and degradation mediated by S1P phosphatases, lipid phosphate phosphatases, and S1P lyase. The pleotropic actions of S1P are attributed to its unique inside-out (extracellular) signaling via G-protein-coupled S1P1-5 receptors, and intracellular receptor independent signaling. Additionally, S1P generated in the nucleus by nuclear SphK2 modulates HDAC1/2 activity, regulates histone acetylation, and transcription of pro-inflammatory genes. Here, we present data on the role of S1P lyase mediated S1P signaling in regulating LPS-induced inflammation in lung endothelium. Blocking S1P lyase expression or activity attenuated LPS-induced histone acetylation and secretion of pro-inflammatory cytokines. Degradation of S1P by S1P lyase generates Δ2-hexadecenal and ethanolamine phosphate and the long-chain fatty aldehyde produced in the cytoplasmic compartment of the endothelial cell seems to modulate histone acetylation pattern, which is different from the nuclear SphK2/S1P signaling and inhibition of HDAC1/2. These in vitro studies suggest that S1P derived long-chain fatty aldehyde may be an epigenetic regulator of pro-inflammatory genes in sepsis-induced lung inflammation. Trapping fatty aldehydes and other short chain aldehydes such as 4-hydroxynonenal derived from S1P degradation and lipid peroxidation, respectively by cell permeable agents such as phloretin or other aldehyde trapping agents may be useful in treating sepsis-induced lung inflammation via modulation of histone acetylation. .

  2. Bovine dialyzable leukocyte extract protects against LPS-induced, murine endotoxic shock.

    PubMed

    Franco-Molina, Moisés A; Mendoza-Gamboa, Edgar; Castillo-León, Leonardo; Tamez-Guerra, Reyes S; Rodríguez-Padilla, Cristina

    2004-12-15

    The pathophysiology of endotoxic shock is characterized by the activation of multiple pro-inflammatory genes and their products which initiate the inflammatory process. Endotoxic shock is a serious condition with high mortality. Bovine dialyzable leukocyte extract (bDLE) is a dialyzate of a heterogeneous mixture of low molecular weight substances released from disintegrated leukocytes of the blood or lymphoid tissue obtained from homogenized bovine spleen. bDLE is clinically effective for a broad spectrum of diseases. To determine whether bDLE improves survival and modulates the expression of pro-inflammatory cytokine genes in LPS-induced, murine endotoxic shock, Balb/C mice were treated with bDLE (1 U) after pretreatment with LPS (17 mg/kg). The bDLE improved survival (90%), suppressed IL-10 and IL-6, and decreased IL-1beta, TNF-alpha, and IL-12p40 mRNA expression; and decreased the production of IL-10 (P<0.01), TNF-alpha (P<0.01), and IL-6 (P<0.01) in LPS-induced, murine endotoxic shock. Our results demonstrate that bDLE leads to improved survival in LPS-induced endotoxic shock in mice, modulating the pro-inflammatory cytokine gene expression, suggesting that bDLE is an effective therapeutic agent for inflammatory illnesses associated with an unbalanced expression of pro-inflammatory cytokine genes such as in endotoxic shock, rheumatic arthritis and other diseases.

  3. α-Chaconine isolated from a Solanum tuberosum L. cv Jayoung suppresses lipopolysaccharide-induced pro-inflammatory mediators via AP-1 inactivation in RAW 264.7 macrophages and protects mice from endotoxin shock.

    PubMed

    Lee, Kyoung-Goo; Lee, Suel-Gie; Lee, Hwi-Ho; Lee, Hae Jun; Shin, Ji-Sun; Kim, Nan-Jung; An, Hyo-Jin; Nam, Jung-Hwan; Jang, Dae Sik; Lee, Kyung-Tae

    2015-06-25

    In this study, we investigated the molecular mechanisms underlying the anti-inflammatory effects of α-chaconine in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages and in LPS-induced septic mice. α-Chaconine inhibited the expressions of cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) at the transcriptional level, and attenuated the transcriptional activity of activator protein-1 (AP-1) by reducing the translocation and phosphorylation of c-Jun. α-Chaconine also suppressed the phosphorylation of TGF-β-activated kinase-1 (TAK1), which lies upstream of mitogen-activated protein kinase kinase 7 (MKK7)/Jun N-terminal kinase (JNK) signaling. JNK knockdown using siRNA prevented the α-chaconine-mediated inhibition of pro-inflammatory mediators. In a sepsis model, pretreatment with α-chaconine reduced the LPS-induced lethality and the mRNA and production levels of pro-inflammatory mediators by inhibiting c-Jun activation. These results suggest that the anti-inflammatory effects of α-chaconine are associated with the suppression of AP-1, and support its possible therapeutic role for the treatment of sepsis.

  4. Distinctive pro-inflammatory gene signatures induced in articular chondrocytes by oncostatin M and IL-6 are regulated by Suppressor of Cytokine Signaling-3.

    PubMed

    Liu, X; Liu, R; Croker, B A; Lawlor, K E; Smyth, G K; Wicks, I P

    2015-10-01

    To describe gene expression in murine chondrocytes stimulated with IL-6 family cytokines and the impact of deleting Suppressor of Cytokine Signaling-3 (SOCS-3) in this cell type. Primary chondrocytes were isolated from wild type and SOCS-3-deficient (Socs3(Δ/Δcol2)) mice and stimulated with oncostatin M (OSM), IL-6 plus the soluble IL-6 receptor (IL-6/sIL-6R), IL-11 or leukemia inhibitory factor (LIF) for 4 h. Total RNA was extracted and gene expression was evaluated by microarray analysis. Validation of the microarray results was performed using Taqman probes on RNA derived from chondrocytes stimulated for 1, 2, 4 or 8 h. Gene ontology was characterized using DAVID (database for annotation, visualization and integrated discovery). Multiple genes, including Bcl3, Junb, Tgm1, Angptl4 and Lrg1, were upregulated in chondrocytes stimulated with each gp130 cytokine. The gene transcription profile in response to OSM stimulation was pro-inflammatory and was highly correlated to IL-6/sIL-6R, rather than IL-11 or LIF. In the absence of SOCS-3, OSM and IL-6/sIL-6R stimulation induced an interferon (IFN)-like gene signature, including expression of IL-31ra and S100a9. While each gp130 cytokine induced a transcriptional response in chondrocytes, OSM- and IL-6/sIL-6R were the most potent members of this cytokine family. SOCS-3 plays an important regulatory role in this cell type, as it does in hematopoietic cells. Our results provide new insights into a hierarchy of gp130-induced transcriptional responses in chondrocytes that is normally restrained by SOCS-3 and suggest therapeutic inhibition of OSM may have benefit over and above antagonism of IL-6 during inflammatory arthritis. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  5. Sweet potato [Ipomoea batatas (L.) Lam. "Tainong 57"] starch improves insulin sensitivity in high-fructose diet-fed rats by ameliorating adipocytokine levels, pro-inflammatory status, and insulin signaling.

    PubMed

    Chen, Ya-Yen; Lai, Ming-Hoang; Hung, Hsin-Yu; Liu, Jen-Fang

    2013-01-01

    The aim of this study was to investigate the effects of low-glycemic index (GI) sweet potato starch on adipocytokines, pro-inflammatory status, and insulin signaling in the high-fructose diet-induced insulin-resistant rat. We randomly divided 24 insulin-resistant rats and 16 normal rats into two groups fed a diet containing 575 g/kg of starch: a low-GI sweet potato starch (S) or a high-GI potato starch (P). The four experimental groups were labeled as follows: insulin-resistant P (IR-P), insulin-resistant S (IR-S), normal P (N-P) and normal S (N-S). After 4 wk on the experimental diets, an intraperitoneal glucose tolerance test (IPGTT) was conducted, and the homeostasis model assessment (HOMA), adipocytokines, pro-inflammatory cytokines levels, and insulin signaling-related protein expression were measured. The homeostasis model assessment values were significantly lower in the IR-S than in the IR-P group, suggesting that insulin sensitivity was improved among sweet potato starch-fed rats. Levels of tumor necrosis factor-α, interleukin-6, resistin, and retinol binding protein-4 were significantly lower in the IR-S versus the IR-P group, indicating an improvement of pro-inflammatory status in sweet potato starch-fed rats. The sweet potato starch diet also significantly enhanced the protein expression of phospho-Tyr-insulin receptor substrate-1 and improved the translocation of glucose transporter 4 in the skeletal muscle. Our results illustrated that sweet potato starch feeding for 4 wk can improve insulin sensitivity in insulin-resistant rats, possibly by improving the adipocytokine levels, pro-inflammatory status, and insulin signaling.

  6. Berberine suppresses LPS-induced inflammation through modulating Sirt1/NF-κB signaling pathway in RAW264.7 cells.

    PubMed

    Zhang, Hao; Shan, Yun; Wu, Yun; Xu, Chuanchong; Yu, Xizhong; Zhao, Juan; Yan, Jing; Shang, Wenbin

    2017-09-07

    Chronic inflammation is a major contributing factor in the pathogenesis of many diseases. Natural product berberine (BBR) exhibits potent anti-inflammatory effect in vitro and in vivo, while the underlying mechanisms remain elusive. Sirt1, a NAD(+)-dependent protein deacetylase, was recently found to play an important role in modulating the development and progression of inflammation. Thus, we speculate that Sirt1 might mediate the inhibitory effect of BBR on inflammation. In LPS-stimulated RAW264.7 macrophages, BBR treatment significantly downregulated the expression of proinflammatory cytokines such as MCP-1, IL-6 and TNF-α. Importantly, BBR potently reversed LPS-induced down-regulation of Sirt1. Consistently, the inhibitory effects of BBR on proinflammatory cytokines expression was largely abrogated by Sirt1 inhibition either by EX527, a Sirt1 inhibitor or Sirt1 siRNA. Further mechanistic studies revealed that BBR-induced inhibition of NF-κB is Sirt1-dependent, as either pharmacologically or genetically inactivating Sirt1 enhanced the IκΒα degradation, IKK phosphorylation, NF-κB p65 acetylation and DNA-binding activity. Taken together, our results provide the first evidence that BBR potently suppressed inflammatory responses in macrophages through inhibition of NF-κB signaling via Sirt1-dependent mechanisms. Copyright © 2017. Published by Elsevier B.V.

  7. Fasudil inhibits LPS-induced migration of retinal microglial cells via regulating p38-MAPK signaling pathway

    PubMed Central

    Xu, Fan; Xu, Yue; Zhu, Liqiong; Rao, Pinhong; Wen, Jiamin; Sang, Yunyun; Shang, Fu

    2016-01-01

    Purpose To investigate the effect and possible molecular mechanisms of fasudil on retinal microglial (RMG) cell migration. Methods Primary cultured RMG cells were incubated with lipopolysaccharide (LPS), fasudil, and/or SB203580 (a p38 inhibitor). RMG cell motility was determined with the scratch wound assay and the Transwell migration assay. The phosphorylation of p38 and levels of matrix metalloproteinase 2 (MMP-2) and MMP-9 were measured with western blot. Results In the scratch-induced migration assay, as well as in the Transwell migration assay, the results indicated that LPS stimulated the migratory potential of RMG cells and fasudil significantly reduced LPS-stimulated RMG cell migration in a concentration-dependent manner. However, fasudil had no effect on RMG cell migration in the absence of LPS stimulation. Moreover, fasudil reduced the level of phosphor-p38 mitogen-activated protein kinase (p-p38-MAPK) in a concentration-dependent manner, without effects on the levels of phospho-p44/42 (p-ERK1/2) and phospho-c-Jun N-terminal kinase (p-JNK). Cotreatment with SB203580 (a p38 inhibitor) and fasudil resulted in the synergistic reduction of MMP-2, MMP-9, and p-p38-MAPK, as well as a reduction in the LPS-stimulated migration capabilities of the RMG cells, suggesting fasudil suppresses the LPS-stimulated migration of RMG cells via directly downregulating the p38-MAPK signaling pathway. Conclusions Our studies indicated that fasudil inhibited LPS-stimulated RMG cell migration via suppression of the p38-MAPK signaling pathway. PMID:27441000

  8. Calorie restriction attenuates LPS-induced sickness behavior and shifts hypothalamic signaling pathways to an anti-inflammatory bias.

    PubMed

    MacDonald, Leah; Radler, Morgan; Paolini, Antonio G; Kent, Stephen

    2011-07-01

    Calorie restriction (CR) has been demonstrated to alter cytokine levels; however, its potential to modify sickness behavior (fever, anorexia, cachexia) has not. The effect of CR on sickness behavior was examined in male C57BL/6J mice fed ad libitum or restricted 25% (CR25%) or restricted 50% (CR50%) in food intake for 28 days and injected with 50 μg/kg of LPS on day 29. Changes in body temperature, locomotor activity, body weight, and food intake were determined. A separate cohort of mice were fed ad libitum or CR50% for 28 days, and hypothalamic mRNA expression of inhibitory factor κB-α (IκB-α), cyclooxygenase-2 (COX-2), prostaglandin E(2) (PGE(2)), suppressor of cytokine signaling 3 (SOCS3), IL-10, neuropeptide Y (NPY), leptin, proopiomelanocortin (POMC), and corticotrophin-releasing hormone (CRH) were determined at 0, 2, and 4 h post-LPS. CR50% mice did not develop fevers, whereas the CR25% mice displayed a fever shorter in duration but with the same peak as the controls. Both CR25% and CR50% mice showed no sign of anorexia and reduced cachexia after LPS administration. Hypothalamic mRNA expression of NPY and CRH were both increased by severalfold in CR50% animals preinjection compared with controls. The CR50% mice did not demonstrate the expected rise in hypothalamic mRNA expression of COX-2, microsomal prostaglandin E synthase-1, POMC, or CRH 2 h post-LPS, and leptin expression was decreased at this time point. Increases in SOCS3, IL-10, and IκB-α expression in CR50% animals were enhanced compared with ad libitum-fed controls at 4 h post-LPS. CR results in a suppression of sickness behavior in a dose-dependent manner, which may be due to CR attenuating proinflammatory pathways and enhancing anti-inflammatory pathways.

  9. SIGNR1-mediated phagocytosis, but not SIGNR1-mediated endocytosis or cell adhesion, suppresses LPS-induced secretion of IL-6 from murine macrophages.

    PubMed

    Kawauchi, Yoko; Takagi, Hideaki; Hanafusa, Kei; Kono, Mirei; Yamatani, Minami; Kojima, Naoya

    2015-01-01

    C-type lectin receptors (CLRs) serve as phagocytosis receptors for pathogens and also function as adhesion molecules and in the recognition and endocytosis of glycosylated self-antigens. In the present study, we demonstrated that phagocytosis mediated by a mouse mannose-binding CLR, SIGNR1 significantly suppressed the LPS-induced secretion of the specific pro-inflammatory cytokines from the resident peritoneal macrophages and the mouse macrophage-like cells that express SIGNR1 (RAW-SIGNR1). LPS-induced secretion of IL-6 from peritoneal macrophages suppressed in response to uptake of oligomannose-coated liposomes (OMLs), and the suppression was partly inhibited by treatment with an anti-SIGNR1 antibody. LPS-induced secretion of IL-6 from RAW-SIGNR1 cells was also clearly inhibited by treatment of the cells with OMLs >0.4μm in diameter, but treatment with OMLs <0.4μm in diameter did not affect the IL-6 secretion. In contrast, LPS-induced TNF-α secretion from the cells was not affected on treatment of the cells with OMLs. Suppression of the IL-6 secretion was not observed following treatment with oligomannose-containing soluble polymers or when cells were bound to an oligomannose-coated solid phase. Phagocytosis of oligomannose-coated liposomes did not interfere with the transcription of IL-6 mRNA, but did affect IL-6 mRNA stability, leading to suppression of IL-6 secretion. Interestingly, treatment of the cells with Ly290042, a PI3 kinase inhibitor, partly blocked the suppression of LPS-induced secretion of IL-6 by OML. Thus, we conclude that SIGNR1-mediated phagocytosis but not SIGNR1-mediated endocytosis and cell adhesion, suppresses the TLR4-mediated production of specific proinflammatory cytokines via PI3 kinase signaling.

  10. Glutathione S-transferase pi modulates NF-κB activation and pro-inflammatory responses in lung epithelial cells

    PubMed Central

    Jones, Jane T.; Qian, Xi; van der Velden, Jos L.J.; Chia, Shi Biao; McMillan, David H.; Flemer, Stevenson; Hoffman, Sidra M.; Lahue, Karolyn G.; Schneider, Robert W.; Nolin, James D.; Anathy, Vikas; van der Vliet, Albert; Townsend, Danyelle M.; Tew, Kenneth D.; Janssen-Heininger, Yvonne M.W.

    2016-01-01

    Nuclear Factor kappa B (NF-κB) is a transcription factor family critical in the activation of pro- inflammatory responses. The NF-κB pathway is regulated by oxidant-induced post-translational modifications. Protein S-glutathionylation, or the conjugation of the antioxidant molecule, glutathione to reactive cysteines inhibits the activity of inhibitory kappa B kinase beta (IKKβ), among other NF-κB proteins. Glutathione S-transferase Pi (GSTP) is an enzyme that has been shown to catalyze protein S-glutathionylation (PSSG) under conditions of oxidative stress. The objective of the present study was to determine whether GSTP regulates NF-κB signaling, S-glutathionylation of IKK, and subsequent pro-inflammatory signaling. We demonstrated that, in unstimulated cells, GSTP associated with the inhibitor of NF-κB, IκBα. However, exposure to LPS resulted in a rapid loss of association between IκBα and GSTP, and instead led to a protracted association between IKKβ and GSTP. LPS exposure also led to increases in the S-glutathionylation of IKKβ. SiRNA-mediated knockdown of GSTP decreased IKKβ-SSG, and enhanced NF-κB nuclear translocation, transcriptional activity, and pro-inflammatory cytokine production in response to lipopolysaccharide (LPS). TLK117, an isotype-selective inhibitor of GSTP, also enhanced LPS-induced NF-κB transcriptional activity and pro-inflammatory cytokine production, suggesting that the catalytic activity of GSTP is important in repressing NF-κB activation. Expression of both wild-type and catalytically-inactive Y7F mutant GSTP significantly attenuated LPS- or IKKβ-induced production of GM-CSF. These studies indicate a complex role for GSTP in modulating NF-κB, which may involve S-glutathionylation of IKK proteins, and interaction with NF-κB family members. Our findings suggest that targeting GSTP is a potential avenue for regulating the activity of this prominent pro-inflammatory and immunomodulatory transcription factor. PMID:27058114

  11. IGF1 potentiates the pro-inflammatory response in human peripheral blood mononuclear cells via MAPK.

    PubMed

    Wolters, Thalijn Liliana Catharina; Netea, Mihai Gheorghe; Hermus, Adrianus Rudolfus Marinus Maria; Smit, Johannes Willem Adriaan; Netea-Maier, Romana Teodora

    2017-08-01

    Acromegaly is characterized by growth hormone (GH) and insulin-like growth factor 1 (IGF1) excess and is accompanied by an increased cardiovascular diseases (CVD) risk. As innate immune responses are crucial in CVD development, and IGF1 is linked to subclinical inflammation, we hypothesized that GH/IGF1 excess contributes to CVD development by potentiating systemic inflammation. We aimed to assess the effects of GH/IGF1 on inflammatory cytokine production. Whole blood from acromegaly patients and healthy volunteers and peripheral blood mononuclear cells (PBMCs) from healthy volunteers were stimulated with Toll-like receptor (TLR) ligands, with or without adding GH or IGF1 (in PBMC). Cytokine concentrations were measured by ELISA. The underlying signalling pathways were investigated by the inhibition of downstream targets of the IGF1 receptor. The following results were obtained. GH or IGF1 alone did not influence cytokine production in PBMCs. GH did not affect TLR-induced cytokine production, but co-stimulation with IGF1 dose dependently increased the TLR ligand-induced production of IL6 (P < 0.01), TNF alpha (P = 0.02) and IFNg (P < 0.01), as well as the production of the anti-inflammatory cytokine IL10 (P = 0.01). IGF1 had no effect on IL1B, IL17 and IL22 production. Inhibition of the MAPK pathway, but not mTOR, completely abrogated the synergistic effect of IGF1 on the LPS-induced IL6 and TNF alpha production. In whole blood of acromegaly patients, ex vivo IL6 production was increased (P < 0.01). In conclusion, IGF1, but not GH, has pro-inflammatory effects, probably via the MAPK signalling pathway and might be involved in the pathogenesis of atherosclerosis in acromegaly. The increased IL10 production possibly counteracts the pro-inflammatory effects. © 2017 Society for Endocrinology.

  12. Anti-inflammatory effect of a standardized triterpenoid-rich fraction isolated from Rubus coreanus on dextran sodium sulfate-induced acute colitis in mice and LPS-induced macrophages.

    PubMed

    Shin, Ji-Sun; Cho, Eu-Jin; Choi, Hye-Eun; Seo, Ji-Hyung; An, Hyo-Jin; Park, Hee-Juhn; Cho, Young-Wuk; Lee, Kyung-Tae

    2014-12-02

    Rubus coreanus Miquel (Rosaceae), the Korean black raspberry, has traditionally been used to treat inflammatory diseases including diarrhea, asthma, stomach ailment, and cancer. Although previous studies showed that the 19α-hydroxyursane-type triterpenoids isolated from Rubus coreanus exerted anti-inflammatory activities, their effects on ulcerative colitis and mode of action have not been explored. This study was designed to assess the anti-inflammatory effects and the molecular mechanisms involving19α-hydroxyursane-type triterpenoid-rich fraction from Rubus coreanus (TFRC) on a mice model of colitis and lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Experimental colitis was induced by DSS for 7 days in ICR mice. Disease activity indices (DAI) took into account body weight, stool consistency, and gross bleeding. Histological changes and macrophage accumulation were observed by immunohistochemical analysis. Pro-inflammatory markers were determined using immunoassays, RT-PCR, and real time PCR. Signaling pathway involving nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) activation was determined by luciferase assay and Western blotting. In DSS-induced colitis mice, TFRC improved DAIs and pathological characteristics including colon shortening and colonic epithelium injury. TFRC suppressed tissue levels of pro-inflammatory cytokines and reduced macrophage infiltration into colonic tissues. In LPS-induced RAW 264.7 macrophages, TFRC inhibited the production of NO, PGE2, and pro-inflammatory cytokines by down-regulating the activation of NF-κB and p38 MAPK signaling. The study demonstrates that TFRC has potent anti-inflammatory effects on DSS-induced colonic injury and LPS-induced macrophage activation, and supports its possible therapeutic and preventive roles in colitis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Mulberry fruit prevents LPS-induced NF-κB/pERK/MAPK signals in macrophages and suppresses acute colitis and colorectal tumorigenesis in mice

    PubMed Central

    Qian, Zhengjiang; Wu, Zhiqin; Huang, Lian; Qiu, Huiling; Wang, Liyan; Li, Li; Yao, Lijun; Kang, Kang; Qu, Junle; Wu, Yonghou; Luo, Jun; Liu, Johnson J.; Yang, Yi; Yang, Wancai; Gou, Deming

    2015-01-01

    Here, we investigated the impact of mulberry fruit (MBF) extracts on lipopolysaccharide (LPS)-induced inflammatory responses in RAW 264.7 macrophages, and the therapeutic efficacy of MBF diet in mice with dextran sulfate sodium (DSS)-induced acute colitis and MUC2−/− mice with colorectal cancer. In vitro, LPS-induced nitric oxide (NO) production was significantly inhibited by MBF extracts via suppressing the expression of proinflammatory molecules, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1 beta (IL-β) and IL-6. Particularly, a dose-dependent inhibition on LPS-induced inflammatory responses was observed following treatment with MBF dichloromethane extract (MBF-DE), in which linoleic acid and ethyl linolenate were identified as two active compounds. Moreover, we elucidated that MBF-DE attenuated LPS-induced inflammatory responses by blocking activation of both NF-κB/p65 and pERK/MAPK pathways. In vivo, DSS-induced acute colitis was significantly ameliorated in MBF-fed mice as gauged by weight loss, colon morphology and histological damage. In addition, MBF-fed MUC2−/− mice displayed significant decrease in intestinal tumor and inflammation incidence compared to control diet-fed group. Overall, our results demonstrated that MBF suppressed the development of intestinal inflammation and tumorgenesis both in vitro and in vivo, and supports the potential of MBF as a therapeutic functional food for testing in human clinical trials. PMID:26615818

  14. A minocycline derivative reduces nerve injury-induced allodynia, LPS-induced prostaglandin E2 microglial production and signaling via toll-like receptors 2 and 4.

    PubMed

    Bastos, Leandro F S; Godin, Adriana M; Zhang, Yingning; Jarussophon, Suwatchai; Ferreira, Bruno C S; Machado, Renes R; Maier, Steven F; Konishi, Yasuo; de Freitas, Rossimiriam P; Fiebich, Bernd L; Watkins, Linda R; Coelho, Márcio M; Moraes, Márcio F D

    2013-05-24

    Many studies have shown that minocycline, an antibacterial tetracycline, suppresses experimental pain. While minocycline's positive effects on pain resolution suggest that clinical use of such drugs may prove beneficial, minocycline's antibiotic actions and divalent cation (Ca(2+); Mg(2+)) chelating effects detract from its potential utility. Thus, we tested the antiallodynic effect induced by a non-antibacterial, non-chelating minocycline derivative in a model of neuropathic pain and performed an initial investigation of its anti-inflammatory effects in vitro. Intraperitoneal minocycline (100mg/kg) and 12S-hydroxy-1,12-pyrazolinominocycline (PMIN; 23.75 mg/kg, 47.50mg/kg or 95.00 mg/kg) reduce the mechanical allodynia induced by chronic constriction injury of mouse sciatic nerve. PMIN reduces the LPS-induced production of PGE2 by primary microglial cell cultures. Human embryonic kidney cells were transfected to express human toll-like receptors 2 and 4, and the signaling via both receptors stimulated with PAM3CSK4 or LPS (respectively) was affected either by minocycline or PMIN. Importantly, these treatments did not affect the cell viability, as assessed by MTT test. Altogether, these results reinforce the evidence that the anti-inflammatory and experimental pain suppressive effects induced by tetracyclines are neither necessarily linked to antibacterial nor to Ca(2+) chelating activities. This study supports the evaluation of the potential usefulness of PMIN in the management of neuropathic pain, as its lack of antibacterial and Ca(2+) chelating activities might confer greater safety over conventional tetracyclines.

  15. A minocycline derivative reduces nerve injury-induced allodynia, LPS-induced prostaglandin E2 microglial production and signaling via toll-like receptors 2 and 4

    PubMed Central

    Bastos, Leandro F. S.; Godin, Adriana M.; Zhang, Yingning; Jarussophon, Suwatchai; Ferreira, Bruno C. S.; Machado, Renes R.; Maier, Steven F.; Konishi, Yasuo; de Freitas, Rossimiriam P.; Fiebich, Bernd L.; Watkins, Linda R.; Coelho, Márcio M.; Moraes, Márcio F. D.

    2013-01-01

    Many studies have shown that minocycline, an antibacterial tetracycline, suppresses experimental pain. While minocycline’s positive effects on pain resolution suggest that clinical use of such drugs may prove beneficial, minocycline’s antibiotic actions and divalent cation (Ca2+; Mg2+) chelating effects detract from its potential utility. Thus, we tested the antiallodynic effect induced by a non-antibacterial, non-chelating minocycline derivative in a model of neuropathic pain and performed an initial investigation of its anti-inflammatory effects in vitro. Intraperitoneal minocycline (100 mg/kg) and 12S-hydroxy-1,12-pyrazolinominocycline (PMIN; 23.75, 47.50 or 95.00 mg/kg) reduce the mechanical allodynia induced by chronic constriction injury of mouse sciatic nerve. PMIN reduces the LPS-induced production of PGE2 by primary microglial cell cultures. Human embryonic kidney cells were transfected to express human toll-like receptors 2 and 4, and the signaling via both receptors stimulated with PAM3CSK4 or LPS (respectively) was affected either by minocycline or PMIN. Importantly, these treatments did not affect the cell viability, as assessed by MTT test. Altogether, these results reinforce the evidence that the anti-inflammatory and experimental pain suppressive effects induced by tetracyclines are neither necessarily linked to antibacterial nor to Ca2+ chelating activities. This study supports the evaluation of the potential usefulness of PMIN in the management of neuropathic pain, as its lack of antibacterial and Ca2+ chelating activities might confer greater safety over conventional tetracyclines. PMID:23523650

  16. The Pro-Inflammatory Cytokine, Interleukin-6, Enhances the Polarization of Alternatively Activated Macrophages

    PubMed Central

    Fernando, Maria Ruweka; Reyes, Jose Luis; Iannuzzi, Jordan; Leung, Gabriella; McKay, Derek Mark

    2014-01-01

    Macrophages are important innate immune cells that are associated with two distinct phenotypes: a pro-inflammatory (or classically activated) subset with prototypic macrophage functions such as inflammatory cytokine production and bactericidal activity, and an anti-inflammatory (or alternatively activated (AAM)) subset linked with wound healing and tissue repair processes. In this study, we examined the effect of interlukein-6 on human and murine macrophage polarization. The results indicate that despite being commonly associated with pro-inflammatory functions and being implicated in the pathogenesis/pathophysiology of numerous inflammatory diseases, interleukin-6 can enhance the polarization of AAMs, based on increased expression of hallmark markers: arginase-1, Ym1 and CD206; this effect required the AAM differentiating cytokines, IL-4 and IL-13. Co-treatment of AAMs with IL-6 resulted in spontaneous release of IL-10, suppressed LPS-induced nitric oxide production and inhibited cytokine production by activated CD4+ T cells – immunoregulatory features not observed in the ‘parent’ IL-4+IL-13-induced AAM. The effect of IL-6 required signal transducer and activator of transcription (STAT)-3, was partially dependent on up-regulation of the IL4Rα chain, and was independent of autocrine IL-10. In the presence of IFNγ, IL-6 promoted the production of IL-1β and TNFα suggesting that this cytokine can enhance the phenotype to which a macrophage has committed. This finding may explain the pleiotrophic nature of IL-6, where it is associated with the perpetuation and enhancement of disease in inflammatory situations, but is also necessary for resolution of inflammation and adequate wound healing to occur in others. Thus, the potential benefit of IL-6 in promoting an AAM, with its’ anti-inflammatory and wound healing ability, may need to be considered in immunotherapies aimed at in vivo modulation or inhibition of IL-6. PMID:24736635

  17. The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages.

    PubMed

    Fernando, Maria Ruweka; Reyes, Jose Luis; Iannuzzi, Jordan; Leung, Gabriella; McKay, Derek Mark

    2014-01-01

    Macrophages are important innate immune cells that are associated with two distinct phenotypes: a pro-inflammatory (or classically activated) subset with prototypic macrophage functions such as inflammatory cytokine production and bactericidal activity, and an anti-inflammatory (or alternatively activated (AAM)) subset linked with wound healing and tissue repair processes. In this study, we examined the effect of interlukein-6 on human and murine macrophage polarization. The results indicate that despite being commonly associated with pro-inflammatory functions and being implicated in the pathogenesis/pathophysiology of numerous inflammatory diseases, interleukin-6 can enhance the polarization of AAMs, based on increased expression of hallmark markers: arginase-1, Ym1 and CD206; this effect required the AAM differentiating cytokines, IL-4 and IL-13. Co-treatment of AAMs with IL-6 resulted in spontaneous release of IL-10, suppressed LPS-induced nitric oxide production and inhibited cytokine production by activated CD4+ T cells - immunoregulatory features not observed in the 'parent' IL-4+IL-13-induced AAM. The effect of IL-6 required signal transducer and activator of transcription (STAT)-3, was partially dependent on up-regulation of the IL4Rα chain, and was independent of autocrine IL-10. In the presence of IFNγ, IL-6 promoted the production of IL-1β and TNFα suggesting that this cytokine can enhance the phenotype to which a macrophage has committed. This finding may explain the pleiotrophic nature of IL-6, where it is associated with the perpetuation and enhancement of disease in inflammatory situations, but is also necessary for resolution of inflammation and adequate wound healing to occur in others. Thus, the potential benefit of IL-6 in promoting an AAM, with its' anti-inflammatory and wound healing ability, may need to be considered in immunotherapies aimed at in vivo modulation or inhibition of IL-6.

  18. Brazilein Suppresses Inflammation through Inactivation of IRAK4-NF-κB Pathway in LPS-Induced Raw264.7 Macrophage Cells

    PubMed Central

    Kim, Kui-Jin; Yoon, Kye-Yoon; Yoon, Hyung-Sun; Oh, Sei-Ryang; Lee, Boo-Yong

    2015-01-01

    The medicinal herbal plant has been commonly used for prevention and intervention of disease and health promotions worldwide. Brazilein is a bioactive compound extracted from Caesalpinia sappan Linn. Several studies have showed that brazilein exhibited the immune suppressive effect and anti-oxidative function. However, the molecular targets of brazilein for inflammation prevention have remained elusive. Here, we investigated the mechanism underlying the inhibitory effect of brazilein on LPS-induced inflammatory response in Raw264.7 macrophage cells. We demonstrated that brazilein decreased the expression of IRAK4 protein led to the suppression of MAPK signaling and IKKβ, and subsequent inactivation of NF-κB and COX2 thus promoting the expression of the downstream target pro-inflammatory cytokines such as IL-1β, MCP-1, MIP-2, and IL-6 in LPS-induced Raw264.7 macrophage cells. Moreover, we observed that brazilein reduced the production of nitrite compared to the control in LPS-induced Raw264.7. Thus, we suggest that brazilein might be a useful bioactive compound for the prevention of IRAK-NF-κB pathway associated chronic diseases. PMID:26593910

  19. α-Solanine Isolated From Solanum Tuberosum L. cv Jayoung Abrogates LPS-Induced Inflammatory Responses Via NF-κB Inactivation in RAW 264.7 Macrophages and Endotoxin-Induced Shock Model in Mice.

    PubMed

    Shin, Ji-Sun; Lee, Kyoung-Goo; Lee, Hwi-Ho; Lee, Hae Jun; An, Hyo-Jin; Nam, Jung-Hwan; Jang, Dae Sik; Lee, Kyung-Tae

    2016-10-01

    α-Solanine, a trisaccharide glycoalkaloid, has been reported to possess anti-cancer effects. In this study, we investigated the anti-inflammatory effects of α-solanine isolated from "Jayoung" a dark purple-fleshed potato by examining its in vitro inhibitory effects on inducible nitric-oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines in LPS-induced RAW 264.7 macrophages and its in vivo effects on LPS-induced septic shock in a mouse model. α-Solanine suppressed the expression of iNOS and COX-2 both at protein and mRNA levels and consequently inhibited nitric oxide (NO) and prostaglandin E2 (PGE2 ) production in LPS-induced RAW 264.7 macrophages. α-Solanine also reduced the production and mRNA expression of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) induced by LPS. Furthermore, molecular mechanism studies indicated that α-solanine inhibited LPS-induced activation of nuclear factor-κB (NF-κB) by reducing nuclear translocation of p65, degradation of inhibitory κBα (IκBα), and phosphorylation of IκB kinaseα/β (IKKα/β). In an in vivo experiment of LPS-induced endotoxemia, treatment with α-solanine suppressed mRNA expressions of iNOS, COX-2, IL-6, TNF-α, and IL-1β, and the activation of NF-κB in liver. Importantly, α-solanine increased the survival rate of mice in LPS-induced endotoxemia and polymicrobial sepsis models. Taken together, our data suggest that the α-solanine may be a promising therapeutic against inflammatory diseases by inhibiting the NF-κB signaling pathway. J. Cell. Biochem. 117: 2327-2339, 2016. © 2016 Wiley Periodicals, Inc.

  20. Mangiferin inhibits mastitis induced by LPS via suppressing NF-ĸB and NLRP3 signaling pathways.

    PubMed

    Qu, Shihui; Wang, Wenqing; Li, Depeng; Li, Shumin; Zhang, Like; Fu, Yunhe; Zhang, Naisheng

    2017-02-01

    During the past era, small molecules derived from various plants have attracted extensive attention for their versatile medicinal benefits. Among these, one organic molecule called mangiferin from certain plant species including mangoes and honey bush tea is widely used in treating inflammation. In this study, a LPS-induced mastitis model in mouse is established to investigate the anti-inflammatory effects and mechanism of mangiferin. The result shows that mangiferin significantly alleviates LPS-induced histopathology, meanwhile, also decreases LPS-induced MPO activity. Furthermore, mangiferin treatment remarkably impeded the expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. In addition, mangiferin was found to inhibit LPS-induced NF-ĸB and NLRP3 inflammasome activation. In conclusion, these results suggested that LPS-induced mastitis can be abated by mangiferin through inhibiting NF-ĸB and NLRP3 signaling pathways. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Sulforaphane suppresses LPS-induced or TPA-induced downregulation of PDCD4 in RAW 264.7 cells.

    PubMed

    Cho, Jong-Ho; Kim, Young-Woo; Keum, Young-Sam

    2014-11-01

    Sulforaphane is a natural chemopreventive isothiocyanate and abundantly found in various cruciferous vegetables. Although chemopreventive activity of sulforaphane is well documented, the detailed biochemical mechanism(s), underlying how it regulates the protein translation process to antagonize pro-inflammatory responses are largely unclear. In the present study, we show that lipopolysaccharide (LPS) or 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment reduces cellular levels of PDCD4, and this event is mediated by affecting both transcription and proteolysis in RAW 264.7 cells. We show that LPS-mediated or TPA-mediated PDCD4 downregulation is catalyzed by the activation of intracellular Akt1 or S6K1 kinases and that sulforaphane suppresses LPS-induced or TPA-induced Akt1 or S6K1 activation, thereby resulting in the attenuation of PDCD4 downregulation in RAW 264.7 cells. We propose that sulforaphane suppression of PDCD4 downregulation serves as a novel molecular mechanism to control proliferation in response to pro-inflammatory signals. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Minocycline ameliorates LPS-induced inflammation in human monocytes by novel mechanisms including LOX-1, Nur77 and LITAF inhibition

    PubMed Central

    Pang, Tao; Wang, Juan; Benicky, Julius; Saavedra, Juan M.

    2012-01-01

    Background Minocycline exhibits anti-inflammatory properties independent of its antibiotic activity, ameliorating inflammatory responses in monocytes and macrophages. However, the mechanisms of minocycline anti-inflammatory effects are only partially understood. Methods Human circulating monocytes were cultured in the presence of lipopolysaccharide (LPS), 50 ng/ml, and minocycline (10–40 µM). Gene expression was determined by RT-PCR, cytokine and prostaglandin E2 (PGE2) release by ELISA, protein expression, phosphorylation and nuclear translocation by Western blotting. Results Minocycline significantly reduced the inflammatory response in LPS-challenged monocytes, decreasing LPS-induced transcription of pro-inflammatory tumor-necrosis factor alpha (TNF-α), interleukin-1 beta, interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2), and the LPS-stimulated TNF-α, IL-6 and PGE2 release. Minocycline inhibited LPS-induced activation of the lectin-like oxidized low density lipoprotein receptor-1 (LOX-1), NF-κB, LPS-induced TNF-α factor (LITAF) and the Nur77 nuclear receptor. Mechanisms involved in the anti-inflammatory effects of minocycline include a reduction of LPS-stimulated p38 mitogen-activated protein kinase (p38 MAPK) activation and stimulation of the phosphoinositide 3-kinase (PI3K)/Akt pathway. Conclusions We provide novel evidence demonstrating that the anti-inflammatory effects of minocycline in human monocytes include, in addition to decreased NF-κB activation, abrogation of the LPS-stimulated LOX-1, LITAF, Nur77 pathways, p38 MAPK inhibition and PI3K/Akt activation. Our results reveal that minocycline inhibits points of convergence of distinct and interacting signaling pathways mediating multiple inflammatory signals which may influence monocyte activation, traffic and recruitment into the brain. General significance Our results in primary human monocytes contribute to explain the profound anti-inflammatory and protective effects of minocycline in

  3. Apigenin-7-O-β-D-glucuronide inhibits LPS-induced inflammation through the inactivation of AP-1 and MAPK signaling pathways in RAW 264.7 macrophages and protects mice against endotoxin shock.

    PubMed

    Hu, Weicheng; Wang, Xinfeng; Wu, Lei; Shen, Ting; Ji, Lilian; Zhao, Xihong; Si, Chuan-Ling; Jiang, Yunyao; Wang, Gongcheng

    2016-02-01

    Apigenin-7-O-β-D-glucuronide (AG), an active flavonoid derivative isolated from the agricultural residue of Juglans sigillata fruit husks, possesses multiple pharmacological activities, including anti-oxidant, anti-complement, and aldose reductase inhibitory activities. To date, no report has identified the anti-inflammatory mechanisms of AG. This study was therefore designed to characterize the molecular mechanisms of AG on lipopolysaccharide (LPS)-induced inflammatory cytokines in RAW 264.7 cells and on endotoxin-induced shock in mice. AG suppressed the release of nitric oxide (NO), prostaglandin E2 (PGE2), and tumour necrosis factor-α (TNF-α) in LPS-stimulated RAW 264.7 macrophages in a dose-dependent manner without affecting cell viability. Additionally, AG suppressed LPS-induced mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-α. AG treatment decreased the translocation of c-Jun into the nucleus, and decreased activator protein-1 (AP-1)-mediated luciferase activity through the inhibition of both p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) phosphorylation. Consistent with the in vitro observations, AG protected mice from LPS-induced endotoxin shock by inhibiting proinflammatory cytokine production. Taken together, these results suggest that AG may be used as a source of anti-inflammatory agents as well as a dietary complement for health promotion.

  4. Saponarin from barley sprouts inhibits NF-κB and MAPK on LPS-induced RAW 264.7 cells.

    PubMed

    Seo, Kyung Hye; Park, Mi Jin; Ra, Ji-Eun; Han, Sang-Ik; Nam, Min-Hee; Kim, Jin Hyo; Lee, Jin Hwan; Seo, Woo Duck

    2014-11-01

    Saponarin (SA), a natural flavonoid, is known for its antioxidant and hepatoprotective activities. SA is the predominant compound (1142.7 ± 0.9 mg per 100 g) in barley sprouts, constituting 72% of the total polyphenol content. We investigated, for the first time, the effects of SA from barley sprouts on cellular anti-inflammatory responses. In lipopolysaccharide (LPS)-induced RAW 264.7 macrophages, SA suppressed the activation of NF-κB, as evidenced by the inhibition of NF-κB DNA binding, nuclear translocation, IκBα phosphorylation, and reporter gene expression, and it downregulated the expression of the pro-inflammatory mediator IL-6. Furthermore, SA reduced the transcription of NF-κB target molecules COX2 and FLIP inhibited the phosphorylation of mitogen-activated protein kinases ERK and p38. These results suggest that SA isolated from barley sprouts exerts anti-inflammatory effects in LPS-induced RAW 264.7 macrophages via inhibition of NF-κB, ERK and p38 signaling. Thus, SA may be a promising natural anti-inflammatory agent.

  5. Licochalcone A Prevents the Loss of Dopaminergic Neurons by Inhibiting Microglial Activation in Lipopolysaccharide (LPS)-Induced Parkinson's Disease Models.

    PubMed

    Huang, Bingxu; Liu, Juxiong; Ju, Chen; Yang, Dongxue; Chen, Guangxin; Xu, Shiyao; Zeng, Yalong; Yan, Xuan; Wang, Wei; Liu, Dianfeng; Fu, Shoupeng

    2017-09-22

    The neuroprotective effects of Licochalcone A (Lico.A), a flavonoid isolated from the herb licorice, in Parkinson's disease (PD) have not been elucidated. The prominent pathological feature of PD is the loss of dopaminergic neurons. The crucial role of neuroinflammation induced by activated microglia in dopaminergic neurodegeneration has been validated. In this study, we explore the therapeutic effects of Lico.A in lipopolysaccharide (LPS)-induced PD models in vivo and in vitro. We find that Lico.A significantly inhibits LPS-stimulated production of pro-inflammatory mediators and microglial activation by blocking the phosphorylation of extracellular signal-regulated kinase (ERK1/2) and nuclear factor κB (NF-κB) p65 in BV-2 cells. In addition, through cultured primary mesencephalic neuron-glia cell experiments, we illustrate that Lico.A attenuates the decrease in [³H] dopamine (DA) uptake and the loss of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in LPS-induced PD models in vitro. Furthermore, LPS intoxication in rats results in microglial activation, dopaminergic neurodegeneration and significant behavioral deficits in vivo. Lico.A treatment prevents microglial activation and reduction of dopaminergic neuron and ameliorates PD-like behavioral impairments. Thus, these results demonstrate for the first time that the neuroprotective effects of Lico.A are associated with microglia and anti-inflammatory effects in PD models.

  6. Allium cepa L. and Quercetin Inhibit RANKL/Porphyromonas gingivalis LPS-Induced Osteoclastogenesis by Downregulating NF-κB Signaling Pathway.

    PubMed

    Oliveira, Tatiane; Figueiredo, Camila A; Brito, Carlos; Stavroullakis, Alexander; Ferreira, Ana Carolina; Nogueira-Filho, Getulio; Prakki, Anuradha

    2015-01-01

    Objectives. We evaluated the in vitro modulatory effects of Allium cepa L. extract (AcE) and quercetin (Qt) on osteoclastogenesis under inflammatory conditions (LPS-induced). Methods. RAW 264.7 cells were differentiated with 30 ng/mL of RANKL, costimulated with PgLPS (1 µg/mL), and treated with AcE (50-1000 µg/mL) or Qt (1.25, 2.5, or 5 µM). Cell viability was determined by alamarBlue and protein assays. Nuclei morphology was analysed by DAPI staining. TRAP assays were performed as follows: p-nitrophenyl phosphate was used to determine the acid phosphatase activity of the osteoclasts and TRAP staining was used to evaluate the number and size of TRAP-positive multinucleated osteoclast cells. Von Kossa staining was used to measure osteoclast resorptive activity. Cytokine levels were measured on osteoclast precursor cell culture supernatants. Using western blot analysis, p-IκBα and IκBα degradation, inhibitor of NF-kappaB, were evaluated. Results. Both AcE and Qt did not affect cell viability and significantly reduced osteoclastogenesis compared to control. We observed lower production of IL-6 and IL-1α and an increased production of IL-3 and IL-4. AcE and Qt downregulated NF-κB pathway. Conclusion. AcE and Qt may be inhibitors of osteoclastogenesis under inflammatory conditions (LPS-induced) via attenuation of RANKL/PgLPS-induced NF-κB activation.

  7. Allium cepa L. and Quercetin Inhibit RANKL/Porphyromonas gingivalis LPS-Induced Osteoclastogenesis by Downregulating NF-κB Signaling Pathway

    PubMed Central

    Oliveira, Tatiane; Figueiredo, Camila A.; Stavroullakis, Alexander; Ferreira, Ana Carolina; Nogueira-Filho, Getulio

    2015-01-01

    Objectives. We evaluated the in vitro modulatory effects of Allium cepa L. extract (AcE) and quercetin (Qt) on osteoclastogenesis under inflammatory conditions (LPS-induced). Methods. RAW 264.7 cells were differentiated with 30 ng/mL of RANKL, costimulated with PgLPS (1 µg/mL), and treated with AcE (50–1000 µg/mL) or Qt (1.25, 2.5, or 5 µM). Cell viability was determined by alamarBlue and protein assays. Nuclei morphology was analysed by DAPI staining. TRAP assays were performed as follows: p-nitrophenyl phosphate was used to determine the acid phosphatase activity of the osteoclasts and TRAP staining was used to evaluate the number and size of TRAP-positive multinucleated osteoclast cells. Von Kossa staining was used to measure osteoclast resorptive activity. Cytokine levels were measured on osteoclast precursor cell culture supernatants. Using western blot analysis, p-IκBα and IκBα degradation, inhibitor of NF-kappaB, were evaluated. Results. Both AcE and Qt did not affect cell viability and significantly reduced osteoclastogenesis compared to control. We observed lower production of IL-6 and IL-1α and an increased production of IL-3 and IL-4. AcE and Qt downregulated NF-κB pathway. Conclusion. AcE and Qt may be inhibitors of osteoclastogenesis under inflammatory conditions (LPS-induced) via attenuation of RANKL/PgLPS-induced NF-κB activation. PMID:26273314

  8. LPS-induced inflammatory response is suppressed by Wnt inhibitors, Dickkopf-1 and LGK974

    PubMed Central

    Jang, Jaewoong; Jung, Yoonju; Kim, Youngeun; Jho, Eek-hoon; Yoon, Yoosik

    2017-01-01

    In this study, LPS-induced inflammatory responses in BEAS-2B human bronchial epithelial cells and human umbilical vein endothelial cell (HUVEC)s were found to be prevented by Dickkopf-1 (DKK-1), a secreted Wnt antagonist, and LGK974, a small molecular inhibitor of the Wnt secretion. LPS-induced IκB degradation and NF-κB nuclear translocation as well as the expressions of pro-inflammatory genes including IL-6, IL-8, TNF- α, IL-1β, MCP-1, MMP-9, COX-2 and iNOS, were all suppressed by DKK-1 and LGK974 in a dose-dependent manner. The suppressive effects of LGK974 on NF-κB, IκB, and pro-inflammatory gene expression were rescued by ectopic expression of β-catenin, suggesting that the anti-inflammatory activity of LGK974 is mediated by modulation of the Wnt/β-catenin pathway and not by unrelated side effects. When Wnt recombinant proteins were treated to cells, Wnt3a and Wnt5a significantly induced pro-inflammatory gene expressions, while Wnt7a and Wnt10b showed little effects. It was also found that Wnt3a and Wnt5a expressions were significantly induced by LPS treatment. Consistently, knockdown of Wnt3a and Wnt5a blocked LPS-induced inflammatory responses, while treatment of recombinant Wnt3a and Wnt5a proteins rescued the inhibition of inflammatory responses by LGK974. Findings of this study showed that DKK-1 and LGK974 suppress LPS-induced inflammatory response by modulating Wnt/β-catenin pathway. PMID:28128299

  9. Nuclear factor-κB is a common upstream signal for growth differentiation factor-5 expression in brown adipocytes exposed to pro-inflammatory cytokines and palmitate

    SciTech Connect

    Hinoi, Eiichi; Iezaki, Takashi; Ozaki, Kakeru; Yoneda, Yukio

    2014-10-03

    Highlights: • GDF5 expression is up-regulated by IL-1β, TNF-α and palmitate in brown pre-adipocytes. • NF-κB stimulates promoter activity and expression of GDF5 in brown pre-adipocytes. • Recruitment of NF-κB to the GDF5 promoter is facilitated in BAT from ob/ob mice. • An NF-κB inhibitor prevents upregulation of GDF5 expression in brown pre-adipocytes. - Abstract: We have previously demonstrated that genetic and acquired obesity similarly led to drastic upregulation in brown adipose tissue (BAT), rather than white adipose tissue, of expression of both mRNA and corresponding protein for the bone morphogenic protein/growth differentiation factor (GDF) member GDF5 capable of promoting brown adipogenesis. In this study, we evaluated expression profiles of GDF5 in cultured murine brown pre-adipocytes exposed to pro-inflammatory cytokines and free fatty acids (FFAs), which are all shown to play a role in the pathogenesis of obesity. Both interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were effective in up-regulating GDF5 expression in a concentration-dependent manner, while similar upregulation was seen in cells exposed to the saturated FFA palmitate, but not to the unsaturated FFA oleate. In silico analysis revealed existence of the putative nuclear factor-κB (NF-κB) binding site in the 5′-flanking region of mouse GDF5, whereas introduction of NF-κB subunits drastically facilitated both promoter activity and expression of GDF5 in brown pre-adipocytes. Chromatin immunoprecipitation analysis confirmed significant facilitation of the recruitment of NF-κB to the GDF5 promoter in lysed extracts of BAT from leptin-deficient ob/ob obese mice. Upregulation o GDF5 expression was invariably inhibited by an NF-κB inhibitor in cultured brown pre-adipocytes exposed to IL-1β, TNF-α and palmitate. These results suggest that obesity leads to upregulation of GDF5 expression responsible for the promotion of brown adipogenesis through a mechanism

  10. Necroptosis suppresses inflammation via termination of TNF- or LPS-induced cytokine and chemokine production.

    PubMed

    Kearney, C J; Cullen, S P; Tynan, G A; Henry, C M; Clancy, D; Lavelle, E C; Martin, S J

    2015-08-01

    TNF promotes a regulated form of necrosis, called necroptosis, upon inhibition of caspase activity in cells expressing RIPK3. Because necrosis is generally more pro-inflammatory than apoptosis, it is widely presumed that TNF-induced necroptosis may be detrimental in vivo due to excessive inflammation. However, because TNF is intrinsically highly pro-inflammatory, due to its ability to trigger the production of multiple cytokines and chemokines, rapid cell death via necroptosis may blunt rather than enhance TNF-induced inflammation. Here we show that TNF-induced necroptosis potently suppressed the production of multiple TNF-induced pro-inflammatory factors due to RIPK3-dependent cell death. Similarly, necroptosis also suppressed LPS-induced pro-inflammatory cytokine production. Consistent with these observations, supernatants from TNF-stimulated cells were more pro-inflammatory than those from TNF-induced necroptotic cells in vivo. Thus necroptosis attenuates TNF- and LPS-driven inflammation, which may benefit intracellular pathogens that evoke this mode of cell death by suppressing host immune responses.

  11. Signals of vagal circuits engaging with AKT1 in α7 nAChR(+)CD11b(+) cells lessen E. coli and LPS-induced acute inflammatory injury.

    PubMed

    Zhao, Caiqi; Yang, Xi; Su, Emily M; Huang, Yuanyuan; Li, Ling; Matthay, Michael A; Su, Xiao

    2017-01-01

    Vagal circuits-α7 nAChR (α7 nicotinic acetylcholine receptor, coded by Chrna7) signaling utilizes spleen as a hub to dampen systemic inflammatory responses. Vagal innervations also extend to the distal airways and alveoli. Vagotomy and deficiency of α7 nAChR deteriorate E. coli and lipopolysaccharide (LPS)-induced acute lung inflammatory responses; however, the underlying mechanisms remain elusive. Here, we hypothesized that vagal circuits would limit splenic release and lung recruitment of α7 nAChR(+)CD11b(+) cells (CD11b is coded by Itgam, a surface marker of monocytes and neutrophils) via phosphorylation of AKT1 and that this process would define the severity of lung injury. Using both E. coli and LPS-induced lung injury mouse models, we found that vagotomy augmented splenic egress and lung recruitment of α7 nAChR(+)CD11b(+) cells, and consequently worsened lung inflammatory responses. Rescue of vagotomy with an α7 nAChR agonist preserved α7 nAChR(+)CD11b(+) cells in the spleen, suppressed recruitment of these cells to the lung and attenuated lung inflammatory responses. Vagal signals via α7 nAChR promoted serine473 phosphorylation of AKT1 in α7 nAChR(+)CD11b(+) cells and stabilized these cells in the spleen. Deletion of Akt1 enhanced splenic egress and lung recruitment of α7 nAChR(+)CD11b(+) cells, which elicited neutrophil-infiltrated lung inflammation and injury. Vagotomy and double deletion of Chrna7 and Itgam reduced serine473 phosphorylation of AKT1 in the spleen and BAL (bronchoalveolar lavage) Ly6C(int)Gr1(hi) neutrophils and Ly6C(hi) monocytes, and they facilitated the recruitment of neutrophils and monocytes to the airspaces of E. coli-injured lungs. Double deletion of Chrna7 and Itgam increased lung recruitment of monocytes and/or neutrophils and deteriorated E. coli and LPS-induced lung injury. Thus, signals of vagal circuits engaging with AKT1 in α7 nAChR(+)CD11b(+) cells attenuate E. coli and LPS-induced acute lung inflammatory responses

  12. Signals of vagal circuits engaging with AKT1 in α7 nAChR+CD11b+ cells lessen E. coli and LPS-induced acute inflammatory injury

    PubMed Central

    Zhao, Caiqi; Yang, Xi; Su, Emily M; Huang, Yuanyuan; Li, Ling; Matthay, Michael A; Su, Xiao

    2017-01-01

    Vagal circuits-α7 nAChR (α7 nicotinic acetylcholine receptor, coded by Chrna7) signaling utilizes spleen as a hub to dampen systemic inflammatory responses. Vagal innervations also extend to the distal airways and alveoli. Vagotomy and deficiency of α7 nAChR deteriorate E. coli and lipopolysaccharide (LPS)-induced acute lung inflammatory responses; however, the underlying mechanisms remain elusive. Here, we hypothesized that vagal circuits would limit splenic release and lung recruitment of α7 nAChR+CD11b+ cells (CD11b is coded by Itgam, a surface marker of monocytes and neutrophils) via phosphorylation of AKT1 and that this process would define the severity of lung injury. Using both E. coli and LPS-induced lung injury mouse models, we found that vagotomy augmented splenic egress and lung recruitment of α7 nAChR+CD11b+ cells, and consequently worsened lung inflammatory responses. Rescue of vagotomy with an α7 nAChR agonist preserved α7 nAChR+CD11b+ cells in the spleen, suppressed recruitment of these cells to the lung and attenuated lung inflammatory responses. Vagal signals via α7 nAChR promoted serine473 phosphorylation of AKT1 in α7 nAChR+CD11b+ cells and stabilized these cells in the spleen. Deletion of Akt1 enhanced splenic egress and lung recruitment of α7 nAChR+CD11b+ cells, which elicited neutrophil-infiltrated lung inflammation and injury. Vagotomy and double deletion of Chrna7 and Itgam reduced serine473 phosphorylation of AKT1 in the spleen and BAL (bronchoalveolar lavage) Ly6CintGr1hi neutrophils and Ly6Chi monocytes, and they facilitated the recruitment of neutrophils and monocytes to the airspaces of E. coli-injured lungs. Double deletion of Chrna7 and Itgam increased lung recruitment of monocytes and/or neutrophils and deteriorated E. coli and LPS-induced lung injury. Thus, signals of vagal circuits engaging with AKT1 in α7 nAChR+CD11b+ cells attenuate E. coli and LPS-induced acute lung inflammatory responses. Targeting this signaling

  13. Intranuclear interactomic inhibition of NF-κB suppresses LPS-induced severe sepsis

    SciTech Connect

    Park, Sung-Dong; Cheon, So Yeong; Park, Tae-Yoon; Shin, Bo-Young; Oh, Hyunju; Ghosh, Sankar; Koo, Bon-Nyeo; Lee, Sang-Kyou

    2015-08-28

    Suppression of nuclear factor-κB (NF-κB) activation, which is best known as a major regulator of innate and adaptive immune responses, is a potent strategy for the treatment of endotoxic sepsis. To inhibit NF-κB functions, we designed the intra-nuclear transducible form of transcription modulation domain (TMD) of RelA (p65), called nt-p65-TMD, which can be delivered effectively into the nucleus without influencing the cell viability, and work as interactomic inhibitors via disruption of the endogenous p65-mediated transcription complex. nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines, including TNF-α, IL-1β, or IL-6 from BV2 microglia cells stimulated by lipopolysaccharide (LPS). nt-p65-TMD did not inhibit tyrosine phosphorylation of signaling mediators such as ZAP-70, p38, JNK, or ERK involved in T cell activation, but was capable of suppressing the transcriptional activity of NF-κB without the functional effect on that of NFAT upon T-cell receptor (TCR) stimulation. The transduced nt-p65-TMD in T cell did not affect the expression of CD69, however significantly inhibited the secretion of T cell-specific cytokines such as IL-2, IFN-γ, IL-4, IL-17A, or IL-10. Systemic administration of nt-p65-TMD showed a significant therapeutic effect on LPS-induced sepsis model by inhibiting pro-inflammatory cytokines secretion. Therefore, nt-p65-TMD can be a novel therapeutics for the treatment of various inflammatory diseases, including sepsis, where a transcription factor has a key role in pathogenesis, and further allows us to discover new functions of p65 under normal physiological condition without genetic alteration. - Highlights: • The nt-p65-TMD is intra-nuclear interactomic inhibitor of endogenous p65. • The nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines. • The excellent therapeutic potential of nt-p65-TMD was confirmed in sepsis model.

  14. Influenza A Viruses Replicate Productively in Mouse Mastocytoma Cells (P815) and Trigger Pro-inflammatory Cytokine and Chemokine Production through TLR3 Signaling Pathway

    PubMed Central

    Meng, Di; Huo, Caiyun; Wang, Ming; Xiao, Jin; Liu, Bo; Wei, Tangting; Dong, Hong; Zhang, Guozhong; Hu, Yanxin; Sun, Lunquan

    2017-01-01

    The influenza A viruses (IAVs) cause acute respiratory infection in both humans and animals. As a member of the initial lines of host defense system, the role of mast cells during IAV infection has been poorly understood. Here, we characterized for the first time that both avian-like (α-2, 3-linked) and human-like (α-2, 6- linked) sialic acid (SA) receptors were expressed by the mouse mastocytoma cell line (P815). The P815 cells did support the productive replication of H1N1 (A/WSN/33), H5N1 (A/chicken/ Henan/1/04) and H7N2 (A/chicken/Hebei/2/02) in vitro while the in vivo infection of H5N1 in mast cells was confirmed by the specific staining of nasal mucosa and lung tissue from mice. All the three viruses triggered the infected P815 cells to produce pro-inflammatory cytokines and chemokines including IL-6, IFN-γ, TNF-α, CCL-2, CCL-5, and IP-10, but not the antiviral type I interferon. It was further confirmed that TLR3 pathway was involved in P815 cell response to IAV-infection. Our findings highlight the remarkable tropism and infectivity of IAV to P815 cells, indicating that mast cells may be unneglectable player in the development of IAV infection. PMID:28127293

  15. The anti-malarial artemisinin inhibits pro-inflammatory cytokines via the NF-κB canonical signaling pathway in PMA-induced THP-1 monocytes.

    PubMed

    Wang, Yue; Huang, Zhouqing; Wang, Liansheng; Meng, Shu; Fan, Yuqi; Chen, Ting; Cao, Jiatian; Jiang, Rujia; Wang, Changqian

    2011-02-01

    Several kinds of sesquiterpene lactones have been proven to inhibit NF-κB and to retard atherosclerosis by reducing lesion size and changing plaque composition. The anti-malarial artemisinin (Art) is a pure sesquiterpene lactone extracted from the Chinese herb Artemisia annua (qinghao, sweet wormwood). In the present study, we demonstrate that artemisinin inhibits the secretion and the mRNA levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 in a dose-dependent manner in phorbol 12-myristate 13-acetate (PMA)-induced THP-1 human monocytes. We also found that the NF-κB specific inhibitor, Bay 11-7082, inhibited the expression of these pro-inflammatory cytokines, suggesting that the NF-κB pathway may be involved in the decreased cytokine release. At all time-points (1-6 h), artemisinin impeded the phosphorylation of IKKα/ß, the phosphorylation and degradation of IκBα and the nuclear translocation of the NF-κB p65 subunit. Additionally, artemisinin inhibited the translocation of the NF-κB p65 subunit as demonstrated by confocal laser scanning microscopic analysis and by NF-κB binding assays. Our data indicate that artemisinin exerts an anti-inflammatory effect on PMA-induced THP-1 monocytes, suggesting the potential role of artemisinin in preventing the inflammatory progression of atherosclerosis.

  16. Herbal medicine IMOD suppresses LPS-induced production of proinflammatory cytokines in human dendritic cells

    PubMed Central

    Mirzaee, Saeedeh; Drewniak, Agata; Sarrami-Forooshani, Ramin; Kaptein, Tanja M.; Gharibdoost, Farhad; Geijtenbeek, Teunis B. H.

    2015-01-01

    Traditional medicines that stimulate or modulate the immune system can be used as innovative approaches to treat immunological diseases. The herbal medicine IMOD has been shown to strongly modulate immune responses in several animal studies as well as in clinical trials. However, little is known about the mechanisms of IMOD to modulate immunity. Here we have investigated whether IMOD modulates the immunological function of human dendritic cells (DCs). IMOD alone did not induce DC maturation nor production of cytokines. Notably, IMOD decreased the production of pro-inflammatory cytokines IL-6, IL-12 p70, and TNFα by LPS-activated DCs at both mRNA and protein levels in a dose dependent manner. In contrast, treatment with IMOD did not affect LPS induced-production of the anti-inflammatory cytokine IL-10. Furthermore, IMOD inhibited T cell activation/proliferation by LPS-treated DCs and skewed T-cells responses toward the T helper type 2 polarization. These data strongly indicate that IMOD has a potent immunomodulatory ability that affects TLR signaling and thereby modulates DC function. Insight into the immunomodulatory effect of herbal medicine IMOD may provide innovative strategies to affect the immune system and to help combat various diseases. PMID:25870561

  17. Scopoletin suppresses pro-inflammatory cytokines and PGE2 from LPS-stimulated cell line, RAW 264.7 cells.

    PubMed

    Kim, Hyung-Jin; Jang, Seon Il; Kim, Young-Jun; Chung, Hun-Taeg; Yun, Yong-Gab; Kang, Tai-Hyun; Jeong, Ok-Sam; Kim, Youn-Chul

    2004-06-01

    Scopoletin (1-50 microg/ml) inhibited the release of PGE2, TNF-alpha, IL-1beta and IL-6 and suppressed the expression of COX-2 in a concentration-dependent manner. These results suggest that scopoletin might suppress the production of such pro-inflammatory cytokines and exert inhibitory activity on LPS-induced PGE2 production through the depression of COX-2 expression. Copyright 2004 Elsevier B.V.

  18. Majoon ushba, a polyherbal compound, suppresses pro-inflammatory mediators and RANKL expression via modulating NFкB and MAPKs signaling pathways in fibroblast-like synoviocytes from adjuvant-induced arthritic rats.

    PubMed

    Ganesan, Ramamoorthi; Doss, Hari Madhuri; Rasool, Mahaboobkhan

    2016-08-01

    Fibroblast-like synoviocytes (FLS) are inhabitant mesenchymal cells of synovial joints and have been recognized to play an imperative role in the immunopathogenesis of rheumatoid arthritis (RA). Blocking these pathological roles of FLS provides a potentially important therapeutic strategy for the treatment for RA. A recent study had confirmed that majoon ushba (MU), a polyherbal unani compound, possesses anti-arthritic effects in in vivo. Toward this direction, an effort has been made to understand the effect of MU on FLS derived from adjuvant-induced arthritis (AIA) rats. Here, we observed that MU administration (100-300 µg/ml) significantly inhibited the expression and phosphorylation of NFкB-p65 protein similar to that of the Bay 11-7082 (NFкB inhibitor) in NFкB signaling pathway and suppressed the protein expression of ERK1/2 and JNK1/2 in MAPKs signaling pathway in AIA-FLS. In addition, the protein expression of TNF-α, IL-17, RANKL, and iNOS was also found reduced. MU treatment significantly inhibited the mRNA expression of pro-inflammatory mediators (TNF-α, IL-1β, IL-6, MCP-1, IL-17, iNOS, and COX-2), transcription factors (NFкB-p65 and AP-1), and RANKL and attenuated the overproduction of TNF-α, IL-1β, IL-6, and MCP-1 (ELISA) in AIA-FLS. Furthermore, MU treatment significantly inhibited the level of lipid peroxidation, lysosomal enzymes release, and glycoproteins and increased antioxidant status (superoxide dismutase and catalase) in AIA-FLS. In conclusion, the results of this study provide evidence that MU possesses anti-inflammatory effect against AIA-FLS through the decrease in pro-inflammatory mediators expression by suppressing NFкB and MAPKs signaling pathways.

  19. Effect of a negative energy balance induced by feed restriction on pro-inflammatory and endoplasmic reticulum stress signalling pathways in the liver and skeletal muscle of lactating sows.

    PubMed

    Gessner, Denise K; Gröne, Birthe; Rosenbaum, Susann; Most, Erika; Hillen, Sonja; Becker, Sabrina; Erhardt, Georg; Reiner, Gerald; Ringseis, Robert; Eder, Klaus

    2015-01-01

    High-producing sows develop typical signs of an inflammatory condition and endoplasmic reticulum (ER) stress in the liver during lactation. At present, it is unknown whether a negative energy balance (NEB) is causative for this. Therefore, an experiment with lactating sows, which were either restricted in their feed intake to 82% of their energy requirement (Group FR) or were fed to meet their energy requirement (Control), was performed and the effect on ER stress-induced unfolded protein response (UPR), nuclear factor kappa B (NF-κB), nuclear factor E2-related factor 2 (Nrf2) and NOD-like receptor P3 (NLRP3) inflammasome signalling in the liver was evaluated. Relative mRNA concentrations of several genes involved in ER stress-induced UPR, NF-κB and NLRP3 inflammasome signalling were reduced in the liver of Group FR compared to the Control group. Plasma concentrations of haptoglobin and C-reactive protein were 13% and 37%, respectively, lower in Group FR than in the Control group, but these differences were not significant. In conclusion, feed restriction in lactating sows inhibits pro-inflammatory and ER stress signalling pathways in the liver, which suggests that not the NEB per se is causative for inflammation and ER stress induction in the liver of lactating sows. Rather it is likely that ER stress during lactation is the consequence of the presence of potent pro-inflammatory and ER stress-inducing stimuli, such as cytokines, reactive oxygen species and microbial components, which enter the circulation as a result of infectious diseases that frequently occur in sows after farrowing.

  20. The Angiotensin-(1-7)/Mas Axis Counteracts Angiotensin II-Dependent and -Independent Pro-inflammatory Signaling in Human Vascular Smooth Muscle Cells.

    PubMed

    Villalobos, Laura A; San Hipólito-Luengo, Álvaro; Ramos-González, Mariella; Cercas, Elena; Vallejo, Susana; Romero, Alejandra; Romacho, Tania; Carraro, Raffaele; Sánchez-Ferrer, Carlos F; Peiró, Concepción

    2016-01-01

    Background and Aims: Targeting inflammation is nowadays considered as a challenging pharmacological strategy to prevent or delay the development of vascular diseases. Angiotensin-(1-7) is a member of the renin-angiotensin system (RAS) that binds Mas receptors and has gained growing attention in the last years as a regulator of vascular homeostasis. Here, we explored the capacity of Ang-(1-7) to counteract human aortic smooth muscle cell (HASMC) inflammation triggered by RAS-dependent and -independent stimuli, such as Ang II or interleukin (IL)-1β. Methods and Results: In cultured HASMC, the expression of inducible nitric oxide synthase (iNOS) and the release of nitric oxide were stimulated by both Ang II and IL-1β, as determined by Western blot and indirect immunofluorescence or the Griess method, respectively. iNOS induction was inhibited by Ang-(1-7) in a concentration-dependent manner. This effect was equally blocked by two different Mas receptor antagonists, A779 and D-Pro(7)-Ang-(1-7), suggesting the participation of a unique Mas receptor subtype. Using pharmacological inhibitors, the induction of iNOS was proven to rely on the consecutive upstream activation of NADPH oxidase and nuclear factor (NF)-κB. Indeed, Ang-(1-7) markedly inhibited the activation of the NADPH oxidase and subsequently of NF-κB, as determined by lucigenin-derived chemiluminescence and electromobility shift assay, respectively. Conclusion: Ang-(1-7) can act as a counter-regulator of the inflammation of vascular smooth muscle cells triggered by Ang II, but also by other stimuli beyond the RAS. Activating or mimicking the Ang-(1-7)/Mas axis may represent a pharmacological opportunity to attenuate the pro-inflammatory environment that promotes and sustains the development of vascular diseases.

  1. The Angiotensin-(1-7)/Mas Axis Counteracts Angiotensin II-Dependent and -Independent Pro-inflammatory Signaling in Human Vascular Smooth Muscle Cells

    PubMed Central

    Villalobos, Laura A.; San Hipólito-Luengo, Álvaro; Ramos-González, Mariella; Cercas, Elena; Vallejo, Susana; Romero, Alejandra; Romacho, Tania; Carraro, Raffaele; Sánchez-Ferrer, Carlos F.; Peiró, Concepción

    2016-01-01

    Background and Aims: Targeting inflammation is nowadays considered as a challenging pharmacological strategy to prevent or delay the development of vascular diseases. Angiotensin-(1-7) is a member of the renin-angiotensin system (RAS) that binds Mas receptors and has gained growing attention in the last years as a regulator of vascular homeostasis. Here, we explored the capacity of Ang-(1-7) to counteract human aortic smooth muscle cell (HASMC) inflammation triggered by RAS-dependent and -independent stimuli, such as Ang II or interleukin (IL)-1β. Methods and Results: In cultured HASMC, the expression of inducible nitric oxide synthase (iNOS) and the release of nitric oxide were stimulated by both Ang II and IL-1β, as determined by Western blot and indirect immunofluorescence or the Griess method, respectively. iNOS induction was inhibited by Ang-(1-7) in a concentration-dependent manner. This effect was equally blocked by two different Mas receptor antagonists, A779 and D-Pro7-Ang-(1-7), suggesting the participation of a unique Mas receptor subtype. Using pharmacological inhibitors, the induction of iNOS was proven to rely on the consecutive upstream activation of NADPH oxidase and nuclear factor (NF)-κB. Indeed, Ang-(1-7) markedly inhibited the activation of the NADPH oxidase and subsequently of NF-κB, as determined by lucigenin-derived chemiluminescence and electromobility shift assay, respectively. Conclusion: Ang-(1-7) can act as a counter-regulator of the inflammation of vascular smooth muscle cells triggered by Ang II, but also by other stimuli beyond the RAS. Activating or mimicking the Ang-(1-7)/Mas axis may represent a pharmacological opportunity to attenuate the pro-inflammatory environment that promotes and sustains the development of vascular diseases. PMID:28018220

  2. Protective effects of organic acid component from Taraxacum mongolicum Hand.-Mazz. against LPS-induced inflammation: Regulating the TLR4/IKK/NF-κB signal pathway.

    PubMed

    Yang, Nan; Dong, Zibo; Tian, Gang; Zhu, Maomao; Li, Chao; Bu, Weiquan; Chen, Juan; Hou, Xuefeng; Liu, Ying; Wang, Gang; Jia, Xiaobin; Di, Liuqing; Feng, Liang

    2016-12-24

    TMHM is a type of Chinese medicine commonly used in medical practice and has multiple functions, including clearing heat, detoxification, reducing swelling, and tumor therapy. Previous research has demonstrated that the OAC of TMHM (TMHM-OAC) displays advantageous therapeutic action against respiratory inflammation. However, the effect of TMHM-OAC on inflammatory injury and its anti-inflammatory role requires further clarification. An in vitro inflammation damage model was employed using NHBE cells and 100ng/ml of (LPS). HPLC-DAD was conducted to analyze the components of TMHM-OAC. An ELISA was conducted to determine IL-1β, IL-6, TNF-α, and NO expression. An MTT assay was conducted to determine the cytotoxicity of TMHM-OAC. The levels of IL-1β, IL-6, TNF-α, caspase-3, caspase-8, iNOS, TLR4p-nuclear factor kappa-B kinase (p-IκκB), and p-NF-κB p65 in cellular protein, as well as the mRNA levels, were determined using WB, IF testing, and Q-PCR. TMHM-OAC significantly reduced LPS-induced NHBE cell inflammation, which was reflected in the reduced expression of relevant cytokines such as TNF-α, IL-1β, IL-6 and NO, caspase-3, and caspase-8. In addition, this component suppressed TLR4, p-IKKβ, and p-NF-κB p65 levels in both mRNA and cellular protein. TMHM-OAC can reduce LPS-induced inflammation in NHBE cells and this function could be linked to the regulation of the TLR4/IKK/NF-kB pathway. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Secondhand Smoke-Prevalent Polycyclic Aromatic Hydrocarbon Binary Mixture-Induced Specific Mitogenic and Pro-inflammatory Cell Signaling Events in Lung Epithelial Cells.

    PubMed

    Osgood, Ross S; Upham, Brad L; Bushel, Pierre R; Velmurugan, Kalpana; Xiong, Ka-Na; Bauer, Alison K

    2017-05-01

    Low molecular weight polycyclic aromatic hydrocarbons (LMW PAHs; < 206.3 g/mol) are prevalent and ubiquitous environmental contaminants, presenting a human health concern, and have not been as thoroughly studied as the high MW PAHs. LMW PAHs exert their pulmonary effects, in part, through P38-dependent and -independent mechanisms involving cell-cell communication and the production of pro-inflammatory mediators known to contribute to lung disease. Specifically, we determined the effects of two representative LMW PAHs, 1-methylanthracene (1-MeA) and fluoranthene (Flthn), individually and as a binary PAH mixture on the dysregulation of gap junctional intercellular communication (GJIC) and connexin 43 (Cx43), activation of mitogen activated protein kinases (MAPK), and induction of inflammatory mediators in a mouse non-tumorigenic alveolar type II cell line (C10). Both 1-MeA, Flthn, and the binary PAH mixture of 1-MeA and Flthn dysregulated GJIC in a dose and time-dependent manner, reduced Cx43 protein, and activated the following MAPKs: P38, ERK1/2, and JNK. Inhibition of P38 MAPK prevented PAH-induced dysregulation of GJIC, whereas inhibiting ERK and JNK did not prevent these PAHs from dysregulating GJIC indicating a P38-dependent mechanism. A toxicogenomic approach revealed significant P38-dependent and -independent pathways involved in inflammation, steroid synthesis, metabolism, and oxidative responses. Genes in these pathways were significantly altered by the binary PAH mixture when compared with 1-MeA and Flthn alone suggesting interactive effects. Exposure to the binary PAH mixture induced the production and release of cytokines and metalloproteinases from the C10 cells. Our findings with a binary mixture of PAHs suggest that combinations of LMW PAHs may elicit synergistic or additive inflammatory responses which warrant further investigation and confirmation. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology

  4. Extractable and non-extractable polyphenols from blueberries modulate LPS-induced expression of iNOS and COX-2 in RAW264.7 macrophages via the NF-κB signalling pathway.

    PubMed

    Cheng, Anwei; Han, Caijing; Fang, Xixiu; Sun, Jinyue; Chen, Xiangyan; Wan, Fachun

    2016-08-01

    Plant polyphenols are rich in blueberries that have a wide range of properties beneficial to human health. There are two types, according to the solubility of polyphenols, which were defined as extractable polyphenols (EPP) and non-extractable polyphenols (NEPP), respectively. At present, in most of reports, 'total polyphenol' refers only to EPP excluding NEPP. In this paper, the effects of EPP and NEPP on lipopolysaccharides (LPS) induced production of nitric oxide (NO) and gene expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in RAW264.7 cells via nuclear factor-κB (NF-κB) signalling pathway were compared. The results showed that EPP and NEPP from blueberries significantly inhibited the LPS-induced production of NO and gene expression of iNOS and COX-2 in cells. The constitutive level of p65 sub-unit of NF-κB was obviously detected after the treatments with EPP or NEPP. By contrast, the level of phosphorylated p65 (P-p65) was strongly inhibited by EPP or NEPP. EPP had a stronger inhibition on the gene expression of iNOS and COX-2 than that of NEPP. These findings of inhibition of iNOS and COX-2 mRNA expression through the suppression of NF-κB suggest that EPP and ENPP from blueberries have significant anti-inflammatory effect and may be a potential medicine. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  5. PTHrP Interacts With the TGF-β/BMP-2/Gremlin Signaling Pathway to Regulate Pro-inflammatory and Pro-fibrotic Mediators in Pancreatic Acinar and Stellate Cells

    PubMed Central

    Bhatia, Vandanajay; Cao, Yanna; Ko, Tien C.; Falzon, Miriam

    2015-01-01

    Objectives TGF-β regulates immune and fibrotic responses of chronic pancreatitis (CP). The bone morphogenetic protein-2 (BMP-2) antagonist gremlin is regulated by TGF-β. Parathyroid hormone-related hormone (PTHrP) levels are elevated in CP. Here we investigated the crosstalk between TGF-β/BMP-2/gremlin and PTHrP signaling. Methods Reverse transcription/real-time PCR, ChIP, Western blotting, and transient transfection were used to investigate PTHrP regulation by TGF-β and BMP-2, and gremlin regulation by PTHrP. The PTHrP antagonist PTHrP (7-34) and acinar cells with conditional Pthrp gene deletion (PTHrPΔacinar) were used to assess PTHrP’s role in the pro-inflammatory and pro-fibrotic effects of TGF-β and gremlin. Results TGF-β increased PTHrP levels in acinar cells and pancreatic stellate cells (PSCs) through a Smad3-dependent pathway. TGF-β’s effects on levels of IL-6 and ICAM-1(acinar cells) and procollagen I and fibronectin (PSCs) were inhibited by PTHrP (7-34). PTHrPΔacinar suppressed TGF-β’s effects on IL-6 and ICAM-1. PTHrP increased gremlin in acinar cells, and inhibiting gremlin action suppressed TGF-β’s and PTHrP’s effects on IL-6 and ICAM-1. TGF-β-mediated gremlin upregulation was suppressed in PTHrPΔacinar cells. BMP-2 suppressed PTHrP levels in PSCs. Conclusions PTHrP functions as a novel mediator of the pro-inflammatory and pro-fibrotic effects of TGF-β. TGF-β and BMP-2 regulate PTHrP expression and PTHrP regulates gremlin levels. PMID:26495794

  6. 2-Phenylnaphthalene Derivatives Inhibit Lipopolysaccharide-Induced Pro-Inflammatory Mediators by Downregulating of MAPK/NF-κB Pathways in RAW 264.7 Macrophage Cells

    PubMed Central

    Chang, Chi-Fen; Liao, Kang-Chun; Chen, Chung-Hwan

    2017-01-01

    The anti-inflammatory pharmacological effect of eight 2-phenylnaphthalenes (PNAP-1−PNAP-8) on lipopolysaccharide (LPS)-induced RAW 264.7 (a mouse cell line) was investigated. Among them, 6,7-dihydroxy-2-(4′-hydroxyphenyl)naphthalene (PNAP-6) and 2-(4′-aminophenyl)-6,7-dimethoxynaphthalene (PNAP-8) exhibited the best anti-inflammatory activity in this study. PNAP-6 and PNAP-8 not only significantly decreased the expression of inducible nitric oxide synthase and cyclooxygenase-II, but also inhibited the production of nitric oxide, interleukin-6, and tumor necrosis factor-α in LPS stimulated cells. Moreover, PNAP-6 and PNAP-8 inhibited nuclear factor (NF)-κB activation by decreasing the degradation of IκB and nuclear translocation of NF-κB subunit (p65). In addition, PNAP-6 and PNAP-8 also attenuated the phosphorylation of ERK, p38, and JNK. These results suggest that PNAP-6 and PNAP-8 exert anti-inflammatory activities by down regulating NF-κB activation and the mitogen-activated protein kinase signaling pathway in LPS-stimulated Raw 264.7 cells. This is the first study demonstrating that PNAPs can inhibit LPS-induced pro-inflammatory mediators in macrophages cells. PMID:28060845

  7. 5,6,7-trimethoxyflavone suppresses pro-inflammatory mediators in lipopolysaccharide-induced RAW 264.7 macrophages and protects mice from lethal endotoxin shock.

    PubMed

    Rim, Hong-Kun; Yun, Chang Hyeon; Shin, Ji-Sun; Cho, Young-Wuk; Jang, Dae Sik; Ryu, Jong Hoon; Park, Haeil; Lee, Kyung-Tae

    2013-12-01

    5,6,7-Trimethoxyflavone (TMF), methylations of the hydroxyl groups of oroxylin A or baicalein, was found to significantly inhibit the productions of nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. However, no report has been issued on the anti-inflammatory potential of TMF and the underlying molecular mechanism. In the present study, we investigated the anti-inflammatory effects of TMF in LPS-induced RAW 264.7 macrophages and LPS-induced septic shock in mice. TMF dose-dependently inhibits iNOS and COX-2 at the protein, mRNA, and promoter binding levels and that these inhibitions cause attendant decreases in the productions of NO and PGE2. TMF inhibits the productions and mRNA expressions of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 induced by LPS. Furthermore, TMF suppress the transcriptional activity of nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1), and nuclear translocations of NF-κB, AP-1, and signal transducer and activator of transcription 1/3 (STAT1/3). Pretreatment with TMF increase the survival rate of mice with LPS-induced endotoxemia and reduced the serum levels of cytokines. Taken together, these findings suggest that TMF down-regulates the expressions of the pro-inflammatory iNOS, COX-2, TNF-α, IL-1β, and IL-6 genes in macrophages by interfering with the activation of NF-κB, AP-1, and STAT1/3.

  8. Wedelolactone inhibits LPS-induced pro-inflammation via NF-kappaB Pathway in RAW 264.7 cells

    PubMed Central

    2013-01-01

    Background Wedelolactone (WEL), a major coumestan ingredient in Wedelia chinensis, has been used to treat septic shock, hepatitis and venom poisoning in traditional Chinese medicines. The objective of the study was to elucidate the anti-inflammatory effects and mechanism of WEL with a cellular model of lipopolysaccharide (LPS)-induced RAW 264.7 cells. Results To study the role of WEL in pro-inflammation, we measured key inflammation mediators and end products including nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and tumor necrosis factor-α (TNF-α) by using the Griess method, enzyme linked immunosorbent assay (ELISA) and Western blotting. Nuclear factor-kappaB (NF-κB) transcription activity was detected by luciferase reporter assay. The important pro-inflammatory transcription factors, NF-κB p65 and inhibitory kappaB alpha (IκB-α); and mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK (p38) were analyzed by Western blotting. Our study showed that WEL (0.1, 1, 10 μM) significantly inhibited the protein expression levels of iNOS and COX-2 in LPS-stimulated cells, as well as the downstream products, including NO, PGE2 and TNF-α. Moreover, WEL also inhibited LPS-induced NF-κB p65 activation via the degradation and phosphorylation of IκB-α and subsequent translocation of the NF-κB p65 subunit to the nucleus. Conclusions Our results revealed that WEL has a potential to be a novel anti-inflammatory agent targeting on the NF-κB signaling pathway. PMID:24176090

  9. Flavonoid fraction of Bergamot juice reduces LPS-induced inflammatory response through SIRT1-mediated NF-κB inhibition in THP-1 monocytes.

    PubMed

    Risitano, Roberto; Currò, Monica; Cirmi, Santa; Ferlazzo, Nadia; Campiglia, Pietro; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele

    2014-01-01

    Plant polyphenols exert anti-inflammatory activity through both anti-oxidant effects and modulation of pivotal pro-inflammatory genes. Recently, Citrus bergamia has been studied as a natural source of bioactive molecules with antioxidant activity, but few studies have focused on molecular mechanisms underlying their potential beneficial effects. Several findings have suggested that polyphenols could influence cellular function by acting as activators of SIRT1, a nuclear histone deacetylase, involved in the inhibition of NF-κB signaling. On the basis of these observations we studied the anti-inflammatory effects produced by the flavonoid fraction of the bergamot juice (BJe) in a model of LPS-stimulated THP-1 cell line, focusing on SIRT1-mediated NF-κB inhibition. We demonstrated that BJe inhibited both gene expression and secretion of LPS-induced pro-inflammatory cytokines (IL-6, IL-1β, TNF-α) by a mechanism involving the inhibition of NF-κB activation. In addition, we showed that BJe treatment reversed the LPS-enhanced acetylation of p65 in THP-1 cells. Interestingly, increasing concentrations of Sirtinol were able to suppress the inhibitory effect of BJe via p65 acetylation, underscoring that NF-κB-mediated inflammatory cytokine production may be directly linked to SIRT1 activity. These results suggest that BJe may be useful for the development of alternative pharmacological strategies aimed at reducing the inflammatory process.

  10. Caffeine prevents LPS-induced inflammatory responses in RAW264.7 cells and zebrafish.

    PubMed

    Hwang, Ji-Hyun; Kim, Kui-Jin; Ryu, Su-Jung; Lee, Boo-Yong

    2016-03-25

    Caffeine is a white crystalline xanthine alkaloid found in the seeds of coffee plants and leaves of the tea bush. In this study, we evaluated whether caffeine exerts anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation both in vitro and in vivo. RAW264.7 cells were treated with various concentrations of caffeine in the presence or absence of LPS. Caffeine decreased the LPS-induced inflammatory mediator, nitric oxide (NO). Caffeine treatment also reduced the expression of pro-inflammatory genes, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-3, IL-6 and IL-12, and decreased both IL-6 secretion and phosphorylated p38MAPK expression in LPS-treated RAW264.7 cells. Caffeine inhibited nuclear translocation of nuclear factor κB (NF-κB) via IκBα phosphorylation. In addition, caffeine inhibited LPS-induced NO production in zebrafish. These results suggest that caffeine may suppress LPS-induced inflammatory responses in RAW264.7 cells by regulating NF-κB activation and MAPK phosphorylation.

  11. Teuvincenone F Suppresses LPS-Induced Inflammation and NLRP3 Inflammasome Activation by Attenuating NEMO Ubiquitination.

    PubMed

    Zhao, Xibao; Pu, Debing; Zhao, Zizhao; Zhu, Huihui; Li, Hongrui; Shen, Yaping; Zhang, Xingjie; Zhang, Ruihan; Shen, Jianzhong; Xiao, Weilie; Chen, Weilin

    2017-01-01

    Inflammation causes many diseases that are serious threats to human health. However, the molecular mechanisms underlying regulation of inflammation and inflammasome activation are not fully understood which has delayed the discovery of new anti-inflammatory drugs of urgent clinic need. Here, we found that the natural compound Teuvincenone F, which was isolated and purified from the stems and leaves of Premna szemaoensis, could significantly inhibit lipopolysaccharide (LPS)-induced pro-inflammatory cytokines production and NLRP3 inflammasome activation. Our results showed that Teuvincenone F attenuated K63-linked ubiquitination of NF-κB-essential modulator (NEMO, also known as IKKγ) to suppress LPS-induced phosphorylation of NF-κB, and inhibited mRNA expression of IL-1β, IL-6, TNF-α, and NLRP3. In addition, we found that decreased NLRP3 expression by Teuvincenone F suppressed NLRP3 inflammasome activation and IL-1β/IL-18 maturation. In vivo, we revealed that Teuvincenone F treatment relieved LPS-induced inflammation. In conclusion, Teuvincenone F is a highly effective natural compound to suppress LPS-induced inflammation by attenuating K63-linked ubiquitination of NEMO, highlighting that Teuvincenone F may be a potential new anti-inflammatory drug for the treatment of inflammatory and NLRP3 inflammasome-driven diseases.

  12. Lithium Ameliorates LPS-Induced Astrocytes Activation Partly via Inhibition of Toll-Like Receptor 4 Expression.

    PubMed

    Li, Nana; Zhang, Xiang; Dong, Hongquan; Zhang, Susu; Sun, Jie; Qian, Yanning

    2016-01-01

    Astrocytes are critical for the development of postoperative cognitive dysfunction (POCD). In addition, astrocytes express toll-like receptors 4 (TLR4) and build up responses to innate immune triggers by releasing pro-inflammatory molecules. The pathogenesis of neurological disorders often involves the activation of astrocytes and associated inflammatory processes. Lithium, a primary drug for the treatment of bipolar disorder, has recently been suggested to have a role in neuroprotection during neurodegenerative diseases. In this study, we aimed to investigate whether lithium can ameliorate LPS-induced astrocytes activation via inhibition of TLR4 expression. Primary astrocytes cells were pretreated with lithium and stimulated with lipopolysaccharide (LPS). Cellular activation, cytokine production, and TLR4 expression, were assessed. Lithium significantly inhibited LPS-induced astrocytes activation and pro-inflammatory cytokine production, as well as LPS-induced TLR4 expression. Lithium can inhibit LPS-induced TLR4 expression and astrocytes activation. These results indicate that lithium plays an important role in astrocytes activation and neuroinflammation-related diseases, which may open new avenues for neuroscience and biomedical research, and also offers new insight into the treatment of POCD. © 2016 The Author(s) Published by S. Karger AG, Basel.

  13. Benzo(a)pyrene induces oxidative stress, pro-inflammatory cytokines, expression of nuclear factor-kappa B and deregulation of wnt/beta-catenin signaling in colons of BALB/c mice.

    PubMed

    Ajayi, Babajide O; Adedara, Isaac A; Farombi, Ebenezer O

    2016-09-01

    The incidence of colonic toxicity has been epidemiologically linked to the consumption of foods contaminated with benzo(a)pyrene (B[a]P). The present study investigated the effects of B[a]P on biomarkers of oxidative stress, inflammation and wnt-signaling in colon of BALB/c mice following exposure to 62.5, 125 and 250 mg/kg of B[a]P for 7 days by oral gavage. Exposure to B[a]P significantly decreased the colonic antioxidant enzymes activities and glutathione level with concomitant significant increase in myeloperoxidase activity, nitric oxide and lipid peroxidation levels. Colon histopathology results showed treatment-related lesions characterized by atrophy, mucosal ulceration and gland erosion in the B[a]P-treated mice. Immunohistochemistry analysis showed that B[a]P treatment increased the protein expression of nuclear factor kappa B, pro-inflammatory cytokines namely tumor necrosis factor alpha and interleukin-1β, as well as cyclooxygenase-2 and inducible nitric oxide synthase in the mice colon. Altered canonical wnt-signaling was confirmed by strong diaminobenzidine staining for p38 mitogen activated protein kinase, β-catenin expression and absence of adenomatous polyposis coli following B[a]P administration. The present data highlight that exposure to B[a]P induces colon injury via induction of oxidative and nitrosative stress, inflammatory biomarkers and dsyregulation wnt/β-catenin signaling, thus confirming the role of B[a]P in the pathogenesis of colonic toxicity.

  14. The Pro-inflammatory Effects of Glucocorticoids in the Brain

    PubMed Central

    Duque, Erica de Almeida; Munhoz, Carolina Demarchi

    2016-01-01

    Glucocorticoids are a class of steroid hormones derived from cholesterol. Their actions are mediated by the glucocorticoid and mineralocorticoid receptors, members of the superfamily of nuclear receptors, which, once bound to their ligands, act as transcription factors that can directly modulate gene expression. Through protein–protein interactions with other transcription factors, they can also regulate the activity of many genes in a composite or tethering way. Rapid non-genomic signaling was also demonstrated since glucocorticoids can act through membrane receptors and activate signal transduction pathways, such as protein kinases cascades, to modulate other transcriptions factors and activate or repress various target genes. By all these different mechanisms, glucocorticoids regulate numerous important functions in a large variety of cells, not only in the peripheral organs but also in the central nervous system during development and adulthood. In general, glucocorticoids are considered anti-inflammatory and protective agents due to their ability to inhibit gene expression of pro-inflammatory mediators and other possible damaging molecules. Nonetheless, recent studies have uncovered situations in which these hormones can act as pro-inflammatory agents depending on the dose, chronicity of exposure, and the structure/organ analyzed. In this review, we will provide an overview of the conditions under which these phenomena occur, a discussion that will serve as a basis for exploring the mechanistic foundation of glucocorticoids pro-inflammatory gene regulation in the brain. PMID:27445981

  15. Escin Increases the Survival Rate of LPS-Induced Septic Mice Through Inhibition of HMGB1 Release from Macrophages.

    PubMed

    Cheng, Yajun; Wang, Hongrui; Mao, Min; Liang, Chao; Zhang, Yu; Yang, Deijun; Wei, Ziran; Gao, Shunxiang; Hu, Bo; Wang, Lianghua; Cai, Qingping

    2015-01-01

    Previous studies have described the effects of Escin on improving the survival rate of endotoxemic animals. The purpose of this study was to explore the molecular mechanisms of this potentially beneficial treatment. First, the survival rate of endotoxemic mice was monitored for up to 2 weeks after Escin pretreatment, Escin post-treatment, or Escin post-treatment + rHMGB1. The effects of Escin on the release of pro-inflammatory cytokines such as TNF-α, IL-1β, IL-6 and HMGB1 in the serum of endotoxemic mice and LPS-induced macrophages were evaluated by ELISA. Furthermore, the mRNA and protein levels of HMGB1 in LPS-induced macrophages were measured by qRT-PCR and Western blot, respectively. Additionally, the release of pro-inflammatory cytokines such as TNF-α, IL-1β, IL-6 was evaluated by ELISA in rHMGB1-induced macrophages. Finally, the protein levels and the activity of NF-κB in macrophages were checked by Western blot and ELISA, respectively. Both pretreatment and post-treatment with Escin could improve the survival rate of endotoxemic mice, while exogenous rHMGB1 reversed this effect. In addition, Escin decreased the level of the pro-inflammatory cytokinesTNF-α,IL-1β, IL-6 and HMGB1 in endotoxemic mice and in LPS-induced macrophages. Escin could also inhibit the mRNA levels and activity of HMGB1. The release of the pro-inflammatory cytokinesTNF-α,IL-1β, IL-6 could be suppressed in rHMGB1-induced macrophages by Escin. Finally, Escin could suppress the activation of NF- κB in LPS-induced macrophages. Escin could improve the survival of mice with LPS-induced endotoxemia. This effect maybe meditated by reducing the release of HMGB1, resulting in the suppression of the release of pro-inflammatory cytokines. © 2015 S. Karger AG, Basel.

  16. Neu1 sialidase and matrix metalloproteinase-9 cross-talk regulates nucleic acid-induced endosomal TOLL-like receptor-7 and -9 activation, cellular signaling and pro-inflammatory responses.

    PubMed

    Abdulkhalek, Samar; Szewczuk, Myron R

    2013-11-01

    The precise mechanism(s) by which intracellular TOLL-like receptors (TLRs) become activated by their ligands remains unclear. Here, we report a molecular organizational G-protein coupled receptor (GPCR) signaling platform to potentiate a novel mammalian neuraminidase-1 (Neu1) and matrix metalloproteinase-9 (MMP-9) cross-talk in alliance with neuromedin B GPCR, all of which form a tripartite complex with TLR-7 and -9. siRNA silencing Neu1, MMP-9 and neuromedin-B GPCR in RAW-blue macrophage cells significantly reduced TLR7 imiquimod- and TLR9 ODN1826-induced NF-κB (NF-κB-pSer(536)) activity. Tamiflu, specific MMP-9 inhibitor, neuromedin B receptor specific antagonist BIM23127, and the selective inhibitor of whole heterotrimeric G-protein complex BIM-46174 significantly block nucleic acid-induced TLR-7 and -9 MyD88 recruitment, NF-κB activation and proinflammatory TNFα and MCP-1 cytokine responses. For the first time, Neu1 clearly plays a central role in mediating nucleic acid-induced intracellular TLR activation, and the interactions involving NMBR-MMP9-Neu1 cross-talk constitute a novel intracellular TLR signaling platform that is essential for NF-κB activation and pro-inflammatory responses.

  17. Biflorin, Isolated from the Flower Buds of Syzygium aromaticum L., Suppresses LPS-Induced Inflammatory Mediators via STAT1 Inactivation in Macrophages and Protects Mice from Endotoxin Shock.

    PubMed

    Lee, Hwi-Ho; Shin, Ji-Sun; Lee, Woo-Seok; Ryu, Byeol; Jang, Dae Sik; Lee, Kyung-Tae

    2016-04-22

    Two chromone C-glucosides, biflorin (1) and isobiflorin (2), were isolated from the flower buds of Syzygium aromaticum L. (Myrtaceae). Here, inhibitory effects of 1 and 2 on lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2) in RAW 264.7 macrophages were evaluated, and 1 (IC50 = 51.7 and 37.1 μM, respectively) was more potent than 2 (IC50 > 60 and 46.0 μM). The suppression of NO and PGE2 production by 1 correlated with inhibition of iNOS and COX-2 protein expression. Compound 1 reduced inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA expression via inhibition of their promoter activities. Compound 1 inhibited the LPS-induced production and mRNA expression of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6. Furthermore, 1 reduced p-STAT1 and p-p38 expression but did not affect the activity of nuclear factor κ light-chain enhancer of activated B cells (NF-κB) or activator protein 1 (AP-1). In a mouse model of LPS-induced endotoxemia, 1 reduced the mRNA levels of iNOS, COX-2, and TNF-α, and the phosphorylation-mediated activation of the signal transducer and activator of transcription 1 (STAT1), consequently improving the survival rates of mice. Compound 1 showed a significant anti-inflammatory effect on carrageenan-induced paw edema and croton-oil-induced ear edema in rats. The collective data indicate that the suppression of pro-inflammatory gene expression via p38 mitogen-activated protein kinase and STAT1 inactivation may be a mechanism for the anti-inflammatory activity of 1.

  18. Molecular Mechanisms Regulating LPS-Induced Inflammation in the Brain

    PubMed Central

    Lykhmus, Olena; Mishra, Nibha; Koval, Lyudmyla; Kalashnyk, Olena; Gergalova, Galyna; Uspenska, Kateryna; Komisarenko, Serghiy; Soreq, Hermona; Skok, Maryna

    2016-01-01

    Neuro-inflammation, one of the pathogenic causes of neurodegenerative diseases, is regulated through the cholinergic anti-inflammatory pathway via the α7 nicotinic acetylcholine receptor (α7 nAChR). We previously showed that either bacterial lipopolysaccharide (LPS) or immunization with the α7(1–208) nAChR fragment decrease α7 nAChRs density in the mouse brain, exacerbating chronic inflammation, beta-amyloid accumulation and episodic memory decline, which mimic the early stages of Alzheimer’s disease (AD). To study the molecular mechanisms underlying the LPS and antibody effects in the brain, we employed an in vivo model of acute LPS-induced inflammation and an in vitro model of cultured glioblastoma U373 cells. Here, we report that LPS challenge decreased the levels of α7 nAChR RNA and protein and of acetylcholinesterase (AChE) RNA and activity in distinct mouse brain regions, sensitized brain mitochondria to the apoptogenic effect of Ca2+ and modified brain microRNA profiles, including the cholinergic-regulatory CholinomiRs-132/212, in favor of anti-inflammatory and pro-apoptotic ones. Adding α7(1–208)-specific antibodies to the LPS challenge prevented elevation of both the anti-inflammatory and pro-apoptotic miRNAs while supporting the resistance of brain mitochondria to Ca2+ and maintaining α7 nAChR/AChE decreases. In U373 cells, α7-specific antibodies and LPS both stimulated interleukin-6 production through the p38/Src-dependent pathway. Our findings demonstrate that acute LPS-induced inflammation induces the cholinergic anti-inflammatory pathway in the brain, that α7 nAChR down-regulation limits this pathway, and that α7-specific antibodies aggravate neuroinflammation by inducing the pro-inflammatory interleukin-6 and dampening anti-inflammatory miRNAs; however, these antibodies may protect brain mitochondria and decrease the levels of pro-apoptotic miRNAs, preventing LPS-induced neurodegeneration. PMID:27013966

  19. Ghrelin inhibits LPS-induced release of IL-6 from mouse dopaminergic neurones

    PubMed Central

    2013-01-01

    Background Ghrelin is an orexigenic stomach hormone that acts centrally to increase mid-brain dopamine neurone activity, amplify dopamine signaling and protect against neurotoxin-induced dopamine cell death in the mouse substantia nigra pars compacta (SNpc). In addition, ghrelin inhibits the lipopolysaccharide (LPS)-induced release of pro-inflammatory cytokines from peripheral macrophages, T-cells and from LPS stimulated microglia. Here we sought to determine whether ghrelin attenuates pro-inflammatory cytokine release from dopaminergic neurones. Findings The dopaminergic SN4741 cell-line, which derives from the mouse substantia nigra (SN) and expresses the ghrelin-receptor (growth hormone secretagogue receptor (GHS-R)) and the ghrelin-O-acyl transferase (GOAT) enzyme, was used to determine the neuro-immunomodulatory action of ghrelin. We induced innate immune activation via LPS challenge (1 μg/ml) of SN4741 neurones that had been pre-cultured in the presence or absence of ghrelin (1, 10, 100 nM) for 4 h. After 24 h supernatants were collected for detection of IL-1 beta (IL-1β ), TNF alpha (TNF-α) and IL-6 cytokines via enzyme linked immunosorbent assay (ELISA) analysis. Nuclear translocation of the transcription factor nuclear factor kappa B (NF-κB) was analyzed by Western blotting, and to determine viability of treatments a cell viability assay and caspase-3 immunohistochemistry were performed. We provide evidence that while IL-1β and TNF-α were not detectable under any conditions, SN4741 neurones constitutively released IL-6 under basal conditions and treatment with LPS significantly increased IL-6 secretion. Pre-treatment of neurones with ghrelin attenuated LPS-mediated IL-6 release at 24 h, an affect that was inhibited by the GHS-R antagonist [D-Lys3]-GHRP-6. However, while ghrelin pre-treatment attenuated the LPS-mediated increase in NF-κB, there was no alteration in its nuclear translocation. Cell viability assay and caspase-3 immunocytochemistry

  20. Ghrelin inhibits LPS-induced release of IL-6 from mouse dopaminergic neurones.

    PubMed

    Beynon, Amy L; Brown, M Rowan; Wright, Rhiannon; Rees, Mark I; Sheldon, I Martin; Davies, Jeffrey S

    2013-03-19

    Ghrelin is an orexigenic stomach hormone that acts centrally to increase mid-brain dopamine neurone activity, amplify dopamine signaling and protect against neurotoxin-induced dopamine cell death in the mouse substantia nigra pars compacta (SNpc). In addition, ghrelin inhibits the lipopolysaccharide (LPS)-induced release of pro-inflammatory cytokines from peripheral macrophages, T-cells and from LPS stimulated microglia. Here we sought to determine whether ghrelin attenuates pro-inflammatory cytokine release from dopaminergic neurones. The dopaminergic SN4741 cell-line, which derives from the mouse substantia nigra (SN) and expresses the ghrelin-receptor (growth hormone secretagogue receptor (GHS-R)) and the ghrelin-O-acyl transferase (GOAT) enzyme, was used to determine the neuro-immunomodulatory action of ghrelin. We induced innate immune activation via LPS challenge (1 μg/ml) of SN4741 neurones that had been pre-cultured in the presence or absence of ghrelin (1, 10, 100 nM) for 4 h. After 24 h supernatants were collected for detection of IL-1 beta (IL-1β ), TNF alpha (TNF-α) and IL-6 cytokines via enzyme linked immunosorbent assay (ELISA) analysis. Nuclear translocation of the transcription factor nuclear factor kappa B (NF-κB) was analyzed by Western blotting, and to determine viability of treatments a cell viability assay and caspase-3 immunohistochemistry were performed.We provide evidence that while IL-1β and TNF-α were not detectable under any conditions, SN4741 neurones constitutively released IL-6 under basal conditions and treatment with LPS significantly increased IL-6 secretion. Pre-treatment of neurones with ghrelin attenuated LPS-mediated IL-6 release at 24 h, an affect that was inhibited by the GHS-R antagonist [D-Lys3]-GHRP-6. However, while ghrelin pre-treatment attenuated the LPS-mediated increase in NF-κB, there was no alteration in its nuclear translocation. Cell viability assay and caspase-3 immunocytochemistry demonstrated that the

  1. WIN-34B May Have Analgesic and Anti-Inflammatory Effects by Reducing the Production of Pro-Inflammatory Mediators in Cells via Inhibition of IκB Signaling Pathways

    PubMed Central

    Kim, Kyoung Soo; Choi, Hyun Mi; Yang, Hyung-In; Yoo, Myung Chul

    2012-01-01

    WIN-34B showed analgesic and anti-inflammatory effects in various animal models of pain and osteoarthritis. However, the molecular mechanism by which WIN-34B inhibits pain and inflammation in vivo remains to be elucidated. We investigated the molecular mechanisms of the actions of WIN-34B using various in vitro models using fibroblast-like synoviocytes from patients with rheumatoid arthritis (RA FLSs), RAW264.7 cells and peritoneal macrophages. WIN-34B inhibited the level of IL-6, PGE2, and MMP-13 in IL-1β-stimulated RA FLSs in a dose-dependent manner. The mRNA levels were also inhibited by WIN-34B. The level of PGE2, NO, IL-1β, and TNF-α were inhibited by WIN-34B at different concentrations in LPS-stimulated RAW264.7 cells. The production of NO and PGE2 was inhibited by WIN-34B in a dose-dependent manner in LPS-stimulated peritoneal macrophages. All of these effects were comparable to the positive control, celecoxib or indomethacin. IκB signaling pathways were inhibited by WIN-34B, and the migration of NF-κB into the nucleus was inhibited, which is consistent with the degradation of IκB-α. Taken together, the results suggest that WIN-34B has potential as a therapeutic drug to reduce pain and inflammation by inhibiting the production of pro-inflammatory mediators. PMID:24116274

  2. Influence of Coenzyme Q_{10} on release of pro-inflammatory chemokines in the human monocytic cell line THP-1.

    PubMed

    Schmelzer, Constance; Lorenz, Gerti; Rimbach, Gerald; Döring, Frank

    2007-01-01

    Coenzyme Q_{10} (CoQ_{10}) is an obligatory element in the mitochondrial electron transport system and functions as a potent antioxidant of lipid membranes. In-vivo and in-vitro studies indicate an involvement of CoQ_{10} in inflammatory pathways. Here we studied in the human monocytic cell-line THP-1 the influence of CoQ_{10} on LPS-induced secretion of the pro-inflammatory chemokines Macrophage inflammatory protein-1 alpha (MIP-1alpha), Regulated upon activation, normal T cell expressed and secreted (RANTES) and Monocyte chemoattractant protein-1 (MCP-1). In comparison to unstimulated cells, LPS leads to 22-, 3- and 4.5-fold higher levels of MIP-1alpha, RANTES and MCP-1 in the cell culture medium, respectively. Pre-incubation of cells with 10 microM CoQ_{10} resulted in a significant decrease of LPS-induced MIP-1alpha and RANTES secretion to 55.04% (p = 0.02) and 76.84% (p = 0.04), respectively. In conclusion, CoQ_{10} reduces the LPS-induced secretion levels of the pro-inflammatory chemokines MIP-1alpha and RANTES in the human monocytic cell line THP-1. These data suggest that CoQ_{10} possesses anti-inflammatory properties.

  3. Cannabidiol (CBD) Enhances Lipopolysaccharide (LPS)-Induced Pulmonary Inflammation in C57BL/6 Mice

    PubMed Central

    Karmaus, Peer W. F.; Wagner, James G.; Harkema, Jack R.; Kaminski, Norbert E.; Kaplan, Barbara L.F.

    2012-01-01

    Cannabidiol (CBD) is a plant-derived cannabinoid that has been predominantly characterized as anti-inflammatory. However, it is clear that immune effects of cannabinoids can vary with cannabinoid concentration, or type or magnitude of immune stimulus. The present studies demonstrate that oral administration of CBD enhanced lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice. The enhanced inflammatory cell infiltrate as observed in bronchoalveolar lavage fluid (BALF) was comprised mainly of neutrophils, with some monocytes. Concomitantly, CBD enhanced pro-inflammatory cytokine mRNA production, including tumor necrosis factor-α (Tnfa), interleukins (IL) 6 and 23 (Il6, Il23), and granulocyte colony stimulating factor (Gcsf). These results demonstrate that the CBD-mediated enhancement of LPS-induced pulmonary inflammation is mediated at the level of transcription of a variety of pro-inflammatory genes. The significance of these studies is that CBD is part of a therapeutic currently in use for spasticity and pain in multiple sclerosis patients, and therefore it is important to further understand mechanisms by which CBD alters immune function. PMID:23173851

  4. Cannabidiol (CBD) enhances lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice.

    PubMed

    Karmaus, Peer W F; Wagner, James G; Harkema, Jack R; Kaminski, Norbert E; Kaplan, Barbara L F

    2013-01-01

    Cannabidiol (CBD) is a plant-derived cannabinoid that has been predominantly characterized as anti-inflammatory. However, it is clear that immune effects of cannabinoids can vary with cannabinoid concentration, or type or magnitude of immune stimulus. The present studies demonstrate that oral administration of CBD enhanced lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice. The enhanced inflammatory cell infiltrate as observed in bronchoalveolar lavage fluid (BALF) was comprised mainly of neutrophils, with some monocytes. Concomitantly, CBD enhanced pro-inflammatory cytokine mRNA production, including tumor necrosis factor-α (Tnfa), interleukins (IL)-5 and -23 (Il6, Il23), and granulocyte colony stimulating factor (Gcsf). These results demonstrate that the CBD-mediated enhancement of LPS-induced pulmonary inflammation is mediated at the level of transcription of a variety of pro-inflammatory genes. The significance of these studies is that CBD is part of a therapeutic currently in use for spasticity and pain in multiple sclerosis patients, and therefore it is important to further understand mechanisms by which CBD alters immune function.

  5. A novel mouse model of Campylobacter jejuni gastroenteritis reveals key pro-inflammatory and tissue protective roles for Toll-like receptor signaling during infection.

    PubMed

    Stahl, Martin; Ries, Jenna; Vermeulen, Jenny; Yang, Hong; Sham, Ho Pan; Crowley, Shauna M; Badayeva, Yuliya; Turvey, Stuart E; Gaynor, Erin C; Li, Xiaoxia; Vallance, Bruce A

    2014-07-01

    Campylobacter jejuni is a major source of foodborne illness in the developed world, and a common cause of clinical gastroenteritis. Exactly how C. jejuni colonizes its host's intestines and causes disease is poorly understood. Although it causes severe diarrhea and gastroenteritis in humans, C. jejuni typically dwells as a commensal microbe within the intestines of most animals, including birds, where its colonization is asymptomatic. Pretreatment of C57BL/6 mice with the antibiotic vancomycin facilitated intestinal C. jejuni colonization, albeit with minimal pathology. In contrast, vancomycin pretreatment of mice deficient in SIGIRR (Sigirr(-/-)), a negative regulator of MyD88-dependent signaling led to heavy and widespread C. jejuni colonization, accompanied by severe gastroenteritis involving strongly elevated transcription of Th1/Th17 cytokines. C. jejuni heavily colonized the cecal and colonic crypts of Sigirr(-/-) mice, adhering to, as well as invading intestinal epithelial cells. This infectivity was dependent on established C. jejuni pathogenicity factors, capsular polysaccharides (kpsM) and motility/flagella (flaA). We also explored the basis for the inflammatory response elicited by C. jejuni in Sigirr(-/-) mice, focusing on the roles played by Toll-like receptors (TLR) 2 and 4, as these innate receptors were strongly stimulated by C. jejuni. Despite heavy colonization, Tlr4(-/-)/Sigirr(-/-) mice were largely unresponsive to infection by C. jejuni, whereas Tlr2(-/-)/Sigirr(-/-) mice developed exaggerated inflammation and pathology. This indicates that TLR4 signaling underlies the majority of the enteritis seen in this model, whereas TLR2 signaling had a protective role, acting to promote mucosal integrity. Furthermore, we found that loss of the C. jejuni capsule led to increased TLR4 activation and exaggerated inflammation and gastroenteritis. Together, these results validate the use of Sigirr(-/-) mice as an exciting and relevant animal model for

  6. A Novel Mouse Model of Campylobacter jejuni Gastroenteritis Reveals Key Pro-inflammatory and Tissue Protective Roles for Toll-like Receptor Signaling during Infection

    PubMed Central

    Stahl, Martin; Yang, Hong; Sham, Ho Pan; Crowley, Shauna M.; Badayeva, Yuliya; Turvey, Stuart E.; Gaynor, Erin C.; Li, Xiaoxia; Vallance, Bruce A.

    2014-01-01

    Campylobacter jejuni is a major source of foodborne illness in the developed world, and a common cause of clinical gastroenteritis. Exactly how C. jejuni colonizes its host's intestines and causes disease is poorly understood. Although it causes severe diarrhea and gastroenteritis in humans, C. jejuni typically dwells as a commensal microbe within the intestines of most animals, including birds, where its colonization is asymptomatic. Pretreatment of C57BL/6 mice with the antibiotic vancomycin facilitated intestinal C. jejuni colonization, albeit with minimal pathology. In contrast, vancomycin pretreatment of mice deficient in SIGIRR (Sigirr−/−), a negative regulator of MyD88-dependent signaling led to heavy and widespread C. jejuni colonization, accompanied by severe gastroenteritis involving strongly elevated transcription of Th1/Th17 cytokines. C. jejuni heavily colonized the cecal and colonic crypts of Sigirr−/− mice, adhering to, as well as invading intestinal epithelial cells. This infectivity was dependent on established C. jejuni pathogenicity factors, capsular polysaccharides (kpsM) and motility/flagella (flaA). We also explored the basis for the inflammatory response elicited by C. jejuni in Sigirr−/− mice, focusing on the roles played by Toll-like receptors (TLR) 2 and 4, as these innate receptors were strongly stimulated by C. jejuni. Despite heavy colonization, Tlr4−/−/Sigirr−/− mice were largely unresponsive to infection by C. jejuni, whereas Tlr2−/−/Sigirr−/− mice developed exaggerated inflammation and pathology. This indicates that TLR4 signaling underlies the majority of the enteritis seen in this model, whereas TLR2 signaling had a protective role, acting to promote mucosal integrity. Furthermore, we found that loss of the C. jejuni capsule led to increased TLR4 activation and exaggerated inflammation and gastroenteritis. Together, these results validate the use of Sigirr−/− mice as an exciting and relevant animal

  7. PGF2α modulates the output of chemokines and pro-inflammatory cytokines in myometrial cells from term pregnant women through divergent signaling pathways

    PubMed Central

    Xu, Chen; Liu, Weina; You, Xingji; Leimert, Kelycia; Popowycz, Krystyn; Fang, Xin; Wood, Stephen L.; Slater, Donna M.; Sun, Qianqian; Gu, Hang; Olson, David M.; Ni, Xin

    2015-01-01

    Prostaglandin F2α (PGF2α) plays a critical role in the initiation and process of parturition. Since human labor has been described as an inflammatory event, we investigated the role of PGF2α in the inflammatory process using cultured human uterine smooth muscle cells (HUSMCs) isolated from term pregnant women as a model. Using a multiplex assay, HUSMCs treated with PGF2α changed their output of a number of cytokines and chemokines, with a distinct response pattern that differed between HUSMCs isolated from the upper and lower segment region of the uterus. Confirmatory enzyme-linked immunosorbent assays (ELISAs) showed that PGF2α stimulated increased output of interleukin (IL) 1β, IL6, IL8 (CXCL8) and monocyte chemotactic protein-1 (MCP1, also known as chemokine (c-c motif) ligand 2, CCL2) by HUSMCs isolated from both upper and lower uterine segments. In contrast, PGF2α inhibited tumor necrosis factor α (TNFα) release by HUMSCs from the lower uterine segment while the output of TNFα was undetectable in the upper segment. Small interfering (si) RNA mediated knockdown of the PGF2α receptor prevented the changes in cytokine and chemokine output by the HUSMCs. Since the PGF2α receptor (PTGFR) couples via the Gq protein and subsequently activates the phospholipase C (PLC) and protein kinase C (PKC) signaling pathways, we examined the role of these pathways in PGF2α modulation of the cytokines. Inhibition of PLC and PKC reversed the effects of PGF2α. PGF2α activated multiple signaling pathways including extracellular signal-regulated kinases (ERK) 1/2, phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), P38, calcineurin/nuclear factor of activated T-cells (NFAT) and NF-κB signaling. Inhibition of ERK reversed PGF2α-induced IL1β, IL6 and CCL2 output, while inhibition of PI3K blocked the effect of PGF2α on IL6, CXCL8 and CCL2 output and inhibition of NF-κB reversed PGF2α-induced IL1β and CCL2 output. NFAT was involved in PGF2α modulation of CCL2

  8. Pro-inflammatory cytokine-driven PI3K/Akt/Sp1 signalling and H2S production facilitates the pathogenesis of severe acute pancreatitis.

    PubMed

    Liu, Ying; Liao, Ribin; Qiang, Zhanrong; Zhang, Cheng

    2017-04-30

    Severe acute pancreatitis (SAP) is a disease usually associated with systemic organ dysfunction or pancreatic necrosis. Most patients with SAP suffer from defective intestinal motility in the early phase of the disease. Additionally, SAP-induced inflammation produces hydrogen sulphide (H2S) that impairs the gastrointestinal (GI) system. However, the exact mechanism of H2S in the regulation of SAP is yet to be elucidated. In the present paper, we used a rat model of SAP to evaluate the role of H2S on intestinal motility by counting the number of bowel movements and investigating the effect of H2S on inflammation. We treated colonic muscle cells (CMCs) with SAP plasma, tumour necrosis factor-α (TNF-α) or interleukin-6 (IL-6) and measured the expressions of H2S-producing enzymes cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS) and Sp1 and PI3K/Akt by using quantitative PCR, Western blotting and immunohistochemical detection. We used the PI3K inhibitor LY294002 and the siRNA si-Sp1 to suppress the activity of the PI3K/Akt/Sp1 signalling pathway. We found that, in the SAP rat model, H2S facilitated an inhibitory effect on intestinal motility and enhanced the inflammatory response caused by SAP (P<0.05). The expressions of CSE and CBS in CMCs were significantly increased after treatment with TNF-α or IL-6 (P<0.05). Blocking the PI3K/Akt/Sp1 pathway remarkably inhibited the synthesis of CSE and CBS. Our data demonstrated that H2S plays a vital role in the pathogenesis of SAP and that SAP is modulated by inflammation driven by the PI3K/Akt/Sp1 signalling pathway. © 2017 The Author(s).

  9. IL-17A Signaling in Colonic Epithelial Cells Inhibits Pro-Inflammatory Cytokine Production by Enhancing the Activity of ERK and PI3K

    PubMed Central

    Xiao, Yan; Zhou, Tingting; Guo, Yueling; Wang, Renxi; Zhao, Zhi; Xiao, He; Hou, Chunmei; Ma, Lingyun; Lin, Yanhua; Lang, Xiaoling; Feng, Jiannan; Chen, Guojiang; Shen, Beifen; Han, Gencheng; Li, Yan

    2014-01-01

    Our previous data suggested that IL-17A contributes to the inhibition of Th1 cell function in the gut. However, the underlying mechanisms remain unclear. Here we demonstrate that IL-17A signaling in colonic epithelial cells (CECs) increases TNF-α-induced PI3K-AKT and ERK phosphorylation and inhibits TNF-α induced expression of IL-12P35 and of a Th1 cell chemokine, CXCL11 at mRNA level. In a co-culture system using HT-29 cells and PBMCs, IL-17A inhibited TNF-ãinduced IL-12P35 expression by HT-29 cells and led to decreased expression of IFN-γ and T-bet by PBMCs. Finally, adoptive transfer of CECs from mice with Crohn's Disease (CD) led to an enhanced Th1 cell response and exacerbated colitis in CD mouse recipients. The pathogenic effect of CECs derived from CD mice was reversed by co-administration of recombinant IL-17A. Our data demonstrate a new IL-17A-mediated regulatory mechanism in CD. A better understanding of this pathway might shed new light on the pathogenesis of CD. PMID:24586980

  10. CaM Kinase II mediates maladaptive post-infarct remodeling and pro-inflammatory chemoattractant signaling but not acute myocardial ischemia/reperfusion injury

    PubMed Central

    Weinreuter, Martin; Kreusser, Michael M; Beckendorf, Jan; Schreiter, Friederike C; Leuschner, Florian; Lehmann, Lorenz H; Hofmann, Kai P; Rostosky, Julia S; Diemert, Nathalie; Xu, Chang; Volz, Hans Christian; Jungmann, Andreas; Nickel, Alexander; Sticht, Carsten; Gretz, Norbert; Maack, Christoph; Schneider, Michael D; Gröne, Hermann-Josef; Müller, Oliver J; Katus, Hugo A; Backs, Johannes

    2014-01-01

    CaMKII was suggested to mediate ischemic myocardial injury and adverse cardiac remodeling. Here, we investigated the roles of different CaMKII isoforms and splice variants in ischemia/reperfusion (I/R) injury by the use of new genetic CaMKII mouse models. Although CaMKIIδC was upregulated 1 day after I/R injury, cardiac damage 1 day after I/R was neither affected in CaMKIIδ-deficient mice, CaMKIIδ-deficient mice in which the splice variants CaMKIIδB and C were re-expressed, nor in cardiomyocyte-specific CaMKIIδ/γ double knockout mice (DKO). In contrast, 5 weeks after I/R, DKO mice were protected against extensive scar formation and cardiac dysfunction, which was associated with reduced leukocyte infiltration and attenuated expression of members of the chemokine (C-C motif) ligand family, in particular CCL3 (macrophage inflammatory protein-1α, MIP-1α). Intriguingly, CaMKII was sufficient and required to induce CCL3 expression in isolated cardiomyocytes, indicating a cardiomyocyte autonomous effect. We propose that CaMKII-dependent chemoattractant signaling explains the effects on post-I/R remodeling. Taken together, we demonstrate that CaMKII is not critically involved in acute I/R-induced damage but in the process of post-infarct remodeling and inflammatory processes. PMID:25193973

  11. CaM Kinase II mediates maladaptive post-infarct remodeling and pro-inflammatory chemoattractant signaling but not acute myocardial ischemia/reperfusion injury.

    PubMed

    Weinreuter, Martin; Kreusser, Michael M; Beckendorf, Jan; Schreiter, Friederike C; Leuschner, Florian; Lehmann, Lorenz H; Hofmann, Kai P; Rostosky, Julia S; Diemert, Nathalie; Xu, Chang; Volz, Hans Christian; Jungmann, Andreas; Nickel, Alexander; Sticht, Carsten; Gretz, Norbert; Maack, Christoph; Schneider, Michael D; Gröne, Hermann-Josef; Müller, Oliver J; Katus, Hugo A; Backs, Johannes

    2014-10-01

    CaMKII was suggested to mediate ischemic myocardial injury and adverse cardiac remodeling. Here, we investigated the roles of different CaMKII isoforms and splice variants in ischemia/reperfusion (I/R) injury by the use of new genetic CaMKII mouse models. Although CaMKIIδC was upregulated 1 day after I/R injury, cardiac damage 1 day after I/R was neither affected in CaMKIIδ-deficient mice, CaMKIIδ-deficient mice in which the splice variants CaMKIIδB and C were re-expressed, nor in cardiomyocyte-specific CaMKIIδ/γ double knockout mice (DKO). In contrast, 5 weeks after I/R, DKO mice were protected against extensive scar formation and cardiac dysfunction, which was associated with reduced leukocyte infiltration and attenuated expression of members of the chemokine (C-C motif) ligand family, in particular CCL3 (macrophage inflammatory protein-1α, MIP-1α). Intriguingly, CaMKII was sufficient and required to induce CCL3 expression in isolated cardiomyocytes, indicating a cardiomyocyte autonomous effect. We propose that CaMKII-dependent chemoattractant signaling explains the effects on post-I/R remodeling. Taken together, we demonstrate that CaMKII is not critically involved in acute I/R-induced damage but in the process of post-infarct remodeling and inflammatory processes. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  12. Ginkgo biloba extract EGb761 attenuates brain death-induced renal injury by inhibiting pro-inflammatory cytokines and the SAPK and JAK-STAT signalings

    PubMed Central

    Li, Yifu; Xiong, Yunyi; Zhang, Huanxi; Li, Jun; Wang, Dong; Chen, Wenfang; Yuan, Xiaopeng; Su, Qiao; Li, Wenwen; Huang, Huiting; Bi, Zirong; Liu, Longshan; Wang, Changxi

    2017-01-01

    This study aimed to investigate the protective effects of EGb761, a Ginkgo Biloba extract, against brain death-induced kidney injury. Sixty male Sprague Dawley rats were randomly divided into six groups: sham, brain-death (BD), BD + EGb b48h (48 hours before BD), BD + EGb 2 h (2 hours after BD), BD + EGb 1 h, and BD + EGb 0.5 h. Six hours after BD, serum sample and kidney tissues were collected for analyses. The levels of blood urea nitrogen (BUN) and serum creatinine significantly elevated in the BD group than in sham group. In all the EGb761-treated BD animals except for the BD + Gb 2 h group, the levels of BUN and serum creatinine significantly reduced (all P < 0.01). EGb761 attenuated tubular injury and lowered the histological score. In addition, the longer duration of drug treatment was, the better protective efficacy could be observed. EGb761 significantly reduced IL-1β, IL-6, TNF-α, MCP-1, IP-10 mRNA expression and macrophage infiltration in the kidney. EGb761 treatment at 48 hour before brain death significantly attenuate the levels of p-JNK-MAPK, p-p38-MAPK, and p-STAT3 proteins (all P < 0.05, compared to BD group). In summary, our data showed that EGb761 treatment protected donor kidney from BD-induced damages by blocking SAPK and JAK-STAT signalings. Early administration of EGb761 can provide better protective efficacy. PMID:28332628

  13. Pepsin-pancreatin protein hydrolysates from extruded amaranth inhibit markers of atherosclerosis in LPS-induced THP-1 macrophages-like human cells by reducing expression of proteins in LOX-1 signaling pathway

    PubMed Central

    2014-01-01

    Background Atherosclerosis is considered a progressive disease that affects arteries that bring blood to the heart, to the brain and to the lower end. It derives from endothelial dysfunction and inflammation, which play an important role in the thrombotic complications of atherosclerosis. Cardiovascular disease is the leading cause of death around the world and one factor that can contribute to its progression and prevention is diet. Our previous study found that amaranth hydrolysates inhibited LPS-induced inflammation in human and mouse macrophages by preventing activation of NF-κB signaling. Furthermore, extrusion improved the anti-inflammatory effect of amaranth protein hydrolysates in both cell lines, probably attributed to the production of bioactive peptides during processing. Therefore, the objective of this study was to compare the anti-atherosclerotic potential of pepsin-pancreatin hydrolysates from unprocessed and extruded amaranth in THP-1 lipopolysaccharide-induced human macrophages and suggest the mechanism of action. Results Unprocessed amaranth hydrolysate (UAH) and extruded amaranth hydrolysate (EAH) showed a significant reduction in the expression of interleukin-4 (IL-4) (69% and 100%, respectively), interleukin-6 (IL-6) (64% and 52%, respectively), interleukin-22 (IL-22) (55% and 70%, respectively). Likewise, UAH and EAH showed a reduction in the expression of monocyte-chemo attractant protein-1 (MCP-1) (35% and 42%, respectively), transferrin receptor-1 (TfR-1) (48% and 61%, respectively), granulocyte-macrophage colony-stimulating factor (GM-CSF) (59% and 63%, respectively), and tumor necrosis factor-α (TNF-α) (60% and 63%, respectively). Also, EAH reduced the expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) (27%), intracellular adhesion molecule-1 (ICAM-1) (28%) and matrix metalloproteinase-9 (MMP-9) (19%), important molecular markers in the atherosclerosis pathway. EAH, led to a reduction of 58, 52 and 79% for

  14. Allograft Inflammatory Factor 1 Functions as a Pro-Inflammatory Cytokine in the Oyster, Crassostrea ariakensis

    PubMed Central

    Xu, Ting; Liu, Xiao; Wu, Xinzhong

    2014-01-01

    The oyster Crassostrea ariakensis is an economically important bivalve species in China, unfortunately it has suffered severe mortalities in recent years caused by rickettsia-like organism (RLO) infection. Prevention and control of this disease is a priority for the development of oyster aquaculture. Allograft inflammatory factor-1 (AIF-1) was identified as a modulator of the immune response during macrophage activation and a key gene in host immune defense reaction and inflammatory response. Therefore we investigated the functions of C. ariakensis AIF-1 (Ca-AIF1) and its antibody (anti-CaAIF1) in oyster RLO/LPS-induced disease and inflammation. Ca-AIF1 encodes a 149 amino acid protein containing two typical Ca2+ binding EF-hand motifs and shares a 48–95% amino acid sequence identity with other animal AIF-1s. Tissue-specific expression analysis indicates that Ca-AIF1 is highly expressed in hemocytes. Significant and continuous up-regulation of Ca-AIF1 is detected when hemocytes are stimulated with RLO/LPS (RLO or LPS). Treatment with recombinant Ca-AIF1 protein significantly up-regulates the expression levels of LITAF, MyD88 and TGFβ. When anti-CaAIF1 antibody is added to RLO/LPS-challenged hemocyte monolayers, a significant reduction of RLO/LPS-induced LITAF is observed at 1.5–12 h after treatment, suggesting that interference with Ca-AIF1 can suppress the inflammatory response. Furthermore, flow cytometric analysis indicated that anti-CaAIF1 administration reduces RLO/LPS-induced apoptosis and necrosis rates of hemocytes. Collectively these findings suggest that Ca-AIF1 functions as a pro-inflammatory cytokine in the oyster immune response and is a potential target for controlling RLO infection and LPS-induced inflammation. PMID:24759987

  15. Downregulation of pro-inflammatory mediators by a water extract of Schisandra chinensis (Turcz.) Baill fruit in lipopolysaccharide-stimulated RAW 264.7 macrophage cells.

    PubMed

    Dilshara, Matharage Gayani; Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Kang, Chang-Hee; Lee, Seungheon; Park, Sang Rul; Jeong, Jin-Woo; Choi, Yung Hyun; Seo, Yong Taek; Jang, Young Pyo; Kim, Gi-Young

    2013-09-01

    Schisandra chinensis has a long-standing history of medicinal use as a tonic, a sedative, an anti-tussive, and an anti-aging drug. Nevertheless, the antagonistic effects of S. chinensis against lipopolysaccharide (LPS)-stimulated responses have not yet been studied. In this study, we investigated whether water extract of S. chinensis fruit (WESC) has the ability to attenuate the expression of pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), and tumor necrosis factor-α (TNF-α) in LPS-stimulated RAW 264.7 macrophage cells. WESC inhibited the expression of LPS-induced pro-inflammatory mediators, namely, NO, PGE2, and TNF-α. Furthermore, gene expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-α was inhibited both at mRNA and protein synthesis levels, without any cytotoxic effect. Moreover, WESC significantly suppressed LPS-induced DNA-binding activity of NF-κB by inhibiting degradation of IκBα. It was found that pyrrolidine dithiocarbamate (PDTC), a specific NF-κB inhibitor, downregulates the expression of these pro-inflammatory genes to be closely regulated by NF-κB activity. Furthermore, we found that WESC retains dephosphorylation of Akt in response to LPS, and consequently suppressed the DNA-binding activity of NF-κB in RAW 264.7 macrophage cells. LY294002, a specific Akt inhibitor, attenuated LPS-induced pro-inflammatory gene expression via suppression of NF-κB activity. Taken together, our results indicate that WESC downregulates the expression of pro-inflammatory genes involved in the synthesis of NO, PGE2, and TNF-α in LPS-stimulated RAW 264.7 macrophage cells by suppressing Akt-dependent NF-κB activity.

  16. Cannabidiol improves lung function and inflammation in mice submitted to LPS-induced acute lung injury.

    PubMed

    Ribeiro, A; Almeida, V I; Costola-de-Souza, C; Ferraz-de-Paula, V; Pinheiro, M L; Vitoretti, L B; Gimenes-Junior, J A; Akamine, A T; Crippa, J A; Tavares-de-Lima, W; Palermo-Neto, J

    2015-02-01

    We have previously shown that the prophylactic treatment with cannabidiol (CBD) reduces inflammation in a model of acute lung injury (ALI). In this work we analyzed the effects of the therapeutic treatment with CBD in mice subjected to the model of lipopolysaccharide (LPS)-induced ALI on pulmonary mechanics and inflammation. CBD (20 and 80 mg/kg) was administered (i.p.) to mice 6 h after LPS-induced lung inflammation. One day (24 h) after the induction of inflammation the assessment of pulmonary mechanics and inflammation were analyzed. The results show that CBD decreased total lung resistance and elastance, leukocyte migration into the lungs, myeloperoxidase activity in the lung tissue, protein concentration and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) in the bronchoalveolar lavage supernatant. Thus, we conclude that CBD administered therapeutically, i.e. during an ongoing inflammatory process, has a potent anti-inflammatory effect and also improves the lung function in mice submitted to LPS-induced ALI. Therefore the present and previous data suggest that in the future cannabidiol might become a useful therapeutic tool for the attenuation and treatment of inflammatory lung diseases.

  17. Synthetic PreImplantation Factor (PIF) prevents fetal loss by modulating LPS induced inflammatory response

    PubMed Central

    Marana, Riccardo; Castellani, Roberta; Ria, Francesco; Veglia, Manuela; Scambia, Giovanni; Surbek, Daniel; Barnea, Eytan

    2017-01-01

    Maternal control of inflammation is essential during pregnancy and an exaggerated response is one of the underlying causes of fetal loss. Inflammatory response is mediated by multiple factors and Toll-like receptors (TLRs) are central. Activation of TLRs results in NALP-3 mediated assembly of apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1 into the inflammasome and production of pro-inflammatory cytokines IL-1β and IL-18. Given that preventing measures are lacking, we investigated PreImplantation Factor (PIF) as therapeutic option as PIF modulates Inflammation in pregnancy. Additionally, synthetic PIF (PIF analog) protects against multiple immune disorders. We used a LPS induced murine model of fetal loss and synthetic PIF reduced this fetal loss and increased the embryo weight significantly. We detected increased PIF expression in the placentae after LPS insult. The LPS induced serum and placenta cytokines were abolished by synthetic PIF treatment and importantly synthetic PIF modulated key members of inflammasome complex NALP-3, ASC, and caspase-1 as well. In conclusion our results indicate that synthetic PIF protects against LPS induced fetal loss, likely through modulation of inflammatory response especially the inflammasome complex. Given that synthetic PIF is currently tested in autoimmune diseases of non-pregnant subjects (clinicaltrials.gov, NCT02239562), therapeutic approach during pregnancy can be envisioned. PMID:28704412

  18. Synthetic PreImplantation Factor (PIF) prevents fetal loss by modulating LPS induced inflammatory response.

    PubMed

    Di Simone, Nicoletta; Di Nicuolo, Fiorella; Marana, Riccardo; Castellani, Roberta; Ria, Francesco; Veglia, Manuela; Scambia, Giovanni; Surbek, Daniel; Barnea, Eytan; Mueller, Martin

    2017-01-01

    Maternal control of inflammation is essential during pregnancy and an exaggerated response is one of the underlying causes of fetal loss. Inflammatory response is mediated by multiple factors and Toll-like receptors (TLRs) are central. Activation of TLRs results in NALP-3 mediated assembly of apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1 into the inflammasome and production of pro-inflammatory cytokines IL-1β and IL-18. Given that preventing measures are lacking, we investigated PreImplantation Factor (PIF) as therapeutic option as PIF modulates Inflammation in pregnancy. Additionally, synthetic PIF (PIF analog) protects against multiple immune disorders. We used a LPS induced murine model of fetal loss and synthetic PIF reduced this fetal loss and increased the embryo weight significantly. We detected increased PIF expression in the placentae after LPS insult. The LPS induced serum and placenta cytokines were abolished by synthetic PIF treatment and importantly synthetic PIF modulated key members of inflammasome complex NALP-3, ASC, and caspase-1 as well. In conclusion our results indicate that synthetic PIF protects against LPS induced fetal loss, likely through modulation of inflammatory response especially the inflammasome complex. Given that synthetic PIF is currently tested in autoimmune diseases of non-pregnant subjects (clinicaltrials.gov, NCT02239562), therapeutic approach during pregnancy can be envisioned.

  19. Teuvincenone F Suppresses LPS-Induced Inflammation and NLRP3 Inflammasome Activation by Attenuating NEMO Ubiquitination

    PubMed Central

    Zhao, Xibao; Pu, Debing; Zhao, Zizhao; Zhu, Huihui; Li, Hongrui; Shen, Yaping; Zhang, Xingjie; Zhang, Ruihan; Shen, Jianzhong; Xiao, Weilie; Chen, Weilin

    2017-01-01

    Inflammation causes many diseases that are serious threats to human health. However, the molecular mechanisms underlying regulation of inflammation and inflammasome activation are not fully understood which has delayed the discovery of new anti-inflammatory drugs of urgent clinic need. Here, we found that the natural compound Teuvincenone F, which was isolated and purified from the stems and leaves of Premna szemaoensis, could significantly inhibit lipopolysaccharide (LPS)–induced pro-inflammatory cytokines production and NLRP3 inflammasome activation. Our results showed that Teuvincenone F attenuated K63-linked ubiquitination of NF-κB-essential modulator (NEMO, also known as IKKγ) to suppress LPS-induced phosphorylation of NF-κB, and inhibited mRNA expression of IL-1β, IL-6, TNF-α, and NLRP3. In addition, we found that decreased NLRP3 expression by Teuvincenone F suppressed NLRP3 inflammasome activation and IL-1β/IL-18 maturation. In vivo, we revealed that Teuvincenone F treatment relieved LPS-induced inflammation. In conclusion, Teuvincenone F is a highly effective natural compound to suppress LPS-induced inflammation by attenuating K63-linked ubiquitination of NEMO, highlighting that Teuvincenone F may be a potential new anti-inflammatory drug for the treatment of inflammatory and NLRP3 inflammasome-driven diseases. PMID:28878677

  20. Acylcarnitines activate pro-inflammatory signaling pathways

    USDA-ARS?s Scientific Manuscript database

    Incomplete beta-oxidation of fatty acids in mitochondria is a feature of insulin resistance and type 2 diabetes mellitus (T2DM) and the resulting metabolic by-products, medium- and long-chain acylcarnitines are shown to be elevated. In preliminary studies, mixed isomers of C12- or C14-carnitine act...

  1. The binding capability of plasma phospholipid transfer protein, but not HDL pool size, is critical to repress LPS induced inflammation

    PubMed Central

    Yu, Yang; Cui, Yingjie; Zhao, Yanan; Liu, Shuai; Song, Guohua; Jiao, Peng; Li, Bin; Luo, Tian; Guo, Shoudong; Zhang, Xiangjian; Wang, Hao; Jiang, Xian-Cheng; Qin, Shucun

    2016-01-01

    Phospholipid transfer protein (PLTP) participates in high density lipoprotein (HDL) metabolism. Increased plasma PLTP activity was observed in lipopolysaccharide (LPS) triggered acute inflammatory diseases. This study aimed to determine the exact role of PLTP in LPS induced inflammation. HDL pool size was shrunk both in PLTP deficient mice (PLTP−/−) and PLTP transgenic mice (PLTP-Tg). PLTP displayed a strong protective effect on lethal endotoxemia in mice survival study. Furthermore, after LPS stimulation, the expression of pro-inflammatory cytokines were increased in bone marrow derived macrophage (BMDM) from PLTP−/−, while decreased in BMDM from PLTP-Tg compared with BMDM from wild-type mice (WT). Moreover, LPS induced nuclear factor kappa-B (NFκB) activation was enhanced in PLTP−/− BMDM or PLTP knockdown RAW264.7. Conversely, PLTP overexpression countered the NFκB activation in LPS challenged BMDM. Additionally, the activation of toll like receptor 4 (TLR4) induced by LPS showed no alteration in PLTP−/− BMDM. Finally, PLTP could bind to LPS, attenuate the pro-inflammatory effects of LPS, and improve the cell viability in vitro. To sum up, these findings elucidated that PLTP repressed LPS induced inflammation due to extracellular LPS binding capability, and the protective effects were not related to HDL pool size in mice. PMID:26857615

  2. Lysophosphatidylcholine Triggers TLR2- and TLR4-Mediated Signaling Pathways but Counteracts LPS-Induced NO Synthesis in Peritoneal Macrophages by Inhibiting NF-κB Translocation and MAPK/ERK Phosphorylation

    PubMed Central

    Carneiro, Alan Brito; Iaciura, Bruna Maria Ferreira; Nohara, Lilian Lie; Lopes, Carla Duque; Veas, Esteban Mauricio Cordero; Mariano, Vania Sammartino; Bozza, Patricia Torres; Lopes, Ulisses Gazos; Atella, Georgia Correa; Almeida, Igor Correia; Silva-Neto, Mário Alberto Cardoso

    2013-01-01

    Background Lysophosphatidylcholine (LPC) is the main phospholipid component of oxidized low-density lipoprotein (oxLDL) and is usually noted as a marker of several human diseases, such as atherosclerosis, cancer and diabetes. Some studies suggest that oxLDL modulates Toll-like receptor (TLR) signaling. However, effector molecules that are present in oxLDL particles and can trigger TLR signaling are not yet clear. LPC was previously described as an attenuator of sepsis and as an immune suppressor. In the present study, we have evaluated the role of LPC as a dual modulator of the TLR-mediated signaling pathway. Methodology/Principal Findings HEK 293A cells were transfected with TLR expression constructs and stimulated with LPC molecules with different fatty acid chain lengths and saturation levels. All LPC molecules activated both TLR4 and TLR2-1 signaling, as evaluated by NF-қB activation and IL-8 production. These data were confirmed by Western blot analysis of NF-қB translocation in isolated nuclei of peritoneal murine macrophages. However, LPC counteracted the TLR4 signaling induced by LPS. In this case, NF-қB translocation, nitric oxide (NO) synthesis and the expression of inducible nitric oxide synthase (iNOS) were blocked. Moreover, LPC activated the MAP Kinases p38 and JNK, but not ERK, in murine macrophages. Interestingly, LPC blocked LPS-induced ERK activation in peritoneal macrophages but not in TLR-transfected cells. Conclusions/Significance The above results indicate that LPC is a dual-activity ligand molecule. It is able to trigger a classical proinflammatory phenotype by activating TLR4- and TLR2-1-mediated signaling. However, in the presence of classical TLR ligands, LPC counteracts some of the TLR-mediated intracellular responses, ultimately inducing an anti-inflammatory phenotype; LPC may thus play a role in the regulation of cell immune responses and disease progression. PMID:24312681

  3. Platelet Supernatant Suppresses LPS-Induced Nitric Oxide Production from Macrophages Accompanied by Inhibition of NF-κB Signaling and Increased Arginase-1 Expression

    PubMed Central

    2016-01-01

    We previously reported that mouse bone marrow-derived macrophages (BMDMs) that had been co-cultured with platelets exhibited lower susceptibility to bacterial lipopolysaccharide (LPS) and produced lower levels of nitric oxide (NO) and inflammatory cytokines including TNF-α and IL-6. The suppression of macrophage responses was mediated, at least in part, by platelet supernatant. In the present study, we assessed phenotypic changes of BMDMs induced by incubation with the supernatant from thrombin-activated platelets (PLT-sup) and found that BMDMs cultured with PLT-sup (PLT-BMDMs) expressed a lower level of inducible NO synthase (iNOS) and a higher level of arginase-1, both of which are involved in the L-arginine metabolism, upon stimulation with LPS or zymosan. We also examined possible modulation of the NF-κB signaling pathway and observed suppression of IκBα phosphorylation and a decrease of NF-κB p65 expression in LPS-stimulated PLT-BMDMs. These results suggest that PLT-sup suppresses inflammatory responses of BMDMs via negative regulation of NF-κB signaling leading to lowered expression of iNOS and enhanced L-arginine catabolism by arginase-1. PMID:27588757

  4. Mechanism of anti-inflammatory effect of tricin, a flavonoid isolated from Njavara rice bran in LPS induced hPBMCs and carrageenan induced rats.

    PubMed

    Shalini, V; Jayalekshmi, Ananthasankaran; Helen, A

    2015-08-01

    Njavara is an indigenous medicinal rice variety traditionally used in Ayurvedic system of medicine practiced in Kerala, India. Tricin is a bioflavonoid present in significantly higher levels in rice bran of Njavara. Present study attempted to identify the molecular target of tricin in TLR mediated signaling pathways by using lipopolysaccharide (LPS) induced human peripheral blood mononuclear cells (hPBMCs) and carrageenan induced paw edema in rats as experimental models. Tricin acted upstream in the activation of inflammation cascade by interfering with TLR4 activation, preferably by blocking the LPS induced activation of TLR4, MYD88 and TRIF proteins in hPBMCs. Subsequently, tricin significantly blocked the activation of downstream kinases like p38MAPK, JNK1/2 and IRF3. Thus the inhibitory effect of tricin on NF-κB and IRF3 together confirms the specific inhibition of both MYD88 dependent and TRIF dependent pathways. Tricin treatment also inhibited the pro-inflammatory effect of LPS by blocking the TLR4 signaling mediated activation of cytosolic phospholipase A2 (cPLA2), which is confirmed by specific inhibition of COX-2. Results demonstrated that in addition to NF-κB, tricin can prevent the activation of STAT proteins by significantly inhibiting the activation of both STAT1 and STAT3 via the down regulation of upstream phosphorylating enzymes like JAK1 and JAK2. The protective anti-inflammatory effect of tricin was also confirmed by in vivo experiments. Thus, this study provides strong evidence that tricin exerts its anti-inflammatory effect via a mechanism involving the TLR4/NF-κB/STAT signaling cascade.

  5. Bioactive Extract from Moringa oleifera Inhibits the Pro-inflammatory Mediators in Lipopolysaccharide Stimulated Macrophages.

    PubMed

    Fard, Masoumeh Tangestani; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Adam, Siti Khadijah; Fakurazi, Sharida

    2015-10-01

    Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS) - stimulated macrophages. The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO) production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders. Hydroethanolic extracts of Moringa oleifera effectively inhibit the NO production in LPS induced inflammatory model.M. oleifera crude extracts successfully modulate the production of pro-inflammatory mediators in LPS stimulated macrophages.M. oleifera extracts suppressed the expression of inflammatory mediators in LPS stimulated macrophages.

  6. Bioactive Extract from Moringa oleifera Inhibits the Pro-inflammatory Mediators in Lipopolysaccharide Stimulated Macrophages

    PubMed Central

    Fard, Masoumeh Tangestani; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Adam, Siti Khadijah; Fakurazi, Sharida

    2015-01-01

    Introduction: Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. Objectives: The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS) - stimulated macrophages. Materials and Methods: The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO) production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Results: Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. Conclusion: These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders. SUMMARY Hydroethanolic extracts of Moringa oleifera effectively inhibit the NO production in LPS induced inflammatory model.M. oleifera crude extracts successfully modulate the production of pro-inflammatory mediators in LPS stimulated macrophages.M. oleifera extracts suppressed the expression of inflammatory mediators in LPS stimulated macrophages. PMID:27013794

  7. LPS-induced iNOS expression in N9 microglial cells is suppressed by geniposide via ERK, p38 and nuclear factor-κB signaling pathways.

    PubMed

    Zhang, Gu; He, Jun-Lin; Xie, Xiao-Yan; Yu, Chao

    2012-09-01

    Activated microglia producing reactive nitrogen species, inflammatory factors, reactive oxygen species (ROS) and other neurovirulent factors, can lead to the development of neurodegenerative diseases. Certain compounds can inhibit the activation of microglia. However, the mechanisms remain unclear. In the present study, we investigated the inhibitory effect of geniposide on the production of ROS and inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated N9 murine microglial cells through the p38, ERK1/2 and nuclear factor-κB (NF-κB) signaling pathways. After the N9 cells were pre-treated with the vehicle or geniposide and exposed to LPS for the time indicated, the MTT conversion test was used to assess cell viability. Suitable concentrations were chosen and adjusted according to the experiments. Extracellular nitric oxide (NO) release was measured by Griess reaction. The formation of ROS and intracellular NO was evaluated by fluorescence imaging. NOS activities were determined using commercially available kits. The morphology of the N9 cells was examined by hematoxylin and eosin staining. The expression of iNOS mRNA was examined by RT-PCR. The protein levels of iNOS, p38 mitogen-activated protein kinase (MAPK), ERK1/2 and NF-κB, inhibitory factor-κB-α (IκB-α) were determined by western blot analysis. The results showed that geniposide attenuated the activation of N9 cells and inhibited the overproduction of NO, intracellular ROS and the expression of iNOS induced by LPS in the cells. In addition, geniposide blocked the phosphorylation of p38, ERK1/2 and inhibited the drop-off of IκB induced by LPS in the cells. These data indicate that geniposide has therapeutic potential for the treatment of neurodegenerative diseases, and that it exerts its effects by inhibiting inflammation.

  8. EGCG attenuates pro-inflammatory cytokines and chemokines production in LPS-stimulated L02 hepatocyte.

    PubMed

    Liu, Qiaoli; Qian, Yun; Chen, Feng; Chen, Xiaoming; Chen, Zhi; Zheng, Min

    2014-01-01

    Endotoxin lipopolysaccharide (LPS) plays an important role in the acceleration of inflammatory reaction of hepatitis as the second attack. Compounds that can prevent inflammation by targeting LPS have potential therapeutic clinical application. Epigallocatechin-3-gallate (EGCG) has potent hepatocyte-protective effect and mild anti-hepatitis virus function. Here, we investigated whether EGCG attenuated the severity of inflammatory response in LPS-stimulated L02 hepatocytes. L02 hepatocytes were pretreated with EGCG for 2 h, then stimulated by LPS at 250 ng/ml. The expression levels of chemokine regulated upon activation normal T-cell expressed and secreted (Rantes) and monocyte chemotactic protein-1 (MCP-1), pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interferon-γ, adhesion molecule intercellular adhesion molecule-1 (ICAM-1), oxidant stress molecules nitric oxide (NO), vascular endothelial growth factor (VEGF), and matrix metalloproteinase-2 (MMP-2) were tested by enzyme-linked immunosorbent assay. The expression of total extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-ERK1/2 (p-ERK1/2), p-AKT, total p38, phospho-p38 (p-p38), total p65 and phospho-p65 (p-p65), IκBα, phospho-IκBα (p-IκBα) and TNF receptor associated factor 2 were tested by western blot analysis. Our results showed that pre-treatment with EGCG could significantly reduce the production of TNF-α, Rantes, MCP-1, ICAM-1, NO, VEGF, and MMP-2 in LPS-stimulated L02 hepatocytes in a dose-dependent manner. The effect of EGCG may be related to the inhibition of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways by down-regulation of p-IκBα, p65, p-p65, p-p38, p-ERK1/2, and p-AKT. These results indicate that EGCG suppresses LPS-induced inflammatory response and oxidant stress and exerts its hepatocyte-protective activity partially by inhibiting NF-κB and MAPK pathways.

  9. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    SciTech Connect

    Erez, Neta; Glanz, Sarah; Raz, Yael; Avivi, Camilla; Barshack, Iris

    2013-08-02

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.

  10. Chronic stress induced disturbances in Laminin: a significant contributor to modulating microglial pro-inflammatory tone?

    PubMed

    Pietrogrande, Giovanni; Mabotuwana, Nishani; Zhao, Zidan; Mahmoud, Abdolhoseini; Johnson, Sarah J; Nilsson, Michael; Walker, Frederick R

    2017-09-21

    Over the last decade, evidence supporting a link between microglia enhanced neuro-inflammatory signalling and mood disturbance has continued to build. One issue that has not been well addressed yet are the factors that drive microglia to enter into a higher pro-inflammatory state. The current study addressed the potential role of the extracellular matrix protein Laminin. C57BL6 adult mice were either exposed to chronic stress or handled for 6 consecutive weeks. Changes in Laminin, microglial morphology and pro-inflammatory cytokine expression were examined in tissue obtained from mice exposed to a chronic restraint stress procedure. These in-vivo investigations were complemented by an extensive set of in-vitro experiments utilising both a primary microglia and BV2 cell line to examine how Laminin influenced microglial pro-inflammatory tone. Chronic stress was associated with enhanced the expression of Laminin, microglial de-ramification and pro-inflammatory cytokine signalling. We further identified that microglia when cultured in the presence of Laminin produced and released significantly greater levels of pro-inflammatory cytokines; took longer to return to baseline following stimulation and exhibited enhanced phagocytic activity. These results suggest that chronic restraint stress is capable of modulating Laminin within the CNS, an effect that has implications for understanding environmental mediated disturbances of microglial function. Copyright © 2017. Published by Elsevier Inc.

  11. Mogroside IIIE Attenuates LPS-Induced Acute Lung Injury in Mice Partly Through Regulation of the TLR4/MAPK/NF-κB Axis via AMPK Activation.

    PubMed

    Tao, Lijun; Cao, Fengyan; Xu, Gonghao; Xie, Haifeng; Zhang, Mian; Zhang, Chaofeng

    2017-07-01

    Acute lung injury (ALI) often leads to high mortality, and there is as yet no effective drug treatment. The present study aimed to investigate protective effects of mogroside IIIE (MGIIIE, a cucurbitane-type triterpenoid from Siraitia grosvenorii Fruits) in experimental ALI and its underlying mechanism. MGIIIE (1, 10 0r 20 mg/kg) was orally administered for 1 h before a single intratracheal administration of lipopolysaccharide (LPS, 5 mg/kg). MGIIIE treatment dose-dependently suppressed pulmonary oedema, pro-inflammatory mediators (IL-1β, IL-6, TNF-α and HMGB1) release and higher MPO activity in lung tissues induced by LPS challenge. Molecular researches showed that mogroside IIIE (20 mg/kg) not only increased the phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK) but suppressed the over-expression of toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88). In addition, MGIIIE also inhibited the activation of MAPKs and nuclear factor κB (NF-κB) signalling in lung tissues from LPS-challenged mice. Similar antiinflammatory effects of MGIIIE were obtained in LPS-treated macrophages. Compound C (a pharmacological AMPK inhibitor) obviously reversed the antiinflammatory effect of MGIIIE in LPS-induced ALI mice. Taken together, AMPK activation plays a crucial role in the antiinflammatory effects of MGIIIE in LPS-induced ALI by down-regulating TLR4/MAPK/NF-κB signalling pathways. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Intervention of Dietary Dipeptide Gamma-l-Glutamyl-l-Valine (γ-EV) Ameliorates Inflammatory Response in a Mouse Model of LPS-Induced Sepsis.

    PubMed

    Chee, MacKenzie E; Majumder, Kaustav; Mine, Yoshinori

    2017-07-26

    Sepsis, the systemic inflammatory response syndrome (SIRS) with infection is one of the leading causes of death in critically ill patients in the developed world due to the lack of effective antisepsis treatments. This study examined the efficacy of dietary dipeptide gamma-l-glutamyl-l-valine (γ-EV), which was characterized previously as an anti-inflammatory peptide, in an LPS-induced mouse model of sepsis. BALB/c mice were administered γ-EV via oral gavage followed by an intraperitoneal injection of LPS to induce sepsis. The γ-EV exhibited antisepsis activity by reducing the expression of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β in plasma and small intestine. γ-EV also reduced the phosphorylation of the signaling proteins JNK and IκBα. We concluded that γ-EV could possess an antisepsis effect against bacterial infection in intestine. This study proposes a signaling mechanism whereby the calcium-sensing receptor (CaSR) allosterically activated by γ-EV stimulates the interaction of β-arrestin2 with the TIR(TLR/IL-1R) signaling proteins TRAF6, TAB1, and IκBα to suppress inflammatory signaling.

  13. Anti-inflammatory action of high molecular weight Mytilus edulis hydrolysates fraction in LPS-induced RAW264.7 macrophage via NF-κB and MAPK pathways.

    PubMed

    Kim, Young-Sang; Ahn, Chang-Bum; Je, Jae-Young

    2016-07-01

    Anti-inflammatory Mytilus edulis hydrolysates (MEHs) were prepared by peptic hydrolysis and MEH was further fractionated into three fractions based on molecular weight, namely >5kDa, 1-5kDa, and <1kDa. The >5kDa peptide fraction exerted the highest nitric oxide (NO) inhibitory activity and inhibited prostaglandin E2 (PGE2) secretion in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Pretreatment with the >5kDa peptide fraction markedly inhibited LPS-stimulated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and gene expressions. Stimulation by LPS induced the production of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and -1β (IL-1β), whereas co-treatment with the >5kDa peptide fraction suppressed pro-inflammatory cytokine production. The >5kDa peptide fraction inhibited the translocation of NF-κB (nuclear factor-kappa B) through the prevention of IκBα (inhibitory factor kappa B alpha) phosphorylation and degradation and also inhibited the MAPK signaling pathway in LPS-stimulated RAW264.7 macrophages.

  14. Hydrogen sulfide attenuates lipopolysaccharide-induced cognitive impairment: a pro-inflammatory pathway in rats.

    PubMed

    Gong, Qi-Hai; Wang, Qian; Pan, Li-Long; Liu, Xin-Hua; Huang, Hui; Zhu, Yi-Zhun

    2010-07-01

    The present study investigated the effect of sodium hydrosulfide (NaHS), a H(2)S donor, on cognitive impairment and neuroinflammatory changes induced by bilateral intracerebroventricular injections of LPS at a dose of 10mug/rat. Rats received 5mg/kg NaHS or volume-matched vehicle administration by intraperitoneal injection 3days before LPS injection then for 9days once daily. Morris water maze was used to detect the cognitive function. Compared to the sham-treated rats, LPS injection significantly prolonged the mean escape latency in the navigation test (P<0.05) and shortened the adjusted escape latency by approximately 30% (P<0.05). Meanwhile, LPS injection decreased H(2)S level but increased pro-inflammatory mediators (i.e., TNF-alpha, TNFR1, degradation of IkappaB-alpha and thereafter activation of NF-kappaB) in hippocampus. However, these effects of LPS were significantly ameliorated with NaHS treatment (P<0.05 vs vehicle-treated group). The present data suggest that H(2)S attenuates LPS-induced cognitive impairment through reducing the overproduction of pro-inflammatory mediators via inhibition of NF-kappaB pathways in rats. This study sets the stage for exploring a novel H(2)S releasing agent for preventing or retarding the development or progression of neurological disorders such as Alzheimer's disease.

  15. Probucol inhibits LPS-induced microglia activation and ameliorates brain ischemic injury in normal and hyperlipidemic mice

    PubMed Central

    Jung, Yeon Suk; Park, Jung Hwa; Kim, Hyunha; Kim, So Young; Hwang, Ji Young; Hong, Ki Whan; Bae, Sun Sik; Choi, Byung Tae; Lee, Sae-Won; Shin, Hwa Kyoung

    2016-01-01

    Aim: Increasing evidence suggests that probucol, a lipid-lowering agent with anti-oxidant activities, may be useful for the treatment of ischemic stroke with hyperlipidemia via reduction in cholesterol and neuroinflammation. In this study we examined whether probucol could protect against brain ischemic injury via anti-neuroinflammatory action in normal and hyperlipidemic mice. Methods: Primary mouse microglia and murine BV2 microglia were exposed to lipopolysaccharide (LPS) for 3 h, and the release NO, PGE2, IL-1β and IL-6, as well as the changes in NF-κB, MAPK and AP-1 signaling pathways were assessed. ApoE KO mice were fed a high-fat diet containing 0.004%, 0.02%, 0.1% (wt/wt) probucol for 10 weeks, whereas normal C57BL/6J mice received probucol (3, 10, 30 mg·kg-1·d-1, po) for 4 d. Then all the mice were subjected to focal cerebral ischemia through middle cerebral artery occlusion (MCAO). The neurological deficits were scored 24 h after the surgery, and then brains were removed for measuring the cerebral infarct size and the production of pro-inflammatory mediators. Results: In LPS-treated BV2 cells and primary microglial cells, pretreatment with probucol (1, 5, 10 μmol/L) dose-dependently inhibited the release of NO, PGE2, IL-1β and IL-6, which occurred at the transcription levels. Furthermore, the inhibitory actions of probucol were associated with the downregulation of the NF-κB, MAPK and AP-1 signaling pathways. In the normal mice with MCAO, pre-administration of probucol dose-dependently decreased the infarct volume and improved neurological function. These effects were accompanied by the decreased production of pro-inflammatory mediators (iNOS, COX-2, IL-1, IL-6). In ApoE KO mice fed a high-fat diet, pre-administration of 0.1% probucol significantly reduced the infarct volume, improved the neurological deficits following MCAO, and decreased the total- and LDL-cholesterol levels. Conclusion: Probucol inhibits LPS-induced microglia activation and

  16. Oridonin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-induced RAW264.7 cells and acute lung injury.

    PubMed

    Zhao, Gan; Zhang, Tao; Ma, Xiaofei; Jiang, Kangfeng; Wu, Haichong; Qiu, Changwei; Guo, Mengyao; Deng, Ganzhen

    2017-09-15

    Acute lung injury (ALI) is a life-threatening inflammatory disease owing to the lack of specific and effective therapies. Oridonin (Ori) is an active diterpenoid isolated from Rabdosiarubescens (R.rubescens) that has been shown to possess a broadspectrum pharmacological properties including anti-inflammatory, antitumour, antioxidative and neuroregulatory effects. However, its potential protective mechanism in ALI is not well characterized. In this study, we demonstrated that Ori reduces the mortality of mice with ALI induced by a high dose of lipopolysaccharide (LPS), which suggests that Ori has a protective effect on LPS induced ALI. Next, our results confirmed that Ori improves LPS-induced localized pulmonary pathology and decreased the concentration of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in the serum. Nuclear factor-kappa B (NF-κB) is capable of regulating the transcription of pro-inflammatory factors. Interestingly, our results showed that Ori inhibits the expression of TLR4/MyD88 and phosphorylation of NF-κB p65 in lung tissues. To confirm this, we further validated the possible regulatory anti-inflammatory mechanisms of Ori in vitro. LPS-induced RAW264.7 cells, which are widely used as an inflammation model to evaluate the potential protective effect of drugs in vitro, were chosen for this study. Similar results were observed, that is, pre-treatment with Ori, markedly inhibited the nuclear translocation and phosphorylation of NF-κB p65 induced by LPS and subsequently decreased the release of pro-inflammatory cytokines that were increased by LPS. Overall, these results demonstrated that Ori exerts a therapeutic effect on ALI by inhibiting the release of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, through the TLR4/MyD88/NF-κB axis.

  17. Inhibitory effects of harpagoside on TNF-α-induced pro-inflammatory adipokine expression through PPAR-γ activation in 3T3-L1 adipocytes.

    PubMed

    Kim, Tae Kon; Park, Kyoung Sik

    2015-12-01

    Obesity is closely associated with increased production of pro-inflammatory adipokines, including interleukin (IL)-6, plasminogen activator inhibitor (PAI)-1, and adipose-tissue-derived monocyte chemoattractant protein (MCP)-1, which contribute to chronic and low-grade inflammation in adipose tissue. Harpagoside, a major iridoid glycoside present in devil's claw, has been reported to show anti-inflammatory activities by suppression of lipopolysaccharide (LPS)-induced production of inflammatory cytokines in murine macrophages. The present study is aimed to investigate the effects of harpagoside on both tumor necrosis factor (TNF)-α-induced inflammatory adipokine expression and its underlying signaling pathways in differentiated 3T3-L1 cells. Harpagoside significantly inhibited TNF-α-induced mRNA synthesis and protein production of the atherogenic adipokines including IL-6, PAI-1, and MCP-1. Further investigation of the molecular mechanism revealed that pretreatment with harpagoside activated peroxisome proliferator-activated receptor (PPAR)-γ. These findings suggest that the clinical application of medicinal plants which contain harpagoside may lead to a partial prevention of obesity-induced atherosclerosis by attenuating inflammatory responses.

  18. Proteomic dissection of LPS-inducible, PHF8-dependent secretome reveals novel roles of PHF8 in TLR4-induced acute inflammation and T cell proliferation

    PubMed Central

    Erdoğan, Özgün; Xie, Ling; Wang, Li; Wu, Bing; Kong, Qing; Wan, Yisong; Chen, Xian

    2016-01-01

    Endotoxin (LPS)-induced changes in histone lysine methylation contribute to the gene-specific transcription for control of inflammation. Still unidentified are the chromatin regulators that drive the transition from a transcriptional-repressive to a transcriptional-active chromatin state of pro-inflammatory genes. Here, using combined approaches to analyze LPS-induced changes in both gene-specific transcription and protein secretion to the extracellular compartment, we characterize novel functions of the lysine demethylase PHF8 as a pro-inflammatory, gene-specific chromatin regulator. First, in the LPS-induced, acute-inflamed macrophages, PHF8 knockdown led to both a reduction of pro-inflammatory factors and an increase in a transcriptional-repressive code (H3K9me2) written by the methyltransferase G9a. Through unbiased quantitative secretome screening we discovered that LPS induces the secretion of a cluster of PHF8-dependent, ‘tolerizable’ proteins that are related to diverse extracellular pathways/processes including those for the activation of adaptive immunity. Specifically, we determined that PHF8 promotes T-cell activation and proliferation, thus providing the first link between the epigenetic regulation of inflammation and adaptive immunity. Further, we found that, in the acute-inflamed macrophages, the acute-active PHF8 opposes the H3K9me1/2-writing activity of G9a to activate specific protein secretions that are suppressed by G9a in the endotoxin-tolerant cells, revealing the inflammatory-phenotypic chromatin drivers that regulate the gene-specific chromatin plasticity. PMID:27112199

  19. Amla (Emblica officinalis Gaertn.) extract inhibits lipopolysaccharide-induced procoagulant and pro-inflammatory factors in cultured vascular endothelial cells.

    PubMed

    Rao, Theertham Pradyumna; Okamoto, Takayuki; Akita, Nobuyuki; Hayashi, Tatsuya; Kato-Yasuda, Naomi; Suzuki, Koji

    2013-12-01

    Amla (Emblica officinalis Gaertn.) has been used for many centuries in traditional Indian Ayurvedic formulations for the prevention and treatment of many inflammatory diseases. The present study evaluated the anti-inflammatory and anticoagulant properties of amla fruit extract. The amla fruit extract potentially and significantly reduced lipopolysaccharide (LPS)-induced tissue factor expression and von Willebrand factor release in human umbilical vein endothelial cells (HUVEC) in vitro at clinically relevant concentrations (1-100 μg/ml). In a leucocyte adhesion model of inflammation, it also significantly decreased LPS-induced adhesion of human monocytic cells (THP-1) to the HUVEC, as well as reduced the expression of endothelial-leucocyte adhesion molecule-1 (E-selectin) in the target cells. In addition, the in vivo anti-inflammatory effects were evaluated in a LPS-induced endotoxaemia rat model. Oral administration of the amla fruit extract (50 mg/kg body weight) significantly decreased the concentrations of pro-inflammatory cytokines, TNF-α and IL-6 in serum. These results suggest that amla fruit extract may be an effective anticoagulant and anti-inflammatory agent.

  20. LPS-induced NF-{kappa}B expression in THP-1Blue cells correlates with neopterin production and activity of indoleamine 2,3-dioxygenase

    SciTech Connect

    Schroecksnadel, Sebastian; Jenny, Marcel; Kurz, Katharina; Klein, Angela; Ledochowski, Maximilian; Uberall, Florian; Fuchs, Dietmar

    2010-09-03

    Research highlights: {yields} LPS induces NF-{kappa}B, neopterin formation and tryptophan degradation in THP-1 cells. {yields} Close dose- and time-dependent correlations exist between these biochemical events. {yields} Data provides some evidence for a parallel induction of them upon TLR stimulation. {yields} Results can be of considerable relevance also in vivo. -- Abstract: Neopterin production is induced in human monocyte-derived macrophages and dendritic cells upon stimulation with Th1-type cytokine interferon-{gamma} (IFN-{gamma}). In parallel, IFN-{gamma} induces the tryptophan-(trp)-degrading enzyme indoleamine 2,3-dioxygenase (IDO) and triggers the formation of reactive oxygen species (ROS). Translocation of the signal transduction element nuclear factor-{kappa}B (NF-{kappa}B) is induced by ROS and accelerates the pro-inflammatory response by activation of other pro-inflammatory pathways. Therefore, a close relationship between NF-{kappa}B expression, the production of neopterin and the degradation of trp can be assumed, although this has not been demonstrated so far. In the present in vitro study we compared the influence of lipopolysaccharide (LPS) on NF-{kappa}B activation, neopterin formation and the degradation of trp in THP-1Blue cells, which represent the human myelomonocytic cell line THP-1 stably transfected with an NF-{kappa}B inducible reporter system. In cells stimulated with LPS, a significant induction of NF-{kappa}B was observed, and this was paralleled by an increase of kynureunine (kyn) and neopterin concentrations and a decline of trp. The increase of the kyn to trp quotient indicates accelerated IDO activity. Higher LPS concentrations and longer incubation of cells were associated with higher activities of all three biochemical pathways and significant correlations existed between NF-{kappa}B activation, neopterin release and trp degradation (all p < 0.001). We conclude that there is a parallel induction of NF-{kappa}B, neopterin

  1. Discovery of new MD2 inhibitor from chalcone derivatives with anti-inflammatory effects in LPS-induced acute lung injury

    PubMed Central

    Zhang, Yali; Wu, Jianzhang; Ying, Shilong; Chen, Gaozhi; Wu, Beibei; Xu, Tingting; Liu, Zhiguo; Liu, Xing; Huang, Lehao; Shan, Xiaoou; Dai, Yuanrong; Liang, Guang

    2016-01-01

    Acute lung injury (ALI) is a life-threatening acute inflammatory disease with limited options available for therapy. Myeloid differentiation protein 2, a co-receptor of TLR4, is absolutely required for TLR4 sense LPS, and represents an attractive target for treating severe inflammatory diseases. In this study, we designed and synthesized 31 chalcone derivatives that contain the moiety of (E)-4-phenylbut-3-en-2-one, which we consider the core structure of current MD2 inhibitors. We first evaluated the anti-inflammatory activities of these compounds in MPMs. For the most active compound 20, we confirmed that it is a specific MD2 inhibitor through a series of biochemical experiments and elucidated that it binds to the hydrophobic pocket of MD2 via hydrogen bonds with Arg90 and Tyr102 residues. Compound 20 also blocked the LPS-induced activation of TLR4/MD2 -downstream pro-inflammatory MAPKs/NF-κB signaling pathways. In a rat model with ALI induced by intracheal LPS instillation, administration with compound 20 exhibited significant protective effect against ALI, accompanied by the inhibition of TLR4/MD2 complex formation in lung tissues. Taken together, the results of this study suggest the specific MD2 inhibitor from chalcone derivatives we identified is a potential candidate for treating acute inflammatory diseases. PMID:27118147

  2. Retinoic acid receptor agonist Am80 inhibits CXCL2 production from microglial BV-2 cells via attenuation of NF-κB signaling.

    PubMed

    Takaoka, Yuichiro; Takahashi, Moeka; Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Shudo, Koichi; Katsuki, Hiroshi

    2016-09-01

    Accumulating lines of evidence suggest that retinoic acid receptor agonists such as Am80 exerts anti-inflammatory actions in the central nervous system, although detailed mechanisms of the action remain largely unknown. Our previous findings suggest that Am80 provides therapeutic effect on intracerebral hemorrhage in mice via suppression of expression of chemokine (C-X-C motif) ligand 2 (CXCL2). Here we investigated the mechanisms of inhibitory action of Am80 on expression of CXCL2 and other pro-inflammatory factors in microglial BV-2 cells. Pretreatment with Am80 markedly suppressed lipopolysaccharide (LPS)-induced expression of CXCL2 mRNA and release of CXCL2 protein. Am80 had no effect on LPS-induced activation of p38 mitogen-activated protein kinase and extracellular signal-regulated kinase. On the other hand, Am80 prevented LPS-induced nuclear translocation of p65 subunit of NF-κB complex. In addition, total expression levels of p65 and IκBα proteins, as well as of mRNAs encoding p65 and IκBα, were lowered by Am80. Dependence of CXCL2 expression on NF-κB was confirmed by the effect of an NF-κB inhibitor caffeic acid phenethyl ester that abolished LPS-induced CXCL2 expression. Caffeic acid phenethyl ester also abolished LPS-induced expression of inducible nitric oxide synthase, interleukin-1β and tumor necrosis factor α, which may be relevant to the inhibitory effect of Am80 on expression of these pro-inflammatory factors. We additionally found that Am80 attenuated LPS-induced up-regulation of CD14, a co-receptor for Toll-like receptor 4 (TLR4). These results suggest that inhibitory effect on TLR4 signaling mediated by NF-κB pathway underlies the anti-inflammatory action of retinoic acid receptor agonists in microglia.

  3. A novel pro-inflammatory protein of Streptococcus suis 2 induces the Toll-like receptor 2-dependent expression of pro-inflammatory cytokines in RAW 264.7 macrophages via activation of ERK1/2 pathway.

    PubMed

    Zhang, Qiang; Yang, Yujie; Yan, Shuxian; Liu, Jiantao; Xu, Zhongmin; Yu, Junping; Song, Yajing; Zhang, Anding; Jin, Meilin

    2015-01-01

    Streptococcus suis 2 is an important swine pathogen and an emergent zoonotic pathogen. Excessive inflammation caused by S. suis is responsible for the high levels of early mortality observed in septic shock-like syndrome cases. However, the mechanisms through which S. suis 2 (SS2) causes excessive inflammation remain unclear. Thus, this study aimed to identify novel pro-inflammatory mediators that play important roles in the development of therapies against SS2 infection. In this study, the novel pro-inflammatory protein HP0459, which was encoded by the SSUSC84_0459 gene, was discovered. The stimulation of RAW 264.7 macrophages with recombinant HP0459 protein induced the expression of pro-inflammatory cytokines (IL-1β, MCP-1 and TNF-α). Compared with the wild-type (WT) strain, the isogenic knockout of HP0459 in SS2 led to reduced production of pro-inflammatory cytokines in RAW264.7 macrophages and in vivo. The pro-inflammatory activity of HP0459 was significantly reduced by an antibody against Toll-like receptor 2 (TLR2) in RAW264.7 macrophages and was lower in TLR2-deficient (TLR2-/-) macrophages than in WT macrophages. Furthermore, specific inhibitors of the extracellular signal-regulated kinase 1/2 (ERK1/2) pathways significantly decreased the HP0459-induced pro-inflammatory cytokine production, and a western blot assay showed that HP0459 stimulation induced the activation of the ERK1/2 pathway. Taken together, our data indicate that HP0459 is a novel pro-inflammatory mediator of SS2 and induces TLR2-dependent pro-inflammatory activity in RAW264.7 macrophages through the ERK1/2 pathway.

  4. With blood in the joint - what happens next? Could activation of a pro-inflammatory signalling axis leading to iRhom2/TNFα-convertase-dependent release of TNFα contribute to haemophilic arthropathy?

    PubMed

    Haxaire, C; Blobel, C P

    2014-05-01

    One of the main complications of haemophilia A is haemophilic arthropathy (HA), a debilitating disease with a significant negative impact on motility and quality of life. Despite major advances in the treatment of haemophilia A, many patients still suffer from HA. We wish to develop new treatments for HA, but must first better understand its causes. Our laboratory studies molecular scissors that release the pro-inflammatory cytokine tumour necrosis factor alpha (TNFα) from cells. TNFα is considered the 'fire alarm' of the body - it helps to fight infections, but can also cause diseases such as inflammatory arthritis. We know that the molecular scissors, called TNFα convertase (TACE), and its newly discovered regulator termed iRhom2 can be rapidly activated by small amounts of cytokines, growth factors, and pro-inflammatory mediators present in the blood. We hypothesize that the rapid activation of TACE could help explain one of the unsolved mysteries regarding the development of HA, which is how even small amounts of blood can provoke a persistent inflammatory response. We propose that once blood enters the joint, iRhom2 and TACE are activated to release TNFα and that this could promote the development of HA in a similar manner to that in which it promotes rheumatoid arthritis (RA). We are currently using immune cells stimulated with blood degradation products, and mouse models of HA, to test this hypothesis. If successful, our study could provide the rationale for testing anti-TNF antibodies, which are already used to treat RA, for the treatment of HA. In addition, they might uncover iRhom2 and TACE as attractive new candidate targets for the treatment of HA. © 2014 John Wiley & Sons Ltd.

  5. The killing of neurons by beta-amyloid peptides, prions, and pro-inflammatory cytokines.

    PubMed

    Chiarini, Anna; Dal Pra, Ilaria; Whitfield, James F; Armato, Ubaldo

    2006-01-01

    Reportedly, beta-amyloid peptides (Abeta40 and Abeta42) induce the neurodegenerative changes of Alzheimer's disease (AD) both directly by interacting with components of the cell surface to trigger apoptogenic signaling and indirectly by activating astrocytes and microglia to produce excess amounts of inflammatory cytokines. A possible cell surface target for Abetas is the p75 neurotrophin receptor (p75(NTR)). By using SK-N-BE neuroblastoma cells without neurotrophin receptors or engineered to express the full-length p75(NTR) or various parts of it, we have proven that p75(NTR) does mediate the Abeta-induced cell killing via its intracellular death domain (DD). This signaling via the DD activates caspase-8, which then activates caspase-3 and apoptogenesis. We also found a strong cytocidal interaction of direct p75(NTR)-mediated and indirect pro-inflammatory cytokine-mediated neuronal damage induced by Abeta. In fact, pro-inflammatory cytokines such as TNF-alpha and IL-1beta from Abeta-activated microglia potentiated the neurotoxic action of Aalpha mediated by p75(NTR) signaling. The pro-inflammatory cytokines probably amplify neuronal damage and killing by causing astrocytes to flood their associated neurons with NO and its lethal oxidizing ONOO- derivative. Indeed, we have found that a combination of three major pro-inflammatory cytokines, IL-1beta+IFN-gamma+TNF-alpha, causes normal adult human astrocytes (NAHA) to express nitric oxide synthase-2 (NOS-2) and make dangerously large amounts of NO via mitogen-activated protein kinases (MAPKs). Soluble Abeta40, the major amyloid precursor protein cleavage product, by itself stimulates astrocytes to express NOS-2 and make NO, possibly by activating p75(NTR) receptors, which they share with neurons, and can considerably amplify NOS-2 expression by the pro-inflammatory cytokine trio. These observations have uncovered a deadly synergistic interaction of Abeta peptides with pro-inflammatory cytokines in the neuron

  6. Carthamus tinctorius L. prevents LPS-induced TNFalpha signaling activation and cell apoptosis through JNK1/2-NFkappaB pathway inhibition in H9c2 cardiomyoblast cells.

    PubMed

    Tien, Yun-Chen; Lin, Jing-Ying; Lai, Chao-Hung; Kuo, Chia-Hua; Lin, Wen-Yuan; Tsai, Chang-Hai; Tsai, Fuu-Jen; Cheng, Yi-Chang; Peng, Wen-Huang; Huang, Chih-Yang

    2010-08-09

    Severe and potentially fatal hypotension and cardiac contractile dysfunction are common symptoms in patients with sepsis. In our previous study, we found that estradiol and estrogen-receptor alpha have cardio-protective effects in myocardial cells exposed to LPS. Estradiol supplementation has been shown to induce breast and cervical cancers. Flos Carthami, the flower of Carthamus tinctorius L. (Compositae) is an important traditional Chinese medicine used for the treatment of heart disease and inflammation, and therefore might be a potential alternative to Estradiol in the prevention of heart damage. This study investigated the effect of Flos Carthami (FC(EtOH)) ethanolic extract on LPS-induced apoptosis in H9c2 cardiomyoblast cells. H9c2 cells induced apoptosis with LPS administration (1 microg/mL). H9c2 cells were divided into five groups: Control, LPS (1 microg/mL), and three FC(EtOH) (31.25, 62.5,and 125 microg/mL). We detected apoptosis using MTT, LDH, TUNEL assay. JC-1 staining and Western blot were used to detect pro-apoptosis proteins, anti-apoptosis proteins, MAPK proteins (JNK, ERK, and P38), and NFkappaB expression. FC(EtOH) (62.5 microg/mL) inhibited LPS-induced apoptosis by suppressing JNK1/2 activity, which resulted in the reduction of both IkappaB degradation and NFkappaB activation. In addition, FC(EtOH) led to the activation of anti-apoptotic proteins, Bcl-2 and Bcl-xL, the stabilization of the mitochondria membrane and the down-regulation of extrinsic and intrinsic pro-apoptotic proteins, such as TNFalpha, active caspase-8, t-Bid, Bax, active caspases-9, and -3. Carthamus tinctorius L. possesses the ability to suppress JNK activity and inhibit LPS-induced TNFalpha activation and apoptosis in H9c2 cardiomyoblast cells. Carthamus tinctorius L could potentially serve as a cardio-protective agent against LPS-induced apoptosis. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Cancer associated fibroblasts express pro-inflammatory factors in human breast and ovarian tumors.

    PubMed

    Erez, Neta; Glanz, Sarah; Raz, Yael; Avivi, Camilla; Barshack, Iris

    2013-08-02

    Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.

  8. Sodium chloride promotes pro-inflammatory macrophage polarization thereby aggravating CNS autoimmunity.

    PubMed

    Hucke, Stephanie; Eschborn, Melanie; Liebmann, Marie; Herold, Martin; Freise, Nicole; Engbers, Annika; Ehling, Petra; Meuth, Sven G; Roth, Johannes; Kuhlmann, Tanja; Wiendl, Heinz; Klotz, Luisa

    2016-02-01

    The increasing incidence in Multiple Sclerosis (MS) during the last decades in industrialized countries might be linked to a change in dietary habits. Nowadays, enhanced salt content is an important characteristic of Western diet and increased dietary salt (NaCl) intake promotes pathogenic T cell responses contributing to central nervous system (CNS) autoimmunity. Given the importance of macrophage responses for CNS disease propagation, we addressed the influence of salt consumption on macrophage responses in CNS autoimmunity. We observed that EAE-diseased mice receiving a NaCl-high diet showed strongly enhanced macrophage infiltration and activation within the CNS accompanied by disease aggravation during the effector phase of EAE. NaCl treatment of macrophages elicited a strong pro-inflammatory phenotype characterized by enhanced pro-inflammatory cytokine production, increased expression of immune-stimulatory molecules, and an antigen-independent boost of T cell proliferation. This NaCl-induced pro-inflammatory macrophage phenotype was accompanied by increased activation of NF-kB and MAPK signaling pathways. The pathogenic relevance of NaCl-conditioned macrophages is illustrated by the finding that transfer into EAE-diseased animals resulted in significant disease aggravation compared to untreated macrophages. Importantly, also in human monocytes, NaCl promoted a pro-inflammatory phenotype that enhanced human T cell proliferation. Taken together, high dietary salt intake promotes pro-inflammatory macrophages that aggravate CNS autoimmunity. Together with other studies, these results underline the need to further determine the relevance of increased dietary salt intake for MS disease severity.

  9. Kaempferol slows intervertebral disc degeneration by modifying LPS-induced osteogenesis/adipogenesis imbalance and inflammation response in BMSCs.

    PubMed

    Zhu, Jun; Tang, Haoyu; Zhang, Zhenhua; Zhang, Yong; Qiu, Chengfeng; Zhang, Ling; Huang, Pinge; Li, Feng

    2017-02-01

    Intervertebral disc (IVD) degeneration is a common disease that represents a significant cause of socio-economic problems. Bone marrow-derived mesenchymal stem cells (BMSCs) are a potential autologous stem cell source for the nucleus pulposus regeneration. Kaempferol has been reported to exert protective effects against both osteoporosis and obesity. This study explored the effect of kaempferol on BMSCs differentiation and inflammation. The results demonstrated that kaempferol did not show any cytotoxicity at concentrations of 20, 60 and 100μM. Kaempferol enhanced cell viability by counteracting the lipopolysaccharide (LPS)-induced cell apoptosis and increasing cell proliferation. Western blot analysis of mitosis-associated nuclear antigen (Ki67) and proliferation cell nuclear antigen (PCNA) further confirmed the increased effect of kaempferol on LPS-induced decreased viability of BMSCs. Besides, kaempferol elevated LPS-induced reduced level of chondrogenic markers (SOX-9, Collagen II and Aggrecan), decreased the level of matrix-degrading enzymes, i.e., matrix metalloprotease (MMP)-3 and MMP-13, suggesting the osteogenesis of BMSC under kaempferol treatment. On the other hand, kaempferol enhanced LPS-induced decreased expression of lipid catabolism-related genes, i.e., carnitine palmitoyl transferase-1 (CPT-1). Kaempferol also suppressed the expression of lipid anabolism-related genes, i.e., peroxisome proliferators-activated receptor-γ (PPAR-γ). The Oil red O staining further convinced the inhibition effect of kaempferol on BMSCs adipogenesis. In addition, kaempferol alleviated inflammatory by reducing the level of pro-inflammatory cytokines (i.e., interleukin (IL)-6) and increasing anti-inflammatory cytokine (IL-10) via inhibiting the nucleus translocation of nuclear transcription factor (NF)-κB p65. Taken together, our research indicated that kaempferol may serve as a novel target for treatment of IVD degeneration.

  10. Suppression of LPS-induced NF-κB activity in macrophages by the synthetic aurone, (Z)-2-((5-(hydroxymethyl) furan-2-yl) methylene) benzofuran-3(2H)-one.

    PubMed

    Park, Hyo S; Nelson, David E; Taylor, Zachary E; Hayes, James B; Cunningham, Kirsten D; Arivett, Brock A; Ghosh, Rajarshi; Wolf, Larissa C; Taylor, Kimberley M; Farone, Mary B; Handy, Scott T; Farone, Anthony L

    2017-02-01

    Suppressing cytokine responses has frequently been shown to have promising therapeutic effects for many chronic inflammatory and autoimmune diseases. However, the severe side effects associated with the long-term use of current treatments, such as allergic reactions and increased risk of stroke, have focused attention towards the targeting of intracellular signaling mechanisms, such as NF-κB, that regulate inflammation. We synthesized a series of non-natural aurone derivatives and investigated their ability to suppress pro-inflammatory signaling in human monocyte (THP-1) and murine macrophage-like (RAW 267.4) cell lines. One of these derivatives, (Z)-2-((5-(hydroxymethyl) furan-2-yl) methylene) benzofuran-3(2H)-one (aurone 1), was found to inhibit LPS-induced secretion of the pro-inflammatory cytokines, tumor-necrosis factor α (TNFα), interleukin 1β (IL-1β), and IL-8 by THP-1 cells. To investigate the mechanism, we probed the effect of aurone 1 on LPS-induced MAPK and NF-κB signaling in both THP-1 and RAW264.7. While aurone 1 pre-treatment had no effect on the phosphorylation of ERK, JNK, or p38 MAPK, it strongly suppressed activation of IKK-β, as indicated by attenuation of Ser176/180 phosphorylation, resulting in decreased phosphorylation of p65 (ser536) as well as phosphorylation (ser32) and degradation of IκBα. Consistent with this, aurone 1 significantly reduced LPS-stimulated nuclear translocation of p65-containing NF-κB transcription factors and expression of an mCherry reporter of TNFα gene transactivation in RAW264.7 cells. Inhibition of TNFα expression at the transcription level was also demonstrated in THP-1 by qRT-PCR. In addition to its effects on cytokine expression, aurone 1 pre-treatment decreased expression of iNOS, a bona fide NF-κB target gene and marker of macrophage M1 polarization, resulting in decreased NO production in RAW264.7 cells. Together, these data indicate that aurone 1 may have the potential to function as a

  11. Anti-inflammatory activity of the oriental herb medicine, Arisaema cum Bile, in LPS-induced PMA-differentiated THP-1 cells.

    PubMed

    Ahn, Chang-Bum; Je, Jae-Young

    2012-06-01

    Arisaema cum Bile is widely used as a folk medicine in Korea. However, the systematic biological properties of Arisaema cum Bile have seldom been addressed. In this study, we evaluated the anti-inflammatory activity of Arisaema cum Bile extract on lipopolysaccharide (LPS)-induced inflammation in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 macrophages. The Arisaema cum Bile extract markedly inhibited the production of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, and also suppressed the mRNA and protein expressions of these cytokines. Furthermore, the Arisaema cum Bile extract also inhibited LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and gene expressions in PMA-differentiaed THP-1 macrophages. These results suggest that Arisaema cum Bile extract may have potential for development into an effective anti-inflammatory agent, and/or as an ingredient of functional foods.

  12. Lentiviral-Mediated Overexpression of the 18 kDa Translocator Protein (TSPO) in the Hippocampal Dentate Gyrus Ameliorates LPS-Induced Cognitive Impairment in Mice

    PubMed Central

    Wang, Wei; Zhang, Liming; Zhang, Xiaoying; Xue, Rui; Li, Lei; Zhao, Weixing; Fu, Qiang; Mi, Weidong; Li, Yunfeng

    2016-01-01

    The 18 kDa translocator protein (TSPO) is involved in the immune/inflammatory response. However, the exact role that TSPO plays in neuroinflammation-induced cognitive impairment is still elusive. The purpose of our present study was to investigate the effects of lentiviral-mediated hippocampal overexpression of the TSPO in a mouse model of LPS-induced cognitive impairment. We established a mouse cognitive impairment model using systematic daily administration of lipopolysaccharide (LPS) (0.5 mg/kg). Microinjection of the dentate gyrus of the mouse with lentiviral vectors, which contained a cDNA targeting TSPO (Lv-TSPO), resulted in a significant increase in TSPO expression and allopregnanolone production. Mice treated with LPS showed cognitive deficits in the novel object recognition test and the Morris water maze test that could be ameliorated by TSPO overexpression. In addition, TSPO overexpression reversed LPS-induced microglial activation and accumulation of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α. Moreover, TSPO overexpression attenuated the LPS-induced impairment of hippocampal neurogenesis. Our results suggest that local overexpression of TSPO in the hippocampal dentate gyrus alleviated LPS-induced cognitive deficits, and its effects might be mediated by the attenuation of inflammatory cytokines, inhibition of microglial activation, and promotion of neurogenesis. PMID:27803668

  13. Ketamine modulates hippocampal neurogenesis and pro-inflammatory cytokines but not stressor induced neurochemical changes.

    PubMed

    Clarke, Melanie; Razmjou, Sara; Prowse, Natalie; Dwyer, Zach; Litteljohn, Darcy; Pentz, Rowan; Anisman, Hymie; Hayley, Shawn

    2017-01-01

    Considerable recent attention has focused on the rapid antidepressant effects observed in treatment resistant patients produced by the NMDA receptor antagonist, ketamine. Surprisingly, the effects of ketamine in the context of stressor exposure, as well as the consequences of its chronic use are unclear. Thus, we assessed the impact of acute and repeated ketamine treatment together with acute [restraint or lipopolysaccharide (LPS)] or chronic (unpredictable different psychogenic challenges) stressor exposure. Importantly, acute ketamine treatment did provoke an antidepressant-like effect in a forced swim test (FST) and this effect lasted for 8 days following repeated exposure to the drug. Although acute restraint and LPS individually provoked the expected elevation of plasma corticosterone and brain-region specific monoamine variations, ketamine had no influence on corticosterone and had, at best, sparse effects on the monoamine changes. Similarly, ketamine did not appreciably influence the stressor induced neurochemical and sucrose preference alterations, it did however, dose-dependently reverse the LPS induced elevation of the pro-inflammatory cytokines, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Likewise, repeated ketamine administration increased adult hippocampal neurogenesis. These data indicate that repeated ketamine administration had greater behavioral consequences than acute treatment and that the drug might be imparting antidepressant effects through its effects on neuroplasticity and inflammatory processes rather than the typical neurochemical/hormonal factors affected by stressors. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The anti-inflammatory effect of TR6 on LPS-induced mastitis in mice.

    PubMed

    Hu, Xiaoyu; Fu, Yunhe; Tian, Yuan; Zhang, Zecai; Zhang, Wenlong; Gao, Xuejiao; Lu, Xiaojie; Cao, Yongguo; Zhang, Naisheng

    2016-01-01

    [TRIAP]-derived decoy peptides have anti-inflammatory properties. In this study, we synthesized a TRIAP-derived decoy peptide (TR6) containing, the N-terminal portion of the third helical region of the [TIRAP] TIR domain (sequence "N"-RQIKIWFQNRRMKWK and -KPGFLRDPWCKYQML-"C"). We evaluated the effects of TR6 on lipopolysaccharide-induced mastitis in mice. In vivo, the mastitis model was induced by LPS administration for 24h, and TR6 treatment was initiated 1h before or after induction of LPS. In vitro, primary mouse mammary epithelial cells and neutrophils were used to investigate the effects of TR6 on LPS-induced inflammatory responses. The results showed that TR6 significantly inhibited mammary gland hisopathologic changes, MPO activity, and LPS-induced production of TNF-α, IL-1β and IL-6. In vitro, TR6 significantly inhibited LPS-induced TNF-α and IL-6 production and phosphorylation of NF-κB and MAPKs. In conclusion, this study demonstrated that the anti-inflammatory effect of TR6 against LPS-induced mastitis may be due to its ability to inhibit TLR4-mediated NF-κB and MAPK signaling pathways. TR6 may be a promising therapeutic reagent for mastitis treatment.

  15. Mechanism for Prenatal LPS-Induced DA Neuron Loss

    DTIC Science & Technology

    2005-03-01

    enter the human chorioamniotic environment of the fetus in women with bacterial vaginosis (BV). BV increases pro-inflammatory cytokines, including...occur receptor-4, is a well known inducer of pro-inflammatory had their mother had bacterial vaginosis , would be at in- cytokines and has been shown...etiology of PD. We hypothesized that individuals born to mothers with bacterial vaginosis (BV), a well known Although genetic factors account for some cases

  16. Procyanidin dimer B2-mediated IRAK-M induction negatively regulates TLR4 signaling in macrophages

    SciTech Connect

    Sung, Nak-Yun; Yang, Mi-So; Song, Du-Sub; Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Park, Sang-Hyun; Lee, Ju-Woon; Park, Hyun-Jin; Kim, Jae-Hun; Byun, Eui-Baek; Byun, Eui-Hong

    2013-08-16

    Highlights: •Pro B2 elevated the expression of IRAK-M, a negative regulator of TLR signaling. •LPS-induced expression of cell surface molecules was inhibited by Pro B2. •LPS-induced production of pro-inflammatory cytokines was inhibited by Pro B2. •Pro B2 inhibited LPS-induced activation of MAPKs and NF-κB through IRAK-M. •Pro B2 inactivated naïve T cells by inhibiting LPS-induced cytokines via IRAK-M. -- Abstract: Polyphenolic compounds have been found to possess a wide range of physiological activities that may contribute to their beneficial effects against inflammation-related diseases; however, the molecular mechanisms underlying this anti-inflammatory activity are not completely characterized, and many features remain to be elucidated. In this study, we investigated the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by procyanidin dimer B2 (Pro B2) in macrophages. Pro B2 markedly elevated the expression of the interleukin (IL)-1 receptor-associated kinase (IRAK)-M protein, a negative regulator of TLR signaling. Lipopolysaccharide (LPS)-induced expression of cell surface molecules (CD80, CD86, and MHC class I/II) and production of pro-inflammatory cytokines (tumor necrosis factor-α, IL-1β, IL-6, and IL-12p70) were inhibited by Pro B2, and this action was prevented by IRAK-M silencing. In addition, Pro B2-treated macrophages inhibited LPS-induced activation of mitogen-activated protein kinases such as extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase and the translocation of nuclear factor κB and p65 through IRAK-M. We also found that Pro B2-treated macrophages inactivated naïve T cells by inhibiting LPS-induced interferon-γ and IL-2 secretion through IRAK-M. These novel findings provide new insights into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and the immune-pharmacological role of Pro B2 in the immune response against the development

  17. Parenchymal and Stromal Cells Contribute to Pro-Inflammatory Myocardial Environment at Early Stages of Diabetes: Protective Role of Resveratrol.

    PubMed

    Savi, Monia; Bocchi, Leonardo; Sala, Roberto; Frati, Caterina; Lagrasta, Costanza; Madeddu, Denise; Falco, Angela; Pollino, Serena; Bresciani, Letizia; Miragoli, Michele; Zaniboni, Massimiliano; Quaini, Federico; Del Rio, Daniele; Stilli, Donatella

    2016-11-16

    Background: Little information is currently available concerning the relative contribution of cardiac parenchymal and stromal cells in the activation of the pro-inflammatory signal cascade, at the initial stages of diabetes. Similarly, the effects of early resveratrol (RSV) treatment on the negative impact of diabetes on the different myocardial cell compartments remain to be defined. Methods: In vitro challenge of neonatal cardiomyocytes and fibroblasts to high glucose and in vivo/ex vivo experiments on a rat model of Streptozotocin-induced diabetes were used to specifically address these issues. Results: In vitro data indicated that, besides cardiomyocytes, neonatal fibroblasts contribute to generating initial changes in the myocardial environment, in terms of pro-inflammatory cytokine expression. These findings were mostly confirmed at the myocardial tissue level in diabetic rats, after three weeks of hyperglycemia. Specifically, monocyte chemoattractant protein-1 and Fractalkine were up-regulated and initial abnormalities in cardiomyocyte contractility occurred. At later stages of diabetes, a selective enhancement of pro-inflammatory macrophage M1 phenotype and a parallel reduction of anti-inflammatory macrophage M2 phenotype were associated with a marked disorganization of cardiomyocyte ultrastructural properties. RSV treatment inhibited pro-inflammatory cytokine production, leading to a recovery of cardiomyocyte contractile efficiency and a reduced inflammatory cell recruitment. Conclusion: Early RSV administration could inhibit the pro-inflammatory diabetic milieu sustained by different cardiac cell types.

  18. Parenchymal and Stromal Cells Contribute to Pro-Inflammatory Myocardial Environment at Early Stages of Diabetes: Protective Role of Resveratrol

    PubMed Central

    Savi, Monia; Bocchi, Leonardo; Sala, Roberto; Frati, Caterina; Lagrasta, Costanza; Madeddu, Denise; Falco, Angela; Pollino, Serena; Bresciani, Letizia; Miragoli, Michele; Zaniboni, Massimiliano; Quaini, Federico; Del Rio, Daniele; Stilli, Donatella

    2016-01-01

    Background: Little information is currently available concerning the relative contribution of cardiac parenchymal and stromal cells in the activation of the pro-inflammatory signal cascade, at the initial stages of diabetes. Similarly, the effects of early resveratrol (RSV) treatment on the negative impact of diabetes on the different myocardial cell compartments remain to be defined. Methods: In vitro challenge of neonatal cardiomyocytes and fibroblasts to high glucose and in vivo/ex vivo experiments on a rat model of Streptozotocin-induced diabetes were used to specifically address these issues. Results: In vitro data indicated that, besides cardiomyocytes, neonatal fibroblasts contribute to generating initial changes in the myocardial environment, in terms of pro-inflammatory cytokine expression. These findings were mostly confirmed at the myocardial tissue level in diabetic rats, after three weeks of hyperglycemia. Specifically, monocyte chemoattractant protein-1 and Fractalkine were up-regulated and initial abnormalities in cardiomyocyte contractility occurred. At later stages of diabetes, a selective enhancement of pro-inflammatory macrophage M1 phenotype and a parallel reduction of anti-inflammatory macrophage M2 phenotype were associated with a marked disorganization of cardiomyocyte ultrastructural properties. RSV treatment inhibited pro-inflammatory cytokine production, leading to a recovery of cardiomyocyte contractile efficiency and a reduced inflammatory cell recruitment. Conclusion: Early RSV administration could inhibit the pro-inflammatory diabetic milieu sustained by different cardiac cell types. PMID:27854328

  19. [Pro-inflammatory serum cytokines in diabetic retinopathy].

    PubMed

    Hernández-Da Mota, Sergio Eustolio; Soto-Bahena, José Juan; Viveros-Sandoval, Martha Eva; Cardiel-Ríos, Mario

    2015-01-01

    Pro-inflammatory cytokines play an important role in diabetic retinopathy. There is conflicting evidence about their serum elevation in this condition and that they also may be possible serum inflammatory biomarkers of diabetic retinopathy. To evaluate the presence of serum pro-inflammatory cytokines and acute phase reactants in the serum of patients with and without diabetic retinopathy. Comparative case series with 36 patients divided into three groups were included: 12 patients with diabetes mellitus and diabetic retinopathy (group 1), 12 diabetic patients without diabetic retinopathy (group 2), and 12 healthy patients as a control group. Serum levels of the following pro-inflammatory cytokines were measured in all patients: TNF-α, IL-1β and IL-6. Pro-inflammatory biomarkers measurements were also performed, such as erythrocyte sedimentation rate and C-reactive protein. The levels of TNF-α and IL-6 were higher in group 1 (TNF-α: 19.4 ± 10.9 pg/ml, IL-6: 5.75 ± 7 pg/ml) compared to the other two groups, although the difference was statistically significant only in the case of TNF-α (group 1: 19.4 ± 10.9 pg/ml, group 2: 14 ± 4.3 pg/ml and control: 8.49 ± 3.69 pg/ml, p = 0.001). There were no differences among pro-inflammatory biomarkers such as erythrocyte sedimentation rate and C reactive protein. among the three groups (p > 0.05). Pro-- inflammatory serum cytokine levels were higher in the diabetes mellitus with diabetic retinopathy group. Larger studies are warranted to establish the real impact of this finding. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  20. Pro-Inflammatory Cytokine-Mediated Anemia: Regarding Molecular Mechanisms of Erythropoiesis

    PubMed Central

    Morceau, F.; Dicato, M.; Diederich, M.

    2009-01-01

    Anemia of cancer and chronic inflammatory diseases is a frequent complication affecting quality of life. For cancer patients it represents a particularly bad prognostic. Low level of erythropoietin is considered as one of the causes of anemia in these pathologies. The deficiency in erythropoietin production results from pro-inflammatory cytokines effect. However, few data is available concerning molecular mechanisms involved in cytokine-mediated anemia. Some recent publications have demonstrated the direct effect of pro-inflammatory cytokines on cell differentiation towards erythroid pathway, without erythropoietin defect. This suggested that pro-inflammatory cytokine-mediated signaling pathways affect erythropoietin activity. They could interfere with erythropoietin-mediated signaling pathways, inducing early apoptosis and perturbing the expression and regulation of specific transcription factors involved in the control of erythroid differentiation. In this review we summarize the effect of tumor necrosis factor (TNF)α, TNF-related apoptosis-inducing ligand (TRAIL), and interferon (IFN)-γ on erythropoiesis with a particular interest for molecular feature. PMID:20204172

  1. Globular adiponectin induces a pro-inflammatory response in human astrocytic cells

    SciTech Connect

    Wan, Zhongxiao; Mah, Dorrian; Simtchouk, Svetlana; Klegeris, Andis; Little, Jonathan P.

    2014-03-28

    Highlights: • Adiponectin receptors are expressed in human astrocytes. • Globular adiponectin induces secretion of IL-6 and MCP-1 from cultured astrocytes. • Adiponectin may play a pro-inflammatory role in astrocytes. - Abstract: Neuroinflammation, mediated in part by activated brain astrocytes, plays a critical role in the development of neurodegenerative disorders, including Alzheimer’s disease (AD). Adiponectin is the most abundant adipokine secreted from adipose tissue and has been reported to exert both anti- and pro-inflammatory effects in peripheral tissues; however, the effects of adiponectin on astrocytes remain unknown. Shifts in peripheral concentrations of adipokines, including adiponectin, could contribute to the observed link between midlife adiposity and increased AD risk. The aim of the present study was to characterize the effects of globular adiponectin (gAd) on pro-inflammatory cytokine mRNA expression and secretion in human U373 MG astrocytic cells and to explore the potential involvement of nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphatidylinositide 3-kinases (PI3 K) signaling pathways in these processes. We demonstrated expression of adiponectin receptor 1 (adipoR1) and adipoR2 in U373 MG cells and primary human astrocytes. gAd induced secretion of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1, and gene expression of IL-6, MCP-1, IL-1β and IL-8 in U373 MG cells. Using specific inhibitors, we found that NF-κB, p38MAPK and ERK1/2 pathways are involved in gAd-induced induction of cytokines with ERK1/2 contributing the most. These findings provide evidence that gAd may induce a pro-inflammatory phenotype in human astrocytes.

  2. Methane limit LPS-induced NF-κB/MAPKs signal in macrophages and suppress immune response in mice by enhancing PI3K/AKT/GSK-3β-mediated IL-10 expression

    PubMed Central

    Zhang, Xu; Li, Na; Shao, Han; Meng, Yan; Wang, Liping; Wu, Qian; Yao, Ying; Li, Jinbao; Bian, Jinjun; Zhang, Yan; Deng, Xiaoming

    2016-01-01

    Inflammatory diseases such as sepsis and autoimmune colitis, characterized by an overwhelming activation of the immune system and the counteracting anti-inflammatory response, remain a major health problem in worldwide. Emerging evidence suggests that methane have a protective effect on many animal models, like ischaemia reperfusion injury and diabetes-associated diseases. Whether methane could modulating inflammatory diseases remains largely unknown. Here we show that methane-rich saline (MS) ip treatment (16 ml/kg) alleviated endotoxin shock, bacteria-induced sepsis and dextran-sulfate-sodium-induced colitis in mice via decreased production of TNF-α and IL-6. In MS-treated macrophages, LPS-induced activation of NF-κb/MAPKs was attenuated. Interestingly, MS treatment significantly elevated the levels of IL-10 both in vitro and in vivo. Neutralization of IL-10 abrogated the therapeutic effect of MS. Moreover, anti-IL10 blockade partially restored the MS-mediated attenuation of NF-κb/MAPKs phosphorylation. We further found that MS resulted in markedly enhanced phosphorylation of GSK-3β and AKT, which both mediate the release of Il-10. Additionally, inhibition of PI3K attenuated MS-mediated p-GSK-3β and IL-10 production and reversed the suppressed activation of NF-κb/ MAPKs in response to LPS. Our results reveal a novel effect and mechanisms of methane and support the potential value of MS as a therapeutic approach in innate inflammatory diseases. PMID:27405597

  3. Anti-inflammatory Potential of Quercetin-3-O-β-D-("2"-galloyl)-glucopyranoside and Quercetin Isolated from Diospyros kaki calyx via Suppression of MAP Signaling Molecules in LPS-induced RAW 264.7 Macrophages.

    PubMed

    Cho, Yong-Hun; Kim, Na-Hyung; Khan, Imran; Yu, Jae Myo; Jung, Hyun Gug; Kim, Han Hyuk; Jang, Jae Yoon; Kim, Hyeon Jeong; Kim, Dong-In; Kwak, Jae-Hoon; Kang, Sun Chul; An, Bong Jeun

    2016-10-01

    Diospyros kaki (DK) contains an abundance of flavonoids and has been used in folk medicine in Korea for centuries. Here, we report for the first time the anti-inflammatory activities of Quercetin (QCT) and Quercetin 3-O-β-("2"-galloyl)-glucopyranoside (Q32G) isolated from DK. We have determine the no cytotoxicity of Q32G and QCT against RAW 264.7 cells up to concentration of 50 μM. QCT and Q32G demonstrated potent anti-inflammatory activities by reducing expression of nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 inducible NO synthase (iNOS), cyclooxygenase (COX)-2, and mitogen-activated protein kinase (MAPKs) in mouse RAW 264.7 macrophages activated with lipopolysaccharide (LPS). Both QCT or Q32G could decrease cellular protein levels of COX-2 and iNOS as well as secreted protein levels of NO, PGE2 , and cytokines (TNF-α, IL-1β, and IL-6) in culture medium of LPS-stimulated RAW 264.7 macrophages. Immunoblot analysis showed that QCT and Q32G suppressed LPS-induced MAP kinase pathway proteins p-p38, ERK, and JNK. This study revealed that QCT and Q32G have anti-inflammatory potential, however Q32G possess comparable activity as that of QCT and could be use as adjuvant to treat inflammatory diseases. © 2016 Institute of Food Technologists®.

  4. TLR4 mediates LPS-induced VEGF expression in odontoblasts.

    PubMed

    Botero, Tatiana M; Shelburne, Charles E; Holland, G Rex; Hanks, Carl T; Nör, Jacques E

    2006-10-01

    Lipopolysaccharide (LPS) from gram-negative bacteria cell walls such as Prevotella intermedia and Escherichia coli induce vascular endothelial growth factor (VEGF) expression in odontoblasts, but not in undifferentiated dental pulp cells. CD14 and TLR4 are responsible for LPS signaling in macrophages, but their expression levels and function in dental pulp cells are unknown. We showed here that murine odontoblast-like cells (MDPC-23) express CD14 and TLR4 by immunohistochemistry and flow cytometry. In contrast, undifferentiated dental pulp cells (OD-21) presented low or no expression of these two receptors. MDPC-23 cells showed CD14 and TLR4 up-regulation upon exposure to LPS, as determined by real time PCR. Dominant negative murine TLR4 (DN-mTLR4) transfected MDPC-23 cells did not show upregulated VEGF expression in response to LPS stimulation. These results demonstrate that odontoblast-like cells express CD14 and TLR4, and that LPS-induced VEGF expression is mediated, at least in part, by TLR4 signaling.

  5. Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation.

    PubMed

    Oliveira, Marta I; Santos, Susana G; Oliveira, Maria J; Torres, Ana L; Barbosa, Mário A

    2012-07-24

    Macrophages and dendritic cells (DC) share the same precursor and play key roles in immunity. Modulation of their behaviour to achieve an optimal host response towards an implanted device is still a challenge. Here we compare the differentiation process and polarisation of these related cell populations and show that they exhibit different responses to chitosan (Ch), with human monocyte-derived macrophages polarising towards an anti-inflammatory phenotype while their DC counterparts display pro-inflammatory features. Macrophages and DC, whose interactions with biomaterials are frequently analysed using fully differentiated cells, were cultured directly on Ch films, rather than exposed to the polymer after complete differentiation. Ch was the sole stimulating factor and activated both macrophages and DC, without leading to significant T cell proliferation. After 10 d on Ch, macrophages significantly down-regulated expression of pro-inflammatory markers, CD86 and MHCII. Production of pro-inflammatory cytokines, particularly TNF-α, decreased with time for cells cultured on Ch, while anti-inflammatory IL-10 and TGF-β1, significantly increased. Altogether, these results suggest an M2c polarisation. Also, macrophage matrix metalloproteinase activity was augmented and cell motility was stimulated by Ch. Conversely, DC significantly enhanced CD86 expression, reduced IL-10 secretion and increased TNF-α and IL-1β levels. Our findings indicate that cells with a common precursor may display different responses, when challenged by the same biomaterial. Moreover, they help to further comprehend macrophage/DC interactions with Ch and the balance between pro- and anti-inflammatory signals associated with implant biomaterials. We propose that an overall pro-inflammatory reaction may hide the expression of anti-inflammatory cytokines, likely relevant for tissue repair/regeneration.

  6. Estradiol inhibits vascular endothelial cells pro-inflammatory activation induced by C-reactive protein.

    PubMed

    Cossette, Émilie; Cloutier, Isabelle; Tardif, Kim; DonPierre, Geneviève; Tanguay, Jean-François

    2013-01-01

    In addition of being an important inflammatory biomarker and a risk factor for cardiovascular disease, much evidence indicates that the C-reactive protein (CRP) contributes to the atherosclerosis development process. This plasmatic protein synthesized by hepatocytes in response to inflammation and tissue injury induces pro-inflammatory molecules' expression by endothelial cells (ECs). Previous studies showed that the 17β-estradiol (E2) has beneficial effects on vascular cells by reducing in vitro pro-inflammatory molecules expressions in EC. Therefore, we hypothesize that E2 blocks or reduces CRP-mediated inflammatory responses by modulating endogenous production of CRP in EC and/or activation mechanisms. Using human aortic ECs (HAECs), we first evaluated CRP production by vascular EC and second demonstrated its self-induction. Indeed, recombinant human CRP stimulation induces a fivefold increase of CRP expression. A 1-h pre-treatment of E2 at a physiologic dose (10(-9 )M) leads to an important decrease of CRP production suggesting a partial blockage of its amplification loop mechanism. Furthermore, in HAEC, E2 reduces the secretion of the most potent agonist of CRP induction, the IL-6, by 21 %. E2 pre-treatment also decreased the expression of pro-inflammatory molecules IL-8, VCAM-1, and ICAM-1 induced by CRP and involved in leukocytes recruitment. In addition, we demonstrated that E2 could restore vascular endothelial growth factor-mediated EC migration response impaired by CRP suggesting another pro-angiogenic property of this hormone. These findings suggest that E2 can interfere with CRP pro-inflammatory effects via activation signals using its rapid, non-genomic pathway that may provide a new mechanism to improve vascular repair.

  7. TLR4-dependant pro-inflammatory effects of HMGB1 on human adipocyte.

    PubMed

    Gunasekaran, Manoj Kumar; Virama-Latchoumy, Anne-Laurence; Girard, Anne-Claire; Planesse, Cynthia; Guérin-Dubourg, Alexis; Ottosson, Lars; Andersson, Ulf; Césari, Maya; Roche, Régis; Hoareau, Laurence

    2016-01-01

    Chronic low grade inflammation is one of the major metabolic disorders in case of obesity and associated pathologies. By its important secretion function, the role of adipose tissue in this metabolic low grade inflammation is well known. Recently, it was demonstrated that the alarmin high mobility group box protein 1 (HMGB1) is involved in obesity-related pathologies by its increased serum levels in obese compared to normal weight individuals, and by its pro-inflammatory effects. However, the role of HMGB1 on adipocytes inflammation is poorly documented and we propose to investigate this point. Primary culture of human subcutaneous adipocytes were performed from human adipose tissue samples. Cells were treated with recombinant HMGB1 with/without anti-TLR4 antibody and inhibitors of NF-κB and P38 MAPK. Supernatants were collected for IL-6 and MCP-1 ELISA. HMGB1 initiates Toll-like receptor 4 (TLR4)-dependent activation of inflammation through the downstream NF-κB and P38 MAPK signaling pathway to upregulate the secretion of the pro-inflammatory cytokine IL-6. HMGB1 has pro-inflammatory effects on adipocytes. This reinforces the role of TLR4 in adipose tissue inflammation and antagonizing the HMGB1 inflammatory pathway could bring on new therapeutic targets to counteract obesity-associated pathologies.

  8. Central serotonin attenuates LPS-induced systemic inflammation.

    PubMed

    Mota, Clarissa M D; Rodrigues-Santos, Caroline; Fernández, Rodrigo A R; Carolino, Ruither O G; Antunes-Rodrigues, José; Anselmo-Franci, Janete A; Branco, Luiz G S

    2017-07-16

    Serotonin (5-HT) is a neuromodulator involved in several central-mediated mechanisms, such as endocrine processes, behavior, and sleep. Dysfunction of the serotonergic system is mainly linked to psychiatric disorders, but emerging evidence suggests that immune system activation may also alter brain 5-HT signaling. However, whether central 5-HT modulates systemic inflammation (SI) remains unknown. For this purpose, male Wistar rats (280-350g, 8-9weeks) were submitted to the experimental protocols beginning between 9 and 10AM with the performance of injections. The animals were housed at controlled conditions [temperature (25±1°C), light (06:00-18:00) and humidity (60-65%)]. Thus, we measured 5-HT and its metabolite 5-hydroxyindole-3-acetic acid (5-HIAA) in the anteroventral preoptic region [(AVPO) - the hierarchically most important region for body temperature (Tb) control] during lipopolysaccharide (LPS)-induced SI. We also combined LPS (100μg/kg) treatment with intracerebroventricular (icv) injection of 5-HT (5, 10 and 40μg/μL) and measured Tb ("hallmark" of SI), AVPO prostaglandin E2 [(PGE2) - an essential mediator of fever] and prostaglandin D2 [(PGD2) - a cryogenic mediator], plasma corticosterone [(CORT) - a stress marker with an endogenous anti-inflammatory effect] and interleukin-6 [(IL-6) - an immune mediator] levels. Detection limits of PGE2, PGD2, CORT and IL-6 assays were 39.1-2500pg/mL, 19.5-2500pg/mL, 0.12-2000μg/dL, and 0.125-8ng/mL, respectively. We also assessed tail skin temperature [used to calculate heat loss index (HLI)] to assess a key thermoeffector mechanism. As expected we observed LPS-induced increases in Tb, AVPO PGE2 (whereas PGD2 remained unchanged), plasma CORT and IL-6 levels, as well as a decrease in HLI. These changes were accompanied by reduced levels of AVPO 5-HT and 5-HIAA. Furthermore, we also observed a negative correlation between 5-HT and plasma CORT levels. Moreover, icv 5-HT (5, 10 and 40μg/μL) microinjection caused

  9. Polyphenols from blueberries modulate inflammation cytokines in LPS-induced RAW264.7 macrophages.

    PubMed

    Cheng, Anwei; Yan, Haiqing; Han, Caijing; Wang, Wenliang; Tian, Yaoqi; Chen, Xiangyan

    2014-08-01

    Polyphenols including 3-glucoside/arabinoside/galactoside-based polymers of delphinidins, petunidins, peonidins, malvidins and cyanidins are one type of biological macromolecules, which are extraordinarily rich in blueberries. Anti-inflammatory activity of blueberry polyphenols (BPPs) was investigated by using lipopolysaccharide (LPS) induced RAW264.7 macrophages. The results showed that BPPs suppressed the gene expression of IL-1β (interleukin-1β), IL-6 and IL-12p35. The inhibition effect on IL-1β and IL-6 mRNA was most obvious at the concentration of 10-200μg/mL BPPs. But the inhibition effect on IL-12p35 mRNA was increased with the increasing concentration of BPPs. When fixed at 100μg/mL BPPs, the most significant inhibition on IL-1β, IL-6 and IL-12p35 mRNA expression was detected at 12-48h. In conclusion, BPPs exhibit anti-inflammation activity by mediating and modulating the balances in pro-inflammatory cytokines of IL-1β, IL-6, and IL-12.

  10. Exogenous rhTRX reduces lipid accumulation under LPS-induced inflammation

    PubMed Central

    Han, Gi-Yeon; Lee, Eun-Kyung; Park, Hey-won; Kim, Hyun-Jung; Kim, Chan-Wha

    2014-01-01

    Redox-regulating molecule, recombinant human thioredoxin (rhTRX) which shows anti-inflammatory, and anti-oxidative effects against lipopolysaccharide (LPS)-stimulated inflammation and regulate protein expression levels. LPS-induced reactive oxygen intermediates (ROI) and NO production were inhibited by exogenous rhTRX. We identified up/downregulated intracellular proteins under the LPS-treated condition in exogenous rhTRX-treated A375 cells compared with non-LPS-treated cells via 2-DE proteomic analysis. Also, we quantitatively measured cytokines of in vivo mouse inflammation models using cytometry bead array. Exogenous rhTRX inhibited LPS-stimulated production of ROI and NO levels. TIP47 and ATP synthase may influence the inflammation-related lipid accumulation by affecting lipid metabolism. The modulation of skin redox environments during inflammation is most likely to prevent alterations in lipid metabolism through upregulation of TIP47 and ATP synthase and downregulation of inflammatory cytokines. Our results demonstrate that exogenous rhTRX has anti-inflammatory properties and intracellular regulatory activity in vivo and in vitro. Monitoring of LPS-stimulated pro-inflammatory conditions treated with rhTRX in A375 cells could be useful for diagnosis and follow-up of inflammation reduction related with candidate proteins. These results have a therapeutic role in skin inflammation therapy. PMID:24406320

  11. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    NASA Astrophysics Data System (ADS)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  12. Modulation of hepatic PPAR expression during Ft LVS LPS-induced protection from Francisella tularensis LVS infection

    PubMed Central

    2010-01-01

    Background It has been shown previously that administration of Francisella tularensis (Ft) Live Vaccine Strain (LVS) lipopolysaccharide (LPS) protects mice against subsequent challenge with Ft LVS and blunts the pro-inflammatory cytokine response. Methods To further investigate the molecular mechanisms that underlie Ft LVS LPS-mediated protection, we profiled global hepatic gene expression following Ft LVS LPS or saline pre-treatment and subsequent Ft LVS challenge using Affymetrix arrays. Results A large number of genes (> 3,000) were differentially expressed at 48 hours post-infection. The degree of modulation of inflammatory genes by infection was clearly attenuated by pre-treatment with Ft LVS LPS in the surviving mice. However, Ft LVS LPS alone had a subtle effect on the gene expression profile of the uninfected mice. By employing gene set enrichment analysis, we discovered significant up-regulation of the fatty acid metabolism pathway, which is regulated by peroxisome proliferator activated receptors (PPARs). Conclusions We hypothesize that the LPS-induced blunting of pro-inflammatory response in mouse is, in part, mediated by PPARs (α and γ). PMID:20082697

  13. tBHQ inhibits LPS-induced microglial activation via Nrf2-mediated suppression of p38 phosphorylation.

    PubMed

    Koh, Kyungmi; Cha, Youngnam; Kim, Sunyoung; Kim, Jiyoung

    2009-03-13

    Role of microglial Nrf2 activation in preventing neuronal death caused by microglial hyperactivation is investigated by using BV-2 microglial cells as modulator and primary neurons as target. Pretreatment of microglial cells with tBHQ, a phenolic antioxidant activating Nrf2, attenuated the LPS-derived overproduction of pro-inflammatory neurotoxic mediators like TNF-alpha, IL-1beta, IL-6, PGE(2), and NO as well as the morphological changes associated with microglial hyperactivation. Pretreatment of BV-2 cells with tBHQ suppressed LPS-induced phosphorylation of p38 required for overproduction of neurotoxic mediators. Results obtained using Nrf2-specific shRNA showed that expression of Nrf2 in microglia plays a critical role in tBHQ-derived suppression of LPS-induced p38 phosphorylation and microglial hyperactivation. Conditioned culture media taken from LPS-stimulated microglia cause neuronal death. However, the conditioned media taken from tBHQ-pretreated and LPS-stimulated microglia did not cause death of primary neurons. This suggested that prior activation of Nrf2 in microglia may inhibit microglial hyperactivation and prevent neuronal death.

  14. Moringa fruit inhibits LPS-induced NO/iNOS expression through suppressing the NF-κ B activation in RAW264.7 cells.

    PubMed

    Lee, Hyo-Jin; Jeong, Yun-Jeong; Lee, Tae-Sung; Park, Yoon-Yub; Chae, Whi-Gun; Chung, Il-Kyung; Chang, Hyeun-Wook; Kim, Cheorl-Ho; Choi, Yung-Hyun; Kim, Wun-Jae; Moon, Sung-Kwon; Chang, Young-Chae

    2013-01-01

    In this study, we evaluated the anti-inflammatory effects of moringa (Moringa oleifera Lam.), a natural biologically active substance, by determining its inhibitory effects on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated macrophage RAW264.7 cells. Extracts from different parts of moringa (root, leaf, and fruit) reduced LPS-induced nitric oxide (NO) release in a dose-dependent manner. The moringa fruit extract most effectively inhibited LPS-induced NO production and levels of inducible nitric oxide synthase (iNOS). The moringa fruit extract also was shown to suppress the production of inflammatory cytokines including IL-1β, TNF-α, and IL-6. Furthermore, moringa fruit extract inhibited the cytoplasmic degradation of I κ B -α and the nuclear translocation of p65 proteins, resulting in lower levels of NF -κ B transactivation. Collectively, the results of this study demonstrate that moringa fruit extract reduces the levels of pro-inflammatory mediators including NO , IL-1β, TNF-α, and IL-6 via the inhibition of NF -κ B activation in RAW264.7 cells. These findings reveal, in part, the molecular basis underlying the anti-inflammatory properties of moringa fruit extract.

  15. miR-135b-5p inhibits LPS-induced TNFα production via silencing AMPK phosphatase Ppm1e

    PubMed Central

    Li, Ping; Fan, Jian-bo; Gao, Yanxia; Zhang, Ming; Zhang, Li; Yang, Ning; Zhao, Xiaojing

    2016-01-01

    AMPK activation in monocytes could suppress lipopolysaccharide (LPS)-induced tissue-damaging TNFa production. We are set to provoke AMPK activation via microRNA (“miRNA”) downregulating its phosphatase Ppm1e. In human U937 and THP-1 monocytes, forced expression of microRNA-135b-5p (“miR-135b-5p”) downregulated Ppm1e and activated AMPK signaling. Further, LPS-induced TNFα production in above cells was dramatically attenuated. Ppm1e shRNA knockdown in U937 cells also activated AMPK and inhibited TNFα production by LPS. AMPK activation is required for miR-135b-induced actions in monocytes, AMPKα shRNA knockdown or T172A dominant negative mutation almost abolished miR-135b-5p's suppression on LPS-induced TNFα production. Significantly, miR-135b-5p inhibited LPS-induced reactive oxygen species (ROS) production, NFκB activation and TNFα mRNA expression in human macrophages. AMPKα knockdown or mutation again abolished above actions by miR-135b-5p. We conclude that miR-135b-5p expression downregulates Ppm1e to activate AMPK signaling, which inhibits LPS-induced TNFα production via suppressing ROS production and NFκB activation. PMID:27793001

  16. HMGB in Mollusk Crassostrea ariakensis Gould: Structure, Pro-Inflammatory Cytokine Function Characterization and Anti-Infection Role of Its Antibody

    PubMed Central

    Xu, Ting; Ye, Shigen; Luo, Ming; Zhu, Zewen; Wu, Xinzhong

    2012-01-01

    Background Crassostrea ariakensis Gould is a representative bivalve species and an economically important oyster in China, but suffers severe mortalities in recent years that are caused by rickettsia-like organism (RLO). Prevention and control of this disease is a priority for the development of oyster aquaculture. It has been proven that mammalian HMGB (high mobility group box) can be released extracellularly and acts as an important pro-inflammatory cytokine and late mediator of inflammatory reactions. In vertebrates, HMGB’s antibody (anti-HMGB) has been shown to confer significant protection against certain local and systemic inflammatory diseases. Therefore, we investigated the functions of Ca-HMGB (oyster HMGB) and anti-CaHMGB (Ca-HMGB’s antibody) in oyster RLO/LPS (RLO or LPS)-induced disease or inflammation. Methodology/Principal Findings Sequencing analysis revealed Ca-HMGB shares conserved structures with mammalians. Tissue-specific expression indicates that Ca-HMGB has higher relative expression in hemocytes. Significant continuous up-regulation of Ca-HMGB was detected when the hemocytes were stimulated with RLO/LPS. Recombinant Ca-HMGB protein significantly up-regulated the expression levels of some cytokines. Indirect immunofluorescence study revealed that Ca-HMGB localized both in the hemocyte nucleus and cytoplasm before RLO challenge, but mainly in the cytoplasm 12 h after challenge. Western blot analysis demonstrated Ca-HMGB was released extracellularly 4–12 h after RLO challenge. Anti-CaHMGB was added to the RLO/LPS-challenged hemocyte monolayer and real-time RT-PCR showed that administration of anti-CaHMGB dramatically reduced the rate of RLO/LPS-induced up-regulation of LITAF at 4–12 h after treatment. Flow cytometry analysis indicated that administration of anti-CaHMGB reduced RLO/LPS-induced hemocyte apoptosis and necrosis rates. Conclusions/Significance Ca-HMGB can be released extracellularly and its subcellular localization varies

  17. Suppression of Inflammatory Responses by Black Rice Extract in RAW 264.7 Macrophage Cells via Downregulation of NF-kB and AP-1 Signaling Pathways.

    PubMed

    Limtrakul, Pornngarm; Yodkeeree, Supachai; Pitchakarn, Pornsiri; Punfa, Wanisa

    2015-01-01

    Anthocyanin, a phenolic compound, has been reported to have an anti-inflammatory effect against lipopolysaccharide (LPS) induced changes in immune cells. However, little is known about the molecular mechanisms underlying its anti-inflammatory effects. Few research studies have concerned the anti-inflammation properties of colored rice extract as a functional material. Therefore, the purpose of this study was to examine anti-inflammatory effects of the polar fraction of black rice whole grain extracts (BR-WG-P) that features a high anthocyanin content. Our results showed that BR-WG-P significantly inhibited LPS-induced pro- inflammatory mediators, including production of NO and expression of iNOS and COX-2. In addition, secretion of pro-inflammatory cytokines including TNF-α and IL-6 was also significantly inhibited. Moreover, BR-WG-P and anthocyanin inhibited NF-kB and AP-1 translocation into the nucleus. BR-WG-P also decreased the phosphorylation of ERK, p38 and JNK in a dose dependent manner. These results suggested that BR-WG-P might suppress LPS-induced inflammation via the inhibition of the MAPK signaling pathway leading to decrease of NF-kB and AP-1 translocation. All of these results indicate that BR-WG-P exhibits therapeutic potential associated with the anthocyanin content in the extract for treating inflammatory diseases associated with cancer.

  18. Epithelial Cholesterol Deficiency Attenuates Human Antigen R-linked Pro-inflammatory Stimulation via an SREBP2-linked Circuit.

    PubMed

    Park, Seong-Hwan; Kim, Juil; Yu, Mira; Park, Jae-Hong; Kim, Yong Sik; Moon, Yuseok

    2016-11-18

    Patients with chronic intestinal ulcerative diseases, such as inflammatory bowel disease, tend to exhibit abnormal lipid profiles, which may affect the gut epithelial integrity. We hypothesized that epithelial cholesterol depletion may trigger inflammation-checking machinery via cholesterol sentinel signaling molecules whose disruption in patients may aggravate inflammation and disease progression. In the present study, sterol regulatory element-binding protein 2 (SREBP2) as the cholesterol sentinel was assessed for its involvement in the epithelial inflammatory responses in cholesterol-depleted enterocytes. Patients and experimental animals with intestinal ulcerative injuries showed suppression in epithelial SREBP2. Moreover, SREBP2-deficient enterocytes showed enhanced pro-inflammatory signals in response to inflammatory insults, indicating regulatory roles of SREBP2 in gut epithelial inflammation. However, epithelial cholesterol depletion transiently induced pro-inflammatory chemokine expression regardless of the well known pro-inflammatory nuclear factor-κB signals. In contrast, cholesterol depletion also exerts regulatory actions to maintain epithelial homeostasis against excessive inflammation via SREBP2-associated signals in a negative feedback loop. Mechanistically, SREBP2 and its induced target EGR-1 were positively involved in induction of peroxisome proliferator-activated receptor γ (PPARγ), a representative anti-inflammatory transcription factor. As a crucial target of the SREBP2-EGR-1-PPARγ-associated signaling pathways, the mRNA stabilizer, human antigen R (HuR) was retained in nuclei, leading to reduced stability of pro-inflammatory chemokine transcripts. This mechanistic investigation provides clinical insights into protective roles of the epithelial cholesterol deficiency against excessive inflammatory responses via the SREBP2-HuR circuit, although the deficiency triggers transient pro-inflammatory signals. © 2016 by The American Society for

  19. Macrophages from the synovium of active rheumatoid arthritis exhibit an activin A-dependent pro-inflammatory profile.

    PubMed

    Soler Palacios, Blanca; Estrada-Capetillo, Lizbeth; Izquierdo, Elena; Criado, Gabriel; Nieto, Concha; Municio, Cristina; González-Alvaro, Isidoro; Sánchez-Mateos, Paloma; Pablos, Jose Luis; Corbí, Angel L; Puig-Kröger, Amaya

    2015-02-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease whose pathogenesis and severity correlates with the presence of macrophage-derived pro-inflammatory cytokines within the inflamed synovium. Macrophage-derived cytokines fuel the pathological processes in RA and are targets of clinically successful therapies. However, although macrophage polarization determines cytokine production, the polarization state of macrophages in RA joints remains poorly defined. To dissect the molecular basis for the tissue-damaging effects of macrophages in RA joints, we undertook the phenotypic and transcriptomic characterization of ex vivo isolated CD14(+) RA synovial fluid (RA-SF) macrophages. Flow cytometry and gene profiling indicated that RA-SF macrophages express pro-inflammatory polarization markers (MMP12, EGLN3, CCR2), lack expression of markers associated with homeostatic and anti-inflammatory polarization (IGF1, HTR2B) and exhibit a transcriptomic profile that resembles the activin A-dependent gene signature of pro-inflammatory in vitro-generated macrophages. In fact, high levels of Smad-activating activin A were found in RA-SF and, accordingly, the Smad signalling pathway was activated in ex vivo-isolated RA-SF macrophages. In vitro experiments on monocytes and macrophages indicated that RA-SF promoted the acquisition of pro-inflammatory markers (INHBA, MMP12, EGLN3, CCR2) but led to a significant reduction in the expression of genes associated with homeostasis and inflammation resolution (FOLR2, SERPINB2, IGF1, CD36), thus confirming the pro-inflammatory polarization ability of RA-SF. Importantly, the macrophage-polarizing ability of RA-SF was inhibited by an anti-activin A-neutralizing antibody, thus demonstrating that activin A mediates the pro-inflammatory macrophage-polarizing ability of RA-SF. Moreover, and in line with these findings, multicolour immunofluorescence evidenced that macrophages within RA synovial membranes (RA-SM) also express pro-inflammatory

  20. Inhibition of Pro-inflammatory Mediators and Cytokines by Chlorella Vulgaris Extracts

    PubMed Central

    Sibi, G.; Rabina, Santa

    2016-01-01

    Objective: The aim of this study was to determine the in vitro anti-inflammatory activities of solvent fractions from Chlorella vulgaris by inhibiting the production of pro-inflammatory mediators and cytokines. Methods: Methanolic extracts (80%) of C. vulgaris were prepared and partitioned with solvents of increasing polarity viz., n-hexane, chloroform, ethanol, and water. Various concentrations of the fractions were tested for cytotoxicity in RAW 264.7 cells using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, and the concentrations inducing cell growth inhibition by about 50% (IC50) were chosen for further studies. Lipopolysaccharide (LPS) stimulated RAW 264.7 cells were treated with varying concentrations of C. vulgaris fractions and examined for its effects on nitric oxide (NO) production by Griess assay. The release of prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6) were quantified using enzyme-linked immunosorbent assay using Celecoxib and polymyxin B as positive controls. Results: MTT assay revealed all the solvent fractions that inhibited cell growth in a dose-dependent manner. Of all the extracts, 80% methanolic extract exhibited the strongest anti-inflammatory activity by inhibiting NO production (P < 0.01), PGE2 (P < 0.05), TNF-α, and IL-6 (P < 0.001) release in LPS induced RAW 264.7 cells. Both hexane and chloroform fractions recorded a significant (P < 0.05) and dose-dependent inhibition of LPS induced inflammatory mediators and cytokines in vitro. The anti-inflammatory effect of ethanol and aqueous extracts was not significant in the study. Conclusion: The significant inhibition of inflammatory mediators and cytokines by fractions from C. vulgaris suggests that this microalga would be a potential source of developing anti-inflammatory agents and a good alternate for conventional steroidal and nonsteroidal anti-inflammatory drugs. SUMMARY C. vulgaris extracts have potential anti

  1. Trapa japonica Pericarp Extract Reduces LPS-Induced Inflammation in Macrophages and Acute Lung Injury in Mice.

    PubMed

    Kim, Yon-Suk; Hwang, Jin-Woo; Jang, Jae-Hyuk; Son, Sangkeun; Seo, Il-Bok; Jeong, Jae-Hyun; Kim, Ee-Hwa; Moon, Sang-Ho; Jeon, Byong-Tae; Park, Pyo-Jam

    2016-03-21

    In this study, we found that chloroform fraction (CF) from TJP ethanolic extract inhibited lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and intracellular ROS in RAW264.7 cells. In addition, expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) genes was reduced, as evidenced by western blot. Our results indicate that CF exerts anti-inflammatory effects by down-regulating expression of iNOS and COX-2 genes through inhibition of MAPK (ERK, JNK and p38) and NF-κB signaling. Similarly we also evaluated the effects of CF on LPS-induced acute lung injury. Male Balb/c mice were pretreated with dexamethasone or CF 1 h before intranasal instillation of LPS. Eight hours after LPS administration, the inflammatory cells in the bronchoalveolar lavage fluid (BALF) were determined. The results indicated that CF inhibited LPS-induced TNF-α and IL-6 production in a dose dependent manner. It was also observed that CF attenuated LPS-induced lung histopathologic changes. In conclusion, these data demonstrate that the protective effect of CF on LPS-induced acute lung injury (ALI) in mice might relate to the suppression of excessive inflammatory responses in lung tissue. Thus, it can be suggested that CF might be a potential therapeutic agent for ALI.

  2. Prostaglandin EP2 and EP4 receptors modulate expression of the chemokine CCL2 (MCP-1) in response to LPS-induced renal glomerular inflammation.

    PubMed

    Zahner, Gunther; Schaper, Melanie; Panzer, Ulf; Kluger, Malte; Stahl, Rolf A K; Thaiss, Friedrich; Schneider, André

    2009-08-27

    The pro-inflammatory chemokine CCL2 [chemokine (Cys-Cys motif) ligand 2; also known as MCP-1 (monocyte chemotactic protein-1)] is up-regulated in the glomerular compartment during the early phase of LPS (lipopolysaccharide)-induced nephritis. This up-regulation also occurs in cultured MCs (mesangial cells) and is more pronounced in MCs lacking the PGE2 (prostaglandin E2) receptor EP2 or in MCs treated with a prostaglandin EP4 receptor antagonist. To examine a possible feedback mechanism of EP receptor stimulation on CCL2 expression, we used an in vitro model of MCs with down-regulated EP receptor expression. Selectively overexpressing the various EP receptors in these cells then allows the effects on the LPS-induced CCL2 expression to be examined. Cells were stimulated with LPS and CCL2 gene expression was examined and compared with LPS-stimulated, mock-transfected PTGS2 [prostaglandin-endoperoxide synthase 2, also known as COX-2 (cyclo-oxygenase-2)]-positive cells. Overexpression of EP1, as well as EP3, had no effect on LPS-induced Ccl2 mRNA expression. In contrast, overexpression of EP2, as well as EP4, significantly decreased LPS-induced CCL2 expression. These results support the hypothesis that PTGS2-derived prostaglandins, when strongly induced, counter-balance inflammatory processes through the EP2 and EP4 receptors in MCs.

  3. 4,7-Dimethoxy-5-methyl-1,3-benzodioxole from Antrodia camphorata inhibits LPS-induced inflammation via suppression of NF-κB and induction HO-1 in RAW264.7 cells.

    PubMed

    Shie, Pei-Hsin; Wang, Sheng-Yang; Lay, Horng-Liang; Huang, Guan-Jhong

    2016-02-01

    Several benzenoid compounds have been isolated from Antrodia camphorata are known to have excellent anti-inflammatory activity. In this study, we investigated the anti-inflammatory potential of 4,7-dimethoxy-5-methyl-1,3-benzodioxole (DMB), one of the major benzenoid compounds isolated from the mycelia of A. camphorata. DMB significantly decreased the LPS-induced production of pro-inflammatory molecules, such as nitric oxide (NO), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in RAW264.7 cells. In addition, DMB suppressed the protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose dependent manner. Moreover, DMB significantly suppressed LPS-induced nuclear translocation of nuclear factor-κB (NF-κB), and this inhibition was found to be associated with decreases in the phosphorylation and degradation of its inhibitor, inhibitory κB-α (IκB-α). Moreover, we found that DMB markedly inhibited the protein expression level of Toll-like receptor 4 (TLR4). Furthermore, treatment with DMB significantly increased hemoxygenase-1 (HO-1) expression in RAW264.7 cells, which is further confirmed by hemin, a HO-1 enhancer, significantly attenuated the LPS-induced pro-inflammatory molecules and iNOS and TLR4 protein levels. Taken together, the present study suggests that DMB may have therapeutic potential for the treatment of inflammatory diseases.

  4. Tenocytes, pro-inflammatory cytokines and leukocytes: a relationship?

    PubMed Central

    Al-Sadi, Onays; Schulze-Tanzil, Gundula; Kohl, Benjamin; Lohan, Anke; Lemke, Marion; Ertel, Wolfgang; John, Thilo

    2011-01-01

    Summary Leukocyte derived pro-inflammatory mediators could be involved in tendon healing and scar formation. Hence, the effect of autologous leukocytes (PBMCs, peripheral blood mononuclear cells and neutrophils) on primary rabbit Achilles tenocytes gene expression was tested in insert assisted co-cultures. Subsequently, tenocytes gene expression of extra-cellular matrix (ECM) components (type I collagen, decorin, fibronectin), the cell-ECM receptor β1-integrin, the angiogenic factor myodulin, ECM degrading matrix-metalloproteinase (MMP)1 and pro-inflammatory cytokines (interleukin [IL]-1β, tumour necrosis factor [TNFα] and IL-6) was analysed. The only significant effect of leukocytes on tenocytes ECM genes expression was a suppression of type I collagen by neutrophils combined with TNFα stimulation. The same effect could be observed analysing the β1-integrin and myodulin gene expression. However, PBMCs up-regulated significantly cytokine and MMP1 gene expression in tenocytes. These in vitro results suggest that mononuclear cells could present an exogenic stimulus for the induction of pro-inflammatory and catabolic mediators in tendon. PMID:23738251

  5. MyD88-dependent pro-inflammatory cytokine response contributes to lethal toxicity of staphylococcal enterotoxin B in mice.

    PubMed

    Kissner, Teri L; Ruthel, Gordon; Cisney, Emily D; Ulrich, Robert G; Fernandez, Stefan; Saikh, Kamal U

    2011-10-01

    An elevated pro-inflammatory cytokine response is the primary cause of death by toxic shock after exposure to staphylococcal enterotoxin B (SEB). Identifying an intracellular signal mediator that predominantly controls the pro-inflammatory response is important for developing a therapeutic strategy. We examined the role of the signaling adaptor MyD88 in cell culture and in a mouse model of toxic shock. Our results indicated that elevated tumor necrosis factor-α, interferon-γ, interleukin (IL)-1α/β and IL-6 production from mouse spleen cells treated with SEB alone or in combination with lipopolysaccharide (LPS) was regulated by MyD88. Elevated levels of MyD88 protein in spleen cells, as well as in CD11c(+) or Mac3(+) cells, and activation of nuclear factor-κB in spleen cells were observed in mice treated with SEB. An SEB-dose dependent lethality was observed in LPS-potentiated and in D-galactosamine-sensitized mice. D-Galactosamine treatment of spleen cells had no effect in cytokine induction but rather increased the sensitivity to toxic shock in mice. Our results demonstrated an impaired pro-inflammatory cytokine production by spleen cells of MyD88(-/-) mice in response to SEB or SEB plus LPS. Most importantly, MyD88(-/-) mice were resistant to SEB-induced death. These results demonstrate that MyD88-dependent pro-inflammatory signaling is responsible for SEB intoxication. In addition, our studies also demonstrated that LPS potentiation, in comparison to D-galactosamine sensitization, contributes to a stronger SEB-induced lethality. This is due to the pro-inflammatory cytokine response elicited by MyD88 after exposure to SEB and LPS. These findings offer an important insight upon SEB intoxication and subsequent therapy targeting MyD88.

  6. BQ-123 prevents LPS-induced preterm birth in mice via the induction of uterine and placental IL-10

    SciTech Connect

    Olgun, Nicole S.; Hanna, Nazeeh; Reznik, Sandra E.

    2015-02-01

    Preterm birth (PTB), defined as any delivery occurring prior to the completion of 37 weeks' gestation, currently accounts for 11–12% of all births in the United States. Maternal genito-urinary infections account for up to 40% of all PTBS and induce a pro-inflammatory state in the host. The potent vasoconstrictor Endothelin-1 (ET-1) is known to be upregulated in the setting of infection, and elicits its effect by binding to the ET{sub A} receptor. We have previously shown that antagonism of the ET{sub A} receptor with BQ-123 is capable of preventing LPS-induced PTB in mice. We hypothesize that the administration of BQ-123 post LPS exposure will dismantle a positive feedback loop observed with pro-inflammatory cytokines upstream of ET-1. On GD 15.5, pregnant C57BL/6 mice were injected with PBS, LPS, BQ-123, or LPS + BQ-123. Changes at both the level of transcription and translation were observed in uterus and placenta in the ET-1 axis and in pro- and anti-inflammatory cytokines over the course of 12 h. We discovered that BQ-123, when administered 10 h post LPS, is capable of increasing production of uterine and placental Interleukin-10, causing a shift away from the pro-inflammatory state. We also observed that antagonism of the ET{sub A} receptor decreased IL-1β and TNFα in the placenta while also decreasing transcription of ET-1 in the uterus. Our results reinforce the role of ET-1 at the maternal fetal interface and highlight the potential benefit of ET{sub A} receptor blockade via the suppression of ET-1, and induction of a Th2 cytokine dominant state. - Highlights: • The pro-inflammatory response to LPS in the uterus and placenta is ET-1 dependent. • ET{sub A} blockade triggers up-regulation of IL-10 in uterus and placenta. • A positive feedback loop drives ET-1 expression in gestational tissue.

  7. Globular adiponectin induces a pro-inflammatory response in human astrocytic cells.

    PubMed

    Wan, Zhongxiao; Mah, Dorrian; Simtchouk, Svetlana; Klegeris, Andis; Little, Jonathan P

    2014-03-28

    Neuroinflammation, mediated in part by activated brain astrocytes, plays a critical role in the development of neurodegenerative disorders, including Alzheimer's disease (AD). Adiponectin is the most abundant adipokine secreted from adipose tissue and has been reported to exert both anti- and pro-inflammatory effects in peripheral tissues; however, the effects of adiponectin on astrocytes remain unknown. Shifts in peripheral concentrations of adipokines, including adiponectin, could contribute to the observed link between midlife adiposity and increased AD risk. The aim of the present study was to characterize the effects of globular adiponectin (gAd) on pro-inflammatory cytokine mRNA expression and secretion in human U373 MG astrocytic cells and to explore the potential involvement of nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphatidylinositide 3-kinases (PI3K) signaling pathways in these processes. We demonstrated expression of adiponectin receptor 1 (adipoR1) and adipoR2 in U373 MG cells and primary human astrocytes. gAd induced secretion of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1, and gene expression of IL-6, MCP-1, IL-1β and IL-8 in U373 MG cells. Using specific inhibitors, we found that NF-κB, p38MAPK and ERK1/2 pathways are involved in gAd-induced induction of cytokines with ERK1/2 contributing the most. These findings provide evidence that gAd may induce a pro-inflammatory phenotype in human astrocytes.

  8. Hyperosmolarity attenuates TNFα–mediated pro-inflammatory activation of human pulmonary microvascular endothelial cells

    PubMed Central

    Banerjee, Anirban; Moore, Ernest E.; McLaughlin, Nathan J.; Lee, Luis; Jones, Wilbert L.; Johnson, Jeffrey L.; Nydam, Trevor L.; Silliman, Christopher C.

    2013-01-01

    Firm neutrophil (PMN)-endothelial (EC) adhesion is crucial to the PMN-mediated hyperinflammation observed in acute lung injury. Hypertonic saline (HTS) used for resuscitation of hemorrhagic shock has been associated with a decreased incidence of PMN-mediated lung injury/acute respiratory distress syndrome. We hypothesize that physiologically accessible hypertonic incubation (170mM vs. 140mM, osmolarity ranging from 360-300 mOsm/L) inhibits pro-inflammatory activation of human pulmonary microvascular endothelial cells (HMVECs). Pro-inflammatory activation of HMVECs was investigated in response to TNFα including IL-8 release, ICAM-1 surface expression, PMN adhesion, and signaling mechanisms under both isotonic (control) and hypertonic conditions. Hyperosmolarity alone had no effect on either basal IL-8 release or ICAM-1 surface expression, but did lead to concentration-dependent decreases in TNFα–induced IL-8 release, ICAM-1 surface expression, and PMN:HMVEC adhesion. Conversely, HTS activated p38 mitogen-activated protein kinase (MAPK) and enhanced TNFα activation of p38 MAPK. Despite this basal activation, hyperosmolar incubation attenuated TNFα stimulated IL-8 release and ICAM-1 surface expression and subsequent PMN adherence, while p38 MAPK inhibition did not further influence the effects of hyperosmolar conditions on ICAM-1 surface expression. In addition, TNFα induced NF-kB DNA binding, but HTS conditions attenuated this by 31% (p<0.01). In conclusion, HTS reduces PMN:HMVEC adhesion as well as TNFα-induced pro-inflammatory activation of primary HMVECs via attenuation of NF-kB signaling. PMID:23364439

  9. Propolis and its constituent caffeic acid suppress LPS-stimulated pro-inflammatory response by blocking NF-κB and MAPK activation in macrophages.

    PubMed

    Búfalo, Michelle Cristiane; Ferreira, Isabel; Costa, Gustavo; Francisco, Vera; Liberal, Joana; Cruz, Maria Teresa; Lopes, Maria Celeste; Batista, Maria Teresa; Sforcin, José Maurício

    2013-08-26

    Propolis is a bee product with numerous biological and pharmacological properties, such as immunomodulatory and anti-inflammatory activities. It has been used in folk medicine as a healthy drink and in food to improve health and prevent inflammatory diseases. However, little is known about its mechanism of action. Thus, the goal of this study was to verify the antioxidant activity and to explore the anti-inflammatory properties of propolis by addressing its intracellular mechanism of action. Caffeic acid was investigated as a possible compound responsible for propolis action. The antioxidant properties of propolis and caffeic acid were evaluated by using the 2,2-Diphenyl-1-picrylhydrazyl free radical (DPPH) scavenging method. To analyze the anti-inflammatory activity, Raw 264.7 macrophages were treated with different concentrations of propolis or caffeic acid, and nitric oxide (NO) production, a strong pro-inflammatory mediator, was evaluated by the Griess reaction. The concentrations of propolis and caffeic acid that inhibited NO production were evaluated on intracellular signaling pathways triggered during inflammation, namely p38 mitogen-activated protein kinase (MAPK), c-jun NH2-terminal kinase (JNK1/2), the transcription nuclear factor (NF)-κB and extracellular signal-regulated kinase (ERK1/2), through Western blot using specific antibodies. A possible effect of propolis on the cytotoxicity of hepatocytes was also evaluated, since this product can be used in human diets. Caffeic acid showed a higher antioxidant activity than propolis extract. Propolis and caffeic acid inhibited NO production in macrophages, at concentrations without cytotoxicity. Furthermore, both propolis and caffeic acid suppressed LPS-induced signaling pathways, namely p38 MAPK, JNK1/2 and NF-κB. ERK1/2 was not affected by propolis extract and caffeic acid. In addition, propolis and caffeic acid did not induce hepatotoxicity at concentrations with strong anti-inflammatory potential

  10. 15-hydroxyprostaglandin dehydrogenase (15-PGDH) prevents lipopolysaccharide (LPS)-induced acute liver injury

    PubMed Central

    Yao, Lu; Chen, Weina; Song, Kyoungsub; Han, Chang; Gandhi, Chandrashekhar R.; Lim, Kyu; Wu, Tong

    2017-01-01

    The NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH) catalyzes the oxidation of the 15(S)-hydroxyl group of prostaglandin E2 (PGE2), converting the pro-inflammatory PGE2 to the anti-inflammatory 15-keto-PGE2 (an endogenous ligand for peroxisome proliferator-activated receptor-gamma [PPAR-γ]). To evaluate the significance of 15-PGDH/15-keto-PGE2 cascade in liver inflammation and tissue injury, we generated transgenic mice with targeted expression of 15-PGDH in the liver (15-PGDH Tg) and the animals were subjected to lipopolysaccharide (LPS)/Galactosamine (GalN)-induced acute liver inflammation and injury. Compared to the wild type mice, the 15-PGDH Tg mice showed lower levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), less liver tissue damage, less hepatic apoptosis/necrosis, less macrophage activation, and lower inflammatory cytokine production. In cultured Kupffer cells, treatment with 15-keto-PGE2 or the conditioned medium (CM) from 15-PGDH Tg hepatocyes inhibited LPS-induced cytokine production, in vitro. Both 15-keto-PGE2 and the CM from15-PGDH Tg hepatocyes also up-regulated the expression of PPAR-γ downstream genes in Kupffer cells. In cultured hepatocytes, 15-keto-PGE2 treatment or 15-PGDH overexpression did not influence TNF-α-induced hepatocyte apoptosis. These findings suggest that 15-PGDH protects against LPS/GalN-induced liver injury and the effect is mediated via 15-keto-PGE2, which activates PPAR-γ in Kupffer cells and thus inhibits their ability to produce inflammatory cytokines. Accordingly, we observed that the PPAR-γ antagonist, GW9662, reversed the effect of 15-keto-PGE2 in Kupffer cell in vitro and restored the susceptibility of 15-PGDH Tg mice to LPS/GalN-induced acute liver injury in vivo. Collectively, our findings suggest that 15-PGDH-derived 15-keto-PGE2 from hepatocytes is able to activate PPAR-γ and inhibit inflammatory cytokine production in Kupffer cells and that this paracrine mechanism

  11. Human resistin promotes neutrophil pro-inflammatory activation, neutrophil extracellular trap formation, and increases severity of acute lung injury

    PubMed Central

    Jiang, Shaoning; Park, Dae Won; Tadie, Jean-Marc; Gregoire, Murielle; Deshane, Jessy; Pittet, Jean Francois; Abraham, Edward; Zmijewski, Jaroslaw W.

    2014-01-01

    Although resistin was recently found to modulate insulin resistance in preclinical models of type II diabetes and obesity, recent studies have also suggested that resistin has proinflammatory properties. In these studies, we examined if the human specific variant of resistin affects neutrophil activation as well as the severity of LPS-induced acute lung injury (ALI). Because human and mouse resistin have distinct patterns of tissue distribution, experiments were performed using resistin humanized mice that exclusively express human resistin (hRTN+/−/−), but are deficient in mouse resistin. Enhanced production of TNF-α or MIP-2 was found in LPS-treated hRtn+/−/−, compared to control Rtn−/−/− neutrophils. Expression of human resistin inhibited the activation of AMP-activated protein kinase (AMPK), a major sensor and regulator of cellular bioenergetics that is also implicated in inhibiting inflammatory activity of neutrophils and macrophages. In addition to the ability of resistin to sensitize neutrophils to LPS stimulation, human resistin also enhanced neutrophil extracellular trap formation. In LPS-induced ALI, humanized resistin mice demonstrated enhanced production of pro-inflammatory cytokines, more severe pulmonary edema, increased NET formation, and elevated concentration of the alarmins HMGB1 and histone 3 in the lungs. Our results suggest that human resistin may play an important contributory role in enhancing TLR4 induced inflammatory responses, and may be a target for future therapies aimed at diminishing the severity of acute lung injury and other inflammatory situations where neutrophils play a major role. PMID:24719460

  12. Aβ and Inflammatory Stimulus Activate Diverse Signaling Pathways in Monocytic Cells: Implications in Retaining Phagocytosis in Aβ-Laden Environment

    PubMed Central

    Savchenko, Ekaterina; Malm, Tarja; Konttinen, Henna; Hämäläinen, Riikka H.; Guerrero-Toro, Cindy; Wojciechowski, Sara; Giniatullin, Rashid; Koistinaho, Jari; Magga, Johanna

    2016-01-01

    Background: Accumulation of amyloid β (Aβ) is one of the main hallmarks of Alzheimer’s disease (AD). The enhancement of Aβ clearance may provide therapeutic means to restrict AD pathology. The cellular responses to different forms of Aβ in monocytic cells are poorly known. We aimed to study whether different forms of Aβ induce inflammatory responses in monocytic phagocytes and how Aβ may affect monocytic cell survival and function to retain phagocytosis in Aβ-laden environment. Methods: Monocytic cells were differentiated from bone marrow hematopoietic stem cells (HSC) in the presence of macrophage-colony stimulating factor. Monocytic cells were stimulated with synthetic Aβ42 and intracellular calcium responses were recorded with calcium imaging. The formation of reactive oxygen species (ROS), secretion of cytokines and cell viability were also assessed. Finally, monocytic cells were introduced to native Aβ deposits ex vivo and the cellular responses in terms of cell viability, pro-inflammatory activation and phagocytosis were determined. The ability of monocytic cells to phagocytose Aβ plaques was determined after intrahippocampal transplantation in vivo. Results: Freshly solubilized Aβ induced calcium oscillations, which persisted after removal of the stimulus. After few hours of aggregation, Aβ was not able to induce oscillations in monocytic cells. Instead, lipopolysaccharide (LPS) induced calcium responses divergent from Aβ-induced response. Furthermore, while LPS induced massive production of pro-inflammatory cytokines, neither synthetic Aβ species nor native Aβ deposits were able to induce pro-inflammatory activation of monocytic cells, contrary to primary microglia. Finally, monocytic cells retained their viability in the presence of Aβ and exhibited phagocytic activity towards native fibrillar Aβ deposits and congophilic Aβ plaques. Conclusion: Monocytic cells carry diverse cellular responses to Aβ and inflammatory stimulus LPS. Even

  13. Aβ and Inflammatory Stimulus Activate Diverse Signaling Pathways in Monocytic Cells: Implications in Retaining Phagocytosis in Aβ-Laden Environment.

    PubMed

    Savchenko, Ekaterina; Malm, Tarja; Konttinen, Henna; Hämäläinen, Riikka H; Guerrero-Toro, Cindy; Wojciechowski, Sara; Giniatullin, Rashid; Koistinaho, Jari; Magga, Johanna

    2016-01-01

    Background: Accumulation of amyloid β (Aβ) is one of the main hallmarks of Alzheimer's disease (AD). The enhancement of Aβ clearance may provide therapeutic means to restrict AD pathology. The cellular responses to different forms of Aβ in monocytic cells are poorly known. We aimed to study whether different forms of Aβ induce inflammatory responses in monocytic phagocytes and how Aβ may affect monocytic cell survival and function to retain phagocytosis in Aβ-laden environment. Methods: Monocytic cells were differentiated from bone marrow hematopoietic stem cells (HSC) in the presence of macrophage-colony stimulating factor. Monocytic cells were stimulated with synthetic Aβ42 and intracellular calcium responses were recorded with calcium imaging. The formation of reactive oxygen species (ROS), secretion of cytokines and cell viability were also assessed. Finally, monocytic cells were introduced to native Aβ deposits ex vivo and the cellular responses in terms of cell viability, pro-inflammatory activation and phagocytosis were determined. The ability of monocytic cells to phagocytose Aβ plaques was determined after intrahippocampal transplantation in vivo. Results: Freshly solubilized Aβ induced calcium oscillations, which persisted after removal of the stimulus. After few hours of aggregation, Aβ was not able to induce oscillations in monocytic cells. Instead, lipopolysaccharide (LPS) induced calcium responses divergent from Aβ-induced response. Furthermore, while LPS induced massive production of pro-inflammatory cytokines, neither synthetic Aβ species nor native Aβ deposits were able to induce pro-inflammatory activation of monocytic cells, contrary to primary microglia. Finally, monocytic cells retained their viability in the presence of Aβ and exhibited phagocytic activity towards native fibrillar Aβ deposits and congophilic Aβ plaques. Conclusion: Monocytic cells carry diverse cellular responses to Aβ and inflammatory stimulus LPS. Even

  14. Sonchus asper extract inhibits LPS-induced oxidative stress and pro-inflammatory cytokine production in RAW264.7 macrophages

    PubMed Central

    Wang, Lan; Xu, Ming Lu; Liu, Jie; Wang, You; Hu, Jian He

    2015-01-01

    BACKGROUND/OBJECTIVES Sonchus asper is used extensively as an herbal anti-inflammatory for treatment of bronchitis, asthma, wounds, burns, and cough; however, further investigation is needed in order to understand the underlying mechanism. To determine its mechanism of action, we examined the effects of an ethyl acetate fraction (EAF) of S. asper on nitric oxide (NO) production and prostaglandin-E2 levels in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. MATERIALS/METHODS An in vitro culture of RAW264.7 macrophages was treated with LPS to induce inflammation. RESULTS Treatment with EAF resulted in significant suppression of oxidative stress in RAW264.7 macrophages as demonstrated by increased endogenous superoxide dismutase (SOD) activity and intracellular glutathione levels, decreased generation of reactive oxygen species and lipid peroxidation, and restoration of the mitochondrial membrane potential. To confirm its anti-inflammatory effects, analysis of expression of inducible NO synthase, cyclooxygenase-2, tumor necrosis factor-α, and the anti-inflammatory cytokines IL-1β and IL-6 was performed using semi-quantitative RT-PCR. EAF treatment resulted in significantly reduced dose-dependent expression of all of these factors, and enhanced expression of the antioxidants MnSOD and heme oxygenase-1. In addition, HPLC fingerprint results suggest that rutin, caffeic acid, and quercetin may be the active ingredients in EAF. CONCLUSIONS Taken together, findings of this study imply that the anti-inflammatory effect of EAF on LPS-stimulated RAW264.7 cells is mediated by suppression of oxidative stress. PMID:26634045

  15. Z-guggulsterone negatively controls microglia-mediated neuroinflammation via blocking IκB-α-NF-κB signals.

    PubMed

    Huang, Chao; Wang, Jili; Lu, Xu; Hu, Wenfeng; Wu, Feng; Jiang, Bo; Ling, Yong; Yang, Rongrong; Zhang, Wei

    2016-04-21

    Induction of pro-inflammatory factors is one of the characteristics of microglial activation and can be regulated by numerous active agents extracted from plants. Suppression of pro-inflammatory factors is beneficial to alleviate neuroinflammation. Z-guggulsterone, a compound extracted from the gum resin of the tree commiphora mukul, exhibits numerous anti-inflammatory effects. However, the role and mechanism of Z-guggulsterone in pro-inflammatory responses in microglia remains unclear. This study addressed this issue in in vitro murine microglia and in vivo neuroinflammation models. Results showed that Z-guggulsterone reduced inducible nitric oxide (iNOS) protein expression as well as nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production in LPS-stimulated BV-2 cells. Z-guggulsterone also reduced the mRNA level of iNOS, TNF-α, and IL-6. Mechanistic studies revealed that Z-guggulsterone attenuated the LPS-induced degradation of inhibitor κ B-α (IκB-α) as well as the LPS-induced nuclear translocation of nuclear factor-κB (NF-κB). Z-guggulsterone, however, failed to reduce the LPS-induced increase in NF-κB phosphorylation level. These major findings were ascertained in primary microglia where the LPS-induced increases in iNOS expression, NO content, and IκB-α degradation were diminished by Z-guggulsterone treatment. In a mouse model of neuroinflammation, Z-guggulsterone exhibited significant anti-inflammatory effects, which were exemplified by the attenuation of microglial activation and neuroinflammation-induced behavioral abnormalities in Z-guggulsterone-treated mice. Taken together, these studies demonstrate that Z-guggulsterone attenuates the LPS-mediated induction of pro-inflammatory factors in microglia via inhibition of IκB-α-NF-κB signals, providing evidence to uncover the potential role of Z-guggulsterone in neuroinflammation-associated disorder therapies. Copyright © 2016 Elsevier Ireland Ltd. All rights

  16. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation

    PubMed Central

    Hartig, Ellen I.; Zhu, Shusen; King, Benjamin L.

    2016-01-01

    ABSTRACT Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and upregulated genes associated with defense response and immune system processes. In adulthood the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. PMID:27444789

  17. Calcitonin gene-related peptide modulates the production of pro-inflammatory cytokines associated with periprosthetic osteolysis by THP-1 macrophage-like cells.

    PubMed

    Jablonski, Heidrun; Kauther, Max Daniel; Bachmann, Hagen Sjard; Jäger, Marcus; Wedemeyer, Christian

    2015-01-01

    An anti-resorptive impact of the neuropeptide calcitonin gene-related peptide (CGRP) on periprosthetic osteolysis, the leading cause of early prosthesis loosening, has been shown previously. In this study, the impact of CGRP on pro-inflammatory cytokine production associated with periprosthetic osteolysis was analysed using THP-1 macrophage-like cells. Cells were stimulated with ultra-high-molecular-weight polyethylene (UHMWPE) particles (cell-to-particle ratios of 1:100 and 1:500) and lipopolysaccharides (LPS; 1 µg/ml) to establish osteolytic conditions, and simultaneously treated with CGRP (10(-8)M). Receptor activator of nuclear factor-κB (RANK), RANK ligand (RANKL) and tumour necrosis factor (TNF)-α mRNA expression were measured by quantitative RT-PCR. RANK protein was detected by Western blot. Secreted protein levels of TNF-α as well as interleukin (IL)-1β and IL-6 were quantified in cell culture supernatants by ELISA and Bio-Plex cytokine assay, respectively. Activation of macrophage-like cells failed to enhance the production of RANK but led to a dose- and time-dependent increase of TNF-α mRNA and secreted protein levels of TNF-α, IL-1β and IL-6. Application of CGRP time-dependently suppressed TNF-α mRNA expression induced by low-particle concentrations and LPS, while both particle- and LPS-induced secretion of TNF-α was inhibited. A pronounced inhibitory effect of CGRP on LPS-induced cytokine production at 24 h of incubation was also observed with IL-1β and IL-6. CGRP shows a time-dependent inhibitory effect on the secretion of osteolysis-associated pro-inflammatory cytokines, indicating an indirect anti-resorptive influence of the neuropeptide on both aseptic prosthesis loosening and bacterially induced bone resorption which might enhance the life time of total joint replacements. © 2014 S. Karger AG, Basel.

  18. Inhibitory role of cholinergic system mediated via alpha7 nicotinic acetylcholine receptor in LPS-induced neuro-inflammation.

    PubMed

    Tyagi, Ethika; Agrawal, Rahul; Nath, Chandishwar; Shukla, Rakesh

    2010-02-01

    This study investigated the influence of the cholinergic system on neuro-inflammation using nicotinic and muscarinic receptor agonists and antagonists. Intracerebroventricular (ICV) injection of lipopolysaccharide (LPS, 50 microg) was used to induce neuro-inflammation in rats and estimations of pro-inflammatory cytokines, alpha7 nicotinic acetylcholine receptor (nAChR) mRNA expression were done in striatum, cerebral cortex, hippocampus and hypothalamus at 24 h after LPS injection. Nicotine (0.2, 0.4 and 0.8 mg/kg, i.p.) or oxotremorine (0.2, 0.4 and 0.8 mg/kg, i.p.) were administered 2 h prior to sacrifice. We found that only nicotine was able to block the proinflammatory cytokines induced by LPS whereas, oxotremorine was found ineffective. Methyllycaconitine (MLA; 1.25, 2.5 and 5 mg/kg, i.p.), an alpha7 nAChR antagonist or dihydro-beta-erythroidine (DHbetaE; 1.25, 2.5 and 5 mg/kg, i.p.), an alpha4beta2 nAChR antagonist, was given 20 min prior to nicotine in LPS-treated rats. Methyllycaconitine antagonized the anti-inflammatory effect of nicotine whereas DHbetaE showed no effect demonstrating that alpha7 nAChR is responsible for attenuation of LPS-induced pro-inflammatory cytokines. This study suggests that the inhibitory role of the central cholinergic system on neuro-inflammation is mediated via alpha7 nicotinic acetylcholine receptor and muscarinic receptors are not involved.

  19. Surface modification of multiwall carbon nanotubes determines the pro-inflammatory outcome in macrophage.

    PubMed

    Zhang, Ting; Tang, Meng; Kong, Lu; Li, Han; Zhang, Tao; Xue, Yuying; Pu, Yuepu

    2015-03-02

    Carbon nanotubes (CNTs) are widely used in industry and biomedicine. While several studies have focused on biological matters, attempts to systematically elucidate the toxicity mechanisms of CNTs are limited. The aim of the present study was to evaluate and compare the cytotoxicity of raw multi-walled carbon nanotubes (MWCNTs) and MWCNTs functionalized with carboxylation (MWCNTs-COOH) or polyethylene glycol (MWCNTs-PEG) in murine macrophages. Our results show that only MWCNTs-COOH and raw MWCNTs alter the oxidative potential of macrophages by increasing reactive oxygen species and the expression of pro-inflammatory factors in both a concentration- and surface coating-dependent manner. The data suggest that compare with raw MWCNTs and MWCNTs-PEG, the MWCNTs-COOH produces a significant increase in ROS generation, interruption of ATP synthesis, and activation of the MAPK and NF-κB signaling pathways, which in turn upregulates IL-1β, IL-6, TNF-α, and iNOS to trigger cell death. These findings suggest that contributory cellar uptake caused by physicochemical factors rather than residual metal catalysts plays a role in ROS-mediated pro-inflammatory responses in vitro.

  20. Oscillation of p38 activity controls efficient pro-inflammatory gene expression

    PubMed Central

    Tomida, Taichiro; Takekawa, Mutsuhiro; Saito, Haruo

    2015-01-01

    The p38 MAP kinase signalling pathway controls inflammatory responses and is an important target of anti-inflammatory drugs. Although pro-inflammatory cytokines such as interleukin-1β (IL-1β) appear to induce only transient activation of p38 (over ∼60 min), longer cytokine exposure is necessary to induce p38-dependent effector genes. Here we study the dynamics of p38 activation in individual cells using a Förster resonance energy transfer (FRET)-based p38 activity reporter. We find that, after an initial burst of activity, p38 MAPK activity subsequently oscillates for more than 8 h under continuous IL-1β stimulation. However, as this oscillation is asynchronous, the measured p38 activity population average is only slightly higher than basal level. Mathematical modelling, which we have experimentally verified, indicates that the asynchronous oscillation of p38 is generated through a negative feedback loop involving the dual-specificity phosphatase MKP-1/DUSP1. We find that the oscillatory p38 activity is necessary for efficient expression of pro-inflammatory genes such as IL-6, IL-8 and COX-2. PMID:26399197

  1. Pro-inflammatory Macrophages suppress PPARγ activity in Adipocytes via S-nitrosylation.

    PubMed

    Yin, Ruiying; Fang, Li; Li, Yingjia; Xue, Peng; Li, Yazi; Guan, Youfei; Chang, Yongsheng; Chen, Chang; Wang, Nanping

    2015-12-01

    Peroxisome proliferator-activated receptor-γ (PPARγ) is a ligand-activated nuclear receptor and plays an essential role in insulin signaling. Macrophage infiltration into adipose tissue is a character of metabolic inflammation and closely related to insulin resistance in type 2 diabetes. The mechanism by which pro-inflammatory macrophages cause insulin resistance remains to be elucidated. Here we showed that co-culture with macrophages significantly suppressed the transcriptional activity of PPARγ on its target genes in 3T3-L1 preadipocytes and diabetic primary adipocytes, depending on inducible nitric oxide synthase (iNOS). We further showed that PPARγ underwent S-nitrosylation in response to nitrosative stress. Mass-spectrometry and site-directed mutagenesis revealed that S-nitrosylation at cysteine 168 was responsible for the impairment of PPARγ function. Extended exposure to NO instigated the proteasome-dependent degradation of PPARγ. Consistently, in vivo evidence revealed an association of the decreased PPARγ protein level with increased macrophage infiltration in visceral adipose tissue (VAT) of obese diabetic db/db mice. Together, our results demonstrated that pro-inflammatory macrophages suppressed PPARγ activity in adipocytes via S-nitrosylation, suggesting a novel mechanism linking metabolic inflammation with insulin resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Transcutaneous electrical nerve stimulation (TENS) accelerates cutaneous wound healing and inhibits pro-inflammatory cytokines.

    PubMed

    Gürgen, Seren Gülşen; Sayın, Oya; Cetin, Ferihan; Tuç Yücel, Ayşe

    2014-06-01

    The purpose of this study was to evaluate transcutaneous electrical nerve stimulation (TENS) and other common treatment methods used in the process of wound healing in terms of the expression levels of pro-inflammatory cytokines. In the study, 24 female and 24 male adult Wistar-Albino rats were divided into five groups: (1) the non-wounded group having no incision wounds, (2) the control group having incision wounds, (3) the TENS (2 Hz, 15 min) group, (4) the physiological saline (PS) group and (5) the povidone iodine (PI) group. In the skin sections, interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were assessed with enzyme-linked immunosorbent assay and immunohistochemical methods. In the non-wounded group, the expression of IL-1β, IL-6, and TNF-α signaling molecules was weaker in the whole tissue; however, in the control group, significant inflammatory response occurred, and strong cytokine expression was observed in the dermis, granulation tissue, hair follicles, and sebaceous glands (P < 0.05). In the TENS group, the decrease in TNF-α, IL-1β, and IL-6 immunoreaction in the skin was significant compared to the other forms of treatment (P < 0.05). Distinctive decreases of pro-inflammatory cytokines observed in the dermis in the TENS group suggest that TENS shortened the healing process by inhibating the inflammation phase.

  3. Telmisartan prevention of LPS-induced microglia activation involves M2 microglia polarization via CaMKKβ-dependent AMPK activation.

    PubMed

    Xu, Yuan; Xu, Yazhou; Wang, Yurong; Wang, Yunjie; He, Ling; Jiang, Zhenzhou; Huang, Zhangjian; Liao, Hong; Li, Jia; Saavedra, Juan M; Zhang, Luyong; Pang, Tao

    2015-11-01

    Brain inflammation plays an important role in the pathophysiology of many psychiatric and neurological diseases. During brain inflammation, microglia cells are activated, producing neurotoxic molecules and neurotrophic factors depending on their pro-inflammatory M1 and anti-inflammatory M2 phenotypes. It has been demonstrated that Angiotensin II type 1 receptor blockers (ARBs) ameliorate brain inflammation and reduce M1 microglia activation. The ARB telmisartan suppresses glutamate-induced upregulation of inflammatory genes in cultured primary neurons. We wished to clarify whether telmisartan, in addition, prevents microglia activation through polarization to an anti-inflammatory M2 phenotype. We found that telmisartan promoted M2 polarization and reduced M1 polarization in LPS-stimulated BV2 and primary microglia cells, effects partially dependent on PPARγ activation. The promoting effects of telmisartan on M2 polarization, were attenuated by an AMP-activated protein kinase (AMPK) inhibitor or AMPK knockdown, indicating that AMPK activation participates on telmisartan effects. Moreover, in LPS-stimulated BV2 cells, telmisartan enhancement of M2 gene expression was prevented by the inhibitor STO-609 and siRNA of calmodulin-dependent protein kinase kinase β (CaMKKβ), an upstream kinase of AMPK. Furthermore, telmisartan enhanced brain AMPK activation and M2 gene expression in a mouse model of LPS-induced neuroinflammation. In addition, telmisartan reduced the LPS-induced sickness behavior in this in vivo model, and this effect was prevented by prior administration of an AMPK inhibitor. Our results indicate that telmisartan can be considered as a novel AMPK activator, suppressing microglia activation by promoting M2 polarization. Telmisartan may provide a novel, safe therapeutic approach to treat brain disorders associated with enhanced inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. TNFα Mediates LPS-Induced Microglial Toxicity to Developing Oligodendrocytes When Astrocytes Are Present

    PubMed Central

    Li, Jianrong; Radhika Ramenaden, E.; Peng, Jie; Koito, Hisami; Volpe, Joseph J.; Rosenberg, Paul A.

    2009-01-01

    Reactive microglia and astrocytes are present in lesions of white matter disorders, such as periventricular leukomalacia and multiple sclerosis. However, it is not clear whether they are actively involved in the pathogenesis of these disorders. Previous studies demonstrated that microglia, but not astrocytes, are required for lipopolysaccharide (LPS)-induced selective killing of developing oligodendrocytes (preOLs), and that the toxicity is mediated by microglia-derived peroxynitrite. Here we report that when astrocytes are present, the LPS-induced, microglia-dependent toxicity to preOLs is no longer mediated by peroxynitrite but instead by a mechanism dependent on TNFα signaling. Blocking peroxynitrite formation with nitric oxide synthase (NOS) inhibitors or a decomposition catalyst did not prevent LPS-induced loss of preOLs in mixed glial cultures. PreOLs were highly vulnerable to peroxynitrite; however, the presence of astrocytes prevented the toxicity. While LPS failed to kill preOLs in cocultures of microglia and preOLs deficient in inducible NOS (iNOS) or gp91phox, the catalytic subunit of the superoxide-generating NADPH oxidase, LPS caused a similar degree of preOL death in mixed glial cultures of wildtype, iNOS-/- and gp91phox-/- mice. TNFα neutralizing antibody inhibited LPS toxicity, and addition of TNFα induced selective preOL injury in mixed glial cultures. Furthermore, disrupting the genes encoding TNFα or its receptors TNFR1/2 completely abolished the deleterious effect of LPS. Our results reveal that TNFα signaling, rather than peroxynitrite, is essential in LPS-triggered preOL death in an environment containing all major glial cell types, and underscore the importance of intercellular communication in determining the mechanism underlying inflammatory preOL death. PMID:18480288

  5. Edible blue-green algae reduce the production of pro-inflammatory cytokines by inhibiting NF-κB pathway in macrophages and splenocytes

    PubMed Central

    Ku, Chai Siah; Pham, Tho X.; Park, Youngki; Kim, Bohkyung; Shin, Min; Kang, Insoo; Lee, Jiyoung

    2013-01-01

    Background Chronic inflammation contributes to the development of pathological disorders including insulin resistance and atherosclerosis. Identification of anti-inflammatory natural products can prevent the inflammatory diseases. Methods Anti-inflammatory effects of blue-green algae (BGA), i.e., Nostoc commune var. Sphaeroides Kützing (NO) and Spirulina Platensis (SP), were compared in RAW 264.7 and mouse bone marrow-derived macrophages (BMM) as well as splenocytes from apolipoprotein E knockout (apoE−/−) mice fed BGA. Results When macrophages pretreated with 100 μg/ml NO lipid extract (NOE) or SP lipid extract (SPE) were activated by lipopolysaccharide (LPS), expression and secretion of pro-inflammatory cytokines, such as tumor necrosis factor α (TNFα), interleukin 1β (IL-1β), and IL-6, were significantly repressed. NOE and SPE also significantly repressed the expression of TNFα and IL-1β in BMM. LPS-induced secretion of IL-6 was lower in splenocytes from apoE−/− fed an atherogenic diet containing 5% NO or SP for 12 weeks. In RAW 264.7 macrophages, NOE and SPE markedly decreased nuclear translocation of NF-κB. The degree of repression of pro-inflammatory gene expression by algal extracts was much stronger than that of SN50, an inhibitor of NF-κB nuclear translocation. Trichostatin A, a pan histone deacetylase inhibitor, increased basal expression of IL-1β and attenuated the repression of the gene expression by SPE. SPE significantly down-regulated mRNA abundance of 11 HDAC isoforms, consequently increasing acetylated histone 3 levels. Conclusion NOE and SPE repress pro-inflammatory cytokine expression and secretion in macrophages and splenocytes via inhibition of NF-κB pathway. Histone acetylation state is likely involved in the inhibition. General significance This study underscores natural products can exert anti-inflammatory effects by epigenetic modifications such as histone acetylation. PMID:23357040

  6. Iloprost improves endothelial barrier function in LPS-induced lung injury

    PubMed Central

    Birukova, Anna A.; Wu, Tinghuai; Tian, Yufeng; Meliton, Angelo; Sarich, Nicolene; Tian, Xinyong; Leff, Alan; Birukov, Konstantin G.

    2013-01-01

    RATIONALE Protective effects of prostacyclin and its stable analog Iloprost are mediated by elevation of intracellular cAMP leading to enhancement of peripheral actin cytoskeleton and cell-cell adhesive structures. This study tested hypothesis that iloprost may exhibit protective effects against lung injury and endothelial barrier dysfunction induced by bacterial wall lypopolysacharide (LPS). METHODS Endothelial barrier dysfunction was assessed by measurements of transendothelial permeability, morphologically, and analysis of LPS-activated inflammatory signaling. In vivo, C57BL/6J mice were challenged with LPS with or without iloprost or 8-bromoadenosine-3′,5′-cyclic monophosphate (Br-cAMP) treatment. Lung injury was monitored by measurements of bronchoalveolar lavage protein content, cell count, and Evans blue extravasation. RESULTS Iloprost and Br-cAMP attenuated disruption of endothelial monolayer and suppressed activation of p38 mitogen activated protein (MAP) kinase, NFκB pathway, Rho signaling, ICAM1 expression, and neutrophil migration after LPS challenge. In vivo, iloprost was effective against LPS-induced protein and neutrophil accumulation in bronchoalveolar lavage fluid and reduced myeloperoxidase activation, ICAM-1 expression, and Evans blue extravasation in the lungs. Inhibition of Rac activity abolished barrier protective and anti-inflammatory effects of iloprost and Br-cAMP. CONCLUSION Iloprost-induced elevation of intracellular cAMP triggers Rac signaling, which attenuates LPS-induced NFκB and p38 MAPK inflammatory pathways and Rho-dependent mechanism of endothelial permeability. PMID:22790920

  7. Emodin suppresses LPS-induced inflammation in RAW264.7 cells through a PPARγ-dependent pathway.

    PubMed

    Zhu, Tao; Zhang, Wei; Feng, She-jun; Yu, Hua-peng

    2016-05-01

    Inflammation is a defense and protective response to multiple harmful stimuli. Over and uncontrolled inflammation can lead to local tissues or even systemic damages and injuries. Actually, uncontrolled and self-amplified inflammation is the fundament of the pathogenesis of a variety of inflammatory diseases, including sepsis shock, acute lung injury and acute respiratory distress syndrome (ALI/ARDS). Our recent study showed that emodin, the main active component of Radix rhizoma Rhei, could significantly ameliorate LPS-induced ALI/ARDS in mice. However, its underlying signal pathway was not still very clear. Then, the aim of current study was to explore whether emodin could attenuate LPS-induced inflammation in RAW264.7 cells, and its involved potential mechanism. The mRNA and protein expression of ICAM-1, MCP-1 and PPARγ were measured by qRCR and western blotting, the production of TNF-α was evaluated by ELISA. Then, the phosphorylation of NF-κB p65 was also detected by western blotting. And NF-κB p65 DNA binding activity was analyzed by ELISA as well. Meanwhile, siRNA-PPARγ transfection was performed to knockdown PPARγ expression in cells. Our data revealed that LPS-induced the up-regulation of ICAM-1, MCP-1 and TNF-α, LPS-induced the down-regulation of PPARγ, and LPS-enhanced NF-κB p65 activation and DNA binding activity were substantially suppressed by emdoin in RAW264.7 cells. Furthermore, our data also figured out that these effects of emdoin were largely abrogated by siRNA-PPARγ transfection. Taken together, our results indicated that LPS-induced inflammation were potently compromised by emodin very likely through the PPARγ-dependent inactivation of NF-κB in RAW264.7 cells.

  8. A Single Dose of the Anti-Resorptive Peptide Human Calcitonin Paradoxically Augments Particle- and Endotoxin-Mediated Pro-Inflammatory Cytokine Production In Vitro.

    PubMed

    Jablonski, H; Wedemeyer, C; Bachmann, H S; Schlagkamp, M; Bernstein, A; Jäger, M; Kauther, M D

    2016-09-01

    The peptide hormone calcitonin (CT) is known to inhibit bone resorption and has previously been shown also to prevent particle-induced osteolysis, the leading cause of revision arthroplasty. In the present study, the influence of human CT on the initial inflammatory response to particulate wear debris or bacterial endotoxins, ultimately leading to osteoclast-mediated bone resorption, was analysed in human THP-1 macrophage-like cells. The cells were activated with either ultra-high molecular weight polyethylene (UHMWPE) particles or bacterial lipopolysaccharides (LPS) in order to simulate an osteolysis-associated inflammatory response. The cells were simultaneously treated with human CT (10(-9) M). Cytokine production of tumour necrosis factor (TNF)-α was quantified on both RNA and protein levels while interleukins (IL)-1β and IL-6 were measured as secreted protein only. Stimulation of the cells with either particles or LPS led to a dose- and time-dependent increase of TNF-α mRNA production and protein secretion of TNF-α, IL-1β, and IL-6. Application of CT mostly enhanced cytokine production as elicited by UHMWPE particles while a pronounced transient inhibitory effect on LPS-induced inflammation became evident at 24 h of incubation. Human CT displayed ambivalent effects on the wear- and LPS-induced production of pro-inflammatory cytokines. Thereby, the peptide primarily upregulated particle-induced inflammation while LPS-induced cytokine secretion was temporarily attenuated in a distinct manner. It needs to be evaluated whether the pro- or anti-inflammatory action of CT contributes to its known anti-resorptive effects. Thus, the therapeutic potential of the peptide in the treatment of either particle- or endotoxin-mediated bone resorption could be determined. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Effects of Cellular 11β-hydroxysteroid Dehydrogenase 1 on LPS-induced Inflammatory Responses in Synovial Cell Line, SW982

    PubMed Central

    Kim, Ki Nam; Shim, Jung Hyun

    2017-01-01

    11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) catalyzes the conversion of inactive cortisone into active cortisol, which has pleiotropic roles in various biological conditions, such as immunological and metabolic homeostasis. Cortisol is mainly produced in the adrenal gland, but can be locally regenerated in the liver, fat, and muscle. Its diverse actions are primarily mediated by binding to the glucocorticoid receptor. SW982, a human synovial cell line, expresses 11β-HSD type 1, but not type 2, that catalyzes the conversion of cortisone to cortisol. In this study, therefore, we investigated the control of lipopolysaccharide (LPS)-induced inflammatory responses by prereceptor regulation-mediated maintenance of cortisol levels. Preliminarily, cell seeding density and incubation period were optimized for analyzing the catalytic activity of SW982. Additionally, cellular 11β-HSD1 still remained active irrespective of monolayer or spheroid culture conditions. Inflammatory stimulants, such as interleukin (IL)-1β, tumor necrosis factor (TNF)α, and LPS, did not affect the catalytic activity of 11β-HSD1, although a high dose of LPS significantly decreased its activity. Additionally, autocrine effects of cortisol on inflammatory responses were investigated in LPS-stimulated SW982 cells. LPS upregulated pro-inflammatory cytokines, including IL-6 and IL-1β, in SW982 cells, while cortisol production, catalyzed by cellular 11β-HSD1, downregulated LPS-stimulated cytokines. Furthermore, suppression of NFκB activation-mediated pro-inflammatory responses by cortisol was revealed. In conclusion, the activity of cellular 11β-HSD1 was closely correlated with suppression of LPS-induced inflammation. Therefore, these results partly support the notion that prereceptor regulation of locally regenerated cortisol could be taken into consideration for treatment of inflammation-associated diseases, including arthritis. PMID:28680378

  10. Protective effect of ixerisoside A against UVB-induced pro-inflammatory cytokine production in human keratinocytes.

    PubMed

    Kim, Sung-Bae; Kim, Ji-Eun; Kang, Ok-Hwa; Mun, Su-Hyun; Seo, Yun-Soo; Kang, Da-Hye; Yang, Da-Wun; Ryu, Shi-Yong; Lee, Young-Mi; Kwon, Dong-Yeul

    2015-05-01

    Human skin is the first line of defense for the protection of the internal organs of the body from different stimuli. Ultraviolet B (UVB), one of the harmful radiations for skin, is widely known to induce abnormally increased cytokine release from keratinocytes leading to inflammatory skin disorders. IL-6 and IL-8 induce an acute-phase response and stimulate leukocyte infiltration in the skin. Previous studies have shown that chronic exposure to UVB radiation increases cyclooxygenase-2 (COX‑2) expression through various cell signaling pathways, resulting in skin cancer. Recent studies have shown that the activation of extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 MAPK is strongly correlated with acute inflammation and development of skin cancer caused by an increased expression of COX-2. Ixerisoside A (IXA) is an active constituent of Ixeris dentata of the Compositae (Asteraceae) family. The effect of IXA on skin inflammation has yet to be elucidated. To determine the anti-inflammatory effects of IXA, we examined its effect on UVB-induced pro-inflammatory cytokine production in human keratinocytes (HaCaT cells) by observing these cells in the presence or absence of IXA. In this study, pro-inflammatory cytokine production was determined by enzyme-linked immunosorbent assay (ELISA), reverse transcription-polymerase chain reaction (rt-pcr), and western blot analysis to evaluate the activation of mitogen-activated protein kinases (MAPKs). IXA inhibited UVB-induced production of the pro-inflammatory cytokines IL-6 and IL-8 in a dose-dependent manner. Moreover, IXA inhibited the expression of COX-2, ERK, JNK, and p38 MAPKs, indicating that the secretion of the pro-inflammatory cytokines IL-6 and IL-8, and COX-2 expression was inhibited by blocking MAPK phosphorylation. These results indicated that IXA potentially protects against UVB-induced skin inflammation.

  11. Particles from wood smoke and traffic induce differential pro-inflammatory response patterns in co-cultures

    SciTech Connect

    Kocbach, Anette Herseth, Jan Inge; Lag, Marit; Refsnes, Magne; Schwarze, Per E.

    2008-10-15

    The inflammatory potential of particles from wood smoke and traffic has not been well elucidated. In this study, a contact co-culture of monocytes and pneumocytes was exposed to 10-40 {mu}g/cm{sup 2} of particles from wood smoke and traffic for 12, 40 and 64 h to determine their influence on pro-inflammatory cytokine release (TNF-{alpha}, IL-1, IL-6, IL-8) and viability. To investigate the role of organic constituents in cytokine release the response to particles, their organic extracts and the washed particles were compared. Antagonists were used to investigate source-dependent differences in intercellular signalling (TNF-{alpha}, IL-1). The cytotoxicity was low after exposure to particles from both sources. However, wood smoke, and to a lesser degree traffic-derived particles, induced a reduction in cell number, which was associated with the organic fraction. The release of pro-inflammatory cytokines was similar for both sources after 12 h, but traffic induced a greater release than wood smoke particles with increasing exposure time. The organic fraction accounted for the majority of the cytokine release induced by wood smoke, whereas the washed traffic particles induced a stronger response than the corresponding organic extract. TNF-{alpha} and IL-1 antagonists reduced the release of IL-8 induced by particles from both sources. In contrast, the IL-6 release was only reduced by the IL-1 antagonist during exposure to traffic-derived particles. In summary, particles from wood smoke and traffic induced differential pro-inflammatory response patterns with respect to cytokine release and cell number. Moreover, the influence of the organic particle fraction and intercellular signalling on the pro-inflammatory response seemed to be source-dependent.

  12. Asef mediates HGF protective effects against LPS-induced lung injury and endothelial barrier dysfunction.

    PubMed

    Meng, Fanyong; Meliton, Angelo; Moldobaeva, Nurgul; Mutlu, Gokhan; Kawasaki, Yoshihiro; Akiyama, Tetsu; Birukova, Anna A

    2015-03-01

    Increased vascular endothelial permeability and inflammation are major pathological mechanisms of pulmonary edema and its life-threatening complication, the acute respiratory distress syndrome (ARDS). We have previously described potent protective effects of hepatocyte growth factor (HGF) against thrombin-induced hyperpermeability and identified the Rac pathway as a key mechanism of HGF-mediated endothelial barrier protection. However, anti-inflammatory effects of HGF are less understood. This study examined effects of HGF on the pulmonary endothelial cell (EC) inflammatory activation and barrier dysfunction caused by the gram-negative bacterial pathogen lipopolysaccharide (LPS). We tested involvement of the novel Rac-specific guanine nucleotide exchange factor Asef in the HGF anti-inflammatory effects. HGF protected the pulmonary EC monolayer against LPS-induced hyperpermeability, disruption of monolayer integrity, activation of NF-kB signaling, expression of adhesion molecules intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, and production of IL-8. These effects were critically dependent on Asef. Small-interfering RNA-induced downregulation of Asef attenuated HGF protective effects against LPS-induced EC barrier failure. Protective effects of HGF against LPS-induced lung inflammation and vascular leak were also diminished in Asef knockout mice. Taken together, these results demonstrate potent anti-inflammatory effects by HGF and delineate a key role of Asef in the mediation of the HGF barrier protective and anti-inflammatory effects. Modulation of Asef activity may have important implications in therapeutic strategies aimed at the treatment of sepsis and acute lung injury/ARDS-induced gram-negative bacterial pathogens.

  13. Interleukin-6 trans-signaling in the senescent mouse brain is involved in infection-related deficits in contextual fear conditioning.

    PubMed

    Burton, Michael D; Johnson, Rodney W

    2012-07-01

    Excessive production of pro-inflammatory cytokines in the senescent brain in response to peripheral immune stimulation is thought to induce behavioral pathology, however, few studies have examined if the increase in pro-inflammatory cytokines is accompanied by an increase in cytokine signaling. Here, we focused on IL-6 as a prototypic pro-inflammatory cytokine and used phosphorylated STAT3 as a marker of IL-6 signaling. In an initial study, IL-6 mRNA and the magnitude and duration of STAT3 activation were increased in the hippocampus of senescent mice compared to adults after i.p. injection of LPS. The LPS-induced increase in STAT3 activity was ablated in aged IL-6(-/-) mice, suggesting IL-6 is a key driver of STAT3 activity in the aged brain. To determine if IL-6 activated the classical or trans-signaling pathway, before receiving LPS i.p., aged mice were injected ICV with sgp130, an antagonist of the trans-signaling pathway. Importantly, the LPS-induced increases in both IL-6 and STAT3 activity in the hippocampus were inhibited by sgp130. To assess hippocampal function, aged mice were injected ICV with sgp130 and i.p. with LPS immediately after the acquisition phase of contextual fear conditioning, and immobility was assessed in the retention phase 48h later. LPS reduced immobility in aged mice, indicating immune activation interfered with memory consolidation. However, sgp130 blocked the deficits in contextual fear conditioning caused by LPS. Taken together, the results suggest IL-6 trans-signaling is increased in the senescent brain following peripheral LPS challenge and that sgp130 may protect against infection-related neuroinflammation and cognitive dysfunction in the aged. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Reduced tissue osmolarity increases TRPV4 expression and pro-inflammatory cytokines in intervertebral disc cells.

    PubMed

    Walter, B A; Purmessur, D; Moon, A; Occhiogrosso, J; Laudier, D M; Hecht, A C; Iatridis, J C

    2016-07-19

    The mechanical behaviour and cellular metabolism of intervertebral discs (IVDs) and articular cartilage are strongly influenced by their proteoglycan content and associated osmotic properties. This osmotic environment is a biophysical signal that changes with disease and may contribute to the elevated matrix breakdown and altered biologic response to loading observed in IVD degeneration and osteoarthritis. This study tested the hypothesis that changes in osmo-sensation by the transient receptor potential vallinoid-4 (TRPV4) ion channel occur with disease and contribute to the inflammatory environment found during degeneration. Immunohistochemistry on bovine IVDs from an inflammatory organ culture model were used to investigate if TRPV4 is expressed in the IVD and how expression changes with degeneration. Western blot, live-cell calcium imaging, and qRT-PCR were used to investigate whether osmolarity changes or tumour necrosis factor α (TNFα) regulate TRPV4 expression, and how altered TRPV4 expression influences calcium signalling and pro-inflammatory cytokine expression. TRPV4 expression correlated with TNFα expression, and was increased when cultured in reduced medium osmolarity and unaltered with TNFα-stimulation. Increased TRPV4 expression increased the calcium flux following TRPV4 activation and increased interleukin-1β (IL-1β) and IL-6 gene expression in IVD cells. TRPV4 expression was qualitatively elevated in regions of aggrecan depletion in degenerated human IVDs. Collectively, results suggest that reduced tissue osmolarity, likely following proteoglycan degradation, can increase TRPV4 signalling and enhance pro-inflammatory cytokine production, suggesting changes in TRPV4 mediated osmo-sensation may contribute to the progressive matrix breakdown in disease.

  15. REDUCED TISSUE OSMOLARITY INCREASES TRPV4 EXPRESSION AND PRO-INFLAMMATORY CYTOKINES IN INTERVERTEBRAL DISC CELLS

    PubMed Central

    Walter, B.A.; Purmessur, D; Moon, A.; Occhiogrosso, J.; Laudier, D.M.; Hecht, A.C.; Iatridis, J.C.

    2016-01-01

    The mechanical behaviour and cellular metabolism of intervertebral discs (IVDs) and articular cartilage are strongly influenced by their proteoglycan content and associated osmotic properties. This osmotic environment is a biophysical signal that changes with disease and may contribute to the elevated matrix breakdown and altered biologic response to loading observed in IVD degeneration and osteoarthritis. This study tested the hypothesis that changes in osmo-sensation by the transient receptor potential vallinoid-4 (TRPV4) ion channel occur with disease and contribute to the inflammatory environment found during degeneration. Immunohistochemistry on bovine IVDs from an inflammatory organ culture model were used to investigate if TRPV4 is expressed in the IVD and how expression changes with degeneration. Western blot, live-cell calcium imaging, and qRT-PCR were used to investigate whether osmolarity changes or tumour necrosis factor α (TNFα) regulate TRPV4 expression, and how altered TRPV4 expression influences calcium signalling and pro-inflammatory cytokine expression. TRPV4 expression correlated with TNFα expression, and was increased when cultured in reduced medium osmolarity and unaltered with TNFα-stimulation. Increased TRPV4 expression increased the calcium flux following TRPV4 activation and increased interleukin-1β (IL-1β) and IL-6 gene expression in IVD cells. TRPV4 expression was qualitatively elevated in regions of aggrecan depletion in degenerated human IVDs. Collectively, results suggest that reduced tissue osmolarity, likely following proteoglycan degradation, can increase TRPV4 signalling and enhance pro-inflammatory cytokine production, suggesting changes in TRPV4 mediated osmo-sensation may contribute to the progressive matrix breakdown in disease. PMID:27434269

  16. In vitro Modulation of the LPS-Induced Proinflammatory Profile of Hepatocytes and Macrophages- Approaches for Intervention in Obesity?

    PubMed Central

    Kheder, Ramiar K.; Hobkirk, James; Stover, Cordula M.

    2016-01-01

    Low grade endotoxemia is a feature of obesity which is linked to development of steatohepatitis in non-alcoholic fatty liver disease. In this study, macrophages (J774) and hepatocytes (HepG2) were stimulated with lipopolysaccharide (LPS) from E. coli 0111: B4 and analyzed for modulation of this response when preconditioned or stimulated subsequent to LPS, with different doses of Vitamin D3 or docosahexaenoic acid (DHA) over a time period of 1 and 5 days. Pro-inflammatory TNFα and pro-fibrotic TGFβ released into the supernatants were measured by ELISA; qPCR was performed for Srebp-1c and PPARα mRNA (genes for products involved in fatty acid synthesis and catabolism, respectively). Vitamin D3 and DHA exerted a consistent, dose dependent anti-inflammatory effect, and increased PPARα relative to Srebp-1c in both cell types. By contrast, addition of free fatty acids (FFA, oleic acid/palmitic acid 2:1) caused aggravation of LPS-induced inflammatory reaction and an increase of Srebp-1c relative to PPARα. Our results argue in favor of dietary supplementation of Vitamin D3 or DHA (and avoidance of monounsaturated/saturated fatty acids) to alleviate development of fatty liver disease. PMID:27446914

  17. NF-κB activation primes cells to a pro-inflammatory polarized response to a TLR7 agonist

    PubMed Central

    Lee, Jongdae; Hayashi, Masaaki; Lo, Jeng-Fan; Fearns, Colleen; Chu, Wen-Ming; Luo, Yunping; Xiang, Rong; Chuang, Tsung-Hsien

    2009-01-01

    Toll-like receptor 7 (TLR7) mediates anti-viral immunity by recognizing ssRNA viruses. Small molecular weight TLR7 agonists have been approved, or are being evaluated, for treatment of cancers or infectious diseases. Although TLR7 is predominantly expressed in a restricted set of immune cell types including plasmacytoid dendritic cells (pDCs), it is also expressed in non-native expressing cells (e.g., hepatocytes) under certain circumstances. To elucidate the molecular basis of TLR7 induction by pro-inflammatory stimulation and the subsequent cellular responses in these non-native TLR7-expressing cell types, we firstly cloned and characterized the 5′-promoter region of TLR7. The proximal region of this promoter drives the transcription of the TLR7 gene. Pro-inflammatory stimuli activated TLR7 transcription via a NF-κB binding motif in this region, and this activation could be blocked by mutation of the NF-κB binding site or addition of NF-κB inhibitors. Further studies showed that pretreatment of the Hep3B hepatocytes with TNF-α or IL-1 rendered them responsive to TLR7 activation by a TLR7 agonist. However, distinct from TLR7 activation in pDCs, which respond to stimulation with Th1 polarized cytokine production, TLR7 induction by pro-inflammatory signals in hepatocytes reconstitutes the NF-κB-dependent cascade but not the IRF7-dependent cascade, resulting in a pro-inflammatory polarized response rather than a Th1 polarized response. These results indicate that inflammatory stimulation is capable of priming cells to respond to TLR7 agonist with an immune response that differs from that in native TLR7-expressing cells. PMID:19426145

  18. The role of pro-inflammatory S100A9 in Alzheimer's disease amyloid-neuroinflammatory cascade.

    PubMed

    Wang, Chao; Klechikov, Alexey G; Gharibyan, Anna L; Wärmländer, Sebastian K T S; Jarvet, Jüri; Zhao, Lina; Jia, Xueen; Narayana, Vinod K; Shankar, S K; Olofsson, Anders; Brännström, Thomas; Mu, Yuguang; Gräslund, Astrid; Morozova-Roche, Ludmilla A

    2014-04-01

    Pro-inflammatory S100A9 protein is increasingly recognized as an important contributor to inflammation-related neurodegeneration. Here, we provide insights into S100A9 specific mechanisms of action in Alzheimer's disease (AD). Due to its inherent amyloidogenicity S100A9 contributes to amyloid plaque formation together with Aβ. In traumatic brain injury (TBI) S100A9 itself rapidly forms amyloid plaques, which were reactive with oligomer-specific antibodies, but not with Aβ and amyloid fibrillar antibodies. They may serve as precursor-plaques for AD, implicating TBI as an AD risk factor. S100A9 was observed in some hippocampal and cortical neurons in TBI, AD and non-demented aging. In vitro S100A9 forms neurotoxic linear and annular amyloids resembling Aβ protofilaments. S100A9 amyloid cytotoxicity and native S100A9 pro-inflammatory signaling can be mitigated by its co-aggregation with Aβ, which results in a variety of micron-scale amyloid complexes. NMR and molecular docking demonstrated transient interactions between native S100A9 and Aβ. Thus, abundantly present in AD brain pro-inflammatory S100A9, possessing also intrinsic amyloidogenic properties and ability to modulate Aβ aggregation, can serve as a link between the AD amyloid and neuroinflammatory cascades and as a prospective therapeutic target.

  19. Upregulated LINE-1 Activity in the Fanconi Anemia Cancer Susceptibility Syndrome Leads to Spontaneous Pro-inflammatory Cytokine Production.

    PubMed

    Brégnard, Christelle; Guerra, Jessica; Déjardin, Stéphanie; Passalacqua, Frank; Benkirane, Monsef; Laguette, Nadine

    2016-06-01

    Fanconi Anemia (FA) is a genetic disorder characterized by elevated cancer susceptibility and pro-inflammatory cytokine production. Using SLX4(FANCP) deficiency as a working model, we questioned the trigger for chronic inflammation in FA. We found that absence of SLX4 caused cytoplasmic DNA accumulation, including sequences deriving from active Long INterspersed Element-1 (LINE-1), triggering the cGAS-STING pathway to elicit interferon (IFN) expression. In agreement, absence of SLX4 leads to upregulated LINE-1 retrotransposition. Importantly, similar results were obtained with the FANCD2 upstream activator of SLX4. Furthermore, treatment of FA cells with the Tenofovir reverse transcriptase inhibitor (RTi), that prevents endogenous retrotransposition, decreased both accumulation of cytoplasmic DNA and pro-inflammatory signaling. Collectively, our data suggest a contribution of endogenous RT activities to the generation of immunogenic cytoplasmic nucleic acids responsible for inflammation in FA. The additional observation that RTi decreased pro-inflammatory cytokine production induced by DNA replication stress-inducing drugs further demonstrates the contribution of endogenous RTs to sustaining chronic inflammation. Altogether, our data open perspectives in the prevention of adverse effects of chronic inflammation in tumorigenesis.

  20. Soya protein hydrolysates modify the expression of various pro-inflammatory genes induced by fatty acids in ovine phagocytes.

    PubMed

    Politis, Ioannis; Theodorou, Georgios; Lampidonis, Antonios D; Chronopoulou, Roubini; Baldi, Antonella

    2012-10-01

    The objective of the present study was to test the hypothesis that fatty acids are the circulating mediators acting in a pro-inflammatory manner towards activated circulating ovine monocyte/macrophages and neutrophils. Furthermore, whether soya protein hydrolysates (SPH) inhibit the fatty acid-induced increase in the production of pro-inflammatory responses by ovine phagocytes was tested in vitro. All the fatty acids tested (myristic, palmitic, palmitoleic, stearic and oleic) increased (P<0·01; C18>C16>C14) membrane-bound urokinase plasminogen activator (u-PA) and u-PA free binding sites in cell membranes of activated ovine blood monocytes/macrophages, but only the C18 fatty acids (stearic, oleic) were effective towards blood neutrophils. The C18 fatty acids up-regulated (P<0·05) the gene expression of u-PA, u-PA receptor, intercellular adhesion molecule 1 and inducible NO synthase (in monocytes) but not that of cyclo-oxygenase-2, integrin α X and plasminogen activator inhibitor types 1 and 2 by ovine phagocytes. SPH blocked completely or partially all C18 fatty acid-induced changes in the expression of various pro-inflammatory genes. In conclusion, fatty acids selectively 'activate' ovine phagocytes, suggesting that these cells 'sense' metabolic signals derived from adipocytes. Soya protein peptides inhibit all changes in gene expression induced by fatty acids in ovine phagocytes in vitro. This constitutes a novel mechanism of action.

  1. Anti-inflammatory effects of hydrophilic and lipophilic statins with hyaluronic acid against LPS-induced inflammation in porcine articular chondrocytes.

    PubMed

    Chang, Chih-Hung; Hsu, Yuan-Ming; Chen, Yu-Chun; Lin, Feng-Huei; Sadhasivam, Subramaniam; Loo, Siow-Tung; Savitha, Sivasubramanian

    2014-04-01

    The objective of the study is to understand the therapeutic effects of lipophilic (simvastatin) and hydrophilic statins (pravastatin) combined with/without hyaluronic acid for osteoarthritis by an in vitro LPS-induced inflammatory model of articular chondrocytes. HA in combination with different doses of simvastatin or pravastatin were used. Beside cytotoxicity, the influence of statins on NO production, pro-inflammatory cytokine, inflammatory mediators, and NF-κB p50 protein were analyzed. Finally, TUNEL assay was performed to detect DNA strand breakage. Two statins were less able to lower NF-κB activity when they were administrated along without HA. The gene expression demonstrates that simvastatin and pravastatin had the ability to decrease pro-inflammatory and inflammatory mediator levels. High dose simvastatin with or without HA down regulated inflammatory cytokines, but resulted in higher cytotoxicity. TUNEL assay confirms the regulatory effect of statins with or without HA over the apoptosis of chondrocytes, especially in hydrophilic statins. The significant down-regulation of inflammatory mediators suggests that intra-articular injection of HA in combination with statins might feasibly slow the progress of osteoarthritis. Administration of simvastatin or pravastatin with hyaluronic acid may produce beneficial effects for OA treatment, but with better results when hydrophilic statin was used. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. Ashwagandha attenuates TNF-α- and LPS-induced NF-κB activation and CCL2 and CCL5 gene expression in NRK-52E cells.

    PubMed

    Grunz-Borgmann, Elizabeth; Mossine, Valeri; Fritsche, Kevin; Parrish, Alan R

    2015-12-15

    The aging kidney is marked by a chronic inflammation, which may exacerbate the progression of renal dysfunction, as well as increase the susceptibility to acute injury. The identification of strategies to alleviate inflammation may have translational impact to attenuate kidney disease. We tested the potential of ashwaganda, sutherlandia and elderberry on tumor necrosis factor-α (TNF-α) and lipopolysaccharide (LPS) induced chemokine (CCL2 and CCL5) expression in vitro. Elderberry water-soluble extract (WSE) was pro-inflammatory, while sutherlandia WSE only partially attenuated the TNF-α-induced changes in CCL5. However, ashwaganda WSE completely prevented TNF-α-induced increases in CCL5, while attenuating the increase in CCL2 expression and NF-κB activation. The same pattern of ashwagandha protection was seen using LPS as the pro-inflammatory stimuli. Taken together, these results demonstrate the ashwaganda WSE as a valid candidate for evaluation of therapeutic potential for the treatment of chronic renal dysfunction.

  3. Hypericum triquetrifolium—Derived Factors Downregulate the Production Levels of LPS-Induced Nitric Oxide and Tumor Necrosis Factor-α in THP-1 Cells

    PubMed Central

    Saad, Bashar; AbouAtta, Bernadette Soudah; Basha, Walid; Hmade, Alaa; Kmail, Abdalsalam; Khasib, Said; Said, Omar

    2011-01-01

    Based on knowledge from traditional Arab herbal medicine, this in vitro study aims to examine the anti-inflammatory mechanism of Hypericum triquetrifolium by measuring the expression and release of pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukine-6 (IL-6), and inducible nitric oxide synthase (iNOS) in human monocytic cells, THP-1. The effects were assessed by measuring the levels of secretory proteins and mRNA of TNF-α and IL-6, the levels of nitric oxide (NO) secretion and the expression of iNOS in THP-1 cells. Cells were treated with 5 μg lipopolysaccharide/ml (LPS) in the presence and absence of increasing concentrations of extracts from the aerial parts of H. triquetrifolium. During the entire experimental period, we used extract concentrations (up to 250 μg mL−1) that had no cytotoxic effects, as measured with MTT and LDH assays. Hypericum triquetrifolium extracts remarkably suppressed the LPS-induced NO release, significantly attenuated the LPS-induced transcription of iNOS and inhibited in a dose-dependent manner the expression and release of TNF-α. No significant effects were observed on the release of IL-6. Taken together, these results suggest that H. triquetrifolium probably exerts anti-inflammatory effects through the suppression of TNF-α and iNOS expressions. PMID:18955363

  4. Hypericum triquetrifolium-Derived Factors Downregulate the Production Levels of LPS-Induced Nitric Oxide and Tumor Necrosis Factor-α in THP-1 Cells.

    PubMed

    Saad, Bashar; Abouatta, Bernadette Soudah; Basha, Walid; Hmade, Alaa; Kmail, Abdalsalam; Khasib, Said; Said, Omar

    2011-01-01

    Based on knowledge from traditional Arab herbal medicine, this in vitro study aims to examine the anti-inflammatory mechanism of Hypericum triquetrifolium by measuring the expression and release of pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukine-6 (IL-6), and inducible nitric oxide synthase (iNOS) in human monocytic cells, THP-1. The effects were assessed by measuring the levels of secretory proteins and mRNA of TNF-α and IL-6, the levels of nitric oxide (NO) secretion and the expression of iNOS in THP-1 cells. Cells were treated with 5 μg lipopolysaccharide/ml (LPS) in the presence and absence of increasing concentrations of extracts from the aerial parts of H. triquetrifolium. During the entire experimental period, we used extract concentrations (up to 250 μg mL(-1)) that had no cytotoxic effects, as measured with MTT and LDH assays. Hypericum triquetrifolium extracts remarkably suppressed the LPS-induced NO release, significantly attenuated the LPS-induced transcription of iNOS and inhibited in a dose-dependent manner the expression and release of TNF-α. No significant effects were observed on the release of IL-6. Taken together, these results suggest that H. triquetrifolium probably exerts anti-inflammatory effects through the suppression of TNF-α and iNOS expressions.

  5. Variable stretch reduces the pro-inflammatory response of alveolar epithelial cells.

    PubMed

    Rentzsch, Ines; Santos, Cíntia L; Huhle, Robert; Ferreira, Jorge M C; Koch, Thea; Schnabel, Christian; Koch, Edmund; Pelosi, Paolo; Rocco, Patricia R M; Gama de Abreu, Marcelo

    2017-01-01

    Mechanical ventilation has the potential to increase inflammation in both healthy and injured lungs. Several animal studies have shown that variable ventilation recruits the lungs and reduces inflammation. However, it is unclear which cellular mechanisms are involved in those findings. We hypothesized that variable stretch of LPS-stimulated alveolar epithelial cells (AECs) reduces the production of pro-inflammatory cytokines compared to non-variable stretch. AECs were subjected to non-variable or variable cyclic stretch (sinusoidal pattern), with and without LPS stimulation. The expression and release of interleukin-6, CXCL-2 and CCL-2 mRNA were analyzed after 4 hours. The phosphorylation of the MAPKs ERK1/2 and SAPK/JNK was determined by Western Blot analysis at 0, 15, 30, 45 and 60 min of cyclic stretch. In LPS-stimulated AECs, variable cyclic cell stretching led to reduced cytokine expression and release compared to non-variable cell stretching. Furthermore, the phosphorylation of the MAPK ERK1/2 was increased after 30 minutes in non-variable stretched AECs, whereas variable stretched cells demonstrated only the non-stretched level of phosphorylation. After the 4h period of cyclic cell stretch and inhibition of the ERK1/2, but not the SAPK/JNK, signaling pathway, the gene expression of investigated cytokines increased in variable stretched, and decreased in non-variable stretched AECs. We conclude that in LPS-stimulated AECs, variable stretch reduced the pro-inflammatory response compared to non-variable stretch. This effect was mediated by the ERK1/2 signaling pathway, and might partly explain the findings of reduced lung inflammation during mechanical ventilation modes that enhance breath-by-breath variability of the respiratory pattern.

  6. Variable stretch reduces the pro-inflammatory response of alveolar epithelial cells

    PubMed Central

    Ferreira, Jorge M. C.; Koch, Thea; Schnabel, Christian; Koch, Edmund; Pelosi, Paolo; Rocco, Patricia R. M.

    2017-01-01

    Mechanical ventilation has the potential to increase inflammation in both healthy and injured lungs. Several animal studies have shown that variable ventilation recruits the lungs and reduces inflammation. However, it is unclear which cellular mechanisms are involved in those findings. We hypothesized that variable stretch of LPS-stimulated alveolar epithelial cells (AECs) reduces the production of pro-inflammatory cytokines compared to non-variable stretch. AECs were subjected to non-variable or variable cyclic stretch (sinusoidal pattern), with and without LPS stimulation. The expression and release of interleukin-6, CXCL-2 and CCL-2 mRNA were analyzed after 4 hours. The phosphorylation of the MAPKs ERK1/2 and SAPK/JNK was determined by Western Blot analysis at 0, 15, 30, 45 and 60 min of cyclic stretch. In LPS-stimulated AECs, variable cyclic cell stretching led to reduced cytokine expression and release compared to non-variable cell stretching. Furthermore, the phosphorylation of the MAPK ERK1/2 was increased after 30 minutes in non-variable stretched AECs, whereas variable stretched cells demonstrated only the non-stretched level of phosphorylation. After the 4h period of cyclic cell stretch and inhibition of the ERK1/2, but not the SAPK/JNK, signaling pathway, the gene expression of investigated cytokines increased in variable stretched, and decreased in non-variable stretched AECs. We conclude that in LPS-stimulated AECs, variable stretch reduced the pro-inflammatory response compared to non-variable stretch. This effect was mediated by the ERK1/2 signaling pathway, and might partly explain the findings of reduced lung inflammation during mechanical ventilation modes that enhance breath-by-breath variability of the respiratory pattern. PMID:28813446

  7. α-Fetoprotein as a modulator of the pro-inflammatory response of human keratinocytes

    PubMed Central

    Potapovich, AI; Pastore, S; Kostyuk, VA; Lulli, D; Mariani, V; De Luca, C; Dudich, EI; Korkina, LG

    2009-01-01

    Background and purpose: The immunomodulatory effects of α-fetoprotein (AFP) on lymphocytes and macrophages have been described in vitro and in vivo. Recombinant forms of human AFP have been proposed as potential therapeutic entities for the treatment of autoimmune diseases. We examined the effects of embryonic and recombinant human AFP on the spontaneous, UVA- and cytokine-induced pro-inflammatory responses of human keratinocytes. Experimental approach: Cultures of primary and immortalized human keratinocytes (HaCaT) and human blood T lymphocytes were used. The effects of AFP on cytokine expression were studied by bioplexed elisa and quantitative reverse transcriptase polymerase chain reaction assay. Kinase and nuclear factor kappa B (NFκB) phosphorylation were quantified by intracellular elisa. Nuclear activator protein 1 and NFκB DNA binding activity was measured by specific assays. Nitric oxide and H2O2 production and redox status were assessed by fluorescent probe and biochemical methods. Key results: All forms of AFP enhanced baseline expression of cytokines, chemokines and growth factors. AFP dose-dependently increased tumour necrosis factor alpha-stimulated granulocyte macrophage colony stimulating factor and interleukin 8 expression and decreased tumour necrosis factor alpha-induced monocyte chemotactic protein 1 and IP-10 (interferon gamma-produced protein of 10 kDa) expression. AFP induced a marked activator protein 1 activation in human keratinocytes. AFP also increased H2O2 and modulated nitrite/nitrate levels in non-stimulated keratinocytes whereas it did not affect these parameters or cytokine release from UVA-stimulated cells. Phosphorylation of extracellular signal-regulated kinase (ERK1/2) and Akt1 but not NFκB was activated by AFP alone or by its combination with UVA. Conclusions and implications: Exogenous AFP induces activation of human keratinocytes, with de novo expression of a number of pro-inflammatory mediators and modulation of their

  8. Effects of PPAR-γ agonist treatment on LPS-induced mastitis in rats.

    PubMed

    Mingfeng, Ding; Xiaodong, Ming; Yue, Liu; Taikui, Piao; Lei, Xiao; Ming, Liu

    2014-12-01

    PPAR-γ, a member of the nuclear receptor superfamily, plays an important role in lipid metabolism and inflammation. The aim of this study was to investigate the preventive effects of synthetic PPAR-γ agonist rosiglitazone on lipopolysaccharide (LPS)-induced mastitis in rats. The mouse model of mastitis was induced by the injection of LPS through the duct of the mammary gland. Rosiglitazone was injected 1 h before the induction of LPS intraperitoneally. The results showed that rosiglitazone attenuated the infiltration of inflammatory cells, the activity of myeloperoxidase (MPO), and the production of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in a dose-dependent manner. Additionally, Western blotting showed that rosiglitazone inhibited the phosphorylation of IκB-α and NF-κB p65. These results indicated that rosiglitazone has a protective effect on mastitis, and the anti-inflammatory mechanism of rosiglitazone on LPS-induced mastitis in rats may be due to its ability to inhibit NF-κB signaling pathways. PPAR-γ may be a potential therapeutic target against mastitis.

  9. OP-3 THE PROTECTIVE ROLE OF LACTOBACILLUS RHAMNOSUS GG-DERIVED FACTORS AGAINST LPS-INDUCED DAMAGE OF HUMAN COLONIC SMOOTH MUSCLE CELLS.

    PubMed

    A, Cicenia; F, Santagelo; L, Gambardella; V, Iebba; A, Scirocco; L, Pallotta; M, Marignani; P, Chirletti; M, Carabotti; S, Schippa; E, Corazziari; C, Severi

    2015-10-01

    Impaired gut barrier function has been reported in some functional gastrointestinal (GI) disorders.Evidences suggest that gut microbiota affects GI motility in particular Lactobacillus species elicits anti-inflammatory activity and exerts protective effects on damage induced by pathogen Gram negative-derived lipopolysaccharide(LPS).LPS produced an oxidative imbalance in human colonic smooth muscle cells (SMC) that persists after LPS-washout and contributes to SMC morphofunctional alterations. evaluate if supernatants harvested from LGG cultures protect SMC from LPS-induced myogenic damage. L. rhamnosus GG (ATCC 53103 strain) was grown in MRS medium and samples were collected from bacterial cultures in middle exponential phase,in early,in middle and late stationary phase (overnight).Supernatants were recovered,filtered and stored at -20 °C. Highly pure human SMC culture was then exposed for 24 h to highly purified LPS (1 μg/ml) of E.coli (O111:B4) in the absence and presence of the supernatants.Their effects were evaluated on LPS-induced SMC morphofunctional alterations and pro-inflammatory IL-6 production. Data are expressed as mean ± SE (p < 0.05 significant). LPS induced persistent significant 20.7% ± 1.2 cell shortening and 35.2% ± 2.6 decrease in contraction of human colonic SMC. These alterations were paralleled to a 238.5% ± 82.5 increase in IL-6 production.These effects disappeared in the presence of LGG-supernatants,following a progression related to LGG growth curve phases. Supernatants collected in the middle exponential phase already significantly partially restored LPS-induced cell shortening by 43.4% ± 10.2 and IL6 increase by 47.6% ± 13.1 but had no effect on LPS-induced inhibition of contraction. Supernatants collected later, in the early and middle stationary phase, further counteract LPS-induced damage, including inhibition of contraction. Maximal protective effects were observed with supernatants of the

  10. Licocoumarone isolated from Glycyrrhiza uralensis selectively alters LPS-induced inflammatory responses in RAW 264.7 macrophages.

    PubMed

    Wu, Lehao; Fan, Yunpeng; Fan, Chao; Yu, Yang; Sun, Lei; Jin, Yu; Zhang, Yan; Ye, Richard D

    2017-04-15

    The effects of licocoumarone (LC) isolated from Glycyrrhiza uralensis were studied in LPS-stimulated RAW 264.7 macrophages. Our study demonstrated that LC dose-dependently attenuated LPS-induced NO production by down-regulating iNOS expression. Additionally, the treatment with LC inhibited LPS-induced expression of cytokines including IL-1β, IL-6 and IL-10, but not TNF-α, at both mRNA and protein levels. Similar suppressive effects of LC were observed on LPS-stimulated murine peritoneal macrophages as well. Furthermore, LC significantly reduced LPS-stimulated NF-κB activation by inhibition of IκBα degradation and p65 phosphorylation. The results from NF-κB-luc reporter gene assay further support the inhibitory effect of LC on NF-κB activation. Further studies showed that LC also interfered with the MAPKs and STAT3 signaling pathways, which are typical inflammatory signaling pathways triggered by LPS. Taken together, these results show that LC attenuates LPS-induced cytokine gene expression in RAW 264.7 macrophages through mechanisms that involve NF-κB, MAPKs and STAT3 signaling pathways, but the pattern of inhibition differs from that of a global immunosuppresant. Our study indicates that LC is a functional constituent of Glycyrrhiza uralensis with potential implications in infectious and immune-related diseases.

  11. A heteroglycan from the cyanobacterium Nostoc commune modulates LPS-induced inflammatory cytokine secretion by THP-1 monocytes through phosphorylation of ERK1/2 and Akt.

    PubMed

    Olafsdottir, Astridur; Thorlacius, Gudny Ella; Omarsdottir, Sesselja; Olafsdottir, Elin Soffia; Vikingsson, Arnor; Freysdottir, Jona; Hardardottir, Ingibjorg

    2014-09-25

    Cyanobacteria (blue-green algae) have been consumed as food and used in folk medicine since ancient times to alleviate a variety of diseases. Cyanobacteria of the genus Nostoc have been shown to produce complex exopolysaccharides with antioxidant and antiviral activity. Furthermore, Nostoc sp. are common in cyanolichen symbiosis and lichen polysaccharides are known to have immunomodulating effects. Nc-5-s is a heteroglycan isolated from free-living colonies of Nostoc commune and its structure has been characterized in detail. The aim of this study was to determine the effects of Nc-5-s on the inflammatory response of lipopolysaccharide (LPS)-stimulated human THP-1 monocytes and how the effects are mediated. THP-1 monocytes primed with interferon-γ and stimulated with LPS in the presence of Nc-5-s secreted less of the pro-inflammatory cytokine interleukin (IL)-6 and more of the anti-inflammatory cytokine IL-10 than THP-1 monocytes stimulated without Nc-5-s. In contrast, Nc-5-s increased LPS-induced secretion of the pro-inflammatory cytokines tumor necrosis factor (TNF)-α and IL-8. Nc-5-s decreased LPS-induced phosphorylation of the extracellular regulated kinase (ERK)1/2 and Akt kinase, but did not affect phosphorylation of the p38 kinase, activation of the nuclear factor kappa B pathway, nor DNA binding of c-fos. These results show that Nc-5-s has anti-inflammatory effects on IL-6 and IL-10 secretion by THP-1 monocytes, but its effects are pro-inflammatory when it comes to TNF-α and IL-8. Furthermore, they show that the effects of Nc-5-s may be mediated through the ERK1/2 pathway and/or the Akt/phosphoinositide 3-kinase pathway and their downstream effectors. The ability of Nc-5-s to decrease IL-6 secretion, increase IL-10 secretion and moderate ERK1/2 activation indicates a potential for its development as an anti-inflammatory agent. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. Quince (Cydonia oblonga Miller) peel polyphenols modulate LPS-induced inflammation in human THP-1-derived macrophages through NF-{kappa}B, p38MAPK and Akt inhibition

    SciTech Connect

    Essafi-Benkhadir, Khadija; Refai, Amira; Riahi, Ichrak; Fattouch, Sami; Karoui, Habib; Essafi, Makram

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Quince peel polyphenols inhibit LPS-induced secretion of TNF-{alpha} and IL-8. Black-Right-Pointing-Pointer Quince peel polyphenols augment LPS-induced secretion of IL-10 and IL-6. Black-Right-Pointing-Pointer Quince peel polyphenols-mediated inhibition of LPS-induced secretion of TNF-{alpha} is partially mediated by IL-6. Black-Right-Pointing-Pointer The anti-inflammatory effects of quince polyphenols pass through NF-{kappa}B, p38MAPK and Akt inhibition. -- Abstract: Chronic inflammation is a hallmark of several pathologies, such as rheumatoid arthritis, gastritis, inflammatory bowel disease, atherosclerosis and cancer. A wide range of anti-inflammatory chemicals have been used to treat such diseases while presenting high toxicity and numerous side effects. Here, we report the anti-inflammatory effect of a non-toxic, cost-effective natural agent, polyphenolic extract from the Tunisian quince Cydonia oblonga Miller. Lipopolysaccharide (LPS) treatment of human THP-1-derived macrophages induced the secretion of high levels of the pro-inflammatory cytokine TNF-{alpha} and the chemokine IL-8, which was inhibited by quince peel polyphenolic extract in a dose-dependent manner. Concomitantly, quince polyphenols enhanced the level of the anti-inflammatory cytokine IL-10 secreted by LPS-treated macrophages. We further demonstrated that the unexpected increase in IL-6 secretion that occurred when quince polyphenols were associated with LPS treatment was partially responsible for the polyphenols-mediated inhibition of TNF-{alpha} secretion. Biochemical analysis showed that quince polyphenols extract inhibited the LPS-mediated activation of three major cellular pro-inflammatory effectors, nuclear factor-kappa B (NF-{kappa}B), p38MAPK and Akt. Overall, our data indicate that quince peel polyphenolic extract induces a potent anti-inflammatory effect that may prove useful for the treatment of inflammatory diseases and that a quince

  13. ERα-mediated repression of pro-inflammatory cytokine expression by glucocorticoids reveals a crucial role for TNFα and IL1α in lumen formation and maintenance

    PubMed Central

    Eritja, Nuria; Mirantes, Cristina; Llobet, David; Masip, Gemma; Matias-Guiu, Xavier; Dolcet, Xavi

    2012-01-01

    Most glandular tissues comprise polarized epithelial cells organized around a single central lumen. Although there is active research investigating the molecular networks involved in the regulation of lumenogenesis, little is known about the extracellular factors that influence lumen formation and maintenance. Using a three-dimensional culture system of epithelial endometrial cells, we have revealed a new role for pro-inflammatory cytokines such as TNFα and IL1α in the formation and, more importantly, maintenance of a single central lumen. We also studied the mechanism by which glucocorticoids repress TNFα and IL1α expression. Interestingly, regulation of pro-inflammatory cytokine expression and subsequent lumen formation is mediated by estrogen receptor α (ERα) but not by the glucocorticoid receptor. Finally, we investigated the signaling pathways involved in the regulation of lumen formation by pro-inflammatory cytokines. Our results demonstrate that activation of the ERK/MAPK signaling pathway, but not the PI3K/Akt signaling pathway, is important for the formation and maintenance of a single central lumen. In summary, our results suggest a novel role for ERα-regulated pro-inflammatory cytokine expression in lumen formation and maintenance. PMID:22328525

  14. Eriobotryae folium extract suppresses LPS-induced iNOS and COX-2 expression by inhibition of NF-kappaB and MAPK activation in murine macrophages.

    PubMed

    Uto, Takuhiro; Suangkaew, Natnaprach; Morinaga, Osamu; Kariyazono, Hiroko; Oiso, Shigeru; Shoyama, Yukihiro

    2010-01-01

    Eriobotryae folium (EF), the dried leaves of Eriobotrya japonica (Thunb.) Lindl. has been traditionally used to treat various diseases such as chronic bronchitis, cough, inflammation, skin diseases, and diabetes. In this study, we examined the effects of Eriobotryae folium extract (EFE) on lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and prostaglandin E2(PGE2) in RAW264 murine macrophage cells. EFE suppressed LPS-induced NO and PGE2 production in a dose-dependent manner. Consistent with these observations, EFE reduced the LPS-induced expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at both protein and mRNA levels. Furthermore, EFE significantly inhibited LPS-induced NF-kappaB binding activity, which was associated with the inhibition of IkappaB-alpha degradation. EFE also attenuated LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs) including extracellular signal-regulated kinase (ERK), p38 MAPK and c-Jun N-terminal kinase (JNK). These results suggest that the anti-inflammatory properties of EF might result from inhibition of iNOS and COX-2 expression through the downregulation of NF-kappaB activation and MAPK phosphorylation in LPS-stimulated RAW264 cells.

  15. Stop feeding cancer: pro-inflammatory role of visceral adiposity in liver cancer.

    PubMed

    Zhao, Jun; Lawless, Matthew W

    2013-12-01

    Liver cancer is the fifth most common cancer in the world with an estimated over half a million new cases diagnosed every year. Due to the difficulty in early diagnosis and lack of treatment options, the prevalence of liver cancer continues to climb with a 5-year survival rate of between 6% and 11%. Coinciding with the rise of liver cancer, the prevalence of obesity has rapidly increased over the past two decades. Evidence from epidemiological studies demonstrates a higher risk of hepatocellular carcinoma (HCC) in obese individuals. Obesity is recognised as a low-grade inflammatory disease, this is of particular relevance as inflammation has been proposed as the seventh hallmark of cancer development with abdominal visceral adiposity considered as an important source of pro-inflammatory stimuli. Emerging evidence points towards the direct role of visceral adipose tissue rather than generalised body fat in carcinogenesis. Cytokines such as IL-6 and TNF-α secreted from visceral adipose tissue have been demonstrated to induce a chronic inflammatory condition predisposing the liver to a protumourigenic milieu. This review focuses on excess visceral adiposity rather than simple obesity; particularly adipokines and their implications for chronic inflammation, lipid accumulation, insulin resistance, Endoplasmic Reticulum (ER) stress and angiogenesis. Evidence of molecular signalling pathways that may give rise to the onset and progression of HCC in this context are depicted. Delineation of the pro-inflammatory role of visceral adiposity in liver cancer and its targeting will provide better rational and therapeutic approaches for HCC prevention and elimination. The concept of a central role for metabolism in cancer is the culmination of an effort that began with one of the 20th century's leading biochemists and Nobel laureate of 1931, Otto Warburg. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Knockout of toll-like receptor-4 attenuates the pro-inflammatory state of diabetes.

    PubMed

    Devaraj, Sridevi; Tobias, Peter; Jialal, Ishwarlal

    2011-09-01

    Type 1 diabetes (T1DM) is associated with increased vascular complications and is a pro-inflammatory state. Recent findings have shown increased TLR2 and 4 expression, signaling, ligands, and functional activation in T1DM subjects compared to controls and further accentuated in T1DM with microvascular complications. Thus, the aim of this study was to examine if genetic deficiency of TLR4 attenuates the increased inflammation associated with T1DM using the streptozotocin-induced diabetic mouse model. C57BL/6 and TLR4(-/-) mice were obtained and studied in the native state and following induction of diabetes using streptozotocin. Diabetic (WT+STZ) mice had increased expression of both TLR2 and TLR4, while TLR4(-/-) STZ mice had increased expression only of TLR2, but not TLR4 compared to the non-diabetic mice TLR2 expression was significantly increased with STZ-induced diabetes and was unaffected by knockout of TLR4. Also, levels of MyD88, IRAK-1 protein phosphorylation, Trif, IRF3, and NF-κB activity were significantly reduced in TLR4(-/-) +STZ mice compared to the WT+STZ mice. WT+STZ mice exhibited significantly increased levels of serum and macrophage IL-1β, IL-6, KC/IL-8, IP-10, MCP-1, IFN beta and TNF-α compared to WT mice and this was significantly attenuated in TLR4(-/-) +STZ mice (P<0.01). Thus, TLR4 contributes to the pro-inflammatory state and TLR4KO attenuates inflammation in diabetes.

  17. PI3k/Akt signalling pathway plays a crucial role in the anti-inflammatory effects of curcumin in LPS-activated microglia.

    PubMed

    Cianciulli, Antonia; Calvello, Rosa; Porro, Chiara; Trotta, Teresa; Salvatore, Rosaria; Panaro, Maria Antonietta

    2016-07-01

    Microglia are resident macrophages in the central nervous system (CNS) deputed to defend against pathogens. Persistent or acute inflammation of microglia leads to CNS disorders, so regulation of pro-inflammatory responses of microglial cells is thought to be a promising therapeutic strategy to attenuate abnormal inflammatory responses observed in neurodegenerative disease. We hypothesized that curcumin supplementation could reduce the inflammatory responses of activated microglial cells modulating PI3K/Akt pathway. Different curcumin concentrations were administered as BV-2 microglia pre-treatment 1h prior to LPS stimulation. Nitric oxide (NO) and inducible nitric oxide synthase (iNOS) expression were determined by Griess reagent and western blotting, respectively. Inflammatory cytokines release was evaluated by ELISA and qRT-PCR. PI3K/Akt expression was analyzed by western blotting analysis. Curcumin significantly attenuated, in a dose-dependent manner, LPS-induced release of NO and pro-inflammatory cytokines, as well as iNOS expression. Interestingly, curcumin was able to reduce, again in a dose-dependent manner, PI3K/Akt phosphorylation as well as NF-κB activation in LPS-activated microglial cells. Overall these results suggest that curcumin plays an important role in the attenuation of LPS-induced inflammatory responses in microglial cells and that the mechanisms involve down-regulation of the PI3K/Akt signalling.

  18. Friedelane-type triterpenoids as selective anti-inflammatory agents by regulation of differential signaling pathways in LPS-stimulated macrophages.

    PubMed

    Villar-Lorenzo, Andrea; Ardiles, Alejandro E; Arroba, Ana I; Hernández-Jiménez, Enrique; Pardo, Virginia; López-Collazo, Eduardo; Jiménez, Ignacio A; Bazzocchi, Isabel L; González-Rodríguez, Águeda; Valverde, Ángela M

    2016-12-15

    A series of 31 pentacyclic triterpenoids isolated from the root barks of Celastrus vulcanicola and Maytenus jelskii were tested for cytotoxicity and inhibitory activity against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophages. Compounds 18 (C18) and 25 (C25) exhibited significant inhibition of LPS-induced NO release at 50 and 25μM concentrations, respectively, and decreased mRNAs of pro-inflammatory cytokines. At the molecular level, C18 neither inhibited LPS-mediated phosphorylation of mitogen activated protein kinases (MAPKs) nor nuclear translocation of nuclear factor kappa beta (NFκB). Instead, C18 enhanced and prolonged nuclear translocation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and increased the expression of its target genes including hemeoxigenase 1 (HO1). C25 efficiently inhibited LPS-mediated phosphorylation of JNK, p38 and ERK, without affecting NFκB or Nrf2 signaling pathways. Both compounds reduced LPS-mediated processing of caspase-1 and the cleavage of interleukin 1β (IL1β) proform, reflecting their ability to target the inflammasome. C25 also counteracted LPS effects on iNOS expression and pro-inflammatory cytokines mRNA levels in Bv-2 microglial cells. The anti-inflammatory effect of both compounds was also assessed in human macrophages. Our results suggest that triterpenoids C18 and C25 possess anti-inflammatory effects, which may be therapeutically relevant for diseases linked to inflammation.

  19. Fenoterol inhibits LPS-induced AMPK activation and inflammatory cytokine production through β-arrestin-2 in THP-1 cell line

    SciTech Connect

    Wang, Wei; Zhang, Yuan; Xu, Ming; Zhang, You-Yi; He, Bei

    2015-06-26

    The AMP-activated protein kinase (AMPK) pathway is involved in regulating inflammation in several cell lines. We reported that fenoterol, a β{sub 2}-adrenergic receptor (β{sub 2}-AR) agonist, had anti-inflammatory effects in THP-1 cells, a monocytic cell line. Whether the fenoterol anti-inflammatory effect involves the AMPK pathway is unknown. In this study, we explored the mechanism of β{sub 2}-AR stimulation with fenoterol in a lipopolysaccharide (LPS)-induced inflammatory cytokine secretion in THP-1 cells. We studied whether fenoterol and β-arrestin-2 or AMPKα1 subunit knockdown could affect LPS-induced AMPK activation, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion. LPS-induced AMPK activation and interleukin 1β (IL-1β) release were reduced with fenoterol pretreatment of THP-1 cells. SiRNA knockdown of β-arrestin-2 abolished the fenoterol inhibition of LPS-induced AMPK activation and interleukin 1β (IL-1β) release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol on LPS-treated THP-1 cells. In addition, siRNA knockdown of AMPKα1 significantly attenuated the LPS-induced NF-κB activation and IL-1β release, so AMPKα1 was a key signaling molecule involved in LPS-induced inflammatory cytokine production. These results suggested the β{sub 2}-AR agonist fenoterol inhibited LPS-induced AMPK activation and IL-1β release via β-arrestin-2 in THP-1 cells. The exploration of these mechanisms may help optimize therapeutic agents targeting these pathways in inflammatory diseases. - Highlights: • β{sub 2}-AR agonist fenoterol exerts its protective effect on LPS-treated THP-1 cells. • Fenoterol inhibits LPS-induced AMPK activation and IL-1β production. • β-arrestin2 mediates fenoterol-inhibited AMPK activation and IL-1β release. • AMPKα1 is involved in LPS-induced NF-κB activation and IL-1β production.

  20. LPS induces HUVEC angiogenesis in vitro through miR-146a-mediated TGF-β1 inhibition

    PubMed Central

    Li, Yize; Zhu, Huayu; Wei, Xu; Li, Heng; Yu, Zhicao; Zhang, Hongmei; Liu, Wenchao

    2017-01-01

    Angiogenesis is an essential process for tissue growth and embryo development. However, inflammation, abnormal wound healing, vascular diseases, and tumor development and progression can result from inappropriate angiogenesis. Lipopolysaccharide (LPS) can activate various cells and alter endothelium function and angiogenesis. This study investigated the underlying molecular events involved in LPS-induced angiogenesis and revealed a novel strategy for controlling abnormal angiogenesis. LPS treatment promoted wound healing and tube formation in human umbilical vein endothelial cell (HUVEC) cultures and induced their expression of miR-146a. miR-146a was previously shown to regulate angiogenesis in HUVECs. Knockdown of miR-146a expression antagonized LPS-induced angiogenesis in vitro. Moreover, bioinformatic analyses predicted TGF-β1 as a target gene for miR-146a, which was confirmed by aluciferase reporter assay. Expression of miR-146a in HUVECs resulted in downregulation of TGF-β1 in HUVECs, whereas a miR-146a inhibitor upregulated the expression of TGF-β1 and TGF-β1 downstream proteins, such as phosphoraylation-Smad2 and plasminogen activator inhibitor type 1 (PAI-1). Furthermore, the TGF-β1 signaling inhibitor SB431542 impaired the ability of miR-146a knockdown to suppress LPS-induced angiogenesis. Thus, LPS-induced angiogenesis of HUVECs functions through miR-146a upregulation and TGF-β1 inhibition. This study suggests that knockdown of miR-146a could activate TGF-β1 signaling to inhibit angiogenesis as a potential therapy for angiogenesis-related diseases. PMID:28337286

  1. Pro-inflammatory activities in elapid snake venoms.

    PubMed Central

    Tambourgi, D. V.; dos Santos, M. C.; Furtado, M. de F.; de Freitas, M. C.; da Silva, W. D.; Kipnis, T. L.

    1994-01-01

    1. Snake venoms from the genera Micrurus (M. ibiboboca and M. spixii) and Naja (N. naja, N. melanoleuca and N. nigricollis) were analysed, using biological and immunochemical methods, to detect pro-inflammatory activities, cobra venom factor (COF), proteolytic enzymes, thrombin-like substances, haemorrhagic and oedema-producing substances. 2. The venoms of the five snake species activate the complement system (C) in normal human serum (NHS) in a dose-related fashion, at concentrations ranging from 5 micrograms to 200 micrograms ml-1 serum. Electrophoretic conversion of C3 was observed with all venoms in NHS containing normal concentrations of Ca2+ and Mg2+, but only by venoms from N. naja and N. melanoleuca when Ca2+ was chelated by adding Mg(2+)-EGTA. 3. Purified human C3 was electrophoretically converted, in the absence of other C components, by the venoms from N. naja, N. nigricollis and M. ibiboboca. However, only the venoms from N. naja and N. melanoleuca contained a 144 kDa protein revealed in Western blot with sera against COF or human C3. 4. All venoms, at minimum concentrations of 30 ng ml-1, were capable of lysing sheep red blood cells, also in a dose-related fashion, when incubated with these cells in presence of egg yolk as a source of lecithin. Although the venoms from M. spixii and N. nigricollis showed detectable thrombin-like activity, these and the other venoms were free of proteolytic activity when fibrin, gelatin and casein, were used as substrates. 5. When tested on mice skin, all five venoms were capable of inducing an increase in vascular permeability and oedema, but were devoid of haemorrhagic producing substances (haemorrhagins).(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 Figure 3 Figure 4 PMID:7921595

  2. HP1330 Contributes to Streptococcus suis Virulence by Inducing Toll-Like Receptor 2- and ERK1/2-Dependent Pro-inflammatory Responses and Influencing In Vivo S. suis Loads.

    PubMed

    Zhang, Qiang; Huang, Jingjing; Yu, Junping; Xu, Zhongmin; Liu, Liang; Song, Yajing; Sun, Xiaomei; Zhang, Anding; Jin, Meilin

    2017-01-01

    Streptococcus suis 2 (SS2) has evolved into a highly invasive pathogen responsible for two large-scale outbreaks of streptococcal toxic shock-like syndrome (STSLS) in China. Excessive inflammation stimulated by SS2 is considered a hallmark of STSLS, even it also plays important roles in other clinical symptoms of SS2-related disease, including meningitis, septicemia, and sudden death. However, the mechanism of SS2-caused excessive inflammation remains poorly understood. Here, a novel pro-inflammatory protein was identified (HP1330), which could induce robust expression of pro-inflammatory cytokines (TNF-α, MCP-1, and IL-1β) in RAW264.7 macrophages. To evaluate the role of HP1330 in SS2 virulence, an hp1330-deletion mutant (Δhp1330) was constructed. In vitro, hp1330 disruption led to a decreased pro-inflammatory ability of SS2 in RAW 264.7 macrophages. In vivo, Δhp1330 showed reduced lethality, pro-inflammatory activity, and bacterial loads in mice. To further elucidate the mechanism of HP1330-induced pro-inflammatory cytokine production, antibody blocking and gene-deletion experiments with macrophages were performed. The results revealed that the pro-inflammatory activity of HP1330 depended on the recognition of toll-like receptor 2 (TLR2). Furthermore, a specific inhibitor of the extracellular signal-regulated kinase 1/2 (ERK1/2) pathways could significantly decrease HP1330-induced pro-inflammatory cytokine production, and western blot analysis showed that HP1330 could induce activation of the ERK1/2 pathway. Taken together, our findings demonstrate that HP1330 contributes to SS2 virulence by inducing TLR2- and ERK1/2-dependent pro-inflammatory cytokine production and influencing in vivo bacterial loads, implying that HP1330 may be associated with STSLS caused by SS2.

  3. LPS-induced delayed preconditioning is mediated by Hsp90 and involves the heat shock response in mouse kidney.

    PubMed

    Kaucsár, Tamás; Bodor, Csaba; Godó, Mária; Szalay, Csaba; Révész, Csaba; Németh, Zalán; Mózes, Miklós; Szénási, Gábor; Rosivall, László; Sőti, Csaba; Hamar, Péter

    2014-01-01

    We and others demonstrated previously that preconditioning with endotoxin (LPS) protected from a subsequent lethal LPS challenge or from renal ischemia-reperfusion injury (IRI). LPS is effective in evoking the heat shock response, an ancient and essential cellular defense mechanism, which plays a role in resistance to, and recovery from diseases. Here, by using the pharmacological Hsp90 inhibitor novobiocin (NB), we investigated the role of Hsp90 and the heat shock response in LPS-induced delayed renal preconditioning. Male C57BL/6 mice were treated with preconditioning (P: 2 mg/kg, i.p.) and subsequent lethal (L: 10 mg/kg, i.p.) doses of LPS alone or in combination with NB (100 mg/kg, i.p.). Controls received saline (C) or NB. Preconditioning LPS conferred protection from a subsequent lethal LPS treatment. Importantly, the protective effect of LPS preconditioning was completely abolished by a concomitant treatment with NB. LPS induced a marked heat shock protein increase as demonstrated by Western blots of Hsp70 and Hsp90. NB alone also stimulated Hsp70 and Hsp90 mRNA but not protein expression. However, Hsp70 and Hsp90 protein induction in LPS-treated mice was abolished by a concomitant NB treatment, demonstrating a NB-induced impairment of the heat shock response to LPS preconditioning. LPS-induced heat shock protein induction and tolerance to a subsequent lethal LPS treatment was prevented by the Hsp90 inhibitor, novobiocin. Our findings demonstrate a critical role of Hsp90 in LPS signaling, and a potential involvement of the heat shock response in LPS-induced preconditioning.

  4. LPS-Induced Delayed Preconditioning Is Mediated by Hsp90 and Involves the Heat Shock Response in Mouse Kidney

    PubMed Central

    Kaucsár, Tamás; Bodor, Csaba; Godó, Mária; Szalay, Csaba; Révész, Csaba; Németh, Zalán; Mózes, Miklós; Szénási, Gábor; Rosivall, László; Sőti, Csaba; Hamar, Péter

    2014-01-01

    Introduction We and others demonstrated previously that preconditioning with endotoxin (LPS) protected from a subsequent lethal LPS challenge or from renal ischemia-reperfusion injury (IRI). LPS is effective in evoking the heat shock response, an ancient and essential cellular defense mechanism, which plays a role in resistance to, and recovery from diseases. Here, by using the pharmacological Hsp90 inhibitor novobiocin (NB), we investigated the role of Hsp90 and the heat shock response in LPS-induced delayed renal preconditioning. Methods Male C57BL/6 mice were treated with preconditioning (P: 2 mg/kg, ip.) and subsequent lethal (L: 10 mg/kg, ip.) doses of LPS alone or in combination with NB (100 mg/kg, ip.). Controls received saline (C) or NB. Results Preconditioning LPS conferred protection from a subsequent lethal LPS treatment. Importantly, the protective effect of LPS preconditioning was completely abolished by a concomitant treatment with NB. LPS induced a marked heat shock protein increase as demonstrated by Western blots of Hsp70 and Hsp90. NB alone also stimulated Hsp70 and Hsp90 mRNA but not protein expression. However, Hsp70 and Hsp90 protein induction in LPS-treated mice was abolished by a concomitant NB treatment, demonstrating a NB-induced impairment of the heat shock response to LPS preconditioning. Conclusion LPS-induced heat shock protein induction and tolerance to a subsequent lethal LPS treatment was prevented by the Hsp90 inhibitor, novobiocin. Our findings demonstrate a critical role of Hsp90 in LPS signaling, and a potential involvement of the heat shock response in LPS-induced preconditioning. PMID:24646925

  5. Myeloid depletion of SOCS3 enhances LPS-induced acute lung injury through CCAAT/enhancer binding protein δ pathway

    PubMed Central

    Yan, Chunguang; Ward, Peter A.; Wang, Ximo; Gao, Hongwei

    2013-01-01

    Although uncontrolled inflammatory response plays a central role in the pathogenesis of acute lung injury (ALI), the precise molecular mechanisms underlying the development of this disorder remain poorly understood. SOCS3 is an important negative regulator of IL-6-type cytokine signaling. SOCS3 is induced in lung during LPS-induced lung injury, suggesting that generation of SOCS3 may represent a regulatory product during ALI. In the current study, we created mice lacking SOCS3 expression in macrophages and neutrophils (LysM-cre SOCS3fl/fl). We evaluated the lung inflammatory response to LPS in both LysM-cre SOCS3fl/fl mice and the wild-type (WT) mice (SOCS3fl/fl). LysM-cre SOCS3fl/fl mice displayed significant increase of the lung permeability index (lung vascular leak of albumin), neutrophils, lung neutrophil accumulation (myeloperoxidase activity), and proinflammatory cytokines/chemokines in bronchial alveolar lavage fluids compared to WT mice. These phenotypes were consistent with morphological evaluation of lung, which showed enhanced inflammatory cell influx and intra-alveolar hemorrhage. We further identify the transcription factor, CCAAT/enhancer-binding protein (C/EBP) δ as a critical downstream target of SOCS3 in LPS-induced ALI. These results indicate that SOCS3 has a protective role in LPS-induced ALI by suppressing C/EBPδ activity in the lung. Elucidating the function of SOCS3 would represent prospective targets for a new generation of drugs needed to treat ALI.—Yan, C., Ward, P. A., Wang, X., Gao, H. Myeloid depletion of SOCS3 enhances LPS-induced acute lung injury through CCAAT/enhancer binding protein δ pathway. PMID:23585399

  6. Flavones Inhibit LPS-Induced Atrogin-1/MAFbx Expression in Mouse C2C12 Skeletal Myotubes.

    PubMed

    Shiota, Chieko; Abe, Tomoki; Kawai, Nobuhiko; Ohno, Ayako; Teshima-Kondo, Shigetada; Mori, Hiroyo; Terao, Junji; Tanaka, Eiji; Nikawa, Takeshi

    2015-01-01

    Muscle atrophy is a complex process that occurs as a consequence of various stress events. Muscle atrophy-associated genes (atrogenes) such as atrogin-1/MAFbx and MuRF-1 are induced early in the atrophy process, and the increase in their expression precedes the loss of muscle weight. Although antioxidative nutrients suppress atrogene expression in skeletal muscle cells, the inhibitory effects of flavonoids on inflammation-induced atrogin-1/MAFbx expression have not been clarified. Here, we investigated the inhibitory effects of flavonoids on lipopolysaccharide (LPS)-induced atrogin-1/MAFbx expression. We examined whether nine flavonoids belonging to six flavonoid categories inhibited atrogin-1/MAFbx expression in mouse C2C12 myotubes. Two major flavones, apigenin and luteolin, displayed potent inhibitory effects on atrogin-1/MAFbx expression. The pretreatment with apigenin and luteolin significantly prevented the decrease in C2C12 myotube diameter caused by LPS stimulation. Importantly, the pretreatment of LPS-stimulated myoblasts with these flavones significantly inhibited LPS-induced JNK phosphorylation in C2C12 myotubes, resulting in the significant suppression of atrogin-1/MAFbx promoter activity. These results suggest that apigenin and luteolin, prevent LPS-mediated atrogin-1/MAFbx expression through the inhibition of the JNK signaling pathway in C2C12 myotubes. Thus, these flavones, apigenin and luteolin, may be promising agents to prevent LPS-induced muscle atrophy.

  7. Social well-being is associated with less pro-inflammatory and pro-metastatic leukocyte gene expression in women after surgery for breast cancer.

    PubMed

    Jutagir, Devika R; Blomberg, Bonnie B; Carver, Charles S; Lechner, Suzanne C; Timpano, Kiara R; Bouchard, Laura C; Gudenkauf, Lisa M; Jacobs, Jamie M; Diaz, Alain; Lutgendorf, Susan K; Cole, Steve W; Heller, Aaron S; Antoni, Michael H

    2017-08-01

    Satisfaction with social resources, or "social well-being," relates to better adaptation and longer survival after breast cancer diagnosis. Biobehavioral mechanisms linking social well-being (SWB) to mental and physical health may involve inflammatory signaling. We tested whether reports of greater SWB were associated with lower levels of pro-inflammatory and pro-metastatic leukocyte gene expression after surgery for non-metastatic breast cancer. Women (N = 50) diagnosed with non-metastatic (0-III) breast cancer were enrolled 2-8 weeks after surgery. SWB was assessed with the social/family well-being subscale of the FACT-B. Leukocyte gene expression for specific pro-inflammatory (cytokines, chemokines, and COX-2) and pro-metastatic genes (e.g., MMP9) was derived from microarray analysis. Multiple regression analyses controlling for age, stage of disease, days since surgery, education, and body mass index (BMI) found higher levels of SWB related to less leukocyte pro-inflammatory and pro-metastatic gene expression (p < 0.05). Emotional well-being, physical well-being, and functional well-being did not relate to leukocyte gene expression (p > 0.05). Greater SWB remained significantly associated with less leukocyte pro-inflammatory and pro-metastatic gene expression after controlling for depressive symptoms. Results have implications for understanding mechanisms linking social resources to health-relevant biological processes in breast cancer patients undergoing primary treatment. NCT01422551.

  8. TWEAK/Fn14 promotes pro-inflammatory cytokine secretion in hepatic stellate cells via NF-κB/STAT3 pathways.

    PubMed

    Wang, Aixiu; Zhang, Feng; Xu, Hui; Xu, Mingcui; Cao, Yu; Wang, Chen; Xu, Yuanyuan; Su, Min; Zhang, Ming; Zhuge, Yuzheng

    2017-07-01

    Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor-inducible 14 (Fn14) have been associated with liver disease. Hepatic stellate cells (HSCs) play a critical role in the hepatic wound-healing response after liver injury, but there is little information available on the role of the TWEAK/Fn14 pathway in human HSCs. In this study, we explored the role of TWEAK/Fn14 in activated human HSCs. The LX-2 cells were treated with TWEAK, and the expression of pro-inflammatory cytokines was assayed by enzyme-linked immunosorbent assay (ELISA) and real-time PCR (RT-PCR). Western blotting and RT-PCR were performed to evaluate the expression of Fn14 after TWEAK stimulation. Total and phosphorylated of inhibitor-κB (I-κB), nuclear factor kappa B (NF-κB), Janus kinase 2 (JAK2), and signal transducers and activators of transcription 3 (STAT3) were examined by western blotting after TWEAK stimulation and small interfering RNA (siRNA) transfection. The result showed that TWEAK upregulated the expression of Fn14 and pro-inflammatory factors interleukin-8 (IL-8), interleukin-6 (IL-6), regulated upon activation normal T cell expressed and secreted (RANTES), and monocyte chemotactic protein-1 (MCP-1). In LX-2 cells, the pro-inflammatory cytokine secretion was closely related to the activation of the NF-κB and STAT3 pathways. Furthermore, our research showed that STAT3 and NF-κB could interact with each other, which resulted in a significant increase of pro-inflammatory cytokine secretion. The activation of NF-κB and STAT3 signalling-dependent pro-inflammatory cytokine expression may be responsible for such a novel principle and new therapeutic targets in chronic liver disease. Copyright © 2017. Published by Elsevier Ltd.

  9. Activation of MTOR in pulmonary epithelium promotes LPS-induced acute lung injury.

    PubMed

    Hu, Yue; Lou, Jian; Mao, Yuan-Yuan; Lai, Tian-Wen; Liu, Li-Yao; Zhu, Chen; Zhang, Chao; Liu, Juan; Li, Yu-Yan; Zhang, Fan; Li, Wen; Ying, Song-Min; Chen, Zhi-Hua; Shen, Hua-Hao

    2016-12-01

    MTOR (mechanistic target of rapamycin [serine/threonine kinase]) plays a crucial role in many major cellular processes including metabolism, proliferation and macroautophagy/autophagy induction, and is also implicated in a growing number of proliferative and metabolic diseases. Both MTOR and autophagy have been suggested to be involved in lung disorders, however, little is known about the role of MTOR and autophagy in pulmonary epithelium in the context of acute lung injury (ALI). In the present study, we observed that lipopolysaccharide (LPS) stimulation induced MTOR phosphorylation and decreased the expression of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β)-II, a hallmark of autophagy, in mouse lung epithelium and in human bronchial epithelial (HBE) cells. The activation of MTOR in HBE cells was mediated by TLR4 (toll-like receptor 4) signaling. Genetic knockdown of MTOR or overexpression of autophagy-related proteins significantly attenuated, whereas inhibition of autophagy further augmented, LPS-induced expression of IL6 (interleukin 6) and IL8, through NFKB signaling in HBE cells. Mice with specific knockdown of Mtor in bronchial or alveolar epithelial cells exhibited significantly attenuated airway inflammation, barrier disruption, and lung edema, and displayed prolonged survival in response to LPS exposure. Taken together, our results demonstrate that activation of MTOR in the epithelium promotes LPS-induced ALI, likely through downregulation of autophagy and the subsequent activation of NFKB. Thus, inhibition of MTOR in pulmonary epithelial cells may represent a novel therapeutic strategy for preventing ALI induced by certain bacteria.

  10. Modulation of the pro-inflammatory cytokines and matrix metalloproteinases production in co-cultivated human keratinocytes and melanocytes.

    PubMed

    Decean, H; Perde-Schrepler, M; Tatomir, C; Fischer-Fodor, E; Brie, I; Virag, P

    2013-10-01

    The human epidermis exerts immunoregulatory functions through the variety of cytokines and other molecules elaborated by keratinocytes and melanocytes. Their constitutive production is very low; however, considerably increased upon stimulation. In vivo, keratinocytes and melanocytes have a typical exposure in the skin, referred as melanocyte epidermal unit. In the present study we co-cultivated these cells in vitro proposing to elucidate some communication links in close cell-to-cell association. We assessed the amounts of IL-6, IL-8, and matrix metalloproteinases (MMP-2 and MMP-9) in individually and co-cultured cells, exposed or not to UVB radiation. Normal human epidermal keratinocytes and melanocytes were grown in specific media and supplements. Cells were exposed to UVB radiation (100 mJ/cm(2)) to create comparable stress to the environmental one. Cytokines were determined with ELISA and confirmed with Western blot and metalloproteinases with gel zimography. Pure cultures of keratinocytes and melanocytes released low amounts of cytokines and metalloproteinases, these secretions being enhanced by UVB irradiation. In co-cultures, the cell-to-cell proximity triggered signals which markedly augmented the cytokines' secretions, whereas metalloproteinases were down-regulated. UVB irradiation did not influence either of these secretions in co-cultures. Concurrently with the highest levels of the pro-inflammatory cytokines, MMP-9 was up-regulated creating pro-inflammatory conditions and premises for changes in cellular survival, differentiation and phenotype. A complex network of interactions occurred between keratinocytes and melanocytes in co-cultures, resulting in modulated pro-inflammatory cytokines and metalloproteinases productions. Therefore, any disturbances in the microenvironmental signaling system and its molecular constituents may result in inflammation or even tumorigenesis in the epidermis.

  11. Pro-inflammatory cytokine predicts reduced rejection of unfair financial offers.

    PubMed

    Ohira, Hideki; Osumi, Takahiro; Matsunaga, Masahiro; Yamakawa, Kaori

    2013-01-01

    This study aimed to examine one of biological correlates, pro-inflammatory cytokine, in rejection of unfair financial offers in the Ultimatum Game (UG), where the division of a sum of money is proposed and the player can accept or reject this offer. Nineteen participants played 20 trials of the UG as responders, and they were proposed unfair offers in a half of the trials. Baseline levels of several pro-inflammatory and anti-inflammatory cytokines, subjective happiness, and depression of them were measured. Participants with higher levels of the pro-inflammatory cytokine, interleukin (IL)-6 rejected fewer unfair offers. This effect of IL-6 levels on decision-making was independent from other pro-inflammatory cytokines, anti-inflammatory cytokines, subjective happiness, and depression. These results suggested that chronic higher levels of IL-6 might affect functions of neural regions related to decision making, and thus can modulate rejection of unfair offers.

  12. Intensity modulated radiotherapy induces pro-inflammatory and pro-survival responses in prostate cancer patients

    PubMed Central

    EL-SAGHIRE, HOUSSEIN; VANDEVOORDE, CHARLOT; OST, PIET; MONSIEURS, PIETER; MICHAUX, ARLETTE; DE MEERLEER, GERT; BAATOUT, SARAH; THIERENS, HUBERT

    2014-01-01

    Intensity modulated radiotherapy (IMRT) is one of the modern conformal radiotherapies that is widely used within the context of cancer patient treatment. It uses multiple radiation beams targeted to the tumor, however, large volumes of the body receive low doses of irradiation. Using γ-H2AX and global genome expression analysis, we studied the biological responses induced by low doses of ionizing radiation in prostate cancer patients following IMRT. By means of different bioinformatics analyses, we report that IMRT induced an inflammatory response via the induction of viral, adaptive, and innate immune signaling. In response to growth factors and immune-stimulatory signaling, positive regulation in the progression of cell cycle and DNA replication were induced. This denotes pro-inflammatory and pro-survival responses. Furthermore, double strand DNA breaks were induced in every patient 30 min after the treatment and remaining DNA repair and damage signaling continued after 18–24 h. Nine genes belonging to inflammatory responses (TLR3, SH2D1A and IL18), cell cycle progression (ORC4, SMC2 and CCDC99) and DNA damage and repair (RAD17, SMC6 and MRE11A) were confirmed by quantitative RT-PCR. This study emphasizes that the risk assessment of health effects from the out-of-field low doses during IMRT should be of concern, as these may increase the risk of secondary cancers and/or systemic inflammation. PMID:24435511

  13. Fucoidan delays apoptosis and induces pro-inflammatory cytokine production in human neutrophils.

    PubMed

    Jin, Jun-O; Yu, Qing

    2015-02-01

    Although some immune modulatory effects of fucoidan have been elucidated, the effects of fucoidan on the apoptosis and activation of human neutrophils have not been investigated. In this study, we demonstrated that fucoidan purified from the brown seaweed Undaria pinnatifilda delays spontaneous apoptosis of human neutrophils and induces their activation. Fucoidan treatment inhibited apoptotic nuclei changes and phosphatidyl serine (PS) exposure on neutrophils cultured in vitro for 24h. The delay in neutrophil apoptosis mediated by fucoidan was associated with increased levels of the anti-apoptotic protein Mcl-1 and decreased levels of activated caspase-3. Screening of the signaling pathways by specific inhibitors indicated that fucoidan-induced delay in neutrophil apoptosis was dependent on the activation of PI3K/AKT signaling pathway, whereas MAPK signaling pathway was not critical. In addition, fucoidan enhanced the production of IL-6, IL-8 and TNF-α from neutrophils in an AKT-dependent manner. Taken together, these results demonstrated that fucoidan delays human neutrophil apoptosis and induces their production of pro-inflammatory cytokines. This knowledge could facilitate the development of novel therapeutic strategies for infectious diseases and neutropenia by controlling neutrophil homeostasis and function with fucoidan.

  14. Entada africana fraction CH2Cl2/MEOH 5% inhibits inducible nitric oxide synthase and pro-inflammatory cytokines gene expression induced by lipopolysaccharide in microglia

    PubMed Central

    2013-01-01

    Background Inflammatory response in the CNS mediated by microglia cells play an important role in host defense and is implicated in the pathology of neurodegenerative diseases. We investigated the capacity of Entada africana to protect microglia from inflammatory insults by exploring the effect of the CH2Cl2/MEOH 5% fraction (Ea5) on pro-inflammatory cytokines mRNA expression. Finally, we studied the effect of Ea5 on the inhibition of p38 MAPK Kinase. The results were compared to those obtained with Baicalin, a well reported anti-inflammatory flavonoid. Methods Barks from E. africana were harvested in 2010, in the west region of Cameroon. A crude extract was prepared using CH2Cl2/MEOH 1:1 V/V. The crude extract obtained was further fractionated by flash chromatography. A mouse microglia cell line (N9) was stimulated by LPS with or without different concentrations of Baicalin and Ea5. The release of NO was evaluated using the Griess method. The expression of pro-inflammatory cytokines mRNA (TNFα, IL-1β, IL-6) and iNOS/NO were measured by RT- PCR. The inhibition of p38 MAPK Kinase was assessed using ELISA. Results We found that Ea5, as well as Baicalin inhibited LPS-induced NO production in a dose dependent manner. Ea5 was most active in term of NO inhibition (87.07%), in comparison to Baicalin (70.85%). The expression of TNFα, IL-1β, IL-6 and iNOS was strongly suppressed by Ea5 in microglia. Ea5 also inhibited the activity of p38MAPK Kinase, up to 30% for the concentrations tested, whereas a prominent inhibition was obtained with Baicalin. Conclusion These results suggest that E. africana may contain promising compounds useful for the treatment of diseases cause by over-activation of microglia such as Alzheimer disease and other neurological diseases. PMID:24089706

  15. TNF-α-induced up-regulation of pro-inflammatory cytokines is reduced by phosphatidylcholine in intestinal epithelial cells

    PubMed Central

    2009-01-01

    Background Phosphatidylcholine (PC) is a major lipid of the gastrointestinal mucus layer. We recently showed that mucus from patients suffering from ulcerative colitis has low levels of PC. Clinical studies reveal that the therapeutic addition of PC to the colonic mucus using slow release preparations is beneficial. The positive role of PC in this disease is still unclear; however, we have recently shown that PC has an intrinsic anti-inflammatory property. It could be demonstrated that the exogenous application of PC inhibits membrane-dependent actin assembly and TNF-α-induced nuclear NF-κB activation. We investigate here in more detail the hypothesis that the exogenous application of PC has anti-inflammatory properties. Methods PC species with different fatty acid side chains were applied to differentiated and non-differentiated Caco-2 cells treated with TNF-α to induce a pro-inflammatory response. We analysed TNF-α-induced NF-κB-activation via the transient expression of a NF-κB-luciferase reporter system. Pro-inflammatory gene transcription was detected with the help of a quantitative real time (RT)-PCR analysis. We assessed the binding of TNF-α to its receptor by FACS and analysed lipid rafts by isolating detergent resistant membranes (DRMs). Results The exogenous addition of all PC species tested significantly inhibited TNF-α-induced pro-inflammatory signalling. The expression levels of IL-8, ICAM-1, IP-10, MCP-1, TNF-α and MMP-1 were significantly reduced after PC pre-treatment for at least two hours. The effect was comparable to the inhibition of NF-kB by the NF-kB inhibitor SN 50 and was not due to a reduced binding of TNF-α to its receptor or a decreased surface expression of TNF-α receptors. PC was also effective when applied to the apical side of polarised Caco-2 cultures if cells were stimulated from the basolateral side. PC treatment changed the compartmentation of the TNF-α-receptors 1 and 2 to DRMs. Conclusion PC induces a prolonged

  16. Protein tyrosine phosphatase-1B contributes to LPS-induced leptin resistance in male rats.

    PubMed

    Borges, Beatriz de Carvalho; Rorato, Rodrigo C; Uchoa, Ernane Torres; Marangon, Paula B; Elias, Carol F; Antunes-Rodrigues, Jose; Elias, Lucila L K

    2015-01-01

    Leptin resistance is induced by the feedback inhibitors tyrosine phosphatase-1B (PTP1B) and decreased Src homology 2 domain-containing tyrosine phosphatase-2 (SHP-2) signaling. To investigate the participation of PTP1B and SHP-2 in LPS-induced leptin resistance, we injected repeated (6-LPS) intraperitoneal LPS doses (100 μg/kg ip) for comparison with a single (1-LPS) treatment and evaluated the expression of SHP-2, PTP1B, p-ERK1/2, and p-STAT3 in the hypothalamus of male Wistar rats. The single LPS treatment increased the expression of p-STAT3 and PTP1B but not SHP-2. The repeated LPS treatment reduced SHP-2, increased PTP1B, and did not change p-STAT3. We observed that the PTP1B expression induced by the endotoxin was highly colocalized with leptin receptor cells in the hypothalamus of LepRb-IRES-Cre-tdTomato reporter mice. The single, but not the repeated, LPS treatment decreased the food intake and body weight. Leptin had no stimulatory effect on the hypophagia, body weight loss, or pSTAT3 expression in 6-LPS rats, indicating leptin unresponsiveness. Notably, the PTP1B inhibitor (3.0 nmol/rat in 5 μl icv) restored the LPS-induced hypophagia in 6-LPS rats and restored the ability of leptin to reduce food intake and body weight as well as to phosphorylate STAT3 in the arcuate, paraventricular, and ventromedial nuclei of the hypothalamus. The present data suggest that an increased PTP1B expression in the hypothalamus underlies the development of leptin resistance during repeated exposure to LPS. Our findings contribute to understanding the mechanisms involved in leptin resistance during low-grade inflammation as seen in obesity.

  17. LPS-induced systemic inflammation is more severe in P2Y12 null mice

    PubMed Central

    Liverani, Elisabetta; Rico, Mario C.; Yaratha, Laxmikausthubha; Tsygankov, Alexander Y.; Kilpatrick, Laurie E.; Kunapuli, Satya P.

    2014-01-01

    Thienopyridines are a class of antiplatelet drugs that are metabolized in the liver to several metabolites, of which only one active metabolite can irreversibly antagonize the platelet P2Y12 receptor. Possible effects of these drugs and the role of activated platelets in inflammatory responses have also been investigated in a variety of animal models, demonstrating that thienopyridines could alter inflammation. However, it is not clear whether it is caused only by the P2Y12 antagonism or whether off-target effects of other metabolites also intervene. To address this question, we investigated P2Y12 KO mice during a LPS-induced model of systemic inflammation, and we treated these KO mice with a thienopyridine drug (clopidogrel). Contrary to the reported effects of clopidogrel, numbers of circulating WBCs and plasma levels of cytokines were increased in LPS-exposed KO mice compared with WT in this inflammation model. Moreover, both spleen and bone marrow show an increase in cell content, suggesting a role for P2Y12 in regulation of bone marrow and spleen cellular composition. Finally, the injury was more severe in the lungs of KO mice compared with WT. Interestingly, clopidogrel treatments also exerted protective effects in KO mice, suggesting off-target effects for this drug. In conclusion, the P2Y12 receptor plays an important role during LPS-induced inflammation, and this signaling pathway may be involved in regulating cell content in spleen and bone marrow during LPS systemic inflammation. Furthermore, clopidogrel may have effects that are independent of P2Y12 receptor blockade. PMID:24142066

  18. Intermedin attenuates LPS-induced inflammation in the rat testis.

    PubMed

    Li, Lei; Ma, Ping; Liu, Yongjun; Huang, Chen; O, Wai-sum; Tang, Fai; Zhang, Jian V

    2013-01-01

    First reported as a vasoactive peptide in the cardiovascular system, intermedin (IMD), also known as adrenomedullin 2 (ADM2), is a hormone with multiple potent roles, including its antioxidant action on the pulmonary, central nervous, cardiovascular and renal systems. Though IMD may play certain roles in trophoblast cell invasion, early embryonic development and cumulus cell-oocyte interaction, the role of IMD in the male reproductive system has yet to be investigated. This paper reports our findings on the gene expression of IMD, its receptor components and its protein localization in the testes. In a rat model, bacterial lippolysaccharide (LPS) induced atypical orchitis, and LPS treatment upregulated the expression of IMD and one of its receptor component proteins, i.e. receptor activity modifying protein 2 (RAMP2). IMD decreased both plasma and testicular levels of reactive oxygen species (ROS) production, attenuated the increase in the gene expression of the proinflammatory cytokines tumor necrosis factor alpha (TNFα), interleukin 6 (IL6) and interleukin 1 beta (IL1β), rescued spermatogenesis, and prevented the decrease in plasma testosterone levels caused by LPS. The restorative effect of IMD on steroidogenesis was also observed in hydrogen peroxide-treated rat primary Leydig cells culture. Our results indicate IMD plays an important protective role in spermatogenesis and steroidogenesis, suggesting therapeutic potential for IMD in pathological conditions such as orchitis.

  19. Alpinetin attenuates inflammatory responses by interfering toll-like receptor 4/nuclear factor kappa B signaling pathway in lipopolysaccharide-induced mastitis in mice.

    PubMed

    Chen, Haijin; Mo, Xiaodong; Yu, Jinlong; Huang, Zonghai

    2013-09-01

    Alpinetin, a novel plant flavonoid derived from Alpinia katsumadai Hayata, has been reported to exhibit anti-inflammatory properties. However, the effect of alpinetin on mastitis has not been investigated. The aim of this study was to investigate the protective effect of alpinetin against lipopolysaccharide (LPS)-induced mastitis and to clarify the possible mechanism. In the present study, primary mouse mammary epithelial cells and an LPS-induced mouse mastitis model were used to investigate the effect of alpinetin on mastitis and the possible mechanism. In vivo, we observed that alpinetin significantly attenuated the infiltration of neutrophilic granulocytes, and the activation of myeloperoxidase; down-regulated the level of pro-inflammatory cytokines, including TNF-α, IL-1β and IL-6; inhibited the phosphorylation of IκB-α, NF-κB p65 and the expression of TLR4, caused by LPS. In vitro, we also observed that alpinetin inhibited the expression of TLR4 and the production of TNF-α, IL-1β and IL-6 in LPS-stimulated primary mouse mammary epithelial cells. However, alpinetin could not inhibit the production of IL-1β and IL-6 in TNF-α-stimulated primary mouse mammary epithelial cells. In conclusion, our results suggest that the anti-inflammatory effects of alpinetin against LPS-induced mastitis may be due to its ability to inhibit TLR4-mediated NF-κB signaling pathways. Alpinetin may be a promising potential therapeutic reagent for mastitis treatment.

  20. Arctigenin Protects against Lipopolysaccharide-Induced Pulmonary Oxidative Stress and Inflammation in a Mouse Model via Suppression of MAPK, HO-1, and iNOS Signaling.

    PubMed

    Zhang, Wen-zhou; Jiang, Zheng-kui; He, Bao-xia; Liu, Xian-ben

    2015-08-01

    Arctigenin, a bioactive component of Arctium lappa (Nubang), has anti-inflammatory activity. Here, we investigated the effects of arctigenin on lipopolysaccharide (LPS)-induced acute lung injury. Mice were divided into four groups: control, LPS, LPS + DMSO, and LPS + Arctigenin. Mice in the LPS + Arctigenin group were injected intraperitoneally with 50 mg/kg of arctigenin 1 h before an intratracheal administration of LPS (5 mg/kg). Lung tissues and bronchoalveolar lavage fluids (BALFs) were collected. Histological changes of the lung were analyzed by hematoxylin and eosin staining. Arctigenin decreased LPS-induced acute lung inflammation, infiltration of inflammatory cells into BALF, and production of pro-inflammatory cytokines. Moreover, arctigenin pretreatment reduced the malondialdehyde level and increased superoxide dismutase and catalase activities and glutathione peroxidase/glutathione disulfide ratio in the lung. Mechanically, arctigenin significantly reduced the production of nitric oxygen and inducible nitric oxygen synthase (iNOS) expression, enhanced the expression of heme oxygenase-1, and decreased the phosphorylation of mitogen-activated protein kinases (MAPKs). Arctigenin has anti-inflammatory and antioxidative effects on LPS-induced acute lung injury, which are associated with modulation of MAPK, HO-1, and iNOS signaling.

  1. Epigenetic synergies between biotin and folate in the regulation of pro-inflammatory cytokines and repeats.

    PubMed

    Xue, J; Zempleni, J

    2013-11-01

    The protein biotin ligase, holocarboxylase synthetase (HLCS), is a chromatin protein that interacts physically with the DNA methyltransferase DNMT1, the methylated cytosine-binding protein MeCP2 and the histone H3 K9-methyltransferase EHMT1, all of which participate in folate-dependent gene repression. Here we tested the hypothesis that biotin and folate synergize in the repression of pro-inflammatory cytokines and long-terminal repeats (LTRs), mediated by interactions between HLCS and other chromatin proteins. Biotin and folate supplementation could compensate for each other's deficiency in the repression of LTRs in Jurkat and U937 cells. For example, when biotin-deficient Jurkat cells were supplemented with folate, the expression of LTRs decreased by >70%. Epigenetic synergies were more complex in the regulation of cytokines compared with LTRs. For example, the abundance of TNF-α was 100% greater in folate- and biotin-supplemented U937 cells compared with biotin-deficient and folate-supplemented cells. The NF-κB inhibitor curcumin abrogated the effects of folate and biotin in cytokine regulation, suggesting that transcription factor signalling adds an extra layer of complexity to the regulation of cytokine genes by epigenetic phenomena. We conclude that biotin and folate synergize in the repression of LTRs and that these interactions are probably mediated by HLCS-dependent epigenetic mechanisms. In contrast, synergies between biotin and folate in the regulation of cytokines need to be interpreted in the context of transcription factor signalling.

  2. Suppression of lung inflammation in an LPS-induced acute lung injury model by the fruit hull of Gleditsia sinensis.

    PubMed

    Kim, Kyun Ha; Kwun, Min Jung; Han, Chang Woo; Ha, Ki-Tae; Choi, Jun-Yong; Joo, Myungsoo

    2014-10-15

    The fruit hull of Gleditsia sinensis (FGS) used in traditional Asian medicine was reported to have a preventive effect on lung inflammation in an acute lung injury (ALI) mouse model. Here, we explored FGS as a possible therapeutics against inflammatory lung diseases including ALI, and examined an underlying mechanism for the effect of FGS. The decoction of FGS in water was prepared and fingerprinted. Mice received an intra-tracheal (i.t.) FGS 2 h after an intra-peritoneal (i.p.) injection of lipopolysaccharide (LPS). The effect of FGS on lung inflammation was determined by chest imaging of NF-κB reporter mice, counting inflammatory cells in bronchoalveolar lavage fluid, analyzing lung histology, and performing semi-quantitative RT-PCR analysis of lung tissue. Impact of Nrf2 on FGS effect was assessed by comparing Nrf2 knockout (KO) and wild type (WT) mice that were treated similarly. Bioluminescence from the chest of the reporter mice was progressively increased to a peak at 16 h after an i.p. LPS treatment. FGS treatment 2 h after LPS reduced the bioluminescence and the expression of pro-inflammatory cytokine genes in the lung. While suppressing the infiltration of inflammatory cells to the lungs of WT mice, FGS post-treatment failed to reduce lung inflammation in Nrf2 KO mice. FGS activated Nrf2 and induced Nrf2-dependent gene expression in mouse lung. FGS post-treatment suppressed lung inflammation in an LPS-induced ALI mouse model, which was mediated at least in part by Nrf2. Our results suggest a therapeutic potential of FGS on inflammatory lung diseases.

  3. Curcumin abrogates LPS-induced proinflammatory cytokines in RAW 264.7 macrophages. Evidence for novel mechanisms involving SOCS-1, -3 and p38 MAPK

    PubMed Central

    Guimarães, Morgana Rodrigues; Leite, Fábio Renato Manzoli; Spolidorio, Luís Carlos; Kirkwood, Keith Lough; Rossa, Carlos

    2013-01-01

    Curcumin is the active compound in the extract of Curcuma longa rhizomes with anti-inflammatory properties mediated by inhibition of intracellular signalling. SOCS and MAPKinases are involved in the signalling events controlling the expression of IL-6, TNF-α and PGE2, which have important roles on chronic inflammatory diseases. The aim was to assess if these pathways are involved in curcumin-mediated effects on LPS-induced expression of these cytokines in macrophages. RAW 264.7 murine macrophages were stimulated with Escherichia coli LPS in the presence and absence of non-cytotoxic concentrations of curcumin. Curcumin potently inhibited LPS-induced expression of IL-6, TNF-α and COX-2 mRNA and prevented LPS-induced inhibition of SOCS-1 and -3 expression and the inhibition of the activation of p38 MAPKinase by modulation of its nuclear translocation. In conclusion, curcumin potently inhibits expression of LPS-induced inflammatory cytokines in macrophages via mechanisms that involve modulation of expression and activity of SOCS-1 and SOCS-3 and of p38 MAPK. PMID:24011306

  4. Bovine milk RNases modulate pro-inflammatory responses induced by nucleic acids in cultured immune and epithelial cells.

    PubMed

    Gupta, Sandeep K; Haigh, Brendan J; Seyfert, Hans-Martin; Griffin, Frank J; Wheeler, Thomas T

    2017-03-01

    Activation of innate immune receptors by exogenous substances is crucial for the detection of microbial pathogens and a subsequent inflammatory response. The inflammatory response to microbial lipopolysaccharide via Toll-like receptor 4 (TLR4) is facilitated by soluble accessory proteins, but the role of such proteins in the activation of other pathogen recognition receptors for microbial nucleic acid is not well understood. Here we demonstrate that RNase4 and RNase5 purified from bovine milk bind to Salmonella typhimurium DNA and stimulate pro-inflammatory responses induced by nucleic acid mimetics and S. typhimurium DNA in an established mouse macrophage cell culture model, RAW264.7, as well as in primary bovine mammary epithelial cells. RNase4 and 5 also modulated pro-inflammatory signalling in response to nucleic acids in bovine peripheral blood mononuclear cells, although producing a distinct response. These results support a role for RNase4 and RNase5 in mediating inflammatory signals in both immune and epithelial cells, involving mechanisms that are cell-type specific.

  5. Euglena gracilis paramylon activates human lymphocytes by upregulating pro-inflammatory factors.

    PubMed

    Russo, Rossella; Barsanti, Laura; Evangelista, Valter; Frassanito, Anna M; Longo, Vincenzo; Pucci, Laura; Penno, Giuseppe; Gualtieri, Paolo

    2017-03-01

    The aim of this study was to verify the activation details and products of human lymphomonocytes, stimulated by different β-glucans, that is Euglena paramylon, MacroGard(®), and lipopolysaccharide. We investigated the gene expression of inflammation-related cytokines and mediators, transactivation of relevant transcription factors, and phagocytosis role in cell-glucan interactions, by means of RT-PCR, immunocytochemistry, and colorimetric assay. Our results show that sonicated and alkalized paramylon upregulates pro-inflammatory factors (NO, TNF-α, IL-6, and COX-2) in lymphomonocytes. A clear demonstration of this upregulation is the increased transactivation of NF-kB visualized by immunofluorescence microscopy. Phagocytosis assay showed that internalization is not a mandatory step for signaling cascade to be triggered, since immune activity is not present in the lymphomonocytes that have internalized paramylon granules and particulate MacroGard(®). Moreover, the response of Euglena β-glucan-activated lymphomonocytes is much greater than that induced by commercially used β-glucans such as MacroGard(®). Our in vitro results indicate that linear fibrous Euglena β-glucan, obtained by sonication and alkaline treatment can act as safe and effective coadjutant of the innate immune system response.

  6. Hederagenin Supplementation Alleviates the Pro-Inflammatory and Apoptotic Response to Alcohol in Rats

    PubMed Central

    Kim, Gyeong-Ji; Song, Da Hye; Yoo, Han Seok; Chung, Kang-Hyun; Lee, Kwon Jai; An, Jeung Hee

    2017-01-01

    In this study, we determined the effects of hederagenin isolated from Akebia quinata fruit on alcohol-induced hepatotoxicity in rats. Specifically, we investigated the hepatoprotective, anti-inflammatory, and anti-apoptotic effects of hederagenin, as well as the role of AKT and mitogen-activated protein kinase (MAPK) signaling pathways in ethanol-induced liver injury. Experimental animals were randomly divided into three groups: normal (sham), 25% ethanol, and 25% ethanol + hederagenin (50 mg/kg/day). Each group was orally administered the respective treatments once per day for 21 days. Acetaldehyde dehydrogenase-2 mRNA expression was higher and alcohol dehydrogenase mRNA expression was lower in the ethanol + hederagenin group than those in the ethanol group. Pro-inflammatory cytokines, including TNF-α, IL-6, and cyclooxygenase-2, significantly increased in the ethanol group, but these increases were attenuated by hederagenin. Moreover, Western blot analysis showed increased expression of the apoptosis-associated protein, Bcl-2, and decreased expression of Bax and p53 after treatment with hederagenin. Hederagenin treatment attenuated ethanol-induced increases in activated p38 MAPK and increased the levels of phosphorylated AKT and ERK. Hederagenin alleviated ethanol-induced liver damage through anti-inflammatory and anti-apoptotic activities. These results suggest that hederagenin is a potential candidate for preventing alcoholic liver injury. PMID:28067819

  7. CCN1, a Pro-Inflammatory Factor, Aggravates Psoriasis Skin Lesions by Promoting Keratinocyte Activation.

    PubMed

    Sun, Yue; Zhang, Jie; Zhou, Zhou; Wu, Pinru; Huo, Rongfen; Wang, Beiqing; Shen, Zhengyu; Li, Huidan; Zhai, Tianhang; Shen, Baihua; Chen, Xiangdong; Li, Ningli

    2015-11-01

    Psoriasis is a common chronic skin disease characterized by epidermal hyperplasia and inflammation. The pathogenesis of psoriasis is multifactorial and is not fully understood. Here we demonstrate that CCN1 (also called Cyr61, which is short for cysteine-rich 61), an extracellular matrix protein that is also considered a pro-inflammatory factor, is highly expressed in the lesional skin of psoriasis patients, as well as in that of imiquimod (IMQ)- and IL-23-treated psoriasis-like mice. Then we show that blocking CCN1 function in vivo attenuates epidermal hyperplasia and inflammation in psoriasis-like mice. Further, in primary cultured normal human keratinocytes and HaCaT (human keratinocyte cell line) cells, CCN1 promotes keratinocyte activation, including the proliferation and expression of immune-related molecules. Finally, we observe that integrin α6β1 is the receptor of CCN1 in keratinocytes, and CCN1 stimulation activates the downstream phosphoinositide-3 kinase/Akt/NF-κB signaling pathway. Taken together, our findings reveal that CCN1 has a critical role in psoriasis pathogenesis. Moreover, as CCN1 is a secreted extracellular matrix (ECM) protein, our study also provides evidence that ECM, which is involved in psoriatic pathogenesis, could be a potent target for psoriasis treatment.

  8. Hederagenin Supplementation Alleviates the Pro-Inflammatory and Apoptotic Response to Alcohol in Rats.

    PubMed

    Kim, Gyeong-Ji; Song, Da Hye; Yoo, Han Seok; Chung, Kang-Hyun; Lee, Kwon Jai; An, Jeung Hee

    2017-01-06

    In this study, we determined the effects of hederagenin isolated from Akebia quinata fruit on alcohol-induced hepatotoxicity in rats. Specifically, we investigated the hepatoprotective, anti-inflammatory, and anti-apoptotic effects of hederagenin, as well as the role of AKT and mitogen-activated protein kinase (MAPK) signaling pathways in ethanol-induced liver injury. Experimental animals were randomly divided into three groups: normal (sham), 25% ethanol, and 25% ethanol + hederagenin (50 mg/kg/day). Each group was orally administered the respective treatments once per day for 21 days. Acetaldehyde dehydrogenase-2 mRNA expression was higher and alcohol dehydrogenase mRNA expression was lower in the ethanol + hederagenin group than those in the ethanol group. Pro-inflammatory cytokines, including TNF-α, IL-6, and cyclooxygenase-2, significantly increased in the ethanol group, but these increases were attenuated by hederagenin. Moreover, Western blot analysis showed increased expression of the apoptosis-associated protein, Bcl-2, and decreased expression of Bax and p53 after treatment with hederagenin. Hederagenin treatment attenuated ethanol-induced increases in activated p38 MAPK and increased the levels of phosphorylated AKT and ERK. Hederagenin alleviated ethanol-induced liver damage through anti-inflammatory and anti-apoptotic activities. These results suggest that hederagenin is a potential candidate for preventing alcoholic liver injury.

  9. Retinoic acid dampens LPS-induced NF-kappaB activity: results from human monoblasts and in vivo imaging of NF-kappaB reporter mice.

    PubMed

    Austenaa, Liv M; Carlsen, Harald; Hollung, Kristin; Blomhoff, Heidi K; Blomhoff, Rune

    2009-09-01

    Bacterial lipopolysaccharide (LPS) is a major inducer of systemic inflammatory reactions and oxidative stress in response to microbial infections and may cause sepsis. In the present study, we demonstrate that retinoic acid inhibits LPS-induced activation in transgenic reporter mice and human monoblasts through inhibition of nuclear factor kappaB (NF-kappaB). By using noninvasive molecular imaging of NF-kappaB luciferase reporter mice, we showed that administration of retinoic acid repressed LPS-induced whole-body luminescence, demonstrating in vivo the dynamics of retinoic acid's ability to repress physiologic response to LPS. Retinoic acid also inhibited LPS-induced NF-kappaB activity in the human myeloblastic cell line U937. Retinoic-acid-receptor-selective agonists mimicked - while specific antagonists inhibited - the effects of retinoic acid, suggesting the involvement of nuclear retinoic acid receptors. Retinoic acid also repressed LPS-induced transcription of NF-kappaB target genes such as IL-6, MCP-1 and COX-2. The effect of retinoic acid was dependent on new protein synthesis, was obstructed by a deacetylase inhibitor and was partly eliminated by a signal transducer and activator of transcription-1 (STAT1)/methyltransferase inhibitor, indicating that retinoic acid induces a new protein, possibly STAT1, that is involved in inhibiting NF-kappaB. This provides more evidence for retinoic acid's anti-inflammatory potential, which may have clinical implications in terms of fighting microbial infections.

  10. Tumor necrosis factor receptor-1 is essential for LPS-induced sensitization and tolerance to oxygen-glucose deprivation in murine neonatal organotypic hippocampal slices.

    PubMed

    Markus, Tina; Cronberg, Tobias; Cilio, Corrado; Pronk, Cornelis; Wieloch, Tadeusz; Ley, David

    2009-01-01

    Inflammation and ischemia have a synergistic damaging effect in the immature brain. The role of tumor necrosis factor (TNF) receptors 1 and 2 in lipopolysaccharide (LPS)-induced sensitization and tolerance to oxygen-glucose deprivation (OGD) was evaluated in neonatal murine hippocampal organotypic slices. Hippocampal slices from balb/c, C57BL/6 TNFR1(-/-), TNFR2(-/-), and wild-type (WT) mice obtained at P6 were grown in vitro for 9 days. Preexposure to LPS immediately before OGD increased propidium iodide-determined cell death in regions CA1, CA3, and dentate gyrus from 4 up to 48 h after OGD (P<0.001). Extending the time interval between LPS exposure and OGD to 72 h resulted in tolerance, that is reduced neuronal cell death after OGD (P<0.05). Slices from TNFR1(-/-) mice showed neither LPS-induced sensitization nor LPS-induced tolerance to OGD, whereas both effects were present in slices from TNFR2(-/-) and WT mice. Cytokine secretion (TNFalpha and interleukin-6) during LPS exposure was decreased in TNFR1(-/-) slices and increased in TNFR2(-/-) as compared with WT slices. We conclude that LPS induces sensitization or tolerance to OGD depending on the time interval between exposure to LPS and OGD in murine hippocampal slice cultures. Both paradigms are dependent on signaling through TNFR1.

  11. Chebulagic acid inhibits the LPS-induced expression of TNF-α and IL-1β in endothelial cells by suppressing MAPK activation.

    PubMed

    Liu, Yueying; Bao, Luer; Xuan, Liying; Song, Baohua; Lin, Lin; Han, Hao

    2015-07-01

    Inflammatory response in the vasculature, including the overexpression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β, has been demonstrated to increase the risk of thrombosis development. Chebulagic acid (CA) is a key chemical component in the traditional Mongolian anti-thrombotic drug Garidi-13, and has been suggested to exert anti-inflammatory and anti-infective effects. The present study aimed to evaluate the regulatory impact of CA on a number of biological processes, including lipopolysaccharide (LPS)-induced inflammation, LPS-promoted mitogen-activated protein kinase (MAPK) activation and the expression of toll-like receptor (TLR)4 in EA.hy926 human endothelial cells. The results indicated that CA significantly inhibited the LPS-induced upregulation of TNF-α and IL-1β in a dose- and time-dependent manner. Furthermore, LPS-activated MAPK signaling was inhibited by CA treatment in the EA.hy926 cells. However, TLR4, which serves a key function in LPS-induced inflammation as the receptor of LPS, was not regulated by the CA treatment. In summary, the results of the present study indicate that CA inhibits the LPS-induced promotion of TNF-α and IL-1β in endothelial cells by suppressing MAPK activation, which may contribute to the anti-thrombotic effect of Garidi-13.

  12. Early LPS-induced ERK activation in retinal pigment epithelium cells is dependent on PIP2-PLC☆

    PubMed Central

    Mateos, Melina V.; Kamerbeek, Constanza B.; Giusto, Norma M.; Salvador, Gabriela A.

    2016-01-01

    This article presents additional data regarding the study “The phospholipase D pathway mediates the inflammatory response of the retinal pigment epithelium” [1]. The new data presented here show that short exposure of RPE cells to lipopolysaccharide (LPS) induces an early and transient activation of the extracellular signal-regulated kinase (ERK1/2). This early ERK1/2 activation is dependent on phosphatidylinositol bisphosphate-phospholipase C (PIP2-PLC). On the contrary, neither the phospholipase D 1 (PLD1) nor the PLD2 inhibition is able to modulate the early ERK1/2 activation induced by LPS in RPE cells. PMID:27006973

  13. Early LPS-induced ERK activation in retinal pigment epithelium cells is dependent on PIP 2 -PLC.

    PubMed

    Mateos, Melina V; Kamerbeek, Constanza B; Giusto, Norma M; Salvador, Gabriela A

    2016-06-01

    This article presents additional data regarding the study "The phospholipase D pathway mediates the inflammatory response of the retinal pigment epithelium" [1]. The new data presented here show that short exposure of RPE cells to lipopolysaccharide (LPS) induces an early and transient activation of the extracellular signal-regulated kinase (ERK1/2). This early ERK1/2 activation is dependent on phosphatidylinositol bisphosphate-phospholipase C (PIP2-PLC). On the contrary, neither the phospholipase D 1 (PLD1) nor the PLD2 inhibition is able to modulate the early ERK1/2 activation induced by LPS in RPE cells.

  14. The Fab Fragment of a Human Anti-Siglec-9 Monoclonal Antibody Suppresses LPS-Induced Inflammatory Responses in Human Macrophages

    PubMed Central

    Chu, Sasa; Zhu, Xuhui; You, Na; Zhang, Wei; Zheng, Feng; Cai, Binggang; Zhou, Tingting; Wang, Yiwen; Sun, Qiannan; Yang, Zhiguo; Zhang, Xin; Wang, Changjun; Nie, Shinan; Zhu, Jin; Wang, Maorong

    2016-01-01

    Sepsis is a major cause of death for hospitalized patients and is characterized by massive overreaction of immune responses to invading pathogens which is mediated by cytokines. For decades, there has been no effective treatment for sepsis. Sialic acid-binding, Ig-like lectin-9 (Siglec-9), is an immunomodulatory receptor expressed primarily on hematopoietic cells which is involved in various aspects of inflammatory responses and is a potential target for treatment of sepsis. The aim of the present study was to develop a human anti-Siglec-9 Fab fragment, which was named hS9-Fab03 and investigate its immune activity in human macrophages. We began by constructing the hS9-Fab03 prokaryotic expression vector from human antibody library and phage display. Then, we utilized a multitude of assays, including SDS-PAGE, Western blotting, ELISA, affinity, and kinetics assay to evaluate the binding affinity and specificity of hS9-Fab03. Results demonstrated that hS9-Fab03 specifically bind to Siglec-9 antigen with high affinity, and pretreatment with hS9-Fab03 could attenuate lipopolysaccharide (LPS)-induced TNF-α, IL-6, IL-1β, IL-8, and IFN-β production in human PBMC-derived macrophages, but slightly increased IL-10 production in an early time point. We also observed similar results in human THP-1-differentiated macrophages. Collectively, we prepared the hS9-Fab03 with efficient activity for blocking LPS-induced pro-inflammatory cytokines production in human macrophages. These results indicated that ligation of Siglec-9 with hS9-Fab03 might be a novel anti-inflammatory therapeutic strategy for sepsis. PMID:28082984

  15. Isofraxidin exhibited anti-inflammatory effects in vivo and inhibited TNF-α production in LPS-induced mouse peritoneal macrophages in vitro via the MAPK pathway.

    PubMed

    Niu, Xiaofeng; Xing, Wei; Li, Weifeng; Fan, Ting; Hu, Hua; Li, Yongmei

    2012-10-01

    Isofraxidin (IF) is a Coumarin compound that can be isolated from medicinal plants, such as Sarcandra glabra (Thunb.). Nakai is widely used in Asian countries for the treatment of anti-bacterial, anti-inflammatory and anti-tumour action. The present investigation was designed to evaluate the effect of IF on inflammation and nociception. In addition, we investigated a potential novel mechanism to explain the anti-inflammatory properties of IF. In vivo, xylene-induced mouse ear edema, carrageenan-induced rat paw edema, LPS-induced mouse endotoxic shock, acetic acid-induced mice writhing and formalin-induced mouse pain models were used to evaluate the anti-inflammatory activity of IF. In vitro, we examined the effects of IF inhibition on TNF-α production and the regulation of ERK1/2 and p38 phosphorylation activity in LPS-induced mouse peritoneal macrophages. Our results demonstrated that IF can significantly decrease xylene-induced ear edema, carrageenan-induced paw edema, acetic acid-induced writhing and formalin-induced pain. Moreover, IF greatly inhibited the production of TNF-α in the serum of LPS-stimulated mice and peritoneal macrophages, and it decreased phospho-p38 and ERK1/2 protein expression in LPS-stimulated mouse peritoneal macrophages. Overall, our data suggest that IF possesses significant analgesic and anti-inflammatory activities that may be mediated through the regulation of pro-inflammatory cytokines, TNF-α and the phosphorylation of p38 and ERK1/2.

  16. Pro-Inflammatory and Pro-Oxidant Status of Pancreatic Islet In Vitro Is Controlled by TLR-4 and HO-1 Pathways

    PubMed Central

    Vivot, Kevin; Langlois, Allan; Bietiger, William; Dal, Stéphanie; Seyfritz, Elodie; Pinget, Michel; Jeandidier, Nathalie; Maillard, Elisa; Gies, Jean-Pierre; Sigrist, Séverine

    2014-01-01

    Since their isolation until implantation, pancreatic islets suffer a major stress leading to the activation of inflammatory reactions. The maintenance of controlled inflammation is essential to preserve survival and function of the graft. Identification and targeting of pathway(s) implicated in post-transplant detrimental inflammatory events, is mandatory to improve islet transplantation success. We sought to characterize the expression of the pro-inflammatory and pro-oxidant mediators during islet culture with a focus on Heme oxygenase (HO-1) and Toll-like receptors-4 signaling pathways. Rat pancreatic islets were isolated and pro-inflammatory and pro-oxidant status were evaluated after 0, 12, 24 and 48 hours of culture through TLR-4, HO-1 and cyclooxygenase-2 (COX-2) expression, CCL-2 and IL-6 secretion, ROS (Reactive Oxygen Species) production (Dihydroethidine staining, DHE) and macrophages migration. To identify the therapeutic target, TLR4 inhibition (CLI-095) and HO-1 activation (cobalt protoporphyrin,CoPP) was performed. Activation of NFκB signaling pathway was also investigated. After isolation and during culture, pancreatic islet exhibited a proinflammatory and prooxidant status (increase levels of TLR-4, COX-2, CCL-2, IL-6, and ROS). Activation of HO-1 or inhibition of TLR-4 decreased inflammatory status and oxidative stress of islets. Moreover, the overexpression of HO-1 induced NFκB phosphorylation while the inhibition of TLR-4 had no effect NFκB activation. Finally, inhibition of pro-inflammatory pathway induced a reduction of macrophages migration. These data demonstrated that the TLR-4 signaling pathway is implicated in early inflammatory events leading to a pro-inflammatory and pro-oxidant status of islets in vitro. Moreover, these results provide the mechanism whereby the benefits of HO-1 target in TLR-4 signaling pathway. HO-1 could be then an interesting target to protect islets before transplantation. PMID:25343247

  17. Nanomolar aluminum induces pro-inflammatory and pro-apoptotic gene expression in human brain cells in primary culture.

    PubMed

    Lukiw, Walter J; Percy, Maire E; Kruck, Theo P

    2005-09-01

    Aluminum, the most abundant neurotoxic metal in our biosphere, has been implicated in the etiology of several neurodegenerative disorders including Alzheimer's disease (AD). To further understand aluminum's influence on gene expression, we examined total messenger RNA levels in untransformed human neural cells exposed to 100 nanomolar aluminum sulfate using high density DNA microarrays that interrogate the expression of every human gene. Preliminary data indicate that of the most altered gene expression levels, 17/24 (70.8%) of aluminum-affected genes, and 7/8 (87.5%) of aluminum-induced genes exhibit expression patterns similar to those observed in AD. The seven genes found to be significantly up-regulated by aluminum encode pro-inflammatory or pro-apoptotic signaling elements, including NF-kappaB subunits, interleukin-1beta precursor, cytosolic phospholipase A2, cyclooxygenase-2, beta-amyloid precursor protein and DAXX, a regulatory protein known to induce apoptosis and repress transcription. The promoters of genes up-regulated by aluminum are enriched in binding sites for the stress-inducible transcription factors HIF-1 and NF-kappaB, suggesting a role for aluminum, HIF-1 and NF-kappaB in driving atypical, pro-inflammatory and pro-apoptotic gene expression. The effect of aluminum on specific stress-related gene expression patterns in human brain cells clearly warrant further investigation.

  18. Auranofin, as an anti-rheumatic gold compound, suppresses LPS-induced homodimerization of TLR4.

    PubMed

    Youn, Hyung S; Lee, Joo Y; Saitoh, Shin I; Miyake, Kensuke; Hwang, Daniel H

    2006-12-01

    Toll-like receptors (TLRs), which are activated by invading microorganisms or endogenous molecules, evoke immune and inflammatory responses. TLR activation is closely linked to the development of many chronic inflammatory diseases including rheumatoid arthritis. Auranofin, an Au(I) compound, is a well-known and long-used anti-rheumatic drug. However, the mechanism as to how auranofin relieves the symptom of rheumatoid arthritis has not been fully clarified. Our results demonstrated that auranofin suppressed TLR4-mediated activation of transcription factors, NF-kappaB and IRF3, and expression of COX-2, a pro-inflammatory enzyme. This suppression was well correlated with the inhibitory effect of auranofin on the homodimerization of TLR4 induced by an agonist. Furthermore, auranofin inhibited NF-kappaB activation induced by MyD88-dependent downstream signaling components of TLR4, MyD88, IKKbeta, and p65. IRF3 activation induced by MyD88-independent signaling components, TRIF and TBK1, was also downregulated by auranofin. Our results first demonstrate that auranofin suppresses the multiple steps in TLR4 signaling, especially the homodimerization of TLR4. The results suggest that the suppression of TLR4 activity by auranofin may be the molecular mechanism through which auranofin exerts anti-rheumatic activity.

  19. Citrus bergamia Juice Extract Attenuates β-Amyloid-Induced Pro-Inflammatory Activation of THP-1 Cells Through MAPK and AP-1 Pathways.

    PubMed

    Currò, Monica; Risitano, Roberto; Ferlazzo, Nadia; Cirmi, Santa; Gangemi, Chiara; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele

    2016-02-08

    Flavonoids have been shown to be effective in protecting against age-related cognitive and motor decline in both in vitro and in vivo models. Recently, a flavonoid-rich extract of Citrus bergamia juice (BJe) has been shown to display anti-oxidant and anti-inflammatory properties against LPS-induced activation of human THP-1 monocytes. In the light of these observations, we wondered whether BJe may be beneficial against neuroinflammatory processes, such as those observed in Alzheimer's disease. To this aim we used THP-1 monocytes to investigate the mechanisms underlying the beneficial potential of BJe against amyloid-beta1-42 (Aβ1-42) -mediated inflammation. Exposure of THP-1 cells to Aβ1-42 significantly induced the expression and secretion of IL-6 and IL-1β in THP-1 cells and increased the phosphorylation of ERK 1/2 as well as p46 and p54 members of JNK family. Moreover, Aβ1-42 raises AP-1 DNA binding activity in THP-1-treated cells. Interestingly, all these effects were reduced in the presence of BJe. Our data indicate that BJe may effectively counteract the pro-inflammatory activation of monocytes/microglial cells exposed to amyloid fibrils, suggesting a promising role as a natural drug against neuroinflammatory processes.

  20. Chokeberry (Aronia melanocarpa (Michx.) Elliot) concentrate inhibits NF-κB and synergizes with selenium to inhibit the release of pro-inflammatory mediators in macrophages.

    PubMed

    Appel, Kurt; Meiser, Peter; Millán, Estrella; Collado, Juan Antonio; Rose, Thorsten; Gras, Claudia C; Carle, Reinhold; Muñoz, Eduardo

    2015-09-01

    Black chokeberry has been known to play a protective role in human health due to its high polyphenolic content including anthocyanins and caffeic acid derivatives. In the present study, we first characterized the polyphenolic content of a commercial chokeberry concentrate and investigated its effect on LPS-induced NF-κB activation and release of pro-inflammatory mediators in macrophages in the presence or the absence of sodium selenite. Examination of the phytochemical profile of the juice concentrate revealed high content of polyphenols (3.3%), including anthocyanins, proanthocyanidins, phenolic acids, and flavonoids. Among them, cyanidin-3-O-galactoside and caffeoylquinic acids were identified as the major compounds. Data indicated that chokeberry concentrate inhibited both the release of TNFα, IL-6 and IL-8 in human peripheral monocytes and the activation of the NF-κB pathway in RAW 264.7 macrophage cells. Furthermore, chokeberry synergizes with sodium selenite to inhibit NF-κB activation, cytokine release and PGE2 synthesis. These findings suggest that selenium added to chokeberry juice enhances significantly its anti-inflammatory activity, thus revealing a sound approach in order to tune the use of traditional herbals by combining them with micronutrients. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Citrus bergamia Juice Extract Attenuates β-Amyloid-Induced Pro-Inflammatory Activation of THP-1 Cells Through MAPK and AP-1 Pathways

    PubMed Central

    Currò, Monica; Risitano, Roberto; Ferlazzo, Nadia; Cirmi, Santa; Gangemi, Chiara; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele

    2016-01-01

    Flavonoids have been shown to be effective in protecting against age-related cognitive and motor decline in both in vitro and in vivo models. Recently, a flavonoid-rich extract of Citrus bergamia juice (BJe) has been shown to display anti-oxidant and anti-inflammatory properties against LPS-induced activation of human THP-1 monocytes. In the light of these observations, we wondered whether BJe may be beneficial against neuroinflammatory processes, such as those observed in Alzheimer’s disease. To this aim we used THP-1 monocytes to investigate the mechanisms underlying the beneficial potential of BJe against amyloid-beta1–42 (Aβ1−42) -mediated inflammation. Exposure of THP-1 cells to Aβ1−42 significantly induced the expression and secretion of IL-6 and IL-1β in THP-1 cells and increased the phosphorylation of ERK 1/2 as well as p46 and p54 members of JNK family. Moreover, Aβ1−42 raises AP-1 DNA binding activity in THP-1-treated cells. Interestingly, all these effects were reduced in the presence of BJe. Our data indicate that BJe may effectively counteract the pro-inflammatory activation of monocytes/microglial cells exposed to amyloid fibrils, suggesting a promising role as a natural drug against neuroinflammatory processes. PMID:26853104

  2. IL-1beta and LPS induce anorexia by distinct mechanisms differentially dependent on microsomal prostaglandin E synthase-1.

    PubMed

    Elander, Louise; Engström, Linda; Hallbeck, Martin; Blomqvist, Anders

    2007-01-01

    Recent work demonstrated that the febrile response to peripheral immune stimulation with proinflammatory cytokine IL-1beta or bacterial wall lipopolysaccharide (LPS) is mediated by induced synthesis of prostaglandin E(2) by the terminal enzyme microsomal prostaglandin E synthase-1 (mPGES-1). The present study examined whether a similar mechanism might also mediate the anorexia induced by these inflammatory agents. Transgenic mice with a deletion of the Ptges gene, which encodes mPGES-1, and wild-type controls were injected intraperitoneally with IL-1beta, LPS, or saline. Mice were free fed, and food intake was continuously monitored with an automated system for 12 h. Body weight was recorded every 24 h for 4 days. The IL-1beta induced anorexia in wild-type but not knock-out mice, and so it was almost completely dependent on mPGES-1. In contrast, LPS induced anorexia of the same magnitude in both phenotypes, and hence it was independent of mPGES-1. However, when the mice were prestarved for 22 h, LPS induced anorexia and concomitant body weight loss in the knock-out animals that was attenuated compared with the wild-type controls. These data suggest that IL-1beta and LPS induce anorexia by distinct immune-to-brain signaling pathways and that the anorexia induced by LPS is mediated by a mechanism different from the fever induced by LPS. However, nutritional state and/or motivational factors also seem to influence the pathways for immune signaling to the brain. Furthermore, both IL-1beta and LPS caused reduced meal size but not meal frequency, suggesting that both agents exerted an anhedonic effect during these experimental conditions.

  3. A novel antagonist of p75NTR reduces peripheral expansion and CNS trafficking of pro-inflammatory monocytes and spares function after traumatic brain injury.

    PubMed

    Lee, Sangmi; Mattingly, Aaron; Lin, Amity; Sacramento, Jeffrey; Mannent, Leda; Castel, Marie-Noelle; Canolle, Benoit; Delbary-Gossart, Sandrine; Ferzaz, Badia; Morganti, Josh M; Rosi, Susanna; Ferguson, Adam R; Manley, Geoffrey T; Bresnahan, Jacqueline C; Beattie, Michael S

    2016-04-22

    in the injured brain at 6 weeks. TBI produced a significant increase in peripheral pro-inflammatory monocytes (Ly6C(int-high) pro-inflammatory monocytes), and this peripheral effect was also blocked by EVT901 treatment. Further, we found that blocking p75NTR with EVT901 reduces the expansion of pro-inflammatory monocytes, and their response to LPS in vitro, supporting the idea that there is a peripheral EVT901 effect that blunts inflammation. Further, 1 week of EVT901 blocks the expansion of pro-inflammatory monocytes in the circulation after TBI, reduces the number of multiple subsets of pro-inflammatory monocytes that enter the injury site at 1 and 6 weeks post-injury, and is neuroprotective, as it was in the rat. Together, these findings suggest that p75NTR signaling participates in the production of the peripheral pro-inflammatory response to CNS injury and implicates p75NTR as a part of the pro-inflammatory cascade. Thus, the neuroprotective effects of p75NTR antagonists might be due to a combination of central and peripheral effects, and p75NTR may play a role in the production of peripheral inflammation in addition to its many other biological roles. Thus, p75NTR may be a therapeutic target in human TBI.

  4. Herbal formula Xian-Fang-Huo-Ming-Yin regulates differentiation of lymphocytes and production of pro-inflammatory cytokines in collagen-induced arthritis mice.

    PubMed

    Li, Jinyu; Wei, Yi; Li, Xue; Zhu, Dashuai; Nie, Bo; Zhou, Jingwei; Lou, Lixia; Dong, Bin; Wu, Aiming; Che, Yongzhe; Chen, Meng; Zhu, Lingqun; Mu, Mingwei; Chai, Limin

    2017-01-05

    Xian-Fang-Huo-Ming-Yin (XFHM), a traditional herbal formula, has been used to treat sores and carbuncles for hundreds of years in Asia. Nowadays, its clinical effects in treatment of rheumatoid arthritis (RA) have been validated. In this study, we want to study its possible molecular mechanisms of regulating the differentiation of lymphocytes and production of pro-inflammatory cytokines in collagen-induced arthritis (CIA) mice for RA treatment. A high performance liquid chromatography-electrospray ionization/mass spectrometer (HPLC-ESI/MS(n)) system was used to analyze the constituents of XFHM granules. An arthritics mouse model was induced by collagen and leflunomide (LEF) was used as a positive control medicine. Pathological changes at the metatarsophalangeal joint were studied through Safranin O and immunohistochemical staining. The differentiation of T, B and NK cells was examined by flow cytometry and pro-inflammatory cytokines were assayed using an Inflammation Antibody Array assay. The expression of key molecules of the nuclear factor κB (NF-κB) and Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathways in spleen were studied by western-blot analysis. In our study. 21 different dominant chemical constituents were identified in XFHM. Treatment with XFHM suppressed the pathological changes in arthrosis of CIA. Additionally, XFHM down-regulated the proliferation and differentiation of CD3(+) T cells and CD3(-)CD19(+) B cells significantly. However, XFHM had no significant effect on CD3(-)NK1.1(+) NK cells. Further study showed that the production of pro-inflammatory cytokines had been suppressed by inhibiting the activation of NF-κB and JAK/STAT signaling. XFHM can regulate and maintain the immunologic balance of lymphocytic immunity and inhibit the production of pro-inflammatory cytokines, thus suppressing the pathological changes of RA. Therefore, XFHM may be used as an application of traditional medicine against RA

  5. Pro-inflammatory cytokines: Useful markers for the diagnosis of canine mammary tumours?

    PubMed

    Andaluz, Ana; Yeste, Marc; Rodríguez-Gil, Joan E; Rigau, Teresa; García, Félix; Rivera del Álamo, Maria Montserrat

    2016-04-01

    The aim of the present study was to analyse the expression of 60 pro-inflammatory cytokines as possible markers of malignancy in canine mammary tumours using a human cytokine antibody array. The cytokines were grouped into two different categories: (1) cytokines in which expression indicated the presence of a mammary tumour and (2) cytokines in which expression differentiated between simple mammary adenoma, tubulopapillary carcinoma or complex carcinoma. These data suggest that specific pro-inflammatory cytokines could be useful as tools for the diagnosis of canine mammary tumours. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. α-Tocopherol attenuates NF-κB activation and pro-inflammatory cytokine IL-6 secretion in cancer-bearing mice.

    PubMed

    Sharma, Renu; Vinayak, Manjula

    2011-10-01

    Cancer development and progression are closely associated with inflammation. NF-κB (nuclear factor κB) provides a mechanistic link between inflammation and cancer, and is a major factor controlling the ability of malignant cells to resist tumour surveillance mechanisms. NF-κB might also regulate tumour angiogenesis and invasiveness and the signalling pathways that mediate its activation provide attractive targets for new chemopreventive and chemotherapeutic approaches. ROS (reactive oxygen species) initiate inflammation by up-regulation of pro-inflammatory cytokines and therefore antioxidants provide a major defence against inflammation. α-Tocopherol is a lipid-soluble antioxidant. In addition to decreasing lipid peroxidation, α-tocopherol may exert intracellular effects. Hence, the aim of this study was to test the effect of α-tocopherol supplementation in cancer prevention via suppression of NF-κB-mediated pro-inflammatory cytokines. α-Tocopherol treatment significantly down-regulates expression, synthesis as well as secretion of pro-inflammatory cytokine IL-6 (interleukin-6) in cancerous mice. It also suppresses NF-κB binding to IL-6 promoter in liver leading to decreased secretion of IL-6 in serum. The regulation of the signalling pathway by α-tocopherol is found apart from its antioxidant capacity to reduce lipid peroxidation. Thus, the present study provides evidence for the hypothesis that besides the powerful free radical scavenging effects, α-tocopherol has genomic effects in down-regulation of pro-inflammatory cytokine and cancer prevention via the NF-κB-dependent pathway.

  7. The upregulation of pro-inflammatory cytokines in the rabbit uterus under the lipopolysaccaride-induced reversible immunoresponse state.

    PubMed

    Liu, S J; Shi, Y; Liu, C; Zhang, M; Zuo, Z C; Zeng, C J; Zhou, G B; Xian, H; Song, T Z

    2017-01-01

    The reproductive organs are more likely to develop gram-negative bacterial infection than other internal organs because of direct access to the body surface. The objective of this study was (1) to provide a suitable intravenous injection dose of lipopolysaccharides (LPS) instead of gram-negative bacterial infection in order to induce a reversible immunoresponse state and (2) to examine the expression levels of pro-inflammatory cytokines in the uterus of rabbits while in an immunoresponse state. Two series of experiments were performed to accomplish these objectives. In the first series, 20 healthy New Zealand White female rabbits were divided into 5 homogeneous groups (n=4), and intravenously injected with 0, 0.5, 1, 2, or 4mg/kg body weight (BW) of LPS derived from Escherichia coli dissolved in 2ml of sterile saline (LPS carrier). The control group received only saline. The concentrations of IL-1β, IL-6, and TNF-α in serum and the white blood cell count changed with time after LPS stimulation, and certain doses of LPS led to the death of some rabbits. The results suggested that a dose of 0.5mg/kg of LPS induced a reversible immunoresponse state. In the second series, 4 rabbits were not injected (0h), 16 rabbits were injected with 0.5mg/kg LPS, and 16 rabbits in the control group were injected with 2ml of sterile saline. Tissues of the uterine horn, uterine body, and cervix from the 36 rabbits were collected at 0, 1.5, 3, 6, and 12h (n=4) postinjection for examination of the expression levels of IL-1β, IL-6, and TNF-α by quantitative real-time PCR (qRT-PCR). The results suggested that 0.5mg/kg of LPS upregulated the expression levels of IL-1β, IL-6 and TNF-α in the uterine body and uterine horn, and IL-6 in the cervix. In conclusion, the expression levels of IL-1β, IL-6 and TNF-α were upregulated in the uterus of rabbits under the reversible immunoresponse state induced by 0.5mg/kg of LPS-injection.

  8. Pro-inflammatory and oxidative stress pathways which compromise sperm motility and survival may be altered by L-carnitine

    PubMed Central

    Helal, Gouda K; Al-Yahya, Abdulaziz A; Aleisa, Abdulaziz M; Al-Rejaie, Salim S; Al-Bakheet, Saleh A

    2009-01-01

    The testis is an immunologically privileged organ. Sertoli cells can form a blood-testis barrier and protect sperm cells from self-immune system attacks. Spermatogenesis may be inhibited by severe illness, bacterial infections and chronic inflammatory diseases but the mechanism(s) is poorly understood. Our objective is to help in understanding such mechanism(s) to develop protective agents against temporary or permanent testicular dysfunction. Lipopolysaccaride (LPS) is used as a model of animal sepsis while L-carnitine (LCR) is used as a protective agent. A total of 60 male Swiss albino rats were divided into four groups (15/group). The control group received Saline; the 2nd group was given LCR (500 mg/kg i.p, once). The third group was treated with LPS (5 mg/kg i.p once) and the fourth group received LCR then LPS after three hours. From each group, five rats were used for histopathological examination. Biochemical parameters were assessed in the remaining ten rats. At the end of the experiment, animals were lightly anaesthetized with ether where blood samples were collected and testes were dissected on ice. Sperm count and motility were evaluated from cauda epididymis in each animal. Also, oxidative stress was evaluated by measuring testicular contents of reduced glutathione (GSH), malondialdehyde (MDA) and 8-hydroxydeoxyguanosine (8-HDG, the DNA adduct for oxidative damage) in testicular DNA. The pro-inflammatory mediator nitric oxide (NO) in addition to lactate dehydrogenase (LDHx) isoenzyme-x activity as an indicator for normal spermatozoal metabolism were assessed in testicular homogenate. Serum interlukin (IL)-2 level was also assessed as a marker for T-helper cell function. The obtained data revealed that LPS induced marked reductions in sperm's count and motility, obstruction in seminiferous tubules, hypospermia and dilated congested blood vessels in testicular sections concomitant with decreased testicular GSH content and LDHx activity. Moreover, the

  9. Thymus-expressed chemokine enhances Porphyromonas gingivalis LPS-induced osteoclast formation via NFATc1 activation.

    PubMed

    Usui, Michihiko; Okamatsu, Yoshimasa; Sato, Tsuyoshi; Hanatani, Tomoya; Moritani, Yuki; Sano, Kotaro; Yamamoto, Matsuo; Nakashima, Keisuke

    2016-06-01

    P. gingivalis is a gram-negative anaerobic bacterium and a major periodontal pathogen. LPS produced by P. gingivalis promotes osteoclast formation. TECK is a CC chemokine whose expression is increased in gingival epithelial cells exposed to P. gingivalis LPS. In this study, we investigated the effect of TECK in osteoclastogenesis induced by P. gingivalis LPS. Real time reverse transcriptase polymerase chain reaction (RTPCR) analysis and western blotting were performed to confirm TECK in MG63, human osteoblast cell line and primary murine osteoblasts and CCR9 in RAW 264.7 cells and murine bone marrow macrophages (BMMs) as osteoclast precursors. P. gingivalis LPS-treated BMMs and Raw 264.7 cells were cultured with or without TECK or TECK antibody to examine the effect of TECK on osteoclast formation. Cocultures with murine osteoblasts and bone marrow cells were also treated with or without TECK or TECK antibody. Luciferase assay and western blotting were used to determine whether TECK-CCR9 induced osteoclastogenesis was mediated through NFATc1 or NF-kB signaling. TECK was shown to be expressed by osteoblasts, and its receptor, CCR9, by osteoclast precursors. TECK increased P. gingivalis LPS-induced osteoclast numbers in an in vitro osteoclast formation assay using osteoclast precursors. The enhanced osteoclast formation by TECK was mediated by NFATc1, but not by NF-kB signaling. TECK may be a novel regulator of osteoclast formation induced by P. gingivalis LPS in periodontitis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Granzymes A and K differentially potentiate LPS-induced cytokine response

    PubMed Central

    Wensink, Annette C; Kok, Helena M; Meeldijk, Jan; Fermie, Job; Froelich, Christopher J; Hack, C Erik; Bovenschen, Niels

    2016-01-01

    Granzymes are serine proteases that, upon release from cytotoxic cells, induce apoptosis in tumor cells and virally infected cells. In addition, a role of granzymes in inflammation is emerging. Recently, we have demonstrated that extracellular granzyme K (GrK) potentiates lipopolysaccharide (LPS)-induced cytokine response from monocytes. GrK interacts with LPS, disaggregates LPS micelles, and stimulates LPS-CD14 binding and Toll-like receptor signaling. Here we show that human GrA also potentiates cytokine responses in human monocytes initiated by LPS or Gram-negative bacteria. Similar to GrK, this effect is independent of GrA catalytic activity. Unlike GrK, however, GrA does not bind to LPS, has little influence on LPS micelle disaggregation, and does not augment LPS-CD14 complex formation. We conclude that GrA and GrK differentially modulate LPS-Toll-like receptor signaling in monocytes, suggesting functional redundancy among cytotoxic lymphocyte proteases in the anti-bacterial innate immune response. PMID:28028441

  11. Shizukaol B, an active sesquiterpene from Chloranthus henryi, attenuates LPS-induced inflammatory responses in BV2 microglial cells.

    PubMed

    Pan, Li-Long; Xu, Peng; Luo, Xiao-Ling; Wang, Li-Jun; Liu, Si-Yu; Zhu, Yi-Zhun; Hu, Jin-Feng; Liu, Xin-Hua

    2017-04-01

    The objective of the current study was to evaluate the anti-inflammatory effects of shizukaol B, a lindenane-type dimeric sesquiterpene isolated from the whole plant of Chloranthus henryi, on lipopolysaccharide (LPS)-induced activation of BV2 microglial cells in vitro. Our data showed that shizukaol B concentration-dependently suppressed expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), production of nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in LPS-stimulated BV2 microglia. Meanwhile, shizukaol B concentration- and time-dependently inhibited LPS-mediated c-Jun N-terminal kinase 1/2 (JNK) activation, but had little effect on extracellular signal-regulated kinase 1/2 or p38 phosphorylation. Furthermore, shizukaol B significantly blocked LPS-induced activator protein-1 (AP-1) activation, evidenced by reduced phosphorylation and nuclear translocation of c-Jun and DNA binding activity of AP-1. Taken together, our findings suggest that shizukaol B exerts anti-inflammatory effects in LPS-activated microglia partly by modulating JNK-AP-1 signaling pathway.

  12. Protective Role of Ternatin Anthocyanins and Quercetin Glycosides from Butterfly Pea (Clitoria ternatea Leguminosae) Blue Flower Petals against Lipopolysaccharide (LPS)-Induced Inflammation in Macrophage Cells.

    PubMed

    Nair, Vimal; Bang, Woo Young; Schreckinger, Elisa; Andarwulan, Nuri; Cisneros-Zevallos, Luis

    2015-07-22

    Twelve phenolic metabolites (nine ternatin anthocyanins and three glycosylated quercetins) were identified from the blue flowers of Clitoria ternatea by high-performance liquid chromatography diode array detection and electrospray ionization/mass spectrometry (HPLC-DAD-ESI/MS(n)). Three anthocyanins not reported in this species before show fragmentation pattern of the ternatin class. Extracts were fractionated in fractions containing flavonols (F3) and ternatin anthocyanins (F4). In general, C. ternatea polyphenols showed anti-inflammatory properties in lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells with distinct molecular targets. Flavonols (F3) showed strong inhibition of COX-2 activity and partial ROS suppression. On the other hand, the ternatin anthocyanins (F4) inhibited nuclear NF-κB translocation, iNOS protein expression, and NO production through a non-ROS suppression mechanism. Accordingly, quercetin glycosides and ternatin anthocyanins from the blue flower petals of C. ternatea may be useful in developing drugs or nutraceuticals for protection against chronic inflammatory diseases by suppressing the excessive production of pro-inflammatory mediators from macrophage cells.

  13. Chloroform fraction of Solanum tuberosum L. cv Jayoung epidermis suppresses LPS-induced inflammatory responses in macrophages and DSS-induced colitis in mice.

    PubMed

    Lee, Seung-Jun; Shin, Ji-Sun; Choi, Hye-Eun; Lee, Kyoung-Goo; Cho, Young-Wuk; An, Hyo-Jin; Jang, Dae Sik; Jeong, Jin-Cheol; Kwon, Oh-Keun; Nam, Jung-Hwan; Lee, Kyung-Tae

    2014-01-01

    In this study, the authors investigated the molecular mechanism underlying the antiinflammatory effects of the chloroform fraction of the peel of 'Jayoung' (CFPJ), a color-fleshed potato, on lipopolysaccharide (LPS)-induced RAW 264.7 macrophages and in mice with dextran sulfate sodium (DSS)-induced colitis. CFPJ inhibited the expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the transcription level, and attenuated the transcriptional activity of nuclear factor-κB (NF-κB) by reducing the translocation of NF-κB depending on degradation of inhibitory κB-α (IκB-α). Furthermore, CFPJ attenuated the phosphorylations of mitogen-activated protein kinase kinases3/6 (MKK3/6) and of p38. In colitis model, CFPJ significantly reduced the severity of colitis and the productions and protein levels of pro-inflammatory mediators in colonic tissue. These results suggest that the anti-inflammatory effects of CFPJ are associated with the suppression of NF-κB and p38 activation in macrophages, and support its possible therapeutic role for the treatment of colitis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. The histone acetyltransferase p300 inhibitor C646 reduces pro-inflammatory gene expression and inhibits histone deacetylases

    PubMed Central

    van den Bosch, Thea; Boichenko, Alexander; Leus, Niek G. J.; Eleni Ourailidou, Maria; Wapenaar, Hannah; Rotili, Dante; Mai, Antonello; Imhof, Axel; Bischoff, Rainer; Haisma, Hidde J.; Dekker, Frank J.

    2016-01-01

    Lysine acetylations are reversible posttranslational modifications of histone and non-histone proteins that play important regulatory roles in signal transduction cascades and gene expression. Lysine acetylations are regulated by histone acetyltransferases as writers and histone deacetylases as erasers. Because of their role in signal transduction cascades, these enzymes are important players in inflammation. Therefore, applications of histone acetyltransferase inhibitors to reduce inflammatory responses are interesting. Among the few histone acetyltransferase inhibitors described, C646 is one of the most potent (Ki of 0.4 μM for histone acetyltransferase p300). C646 was described to regulate the NF-κB pathway; an important pathway in inflammatory responses, which is regulated by acetylation. Interestingly, this pathway has been implicated in asthma and COPD. Therefore we hypothesized that via regulation of the NF-κB signaling pathway, C646 can inhibit pro-inflammatory gene expression, and have potential for the treatment of inflammatory lung diseases. In line with this, here we demonstrate that C646 reduces pro-inflammatory gene expression in RAW264.7 murine macrophages and murine precision-cut lung slices. To unravel its effects on cellular substrates we applied mass spectrometry and found, counterintuitively, a slight increase in acetylation of histone H3. Based on this finding, and structural features of C646, we presumed inhibitory activity of C646 on histone deacetylases, and indeed found inhibition of histone deacetylases from 7 μM and higher concentrations. This indicates that C646 has potential for further development towards applications in the treatment of inflammation, however, its newly discovered lack of selectivity at higher concentrations needs to be taken into account. PMID:26718586

  15. Propofol inhibits LPS-induced apoptosis in lung epithelial cell line, BEAS-2B.

    PubMed

    Lv, Xiang; Zhou, Xuhui; Yan, Jia; Jiang, Jue; Jiang, Hong

    2017-03-01

    Lipopolysaccharide (LPS) plays an important role in lung endothelial apoptosis which is crucial for lung fibrogenesis in ARDS progression. Reactive oxygen species (ROS) has been reported to be involved in LPS-induced lung epithelial cell apoptosis. Propofol is a commonly used intravenous anesthetic agent in clinic and it could attenuate LPS-induced epithelial cells oxidation and apoptosis. However, the mechanisms are still obscure. In this study, we examined whether and how propofol attenuates LPS-induced oxidation and apoptosis in BEAS-2B cells. Compared with control group, LPS up-regulated Pin-1, phosphatase A2 (PP2A) expression, induced p66(Shc)-Ser(36) phosphorylation, and facilitated p66(Shc) mitochondrial translocation, thus leading to superoxide anion (O2(-)) generation, mitochondrial cytochrome c release, active caspase 3 over-expression and cell viability inhibition. Importantly, propofol was shown to down-regulate LPS-induced PP2A expression, limit p66(Shc) mitochondrial translocation, decrease O2(-) generation, inhibit mitochondrial cytochrome c release, reduce active caspase 3 expression, and recover cells viability, while propofol had no effects on LPS-induced Pin-1 expression and p66(Shc)-Ser(36) phosphorylation. Moreover, the protective effects of propofol on LPS-induced BEAS-2B cells apoptosis were similar to that of calyculin A, which is an inhibitor of PP2A. We also found that FTY720, which is an activator of PP2A, can effectively reverse the protective function of propofol. Our data illustrated that propofol could alleviate LPS-induced BEAS-2B cells oxidation and apoptosis through down-regulating PP2A expression, limiting p66(Shc)-Ser(36) dephosphorylation and p66(Shc) mitochondrial translocation, decreasing O2(-) generation, mitochondrial cytochrome c release, activating caspase 3 expression. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Decitabine and 5-azacitidine both alleviate LPS induced ARDS through anti-inflammatory/antioxidant activity and protection of glycocalyx and inhibition of MAPK pathways in mice.

    PubMed

    Huang, Xiao; Kong, Guiqing; Li, Yan; Zhu, Weiwei; Xu, Haixiao; Zhang, Xiaohua; Li, Jiankui; Wang, Lipeng; Zhang, Zhongwen; Wu, Yaru; Liu, Xiangyong; Wang, Xiaozhi

    2016-12-01

    Decitabine (5-aza-2'-deoxycytidine, DAC) and 5-azacitidine (Aza), an inhibitor of DNA methyltransferases, possess a wide range of anti-metabolic and anti-cancer activities. This study examined the effects of DAC and Aza on inflammatory and oxidative injuries, as well as on glycocalyx and MAPK signaling pathways, in a LPS-stimulated ARDS mouse model. Results of ELISA revealed that DAC and Aza significantly inhibited the production of TNF-α and IL-1β and prevented LPS-induced elevation of myeloperoxidase and malondialdehyde levels in serum. The W/D ratio of lung and histopathologic examination with hematoxylin and eosin staining showed that DAC and Aza pretreatment substantially improved lung tissue injury. DAC and Aza reduced the level of glycocalyx degradation products (e.g., heparan sulfate and haluronic acid) and protected glycocalyx integrity. Western blot assay demonstrated that DAC and Aza both significantly suppressed LPS-induced activation of the MAPK signaling pathways by blocking the phosphorylation of JNK, ERK and P38 in lung tissues. Bisulfite sequencing PCR and real time-PCR showed that DAC reversed the RASSF1A promoter hypermethylation and furthermore elevated the expression of RASSF1A, which is a tumor suppressor that regulates MAPK signaling pathway. These results suggested that DAC inhibited the MAPK signaling pathway in LPS-induced ARDS mice might via demethylation in RASSF1A promoter region and by restoring its expression. This study highlighted the close relationship between DNA methylation and the development and progression of ARDS.

  17. Protein kinase D1 is essential for the pro-inflammatory response induced by hypersensitivity pneumonitis-causing thermophilic actinomycetes Saccharopolyspora rectivirgula

    PubMed Central

    Kim, Young-In; Park, Jeoung-Eun; Brand, David D.; Fitzpatrick, Elizabeth A.; Yi, Ae-Kyung

    2010-01-01

    Hypersensitivity pneumonitis is an interstitial lung disease that results from repeated pulmonary exposure to various organic antigens, including Saccharopolyspora rectivirgula (SR, the causative agent of farmer's lung disease). Although the contributions of pro-inflammatory mediators to the disease pathogenesis are relatively well documented, the mechanism(s) involved in initiation of pro-inflammatory responses against the causative microorganisms, and the contribution of signaling molecules involved in host immune defense have not been fully elucidated. In the present study, we found that SR induces activation of protein kinase D1 (PKD1) in lung cells in vitro and in vivo. Activation of PKD1 by SR was dependent on MyD88. Inhibition of PKD by pharmacological PKD inhibitor Gö6976, and silencing of PKD1 expression by siRNA, revealed that PKD1 is indispensable for SR-mediated activation of MAPKs and NF-κB and expression of various pro-inflammatory cytokines and chemokines. In addition, compared to controls, mice pretreated with Gö6976 showed significantly suppressed alveolitis and neutrophil influx in bronchial alveolar lavage fluid and interstitial lung tissue, and substantially decreased myeloperoxidase activity in the lung after pulmonary exposure to SR. These results demonstrate that PKD1 is essential for SR-mediated pro-inflammatory immune responses and neutrophil influx in the lung. Our findings also imply the possibility that PKD1 might be one of the critical factors that play a regulatory role in development of hypersensitivity pneumonitis caused by microbial antigens, and that inhibition of PKD1 activation could be an effective way to control microbial antigen-induced hypersensitivity pneumonitis. PMID:20142359

  18. Mycotoxin detoxifiers attenuate deoxynivalenol-induced pro-inflammatory barrier insult in porcine enterocytes as an in vitro evaluation model of feed mycotoxin reduction.

    PubMed

    Park, Seong-Hwan; Kim, Juil; Kim, Dongwook; Moon, Yuseok

    2017-02-01

    Deoxynivalenol (DON), the most prevalent mycotoxin worldwide, leads to economic losses for animal food production. Swine is a most sensitive domestic animal to DON due to rapid absorption and low detoxification by gut microbiota. Specifically, DON can severely damage pig intestinal tissue by disrupting the intestinal barrier and inducing inflammatory responses. We evaluated the effects of several mycotoxin detoxifiers including bentonites, yeast cell wall components, and mixture-typed detoxifier composed of mineral, microorganisms, and phytogenic substances on DON-insulted intestinal barrier and pro-inflammatory responses using in vitro porcine enterocyte culture model. DON-induced disruption of the in vitro gut barrier was attenuated by all three mycotoxin detoxifiers in dose-dependent manners. These mycotoxin detoxifiers also suppressed DON-induced pro-inflammatory chemokine expression to different degrees, which was mediated by downregulation of mitogen-activated kinases and early growth response-1. Of note, the mixture-typed detoxifier was the most prominent mitigating agent at the cellular levels whereas the high dose of bentonite clay also had suppressive action against DON-induced pro-inflammatory insult. The in vitro porcine enterocyte-based assessment of intestinal barrier integrity and inflammatory signals provides sensitive and simplified alternative bioassay of feed additives such as detoxifiers against enteropathogenic mycotoxins with comprehensive mechanistic confirmation.

  19. Glycyrrhizin Exerts Antioxidative Effects in H5N1 Influenza A Virus-Infected Cells and Inhibits Virus Replication and Pro-Inflammatory Gene Expression

    PubMed Central

    Michaelis, Martin; Geiler, Janina; Naczk, Patrizia; Sithisarn, Patchima; Leutz, Anke; Doerr, Hans Wilhelm; Cinatl, Jindrich

    2011-01-01

    Glycyrrhizin is known to exert antiviral and anti-inflammatory effects. Here, the effects of an approved parenteral glycyrrhizin preparation (Stronger Neo-Minophafen C) were investigated on highly pathogenic influenza A H5N1 virus replication, H5N1-induced apoptosis, and H5N1-induced pro-inflammatory responses in lung epithelial (A549) cells. Therapeutic glycyrrhizin concentrations substantially inhibited H5N1-induced expression of the pro-inflammatory molecules CXCL10, interleukin 6, CCL2, and CCL5 (effective glycyrrhizin concentrations 25 to 50 µg/ml) but interfered with H5N1 replication and H5N1-induced apoptosis to a lesser extent (effective glycyrrhizin concentrations 100 µg/ml or higher). Glycyrrhizin also diminished monocyte migration towards supernatants of H5N1-infected A549 cells. The mechanism by which glycyrrhizin interferes with H5N1 replication and H5N1-induced pro-inflammatory gene expression includes inhibition of H5N1-induced formation of reactive oxygen species and (in turn) reduced activation of NFκB, JNK, and p38, redox-sensitive signalling events known to be relevant for influenza A virus replication. Therefore, glycyrrhizin may complement the arsenal of potential drugs for the treatment of H5N1 disease. PMID:21611183

  20. The pro-resolving lipid mediator Maresin 1 protects against cerebral ischemia/reperfusion injury by attenuating the pro-inflammatory response

    SciTech Connect

    Xian, Wenjing; Wu, Yan; Xiong, Wei; Li, Longyan; Li, Tong; Pan, Shangwen; Song, Limin; Hu, Lisha; Pei, Lei; Yao, Shanglong; and others

    2016-03-25

    Inflammation plays a crucial role in acute ischemic stroke pathogenesis. Macrophage-derived Maresin 1 (MaR1) is a newly uncovered mediator with potent anti-inflammatory abilities. Here, we investigated the effect of MaR1 on acute inflammation and neuroprotection in a mouse brain ischemia reperfusion (I/R) model. Male C57 mice were subjected to 1-h middle cerebral artery occlusion (MCAO) and reperfusion. By the methods of 2,3,5-triphenyltetrazolium chloride, haematoxylin and eosin or Fluoro-Jade B staining, neurological deficits scoring, ELISA detection, immunofluorescence assay and western blot analysis, we found that intracerebroventricular injection of MaR1 significantly reduced the infarct volume and neurological defects, essentially protected the brain tissue and neurons from injury, alleviated pro-inflammatory reactions and NF-κB p65 activation and nuclear translocation. Taken together, our results suggest that MaR1 significantly protects against I/R injury probably by inhibiting pro-inflammatory reactions. - Highlights: • MaR1 significantly protects against ischemia reperfusion injury. • MaR1 inhibits pro-inflammatory cytokines and chemokines and reducing glial activation and neutrophil infiltration. • These effects at least partially occurred via suppression of the NF-κB p65 signalling pathway.

  1. Tissue factor in antiphospholipid antibody-induced pregnancy loss: a pro-inflammatory molecule

    PubMed Central

    Girardi, G; Mackman, N

    2010-01-01

    Fetal loss in patients with antiphospholipid antibodies (aPL) has been ascribed to thrombosis of placental vessels. However, we have shown that inflammation, specifically complement activation with generation of the anaphylotoxin C5a, is an essential mediator of fetal injury. We have analysed the role of tissue factor (TF) in a mouse model of aPL-induced pregnancy loss. TF is the major cellular activator of the coagulation cascade but also has cell signaling activity. Mice that received aPL-IgG showed strong TF staining throughout the decidua and on embryonic debris. This TF staining was not associated with either fibrin staining or thrombi in deciduas. The absence of fibrin deposition and thrombi suggests that TF-dependent activation of coagulation does not mediate aPL-induced pregnancy loss. We found that either blockade of TF with a monoclonal antibody in wild type mice or a genetic reduction of TF prevented aPL-induced inflammation and pregnancy loss indicated a pathogenic role for TF in aPL-induced pregnancy complications. In response to aPL-generated C5a, neutrophils express TF potentiating inflammation in the deciduas and leading to miscarriages. Importantly, we showed that TF in myeloid cells, but not fetal-derived cells (trophoblasts), was associated with fetal injury, suggesting that the site for pathologic TF expression is neutrophils. We found that TF expression in neutrophils contributes to respiratory burst and subsequent trophoblast injury and pregnancy loss induced by aPL. The identification of TF, acting as an important pro-inflammatory mediator in aPL-induced fetal injury, provides a new target for therapy to prevent pregnancy loss in the aPL syndrome. PMID:18827058

  2. Pro-inflammatory effects of metals in persons and animals exposed to tobacco smoke.

    PubMed

    Milnerowicz, Halina; Ściskalska, Milena; Dul, Magdalena

    2015-01-01

    Metals present in tobacco smoke have the ability to cause a pro-oxidant/antioxidant imbalance through the direct generation of free radicals in accordance with the Fenton or Haber-Weiss reaction and redox properties. Metals can also interact with antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) and small molecular antioxidants (glutathione) through binding to SH groups or by replacement of metals ions in the catalytic center of enzymes. Excessive free radicals production can induce an inflammatory response. The aim of this study was to review the information on the induction of inflammation by metals present in tobacco smoke such as lead (Pb), cadmium (Cd), arsenic (As), aluminum (Al), nickel (Ni) and mercury (Hg). In cellular immune response, it was demonstrated that radicals induced by metals can disrupt the transcription signaling pathway mediated by the mitogen-activated protein kinase (induced by Pb), NLRP3-ASC-caspase 1 (induced by Ni), tyrosine kinase Src (induced by As) and the nuclear factor κB (induced by Pb, Ni, Hg). The result of this is a gene transcription for early inflammatory cytokines, such as Interleukine 1β, Interleukine 6, and Tumor necrosis factor α). These cytokines can cause leukocytes recruitment and secretions of other pro-inflammatory cytokines and chemokines, which intensifies the inflammatory response. Some metals, such as cadmium (Cd), can activate an inflammatory response through tissue damage induction mediated by free radicals, which also results in leukocytes recruitment and cytokines secretions. Inflammation generated by metals can be reduced by metallothionein, which has the ability to scavenge free radicals and bind toxic metals through the release of Zn and oxidation of SH groups.

  3. p52-independent nuclear translocation of RelB promotes LPS-induced attachment

    SciTech Connect

    Saito, T.; Sasaki, C.Y.; Rezanka, L.J.; Ghosh, P.; Longo, D.L.

    2010-01-01

    The NF-{kappa}B signaling pathways have a critical role in the development and progression of various cancers. In this study, we demonstrated that the small cell lung cancer cell line (SCLC) H69 expressed a unique NF-{kappa}B profile as compared to other cancer cell lines. The p105/p50, p100/p52, c-Rel, and RelB protein and mRNA transcripts were absent in H69 cells but these cells expressed RelA/p65. The activation of H69 cells by lipopolysaccharide (LPS) resulted in the induction of RelB and p100 expression. The treatment also induced the nuclear translocation of RelB without the processing of p100 to p52. Furthermore, LPS-induced {beta}1 integrin expression and cellular attachment through an NF-{kappa}B-dependent mechanism. Blocking RelB expression prevented the increase in the expression of {beta}1 integrin and the attachment of H69. Taken together, the results suggest that RelB was responsible for the LPS-mediated attachment and may play an important role in the progression of some cancers.

  4. Eukaryotic elongation factor 2 controls TNF-α translation in LPS-induced hepatitis

    PubMed Central

    González-Terán, Bárbara; Cortés, José R.; Manieri, Elisa; Matesanz, Nuria; Verdugo, ρngeles; Rodríguez, María E.; González-Rodríguez, ρgueda; Valverde, ρngela; Martín, Pilar; Davis, Roger J.; Sabio, Guadalupe

    2012-01-01

    Bacterial LPS (endotoxin) has been implicated in the pathogenesis of acute liver disease through its induction of the proinflammatory cytokine TNF-α. TNF-α is a key determinant of the outcome in a well-established mouse model of acute liver failure during septic shock. One possible mechanism for regulating TNF-α expression is through the control of protein elongation during translation, which would allow rapid cell adaptation to physiological changes. However, the regulation of translational elongation is poorly understood. We found that expression of p38γ/δ MAPK proteins is required for the elongation of nascent TNF-α protein in macrophages. The MKK3/6-p38γ/δ pathway mediated an inhibitory phosphorylation of eukaryotic elongation factor 2 (eEF2) kinase, which in turn promoted eEF2 activation (dephosphorylation) and subsequent TNF-α elongation. These results identify a new signaling pathway that regulates TNF-α production in LPS-induced liver damage and suggest potential cell-specific therapeutic targets for liver diseases in which TNF-α production is involved. PMID:23202732

  5. Quercetin Inhibits LPS-Induced Inflammation and ox-LDL-Induced Lipid Deposition.

    PubMed

    Xue, Feng; Nie, Xiaobo; Shi, Jianping; Liu, Qingxue; Wang, Ziwei; Li, Xiting; Zhou, Jinqiu; Su, Jia; Xue, Mingming; Chen, Wei-Dong; Wang, Yan-Dong

    2017-01-01

    Aberrant activation of inflammation and excess accumulation of lipids play crucial role in the occurrence and progression of atherosclerosis (AS). Quercetin (QCT) has been tested effectively to cure AS. It is widely distributed in plant foods and has been proved to have potential antioxidative and anticancer activities. However, the underlying molecular mechanisms of OCT in AS are not completely understood. In the present study, we stimulated murine RAW264.7 cells with lipopolysaccharide (LPS) or oxidized low-density lipoproteins (ox-LDL) to mimic the development of AS. The data show that QCT treatment leads to an obvious decrease of multiple inflammatory cytokines in transcript level, including interleukin (IL)-1α, IL-1β, IL-2, IL-10, macrophage chemoattractant protein-1 (MCP-1), and cyclooxygenase-2 (COX-2) induced by LPS. Moreover, expressions of other factors that contribute to the AS development, such as matrix metalloproteinase-1 (MMP-1) and suppressor of cytokine signaling 3 (SOCS3) induced by LPS are also downregulated by QCT. Furthermore, we found that QCT suppressed LPS-induced the phosphorylation of STAT3. Meanwhile, QCT could ameliorate lipid deposition and overproduction of reactive oxygen species induced by ox-LDL, and block the expression of lectin-like oxidized LDL receptor-1 (LOX-1) in cultured macrophages. Taken together, our data reveal that QCT has obvious anti-inflammatory and antioxidant virtues and could be a therapeutic agent for the prevention and treatment of AS.

  6. Quercetin Inhibits LPS-Induced Inflammation and ox-LDL-Induced Lipid Deposition

    PubMed Central

    Xue, Feng; Nie, Xiaobo; Shi, Jianping; Liu, Qingxue; Wang, Ziwei; Li, Xiting; Zhou, Jinqiu; Su, Jia; Xue, Mingming; Chen, Wei-Dong; Wang, Yan-Dong

    2017-01-01

    Aberrant activation of inflammation and excess accumulation of lipids play crucial role in the occurrence and progression of atherosclerosis (AS). Quercetin (QCT) has been tested effectively to cure AS. It is widely distributed in plant foods and has been proved to have potential antioxidative and anticancer activities. However, the underlying molecular mechanisms of OCT in AS are not completely understood. In the present study, we stimulated murine RAW264.7 cells with lipopolysaccharide (LPS) or oxidized low-density lipoproteins (ox-LDL) to mimic the development of AS. The data show that QCT treatment leads to an obvious decrease of multiple inflammatory cytokines in transcript level, including interleukin (IL)-1α, IL-1β, IL-2, IL-10, macrophage chemoattractant protein-1 (MCP-1), and cyclooxygenase-2 (COX-2) induced by LPS. Moreover, expressions of other factors that contribute to the AS development, such as matrix metalloproteinase-1 (MMP-1) and suppressor of cytokine signaling 3 (SOCS3) induced by LPS are also downregulated by QCT. Furthermore, we found that QCT suppressed LPS-induced the phosphorylation of STAT3. Meanwhile, QCT could ameliorate lipid deposition and overproduction of reactive oxygen species induced by ox-LDL, and block the expression of lectin-like oxidized LDL receptor-1 (LOX-1) in cultured macrophages. Taken together, our data reveal that QCT has obvious anti-inflammatory and antioxidant virtues and could be a therapeutic agent for the prevention and treatment of AS. PMID:28217098

  7. Granzyme K synergistically potentiates LPS-induced cytokine responses in human monocytes

    PubMed Central

    Wensink, Annette C.; Kemp, Vera; Fermie, Job; García Laorden, M. Isabel; van der Poll, Tom; Hack, C. Erik; Bovenschen, Niels

    2014-01-01

    Granzymes are serine proteases released by cytotoxic lymphocytes to induce apoptosis in virus-infected cells and tumor cells. Evidence is emerging that granzymes also play a role in controlling inflammation. Granzyme serum levels are elevated in patients with autoimmune diseases and infections, including sepsis. However, the function of extracellular granzymes in inflammation largely remains unknown. Here, we show that granzyme K (GrK) binds to Gram-negative bacteria and their cell-wall component lipopolysaccharide (LPS). GrK synergistically enhances LPS-induced cytokine release in vitro from primary human monocytes and in vivo in a mouse model of LPS challenge. Intriguingly, these extracellular effects are independent of GrK catalytic activity. GrK disaggregates LPS from micelles and augments LPS–CD14 complex formation, thereby likely boosting monocyte activation by LPS. We conclude that extracellular GrK is an unexpected direct modulator of LPS–TLR4 signaling during the antimicrobial innate immune response. PMID:24711407

  8. CD54-Mediated Interaction with Pro-inflammatory Macrophages Increases the Immunosuppressive Function of Human Mesenchymal Stromal Cells.

    PubMed

    Espagnolle, Nicolas; Balguerie, Adélie; Arnaud, Emmanuelle; Sensebé, Luc; Varin, Audrey

    2017-04-11

    Mesenchymal stromal cells (MSCs) sense and modulate inflammation and represent potential clinical treatment for immune disorders. However, many details of the bidirectional interaction of MSCs and the innate immune compartment are still unsolved. Here we describe an unconventional but functional interaction between pro-inflammatory classically activated macrophages (M1MΦ) and MSCs, with CD54 playing a central role. CD54 was upregulated and enriched specifically at the contact area between M1MФ and MSCs. Moreover, the specific interaction induced calcium signaling and increased the immunosuppressive capacities of MSCs dependent on CD54 mediation. Our data demonstrate that MSCs can detect an inflammatory microenvironment via a direct and physical interaction with innate immune cells. This finding opens different perspectives for MSC-based cell therapy.

  9. Green tea polyphenol epigallocatechin-3-gallate inhibits TLR4 signaling through the 67-kDa laminin receptor on lipopolysaccharide-stimulated dendritic cells

    SciTech Connect

    Byun, Eui-Baek; Choi, Han-Gyu; Sung, Nak-Yun; Byun, Eui-Hong

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer Expressions of CD80, CD86, and MHC class I/II were inhibited by EGCG via 67LR. Black-Right-Pointing-Pointer EGCG-treated DCs inhibited LPS-induced pro-inflammatory cytokines via 67LR. Black-Right-Pointing-Pointer EGCG-treated DCs inhibited MAPKs activation and NF-{kappa}B p65 translocation via 67LR. Black-Right-Pointing-Pointer EGCG elevated the expression of the Tollip protein through 67LR in DCs. -- Abstract: Epigallocatechin-3-gallate (EGCG), a major active polyphenol of green tea, has been shown to down-regulate inflammatory responses in dendritic cells (DCs); however, the underlying mechanism has not been understood. Recently, we identified the 67-kDa laminin receptor (67LR) as a cell-surface EGCG receptor. In this study, we showed the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by EGCG in DCs. The expressions of CD80, CD86, and MHC class I and II, which are molecules essential for antigen presentation by DCs, were inhibited by EGCG via 67LR. In addition, EGCG-treated DCs inhibited lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines (tumor necrosis factor [TNF]-{alpha}, interleukin [IL]-1{beta}, and IL-6) and activation of mitogen-activated protein kinases (MAPKs), e.g., extracellular signal-regulated kinase 1/2 (ERK1/2), p38, c-Jun N-terminal kinase (JNK), and nuclear factor {kappa}B (NF-{kappa}B) p65 translocation through 67LR. Interestingly, we also found that EGCG markedly elevated the expression of the Tollip protein, a negative regulator of TLR signaling, through 67LR. These novel findings provide new insight into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and consequent inflammatory responses that are implicated in the development and progression of many chronic diseases.

  10. Evidence that PGE2 in the dorsal and median raphe nuclei is involved in LPS-induced anorexia in rats.

    PubMed

    Kopf, Brigitte S; Langhans, Wolfgang; Geary, Nori; Hrupka, Brian; Asarian, Lori

    2011-09-01

    Anorexia is an element of the acute-phase immune response. Its mechanisms remain poorly understood. Activation of inducible cyclooxygenase-2 (COX-2) in blood-brain-barrier endothelial cells and subsequent release of prostaglandins (e.g., prostaglandin E2, PGE2) may be involved. Therefore, we sought to relate the effects of prostaglandins on the anorexia following gram-negative bacterial lipopolysaccharide treatment (LPS) to neural activity in the dorsal and median raphe nuclei (DRN and MnR) in rats. COX-2 antagonist (NS-398, 10mg/kg; IP) administration prior to LPS (100μg/kg; IP) prevented anorexia and reduced c-Fos expression the DRN, MnR, nucleus tractus solitarii and several related forebrain areas. These data indicate that COX-2-mediated prostaglandin synthesis is necessary for LPS anorexia and much of the initial LPS-induced neural activation. Injection of NS-398 into the DRN and MnR (1ng/site) attenuated LPS-induced anorexia to nearly the same extent as IP NS-398, suggesting that prostaglandin signaling in these areas is necessary for LPS anorexia. Because the DRN and MnR are sources of major serotonergic projections to the forebrain, these data suggest that serotonergic neurons originating in the midbrain raphe play an important role in acute-phase response anorexia. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Pro-inflammatory cytokines upregulate sympathoexcitatory mechanisms in the subfornical organ of the rat

    PubMed Central

    Wei, Shun-Guang; Yu, Yang; Zhang, Zhi-Hua; Felder, Robert B.

    2015-01-01

    Our previous work indicated that the subfornical organ (SFO) is an important brain sensor of blood-borne pro-inflammatory cytokines, mediating their central effects on autonomic and cardiovascular function. However, the mechanisms by which SFO mediates the central effects of circulating pro-inflammatory cytokines remain unclear. We hypothesized that pro-inflammatory cytokines act within the SFO to upregulate the expression of excitatory and inflammatory mediators that drive sympathetic nerve activity. In urethane-anesthetized Sprague-Dawley rats, direct microinjection of TNF-α (25 ng) or IL-1β (25 ng) into SFO increased mean blood pressure, heart rate and renal sympathetic nerve activity within 15–20 minutes, mimicking the response to systemically administered pro-inflammatory cytokines. Pretreatment of SFO with microinjections of the angiotensin II type 1 receptor (AT1R) blocker losartan (1 µg), angiotensin-converting enzyme (ACE) inhibitor captopril (1 µg) or cyclooxygenase (COX)-2 inhibitor NS-398 (2 µg) attenuated those responses. Four hours after the SFO microinjection of TNF-α (25 ng) or IL-1β (25 ng), mRNA for ACE, AT1R, TNF-α and the p55 TNF-α receptor TNFR1, IL-1β and the IL-1R receptor, and COX-2 had increased in SFO, and mRNA for ACE, AT1R and COX-2 had increased downstream in the hypothalamic paraventricular nucleus. Confocal immunofluorescent images revealed that immunoreactivity for TNFR1 and the IL-1 receptor accessory protein, a subunit of the IL-1 receptor, co-localized with ACE, AT1R-like, COX-2 and prostaglandin E2 EP3 receptor immunoreactivity in SFO neurons. These data suggest that pro-inflammatory cytokines act within the SFO to upregulate the expression of inflammatory and excitatory mediators that drive sympathetic excitation. PMID:25776070

  12. Preferential expansion of pro-inflammatory Tregs in human non-small cell lung cancer

    PubMed Central

    Phillips, Joseph D.; Blatner, Nichole R.; Haghi, Leila; DeCamp, Malcolm M.; Meyerson, Shari L.; Heiferman, Michael J.; Heiferman, Jeffrey R.; Gounari, Fotini; Bentrem, David J.; Khazaie, Khashayarsha

    2016-01-01

    Objectives Lung cancer is the leading cause of cancer-related death in the USA. Regulatory T cells (Tregs) normally function to temper immune responses and decrease inflammation. Previous research has demonstrated different subsets of Tregs with contrasting anti- or pro-inflammatory properties. This study aimed to determine Treg subset distributions and characteristics present in non-small cell lung cancer (NSCLC) patients. Methods Peripheral blood was collected from healthy controls (HC) and NSCLC patients preceding surgical resection, and mononuclear cells were isolated, stained, and analyzed by flow cytometry. Tregs were defined by expression of CD4 and CD25 and classified into CD45RA+Foxp3int (naïve, Fr. I) or CD45RA−Foxp3hi (activated Fr. II). Activated conventional T cells were CD4+CD45RA−Foxp3int (Fr. III). Results Samples from 23 HC and 26 NSCLC patients were collected. Tregs isolated from patients with NSCLC were found to have enhanced suppressive function on naive T cells. Cancer patients had significantly increased frequencies of activated Tregs (fraction II: FrII), 17.5 versus 3.2 % (P < 0.001). FrII Tregs demonstrated increased RORγt and IL17 expression and decreased IL10 expression compared to Tregs from HC, indicating pro-inflammatory characteristics. Conclusions This study demonstrates that a novel subset of Tregs with pro-inflammatory characteristics preferentially expand in NSCLC patients. This Treg subset appears identical to previously reported pro-inflammatory Tregs in human colon cancer patients and in mouse models of polyposis. We expect the pro-inflammatory Tregs in lung cancer to contribute to the immune pathogenesis of disease and propose that targeting this Treg subset may have protective benefits in NSCLC. PMID:26047578

  13. Toll-like receptor and pro-inflammatory cytokine expression during prolonged hyperinsulinaemia in horses: implications for laminitis.

    PubMed

    de Laat, M A; Clement, C K; McGowan, C M; Sillence, M N; Pollitt, C C; Lacombe, V A

    2014-01-15

    Equine laminitis, a disease of the lamellar structure of the horse's hoof, can be incited by numerous factors that include inflammatory and metabolic aetiologies. However, the role of inflammation in hyperinsulinaemic laminitis has not been adequately defined. Toll-like receptor (TLR) activation results in up-regulation of inflammatory pathways and the release of pro-inflammatory cytokines, including interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α), and may be a pathogenic factor in laminitis. The aim of this study was to determine whether TLR4 expression and subsequent pro-inflammatory cytokine production is increased in lamellae and skeletal muscle during equine hyperinsulinaemia. Standardbred horses were treated with either a