Science.gov

Sample records for lps-induced pro-inflammatory signaling

  1. Adenosine A2A receptor signaling attenuates LPS-induced pro-inflammatory cytokine formation of mouse macrophages by inducing the expression of DUSP1.

    PubMed

    Köröskényi, Krisztina; Kiss, Beáta; Szondy, Zsuzsa

    2016-07-01

    Adenosine is known to reduce inflammation by suppressing the activity of most immune cells. Previous studies have shown that lipopolysaccharide (LPS) stimulated mouse macrophages produce adenosine, and the adenosine A2A receptor (A2AR) signaling activated in an autocrine manner attenuates LPS-induced pro-inflammatory cytokine formation. It has been suggested that A2AR signaling inhibits LPS-induced pro-inflammatory cytokine production through a unique cAMP-dependent, but PKA- and Epac-independent signaling pathway. However, the mechanism of inhibition was not identified so far. Here we report that LPS stimulation enhances A2AR expression in mouse bone marrow derived macrophages, and loss of A2ARs results in enhanced LPS-induced pro-inflammatory response. Loss of A2ARs in A2AR null macrophages did not alter the LPS-induced NF-κB activation, but an enhanced basal and LPS-induced phosphorylation of MAP kinases (especially that of JNKs) was detected in A2AR null cells. A2AR signaling did not alter the LPS-induced phosphorylation of their upstream kinases, but by regulating adenylate cyclase activity it enhanced the expression of dual specific phosphatase (DUSP)1, a negative regulator of MAP kinases. As a result, lower basal and LPS-induced DUSP1 mRNA and protein levels can be detected in A2AR null macrophages. Silencing of DUSP1 mRNA expression resulted in higher basal and LPS-induced JNK phosphorylation and LPS-induced pro-inflammatory cytokine formation in wild type macrophages, but had no effect on that in A2AR null cells. Our data indicate that A2AR signaling regulates both basal and LPS-induced DUSP1 levels in macrophages via activating the adenylate cyclase pathway.

  2. A TLR4/MD2 fusion protein inhibits LPS-induced pro-inflammatory signaling in hepatic stellate cells

    SciTech Connect

    Schnabl, Bernd Brandl, Katharina; Fink, Marina; Gross, Philipp; Taura, Kojiro; Gaebele, Erwin; Hellerbrand, Claus; Falk, Werner

    2008-10-17

    Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrogenesis. In injured liver they are the main extracellular matrix protein producing cell type and further perpetuate hepatic injury by secretion of pro-inflammatory mediators. Since LPS-mediated signaling through toll-like receptor 4 (TLR4) has been identified as key fibrogenic signal in HSCs we aimed to test TLR4 as potential target of therapy via ligand-binding soluble receptors. Incubation of human HSCs with a fusion protein between the extracellular domain of TLR4 and MD2 which binds LPS inhibited LPS-induced NF{kappa}B and JNK activation. TLR4/MD2 abolished LPS-induced secretion of IL-6, IL-8, MCP1, and RANTES in HSCs. In addition, TLR4/MD2 fused to human IgG-Fc neutralized LPS activity. Since TLR4 mutant mice are resistant to liver fibrosis, the TLR4/MD2 soluble receptor might represent a new therapeutic molecule for liver fibrogenesis in vivo.

  3. Demethoxycurcumin, a natural derivative of curcumin attenuates LPS-induced pro-inflammatory responses through down-regulation of intracellular ROS-related MAPK/NF-kappaB signaling pathways in N9 microglia induced by lipopolysaccharide.

    PubMed

    Zhang, Lijia; Wu, Chunfu; Zhao, Siqi; Yuan, Dan; Lian, Guoning; Wang, Xiaoxiao; Wang, Lihui; Yang, Jingyu

    2010-03-01

    Our previous report has showed that demethoxycurcumin (DMC), a natural derivative of curcumin (Cur), exhibited stronger inhibitory activity on nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha) production compared with Cur in lipopolysaccharide (LPS) activated rat primary microglia. In the present study, the effect and possible mechanism of DMC on the production of pro-inflammatory mediators in LPS-activated N9 microglial cells were further investigated. The results showed that DMC significantly suppressed the NO production induced by LPS in N9 microglial cells through inhibiting the protein and mRNA expression of inducible NO synthase (iNOS). DMC also decreased LPS-induced TNF-alpha and IL-1beta expression at both transcriptional and protein level in a concentration-dependent manner. Further studies revealed that DMC blocked IkappaBalpha phosphorylation and degradation, inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs). Moreover, the level of intracellular reactive oxygen species (iROS) was significantly increased by LPS, which is mainly mediated by the up-regulated expression of gp91phox, the catalytic subunit of nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase. Both DMC and Cur could markedly decrease iROS production and the expression of NADPH oxidase induced by LPS, with more potent inhibitory activity of DMC. In summary, these data suggest that DMC exerts its in vitro anti-inflammatory effect in LPS-activated N9 microglial cells by blocking nuclear factor-kappaB (NF-kappaB) and MAPKs activation, which may be partly due to its potent down-regulation of the NADPH-derived iROS production.

  4. 2-phenylethynesulfonamide Prevents Induction of Pro-inflammatory Factors and Attenuates LPS-induced Liver Injury by Targeting NHE1-Hsp70 Complex in Mice.

    PubMed

    Huang, Chao; Wang, Jia; Chen, Zhuo; Wang, Yuzhe; Zhang, Wei

    2013-01-01

    The endotoxin-mediated production of pro-inflammatory cytokines plays an important role in the pathogenesis of liver disorders. Heat shock protein (Hsp70) overexpression has established functions in lipopolysaccharide (LPS)-mediated inflammatory response. However, little is known about the role of Hsp70 activity in LPS signaling. We hypothesized that inhibition of Hsp70 substrate binding activity can ameliorate LPS-induced liver injury by decreasing induction of pro-inflammatory factors. In this study, C57/BL6 mice were injected intraperitoneally with LPS and 2-phenylethynesulfonamide (PES), an inhibitor of Hsp70 substrate binding activity. We found that i. PES prevented LPS-induced increase in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity, infiltration of inflammatory cells, and liver cell apoptosis; ii. PES reduced inducible nitric oxide synthase (iNOS) protein expression as well as serum nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) content in LPS-stimulated mice; iii. PES reduced the mRNA level of iNOS, TNF-α, and IL-6 in LPS-stimulated liver. iiii. PES attenuated the degradation of inhibitor of κB-α (IκB-α) as well as the phosphorylation and nuclear translocation of nuclear factor-κB (NF-κB) in LPS-stimulated liver. Similar changes in the protein expression of inflammatory markers, IκB-α degradation, and NF-κB phosphorylation and nuclear translocation were observed in RAW 264.7 cells. Further mechanistic studies revealed that PES remarkably reduced the elevation of [Ca(2+)]i and intracellular pH value (pHi) in LPS-stimulated RAW 264.7 cells. Furthermore, PES significantly reduced the increase in Na(+)/H(+) exchanger 1 (NHE1) association to Hsp70 in LPS-stimulated macrophages and liver, suggesting that NHE1-Hsp70 interaction is required for the involvement of NHE1 in the inflammation response. In conclusion, inhibition of Hsp70 substrate binding activity in vivo reduces the

  5. Sildenafil attenuates LPS-induced pro-inflammatory responses through down-regulation of intracellular ROS-related MAPK/NF-κB signaling pathways in N9 microglia.

    PubMed

    Zhao, Siqi; Zhang, Lijia; Lian, Guoning; Wang, Xiaoxiao; Zhang, Haotian; Yao, Xuechun; Yang, Jingyu; Wu, Chunfu

    2011-04-01

    Excessive activation of microglial cells has been implicated in various neuroinflammation. The present study showed that sildenafil, a PDE5 inhibitor, significantly suppressed NO, interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) production induced by LPS in microglial cells through decreasing the protein and/or mRNA expressions of inducible NO synthase (iNOS), IL-1β and TNF-α in a concentration-dependent manner. Sildenafil also blocked IκBα phosphorylation and degradation, inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), p38 MAPK, and c-Jun N-terminal kinase (JNK). Moreover, the increase of the expression of gp91phox, a critical and catalytic subunit of NADPH oxidase, and the levels of intracellular reactive oxygen species (iROS) induced by LPS were markedly inhibited by sildenafil. In summary, these data suggest that sildenafil exerts its in vitro anti-inflammatory effect in LPS-activated N9 microglial cells by blocking nuclear factor-κB (NF-κB) and MAPKs activation, which may be partly due to its potent down-regulation of the NADPH-derived iROS production.

  6. Anti-Inflammatory Effect of Apigenin on LPS-Induced Pro-Inflammatory Mediators and AP-1 Factors in Human Lung Epithelial Cells.

    PubMed

    Patil, Rajeshwari H; Babu, R L; Naveen Kumar, M; Kiran Kumar, K M; Hegde, Shubha M; Nagesh, Rashmi; Ramesh, Govindarajan T; Sharma, S Chidananda

    2016-02-01

    Apigenin is one of the plant flavonoids present in fruits and vegetables, acting as an important nutraceutical component. It is recognized as a potential antioxidant, antimicrobial, and anti-inflammatory molecule. In the present study, the mechanism of anti-inflammatory action of apigenin on lipopolysaccharide (LPS)-induced pro-inflammatory cytokines and activator protein-1 (AP-1) factors in human lung A549 cells was investigated. The anti-inflammatory activity of apigenin on LPS-induced inflammation was determined by analyzing the expression of pro-inflammatory cytokines, nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and different AP-1 factors. Apigenin significantly inhibited the LPS-induced expression of iNOS, COX-2, expression of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, and TNF-α), and AP-1 proteins (c-Jun, c-Fos, and JunB) including nitric oxide production. Study confirms the anti-inflammatory effect of apigenin by inhibiting the expression of inflammatory mediators and AP-1 factors involved in the inflammation and its importance in the treatment of lung inflammatory diseases.

  7. Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-κB pathways.

    PubMed

    Park, Junghyung; Min, Ju-Sik; Kim, Bokyung; Chae, Un-Bin; Yun, Jong Won; Choi, Myung-Sook; Kong, Il-Keun; Chang, Kyu-Tae; Lee, Dong-Seok

    2015-01-01

    Activation of microglia cells in the brain contributes to neurodegenerative processes promoted by many neurotoxic factors such as pro-inflammatory cytokines and nitric oxide (NO). Reactive oxygen species (ROS) actively affect microglia-associated neurodegenerative diseases through their role as pro-inflammatory molecules and modulators of pro-inflammatory processes. Although the ROS which involved in microglia activation are thought to be generated primarily by NADPH oxidase (NOX) and involved in the immune response, mitochondrial ROS have also been proposed as important regulators of the inflammatory response in the innate immune system. However, the role of mitochondrial ROS in microglial activation has yet to be fully elucidated. In this study, we demonstrate that inhibition of mitochondrial ROS by treatment with Mito-TEMPO effectively suppressed the level of mitochondrial and intracellular ROS. Mito-TEMPO treatment also significantly prevented LPS-induced increase in the TNF-α, IL-1β, IL-6, iNOS and Cox-2 in BV-2 and primary microglia cells. Furthermore, LPS-induced suppression of mitochondrial ROS generation not only affected LPS-stimulated activation of MAPKs, including ERK, JNK, and p38, but also regulated IκB activation and NF-κB nuclear localization. These results indicate that mitochondria constitute a major source of ROS generation in LPS-mediated activated microglia cells. Additionally, suppression of LPS-induced mitochondrial ROS plays a role in modulating the production of pro-inflammatory mediators by preventing MAPK and NF-κB activation in microglia cells. Our findings suggest that a potential strategy in the development of therapy for inflammation-associated degenerative neurological diseases involves targeting the regulation of mitochondrial ROS in microglial cells.

  8. Suppressive effects of Mimosa pudica (L.) constituents on the production of LPS-induced pro-inflammatory mediators

    PubMed Central

    Patel, Neeraj K.; Bhutani, Kamlesh K.

    2014-01-01

    The present study deals with the isolation of fourteen compounds from the active ethyl acetate (MPE) extract of M. pudica (L.) whole plant and their subsequent evaluation for the nitric oxide (NO), tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1ß) inhibitory activities in lipopolysaccharide (LPS) stimulated RAW 264.7 and J774A.1 cells. Among the tested compounds, L-mimosine (12; IC50 = 19.23 to 21.15 µM), crocetin (4; IC50 = 23.45 to 25.57 µM), crocin (14; IC50 = 27.16 to 31.53 µM) and jasmonic acid (11; IC50 = 21.32 to 29.42 µM) were identified as potent NO inhibitor when tested on the macrophages. Similarly, towards TNF-α and IL-1ß inhibition, including these four compounds, and ethyl gallate (3), gallic acid (10) and caffeic acid (7) were found to be more active with half maximal concentration, 17.32 to 62.32 µM whereas the other compounds depicted moderate and mild effects (IC50 = 59.32 to 95.01 µM). Also, at a dose of 40 mg/Kg, L-mimosine (12), jasmonic acid (11), crocin (14) and its de-esterified form, crocetin (4) were found to significantly (p < 0.05 and 0.001) reduce 60.7 %, 48.9 %, 48.4 % and 43.6 % respectively of TNF-de-esterified production in female Sprague Dawley rats. However, in case of IL-1ß, with the same dose (40 mg/Kg), jasmonic acid (11) exhibited significant reduction with 54.2 % followed by crocin (14) (50.2 %) and crocetin (4) (39.8 %) while L-mimosine (12) was found to reduce only 16.3 %. Based on the results, it can be estimated that these compounds imparting greatly to anti-inflammatory effects of M. pudica in vitro as well as in vivo through reduction of LPS-induced pro-inflammatory mediators which affirm the ethno-pharmacological use of this plant for prevention of inflammatory-related disorders. PMID:26417317

  9. LPS-induced TNF-α factor mediates pro-inflammatory and pro-fibrogenic pattern in non-alcoholic fatty liver disease.

    PubMed

    Ceccarelli, Sara; Panera, Nadia; Mina, Marco; Gnani, Daniela; De Stefanis, Cristiano; Crudele, Annalisa; Rychlicki, Chiara; Petrini, Stefania; Bruscalupi, Giovannella; Agostinelli, Laura; Stronati, Laura; Cucchiara, Salvatore; Musso, Giovanni; Furlanello, Cesare; Svegliati-Baroni, Gianluca; Nobili, Valerio; Alisi, Anna

    2015-12-08

    Lipopolysaccharide (LPS) is currently considered one of the major players in non-alcoholic fatty liver disease (NAFLD) pathogenesis and progression. Here, we aim to investigate the possible role of LPS-induced TNF-α factor (LITAF) in inducing a pro-inflammatory and pro-fibrogenic phenotype of non-alcoholic steatohepatitis (NASH).We found that children with NAFLD displayed, in different liver-resident cells, an increased expression of LITAF which correlated with histological traits of hepatic inflammation and fibrosis. Total and nuclear LITAF expression increased in mouse and human hepatic stellate cells (HSCs). Moreover, LPS induced LITAF-dependent transcription of IL-1β, IL-6 and TNF-α in the clonal myofibroblastic HSC LX-2 cell line, and this effect was hampered by LITAF silencing. We showed, for the first time in HSCs, that LITAF recruitment to these cytokine promoters is LPS dependent. However, preventing LITAF nuclear translocation by p38MAPK inhibitor, the expression of IL-6 and TNF-α was significantly reduced with the aid of p65NF-ĸB, while IL-1β transcription exclusively required LITAF expression/activity. Finally, IL-1β levels in plasma mirrored those in the liver and correlated with LPS levels and LITAF-positive HSCs in children with NASH.In conclusion, a more severe histological profile in paediatric NAFLD is associated with LITAF over-expression in HSCs, which in turn correlates with hepatic and circulating IL-1β levels outlining a panel of potential biomarkers of NASH-related liver damage. The in vitro study highlights the role of LITAF as a key regulator of the LPS-induced pro-inflammatory pattern in HSCs and suggests p38MAPK inhibitors as a possible therapeutic approach against hepatic inflammation in NASH.

  10. Intracellular NAD+ levels are associated with LPS-induced TNF-α release in pro-inflammatory macrophages

    PubMed Central

    Al-Shabany, Abbas Jawad; Moody, Alan John; Foey, Andrew David; Billington, Richard Andrew

    2016-01-01

    Metabolism and immune responses have been shown to be closely linked and as our understanding increases, so do the intricacies of the level of linkage. NAD+ has previously been shown to regulate tumour necrosis factor-α (TNF-α) synthesis and TNF-α has been shown to regulate NAD+ homoeostasis providing a link between a pro-inflammatory response and redox status. In the present study, we have used THP-1 differentiation into pro- (M1-like) and anti- (M2-like) inflammatory macrophage subset models to investigate this link further. Pro- and anti-inflammatory macrophages showed different resting NAD+ levels and expression levels of NAD+ homoeostasis enzymes. Challenge with bacterial lipopolysaccharide, a pro-inflammatory stimulus for macrophages, caused a large, biphasic and transient increase in NAD+ levels in pro- but not anti-inflammatory macrophages that were correlated with TNF-α release and inhibition of certain NAD+ synthesis pathways blocked TNF-α release. Lipopolysaccharide stimulation also caused changes in mRNA levels of some NAD+ homoeostasis enzymes in M1-like cells. Surprisingly, despite M2-like cells not releasing TNF-α or changing NAD+ levels in response to lipopolysaccharide, they showed similar mRNA changes compared with M1-like cells. These data further strengthen the link between pro-inflammatory responses in macrophages and NAD+. The agonist-induced rise in NAD+ shows striking parallels to well-known second messengers and raises the possibility that NAD+ is acting in a similar manner in this model. PMID:26764408

  11. Intracellular NAD+ levels are associated with LPS-induced TNF-α release in pro-inflammatory macrophages.

    PubMed

    Al-Shabany, Abbas Jawad; Moody, Alan John; Foey, Andrew David; Billington, Richard Andrew

    2016-01-13

    Metabolism and immune responses have been shown to be closely linked and as our understanding increases, so do the intricacies of the level of linkage. NAD(+) has previously been shown to regulate tumour necrosis factor-α (TNF-α) synthesis and TNF-α has been shown to regulate NAD(+) homoeostasis providing a link between a pro-inflammatory response and redox status. In the present study, we have used THP-1 differentiation into pro- (M1-like) and anti- (M2-like) inflammatory macrophage subset models to investigate this link further. Pro- and anti-inflammatory macrophages showed different resting NAD(+) levels and expression levels of NAD(+) homoeostasis enzymes. Challenge with bacterial lipopolysaccharide, a pro-inflammatory stimulus for macrophages, caused a large, biphasic and transient increase in NAD(+) levels in pro- but not anti-inflammatory macrophages that were correlated with TNF-α release and inhibition of certain NAD(+) synthesis pathways blocked TNF-α release. Lipopolysaccharide stimulation also caused changes in mRNA levels of some NAD(+) homoeostasis enzymes in M1-like cells. Surprisingly, despite M2-like cells not releasing TNF-α or changing NAD(+) levels in response to lipopolysaccharide, they showed similar mRNA changes compared with M1-like cells. These data further strengthen the link between pro-inflammatory responses in macrophages and NAD(+). The agonist-induced rise in NAD(+) shows striking parallels to well-known second messengers and raises the possibility that NAD(+) is acting in a similar manner in this model.

  12. Anethole, a Medicinal Plant Compound, Decreases the Production of Pro-Inflammatory TNF-α and IL-1β in a Rat Model of LPS-Induced Periodontitis

    PubMed Central

    Moradi, Janet; Abbasipour, Fatemeh; Zaringhalam, Jalal; Maleki, Bita; Ziaee, Narges; Khodadoustan, Amin; Janahmadi, Mahyar

    2014-01-01

    Periodontitis (PD) is known to be one of most prevalent worldwide chronic inflammatory diseases. There are several treatments including antibiotics for PD; however, since drug resistance is an increasing problem, new drugs particularly derived from plants with fewer side effects are required. The effects of trans-anethole on IL-1 β and TNF-α level in a rat model of PD were investigated and compared to ketoprofen. Eschericia coli lipopolysaccharide (LPS, 30 µg) was injected bilaterally into the palatal gingiva (3 µL/site) between the upper first and second molars every two days for 10 days in anesthetized rats. Administration of either trans-anethole (10 or 50 mg/Kg, i.p.) or ketoprofen (10 mg/Kg, i.p.) was started 20 minute before LPS injection and continued for 10 days. Then, IL-1β and TNF-α levels were measured in blood samples by ELISA at day 0 (control) and at day 10. Anethole at both concentrations significantly suppressed IL-1β and TNF-α production when compared to LPS-treated rats. The suppressive effects of anethole on LPS-induced pro-inflammatory cytokines were almost similar as seen with ketoprofen. In conclusion, the present results suggest that anethole may have a potent inhibitory effect on PD through suppression of pro-inflammatory molecules; therefore it could be a novel therapeutic strategy for PD. PMID:25587321

  13. Investigations on Leucas cephalotes (Roth.) Spreng. for inhibition of LPS-induced pro-inflammatory mediators in murine macrophages and in rat model

    PubMed Central

    Patel, Neeraj K.; Khan, Mohd. Shahid; Bhutani, Kamlesh K.

    2015-01-01

    Silica gel column chromatography fractionation of the dichloromethane extract (LCD) of Leucas cephalotes (Roth.) Spreng. led to the isolation of five compounds namely β-sitosterol (1) + stigmasterol (2), lupeol (3), oleanolic acid (4) and laballenic acid (5). Also, gas chromatography-mass spectrometry (GC-MS) analysis of sub-fraction (LCD-F1) of this extract showed the presence of eleven (6-16) compounds. In addition to this, 3-5 and LCD-F1 were evaluated for lipopolysachharide (LPS)-induced nitric oxide (NO), tumor necrosis factor (TNF)-α and interleukin (IL)-1β production in RAW 264.7 and J774A.1 cells. Results directed that 4 and 5 were found to inhibit these mediators at half maximal inhibitory concentration of 17.12 to 57.20 μM while IC50 for LCD-F1 was found to be 15.56 to 31.71 μg/mL. Furthermore, LCD at a dose of 50, 100 and 400 mg/Kg was found to reduce significantly LPS induced tumor necrosis factor (TNF)-α and interleukin (IL)-1β production in female Sprague Dawley (SD) rats. All the results findings evoked that the anti-inflammatory effects of Leucas cephalotes is partially mediated through the suppression of pro-inflammatory mediators and hence can be utilized for the development of anti-inflammatory candidates. PMID:26535039

  14. Short-term heating reduces the anti-inflammatory effects of fresh raw garlic extracts on the LPS-induced production of NO and pro-inflammatory cytokines by downregulating allicin activity in RAW 264.7 macrophages.

    PubMed

    Shin, Jung-Hye; Ryu, Ji Hyeon; Kang, Min Jung; Hwang, Cho Rong; Han, Jaehee; Kang, Dawon

    2013-08-01

    Garlic has a variety of biologic activities, including anti-inflammatory properties. Although garlic has several biologic activities, some people dislike eating fresh raw garlic because of its strong taste and smell. Therefore, garlic formulations involving heating procedures have been developed. In this study, we investigated whether short-term heating affects the anti-inflammatory properties of garlic. Fresh and heated raw garlic extracts (FRGE and HRGE) were prepared with incubation at 25 °C and 95 °C, respectively, for 2 h. Treatment with FRGE and HRGE significantly reduced the LPS-induced increase in the pro-inflammatory cytokine concentration (TNF-α, IL-1β, and IL-6) and NO through HO-1 upregulation in RAW 264.7 macrophages. The anti-inflammatory effect was greater in FRGE than in HRGE. The allicin concentration was higher in FRGE than in HRGE. Allicin treatment showed reduced production of pro-inflammatory cytokines and NO and increased HO-1 activity. The results show that the decrease in LPS-induced NO and pro-inflammatory cytokines in RAW 264.7 macrophages through HO-1 induction was greater for FRGE compared with HRGE. Additionally, the results indicate that allicin is responsible for the anti-inflammatory effect of FRGE. Our results suggest a potential therapeutic use of allicin in the treatment of chronic inflammatory disease.

  15. LYRM03, an ubenimex derivative, attenuates LPS-induced acute lung injury in mice by suppressing the TLR4 signaling pathway

    PubMed Central

    He, Hui-qiong; Wu, Ya-xian; Nie, Yun-juan; Wang, Jun; Ge, Mei; Qian, Feng

    2017-01-01

    Toll-like receptor 4 (TLR4)-mediated signaling plays a critical role in sepsis-induced acute lung injury (ALI). LYRM03 (3-amino-2-hydroxy-4-phenyl-valyl-isoleucine) is a novel derivative of ubenimex, a widely used antineoplastic medicine. We previously found that LYRM03 has anti-inflammatory effects in cecal ligation puncture mouse model. In this study we determined whether LYRM03 attenuated LPS-induced ALI in mice. LPS-induced ALI mouse model was established by challenging the mice with intratracheal injection of LPS (5 mg/kg), which was subsequently treated with LYRM03 (10 mg/kg, ip). LYRM03 administration significantly alleviated LPS-induced lung edema, inflammatory cell (neutrophils and macrophages) infiltration and myeloperoxidase (MPO) activity, decreased pro-inflammatory and chemotactic cytokine (TNF-α, IL-6, IL-1β, MIP-2) generation and reduced iNOS and COX-2 expression in the lung tissues. In cultured mouse alveolar macrophages in vitro, pretreatment with LYRM03 (100 μmol/L) suppressed LPS-induced macrophage activation by reducing Myd88 expression, increasing IκB stability and inhibiting p38 phosphorylation. These results suggest that LYRM03 effectively attenuates LPS-induced ALI by inhibiting the expression of pro-inflammatory mediators and Myd88-dependent TLR4 signaling pathways in alveolar macrophages. LYRM03 may serve as a potential treatment for sepsis-mediated lung injuries. PMID:28112185

  16. Polysaccharides from Smilax glabra inhibit the pro-inflammatory mediators via ERK1/2 and JNK pathways in LPS-induced RAW264.7 cells.

    PubMed

    Lu, Chuan-li; Wei, Zhu; Min, Wang; Hu, Meng-mei; Chen, Wen-long; Xu, Xiao-jie; Lu, Chuan-jian

    2015-05-20

    The rhizomes of Smilax glabra have been used as both food and folk medicine in many countries for a long time. However, little research has been reported on polysaccharides of S. glabra. In the present study, two polysaccharide fractions, SGP-1 and SGP-2, were isolated from the rhizomes of S. glabra with the number average molecular weights of 1.72 × 10(2)kDa and 1.31 × 10(2)kDa, and the weight average molecular weights of 1.31 × 10(5)kDa and 1.18 × 10(5)kDa, respectively, and their mainly monosaccharide compositions were both galactose and rhamnose (2.5:1). Both SGP-1 and SGP-2 significantly suppressed the release of nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) from LPS-induced RAW 264.7 cells, as well as the mRNA expression of inducible nitric oxide synthase (iNOS), TNF-α and IL-6. Additionally, SGP-1 and SGP-2 repressed the extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK). These findings strongly suggested polysaccharides were also the anti-inflammatory active ingredient for S. glabra, and the potential of SGP-1 and SGP-2 as the anti-inflammatory agents.

  17. Kavain Involvement in LPS-Induced Signaling Pathways.

    PubMed

    Tang, Xiaoren; Amar, Salomon

    2016-10-01

    Kavain, a compound extracted from the Kava plant, Piper methysticum, is found to be involved in TNF-α expression in human and mouse cells via regulation of transcriptional factors such as NF-kB and LITAF. LITAF is known to activate the transcription of more than 20 cytokines that are involved in a variety of cellular processes and is associated with many inflammatory diseases, including angiogenesis, cancer, arthritis, and more. The modulation of LITAF is expected to positively affect cytokine-mediated diseases. Thus, intensive efforts have been deployed in search of LITAF inhibitors. In this work, we found that, in vitro, Kavain reduced LPS- induced TNF-α secretion in mouse macrophages, mouse bone marrow macrophages (BMM), and human peripheral blood mononuclear cells (HPBMC). We also found that Kavain treatment in RAW264.7 cells deactivated MyD88 and Akt, inhibited LITAF, and reduced the production of TNF-α, IL-27, and MIG in response to LPS. Similarly, it had a significant in vivo anti-inflammatory effect on wild-type (WT) mice that developed Collagen Antibody Induced Arthritis (CAIA). Overall, MyD88 was found to be an important mediator of the LPS-induced inflammatory response that can be distinguished from the NF-κB pathway. We also found that MyD88 is involved in the pathway linking LPS/LITAF to TNF-α. Therefore, given that Kavain modulates LPS-induced signaling pathways leading to cytokine expression, therapeutic interventions involving Kavain in inflammatory diseases are warranted. J. Cell. Biochem. 117: 2272-2280, 2016. © 2016 Wiley Periodicals, Inc.

  18. Leonurine exerts anti-inflammatory effect by regulating inflammatory signaling pathways and cytokines in LPS-induced mouse mastitis.

    PubMed

    Song, Xiaojing; Wang, Tiancheng; Zhang, Zecai; Jiang, Haichao; Wang, Wei; Cao, Yongguo; Zhang, Naisheng

    2015-02-01

    Bovine mastitis is defined as the inflammation of mammary gland and is the most multiple diseases in dairy cattle. There is still no effective treatment now. Leonurine, extracted from Leonurus cardiaca, has been proved to have anti-inflammatory effect. In the present study, we utilized a mouse mastitis model to study the effect of leonurine on LPS-induced mastitis. Leonurine was administered three times during the 24 h after inducing infection in the mammary gland. The results showed that leonurine significantly alleviated LPS-induced histopathological changes, downregulated the levels of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), upregulated the level of anti-inflammatory cytokine interleukin-10 (IL-10), and inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Further study revealed that leonurine inhibited the expression of Toll-like receptor 4 (TLR4) and the activation of nuclear factor-kappaB (NF-κB) and the phosphorylation of p38, extracellular signal-regulated kinase (ERK), and Jun N-terminal kinase (JNK). Therefore, the results demonstrated that leonurine could downregulate the expression of TNF-α, IL-6, iNOS, and COX-2 and upregulate the expression of IL-10 mainly by inhibiting the expression of TLR4 and the activation of NF-κB and the phosphorylation of p38, ERK, and JNK. Leonurine may be a potential agent for mastitis therapy.

  19. Host Intracellular Signaling Events and Pro-inflammatory Cytokine Production in African Trypanosomiasis

    PubMed Central

    Kuriakose, Shiby M.; Singh, Rani; Uzonna, Jude E.

    2016-01-01

    Pathogens, such as bacteria, viruses, and parasites, possess specific molecules or proteins that are recognized by several host innate immune receptors, leading to the activation of several intracellular signaling molecules and pathways. The magnitude and quality of these events significantly affect the outcome of infection. African trypanosomes, including Trypanosoma congolense, are capable of manipulating the host immune response, including the activity of macrophages, which are the key immune cells that contribute to the immunopathogenesis of African trypanosomiasis. Although it is known that immune hyperactivation and excessive pro-inflammatory cytokine production are the hallmarks of African trypanosomiasis, the mechanisms through which these events are triggered are poorly defined. However, it is known that macrophages may play a significant role in these processes, because phagocytosis of trypanosomes by macrophages initiates intracellular signal transduction cascades that lead to the release of pro-inflammatory cytokines and alteration in cell function. This review highlights recent progress in our understanding of the innate immune receptors, signaling pathways, and transcription factors involved in T. congolense-induced pro-inflammatory cytokine production in macrophages. It will reveal the existence of complex signaling events through which the parasite modulates the host immune response, thus identifying novel targets that could aid in designing strategies to effectively control the disease. PMID:27242788

  20. Ferulic acid prevents LPS-induced up-regulation of PDE4B and stimulates the cAMP/CREB signaling pathway in PC12 cells

    PubMed Central

    Huang, Hao; Hong, Qian; Tan, Hong-ling; Xiao, Cheng-rong; Gao, Yue

    2016-01-01

    Aim: Phosphodiesterase 4 (PDE4) isozymes are involved in different functions, depending on their patterns of distribution in the brain. The PDE4 subtypes are distributed in different inflammatory cells, and appear to be important regulators of inflammatory processes. In this study we examined the effects of ferulic acid (FA), a plant component with strong anti-oxidant and anti-inflammatory activities, on lipopolysaccharide (LPS)-induced up-regulation of phosphodiesterase 4B (PDE4B) in PC12 cells, which in turn regulated cellular cAMP levels and the cAMP/cAMP response element binding protein (CREB) pathway in the cells. Methods: PC12 cells were treated with LPS (1 μg/mL) for 8 h, and the changes of F-actin were detected using laser scanning confocal microscopy. The levels of pro-inflammatory cytokines were measured suing ELISA kits, and PDE4B-specific enzymatic activity was assessed with a PDE4B assay kit. The mRNA levels of PDE4B were analyzed with Q-PCR, and the protein levels of CREB and phosphorylated CREB (pCREB) were determined using immunoblotting. Furthermore, molecular docking was used to identify the interaction between PDE4B2 and FA. Results: Treatment of PC12 cells with LPS induced thick bundles of actin filaments appearing in the F-actin cytoskeleton, which were ameliorated by pretreatment with FA (10–40 μmol/L) or with a PDE4B inhibitor rolipram (30 μmol/L). Pretreatment with FA dose-dependently inhibited the LPS-induced production of TNF-α and IL-1β in PC12 cells. Furthermore, pretreatment with FA dose-dependently attenuated the LPS-induced up-regulation of PDE4 activity in PC12 cells. Moreover, pretreatment with FA decreased LPS-induced up-regulation of the PDE4B mRNA, and reversed LPS-induced down-regulation of CREB and pCREB in PC12 cells. The molecular docking results revealed electrostatic and hydrophobic interactions between FA and PDE4B2. Conclusion: The beneficial effects of FA in PC12 cells might be conferred through inhibition of LPS-induced

  1. Ambroxol inhalation ameliorates LPS-induced airway inflammation and mucus secretion through the extracellular signal-regulated kinase 1/2 signaling pathway.

    PubMed

    Zhang, Shui-juan; Jiang, Juan-xia; Ren, Qian-qian; Jia, Yong-liang; Shen, Jian; Shen, Hui-juan; Lin, Xi-xi; Lu, Hong; Xie, Qiang-min

    2016-03-15

    Ambroxol, a metabolite of bromhexine, is shown to exert several pharmacological activities, including secretolytic, anti-inflammatory and antioxidant actions. Oral and intravenous administration of ambroxol is useful for the airway inflammatory diseases. However, little is known about its potential in inhalation therapy for lipopolysaccharide (LPS)-induced mucous hypersecretion and inflammatory response. In the present study, we compared the pharmacological effects of ambroxol by inhalation with intravenous administration and preliminarily explored its mechanism of action. Our results demonstrated that ambroxol administered by inhalation inhibited MUC5AC expression, reduced glycosaminoglycan levels, enhanced the function of mucociliary clearance and promoted sputum excretion, suggesting that ambroxol increases expectoration of sputum by reducing its viscosity. Moreover, ambroxol significantly alleviated LPS-induced the influx of inflammatory cells and the extracellular signal-regulated kinase 1/2 (Erk 1/2) expression in lung tissues, and inhibited increases in the mRNA expression of the pro-inflammatory cytokines tumor necrosis factor (TNF)-α, CCL-2 (monocyte chemotactic protein-1), KC (keratinocyte cell protein) and interleukin (IL)-1β in lung tissues. The secretolytic and anti-inflammatory effects of inhaled ambroxol at a dose of 7.5 mg/ml was comparable to that of ambroxol at 20 mg/ml i.v. and dexamethasone at 0.5 mg/kg i.p. In addition, we found that ambroxol dose-dependently inhibited LPS-induced increases in the mRNA expression of MUC5AC, TNF-α, and IL-1β in human bronchial epithelial cell (NCI-H292) by inhibiting the Erk signaling pathway. These results demonstrate the beneficial effects of ambroxol in inhalation therapy for the airway inflammatory diseases.

  2. Oleoylethanolamide exerts anti-inflammatory effects on LPS-induced THP-1 cells by enhancing PPARα signaling and inhibiting the NF-κB and ERK1/2/AP-1/STAT3 pathways

    PubMed Central

    Yang, Lichao; Guo, Han; Li, Ying; Meng, Xianglan; Yan, Lu; Dan Zhang; Wu, Sangang; Zhou, Hao; Peng, Lu; Xie, Qiang; Jin, Xin

    2016-01-01

    The present study aimed to examine the anti-inflammatory actions of oleoylethanolamide (OEA) in lipopolysaccharide (LPS)-induced THP-1 cells. The cells were stimulated with LPS (1 μg/ml) in the presence or absence of OEA (10, 20 and 40 μM). The pro-inflammatory cytokines were evaluated by qRT-PCR and ELISA. The THP-1 cells were transiently transfected with PPARα small-interfering RNA, and TLR4 activity was determined with a blocking test using anti-TLR4 antibody. Additionally, a special inhibitor was used to analyse the intracellular signaling pathway. OEA exerted a potent anti-inflammatory effect by reducing the production of pro-inflammatory cytokines and TLR4 expression, and by enhancing PPARα expression. The modulatory effects of OEA on LPS-induced inflammation depended on PPARα and TLR4. Importantly, OEA inhibited LPS-induced NF-κB activation, IκBα degradation, expression of AP-1, and the phosphorylation of ERK1/2 and STAT3. In summary, our results demonstrated that OEA exerts anti-inflammatory effects by enhancing PPARα signaling, inhibiting the TLR4-mediated NF-κB signaling pathway, and interfering with the ERK1/2-dependent signaling cascade (TLR4/ERK1/2/AP-1/STAT3), which suggests that OEA may be a therapeutic agent for inflammatory diseases. PMID:27721381

  3. Rationale and Means to Target Pro-Inflammatory Interleukin-8 (CXCL8) Signaling in Cancer

    PubMed Central

    Campbell, Laura M.; Maxwell, Pamela J.; Waugh, David J.J.

    2013-01-01

    It is well established that chronic inflammation underpins the development of a number of human cancers, with pro-inflammatory signaling within the tumor microenvironment contributing to tumor progression and metastasis. CXCL8 is an ELR+ pro-inflammatory CXC-chemokine which mediates its effects via signaling through two G protein-coupled receptors, CXCR1 and CXCR2. Elevated CXCL8-CXCR1/2 signaling within the tumor microenvironment of numerous cancers is known to enhance tumor progression via activation of signaling pathways promoting proliferation, angiogenesis, migration, invasion and cell survival. This review provides an overview of established roles of CXCL8-CXCR1/2 signaling in cancer and subsequently, discusses the possible strategies of targeting CXCL8-CXCR1/2 signaling in cancer, covering indirect strategies (e.g., anti-inflammatories, NFκB inhibitors) and direct CXCL8 or CXCR1/2 inhibition (e.g., neutralizing antibodies, small molecule receptor antagonists, pepducin inhibitors and siRNA strategies). Reports of pre-clinical cancer studies and clinical trials using CXCL8-CXCR1/2-targeting strategies for the treatment of inflammatory diseases will be discussed. The future translational opportunities for use of such agents in oncology will be discussed, with emphasis on exploitation in stratified populations. PMID:24276377

  4. A critical role for suppressors of cytokine signaling 3 in regulating LPS-induced transcriptional activation of matrix metalloproteinase-13 in osteoblasts

    PubMed Central

    Gao, Anqi; Kantarci, Alpdogan; Herrera, Bruno Schneider; Gao, Hongwei

    2013-01-01

    Suppressor of cytokine signaling 3 (SOCS3) is a key regulator of cytokine signaling in macrophages and T cells. Although SOCS3 seems to contribute to the balance between the pro-inflammatory actions of IL-6 family of cytokines and anti-inflammatory signaling of IL-10 by negatively regulating gp130/Jak/Stat3 signal transduction, how and the molecular mechanisms whereby SOCS3 controls the downstream impact of TLR4 are largely unknown and current data are controversial. Furthermore, very little is known regarding SOCS3 function in cells other than myeloid cells and T cells. Our previous study demonstrates that SOCS3 is expressed in osteoblasts and functions as a critical inhibitor of LPS-induced IL-6 expression. However, the function of SOCS3 in osteoblasts remains largely unknown. In the current study, we report for the first time that LPS stimulation of osteoblasts induces the transcriptional activation of matrix metalloproteinase (MMP)-13, a central regulator of bone resorption. Importantly, we demonstrate that SOCS3 overexpression leads to a significant decrease of LPS-induced MMP-13 expression in both primary murine calvariae osteoblasts and a mouse osteoblast-like cell line, MC3T3-E1. Our findings implicate SOCS3 as an important regulatory mediator in bone inflammatory diseases by targeting MMP-13. PMID:23638389

  5. Expression of tak1 and tram induces synergistic pro-inflammatory signalling and adjuvants DNA vaccines.

    PubMed

    Larsen, Karen Colbjørn; Spencer, Alexandra J; Goodman, Anna L; Gilchrist, Ashley; Furze, Julie; Rollier, Christine S; Kiss-Toth, Endre; Gilbert, Sarah C; Bregu, Migena; Soilleux, Elizabeth J; Hill, Adrian V S; Wyllie, David H

    2009-09-18

    Improving vaccine immunogenicity remains a major challenge in the fight against developing country diseases like malaria and AIDS. We describe a novel strategy to identify new DNA vaccine adjuvants. We have screened components of the Toll-like receptor signalling pathways for their ability to activate pro-inflammatory target genes in transient transfection assays and assessed in vivo adjuvant activity by expressing the activators from the DNA backbone of vaccines. We find that a robust increase in the immune response necessitates co-expression of two activators. Accordingly, the combination of tak1 and tram elicits synergistic reporter activation in transient transfection assays. In a mouse model this combination, but not the individual molecules, induced approximately twofold increases in CD8+ T-cell immune responses. These results indicate that optimal immunogenicity may require activation of distinct innate immune signalling pathways. Thus this strategy offers a novel route to the discovery of a new generation of adjuvants.

  6. Qing Hua Chang Yin inhibits the LPS-induced activation of the IL-6/STAT3 signaling pathway in human intestinal Caco-2 cells.

    PubMed

    Ke, Xiao; Hu, Guanghong; Fang, Wenyi; Chen, Jintuan; Zhang, Xin; Yang, Chunbo; Peng, Jun; Chen, Youqin; Sferra, Thomas J

    2015-04-01

    Increasing evidence indicates that the pathogenesis of ulcerative colitis (UC) is highly regulated by the interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) pathway and its negative feedback regulator, suppressor of cytokine signaling 3 (SOCS3). Therefore, modulating the signaling feedback loop of IL-6/STAT3/SOCS3 may prove to be a novel therapeutic approach for the treatment of UC. Qing Hua Chang Yin (QHCY) is a traditional Chinese formulation that has long been used in clinic for the treatment of UC. We have previously reported that QHCY ameliorates acute intestinal inflammation in vivo and in vitro through the suppression of the nuclear factor-κB (NF-κB) pathway. In the present study, in order to further elucidate the mechanisms responsible for the anti-inflammatory activities of QHCY, we stimulated human intestinal Caco-2 cells with lipopolysaccharide (LPS) to create an in vitro model of an inflamed human intestinal epithelium, and evaluated the effects of QHCY on the IL-6/STAT3/SOCS3 signaling network in inflamed Caco-2 cells. The levels of IL-6 were measured by ELISA and the levels of STAT3 and SOCS3 were measured by western blot analysis. We found that QHCY significantly inhibited the LPS-induced secretion of pro-inflammatory IL-6 in the Caco-2 cells in a dose-dependent manner. Moreover, QHCY profoundly suppressed the LPS-induced phosphorylation of Janus-activated kinase 1 (JAK1), JAK2 and STAT3. Furthermore, treatment with QHCY markedly augmented the expression of SOCS3. Taken together, the findings of the present study suggest that the modulation of the IL-6/STAT3/SOCS3 signaling network may be one of the mechanisms through which QHCY exerts its anti-inflammatory effects.

  7. GYF-17, a chloride substituted 2-(2-phenethyl)-chromone, suppresses LPS-induced inflammatory mediator production in RAW264.7 cells by inhibiting STAT1/3 and ERK1/2 signaling pathways.

    PubMed

    Zhu, Zhixiang; Gu, Yufan; Zhao, Yunfang; Song, Yuelin; Li, Jun; Tu, Pengfei

    2016-06-01

    GYF-17, a 2-(2-phenethyl)-chromone derivative, was isolated from agarwood and showed superior activity of inhibiting NO production of RAW264.7 cells induced by LPS in our preliminary pharmacodynamic screening. In order to develop novel therapeutic drug for acute and chronic inflammatory disorders, the anti-inflammatory activity and underlying mechanism of GYF-17 were investigated in LPS-induced RAW264.7 cells. The results showed that GYF-17 could reduce LPS-induced expression of iNOS and then result in the decrement of NO production. More meaningful, the expression and secretion of key pro-inflammatory factors, including TNF-α, IL-6 and IL-1β, were intensively inhibited by GYF-17. Furthermore, GYF-17 also down regulated the expression of COX2 and the production of PGE2 which plays important role in causing algesthesia during inflammatory response. In mechanism study, GYF-17 selectively suppressed phosphorylation of STAT1/3 and ERK1/2 during the activation of NF-κB, MAPK and STAT signaling pathways induced by LPS. Collectively, GYF-17 can intensively suppress the production of LPS-induced inflammatory mediators in RAW264.7 cells by inhibiting STAT1/3 and ERK1/2 signaling pathways and thereby shows great potential to be developed into therapeutic drug for inflammatory diseases.

  8. Cerebral mTOR signal and pro-inflammatory cytokines in Alzheimer’s disease rats

    PubMed Central

    Wang, Xu; Li, Guang-Jian; Hu, Hai-Xia; Ma, Chi; Ma, Di-Hui; Liu, Xiao-Liang

    2016-01-01

    Abstract As a part of Alzheimer’s disease (AD) development the mammalian target of rapamycin (mTOR) has been reported to play a crucial role in regulating cognition and can be used as a neuronal marker. Neuro-inflammation is also a cause of the pathophysiological process in AD. Thus, we examined the protein expression levels of mTOR and its downstream pathways as well as pro-inflammatory cytokines (PICs) in the brain of AD rats. We further examined the effects of blocking mTOR on PICs, namely IL-1β, IL-6 and TNF-α. Our results showed that the protein expression of p-mTOR, mTOR-mediated phosphorylation of 4E-binding protein 4 (4E-BP1) and p70 ribosomal S6 protein kinase 1 (S6K1) pathways were amplified in the hippocampus of AD rats compared with controls. Blocking mTOR by using rapamycin selectively enhanced activities of IL-6 and TNF-α signaling pathways, which was accompanied with an increase of Caspase-3, indicating cellular apoptosis and worsened learning performance. In conclusion, our data for the first time revealed specific signaling pathways engaged in the development of AD, including a regulatory role by the activation of mTOR in PIC mechanisms. Stimulation of mTOR is likely to play a beneficial role in modulating neurological deficits in AD.Targeting one or more of these signaling molecules may present with new opportunities for treatment and clinical management of AD PMID:28123835

  9. Regulation of LPS-induced mRNA expression of pro-inflammatory cytokines via alteration of NF-κB activity in mouse peritoneal macrophages exposed to fluoride.

    PubMed

    Tian, Yuhu; Huo, Meijun; Li, Guangsheng; Li, Yanyan; Wang, Jundong

    2016-10-01

    F toxicity to immune system, especially to macrophage, has been studied a lot recently. Nuclear factor-kappa B (NF-κB), as a transcription factor, plays a central role in immune and inflammatory responses via the regulation of downstream gene expression. Recent studies indicated that fluoride effect on inflammatory cytokine secretion, however, the molecular mechanism was less understood. In our study, peritoneal macrophages (PMs) were divided several groups and were administrated sodium fluoride (NaF, 50, 100, 200, 400, 800 μM) and/or lipopolysaccharide (LPS, 30 ng/mg). The mRNA expression of p65, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in macrophages exposed to fluoride was determined by quantitative real-time RT-PCR respectively. The translocation of NF-κB from cytoplasm to nucleus, which in a way reflects NF-κB activity, was demonstrated by Immunofluorescence and ELISA. Our results showed that fluoride had a dose-dependent effect on NF-κB activity, which coincided with LPS-induced mRNA expression of its downstream genes, iNOS and IL-1β. Fluoride alone causes no effect on gene expression. However, the mRNA expression of TNF-α showed non-NF-κB-dependent manner. Therefore, we come to the conclusion that fluoride can regulate LPS-induced mRNA expression of iNOS and IL-1β via NF-κB pathway in mouse peritoneal macrophages.

  10. Osmotin attenuates LPS-induced neuroinflammation and memory impairments via the TLR4/NFκB signaling pathway

    PubMed Central

    Badshah, Haroon; Ali, Tahir; Kim, Myeong Ok

    2016-01-01

    Toll-like receptor 4 (TLR4) signaling in the brain mediates autoimmune responses and induces neuroinflammation that results in neurodegenerative diseases, such as Alzheimer’s disease (AD). The plant hormone osmotin inhibited lipopolysaccharide (LPS)-induced TLR4 downstream signaling, including activation of TLR4, CD14, IKKα/β, and NFκB, and the release of inflammatory mediators, such as COX-2, TNF-α, iNOS, and IL-1β. Immunoprecipitation demonstrated colocalization of TLR4 and AdipoR1 receptors in BV2 microglial cells, which suggests that osmotin binds to AdipoR1 and inhibits downstream TLR4 signaling. Furthermore, osmotin treatment reversed LPS-induced behavioral and memory disturbances and attenuated LPS-induced increases in the expression of AD markers, such as Aβ, APP, BACE-1, and p-Tau. Osmotin improved synaptic functionality via enhancing the activity of pre- and post-synaptic markers, like PSD-95, SNAP-25, and syntaxin-1. Osmotin also prevented LPS-induced apoptotic neurodegeneration via inhibition of PARP-1 and caspase-3. Overall, our studies demonstrated that osmotin prevented neuroinflammation-associated memory impairment and neurodegeneration and suggest AdipoR1 as a therapeutic target for the treatment of neuroinflammation and neurological disorders, such as AD. PMID:27093924

  11. Effects of Lutein and Zeaxanthin on LPS-Induced Secretion of IL-8 by Uveal Melanocytes and Relevant Signal Pathways.

    PubMed

    Chao, Shih-Chun; Vagaggini, Tommaso; Nien, Chan-Wei; Huang, Sheng-Chieh; Lin, Hung-Yu

    2015-01-01

    The effects of lutein and zeaxanthin on lipopolysaccharide- (LPS-) induced secretion of IL-8 by uveal melanocytes (UM) were tested in cultured human UM. MTT assay revealed that LPS (0.01-1 μg/mL) and lutein and zeaxanthin (1-10 μM) did not influence the cell viability of cultured UM. LPS caused a dose-dependent increase of secretion of IL-8 by cultured UM. Lutein and zeaxanthin did not affect the constitutive secretion of IL-8. However, lutein and zeaxanthin decreased LPS-induced secretion of IL-8 in cultured UM in a dose-dependent manner. LPS significantly increased NF-κB levels in cell nuclear extracts and p-JNK levels in the cell lysates from UM, but not p-p38 MAPK and p-ERG. Lutein or zeaxanthin significantly reduced LPS-induced increase of NF-κB and p-JNK levels, but not p38 MAPK and ERG levels. The present study demonstrated that lutein and zeaxanthin inhibited LPS-induced secretion of IL-8 in cultured UM via JNK and NF-κB signal pathways. The anti-inflammatory effects of lutein and zeaxanthin might be explored as a therapeutic approach in the management of uveitis and other inflammatory diseases of the eye.

  12. Effects of Lutein and Zeaxanthin on LPS-Induced Secretion of IL-8 by Uveal Melanocytes and Relevant Signal Pathways

    PubMed Central

    Chao, Shih-Chun; Vagaggini, Tommaso; Nien, Chan-Wei; Huang, Sheng-Chieh; Lin, Hung-Yu

    2015-01-01

    The effects of lutein and zeaxanthin on lipopolysaccharide- (LPS-) induced secretion of IL-8 by uveal melanocytes (UM) were tested in cultured human UM. MTT assay revealed that LPS (0.01–1 μg/mL) and lutein and zeaxanthin (1–10 μM) did not influence the cell viability of cultured UM. LPS caused a dose-dependent increase of secretion of IL-8 by cultured UM. Lutein and zeaxanthin did not affect the constitutive secretion of IL-8. However, lutein and zeaxanthin decreased LPS-induced secretion of IL-8 in cultured UM in a dose-dependent manner. LPS significantly increased NF-κB levels in cell nuclear extracts and p-JNK levels in the cell lysates from UM, but not p-p38 MAPK and p-ERG. Lutein or zeaxanthin significantly reduced LPS-induced increase of NF-κB and p-JNK levels, but not p38 MAPK and ERG levels. The present study demonstrated that lutein and zeaxanthin inhibited LPS-induced secretion of IL-8 in cultured UM via JNK and NF-κB signal pathways. The anti-inflammatory effects of lutein and zeaxanthin might be explored as a therapeutic approach in the management of uveitis and other inflammatory diseases of the eye. PMID:26609426

  13. Hedgehog Signaling Non-Canonical Activated by Pro-Inflammatory Cytokines in Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Wang, Yuqiong; Jin, Gang; Li, Quanjiang; Wang, Zhiping; Hu, Weimin; Li, Ping; Li, Shude; Wu, Hongyu; Kong, Xiangyu; Gao, Jun; Li, Zhaoshen

    2016-01-01

    Hedgehog(HH) pathway is found to be activated through a manner of canonical, or the non-canonical HH pathways. Distinct hyperplasia stroma around tumor cells is supposed to express pro-inflammatory cytokines abundantly, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), etc. in pancreatic ductal adenocarcinoma (PDAC) tissues. In this study we observed the effects of TNF-α and IL-1β on HH pathway activation in PDAC cells, and explored their activation manners. Our results showed that pro-inflammatory cytokines, TNF-α and IL-1β, could up-regulate the expression of GLI1 gene, increase its nuclear protein expression and promote malignant cell behaviors including migration, invasion, epithelial-mesenchymal transition (EMT) and drug resistance as well. Moreover, GLI1 promoter-reporter assay in combination with blocking either NF-κB or Smoothened (SMO) suggested that TNF-α and IL-1β could transcriptionally up-regulate expression of GLI1 completely via NF-κB, whereas ablation of SMO could not completely attenuate the regulation effects of TNF-α and IL-1β on GLI1 expression. Collectively, our results indicated that TNF-α and IL-1β in hyperplasia stroma can promote the PDAC cell development by activating HH pathway, through both the canonical and non-canonical HH activation ways. PMID:27877222

  14. Targeting apoptotic signalling pathway and pro-inflammatory cytokine expression as therapeutic intervention in TPE induced lung damage.

    PubMed

    Narayanan, Kishore; Krishnamoorthy, Bhavani; Ezhilarasan, Ravesanker; Miyamoto, Shigeki; Balakrishnan, Arun

    2003-01-01

    Tropical pulmonary eosinophilia (TPE) is an occult manifestation of filariasis, brought about by helminth parasites Wuchereria bancrofti and Brugia malayi. Treatment of patients suffering from TPE involves the administration of diethyl carbamazine and Ivermectin. Although the drugs are able to block acute inflammation, they are not able to alleviate chronic basal inflammation. We have attempted to examine the disease by targeting two important components; namely filarial parasitic sheath proteins (FPP) induced apoptosis and pro-inflammatory cytokine response in human laryngeal carcinoma cells of epithelial origin (HEp-2) cells an epithelial cell line. Earlier studies by us have shown that FPP exposure induced apoptosis in these cells. In this study with hydrocortisone, calpain inhibitor (ALLN) and phorbol myristate acetate (PMA) treatments we demonstrate that apoptosis is inhibited as shown by [3H] thymidine incorporation studies, propidium iodide staining and Annexin V staining. Hydrocortisone at a dose, which inhibits cell death also down regulated, the expression of pro-inflammatory cytokines IL-6 and IL-8. These findings give us insights into the multifaceted approach one may adopt to target critical signalling molecules using appropriate inhibitors, which could eventually be used to reduce lung damage in TPE.

  15. Obovatol attenuates LPS-induced memory impairments in mice via inhibition of NF-κB signaling pathway.

    PubMed

    Choi, Dong-Young; Lee, Jae Woong; Lin, Guihua; Lee, Yong Kyung; Lee, Yeon Hee; Choi, Im Seop; Han, Sang Bae; Jung, Jae Kyung; Kim, Young Hee; Kim, Ki Ho; Oh, Ki-Wan; Hong, Jin Tae; Lee, Moon Soon

    2012-01-01

    Neuroinflammation and accumulation of β-amyloid are critical pathogenic mechanisms of Alzheimer's disease (AD). In the previous study, we have shown that systemic lipopolysaccharide (LPS) caused neuroinflammation with concomitant increase in β-amyloid and memory impairments in mice. In an attempt to investigate anti-neuroinflammatory properties of obovatol isolated from Magnolia obovata, we administered obovatol (0.2, 0.5 and 1.0 mg/kg/day, p.o.) to animals for 21 days before injection of LPS (0.25 mg/kg, i.p.). We found that obovatol dose-dependently attenuates LPS-induced memory deficit in the Morris water maze and passive avoidance tasks. Consistent with the results of memory tasks, the compound prevented LPS-induced increases in Aβ₁₋₄₂ formation, β- and γ-secretases activities and levels of amyloid precursor protein, neuronal β-secretase 1 (BACE1), and C99 (a product of BACE1) in the cortex and hippocampus. The LPS-mediated neuroinflammation as determined by Western blots and immunostainings was significantly ameliorated by the compound. Furthermore, LPS-induced nuclear factor (NF)-κB DNA binding activity was drastically abolished by obovatol as shown by the electrophoretic mobility shift assay. The anti-neuroinflammation and anti-amyloidogenesis by obovatol were replicated in in vitro studies. These results show that obovatol mitigates LPS-induced amyloidogenesis and memory impairment via inhibiting NF-κB signal pathway, suggesting that the compound might be plausible therapeutic intervention for neuroinflammation-related diseases such as AD.

  16. TIIA attenuates LPS-induced mouse endometritis by suppressing the NF-κB signaling pathway.

    PubMed

    Lv, Xiaopei; Fu, Kaiqiang; Li, Weishi; Wang, Yu; Wang, Jifang; Li, Huatao; Tian, Wenru; Cao, Rongfeng

    2015-11-01

    Endometritis is one of the main diseases that harms the dairy cow industry. Tanshinone IIA (TIIA), a fat-soluble alkaloid isolated from Salviae miltiorrhizae, has been reported to have potent anti-inflammatory properties. However, the anti-inflammatory effects of TIIA on a mouse model of lipopolysaccharide (LPS)-induced endometritis remain to be elucidated. The purpose of the present study was to investigate the effects of TIIA on LPS-induced mouse endometritis. TIIA was intraperitoneally injected 1 h before and 12 h after perfusion of LPS into the uterus. A histological examination was then performed, and the concentrations of myeloperoxidase (MPO) and nitric oxide (NO) in the uterine tissue were determined. The levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in a homogenate of the uterus were detected by enzyme-linked immunosorbent assay. The extent of phosphorylation of IκBα and p65 was detected by Western blotting. TIIA markedly reduced the infiltration of neutrophils, suppressed MPO activity and the concentration of NO, and attenuated the expression of TNF-α and IL-1β. Furthermore, TIIA inhibited the phosphorylation of the nuclear factor-kappa B (NF-κB) p65 subunit and the degradation of its inhibitor IκBα. All the results suggest that TIIA has strong anti-inflammatory effects on LPS-induced mouse endometritis.

  17. Protective effects of pogostone against LPS-induced acute lung injury in mice via regulation of Keap1-Nrf2/NF-κB signaling pathways.

    PubMed

    Sun, Chao-Yue; Xu, Lie-Qiang; Zhang, Zhen-Biao; Chen, Chao-Hui; Huang, Yong-Zhong; Su, Zu-Qing; Guo, Hui-Zhen; Chen, Xiao-Ying; Zhang, Xie; Liu, Yu-Hong; Chen, Jian-Nan; Lai, Xiao-Ping; Li, Yu-Cui; Su, Zi-Ren

    2016-03-01

    Pogostone, a major component of Pogostemon cablin, has been demonstrated to possess antibacterial, anti-fungal, immunosuppressive and anti-inflammatory properties. To investigate the potential therapeutic effect of pogostone on lipopolysaccharide (LPS)-induced acute lung injury (ALI), mice were pretreated with pogostone prior to LPS exposure. After LPS challenge, the lungs were excised and the histological changes, wet to dry weight ratios, MPO activity reflecting neutrophil infiltration, and MDA activity reflecting oxidative stress were examined. The inflammatory cytokines in the BALF were determined by ELISA assay. Moreover, the expressions of p65 and phosphorylated p65 subunit of NF-κB, and Nrf2 in the nucleus in lung tissues were measured by Western blot analysis, and meanwhile the dependent genes of NF-κB and Nrf2 were assessed by RT-qPCR. The results showed that pretreatment with pogostone markedly improved survival rate, attenuated the histological alterations in the lung, reduced the MPO and MDA levels, decreased the wet/dry weight ratio of lungs, down-regulated the level of pro-inflammatory mediators including TNF-a, IL-1β and IL-6. Furthermore, pretreatment with pogostone enhanced the Nrf2 dependent genes including NQO-1, GCLC and HO-1 but suppressed NF-κB regulated genes including TNF-α, IL-1β and IL-6. The mechanism behind the protective effect was correlated with its regulation on the balance between Keap1-Nrf2 and NF-κB signaling pathways. Therefore, pogostone may be considered as a potential therapeutic agent for preventing and treating ALI.

  18. Morin hydrate augments phagocytosis mechanism and inhibits LPS induced autophagic signaling in murine macrophage.

    PubMed

    Jakhar, Rekha; Paul, Souren; Chauhan, Anil Kumar; Kang, Sun Chul

    2014-10-01

    Morin, a natural flavonoid that is the primary bioactive constituent of the family Moraceae, has been found to be associated with many therapeutic properties. In this study, we evaluated the immunomodulatory activities of increasing concentration of morin hydrate in vitro. Three different concentrations of morin hydrate (5, 10, and 15μM) were used to evaluate their effect on splenocyte proliferation, phagocytic activity of macrophages, cytokine secretion and complement inhibition. We also evaluated the role of morin hydrate on lipopolysaccharide (LPS) induced autophagy. Our study demonstrated that morin hydrate elicited a significant increase in splenocyte proliferation, phagocytic capacity and suppressed the production of cytokines and nitric oxide in activated macrophages. Humoral immunity measured by anti-complement activity showed an increase in inhibition of the complement system after the addition of morin hydrate, where morin hydrate at 15μM concentration induced a significant inhibition. Depending on our results, we can also conclude that morin hydrate protects macrophages from LPS induced autophagic cell death. Our findings suggest that morin hydrate represents a structurally diverse class of flavonoid and this structural variability can profoundly affect its cell-type specificity and its biological activities. Supplementation of immune cells with morin hydrate has an upregulating and immunoprotective effect that shows potential as a countermeasure to the immune dysfunction and suggests an interesting use in inflammation related diseases.

  19. Ugonin M, a Helminthostachys zeylanica Constituent, Prevents LPS-Induced Acute Lung Injury through TLR4-Mediated MAPK and NF-κB Signaling Pathways.

    PubMed

    Wu, Kun-Chang; Huang, Shyh-Shyun; Kuo, Yueh-Hsiung; Ho, Yu-Ling; Yang, Chang-Syun; Chang, Yuan-Shiun; Huang, Guan-Jhong

    2017-04-01

    Helminthostachys zeylanica (L.) Hook. is plant that has been used in traditional Chinese medicine for centuries for the treatment of inflammation, fever, pneumonia, and various disorders. The aims of the present study are to figure out the possible effectiveness of the component Ugonin M, a unique flavonoid isolated from H. zeylanica, and to elucidate the mechanism(s) by which it works in the LPS-induced ALI model. In this study, Ugonin M not only inhibited the production of pro-inflammatory mediators such as NO, TNF-α, IL-1β, and IL-6, as well as infiltrated cellular counts and protein content in the bronchoalveolar lavage fluid (BALF) of lipopolysaccharides (LPS)-induced acute lung injury (ALI) mice, but also ameliorated the severity of pulmonary edemas through the score of a histological examination and the ratio of wet to dry weight of lung. Moreover, Ugonin M was observed to significantly suppress LPS-stimulated protein levels of iNOS and COX-2. In addition, we found that Ugonin M not only obviously suppressed NF-κB and MAPK activation via the degradation of NF-κB and IκB-α as well as ERK and p38MAPK active phosphorylation but also inhibited the protein expression level of TLR4. Further, Ugonin M treatment also suppressed the protein levels of MPO and enhanced the protein expressions of HO-1 and antioxidant enzymes (SOD, GPx, and CAT) in lung tissue of LPS-induced ALI mice. It is anticipated that through our findings, there is strong evidence that Ugonin M may exert a potential effect against LPS-induced ALI mice. Hence, Ugonin M could be one of the major effective components of H. zeylanica in the treatment of inflammatory disorders.

  20. N(6)-(2-Hydroxyethyl)adenosine in the Medicinal Mushroom Cordyceps cicadae Attenuates Lipopolysaccharide-Stimulated Pro-inflammatory Responses by Suppressing TLR4-Mediated NF-κB Signaling Pathways.

    PubMed

    Lu, Meng-Ying; Chen, Chin-Chu; Lee, Li-Ya; Lin, Ting-Wei; Kuo, Chia-Feng

    2015-10-23

    Natural products play an important role in promoting health with relation to the prevention of chronic inflammation. N(6)-(2-Hydroxyethyl)adenosine (HEA), a physiologically active compound in the medicinal mushroom Cordyceps cicadae, has been identified as a Ca(2+) antagonist and shown to control circulation and possess sedative activity in pharmacological tests. The fruiting body of C. cicadae has been widely applied in Chinese medicine. However, neither the anti-inflammatory activities of HEA nor the fruiting bodies of C. cicadae have been carefully examined. In this study, we first cultured the fruiting bodies of C. cicadae and then investigated the anti-inflammatory activities of water and methanol extracts of wild and artificially cultured C. cicadae fruiting bodies. Next, we determined the amount of three bioactive compounds, adenosine, cordycepin, and HEA, in the extracts and evaluated their synergistic anti-inflammatory effects. Moreover, the possible mechanism involved in anti-inflammatory action of HEA isolated from C. cicadae was investigated. The results indicate that cordycepin is more potent than adenosine and HEA in suppressing the lipopolysaccharide (LPS)-stimulated release of pro-inflammatory cytokines by RAW 264.7 macrophages; however, no synergistic effect was observed with these three compounds. HEA attenuated the LPS-induced pro-inflammatory responses by suppressing the toll-like receptor (TLR)4-mediated nuclear factor-κB (NF-κB) signaling pathway. This result will support the use of HEA as an anti-inflammatory agent and C. cicadae fruiting bodies as an anti-inflammatory mushroom.

  1. Differential pro-inflammatory responses of TNF-α receptors (TNFR1 and TNFR2) on LOX-1 signalling.

    PubMed

    Arjuman, Albina; Chandra, Nimai C

    2015-06-01

    TNF-α potently induces LOX-1 expression in THP-1 macrophages at concentrations between 1.25-50 ng/mL. The interplay between the two TNF receptors (TNFR1 and TNFR2) was apparent in the expression pattern of LOX-1 in response to TNF-α. Interestingly, R1 signal abrogation depleted both TNFR2 as well as LOX-1 transcript expression, suggesting that TNFR1 holds priority in the relative signaling mechanism between TNFR1 and TNFR2. TNF-α was also found to abrogate the oxidized-LDL (ox-LDL) mediated increase in intracellular pool of NO, a known downstream intermediate of LOX-1 pro-inflammatory signaling cascade. At the level of ox-LDL clearance, TNF-α inhibited the uptake (scavenging) of ox-LDL via LOX-1. Our study demonstrates the ability of TNF-α to enhance the signaling propensity of LOX-1 by increasing its expression and inhibiting its scavenging property.

  2. Suppressor of cytokine signaling 3 inhibits LPS-induced IL-6 expression in osteoblasts by suppressing CCAAT/enhancer-binding protein ß activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Suppressors of cytokine signaling 3 (SOCS3) is an important intracellular regulator of TLR4 signaling and has been implicated in several inflammatory diseases. Although SOCS3 seems to contribute to the balance between the pro-inflammatory effects of IL-6 and antiinflammatory signaling of IL-10 by ne...

  3. Dissection of LPS-induced signaling pathways in murine macrophages using LPS analogs, LPS mimetics, and agents unrelated to LPS.

    PubMed

    Vogel, S N; Manthey, C L; Perera, P Y; Li, Z Y; Henricson, B E

    1995-01-01

    The model in Figure 3 summarizes the data presented above. Using the induction of the select panel of LPS-inducible genes and the phosphorylation on tyrosine of specific MAP kinases, we have been able to dissociate three signaling pathways shared by LPS and its analogs and mimetics: a pathway that leads to tyrosine phosphorylation, one that leads to the induction of a gene subset including TNF alpha, TNFR-2, and IL-1 beta, and a pathway that results in induction of IP-10, D3, and D8 gene expression. It is still unclear if macrophage activation by non-LPS products occurs entirely through distinct yet redundant pathways or if other signaling receptors ultimately tie into the same intermediate pathways. This approach may identify particular stimuli as tools to induce specific pathways leading to select gene subsets and/or tyrosine kinase activation and, perhaps, identify a pathway deficient in C3H/HeJ macrophages.

  4. The pro-inflammatory signalling regulator Stat4 promotes vasculogenesis of great vessels derived from endothelial precursors

    PubMed Central

    Meng, Zhao-Zheng; Liu, Wei; Xia, Yu; Yin, Hui-Min; Zhang, Chi-Yuan; Su, Dan; Yan, Li-Feng; Gu, Ai-Hua; Zhou, Yong

    2017-01-01

    Vasculogenic defects of great vessels (GVs) are a major cause of congenital cardiovascular diseases. However, genetic regulators of endothelial precursors in GV vasculogenesis remain largely unknown. Here we show that Stat4, a transcription factor known for its regulatory role of pro-inflammatory signalling, promotes GV vasculogenesis in zebrafish. We find stat4 transcripts highly enriched in nkx2.5+ endothelial precursors in the pharynx and demonstrate that genetic ablation of stat4 causes stenosis of pharyngeal arch arteries (PAAs) by suppressing PAAs 3–6 angioblast development. We further show that stat4 is a downstream target of nkx2.5 and that it autonomously promotes proliferation of endothelial precursors of the mesoderm. Mechanistically, stat4 regulates the emerging PAA angioblasts by inhibiting the expression of hdac3 and counteracting the effect of stat1a. Altogether, our study establishes a role for Stat4 in zebrafish great vessel development, and suggests that Stat4 may serve as a therapeutic target for GV defects. PMID:28256502

  5. Cinnamaldehyde inhibits pro-inflammatory cytokines secretion from monocytes/macrophages through suppression of intracellular signaling.

    PubMed

    Chao, Louis Kuoping; Hua, Kuo-Feng; Hsu, Hsien-Yeh; Cheng, Sen-Sung; Lin, I-Fan; Chen, Chia-Jung; Chen, Shui-Tein; Chang, Shang-Tzen

    2008-01-01

    We investigated the in vitro anti-inflammatory effects of Cinnamaldehyde, a cytokine production inhibitor isolated from an essential oil produced from the leaves of Cinnamomum osmophloeum Kaneh, and its mechanism of action. Although Cinnamaldehyde has been reported to have contact sensitizing properties at high concentration (mM), we found that low concentration of Cinnamaldehyde (muM) inhibited the secretion of interleukin-1beta and tumor necrosis factor alpha within lipopolysaccharide (LPS) or lipoteichoic acid (LTA) stimulated murine J774A.1 macrophages. Cinnamaldehyde also suppressed the production of these cytokines from LPS stimulated human blood monocytes derived primary macrophages and human THP-1 monocytes. Furthermore, Cinnamaldehyde also inhibited the production of prointerleukin-1beta within LPS or LTA stimulated human THP-1 monocytes. Reactive oxygen species release from LPS stimulated J774A.1 macrophages was reduced by Cinnamaldehyde. The phosphorylation of extracellular signal-regulated kinase 1/2 and c-Jun N-terminal kinase 1/2 induced by LPS was also inhibited by Cinnamaldehyde; however, Cinnamaldehyde neither antagonize the binding of LPS to the cells nor alter the cell surface expression of toll-like receptor 4 and CD14. In addition, we also noted that Cinnamaldehyde appeared to elicit no cytotoxic effect upon J774A.1 macrophages under our experimental conditions, although Cinnamaldehyde reduced J774A.1 macrophages proliferation as analysed by MTT assay. Our current results have demonstrated the anti-oxidation and anti-inflammatory properties of Cinnamaldehyde that could provide the possibility for Cinnamaldehyde's future pharmaceutical application in the realm of immuno-modulation.

  6. Tenuigenin exhibits protective effects against LPS-induced acute kidney injury via inhibiting TLR4/NF-κB signaling pathway.

    PubMed

    Fu, Haiyan; Hu, Zhansheng; Di, Xingwei; Zhang, Qiuhong; Zhou, Rongbin; Du, Hongyang

    2016-11-15

    Tenuigenin (TNG) has been reported to have various pharmacological activities, such as anti-oxidative and anti-inflammatory activities. However, the protective effects of TNG on lipopolysaccharides (LPS)-induced acute kidney injury (AKI) are still not clear. The aim of this study was to investigate the protective effects and mechanism of TGN on LPS-induced AKI in mice. The kidney histological change, levels of blood urea nitrogen (BUN), and creatinine were measured to assess the protective effects of TNG on LPS-induced AKI. The levels of TNF-α, IL-1β, and IL-6 in serum and kidney tissues were detected by ELISA. The extent of nuclear factor kappa-B (NF-κB) p65 and the expression of Toll-like receptor-4 (TLR4) were detected by western blot analysis. The results showed that TNG markedly attenuated the histological alterations, BUN and creatinine levels in kidney. TNG also suppressed LPS-induced TNF-α, IL-1β, and IL-6 production. Furthermore, the expression of TLR4 and NF-κB activation induced by LPS were markedly inhibited by TNG. In conclusion, this study demonstrated that TNG protected against LPS-induced AKI by inhibiting TLR4/NF-κB signaling pathway.

  7. A central role for the mammalian target of rapamycin in LPS-induced anorexia in mice.

    PubMed

    Yue, Yunshuang; Wang, Yi; Li, Dan; Song, Zhigang; Jiao, Hongchao; Lin, Hai

    2015-01-01

    Bacterial lipopolysaccharide (LPS), also known as endotoxin, induces profound anorexia. However, the LPS-provoked pro-inflammatory signaling cascades and the neural mechanisms underlying the development of anorexia are not clear. Mammalian target of rapamycin (mTOR) is a key regulator of metabolism, cell growth, and protein synthesis. This study aimed to determine whether the mTOR pathway is involved in LPS-induced anorexia. Effects of LPS on hypothalamic gene/protein expression in mice were measured by RT-PCR or western blotting analysis. To determine whether inhibition of mTOR signaling could attenuate LPS-induced anorexia, we administered an i.c.v. injection of rapamycin, an mTOR inhibitor, on LPS-treated male mice. In this study, we showed that LPS stimulates the mTOR signaling pathway through the enhanced phosphorylation of mTOR(Ser2448) and p70S6K(Thr389). We also showed that LPS administration increased the phosphorylation of FOXO1(Ser256), the p65 subunit of nuclear factor kappa B (P<0.05), and FOXO1/3a(Thr) (24) (/) (32) (P<0.01). Blocking the mTOR pathway significantly attenuated the LPS-induced anorexia by decreasing the phosphorylation of p70S6K(Thr389), FOXO1(Ser256), and FOXO1/3a(Thr) (24) (/) (32). These results suggest promising approaches for the prevention and treatment of LPS-induced anorexia.

  8. Salvia miltiorrhiza water-soluble extract, but not its constituent salvianolic acid B, abrogates LPS-induced NF-κB signalling in intestinal epithelial cells

    PubMed Central

    Kim, J S; Narula, A S; Jobin, C

    2005-01-01

    Herbal medicine has become an increasing popular therapeutic alternative among patients suffering from various inflammatory disorders. The Salvia miltiorrhizae water-soluble extract (SME) have been shown to possess antioxidant and anti-inflammatory properties in vitro. However, the mechanism of action and impact of SME on LPS-induced gene expression is still unknown. We report that SME significantly abrogated LPS-induced IκB phosphorylation/degradation, NF-κB transcriptional activity and ICAM-1 gene expression in rat IEC-18 cells. Chromatin immunoprecipitation assay demonstrated that LPS-induced RelA recruitment to the ICAM-1 gene promoter was inhibited by SME. Moreover, in vitro kinase assay showed that SME directly inhibits LPS induced IκB kinase (IKK) activity in IEC-18 cells. To investigate the physiological relevance of SME inhibitory activity on NF-κB signalling, we used small intestinal explants and primary intestinal epithelial cells derived from a transgenic mouse expressing the enhanced green fluorescent protein (EGFP) under the transcriptional control of NF-κB cis-elements (cis-NF-κBEGFP). SME significantly blocked LPS-induced EGFP expression and IκBα phosphorylation in intestinal explants and primary IECs, respectively. However, salvianolic acid B, an activate component of SME did not inhibit NF-κB transcriptional activity and IκB phosphorylation/degradation in IEC-18 cells. These results indicate that SME blocks LPS-induced NF-κB signalling pathway by targeting the IKK complex in intestinal epithelial cells. Modulation of bacterial product-mediated NF-κB signalling by natural plant extracts may represent an attractive strategy towards the prevention and treatment of intestinal inflammation. PMID:15996193

  9. Salvia miltiorrhiza water-soluble extract, but not its constituent salvianolic acid B, abrogates LPS-induced NF-kappaB signalling in intestinal epithelial cells.

    PubMed

    Kim, J S; Narula, A S; Jobin, C

    2005-08-01

    Herbal medicine has become an increasing popular therapeutic alternative among patients suffering from various inflammatory disorders. The Salvia miltiorrhizae water-soluble extract (SME) have been shown to possess antioxidant and anti-inflammatory properties in vitro. However, the mechanism of action and impact of SME on LPS-induced gene expression is still unknown. We report that SME significantly abrogated LPS-induced IkappaB phosphorylation/degradation, NF-kappaB transcriptional activity and ICAM-1 gene expression in rat IEC-18 cells. Chromatin immunoprecipitation assay demonstrated that LPS-induced RelA recruitment to the ICAM-1 gene promoter was inhibited by SME. Moreover, in vitro kinase assay showed that SME directly inhibits LPS induced IkappaB kinase (IKK) activity in IEC-18 cells. To investigate the physiological relevance of SME inhibitory activity on NF-kappaB signalling, we used small intestinal explants and primary intestinal epithelial cells derived from a transgenic mouse expressing the enhanced green fluorescent protein (EGFP) under the transcriptional control of NF-kappaB cis-elements (cis-NF-kappaB(EGFP)). SME significantly blocked LPS-induced EGFP expression and IkappaBalpha phosphorylation in intestinal explants and primary IECs, respectively. However, salvianolic acid B, an activate component of SME did not inhibit NF-kappaB transcriptional activity and IkappaB phosphorylation/degradation in IEC-18 cells. These results indicate that SME blocks LPS-induced NF-kappaB signalling pathway by targeting the IKK complex in intestinal epithelial cells. Modulation of bacterial product-mediated NF-kappaB signalling by natural plant extracts may represent an attractive strategy towards the prevention and treatment of intestinal inflammation.

  10. Okanin, effective constituent of the flower tea Coreopsis tinctoria, attenuates LPS-induced microglial activation through inhibition of the TLR4/NF-κB signaling pathways

    PubMed Central

    Hou, Yue; Li, Guoxun; Wang, Jian; Pan, Yingni; Jiao, Kun; Du, Juan; Chen, Ru; Wang, Bing; Li, Ning

    2017-01-01

    The EtOAc extract of Coreopsis tinctoria Nutt. significantly inhibited LPS-induced nitric oxide (NO) production, as judged by the Griess reaction, and attenuated the LPS-induced elevation in iNOS, COX-2, IL-1β, IL-6 and TNF-α mRNA levels, as determined by quantitative real-time PCR, when incubated with BV-2 microglial cells. Immunohistochemical results showed that the EtOAc extract significantly decreased the number of Iba-1-positive cells in the hippocampal region of LPS-treated mouse brains. The major effective constituent of the EtOAc extract, okanin, was further investigated. Okanin significantly suppressed LPS-induced iNOS expression and also inhibited IL-6 and TNF-α production and mRNA expression in LPS-stimulated BV-2 cells. Western blot analysis indicated that okanin suppressed LPS-induced activation of the NF-κB signaling pathway by inhibiting the phosphorylation of IκBα and decreasing the level of nuclear NF-κB p65 after LPS treatment. Immunofluorescence staining results showed that okanin inhibited the translocation of the NF-κB p65 subunit from the cytosol to the nucleus. Moreover, okanin significantly inhibited LPS-induced TLR4 expression in BV-2 cells. In summary, okanin attenuates LPS-induced activation of microglia. This effect may be associated with its capacity to inhibit the TLR4/NF-κB signaling pathways. These results suggest that okanin may have potential as a nutritional preventive strategy for neurodegenerative disorders. PMID:28367982

  11. Pinellia ternata lectin exerts a pro-inflammatory effect on macrophages by inducing the release of pro-inflammatory cytokines, the activation of the nuclear factor-κB signaling pathway and the overproduction of reactive oxygen species.

    PubMed

    Yu, Hong-Li; Zhao, Teng-Fei; Wu, Hao; Pan, Yao-Zong; Zhang, Qian; Wang, Kui-Long; Zhang, Chen-Chao; Jin, Yang-Ping

    2015-10-01

    Pinellia ternata (PT) is a widely used traditional Chinese medicine. The raw material has a throat-irritating toxicity that is associated with the PT lectin (PTL). PTL is a monocot lectin isolated from the tubers of PT, which exhibits mouse peritoneal acute inflammatory effects in vivo. The present study aimed to investigate the pro-inflammatory effect of PTL on macrophages. PTL (50 µg/ml)‑stimulated macrophages enhanced the chemotactic activity of neutrophils. PTL (50, 100, 200 and 400 µg/ml) significantly elevated the production of cytokines [tumor necrosis factor‑α (TNF-α) , interleukin (IL)‑1β and IL‑6]. PTL (25, 50 and 100 µg/ml) induced intracellular reactive oxygen species (ROS) overproduction. PTL also caused transfer of p65 from the macrophage cytoplasm to the nucleus and activated the nuclear factor‑κB (NF‑κB) signaling pathway. Scanning electron microscope images revealed severe cell swelling and membrane integrity defection of macrophages following PTL (100 µg/ml) stimulation, which was also associated with inflammation. PTL had pro‑inflammatory activity, involving induced neutrophil migration, cytokine release, ROS overproduction and the activation of the NF-κB signaling pathway, which was associated with the activation of macrophages.

  12. Crosstalk between androgen and pro-inflammatory signaling remodels androgen receptor and NF-κB cistrome to reprogram the prostate cancer cell transcriptome

    PubMed Central

    Malinen, Marjo; Niskanen, Einari A.; Kaikkonen, Minna U.; Palvimo, Jorma J.

    2017-01-01

    Inflammatory processes and androgen signaling are critical for the growth of prostate cancer (PC), the most common cancer among males in Western countries. To understand the importance of potential interplay between pro-inflammatory and androgen signaling for gene regulation, we have interrogated the crosstalk between androgen receptor (AR) and NF-κB, a key transcriptional mediator of inflammatory responses, by utilizing genome-wide chromatin immunoprecipitation sequencing and global run-on sequencing in PC cells. Co-stimulation of LNCaP cells with androgen and pro-inflammatory cytokine TNFα invoked a transcriptome which was very distinct from that induced by either stimulation alone. The altered transcriptome that included gene programs linked to cell migration and invasiveness was orchestrated by significant remodeling of NF-κB and AR cistrome and enhancer landscape. Although androgen multiplied the NF-κB cistrome and TNFα restrained the AR cistrome, there was no general reciprocal tethering of the AR to the NF-κB on chromatin. Instead, redistribution of FOXA1, PIAS1 and PIAS2 contributed to the exposure of latent NF-κB chromatin-binding sites and masking of AR chromatin-binding sites. Taken together, concomitant androgen and pro-inflammatory signaling significantly remodels especially the NF-κB cistrome, reprogramming the PC cell transcriptome in fashion that may contribute to the progression of PC. PMID:27672034

  13. Protective Effect of Amygdalin on LPS-Induced Acute Lung Injury by Inhibiting NF-κB and NLRP3 Signaling Pathways.

    PubMed

    Zhang, Ao; Pan, Weiyun; Lv, Juan; Wu, Hui

    2017-03-16

    The acute lung injury (ALI) is a leading cause of morbidity and mortality in critically ill patients. Amygdalin is derived from the bitter apricot kernel, an efficacious Chinese herbal medicine. Although amygdalin is used by many cancer patients as an antitumor agent, there is no report about the effect of amygdalin on acute lung injury. Here we explored the protective effect of amygdalin on ALI using lipopolysaccharide (LPS)-induced murine model by detecting the lung wet/dry ratio, the myeloperoxidase (MPO) in lung tissues, inflammatory cells in the bronchoalveolar lavage fluid (BALF), inflammatory cytokines production, as well as NLRP3 and NF-κB signaling pathways. The results showed that amygdalin significantly reduced LPS-induced infiltration of inflammatory cells and the production of TNF-α, IL-1β, and IL-6 in the BALF. The activity of MPO and lung wet/dry ratio were also attenuated by amygdalin. Furthermore, the western blotting analysis showed that amygdalin remarkably inhibited LPS-induced NF-κB and NLRP3 activation. These findings indicate that amygdalin has a protective effect on LPS-induced ALI in mice. The mechanism may be related to the inhibition of NF-κB and NLRP3 signaling pathways.

  14. Crocin Inhibits Oxidative Stress and Pro-inflammatory Response of Microglial Cells Associated with Diabetic Retinopathy Through the Activation of PI3K/Akt Signaling Pathway.

    PubMed

    Yang, Xinguang; Huo, Fuquan; Liu, Bei; Liu, Jing; Chen, Tao; Li, Junping; Zhu, Zhongqiao; Lv, Bochang

    2017-02-25

    Diabetic retinopathy (DR) is a serious microvascular complication of diabetes mellitus that is closely associated with the degeneration and loss of retinal ganglion cells (RGCs) caused by diabetic microangiopathy and subsequent oxidative stress and an inflammatory response. Microglial cells are classed as neurogliocytes and play a significant role in neurodegenerative diseases. Over-activated microglial cells may cause neurotoxicity and induce the death and apoptosis of RGCs. Crocin is one of the two most pharmacologically bioactive constituents in saffron. In the present study, we focused on the role of microglial cells in DR, suggesting that DR may cause the over-activation of microglial cells and induce oxidative stress and the release of pro-inflammatory factors. Microglial cells BV-2 and N9 were cultured, and high-glucose (HG) and free fatty acid (FFA) were used to simulate diabetes. The results showed that HG-FFA co-treatment caused the up-regulated expression of CD11b and Iba-1, indicating that BV-2 and N9 cells were over-activated. Moreover, oxidative stress markers and pro-inflammatory factors were significantly enhanced by HG-FFA treatment. We found that crocin prevented the oxidative stress and pro-inflammatory response induced by HG-FFA co-treatment. Moreover, using the PI3K/Akt inhibitor LY294002, we revealed that PI3K/Akt signaling plays a significant role in blocking oxidative stress, suppressing the pro-inflammatory response, and maintaining the neuroprotective effects of crocin. In total, these results provide a new insight into DR and DR-induced oxidative stress and the inflammatory response, which provide a potential therapeutic target for neuronal damage, vision loss, and other DR-induced complications.

  15. Lactate Inhibits the Pro-Inflammatory Response and Metabolic Reprogramming in Murine Macrophages in a GPR81-Independent Manner

    PubMed Central

    Marchetti, Philippe; Tang, Cong; Kluza, Jerome; Offermanns, Stefan; Sirard, Jean-Claude; Rumbo, Martin

    2016-01-01

    Lactate is an essential component of carbon metabolism in mammals. Recently, lactate was shown to signal through the G protein coupled receptor 81 (GPR81) and to thus modulate inflammatory processes. This study demonstrates that lactate inhibits pro-inflammatory signaling in a GPR81-independent fashion. While lipopolysaccharide (LPS) triggered expression of IL-6 and IL-12 p40, and CD40 in bone marrow-derived macrophages, lactate was able to abrogate these responses in a dose dependent manner in Gpr81-/- cells as well as in wild type cells. Macrophage activation was impaired when glycolysis was blocked by chemical inhibitors. Remarkably, lactate was found to inhibit LPS-induced glycolysis in wild type as well as in Gpr81-/- cells. In conclusion, our study suggests that lactate can induce GPR81-independent metabolic changes that modulate macrophage pro-inflammatory activation. PMID:27846210

  16. Isorhamnetin ameliorates LPS-induced inflammatory response through downregulation of NF-κB signaling.

    PubMed

    Li, Yang; Chi, Gefu; Shen, Bingyu; Tian, Ye; Feng, Haihua

    2016-08-01

    Isorhamnetin, a flavonoid mainly found in Hippophae fhamnoides L. fruit, has been known for its antioxidant activity and its ability to regulate immune response. In this study, we investigated whether isorhamnetin exerts potent antiinflammatory effects in RAW264.7 cell and mouse model stimulated by LPS. The cytokine (TNF-α, IL-1β, and IL-6) levels were determined. In the mouse model of acute lung injury, the phosphorylation of NF-κB proteins was analyzed and inhibitor of NF-κB signaling (PDTC) was used on mice. Our results showed that isorhamnetin markedly decreased TNF-α, IL-1β, and IL-6 concentrations and suppressed the activation of NF-κB signaling. Meanwhile, isorhamnetin reduced the amount of inflammatory cells, the lung wet-to-dry weight ratio, protein leakage, and myeloperoxidase activity. Interference with specific inhibitor revealed that isorhamnetin-mediated suppression of cytokines and protein was via NF-κB signaling. So, it suggests that isorhamnetin might be a potential therapeutic agent for preventing inflammatory diseases.

  17. Ultrafine particles from diesel vehicle emissions at different driving cycles induce differential vascular pro-inflammatory responses: Implication of chemical components and NF-κB signaling

    PubMed Central

    2010-01-01

    Background Epidemiological evidence supports the association between exposure to ambient particulate matter (PM) and cardiovascular diseases. Chronic exposure to ultrafine particles (UFP; Dp <100 nm) is reported to promote atherosclerosis in ApoE knockout mice. Atherogenesis-prone factors induce endothelial dysfunction that contributes to the initiation and progression of atherosclerosis. We previously demonstrated that UFP induced oxidative stress via c-Jun N-terminal Kinases (JNK) activation in endothelial cells. In this study, we investigated pro-inflammatory responses of human aortic endothelial cells (HAEC) exposed to UFP emitted from a diesel truck under an idling mode (UFP1) and an urban dynamometer driving schedule (UFP2), respectively. We hypothesize that UFP1 and UFP2 with distinct chemical compositions induce differential pro-inflammatory responses in endothelial cells. Results UFP2 contained a higher level of redox active organic compounds and metals on a per PM mass basis than UFP1. While both UFP1 and UFP2 induced superoxide production and up-regulated stress response genes such as heme oxygenease-1 (HO-1), OKL38, and tissue factor (TF), only UFP2 induced the expression of pro-inflammatory genes such as IL-8 (2.8 ± 0.3-fold), MCP-1 (3.9 ± 0.4-fold), and VCAM (6.5 ± 1.1-fold) (n = 3, P < 0.05). UFP2-exposed HAEC also bound to a higher number of monocytes than UFP1-exposed HAEC (Control = 70 ± 7.5, UFP1 = 106.7 ± 12.5, UFP2 = 137.0 ± 8.0, n = 3, P < 0.05). Adenovirus NF-κB Luciferase reporter assays revealed that UFP2, but not UFP1, significantly induced NF-κB activities. NF-κB inhibitor, CAY10512, significantly abrogated UFP2-induced pro-inflammatory gene expression and monocyte binding. Conclusion While UFP1 induced higher level of oxidative stress and stress response gene expression, only UFP2, with higher levels of redox active organic compounds and metals, induced pro-inflammatory responses via NF-κB signaling. Thus, UFP with distinct

  18. (+)-Catechin Attenuates NF-κB Activation Through Regulation of Akt, MAPK, and AMPK Signaling Pathways in LPS-Induced BV-2 Microglial Cells.

    PubMed

    Syed Hussein, Sharifah Salwa; Kamarudin, Muhamad Noor Alfarizal; Kadir, Habsah Abdul

    2015-01-01

    (+)-Catechin is a flavanol that possesses various health and medicinal values, which include neuroprotection, anti-oxidation, antitumor and antihepatitis activities. This study investigated the modulatory effects of (+)-catechin on the lipopolysaccharides (LPS)-stimulated BV-2 cells. (+)-catechin attenuated LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and inhibited microglial NO and ROS production. Additionally, (+)-catechin suppressed the production of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6, while augmenting IL-4. (+)-catechin attenuated LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation via the inhibition of IκB-α phosphorylation. Moreover, (+)-catechin blocked the activation of Akt and its inhibition was shown to play a crucial role in LPS-induced inflammation in BV-2 microglial cells. (+)-catechin also attenuated the LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK1/2), and p-38 mitogen activated protein kinases (p38 MAPK) and specific inhibitors of ERK1/2 (UO126) and p38 MAPK (SB202190) subsequently down-regulated the expression of the proinflammatory mediators iNOS and COX-2. Further mechanistic study revealed that (+)-catechin acted through the amelioration of the LPS-induced suppression of adenosine monophosphate-activated protein kinase (AMPK) activity. Taken together, our data indicate that (+)-catechin exhibits anti-inflammatory effects in BV-2 cells by suppressing the production of proinflammatory mediators and mitigation of NF-κB through Akt, ERK, p38 MAPK, and AMPK pathways.

  19. Fibroblast growth factor signalling in multiple sclerosis: inhibition of myelination and induction of pro-inflammatory environment by FGF9.

    PubMed

    Lindner, Maren; Thümmler, Katja; Arthur, Ariel; Brunner, Sarah; Elliott, Christina; McElroy, Daniel; Mohan, Hema; Williams, Anna; Edgar, Julia M; Schuh, Cornelia; Stadelmann, Christine; Barnett, Susan C; Lassmann, Hans; Mücklisch, Steve; Mudaliar, Manikhandan; Schaeren-Wiemers, Nicole; Meinl, Edgar; Linington, Christopher

    2015-07-01

    Remyelination failure plays an important role in the pathophysiology of multiple sclerosis, but the underlying cellular and molecular mechanisms remain poorly understood. We now report actively demyelinating lesions in patients with multiple sclerosis are associated with increased glial expression of fibroblast growth factor 9 (FGF9), which we demonstrate inhibits myelination and remyelination in vitro. This inhibitory activity is associated with the appearance of multi-branched 'pre-myelinating' MBP+ / PLP+ oligodendrocytes that interact with axons but fail to assemble myelin sheaths; an oligodendrocyte phenotype described previously in chronically demyelinated multiple sclerosis lesions. This inhibitory activity is not due to a direct effect of FGF9 on cells of the oligodendrocyte lineage but is mediated by factors secreted by astrocytes. Transcriptional profiling and functional validation studies demonstrate that these include effects dependent on increased expression of tissue inhibitor of metalloproteinase-sensitive proteases, enzymes more commonly associated with extracellular matrix remodelling. Further, we found that FGF9 induces expression of Ccl2 and Ccl7, two pro-inflammatory chemokines that contribute to recruitment of microglia and macrophages into multiple sclerosis lesions. These data indicate glial expression of FGF9 can initiate a complex astrocyte-dependent response that contributes to two distinct pathogenic pathways involved in the development of multiple sclerosis lesions. Namely, induction of a pro-inflammatory environment and failure of remyelination; a combination of effects predicted to exacerbate axonal injury and loss in patients.

  20. Maternal warmth buffers the effects of low early-life socioeconomic status on pro-inflammatory signaling in adulthood.

    PubMed

    Chen, E; Miller, G E; Kobor, M S; Cole, S W

    2011-07-01

    The notion that family support may buffer individuals under adversity from poor outcomes has been theorized to have important implications for mental and physical health, but little is known about the biological mechanisms that explain these links. We hypothesized that adults who grew up in low socioeconomic status (SES) households but who experienced high levels of maternal warmth would be protected from the pro-inflammatory states typically associated with low SES. A total of 53 healthy adults (aged 25-40 years) low in SES early in life were assessed on markers of immune activation and systemic inflammation. Genome-wide transcriptional profiling also was conducted. Low early-life SES individuals who had mothers, who expressed high warmth toward them, exhibited less Toll-like receptor-stimulated production of interleukin 6, and reduced bioinformatic indications of pro-inflammatory transcription factor activity (NF-κB) and immune activating transcription factor activity (AP-1) compared to those who were low in SES early in life but experienced low maternal warmth. To the extent that such effects are causal, they suggest the possibility that the detrimental immunologic effects of low early-life SES environments may be partly diminished through supportive family climates.

  1. Wnt/β-catenin signaling in T-cells drives epigenetic imprinting of pro-inflammatory properties and promotes colitis and colon cancer

    PubMed Central

    Keerthivasan, Shilpa; Aghajani, Katayoun; Dose, Marei; Molinero, Luciana; Khan, Mohammad W.; Venkatesvaran, Vysak; Weber, Christopher; Emmanuel, Akinola Olumide; Sun, Tianjao; Ramos, Elena M.; Keshavarzian, Ali; Mulcahy, Mary; Blatner, Nichole; Khazaie, Khashayarsha; Gounari, Fotini

    2014-01-01

    The density and type of lymphocytes that infiltrate colon tumors are predictive of the clinical outcome of colon cancer. High densities of TH17 cells and inflammation predict poor outcome, while infiltration by Tregs that naturally suppress inflammation is associated with longer patient survival. However, the role of Tregs in cancer remains controversial. We recently reported that Tregs in colon cancer patients can become pro-inflammatory and tumor promoting. These properties were directly linked with their expression of RORγt, the signature transcription factor of TH17 cells. Here, we report that Wnt/β-catenin signaling in T-cells promotes expression of RORγt. Expression of β-catenin was elevated in T-cells and Tregs of patients with colitis and colon cancer. Genetically engineered activation of β-catenin in mouse T-cells resulted in enhanced chromatin accessibility in the proximity of Tcf-1 binding sites genome-wide, induced expression of TH17 signature genes including RORγt, and promoted TH17-mediated inflammation. Strikingly, the mice had inflammation of intestine and colon and developed lesions indistinguishable from colitis-induced cancer. Activation of β-catenin only in Tregs was sufficient to produce inflammation and initiate cancer. Based on these findings we conclude that activation of Wnt/β-catenin signaling in T-cells and/or Tregs is causatively linked with the imprinting of pro-inflammatory properties and the promotion of colon cancer. PMID:24574339

  2. Pro-inflammatory Signaling in a 3D Organotypic Skin Model after Low LET Irradiation—NF-κB, COX-2 Activation, and Impact on Cell Differentiation

    PubMed Central

    Acheva, Anna; Schettino, Giuseppe; Prise, Kevin M.

    2017-01-01

    Nearly 85% of radiotherapy patients develop acute radiation dermatitis, which is an inflammatory reaction of the skin at the treatment field and in the surrounding area. The aims of this study were to unravel the mechanisms of radiation-induced inflammatory responses after localized irradiation in a human 3D organotypic skin culture model. This could provide possible inflammatory targets for reduction of skin side effects. 3D organotypic skin cultures were set up and locally irradiated with 225 kVp X-rays, using a combination of full exposure and partial shielding (50%) of the cultures. The secretion of pro-inflammatory cytokines, the phenotype, and the differentiation markers expression of the cultures were assessed up to 10 days postirradiation. The pro-inflammatory transcription factor nuclear factor kappa B (NF-κB) and cyclooxygenase-2 (COX-2) pathways have been studied. The results showed fast activation of NF-κB, most likely triggered by DNA damage in the irradiated cells, followed by upregulation of p38 MAPK and COX-2 in the irradiated and surrounding, non-irradiated, areas of the 3D cultures. The application of the COX-2 inhibitor sc-236 was effective at reducing the COX-2 mRNA levels 4 h postirradiation. The same inhibitor also suppressed the PGE2 secretion significantly 72 h after the treatment. The expression of a pro-inflammatory phenotype and abnormal differentiation markers of the cultures were also reduced. However, the use of an NF-κB inhibitor (Bay 11-7085) did not have the predicted positive effect on the cultures phenotype postirradiation. Radiation-induced pro-inflammatory responses have been observed in the 3D skin model. The activated signaling pathways involved NF-κB transcription factor and its downstream target COX-2. Further experiments aiming to suppress the inflammatory response via specific inhibitors showed that COX-2 is a suitable target for reduction of the normal skin inflammatory responses at radiotherapy, while NF

  3. Pro-inflammatory Signaling in a 3D Organotypic Skin Model after Low LET Irradiation-NF-κB, COX-2 Activation, and Impact on Cell Differentiation.

    PubMed

    Acheva, Anna; Schettino, Giuseppe; Prise, Kevin M

    2017-01-01

    Nearly 85% of radiotherapy patients develop acute radiation dermatitis, which is an inflammatory reaction of the skin at the treatment field and in the surrounding area. The aims of this study were to unravel the mechanisms of radiation-induced inflammatory responses after localized irradiation in a human 3D organotypic skin culture model. This could provide possible inflammatory targets for reduction of skin side effects. 3D organotypic skin cultures were set up and locally irradiated with 225 kVp X-rays, using a combination of full exposure and partial shielding (50%) of the cultures. The secretion of pro-inflammatory cytokines, the phenotype, and the differentiation markers expression of the cultures were assessed up to 10 days postirradiation. The pro-inflammatory transcription factor nuclear factor kappa B (NF-κB) and cyclooxygenase-2 (COX-2) pathways have been studied. The results showed fast activation of NF-κB, most likely triggered by DNA damage in the irradiated cells, followed by upregulation of p38 MAPK and COX-2 in the irradiated and surrounding, non-irradiated, areas of the 3D cultures. The application of the COX-2 inhibitor sc-236 was effective at reducing the COX-2 mRNA levels 4 h postirradiation. The same inhibitor also suppressed the PGE2 secretion significantly 72 h after the treatment. The expression of a pro-inflammatory phenotype and abnormal differentiation markers of the cultures were also reduced. However, the use of an NF-κB inhibitor (Bay 11-7085) did not have the predicted positive effect on the cultures phenotype postirradiation. Radiation-induced pro-inflammatory responses have been observed in the 3D skin model. The activated signaling pathways involved NF-κB transcription factor and its downstream target COX-2. Further experiments aiming to suppress the inflammatory response via specific inhibitors showed that COX-2 is a suitable target for reduction of the normal skin inflammatory responses at radiotherapy, while NF

  4. Regulatory Mechanisms of Vitamin D3 on Production of Nitric Oxide and Pro-inflammatory Cytokines in Microglial BV-2 Cells.

    PubMed

    Dulla, Yevgeny Aster T; Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Shudo, Koichi; Katsuki, Hiroshi

    2016-11-01

    Inhibition of pro-inflammatory functions of microglia has been considered a promising strategy to prevent pathogenic events in the central nervous system under neurodegenerative conditions. Here we examined potential inhibitory effects of nuclear receptor ligands on lipopolysaccharide (LPS)-induced inflammatory responses in microglial BV-2 cells. We demonstrate that a vitamin D receptor agonist 1,25-dihydroxyvitamin D3 (VD3) and a retinoid X receptor agonist HX630 affect LPS-induced expression of pro-inflammatory factors. Specifically, both VD3 and HX630 inhibited expression of mRNAs encoding inducible nitric oxide synthase (iNOS) and IL-6, whereas expression of IL-1β mRNA was inhibited only by VD3. The inhibitory effect of VD3 and HX630 on expression of iNOS and IL-6 mRNAs was additive. Effect of VD3 and HX630 was also observed for inhibition of iNOS protein expression and nitric oxide production. Moreover, VD3 and HX630 inhibited LPS-induced activation of extracellular signal-regulated kinase (ERK) and nuclear translocation of nuclear factor κB (NF-κB). PD98059, an inhibitor of ERK kinase, attenuated LPS-induced nuclear translocation of NF-κB and induction of mRNAs for iNOS, IL-1β and IL-6. These results indicate that VD3 can inhibit production of several pro-inflammatory molecules from microglia, and that suppression of ERK activation is at least in part involved in the anti-inflammatory effect of VD3.

  5. Oxidative stress and pro-inflammatory cytokines may act as one of the signals for regulating microRNAs expression in Alzheimer's disease.

    PubMed

    Prasad, Kedar N

    2017-03-01

    Oxidative stress and chronic inflammation are one of the earliest defects that initiate and promote Alzheimer's disease (AD). Studies showed that expressions of microRNAs were upregulated or downregulated in AD. Therefore, these biochemical defects may influence the levels of microRNAs. The up-regulated microRNAs cause neurodegeneration by: (a) decreasing the levels of a nuclear transcriptional factor-2 (Nrf2), (b) reducing the levels of α-secretase ADM10; and (c) reducing the levels of phosphatases. The down-regulated microRNAs cause neurodegeneration by: (a) increasing the levels of β-secretase, (b) increasing the levels of tau kinase; (c) elevating the levels of tau proteins; (d) increasing the levels of APP; and (e) increasing the levels of nuclear factor-kappaB (NF-kB). Antioxidants protect neurons by reducing oxidative stress and chronic inflammation. Therefore, they may also influence the levels of microRNAs. This review briefly describes the studies on changes in the expressions of microRNAs in the pathogenesis of AD. It proposes a hypothesis that free radicals and pro-inflammatory cytokines act as one of the signals that upregulate or downregulate the levels of microRNAs by influencing their transcription, processing or stability leading to neurodegeneration in AD. Antioxidants that reduce oxidative stress and pro-inflammatory cytokines also regulate the levels of microRNAs.

  6. Carabrol suppresses LPS-induced nitric oxide synthase expression by inactivation of p38 and JNK via inhibition of I-{kappa}B{alpha} degradation in RAW 264.7 cells

    SciTech Connect

    Lee, Hwa Jin; Lim, Hyo Jin; Lee, Da Yeon; Jung, Hyeyoun; Kim, Mi-Ran; Moon, Dong-Cheul; Kim, Keun Il; Lee, Myeong-Sok; Ryu, Jae-Ha

    2010-01-15

    Carabrol, isolated from Carpesium macrocephalum, showed anti-inflammatory potential in LPS-induced RAW 264.7 murine macrophages. In present study, carabrol demonstrated the inhibitory activity on pro-inflammatory cytokines such as IL-1{beta}, IL-6 and TNF-{alpha}. In addition, mRNA and protein levels of iNOS and COX-2 were reduced by carabrol. Molecular analysis revealed that these suppressive effects were correlated with the inactivation of p38 and JNK via inhibition of NF-{kappa}B activation. Immunoblotting showed that carabrol suppressed LPS-induced degradation of I-{kappa}B{alpha} and decreased nuclear translocation of p65. Taken together, these results suggest that carabrol can be a modulator of pro-inflammatory signal transduction pathway in RAW 264.7 cells.

  7. Liver X receptor agonist prevents LPS-induced mastitis in mice.

    PubMed

    Fu, Yunhe; Tian, Yuan; Wei, Zhengkai; Liu, Hui; Song, Xiaojing; Liu, Wenbo; Zhang, Wenlong; Wang, Wei; Cao, Yongguo; Zhang, Naisheng

    2014-10-01

    Liver X receptor-α (LXR-α) which belongs to the nuclear receptor superfamily, is a ligand-activated transcription factor. Best known for its ability to regulate lipid metabolism and transport, LXRs have recently also been implicated in regulation of inflammatory response. The aim of this study was to investigate the preventive effects of synthetic LXR-α agonist T0901317 on LPS-induced mastitis in mice. The mouse model of mastitis was induced by injection of LPS through the duct of mammary gland. T0901317 was injected 1h before and 12h after induction of LPS intraperitoneally. The results showed that T0901317 significantly attenuated the infiltration of neutrophilic granulocytes, and the activation of myeloperoxidase (MPO); down-regulated the level of pro-inflammatory mediators including TNF-α, IL-1β, IL-6, COX-2 and PEG2; inhibited the phosphorylation of IκB-α and NF-κB p65, caused by LPS. Moreover, we report for the first time that LXR-α activation impaired LPS-induced mastitis. Taken together, these data indicated that T0901317 had protective effect on mastitis and the anti-inflammatory mechanism of T0901317 on LPS induced mastitis in mice may be due to its ability to inhibit NF-κB signaling pathway. LXR-α activation can be used as a therapeutic approach to treat mastitis.

  8. CXC195 suppresses proliferation and inflammatory response in LPS-induced human hepatocellular carcinoma cells via regulating TLR4-MyD88-TAK1-mediated NF-κB and MAPK pathway

    SciTech Connect

    Wang, Yiting; Tu, Qunfei; Yan, Wei; Xiao, Dan; Zeng, Zhimin; Ouyang, Yuming; Huang, Long; Cai, Jing; Zeng, Xiaoli; Chen, Ya-Jie; Liu, Anwen

    2015-01-02

    Highlights: • CXC195 exhibited significant anti-proliferative effect and induced cell cycle arrest in LPS-induced HepG2 cells. • CXC195 suppressed the release of pro-inflammatory mediators in LPS-induced HepG2 cells. • CXC195 regulated TLR4-MyD88-TAK1-mediated NF-κB and MAPK pathway in LPS-induced HepG2 cells. - Abstract: CXC195 showed strong protective effects in neuronal apoptosis by exerting its antioxidant activity. However, the anti-cancer effects of CXC195 is still with limited acquaintance. Here, we investigated the role of CXC195 in lipopolysaccharide (LPS)-induced human hepatocellular carcinoma (HCC) cells lines (HepG2) and the possible signaling pathways. CXC195 exhibited significant anti-proliferative effect and induced cell cycle arrest in LPS-induced HepG2 cells. In addition, CXC195 suppressed the release of pro-inflammatory mediators in LPS-induced HepG2 cells, including TNF-α, iNOS, IL-1β, IL-6, CC chemokine ligand (CCL)-2, CCL-22 and epidermal growth factor receptor (EGFR). Moreover, CXC195 inhibited the expressions and interactions of TLR4, MyD88 and TAK1, NF-κB translocation to nucleus and its DNA binding activity, phosphorylation of ERK1/2, p38 and JNK. Our results suggested that treatment with CXC195 could attenuate the TLR4-mediated proliferation and inflammatory response in LPS-induced HepG2 cells, thus might be beneficial for the treatment of HCC.

  9. Oxymatrine lightened the inflammatory response of LPS-induced mastitis in mice through affecting NF-κB and MAPKs signaling pathways.

    PubMed

    Yang, Zhengtao; Yin, Ronglan; Cong, Yunfeng; Yang, Zhanqing; Zhou, Ershun; Wei, Zhengkai; Liu, Zhicheng; Cao, Yongguo; Zhang, Naisheng

    2014-12-01

    Mastitis, an inflammatory reaction of the mammary gland, is recognized as one of the most costly diseases in dairy cattle. Oxymatrine, one of the alkaloids extracted from Chinese herb Sophora flavescens Ait, has been reported to have many biological activities, such as anti-inflammatory, anti-virus, and anti-hepatic fibrosis properties. The aim of this study was to investigate the protective effect and the anti-inflammatory mechanism of oxymatrine on lipopolysaccharide (LPS)-induced mastitis in mice. The mouse mastitis was induced by 10 μg of LPS for 24 h. Oxymatrine was intraperitoneally administered with the dose of 30, 60, and 120 mg/kg 1 h before and 12 h after LPS induction. The results showed that oxymatrine significantly attenuated the damage of the mammary gland induced by LPS. Oxymatrine inhibited the phosphorylation of NF-κB p65 and IκB in NF-κB signal pathway and reduced the phosphorylation of p38, ERK, and JNK in mitogen-activated protein kinase (MAPKs) signal pathway. The results showed that oxymatrine had a protective effect on LPS-induced mastitis, and the anti-inflammatory mechanism of oxymatrine was related to the inhibition of NF-κB and MAPKs signal pathways.

  10. Bergenin Plays an Anti-Inflammatory Role via the Modulation of MAPK and NF-κB Signaling Pathways in a Mouse Model of LPS-Induced Mastitis.

    PubMed

    Gao, Xue-jiao; Guo, Meng-yao; Zhang, Ze-cai; Wang, Tian-cheng; Cao, Yong-guo; Zhang, Nai-sheng

    2015-01-01

    Mastitis is a major disease in humans and other animals and is characterized by mammary gland inflammation. It is a major disease of the dairy industry. Bergenin is an active constituent of the plants of genus Bergenia. Research indicates that bergenin has multiple biological activities, including anti-inflammatory and immunomodulatory properties. The objective of this study was to evaluate the protective effects and mechanism of bergenin on the mammary glands during lipopolysaccharide (LPS)-induced mastitis. In this study, mice were treated with LPS to induce mammary gland mastitis as a model for the disease. Bergenin treatment was initiated after LPS stimulation for 24 h. The results indicated that bergenin attenuated inflammatory cell infiltration and decreased the concentration of NO, TNF-α, IL-1β, and IL-6, which were increased in LPS-induced mouse mastitis. Furthermore, bergenin downregulated the phosphorylation of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPK) signaling pathway proteins in mammary glands with mastitis. In conclusion, bergenin reduced the expression of NO, TNF-α, IL-1β, and IL-6 proinflammatory cytokines by inhibiting the activation of the NF-κB and MAPKs signaling pathways, and it may represent a novel treatment strategy for mastitis.

  11. Baicalein attenuates inflammatory responses by suppressing TLR4 mediated NF-κB and MAPK signaling pathways in LPS-induced mastitis in mice.

    PubMed

    He, Xuexiu; Wei, Zhengkai; Zhou, Ershun; Chen, Libin; Kou, Jinhua; Wang, Jingjing; Yang, Zhengtao

    2015-09-01

    Baicalein is a phenolic flavonoid presented in the dry roots of Scutellaria baicalensis Georgi. It has been reported that baicalein possesses a number of biological properties, such as antiviral, antioxidative, anti-inflammatory, antithrombotic, and anticancer properties. However, the effect of baicalein on mastitis has not yet been reported. This research aims to detect the effect of baicalein on lipopolysaccharide (LPS)-induced mastitis in mice and to investigate the molecular mechanisms. Baicalein was administered intraperitoneally 1h before and 12h after LPS treatment. The results indicated that baicalein treatment markedly attenuated the damage of the mammary gland induced by LPS, suppressed the activity of myeloperoxidase (MPO) and the levels of tumor necrosis factor (TNF-α) and interleukin (IL-1β) in mice with LPS-induced mastitis. Besides, baicalein blocked the expression of Toll-like receptor 4 (TLR4) and then suppressed the phosphorylation of nuclear transcription factor-kappaB (NF-κB) p65 and degradation inhibitor of NF-κBα (IκBα) and, and inhibited the phosphorylation of p38, extracellular signal-regulated kinase (ERK) and c-jun NH2-terminal kinase (JNK) in mitogen-activated protein kinase (MAPK) signal pathway. These findings suggested that baicalein may have a potential prospect against mastitis.

  12. MD-2 interacts with Lyn kinase and is tyrosine phosphorylated following LPS-induced activation of the Toll-like receptor 4 signaling pathway

    PubMed Central

    Gray, Pearl; Dagvadorj, Jargalsaikhan; Michelsen, Kathrin S.; Brikos, Constantinos; Rentsendorj, Altan; Town, Terrence; Crother, Timothy R.; Arditi, Moshe

    2011-01-01

    Stimulation with LPS induces tyrosine phosphorylation of numerous proteins involved in the TLR signaling pathway. In this study, we demonstrate that MD-2 is also tyrosine phosphorylated following LPS stimulation. LPS-induced tyrosine phosphorylation of MD-2 is specific, it is blocked by the tyrosine kinase inhibitor, Herbimycin A, and by an inhibitor of endocytosis, Cytochalsin-D, suggesting that MD-2 phosphorylation occurs during trafficking of MD2 and not on cell surface. Furthermore, we identify two possible phospho-accepting tyrosine residues at positions 22 and 131. Mutant proteins in which these tyrosines were changed to phenylalanine have reduced phosphorylation and significantly diminished ability to activate NF-κB in response to LPS. In addition, MD2 co-precipitates and colocalizes with Lyn kinase, most likely in ER. A Lyn-binding peptide inhibitor abolished MD2 tyrosine phosphorylation, suggesting that Lyn is a likely candidate to be the kinase required for MD-2 tyrosine phophorylation. Our study demonstrates that tyrosine phosphorylation of MD-2 is important for signaling following exposure to LPS and underscores the importance of this event in mediating an efficient and prompt immune response. PMID:21918188

  13. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis.

    PubMed

    Lv, Hongming; Liu, Qinmei; Wen, Zhongmei; Feng, Haihua; Deng, Xuming; Ci, Xinxin

    2017-03-02

    Abundant natural flavonoids can induce nuclear factor-erythroid 2 related factor 2 (Nrf2) and/or AMP-activated protein kinase (AMPK) activation, which play crucial roles in the amelioration of various inflammation- and oxidative stress-induced diseases, including acute lung injury (ALI). Xanthohumol (Xn), a principal prenylflavonoid, possesses anti-inflammation and anti-oxidant activities. However, whether Xn could protect from LPS-induced ALI through inducing AMPK/Nrf2 activation and its downstream signals, are still poorly elucidated. Accordingly, we focused on exploring the protective effect of Xn in the context of ALI and the involvement of underlying molecular mechanisms. Our findings indicated that Xn effectively alleviated lung injury by reduction of lung W/D ratio and protein levels, neutrophil infiltration, MDA and MPO formation, and SOD and GSH depletion. Meanwhile, Xn significantly lessened histopathological changes, reactive oxygen species (ROS) generation, several cytokines secretion, and iNOS and HMGB1 expression, and inhibited Txnip/NLRP3 inflammasome and NF-κB signaling pathway activation. Additionally, Xn evidently decreased t-BHP-stimulated cell apoptosis, ROS generation and GSH depletion but increased various anti-oxidative enzymes expression regulated by Keap1-Nrf2/ARE activation, which may be associated with AMPK and GSK3β phosphorylation. However, Xn-mediated inflammatory cytokines and ROS production, histopathological changes, Txnip/NLRP3 inflammasome and NF-κB signaling pathway in WT mice were remarkably abrogated in Nrf2(-/-) mice. Our experimental results firstly provided a support that Xn effectively protected LPS-induced ALI against oxidative stress and inflammation damage which are largely dependent upon upregulation of the Nrf2 pathway via activation of AMPK/GSK3β, thereby suppressing LPS-activated Txnip/NLRP3 inflammasome and NF-κB signaling pathway.

  14. Hydrogen Sulfide Delays LPS-Induced Preterm Birth in Mice via Anti-Inflammatory Pathways

    PubMed Central

    Liu, Weina; Xu, Chen; You, Xingji; Olson, David M.; Chemtob, Sylvain; Gao, Lu; Ni, Xin

    2016-01-01

    A major cause of preterm labor in pregnant women is intra-amniotic infection, which is mediated by an inflammatory process. Hydrogen sulfide (H2S), a gaseous transmitter, has been implicated to be involved in inflammatory responses. We sought to investigate whether H2S affects infectious preterm birth using the mouse model of lipopolysaccharides (LPS)-induced preterm birth. Administration of LPS at 0.4 mg/kg with two injections intraperitoneally (i.p.) on gestational day 14.5 induced preterm labor. LPS significantly increased leukocyte infiltration in uterus, stimulated the expression of pro-inflammatory cytokines interleukin 1β (IL-1β), IL-6, tumor necrosis factor α (TNF-α), CCL2 and CXCL15 in myometrium. Administration of NaHS (i.p.) delayed the onset of labor induced by LPS in a dose-dependent manner. NaHS prevented leukocyte infiltration into intrauterine tissues and inhibited the production of pro-inflammatory cytokines in myometrium and decreased the levels of these cytokines in maternal circulation. H2S also decreased LPS-activated extracellular signal-regulated kinase (ERK) 1/2/ nuclear factor (NF)-κB signaling pathways in myometrium. This study provides new in vivo evidence for the roles of H2S in attenuating inflammation, and a potential novel therapeutic strategy for infection-related preterm labor. PMID:27035826

  15. Hydrogen Sulfide Delays LPS-Induced Preterm Birth in Mice via Anti-Inflammatory Pathways.

    PubMed

    Liu, Weina; Xu, Chen; You, Xingji; Olson, David M; Chemtob, Sylvain; Gao, Lu; Ni, Xin

    2016-01-01

    A major cause of preterm labor in pregnant women is intra-amniotic infection, which is mediated by an inflammatory process. Hydrogen sulfide (H2S), a gaseous transmitter, has been implicated to be involved in inflammatory responses. We sought to investigate whether H2S affects infectious preterm birth using the mouse model of lipopolysaccharides (LPS)-induced preterm birth. Administration of LPS at 0.4 mg/kg with two injections intraperitoneally (i.p.) on gestational day 14.5 induced preterm labor. LPS significantly increased leukocyte infiltration in uterus, stimulated the expression of pro-inflammatory cytokines interleukin 1β (IL-1β), IL-6, tumor necrosis factor α (TNF-α), CCL2 and CXCL15 in myometrium. Administration of NaHS (i.p.) delayed the onset of labor induced by LPS in a dose-dependent manner. NaHS prevented leukocyte infiltration into intrauterine tissues and inhibited the production of pro-inflammatory cytokines in myometrium and decreased the levels of these cytokines in maternal circulation. H2S also decreased LPS-activated extracellular signal-regulated kinase (ERK) 1/2/ nuclear factor (NF)-κB signaling pathways in myometrium. This study provides new in vivo evidence for the roles of H2S in attenuating inflammation, and a potential novel therapeutic strategy for infection-related preterm labor.

  16. Resveratrol modulates phorbol ester-induced pro-inflammatory signal transduction pathways in mouse skin in vivo: NF-kappaB and AP-1 as prime targets.

    PubMed

    Kundu, Joydeb Kumar; Shin, Young Kee; Surh, Young-Joon

    2006-11-30

    Functional abnormalities of intracellular signaling network cause the disruption in homeostasis maintained by critical cellular components, thereby accelerating premalignant and malignant transformation. Multiple lines of evidence suggest that an elevated expression of cyclooxygenase-2 (COX-2) is causally linked to tumorigenesis. The exposure to oxidative/pro-inflammatory stimuli turns on signaling arrays mediated by diverse classes of kinases and transcription factors, which may lead to aberrant expression of COX-2. We have attempted to unravel the signal transduction pathways involved in elevated COX-2 expression in mouse skin stimulated with a prototype tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) and its modulation by resveratrol, a phytoalexin known to exert potential chemopreventive effects. Our study revealed that topical application of TPA induced COX-2 expression in mouse skin via activation of nuclear factor-kappaB (NF-kappaB), which is regulated by upstream IkappaB kinase (IKK) or differentially by mitogen-activated protein (MAP) kinases. Besides NF-kappaB, the p38 MAP kinase-mediated activation of activator protein-1 (AP-1) has also been attributed to TPA-induced COX-2 expression in mouse skin. Among the MAP kinases, extracellular signal-regulated protein kinase (ERK) and p38 MAP kinase have been shown to regulate TPA-induced NF-kappaB activation, while p38 MAP kinase and c-Jun-N-terminal kinase are preferentially involved in TPA-induced activation of AP-1 in mouse skin in vivo. This commentary focuses on resveratrol modulation of intracellular signaling pathways involved in aberrant COX-2 expression in TPA-stimulated mouse skin to delineate molecular mechanisms underlying antitumor promoting effects of resveratrol.

  17. Potential of flavonoids as anti-inflammatory agents: modulation of pro-inflammatory gene expression and signal transduction pathways.

    PubMed

    Tuñón, M J; García-Mediavilla, M V; Sánchez-Campos, S; González-Gallego, J

    2009-03-01

    Flavonoids are a large class of naturally occurring compounds widely present in fruits, vegetables, and beverages derived from plants. Reports have suggested that these compounds might be useful for the prevention of a number of diseases, partly due to their anti-inflammatory properties. It has been demonstrated that flavonoids are able to inhibit expression of isoforms of inducible nitric oxide synthase, ciclooxygenase and lipooxygenase, which are responsible for the production of a great amount of nitric oxide, prostanoids and leukotrienes, as well as other mediators of the inflammatory process such as cytokines, chemokines or adhesion molecules. Modulation of the cascade of molecular events leading to the over-expression of those mediators include inhibition of transcription factors such as nuclear factor kappa B, activator protein 1, signal transducers and activators of transcription, CCAAT/enhancer binding protein and others. Effects on the binding capacity of transcription factors may be regulated through the inhibition of protein kinases involved in signal transduction, such as mitogen activated protein kinases. Although the numerous studies published with in vitro approaches allow identifying molecular mechanisms of flavonoid effects, the limited bioavailability of these molecules makes necessary validation in humans. Whatever the case, the data available make clear the potential utility of dietary flavonoids or new flavonoid-based agents for the possible treatment of inflammatory diseases. The present review summarizes recent research data focusing on the modulation of the expression of different inflammatory mediators by flavonoids and the effects on cell signaling pathways responsible for their anti-inflammatory activity.

  18. A CD47-associated super-enhancer links pro-inflammatory signalling to CD47 upregulation in breast cancer.

    PubMed

    Betancur, Paola A; Abraham, Brian J; Yiu, Ying Y; Willingham, Stephen B; Khameneh, Farnaz; Zarnegar, Mark; Kuo, Angera H; McKenna, Kelly; Kojima, Yoko; Leeper, Nicholas J; Ho, Po; Gip, Phung; Swigut, Tomek; Sherwood, Richard I; Clarke, Michael F; Somlo, George; Young, Richard A; Weissman, Irving L

    2017-04-05

    CD47 is a cell surface molecule that inhibits phagocytosis of cells that express it by binding to its receptor, SIRPα, on macrophages and other immune cells. CD47 is expressed at different levels by neoplastic and normal cells. Here, to reveal mechanisms by which different neoplastic cells generate this dominant 'don't eat me' signal, we analyse the CD47 regulatory genomic landscape. We identify two distinct super-enhancers (SEs) associated with CD47 in certain cancer cell types. We show that a set of active constituent enhancers, located within the two CD47 SEs, regulate CD47 expression in different cancer cell types and that disruption of CD47 SEs reduces CD47 gene expression. Finally we report that the TNF-NFKB1 signalling pathway directly regulates CD47 by interacting with a constituent enhancer located within a CD47-associated SE specific to breast cancer. These results suggest that cancers can evolve SE to drive CD47 overexpression to escape immune surveillance.

  19. Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptor pathways to activate pro-inflammatory signals.

    PubMed

    Bulut, Yonca; Michelsen, Kathrin S; Hayrapetian, Linda; Naiki, Yoshikazu; Spallek, Ralf; Singh, Mahavir; Arditi, Moshe

    2005-06-03

    Although the Toll-like receptors used by Mycobacterium tuberculosis membrane and secreted factors are known, the pathways activated by M. tuberculosis heat shock proteins are not. An efficient immune response against the intracellular pathogen M. tuberculosis is critically dependent on rapid detection of the invading pathogen by the innate immune system and coordinated activation of the adaptive immune response. Macrophage phagocytosis of M. tuberculosis is accompanied by activation of the transcription factor NF-kappaB and secretion of inflammatory mediators that play an important role in granuloma formation and immune protection during M. tuberculosis infection. The interaction between M. tuberculosis and the various Toll-like receptors is complex, and it appears that distinct mycobacterial components may interact with different members of the Toll-like receptor family. Here we show that recombinant, purified, mycobacterial heat shock proteins 65 and 70 induce NF-kappaB activity in a dose-dependent manner in human endothelial cells. Furthermore, we show that whereas mycobacterial heat shock protein 65 signals exclusively through Toll-like receptor 4, heat shock protein 70 also signals through Toll-like receptor 2. Mycobacterial heat shock protein 65-induced NF-kappaB activation was MyD88-, TIRAP-, TRIF-, and TRAM-dependent and required the presence of MD-2. A better understanding of the recognition of mycobacterial heat shock proteins and their role in the host immune response to the pathogen may open the way to a better understanding of the immunological processes induced by this important human pathogen and the host-pathogen interactions and may help in the rational design of more effective vaccines or vaccine adjuvants.

  20. Dietary Fish Oil Inhibits Pro-Inflammatory and ER Stress Signalling Pathways in the Liver of Sows during Lactation

    PubMed Central

    Gessner, Denise K.; Gröne, Birthe; Couturier, Aline; Rosenbaum, Susann; Hillen, Sonja; Becker, Sabrina; Erhardt, Georg; Reiner, Gerald; Ringseis, Robert; Eder, Klaus

    2015-01-01

    Lactating sows have been shown to develop typical signs of an inflammatory condition in the liver during the transition from pregnancy to lactation. Hepatic inflammation is considered critical due to the induction of an acute phase response and the activation of stress signaling pathways like the endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR), both of which impair animal´s health and performance. Whether ER stress-induced UPR is also activated in the liver of lactating sows and whether dietary fish oil as a source of anti-inflammatory effects n-3 PUFA is able to attenuate hepatic inflammation and ER stress-induced UPR in the liver of sows is currently unknown. Based on this, two experiments with lactating sows were performed. The first experiment revealed that ER stress-induced UPR occurs also in the liver of sows during lactation. This was evident from the up-regulation of a set of genes regulated by the UPR and numerically increased phosphorylation of the ER stress-transducer PERK and PERK-mediated phosphorylation of eIF2α and IκB. The second experiment showed that fish oil inhibits ER stress-induced UPR in the liver of lactating sows. This was demonstrated by decreased mRNA levels of a number of UPR-regulated genes and reduced phosphorylation of PERK and PERK-mediated phosphorylation of eIF2α and IκB in the liver of the fish oil group. The mRNA levels of various nuclear factor-κB-regulated genes encoding inflammatory mediators and acute phase proteins in the liver of lactating sows were also reduced in the fish oil group. In line with this, the plasma levels of acute phase proteins were reduced in the fish oil group, although differences to the control group were not significant. In conclusion, ER stress-induced UPR is present in the liver of lactating sows and fish oil is able to inhibit inflammatory signaling pathways and ER stress-induced UPR in the liver. PMID:26351857

  1. The oxytocin receptor antagonist, Atosiban, activates pro-inflammatory pathways in human amnion via G(αi) signalling.

    PubMed

    Kim, Sung Hye; MacIntyre, David A; Hanyaloglu, Aylin C; Blanks, Andrew M; Thornton, Steven; Bennett, Phillip R; Terzidou, Vasso

    2016-01-15

    Oxytocin (OT) plays an important role in the onset of human labour by stimulating uterine contractions and promoting prostaglandin/inflammatory cytokine synthesis in amnion via oxytocin receptor (OTR) coupling. The OTR-antagonist, Atosiban, is widely used as a tocolytic for the management of acute preterm labour. We found that in primary human amniocytes, Atosiban (10 μM) signals via PTX-sensitive Gαi to activate transcription factor NF-κB p65, ERK1/2, and p38 which subsequently drives upregulation of the prostaglandin synthesis enzymes, COX-2 and phospho-cPLA2 and excretion of prostaglandins (PGE2) (n = 6; p < 0.05, ANOVA). Moreover, Atosiban treatment increased expression and excretion of the inflammatory cytokines, IL-6 and CCL5. We also showed that OT-simulated activation of NF-κB, ERK1/2, and p38 and subsequent prostaglandin and inflammatory cytokine synthesis is via Gαi-2 and Gαi-3 but not Gαq, and is not inhibited by Atosiban. Activation or exacerbation of inflammation is not a desirable effect of tocolytics. Therefore therapeutic modulation of the OT/OTR system for clinical management of term/preterm labour should consider the effects of differential G-protein coupling of the OTR and the role of OT or selective OTR agonists/antagonists in activating proinflammatory pathways.

  2. Cordycepin inhibits lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α production via activating amp-activated protein kinase (AMPK) signaling.

    PubMed

    Zhang, Jian-Li; Xu, Ying; Shen, Jie

    2014-07-08

    Tumor necrosis factor (TNF)-α is elevated during the acute phase of Kawasaki disease (KD), which damages vascular endothelial cells to cause systemic vasculitis. In the current study, we investigated the potential role of cordycepin on TNFα expression in both lipopolysaccharide (LPS)-stimulated macrophages and ex vivo cultured peripheral blood mononuclear cells (PBMCs) of KD patients. We found that cordycepin significantly suppressed LPS-induced TNFα expression and production in mouse macrophages (RAW 264.7 cells and bone marrow-derived macrophages (BMDMs)). Meanwhile, cordycepin alleviated TNFα production in KD patients' PBMCs. PBMCs from healthy controls had a much lower level of basal TNF-α content than that of KD patients. LPS-induced TNF-α production in healthy controls' PBMCs was also inhibited by cordycepin. For the mechanism study, we discovered that cordycepin activated AMP-activated protein kinase (AMPK) signaling in both KD patients' PBMCs and LPS-stimulated macrophages, which mediated cordycepin-induced inhibition against TNFα production. AMPK inhibition by its inhibitor (compound C) or by siRNA depletion alleviated cordycepin's effect on TNFα production. Further, we found that cordycepin inhibited reactive oxygen species (ROS) production and nuclear factor kappa B (NF-κB) activation in LPS-stimulate RAW 264.7 cells or healthy controls' PBMCs. PBMCs of KD patients showed higher basal level of ROS and NF-κB activation, which was also inhibited by cordycepin co-treatment. In conclusion, our data showed that cordycepin inhibited TNFα production, which was associated with AMPK activation as well as ROS and NF-κB inhibition. The results of this study should have significant translational relevance in managing this devastating disease.

  3. Epigenetic regulation of pro-inflammatory cytokine secretion by sphingosine 1-phosphate (S1P) in acute lung injury: Role of S1P lyase.

    PubMed

    Ebenezer, David L; Fu, Panfeng; Suryadevara, Vidyani; Zhao, Yutong; Natarajan, Viswanathan

    2017-01-01

    Cellular level of sphingosine-1-phosphate (S1P), the simplest bioactive sphingolipid, is tightly regulated by its synthesis catalyzed by sphingosine kinases (SphKs) 1 & 2 and degradation mediated by S1P phosphatases, lipid phosphate phosphatases, and S1P lyase. The pleotropic actions of S1P are attributed to its unique inside-out (extracellular) signaling via G-protein-coupled S1P1-5 receptors, and intracellular receptor independent signaling. Additionally, S1P generated in the nucleus by nuclear SphK2 modulates HDAC1/2 activity, regulates histone acetylation, and transcription of pro-inflammatory genes. Here, we present data on the role of S1P lyase mediated S1P signaling in regulating LPS-induced inflammation in lung endothelium. Blocking S1P lyase expression or activity attenuated LPS-induced histone acetylation and secretion of pro-inflammatory cytokines. Degradation of S1P by S1P lyase generates Δ2-hexadecenal and ethanolamine phosphate and the long-chain fatty aldehyde produced in the cytoplasmic compartment of the endothelial cell seems to modulate histone acetylation pattern, which is different from the nuclear SphK2/S1P signaling and inhibition of HDAC1/2. These in vitro studies suggest that S1P derived long-chain fatty aldehyde may be an epigenetic regulator of pro-inflammatory genes in sepsis-induced lung inflammation. Trapping fatty aldehydes and other short chain aldehydes such as 4-hydroxynonenal derived from S1P degradation and lipid peroxidation, respectively by cell permeable agents such as phloretin or other aldehyde trapping agents may be useful in treating sepsis-induced lung inflammation via modulation of histone acetylation. .

  4. α-Chaconine isolated from a Solanum tuberosum L. cv Jayoung suppresses lipopolysaccharide-induced pro-inflammatory mediators via AP-1 inactivation in RAW 264.7 macrophages and protects mice from endotoxin shock.

    PubMed

    Lee, Kyoung-Goo; Lee, Suel-Gie; Lee, Hwi-Ho; Lee, Hae Jun; Shin, Ji-Sun; Kim, Nan-Jung; An, Hyo-Jin; Nam, Jung-Hwan; Jang, Dae Sik; Lee, Kyung-Tae

    2015-06-25

    In this study, we investigated the molecular mechanisms underlying the anti-inflammatory effects of α-chaconine in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages and in LPS-induced septic mice. α-Chaconine inhibited the expressions of cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) at the transcriptional level, and attenuated the transcriptional activity of activator protein-1 (AP-1) by reducing the translocation and phosphorylation of c-Jun. α-Chaconine also suppressed the phosphorylation of TGF-β-activated kinase-1 (TAK1), which lies upstream of mitogen-activated protein kinase kinase 7 (MKK7)/Jun N-terminal kinase (JNK) signaling. JNK knockdown using siRNA prevented the α-chaconine-mediated inhibition of pro-inflammatory mediators. In a sepsis model, pretreatment with α-chaconine reduced the LPS-induced lethality and the mRNA and production levels of pro-inflammatory mediators by inhibiting c-Jun activation. These results suggest that the anti-inflammatory effects of α-chaconine are associated with the suppression of AP-1, and support its possible therapeutic role for the treatment of sepsis.

  5. Bovine dialyzable leukocyte extract protects against LPS-induced, murine endotoxic shock.

    PubMed

    Franco-Molina, Moisés A; Mendoza-Gamboa, Edgar; Castillo-León, Leonardo; Tamez-Guerra, Reyes S; Rodríguez-Padilla, Cristina

    2004-12-15

    The pathophysiology of endotoxic shock is characterized by the activation of multiple pro-inflammatory genes and their products which initiate the inflammatory process. Endotoxic shock is a serious condition with high mortality. Bovine dialyzable leukocyte extract (bDLE) is a dialyzate of a heterogeneous mixture of low molecular weight substances released from disintegrated leukocytes of the blood or lymphoid tissue obtained from homogenized bovine spleen. bDLE is clinically effective for a broad spectrum of diseases. To determine whether bDLE improves survival and modulates the expression of pro-inflammatory cytokine genes in LPS-induced, murine endotoxic shock, Balb/C mice were treated with bDLE (1 U) after pretreatment with LPS (17 mg/kg). The bDLE improved survival (90%), suppressed IL-10 and IL-6, and decreased IL-1beta, TNF-alpha, and IL-12p40 mRNA expression; and decreased the production of IL-10 (P<0.01), TNF-alpha (P<0.01), and IL-6 (P<0.01) in LPS-induced, murine endotoxic shock. Our results demonstrate that bDLE leads to improved survival in LPS-induced endotoxic shock in mice, modulating the pro-inflammatory cytokine gene expression, suggesting that bDLE is an effective therapeutic agent for inflammatory illnesses associated with an unbalanced expression of pro-inflammatory cytokine genes such as in endotoxic shock, rheumatic arthritis and other diseases.

  6. Sweet potato [Ipomoea batatas (L.) Lam. "Tainong 57"] starch improves insulin sensitivity in high-fructose diet-fed rats by ameliorating adipocytokine levels, pro-inflammatory status, and insulin signaling.

    PubMed

    Chen, Ya-Yen; Lai, Ming-Hoang; Hung, Hsin-Yu; Liu, Jen-Fang

    2013-01-01

    The aim of this study was to investigate the effects of low-glycemic index (GI) sweet potato starch on adipocytokines, pro-inflammatory status, and insulin signaling in the high-fructose diet-induced insulin-resistant rat. We randomly divided 24 insulin-resistant rats and 16 normal rats into two groups fed a diet containing 575 g/kg of starch: a low-GI sweet potato starch (S) or a high-GI potato starch (P). The four experimental groups were labeled as follows: insulin-resistant P (IR-P), insulin-resistant S (IR-S), normal P (N-P) and normal S (N-S). After 4 wk on the experimental diets, an intraperitoneal glucose tolerance test (IPGTT) was conducted, and the homeostasis model assessment (HOMA), adipocytokines, pro-inflammatory cytokines levels, and insulin signaling-related protein expression were measured. The homeostasis model assessment values were significantly lower in the IR-S than in the IR-P group, suggesting that insulin sensitivity was improved among sweet potato starch-fed rats. Levels of tumor necrosis factor-α, interleukin-6, resistin, and retinol binding protein-4 were significantly lower in the IR-S versus the IR-P group, indicating an improvement of pro-inflammatory status in sweet potato starch-fed rats. The sweet potato starch diet also significantly enhanced the protein expression of phospho-Tyr-insulin receptor substrate-1 and improved the translocation of glucose transporter 4 in the skeletal muscle. Our results illustrated that sweet potato starch feeding for 4 wk can improve insulin sensitivity in insulin-resistant rats, possibly by improving the adipocytokine levels, pro-inflammatory status, and insulin signaling.

  7. Glutathione S-transferase pi modulates NF-κB activation and pro-inflammatory responses in lung epithelial cells

    PubMed Central

    Jones, Jane T.; Qian, Xi; van der Velden, Jos L.J.; Chia, Shi Biao; McMillan, David H.; Flemer, Stevenson; Hoffman, Sidra M.; Lahue, Karolyn G.; Schneider, Robert W.; Nolin, James D.; Anathy, Vikas; van der Vliet, Albert; Townsend, Danyelle M.; Tew, Kenneth D.; Janssen-Heininger, Yvonne M.W.

    2016-01-01

    Nuclear Factor kappa B (NF-κB) is a transcription factor family critical in the activation of pro- inflammatory responses. The NF-κB pathway is regulated by oxidant-induced post-translational modifications. Protein S-glutathionylation, or the conjugation of the antioxidant molecule, glutathione to reactive cysteines inhibits the activity of inhibitory kappa B kinase beta (IKKβ), among other NF-κB proteins. Glutathione S-transferase Pi (GSTP) is an enzyme that has been shown to catalyze protein S-glutathionylation (PSSG) under conditions of oxidative stress. The objective of the present study was to determine whether GSTP regulates NF-κB signaling, S-glutathionylation of IKK, and subsequent pro-inflammatory signaling. We demonstrated that, in unstimulated cells, GSTP associated with the inhibitor of NF-κB, IκBα. However, exposure to LPS resulted in a rapid loss of association between IκBα and GSTP, and instead led to a protracted association between IKKβ and GSTP. LPS exposure also led to increases in the S-glutathionylation of IKKβ. SiRNA-mediated knockdown of GSTP decreased IKKβ-SSG, and enhanced NF-κB nuclear translocation, transcriptional activity, and pro-inflammatory cytokine production in response to lipopolysaccharide (LPS). TLK117, an isotype-selective inhibitor of GSTP, also enhanced LPS-induced NF-κB transcriptional activity and pro-inflammatory cytokine production, suggesting that the catalytic activity of GSTP is important in repressing NF-κB activation. Expression of both wild-type and catalytically-inactive Y7F mutant GSTP significantly attenuated LPS- or IKKβ-induced production of GM-CSF. These studies indicate a complex role for GSTP in modulating NF-κB, which may involve S-glutathionylation of IKK proteins, and interaction with NF-κB family members. Our findings suggest that targeting GSTP is a potential avenue for regulating the activity of this prominent pro-inflammatory and immunomodulatory transcription factor. PMID:27058114

  8. Fasudil inhibits LPS-induced migration of retinal microglial cells via regulating p38-MAPK signaling pathway

    PubMed Central

    Xu, Fan; Xu, Yue; Zhu, Liqiong; Rao, Pinhong; Wen, Jiamin; Sang, Yunyun; Shang, Fu

    2016-01-01

    Purpose To investigate the effect and possible molecular mechanisms of fasudil on retinal microglial (RMG) cell migration. Methods Primary cultured RMG cells were incubated with lipopolysaccharide (LPS), fasudil, and/or SB203580 (a p38 inhibitor). RMG cell motility was determined with the scratch wound assay and the Transwell migration assay. The phosphorylation of p38 and levels of matrix metalloproteinase 2 (MMP-2) and MMP-9 were measured with western blot. Results In the scratch-induced migration assay, as well as in the Transwell migration assay, the results indicated that LPS stimulated the migratory potential of RMG cells and fasudil significantly reduced LPS-stimulated RMG cell migration in a concentration-dependent manner. However, fasudil had no effect on RMG cell migration in the absence of LPS stimulation. Moreover, fasudil reduced the level of phosphor-p38 mitogen-activated protein kinase (p-p38-MAPK) in a concentration-dependent manner, without effects on the levels of phospho-p44/42 (p-ERK1/2) and phospho-c-Jun N-terminal kinase (p-JNK). Cotreatment with SB203580 (a p38 inhibitor) and fasudil resulted in the synergistic reduction of MMP-2, MMP-9, and p-p38-MAPK, as well as a reduction in the LPS-stimulated migration capabilities of the RMG cells, suggesting fasudil suppresses the LPS-stimulated migration of RMG cells via directly downregulating the p38-MAPK signaling pathway. Conclusions Our studies indicated that fasudil inhibited LPS-stimulated RMG cell migration via suppression of the p38-MAPK signaling pathway. PMID:27441000

  9. SIGNR1-mediated phagocytosis, but not SIGNR1-mediated endocytosis or cell adhesion, suppresses LPS-induced secretion of IL-6 from murine macrophages.

    PubMed

    Kawauchi, Yoko; Takagi, Hideaki; Hanafusa, Kei; Kono, Mirei; Yamatani, Minami; Kojima, Naoya

    2015-01-01

    C-type lectin receptors (CLRs) serve as phagocytosis receptors for pathogens and also function as adhesion molecules and in the recognition and endocytosis of glycosylated self-antigens. In the present study, we demonstrated that phagocytosis mediated by a mouse mannose-binding CLR, SIGNR1 significantly suppressed the LPS-induced secretion of the specific pro-inflammatory cytokines from the resident peritoneal macrophages and the mouse macrophage-like cells that express SIGNR1 (RAW-SIGNR1). LPS-induced secretion of IL-6 from peritoneal macrophages suppressed in response to uptake of oligomannose-coated liposomes (OMLs), and the suppression was partly inhibited by treatment with an anti-SIGNR1 antibody. LPS-induced secretion of IL-6 from RAW-SIGNR1 cells was also clearly inhibited by treatment of the cells with OMLs >0.4μm in diameter, but treatment with OMLs <0.4μm in diameter did not affect the IL-6 secretion. In contrast, LPS-induced TNF-α secretion from the cells was not affected on treatment of the cells with OMLs. Suppression of the IL-6 secretion was not observed following treatment with oligomannose-containing soluble polymers or when cells were bound to an oligomannose-coated solid phase. Phagocytosis of oligomannose-coated liposomes did not interfere with the transcription of IL-6 mRNA, but did affect IL-6 mRNA stability, leading to suppression of IL-6 secretion. Interestingly, treatment of the cells with Ly290042, a PI3 kinase inhibitor, partly blocked the suppression of LPS-induced secretion of IL-6 by OML. Thus, we conclude that SIGNR1-mediated phagocytosis but not SIGNR1-mediated endocytosis and cell adhesion, suppresses the TLR4-mediated production of specific proinflammatory cytokines via PI3 kinase signaling.

  10. The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages.

    PubMed

    Fernando, Maria Ruweka; Reyes, Jose Luis; Iannuzzi, Jordan; Leung, Gabriella; McKay, Derek Mark

    2014-01-01

    Macrophages are important innate immune cells that are associated with two distinct phenotypes: a pro-inflammatory (or classically activated) subset with prototypic macrophage functions such as inflammatory cytokine production and bactericidal activity, and an anti-inflammatory (or alternatively activated (AAM)) subset linked with wound healing and tissue repair processes. In this study, we examined the effect of interlukein-6 on human and murine macrophage polarization. The results indicate that despite being commonly associated with pro-inflammatory functions and being implicated in the pathogenesis/pathophysiology of numerous inflammatory diseases, interleukin-6 can enhance the polarization of AAMs, based on increased expression of hallmark markers: arginase-1, Ym1 and CD206; this effect required the AAM differentiating cytokines, IL-4 and IL-13. Co-treatment of AAMs with IL-6 resulted in spontaneous release of IL-10, suppressed LPS-induced nitric oxide production and inhibited cytokine production by activated CD4+ T cells - immunoregulatory features not observed in the 'parent' IL-4+IL-13-induced AAM. The effect of IL-6 required signal transducer and activator of transcription (STAT)-3, was partially dependent on up-regulation of the IL4Rα chain, and was independent of autocrine IL-10. In the presence of IFNγ, IL-6 promoted the production of IL-1β and TNFα suggesting that this cytokine can enhance the phenotype to which a macrophage has committed. This finding may explain the pleiotrophic nature of IL-6, where it is associated with the perpetuation and enhancement of disease in inflammatory situations, but is also necessary for resolution of inflammation and adequate wound healing to occur in others. Thus, the potential benefit of IL-6 in promoting an AAM, with its' anti-inflammatory and wound healing ability, may need to be considered in immunotherapies aimed at in vivo modulation or inhibition of IL-6.

  11. Mulberry fruit prevents LPS-induced NF-κB/pERK/MAPK signals in macrophages and suppresses acute colitis and colorectal tumorigenesis in mice

    PubMed Central

    Qian, Zhengjiang; Wu, Zhiqin; Huang, Lian; Qiu, Huiling; Wang, Liyan; Li, Li; Yao, Lijun; Kang, Kang; Qu, Junle; Wu, Yonghou; Luo, Jun; Liu, Johnson J.; Yang, Yi; Yang, Wancai; Gou, Deming

    2015-01-01

    Here, we investigated the impact of mulberry fruit (MBF) extracts on lipopolysaccharide (LPS)-induced inflammatory responses in RAW 264.7 macrophages, and the therapeutic efficacy of MBF diet in mice with dextran sulfate sodium (DSS)-induced acute colitis and MUC2−/− mice with colorectal cancer. In vitro, LPS-induced nitric oxide (NO) production was significantly inhibited by MBF extracts via suppressing the expression of proinflammatory molecules, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1 beta (IL-β) and IL-6. Particularly, a dose-dependent inhibition on LPS-induced inflammatory responses was observed following treatment with MBF dichloromethane extract (MBF-DE), in which linoleic acid and ethyl linolenate were identified as two active compounds. Moreover, we elucidated that MBF-DE attenuated LPS-induced inflammatory responses by blocking activation of both NF-κB/p65 and pERK/MAPK pathways. In vivo, DSS-induced acute colitis was significantly ameliorated in MBF-fed mice as gauged by weight loss, colon morphology and histological damage. In addition, MBF-fed MUC2−/− mice displayed significant decrease in intestinal tumor and inflammation incidence compared to control diet-fed group. Overall, our results demonstrated that MBF suppressed the development of intestinal inflammation and tumorgenesis both in vitro and in vivo, and supports the potential of MBF as a therapeutic functional food for testing in human clinical trials. PMID:26615818

  12. A minocycline derivative reduces nerve injury-induced allodynia, LPS-induced prostaglandin E2 microglial production and signaling via toll-like receptors 2 and 4

    PubMed Central

    Bastos, Leandro F. S.; Godin, Adriana M.; Zhang, Yingning; Jarussophon, Suwatchai; Ferreira, Bruno C. S.; Machado, Renes R.; Maier, Steven F.; Konishi, Yasuo; de Freitas, Rossimiriam P.; Fiebich, Bernd L.; Watkins, Linda R.; Coelho, Márcio M.; Moraes, Márcio F. D.

    2013-01-01

    Many studies have shown that minocycline, an antibacterial tetracycline, suppresses experimental pain. While minocycline’s positive effects on pain resolution suggest that clinical use of such drugs may prove beneficial, minocycline’s antibiotic actions and divalent cation (Ca2+; Mg2+) chelating effects detract from its potential utility. Thus, we tested the antiallodynic effect induced by a non-antibacterial, non-chelating minocycline derivative in a model of neuropathic pain and performed an initial investigation of its anti-inflammatory effects in vitro. Intraperitoneal minocycline (100 mg/kg) and 12S-hydroxy-1,12-pyrazolinominocycline (PMIN; 23.75, 47.50 or 95.00 mg/kg) reduce the mechanical allodynia induced by chronic constriction injury of mouse sciatic nerve. PMIN reduces the LPS-induced production of PGE2 by primary microglial cell cultures. Human embryonic kidney cells were transfected to express human toll-like receptors 2 and 4, and the signaling via both receptors stimulated with PAM3CSK4 or LPS (respectively) was affected either by minocycline or PMIN. Importantly, these treatments did not affect the cell viability, as assessed by MTT test. Altogether, these results reinforce the evidence that the anti-inflammatory and experimental pain suppressive effects induced by tetracyclines are neither necessarily linked to antibacterial nor to Ca2+ chelating activities. This study supports the evaluation of the potential usefulness of PMIN in the management of neuropathic pain, as its lack of antibacterial and Ca2+ chelating activities might confer greater safety over conventional tetracyclines. PMID:23523650

  13. A minocycline derivative reduces nerve injury-induced allodynia, LPS-induced prostaglandin E2 microglial production and signaling via toll-like receptors 2 and 4.

    PubMed

    Bastos, Leandro F S; Godin, Adriana M; Zhang, Yingning; Jarussophon, Suwatchai; Ferreira, Bruno C S; Machado, Renes R; Maier, Steven F; Konishi, Yasuo; de Freitas, Rossimiriam P; Fiebich, Bernd L; Watkins, Linda R; Coelho, Márcio M; Moraes, Márcio F D

    2013-05-24

    Many studies have shown that minocycline, an antibacterial tetracycline, suppresses experimental pain. While minocycline's positive effects on pain resolution suggest that clinical use of such drugs may prove beneficial, minocycline's antibiotic actions and divalent cation (Ca(2+); Mg(2+)) chelating effects detract from its potential utility. Thus, we tested the antiallodynic effect induced by a non-antibacterial, non-chelating minocycline derivative in a model of neuropathic pain and performed an initial investigation of its anti-inflammatory effects in vitro. Intraperitoneal minocycline (100mg/kg) and 12S-hydroxy-1,12-pyrazolinominocycline (PMIN; 23.75 mg/kg, 47.50mg/kg or 95.00 mg/kg) reduce the mechanical allodynia induced by chronic constriction injury of mouse sciatic nerve. PMIN reduces the LPS-induced production of PGE2 by primary microglial cell cultures. Human embryonic kidney cells were transfected to express human toll-like receptors 2 and 4, and the signaling via both receptors stimulated with PAM3CSK4 or LPS (respectively) was affected either by minocycline or PMIN. Importantly, these treatments did not affect the cell viability, as assessed by MTT test. Altogether, these results reinforce the evidence that the anti-inflammatory and experimental pain suppressive effects induced by tetracyclines are neither necessarily linked to antibacterial nor to Ca(2+) chelating activities. This study supports the evaluation of the potential usefulness of PMIN in the management of neuropathic pain, as its lack of antibacterial and Ca(2+) chelating activities might confer greater safety over conventional tetracyclines.

  14. Brazilein Suppresses Inflammation through Inactivation of IRAK4-NF-κB Pathway in LPS-Induced Raw264.7 Macrophage Cells

    PubMed Central

    Kim, Kui-Jin; Yoon, Kye-Yoon; Yoon, Hyung-Sun; Oh, Sei-Ryang; Lee, Boo-Yong

    2015-01-01

    The medicinal herbal plant has been commonly used for prevention and intervention of disease and health promotions worldwide. Brazilein is a bioactive compound extracted from Caesalpinia sappan Linn. Several studies have showed that brazilein exhibited the immune suppressive effect and anti-oxidative function. However, the molecular targets of brazilein for inflammation prevention have remained elusive. Here, we investigated the mechanism underlying the inhibitory effect of brazilein on LPS-induced inflammatory response in Raw264.7 macrophage cells. We demonstrated that brazilein decreased the expression of IRAK4 protein led to the suppression of MAPK signaling and IKKβ, and subsequent inactivation of NF-κB and COX2 thus promoting the expression of the downstream target pro-inflammatory cytokines such as IL-1β, MCP-1, MIP-2, and IL-6 in LPS-induced Raw264.7 macrophage cells. Moreover, we observed that brazilein reduced the production of nitrite compared to the control in LPS-induced Raw264.7. Thus, we suggest that brazilein might be a useful bioactive compound for the prevention of IRAK-NF-κB pathway associated chronic diseases. PMID:26593910

  15. α-Solanine Isolated From Solanum Tuberosum L. cv Jayoung Abrogates LPS-Induced Inflammatory Responses Via NF-κB Inactivation in RAW 264.7 Macrophages and Endotoxin-Induced Shock Model in Mice.

    PubMed

    Shin, Ji-Sun; Lee, Kyoung-Goo; Lee, Hwi-Ho; Lee, Hae Jun; An, Hyo-Jin; Nam, Jung-Hwan; Jang, Dae Sik; Lee, Kyung-Tae

    2016-10-01

    α-Solanine, a trisaccharide glycoalkaloid, has been reported to possess anti-cancer effects. In this study, we investigated the anti-inflammatory effects of α-solanine isolated from "Jayoung" a dark purple-fleshed potato by examining its in vitro inhibitory effects on inducible nitric-oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines in LPS-induced RAW 264.7 macrophages and its in vivo effects on LPS-induced septic shock in a mouse model. α-Solanine suppressed the expression of iNOS and COX-2 both at protein and mRNA levels and consequently inhibited nitric oxide (NO) and prostaglandin E2 (PGE2 ) production in LPS-induced RAW 264.7 macrophages. α-Solanine also reduced the production and mRNA expression of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) induced by LPS. Furthermore, molecular mechanism studies indicated that α-solanine inhibited LPS-induced activation of nuclear factor-κB (NF-κB) by reducing nuclear translocation of p65, degradation of inhibitory κBα (IκBα), and phosphorylation of IκB kinaseα/β (IKKα/β). In an in vivo experiment of LPS-induced endotoxemia, treatment with α-solanine suppressed mRNA expressions of iNOS, COX-2, IL-6, TNF-α, and IL-1β, and the activation of NF-κB in liver. Importantly, α-solanine increased the survival rate of mice in LPS-induced endotoxemia and polymicrobial sepsis models. Taken together, our data suggest that the α-solanine may be a promising therapeutic against inflammatory diseases by inhibiting the NF-κB signaling pathway. J. Cell. Biochem. 117: 2327-2339, 2016. © 2016 Wiley Periodicals, Inc.

  16. Minocycline ameliorates LPS-induced inflammation in human monocytes by novel mechanisms including LOX-1, Nur77 and LITAF inhibition

    PubMed Central

    Pang, Tao; Wang, Juan; Benicky, Julius; Saavedra, Juan M.

    2012-01-01

    Background Minocycline exhibits anti-inflammatory properties independent of its antibiotic activity, ameliorating inflammatory responses in monocytes and macrophages. However, the mechanisms of minocycline anti-inflammatory effects are only partially understood. Methods Human circulating monocytes were cultured in the presence of lipopolysaccharide (LPS), 50 ng/ml, and minocycline (10–40 µM). Gene expression was determined by RT-PCR, cytokine and prostaglandin E2 (PGE2) release by ELISA, protein expression, phosphorylation and nuclear translocation by Western blotting. Results Minocycline significantly reduced the inflammatory response in LPS-challenged monocytes, decreasing LPS-induced transcription of pro-inflammatory tumor-necrosis factor alpha (TNF-α), interleukin-1 beta, interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2), and the LPS-stimulated TNF-α, IL-6 and PGE2 release. Minocycline inhibited LPS-induced activation of the lectin-like oxidized low density lipoprotein receptor-1 (LOX-1), NF-κB, LPS-induced TNF-α factor (LITAF) and the Nur77 nuclear receptor. Mechanisms involved in the anti-inflammatory effects of minocycline include a reduction of LPS-stimulated p38 mitogen-activated protein kinase (p38 MAPK) activation and stimulation of the phosphoinositide 3-kinase (PI3K)/Akt pathway. Conclusions We provide novel evidence demonstrating that the anti-inflammatory effects of minocycline in human monocytes include, in addition to decreased NF-κB activation, abrogation of the LPS-stimulated LOX-1, LITAF, Nur77 pathways, p38 MAPK inhibition and PI3K/Akt activation. Our results reveal that minocycline inhibits points of convergence of distinct and interacting signaling pathways mediating multiple inflammatory signals which may influence monocyte activation, traffic and recruitment into the brain. General significance Our results in primary human monocytes contribute to explain the profound anti-inflammatory and protective effects of minocycline in

  17. Apigenin-7-O-β-D-glucuronide inhibits LPS-induced inflammation through the inactivation of AP-1 and MAPK signaling pathways in RAW 264.7 macrophages and protects mice against endotoxin shock.

    PubMed

    Hu, Weicheng; Wang, Xinfeng; Wu, Lei; Shen, Ting; Ji, Lilian; Zhao, Xihong; Si, Chuan-Ling; Jiang, Yunyao; Wang, Gongcheng

    2016-02-01

    Apigenin-7-O-β-D-glucuronide (AG), an active flavonoid derivative isolated from the agricultural residue of Juglans sigillata fruit husks, possesses multiple pharmacological activities, including anti-oxidant, anti-complement, and aldose reductase inhibitory activities. To date, no report has identified the anti-inflammatory mechanisms of AG. This study was therefore designed to characterize the molecular mechanisms of AG on lipopolysaccharide (LPS)-induced inflammatory cytokines in RAW 264.7 cells and on endotoxin-induced shock in mice. AG suppressed the release of nitric oxide (NO), prostaglandin E2 (PGE2), and tumour necrosis factor-α (TNF-α) in LPS-stimulated RAW 264.7 macrophages in a dose-dependent manner without affecting cell viability. Additionally, AG suppressed LPS-induced mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-α. AG treatment decreased the translocation of c-Jun into the nucleus, and decreased activator protein-1 (AP-1)-mediated luciferase activity through the inhibition of both p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) phosphorylation. Consistent with the in vitro observations, AG protected mice from LPS-induced endotoxin shock by inhibiting proinflammatory cytokine production. Taken together, these results suggest that AG may be used as a source of anti-inflammatory agents as well as a dietary complement for health promotion.

  18. Nuclear factor-κB is a common upstream signal for growth differentiation factor-5 expression in brown adipocytes exposed to pro-inflammatory cytokines and palmitate

    SciTech Connect

    Hinoi, Eiichi; Iezaki, Takashi; Ozaki, Kakeru; Yoneda, Yukio

    2014-10-03

    Highlights: • GDF5 expression is up-regulated by IL-1β, TNF-α and palmitate in brown pre-adipocytes. • NF-κB stimulates promoter activity and expression of GDF5 in brown pre-adipocytes. • Recruitment of NF-κB to the GDF5 promoter is facilitated in BAT from ob/ob mice. • An NF-κB inhibitor prevents upregulation of GDF5 expression in brown pre-adipocytes. - Abstract: We have previously demonstrated that genetic and acquired obesity similarly led to drastic upregulation in brown adipose tissue (BAT), rather than white adipose tissue, of expression of both mRNA and corresponding protein for the bone morphogenic protein/growth differentiation factor (GDF) member GDF5 capable of promoting brown adipogenesis. In this study, we evaluated expression profiles of GDF5 in cultured murine brown pre-adipocytes exposed to pro-inflammatory cytokines and free fatty acids (FFAs), which are all shown to play a role in the pathogenesis of obesity. Both interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were effective in up-regulating GDF5 expression in a concentration-dependent manner, while similar upregulation was seen in cells exposed to the saturated FFA palmitate, but not to the unsaturated FFA oleate. In silico analysis revealed existence of the putative nuclear factor-κB (NF-κB) binding site in the 5′-flanking region of mouse GDF5, whereas introduction of NF-κB subunits drastically facilitated both promoter activity and expression of GDF5 in brown pre-adipocytes. Chromatin immunoprecipitation analysis confirmed significant facilitation of the recruitment of NF-κB to the GDF5 promoter in lysed extracts of BAT from leptin-deficient ob/ob obese mice. Upregulation o GDF5 expression was invariably inhibited by an NF-κB inhibitor in cultured brown pre-adipocytes exposed to IL-1β, TNF-α and palmitate. These results suggest that obesity leads to upregulation of GDF5 expression responsible for the promotion of brown adipogenesis through a mechanism

  19. The anti-malarial artemisinin inhibits pro-inflammatory cytokines via the NF-κB canonical signaling pathway in PMA-induced THP-1 monocytes.

    PubMed

    Wang, Yue; Huang, Zhouqing; Wang, Liansheng; Meng, Shu; Fan, Yuqi; Chen, Ting; Cao, Jiatian; Jiang, Rujia; Wang, Changqian

    2011-02-01

    Several kinds of sesquiterpene lactones have been proven to inhibit NF-κB and to retard atherosclerosis by reducing lesion size and changing plaque composition. The anti-malarial artemisinin (Art) is a pure sesquiterpene lactone extracted from the Chinese herb Artemisia annua (qinghao, sweet wormwood). In the present study, we demonstrate that artemisinin inhibits the secretion and the mRNA levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 in a dose-dependent manner in phorbol 12-myristate 13-acetate (PMA)-induced THP-1 human monocytes. We also found that the NF-κB specific inhibitor, Bay 11-7082, inhibited the expression of these pro-inflammatory cytokines, suggesting that the NF-κB pathway may be involved in the decreased cytokine release. At all time-points (1-6 h), artemisinin impeded the phosphorylation of IKKα/ß, the phosphorylation and degradation of IκBα and the nuclear translocation of the NF-κB p65 subunit. Additionally, artemisinin inhibited the translocation of the NF-κB p65 subunit as demonstrated by confocal laser scanning microscopic analysis and by NF-κB binding assays. Our data indicate that artemisinin exerts an anti-inflammatory effect on PMA-induced THP-1 monocytes, suggesting the potential role of artemisinin in preventing the inflammatory progression of atherosclerosis.

  20. Influenza A Viruses Replicate Productively in Mouse Mastocytoma Cells (P815) and Trigger Pro-inflammatory Cytokine and Chemokine Production through TLR3 Signaling Pathway

    PubMed Central

    Meng, Di; Huo, Caiyun; Wang, Ming; Xiao, Jin; Liu, Bo; Wei, Tangting; Dong, Hong; Zhang, Guozhong; Hu, Yanxin; Sun, Lunquan

    2017-01-01

    The influenza A viruses (IAVs) cause acute respiratory infection in both humans and animals. As a member of the initial lines of host defense system, the role of mast cells during IAV infection has been poorly understood. Here, we characterized for the first time that both avian-like (α-2, 3-linked) and human-like (α-2, 6- linked) sialic acid (SA) receptors were expressed by the mouse mastocytoma cell line (P815). The P815 cells did support the productive replication of H1N1 (A/WSN/33), H5N1 (A/chicken/ Henan/1/04) and H7N2 (A/chicken/Hebei/2/02) in vitro while the in vivo infection of H5N1 in mast cells was confirmed by the specific staining of nasal mucosa and lung tissue from mice. All the three viruses triggered the infected P815 cells to produce pro-inflammatory cytokines and chemokines including IL-6, IFN-γ, TNF-α, CCL-2, CCL-5, and IP-10, but not the antiviral type I interferon. It was further confirmed that TLR3 pathway was involved in P815 cell response to IAV-infection. Our findings highlight the remarkable tropism and infectivity of IAV to P815 cells, indicating that mast cells may be unneglectable player in the development of IAV infection. PMID:28127293

  1. LPS-induced inflammatory response is suppressed by Wnt inhibitors, Dickkopf-1 and LGK974

    PubMed Central

    Jang, Jaewoong; Jung, Yoonju; Kim, Youngeun; Jho, Eek-hoon; Yoon, Yoosik

    2017-01-01

    In this study, LPS-induced inflammatory responses in BEAS-2B human bronchial epithelial cells and human umbilical vein endothelial cell (HUVEC)s were found to be prevented by Dickkopf-1 (DKK-1), a secreted Wnt antagonist, and LGK974, a small molecular inhibitor of the Wnt secretion. LPS-induced IκB degradation and NF-κB nuclear translocation as well as the expressions of pro-inflammatory genes including IL-6, IL-8, TNF- α, IL-1β, MCP-1, MMP-9, COX-2 and iNOS, were all suppressed by DKK-1 and LGK974 in a dose-dependent manner. The suppressive effects of LGK974 on NF-κB, IκB, and pro-inflammatory gene expression were rescued by ectopic expression of β-catenin, suggesting that the anti-inflammatory activity of LGK974 is mediated by modulation of the Wnt/β-catenin pathway and not by unrelated side effects. When Wnt recombinant proteins were treated to cells, Wnt3a and Wnt5a significantly induced pro-inflammatory gene expressions, while Wnt7a and Wnt10b showed little effects. It was also found that Wnt3a and Wnt5a expressions were significantly induced by LPS treatment. Consistently, knockdown of Wnt3a and Wnt5a blocked LPS-induced inflammatory responses, while treatment of recombinant Wnt3a and Wnt5a proteins rescued the inhibition of inflammatory responses by LGK974. Findings of this study showed that DKK-1 and LGK974 suppress LPS-induced inflammatory response by modulating Wnt/β-catenin pathway. PMID:28128299

  2. Necroptosis suppresses inflammation via termination of TNF- or LPS-induced cytokine and chemokine production.

    PubMed

    Kearney, C J; Cullen, S P; Tynan, G A; Henry, C M; Clancy, D; Lavelle, E C; Martin, S J

    2015-08-01

    TNF promotes a regulated form of necrosis, called necroptosis, upon inhibition of caspase activity in cells expressing RIPK3. Because necrosis is generally more pro-inflammatory than apoptosis, it is widely presumed that TNF-induced necroptosis may be detrimental in vivo due to excessive inflammation. However, because TNF is intrinsically highly pro-inflammatory, due to its ability to trigger the production of multiple cytokines and chemokines, rapid cell death via necroptosis may blunt rather than enhance TNF-induced inflammation. Here we show that TNF-induced necroptosis potently suppressed the production of multiple TNF-induced pro-inflammatory factors due to RIPK3-dependent cell death. Similarly, necroptosis also suppressed LPS-induced pro-inflammatory cytokine production. Consistent with these observations, supernatants from TNF-stimulated cells were more pro-inflammatory than those from TNF-induced necroptotic cells in vivo. Thus necroptosis attenuates TNF- and LPS-driven inflammation, which may benefit intracellular pathogens that evoke this mode of cell death by suppressing host immune responses.

  3. Intranuclear interactomic inhibition of NF-κB suppresses LPS-induced severe sepsis

    SciTech Connect

    Park, Sung-Dong; Cheon, So Yeong; Park, Tae-Yoon; Shin, Bo-Young; Oh, Hyunju; Ghosh, Sankar; Koo, Bon-Nyeo; Lee, Sang-Kyou

    2015-08-28

    Suppression of nuclear factor-κB (NF-κB) activation, which is best known as a major regulator of innate and adaptive immune responses, is a potent strategy for the treatment of endotoxic sepsis. To inhibit NF-κB functions, we designed the intra-nuclear transducible form of transcription modulation domain (TMD) of RelA (p65), called nt-p65-TMD, which can be delivered effectively into the nucleus without influencing the cell viability, and work as interactomic inhibitors via disruption of the endogenous p65-mediated transcription complex. nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines, including TNF-α, IL-1β, or IL-6 from BV2 microglia cells stimulated by lipopolysaccharide (LPS). nt-p65-TMD did not inhibit tyrosine phosphorylation of signaling mediators such as ZAP-70, p38, JNK, or ERK involved in T cell activation, but was capable of suppressing the transcriptional activity of NF-κB without the functional effect on that of NFAT upon T-cell receptor (TCR) stimulation. The transduced nt-p65-TMD in T cell did not affect the expression of CD69, however significantly inhibited the secretion of T cell-specific cytokines such as IL-2, IFN-γ, IL-4, IL-17A, or IL-10. Systemic administration of nt-p65-TMD showed a significant therapeutic effect on LPS-induced sepsis model by inhibiting pro-inflammatory cytokines secretion. Therefore, nt-p65-TMD can be a novel therapeutics for the treatment of various inflammatory diseases, including sepsis, where a transcription factor has a key role in pathogenesis, and further allows us to discover new functions of p65 under normal physiological condition without genetic alteration. - Highlights: • The nt-p65-TMD is intra-nuclear interactomic inhibitor of endogenous p65. • The nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines. • The excellent therapeutic potential of nt-p65-TMD was confirmed in sepsis model.

  4. The Angiotensin-(1-7)/Mas Axis Counteracts Angiotensin II-Dependent and -Independent Pro-inflammatory Signaling in Human Vascular Smooth Muscle Cells.

    PubMed

    Villalobos, Laura A; San Hipólito-Luengo, Álvaro; Ramos-González, Mariella; Cercas, Elena; Vallejo, Susana; Romero, Alejandra; Romacho, Tania; Carraro, Raffaele; Sánchez-Ferrer, Carlos F; Peiró, Concepción

    2016-01-01

    Background and Aims: Targeting inflammation is nowadays considered as a challenging pharmacological strategy to prevent or delay the development of vascular diseases. Angiotensin-(1-7) is a member of the renin-angiotensin system (RAS) that binds Mas receptors and has gained growing attention in the last years as a regulator of vascular homeostasis. Here, we explored the capacity of Ang-(1-7) to counteract human aortic smooth muscle cell (HASMC) inflammation triggered by RAS-dependent and -independent stimuli, such as Ang II or interleukin (IL)-1β. Methods and Results: In cultured HASMC, the expression of inducible nitric oxide synthase (iNOS) and the release of nitric oxide were stimulated by both Ang II and IL-1β, as determined by Western blot and indirect immunofluorescence or the Griess method, respectively. iNOS induction was inhibited by Ang-(1-7) in a concentration-dependent manner. This effect was equally blocked by two different Mas receptor antagonists, A779 and D-Pro(7)-Ang-(1-7), suggesting the participation of a unique Mas receptor subtype. Using pharmacological inhibitors, the induction of iNOS was proven to rely on the consecutive upstream activation of NADPH oxidase and nuclear factor (NF)-κB. Indeed, Ang-(1-7) markedly inhibited the activation of the NADPH oxidase and subsequently of NF-κB, as determined by lucigenin-derived chemiluminescence and electromobility shift assay, respectively. Conclusion: Ang-(1-7) can act as a counter-regulator of the inflammation of vascular smooth muscle cells triggered by Ang II, but also by other stimuli beyond the RAS. Activating or mimicking the Ang-(1-7)/Mas axis may represent a pharmacological opportunity to attenuate the pro-inflammatory environment that promotes and sustains the development of vascular diseases.

  5. The Angiotensin-(1-7)/Mas Axis Counteracts Angiotensin II-Dependent and -Independent Pro-inflammatory Signaling in Human Vascular Smooth Muscle Cells

    PubMed Central

    Villalobos, Laura A.; San Hipólito-Luengo, Álvaro; Ramos-González, Mariella; Cercas, Elena; Vallejo, Susana; Romero, Alejandra; Romacho, Tania; Carraro, Raffaele; Sánchez-Ferrer, Carlos F.; Peiró, Concepción

    2016-01-01

    Background and Aims: Targeting inflammation is nowadays considered as a challenging pharmacological strategy to prevent or delay the development of vascular diseases. Angiotensin-(1-7) is a member of the renin-angiotensin system (RAS) that binds Mas receptors and has gained growing attention in the last years as a regulator of vascular homeostasis. Here, we explored the capacity of Ang-(1-7) to counteract human aortic smooth muscle cell (HASMC) inflammation triggered by RAS-dependent and -independent stimuli, such as Ang II or interleukin (IL)-1β. Methods and Results: In cultured HASMC, the expression of inducible nitric oxide synthase (iNOS) and the release of nitric oxide were stimulated by both Ang II and IL-1β, as determined by Western blot and indirect immunofluorescence or the Griess method, respectively. iNOS induction was inhibited by Ang-(1-7) in a concentration-dependent manner. This effect was equally blocked by two different Mas receptor antagonists, A779 and D-Pro7-Ang-(1-7), suggesting the participation of a unique Mas receptor subtype. Using pharmacological inhibitors, the induction of iNOS was proven to rely on the consecutive upstream activation of NADPH oxidase and nuclear factor (NF)-κB. Indeed, Ang-(1-7) markedly inhibited the activation of the NADPH oxidase and subsequently of NF-κB, as determined by lucigenin-derived chemiluminescence and electromobility shift assay, respectively. Conclusion: Ang-(1-7) can act as a counter-regulator of the inflammation of vascular smooth muscle cells triggered by Ang II, but also by other stimuli beyond the RAS. Activating or mimicking the Ang-(1-7)/Mas axis may represent a pharmacological opportunity to attenuate the pro-inflammatory environment that promotes and sustains the development of vascular diseases. PMID:28018220

  6. Majoon ushba, a polyherbal compound, suppresses pro-inflammatory mediators and RANKL expression via modulating NFкB and MAPKs signaling pathways in fibroblast-like synoviocytes from adjuvant-induced arthritic rats.

    PubMed

    Ganesan, Ramamoorthi; Doss, Hari Madhuri; Rasool, Mahaboobkhan

    2016-08-01

    Fibroblast-like synoviocytes (FLS) are inhabitant mesenchymal cells of synovial joints and have been recognized to play an imperative role in the immunopathogenesis of rheumatoid arthritis (RA). Blocking these pathological roles of FLS provides a potentially important therapeutic strategy for the treatment for RA. A recent study had confirmed that majoon ushba (MU), a polyherbal unani compound, possesses anti-arthritic effects in in vivo. Toward this direction, an effort has been made to understand the effect of MU on FLS derived from adjuvant-induced arthritis (AIA) rats. Here, we observed that MU administration (100-300 µg/ml) significantly inhibited the expression and phosphorylation of NFкB-p65 protein similar to that of the Bay 11-7082 (NFкB inhibitor) in NFкB signaling pathway and suppressed the protein expression of ERK1/2 and JNK1/2 in MAPKs signaling pathway in AIA-FLS. In addition, the protein expression of TNF-α, IL-17, RANKL, and iNOS was also found reduced. MU treatment significantly inhibited the mRNA expression of pro-inflammatory mediators (TNF-α, IL-1β, IL-6, MCP-1, IL-17, iNOS, and COX-2), transcription factors (NFкB-p65 and AP-1), and RANKL and attenuated the overproduction of TNF-α, IL-1β, IL-6, and MCP-1 (ELISA) in AIA-FLS. Furthermore, MU treatment significantly inhibited the level of lipid peroxidation, lysosomal enzymes release, and glycoproteins and increased antioxidant status (superoxide dismutase and catalase) in AIA-FLS. In conclusion, the results of this study provide evidence that MU possesses anti-inflammatory effect against AIA-FLS through the decrease in pro-inflammatory mediators expression by suppressing NFкB and MAPKs signaling pathways.

  7. Effect of a negative energy balance induced by feed restriction on pro-inflammatory and endoplasmic reticulum stress signalling pathways in the liver and skeletal muscle of lactating sows.

    PubMed

    Gessner, Denise K; Gröne, Birthe; Rosenbaum, Susann; Most, Erika; Hillen, Sonja; Becker, Sabrina; Erhardt, Georg; Reiner, Gerald; Ringseis, Robert; Eder, Klaus

    2015-01-01

    High-producing sows develop typical signs of an inflammatory condition and endoplasmic reticulum (ER) stress in the liver during lactation. At present, it is unknown whether a negative energy balance (NEB) is causative for this. Therefore, an experiment with lactating sows, which were either restricted in their feed intake to 82% of their energy requirement (Group FR) or were fed to meet their energy requirement (Control), was performed and the effect on ER stress-induced unfolded protein response (UPR), nuclear factor kappa B (NF-κB), nuclear factor E2-related factor 2 (Nrf2) and NOD-like receptor P3 (NLRP3) inflammasome signalling in the liver was evaluated. Relative mRNA concentrations of several genes involved in ER stress-induced UPR, NF-κB and NLRP3 inflammasome signalling were reduced in the liver of Group FR compared to the Control group. Plasma concentrations of haptoglobin and C-reactive protein were 13% and 37%, respectively, lower in Group FR than in the Control group, but these differences were not significant. In conclusion, feed restriction in lactating sows inhibits pro-inflammatory and ER stress signalling pathways in the liver, which suggests that not the NEB per se is causative for inflammation and ER stress induction in the liver of lactating sows. Rather it is likely that ER stress during lactation is the consequence of the presence of potent pro-inflammatory and ER stress-inducing stimuli, such as cytokines, reactive oxygen species and microbial components, which enter the circulation as a result of infectious diseases that frequently occur in sows after farrowing.

  8. Herbal medicine IMOD suppresses LPS-induced production of proinflammatory cytokines in human dendritic cells

    PubMed Central

    Mirzaee, Saeedeh; Drewniak, Agata; Sarrami-Forooshani, Ramin; Kaptein, Tanja M.; Gharibdoost, Farhad; Geijtenbeek, Teunis B. H.

    2015-01-01

    Traditional medicines that stimulate or modulate the immune system can be used as innovative approaches to treat immunological diseases. The herbal medicine IMOD has been shown to strongly modulate immune responses in several animal studies as well as in clinical trials. However, little is known about the mechanisms of IMOD to modulate immunity. Here we have investigated whether IMOD modulates the immunological function of human dendritic cells (DCs). IMOD alone did not induce DC maturation nor production of cytokines. Notably, IMOD decreased the production of pro-inflammatory cytokines IL-6, IL-12 p70, and TNFα by LPS-activated DCs at both mRNA and protein levels in a dose dependent manner. In contrast, treatment with IMOD did not affect LPS induced-production of the anti-inflammatory cytokine IL-10. Furthermore, IMOD inhibited T cell activation/proliferation by LPS-treated DCs and skewed T-cells responses toward the T helper type 2 polarization. These data strongly indicate that IMOD has a potent immunomodulatory ability that affects TLR signaling and thereby modulates DC function. Insight into the immunomodulatory effect of herbal medicine IMOD may provide innovative strategies to affect the immune system and to help combat various diseases. PMID:25870561

  9. 2-Phenylnaphthalene Derivatives Inhibit Lipopolysaccharide-Induced Pro-Inflammatory Mediators by Downregulating of MAPK/NF-κB Pathways in RAW 264.7 Macrophage Cells

    PubMed Central

    Chang, Chi-Fen; Liao, Kang-Chun; Chen, Chung-Hwan

    2017-01-01

    The anti-inflammatory pharmacological effect of eight 2-phenylnaphthalenes (PNAP-1−PNAP-8) on lipopolysaccharide (LPS)-induced RAW 264.7 (a mouse cell line) was investigated. Among them, 6,7-dihydroxy-2-(4′-hydroxyphenyl)naphthalene (PNAP-6) and 2-(4′-aminophenyl)-6,7-dimethoxynaphthalene (PNAP-8) exhibited the best anti-inflammatory activity in this study. PNAP-6 and PNAP-8 not only significantly decreased the expression of inducible nitric oxide synthase and cyclooxygenase-II, but also inhibited the production of nitric oxide, interleukin-6, and tumor necrosis factor-α in LPS stimulated cells. Moreover, PNAP-6 and PNAP-8 inhibited nuclear factor (NF)-κB activation by decreasing the degradation of IκB and nuclear translocation of NF-κB subunit (p65). In addition, PNAP-6 and PNAP-8 also attenuated the phosphorylation of ERK, p38, and JNK. These results suggest that PNAP-6 and PNAP-8 exert anti-inflammatory activities by down regulating NF-κB activation and the mitogen-activated protein kinase signaling pathway in LPS-stimulated Raw 264.7 cells. This is the first study demonstrating that PNAPs can inhibit LPS-induced pro-inflammatory mediators in macrophages cells. PMID:28060845

  10. 5,6,7-trimethoxyflavone suppresses pro-inflammatory mediators in lipopolysaccharide-induced RAW 264.7 macrophages and protects mice from lethal endotoxin shock.

    PubMed

    Rim, Hong-Kun; Yun, Chang Hyeon; Shin, Ji-Sun; Cho, Young-Wuk; Jang, Dae Sik; Ryu, Jong Hoon; Park, Haeil; Lee, Kyung-Tae

    2013-12-01

    5,6,7-Trimethoxyflavone (TMF), methylations of the hydroxyl groups of oroxylin A or baicalein, was found to significantly inhibit the productions of nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. However, no report has been issued on the anti-inflammatory potential of TMF and the underlying molecular mechanism. In the present study, we investigated the anti-inflammatory effects of TMF in LPS-induced RAW 264.7 macrophages and LPS-induced septic shock in mice. TMF dose-dependently inhibits iNOS and COX-2 at the protein, mRNA, and promoter binding levels and that these inhibitions cause attendant decreases in the productions of NO and PGE2. TMF inhibits the productions and mRNA expressions of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 induced by LPS. Furthermore, TMF suppress the transcriptional activity of nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1), and nuclear translocations of NF-κB, AP-1, and signal transducer and activator of transcription 1/3 (STAT1/3). Pretreatment with TMF increase the survival rate of mice with LPS-induced endotoxemia and reduced the serum levels of cytokines. Taken together, these findings suggest that TMF down-regulates the expressions of the pro-inflammatory iNOS, COX-2, TNF-α, IL-1β, and IL-6 genes in macrophages by interfering with the activation of NF-κB, AP-1, and STAT1/3.

  11. The Pro-inflammatory Effects of Glucocorticoids in the Brain

    PubMed Central

    Duque, Erica de Almeida; Munhoz, Carolina Demarchi

    2016-01-01

    Glucocorticoids are a class of steroid hormones derived from cholesterol. Their actions are mediated by the glucocorticoid and mineralocorticoid receptors, members of the superfamily of nuclear receptors, which, once bound to their ligands, act as transcription factors that can directly modulate gene expression. Through protein–protein interactions with other transcription factors, they can also regulate the activity of many genes in a composite or tethering way. Rapid non-genomic signaling was also demonstrated since glucocorticoids can act through membrane receptors and activate signal transduction pathways, such as protein kinases cascades, to modulate other transcriptions factors and activate or repress various target genes. By all these different mechanisms, glucocorticoids regulate numerous important functions in a large variety of cells, not only in the peripheral organs but also in the central nervous system during development and adulthood. In general, glucocorticoids are considered anti-inflammatory and protective agents due to their ability to inhibit gene expression of pro-inflammatory mediators and other possible damaging molecules. Nonetheless, recent studies have uncovered situations in which these hormones can act as pro-inflammatory agents depending on the dose, chronicity of exposure, and the structure/organ analyzed. In this review, we will provide an overview of the conditions under which these phenomena occur, a discussion that will serve as a basis for exploring the mechanistic foundation of glucocorticoids pro-inflammatory gene regulation in the brain. PMID:27445981

  12. Flavonoid fraction of Bergamot juice reduces LPS-induced inflammatory response through SIRT1-mediated NF-κB inhibition in THP-1 monocytes.

    PubMed

    Risitano, Roberto; Currò, Monica; Cirmi, Santa; Ferlazzo, Nadia; Campiglia, Pietro; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele

    2014-01-01

    Plant polyphenols exert anti-inflammatory activity through both anti-oxidant effects and modulation of pivotal pro-inflammatory genes. Recently, Citrus bergamia has been studied as a natural source of bioactive molecules with antioxidant activity, but few studies have focused on molecular mechanisms underlying their potential beneficial effects. Several findings have suggested that polyphenols could influence cellular function by acting as activators of SIRT1, a nuclear histone deacetylase, involved in the inhibition of NF-κB signaling. On the basis of these observations we studied the anti-inflammatory effects produced by the flavonoid fraction of the bergamot juice (BJe) in a model of LPS-stimulated THP-1 cell line, focusing on SIRT1-mediated NF-κB inhibition. We demonstrated that BJe inhibited both gene expression and secretion of LPS-induced pro-inflammatory cytokines (IL-6, IL-1β, TNF-α) by a mechanism involving the inhibition of NF-κB activation. In addition, we showed that BJe treatment reversed the LPS-enhanced acetylation of p65 in THP-1 cells. Interestingly, increasing concentrations of Sirtinol were able to suppress the inhibitory effect of BJe via p65 acetylation, underscoring that NF-κB-mediated inflammatory cytokine production may be directly linked to SIRT1 activity. These results suggest that BJe may be useful for the development of alternative pharmacological strategies aimed at reducing the inflammatory process.

  13. Benzo(a)pyrene induces oxidative stress, pro-inflammatory cytokines, expression of nuclear factor-kappa B and deregulation of wnt/beta-catenin signaling in colons of BALB/c mice.

    PubMed

    Ajayi, Babajide O; Adedara, Isaac A; Farombi, Ebenezer O

    2016-09-01

    The incidence of colonic toxicity has been epidemiologically linked to the consumption of foods contaminated with benzo(a)pyrene (B[a]P). The present study investigated the effects of B[a]P on biomarkers of oxidative stress, inflammation and wnt-signaling in colon of BALB/c mice following exposure to 62.5, 125 and 250 mg/kg of B[a]P for 7 days by oral gavage. Exposure to B[a]P significantly decreased the colonic antioxidant enzymes activities and glutathione level with concomitant significant increase in myeloperoxidase activity, nitric oxide and lipid peroxidation levels. Colon histopathology results showed treatment-related lesions characterized by atrophy, mucosal ulceration and gland erosion in the B[a]P-treated mice. Immunohistochemistry analysis showed that B[a]P treatment increased the protein expression of nuclear factor kappa B, pro-inflammatory cytokines namely tumor necrosis factor alpha and interleukin-1β, as well as cyclooxygenase-2 and inducible nitric oxide synthase in the mice colon. Altered canonical wnt-signaling was confirmed by strong diaminobenzidine staining for p38 mitogen activated protein kinase, β-catenin expression and absence of adenomatous polyposis coli following B[a]P administration. The present data highlight that exposure to B[a]P induces colon injury via induction of oxidative and nitrosative stress, inflammatory biomarkers and dsyregulation wnt/β-catenin signaling, thus confirming the role of B[a]P in the pathogenesis of colonic toxicity.

  14. Wedelolactone inhibits LPS-induced pro-inflammation via NF-kappaB Pathway in RAW 264.7 cells

    PubMed Central

    2013-01-01

    Background Wedelolactone (WEL), a major coumestan ingredient in Wedelia chinensis, has been used to treat septic shock, hepatitis and venom poisoning in traditional Chinese medicines. The objective of the study was to elucidate the anti-inflammatory effects and mechanism of WEL with a cellular model of lipopolysaccharide (LPS)-induced RAW 264.7 cells. Results To study the role of WEL in pro-inflammation, we measured key inflammation mediators and end products including nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and tumor necrosis factor-α (TNF-α) by using the Griess method, enzyme linked immunosorbent assay (ELISA) and Western blotting. Nuclear factor-kappaB (NF-κB) transcription activity was detected by luciferase reporter assay. The important pro-inflammatory transcription factors, NF-κB p65 and inhibitory kappaB alpha (IκB-α); and mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK (p38) were analyzed by Western blotting. Our study showed that WEL (0.1, 1, 10 μM) significantly inhibited the protein expression levels of iNOS and COX-2 in LPS-stimulated cells, as well as the downstream products, including NO, PGE2 and TNF-α. Moreover, WEL also inhibited LPS-induced NF-κB p65 activation via the degradation and phosphorylation of IκB-α and subsequent translocation of the NF-κB p65 subunit to the nucleus. Conclusions Our results revealed that WEL has a potential to be a novel anti-inflammatory agent targeting on the NF-κB signaling pathway. PMID:24176090

  15. Caffeine prevents LPS-induced inflammatory responses in RAW264.7 cells and zebrafish.

    PubMed

    Hwang, Ji-Hyun; Kim, Kui-Jin; Ryu, Su-Jung; Lee, Boo-Yong

    2016-03-25

    Caffeine is a white crystalline xanthine alkaloid found in the seeds of coffee plants and leaves of the tea bush. In this study, we evaluated whether caffeine exerts anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation both in vitro and in vivo. RAW264.7 cells were treated with various concentrations of caffeine in the presence or absence of LPS. Caffeine decreased the LPS-induced inflammatory mediator, nitric oxide (NO). Caffeine treatment also reduced the expression of pro-inflammatory genes, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-3, IL-6 and IL-12, and decreased both IL-6 secretion and phosphorylated p38MAPK expression in LPS-treated RAW264.7 cells. Caffeine inhibited nuclear translocation of nuclear factor κB (NF-κB) via IκBα phosphorylation. In addition, caffeine inhibited LPS-induced NO production in zebrafish. These results suggest that caffeine may suppress LPS-induced inflammatory responses in RAW264.7 cells by regulating NF-κB activation and MAPK phosphorylation.

  16. Neu1 sialidase and matrix metalloproteinase-9 cross-talk regulates nucleic acid-induced endosomal TOLL-like receptor-7 and -9 activation, cellular signaling and pro-inflammatory responses.

    PubMed

    Abdulkhalek, Samar; Szewczuk, Myron R

    2013-11-01

    The precise mechanism(s) by which intracellular TOLL-like receptors (TLRs) become activated by their ligands remains unclear. Here, we report a molecular organizational G-protein coupled receptor (GPCR) signaling platform to potentiate a novel mammalian neuraminidase-1 (Neu1) and matrix metalloproteinase-9 (MMP-9) cross-talk in alliance with neuromedin B GPCR, all of which form a tripartite complex with TLR-7 and -9. siRNA silencing Neu1, MMP-9 and neuromedin-B GPCR in RAW-blue macrophage cells significantly reduced TLR7 imiquimod- and TLR9 ODN1826-induced NF-κB (NF-κB-pSer(536)) activity. Tamiflu, specific MMP-9 inhibitor, neuromedin B receptor specific antagonist BIM23127, and the selective inhibitor of whole heterotrimeric G-protein complex BIM-46174 significantly block nucleic acid-induced TLR-7 and -9 MyD88 recruitment, NF-κB activation and proinflammatory TNFα and MCP-1 cytokine responses. For the first time, Neu1 clearly plays a central role in mediating nucleic acid-induced intracellular TLR activation, and the interactions involving NMBR-MMP9-Neu1 cross-talk constitute a novel intracellular TLR signaling platform that is essential for NF-κB activation and pro-inflammatory responses.

  17. Biflorin, Isolated from the Flower Buds of Syzygium aromaticum L., Suppresses LPS-Induced Inflammatory Mediators via STAT1 Inactivation in Macrophages and Protects Mice from Endotoxin Shock.

    PubMed

    Lee, Hwi-Ho; Shin, Ji-Sun; Lee, Woo-Seok; Ryu, Byeol; Jang, Dae Sik; Lee, Kyung-Tae

    2016-04-22

    Two chromone C-glucosides, biflorin (1) and isobiflorin (2), were isolated from the flower buds of Syzygium aromaticum L. (Myrtaceae). Here, inhibitory effects of 1 and 2 on lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2) in RAW 264.7 macrophages were evaluated, and 1 (IC50 = 51.7 and 37.1 μM, respectively) was more potent than 2 (IC50 > 60 and 46.0 μM). The suppression of NO and PGE2 production by 1 correlated with inhibition of iNOS and COX-2 protein expression. Compound 1 reduced inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA expression via inhibition of their promoter activities. Compound 1 inhibited the LPS-induced production and mRNA expression of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6. Furthermore, 1 reduced p-STAT1 and p-p38 expression but did not affect the activity of nuclear factor κ light-chain enhancer of activated B cells (NF-κB) or activator protein 1 (AP-1). In a mouse model of LPS-induced endotoxemia, 1 reduced the mRNA levels of iNOS, COX-2, and TNF-α, and the phosphorylation-mediated activation of the signal transducer and activator of transcription 1 (STAT1), consequently improving the survival rates of mice. Compound 1 showed a significant anti-inflammatory effect on carrageenan-induced paw edema and croton-oil-induced ear edema in rats. The collective data indicate that the suppression of pro-inflammatory gene expression via p38 mitogen-activated protein kinase and STAT1 inactivation may be a mechanism for the anti-inflammatory activity of 1.

  18. Molecular Mechanisms Regulating LPS-Induced Inflammation in the Brain

    PubMed Central

    Lykhmus, Olena; Mishra, Nibha; Koval, Lyudmyla; Kalashnyk, Olena; Gergalova, Galyna; Uspenska, Kateryna; Komisarenko, Serghiy; Soreq, Hermona; Skok, Maryna

    2016-01-01

    Neuro-inflammation, one of the pathogenic causes of neurodegenerative diseases, is regulated through the cholinergic anti-inflammatory pathway via the α7 nicotinic acetylcholine receptor (α7 nAChR). We previously showed that either bacterial lipopolysaccharide (LPS) or immunization with the α7(1–208) nAChR fragment decrease α7 nAChRs density in the mouse brain, exacerbating chronic inflammation, beta-amyloid accumulation and episodic memory decline, which mimic the early stages of Alzheimer’s disease (AD). To study the molecular mechanisms underlying the LPS and antibody effects in the brain, we employed an in vivo model of acute LPS-induced inflammation and an in vitro model of cultured glioblastoma U373 cells. Here, we report that LPS challenge decreased the levels of α7 nAChR RNA and protein and of acetylcholinesterase (AChE) RNA and activity in distinct mouse brain regions, sensitized brain mitochondria to the apoptogenic effect of Ca2+ and modified brain microRNA profiles, including the cholinergic-regulatory CholinomiRs-132/212, in favor of anti-inflammatory and pro-apoptotic ones. Adding α7(1–208)-specific antibodies to the LPS challenge prevented elevation of both the anti-inflammatory and pro-apoptotic miRNAs while supporting the resistance of brain mitochondria to Ca2+ and maintaining α7 nAChR/AChE decreases. In U373 cells, α7-specific antibodies and LPS both stimulated interleukin-6 production through the p38/Src-dependent pathway. Our findings demonstrate that acute LPS-induced inflammation induces the cholinergic anti-inflammatory pathway in the brain, that α7 nAChR down-regulation limits this pathway, and that α7-specific antibodies aggravate neuroinflammation by inducing the pro-inflammatory interleukin-6 and dampening anti-inflammatory miRNAs; however, these antibodies may protect brain mitochondria and decrease the levels of pro-apoptotic miRNAs, preventing LPS-induced neurodegeneration. PMID:27013966

  19. Ghrelin inhibits LPS-induced release of IL-6 from mouse dopaminergic neurones

    PubMed Central

    2013-01-01

    Background Ghrelin is an orexigenic stomach hormone that acts centrally to increase mid-brain dopamine neurone activity, amplify dopamine signaling and protect against neurotoxin-induced dopamine cell death in the mouse substantia nigra pars compacta (SNpc). In addition, ghrelin inhibits the lipopolysaccharide (LPS)-induced release of pro-inflammatory cytokines from peripheral macrophages, T-cells and from LPS stimulated microglia. Here we sought to determine whether ghrelin attenuates pro-inflammatory cytokine release from dopaminergic neurones. Findings The dopaminergic SN4741 cell-line, which derives from the mouse substantia nigra (SN) and expresses the ghrelin-receptor (growth hormone secretagogue receptor (GHS-R)) and the ghrelin-O-acyl transferase (GOAT) enzyme, was used to determine the neuro-immunomodulatory action of ghrelin. We induced innate immune activation via LPS challenge (1 μg/ml) of SN4741 neurones that had been pre-cultured in the presence or absence of ghrelin (1, 10, 100 nM) for 4 h. After 24 h supernatants were collected for detection of IL-1 beta (IL-1β ), TNF alpha (TNF-α) and IL-6 cytokines via enzyme linked immunosorbent assay (ELISA) analysis. Nuclear translocation of the transcription factor nuclear factor kappa B (NF-κB) was analyzed by Western blotting, and to determine viability of treatments a cell viability assay and caspase-3 immunohistochemistry were performed. We provide evidence that while IL-1β and TNF-α were not detectable under any conditions, SN4741 neurones constitutively released IL-6 under basal conditions and treatment with LPS significantly increased IL-6 secretion. Pre-treatment of neurones with ghrelin attenuated LPS-mediated IL-6 release at 24 h, an affect that was inhibited by the GHS-R antagonist [D-Lys3]-GHRP-6. However, while ghrelin pre-treatment attenuated the LPS-mediated increase in NF-κB, there was no alteration in its nuclear translocation. Cell viability assay and caspase-3 immunocytochemistry

  20. IL-17A Signaling in Colonic Epithelial Cells Inhibits Pro-Inflammatory Cytokine Production by Enhancing the Activity of ERK and PI3K

    PubMed Central

    Xiao, Yan; Zhou, Tingting; Guo, Yueling; Wang, Renxi; Zhao, Zhi; Xiao, He; Hou, Chunmei; Ma, Lingyun; Lin, Yanhua; Lang, Xiaoling; Feng, Jiannan; Chen, Guojiang; Shen, Beifen; Han, Gencheng; Li, Yan

    2014-01-01

    Our previous data suggested that IL-17A contributes to the inhibition of Th1 cell function in the gut. However, the underlying mechanisms remain unclear. Here we demonstrate that IL-17A signaling in colonic epithelial cells (CECs) increases TNF-α-induced PI3K-AKT and ERK phosphorylation and inhibits TNF-α induced expression of IL-12P35 and of a Th1 cell chemokine, CXCL11 at mRNA level. In a co-culture system using HT-29 cells and PBMCs, IL-17A inhibited TNF-ãinduced IL-12P35 expression by HT-29 cells and led to decreased expression of IFN-γ and T-bet by PBMCs. Finally, adoptive transfer of CECs from mice with Crohn's Disease (CD) led to an enhanced Th1 cell response and exacerbated colitis in CD mouse recipients. The pathogenic effect of CECs derived from CD mice was reversed by co-administration of recombinant IL-17A. Our data demonstrate a new IL-17A-mediated regulatory mechanism in CD. A better understanding of this pathway might shed new light on the pathogenesis of CD. PMID:24586980

  1. Cannabidiol (CBD) enhances lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice.

    PubMed

    Karmaus, Peer W F; Wagner, James G; Harkema, Jack R; Kaminski, Norbert E; Kaplan, Barbara L F

    2013-01-01

    Cannabidiol (CBD) is a plant-derived cannabinoid that has been predominantly characterized as anti-inflammatory. However, it is clear that immune effects of cannabinoids can vary with cannabinoid concentration, or type or magnitude of immune stimulus. The present studies demonstrate that oral administration of CBD enhanced lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice. The enhanced inflammatory cell infiltrate as observed in bronchoalveolar lavage fluid (BALF) was comprised mainly of neutrophils, with some monocytes. Concomitantly, CBD enhanced pro-inflammatory cytokine mRNA production, including tumor necrosis factor-α (Tnfa), interleukins (IL)-5 and -23 (Il6, Il23), and granulocyte colony stimulating factor (Gcsf). These results demonstrate that the CBD-mediated enhancement of LPS-induced pulmonary inflammation is mediated at the level of transcription of a variety of pro-inflammatory genes. The significance of these studies is that CBD is part of a therapeutic currently in use for spasticity and pain in multiple sclerosis patients, and therefore it is important to further understand mechanisms by which CBD alters immune function.

  2. Cannabidiol (CBD) Enhances Lipopolysaccharide (LPS)-Induced Pulmonary Inflammation in C57BL/6 Mice

    PubMed Central

    Karmaus, Peer W. F.; Wagner, James G.; Harkema, Jack R.; Kaminski, Norbert E.; Kaplan, Barbara L.F.

    2012-01-01

    Cannabidiol (CBD) is a plant-derived cannabinoid that has been predominantly characterized as anti-inflammatory. However, it is clear that immune effects of cannabinoids can vary with cannabinoid concentration, or type or magnitude of immune stimulus. The present studies demonstrate that oral administration of CBD enhanced lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice. The enhanced inflammatory cell infiltrate as observed in bronchoalveolar lavage fluid (BALF) was comprised mainly of neutrophils, with some monocytes. Concomitantly, CBD enhanced pro-inflammatory cytokine mRNA production, including tumor necrosis factor-α (Tnfa), interleukins (IL) 6 and 23 (Il6, Il23), and granulocyte colony stimulating factor (Gcsf). These results demonstrate that the CBD-mediated enhancement of LPS-induced pulmonary inflammation is mediated at the level of transcription of a variety of pro-inflammatory genes. The significance of these studies is that CBD is part of a therapeutic currently in use for spasticity and pain in multiple sclerosis patients, and therefore it is important to further understand mechanisms by which CBD alters immune function. PMID:23173851

  3. Ginkgo biloba extract EGb761 attenuates brain death-induced renal injury by inhibiting pro-inflammatory cytokines and the SAPK and JAK-STAT signalings

    PubMed Central

    Li, Yifu; Xiong, Yunyi; Zhang, Huanxi; Li, Jun; Wang, Dong; Chen, Wenfang; Yuan, Xiaopeng; Su, Qiao; Li, Wenwen; Huang, Huiting; Bi, Zirong; Liu, Longshan; Wang, Changxi

    2017-01-01

    This study aimed to investigate the protective effects of EGb761, a Ginkgo Biloba extract, against brain death-induced kidney injury. Sixty male Sprague Dawley rats were randomly divided into six groups: sham, brain-death (BD), BD + EGb b48h (48 hours before BD), BD + EGb 2 h (2 hours after BD), BD + EGb 1 h, and BD + EGb 0.5 h. Six hours after BD, serum sample and kidney tissues were collected for analyses. The levels of blood urea nitrogen (BUN) and serum creatinine significantly elevated in the BD group than in sham group. In all the EGb761-treated BD animals except for the BD + Gb 2 h group, the levels of BUN and serum creatinine significantly reduced (all P < 0.01). EGb761 attenuated tubular injury and lowered the histological score. In addition, the longer duration of drug treatment was, the better protective efficacy could be observed. EGb761 significantly reduced IL-1β, IL-6, TNF-α, MCP-1, IP-10 mRNA expression and macrophage infiltration in the kidney. EGb761 treatment at 48 hour before brain death significantly attenuate the levels of p-JNK-MAPK, p-p38-MAPK, and p-STAT3 proteins (all P < 0.05, compared to BD group). In summary, our data showed that EGb761 treatment protected donor kidney from BD-induced damages by blocking SAPK and JAK-STAT signalings. Early administration of EGb761 can provide better protective efficacy. PMID:28332628

  4. Allograft Inflammatory Factor 1 Functions as a Pro-Inflammatory Cytokine in the Oyster, Crassostrea ariakensis

    PubMed Central

    Xu, Ting; Liu, Xiao; Wu, Xinzhong

    2014-01-01

    The oyster Crassostrea ariakensis is an economically important bivalve species in China, unfortunately it has suffered severe mortalities in recent years caused by rickettsia-like organism (RLO) infection. Prevention and control of this disease is a priority for the development of oyster aquaculture. Allograft inflammatory factor-1 (AIF-1) was identified as a modulator of the immune response during macrophage activation and a key gene in host immune defense reaction and inflammatory response. Therefore we investigated the functions of C. ariakensis AIF-1 (Ca-AIF1) and its antibody (anti-CaAIF1) in oyster RLO/LPS-induced disease and inflammation. Ca-AIF1 encodes a 149 amino acid protein containing two typical Ca2+ binding EF-hand motifs and shares a 48–95% amino acid sequence identity with other animal AIF-1s. Tissue-specific expression analysis indicates that Ca-AIF1 is highly expressed in hemocytes. Significant and continuous up-regulation of Ca-AIF1 is detected when hemocytes are stimulated with RLO/LPS (RLO or LPS). Treatment with recombinant Ca-AIF1 protein significantly up-regulates the expression levels of LITAF, MyD88 and TGFβ. When anti-CaAIF1 antibody is added to RLO/LPS-challenged hemocyte monolayers, a significant reduction of RLO/LPS-induced LITAF is observed at 1.5–12 h after treatment, suggesting that interference with Ca-AIF1 can suppress the inflammatory response. Furthermore, flow cytometric analysis indicated that anti-CaAIF1 administration reduces RLO/LPS-induced apoptosis and necrosis rates of hemocytes. Collectively these findings suggest that Ca-AIF1 functions as a pro-inflammatory cytokine in the oyster immune response and is a potential target for controlling RLO infection and LPS-induced inflammation. PMID:24759987

  5. Downregulation of pro-inflammatory mediators by a water extract of Schisandra chinensis (Turcz.) Baill fruit in lipopolysaccharide-stimulated RAW 264.7 macrophage cells.

    PubMed

    Dilshara, Matharage Gayani; Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Kang, Chang-Hee; Lee, Seungheon; Park, Sang Rul; Jeong, Jin-Woo; Choi, Yung Hyun; Seo, Yong Taek; Jang, Young Pyo; Kim, Gi-Young

    2013-09-01

    Schisandra chinensis has a long-standing history of medicinal use as a tonic, a sedative, an anti-tussive, and an anti-aging drug. Nevertheless, the antagonistic effects of S. chinensis against lipopolysaccharide (LPS)-stimulated responses have not yet been studied. In this study, we investigated whether water extract of S. chinensis fruit (WESC) has the ability to attenuate the expression of pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), and tumor necrosis factor-α (TNF-α) in LPS-stimulated RAW 264.7 macrophage cells. WESC inhibited the expression of LPS-induced pro-inflammatory mediators, namely, NO, PGE2, and TNF-α. Furthermore, gene expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-α was inhibited both at mRNA and protein synthesis levels, without any cytotoxic effect. Moreover, WESC significantly suppressed LPS-induced DNA-binding activity of NF-κB by inhibiting degradation of IκBα. It was found that pyrrolidine dithiocarbamate (PDTC), a specific NF-κB inhibitor, downregulates the expression of these pro-inflammatory genes to be closely regulated by NF-κB activity. Furthermore, we found that WESC retains dephosphorylation of Akt in response to LPS, and consequently suppressed the DNA-binding activity of NF-κB in RAW 264.7 macrophage cells. LY294002, a specific Akt inhibitor, attenuated LPS-induced pro-inflammatory gene expression via suppression of NF-κB activity. Taken together, our results indicate that WESC downregulates the expression of pro-inflammatory genes involved in the synthesis of NO, PGE2, and TNF-α in LPS-stimulated RAW 264.7 macrophage cells by suppressing Akt-dependent NF-κB activity.

  6. Acylcarnitines activate pro-inflammatory signaling pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incomplete beta-oxidation of fatty acids in mitochondria is a feature of insulin resistance and type 2 diabetes mellitus (T2DM) and the resulting metabolic by-products, medium- and long-chain acylcarnitines are shown to be elevated. In preliminary studies, mixed isomers of C12- or C14-carnitine act...

  7. The binding capability of plasma phospholipid transfer protein, but not HDL pool size, is critical to repress LPS induced inflammation

    PubMed Central

    Yu, Yang; Cui, Yingjie; Zhao, Yanan; Liu, Shuai; Song, Guohua; Jiao, Peng; Li, Bin; Luo, Tian; Guo, Shoudong; Zhang, Xiangjian; Wang, Hao; Jiang, Xian-Cheng; Qin, Shucun

    2016-01-01

    Phospholipid transfer protein (PLTP) participates in high density lipoprotein (HDL) metabolism. Increased plasma PLTP activity was observed in lipopolysaccharide (LPS) triggered acute inflammatory diseases. This study aimed to determine the exact role of PLTP in LPS induced inflammation. HDL pool size was shrunk both in PLTP deficient mice (PLTP−/−) and PLTP transgenic mice (PLTP-Tg). PLTP displayed a strong protective effect on lethal endotoxemia in mice survival study. Furthermore, after LPS stimulation, the expression of pro-inflammatory cytokines were increased in bone marrow derived macrophage (BMDM) from PLTP−/−, while decreased in BMDM from PLTP-Tg compared with BMDM from wild-type mice (WT). Moreover, LPS induced nuclear factor kappa-B (NFκB) activation was enhanced in PLTP−/− BMDM or PLTP knockdown RAW264.7. Conversely, PLTP overexpression countered the NFκB activation in LPS challenged BMDM. Additionally, the activation of toll like receptor 4 (TLR4) induced by LPS showed no alteration in PLTP−/− BMDM. Finally, PLTP could bind to LPS, attenuate the pro-inflammatory effects of LPS, and improve the cell viability in vitro. To sum up, these findings elucidated that PLTP repressed LPS induced inflammation due to extracellular LPS binding capability, and the protective effects were not related to HDL pool size in mice. PMID:26857615

  8. Pepsin-pancreatin protein hydrolysates from extruded amaranth inhibit markers of atherosclerosis in LPS-induced THP-1 macrophages-like human cells by reducing expression of proteins in LOX-1 signaling pathway

    PubMed Central

    2014-01-01

    Background Atherosclerosis is considered a progressive disease that affects arteries that bring blood to the heart, to the brain and to the lower end. It derives from endothelial dysfunction and inflammation, which play an important role in the thrombotic complications of atherosclerosis. Cardiovascular disease is the leading cause of death around the world and one factor that can contribute to its progression and prevention is diet. Our previous study found that amaranth hydrolysates inhibited LPS-induced inflammation in human and mouse macrophages by preventing activation of NF-κB signaling. Furthermore, extrusion improved the anti-inflammatory effect of amaranth protein hydrolysates in both cell lines, probably attributed to the production of bioactive peptides during processing. Therefore, the objective of this study was to compare the anti-atherosclerotic potential of pepsin-pancreatin hydrolysates from unprocessed and extruded amaranth in THP-1 lipopolysaccharide-induced human macrophages and suggest the mechanism of action. Results Unprocessed amaranth hydrolysate (UAH) and extruded amaranth hydrolysate (EAH) showed a significant reduction in the expression of interleukin-4 (IL-4) (69% and 100%, respectively), interleukin-6 (IL-6) (64% and 52%, respectively), interleukin-22 (IL-22) (55% and 70%, respectively). Likewise, UAH and EAH showed a reduction in the expression of monocyte-chemo attractant protein-1 (MCP-1) (35% and 42%, respectively), transferrin receptor-1 (TfR-1) (48% and 61%, respectively), granulocyte-macrophage colony-stimulating factor (GM-CSF) (59% and 63%, respectively), and tumor necrosis factor-α (TNF-α) (60% and 63%, respectively). Also, EAH reduced the expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) (27%), intracellular adhesion molecule-1 (ICAM-1) (28%) and matrix metalloproteinase-9 (MMP-9) (19%), important molecular markers in the atherosclerosis pathway. EAH, led to a reduction of 58, 52 and 79% for

  9. Cannabidiol improves lung function and inflammation in mice submitted to LPS-induced acute lung injury.

    PubMed

    Ribeiro, A; Almeida, V I; Costola-de-Souza, C; Ferraz-de-Paula, V; Pinheiro, M L; Vitoretti, L B; Gimenes-Junior, J A; Akamine, A T; Crippa, J A; Tavares-de-Lima, W; Palermo-Neto, J

    2015-02-01

    We have previously shown that the prophylactic treatment with cannabidiol (CBD) reduces inflammation in a model of acute lung injury (ALI). In this work we analyzed the effects of the therapeutic treatment with CBD in mice subjected to the model of lipopolysaccharide (LPS)-induced ALI on pulmonary mechanics and inflammation. CBD (20 and 80 mg/kg) was administered (i.p.) to mice 6 h after LPS-induced lung inflammation. One day (24 h) after the induction of inflammation the assessment of pulmonary mechanics and inflammation were analyzed. The results show that CBD decreased total lung resistance and elastance, leukocyte migration into the lungs, myeloperoxidase activity in the lung tissue, protein concentration and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) in the bronchoalveolar lavage supernatant. Thus, we conclude that CBD administered therapeutically, i.e. during an ongoing inflammatory process, has a potent anti-inflammatory effect and also improves the lung function in mice submitted to LPS-induced ALI. Therefore the present and previous data suggest that in the future cannabidiol might become a useful therapeutic tool for the attenuation and treatment of inflammatory lung diseases.

  10. Lysophosphatidylcholine Triggers TLR2- and TLR4-Mediated Signaling Pathways but Counteracts LPS-Induced NO Synthesis in Peritoneal Macrophages by Inhibiting NF-κB Translocation and MAPK/ERK Phosphorylation

    PubMed Central

    Carneiro, Alan Brito; Iaciura, Bruna Maria Ferreira; Nohara, Lilian Lie; Lopes, Carla Duque; Veas, Esteban Mauricio Cordero; Mariano, Vania Sammartino; Bozza, Patricia Torres; Lopes, Ulisses Gazos; Atella, Georgia Correa; Almeida, Igor Correia; Silva-Neto, Mário Alberto Cardoso

    2013-01-01

    Background Lysophosphatidylcholine (LPC) is the main phospholipid component of oxidized low-density lipoprotein (oxLDL) and is usually noted as a marker of several human diseases, such as atherosclerosis, cancer and diabetes. Some studies suggest that oxLDL modulates Toll-like receptor (TLR) signaling. However, effector molecules that are present in oxLDL particles and can trigger TLR signaling are not yet clear. LPC was previously described as an attenuator of sepsis and as an immune suppressor. In the present study, we have evaluated the role of LPC as a dual modulator of the TLR-mediated signaling pathway. Methodology/Principal Findings HEK 293A cells were transfected with TLR expression constructs and stimulated with LPC molecules with different fatty acid chain lengths and saturation levels. All LPC molecules activated both TLR4 and TLR2-1 signaling, as evaluated by NF-қB activation and IL-8 production. These data were confirmed by Western blot analysis of NF-қB translocation in isolated nuclei of peritoneal murine macrophages. However, LPC counteracted the TLR4 signaling induced by LPS. In this case, NF-қB translocation, nitric oxide (NO) synthesis and the expression of inducible nitric oxide synthase (iNOS) were blocked. Moreover, LPC activated the MAP Kinases p38 and JNK, but not ERK, in murine macrophages. Interestingly, LPC blocked LPS-induced ERK activation in peritoneal macrophages but not in TLR-transfected cells. Conclusions/Significance The above results indicate that LPC is a dual-activity ligand molecule. It is able to trigger a classical proinflammatory phenotype by activating TLR4- and TLR2-1-mediated signaling. However, in the presence of classical TLR ligands, LPC counteracts some of the TLR-mediated intracellular responses, ultimately inducing an anti-inflammatory phenotype; LPC may thus play a role in the regulation of cell immune responses and disease progression. PMID:24312681

  11. Bioactive Extract from Moringa oleifera Inhibits the Pro-inflammatory Mediators in Lipopolysaccharide Stimulated Macrophages

    PubMed Central

    Fard, Masoumeh Tangestani; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Adam, Siti Khadijah; Fakurazi, Sharida

    2015-01-01

    Introduction: Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. Objectives: The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS) - stimulated macrophages. Materials and Methods: The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO) production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Results: Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. Conclusion: These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders. SUMMARY Hydroethanolic extracts of Moringa oleifera effectively inhibit the NO production in LPS induced inflammatory model.M. oleifera crude extracts successfully modulate the production of pro-inflammatory mediators in LPS stimulated macrophages.M. oleifera extracts suppressed the expression of inflammatory mediators in LPS stimulated macrophages. PMID:27013794

  12. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    SciTech Connect

    Erez, Neta; Glanz, Sarah; Raz, Yael; Avivi, Camilla; Barshack, Iris

    2013-08-02

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.

  13. EGCG attenuates pro-inflammatory cytokines and chemokines production in LPS-stimulated L02 hepatocyte.

    PubMed

    Liu, Qiaoli; Qian, Yun; Chen, Feng; Chen, Xiaoming; Chen, Zhi; Zheng, Min

    2014-01-01

    Endotoxin lipopolysaccharide (LPS) plays an important role in the acceleration of inflammatory reaction of hepatitis as the second attack. Compounds that can prevent inflammation by targeting LPS have potential therapeutic clinical application. Epigallocatechin-3-gallate (EGCG) has potent hepatocyte-protective effect and mild anti-hepatitis virus function. Here, we investigated whether EGCG attenuated the severity of inflammatory response in LPS-stimulated L02 hepatocytes. L02 hepatocytes were pretreated with EGCG for 2 h, then stimulated by LPS at 250 ng/ml. The expression levels of chemokine regulated upon activation normal T-cell expressed and secreted (Rantes) and monocyte chemotactic protein-1 (MCP-1), pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interferon-γ, adhesion molecule intercellular adhesion molecule-1 (ICAM-1), oxidant stress molecules nitric oxide (NO), vascular endothelial growth factor (VEGF), and matrix metalloproteinase-2 (MMP-2) were tested by enzyme-linked immunosorbent assay. The expression of total extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-ERK1/2 (p-ERK1/2), p-AKT, total p38, phospho-p38 (p-p38), total p65 and phospho-p65 (p-p65), IκBα, phospho-IκBα (p-IκBα) and TNF receptor associated factor 2 were tested by western blot analysis. Our results showed that pre-treatment with EGCG could significantly reduce the production of TNF-α, Rantes, MCP-1, ICAM-1, NO, VEGF, and MMP-2 in LPS-stimulated L02 hepatocytes in a dose-dependent manner. The effect of EGCG may be related to the inhibition of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways by down-regulation of p-IκBα, p65, p-p65, p-p38, p-ERK1/2, and p-AKT. These results indicate that EGCG suppresses LPS-induced inflammatory response and oxidant stress and exerts its hepatocyte-protective activity partially by inhibiting NF-κB and MAPK pathways.

  14. Mechanism of anti-inflammatory effect of tricin, a flavonoid isolated from Njavara rice bran in LPS induced hPBMCs and carrageenan induced rats.

    PubMed

    Shalini, V; Jayalekshmi, Ananthasankaran; Helen, A

    2015-08-01

    Njavara is an indigenous medicinal rice variety traditionally used in Ayurvedic system of medicine practiced in Kerala, India. Tricin is a bioflavonoid present in significantly higher levels in rice bran of Njavara. Present study attempted to identify the molecular target of tricin in TLR mediated signaling pathways by using lipopolysaccharide (LPS) induced human peripheral blood mononuclear cells (hPBMCs) and carrageenan induced paw edema in rats as experimental models. Tricin acted upstream in the activation of inflammation cascade by interfering with TLR4 activation, preferably by blocking the LPS induced activation of TLR4, MYD88 and TRIF proteins in hPBMCs. Subsequently, tricin significantly blocked the activation of downstream kinases like p38MAPK, JNK1/2 and IRF3. Thus the inhibitory effect of tricin on NF-κB and IRF3 together confirms the specific inhibition of both MYD88 dependent and TRIF dependent pathways. Tricin treatment also inhibited the pro-inflammatory effect of LPS by blocking the TLR4 signaling mediated activation of cytosolic phospholipase A2 (cPLA2), which is confirmed by specific inhibition of COX-2. Results demonstrated that in addition to NF-κB, tricin can prevent the activation of STAT proteins by significantly inhibiting the activation of both STAT1 and STAT3 via the down regulation of upstream phosphorylating enzymes like JAK1 and JAK2. The protective anti-inflammatory effect of tricin was also confirmed by in vivo experiments. Thus, this study provides strong evidence that tricin exerts its anti-inflammatory effect via a mechanism involving the TLR4/NF-κB/STAT signaling cascade.

  15. Platelet Supernatant Suppresses LPS-Induced Nitric Oxide Production from Macrophages Accompanied by Inhibition of NF-κB Signaling and Increased Arginase-1 Expression

    PubMed Central

    2016-01-01

    We previously reported that mouse bone marrow-derived macrophages (BMDMs) that had been co-cultured with platelets exhibited lower susceptibility to bacterial lipopolysaccharide (LPS) and produced lower levels of nitric oxide (NO) and inflammatory cytokines including TNF-α and IL-6. The suppression of macrophage responses was mediated, at least in part, by platelet supernatant. In the present study, we assessed phenotypic changes of BMDMs induced by incubation with the supernatant from thrombin-activated platelets (PLT-sup) and found that BMDMs cultured with PLT-sup (PLT-BMDMs) expressed a lower level of inducible NO synthase (iNOS) and a higher level of arginase-1, both of which are involved in the L-arginine metabolism, upon stimulation with LPS or zymosan. We also examined possible modulation of the NF-κB signaling pathway and observed suppression of IκBα phosphorylation and a decrease of NF-κB p65 expression in LPS-stimulated PLT-BMDMs. These results suggest that PLT-sup suppresses inflammatory responses of BMDMs via negative regulation of NF-κB signaling leading to lowered expression of iNOS and enhanced L-arginine catabolism by arginase-1. PMID:27588757

  16. Hydrogen sulfide attenuates lipopolysaccharide-induced cognitive impairment: a pro-inflammatory pathway in rats.

    PubMed

    Gong, Qi-Hai; Wang, Qian; Pan, Li-Long; Liu, Xin-Hua; Huang, Hui; Zhu, Yi-Zhun

    2010-07-01

    The present study investigated the effect of sodium hydrosulfide (NaHS), a H(2)S donor, on cognitive impairment and neuroinflammatory changes induced by bilateral intracerebroventricular injections of LPS at a dose of 10mug/rat. Rats received 5mg/kg NaHS or volume-matched vehicle administration by intraperitoneal injection 3days before LPS injection then for 9days once daily. Morris water maze was used to detect the cognitive function. Compared to the sham-treated rats, LPS injection significantly prolonged the mean escape latency in the navigation test (P<0.05) and shortened the adjusted escape latency by approximately 30% (P<0.05). Meanwhile, LPS injection decreased H(2)S level but increased pro-inflammatory mediators (i.e., TNF-alpha, TNFR1, degradation of IkappaB-alpha and thereafter activation of NF-kappaB) in hippocampus. However, these effects of LPS were significantly ameliorated with NaHS treatment (P<0.05 vs vehicle-treated group). The present data suggest that H(2)S attenuates LPS-induced cognitive impairment through reducing the overproduction of pro-inflammatory mediators via inhibition of NF-kappaB pathways in rats. This study sets the stage for exploring a novel H(2)S releasing agent for preventing or retarding the development or progression of neurological disorders such as Alzheimer's disease.

  17. Anti-inflammatory action of high molecular weight Mytilus edulis hydrolysates fraction in LPS-induced RAW264.7 macrophage via NF-κB and MAPK pathways.

    PubMed

    Kim, Young-Sang; Ahn, Chang-Bum; Je, Jae-Young

    2016-07-01

    Anti-inflammatory Mytilus edulis hydrolysates (MEHs) were prepared by peptic hydrolysis and MEH was further fractionated into three fractions based on molecular weight, namely >5kDa, 1-5kDa, and <1kDa. The >5kDa peptide fraction exerted the highest nitric oxide (NO) inhibitory activity and inhibited prostaglandin E2 (PGE2) secretion in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Pretreatment with the >5kDa peptide fraction markedly inhibited LPS-stimulated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and gene expressions. Stimulation by LPS induced the production of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and -1β (IL-1β), whereas co-treatment with the >5kDa peptide fraction suppressed pro-inflammatory cytokine production. The >5kDa peptide fraction inhibited the translocation of NF-κB (nuclear factor-kappa B) through the prevention of IκBα (inhibitory factor kappa B alpha) phosphorylation and degradation and also inhibited the MAPK signaling pathway in LPS-stimulated RAW264.7 macrophages.

  18. LPS-induced iNOS expression in N9 microglial cells is suppressed by geniposide via ERK, p38 and nuclear factor-κB signaling pathways.

    PubMed

    Zhang, Gu; He, Jun-Lin; Xie, Xiao-Yan; Yu, Chao

    2012-09-01

    Activated microglia producing reactive nitrogen species, inflammatory factors, reactive oxygen species (ROS) and other neurovirulent factors, can lead to the development of neurodegenerative diseases. Certain compounds can inhibit the activation of microglia. However, the mechanisms remain unclear. In the present study, we investigated the inhibitory effect of geniposide on the production of ROS and inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated N9 murine microglial cells through the p38, ERK1/2 and nuclear factor-κB (NF-κB) signaling pathways. After the N9 cells were pre-treated with the vehicle or geniposide and exposed to LPS for the time indicated, the MTT conversion test was used to assess cell viability. Suitable concentrations were chosen and adjusted according to the experiments. Extracellular nitric oxide (NO) release was measured by Griess reaction. The formation of ROS and intracellular NO was evaluated by fluorescence imaging. NOS activities were determined using commercially available kits. The morphology of the N9 cells was examined by hematoxylin and eosin staining. The expression of iNOS mRNA was examined by RT-PCR. The protein levels of iNOS, p38 mitogen-activated protein kinase (MAPK), ERK1/2 and NF-κB, inhibitory factor-κB-α (IκB-α) were determined by western blot analysis. The results showed that geniposide attenuated the activation of N9 cells and inhibited the overproduction of NO, intracellular ROS and the expression of iNOS induced by LPS in the cells. In addition, geniposide blocked the phosphorylation of p38, ERK1/2 and inhibited the drop-off of IκB induced by LPS in the cells. These data indicate that geniposide has therapeutic potential for the treatment of neurodegenerative diseases, and that it exerts its effects by inhibiting inflammation.

  19. Probucol inhibits LPS-induced microglia activation and ameliorates brain ischemic injury in normal and hyperlipidemic mice

    PubMed Central

    Jung, Yeon Suk; Park, Jung Hwa; Kim, Hyunha; Kim, So Young; Hwang, Ji Young; Hong, Ki Whan; Bae, Sun Sik; Choi, Byung Tae; Lee, Sae-Won; Shin, Hwa Kyoung

    2016-01-01

    Aim: Increasing evidence suggests that probucol, a lipid-lowering agent with anti-oxidant activities, may be useful for the treatment of ischemic stroke with hyperlipidemia via reduction in cholesterol and neuroinflammation. In this study we examined whether probucol could protect against brain ischemic injury via anti-neuroinflammatory action in normal and hyperlipidemic mice. Methods: Primary mouse microglia and murine BV2 microglia were exposed to lipopolysaccharide (LPS) for 3 h, and the release NO, PGE2, IL-1β and IL-6, as well as the changes in NF-κB, MAPK and AP-1 signaling pathways were assessed. ApoE KO mice were fed a high-fat diet containing 0.004%, 0.02%, 0.1% (wt/wt) probucol for 10 weeks, whereas normal C57BL/6J mice received probucol (3, 10, 30 mg·kg-1·d-1, po) for 4 d. Then all the mice were subjected to focal cerebral ischemia through middle cerebral artery occlusion (MCAO). The neurological deficits were scored 24 h after the surgery, and then brains were removed for measuring the cerebral infarct size and the production of pro-inflammatory mediators. Results: In LPS-treated BV2 cells and primary microglial cells, pretreatment with probucol (1, 5, 10 μmol/L) dose-dependently inhibited the release of NO, PGE2, IL-1β and IL-6, which occurred at the transcription levels. Furthermore, the inhibitory actions of probucol were associated with the downregulation of the NF-κB, MAPK and AP-1 signaling pathways. In the normal mice with MCAO, pre-administration of probucol dose-dependently decreased the infarct volume and improved neurological function. These effects were accompanied by the decreased production of pro-inflammatory mediators (iNOS, COX-2, IL-1, IL-6). In ApoE KO mice fed a high-fat diet, pre-administration of 0.1% probucol significantly reduced the infarct volume, improved the neurological deficits following MCAO, and decreased the total- and LDL-cholesterol levels. Conclusion: Probucol inhibits LPS-induced microglia activation and

  20. Inhibitory effects of harpagoside on TNF-α-induced pro-inflammatory adipokine expression through PPAR-γ activation in 3T3-L1 adipocytes.

    PubMed

    Kim, Tae Kon; Park, Kyoung Sik

    2015-12-01

    Obesity is closely associated with increased production of pro-inflammatory adipokines, including interleukin (IL)-6, plasminogen activator inhibitor (PAI)-1, and adipose-tissue-derived monocyte chemoattractant protein (MCP)-1, which contribute to chronic and low-grade inflammation in adipose tissue. Harpagoside, a major iridoid glycoside present in devil's claw, has been reported to show anti-inflammatory activities by suppression of lipopolysaccharide (LPS)-induced production of inflammatory cytokines in murine macrophages. The present study is aimed to investigate the effects of harpagoside on both tumor necrosis factor (TNF)-α-induced inflammatory adipokine expression and its underlying signaling pathways in differentiated 3T3-L1 cells. Harpagoside significantly inhibited TNF-α-induced mRNA synthesis and protein production of the atherogenic adipokines including IL-6, PAI-1, and MCP-1. Further investigation of the molecular mechanism revealed that pretreatment with harpagoside activated peroxisome proliferator-activated receptor (PPAR)-γ. These findings suggest that the clinical application of medicinal plants which contain harpagoside may lead to a partial prevention of obesity-induced atherosclerosis by attenuating inflammatory responses.

  1. Amla (Emblica officinalis Gaertn.) extract inhibits lipopolysaccharide-induced procoagulant and pro-inflammatory factors in cultured vascular endothelial cells.

    PubMed

    Rao, Theertham Pradyumna; Okamoto, Takayuki; Akita, Nobuyuki; Hayashi, Tatsuya; Kato-Yasuda, Naomi; Suzuki, Koji

    2013-12-01

    Amla (Emblica officinalis Gaertn.) has been used for many centuries in traditional Indian Ayurvedic formulations for the prevention and treatment of many inflammatory diseases. The present study evaluated the anti-inflammatory and anticoagulant properties of amla fruit extract. The amla fruit extract potentially and significantly reduced lipopolysaccharide (LPS)-induced tissue factor expression and von Willebrand factor release in human umbilical vein endothelial cells (HUVEC) in vitro at clinically relevant concentrations (1-100 μg/ml). In a leucocyte adhesion model of inflammation, it also significantly decreased LPS-induced adhesion of human monocytic cells (THP-1) to the HUVEC, as well as reduced the expression of endothelial-leucocyte adhesion molecule-1 (E-selectin) in the target cells. In addition, the in vivo anti-inflammatory effects were evaluated in a LPS-induced endotoxaemia rat model. Oral administration of the amla fruit extract (50 mg/kg body weight) significantly decreased the concentrations of pro-inflammatory cytokines, TNF-α and IL-6 in serum. These results suggest that amla fruit extract may be an effective anticoagulant and anti-inflammatory agent.

  2. Proteomic dissection of LPS-inducible, PHF8-dependent secretome reveals novel roles of PHF8 in TLR4-induced acute inflammation and T cell proliferation

    PubMed Central

    Erdoğan, Özgün; Xie, Ling; Wang, Li; Wu, Bing; Kong, Qing; Wan, Yisong; Chen, Xian

    2016-01-01

    Endotoxin (LPS)-induced changes in histone lysine methylation contribute to the gene-specific transcription for control of inflammation. Still unidentified are the chromatin regulators that drive the transition from a transcriptional-repressive to a transcriptional-active chromatin state of pro-inflammatory genes. Here, using combined approaches to analyze LPS-induced changes in both gene-specific transcription and protein secretion to the extracellular compartment, we characterize novel functions of the lysine demethylase PHF8 as a pro-inflammatory, gene-specific chromatin regulator. First, in the LPS-induced, acute-inflamed macrophages, PHF8 knockdown led to both a reduction of pro-inflammatory factors and an increase in a transcriptional-repressive code (H3K9me2) written by the methyltransferase G9a. Through unbiased quantitative secretome screening we discovered that LPS induces the secretion of a cluster of PHF8-dependent, ‘tolerizable’ proteins that are related to diverse extracellular pathways/processes including those for the activation of adaptive immunity. Specifically, we determined that PHF8 promotes T-cell activation and proliferation, thus providing the first link between the epigenetic regulation of inflammation and adaptive immunity. Further, we found that, in the acute-inflamed macrophages, the acute-active PHF8 opposes the H3K9me1/2-writing activity of G9a to activate specific protein secretions that are suppressed by G9a in the endotoxin-tolerant cells, revealing the inflammatory-phenotypic chromatin drivers that regulate the gene-specific chromatin plasticity. PMID:27112199

  3. LPS-induced NF-{kappa}B expression in THP-1Blue cells correlates with neopterin production and activity of indoleamine 2,3-dioxygenase

    SciTech Connect

    Schroecksnadel, Sebastian; Jenny, Marcel; Kurz, Katharina; Klein, Angela; Ledochowski, Maximilian; Uberall, Florian; Fuchs, Dietmar

    2010-09-03

    Research highlights: {yields} LPS induces NF-{kappa}B, neopterin formation and tryptophan degradation in THP-1 cells. {yields} Close dose- and time-dependent correlations exist between these biochemical events. {yields} Data provides some evidence for a parallel induction of them upon TLR stimulation. {yields} Results can be of considerable relevance also in vivo. -- Abstract: Neopterin production is induced in human monocyte-derived macrophages and dendritic cells upon stimulation with Th1-type cytokine interferon-{gamma} (IFN-{gamma}). In parallel, IFN-{gamma} induces the tryptophan-(trp)-degrading enzyme indoleamine 2,3-dioxygenase (IDO) and triggers the formation of reactive oxygen species (ROS). Translocation of the signal transduction element nuclear factor-{kappa}B (NF-{kappa}B) is induced by ROS and accelerates the pro-inflammatory response by activation of other pro-inflammatory pathways. Therefore, a close relationship between NF-{kappa}B expression, the production of neopterin and the degradation of trp can be assumed, although this has not been demonstrated so far. In the present in vitro study we compared the influence of lipopolysaccharide (LPS) on NF-{kappa}B activation, neopterin formation and the degradation of trp in THP-1Blue cells, which represent the human myelomonocytic cell line THP-1 stably transfected with an NF-{kappa}B inducible reporter system. In cells stimulated with LPS, a significant induction of NF-{kappa}B was observed, and this was paralleled by an increase of kynureunine (kyn) and neopterin concentrations and a decline of trp. The increase of the kyn to trp quotient indicates accelerated IDO activity. Higher LPS concentrations and longer incubation of cells were associated with higher activities of all three biochemical pathways and significant correlations existed between NF-{kappa}B activation, neopterin release and trp degradation (all p < 0.001). We conclude that there is a parallel induction of NF-{kappa}B, neopterin

  4. Retinoic acid receptor agonist Am80 inhibits CXCL2 production from microglial BV-2 cells via attenuation of NF-κB signaling.

    PubMed

    Takaoka, Yuichiro; Takahashi, Moeka; Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Shudo, Koichi; Katsuki, Hiroshi

    2016-09-01

    Accumulating lines of evidence suggest that retinoic acid receptor agonists such as Am80 exerts anti-inflammatory actions in the central nervous system, although detailed mechanisms of the action remain largely unknown. Our previous findings suggest that Am80 provides therapeutic effect on intracerebral hemorrhage in mice via suppression of expression of chemokine (C-X-C motif) ligand 2 (CXCL2). Here we investigated the mechanisms of inhibitory action of Am80 on expression of CXCL2 and other pro-inflammatory factors in microglial BV-2 cells. Pretreatment with Am80 markedly suppressed lipopolysaccharide (LPS)-induced expression of CXCL2 mRNA and release of CXCL2 protein. Am80 had no effect on LPS-induced activation of p38 mitogen-activated protein kinase and extracellular signal-regulated kinase. On the other hand, Am80 prevented LPS-induced nuclear translocation of p65 subunit of NF-κB complex. In addition, total expression levels of p65 and IκBα proteins, as well as of mRNAs encoding p65 and IκBα, were lowered by Am80. Dependence of CXCL2 expression on NF-κB was confirmed by the effect of an NF-κB inhibitor caffeic acid phenethyl ester that abolished LPS-induced CXCL2 expression. Caffeic acid phenethyl ester also abolished LPS-induced expression of inducible nitric oxide synthase, interleukin-1β and tumor necrosis factor α, which may be relevant to the inhibitory effect of Am80 on expression of these pro-inflammatory factors. We additionally found that Am80 attenuated LPS-induced up-regulation of CD14, a co-receptor for Toll-like receptor 4 (TLR4). These results suggest that inhibitory effect on TLR4 signaling mediated by NF-κB pathway underlies the anti-inflammatory action of retinoic acid receptor agonists in microglia.

  5. Discovery of new MD2 inhibitor from chalcone derivatives with anti-inflammatory effects in LPS-induced acute lung injury

    PubMed Central

    Zhang, Yali; Wu, Jianzhang; Ying, Shilong; Chen, Gaozhi; Wu, Beibei; Xu, Tingting; Liu, Zhiguo; Liu, Xing; Huang, Lehao; Shan, Xiaoou; Dai, Yuanrong; Liang, Guang

    2016-01-01

    Acute lung injury (ALI) is a life-threatening acute inflammatory disease with limited options available for therapy. Myeloid differentiation protein 2, a co-receptor of TLR4, is absolutely required for TLR4 sense LPS, and represents an attractive target for treating severe inflammatory diseases. In this study, we designed and synthesized 31 chalcone derivatives that contain the moiety of (E)-4-phenylbut-3-en-2-one, which we consider the core structure of current MD2 inhibitors. We first evaluated the anti-inflammatory activities of these compounds in MPMs. For the most active compound 20, we confirmed that it is a specific MD2 inhibitor through a series of biochemical experiments and elucidated that it binds to the hydrophobic pocket of MD2 via hydrogen bonds with Arg90 and Tyr102 residues. Compound 20 also blocked the LPS-induced activation of TLR4/MD2 -downstream pro-inflammatory MAPKs/NF-κB signaling pathways. In a rat model with ALI induced by intracheal LPS instillation, administration with compound 20 exhibited significant protective effect against ALI, accompanied by the inhibition of TLR4/MD2 complex formation in lung tissues. Taken together, the results of this study suggest the specific MD2 inhibitor from chalcone derivatives we identified is a potential candidate for treating acute inflammatory diseases. PMID:27118147

  6. The killing of neurons by beta-amyloid peptides, prions, and pro-inflammatory cytokines.

    PubMed

    Chiarini, Anna; Dal Pra, Ilaria; Whitfield, James F; Armato, Ubaldo

    2006-01-01

    Reportedly, beta-amyloid peptides (Abeta40 and Abeta42) induce the neurodegenerative changes of Alzheimer's disease (AD) both directly by interacting with components of the cell surface to trigger apoptogenic signaling and indirectly by activating astrocytes and microglia to produce excess amounts of inflammatory cytokines. A possible cell surface target for Abetas is the p75 neurotrophin receptor (p75(NTR)). By using SK-N-BE neuroblastoma cells without neurotrophin receptors or engineered to express the full-length p75(NTR) or various parts of it, we have proven that p75(NTR) does mediate the Abeta-induced cell killing via its intracellular death domain (DD). This signaling via the DD activates caspase-8, which then activates caspase-3 and apoptogenesis. We also found a strong cytocidal interaction of direct p75(NTR)-mediated and indirect pro-inflammatory cytokine-mediated neuronal damage induced by Abeta. In fact, pro-inflammatory cytokines such as TNF-alpha and IL-1beta from Abeta-activated microglia potentiated the neurotoxic action of Aalpha mediated by p75(NTR) signaling. The pro-inflammatory cytokines probably amplify neuronal damage and killing by causing astrocytes to flood their associated neurons with NO and its lethal oxidizing ONOO- derivative. Indeed, we have found that a combination of three major pro-inflammatory cytokines, IL-1beta+IFN-gamma+TNF-alpha, causes normal adult human astrocytes (NAHA) to express nitric oxide synthase-2 (NOS-2) and make dangerously large amounts of NO via mitogen-activated protein kinases (MAPKs). Soluble Abeta40, the major amyloid precursor protein cleavage product, by itself stimulates astrocytes to express NOS-2 and make NO, possibly by activating p75(NTR) receptors, which they share with neurons, and can considerably amplify NOS-2 expression by the pro-inflammatory cytokine trio. These observations have uncovered a deadly synergistic interaction of Abeta peptides with pro-inflammatory cytokines in the neuron

  7. Cancer associated fibroblasts express pro-inflammatory factors in human breast and ovarian tumors.

    PubMed

    Erez, Neta; Glanz, Sarah; Raz, Yael; Avivi, Camilla; Barshack, Iris

    2013-08-02

    Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.

  8. Sodium chloride promotes pro-inflammatory macrophage polarization thereby aggravating CNS autoimmunity.

    PubMed

    Hucke, Stephanie; Eschborn, Melanie; Liebmann, Marie; Herold, Martin; Freise, Nicole; Engbers, Annika; Ehling, Petra; Meuth, Sven G; Roth, Johannes; Kuhlmann, Tanja; Wiendl, Heinz; Klotz, Luisa

    2016-02-01

    The increasing incidence in Multiple Sclerosis (MS) during the last decades in industrialized countries might be linked to a change in dietary habits. Nowadays, enhanced salt content is an important characteristic of Western diet and increased dietary salt (NaCl) intake promotes pathogenic T cell responses contributing to central nervous system (CNS) autoimmunity. Given the importance of macrophage responses for CNS disease propagation, we addressed the influence of salt consumption on macrophage responses in CNS autoimmunity. We observed that EAE-diseased mice receiving a NaCl-high diet showed strongly enhanced macrophage infiltration and activation within the CNS accompanied by disease aggravation during the effector phase of EAE. NaCl treatment of macrophages elicited a strong pro-inflammatory phenotype characterized by enhanced pro-inflammatory cytokine production, increased expression of immune-stimulatory molecules, and an antigen-independent boost of T cell proliferation. This NaCl-induced pro-inflammatory macrophage phenotype was accompanied by increased activation of NF-kB and MAPK signaling pathways. The pathogenic relevance of NaCl-conditioned macrophages is illustrated by the finding that transfer into EAE-diseased animals resulted in significant disease aggravation compared to untreated macrophages. Importantly, also in human monocytes, NaCl promoted a pro-inflammatory phenotype that enhanced human T cell proliferation. Taken together, high dietary salt intake promotes pro-inflammatory macrophages that aggravate CNS autoimmunity. Together with other studies, these results underline the need to further determine the relevance of increased dietary salt intake for MS disease severity.

  9. Kaempferol slows intervertebral disc degeneration by modifying LPS-induced osteogenesis/adipogenesis imbalance and inflammation response in BMSCs.

    PubMed

    Zhu, Jun; Tang, Haoyu; Zhang, Zhenhua; Zhang, Yong; Qiu, Chengfeng; Zhang, Ling; Huang, Pinge; Li, Feng

    2017-02-01

    Intervertebral disc (IVD) degeneration is a common disease that represents a significant cause of socio-economic problems. Bone marrow-derived mesenchymal stem cells (BMSCs) are a potential autologous stem cell source for the nucleus pulposus regeneration. Kaempferol has been reported to exert protective effects against both osteoporosis and obesity. This study explored the effect of kaempferol on BMSCs differentiation and inflammation. The results demonstrated that kaempferol did not show any cytotoxicity at concentrations of 20, 60 and 100μM. Kaempferol enhanced cell viability by counteracting the lipopolysaccharide (LPS)-induced cell apoptosis and increasing cell proliferation. Western blot analysis of mitosis-associated nuclear antigen (Ki67) and proliferation cell nuclear antigen (PCNA) further confirmed the increased effect of kaempferol on LPS-induced decreased viability of BMSCs. Besides, kaempferol elevated LPS-induced reduced level of chondrogenic markers (SOX-9, Collagen II and Aggrecan), decreased the level of matrix-degrading enzymes, i.e., matrix metalloprotease (MMP)-3 and MMP-13, suggesting the osteogenesis of BMSC under kaempferol treatment. On the other hand, kaempferol enhanced LPS-induced decreased expression of lipid catabolism-related genes, i.e., carnitine palmitoyl transferase-1 (CPT-1). Kaempferol also suppressed the expression of lipid anabolism-related genes, i.e., peroxisome proliferators-activated receptor-γ (PPAR-γ). The Oil red O staining further convinced the inhibition effect of kaempferol on BMSCs adipogenesis. In addition, kaempferol alleviated inflammatory by reducing the level of pro-inflammatory cytokines (i.e., interleukin (IL)-6) and increasing anti-inflammatory cytokine (IL-10) via inhibiting the nucleus translocation of nuclear transcription factor (NF)-κB p65. Taken together, our research indicated that kaempferol may serve as a novel target for treatment of IVD degeneration.

  10. Anti-inflammatory activity of the oriental herb medicine, Arisaema cum Bile, in LPS-induced PMA-differentiated THP-1 cells.

    PubMed

    Ahn, Chang-Bum; Je, Jae-Young

    2012-06-01

    Arisaema cum Bile is widely used as a folk medicine in Korea. However, the systematic biological properties of Arisaema cum Bile have seldom been addressed. In this study, we evaluated the anti-inflammatory activity of Arisaema cum Bile extract on lipopolysaccharide (LPS)-induced inflammation in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 macrophages. The Arisaema cum Bile extract markedly inhibited the production of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, and also suppressed the mRNA and protein expressions of these cytokines. Furthermore, the Arisaema cum Bile extract also inhibited LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and gene expressions in PMA-differentiaed THP-1 macrophages. These results suggest that Arisaema cum Bile extract may have potential for development into an effective anti-inflammatory agent, and/or as an ingredient of functional foods.

  11. Lentiviral-Mediated Overexpression of the 18 kDa Translocator Protein (TSPO) in the Hippocampal Dentate Gyrus Ameliorates LPS-Induced Cognitive Impairment in Mice

    PubMed Central

    Wang, Wei; Zhang, Liming; Zhang, Xiaoying; Xue, Rui; Li, Lei; Zhao, Weixing; Fu, Qiang; Mi, Weidong; Li, Yunfeng

    2016-01-01

    The 18 kDa translocator protein (TSPO) is involved in the immune/inflammatory response. However, the exact role that TSPO plays in neuroinflammation-induced cognitive impairment is still elusive. The purpose of our present study was to investigate the effects of lentiviral-mediated hippocampal overexpression of the TSPO in a mouse model of LPS-induced cognitive impairment. We established a mouse cognitive impairment model using systematic daily administration of lipopolysaccharide (LPS) (0.5 mg/kg). Microinjection of the dentate gyrus of the mouse with lentiviral vectors, which contained a cDNA targeting TSPO (Lv-TSPO), resulted in a significant increase in TSPO expression and allopregnanolone production. Mice treated with LPS showed cognitive deficits in the novel object recognition test and the Morris water maze test that could be ameliorated by TSPO overexpression. In addition, TSPO overexpression reversed LPS-induced microglial activation and accumulation of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α. Moreover, TSPO overexpression attenuated the LPS-induced impairment of hippocampal neurogenesis. Our results suggest that local overexpression of TSPO in the hippocampal dentate gyrus alleviated LPS-induced cognitive deficits, and its effects might be mediated by the attenuation of inflammatory cytokines, inhibition of microglial activation, and promotion of neurogenesis. PMID:27803668

  12. Parenchymal and Stromal Cells Contribute to Pro-Inflammatory Myocardial Environment at Early Stages of Diabetes: Protective Role of Resveratrol

    PubMed Central

    Savi, Monia; Bocchi, Leonardo; Sala, Roberto; Frati, Caterina; Lagrasta, Costanza; Madeddu, Denise; Falco, Angela; Pollino, Serena; Bresciani, Letizia; Miragoli, Michele; Zaniboni, Massimiliano; Quaini, Federico; Del Rio, Daniele; Stilli, Donatella

    2016-01-01

    Background: Little information is currently available concerning the relative contribution of cardiac parenchymal and stromal cells in the activation of the pro-inflammatory signal cascade, at the initial stages of diabetes. Similarly, the effects of early resveratrol (RSV) treatment on the negative impact of diabetes on the different myocardial cell compartments remain to be defined. Methods: In vitro challenge of neonatal cardiomyocytes and fibroblasts to high glucose and in vivo/ex vivo experiments on a rat model of Streptozotocin-induced diabetes were used to specifically address these issues. Results: In vitro data indicated that, besides cardiomyocytes, neonatal fibroblasts contribute to generating initial changes in the myocardial environment, in terms of pro-inflammatory cytokine expression. These findings were mostly confirmed at the myocardial tissue level in diabetic rats, after three weeks of hyperglycemia. Specifically, monocyte chemoattractant protein-1 and Fractalkine were up-regulated and initial abnormalities in cardiomyocyte contractility occurred. At later stages of diabetes, a selective enhancement of pro-inflammatory macrophage M1 phenotype and a parallel reduction of anti-inflammatory macrophage M2 phenotype were associated with a marked disorganization of cardiomyocyte ultrastructural properties. RSV treatment inhibited pro-inflammatory cytokine production, leading to a recovery of cardiomyocyte contractile efficiency and a reduced inflammatory cell recruitment. Conclusion: Early RSV administration could inhibit the pro-inflammatory diabetic milieu sustained by different cardiac cell types. PMID:27854328

  13. Globular adiponectin induces a pro-inflammatory response in human astrocytic cells

    SciTech Connect

    Wan, Zhongxiao; Mah, Dorrian; Simtchouk, Svetlana; Klegeris, Andis; Little, Jonathan P.

    2014-03-28

    Highlights: • Adiponectin receptors are expressed in human astrocytes. • Globular adiponectin induces secretion of IL-6 and MCP-1 from cultured astrocytes. • Adiponectin may play a pro-inflammatory role in astrocytes. - Abstract: Neuroinflammation, mediated in part by activated brain astrocytes, plays a critical role in the development of neurodegenerative disorders, including Alzheimer’s disease (AD). Adiponectin is the most abundant adipokine secreted from adipose tissue and has been reported to exert both anti- and pro-inflammatory effects in peripheral tissues; however, the effects of adiponectin on astrocytes remain unknown. Shifts in peripheral concentrations of adipokines, including adiponectin, could contribute to the observed link between midlife adiposity and increased AD risk. The aim of the present study was to characterize the effects of globular adiponectin (gAd) on pro-inflammatory cytokine mRNA expression and secretion in human U373 MG astrocytic cells and to explore the potential involvement of nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphatidylinositide 3-kinases (PI3 K) signaling pathways in these processes. We demonstrated expression of adiponectin receptor 1 (adipoR1) and adipoR2 in U373 MG cells and primary human astrocytes. gAd induced secretion of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1, and gene expression of IL-6, MCP-1, IL-1β and IL-8 in U373 MG cells. Using specific inhibitors, we found that NF-κB, p38MAPK and ERK1/2 pathways are involved in gAd-induced induction of cytokines with ERK1/2 contributing the most. These findings provide evidence that gAd may induce a pro-inflammatory phenotype in human astrocytes.

  14. The anti-inflammatory effect of TR6 on LPS-induced mastitis in mice.

    PubMed

    Hu, Xiaoyu; Fu, Yunhe; Tian, Yuan; Zhang, Zecai; Zhang, Wenlong; Gao, Xuejiao; Lu, Xiaojie; Cao, Yongguo; Zhang, Naisheng

    2016-01-01

    [TRIAP]-derived decoy peptides have anti-inflammatory properties. In this study, we synthesized a TRIAP-derived decoy peptide (TR6) containing, the N-terminal portion of the third helical region of the [TIRAP] TIR domain (sequence "N"-RQIKIWFQNRRMKWK and -KPGFLRDPWCKYQML-"C"). We evaluated the effects of TR6 on lipopolysaccharide-induced mastitis in mice. In vivo, the mastitis model was induced by LPS administration for 24h, and TR6 treatment was initiated 1h before or after induction of LPS. In vitro, primary mouse mammary epithelial cells and neutrophils were used to investigate the effects of TR6 on LPS-induced inflammatory responses. The results showed that TR6 significantly inhibited mammary gland hisopathologic changes, MPO activity, and LPS-induced production of TNF-α, IL-1β and IL-6. In vitro, TR6 significantly inhibited LPS-induced TNF-α and IL-6 production and phosphorylation of NF-κB and MAPKs. In conclusion, this study demonstrated that the anti-inflammatory effect of TR6 against LPS-induced mastitis may be due to its ability to inhibit TLR4-mediated NF-κB and MAPK signaling pathways. TR6 may be a promising therapeutic reagent for mastitis treatment.

  15. Procyanidin dimer B2-mediated IRAK-M induction negatively regulates TLR4 signaling in macrophages

    SciTech Connect

    Sung, Nak-Yun; Yang, Mi-So; Song, Du-Sub; Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Park, Sang-Hyun; Lee, Ju-Woon; Park, Hyun-Jin; Kim, Jae-Hun; Byun, Eui-Baek; Byun, Eui-Hong

    2013-08-16

    Highlights: •Pro B2 elevated the expression of IRAK-M, a negative regulator of TLR signaling. •LPS-induced expression of cell surface molecules was inhibited by Pro B2. •LPS-induced production of pro-inflammatory cytokines was inhibited by Pro B2. •Pro B2 inhibited LPS-induced activation of MAPKs and NF-κB through IRAK-M. •Pro B2 inactivated naïve T cells by inhibiting LPS-induced cytokines via IRAK-M. -- Abstract: Polyphenolic compounds have been found to possess a wide range of physiological activities that may contribute to their beneficial effects against inflammation-related diseases; however, the molecular mechanisms underlying this anti-inflammatory activity are not completely characterized, and many features remain to be elucidated. In this study, we investigated the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by procyanidin dimer B2 (Pro B2) in macrophages. Pro B2 markedly elevated the expression of the interleukin (IL)-1 receptor-associated kinase (IRAK)-M protein, a negative regulator of TLR signaling. Lipopolysaccharide (LPS)-induced expression of cell surface molecules (CD80, CD86, and MHC class I/II) and production of pro-inflammatory cytokines (tumor necrosis factor-α, IL-1β, IL-6, and IL-12p70) were inhibited by Pro B2, and this action was prevented by IRAK-M silencing. In addition, Pro B2-treated macrophages inhibited LPS-induced activation of mitogen-activated protein kinases such as extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase and the translocation of nuclear factor κB and p65 through IRAK-M. We also found that Pro B2-treated macrophages inactivated naïve T cells by inhibiting LPS-induced interferon-γ and IL-2 secretion through IRAK-M. These novel findings provide new insights into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and the immune-pharmacological role of Pro B2 in the immune response against the development

  16. Mechanism for Prenatal LPS-Induced DA Neuron Loss

    DTIC Science & Technology

    2005-03-01

    enter the human chorioamniotic environment of the fetus in women with bacterial vaginosis (BV). BV increases pro-inflammatory cytokines, including...occur receptor-4, is a well known inducer of pro-inflammatory had their mother had bacterial vaginosis , would be at in- cytokines and has been shown...etiology of PD. We hypothesized that individuals born to mothers with bacterial vaginosis (BV), a well known Although genetic factors account for some cases

  17. Estradiol inhibits vascular endothelial cells pro-inflammatory activation induced by C-reactive protein.

    PubMed

    Cossette, Émilie; Cloutier, Isabelle; Tardif, Kim; DonPierre, Geneviève; Tanguay, Jean-François

    2013-01-01

    In addition of being an important inflammatory biomarker and a risk factor for cardiovascular disease, much evidence indicates that the C-reactive protein (CRP) contributes to the atherosclerosis development process. This plasmatic protein synthesized by hepatocytes in response to inflammation and tissue injury induces pro-inflammatory molecules' expression by endothelial cells (ECs). Previous studies showed that the 17β-estradiol (E2) has beneficial effects on vascular cells by reducing in vitro pro-inflammatory molecules expressions in EC. Therefore, we hypothesize that E2 blocks or reduces CRP-mediated inflammatory responses by modulating endogenous production of CRP in EC and/or activation mechanisms. Using human aortic ECs (HAECs), we first evaluated CRP production by vascular EC and second demonstrated its self-induction. Indeed, recombinant human CRP stimulation induces a fivefold increase of CRP expression. A 1-h pre-treatment of E2 at a physiologic dose (10(-9 )M) leads to an important decrease of CRP production suggesting a partial blockage of its amplification loop mechanism. Furthermore, in HAEC, E2 reduces the secretion of the most potent agonist of CRP induction, the IL-6, by 21 %. E2 pre-treatment also decreased the expression of pro-inflammatory molecules IL-8, VCAM-1, and ICAM-1 induced by CRP and involved in leukocytes recruitment. In addition, we demonstrated that E2 could restore vascular endothelial growth factor-mediated EC migration response impaired by CRP suggesting another pro-angiogenic property of this hormone. These findings suggest that E2 can interfere with CRP pro-inflammatory effects via activation signals using its rapid, non-genomic pathway that may provide a new mechanism to improve vascular repair.

  18. Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation.

    PubMed

    Oliveira, Marta I; Santos, Susana G; Oliveira, Maria J; Torres, Ana L; Barbosa, Mário A

    2012-07-24

    Macrophages and dendritic cells (DC) share the same precursor and play key roles in immunity. Modulation of their behaviour to achieve an optimal host response towards an implanted device is still a challenge. Here we compare the differentiation process and polarisation of these related cell populations and show that they exhibit different responses to chitosan (Ch), with human monocyte-derived macrophages polarising towards an anti-inflammatory phenotype while their DC counterparts display pro-inflammatory features. Macrophages and DC, whose interactions with biomaterials are frequently analysed using fully differentiated cells, were cultured directly on Ch films, rather than exposed to the polymer after complete differentiation. Ch was the sole stimulating factor and activated both macrophages and DC, without leading to significant T cell proliferation. After 10 d on Ch, macrophages significantly down-regulated expression of pro-inflammatory markers, CD86 and MHCII. Production of pro-inflammatory cytokines, particularly TNF-α, decreased with time for cells cultured on Ch, while anti-inflammatory IL-10 and TGF-β1, significantly increased. Altogether, these results suggest an M2c polarisation. Also, macrophage matrix metalloproteinase activity was augmented and cell motility was stimulated by Ch. Conversely, DC significantly enhanced CD86 expression, reduced IL-10 secretion and increased TNF-α and IL-1β levels. Our findings indicate that cells with a common precursor may display different responses, when challenged by the same biomaterial. Moreover, they help to further comprehend macrophage/DC interactions with Ch and the balance between pro- and anti-inflammatory signals associated with implant biomaterials. We propose that an overall pro-inflammatory reaction may hide the expression of anti-inflammatory cytokines, likely relevant for tissue repair/regeneration.

  19. TLR4-dependant pro-inflammatory effects of HMGB1 on human adipocyte.

    PubMed

    Gunasekaran, Manoj Kumar; Virama-Latchoumy, Anne-Laurence; Girard, Anne-Claire; Planesse, Cynthia; Guérin-Dubourg, Alexis; Ottosson, Lars; Andersson, Ulf; Césari, Maya; Roche, Régis; Hoareau, Laurence

    2016-01-01

    Chronic low grade inflammation is one of the major metabolic disorders in case of obesity and associated pathologies. By its important secretion function, the role of adipose tissue in this metabolic low grade inflammation is well known. Recently, it was demonstrated that the alarmin high mobility group box protein 1 (HMGB1) is involved in obesity-related pathologies by its increased serum levels in obese compared to normal weight individuals, and by its pro-inflammatory effects. However, the role of HMGB1 on adipocytes inflammation is poorly documented and we propose to investigate this point. Primary culture of human subcutaneous adipocytes were performed from human adipose tissue samples. Cells were treated with recombinant HMGB1 with/without anti-TLR4 antibody and inhibitors of NF-κB and P38 MAPK. Supernatants were collected for IL-6 and MCP-1 ELISA. HMGB1 initiates Toll-like receptor 4 (TLR4)-dependent activation of inflammation through the downstream NF-κB and P38 MAPK signaling pathway to upregulate the secretion of the pro-inflammatory cytokine IL-6. HMGB1 has pro-inflammatory effects on adipocytes. This reinforces the role of TLR4 in adipose tissue inflammation and antagonizing the HMGB1 inflammatory pathway could bring on new therapeutic targets to counteract obesity-associated pathologies.

  20. Hall of Fame among Pro-inflammatory Cytokines: Interleukin-6 Gene and Its Transcriptional Regulation Mechanisms

    PubMed Central

    Luo, Yang; Zheng, Song Guo

    2016-01-01

    Pro-inflammatory cytokines that are generated by immune system cells and mediate many kinds of immune responses are kinds of endogenous polypeptides. They are also the effectors of the autoimmune system. It is generally accepted that interleukin (IL)-4, IL-6, IL-9, IL-17, and tumor necrosis factor-α are pro-inflammatory cytokines; however, IL-6 becomes a protagonist among them since it predominately induces pro-inflammatory signaling and regulates massive cellular processes. It has been ascertained that IL-6 is associated with a large number of diseases with inflammatory background, such as anemia of chronic diseases, angiogenesis acute-phase response, bone metabolism, cartilage metabolism, and multiple cancers. Despite great progress in the relative field, the targeted regulation of IL-6 response for therapeutic benefits remains incompletely to be understood. Therefore, it is conceivable that understanding mechanisms of IL-6 from the perspective of gene regulation can better facilitate to determine the pathogenesis of the disease, providing more solid scientific basis for clinical treatment translation. In this review, we summarize the candidate genes that have been implicated in clinical target therapy from the perspective of gene transcription regulation. PMID:28066415

  1. Methane limit LPS-induced NF-κB/MAPKs signal in macrophages and suppress immune response in mice by enhancing PI3K/AKT/GSK-3β-mediated IL-10 expression

    PubMed Central

    Zhang, Xu; Li, Na; Shao, Han; Meng, Yan; Wang, Liping; Wu, Qian; Yao, Ying; Li, Jinbao; Bian, Jinjun; Zhang, Yan; Deng, Xiaoming

    2016-01-01

    Inflammatory diseases such as sepsis and autoimmune colitis, characterized by an overwhelming activation of the immune system and the counteracting anti-inflammatory response, remain a major health problem in worldwide. Emerging evidence suggests that methane have a protective effect on many animal models, like ischaemia reperfusion injury and diabetes-associated diseases. Whether methane could modulating inflammatory diseases remains largely unknown. Here we show that methane-rich saline (MS) ip treatment (16 ml/kg) alleviated endotoxin shock, bacteria-induced sepsis and dextran-sulfate-sodium-induced colitis in mice via decreased production of TNF-α and IL-6. In MS-treated macrophages, LPS-induced activation of NF-κb/MAPKs was attenuated. Interestingly, MS treatment significantly elevated the levels of IL-10 both in vitro and in vivo. Neutralization of IL-10 abrogated the therapeutic effect of MS. Moreover, anti-IL10 blockade partially restored the MS-mediated attenuation of NF-κb/MAPKs phosphorylation. We further found that MS resulted in markedly enhanced phosphorylation of GSK-3β and AKT, which both mediate the release of Il-10. Additionally, inhibition of PI3K attenuated MS-mediated p-GSK-3β and IL-10 production and reversed the suppressed activation of NF-κb/ MAPKs in response to LPS. Our results reveal a novel effect and mechanisms of methane and support the potential value of MS as a therapeutic approach in innate inflammatory diseases. PMID:27405597

  2. HMGB in Mollusk Crassostrea ariakensis Gould: Structure, Pro-Inflammatory Cytokine Function Characterization and Anti-Infection Role of Its Antibody

    PubMed Central

    Xu, Ting; Ye, Shigen; Luo, Ming; Zhu, Zewen; Wu, Xinzhong

    2012-01-01

    Background Crassostrea ariakensis Gould is a representative bivalve species and an economically important oyster in China, but suffers severe mortalities in recent years that are caused by rickettsia-like organism (RLO). Prevention and control of this disease is a priority for the development of oyster aquaculture. It has been proven that mammalian HMGB (high mobility group box) can be released extracellularly and acts as an important pro-inflammatory cytokine and late mediator of inflammatory reactions. In vertebrates, HMGB’s antibody (anti-HMGB) has been shown to confer significant protection against certain local and systemic inflammatory diseases. Therefore, we investigated the functions of Ca-HMGB (oyster HMGB) and anti-CaHMGB (Ca-HMGB’s antibody) in oyster RLO/LPS (RLO or LPS)-induced disease or inflammation. Methodology/Principal Findings Sequencing analysis revealed Ca-HMGB shares conserved structures with mammalians. Tissue-specific expression indicates that Ca-HMGB has higher relative expression in hemocytes. Significant continuous up-regulation of Ca-HMGB was detected when the hemocytes were stimulated with RLO/LPS. Recombinant Ca-HMGB protein significantly up-regulated the expression levels of some cytokines. Indirect immunofluorescence study revealed that Ca-HMGB localized both in the hemocyte nucleus and cytoplasm before RLO challenge, but mainly in the cytoplasm 12 h after challenge. Western blot analysis demonstrated Ca-HMGB was released extracellularly 4–12 h after RLO challenge. Anti-CaHMGB was added to the RLO/LPS-challenged hemocyte monolayer and real-time RT-PCR showed that administration of anti-CaHMGB dramatically reduced the rate of RLO/LPS-induced up-regulation of LITAF at 4–12 h after treatment. Flow cytometry analysis indicated that administration of anti-CaHMGB reduced RLO/LPS-induced hemocyte apoptosis and necrosis rates. Conclusions/Significance Ca-HMGB can be released extracellularly and its subcellular localization varies

  3. TLR4 mediates LPS-induced VEGF expression in odontoblasts.

    PubMed

    Botero, Tatiana M; Shelburne, Charles E; Holland, G Rex; Hanks, Carl T; Nör, Jacques E

    2006-10-01

    Lipopolysaccharide (LPS) from gram-negative bacteria cell walls such as Prevotella intermedia and Escherichia coli induce vascular endothelial growth factor (VEGF) expression in odontoblasts, but not in undifferentiated dental pulp cells. CD14 and TLR4 are responsible for LPS signaling in macrophages, but their expression levels and function in dental pulp cells are unknown. We showed here that murine odontoblast-like cells (MDPC-23) express CD14 and TLR4 by immunohistochemistry and flow cytometry. In contrast, undifferentiated dental pulp cells (OD-21) presented low or no expression of these two receptors. MDPC-23 cells showed CD14 and TLR4 up-regulation upon exposure to LPS, as determined by real time PCR. Dominant negative murine TLR4 (DN-mTLR4) transfected MDPC-23 cells did not show upregulated VEGF expression in response to LPS stimulation. These results demonstrate that odontoblast-like cells express CD14 and TLR4, and that LPS-induced VEGF expression is mediated, at least in part, by TLR4 signaling.

  4. Modulation of hepatic PPAR expression during Ft LVS LPS-induced protection from Francisella tularensis LVS infection

    PubMed Central

    2010-01-01

    Background It has been shown previously that administration of Francisella tularensis (Ft) Live Vaccine Strain (LVS) lipopolysaccharide (LPS) protects mice against subsequent challenge with Ft LVS and blunts the pro-inflammatory cytokine response. Methods To further investigate the molecular mechanisms that underlie Ft LVS LPS-mediated protection, we profiled global hepatic gene expression following Ft LVS LPS or saline pre-treatment and subsequent Ft LVS challenge using Affymetrix arrays. Results A large number of genes (> 3,000) were differentially expressed at 48 hours post-infection. The degree of modulation of inflammatory genes by infection was clearly attenuated by pre-treatment with Ft LVS LPS in the surviving mice. However, Ft LVS LPS alone had a subtle effect on the gene expression profile of the uninfected mice. By employing gene set enrichment analysis, we discovered significant up-regulation of the fatty acid metabolism pathway, which is regulated by peroxisome proliferator activated receptors (PPARs). Conclusions We hypothesize that the LPS-induced blunting of pro-inflammatory response in mouse is, in part, mediated by PPARs (α and γ). PMID:20082697

  5. Polyphenols from blueberries modulate inflammation cytokines in LPS-induced RAW264.7 macrophages.

    PubMed

    Cheng, Anwei; Yan, Haiqing; Han, Caijing; Wang, Wenliang; Tian, Yaoqi; Chen, Xiangyan

    2014-08-01

    Polyphenols including 3-glucoside/arabinoside/galactoside-based polymers of delphinidins, petunidins, peonidins, malvidins and cyanidins are one type of biological macromolecules, which are extraordinarily rich in blueberries. Anti-inflammatory activity of blueberry polyphenols (BPPs) was investigated by using lipopolysaccharide (LPS) induced RAW264.7 macrophages. The results showed that BPPs suppressed the gene expression of IL-1β (interleukin-1β), IL-6 and IL-12p35. The inhibition effect on IL-1β and IL-6 mRNA was most obvious at the concentration of 10-200μg/mL BPPs. But the inhibition effect on IL-12p35 mRNA was increased with the increasing concentration of BPPs. When fixed at 100μg/mL BPPs, the most significant inhibition on IL-1β, IL-6 and IL-12p35 mRNA expression was detected at 12-48h. In conclusion, BPPs exhibit anti-inflammation activity by mediating and modulating the balances in pro-inflammatory cytokines of IL-1β, IL-6, and IL-12.

  6. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    NASA Astrophysics Data System (ADS)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  7. Exogenous rhTRX reduces lipid accumulation under LPS-induced inflammation

    PubMed Central

    Han, Gi-Yeon; Lee, Eun-Kyung; Park, Hey-won; Kim, Hyun-Jung; Kim, Chan-Wha

    2014-01-01

    Redox-regulating molecule, recombinant human thioredoxin (rhTRX) which shows anti-inflammatory, and anti-oxidative effects against lipopolysaccharide (LPS)-stimulated inflammation and regulate protein expression levels. LPS-induced reactive oxygen intermediates (ROI) and NO production were inhibited by exogenous rhTRX. We identified up/downregulated intracellular proteins under the LPS-treated condition in exogenous rhTRX-treated A375 cells compared with non-LPS-treated cells via 2-DE proteomic analysis. Also, we quantitatively measured cytokines of in vivo mouse inflammation models using cytometry bead array. Exogenous rhTRX inhibited LPS-stimulated production of ROI and NO levels. TIP47 and ATP synthase may influence the inflammation-related lipid accumulation by affecting lipid metabolism. The modulation of skin redox environments during inflammation is most likely to prevent alterations in lipid metabolism through upregulation of TIP47 and ATP synthase and downregulation of inflammatory cytokines. Our results demonstrate that exogenous rhTRX has anti-inflammatory properties and intracellular regulatory activity in vivo and in vitro. Monitoring of LPS-stimulated pro-inflammatory conditions treated with rhTRX in A375 cells could be useful for diagnosis and follow-up of inflammation reduction related with candidate proteins. These results have a therapeutic role in skin inflammation therapy. PMID:24406320

  8. Moringa fruit inhibits LPS-induced NO/iNOS expression through suppressing the NF-κ B activation in RAW264.7 cells.

    PubMed

    Lee, Hyo-Jin; Jeong, Yun-Jeong; Lee, Tae-Sung; Park, Yoon-Yub; Chae, Whi-Gun; Chung, Il-Kyung; Chang, Hyeun-Wook; Kim, Cheorl-Ho; Choi, Yung-Hyun; Kim, Wun-Jae; Moon, Sung-Kwon; Chang, Young-Chae

    2013-01-01

    In this study, we evaluated the anti-inflammatory effects of moringa (Moringa oleifera Lam.), a natural biologically active substance, by determining its inhibitory effects on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated macrophage RAW264.7 cells. Extracts from different parts of moringa (root, leaf, and fruit) reduced LPS-induced nitric oxide (NO) release in a dose-dependent manner. The moringa fruit extract most effectively inhibited LPS-induced NO production and levels of inducible nitric oxide synthase (iNOS). The moringa fruit extract also was shown to suppress the production of inflammatory cytokines including IL-1β, TNF-α, and IL-6. Furthermore, moringa fruit extract inhibited the cytoplasmic degradation of I κ B -α and the nuclear translocation of p65 proteins, resulting in lower levels of NF -κ B transactivation. Collectively, the results of this study demonstrate that moringa fruit extract reduces the levels of pro-inflammatory mediators including NO , IL-1β, TNF-α, and IL-6 via the inhibition of NF -κ B activation in RAW264.7 cells. These findings reveal, in part, the molecular basis underlying the anti-inflammatory properties of moringa fruit extract.

  9. Macrophages from the synovium of active rheumatoid arthritis exhibit an activin A-dependent pro-inflammatory profile.

    PubMed

    Soler Palacios, Blanca; Estrada-Capetillo, Lizbeth; Izquierdo, Elena; Criado, Gabriel; Nieto, Concha; Municio, Cristina; González-Alvaro, Isidoro; Sánchez-Mateos, Paloma; Pablos, Jose Luis; Corbí, Angel L; Puig-Kröger, Amaya

    2015-02-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease whose pathogenesis and severity correlates with the presence of macrophage-derived pro-inflammatory cytokines within the inflamed synovium. Macrophage-derived cytokines fuel the pathological processes in RA and are targets of clinically successful therapies. However, although macrophage polarization determines cytokine production, the polarization state of macrophages in RA joints remains poorly defined. To dissect the molecular basis for the tissue-damaging effects of macrophages in RA joints, we undertook the phenotypic and transcriptomic characterization of ex vivo isolated CD14(+) RA synovial fluid (RA-SF) macrophages. Flow cytometry and gene profiling indicated that RA-SF macrophages express pro-inflammatory polarization markers (MMP12, EGLN3, CCR2), lack expression of markers associated with homeostatic and anti-inflammatory polarization (IGF1, HTR2B) and exhibit a transcriptomic profile that resembles the activin A-dependent gene signature of pro-inflammatory in vitro-generated macrophages. In fact, high levels of Smad-activating activin A were found in RA-SF and, accordingly, the Smad signalling pathway was activated in ex vivo-isolated RA-SF macrophages. In vitro experiments on monocytes and macrophages indicated that RA-SF promoted the acquisition of pro-inflammatory markers (INHBA, MMP12, EGLN3, CCR2) but led to a significant reduction in the expression of genes associated with homeostasis and inflammation resolution (FOLR2, SERPINB2, IGF1, CD36), thus confirming the pro-inflammatory polarization ability of RA-SF. Importantly, the macrophage-polarizing ability of RA-SF was inhibited by an anti-activin A-neutralizing antibody, thus demonstrating that activin A mediates the pro-inflammatory macrophage-polarizing ability of RA-SF. Moreover, and in line with these findings, multicolour immunofluorescence evidenced that macrophages within RA synovial membranes (RA-SM) also express pro-inflammatory

  10. Suppression of Inflammatory Responses by Black Rice Extract in RAW 264.7 Macrophage Cells via Downregulation of NF-kB and AP-1 Signaling Pathways.

    PubMed

    Limtrakul, Pornngarm; Yodkeeree, Supachai; Pitchakarn, Pornsiri; Punfa, Wanisa

    2015-01-01

    Anthocyanin, a phenolic compound, has been reported to have an anti-inflammatory effect against lipopolysaccharide (LPS) induced changes in immune cells. However, little is known about the molecular mechanisms underlying its anti-inflammatory effects. Few research studies have concerned the anti-inflammation properties of colored rice extract as a functional material. Therefore, the purpose of this study was to examine anti-inflammatory effects of the polar fraction of black rice whole grain extracts (BR-WG-P) that features a high anthocyanin content. Our results showed that BR-WG-P significantly inhibited LPS-induced pro- inflammatory mediators, including production of NO and expression of iNOS and COX-2. In addition, secretion of pro-inflammatory cytokines including TNF-α and IL-6 was also significantly inhibited. Moreover, BR-WG-P and anthocyanin inhibited NF-kB and AP-1 translocation into the nucleus. BR-WG-P also decreased the phosphorylation of ERK, p38 and JNK in a dose dependent manner. These results suggested that BR-WG-P might suppress LPS-induced inflammation via the inhibition of the MAPK signaling pathway leading to decrease of NF-kB and AP-1 translocation. All of these results indicate that BR-WG-P exhibits therapeutic potential associated with the anthocyanin content in the extract for treating inflammatory diseases associated with cancer.

  11. Inhibition of Pro-inflammatory Mediators and Cytokines by Chlorella Vulgaris Extracts

    PubMed Central

    Sibi, G.; Rabina, Santa

    2016-01-01

    Objective: The aim of this study was to determine the in vitro anti-inflammatory activities of solvent fractions from Chlorella vulgaris by inhibiting the production of pro-inflammatory mediators and cytokines. Methods: Methanolic extracts (80%) of C. vulgaris were prepared and partitioned with solvents of increasing polarity viz., n-hexane, chloroform, ethanol, and water. Various concentrations of the fractions were tested for cytotoxicity in RAW 264.7 cells using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, and the concentrations inducing cell growth inhibition by about 50% (IC50) were chosen for further studies. Lipopolysaccharide (LPS) stimulated RAW 264.7 cells were treated with varying concentrations of C. vulgaris fractions and examined for its effects on nitric oxide (NO) production by Griess assay. The release of prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6) were quantified using enzyme-linked immunosorbent assay using Celecoxib and polymyxin B as positive controls. Results: MTT assay revealed all the solvent fractions that inhibited cell growth in a dose-dependent manner. Of all the extracts, 80% methanolic extract exhibited the strongest anti-inflammatory activity by inhibiting NO production (P < 0.01), PGE2 (P < 0.05), TNF-α, and IL-6 (P < 0.001) release in LPS induced RAW 264.7 cells. Both hexane and chloroform fractions recorded a significant (P < 0.05) and dose-dependent inhibition of LPS induced inflammatory mediators and cytokines in vitro. The anti-inflammatory effect of ethanol and aqueous extracts was not significant in the study. Conclusion: The significant inhibition of inflammatory mediators and cytokines by fractions from C. vulgaris suggests that this microalga would be a potential source of developing anti-inflammatory agents and a good alternate for conventional steroidal and nonsteroidal anti-inflammatory drugs. SUMMARY C. vulgaris extracts have potential anti

  12. miR-135b-5p inhibits LPS-induced TNFα production via silencing AMPK phosphatase Ppm1e

    PubMed Central

    Li, Ping; Fan, Jian-bo; Gao, Yanxia; Zhang, Ming; Zhang, Li; Yang, Ning; Zhao, Xiaojing

    2016-01-01

    AMPK activation in monocytes could suppress lipopolysaccharide (LPS)-induced tissue-damaging TNFa production. We are set to provoke AMPK activation via microRNA (“miRNA”) downregulating its phosphatase Ppm1e. In human U937 and THP-1 monocytes, forced expression of microRNA-135b-5p (“miR-135b-5p”) downregulated Ppm1e and activated AMPK signaling. Further, LPS-induced TNFα production in above cells was dramatically attenuated. Ppm1e shRNA knockdown in U937 cells also activated AMPK and inhibited TNFα production by LPS. AMPK activation is required for miR-135b-induced actions in monocytes, AMPKα shRNA knockdown or T172A dominant negative mutation almost abolished miR-135b-5p's suppression on LPS-induced TNFα production. Significantly, miR-135b-5p inhibited LPS-induced reactive oxygen species (ROS) production, NFκB activation and TNFα mRNA expression in human macrophages. AMPKα knockdown or mutation again abolished above actions by miR-135b-5p. We conclude that miR-135b-5p expression downregulates Ppm1e to activate AMPK signaling, which inhibits LPS-induced TNFα production via suppressing ROS production and NFκB activation. PMID:27793001

  13. Tenocytes, pro-inflammatory cytokines and leukocytes: a relationship?

    PubMed Central

    Al-Sadi, Onays; Schulze-Tanzil, Gundula; Kohl, Benjamin; Lohan, Anke; Lemke, Marion; Ertel, Wolfgang; John, Thilo

    2011-01-01

    Summary Leukocyte derived pro-inflammatory mediators could be involved in tendon healing and scar formation. Hence, the effect of autologous leukocytes (PBMCs, peripheral blood mononuclear cells and neutrophils) on primary rabbit Achilles tenocytes gene expression was tested in insert assisted co-cultures. Subsequently, tenocytes gene expression of extra-cellular matrix (ECM) components (type I collagen, decorin, fibronectin), the cell-ECM receptor β1-integrin, the angiogenic factor myodulin, ECM degrading matrix-metalloproteinase (MMP)1 and pro-inflammatory cytokines (interleukin [IL]-1β, tumour necrosis factor [TNFα] and IL-6) was analysed. The only significant effect of leukocytes on tenocytes ECM genes expression was a suppression of type I collagen by neutrophils combined with TNFα stimulation. The same effect could be observed analysing the β1-integrin and myodulin gene expression. However, PBMCs up-regulated significantly cytokine and MMP1 gene expression in tenocytes. These in vitro results suggest that mononuclear cells could present an exogenic stimulus for the induction of pro-inflammatory and catabolic mediators in tendon. PMID:23738251

  14. MyD88-dependent pro-inflammatory cytokine response contributes to lethal toxicity of staphylococcal enterotoxin B in mice.

    PubMed

    Kissner, Teri L; Ruthel, Gordon; Cisney, Emily D; Ulrich, Robert G; Fernandez, Stefan; Saikh, Kamal U

    2011-10-01

    An elevated pro-inflammatory cytokine response is the primary cause of death by toxic shock after exposure to staphylococcal enterotoxin B (SEB). Identifying an intracellular signal mediator that predominantly controls the pro-inflammatory response is important for developing a therapeutic strategy. We examined the role of the signaling adaptor MyD88 in cell culture and in a mouse model of toxic shock. Our results indicated that elevated tumor necrosis factor-α, interferon-γ, interleukin (IL)-1α/β and IL-6 production from mouse spleen cells treated with SEB alone or in combination with lipopolysaccharide (LPS) was regulated by MyD88. Elevated levels of MyD88 protein in spleen cells, as well as in CD11c(+) or Mac3(+) cells, and activation of nuclear factor-κB in spleen cells were observed in mice treated with SEB. An SEB-dose dependent lethality was observed in LPS-potentiated and in D-galactosamine-sensitized mice. D-Galactosamine treatment of spleen cells had no effect in cytokine induction but rather increased the sensitivity to toxic shock in mice. Our results demonstrated an impaired pro-inflammatory cytokine production by spleen cells of MyD88(-/-) mice in response to SEB or SEB plus LPS. Most importantly, MyD88(-/-) mice were resistant to SEB-induced death. These results demonstrate that MyD88-dependent pro-inflammatory signaling is responsible for SEB intoxication. In addition, our studies also demonstrated that LPS potentiation, in comparison to D-galactosamine sensitization, contributes to a stronger SEB-induced lethality. This is due to the pro-inflammatory cytokine response elicited by MyD88 after exposure to SEB and LPS. These findings offer an important insight upon SEB intoxication and subsequent therapy targeting MyD88.

  15. Trapa japonica Pericarp Extract Reduces LPS-Induced Inflammation in Macrophages and Acute Lung Injury in Mice.

    PubMed

    Kim, Yon-Suk; Hwang, Jin-Woo; Jang, Jae-Hyuk; Son, Sangkeun; Seo, Il-Bok; Jeong, Jae-Hyun; Kim, Ee-Hwa; Moon, Sang-Ho; Jeon, Byong-Tae; Park, Pyo-Jam

    2016-03-21

    In this study, we found that chloroform fraction (CF) from TJP ethanolic extract inhibited lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and intracellular ROS in RAW264.7 cells. In addition, expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) genes was reduced, as evidenced by western blot. Our results indicate that CF exerts anti-inflammatory effects by down-regulating expression of iNOS and COX-2 genes through inhibition of MAPK (ERK, JNK and p38) and NF-κB signaling. Similarly we also evaluated the effects of CF on LPS-induced acute lung injury. Male Balb/c mice were pretreated with dexamethasone or CF 1 h before intranasal instillation of LPS. Eight hours after LPS administration, the inflammatory cells in the bronchoalveolar lavage fluid (BALF) were determined. The results indicated that CF inhibited LPS-induced TNF-α and IL-6 production in a dose dependent manner. It was also observed that CF attenuated LPS-induced lung histopathologic changes. In conclusion, these data demonstrate that the protective effect of CF on LPS-induced acute lung injury (ALI) in mice might relate to the suppression of excessive inflammatory responses in lung tissue. Thus, it can be suggested that CF might be a potential therapeutic agent for ALI.

  16. 4,7-Dimethoxy-5-methyl-1,3-benzodioxole from Antrodia camphorata inhibits LPS-induced inflammation via suppression of NF-κB and induction HO-1 in RAW264.7 cells.

    PubMed

    Shie, Pei-Hsin; Wang, Sheng-Yang; Lay, Horng-Liang; Huang, Guan-Jhong

    2016-02-01

    Several benzenoid compounds have been isolated from Antrodia camphorata are known to have excellent anti-inflammatory activity. In this study, we investigated the anti-inflammatory potential of 4,7-dimethoxy-5-methyl-1,3-benzodioxole (DMB), one of the major benzenoid compounds isolated from the mycelia of A. camphorata. DMB significantly decreased the LPS-induced production of pro-inflammatory molecules, such as nitric oxide (NO), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in RAW264.7 cells. In addition, DMB suppressed the protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose dependent manner. Moreover, DMB significantly suppressed LPS-induced nuclear translocation of nuclear factor-κB (NF-κB), and this inhibition was found to be associated with decreases in the phosphorylation and degradation of its inhibitor, inhibitory κB-α (IκB-α). Moreover, we found that DMB markedly inhibited the protein expression level of Toll-like receptor 4 (TLR4). Furthermore, treatment with DMB significantly increased hemoxygenase-1 (HO-1) expression in RAW264.7 cells, which is further confirmed by hemin, a HO-1 enhancer, significantly attenuated the LPS-induced pro-inflammatory molecules and iNOS and TLR4 protein levels. Taken together, the present study suggests that DMB may have therapeutic potential for the treatment of inflammatory diseases.

  17. Prostaglandin EP2 and EP4 receptors modulate expression of the chemokine CCL2 (MCP-1) in response to LPS-induced renal glomerular inflammation.

    PubMed

    Zahner, Gunther; Schaper, Melanie; Panzer, Ulf; Kluger, Malte; Stahl, Rolf A K; Thaiss, Friedrich; Schneider, André

    2009-08-27

    The pro-inflammatory chemokine CCL2 [chemokine (Cys-Cys motif) ligand 2; also known as MCP-1 (monocyte chemotactic protein-1)] is up-regulated in the glomerular compartment during the early phase of LPS (lipopolysaccharide)-induced nephritis. This up-regulation also occurs in cultured MCs (mesangial cells) and is more pronounced in MCs lacking the PGE2 (prostaglandin E2) receptor EP2 or in MCs treated with a prostaglandin EP4 receptor antagonist. To examine a possible feedback mechanism of EP receptor stimulation on CCL2 expression, we used an in vitro model of MCs with down-regulated EP receptor expression. Selectively overexpressing the various EP receptors in these cells then allows the effects on the LPS-induced CCL2 expression to be examined. Cells were stimulated with LPS and CCL2 gene expression was examined and compared with LPS-stimulated, mock-transfected PTGS2 [prostaglandin-endoperoxide synthase 2, also known as COX-2 (cyclo-oxygenase-2)]-positive cells. Overexpression of EP1, as well as EP3, had no effect on LPS-induced Ccl2 mRNA expression. In contrast, overexpression of EP2, as well as EP4, significantly decreased LPS-induced CCL2 expression. These results support the hypothesis that PTGS2-derived prostaglandins, when strongly induced, counter-balance inflammatory processes through the EP2 and EP4 receptors in MCs.

  18. Globular adiponectin induces a pro-inflammatory response in human astrocytic cells.

    PubMed

    Wan, Zhongxiao; Mah, Dorrian; Simtchouk, Svetlana; Klegeris, Andis; Little, Jonathan P

    2014-03-28

    Neuroinflammation, mediated in part by activated brain astrocytes, plays a critical role in the development of neurodegenerative disorders, including Alzheimer's disease (AD). Adiponectin is the most abundant adipokine secreted from adipose tissue and has been reported to exert both anti- and pro-inflammatory effects in peripheral tissues; however, the effects of adiponectin on astrocytes remain unknown. Shifts in peripheral concentrations of adipokines, including adiponectin, could contribute to the observed link between midlife adiposity and increased AD risk. The aim of the present study was to characterize the effects of globular adiponectin (gAd) on pro-inflammatory cytokine mRNA expression and secretion in human U373 MG astrocytic cells and to explore the potential involvement of nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphatidylinositide 3-kinases (PI3K) signaling pathways in these processes. We demonstrated expression of adiponectin receptor 1 (adipoR1) and adipoR2 in U373 MG cells and primary human astrocytes. gAd induced secretion of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1, and gene expression of IL-6, MCP-1, IL-1β and IL-8 in U373 MG cells. Using specific inhibitors, we found that NF-κB, p38MAPK and ERK1/2 pathways are involved in gAd-induced induction of cytokines with ERK1/2 contributing the most. These findings provide evidence that gAd may induce a pro-inflammatory phenotype in human astrocytes.

  19. Hyperosmolarity attenuates TNFα–mediated pro-inflammatory activation of human pulmonary microvascular endothelial cells

    PubMed Central

    Banerjee, Anirban; Moore, Ernest E.; McLaughlin, Nathan J.; Lee, Luis; Jones, Wilbert L.; Johnson, Jeffrey L.; Nydam, Trevor L.; Silliman, Christopher C.

    2013-01-01

    Firm neutrophil (PMN)-endothelial (EC) adhesion is crucial to the PMN-mediated hyperinflammation observed in acute lung injury. Hypertonic saline (HTS) used for resuscitation of hemorrhagic shock has been associated with a decreased incidence of PMN-mediated lung injury/acute respiratory distress syndrome. We hypothesize that physiologically accessible hypertonic incubation (170mM vs. 140mM, osmolarity ranging from 360-300 mOsm/L) inhibits pro-inflammatory activation of human pulmonary microvascular endothelial cells (HMVECs). Pro-inflammatory activation of HMVECs was investigated in response to TNFα including IL-8 release, ICAM-1 surface expression, PMN adhesion, and signaling mechanisms under both isotonic (control) and hypertonic conditions. Hyperosmolarity alone had no effect on either basal IL-8 release or ICAM-1 surface expression, but did lead to concentration-dependent decreases in TNFα–induced IL-8 release, ICAM-1 surface expression, and PMN:HMVEC adhesion. Conversely, HTS activated p38 mitogen-activated protein kinase (MAPK) and enhanced TNFα activation of p38 MAPK. Despite this basal activation, hyperosmolar incubation attenuated TNFα stimulated IL-8 release and ICAM-1 surface expression and subsequent PMN adherence, while p38 MAPK inhibition did not further influence the effects of hyperosmolar conditions on ICAM-1 surface expression. In addition, TNFα induced NF-kB DNA binding, but HTS conditions attenuated this by 31% (p<0.01). In conclusion, HTS reduces PMN:HMVEC adhesion as well as TNFα-induced pro-inflammatory activation of primary HMVECs via attenuation of NF-kB signaling. PMID:23364439

  20. BQ-123 prevents LPS-induced preterm birth in mice via the induction of uterine and placental IL-10

    SciTech Connect

    Olgun, Nicole S.; Hanna, Nazeeh; Reznik, Sandra E.

    2015-02-01

    Preterm birth (PTB), defined as any delivery occurring prior to the completion of 37 weeks' gestation, currently accounts for 11–12% of all births in the United States. Maternal genito-urinary infections account for up to 40% of all PTBS and induce a pro-inflammatory state in the host. The potent vasoconstrictor Endothelin-1 (ET-1) is known to be upregulated in the setting of infection, and elicits its effect by binding to the ET{sub A} receptor. We have previously shown that antagonism of the ET{sub A} receptor with BQ-123 is capable of preventing LPS-induced PTB in mice. We hypothesize that the administration of BQ-123 post LPS exposure will dismantle a positive feedback loop observed with pro-inflammatory cytokines upstream of ET-1. On GD 15.5, pregnant C57BL/6 mice were injected with PBS, LPS, BQ-123, or LPS + BQ-123. Changes at both the level of transcription and translation were observed in uterus and placenta in the ET-1 axis and in pro- and anti-inflammatory cytokines over the course of 12 h. We discovered that BQ-123, when administered 10 h post LPS, is capable of increasing production of uterine and placental Interleukin-10, causing a shift away from the pro-inflammatory state. We also observed that antagonism of the ET{sub A} receptor decreased IL-1β and TNFα in the placenta while also decreasing transcription of ET-1 in the uterus. Our results reinforce the role of ET-1 at the maternal fetal interface and highlight the potential benefit of ET{sub A} receptor blockade via the suppression of ET-1, and induction of a Th2 cytokine dominant state. - Highlights: • The pro-inflammatory response to LPS in the uterus and placenta is ET-1 dependent. • ET{sub A} blockade triggers up-regulation of IL-10 in uterus and placenta. • A positive feedback loop drives ET-1 expression in gestational tissue.

  1. Aβ and Inflammatory Stimulus Activate Diverse Signaling Pathways in Monocytic Cells: Implications in Retaining Phagocytosis in Aβ-Laden Environment

    PubMed Central

    Savchenko, Ekaterina; Malm, Tarja; Konttinen, Henna; Hämäläinen, Riikka H.; Guerrero-Toro, Cindy; Wojciechowski, Sara; Giniatullin, Rashid; Koistinaho, Jari; Magga, Johanna

    2016-01-01

    Background: Accumulation of amyloid β (Aβ) is one of the main hallmarks of Alzheimer’s disease (AD). The enhancement of Aβ clearance may provide therapeutic means to restrict AD pathology. The cellular responses to different forms of Aβ in monocytic cells are poorly known. We aimed to study whether different forms of Aβ induce inflammatory responses in monocytic phagocytes and how Aβ may affect monocytic cell survival and function to retain phagocytosis in Aβ-laden environment. Methods: Monocytic cells were differentiated from bone marrow hematopoietic stem cells (HSC) in the presence of macrophage-colony stimulating factor. Monocytic cells were stimulated with synthetic Aβ42 and intracellular calcium responses were recorded with calcium imaging. The formation of reactive oxygen species (ROS), secretion of cytokines and cell viability were also assessed. Finally, monocytic cells were introduced to native Aβ deposits ex vivo and the cellular responses in terms of cell viability, pro-inflammatory activation and phagocytosis were determined. The ability of monocytic cells to phagocytose Aβ plaques was determined after intrahippocampal transplantation in vivo. Results: Freshly solubilized Aβ induced calcium oscillations, which persisted after removal of the stimulus. After few hours of aggregation, Aβ was not able to induce oscillations in monocytic cells. Instead, lipopolysaccharide (LPS) induced calcium responses divergent from Aβ-induced response. Furthermore, while LPS induced massive production of pro-inflammatory cytokines, neither synthetic Aβ species nor native Aβ deposits were able to induce pro-inflammatory activation of monocytic cells, contrary to primary microglia. Finally, monocytic cells retained their viability in the presence of Aβ and exhibited phagocytic activity towards native fibrillar Aβ deposits and congophilic Aβ plaques. Conclusion: Monocytic cells carry diverse cellular responses to Aβ and inflammatory stimulus LPS. Even

  2. Sonchus asper extract inhibits LPS-induced oxidative stress and pro-inflammatory cytokine production in RAW264.7 macrophages

    PubMed Central

    Wang, Lan; Xu, Ming Lu; Liu, Jie; Wang, You; Hu, Jian He

    2015-01-01

    BACKGROUND/OBJECTIVES Sonchus asper is used extensively as an herbal anti-inflammatory for treatment of bronchitis, asthma, wounds, burns, and cough; however, further investigation is needed in order to understand the underlying mechanism. To determine its mechanism of action, we examined the effects of an ethyl acetate fraction (EAF) of S. asper on nitric oxide (NO) production and prostaglandin-E2 levels in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. MATERIALS/METHODS An in vitro culture of RAW264.7 macrophages was treated with LPS to induce inflammation. RESULTS Treatment with EAF resulted in significant suppression of oxidative stress in RAW264.7 macrophages as demonstrated by increased endogenous superoxide dismutase (SOD) activity and intracellular glutathione levels, decreased generation of reactive oxygen species and lipid peroxidation, and restoration of the mitochondrial membrane potential. To confirm its anti-inflammatory effects, analysis of expression of inducible NO synthase, cyclooxygenase-2, tumor necrosis factor-α, and the anti-inflammatory cytokines IL-1β and IL-6 was performed using semi-quantitative RT-PCR. EAF treatment resulted in significantly reduced dose-dependent expression of all of these factors, and enhanced expression of the antioxidants MnSOD and heme oxygenase-1. In addition, HPLC fingerprint results suggest that rutin, caffeic acid, and quercetin may be the active ingredients in EAF. CONCLUSIONS Taken together, findings of this study imply that the anti-inflammatory effect of EAF on LPS-stimulated RAW264.7 cells is mediated by suppression of oxidative stress. PMID:26634045

  3. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation

    PubMed Central

    Hartig, Ellen I.; Zhu, Shusen; King, Benjamin L.

    2016-01-01

    ABSTRACT Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and upregulated genes associated with defense response and immune system processes. In adulthood the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. PMID:27444789

  4. Oscillation of p38 activity controls efficient pro-inflammatory gene expression

    PubMed Central

    Tomida, Taichiro; Takekawa, Mutsuhiro; Saito, Haruo

    2015-01-01

    The p38 MAP kinase signalling pathway controls inflammatory responses and is an important target of anti-inflammatory drugs. Although pro-inflammatory cytokines such as interleukin-1β (IL-1β) appear to induce only transient activation of p38 (over ∼60 min), longer cytokine exposure is necessary to induce p38-dependent effector genes. Here we study the dynamics of p38 activation in individual cells using a Förster resonance energy transfer (FRET)-based p38 activity reporter. We find that, after an initial burst of activity, p38 MAPK activity subsequently oscillates for more than 8 h under continuous IL-1β stimulation. However, as this oscillation is asynchronous, the measured p38 activity population average is only slightly higher than basal level. Mathematical modelling, which we have experimentally verified, indicates that the asynchronous oscillation of p38 is generated through a negative feedback loop involving the dual-specificity phosphatase MKP-1/DUSP1. We find that the oscillatory p38 activity is necessary for efficient expression of pro-inflammatory genes such as IL-6, IL-8 and COX-2. PMID:26399197

  5. Surface modification of multiwall carbon nanotubes determines the pro-inflammatory outcome in macrophage.

    PubMed

    Zhang, Ting; Tang, Meng; Kong, Lu; Li, Han; Zhang, Tao; Xue, Yuying; Pu, Yuepu

    2015-03-02

    Carbon nanotubes (CNTs) are widely used in industry and biomedicine. While several studies have focused on biological matters, attempts to systematically elucidate the toxicity mechanisms of CNTs are limited. The aim of the present study was to evaluate and compare the cytotoxicity of raw multi-walled carbon nanotubes (MWCNTs) and MWCNTs functionalized with carboxylation (MWCNTs-COOH) or polyethylene glycol (MWCNTs-PEG) in murine macrophages. Our results show that only MWCNTs-COOH and raw MWCNTs alter the oxidative potential of macrophages by increasing reactive oxygen species and the expression of pro-inflammatory factors in both a concentration- and surface coating-dependent manner. The data suggest that compare with raw MWCNTs and MWCNTs-PEG, the MWCNTs-COOH produces a significant increase in ROS generation, interruption of ATP synthesis, and activation of the MAPK and NF-κB signaling pathways, which in turn upregulates IL-1β, IL-6, TNF-α, and iNOS to trigger cell death. These findings suggest that contributory cellar uptake caused by physicochemical factors rather than residual metal catalysts plays a role in ROS-mediated pro-inflammatory responses in vitro.

  6. Transcutaneous electrical nerve stimulation (TENS) accelerates cutaneous wound healing and inhibits pro-inflammatory cytokines.

    PubMed

    Gürgen, Seren Gülşen; Sayın, Oya; Cetin, Ferihan; Tuç Yücel, Ayşe

    2014-06-01

    The purpose of this study was to evaluate transcutaneous electrical nerve stimulation (TENS) and other common treatment methods used in the process of wound healing in terms of the expression levels of pro-inflammatory cytokines. In the study, 24 female and 24 male adult Wistar-Albino rats were divided into five groups: (1) the non-wounded group having no incision wounds, (2) the control group having incision wounds, (3) the TENS (2 Hz, 15 min) group, (4) the physiological saline (PS) group and (5) the povidone iodine (PI) group. In the skin sections, interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were assessed with enzyme-linked immunosorbent assay and immunohistochemical methods. In the non-wounded group, the expression of IL-1β, IL-6, and TNF-α signaling molecules was weaker in the whole tissue; however, in the control group, significant inflammatory response occurred, and strong cytokine expression was observed in the dermis, granulation tissue, hair follicles, and sebaceous glands (P < 0.05). In the TENS group, the decrease in TNF-α, IL-1β, and IL-6 immunoreaction in the skin was significant compared to the other forms of treatment (P < 0.05). Distinctive decreases of pro-inflammatory cytokines observed in the dermis in the TENS group suggest that TENS shortened the healing process by inhibating the inflammation phase.

  7. Edible blue-green algae reduce the production of pro-inflammatory cytokines by inhibiting NF-κB pathway in macrophages and splenocytes

    PubMed Central

    Ku, Chai Siah; Pham, Tho X.; Park, Youngki; Kim, Bohkyung; Shin, Min; Kang, Insoo; Lee, Jiyoung

    2013-01-01

    Background Chronic inflammation contributes to the development of pathological disorders including insulin resistance and atherosclerosis. Identification of anti-inflammatory natural products can prevent the inflammatory diseases. Methods Anti-inflammatory effects of blue-green algae (BGA), i.e., Nostoc commune var. Sphaeroides Kützing (NO) and Spirulina Platensis (SP), were compared in RAW 264.7 and mouse bone marrow-derived macrophages (BMM) as well as splenocytes from apolipoprotein E knockout (apoE−/−) mice fed BGA. Results When macrophages pretreated with 100 μg/ml NO lipid extract (NOE) or SP lipid extract (SPE) were activated by lipopolysaccharide (LPS), expression and secretion of pro-inflammatory cytokines, such as tumor necrosis factor α (TNFα), interleukin 1β (IL-1β), and IL-6, were significantly repressed. NOE and SPE also significantly repressed the expression of TNFα and IL-1β in BMM. LPS-induced secretion of IL-6 was lower in splenocytes from apoE−/− fed an atherogenic diet containing 5% NO or SP for 12 weeks. In RAW 264.7 macrophages, NOE and SPE markedly decreased nuclear translocation of NF-κB. The degree of repression of pro-inflammatory gene expression by algal extracts was much stronger than that of SN50, an inhibitor of NF-κB nuclear translocation. Trichostatin A, a pan histone deacetylase inhibitor, increased basal expression of IL-1β and attenuated the repression of the gene expression by SPE. SPE significantly down-regulated mRNA abundance of 11 HDAC isoforms, consequently increasing acetylated histone 3 levels. Conclusion NOE and SPE repress pro-inflammatory cytokine expression and secretion in macrophages and splenocytes via inhibition of NF-κB pathway. Histone acetylation state is likely involved in the inhibition. General significance This study underscores natural products can exert anti-inflammatory effects by epigenetic modifications such as histone acetylation. PMID:23357040

  8. Particles from wood smoke and traffic induce differential pro-inflammatory response patterns in co-cultures

    SciTech Connect

    Kocbach, Anette Herseth, Jan Inge; Lag, Marit; Refsnes, Magne; Schwarze, Per E.

    2008-10-15

    The inflammatory potential of particles from wood smoke and traffic has not been well elucidated. In this study, a contact co-culture of monocytes and pneumocytes was exposed to 10-40 {mu}g/cm{sup 2} of particles from wood smoke and traffic for 12, 40 and 64 h to determine their influence on pro-inflammatory cytokine release (TNF-{alpha}, IL-1, IL-6, IL-8) and viability. To investigate the role of organic constituents in cytokine release the response to particles, their organic extracts and the washed particles were compared. Antagonists were used to investigate source-dependent differences in intercellular signalling (TNF-{alpha}, IL-1). The cytotoxicity was low after exposure to particles from both sources. However, wood smoke, and to a lesser degree traffic-derived particles, induced a reduction in cell number, which was associated with the organic fraction. The release of pro-inflammatory cytokines was similar for both sources after 12 h, but traffic induced a greater release than wood smoke particles with increasing exposure time. The organic fraction accounted for the majority of the cytokine release induced by wood smoke, whereas the washed traffic particles induced a stronger response than the corresponding organic extract. TNF-{alpha} and IL-1 antagonists reduced the release of IL-8 induced by particles from both sources. In contrast, the IL-6 release was only reduced by the IL-1 antagonist during exposure to traffic-derived particles. In summary, particles from wood smoke and traffic induced differential pro-inflammatory response patterns with respect to cytokine release and cell number. Moreover, the influence of the organic particle fraction and intercellular signalling on the pro-inflammatory response seemed to be source-dependent.

  9. NF-κB activation primes cells to a pro-inflammatory polarized response to a TLR7 agonist

    PubMed Central

    Lee, Jongdae; Hayashi, Masaaki; Lo, Jeng-Fan; Fearns, Colleen; Chu, Wen-Ming; Luo, Yunping; Xiang, Rong; Chuang, Tsung-Hsien

    2009-01-01

    Toll-like receptor 7 (TLR7) mediates anti-viral immunity by recognizing ssRNA viruses. Small molecular weight TLR7 agonists have been approved, or are being evaluated, for treatment of cancers or infectious diseases. Although TLR7 is predominantly expressed in a restricted set of immune cell types including plasmacytoid dendritic cells (pDCs), it is also expressed in non-native expressing cells (e.g., hepatocytes) under certain circumstances. To elucidate the molecular basis of TLR7 induction by pro-inflammatory stimulation and the subsequent cellular responses in these non-native TLR7-expressing cell types, we firstly cloned and characterized the 5′-promoter region of TLR7. The proximal region of this promoter drives the transcription of the TLR7 gene. Pro-inflammatory stimuli activated TLR7 transcription via a NF-κB binding motif in this region, and this activation could be blocked by mutation of the NF-κB binding site or addition of NF-κB inhibitors. Further studies showed that pretreatment of the Hep3B hepatocytes with TNF-α or IL-1 rendered them responsive to TLR7 activation by a TLR7 agonist. However, distinct from TLR7 activation in pDCs, which respond to stimulation with Th1 polarized cytokine production, TLR7 induction by pro-inflammatory signals in hepatocytes reconstitutes the NF-κB-dependent cascade but not the IRF7-dependent cascade, resulting in a pro-inflammatory polarized response rather than a Th1 polarized response. These results indicate that inflammatory stimulation is capable of priming cells to respond to TLR7 agonist with an immune response that differs from that in native TLR7-expressing cells. PMID:19426145

  10. Emodin suppresses LPS-induced inflammation in RAW264.7 cells through a PPARγ-dependent pathway.

    PubMed

    Zhu, Tao; Zhang, Wei; Feng, She-jun; Yu, Hua-peng

    2016-05-01

    Inflammation is a defense and protective response to multiple harmful stimuli. Over and uncontrolled inflammation can lead to local tissues or even systemic damages and injuries. Actually, uncontrolled and self-amplified inflammation is the fundament of the pathogenesis of a variety of inflammatory diseases, including sepsis shock, acute lung injury and acute respiratory distress syndrome (ALI/ARDS). Our recent study showed that emodin, the main active component of Radix rhizoma Rhei, could significantly ameliorate LPS-induced ALI/ARDS in mice. However, its underlying signal pathway was not still very clear. Then, the aim of current study was to explore whether emodin could attenuate LPS-induced inflammation in RAW264.7 cells, and its involved potential mechanism. The mRNA and protein expression of ICAM-1, MCP-1 and PPARγ were measured by qRCR and western blotting, the production of TNF-α was evaluated by ELISA. Then, the phosphorylation of NF-κB p65 was also detected by western blotting. And NF-κB p65 DNA binding activity was analyzed by ELISA as well. Meanwhile, siRNA-PPARγ transfection was performed to knockdown PPARγ expression in cells. Our data revealed that LPS-induced the up-regulation of ICAM-1, MCP-1 and TNF-α, LPS-induced the down-regulation of PPARγ, and LPS-enhanced NF-κB p65 activation and DNA binding activity were substantially suppressed by emdoin in RAW264.7 cells. Furthermore, our data also figured out that these effects of emdoin were largely abrogated by siRNA-PPARγ transfection. Taken together, our results indicated that LPS-induced inflammation were potently compromised by emodin very likely through the PPARγ-dependent inactivation of NF-κB in RAW264.7 cells.

  11. The role of pro-inflammatory S100A9 in Alzheimer's disease amyloid-neuroinflammatory cascade.

    PubMed

    Wang, Chao; Klechikov, Alexey G; Gharibyan, Anna L; Wärmländer, Sebastian K T S; Jarvet, Jüri; Zhao, Lina; Jia, Xueen; Narayana, Vinod K; Shankar, S K; Olofsson, Anders; Brännström, Thomas; Mu, Yuguang; Gräslund, Astrid; Morozova-Roche, Ludmilla A

    2014-04-01

    Pro-inflammatory S100A9 protein is increasingly recognized as an important contributor to inflammation-related neurodegeneration. Here, we provide insights into S100A9 specific mechanisms of action in Alzheimer's disease (AD). Due to its inherent amyloidogenicity S100A9 contributes to amyloid plaque formation together with Aβ. In traumatic brain injury (TBI) S100A9 itself rapidly forms amyloid plaques, which were reactive with oligomer-specific antibodies, but not with Aβ and amyloid fibrillar antibodies. They may serve as precursor-plaques for AD, implicating TBI as an AD risk factor. S100A9 was observed in some hippocampal and cortical neurons in TBI, AD and non-demented aging. In vitro S100A9 forms neurotoxic linear and annular amyloids resembling Aβ protofilaments. S100A9 amyloid cytotoxicity and native S100A9 pro-inflammatory signaling can be mitigated by its co-aggregation with Aβ, which results in a variety of micron-scale amyloid complexes. NMR and molecular docking demonstrated transient interactions between native S100A9 and Aβ. Thus, abundantly present in AD brain pro-inflammatory S100A9, possessing also intrinsic amyloidogenic properties and ability to modulate Aβ aggregation, can serve as a link between the AD amyloid and neuroinflammatory cascades and as a prospective therapeutic target.

  12. Upregulated LINE-1 Activity in the Fanconi Anemia Cancer Susceptibility Syndrome Leads to Spontaneous Pro-inflammatory Cytokine Production.

    PubMed

    Brégnard, Christelle; Guerra, Jessica; Déjardin, Stéphanie; Passalacqua, Frank; Benkirane, Monsef; Laguette, Nadine

    2016-06-01

    Fanconi Anemia (FA) is a genetic disorder characterized by elevated cancer susceptibility and pro-inflammatory cytokine production. Using SLX4(FANCP) deficiency as a working model, we questioned the trigger for chronic inflammation in FA. We found that absence of SLX4 caused cytoplasmic DNA accumulation, including sequences deriving from active Long INterspersed Element-1 (LINE-1), triggering the cGAS-STING pathway to elicit interferon (IFN) expression. In agreement, absence of SLX4 leads to upregulated LINE-1 retrotransposition. Importantly, similar results were obtained with the FANCD2 upstream activator of SLX4. Furthermore, treatment of FA cells with the Tenofovir reverse transcriptase inhibitor (RTi), that prevents endogenous retrotransposition, decreased both accumulation of cytoplasmic DNA and pro-inflammatory signaling. Collectively, our data suggest a contribution of endogenous RT activities to the generation of immunogenic cytoplasmic nucleic acids responsible for inflammation in FA. The additional observation that RTi decreased pro-inflammatory cytokine production induced by DNA replication stress-inducing drugs further demonstrates the contribution of endogenous RTs to sustaining chronic inflammation. Altogether, our data open perspectives in the prevention of adverse effects of chronic inflammation in tumorigenesis.

  13. Soya protein hydrolysates modify the expression of various pro-inflammatory genes induced by fatty acids in ovine phagocytes.

    PubMed

    Politis, Ioannis; Theodorou, Georgios; Lampidonis, Antonios D; Chronopoulou, Roubini; Baldi, Antonella

    2012-10-01

    The objective of the present study was to test the hypothesis that fatty acids are the circulating mediators acting in a pro-inflammatory manner towards activated circulating ovine monocyte/macrophages and neutrophils. Furthermore, whether soya protein hydrolysates (SPH) inhibit the fatty acid-induced increase in the production of pro-inflammatory responses by ovine phagocytes was tested in vitro. All the fatty acids tested (myristic, palmitic, palmitoleic, stearic and oleic) increased (P<0·01; C18>C16>C14) membrane-bound urokinase plasminogen activator (u-PA) and u-PA free binding sites in cell membranes of activated ovine blood monocytes/macrophages, but only the C18 fatty acids (stearic, oleic) were effective towards blood neutrophils. The C18 fatty acids up-regulated (P<0·05) the gene expression of u-PA, u-PA receptor, intercellular adhesion molecule 1 and inducible NO synthase (in monocytes) but not that of cyclo-oxygenase-2, integrin α X and plasminogen activator inhibitor types 1 and 2 by ovine phagocytes. SPH blocked completely or partially all C18 fatty acid-induced changes in the expression of various pro-inflammatory genes. In conclusion, fatty acids selectively 'activate' ovine phagocytes, suggesting that these cells 'sense' metabolic signals derived from adipocytes. Soya protein peptides inhibit all changes in gene expression induced by fatty acids in ovine phagocytes in vitro. This constitutes a novel mechanism of action.

  14. Asef mediates HGF protective effects against LPS-induced lung injury and endothelial barrier dysfunction.

    PubMed

    Meng, Fanyong; Meliton, Angelo; Moldobaeva, Nurgul; Mutlu, Gokhan; Kawasaki, Yoshihiro; Akiyama, Tetsu; Birukova, Anna A

    2015-03-01

    Increased vascular endothelial permeability and inflammation are major pathological mechanisms of pulmonary edema and its life-threatening complication, the acute respiratory distress syndrome (ARDS). We have previously described potent protective effects of hepatocyte growth factor (HGF) against thrombin-induced hyperpermeability and identified the Rac pathway as a key mechanism of HGF-mediated endothelial barrier protection. However, anti-inflammatory effects of HGF are less understood. This study examined effects of HGF on the pulmonary endothelial cell (EC) inflammatory activation and barrier dysfunction caused by the gram-negative bacterial pathogen lipopolysaccharide (LPS). We tested involvement of the novel Rac-specific guanine nucleotide exchange factor Asef in the HGF anti-inflammatory effects. HGF protected the pulmonary EC monolayer against LPS-induced hyperpermeability, disruption of monolayer integrity, activation of NF-kB signaling, expression of adhesion molecules intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, and production of IL-8. These effects were critically dependent on Asef. Small-interfering RNA-induced downregulation of Asef attenuated HGF protective effects against LPS-induced EC barrier failure. Protective effects of HGF against LPS-induced lung inflammation and vascular leak were also diminished in Asef knockout mice. Taken together, these results demonstrate potent anti-inflammatory effects by HGF and delineate a key role of Asef in the mediation of the HGF barrier protective and anti-inflammatory effects. Modulation of Asef activity may have important implications in therapeutic strategies aimed at the treatment of sepsis and acute lung injury/ARDS-induced gram-negative bacterial pathogens.

  15. α-Fetoprotein as a modulator of the pro-inflammatory response of human keratinocytes

    PubMed Central

    Potapovich, AI; Pastore, S; Kostyuk, VA; Lulli, D; Mariani, V; De Luca, C; Dudich, EI; Korkina, LG

    2009-01-01

    Background and purpose: The immunomodulatory effects of α-fetoprotein (AFP) on lymphocytes and macrophages have been described in vitro and in vivo. Recombinant forms of human AFP have been proposed as potential therapeutic entities for the treatment of autoimmune diseases. We examined the effects of embryonic and recombinant human AFP on the spontaneous, UVA- and cytokine-induced pro-inflammatory responses of human keratinocytes. Experimental approach: Cultures of primary and immortalized human keratinocytes (HaCaT) and human blood T lymphocytes were used. The effects of AFP on cytokine expression were studied by bioplexed elisa and quantitative reverse transcriptase polymerase chain reaction assay. Kinase and nuclear factor kappa B (NFκB) phosphorylation were quantified by intracellular elisa. Nuclear activator protein 1 and NFκB DNA binding activity was measured by specific assays. Nitric oxide and H2O2 production and redox status were assessed by fluorescent probe and biochemical methods. Key results: All forms of AFP enhanced baseline expression of cytokines, chemokines and growth factors. AFP dose-dependently increased tumour necrosis factor alpha-stimulated granulocyte macrophage colony stimulating factor and interleukin 8 expression and decreased tumour necrosis factor alpha-induced monocyte chemotactic protein 1 and IP-10 (interferon gamma-produced protein of 10 kDa) expression. AFP induced a marked activator protein 1 activation in human keratinocytes. AFP also increased H2O2 and modulated nitrite/nitrate levels in non-stimulated keratinocytes whereas it did not affect these parameters or cytokine release from UVA-stimulated cells. Phosphorylation of extracellular signal-regulated kinase (ERK1/2) and Akt1 but not NFκB was activated by AFP alone or by its combination with UVA. Conclusions and implications: Exogenous AFP induces activation of human keratinocytes, with de novo expression of a number of pro-inflammatory mediators and modulation of their

  16. Anti-inflammatory effects of hydrophilic and lipophilic statins with hyaluronic acid against LPS-induced inflammation in porcine articular chondrocytes.

    PubMed

    Chang, Chih-Hung; Hsu, Yuan-Ming; Chen, Yu-Chun; Lin, Feng-Huei; Sadhasivam, Subramaniam; Loo, Siow-Tung; Savitha, Sivasubramanian

    2014-04-01

    The objective of the study is to understand the therapeutic effects of lipophilic (simvastatin) and hydrophilic statins (pravastatin) combined with/without hyaluronic acid for osteoarthritis by an in vitro LPS-induced inflammatory model of articular chondrocytes. HA in combination with different doses of simvastatin or pravastatin were used. Beside cytotoxicity, the influence of statins on NO production, pro-inflammatory cytokine, inflammatory mediators, and NF-κB p50 protein were analyzed. Finally, TUNEL assay was performed to detect DNA strand breakage. Two statins were less able to lower NF-κB activity when they were administrated along without HA. The gene expression demonstrates that simvastatin and pravastatin had the ability to decrease pro-inflammatory and inflammatory mediator levels. High dose simvastatin with or without HA down regulated inflammatory cytokines, but resulted in higher cytotoxicity. TUNEL assay confirms the regulatory effect of statins with or without HA over the apoptosis of chondrocytes, especially in hydrophilic statins. The significant down-regulation of inflammatory mediators suggests that intra-articular injection of HA in combination with statins might feasibly slow the progress of osteoarthritis. Administration of simvastatin or pravastatin with hyaluronic acid may produce beneficial effects for OA treatment, but with better results when hydrophilic statin was used.

  17. In vitro Modulation of the LPS-Induced Proinflammatory Profile of Hepatocytes and Macrophages- Approaches for Intervention in Obesity?

    PubMed Central

    Kheder, Ramiar K.; Hobkirk, James; Stover, Cordula M.

    2016-01-01

    Low grade endotoxemia is a feature of obesity which is linked to development of steatohepatitis in non-alcoholic fatty liver disease. In this study, macrophages (J774) and hepatocytes (HepG2) were stimulated with lipopolysaccharide (LPS) from E. coli 0111: B4 and analyzed for modulation of this response when preconditioned or stimulated subsequent to LPS, with different doses of Vitamin D3 or docosahexaenoic acid (DHA) over a time period of 1 and 5 days. Pro-inflammatory TNFα and pro-fibrotic TGFβ released into the supernatants were measured by ELISA; qPCR was performed for Srebp-1c and PPARα mRNA (genes for products involved in fatty acid synthesis and catabolism, respectively). Vitamin D3 and DHA exerted a consistent, dose dependent anti-inflammatory effect, and increased PPARα relative to Srebp-1c in both cell types. By contrast, addition of free fatty acids (FFA, oleic acid/palmitic acid 2:1) caused aggravation of LPS-induced inflammatory reaction and an increase of Srebp-1c relative to PPARα. Our results argue in favor of dietary supplementation of Vitamin D3 or DHA (and avoidance of monounsaturated/saturated fatty acids) to alleviate development of fatty liver disease. PMID:27446914

  18. Hypericum triquetrifolium-Derived Factors Downregulate the Production Levels of LPS-Induced Nitric Oxide and Tumor Necrosis Factor-α in THP-1 Cells.

    PubMed

    Saad, Bashar; Abouatta, Bernadette Soudah; Basha, Walid; Hmade, Alaa; Kmail, Abdalsalam; Khasib, Said; Said, Omar

    2011-01-01

    Based on knowledge from traditional Arab herbal medicine, this in vitro study aims to examine the anti-inflammatory mechanism of Hypericum triquetrifolium by measuring the expression and release of pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukine-6 (IL-6), and inducible nitric oxide synthase (iNOS) in human monocytic cells, THP-1. The effects were assessed by measuring the levels of secretory proteins and mRNA of TNF-α and IL-6, the levels of nitric oxide (NO) secretion and the expression of iNOS in THP-1 cells. Cells were treated with 5 μg lipopolysaccharide/ml (LPS) in the presence and absence of increasing concentrations of extracts from the aerial parts of H. triquetrifolium. During the entire experimental period, we used extract concentrations (up to 250 μg mL(-1)) that had no cytotoxic effects, as measured with MTT and LDH assays. Hypericum triquetrifolium extracts remarkably suppressed the LPS-induced NO release, significantly attenuated the LPS-induced transcription of iNOS and inhibited in a dose-dependent manner the expression and release of TNF-α. No significant effects were observed on the release of IL-6. Taken together, these results suggest that H. triquetrifolium probably exerts anti-inflammatory effects through the suppression of TNF-α and iNOS expressions.

  19. ERα-mediated repression of pro-inflammatory cytokine expression by glucocorticoids reveals a crucial role for TNFα and IL1α in lumen formation and maintenance

    PubMed Central

    Eritja, Nuria; Mirantes, Cristina; Llobet, David; Masip, Gemma; Matias-Guiu, Xavier; Dolcet, Xavi

    2012-01-01

    Most glandular tissues comprise polarized epithelial cells organized around a single central lumen. Although there is active research investigating the molecular networks involved in the regulation of lumenogenesis, little is known about the extracellular factors that influence lumen formation and maintenance. Using a three-dimensional culture system of epithelial endometrial cells, we have revealed a new role for pro-inflammatory cytokines such as TNFα and IL1α in the formation and, more importantly, maintenance of a single central lumen. We also studied the mechanism by which glucocorticoids repress TNFα and IL1α expression. Interestingly, regulation of pro-inflammatory cytokine expression and subsequent lumen formation is mediated by estrogen receptor α (ERα) but not by the glucocorticoid receptor. Finally, we investigated the signaling pathways involved in the regulation of lumen formation by pro-inflammatory cytokines. Our results demonstrate that activation of the ERK/MAPK signaling pathway, but not the PI3K/Akt signaling pathway, is important for the formation and maintenance of a single central lumen. In summary, our results suggest a novel role for ERα-regulated pro-inflammatory cytokine expression in lumen formation and maintenance. PMID:22328525

  20. Knockout of toll-like receptor-4 attenuates the pro-inflammatory state of diabetes.

    PubMed

    Devaraj, Sridevi; Tobias, Peter; Jialal, Ishwarlal

    2011-09-01

    Type 1 diabetes (T1DM) is associated with increased vascular complications and is a pro-inflammatory state. Recent findings have shown increased TLR2 and 4 expression, signaling, ligands, and functional activation in T1DM subjects compared to controls and further accentuated in T1DM with microvascular complications. Thus, the aim of this study was to examine if genetic deficiency of TLR4 attenuates the increased inflammation associated with T1DM using the streptozotocin-induced diabetic mouse model. C57BL/6 and TLR4(-/-) mice were obtained and studied in the native state and following induction of diabetes using streptozotocin. Diabetic (WT+STZ) mice had increased expression of both TLR2 and TLR4, while TLR4(-/-) STZ mice had increased expression only of TLR2, but not TLR4 compared to the non-diabetic mice TLR2 expression was significantly increased with STZ-induced diabetes and was unaffected by knockout of TLR4. Also, levels of MyD88, IRAK-1 protein phosphorylation, Trif, IRF3, and NF-κB activity were significantly reduced in TLR4(-/-) +STZ mice compared to the WT+STZ mice. WT+STZ mice exhibited significantly increased levels of serum and macrophage IL-1β, IL-6, KC/IL-8, IP-10, MCP-1, IFN beta and TNF-α compared to WT mice and this was significantly attenuated in TLR4(-/-) +STZ mice (P<0.01). Thus, TLR4 contributes to the pro-inflammatory state and TLR4KO attenuates inflammation in diabetes.

  1. Stop feeding cancer: pro-inflammatory role of visceral adiposity in liver cancer.

    PubMed

    Zhao, Jun; Lawless, Matthew W

    2013-12-01

    Liver cancer is the fifth most common cancer in the world with an estimated over half a million new cases diagnosed every year. Due to the difficulty in early diagnosis and lack of treatment options, the prevalence of liver cancer continues to climb with a 5-year survival rate of between 6% and 11%. Coinciding with the rise of liver cancer, the prevalence of obesity has rapidly increased over the past two decades. Evidence from epidemiological studies demonstrates a higher risk of hepatocellular carcinoma (HCC) in obese individuals. Obesity is recognised as a low-grade inflammatory disease, this is of particular relevance as inflammation has been proposed as the seventh hallmark of cancer development with abdominal visceral adiposity considered as an important source of pro-inflammatory stimuli. Emerging evidence points towards the direct role of visceral adipose tissue rather than generalised body fat in carcinogenesis. Cytokines such as IL-6 and TNF-α secreted from visceral adipose tissue have been demonstrated to induce a chronic inflammatory condition predisposing the liver to a protumourigenic milieu. This review focuses on excess visceral adiposity rather than simple obesity; particularly adipokines and their implications for chronic inflammation, lipid accumulation, insulin resistance, Endoplasmic Reticulum (ER) stress and angiogenesis. Evidence of molecular signalling pathways that may give rise to the onset and progression of HCC in this context are depicted. Delineation of the pro-inflammatory role of visceral adiposity in liver cancer and its targeting will provide better rational and therapeutic approaches for HCC prevention and elimination. The concept of a central role for metabolism in cancer is the culmination of an effort that began with one of the 20th century's leading biochemists and Nobel laureate of 1931, Otto Warburg.

  2. Effects of PPAR-γ agonist treatment on LPS-induced mastitis in rats.

    PubMed

    Mingfeng, Ding; Xiaodong, Ming; Yue, Liu; Taikui, Piao; Lei, Xiao; Ming, Liu

    2014-12-01

    PPAR-γ, a member of the nuclear receptor superfamily, plays an important role in lipid metabolism and inflammation. The aim of this study was to investigate the preventive effects of synthetic PPAR-γ agonist rosiglitazone on lipopolysaccharide (LPS)-induced mastitis in rats. The mouse model of mastitis was induced by the injection of LPS through the duct of the mammary gland. Rosiglitazone was injected 1 h before the induction of LPS intraperitoneally. The results showed that rosiglitazone attenuated the infiltration of inflammatory cells, the activity of myeloperoxidase (MPO), and the production of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in a dose-dependent manner. Additionally, Western blotting showed that rosiglitazone inhibited the phosphorylation of IκB-α and NF-κB p65. These results indicated that rosiglitazone has a protective effect on mastitis, and the anti-inflammatory mechanism of rosiglitazone on LPS-induced mastitis in rats may be due to its ability to inhibit NF-κB signaling pathways. PPAR-γ may be a potential therapeutic target against mastitis.

  3. Licocoumarone isolated from Glycyrrhiza uralensis selectively alters LPS-induced inflammatory responses in RAW 264.7 macrophages.

    PubMed

    Wu, Lehao; Fan, Yunpeng; Fan, Chao; Yu, Yang; Sun, Lei; Jin, Yu; Zhang, Yan; Ye, Richard D

    2017-04-15

    The effects of licocoumarone (LC) isolated from Glycyrrhiza uralensis were studied in LPS-stimulated RAW 264.7 macrophages. Our study demonstrated that LC dose-dependently attenuated LPS-induced NO production by down-regulating iNOS expression. Additionally, the treatment with LC inhibited LPS-induced expression of cytokines including IL-1β, IL-6 and IL-10, but not TNF-α, at both mRNA and protein levels. Similar suppressive effects of LC were observed on LPS-stimulated murine peritoneal macrophages as well. Furthermore, LC significantly reduced LPS-stimulated NF-κB activation by inhibition of IκBα degradation and p65 phosphorylation. The results from NF-κB-luc reporter gene assay further support the inhibitory effect of LC on NF-κB activation. Further studies showed that LC also interfered with the MAPKs and STAT3 signaling pathways, which are typical inflammatory signaling pathways triggered by LPS. Taken together, these results show that LC attenuates LPS-induced cytokine gene expression in RAW 264.7 macrophages through mechanisms that involve NF-κB, MAPKs and STAT3 signaling pathways, but the pattern of inhibition differs from that of a global immunosuppresant. Our study indicates that LC is a functional constituent of Glycyrrhiza uralensis with potential implications in infectious and immune-related diseases.

  4. Quince (Cydonia oblonga Miller) peel polyphenols modulate LPS-induced inflammation in human THP-1-derived macrophages through NF-{kappa}B, p38MAPK and Akt inhibition

    SciTech Connect

    Essafi-Benkhadir, Khadija; Refai, Amira; Riahi, Ichrak; Fattouch, Sami; Karoui, Habib; Essafi, Makram

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Quince peel polyphenols inhibit LPS-induced secretion of TNF-{alpha} and IL-8. Black-Right-Pointing-Pointer Quince peel polyphenols augment LPS-induced secretion of IL-10 and IL-6. Black-Right-Pointing-Pointer Quince peel polyphenols-mediated inhibition of LPS-induced secretion of TNF-{alpha} is partially mediated by IL-6. Black-Right-Pointing-Pointer The anti-inflammatory effects of quince polyphenols pass through NF-{kappa}B, p38MAPK and Akt inhibition. -- Abstract: Chronic inflammation is a hallmark of several pathologies, such as rheumatoid arthritis, gastritis, inflammatory bowel disease, atherosclerosis and cancer. A wide range of anti-inflammatory chemicals have been used to treat such diseases while presenting high toxicity and numerous side effects. Here, we report the anti-inflammatory effect of a non-toxic, cost-effective natural agent, polyphenolic extract from the Tunisian quince Cydonia oblonga Miller. Lipopolysaccharide (LPS) treatment of human THP-1-derived macrophages induced the secretion of high levels of the pro-inflammatory cytokine TNF-{alpha} and the chemokine IL-8, which was inhibited by quince peel polyphenolic extract in a dose-dependent manner. Concomitantly, quince polyphenols enhanced the level of the anti-inflammatory cytokine IL-10 secreted by LPS-treated macrophages. We further demonstrated that the unexpected increase in IL-6 secretion that occurred when quince polyphenols were associated with LPS treatment was partially responsible for the polyphenols-mediated inhibition of TNF-{alpha} secretion. Biochemical analysis showed that quince polyphenols extract inhibited the LPS-mediated activation of three major cellular pro-inflammatory effectors, nuclear factor-kappa B (NF-{kappa}B), p38MAPK and Akt. Overall, our data indicate that quince peel polyphenolic extract induces a potent anti-inflammatory effect that may prove useful for the treatment of inflammatory diseases and that a quince

  5. Friedelane-type triterpenoids as selective anti-inflammatory agents by regulation of differential signaling pathways in LPS-stimulated macrophages.

    PubMed

    Villar-Lorenzo, Andrea; Ardiles, Alejandro E; Arroba, Ana I; Hernández-Jiménez, Enrique; Pardo, Virginia; López-Collazo, Eduardo; Jiménez, Ignacio A; Bazzocchi, Isabel L; González-Rodríguez, Águeda; Valverde, Ángela M

    2016-12-15

    A series of 31 pentacyclic triterpenoids isolated from the root barks of Celastrus vulcanicola and Maytenus jelskii were tested for cytotoxicity and inhibitory activity against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophages. Compounds 18 (C18) and 25 (C25) exhibited significant inhibition of LPS-induced NO release at 50 and 25μM concentrations, respectively, and decreased mRNAs of pro-inflammatory cytokines. At the molecular level, C18 neither inhibited LPS-mediated phosphorylation of mitogen activated protein kinases (MAPKs) nor nuclear translocation of nuclear factor kappa beta (NFκB). Instead, C18 enhanced and prolonged nuclear translocation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and increased the expression of its target genes including hemeoxigenase 1 (HO1). C25 efficiently inhibited LPS-mediated phosphorylation of JNK, p38 and ERK, without affecting NFκB or Nrf2 signaling pathways. Both compounds reduced LPS-mediated processing of caspase-1 and the cleavage of interleukin 1β (IL1β) proform, reflecting their ability to target the inflammasome. C25 also counteracted LPS effects on iNOS expression and pro-inflammatory cytokines mRNA levels in Bv-2 microglial cells. The anti-inflammatory effect of both compounds was also assessed in human macrophages. Our results suggest that triterpenoids C18 and C25 possess anti-inflammatory effects, which may be therapeutically relevant for diseases linked to inflammation.

  6. Fenoterol inhibits LPS-induced AMPK activation and inflammatory cytokine production through β-arrestin-2 in THP-1 cell line

    SciTech Connect

    Wang, Wei; Zhang, Yuan; Xu, Ming; Zhang, You-Yi; He, Bei

    2015-06-26

    The AMP-activated protein kinase (AMPK) pathway is involved in regulating inflammation in several cell lines. We reported that fenoterol, a β{sub 2}-adrenergic receptor (β{sub 2}-AR) agonist, had anti-inflammatory effects in THP-1 cells, a monocytic cell line. Whether the fenoterol anti-inflammatory effect involves the AMPK pathway is unknown. In this study, we explored the mechanism of β{sub 2}-AR stimulation with fenoterol in a lipopolysaccharide (LPS)-induced inflammatory cytokine secretion in THP-1 cells. We studied whether fenoterol and β-arrestin-2 or AMPKα1 subunit knockdown could affect LPS-induced AMPK activation, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion. LPS-induced AMPK activation and interleukin 1β (IL-1β) release were reduced with fenoterol pretreatment of THP-1 cells. SiRNA knockdown of β-arrestin-2 abolished the fenoterol inhibition of LPS-induced AMPK activation and interleukin 1β (IL-1β) release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol on LPS-treated THP-1 cells. In addition, siRNA knockdown of AMPKα1 significantly attenuated the LPS-induced NF-κB activation and IL-1β release, so AMPKα1 was a key signaling molecule involved in LPS-induced inflammatory cytokine production. These results suggested the β{sub 2}-AR agonist fenoterol inhibited LPS-induced AMPK activation and IL-1β release via β-arrestin-2 in THP-1 cells. The exploration of these mechanisms may help optimize therapeutic agents targeting these pathways in inflammatory diseases. - Highlights: • β{sub 2}-AR agonist fenoterol exerts its protective effect on LPS-treated THP-1 cells. • Fenoterol inhibits LPS-induced AMPK activation and IL-1β production. • β-arrestin2 mediates fenoterol-inhibited AMPK activation and IL-1β release. • AMPKα1 is involved in LPS-induced NF-κB activation and IL-1β production.

  7. LPS induces HUVEC angiogenesis in vitro through miR-146a-mediated TGF-β1 inhibition

    PubMed Central

    Li, Yize; Zhu, Huayu; Wei, Xu; Li, Heng; Yu, Zhicao; Zhang, Hongmei; Liu, Wenchao

    2017-01-01

    Angiogenesis is an essential process for tissue growth and embryo development. However, inflammation, abnormal wound healing, vascular diseases, and tumor development and progression can result from inappropriate angiogenesis. Lipopolysaccharide (LPS) can activate various cells and alter endothelium function and angiogenesis. This study investigated the underlying molecular events involved in LPS-induced angiogenesis and revealed a novel strategy for controlling abnormal angiogenesis. LPS treatment promoted wound healing and tube formation in human umbilical vein endothelial cell (HUVEC) cultures and induced their expression of miR-146a. miR-146a was previously shown to regulate angiogenesis in HUVECs. Knockdown of miR-146a expression antagonized LPS-induced angiogenesis in vitro. Moreover, bioinformatic analyses predicted TGF-β1 as a target gene for miR-146a, which was confirmed by aluciferase reporter assay. Expression of miR-146a in HUVECs resulted in downregulation of TGF-β1 in HUVECs, whereas a miR-146a inhibitor upregulated the expression of TGF-β1 and TGF-β1 downstream proteins, such as phosphoraylation-Smad2 and plasminogen activator inhibitor type 1 (PAI-1). Furthermore, the TGF-β1 signaling inhibitor SB431542 impaired the ability of miR-146a knockdown to suppress LPS-induced angiogenesis. Thus, LPS-induced angiogenesis of HUVECs functions through miR-146a upregulation and TGF-β1 inhibition. This study suggests that knockdown of miR-146a could activate TGF-β1 signaling to inhibit angiogenesis as a potential therapy for angiogenesis-related diseases. PMID:28337286

  8. Modulation of the pro-inflammatory cytokines and matrix metalloproteinases production in co-cultivated human keratinocytes and melanocytes.

    PubMed

    Decean, H; Perde-Schrepler, M; Tatomir, C; Fischer-Fodor, E; Brie, I; Virag, P

    2013-10-01

    The human epidermis exerts immunoregulatory functions through the variety of cytokines and other molecules elaborated by keratinocytes and melanocytes. Their constitutive production is very low; however, considerably increased upon stimulation. In vivo, keratinocytes and melanocytes have a typical exposure in the skin, referred as melanocyte epidermal unit. In the present study we co-cultivated these cells in vitro proposing to elucidate some communication links in close cell-to-cell association. We assessed the amounts of IL-6, IL-8, and matrix metalloproteinases (MMP-2 and MMP-9) in individually and co-cultured cells, exposed or not to UVB radiation. Normal human epidermal keratinocytes and melanocytes were grown in specific media and supplements. Cells were exposed to UVB radiation (100 mJ/cm(2)) to create comparable stress to the environmental one. Cytokines were determined with ELISA and confirmed with Western blot and metalloproteinases with gel zimography. Pure cultures of keratinocytes and melanocytes released low amounts of cytokines and metalloproteinases, these secretions being enhanced by UVB irradiation. In co-cultures, the cell-to-cell proximity triggered signals which markedly augmented the cytokines' secretions, whereas metalloproteinases were down-regulated. UVB irradiation did not influence either of these secretions in co-cultures. Concurrently with the highest levels of the pro-inflammatory cytokines, MMP-9 was up-regulated creating pro-inflammatory conditions and premises for changes in cellular survival, differentiation and phenotype. A complex network of interactions occurred between keratinocytes and melanocytes in co-cultures, resulting in modulated pro-inflammatory cytokines and metalloproteinases productions. Therefore, any disturbances in the microenvironmental signaling system and its molecular constituents may result in inflammation or even tumorigenesis in the epidermis.

  9. Lipidomics of Mesenchymal Stromal Cells: Understanding the Adaptation of Phospholipid Profile in Response to Pro-Inflammatory Cytokines.

    PubMed

    Campos, Ana Margarida; Maciel, Elisabete; Moreira, Ana S P; Sousa, Bebiana; Melo, Tânia; Domingues, Pedro; Curado, Liliana; Antunes, Brígida; Domingues, M Rosário M; Santos, Francisco

    2016-05-01

    Mesenchymal stromal cells (MSCs) present anti-inflammatory properties and are being used with great success as treatment for inflammatory and autoimmune diseases. In clinical applications MSCs are subjected to a strong pro-inflammatory environment, essential to their immunosuppressive action. Despite the wide clinical use of these cells, how MSCs exert their effect remains unclear. Several lipids are known to be involved in cell's signaling and modulation of cellular functions. The aim of this paper is to examine the variation in lipid profile of MSCs under pro-inflammatory environment, induced by the presence of tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ), using the most modern lipidomic approach. Major changes in lipid molecular profile of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), lysoPC (LPC), and sphingomyelin (SM) classes were found. No changes were observed in the phosphatidylinositol (PI) profile. The levels of PC species with shorter fatty acids (FAs), mainly C16:0, decreased under pro-inflammatory stimuli. The level of PC(40:6) also decreased, which may be correlated with enhanced levels of LPC(18:0), which is known to be an anti-inflammatory LPC, observed in MSCs subjected to TNF-α and IFN-γ. Simultaneously, the relative amounts of PC(36:1) and PC(38:4) increased. TNF-α and IFN-γ also enhanced the levels of PE(40:6) and decreased the levels of PE(O-38:6). Higher expression of PS(36:1) and SM(34:0) along with a decrease in PS(38:6) levels were observed. These results indicate that lipid metabolism and signaling are modulated during MSCs activation, which suggests that lipids may be involved in MSCs functional and anti-inflammatory activities.

  10. LPS-Induced Delayed Preconditioning Is Mediated by Hsp90 and Involves the Heat Shock Response in Mouse Kidney

    PubMed Central

    Kaucsár, Tamás; Bodor, Csaba; Godó, Mária; Szalay, Csaba; Révész, Csaba; Németh, Zalán; Mózes, Miklós; Szénási, Gábor; Rosivall, László; Sőti, Csaba; Hamar, Péter

    2014-01-01

    Introduction We and others demonstrated previously that preconditioning with endotoxin (LPS) protected from a subsequent lethal LPS challenge or from renal ischemia-reperfusion injury (IRI). LPS is effective in evoking the heat shock response, an ancient and essential cellular defense mechanism, which plays a role in resistance to, and recovery from diseases. Here, by using the pharmacological Hsp90 inhibitor novobiocin (NB), we investigated the role of Hsp90 and the heat shock response in LPS-induced delayed renal preconditioning. Methods Male C57BL/6 mice were treated with preconditioning (P: 2 mg/kg, ip.) and subsequent lethal (L: 10 mg/kg, ip.) doses of LPS alone or in combination with NB (100 mg/kg, ip.). Controls received saline (C) or NB. Results Preconditioning LPS conferred protection from a subsequent lethal LPS treatment. Importantly, the protective effect of LPS preconditioning was completely abolished by a concomitant treatment with NB. LPS induced a marked heat shock protein increase as demonstrated by Western blots of Hsp70 and Hsp90. NB alone also stimulated Hsp70 and Hsp90 mRNA but not protein expression. However, Hsp70 and Hsp90 protein induction in LPS-treated mice was abolished by a concomitant NB treatment, demonstrating a NB-induced impairment of the heat shock response to LPS preconditioning. Conclusion LPS-induced heat shock protein induction and tolerance to a subsequent lethal LPS treatment was prevented by the Hsp90 inhibitor, novobiocin. Our findings demonstrate a critical role of Hsp90 in LPS signaling, and a potential involvement of the heat shock response in LPS-induced preconditioning. PMID:24646925

  11. Myeloid depletion of SOCS3 enhances LPS-induced acute lung injury through CCAAT/enhancer binding protein δ pathway

    PubMed Central

    Yan, Chunguang; Ward, Peter A.; Wang, Ximo; Gao, Hongwei

    2013-01-01

    Although uncontrolled inflammatory response plays a central role in the pathogenesis of acute lung injury (ALI), the precise molecular mechanisms underlying the development of this disorder remain poorly understood. SOCS3 is an important negative regulator of IL-6-type cytokine signaling. SOCS3 is induced in lung during LPS-induced lung injury, suggesting that generation of SOCS3 may represent a regulatory product during ALI. In the current study, we created mice lacking SOCS3 expression in macrophages and neutrophils (LysM-cre SOCS3fl/fl). We evaluated the lung inflammatory response to LPS in both LysM-cre SOCS3fl/fl mice and the wild-type (WT) mice (SOCS3fl/fl). LysM-cre SOCS3fl/fl mice displayed significant increase of the lung permeability index (lung vascular leak of albumin), neutrophils, lung neutrophil accumulation (myeloperoxidase activity), and proinflammatory cytokines/chemokines in bronchial alveolar lavage fluids compared to WT mice. These phenotypes were consistent with morphological evaluation of lung, which showed enhanced inflammatory cell influx and intra-alveolar hemorrhage. We further identify the transcription factor, CCAAT/enhancer-binding protein (C/EBP) δ as a critical downstream target of SOCS3 in LPS-induced ALI. These results indicate that SOCS3 has a protective role in LPS-induced ALI by suppressing C/EBPδ activity in the lung. Elucidating the function of SOCS3 would represent prospective targets for a new generation of drugs needed to treat ALI.—Yan, C., Ward, P. A., Wang, X., Gao, H. Myeloid depletion of SOCS3 enhances LPS-induced acute lung injury through CCAAT/enhancer binding protein δ pathway. PMID:23585399

  12. Flavones Inhibit LPS-Induced Atrogin-1/MAFbx Expression in Mouse C2C12 Skeletal Myotubes.

    PubMed

    Shiota, Chieko; Abe, Tomoki; Kawai, Nobuhiko; Ohno, Ayako; Teshima-Kondo, Shigetada; Mori, Hiroyo; Terao, Junji; Tanaka, Eiji; Nikawa, Takeshi

    2015-01-01

    Muscle atrophy is a complex process that occurs as a consequence of various stress events. Muscle atrophy-associated genes (atrogenes) such as atrogin-1/MAFbx and MuRF-1 are induced early in the atrophy process, and the increase in their expression precedes the loss of muscle weight. Although antioxidative nutrients suppress atrogene expression in skeletal muscle cells, the inhibitory effects of flavonoids on inflammation-induced atrogin-1/MAFbx expression have not been clarified. Here, we investigated the inhibitory effects of flavonoids on lipopolysaccharide (LPS)-induced atrogin-1/MAFbx expression. We examined whether nine flavonoids belonging to six flavonoid categories inhibited atrogin-1/MAFbx expression in mouse C2C12 myotubes. Two major flavones, apigenin and luteolin, displayed potent inhibitory effects on atrogin-1/MAFbx expression. The pretreatment with apigenin and luteolin significantly prevented the decrease in C2C12 myotube diameter caused by LPS stimulation. Importantly, the pretreatment of LPS-stimulated myoblasts with these flavones significantly inhibited LPS-induced JNK phosphorylation in C2C12 myotubes, resulting in the significant suppression of atrogin-1/MAFbx promoter activity. These results suggest that apigenin and luteolin, prevent LPS-mediated atrogin-1/MAFbx expression through the inhibition of the JNK signaling pathway in C2C12 myotubes. Thus, these flavones, apigenin and luteolin, may be promising agents to prevent LPS-induced muscle atrophy.

  13. Intensity modulated radiotherapy induces pro-inflammatory and pro-survival responses in prostate cancer patients

    PubMed Central

    EL-SAGHIRE, HOUSSEIN; VANDEVOORDE, CHARLOT; OST, PIET; MONSIEURS, PIETER; MICHAUX, ARLETTE; DE MEERLEER, GERT; BAATOUT, SARAH; THIERENS, HUBERT

    2014-01-01

    Intensity modulated radiotherapy (IMRT) is one of the modern conformal radiotherapies that is widely used within the context of cancer patient treatment. It uses multiple radiation beams targeted to the tumor, however, large volumes of the body receive low doses of irradiation. Using γ-H2AX and global genome expression analysis, we studied the biological responses induced by low doses of ionizing radiation in prostate cancer patients following IMRT. By means of different bioinformatics analyses, we report that IMRT induced an inflammatory response via the induction of viral, adaptive, and innate immune signaling. In response to growth factors and immune-stimulatory signaling, positive regulation in the progression of cell cycle and DNA replication were induced. This denotes pro-inflammatory and pro-survival responses. Furthermore, double strand DNA breaks were induced in every patient 30 min after the treatment and remaining DNA repair and damage signaling continued after 18–24 h. Nine genes belonging to inflammatory responses (TLR3, SH2D1A and IL18), cell cycle progression (ORC4, SMC2 and CCDC99) and DNA damage and repair (RAD17, SMC6 and MRE11A) were confirmed by quantitative RT-PCR. This study emphasizes that the risk assessment of health effects from the out-of-field low doses during IMRT should be of concern, as these may increase the risk of secondary cancers and/or systemic inflammation. PMID:24435511

  14. Fucoidan delays apoptosis and induces pro-inflammatory cytokine production in human neutrophils.

    PubMed

    Jin, Jun-O; Yu, Qing

    2015-02-01

    Although some immune modulatory effects of fucoidan have been elucidated, the effects of fucoidan on the apoptosis and activation of human neutrophils have not been investigated. In this study, we demonstrated that fucoidan purified from the brown seaweed Undaria pinnatifilda delays spontaneous apoptosis of human neutrophils and induces their activation. Fucoidan treatment inhibited apoptotic nuclei changes and phosphatidyl serine (PS) exposure on neutrophils cultured in vitro for 24h. The delay in neutrophil apoptosis mediated by fucoidan was associated with increased levels of the anti-apoptotic protein Mcl-1 and decreased levels of activated caspase-3. Screening of the signaling pathways by specific inhibitors indicated that fucoidan-induced delay in neutrophil apoptosis was dependent on the activation of PI3K/AKT signaling pathway, whereas MAPK signaling pathway was not critical. In addition, fucoidan enhanced the production of IL-6, IL-8 and TNF-α from neutrophils in an AKT-dependent manner. Taken together, these results demonstrated that fucoidan delays human neutrophil apoptosis and induces their production of pro-inflammatory cytokines. This knowledge could facilitate the development of novel therapeutic strategies for infectious diseases and neutropenia by controlling neutrophil homeostasis and function with fucoidan.

  15. Activation of MTOR in pulmonary epithelium promotes LPS-induced acute lung injury.

    PubMed

    Hu, Yue; Lou, Jian; Mao, Yuan-Yuan; Lai, Tian-Wen; Liu, Li-Yao; Zhu, Chen; Zhang, Chao; Liu, Juan; Li, Yu-Yan; Zhang, Fan; Li, Wen; Ying, Song-Min; Chen, Zhi-Hua; Shen, Hua-Hao

    2016-12-01

    MTOR (mechanistic target of rapamycin [serine/threonine kinase]) plays a crucial role in many major cellular processes including metabolism, proliferation and macroautophagy/autophagy induction, and is also implicated in a growing number of proliferative and metabolic diseases. Both MTOR and autophagy have been suggested to be involved in lung disorders, however, little is known about the role of MTOR and autophagy in pulmonary epithelium in the context of acute lung injury (ALI). In the present study, we observed that lipopolysaccharide (LPS) stimulation induced MTOR phosphorylation and decreased the expression of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β)-II, a hallmark of autophagy, in mouse lung epithelium and in human bronchial epithelial (HBE) cells. The activation of MTOR in HBE cells was mediated by TLR4 (toll-like receptor 4) signaling. Genetic knockdown of MTOR or overexpression of autophagy-related proteins significantly attenuated, whereas inhibition of autophagy further augmented, LPS-induced expression of IL6 (interleukin 6) and IL8, through NFKB signaling in HBE cells. Mice with specific knockdown of Mtor in bronchial or alveolar epithelial cells exhibited significantly attenuated airway inflammation, barrier disruption, and lung edema, and displayed prolonged survival in response to LPS exposure. Taken together, our results demonstrate that activation of MTOR in the epithelium promotes LPS-induced ALI, likely through downregulation of autophagy and the subsequent activation of NFKB. Thus, inhibition of MTOR in pulmonary epithelial cells may represent a novel therapeutic strategy for preventing ALI induced by certain bacteria.

  16. Epigenetic synergies between biotin and folate in the regulation of pro-inflammatory cytokines and repeats.

    PubMed

    Xue, J; Zempleni, J

    2013-11-01

    The protein biotin ligase, holocarboxylase synthetase (HLCS), is a chromatin protein that interacts physically with the DNA methyltransferase DNMT1, the methylated cytosine-binding protein MeCP2 and the histone H3 K9-methyltransferase EHMT1, all of which participate in folate-dependent gene repression. Here we tested the hypothesis that biotin and folate synergize in the repression of pro-inflammatory cytokines and long-terminal repeats (LTRs), mediated by interactions between HLCS and other chromatin proteins. Biotin and folate supplementation could compensate for each other's deficiency in the repression of LTRs in Jurkat and U937 cells. For example, when biotin-deficient Jurkat cells were supplemented with folate, the expression of LTRs decreased by >70%. Epigenetic synergies were more complex in the regulation of cytokines compared with LTRs. For example, the abundance of TNF-α was 100% greater in folate- and biotin-supplemented U937 cells compared with biotin-deficient and folate-supplemented cells. The NF-κB inhibitor curcumin abrogated the effects of folate and biotin in cytokine regulation, suggesting that transcription factor signalling adds an extra layer of complexity to the regulation of cytokine genes by epigenetic phenomena. We conclude that biotin and folate synergize in the repression of LTRs and that these interactions are probably mediated by HLCS-dependent epigenetic mechanisms. In contrast, synergies between biotin and folate in the regulation of cytokines need to be interpreted in the context of transcription factor signalling.

  17. Bovine milk RNases modulate pro-inflammatory responses induced by nucleic acids in cultured immune and epithelial cells.

    PubMed

    Gupta, Sandeep K; Haigh, Brendan J; Seyfert, Hans-Martin; Griffin, Frank J; Wheeler, Thomas T

    2017-03-01

    Activation of innate immune receptors by exogenous substances is crucial for the detection of microbial pathogens and a subsequent inflammatory response. The inflammatory response to microbial lipopolysaccharide via Toll-like receptor 4 (TLR4) is facilitated by soluble accessory proteins, but the role of such proteins in the activation of other pathogen recognition receptors for microbial nucleic acid is not well understood. Here we demonstrate that RNase4 and RNase5 purified from bovine milk bind to Salmonella typhimurium DNA and stimulate pro-inflammatory responses induced by nucleic acid mimetics and S. typhimurium DNA in an established mouse macrophage cell culture model, RAW264.7, as well as in primary bovine mammary epithelial cells. RNase4 and 5 also modulated pro-inflammatory signalling in response to nucleic acids in bovine peripheral blood mononuclear cells, although producing a distinct response. These results support a role for RNase4 and RNase5 in mediating inflammatory signals in both immune and epithelial cells, involving mechanisms that are cell-type specific.

  18. Arctigenin Protects against Lipopolysaccharide-Induced Pulmonary Oxidative Stress and Inflammation in a Mouse Model via Suppression of MAPK, HO-1, and iNOS Signaling.

    PubMed

    Zhang, Wen-zhou; Jiang, Zheng-kui; He, Bao-xia; Liu, Xian-ben

    2015-08-01

    Arctigenin, a bioactive component of Arctium lappa (Nubang), has anti-inflammatory activity. Here, we investigated the effects of arctigenin on lipopolysaccharide (LPS)-induced acute lung injury. Mice were divided into four groups: control, LPS, LPS + DMSO, and LPS + Arctigenin. Mice in the LPS + Arctigenin group were injected intraperitoneally with 50 mg/kg of arctigenin 1 h before an intratracheal administration of LPS (5 mg/kg). Lung tissues and bronchoalveolar lavage fluids (BALFs) were collected. Histological changes of the lung were analyzed by hematoxylin and eosin staining. Arctigenin decreased LPS-induced acute lung inflammation, infiltration of inflammatory cells into BALF, and production of pro-inflammatory cytokines. Moreover, arctigenin pretreatment reduced the malondialdehyde level and increased superoxide dismutase and catalase activities and glutathione peroxidase/glutathione disulfide ratio in the lung. Mechanically, arctigenin significantly reduced the production of nitric oxygen and inducible nitric oxygen synthase (iNOS) expression, enhanced the expression of heme oxygenase-1, and decreased the phosphorylation of mitogen-activated protein kinases (MAPKs). Arctigenin has anti-inflammatory and antioxidative effects on LPS-induced acute lung injury, which are associated with modulation of MAPK, HO-1, and iNOS signaling.

  19. Alpinetin attenuates inflammatory responses by interfering toll-like receptor 4/nuclear factor kappa B signaling pathway in lipopolysaccharide-induced mastitis in mice.

    PubMed

    Chen, Haijin; Mo, Xiaodong; Yu, Jinlong; Huang, Zonghai

    2013-09-01

    Alpinetin, a novel plant flavonoid derived from Alpinia katsumadai Hayata, has been reported to exhibit anti-inflammatory properties. However, the effect of alpinetin on mastitis has not been investigated. The aim of this study was to investigate the protective effect of alpinetin against lipopolysaccharide (LPS)-induced mastitis and to clarify the possible mechanism. In the present study, primary mouse mammary epithelial cells and an LPS-induced mouse mastitis model were used to investigate the effect of alpinetin on mastitis and the possible mechanism. In vivo, we observed that alpinetin significantly attenuated the infiltration of neutrophilic granulocytes, and the activation of myeloperoxidase; down-regulated the level of pro-inflammatory cytokines, including TNF-α, IL-1β and IL-6; inhibited the phosphorylation of IκB-α, NF-κB p65 and the expression of TLR4, caused by LPS. In vitro, we also observed that alpinetin inhibited the expression of TLR4 and the production of TNF-α, IL-1β and IL-6 in LPS-stimulated primary mouse mammary epithelial cells. However, alpinetin could not inhibit the production of IL-1β and IL-6 in TNF-α-stimulated primary mouse mammary epithelial cells. In conclusion, our results suggest that the anti-inflammatory effects of alpinetin against LPS-induced mastitis may be due to its ability to inhibit TLR4-mediated NF-κB signaling pathways. Alpinetin may be a promising potential therapeutic reagent for mastitis treatment.

  20. Protein tyrosine phosphatase-1B contributes to LPS-induced leptin resistance in male rats.

    PubMed

    Borges, Beatriz de Carvalho; Rorato, Rodrigo C; Uchoa, Ernane Torres; Marangon, Paula B; Elias, Carol F; Antunes-Rodrigues, Jose; Elias, Lucila L K

    2015-01-01

    Leptin resistance is induced by the feedback inhibitors tyrosine phosphatase-1B (PTP1B) and decreased Src homology 2 domain-containing tyrosine phosphatase-2 (SHP-2) signaling. To investigate the participation of PTP1B and SHP-2 in LPS-induced leptin resistance, we injected repeated (6-LPS) intraperitoneal LPS doses (100 μg/kg ip) for comparison with a single (1-LPS) treatment and evaluated the expression of SHP-2, PTP1B, p-ERK1/2, and p-STAT3 in the hypothalamus of male Wistar rats. The single LPS treatment increased the expression of p-STAT3 and PTP1B but not SHP-2. The repeated LPS treatment reduced SHP-2, increased PTP1B, and did not change p-STAT3. We observed that the PTP1B expression induced by the endotoxin was highly colocalized with leptin receptor cells in the hypothalamus of LepRb-IRES-Cre-tdTomato reporter mice. The single, but not the repeated, LPS treatment decreased the food intake and body weight. Leptin had no stimulatory effect on the hypophagia, body weight loss, or pSTAT3 expression in 6-LPS rats, indicating leptin unresponsiveness. Notably, the PTP1B inhibitor (3.0 nmol/rat in 5 μl icv) restored the LPS-induced hypophagia in 6-LPS rats and restored the ability of leptin to reduce food intake and body weight as well as to phosphorylate STAT3 in the arcuate, paraventricular, and ventromedial nuclei of the hypothalamus. The present data suggest that an increased PTP1B expression in the hypothalamus underlies the development of leptin resistance during repeated exposure to LPS. Our findings contribute to understanding the mechanisms involved in leptin resistance during low-grade inflammation as seen in obesity.

  1. Intermedin attenuates LPS-induced inflammation in the rat testis.

    PubMed

    Li, Lei; Ma, Ping; Liu, Yongjun; Huang, Chen; O, Wai-sum; Tang, Fai; Zhang, Jian V

    2013-01-01

    First reported as a vasoactive peptide in the cardiovascular system, intermedin (IMD), also known as adrenomedullin 2 (ADM2), is a hormone with multiple potent roles, including its antioxidant action on the pulmonary, central nervous, cardiovascular and renal systems. Though IMD may play certain roles in trophoblast cell invasion, early embryonic development and cumulus cell-oocyte interaction, the role of IMD in the male reproductive system has yet to be investigated. This paper reports our findings on the gene expression of IMD, its receptor components and its protein localization in the testes. In a rat model, bacterial lippolysaccharide (LPS) induced atypical orchitis, and LPS treatment upregulated the expression of IMD and one of its receptor component proteins, i.e. receptor activity modifying protein 2 (RAMP2). IMD decreased both plasma and testicular levels of reactive oxygen species (ROS) production, attenuated the increase in the gene expression of the proinflammatory cytokines tumor necrosis factor alpha (TNFα), interleukin 6 (IL6) and interleukin 1 beta (IL1β), rescued spermatogenesis, and prevented the decrease in plasma testosterone levels caused by LPS. The restorative effect of IMD on steroidogenesis was also observed in hydrogen peroxide-treated rat primary Leydig cells culture. Our results indicate IMD plays an important protective role in spermatogenesis and steroidogenesis, suggesting therapeutic potential for IMD in pathological conditions such as orchitis.

  2. Curcumin abrogates LPS-induced proinflammatory cytokines in RAW 264.7 macrophages. Evidence for novel mechanisms involving SOCS-1, -3 and p38 MAPK

    PubMed Central

    Guimarães, Morgana Rodrigues; Leite, Fábio Renato Manzoli; Spolidorio, Luís Carlos; Kirkwood, Keith Lough; Rossa, Carlos

    2013-01-01

    Curcumin is the active compound in the extract of Curcuma longa rhizomes with anti-inflammatory properties mediated by inhibition of intracellular signalling. SOCS and MAPKinases are involved in the signalling events controlling the expression of IL-6, TNF-α and PGE2, which have important roles on chronic inflammatory diseases. The aim was to assess if these pathways are involved in curcumin-mediated effects on LPS-induced expression of these cytokines in macrophages. RAW 264.7 murine macrophages were stimulated with Escherichia coli LPS in the presence and absence of non-cytotoxic concentrations of curcumin. Curcumin potently inhibited LPS-induced expression of IL-6, TNF-α and COX-2 mRNA and prevented LPS-induced inhibition of SOCS-1 and -3 expression and the inhibition of the activation of p38 MAPKinase by modulation of its nuclear translocation. In conclusion, curcumin potently inhibits expression of LPS-induced inflammatory cytokines in macrophages via mechanisms that involve modulation of expression and activity of SOCS-1 and SOCS-3 and of p38 MAPK. PMID:24011306

  3. Hederagenin Supplementation Alleviates the Pro-Inflammatory and Apoptotic Response to Alcohol in Rats

    PubMed Central

    Kim, Gyeong-Ji; Song, Da Hye; Yoo, Han Seok; Chung, Kang-Hyun; Lee, Kwon Jai; An, Jeung Hee

    2017-01-01

    In this study, we determined the effects of hederagenin isolated from Akebia quinata fruit on alcohol-induced hepatotoxicity in rats. Specifically, we investigated the hepatoprotective, anti-inflammatory, and anti-apoptotic effects of hederagenin, as well as the role of AKT and mitogen-activated protein kinase (MAPK) signaling pathways in ethanol-induced liver injury. Experimental animals were randomly divided into three groups: normal (sham), 25% ethanol, and 25% ethanol + hederagenin (50 mg/kg/day). Each group was orally administered the respective treatments once per day for 21 days. Acetaldehyde dehydrogenase-2 mRNA expression was higher and alcohol dehydrogenase mRNA expression was lower in the ethanol + hederagenin group than those in the ethanol group. Pro-inflammatory cytokines, including TNF-α, IL-6, and cyclooxygenase-2, significantly increased in the ethanol group, but these increases were attenuated by hederagenin. Moreover, Western blot analysis showed increased expression of the apoptosis-associated protein, Bcl-2, and decreased expression of Bax and p53 after treatment with hederagenin. Hederagenin treatment attenuated ethanol-induced increases in activated p38 MAPK and increased the levels of phosphorylated AKT and ERK. Hederagenin alleviated ethanol-induced liver damage through anti-inflammatory and anti-apoptotic activities. These results suggest that hederagenin is a potential candidate for preventing alcoholic liver injury. PMID:28067819

  4. CCN1, a Pro-Inflammatory Factor, Aggravates Psoriasis Skin Lesions by Promoting Keratinocyte Activation.

    PubMed

    Sun, Yue; Zhang, Jie; Zhou, Zhou; Wu, Pinru; Huo, Rongfen; Wang, Beiqing; Shen, Zhengyu; Li, Huidan; Zhai, Tianhang; Shen, Baihua; Chen, Xiangdong; Li, Ningli

    2015-11-01

    Psoriasis is a common chronic skin disease characterized by epidermal hyperplasia and inflammation. The pathogenesis of psoriasis is multifactorial and is not fully understood. Here we demonstrate that CCN1 (also called Cyr61, which is short for cysteine-rich 61), an extracellular matrix protein that is also considered a pro-inflammatory factor, is highly expressed in the lesional skin of psoriasis patients, as well as in that of imiquimod (IMQ)- and IL-23-treated psoriasis-like mice. Then we show that blocking CCN1 function in vivo attenuates epidermal hyperplasia and inflammation in psoriasis-like mice. Further, in primary cultured normal human keratinocytes and HaCaT (human keratinocyte cell line) cells, CCN1 promotes keratinocyte activation, including the proliferation and expression of immune-related molecules. Finally, we observe that integrin α6β1 is the receptor of CCN1 in keratinocytes, and CCN1 stimulation activates the downstream phosphoinositide-3 kinase/Akt/NF-κB signaling pathway. Taken together, our findings reveal that CCN1 has a critical role in psoriasis pathogenesis. Moreover, as CCN1 is a secreted extracellular matrix (ECM) protein, our study also provides evidence that ECM, which is involved in psoriatic pathogenesis, could be a potent target for psoriasis treatment.

  5. Euglena gracilis paramylon activates human lymphocytes by upregulating pro-inflammatory factors.

    PubMed

    Russo, Rossella; Barsanti, Laura; Evangelista, Valter; Frassanito, Anna M; Longo, Vincenzo; Pucci, Laura; Penno, Giuseppe; Gualtieri, Paolo

    2017-03-01

    The aim of this study was to verify the activation details and products of human lymphomonocytes, stimulated by different β-glucans, that is Euglena paramylon, MacroGard(®), and lipopolysaccharide. We investigated the gene expression of inflammation-related cytokines and mediators, transactivation of relevant transcription factors, and phagocytosis role in cell-glucan interactions, by means of RT-PCR, immunocytochemistry, and colorimetric assay. Our results show that sonicated and alkalized paramylon upregulates pro-inflammatory factors (NO, TNF-α, IL-6, and COX-2) in lymphomonocytes. A clear demonstration of this upregulation is the increased transactivation of NF-kB visualized by immunofluorescence microscopy. Phagocytosis assay showed that internalization is not a mandatory step for signaling cascade to be triggered, since immune activity is not present in the lymphomonocytes that have internalized paramylon granules and particulate MacroGard(®). Moreover, the response of Euglena β-glucan-activated lymphomonocytes is much greater than that induced by commercially used β-glucans such as MacroGard(®). Our in vitro results indicate that linear fibrous Euglena β-glucan, obtained by sonication and alkaline treatment can act as safe and effective coadjutant of the innate immune system response.

  6. Nanomolar aluminum induces pro-inflammatory and pro-apoptotic gene expression in human brain cells in primary culture.

    PubMed

    Lukiw, Walter J; Percy, Maire E; Kruck, Theo P

    2005-09-01

    Aluminum, the most abundant neurotoxic metal in our biosphere, has been implicated in the etiology of several neurodegenerative disorders including Alzheimer's disease (AD). To further understand aluminum's influence on gene expression, we examined total messenger RNA levels in untransformed human neural cells exposed to 100 nanomolar aluminum sulfate using high density DNA microarrays that interrogate the expression of every human gene. Preliminary data indicate that of the most altered gene expression levels, 17/24 (70.8%) of aluminum-affected genes, and 7/8 (87.5%) of aluminum-induced genes exhibit expression patterns similar to those observed in AD. The seven genes found to be significantly up-regulated by aluminum encode pro-inflammatory or pro-apoptotic signaling elements, including NF-kappaB subunits, interleukin-1beta precursor, cytosolic phospholipase A2, cyclooxygenase-2, beta-amyloid precursor protein and DAXX, a regulatory protein known to induce apoptosis and repress transcription. The promoters of genes up-regulated by aluminum are enriched in binding sites for the stress-inducible transcription factors HIF-1 and NF-kappaB, suggesting a role for aluminum, HIF-1 and NF-kappaB in driving atypical, pro-inflammatory and pro-apoptotic gene expression. The effect of aluminum on specific stress-related gene expression patterns in human brain cells clearly warrant further investigation.

  7. Citrus bergamia Juice Extract Attenuates β-Amyloid-Induced Pro-Inflammatory Activation of THP-1 Cells Through MAPK and AP-1 Pathways

    PubMed Central

    Currò, Monica; Risitano, Roberto; Ferlazzo, Nadia; Cirmi, Santa; Gangemi, Chiara; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele

    2016-01-01

    Flavonoids have been shown to be effective in protecting against age-related cognitive and motor decline in both in vitro and in vivo models. Recently, a flavonoid-rich extract of Citrus bergamia juice (BJe) has been shown to display anti-oxidant and anti-inflammatory properties against LPS-induced activation of human THP-1 monocytes. In the light of these observations, we wondered whether BJe may be beneficial against neuroinflammatory processes, such as those observed in Alzheimer’s disease. To this aim we used THP-1 monocytes to investigate the mechanisms underlying the beneficial potential of BJe against amyloid-beta1–42 (Aβ1−42) -mediated inflammation. Exposure of THP-1 cells to Aβ1−42 significantly induced the expression and secretion of IL-6 and IL-1β in THP-1 cells and increased the phosphorylation of ERK 1/2 as well as p46 and p54 members of JNK family. Moreover, Aβ1−42 raises AP-1 DNA binding activity in THP-1-treated cells. Interestingly, all these effects were reduced in the presence of BJe. Our data indicate that BJe may effectively counteract the pro-inflammatory activation of monocytes/microglial cells exposed to amyloid fibrils, suggesting a promising role as a natural drug against neuroinflammatory processes. PMID:26853104

  8. Citrus bergamia Juice Extract Attenuates β-Amyloid-Induced Pro-Inflammatory Activation of THP-1 Cells Through MAPK and AP-1 Pathways.

    PubMed

    Currò, Monica; Risitano, Roberto; Ferlazzo, Nadia; Cirmi, Santa; Gangemi, Chiara; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele

    2016-02-08

    Flavonoids have been shown to be effective in protecting against age-related cognitive and motor decline in both in vitro and in vivo models. Recently, a flavonoid-rich extract of Citrus bergamia juice (BJe) has been shown to display anti-oxidant and anti-inflammatory properties against LPS-induced activation of human THP-1 monocytes. In the light of these observations, we wondered whether BJe may be beneficial against neuroinflammatory processes, such as those observed in Alzheimer's disease. To this aim we used THP-1 monocytes to investigate the mechanisms underlying the beneficial potential of BJe against amyloid-beta1-42 (Aβ1-42) -mediated inflammation. Exposure of THP-1 cells to Aβ1-42 significantly induced the expression and secretion of IL-6 and IL-1β in THP-1 cells and increased the phosphorylation of ERK 1/2 as well as p46 and p54 members of JNK family. Moreover, Aβ1-42 raises AP-1 DNA binding activity in THP-1-treated cells. Interestingly, all these effects were reduced in the presence of BJe. Our data indicate that BJe may effectively counteract the pro-inflammatory activation of monocytes/microglial cells exposed to amyloid fibrils, suggesting a promising role as a natural drug against neuroinflammatory processes.

  9. Chokeberry (Aronia melanocarpa (Michx.) Elliot) concentrate inhibits NF-κB and synergizes with selenium to inhibit the release of pro-inflammatory mediators in macrophages.

    PubMed

    Appel, Kurt; Meiser, Peter; Millán, Estrella; Collado, Juan Antonio; Rose, Thorsten; Gras, Claudia C; Carle, Reinhold; Muñoz, Eduardo

    2015-09-01

    Black chokeberry has been known to play a protective role in human health due to its high polyphenolic content including anthocyanins and caffeic acid derivatives. In the present study, we first characterized the polyphenolic content of a commercial chokeberry concentrate and investigated its effect on LPS-induced NF-κB activation and release of pro-inflammatory mediators in macrophages in the presence or the absence of sodium selenite. Examination of the phytochemical profile of the juice concentrate revealed high content of polyphenols (3.3%), including anthocyanins, proanthocyanidins, phenolic acids, and flavonoids. Among them, cyanidin-3-O-galactoside and caffeoylquinic acids were identified as the major compounds. Data indicated that chokeberry concentrate inhibited both the release of TNFα, IL-6 and IL-8 in human peripheral monocytes and the activation of the NF-κB pathway in RAW 264.7 macrophage cells. Furthermore, chokeberry synergizes with sodium selenite to inhibit NF-κB activation, cytokine release and PGE2 synthesis. These findings suggest that selenium added to chokeberry juice enhances significantly its anti-inflammatory activity, thus revealing a sound approach in order to tune the use of traditional herbals by combining them with micronutrients.

  10. The Fab Fragment of a Human Anti-Siglec-9 Monoclonal Antibody Suppresses LPS-Induced Inflammatory Responses in Human Macrophages

    PubMed Central

    Chu, Sasa; Zhu, Xuhui; You, Na; Zhang, Wei; Zheng, Feng; Cai, Binggang; Zhou, Tingting; Wang, Yiwen; Sun, Qiannan; Yang, Zhiguo; Zhang, Xin; Wang, Changjun; Nie, Shinan; Zhu, Jin; Wang, Maorong

    2016-01-01

    Sepsis is a major cause of death for hospitalized patients and is characterized by massive overreaction of immune responses to invading pathogens which is mediated by cytokines. For decades, there has been no effective treatment for sepsis. Sialic acid-binding, Ig-like lectin-9 (Siglec-9), is an immunomodulatory receptor expressed primarily on hematopoietic cells which is involved in various aspects of inflammatory responses and is a potential target for treatment of sepsis. The aim of the present study was to develop a human anti-Siglec-9 Fab fragment, which was named hS9-Fab03 and investigate its immune activity in human macrophages. We began by constructing the hS9-Fab03 prokaryotic expression vector from human antibody library and phage display. Then, we utilized a multitude of assays, including SDS-PAGE, Western blotting, ELISA, affinity, and kinetics assay to evaluate the binding affinity and specificity of hS9-Fab03. Results demonstrated that hS9-Fab03 specifically bind to Siglec-9 antigen with high affinity, and pretreatment with hS9-Fab03 could attenuate lipopolysaccharide (LPS)-induced TNF-α, IL-6, IL-1β, IL-8, and IFN-β production in human PBMC-derived macrophages, but slightly increased IL-10 production in an early time point. We also observed similar results in human THP-1-differentiated macrophages. Collectively, we prepared the hS9-Fab03 with efficient activity for blocking LPS-induced pro-inflammatory cytokines production in human macrophages. These results indicated that ligation of Siglec-9 with hS9-Fab03 might be a novel anti-inflammatory therapeutic strategy for sepsis. PMID:28082984

  11. Isofraxidin exhibited anti-inflammatory effects in vivo and inhibited TNF-α production in LPS-induced mouse peritoneal macrophages in vitro via the MAPK pathway.

    PubMed

    Niu, Xiaofeng; Xing, Wei; Li, Weifeng; Fan, Ting; Hu, Hua; Li, Yongmei

    2012-10-01

    Isofraxidin (IF) is a Coumarin compound that can be isolated from medicinal plants, such as Sarcandra glabra (Thunb.). Nakai is widely used in Asian countries for the treatment of anti-bacterial, anti-inflammatory and anti-tumour action. The present investigation was designed to evaluate the effect of IF on inflammation and nociception. In addition, we investigated a potential novel mechanism to explain the anti-inflammatory properties of IF. In vivo, xylene-induced mouse ear edema, carrageenan-induced rat paw edema, LPS-induced mouse endotoxic shock, acetic acid-induced mice writhing and formalin-induced mouse pain models were used to evaluate the anti-inflammatory activity of IF. In vitro, we examined the effects of IF inhibition on TNF-α production and the regulation of ERK1/2 and p38 phosphorylation activity in LPS-induced mouse peritoneal macrophages. Our results demonstrated that IF can significantly decrease xylene-induced ear edema, carrageenan-induced paw edema, acetic acid-induced writhing and formalin-induced pain. Moreover, IF greatly inhibited the production of TNF-α in the serum of LPS-stimulated mice and peritoneal macrophages, and it decreased phospho-p38 and ERK1/2 protein expression in LPS-stimulated mouse peritoneal macrophages. Overall, our data suggest that IF possesses significant analgesic and anti-inflammatory activities that may be mediated through the regulation of pro-inflammatory cytokines, TNF-α and the phosphorylation of p38 and ERK1/2.

  12. Tumor necrosis factor receptor-1 is essential for LPS-induced sensitization and tolerance to oxygen-glucose deprivation in murine neonatal organotypic hippocampal slices.

    PubMed

    Markus, Tina; Cronberg, Tobias; Cilio, Corrado; Pronk, Cornelis; Wieloch, Tadeusz; Ley, David

    2009-01-01

    Inflammation and ischemia have a synergistic damaging effect in the immature brain. The role of tumor necrosis factor (TNF) receptors 1 and 2 in lipopolysaccharide (LPS)-induced sensitization and tolerance to oxygen-glucose deprivation (OGD) was evaluated in neonatal murine hippocampal organotypic slices. Hippocampal slices from balb/c, C57BL/6 TNFR1(-/-), TNFR2(-/-), and wild-type (WT) mice obtained at P6 were grown in vitro for 9 days. Preexposure to LPS immediately before OGD increased propidium iodide-determined cell death in regions CA1, CA3, and dentate gyrus from 4 up to 48 h after OGD (P<0.001). Extending the time interval between LPS exposure and OGD to 72 h resulted in tolerance, that is reduced neuronal cell death after OGD (P<0.05). Slices from TNFR1(-/-) mice showed neither LPS-induced sensitization nor LPS-induced tolerance to OGD, whereas both effects were present in slices from TNFR2(-/-) and WT mice. Cytokine secretion (TNFalpha and interleukin-6) during LPS exposure was decreased in TNFR1(-/-) slices and increased in TNFR2(-/-) as compared with WT slices. We conclude that LPS induces sensitization or tolerance to OGD depending on the time interval between exposure to LPS and OGD in murine hippocampal slice cultures. Both paradigms are dependent on signaling through TNFR1.

  13. Chebulagic acid inhibits the LPS-induced expression of TNF-α and IL-1β in endothelial cells by suppressing MAPK activation.

    PubMed

    Liu, Yueying; Bao, Luer; Xuan, Liying; Song, Baohua; Lin, Lin; Han, Hao

    2015-07-01

    Inflammatory response in the vasculature, including the overexpression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β, has been demonstrated to increase the risk of thrombosis development. Chebulagic acid (CA) is a key chemical component in the traditional Mongolian anti-thrombotic drug Garidi-13, and has been suggested to exert anti-inflammatory and anti-infective effects. The present study aimed to evaluate the regulatory impact of CA on a number of biological processes, including lipopolysaccharide (LPS)-induced inflammation, LPS-promoted mitogen-activated protein kinase (MAPK) activation and the expression of toll-like receptor (TLR)4 in EA.hy926 human endothelial cells. The results indicated that CA significantly inhibited the LPS-induced upregulation of TNF-α and IL-1β in a dose- and time-dependent manner. Furthermore, LPS-activated MAPK signaling was inhibited by CA treatment in the EA.hy926 cells. However, TLR4, which serves a key function in LPS-induced inflammation as the receptor of LPS, was not regulated by the CA treatment. In summary, the results of the present study indicate that CA inhibits the LPS-induced promotion of TNF-α and IL-1β in endothelial cells by suppressing MAPK activation, which may contribute to the anti-thrombotic effect of Garidi-13.

  14. Early LPS-induced ERK activation in retinal pigment epithelium cells is dependent on PIP 2 -PLC.

    PubMed

    Mateos, Melina V; Kamerbeek, Constanza B; Giusto, Norma M; Salvador, Gabriela A

    2016-06-01

    This article presents additional data regarding the study "The phospholipase D pathway mediates the inflammatory response of the retinal pigment epithelium" [1]. The new data presented here show that short exposure of RPE cells to lipopolysaccharide (LPS) induces an early and transient activation of the extracellular signal-regulated kinase (ERK1/2). This early ERK1/2 activation is dependent on phosphatidylinositol bisphosphate-phospholipase C (PIP2-PLC). On the contrary, neither the phospholipase D 1 (PLD1) nor the PLD2 inhibition is able to modulate the early ERK1/2 activation induced by LPS in RPE cells.

  15. Auranofin, as an anti-rheumatic gold compound, suppresses LPS-induced homodimerization of TLR4.

    PubMed

    Youn, Hyung S; Lee, Joo Y; Saitoh, Shin I; Miyake, Kensuke; Hwang, Daniel H

    2006-12-01

    Toll-like receptors (TLRs), which are activated by invading microorganisms or endogenous molecules, evoke immune and inflammatory responses. TLR activation is closely linked to the development of many chronic inflammatory diseases including rheumatoid arthritis. Auranofin, an Au(I) compound, is a well-known and long-used anti-rheumatic drug. However, the mechanism as to how auranofin relieves the symptom of rheumatoid arthritis has not been fully clarified. Our results demonstrated that auranofin suppressed TLR4-mediated activation of transcription factors, NF-kappaB and IRF3, and expression of COX-2, a pro-inflammatory enzyme. This suppression was well correlated with the inhibitory effect of auranofin on the homodimerization of TLR4 induced by an agonist. Furthermore, auranofin inhibited NF-kappaB activation induced by MyD88-dependent downstream signaling components of TLR4, MyD88, IKKbeta, and p65. IRF3 activation induced by MyD88-independent signaling components, TRIF and TBK1, was also downregulated by auranofin. Our results first demonstrate that auranofin suppresses the multiple steps in TLR4 signaling, especially the homodimerization of TLR4. The results suggest that the suppression of TLR4 activity by auranofin may be the molecular mechanism through which auranofin exerts anti-rheumatic activity.

  16. Pro-inflammatory cytokines: Useful markers for the diagnosis of canine mammary tumours?

    PubMed

    Andaluz, Ana; Yeste, Marc; Rodríguez-Gil, Joan E; Rigau, Teresa; García, Félix; Rivera del Álamo, Maria Montserrat

    2016-04-01

    The aim of the present study was to analyse the expression of 60 pro-inflammatory cytokines as possible markers of malignancy in canine mammary tumours using a human cytokine antibody array. The cytokines were grouped into two different categories: (1) cytokines in which expression indicated the presence of a mammary tumour and (2) cytokines in which expression differentiated between simple mammary adenoma, tubulopapillary carcinoma or complex carcinoma. These data suggest that specific pro-inflammatory cytokines could be useful as tools for the diagnosis of canine mammary tumours.

  17. IL-1beta and LPS induce anorexia by distinct mechanisms differentially dependent on microsomal prostaglandin E synthase-1.

    PubMed

    Elander, Louise; Engström, Linda; Hallbeck, Martin; Blomqvist, Anders

    2007-01-01

    Recent work demonstrated that the febrile response to peripheral immune stimulation with proinflammatory cytokine IL-1beta or bacterial wall lipopolysaccharide (LPS) is mediated by induced synthesis of prostaglandin E(2) by the terminal enzyme microsomal prostaglandin E synthase-1 (mPGES-1). The present study examined whether a similar mechanism might also mediate the anorexia induced by these inflammatory agents. Transgenic mice with a deletion of the Ptges gene, which encodes mPGES-1, and wild-type controls were injected intraperitoneally with IL-1beta, LPS, or saline. Mice were free fed, and food intake was continuously monitored with an automated system for 12 h. Body weight was recorded every 24 h for 4 days. The IL-1beta induced anorexia in wild-type but not knock-out mice, and so it was almost completely dependent on mPGES-1. In contrast, LPS induced anorexia of the same magnitude in both phenotypes, and hence it was independent of mPGES-1. However, when the mice were prestarved for 22 h, LPS induced anorexia and concomitant body weight loss in the knock-out animals that was attenuated compared with the wild-type controls. These data suggest that IL-1beta and LPS induce anorexia by distinct immune-to-brain signaling pathways and that the anorexia induced by LPS is mediated by a mechanism different from the fever induced by LPS. However, nutritional state and/or motivational factors also seem to influence the pathways for immune signaling to the brain. Furthermore, both IL-1beta and LPS caused reduced meal size but not meal frequency, suggesting that both agents exerted an anhedonic effect during these experimental conditions.

  18. α-Tocopherol attenuates NF-κB activation and pro-inflammatory cytokine IL-6 secretion in cancer-bearing mice.

    PubMed

    Sharma, Renu; Vinayak, Manjula

    2011-10-01

    Cancer development and progression are closely associated with inflammation. NF-κB (nuclear factor κB) provides a mechanistic link between inflammation and cancer, and is a major factor controlling the ability of malignant cells to resist tumour surveillance mechanisms. NF-κB might also regulate tumour angiogenesis and invasiveness and the signalling pathways that mediate its activation provide attractive targets for new chemopreventive and chemotherapeutic approaches. ROS (reactive oxygen species) initiate inflammation by up-regulation of pro-inflammatory cytokines and therefore antioxidants provide a major defence against inflammation. α-Tocopherol is a lipid-soluble antioxidant. In addition to decreasing lipid peroxidation, α-tocopherol may exert intracellular effects. Hence, the aim of this study was to test the effect of α-tocopherol supplementation in cancer prevention via suppression of NF-κB-mediated pro-inflammatory cytokines. α-Tocopherol treatment significantly down-regulates expression, synthesis as well as secretion of pro-inflammatory cytokine IL-6 (interleukin-6) in cancerous mice. It also suppresses NF-κB binding to IL-6 promoter in liver leading to decreased secretion of IL-6 in serum. The regulation of the signalling pathway by α-tocopherol is found apart from its antioxidant capacity to reduce lipid peroxidation. Thus, the present study provides evidence for the hypothesis that besides the powerful free radical scavenging effects, α-tocopherol has genomic effects in down-regulation of pro-inflammatory cytokine and cancer prevention via the NF-κB-dependent pathway.

  19. The upregulation of pro-inflammatory cytokines in the rabbit uterus under the lipopolysaccaride-induced reversible immunoresponse state.

    PubMed

    Liu, S J; Shi, Y; Liu, C; Zhang, M; Zuo, Z C; Zeng, C J; Zhou, G B; Xian, H; Song, T Z

    2017-01-01

    The reproductive organs are more likely to develop gram-negative bacterial infection than other internal organs because of direct access to the body surface. The objective of this study was (1) to provide a suitable intravenous injection dose of lipopolysaccharides (LPS) instead of gram-negative bacterial infection in order to induce a reversible immunoresponse state and (2) to examine the expression levels of pro-inflammatory cytokines in the uterus of rabbits while in an immunoresponse state. Two series of experiments were performed to accomplish these objectives. In the first series, 20 healthy New Zealand White female rabbits were divided into 5 homogeneous groups (n=4), and intravenously injected with 0, 0.5, 1, 2, or 4mg/kg body weight (BW) of LPS derived from Escherichia coli dissolved in 2ml of sterile saline (LPS carrier). The control group received only saline. The concentrations of IL-1β, IL-6, and TNF-α in serum and the white blood cell count changed with time after LPS stimulation, and certain doses of LPS led to the death of some rabbits. The results suggested that a dose of 0.5mg/kg of LPS induced a reversible immunoresponse state. In the second series, 4 rabbits were not injected (0h), 16 rabbits were injected with 0.5mg/kg LPS, and 16 rabbits in the control group were injected with 2ml of sterile saline. Tissues of the uterine horn, uterine body, and cervix from the 36 rabbits were collected at 0, 1.5, 3, 6, and 12h (n=4) postinjection for examination of the expression levels of IL-1β, IL-6, and TNF-α by quantitative real-time PCR (qRT-PCR). The results suggested that 0.5mg/kg of LPS upregulated the expression levels of IL-1β, IL-6 and TNF-α in the uterine body and uterine horn, and IL-6 in the cervix. In conclusion, the expression levels of IL-1β, IL-6 and TNF-α were upregulated in the uterus of rabbits under the reversible immunoresponse state induced by 0.5mg/kg of LPS-injection.

  20. Protein kinase D1 is essential for the pro-inflammatory response induced by hypersensitivity pneumonitis-causing thermophilic actinomycetes Saccharopolyspora rectivirgula

    PubMed Central

    Kim, Young-In; Park, Jeoung-Eun; Brand, David D.; Fitzpatrick, Elizabeth A.; Yi, Ae-Kyung

    2010-01-01

    Hypersensitivity pneumonitis is an interstitial lung disease that results from repeated pulmonary exposure to various organic antigens, including Saccharopolyspora rectivirgula (SR, the causative agent of farmer's lung disease). Although the contributions of pro-inflammatory mediators to the disease pathogenesis are relatively well documented, the mechanism(s) involved in initiation of pro-inflammatory responses against the causative microorganisms, and the contribution of signaling molecules involved in host immune defense have not been fully elucidated. In the present study, we found that SR induces activation of protein kinase D1 (PKD1) in lung cells in vitro and in vivo. Activation of PKD1 by SR was dependent on MyD88. Inhibition of PKD by pharmacological PKD inhibitor Gö6976, and silencing of PKD1 expression by siRNA, revealed that PKD1 is indispensable for SR-mediated activation of MAPKs and NF-κB and expression of various pro-inflammatory cytokines and chemokines. In addition, compared to controls, mice pretreated with Gö6976 showed significantly suppressed alveolitis and neutrophil influx in bronchial alveolar lavage fluid and interstitial lung tissue, and substantially decreased myeloperoxidase activity in the lung after pulmonary exposure to SR. These results demonstrate that PKD1 is essential for SR-mediated pro-inflammatory immune responses and neutrophil influx in the lung. Our findings also imply the possibility that PKD1 might be one of the critical factors that play a regulatory role in development of hypersensitivity pneumonitis caused by microbial antigens, and that inhibition of PKD1 activation could be an effective way to control microbial antigen-induced hypersensitivity pneumonitis. PMID:20142359

  1. Mycotoxin detoxifiers attenuate deoxynivalenol-induced pro-inflammatory barrier insult in porcine enterocytes as an in vitro evaluation model of feed mycotoxin reduction.

    PubMed

    Park, Seong-Hwan; Kim, Juil; Kim, Dongwook; Moon, Yuseok

    2017-02-01

    Deoxynivalenol (DON), the most prevalent mycotoxin worldwide, leads to economic losses for animal food production. Swine is a most sensitive domestic animal to DON due to rapid absorption and low detoxification by gut microbiota. Specifically, DON can severely damage pig intestinal tissue by disrupting the intestinal barrier and inducing inflammatory responses. We evaluated the effects of several mycotoxin detoxifiers including bentonites, yeast cell wall components, and mixture-typed detoxifier composed of mineral, microorganisms, and phytogenic substances on DON-insulted intestinal barrier and pro-inflammatory responses using in vitro porcine enterocyte culture model. DON-induced disruption of the in vitro gut barrier was attenuated by all three mycotoxin detoxifiers in dose-dependent manners. These mycotoxin detoxifiers also suppressed DON-induced pro-inflammatory chemokine expression to different degrees, which was mediated by downregulation of mitogen-activated kinases and early growth response-1. Of note, the mixture-typed detoxifier was the most prominent mitigating agent at the cellular levels whereas the high dose of bentonite clay also had suppressive action against DON-induced pro-inflammatory insult. The in vitro porcine enterocyte-based assessment of intestinal barrier integrity and inflammatory signals provides sensitive and simplified alternative bioassay of feed additives such as detoxifiers against enteropathogenic mycotoxins with comprehensive mechanistic confirmation.

  2. Pro-inflammatory effects of metals in persons and animals exposed to tobacco smoke.

    PubMed

    Milnerowicz, Halina; Ściskalska, Milena; Dul, Magdalena

    2015-01-01

    Metals present in tobacco smoke have the ability to cause a pro-oxidant/antioxidant imbalance through the direct generation of free radicals in accordance with the Fenton or Haber-Weiss reaction and redox properties. Metals can also interact with antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) and small molecular antioxidants (glutathione) through binding to SH groups or by replacement of metals ions in the catalytic center of enzymes. Excessive free radicals production can induce an inflammatory response. The aim of this study was to review the information on the induction of inflammation by metals present in tobacco smoke such as lead (Pb), cadmium (Cd), arsenic (As), aluminum (Al), nickel (Ni) and mercury (Hg). In cellular immune response, it was demonstrated that radicals induced by metals can disrupt the transcription signaling pathway mediated by the mitogen-activated protein kinase (induced by Pb), NLRP3-ASC-caspase 1 (induced by Ni), tyrosine kinase Src (induced by As) and the nuclear factor κB (induced by Pb, Ni, Hg). The result of this is a gene transcription for early inflammatory cytokines, such as Interleukine 1β, Interleukine 6, and Tumor necrosis factor α). These cytokines can cause leukocytes recruitment and secretions of other pro-inflammatory cytokines and chemokines, which intensifies the inflammatory response. Some metals, such as cadmium (Cd), can activate an inflammatory response through tissue damage induction mediated by free radicals, which also results in leukocytes recruitment and cytokines secretions. Inflammation generated by metals can be reduced by metallothionein, which has the ability to scavenge free radicals and bind toxic metals through the release of Zn and oxidation of SH groups.

  3. Granzymes A and K differentially potentiate LPS-induced cytokine response

    PubMed Central

    Wensink, Annette C; Kok, Helena M; Meeldijk, Jan; Fermie, Job; Froelich, Christopher J; Hack, C Erik; Bovenschen, Niels

    2016-01-01

    Granzymes are serine proteases that, upon release from cytotoxic cells, induce apoptosis in tumor cells and virally infected cells. In addition, a role of granzymes in inflammation is emerging. Recently, we have demonstrated that extracellular granzyme K (GrK) potentiates lipopolysaccharide (LPS)-induced cytokine response from monocytes. GrK interacts with LPS, disaggregates LPS micelles, and stimulates LPS-CD14 binding and Toll-like receptor signaling. Here we show that human GrA also potentiates cytokine responses in human monocytes initiated by LPS or Gram-negative bacteria. Similar to GrK, this effect is independent of GrA catalytic activity. Unlike GrK, however, GrA does not bind to LPS, has little influence on LPS micelle disaggregation, and does not augment LPS-CD14 complex formation. We conclude that GrA and GrK differentially modulate LPS-Toll-like receptor signaling in monocytes, suggesting functional redundancy among cytotoxic lymphocyte proteases in the anti-bacterial innate immune response. PMID:28028441

  4. CD54-Mediated Interaction with Pro-inflammatory Macrophages Increases the Immunosuppressive Function of Human Mesenchymal Stromal Cells.

    PubMed

    Espagnolle, Nicolas; Balguerie, Adélie; Arnaud, Emmanuelle; Sensebé, Luc; Varin, Audrey

    2017-03-07

    Mesenchymal stromal cells (MSCs) sense and modulate inflammation and represent potential clinical treatment for immune disorders. However, many details of the bidirectional interaction of MSCs and the innate immune compartment are still unsolved. Here we describe an unconventional but functional interaction between pro-inflammatory classically activated macrophages (M1MΦ) and MSCs, with CD54 playing a central role. CD54 was upregulated and enriched specifically at the contact area between M1MФ and MSCs. Moreover, the specific interaction induced calcium signaling and increased the immunosuppressive capacities of MSCs dependent on CD54 mediation. Our data demonstrate that MSCs can detect an inflammatory microenvironment via a direct and physical interaction with innate immune cells. This finding opens different perspectives for MSC-based cell therapy.

  5. Shizukaol B, an active sesquiterpene from Chloranthus henryi, attenuates LPS-induced inflammatory responses in BV2 microglial cells.

    PubMed

    Pan, Li-Long; Xu, Peng; Luo, Xiao-Ling; Wang, Li-Jun; Liu, Si-Yu; Zhu, Yi-Zhun; Hu, Jin-Feng; Liu, Xin-Hua

    2017-04-01

    The objective of the current study was to evaluate the anti-inflammatory effects of shizukaol B, a lindenane-type dimeric sesquiterpene isolated from the whole plant of Chloranthus henryi, on lipopolysaccharide (LPS)-induced activation of BV2 microglial cells in vitro. Our data showed that shizukaol B concentration-dependently suppressed expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), production of nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in LPS-stimulated BV2 microglia. Meanwhile, shizukaol B concentration- and time-dependently inhibited LPS-mediated c-Jun N-terminal kinase 1/2 (JNK) activation, but had little effect on extracellular signal-regulated kinase 1/2 or p38 phosphorylation. Furthermore, shizukaol B significantly blocked LPS-induced activator protein-1 (AP-1) activation, evidenced by reduced phosphorylation and nuclear translocation of c-Jun and DNA binding activity of AP-1. Taken together, our findings suggest that shizukaol B exerts anti-inflammatory effects in LPS-activated microglia partly by modulating JNK-AP-1 signaling pathway.

  6. Preferential expansion of pro-inflammatory Tregs in human non-small cell lung cancer

    PubMed Central

    Phillips, Joseph D.; Blatner, Nichole R.; Haghi, Leila; DeCamp, Malcolm M.; Meyerson, Shari L.; Heiferman, Michael J.; Heiferman, Jeffrey R.; Gounari, Fotini; Bentrem, David J.; Khazaie, Khashayarsha

    2016-01-01

    Objectives Lung cancer is the leading cause of cancer-related death in the USA. Regulatory T cells (Tregs) normally function to temper immune responses and decrease inflammation. Previous research has demonstrated different subsets of Tregs with contrasting anti- or pro-inflammatory properties. This study aimed to determine Treg subset distributions and characteristics present in non-small cell lung cancer (NSCLC) patients. Methods Peripheral blood was collected from healthy controls (HC) and NSCLC patients preceding surgical resection, and mononuclear cells were isolated, stained, and analyzed by flow cytometry. Tregs were defined by expression of CD4 and CD25 and classified into CD45RA+Foxp3int (naïve, Fr. I) or CD45RA−Foxp3hi (activated Fr. II). Activated conventional T cells were CD4+CD45RA−Foxp3int (Fr. III). Results Samples from 23 HC and 26 NSCLC patients were collected. Tregs isolated from patients with NSCLC were found to have enhanced suppressive function on naive T cells. Cancer patients had significantly increased frequencies of activated Tregs (fraction II: FrII), 17.5 versus 3.2 % (P < 0.001). FrII Tregs demonstrated increased RORγt and IL17 expression and decreased IL10 expression compared to Tregs from HC, indicating pro-inflammatory characteristics. Conclusions This study demonstrates that a novel subset of Tregs with pro-inflammatory characteristics preferentially expand in NSCLC patients. This Treg subset appears identical to previously reported pro-inflammatory Tregs in human colon cancer patients and in mouse models of polyposis. We expect the pro-inflammatory Tregs in lung cancer to contribute to the immune pathogenesis of disease and propose that targeting this Treg subset may have protective benefits in NSCLC. PMID:26047578

  7. Protective Role of Ternatin Anthocyanins and Quercetin Glycosides from Butterfly Pea (Clitoria ternatea Leguminosae) Blue Flower Petals against Lipopolysaccharide (LPS)-Induced Inflammation in Macrophage Cells.

    PubMed

    Nair, Vimal; Bang, Woo Young; Schreckinger, Elisa; Andarwulan, Nuri; Cisneros-Zevallos, Luis

    2015-07-22

    Twelve phenolic metabolites (nine ternatin anthocyanins and three glycosylated quercetins) were identified from the blue flowers of Clitoria ternatea by high-performance liquid chromatography diode array detection and electrospray ionization/mass spectrometry (HPLC-DAD-ESI/MS(n)). Three anthocyanins not reported in this species before show fragmentation pattern of the ternatin class. Extracts were fractionated in fractions containing flavonols (F3) and ternatin anthocyanins (F4). In general, C. ternatea polyphenols showed anti-inflammatory properties in lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells with distinct molecular targets. Flavonols (F3) showed strong inhibition of COX-2 activity and partial ROS suppression. On the other hand, the ternatin anthocyanins (F4) inhibited nuclear NF-κB translocation, iNOS protein expression, and NO production through a non-ROS suppression mechanism. Accordingly, quercetin glycosides and ternatin anthocyanins from the blue flower petals of C. ternatea may be useful in developing drugs or nutraceuticals for protection against chronic inflammatory diseases by suppressing the excessive production of pro-inflammatory mediators from macrophage cells.

  8. Toll-like receptor and pro-inflammatory cytokine expression during prolonged hyperinsulinaemia in horses: implications for laminitis.

    PubMed

    de Laat, M A; Clement, C K; McGowan, C M; Sillence, M N; Pollitt, C C; Lacombe, V A

    2014-01-15

    Equine laminitis, a disease of the lamellar structure of the horse's hoof, can be incited by numerous factors that include inflammatory and metabolic aetiologies. However, the role of inflammation in hyperinsulinaemic laminitis has not been adequately defined. Toll-like receptor (TLR) activation results in up-regulation of inflammatory pathways and the release of pro-inflammatory cytokines, including interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α), and may be a pathogenic factor in laminitis. The aim of this study was to determine whether TLR4 expression and subsequent pro-inflammatory cytokine production is increased in lamellae and skeletal muscle during equine hyperinsulinaemia. Standardbred horses were treated with either a prolonged, euglycaemic hyperinsulinaemic clamp (p-EHC) or a prolonged, glucose infusion (p-GI), which induced marked and moderate hyperinsulinaemia, respectively. Age-matched control horses were treated simultaneously with a balanced electrolyte solution. Treated horses developed clinical (p-EHC) or subclinical (p-GI) laminitis, whereas controls did not. Skeletal muscle and lamellar protein extracts were analysed by Western blotting for TLR4, IL-6, TNF-α and suppressor of cytokine signalling 3 (SOCS3) expression. Lamellar protein expression of TLR4 and TNF-α, but not IL-6, was increased by the p-EHC, compared to control horses. A significant positive correlation was found between lamellar TLR4 and SOCS3. Skeletal muscle protein expression of TLR4 signalling parameters did not differ between control and p-EHC-treated horses. Similarly, the p-GI did not result in up-regulation of lamellar protein expression of any parameter. The results suggest that insulin-sensitive tissues may not accurately reflect lamellar pathology during hyperinsulinaemia. While TLR4 is present in the lamellae, its activation appears unlikely to contribute significantly to the developmental pathogenesis of hyperinsulinaemic laminitis. However

  9. Kefir-isolated bacteria and yeasts inhibit Shigella flexneri invasion and modulate pro-inflammatory response on intestinal epithelial cells.

    PubMed

    Bolla, P A; Abraham, A G; Pérez, P F; de Los Angeles Serradell, M

    2016-02-01

    The aim of this work was to evaluate the ability of a kefir-isolated microbial mixture containing three bacterial and two yeast strains (MM) to protect intestinal epithelial cells against Shigella flexneri invasion, as well as to analyse the effect on pro-inflammatory response elicited by this pathogen. A significant decrease in S. flexneri strain 72 invasion was observed on both HT-29 and Caco-2 cells pre-incubated with MM. Pre-incubation with the individual strains Saccharomyces cerevisiae CIDCA 8112 or Lactococcus lactis subsp. lactis CIDCA 8221 also reduced the internalisation of S. flexneri into HT-29 cells although in a lesser extent than MM. Interestingly, Lactobacillus plantarum CIDCA 83114 exerted a protective effect on the invasion of Caco-2 and HT-29 cells by S. flexneri. Regarding the pro-inflammatory response on HT-29 cells, S. flexneri infection induced a significant activation of the expression of interleukin 8 (IL-8), chemokine (C-C motif) ligand 20 (CCL20) and tumour necrosis factor alpha (TNF-α) encoding genes (P<0.05), whereas incubation of cells with MM did not induce the expression of any of the mediators assessed. Interestingly, pre-incubation of HT-29 monolayer with MM produced an inhibition of S. flexneri-induced IL-8, CCL20 and TNF-α mRNA expression. In order to gain insight on the effect of MM (or the individual strains) on this pro-inflammatory response, a series of experiments using a HT-29-NF-κB-hrGFP reporter system were performed. Pre-incubation of HT-29-NF-κB-hrGFP cells with MM significantly dampened Shigella-induced activation. Our results showed that the contribution of yeast strain Kluyveromyces marxianus CIDCA 8154 seems to be crucial in the observed effect. In conclusion, results presented in this study demonstrate that pre-treatment with a microbial mixture containing bacteria and yeasts isolated from kefir, resulted in inhibition of S. flexneri internalisation into human intestinal epithelial cells, along with the

  10. Decitabine and 5-azacitidine both alleviate LPS induced ARDS through anti-inflammatory/antioxidant activity and protection of glycocalyx and inhibition of MAPK pathways in mice.

    PubMed

    Huang, Xiao; Kong, Guiqing; Li, Yan; Zhu, Weiwei; Xu, Haixiao; Zhang, Xiaohua; Li, Jiankui; Wang, Lipeng; Zhang, Zhongwen; Wu, Yaru; Liu, Xiangyong; Wang, Xiaozhi

    2016-12-01

    Decitabine (5-aza-2'-deoxycytidine, DAC) and 5-azacitidine (Aza), an inhibitor of DNA methyltransferases, possess a wide range of anti-metabolic and anti-cancer activities. This study examined the effects of DAC and Aza on inflammatory and oxidative injuries, as well as on glycocalyx and MAPK signaling pathways, in a LPS-stimulated ARDS mouse model. Results of ELISA revealed that DAC and Aza significantly inhibited the production of TNF-α and IL-1β and prevented LPS-induced elevation of myeloperoxidase and malondialdehyde levels in serum. The W/D ratio of lung and histopathologic examination with hematoxylin and eosin staining showed that DAC and Aza pretreatment substantially improved lung tissue injury. DAC and Aza reduced the level of glycocalyx degradation products (e.g., heparan sulfate and haluronic acid) and protected glycocalyx integrity. Western blot assay demonstrated that DAC and Aza both significantly suppressed LPS-induced activation of the MAPK signaling pathways by blocking the phosphorylation of JNK, ERK and P38 in lung tissues. Bisulfite sequencing PCR and real time-PCR showed that DAC reversed the RASSF1A promoter hypermethylation and furthermore elevated the expression of RASSF1A, which is a tumor suppressor that regulates MAPK signaling pathway. These results suggested that DAC inhibited the MAPK signaling pathway in LPS-induced ARDS mice might via demethylation in RASSF1A promoter region and by restoring its expression. This study highlighted the close relationship between DNA methylation and the development and progression of ARDS.

  11. Green tea polyphenol epigallocatechin-3-gallate inhibits TLR4 signaling through the 67-kDa laminin receptor on lipopolysaccharide-stimulated dendritic cells

    SciTech Connect

    Byun, Eui-Baek; Choi, Han-Gyu; Sung, Nak-Yun; Byun, Eui-Hong

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer Expressions of CD80, CD86, and MHC class I/II were inhibited by EGCG via 67LR. Black-Right-Pointing-Pointer EGCG-treated DCs inhibited LPS-induced pro-inflammatory cytokines via 67LR. Black-Right-Pointing-Pointer EGCG-treated DCs inhibited MAPKs activation and NF-{kappa}B p65 translocation via 67LR. Black-Right-Pointing-Pointer EGCG elevated the expression of the Tollip protein through 67LR in DCs. -- Abstract: Epigallocatechin-3-gallate (EGCG), a major active polyphenol of green tea, has been shown to down-regulate inflammatory responses in dendritic cells (DCs); however, the underlying mechanism has not been understood. Recently, we identified the 67-kDa laminin receptor (67LR) as a cell-surface EGCG receptor. In this study, we showed the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by EGCG in DCs. The expressions of CD80, CD86, and MHC class I and II, which are molecules essential for antigen presentation by DCs, were inhibited by EGCG via 67LR. In addition, EGCG-treated DCs inhibited lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines (tumor necrosis factor [TNF]-{alpha}, interleukin [IL]-1{beta}, and IL-6) and activation of mitogen-activated protein kinases (MAPKs), e.g., extracellular signal-regulated kinase 1/2 (ERK1/2), p38, c-Jun N-terminal kinase (JNK), and nuclear factor {kappa}B (NF-{kappa}B) p65 translocation through 67LR. Interestingly, we also found that EGCG markedly elevated the expression of the Tollip protein, a negative regulator of TLR signaling, through 67LR. These novel findings provide new insight into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and consequent inflammatory responses that are implicated in the development and progression of many chronic diseases.

  12. Vanadium Compounds as Pro-Inflammatory Agents: Effects on Cyclooxygenases

    PubMed Central

    Korbecki, Jan; Baranowska-Bosiacka, Irena; Gutowska, Izabela; Chlubek, Dariusz

    2015-01-01

    This paper discusses how the activity and expression of cyclooxygenases are influenced by vanadium compounds at anticancer concentrations and recorded in inorganic vanadium poisonings. We refer mainly to the effects of vanadate (orthovanadate), vanadyl and pervanadate ions; the main focus is placed on their impact on intracellular signaling. We describe the exact mechanism of the effect of vanadium compounds on protein tyrosine phosphatases (PTP), epidermal growth factor receptor (EGFR), PLCγ, Src, mitogen-activated protein kinase (MAPK) cascades, transcription factor NF-κB, the effect on the proteolysis of COX-2 and the activity of cPLA2. For a better understanding of these processes, a lot of space is devoted to the transformation of vanadium compounds within the cell and the molecular influence on the direct targets of the discussed vanadium compounds. PMID:26053397

  13. Pro-inflammatory properties of shark cartilage supplement.

    PubMed

    Merly, Liza; Smith, Sylvia L

    2015-04-01

    The erosion and breakdown of cartilage is generally recognized to be an integral manifestation of arthritic disease, which is often accompanied by the development and progression of inflammation associated with it. Commercial shark cartilage (SC) is a popular dietary supplement taken for the prevention and/or control of chronic disease, including arthritis. The efficacy of SC in maintaining joint health remains questionable; there is a lack of sufficient reliable information on its effect on immunocompetent cells, and the potential health risks involved have not been adequately assessed. Our earlier in vitro studies showed that SC extracts induce a Th1-type inflammatory cytokine response in human leucocytes, and collagen type II alpha 1 protein was shown to be an active cytokine-inducing component in SC. In this study, we further define the cellular response to SC stimulation by classifying leucocytes into primary and secondary responders employing enriched leucocyte subpopulations. Inhibitors of specific signaling pathways were used to verify the functional effect of SC on specific pathway(s) utilized. Results indicate the monocyte/macrophage as the initially responding cell, followed by lymphocytes and the production of interferon-γ. Chemokines, MCP-1 and RANTES, were produced at significant levels in stimulated leucocyte cultures. Initial cellular activation is likely followed by activation of Jun Kinase and p38 mitogen-activated protein kinase signal transduction pathways. This study presents evidence of significant immunological reactivity of components of commercial SC supplement, which could pose a potential health risk for consumers, particularly those with underlying inflammatory disease such as irritable bowel syndrome and arthritis.

  14. Eukaryotic elongation factor 2 controls TNF-α translation in LPS-induced hepatitis

    PubMed Central

    González-Terán, Bárbara; Cortés, José R.; Manieri, Elisa; Matesanz, Nuria; Verdugo, ρngeles; Rodríguez, María E.; González-Rodríguez, ρgueda; Valverde, ρngela; Martín, Pilar; Davis, Roger J.; Sabio, Guadalupe

    2012-01-01

    Bacterial LPS (endotoxin) has been implicated in the pathogenesis of acute liver disease through its induction of the proinflammatory cytokine TNF-α. TNF-α is a key determinant of the outcome in a well-established mouse model of acute liver failure during septic shock. One possible mechanism for regulating TNF-α expression is through the control of protein elongation during translation, which would allow rapid cell adaptation to physiological changes. However, the regulation of translational elongation is poorly understood. We found that expression of p38γ/δ MAPK proteins is required for the elongation of nascent TNF-α protein in macrophages. The MKK3/6-p38γ/δ pathway mediated an inhibitory phosphorylation of eukaryotic elongation factor 2 (eEF2) kinase, which in turn promoted eEF2 activation (dephosphorylation) and subsequent TNF-α elongation. These results identify a new signaling pathway that regulates TNF-α production in LPS-induced liver damage and suggest potential cell-specific therapeutic targets for liver diseases in which TNF-α production is involved. PMID:23202732

  15. Granzyme K synergistically potentiates LPS-induced cytokine responses in human monocytes

    PubMed Central

    Wensink, Annette C.; Kemp, Vera; Fermie, Job; García Laorden, M. Isabel; van der Poll, Tom; Hack, C. Erik; Bovenschen, Niels

    2014-01-01

    Granzymes are serine proteases released by cytotoxic lymphocytes to induce apoptosis in virus-infected cells and tumor cells. Evidence is emerging that granzymes also play a role in controlling inflammation. Granzyme serum levels are elevated in patients with autoimmune diseases and infections, including sepsis. However, the function of extracellular granzymes in inflammation largely remains unknown. Here, we show that granzyme K (GrK) binds to Gram-negative bacteria and their cell-wall component lipopolysaccharide (LPS). GrK synergistically enhances LPS-induced cytokine release in vitro from primary human monocytes and in vivo in a mouse model of LPS challenge. Intriguingly, these extracellular effects are independent of GrK catalytic activity. GrK disaggregates LPS from micelles and augments LPS–CD14 complex formation, thereby likely boosting monocyte activation by LPS. We conclude that extracellular GrK is an unexpected direct modulator of LPS–TLR4 signaling during the antimicrobial innate immune response. PMID:24711407

  16. Quercetin Inhibits LPS-Induced Inflammation and ox-LDL-Induced Lipid Deposition.

    PubMed

    Xue, Feng; Nie, Xiaobo; Shi, Jianping; Liu, Qingxue; Wang, Ziwei; Li, Xiting; Zhou, Jinqiu; Su, Jia; Xue, Mingming; Chen, Wei-Dong; Wang, Yan-Dong

    2017-01-01

    Aberrant activation of inflammation and excess accumulation of lipids play crucial role in the occurrence and progression of atherosclerosis (AS). Quercetin (QCT) has been tested effectively to cure AS. It is widely distributed in plant foods and has been proved to have potential antioxidative and anticancer activities. However, the underlying molecular mechanisms of OCT in AS are not completely understood. In the present study, we stimulated murine RAW264.7 cells with lipopolysaccharide (LPS) or oxidized low-density lipoproteins (ox-LDL) to mimic the development of AS. The data show that QCT treatment leads to an obvious decrease of multiple inflammatory cytokines in transcript level, including interleukin (IL)-1α, IL-1β, IL-2, IL-10, macrophage chemoattractant protein-1 (MCP-1), and cyclooxygenase-2 (COX-2) induced by LPS. Moreover, expressions of other factors that contribute to the AS development, such as matrix metalloproteinase-1 (MMP-1) and suppressor of cytokine signaling 3 (SOCS3) induced by LPS are also downregulated by QCT. Furthermore, we found that QCT suppressed LPS-induced the phosphorylation of STAT3. Meanwhile, QCT could ameliorate lipid deposition and overproduction of reactive oxygen species induced by ox-LDL, and block the expression of lectin-like oxidized LDL receptor-1 (LOX-1) in cultured macrophages. Taken together, our data reveal that QCT has obvious anti-inflammatory and antioxidant virtues and could be a therapeutic agent for the prevention and treatment of AS.

  17. Quercetin Inhibits LPS-Induced Inflammation and ox-LDL-Induced Lipid Deposition

    PubMed Central

    Xue, Feng; Nie, Xiaobo; Shi, Jianping; Liu, Qingxue; Wang, Ziwei; Li, Xiting; Zhou, Jinqiu; Su, Jia; Xue, Mingming; Chen, Wei-Dong; Wang, Yan-Dong

    2017-01-01

    Aberrant activation of inflammation and excess accumulation of lipids play crucial role in the occurrence and progression of atherosclerosis (AS). Quercetin (QCT) has been tested effectively to cure AS. It is widely distributed in plant foods and has been proved to have potential antioxidative and anticancer activities. However, the underlying molecular mechanisms of OCT in AS are not completely understood. In the present study, we stimulated murine RAW264.7 cells with lipopolysaccharide (LPS) or oxidized low-density lipoproteins (ox-LDL) to mimic the development of AS. The data show that QCT treatment leads to an obvious decrease of multiple inflammatory cytokines in transcript level, including interleukin (IL)-1α, IL-1β, IL-2, IL-10, macrophage chemoattractant protein-1 (MCP-1), and cyclooxygenase-2 (COX-2) induced by LPS. Moreover, expressions of other factors that contribute to the AS development, such as matrix metalloproteinase-1 (MMP-1) and suppressor of cytokine signaling 3 (SOCS3) induced by LPS are also downregulated by QCT. Furthermore, we found that QCT suppressed LPS-induced the phosphorylation of STAT3. Meanwhile, QCT could ameliorate lipid deposition and overproduction of reactive oxygen species induced by ox-LDL, and block the expression of lectin-like oxidized LDL receptor-1 (LOX-1) in cultured macrophages. Taken together, our data reveal that QCT has obvious anti-inflammatory and antioxidant virtues and could be a therapeutic agent for the prevention and treatment of AS. PMID:28217098

  18. Evidence that PGE2 in the dorsal and median raphe nuclei is involved in LPS-induced anorexia in rats.

    PubMed

    Kopf, Brigitte S; Langhans, Wolfgang; Geary, Nori; Hrupka, Brian; Asarian, Lori

    2011-09-01

    Anorexia is an element of the acute-phase immune response. Its mechanisms remain poorly understood. Activation of inducible cyclooxygenase-2 (COX-2) in blood-brain-barrier endothelial cells and subsequent release of prostaglandins (e.g., prostaglandin E2, PGE2) may be involved. Therefore, we sought to relate the effects of prostaglandins on the anorexia following gram-negative bacterial lipopolysaccharide treatment (LPS) to neural activity in the dorsal and median raphe nuclei (DRN and MnR) in rats. COX-2 antagonist (NS-398, 10mg/kg; IP) administration prior to LPS (100μg/kg; IP) prevented anorexia and reduced c-Fos expression the DRN, MnR, nucleus tractus solitarii and several related forebrain areas. These data indicate that COX-2-mediated prostaglandin synthesis is necessary for LPS anorexia and much of the initial LPS-induced neural activation. Injection of NS-398 into the DRN and MnR (1ng/site) attenuated LPS-induced anorexia to nearly the same extent as IP NS-398, suggesting that prostaglandin signaling in these areas is necessary for LPS anorexia. Because the DRN and MnR are sources of major serotonergic projections to the forebrain, these data suggest that serotonergic neurons originating in the midbrain raphe play an important role in acute-phase response anorexia.

  19. Follistatin-like protein 1 suppressed pro-inflammatory cytokines expression during neuroinflammation induced by lipopolysaccharide.

    PubMed

    Cheng, Kai-Yuan; Liu, Yi; Han, Ying-Guang; Li, Jing-Kun; Jia, Jia-Lin; Chen, Bin; Yao, Zhi-Xiao; Nie, Lin; Cheng, Lei

    2017-04-01

    Follistain-like protein 1 (FSTL1), has been recently demonstrated to be involved in the embryo development of nervous system and glioblastoma. However, the role of FSTL1 in neuroinflammation remains unexplored. In this study, the expression of FSTL1 in astrocytes was verified and its role was studied in neuroinflammation induced by in vivo intracerebroventricular (ICV) injection of lipopolysaccharide (LPS) or LPS treatment to astrocytes in vitro. FSTL1 was significantly induced after ICV LPS injection or LPS treatment. FSTL1 suppressed upregulation of pro-inflammatory cytokines in astrocytes after LPS treatment. Moreover, FSTL1 downregulated expression of pro-inflammatory cytokines through suppressing MAPK/p-ERK1/2 pathway in astrocytes. Our results suggest that FSTL1 may play an anti-inflammatory role in neuroinflammation mediated by astrocytes.

  20. Capsaicin attenuates LPS-induced inflammatory cytokine production by upregulation of LXRα.

    PubMed

    Tang, Jing; Luo, Kang; Li, Yan; Chen, Quan; Tang, Dan; Wang, Deming; Xiao, Ji

    2015-09-01

    Here, we investigated the role of LXRα in capsaicin mediated anti-inflammatory effects. Results revealed that capsaicin inhibits LPS-induced IL-1β, IL-6 and TNF-α production in a time- and dose-dependent manner. Moreover, capsaicin increases LXRα expression through PPARγ pathway. Inhibition of LXRα activation by siRNA diminished the inhibitory action of capsaicin on LPS-induced IL-1β, IL-6 and TNF-α production. Additionally, LXRα siRNA abrogated the inhibitory action of capsaicin on p65 NF-κB protein expression. Thus, we propose that the anti-inflammatory effects of capsaicin are LXRα dependent, and LXRα may potentially link the capsaicin mediated PPARγ activation and NF-κB inhibition in LPS-induced inflammatory response.

  1. Pro-inflammatory effects of hydrogen sulphide on substance P in caerulein-induced acute pancreatitis.

    PubMed

    Bhatia, Madhav; Sidhapuriwala, Jenab N; Ng, Siaw Wei; Tamizhselvi, Ramasamy; Moochhala, Shabbir M

    2008-04-01

    Hydrogen sulphide (H(2)S), a novel gasotransmitter, has been recognized to play an important role in inflammation. Cystathionine-gamma-lyase (CSE) is a major H(2)S synthesizing enzyme in the cardiovascular system and DL-propargylglycine (PAG) is an irreversible inhibitor of CSE. Substance P (SP), a product of preprotachykinin-A (PPT-A) gene, is a well-known pro-inflammatory mediator which acts principally through the neurokinin-1 receptor (NK-1R). We have shown an association between H(2)S and SP in pulmonary inflammation as well as a pro-inflammatory role of H(2)S and SP in acute pancreatitis. The present study was aimed to investigate the interplay between pro-inflammatory effects of H(2)S and SP in a murine model of caerulein-induced acute pancreatitis. Acute pancreatitis was induced in mice by 10 hourly intraperitoneal injections of caerulein (50 (g/kg). PAG (100 mg/kg, i.p.) was administered either 1 hr before (prophylactic) or 1 hr after (therapeutic) the first caerulein injection. PAG, given prophylactically as well as therapeutically, significantly reduced plasma H(2)S levels and pancreatic H(2)S synthesizing activities as well as SP concentrations in plasma, pancreas and lung compared with caerulein-induced acute pancreatitis. Furthermore, prophylactic as well as therapeutic administration of PAG significantly reduced PPT-A mRNA expression and NK-1R mRNA expression in both pancreas and lung when compared with caerulein-induced acute pancreatitis. These results suggest that the pro-inflammatory effects of H(2)S may be mediated by SP-NK-1R pathway in acute pancreatitis.

  2. AS-703026 Inhibits LPS-Induced TNFα Production through MEK/ERK Dependent and Independent Mechanisms

    PubMed Central

    Li, Ping; Wu, Yonghong; Li, Manxiang; Qiu, Xiaojuan; Bai, Xiaoyan; Zhao, Xiaojing

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by intense lung infiltrations of immune cells (macrophages and monocytes). Lipopolysaccharide (LPS) activates macrophages/monocytes, leading to production of tumor necrosis factor α (TNFα) and other cytokines, which cause subsequent lung damages. In the current study, our results demonstrated that AS-703026, a novel MEK/ERK inhibitor, suppressed LPS-induced TNFα mRNA expression and protein secretion in RAW 264.7 murine macrophages, and in murine bone marrow-derived macrophages (BMDMs). Meanwhile, TNFα production in LPS-stimulated COPD patents’ peripheral blood mononuclear cells (PBMCs) was also repressed by AS-703026. At the molecular level, we showed that AS-703026 blocked LPS-induced MEK/ERK activation in above macrophages/monocytes. However, restoring ERK activation in AS-703026-treated RAW 264.7 cells by introducing a constitutive-actively (CA)-ERK1 only partially reinstated LPS-mediated TNFα production. Meanwhile, AS-703026 could still inhibit TNFα response in ERK1/2-depleted (by shRNA) RAW 264.7 cells. Significantly, we found that AS-703026 inhibited LPS-induced nuclear factor κB (NFκB) activation in above macrophages and COPD patients’ PBMCs. In vivo, oral administration of AS-703026 inhibited LPS-induced TNFα production and endotoxin shock in BALB/c mice. Together, we show that AS-703026 in vitro inhibits LPS-induced TNFα production in macrophages/monocytes, and in vivo protects mice from LPS-induced endotoxin shock. Thus, it could be further studied as a useful anti-inflammatory therapy for COPD patients. PMID:26381508

  3. Origin and functions of pro-inflammatory cytokine producing Foxp3+ regulatory T cells.

    PubMed

    Pandiyan, Pushpa; Zhu, Jinfang

    2015-11-01

    CD4(+)CD25(+)Foxp3(+) regulatory cells (Tregs) are a special lineage of cells central in the maintenance of immune homeostasis, and are targeted for human immunotherapy. They are conventionally associated with the production of classical anti-inflammatory cytokines such as IL-10, TGF-β and IL-35, consistent to their anti-inflammatory functions. However, emerging evidence show that they also express effector cytokines such as IFN-γ and IL-17A under inflammatory conditions. While some studies reveal that these pro-inflammatory cytokine producing Foxp3(+) regulatory cells retain their suppressive ability, others believe that these cells are dys-regulated and are associated with perpetuation of immunopathology. Therefore the development of these cells may challenge the efficacy of human Treg therapy. Mechanistically, toll-like receptor (TLR) ligands and the pro-inflammatory cytokine milieu have been shown to play important roles in the induction of effector cytokines in Tregs. Here we review the mechanisms of development and the possible functions of pro-inflammatory cytokine producing Foxp3+ Tregs.

  4. Cyclic strain inhibits acute pro-inflammatory gene expression in aortic valve interstitial cells.

    PubMed

    Smith, Kathryn E; Metzler, Scott A; Warnock, James N

    2010-02-01

    Mechanical in vitro preconditioning of tissue engineered heart valves is viewed as an essential process for tissue development prior to in vivo implantation. However, a number of pro-inflammatory genes are mechanosensitive and their elaboration could elicit an adverse response in the host. We hypothesized that the application of normal physiological levels of strain to isolated valve interstitial cells would inhibit the expression of pro-inflammatory genes. Cells were subjected to 0, 5, 10, 15 and 20% strain. Expression of VCAM-1, MCP-1, GM-CSF and OPN was then measured using qRT-PCR. With the exception of OPN, all genes were significantly up regulated when no strain was applied. MCP-1 expression was significantly lower in the presence of strain, although strain magnitude did not affect the expression level. VCAM-1 and GM-CSF had the lowest expression levels at 15% strain, which represent normal physiological conditions. These findings were confirmed using confocal microscopy. Additionally, pSMAD 2/3 and IkappaBalpha expression were imaged to elucidate potential mechanisms of gene expression. Data showed that 15% strain increased pSMAD 2/3 expression and prevented phosphorylation of IkappaBalpha. In conclusion, cyclic strain reduces expression of pro-inflammatory genes, which may be beneficial for the in vitro pre-conditioning of tissue engineered heart valves.

  5. Etomidate Mitigates Lipopolysaccharide-Induced CD14 and TREM-1 Expression, NF-κB Activation, and Pro-inflammatory Cytokine Production in Rat Macrophages.

    PubMed

    Liu, Ming; Zhang, Yu; Xiong, Jun-Yu; Wang, Yan; Lv, Shen

    2016-02-01

    This study was aimed at investigating the effect of etomidate on the viability of rat macrophages and the function of lipopolysaccharide (LPS)-stimulated macrophages as well as the potential mechanisms. Rat macrophages were isolated and treated with different doses of etomidate for 24 h, and their viability was determined by the CCK-8 assay. Furthermore, macrophages were treated with, or without, 1 μg/ml of LPS, and/or 2.5 or 5 μM etomidate in the presence or absence of a TREM-1 inhibitor (LP17, 100 ng/ml), and the levels of TNF-α, IL-6, CD14, and TREM-1 in the different groups of cells were determined by quantitative RT-PCR, ELISA, and Western blot assays. The levels of NF-κB activation in the different groups of cells were analyzed by an electrophoretic mobility shift assay (EMSA). Etomidate at 31.25 μM or a low dose did not affect the viability of rat macrophages, while etomidate at higher doses reduced the viability of macrophages in vitro. Treatment with 2.5 or 5 μM etomidate or with LP17 alone did not affect the levels of TNF-α, IL-6, CD-14, and TREM-1 in macrophages. Treatment with etomidate significantly mitigated LPS-stimulated TNF-α, IL-6, CD-14, and TREM-1 expression (p < 0.05 for all) and inhibited LPS-induced NF-κB activation in macrophages in vitro. However, treatment with both etomidate and LP17 did not enhance the inhibitory effects in macrophages. Hence, etomidate mitigates LPS-up-regulated pro-inflammatory cytokine production and inhibits LPS-enhanced CD14 and TREM-1 expression and NF-κB activation in macrophages.

  6. The Role of Interleukin-1 and Interleukin-18 in Pro-Inflammatory and Anti-Viral Responses to Rhinovirus in Primary Bronchial Epithelial Cells

    PubMed Central

    Kay, Linda; Parker, Lisa C.; Sabroe, Ian; Sleeman, Matthew A.; Briend, Emmanuel; Finch, Donna K.

    2013-01-01

    Human Rhinovirus (HRV) is associated with acute exacerbations of chronic respiratory disease. In healthy individuals, innate viral recognition pathways trigger release of molecules with direct anti-viral activities and pro-inflammatory mediators which recruit immune cells to support viral clearance. Interleukin-1alpha (IL-1α), interleukin-1beta (IL-1β) and interleukin-18 (IL-18) have critical roles in the establishment of neutrophilic inflammation, which is commonly seen in airways viral infection and thought to be detrimental in respiratory disease. We therefore investigated the roles of these molecules in HRV infection of primary human epithelial cells. We found that all three cytokines were released from infected epithelia. Release of these cytokines was not dependent on cell death, and only IL-1β and IL-18 release was dependent on caspase-1 catalytic activity. Blockade of IL-1 but not IL-18 signaling inhibited up-regulation of pro-inflammatory mediators and neutrophil chemoattractants but had no effect on virus induced production of interferons and interferon-inducible genes, measured at both mRNA and protein level. Similar level of virus mRNA was detected with and without IL-1RI blockade. Hence IL-1 signaling, potentially involving both IL-1β and IL-1α, downstream of viral recognition plays a key role in induction of pro-inflammatory signals and potentially in recruitment and activation of immune cells in response to viral infection instigated by the epithelial cells, whilst not participating in direct anti-viral responses. PMID:23723976

  7. Methionine Sulfoxide Reductase A Negatively Controls Microglia-Mediated Neuroinflammation via Inhibiting ROS/MAPKs/NF-κB Signaling Pathways Through a Catalytic Antioxidant Function

    PubMed Central

    Fan, Hua; Wu, Peng-Fei; Zhang, Ling; Hu, Zhuang-Li; Wang, Wen; Guan, Xin-Lei; Luo, Han; Ni, Ming; Yang, Jing-Wen; Li, Ming-Xing

    2015-01-01

    Abstract Aims: Oxidative burst is one of the earliest biochemical events in the inflammatory activation of microglia. Here, we investigated the potential role of methionine sulfoxide reductase A (MsrA), a key antioxidant enzyme, in the control of microglia-mediated neuroinflammation. Results: MsrA was detected in rat microglia and its expression was upregulated on microglial activation. Silencing of MsrA exacerbated lipopolysaccharide (LPS)-induced activation of microglia and the production of inflammatory markers, indicating that MsrA may function as an endogenous protective mechanism for limiting uncontrolled neuroinflammation. Application of exogenous MsrA by transducing Tat-rMsrA fusion protein into microglia attenuated LPS-induced neuroinflammatory events, which was indicated by an increased Iba1 (a specific microglial marker) expression and the secretion of pro-inflammatory cytokines, and this attenuation was accompanied by inhibiting multiple signaling pathways such as p38 and ERK mitogen-activated protein kinases (MAPKs) and nuclear factor kappaB (NF-κB). These effects were due to MsrA-mediated reactive oxygen species (ROS) elimination, which may be derived from a catalytic effect of MsrA on the reaction of methionine with ROS. Furthermore, the transduction of Tat-rMsrA fusion protein suppressed the activation of microglia and the expression of pro-inflammatory factors in a rat model of neuroinflammation in vivo. Innovation: This study provides the first direct evidence for the biological significance of MsrA in microglia-mediated neuroinflammation. Conclusion: Our data provide a profound insight into the role of endogenous antioxidative defense systems such as MsrA in the control of microglial function. Antioxid. Redox Signal. 22, 832–847. PMID:25602783

  8. A Pro-Inflammatory Role for Nuclear Factor Kappa B in Childhood Obstructive Sleep Apnea Syndrome

    PubMed Central

    Israel, Lee P.; Benharoch, Daniel; Gopas, Jacob; Goldbart, Aviv D.

    2013-01-01

    ; Benharoch D; Gopas J; Goldbart AD. A pro-inflammatory role for nuclear factor kappa B in childhood obstructive sleep apnea syndrome. SLEEP 2013;36(12):1947-1955. PMID:24293770

  9. New generation lipid emulsion protects against LPS-induced brain inflammation in pemature piglets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Premature infants provided parenteral nutrition (PN) high in n-6 polyunsaturated fatty acids (PUFA) have increased risk of inflammatory disease, such as nosocomial sepsis. The pro-inflammatory insult can also contribute to injury and delayed neuronal growth in the perinatal brain. Provision of high ...

  10. Increased resistance to LPS-induced myocardial dysfunction in the Brown Norway rats versus Dahl S rats: roles of inflammatory cytokines and nuclear factor kappaB pathway.

    PubMed

    Du, Jianhai; An, Jianzhong; Wei, Na; Guan, Tongju; Pritchard, Kirkwood A; Shi, Yang

    2010-03-01

    We previously demonstrated that hearts from Brown Norway (BN) rats were more resistant to ischemic injury than hearts from Dahl S (SS) rats. Here we determined the susceptibility to LPS-induced cardiomyopathy in these rats and examined the involvement of inflammatory signaling. Both strains were treated with LPS (20 mg/kg) via i.p. injection for 6 h. Myocardial function was assessed by the Langendorff system, and proinflammatory cytokines were measured by the enzyme-linked immunosorbent assay. LPS significantly reduced left ventricular developed pressure in both strains. Interestingly, the decrease of left ventricular developed pressure in BN rat hearts was approximately 25% less than that in SS rat hearts. Furthermore, LPS significantly reduced the peak rate of contraction and the peak rate of relaxation in SS hearts but not in BN hearts. No differences in LPS-induced decreases in coronary flow rate were observed between BN and SS rats. In addition, LPS-induced increases in proinflammatory cytokines, TNF-alpha, IL-1beta, and IL-6, were significantly lower in both plasma and hearts of BN rats compared with production in SS rats. LPS notably up-regulated the expression of proinflammatory enzymes, iNOS and cyclooxygenase 2, in SS hearts but not in BN hearts. Interestingly, LPS did not stimulate Toll-like receptor 4 or its adaptor myeloid differentiation factor 88 expression in the hearts of either strain but did increase IkappaB and P65 phosphorylation, less prominently in BN hearts than in SS hearts. These data indicate that reduced production of proinflammatory cytokines and diminished nuclear factor kappaB activation are major mechanisms by which BN hearts are more resistant to LPS-induced myocardial dysfunction than SS hearts.

  11. Punicalagin inhibits inflammation in LPS-induced RAW264.7 macrophages via the suppression of TLR4-mediated MAPKs and NF-κB activation.

    PubMed

    Xu, Xiaolong; Yin, Peng; Wan, Changrong; Chong, Xinlu; Liu, Mingjiang; Cheng, Peng; Chen, Jiajia; Liu, Fenghua; Xu, Jianqin

    2014-06-01

    Punicalagin (2,3,hexahydroxydiphenoyl-gallagyl-D-glucose and referred to as PUN) is a bioactive ellagitannin isolated from pomegranate, which is widely used for the treatment of inflammatory bowel disease (IBD), diarrhea, and ulcers in Chinese traditional medicine. In this study, we detected the anti-inflammation potentials of PUN in lipopolysaccharide (LPS)-induced macrophages and tried to uncover the underlying mechanism. Results demonstrated that PUN (25, 50, or 100 μM) treatment could significantly decrease the LPS-induced production of nitric oxide), prostaglandin E2 (PGE2), interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in RAW264.7 cells. Molecular research showed that PUN inhibited the activation of upstream mediator nuclear factor-κB by suppressing the phosphorylation of IκBα and p65. Results also indicated that PUN could suppress the phosphorylation of mitogen-activated protein kinase including p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase. In conclusion, we observed that PUN could inhibit LPS-induced inflammation, and it may be a potential choice for the treatment of inflammation diseases.

  12. Cell-free culture supernatant of Bifidobacterium breve CNCM I-4035 decreases pro-inflammatory cytokines in human dendritic cells challenged with Salmonella typhi through TLR activation.

    PubMed

    Bermudez-Brito, Miriam; Muñoz-Quezada, Sergio; Gomez-Llorente, Carolina; Matencio, Esther; Bernal, Maria J; Romero, Fernando; Gil, Angel

    2013-01-01

    Dendritic cells (DCs) constitute the first point of contact between gut commensals and our immune system. Despite growing evidence of the immunomodulatory effects of probiotics, the interactions between the cells of the intestinal immune system and bacteria remain largely unknown. Indeed,, the aim of this work was to determine whether the probiotic Bifidobacterium breve CNCM I-4035 and its cell-free culture supernatant (CFS) have immunomodulatory effects in human intestinal-like dendritic cells (DCs) and how they respond to the pathogenic bacterium Salmonella enterica serovar Typhi, and also to elucidate the molecular mechanisms involved in these interactions. Human DCs were directly challenged with B. breve/CFS, S. typhi or a combination of these stimuli for 4 h. The expression pattern of genes involved in Toll-like receptor (TLR) signaling pathway and cytokine secretion was analyzed. CFS decreased pro-inflammatory cytokines and chemokines in human intestinal DCs challenged with S. typhi. In contrast, the B. breve CNCM I-4035 probiotic strain was a potent inducer of the pro-inflammatory cytokines and chemokines tested, i.e., TNF-α, IL-8 and RANTES, as well as anti-inflammatory cytokines including IL-10. CFS restored TGF-β levels in the presence of Salmonella. Live B.breve and its supernatant enhanced innate immune responses by the activation of TLR signaling pathway. These treatments upregulated TLR9 gene transcription. In addition, CFS was a more potent inducer of TLR9 expression than the probiotic bacteria in the presence of S. typhi. Expression levels of CASP8 and IRAK4 were also increased by CFS, and both treatments induced TOLLIP gene expression. Our results indicate that the probiotic strain B. breve CNCM I-4035 affects the intestinal immune response, whereas its supernatant exerts anti-inflammatory effects mediated by DCs. This supernatant may protect immune system from highly infectious agents such as Salmonella typhi and can down-regulate pro-inflammatory

  13. Ceftiofur impairs pro-inflammatory cytokine secretion through the inhibition of the activation of NF-{kappa}B and MAPK

    SciTech Connect

    Ci Xinxin; Song Yu; Zeng Fanqin; Zhang Xuemei; Li Hongyu; Wang Xinrui; Cui Junqing Deng Xuming

    2008-07-18

    Ceftiofur is a new broad-spectrum, third-generation cephalosporin antibiotic for veterinary use. Immunopharmacological studies can provide new information on the immunomodulatory activities of some drugs, including their effect on cytokine productions. For this reason, we investigated the effect of ceftiofur on cytokine productions in vitro. We found that ceftiofur can downregulate tumor necrosis factor-{alpha} (TNF-{alpha}), interleukin-1{beta} (IL-1{beta}), and interleukin-6 (IL-6), but did not affect interleukin-10 (IL-10) production. We further investigated signal transduction mechanisms to determine how ceftiofur affects. RAW 264.7 cells were pretreated with 1, 5, or 10 mg/L of ceftiofur 1 h prior to treatment with 1 mg/L of LPS. Thirty minutes later, cells were harvested and mitogen activated protein kinases (MAPKs) activation was measured by Western blot. Alternatively, cells were fixed and nuclear factor-{kappa}B (NF-{kappa}B) activation was measured using immunocytochemical analysis. Signal transduction studies showed that ceftiofur significantly inhibited extracellular signal-regulated kinase (ERK), p38, and c-jun NH{sub 2}-terminal kinase (JNK) phosphorylation protein expression. Ceftiofur also inhibited p65-NF-{kappa}B translocation into the nucleus. Therefore, ceftiofur may inhibit LPS-induced production of inflammatory cytokines by blocking NF-{kappa}B and MAPKs signaling in RAW264.7 cells.

  14. Kavain Inhibition of LPS-Induced TNF-α via ERK/LITAF

    PubMed Central

    Tang, Xiaoren; Amar, Salomon

    2015-01-01

    Kavain, an extract from the shrub Piper Methysticum, was recently reported to modulate TNF-α expression in both human and mouse cells via regulation of LPS-Induced TNF-Alpha Factor (LITAF). The purpose of the present study was to define the molecular pathway(s) associated with Kavain effects on TNF modulation. In vitro studies using WT mouse primary macrophages showed that Kavain significantly reduced E.coli LPS-induced TNF-α production but this effect was almost abrogated in LITAF−/− and ERK2−/− cells. Therefore we reintroduced the ERK2 gene in ERK2−/− cells and partially restored E.coli LPS-induced LITAF-mediated TNF-α production. The translocation of LITAF into to nucleus was found to be dependent on ERK2 S206 residue. Kavain inhibits LITAF/TNF-α expression via dephosphorylation of ERK2 in response to E.coli LPS. Finally, in vivo, Kavain had a significant anti-inflammatory effect on wild type mice that developed Collagen Antibody Induced Arthritis (CAIA), but only a minor effect in ERK2−/− mice also affected by CAIA. Based on these findings, we concluded that ERK2 may be the kinase upstream of LITAF with its Serine residue 206 being crucial for the regulation of LPS-induced TNF-α. PMID:26918116

  15. Kavain Inhibition of LPS-Induced TNF-α via ERK/LITAF.

    PubMed

    Tang, Xiaoren; Amar, Salomon

    2016-01-01

    Kavain, an extract from the shrub Piper Methysticum, was recently reported to modulate TNF-α expression in both human and mouse cells via regulation of LPS-Induced TNF-Alpha Factor (LITAF). The purpose of the present study was to define the molecular pathway(s) associated with Kavain effects on TNF modulation. In vitro studies using WT mouse primary macrophages showed that Kavain significantly reduced E.coli LPS-induced TNF-α production but this effect was almost abrogated in LITAF(-/-) and ERK2(-/-) cells. Therefore we reintroduced the ERK2 gene in ERK2(-/-) cells and partially restored E.coli LPS-induced LITAF-mediated TNF-α production. The translocation of LITAF into to nucleus was found to be dependent on ERK2 S206 residue. Kavain inhibits LITAF/TNF-α expression via dephosphorylation of ERK2 in response to E.coli LPS. Finally, in vivo, Kavain had a significant anti-inflammatory effect on wild type mice that developed Collagen Antibody Induced Arthritis (CAIA), but only a minor effect in ERK2(-/-) mice also affected by CAIA. Based on these findings, we concluded that ERK2 may be the kinase upstream of LITAF with its Serine residue 206 being crucial for the regulation of LPS-induced TNF-α.

  16. NEUTROPHILS PLAY A CRITICAL ROLE IN THE DEVELOPMENT OF LPS-INDUCED AIRWAY DISEASE

    EPA Science Inventory

    ETD-02-045 (GAVETT) GPRA # 10108

    Neutrophils Play a Critical Role in the Development of LPS-Induced Airway Disease.
    Jordan D. Savov, Stephen H. Gavett*, David M. Brass, Daniel L. Costa*, and David A. Schwartz

    ABSTRACT
    We investigated the role of neutrophils...

  17. EFFECTS OF SYSTEMIC NEUTROPHIL DEPLETION ON LPS-INDUCED AIRWAY DISEASE

    EPA Science Inventory

    Effects of Systemic Neutrophil Depletion on LPS-induced Airway Disease
    Jordan D. Savov, Stephen H. Gavett*, David M. Brass, Daniel L. Costa*, David A. Schwartz
    Pulmonary and Critical Care Division, Dept of Medicine ? Duke University Medical Center
    * National Health and E...

  18. Treatment with the hyaluronic Acid synthesis inhibitor 4-methylumbelliferone suppresses LPS-induced lung inflammation.

    PubMed

    McKallip, Robert J; Ban, Hao; Uchakina, Olga N

    2015-01-01

    Exposure to bacterial endotoxins, such as lipopolysaccharide (LPS), can lead to the induction of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). To date, there are no known effective treatments for LPS-induced inflammation. In the current study, we investigated the potential use of the hyaluronic acid (HA) synthesis inhibitor 4-methylumbelliferone (4-MU) on LPS-induced acute lung inflammation. Culturing LPS-activated immune cells with 4-MU led to reduced proliferation, reduced cytokine production, and an increase in apoptosis when compared to untreated cells. Treatment of mice with 4-MU led to protection from LPS-induced lung injury. Specifically, 4-MU treatment led to a reduction in LPS-induced hyaluronic acid synthase (HAS) messenger RNA (mRNA) levels, reduction in lung permeability, and reduction in proinflammatory cytokine production. Taken together, these results suggest that use of 4-MU to target HA production may be an effective treatment for the inflammatory response following exposure to LPS.

  19. Glycyrrhiza glabra L. Extract Inhibits LPS-Induced Inflammation in RAW Macrophages.

    PubMed

    Li, Chunmei; Eom, Taekil; Jeong, Yoonhwa

    2015-01-01

    Glycyrrhiza glabra has been used in medicine for thousands of years. Our previous study revealed that the methanolic extract of Glycyrrhiza glabra L. (EGGR) exhibits significant nitric oxide (NO) inhibitory effect on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages among 100 other extracts. Accordingly, the aim of the present study was to investigate the potential anti-inflammatory effect of EGGR. The anti-inflammatory effect of EGGR on LPS-stimulated RAW 264.7 macrophages was measured by MTT assay, NO content analysis, reactive oxygen species (ROS) level analysis, RT-PCR, Western blot analysis, and ELISA assay. Low doses of EGGR were non-toxic to macrophages and imparted protective effect against LPS induced cell death. Incubation of LPS-treated macrophages with 100 μg/mL EGGR led to an increase in cell viability from 66.6 to 99%. Moreover, EGGR led to down regulation of NO (NO2+NO3) and ROS productions in a dose-dependent manner. In particular, 100 μg/mL EGGR led to a reduction in NO2+NO3 level from 336.2 to 24.1 pM/mL, and ROS level from 483.5 to 128.4%. Consistent with the result related to NO production, EGGR suppressed the ability of LPS to induce mRNA and protein expressions of nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) cytokines, tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), and IL-6 productions which were analyzed by an ELISA assay. These results provide a comprehensive approach into the anti-inflammatory effect of EGGR on LPS-stimulated macrophages; however, efforts are underway on gaining detailed insight into anti-inflammatory signaling pathways.

  20. Exploring New Inflammatory Biomarkers and Pathways during LPS-Induced M1 Polarization.

    PubMed

    Cunha, Carolina; Gomes, Cátia; Vaz, Ana Rita; Brites, Dora

    2016-01-01

    Identification of mediators triggering microglia activation and transference of noncoding microRNA (miRNA) into exosomes are critical to dissect the mechanisms underlying neurodegeneration. We used lipopolysaccharide- (LPS-) induced N9 microglia activation to explore new biomarkers/signaling pathways and to identify inflammatory miRNA (inflamma-miR) in cells and their derived exosomes. Upregulation of iNOS and MHC-II (M1-markers) and downregulation of arginase 1, FIZZ1 (M2-markers), and CX3CR1 (M0/M2 polarization) confirmed the switch of N9 LPS-treated cells into the M1 phenotype, as described for macrophages/microglia. Cells showed increased proliferation, activated TLR4/TLR2/NF-κB pathway, and enhanced phagocytosis, further corroborated by upregulated MFG-E8. We found NLRP3-inflammasome activation in these cells, probably accounting for the increased extracellular content of the cytokine HMGB1 and of the MMP-9 we have observed. We demonstrate for the first time that the inflamma-miR profiling (upregulated miR-155 and miR-146a plus downregulated miR-124) in M1 polarized N9 cells, noticed by others in activated macrophages/microglia, was replicated in their derived exosomes, likely regulating the inflammatory response of recipient cells and dissemination processes. Data show that LPS-treated N9 cells behave like M1 polarized microglia/macrophages, while providing new targets for drug discovery. In particular, the study yields novel insights into the exosomal circulating miRNA during neuroinflammation important for emerging therapeutic approaches targeting microglia activation.

  1. Exploring New Inflammatory Biomarkers and Pathways during LPS-Induced M1 Polarization

    PubMed Central

    2016-01-01

    Identification of mediators triggering microglia activation and transference of noncoding microRNA (miRNA) into exosomes are critical to dissect the mechanisms underlying neurodegeneration. We used lipopolysaccharide- (LPS-) induced N9 microglia activation to explore new biomarkers/signaling pathways and to identify inflammatory miRNA (inflamma-miR) in cells and their derived exosomes. Upregulation of iNOS and MHC-II (M1-markers) and downregulation of arginase 1, FIZZ1 (M2-markers), and CX3CR1 (M0/M2 polarization) confirmed the switch of N9 LPS-treated cells into the M1 phenotype, as described for macrophages/microglia. Cells showed increased proliferation, activated TLR4/TLR2/NF-κB pathway, and enhanced phagocytosis, further corroborated by upregulated MFG-E8. We found NLRP3-inflammasome activation in these cells, probably accounting for the increased extracellular content of the cytokine HMGB1 and of the MMP-9 we have observed. We demonstrate for the first time that the inflamma-miR profiling (upregulated miR-155 and miR-146a plus downregulated miR-124) in M1 polarized N9 cells, noticed by others in activated macrophages/microglia, was replicated in their derived exosomes, likely regulating the inflammatory response of recipient cells and dissemination processes. Data show that LPS-treated N9 cells behave like M1 polarized microglia/macrophages, while providing new targets for drug discovery. In particular, the study yields novel insights into the exosomal circulating miRNA during neuroinflammation important for emerging therapeutic approaches targeting microglia activation. PMID:28096568

  2. Vanillin Protects Dopaminergic Neurons against Inflammation-Mediated Cell Death by Inhibiting ERK1/2, P38 and the NF-κB Signaling Pathway.

    PubMed

    Yan, Xuan; Liu, Dian-Feng; Zhang, Xiang-Yang; Liu, Dong; Xu, Shi-Yao; Chen, Guang-Xin; Huang, Bing-Xu; Ren, Wen-Zhi; Wang, Wei; Fu, Shou-Peng; Liu, Ju-Xiong

    2017-02-12

    Neuroinflammation plays a very important role in the pathogenesis of Parkinson's disease (PD). After activation, microglia produce pro-inflammatory mediators that damage surrounding neurons. Consequently, the inhibition of microglial activation might represent a new therapeutic approach of PD. Vanillin has been shown to protect dopaminergic neurons, but the mechanism is still unclear. Herein, we further study the underlying mechanisms in lipopolysaccharide (LPS)-induced PD models. In vivo, we firstly established rat models of PD by unilateral injection of LPS into substantia nigra (SN), and then examined the role of vanillin in motor dysfunction, microglial activation and degeneration of dopaminergic neurons. In vitro, murine microglial BV-2 cells were treated with vanillin prior to the incubation of LPS, and then the inflammatory responses and the related signaling pathways were analyzed. The in vivo results showed that vanillin markedly improved the motor dysfunction, suppressed degeneration of dopaminergic neurons and inhibited microglial over-activation induced by LPS intranigral injection. The in vitro studies demonstrated that vanillin reduces LPS-induced expression of inducible nitric oxide (iNOS), cyclooxygenase-2 (COX-2), IL-1β, and IL-6 through regulating ERK1/2, p38 and NF-κB signaling. Collectively, these data indicated that vanillin has a role in protecting dopaminergic neurons via inhibiting inflammatory activation.

  3. Vanillin Protects Dopaminergic Neurons against Inflammation-Mediated Cell Death by Inhibiting ERK1/2, P38 and the NF-κB Signaling Pathway

    PubMed Central

    Yan, Xuan; Liu, Dian-Feng; Zhang, Xiang-Yang; Liu, Dong; Xu, Shi-Yao; Chen, Guang-Xin; Huang, Bing-Xu; Ren, Wen-Zhi; Wang, Wei; Fu, Shou-Peng; Liu, Ju-Xiong

    2017-01-01

    Neuroinflammation plays a very important role in the pathogenesis of Parkinson’s disease (PD). After activation, microglia produce pro-inflammatory mediators that damage surrounding neurons. Consequently, the inhibition of microglial activation might represent a new therapeutic approach of PD. Vanillin has been shown to protect dopaminergic neurons, but the mechanism is still unclear. Herein, we further study the underlying mechanisms in lipopolysaccharide (LPS)-induced PD models. In vivo, we firstly established rat models of PD by unilateral injection of LPS into substantia nigra (SN), and then examined the role of vanillin in motor dysfunction, microglial activation and degeneration of dopaminergic neurons. In vitro, murine microglial BV-2 cells were treated with vanillin prior to the incubation of LPS, and then the inflammatory responses and the related signaling pathways were analyzed. The in vivo results showed that vanillin markedly improved the motor dysfunction, suppressed degeneration of dopaminergic neurons and inhibited microglial over-activation induced by LPS intranigral injection. The in vitro studies demonstrated that vanillin reduces LPS-induced expression of inducible nitric oxide (iNOS), cyclooxygenase-2 (COX-2), IL-1β, and IL-6 through regulating ERK1/2, p38 and NF-κB signaling. Collectively, these data indicated that vanillin has a role in protecting dopaminergic neurons via inhibiting inflammatory activation. PMID:28208679

  4. A glycoprotein from Porphyra yezoensis produces anti-inflammatory effects in liposaccharide-stimulated macrophages via the TLR4 signaling pathway.

    PubMed

    Shin, Eun-Soon; Hwang, Hye-Jung; Kim, In-Hye; Nam, Taek-Jeong

    2011-11-01

    The purpose of this study was to investigate the antioxidant and anti-inflammatory effects of a glycoprotein isolated from the alga Porphyra yezoensis in LPS-stimulated RAW 264.7 mouse macrophages. First, we extracted a novel material with antioxidant activity from P. yezoensis, confirmed by SDS-PAGE to be a glycoprotein, which we named P. yezoensis glycoprotein (PGP). PGP inhibited the production of NO and ROS and expression of iNOS, COX-2, TNF-α and IL-1β, which are involved in the pathogenesis of many inflammation-associated human diseases, including septic shock, hemorrhagic shock and rheumatoid arthritis. Next, we determined the mechanisms behind the antioxidant and anti-inflammatory activities of PGP. We focused on the Toll-like receptor 4 (TLR4) signaling pathway because it is well-known to induce the pro-inflammatory proteins that trigger MAPK and NF-κB activation in lipopolysaccharide (LPS)-induced oxidative events. PGP treatment reduced the formation of the TLR4-IRAK4 and TLR4-TRIF binding complexes in response to LPS. Moreover, it inhibited LPS-induced activation and nuclear translocation of NF-κB by abrogating IκB phosphorylation. PGP also suppressed the phosphorylation of ERK1/2 and JNK in a dose-dependent manner. These results suggest that PGP exerts its anti-inflammatory effects by modulating TLR4 signaling and thus inhibiting the activation of NF-κB and MAP kinases.

  5. Tryptanthrin Suppresses the Activation of the LPS-Treated BV2 Microglial Cell Line via Nrf2/HO-1 Antioxidant Signaling

    PubMed Central

    Kwon, Young-Won; Cheon, So Yeong; Park, Sung Yun; Song, Juhyun; Lee, Ju-Hee

    2017-01-01

    Microglia are the resident macrophages in the central nervous system (CNS) and play essential roles in neuronal homeostasis and neuroinflammatory pathologies. Recently, microglia have been shown to contribute decisively to neuropathologic processes after ischemic stroke. Furthermore, natural compounds have been reported to attenuate inflammation and pathologies associated with neuroinflammation. Tryptanthrin (indolo[2,1-b]quinazoline-6,12-dione) is a phytoalkaloid with known anti-inflammatory effects in cells. In present study, the authors confirmed middle cerebral artery occlusion (MCAO) injury triggers the activation of microglia in brain tissue, and investigated whether tryptanthrin influences the function of mouse murine BV2 microglia under LPS-induced inflammatory conditions in vitro. It was found tryptanthrin protected BV2 microglia cells against LPS-induced inflammation and inhibited the induction of M1 phenotype microglia under inflammatory conditions. In addition, tryptanthrin reduced the production of pro-inflammatory cytokines in BV2 microglia cells via nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) signaling and NF-κB signaling. The authors suggest that tryptanthrin might alleviate the progress of neuropathologies by controlling microglial functions under neuroinflammatory conditions. PMID:28210215

  6. Aloe vera downregulates LPS-induced inflammatory cytokine production and expression of NLRP3 inflammasome in human macrophages.

    PubMed

    Budai, Marietta M; Varga, Aliz; Milesz, Sándor; Tőzsér, József; Benkő, Szilvia

    2013-12-01

    Aloe vera has been used in traditional herbal medicine as an immunomodulatory agent inducing anti-inflammatory effects. However, its role on the IL-1β inflammatory cytokine production has not been studied. IL-1β production is strictly regulated both at transcriptional and posttranslational levels through the activity of Nlrp3 inflammasome. In this study we aimed to determine the effect of Aloe vera on the molecular mechanisms of Nlrp3 inflammasome-mediated IL-1β production in LPS-activated human THP-1 cells and monocyte-derived macrophages. Our results show that Aloe vera significantly reduced IL-8, TNFα, IL-6 and IL-1β cytokine production in a dose dependent manner. The inhibitory effect was substantially more pronounced in the primary cells. We found that Aloe vera inhibited the expression of pro-IL-1β, Nlrp3, caspase-1 as well as that of the P2X7 receptor in the LPS-induced primary macrophages. Furthermore, LPS-induced activation of signaling pathways like NF-κB, p38, JNK and ERK were inhibited by Aloe vera in these cells. Altogether, we show for the first time that Aloe vera-mediated strong reduction of IL-1β appears to be the consequence of the reduced expression of both pro-IL-1β as well as Nlrp3 inflammasome components via suppressing specific signal transduction pathways. Furthermore, we show that the expression of the ATP sensor P2X7 receptor is also downregulated by Aloe vera that could also contribute to the attenuated IL-1β cytokine secretion. These results may provide a new therapeutic approach to regulate inflammasome-mediated responses.

  7. The role of the JAK2-STAT3 pathway in pro-inflammatory responses of EMF-stimulated N9 microglial cells

    PubMed Central

    2010-01-01

    Background In several neuropathological conditions, microglia can become overactivated and cause neurotoxicity by initiating neuronal damage in response to pro-inflammatory stimuli. Our previous studies have shown that exposure to electromagnetic fields (EMF) activates cultured microglia to produce tumor necrosis factor (TNF)-α and nitric oxide (NO) through signal transduction involving the activator of transcription STAT3. Here, we investigated the role of STAT3 signaling in EMF-induced microglial activation and pro-inflammatory responses in more detail than the previous study. Methods N9 microglial cells were treated with EMF exposure or a sham treatment, with or without pretreatment with an inhibitor (Pyridone 6, P6) of the Janus family of tyrosine kinases (JAK). The activation state of microglia was assessed via immunoreaction using the microglial marker CD11b. Levels of inducible nitric oxide synthase (iNOS), TNF-α and NO were measured using real-time reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and the nitrate reductase method. Activation of JAKs and STAT3 proteins was evaluated by western blotting for specific tyrosine phosphorylation. The ability of STAT3 to bind to DNA was detected with an electrophoresis mobility shift assay (EMSA). Results EMF was found to significantly induce phosphorylation of JAK2 and STAT3, and DNA-binding ability of STAT3 in N9 microglia. In addition, EMF dramatically increased the expression of CD11b, TNF-α and iNOS, and the production of NO. P6 strongly suppressed the phosphorylation of JAK2 and STAT3 and diminished STAT3 activity in EMF-stimulated microglia. Interestingly, expression of CD11b as well as gene expression and production of TNF-α and iNOS were suppressed by P6 at 12 h, but not at 3 h, after EMF exposure. Conclusions EMF exposure directly triggers initial activation of microglia and produces a significant pro-inflammatory response. Our findings confirm that

  8. LL202 protects against dextran sulfate sodium-induced experimental colitis in mice by inhibiting MAPK/AP-1 signaling

    PubMed Central

    Zhao, Yue; Hu, Yang; Li, Zhiyu; Guo, Qinglong; Zhao, Kai; Lu, Na

    2016-01-01

    LL202, a newly-synthesized flavonoid derivative, has been reported to inhibit inflammatory-induced angiogenesis. However, the exact role of LL202 in inflammation along with its mechanism has not been explored. In this study, we investigated the anti-inflammatory effect of LL202 on intestinal inflammation by establishing dextran sulfate sodium (DSS)-induced experimental colitis. LL202 attenuated DSS-induced body weight loss, colon length shortening and colonic pathological damage. The inflammatory cells infiltration, myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) activities were decreased by LL202 in a dose-dependent manner. LL202 reduced the production of pro-inflammatory cytokines in serum and colon of DSS-induced mice as well. Mechanically, LL202 could decrease the expression and nuclear translation of AP-1 to protect against DSS-induced colitis. In lipopolysaccharide (LPS)-induced THP-1 cells, LL202 markedly decreased the secretion, mRNA level and protein expression of IL-1β, IL-6 and TNF-α via inhibiting ERK/JNK/p38 MAPK pathways and the nuclear translocation of AP-1. Furthermore, these findings were confirmed in LPS-induced bone marrow derived macrophages (BMDM). In conclusion, our study demonstrated that LL202 could exert its anti-inflammatory effect via inhibiting MAPK/AP-1 signaling, which suggested that LL202 might be a potential effective drug for the treatment of inflammatory bowel diseases. PMID:27590510

  9. Increased cellular free cholesterol in macrophage-specific Abca1 knock-out mice enhances pro-inflammatory response of macrophages.

    PubMed

    Zhu, Xuewei; Lee, Ji-Young; Timmins, Jenelle M; Brown, J Mark; Boudyguina, Elena; Mulya, Anny; Gebre, Abraham K; Willingham, Mark C; Hiltbold, Elizabeth M; Mishra, Nilamadhab; Maeda, Nobuyo; Parks, John S

    2008-08-22

    Macrophage-specific Abca1 knock-out (Abca1(-)(M)(/-)(M)) mice were generated to determine the role of macrophage ABCA1 expression in plasma lipoprotein concentrations and the innate immune response of macrophages. Plasma lipid and lipoprotein concentrations in chow-fed Abca1(-)(M)(/-)(M) and wild-type (WT) mice were indistinguishable. Compared with WT macrophages, Abca1(-)(M)(/-)(M) macrophages had a >95% reduction in ABCA1 protein, failed to efflux lipid to apoA-I, and had a significant increase in free cholesterol (FC) and membrane lipid rafts without induction of endoplasmic reticulum stress. Lipopolysaccharide (LPS)-treated Abca1(-)(M)(/-)(M) macrophages exhibited enhanced expression of pro-inflammatory cytokines and increased activation of the NF-kappaB and MAPK pathways, which could be diminished by silencing MyD88 or by chemical inhibition of NF-kappaB or MAPK. In vivo LPS injection also resulted in a higher pro-inflammatory response in Abca1(-)(M)(/-)(M) mice compared with WT mice. Furthermore, cholesterol depletion of macrophages with methyl-beta-cyclodextrin normalized FC content between the two genotypes and their response to LPS; cholesterol repletion of macrophages resulted in increased cellular FC accumulation and enhanced cellular response to LPS. Our results suggest that macrophage ABCA1 expression may protect against atherosclerosis by facilitating the net removal of excess lipid from macrophages and dampening pro-inflammatory MyD88-dependent signaling pathways by reduction of cell membrane FC and lipid raft content.

  10. The pro-apoptotic and pro-inflammatory effects of calprotectin on human periodontal ligament cells.

    PubMed

    Zheng, Yunfei; Hou, Jianxia; Peng, Lei; Zhang, Xin; Jia, Lingfei; Wang, Xian'e; Wei, Shicheng; Meng, Huanxin

    2014-01-01

    Calprotectin, a heterodimer of S100A8 and S100A9 subunits, is associated with inflammatory disorders such as rheumatoid arthritis and cystic fibrosis. Although calprotectin levels are increased significantly in the gingival crevicular fluid (GCF) of periodontitis patients, its effects on periodontal ligament cells (PDLCs) remain largely unknown. The aim of this study was to evaluate calprotectin levels in the GCF of generalized aggressive periodontitis (AgP) patients and to investigate the effects of recombinant human calprotectin (rhS100A8/A9) and its subunits (rhS100A8 and rhS100A9) in PDLCs. Both the concentration and amount of crevicular calprotectin were significantly higher in the AgP group compared with healthy controls. In addition, the GCF calprotectin levels were correlated positively with clinical periodontal parameters including bleeding index, probing depth, and clinical attachment loss. rhS100A8/A9 promoted cell apoptosis, whereas rhS100A8 and rhS100A9 individually exerted little effect on apoptosis in PDLCs. rhS100A9 and rhS100A8/A9 increased the activation of nuclear factor-κB (NF-κB) by promoting the nuclear translocation of p65 in PDLCs, subsequently inducing expression of the pro-inflammatory cytokines IL-6, IL-8, TNFα, and COX2. Treatment with an NF-κB inhibitor partially reversed the rhS100A9- and rhS100A8/A9-induced upregulation of the pro-inflammatory cytokines. rhS100A9, and not rhS100A8, was mainly responsible for the pro-inflammatory role of calprotectin. Collectively, our results suggest that calprotectin promotes apoptosis and the inflammatory response in PDLCs via rhS100A9. These findings might help identify novel treatments for periodontitis.

  11. Epidermal keratinocytes initiate wound healing and pro-inflammatory immune responses following percutaneous schistosome infection.

    PubMed

    Bourke, Claire D; Prendergast, Catriona T; Sanin, David E; Oulton, Tate E; Hall, Rebecca J; Mountford, Adrian P

    2015-03-01

    Keratinocytes constitute the majority of cells in the skin's epidermis, the first line of defence against percutaneous pathogens. Schistosome larvae (cercariae) actively penetrate the epidermis to establish infection, however the response of keratinocytes to invading cercariae has not been investigated. Here we address the hypothesis that cercariae activate epidermal keratinocytes to promote the development of a pro-inflammatory immune response in the skin. C57BL/6 mice were exposed to Schistosoma mansoni cercariae via each pinna and non-haematopoietic cells isolated from epidermal tissue were characterised for the presence of different keratinocyte sub-sets at 6, 24 and 96 h p.i. We identified an expansion of epidermal keratinocyte precursors (CD45(-), CD326(-), CD34(+)) within 24 h of infection relative to naïve animals. Following infection, cells within the precursor population displayed a more differentiated phenotype (α6integrin(-)) than in uninfected skin. Parallel immunohistochemical analysis of pinnae cryosections showed that this expansion corresponded to an increase in the intensity of CD34 staining, specifically in the basal bulge region of hair follicles of infected mice, and a higher frequency of keratinocyte Ki67(+) nuclei in both the hair follicle and interfollicular epidermis. Expression of pro-inflammatory cytokine and stress-associated keratin 6b genes was also transiently upregulated in the epidermal tissue of infected mice. In vitro exposure of keratinocyte precursors isolated from neonatal mouse skin to excretory/secretory antigens released by penetrating cercariae elicited IL-1α and IL-1β production, supporting a role for keratinocyte precursors in initiating cutaneous inflammatory immune responses. Together, these observations indicate that S.mansoni cercariae and their excretory/secretory products act directly upon epidermal keratinocytes, which respond by initiating barrier repair and pro-inflammatory mechanisms similar to those

  12. Modeling the Pro-inflammatory Tumor Microenvironment in Acute Lymphoblastic Leukemia Predicts a Breakdown of Hematopoietic-Mesenchymal Communication Networks

    PubMed Central

    Enciso, Jennifer; Mayani, Hector; Mendoza, Luis; Pelayo, Rosana

    2016-01-01

    Lineage fate decisions of hematopoietic cells depend on intrinsic factors and extrinsic signals provided by the bone marrow microenvironment, where they reside. Abnormalities in composition and function of hematopoietic niches have been proposed as key contributors of acute lymphoblastic leukemia (ALL) progression. Our previous experimental findings strongly suggest that pro-inflammatory cues contribute to mesenchymal niche abnormalities that result in maintenance of ALL precursor cells at the expense of normal hematopoiesis. Here, we propose a molecular regulatory network interconnecting the major communication pathways between hematopoietic stem and progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs) within the BM. Dynamical analysis of the network as a Boolean model reveals two stationary states that can be interpreted as the intercellular contact status. Furthermore, simulations describe the molecular patterns observed during experimental proliferation and activation. Importantly, our model predicts instability in the CXCR4/CXCL12 and VLA4/VCAM1 interactions following microenvironmental perturbation due by temporal signaling from Toll like receptors (TLRs) ligation. Therefore, aberrant expression of NF-κB induced by intrinsic or extrinsic factors may contribute to create a tumor microenvironment where a negative feedback loop inhibiting CXCR4/CXCL12 and VLA4/VCAM1 cellular communication axes allows for the maintenance of malignant cells. PMID:27594840

  13. Dimethyl fumarate blocks pro-inflammatory cytokine production via inhibition of TLR induced M1 and K63 ubiquitin chain formation

    PubMed Central

    McGuire, Victoria A.; Ruiz-Zorrilla Diez, Tamara; Emmerich, Christoph H.; Strickson, Sam; Ritorto, Maria Stella; Sutavani, Ruhcha V.; Weiβ, Anne; Houslay, Kirsty F.; Knebel, Axel; Meakin, Paul J.; Phair, Iain R.; Ashford, Michael L. J.; Trost, Matthias; Arthur, J. Simon C.

    2016-01-01

    Dimethyl fumarate (DMF) possesses anti-inflammatory properties and is approved for the treatment of psoriasis and multiple sclerosis. While clinically effective, its molecular target has remained elusive - although it is known to activate anti-oxidant pathways. We find that DMF inhibits pro-inflammatory cytokine production in response to TLR agonists independently of the Nrf2-Keap1 anti-oxidant pathway. Instead we show that DMF can inhibit the E2 conjugating enzymes involved in K63 and M1 polyubiquitin chain formation both in vitro and in cells. The formation of K63 and M1 chains is required to link TLR activation to downstream signaling, and consistent with the block in K63 and/or M1 chain formation, DMF inhibits NFκB and ERK1/2 activation, resulting in a loss of pro-inflammatory cytokine production. Together these results reveal a new molecular target for DMF and show that a clinically approved drug inhibits M1 and K63 chain formation in TLR induced signaling complexes. Selective targeting of E2s may therefore be a viable strategy for autoimmunity. PMID:27498693

  14. The regulation of cytochrome P450 2E1 during LPS-induced inflammation in the rat

    SciTech Connect

    Abdulla, Dalya; Goralski, Kerry B.; Renton, Kenneth W. . E-mail: Ken.Renton@dal.ca

    2006-10-01

    It is well known that inflammatory and infectious conditions differentially regulate cytochrome P450 (P450)-mediated drug metabolism in the liver. We have previously outlined a potential pathway for the downregulation in hepatic cytochrome P450 following LPS-mediated inflammation in the CNS (Abdulla, D., Goralski, K.B., Garcia Del Busto Cano, E., Renton, K.W., 2005. The signal transduction pathways involved in hepatic cytochrome P450 regulation in the rat during an LPS-induced model of CNS inflammation. Drug Metab. Dispos). The purpose of this study was to outline the effects of LPS-induced peripheral and central nervous system inflammation on hepatic cytochrome P450 2E1 (CYP2E1) in vivo, an enzyme that plays an important role in various physiological and pathological states. We report an increase in hepatic mRNA expression of CYP2E1 that occurred as early as 2-3 h following either the intraperitoneal (i.p.) injection of 5 mg/kg LPS or i.c.v. administration of 25 {mu}g of LPS. This increase in CYP2E1 mRNA expression was sustained for 24 h. In sharp contrast to the increase in hepatic CYP2E1 mRNA, we observed a significant reduction in the catalytic activity of this enzyme 24 h following either the i.c.v. or i.p. administration of LPS. Cycloheximide or actinomycin-D did not change the LPS-mediated downregulation in hepatic CYP2E1 catalytic activity. Our results support the idea that LPS acts at two different levels to regulate hepatic CYP2E1: a transcriptional level to increase CYP2E1 mRNA expression and a post-transcriptional level to regulate CYP2E1 protein and activity.

  15. α₁ adrenoceptor activation by norepinephrine inhibits LPS-induced cardiomyocyte TNF-α production via modulating ERK1/2 and NF-κB pathway.

    PubMed

    Yu, Xiaohui; Jia, Baoyin; Wang, Faqiang; Lv, Xiuxiu; Peng, Xuemei; Wang, Yiyang; Li, Hongmei; Wang, Yanping; Lu, Daxiang; Wang, Huadong

    2014-02-01

    Cardiomyocyte tumour necrosis factor α (TNF-α) production contributes to myocardial depression during sepsis. This study was designed to observe the effect of norepinephrine (NE) on lipopolysaccharide (LPS)-induced cardiomyocyte TNF-α expression and to further investigate the underlying mechanisms in neonatal rat cardiomyocytes and endotoxaemic mice. In cultured neonatal rat cardiomyocytes, NE inhibited LPS-induced TNF-α production in a dose-dependent manner. α₁- adrenoceptor (AR) antagonist (prazosin), but neither β₁- nor β₂-AR antagonist, abrogated the inhibitory effect of NE on LPS-stimulated TNF-α production. Furthermore, phenylephrine (PE), an α₁-AR agonist, also suppressed LPS-induced TNF-α production. NE inhibited p38 phosphorylation and NF-κB activation, but enhanced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and c-Fos expression in LPS-treated cardiomyocytes, all of which were reversed by prazosin pre-treatment. To determine whether ERK1/2 regulates c-Fos expression, p38 phosphorylation, NF-κB activation and TNF-α production, cardiomyocytes were also treated with U0126, a selective ERK1/2 inhibitor. Treatment with U0126 reversed the effects of NE on c-Fos expression, p38 mitogen-activated protein kinase (MAPK) phosphorylation and TNF-α production, but not NF-κB activation in LPS-challenged cardiomyocytes. In addition, pre-treatment with SB202190, a p38 MAPK inhibitor, partly inhibited LPS-induced TNF-α production in cardiomyocytes. In endotoxaemic mice, PE promoted myocardial ERK1/2 phosphorylation and c-Fos expression, inhibited p38 phosphorylation and IκBα degradation, reduced myocardial TNF-α production and prevented LPS-provoked cardiac dysfunction. Altogether, these findings indicate that activation of α₁-AR by NE suppresses LPS-induced cardiomyocyte TNF-α expression and improves cardiac dysfunction during endotoxaemia via promoting myocardial ERK phosphorylation and suppressing NF-κB activation.

  16. Effect of pro-inflammatory interleukin-17A on epithelial cell phenotype inversion in HK-2 cells in vitro.

    PubMed

    Liu, Li; Li, Fu-Gang; Yang, Man; Wang, Li; Chen, Yue; Wang, Li; Ji, Wen; Fan, Jun-Ming

    2016-06-01

    Renal interstitial fibrosis (RIF) is a pathological change common to a variety of chronic renal diseases, ultimately progressing to end-stage renal failure. It is believed that epithelial cell phenotype inversion plays an important role in RIF, which is characterized by expression of the mesenchymal maker α-SMA, loss of the epithelial maker E-cadherin, and enhanced secretion of extracellular matrix. IL-17, a newly discovered pro-inflammatory cytokine, has recently been reported to play an important role in tissue fibrosis, involving pulmonary, liver, intestine and skin tissues. This study aimed to investigate whether IL-17A, a member of the IL-17 family, can induce epithelial cell phenotype inversion, and to explore the molecular mechanism of this phenotype inversion, in vitro. HK-2 cells were cultured and incubated with IL-17A. Cell proliferation was measured by CCK-8 assay, and the secretion of types I and III collagen was detected by ELISA in dose-dependent and time-dependent experiments. To find out whether IL-17A can induce epithelial cell phenotype inversion, HK-2 cells were stimulated with 80 ng/mL of IL-17A and 10 ng/mL of TGF-β1 as a positive control, for 72 h. To explore the potential signaling pathway, anti-TGF-β1 antibody was added before IL-17A treatment. At the same time, anti-TGF-β1 antibody alone was added to the medium as the negative control group. The expression of types I and III collagen, α-SMA and E-cadherin proteins, and mRNA was measured by real-time PCR, western blotting and immuno-histochemistry. IL-17A promoted the proliferation of HK-2 cells and secretion of types I and III collagen in a dose-dependent and time-dependent manner. Compared with the normal control, IL-17A could stimulate the expression of α-SMA, types I and III collagen, and suppressed the expression of E-cadherin in HK-2 cells. Incubation of IL-17A with TGF-β1 antibody decreased significantly the expression of α-SMA, but increased the expression of E-cadherin in

  17. Peroxiredoxin IV regulates pro-inflammatory responses in large yellow croaker (Pseudosciaena crocea) and protects against bacterial challenge.

    PubMed

    Yu, Suhong; Mu, Yinnan; Ao, Jingqun; Chen, Xinhua

    2010-03-05

    In this study, we applied a comparative proteomic approach to the analysis of differentially expressed proteins in the spleens of large yellow croaker following treatment with an inactivated trivalent bacterial vaccine. Twenty-four altered proteins were identified by MALDI-TOF or MALDI-TOF-TOF, including immune-related proteins, antioxidant proteins, signal transducers, protein biosynthesis and catabolism modulators, and carbonic anhydrases. Three Prx family members, namely, Prx I, Prx II, and Prx IV, were upregulated after treatment with the vaccine, indicating potentially important roles for these antioxidant proteins in the antibacterial immune response. Large yellow croaker Prx IV (LycPrxIV), which has thiol-dependent peroxidase activity, was constitutively expressed in all tissues examined. Immunoelectron microscopy showed that LycPrxIV was primarily localized to the rER or peroxisome in spleen cells of healthy fish, and its synthesis on the rER increased following treatment with bacterial vaccine. Suppression of LycPrxIV by siRNA resulted in an increase in NF-kappaB activity in spleen tissues, while in vivo administration of recombinant LycPrxIV (rLycPrxIV) caused a decrease in NF-kappaB activity, indicating that LycPrxIV negatively regulates NF-kappaB activation. Likewise, siRNA-mediated knockdown of LycPrxIV increased the expression of TNF-alpha and CC chemokine, and downregulated the expression of IL-10. However, injection of fish with rLycPrxIV induced the opposite expression pattern of these cytokines, suggesting a role for LycPrxIV in regulating pro-inflammatory responses. Bacterial challenge experiments showed that suppression of LycPrxIV expression by siRNA significantly increased fish mortality as compared to controls, whereas rLycPrxIV provided a protective effect. Together, our data suggest that LycPrxIV may regulate pro-inflammatory responses to protect large yellow croaker from bacterial challenge, revealing a novel antibacterial mechanism in

  18. Cannabinoid CB2 receptors modulate ERK-1/2 kinase signalling and NO release in microglial cells stimulated with bacterial lipopolysaccharide

    PubMed Central

    Merighi, Stefania; Gessi, Stefania; Varani, Katia; Simioni, Carolina; Fazzi, Debora; Mirandola, Prisco; Borea, Pier Andrea

    2012-01-01

    BACKGROUND AND PURPOSE Cannabinoid (CB) receptor agonists have potential utility as anti-inflammatory drugs in chronic immune inflammatory diseases. In the present study, we characterized the signal transduction pathways affected by CB2 receptors in quiescent and lipopolysaccharide (LPS)-stimulated murine microglia. EXPERIMENTAL APPROACH We examined the effects of the synthetic CB2 receptor ligand, JWH-015, on phosphorylation of MAPKs and NO production. KEY RESULTS Stimulation of CB2 receptors by JWH-015 activated JNK-1/2 and ERK-1/2 in quiescent murine microglial cells. Furthermore, CB2 receptor activation increased p-ERK-1/2 at 15 min in LPS-stimulated microglia. Surprisingly, this was reduced after 30 min in the presence of both LPS and JWH-015. The NOS inhibitor l-NAME blocked the ability of JWH-015 to down-regulate the LPS-induced p-ERK increase, indicating that activation of CB2 receptors reduced effects of LPS on ERK-1/2 phosphorylation through NO. JWH-015 increased LPS-induced NO release at 30 min, while at 4 h CB2 receptor stimulation had an inhibitory effect. All the effects of JWH-015 were significantly blocked by the CB2 receptor antagonist AM 630 and, as the inhibition of CB2 receptor expression by siRNA abolished the effects of JWH-015, were shown to be mediated specifically by activation of CB2 receptors. CONCLUSIONS AND IMPLICATIONS Our results demonstrate that CB2 receptor stimulation activated the MAPK pathway, but the presence of a second stimulus blocked MAPK signal transduction, inhibiting pro-inflammatory LPS-induced production of NO. Therefore, CB2 receptor agonists may promote anti-inflammatory therapeutic responses in activated microglia. PMID:21951063

  19. Bromelain treatment decreases secretion of pro-inflammatory cytokines and chemokines by colon biopsies in vitro.

    PubMed

    Onken, Jane E; Greer, Paula K; Calingaert, Brian; Hale, Laura P

    2008-03-01

    Oral bromelain has been anecdotally reported to decrease inflammation in ulcerative colitis (UC). Proteolytically active bromelain is known to decrease expression of mRNAs encoding pro-inflammatory cytokines by human leukocytes in vitro. To assess the effect of bromelain on mucosal secretion of cytokines in inflammatory bowel disease (IBD), endoscopic colon biopsies from patients with UC, Crohn's disease (CD), and non-IBD controls were treated in vitro with bromelain or media, then cultured. Secretion of pro-inflammatory cytokines and chemokines was measured. Significant increases in granulocyte colony-stimulating factor (G-CSF), interferon (IFN)-gamma, interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF) were detected in the media from actively inflamed areas in UC and CD as compared with non-inflamed IBD tissue and non-IBD controls. In vitro bromelain treatment decreased secretion of G-CSF, granulocyte-macrophage colony-stimulating factor (GM-CSF), IFN-gamma, CCL4/macrophage inhibitory protein (MIP)-1beta, and TNF by inflamed tissue in IBD. Bromelain may be a novel therapy for IBD.

  20. Interleukin-7 is decreased and maybe plays a pro-inflammatory function in primary immune thrombocytopenia.

    PubMed

    Li, Hui-Yuan; Zhang, Dong-Lei; Zhang, Xian; Liu, Xiao-Fan; Xue, Feng; Yang, Ren-Chi

    2015-01-01

    Primary immune thrombocytopenia (ITP) is an autoimmune disease with many immune dysfunctions, including over-proliferation and apoptosis resistance of auto-reactive lymphocytes. This study aimed to determine the effects of interleukin (IL)-7 on the cytokine production and survival of peripheral blood mononuclear cells and bone marrow mononuclear cells from ITP patients. We found that the plasma IL-7 levels in peripheral blood from ITP patients were lower than that of the normal controls, and it had positive correlation with platelet counts. However, the levels of IL-7 did not change in bone marrow serum of ITP patients compared with that of normal controls. The result of further stimulation experiments in vitro showed that IL-7 up-regulated the apoptosis of autologous platelets, promoted the proliferation and secretion of interferon-γ, tumor necrosis factor-α as well as IL-10 of lymphocyte both from peripheral blood and bone marrow. As the role of IL-7 in apoptosis-resistance and stimulation of pro-inflammatory cytokines, we speculated that decreased IL-7 in peripheral blood, maybe, is a consequence of the negative feedback of the pro-inflammatory function in ITP patients.

  1. Expression of pro-inflammatory interleukin-8 is reduced by ayurvedic decoctions.

    PubMed

    Guerrini, Alessandra; Mancini, Irene; Maietti, Silvia; Rossi, Damiano; Poli, Ferruccio; Sacchetti, Gianni; Gambari, Roberto; Borgatti, Monica

    2014-08-01

    Eleven decoctions, obtained from indian plants widely used in ayurvedic medicine, have been investigated as a possible source of molecules exhibiting biological activity on the interaction between DNA and NF-kB, a transcription factor involved in the expression of proinflammatory genes. Cystic fibrosis (CF) cell line stimulated by TNF-α has been used as inflammatory cellular model to determinate interleukin-8 (IL-8), one of the most relevant pro-inflammatory mediator in CF regulated by the NF-kB. The chemical characterization of these 11 decoctions by spectrophotometric analysis and NMR fingerprinting highlighted that sugars and polyphenols seemed to be the main compounds. Our results demonstrated that Azadirachta indica, Terminalia bellerica, Terminalia chebula, Hemidesmus indicus, Emblica officinalis and Swertia chirata are the most active decoctions in inhibiting NF-kB/DNA interactions by EMSA assay and in reducing pro-inflammatory IL- 8 expression in CF cells at IC50 concentrations by Real-Time and Bio-plex analyses. Finally, we observed the increase of all inhibitory activities with the rise of total polyphenols, procyanidins and flavonoids, except for the levels of IL-8 mRNA accumulation, that were as high as flavonoid content grown up by the statistical multivariate analyses. In conclusion, these six decoctions might be interesting to explore new anti-inflammatory treatments for diseases, such as CF.

  2. Selection for pro-inflammatory mediators produces chickens more resistant to Eimeria tenella.

    PubMed

    Swaggerty, C L; Pevzner, I Y; Kogut, M H

    2015-01-01

    We recently developed a novel selection method based on identification and selection of chickens with an inherently high and low phenotype of pro-inflammatory mediators, including interleukin (IL)-6, CXCLi2, and CCLi2. The resultant high line of chickens is more resistant to Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) compared to the low line. In the current study, we sought to determine if the high line birds were also more resistant to the protozoan parasite Eimeria tenella. In three separate experiments, 14-day-old chickens from the high and low lines were challenged orally with 10×10(3) to 45×10(3) E. tenella oocysts. Birds were sacrificed 6 d postchallenge and the caeca was removed and scored for lesions and body weight gain compared to mock-infected controls. The high line birds were more resistant to intestinal pathology as demonstrated by lower lesion scores (P≤0.04) compared to the low line. There were no differences in body weight gain between the lines. The results from this study showed that in addition to enhanced resistance against Salmonella Enteritidis, high line chickens are also more resistant to the pathology associated with coccidial infections compared to the low line birds. Taken together with our initial study utilizing the high and low lines, selection based on increased pro-inflammatory mediator expression produces chickens that are more resistant to both foodborne and poultry pathogens, including cecal pathology associated with costly coccidial infections.

  3. Molecular Mechanisms of Differentiation of Murine Pro-Inflammatory γδ T Cell Subsets.

    PubMed

    Serre, Karine; Silva-Santos, Bruno

    2013-12-05

    γδ T cells are unconventional innate-like lymphocytes that actively participate in protective immunity against tumors and infectious organisms including bacteria, viruses, and parasites. However, γδ T cells are also involved in the development of inflammatory and autoimmune diseases. γδ T cells are functionally characterized by very rapid production of pro-inflammatory cytokines, while also impacting on (slower but long-lasting) adaptive immune responses. This makes it crucial to understand the molecular mechanisms that regulate γδ T cell effector functions. Although they share many similarities with αβ T cells, our knowledge of the molecular pathways that control effector functions in γδ T cells still lags significantly behind. In this review, we focus on the segregation of interferon-γ versus interleukin-17 production in murine thymic-derived γδ T cell subsets defined by CD27 and CCR6 expression levels. We summarize the most recent studies that disclose the specific epigenetic and transcriptional mechanisms that govern the stability or plasticity of discrete pro-inflammatory γδ T cell subsets, whose manipulation may be valuable for regulating (auto)immune responses.

  4. Interleukin 10 inhibits pro-inflammatory cytokine responses and killing of Burkholderia pseudomallei

    PubMed Central

    Kessler, Bianca; Rinchai, Darawan; Kewcharoenwong, Chidchamai; Nithichanon, Arnone; Biggart, Rachael; Hawrylowicz, Catherine M.; Bancroft, Gregory J.; Lertmemongkolchai, Ganjana

    2017-01-01

    Melioidosis, caused by Burkholderia pseudomallei, is endemic in northeastern Thailand and Northern Australia. Severe septicemic melioidosis is associated with high levels of pro-inflammatory cytokines and is correlated with poor clinical outcomes. IL-10 is an immunoregulatory cytokine, which in other infections can control the expression of pro-inflammatory cytokines, but its role in melioidosis has not been addressed. Here, whole blood of healthy seropositive individuals (n = 75), living in N. E. Thailand was co-cultured with B. pseudomallei and production of IL-10 and IFN-γ detected and the cellular sources identified. CD3− CD14+ monocytes were the main source of IL-10. Neutralization of IL-10 increased IFN-γ, IL-6 and TNF-α production and improved bacteria killing. IFN-γ production and microbicidal activity were impaired in individuals with diabetes mellitus (DM). In contrast, IL-10 production was unimpaired in individuals with DM, resulting in an IL-10 dominant cytokine balance. Neutralization of IL-10 restored the IFN-γ response of individuals with DM to similar levels observed in healthy individuals and improved killing of B. pseudomallei in vitro. These results demonstrate that monocyte derived IL-10 acts to inhibit potentially protective cell mediated immune responses against B. pseudomallei, but may also moderate the pathological effects of excessive cytokine production during sepsis. PMID:28216665

  5. Inhibition of pro-inflammatory mediators: role of Bacopa monniera (L.) Wettst.

    PubMed

    Viji, Vijayan; Helen, Antony

    2011-10-01

    Bacopa monniera (L.) Wettst is a renowned plant in the Ayurvedic system of medicine. The present study seeks to identify the anti-inflammatory activity of two fractions from the methanolic extract of Bacopa, viz. the triterpenoid and bacoside-enriched fractions. The ability of these two fractions to inhibit the production of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 was tested using lipopolysaccharide (LPS)-activated peripheral blood mononuclear cells and peritoneal exudate cells in vitro. We found that triterpenoid and bacoside-enriched fractions significantly inhibited LPS-activated TNF-α, IL-6 and nitrite production in mononuclear cells. Significant antioxidant activity was exhibited by the bacoside enriched fraction compared to the triterpenoid fraction. Carrageenan-induced hind paw oedema assay revealed that triterpenoid and bacoside-enriched fractions exerted anti-oedematogenic effect, while in the arthritis model only the triterpenoid fraction exerted an anti-arthritic potential. The present study provides an insight into the ability of Bacopa monniera to inhibit inflammation through modulation of pro-inflammatory mediator release.

  6. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues

    PubMed Central

    Zanganeh, Saeid; Hutter, Gregor; Spitler, Ryan; Lenkov, Olga; Mahmoudi, Morteza; Shaw, Aubie; Pajarinen, Jukka Sakari; Nejadnik, Hossein; Goodman, Stuart; Moseley, Michael; Coussens, Lisa Marie; Daldrup-Link, Heike Elisabeth

    2016-01-01

    Until now, the Food and Drug Administration (FDA)-approved iron supplement ferumoxytol and other iron oxide nanoparticles have been used for treating iron deficiency, as contrast agents for magnetic resonance imaging and as drug carriers. Here, we show an intrinsic therapeutic effect of ferumoxytol on the growth of early mammary cancers, and lung cancer metastases in liver and lungs. In vitro, adenocarcinoma cells co-incubated with ferumoxytol and macrophages showed increased caspase-3 activity. Macrophages exposed to ferumoxytol displayed increased mRNA associated with pro-inflammatory Th1-type responses. In vivo, ferumoxytol significantly inhibited growth of subcutaneous adenocarcinomas in mice. In addition, intravenous ferumoxytol treatment before intravenous tumour cell challenge prevented development of liver metastasis. Fluorescence-activated cell sorting (FACS) and histopathology studies showed that the observed tumour growth inhibition was accompanied by increased presence of pro-inflammatory M1 macrophages in the tumour tissues. Our results suggest that ferumoxytol could be applied ‘off label’ to protect the liver from metastatic seeds and potentiate macrophage-modulating cancer immunotherapies. PMID:27668795

  7. Molecular Mechanisms of Differentiation of Murine Pro-Inflammatory γδ T Cell Subsets

    PubMed Central

    Serre, Karine; Silva-Santos, Bruno

    2013-01-01

    γδ T cells are unconventional innate-like lymphocytes that actively participate in protective immunity against tumors and infectious organisms including bacteria, viruses, and parasites. However, γδ T cells are also involved in the development of inflammatory and autoimmune diseases. γδ T cells are functionally characterized by very rapid production of pro-inflammatory cytokines, while also impacting on (slower but long-lasting) adaptive immune responses. This makes it crucial to understand the molecular mechanisms that regulate γδ T cell effector functions. Although they share many similarities with αβ T cells, our knowledge of the molecular pathways that control effector functions in γδ T cells still lags significantly behind. In this review, we focus on the segregation of interferon-γ versus interleukin-17 production in murine thymic-derived γδ T cell subsets defined by CD27 and CCR6 expression levels. We summarize the most recent studies that disclose the specific epigenetic and transcriptional mechanisms that govern the stability or plasticity of discrete pro-inflammatory γδ T cell subsets, whose manipulation may be valuable for regulating (auto)immune responses. PMID:24367369

  8. Bromelain Treatment Decreases Secretion of Pro-Inflammatory Cytokines and Chemokines by Colon Biopsies In Vitro

    PubMed Central

    Onken, Jane E.; Greer, Paula K.; Calingaert, Brian; Hale, Laura P.

    2008-01-01

    Oral bromelain has been anecdotally reported to decrease inflammation in ulcerative colitis (UC). Proteolytically active bromelain is known to decrease expression of mRNAs encoding pro-inflammatory cytokines by human leukocytes in vitro. To assess the effect of bromelain on mucosal secretion of cytokines in inflammatory bowel disease (IBD), endoscopic colon biopsies from patients with UC, Crohn’s disease (CD), and non-IBD controls were treated in vitro with bromelain or media, then cultured. Secretion of pro-inflammatory cytokines and chemokines was measured. Significant increases in granulocyte colony stimulating factor (G-CSF), interferon (IFN)-γ, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF) were detected in the media from actively inflamed areas in UC and CD as compared with non-inflamed IBD tissue and non-IBD controls. In vitro bromelain treatment decreased secretion of G-CSF, granulocyte-macrophage colony stimulating factor (GM-CSF), IFN-γ, CCL4/macrophage inhibitory protein (MIP)-1β, and TNF by inflamed tissue in IBD. Bromelain may be a novel therapy for IBD. PMID:18160345

  9. Pro-inflammatory effects of uric acid in the gastrointestinal tract

    PubMed Central

    Crane, John K.; Mongiardo, Krystin M.

    2014-01-01

    Uric acid can be generated in the gastrointestinal (GI) tract from the breakdown of nucleotides ingested in the diet or from purines released from host cells as a result of pathogen-induced cell damage. Xanthine oxidase (XO) is the enzyme that converts hypoxanthine or xanthine into uric acid, a reaction that also generates hydrogen peroxide. It has been assumed that the product of XO responsible for the pro-inflammatory effects of this enzyme is hydrogen peroxide. Recent literature on uric acid, however, has indicated that uric acid itself may have biological effects. We tested whether uric acid itself has detectable pro-inflammatory effects using an in vivo model using ligated rabbit intestinal segments (“loops”) as well as in vitro assays using cultured cells. Addition of exogenous uric acid increased the influx of heterophils into rabbit intestinal loops, as measured by myeloperoxidase activity. In addition, white blood cells adhered avidly to uric acid crystals, forming large aggregates of cells. Uric acid acts as a leukocyte chemoattractant in the GI tract. The role of uric acid in enteric infections and in non-infectious disorders of the GI tract deserves more attention. PMID:24377830

  10. Role of antigen presentation in the production of pro-inflammatory cytokines in obese adipose tissue.

    PubMed

    Majdoubi, Abdelilah; Kishta, Osama A; Thibodeau, Jacques

    2016-06-01

    Type II diabetes regroups different physiological anomalies that ultimately lead to low-grade chronic inflammation, insulin resistance and loss of pancreatic β-cells. Obesity is one of the best examples of such a condition that can develop into Metabolic Syndrome, causing serious health problems of great socio-economic consequences. The pathological outcome of obesity has a genetic basis and depends on the delicate balance between pro- and anti-inflammatory effectors of the immune system. The causal link between obesity and inflammation is well established. While innate immunity plays a key role in the development of a pro-inflammatory state in obese adipose tissues, it has now become clear that adaptive immune cells are also involved and participate in the cascade of events that lead to metabolic perturbations. The efficacy of some immunotherapeutic protocols in reducing the symptoms of obesity-driven metabolic syndrome in mice implicated all arms of the immune response. Recently, the production of pathogenic immunoglobulins and pro-inflammatory cytokines by B and T lymphocytes suggested an auto-immune basis for the establishment of a non-healthy obese state. Understanding the cellular landscape of obese adipose tissues and how immune cells sustain chronic inflammation holds the key to the development of targeted therapies. In this review, we emphasize the role of antigen-presenting cells and MHC molecules in obese adipose tissue and the general contribution of the adaptive arm of the immune system in inflammation-induced insulin resistance.

  11. Towards a pro-inflammatory and immunomodulatory emerging role of leptin.

    PubMed

    Otero, M; Lago, R; Gomez, R; Dieguez, C; Lago, F; Gómez-Reino, J; Gualillo, O

    2006-08-01

    Leptin is a 16 kDa adipocyte-secreted hormone that regulates weight centrally and links nutritional status with neuroendocrine and immune function. Since its cloning in 1994, leptin's role in regulating immune and inflammatory response has become increasingly evident. Actually, the increase of leptin production that occurs during infection and inflammation strongly suggests that leptin is a part of the cytokines loop which governs the inflammatory-immune response and the host defence mechanism. Indeed, leptin stimulates the production of pro-inflammatory cytokines from cultured monocytes and enhances the production of Th1 type cytokines from stimulated lymphocytes. Several studies have implicated leptin in the pathogenesis of autoimmune inflammatory conditions such as type 1 diabetes, rheumatoid arthritis and chronic bowel disease. Obesity is characterized by elevated circulating leptin levels which might contribute significantly to the so called low-grade systemic inflammation, making obese individuals more susceptible to the increased risk of developing cardiovascular diseases, type II diabetes or inflammatory articular degenerative disease such as osteorathritis (OA). As a matter of fact, a key role for leptin in OA has been recently demonstrated since leptin exhibits, in synergy with other pro-inflammatory cytokines, a detrimental effect on articular cartilage cells by promoting nitric oxide synthesis. This review will focus prevalently on the complex relationships existing among leptin, inflammatory response and immunity, trying to provide surprising insights into leptin's role and to discuss challenges and prospects for the future.

  12. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues

    NASA Astrophysics Data System (ADS)

    Zanganeh, Saeid; Hutter, Gregor; Spitler, Ryan; Lenkov, Olga; Mahmoudi, Morteza; Shaw, Aubie; Pajarinen, Jukka Sakari; Nejadnik, Hossein; Goodman, Stuart; Moseley, Michael; Coussens, Lisa Marie; Daldrup-Link, Heike Elisabeth

    2016-11-01

    Until now, the Food and Drug Administration (FDA)-approved iron supplement ferumoxytol and other iron oxide nanoparticles have been used for treating iron deficiency, as contrast agents for magnetic resonance imaging and as drug carriers. Here, we show an intrinsic therapeutic effect of ferumoxytol on the growth of early mammary cancers, and lung cancer metastases in liver and lungs. In vitro, adenocarcinoma cells co-incubated with ferumoxytol and macrophages showed increased caspase-3 activity. Macrophages exposed to ferumoxytol displayed increased mRNA associated with pro-inflammatory Th1-type responses. In vivo, ferumoxytol significantly inhibited growth of subcutaneous adenocarcinomas in mice. In addition, intravenous ferumoxytol treatment before intravenous tumour cell challenge prevented development of liver metastasis. Fluorescence-activated cell sorting (FACS) and histopathology studies showed that the observed tumour growth inhibition was accompanied by increased presence of pro-inflammatory M1 macrophages in the tumour tissues. Our results suggest that ferumoxytol could be applied 'off label' to protect the liver from metastatic seeds and potentiate macrophage-modulating cancer immunotherapies.

  13. Micro-RNA dysregulation in multiple sclerosis favours pro-inflammatory T-cell-mediated autoimmunity.

    PubMed

    Guerau-de-Arellano, Mireia; Smith, Kristen M; Godlewski, Jakub; Liu, Yue; Winger, Ryan; Lawler, Sean E; Whitacre, Caroline C; Racke, Michael K; Lovett-Racke, Amy E

    2011-12-01

    Pro-inflammatory T cells mediate autoimmune demyelination in multiple sclerosis. However, the factors driving their development and multiple sclerosis susceptibility are incompletely understood. We investigated how micro-RNAs, newly described as post-transcriptional regulators of gene expression, contribute to pathogenic T-cell differentiation in multiple sclerosis. miR-128 and miR-27b were increased in naïve and miR-340 in memory CD4(+) T cells from patients with multiple sclerosis, inhibiting Th2 cell development and favouring pro-inflammatory Th1 responses. These effects were mediated by direct suppression of B lymphoma Mo-MLV insertion region 1 homolog (BMI1) and interleukin-4 (IL4) expression, resulting in decreased GATA3 levels, and a Th2 to Th1 cytokine shift. Gain-of-function experiments with these micro-RNAs enhanced the encephalitogenic potential of myelin-specific T cells in experimental autoimmune encephalomyelitis. In addition, treatment of multiple sclerosis patient T cells with oligonucleotide micro-RNA inhibitors led to the restoration of Th2 responses. These data illustrate the biological significance and therapeutic potential of these micro-RNAs in regulating T-cell phenotypes in multiple sclerosis.

  14. The pro-inflammatory cytokines IFNγ/TNFα increase chromogranin A-positive neuroendocrine cells in the colonic epithelium.

    PubMed

    Hernández-Trejo, José Antonio; Suárez-Pérez, Dimelza; Gutiérrez-Martínez, Itzel Zenidel; Fernandez-Vargas, Omar Eduardo; Serrano, Carolina; Candelario-Martínez, Aurora Antonia; Meraz-Ríos, Marco Antonio; Citalán-Madrid, Alí Francisco; Hernández-Ruíz, Marcela; Reyes-Maldonado, Elba; Valle-Rios, Ricardo; Feintuch-Unger, Jacobo H; Schnoor, Michael; Villegas-Sepúlveda, Nicolás; Medina-Contreras, Oscar; Nava, Porfirio

    2016-11-01

    The gastrointestinal tract is the largest hormone-producing organ in the body due to a specialized cell population called enteroendocrine cells (EECs). The number of EECs increases in the mucosa of inflammatory bowel disease patients; however, the mechanisms responsible for these changes remain unknown. Here, we show that the pro-inflammatory cytokines interferon γ (IFNγ) and tumor necrosis factor α (TNFα) or dextran sulfate sodium (DSS)-induced colitis increase the number of EECs producing chromogranin A (CgA) in the colonic mucosa of C57BL/6J mice. CgA-positive cells were non-proliferating cells enriched with inactive phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and autophagy markers. Moreover, inhibition of Akt and autophagy prevented the increase in CgA-positive cells after IFNγ/TNFα treatment. Similarly, we observed that CgA-positive cells in the colonic mucosa of patients with colitis expressed Akt and autophagy markers. These findings suggest that Akt signaling and autophagy control differentiation of the intestinal EEC lineage during inflammation.

  15. PKC δ mediates pro-inflammatory responses in a mouse model of caerulein-induced acute pancreatitis.

    PubMed

    Ramnath, Raina Devi; Sun, Jia; Bhatia, Madhav

    2010-10-01

    Acute pancreatitis is an inflammatory disorder of the pancreas. Protein kinase C (PKC) δ plays an important role in mediating chemokine production in mouse pancreatic acinar cells. This study aims to investigate the role of PKC δ in the pathogenesis of acute pancreatitis and to explore the mechanisms through which PKC δ mediates pro-inflammatory signaling. Acute pancreatitis was induced in mice by ten hourly intraperitoneal injections of caerulein. PKC δ translocation inhibitor peptide (δV1-1) at a dose of 1.0 mg/kg or Tat (carrier peptide) at a dose of 1.0 mg/kg was administered to mice either 1 h before or 1 h after the first caerulein injection. One hour after the last caerulein injection, the mice were killed and pancreas, lungs, and blood were collected. Prophylactic and therapeutic treatment with δV1-1 attenuated caerulein-induced plasma amylase levels and pancreatic edema. Treatment with δV1-1 decreased myeloperoxidase activity and monocyte chemotactic protein-1 levels in both pancreas and plasma. PKC δ mediated acute pancreatitis by activating pancreatic nuclear factor κB, activator protein-1, and mitogen-activated protein kinases. Moreover, blockade of PKC δ attenuated lung myeloperoxidase activity and edema. Histological examination of pancreatic and lung sections confirmed protection against acute pancreatitis. Treatment with Tat had no protective effect on acute pancreatitis. Blockade of PKC δ represents a promising prophylactic and/or therapeutic tool for the treatment of acute pancreatitis.

  16. Pro-inflammatory-Related Loss of CXCL12 Niche Promotes Acute Lymphoblastic Leukemic Progression at the Expense of Normal Lymphopoiesis.

    PubMed

    Balandrán, Juan Carlos; Purizaca, Jessica; Enciso, Jennifer; Dozal, David; Sandoval, Antonio; Jiménez-Hernández, Elva; Alemán-Lazarini, Leticia; Perez-Koldenkova, Vadim; Quintela-Núñez Del Prado, Henry; Rios de Los Ríos, Jussara; Mayani, Héctor; Ortiz-Navarrete, Vianney; Guzman, Monica L; Pelayo, Rosana

    2016-01-01

    Pediatric oncology, notably childhood acute lymphoblastic leukemia (ALL), is currently one of the health-leading concerns worldwide and a biomedical priority. Decreasing overall leukemia mortality in children requires a comprehensive understanding of its pathobiology. It is becoming clear that malignant cell-to-niche intercommunication and microenvironmental signals that control early cell fate decisions are critical for tumor progression. We show here that the mesenchymal stromal cell component of ALL bone marrow (BM) differ from its normal counterpart in a number of functional properties and may have a key role during leukemic development. A decreased proliferation potential, contrasting with the strong ability of producing pro-inflammatory cytokines and an aberrantly loss of CXCL12 and SCF, suggest that leukemic lymphoid niches in ALL BM are unique and may exclude normal hematopoiesis. Cell competence ex vivo assays within tridimensional coculture structures indicated a growth advantage of leukemic precursor cells and their niche remodeling ability by CXCL12 reduction, resulting in leukemic cell progression at the expense of normal niche-associated lymphopoiesis.

  17. Pro-inflammatory-Related Loss of CXCL12 Niche Promotes Acute Lymphoblastic Leukemic Progression at the Expense of Normal Lymphopoiesis

    PubMed Central

    Balandrán, Juan Carlos; Purizaca, Jessica; Enciso, Jennifer; Dozal, David; Sandoval, Antonio; Jiménez-Hernández, Elva; Alemán-Lazarini, Leticia; Perez-Koldenkova, Vadim; Quintela-Núñez del Prado, Henry; Rios de los Ríos, Jussara; Mayani, Héctor; Ortiz-Navarrete, Vianney; Guzman, Monica L.; Pelayo, Rosana

    2017-01-01

    Pediatric oncology, notably childhood acute lymphoblastic leukemia (ALL), is currently one of the health-leading concerns worldwide and a biomedical priority. Decreasing overall leukemia mortality in children requires a comprehensive understanding of its pathobiology. It is becoming clear that malignant cell-to-niche intercommunication and microenvironmental signals that control early cell fate decisions are critical for tumor progression. We show here that the mesenchymal stromal cell component of ALL bone marrow (BM) differ from its normal counterpart in a number of functional properties and may have a key role during leukemic development. A decreased proliferation potential, contrasting with the strong ability of producing pro-inflammatory cytokines and an aberrantly loss of CXCL12 and SCF, suggest that leukemic lymphoid niches in ALL BM are unique and may exclude normal hematopoiesis. Cell competence ex vivo assays within tridimensional coculture structures indicated a growth advantage of leukemic precursor cells and their niche remodeling ability by CXCL12 reduction, resulting in leukemic cell progression at the expense of normal niche-associated lymphopoiesis. PMID:28111575

  18. Fucoidan inhibits LPS-induced inflammation in vitro and during the acute response in vivo.

    PubMed

    Park, Jisang; Cha, Jeong-Dan; Choi, Kyung-Min; Lee, Kyung-Yeol; Han, Kang Min; Jang, Yong-Suk

    2017-02-01

    Studies have been focused on natural products with antibacterial and anti-inflammatory activities, such as fucoidan. Many in vivo studies have evaluated the effect of fucoidan on tumor growth, diabetes, obesity, ischemia reperfusion, and oxidative stress. However, the effects of fucoidan on bacteria-induced gingival inflammation and periodontitis have not been reported. We previously characterized the anti-inflammatory effect of fucoidan in vitro. Here, we confirmed the anti-inflammatory activity of fucoidan in a macrophage cell line in terms of its inhibition of the expression of inflammatory mediators and pro-inflammatory cytokines. Additionally, we confirmed the ability of fucoidan to inhibit gingival inflammation, expression of pro-inflammatory cytokines, and neutrophil recruitment in the gingival tissue of mice injected with LPS prepared from P. gingivalis. Interestingly, however, fucoidan did not inhibit the expression of pro-inflammatory cytokines in a P. gingivalis-infected mouse model of periodontitis. Additionally, fucoidan treatment did not lead to clearance of P. gingivalis or improvement of P. gingivalis infection-mediated bone loss in the periodontitis model. We conclude that fucoidan exerts anti-inflammatory effects in vitro and in vivo, together with a limited antibacterial effect in vivo.

  19. Activin suppresses LPS-induced Toll-like receptor, cytokine and inducible nitric oxide synthase expression in normal human melanocytes by inhibiting NF-κB and MAPK pathway activation.

    PubMed

    Kim, Young Il; Park, Seung-Won; Kang, In Jung; Shin, Min Kyung; Lee, Mu-Hyoung

    2015-10-01

    Activins are dimeric growth and differentiation factors that belong to the transforming growth factor (TGF)-β superfamily of structurally related signaling proteins. In the present study, we examined the mechanisms through which activin regulates the lipopolysaccharide (LPS)-induced transcription of Toll-like receptors (TLRs), cytokines and inducible nitric oxide synthase (iNOS) in human melanocytes, as well as the involvement of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling. Cell proliferation was analyzed by cell viability assay, mRNA expression was detected by RT-qPCR, and protein expression was measured by western blot analysis. LPS increased the mRNA expression of TLRs (TLR1-10) and cytokines [interleukin (IL)-1β, IL-6, IL-8 and TNF-α], as well as the mRNA and protein expression of iNOS. Activin decreased the LPS-induced TLR and cytokine mRNA expression, as well as the LPS-induced iNOS mRNA and protein expression. In addition, activin suppressed NF-κB p65 activation and blocked inhibitor of NF-κB (IκBα) degradation in LPS-stimulated melanocytes, and reduced LPS-induced p38 MAPK and MEK/ERK activation. On the whole, our results demonstrated that activin inhibited TLR and cytokine expression in LPS-activated normal human melanocytes and suppressed LPS-induced iNOS gene expression. Moreover, the anti-inflammatory effects of activin were shown to be mediated through the suppression of NF-κB and MAPK signaling, resulting in reduced TLR and iNOS expression, and in the inhibition of inflammatory cytokine expression.

  20. β-Glucan Reverses the Epigenetic State of LPS-Induced Immunological Tolerance.

    PubMed

    Novakovic, Boris; Habibi, Ehsan; Wang, Shuang-Yin; Arts, Rob J W; Davar, Robab; Megchelenbrink, Wout; Kim, Bowon; Kuznetsova, Tatyana; Kox, Matthijs; Zwaag, Jelle; Matarese, Filomena; van Heeringen, Simon J; Janssen-Megens, Eva M; Sharifi, Nilofar; Wang, Cheng; Keramati, Farid; Schoonenberg, Vivien; Flicek, Paul; Clarke, Laura; Pickkers, Peter; Heath, Simon; Gut, Ivo; Netea, Mihai G; Martens, Joost H A; Logie, Colin; Stunnenberg, Hendrik G

    2016-11-17

    Innate immune memory is the phenomenon whereby innate immune cells such as monocytes or macrophages undergo functional reprogramming after exposure to microbial components such as lipopolysaccharide (LPS). We apply an integrated epigenomic approach to characterize the molecular events involved in LPS-induced tolerance in a time-dependent manner. Mechanistically, LPS-treated monocytes fail to accumulate active histone marks at promoter and enhancers of genes in the lipid metabolism and phagocytic pathways. Transcriptional inactivity in response to a second LPS exposure in tolerized macrophages is accompanied by failure to deposit active histone marks at promoters of tolerized genes. In contrast, β-glucan partially reverses the LPS-induced tolerance in vitro. Importantly, ex vivo β-glucan treatment of monocytes from volunteers with experimental endotoxemia re-instates their capacity for cytokine production. Tolerance is reversed at the level of distal element histone modification and transcriptional reactivation of otherwise unresponsive genes. VIDEO ABSTRACT.

  1. Progesterone modulates the LPS-induced nitric oxide production by a progesterone-receptor independent mechanism.

    PubMed

    Wolfson, Manuel Luis; Schander, Julieta Aylen; Bariani, María Victoria; Correa, Fernando; Franchi, Ana María

    2015-12-15

    Genital tract infections caused by Gram-negative bacteria induce miscarriage and are one of the most common complications of human pregnancy. LPS administration to 7-day pregnant mice induces embryo resorption after 24h, with nitric oxide playing a fundamental role in this process. We have previously shown that progesterone exerts protective effects on the embryo by modulating the inflammatory reaction triggered by LPS. Here we sought to investigate whether the in vivo administration of progesterone modulated the LPS-induced nitric oxide production from peripheral blood mononuclear cells from pregnant and non-pregnant mice. We found that progesterone downregulated LPS-induced nitric oxide production by a progesterone receptor-independent mechanism. Moreover, our results suggest a possible participation of glucocorticoid receptors in at least some of the anti-inflammatory effects of progesterone.

  2. Trait sensitivity to social disconnection enhances pro-inflammatory responses to a randomized controlled trial of endotoxin

    PubMed Central

    Moieni, Mona; Irwin, Michael R.; Jevtic, Ivana; Breen, Elizabeth C.; Cho, Hyong Jin; Arevalo, Jesusa M. G.; Ma, Jeffrey; Cole, Steven W.; Eisenberger, Naomi I.

    2015-01-01

    One proposed mechanism for the association between social isolation and poor health outcomes is inflammation. Lonely or socially disconnected individuals show greater inflammatory responses, including up-regulation of pro-inflammatory gene expression, and people who are sensitive to cues of social disconnection (e.g., high levels of anxious attachment) exhibit greater inflammation in response to psychological stress. However, no studies have examined how sensitivity to social disconnection may influence pro-inflammatory responses to an inflammatory challenge. In the present study, we investigated the impact of sensitivity to social disconnection (a composite score comprised of loneliness, anxious attachment, fear of negative evaluation, and rejection sensitivity) on pro-inflammatory cytokines and gene expression in response to endotoxin, an inflammatory challenge, vs. placebo in a sample of one hundred and fifteen (n=115) healthy participants. Results showed that those who are more sensitive to social disconnection show increased pro-inflammatory responses (i.e., increased levels of tumor necrosis factor-alpha and interleukin-6) to endotoxin, as well as up-regulation of multiple genes related to inflammation. Furthermore, bioinformatics analyses revealed that those in the endotoxin group who are more sensitive to social disconnection exhibited a conserved transcriptional response to adversity (CTRA) regulatory profile, involving up-regulation of beta-adrenergic and pro-inflammatory transcription control pathways and down-regulation of antiviral transcription factors in response to endotoxin. These results may ultimately have implications for understanding the links between social isolation, inflammation, and health. PMID:26360770

  3. Regulatory and pro-inflammatory phenotypes of myelin basic protein-autoreactive T cells in multiple sclerosis

    PubMed Central

    Li, Haiyan; Chen, Meiyue; Zang, Ying C. Q.; Skinner, Sheri M.; Killian, James M.; Zhang, Jingwu Z.

    2009-01-01

    MBP-specific autoreactive T cells are considered pro-inflammatory T cells and thought to play an important role in the pathogenesis of multiple sclerosis (MS). Here, we report that MBP83–99-specific T cells generated from MS patients (n = 7) were comprised of pro-inflammatory and regulatory subsets of distinct phenotypes. The pro-inflammatory phenotype was characterized by high production of IFN-γ, IL-6, IL-21 and IL-17 and low expression of FOXP3, whereas the regulatory subset expressed high levels of FOXP3 and exhibited potent regulatory functions. The regulatory subset of MBP-specific T cells appeared to expand from the CD4+CD25− T-cell pool. Their FOXP3 expression was stable, independent of the activation state and it correlated with suppressive function and inversely with the production of IFN-γ, IL-6, IL-21 and IL-17. In contrast, the phenotype and function of FOXP3low MBP-specific T cells were adaptive and dependent on IL-6. The higher frequency of FOXP3high MBP-specific T cells was observed when IL-6 was neutralized in the culture of PBMC with MBP. The study provides new evidence that MBP-specific T cells are susceptible to pro-inflammatory cytokine milieu and act as either pro-inflammatory or regulatory T cells. PMID:19822525

  4. Phospholipid Incorporation of Non-Methylene-Interrupted Fatty Acids (NMIFA) in Murine Microglial BV-2 Cells Reduces Pro-Inflammatory Mediator Production.

    PubMed

    Chen, Szu-Jung; Chuang, Lu-Te; Liao, Jia-Siang; Huang, Wen-Cheng; Lin, Hong-Hsin

    2015-12-01

    Sciadonic acid (SCA), pinolenic acid (PNA), and Δ7-eicosatrienoic acid (Δ7-ETrA) are three non-methylene-interrupted fatty acids (NMIFA). Using murine microglial BV-2 cells, this study determined how NMIFA incorporation modulated phospholipid fatty acid composition and the production of pro-inflammatory mediators. Each NMIFA was rapidly taken up and incorporated in BV-2 cells, resulting in the differential redistribution of total lipids. The cellular phospholipid fatty acid compositions were altered, and a significant decrease in the proportions of total monounsaturated fatty acids (MUFA) was observed while the proportions of NMIFA and its metabolites accounted for 38% of the fatty acid total. Incubation of microglial cells with NMIFA suppressed production of LPS-stimulated pro-inflammatory mediators, including nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), as well as the over-expression of inducible nitric oxide synthase (iNOS) and type 2 cyclooxygenase (COX-2). These inhibitory effects could be accounted for, in part, by the inactivation of mitogen-activated protein kinases (MAPK) signaling. In conclusion, Δ7-ETrA, PNA, and SCA are anti-inflammatory NMIFA that may be useful in suppressing in vitro immune responses involved in neural inflammation.

  5. Artesunate ameliorates severe acute pancreatitis (SAP) in rats by inhibiting expression of pro-inflammatory cytokines and Toll-like receptor 4.

    PubMed

    Cen, Yanyan; Liu, Chao; Li, Xiaoli; Yan, Zifei; Kuang, Mei; Su, Yujie; Pan, Xichun; Qin, Rongxin; Liu, Xin; Zheng, Jiang; Zhou, Hong

    2016-09-01

    Severe acute pancreatitis (SAP) is a severe clinical condition with significant morbidity and mortality. Multiple organs dysfunction (MOD) is the leading cause of SAP-related death. The over-release of pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α is the underlying mechanism of MOD; however, there is no effective agent against the inflammation. Herein, artesunate (AS) was found to increase the survival of SAP rats significantly when injected with 3.5% sodium taurocholate into the biliopancreatic duct in a retrograde direction, improving their pancreatic pathology and decreasing serum amylase and pancreatic lipase activities along with substantially reduced pancreatic IL-1β and IL-6 release. In vitro, AS-pretreatment strongly inhibited IL-1β and IL-6 release and their mRNA expressions in the pancreatic acinar cells treated with lipopolysaccharide (LPS) but exerted little effect on TNF-α release. Additionally, AS reduced the mRNA expressions of Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) p65 as well as their protein expressions in the pancreatic acinar cells. In conclusion, our results demonstrated that AS could significantly protect SAP rats, and this protection was related to the reduction of digestive enzyme activities and pro-inflammatory cytokine expressions via inhibition of TLR4/NF-κB signaling pathway. Therefore, AS may be considered as a potential therapeutic agent against SAP.

  6. Caspase-8 Acts in a Non-enzymatic Role as a Scaffold for Assembly of a Pro-inflammatory "FADDosome" Complex upon TRAIL Stimulation.

    PubMed

    Henry, Conor M; Martin, Seamus J

    2017-02-16

    TRAIL is a potent inducer of apoptosis and has been studied almost exclusively in this context. However, TRAIL can also induce NFκB-dependent expression of multiple pro-inflammatory cytokines and chemokines. Surprisingly, whereas inhibition of caspase activity blocked TRAIL-induced apoptosis, but not cytokine production, knock down or deletion of caspase-8 suppressed both outcomes, suggesting that caspase-8 participates in TRAIL-induced inflammatory signaling in a scaffold role. Consistent with this, introduction of a catalytically inactive caspase-8 mutant into CASP-8 null cells restored TRAIL-induced cytokine production, but not cell death. Furthermore, affinity precipitation of the native TRAIL receptor complex revealed that pro-caspase-8 was required for recruitment of RIPK1, via FADD, to promote NFκB activation and pro-inflammatory cytokine production downstream. Thus, caspase-8 can serve in two distinct roles in response to TRAIL receptor engagement, as a scaffold for assembly of a Caspase-8-FADD-RIPK1 "FADDosome" complex, leading to NFκB-dependent inflammation, or as a protease that promotes apoptosis.

  7. Piracetam Attenuates LPS-Induced Neuroinflammation and Cognitive Impairment in Rats.

    PubMed

    Tripathi, Alok; Paliwal, Pankaj; Krishnamurthy, Sairam

    2017-02-07

    The present study was performed to investigate the effect of piracetam on neuroinflammation induced by lipopolysaccharide (LPS) and resulting changes in cognitive behavior. Neuroinflammation was induced by a single dose of LPS solution infused into each of the lateral cerebral ventricles in concentrations of 1 μg/μl, at a rate of 1 μl/min over a 5-min period, with a 5-min waiting period between the two infusions. Piracetam in doses of 50, 100, and 200 mg/kg i.p. was administered 30 min before LPS infusion and continued for 9 days. On ninth day, the behavioral test for memory and anxiety was done followed by blood collection and microdissection of the hippocampus (HIP) and prefrontal cortex brain regions. Piracetam attenuated the LPS-induced decrease in coping strategy to novel environment indicating anxiolytic activity. It also reversed the LPS-induced changes in the known arm and novel arm entries in the Y-maze test indicating amelioration of spatial memory impairment. Further, piracetam moderated LPS-induced decrease in the mitochondrial complex enzyme activities (I, II, IV, and V) and mitochondrial membrane potential. It ameliorated changes in hippocampal lipid peroxidation and nitrite levels including the activity of superoxide dismutase. Piracetam region specifically ameliorated LPS-induced increase in the level of IL-6 in HIP indicating anti-neuroinflammatory effect. Further, piracetam reduced HIP Aβ (1-40) and increased blood Aβ level suggesting efflux of Aβ from HIP to blood. Therefore, the present study indicates preclinical evidence for the use of piracetam in the treatment of neuroinflammatory disorders.

  8. Resveratrol ameliorates LPS-induced acute lung injury via NLRP3 inflammasome modulation.

    PubMed

    Jiang, Lei; Zhang, Lei; Kang, Kai; Fei, Dongsheng; Gong, Rui; Cao, Yanhui; Pan, Shangha; Zhao, Mingran; Zhao, Mingyan

    2016-12-01

    NLRP3 inflammasome plays a pivotal role in the development of acute lung injury (ALI), accelerating IL-1β and IL-18 release and inducing lung inflammation. Resveratrol, a natural phytoalexin, has anti-inflammatory properties via inhibition of oxidation, leukocyte priming, and production of inflammatory mediators. In this study, we aimed to investigate the effect of resveratrol on NLRP3 inflammasome in lipopolysaccharide-induced ALI. Mice were intratracheally instilled with 3mg/kg lipopolysaccharide (LPS) to induce ALI. Resveratrol treatment alleviated the LPS-induced lung pathological damage, lung edema and neutrophil infiltration. In addition, resveratrol reversed the LPS-mediated elevation of IL-1β and IL-18 level in the BAL fluids. In lung tissue, resveratrol also inhibited the LPS-induced NLRP3, ASC, caspase-1 mRNA and protein expression, and NLRP3 inflammasome activation. Moreover, resveratrol administration not only suppressed the NF-κB p65 nuclear translocation, NF-κB activity and ROS production in the LPS-treated mice, but also inhibited the LPS-induced thioredoxin-interacting protein (TXNIP) protein expression and interaction of TXNIP-NLRP3 in lung tissue. Meanwhile, resveratrol obviously induced SIRT1 mRNA and protein expression in the LPS-challenged mice. Taken together, our study suggests that resveratrol protects against LPS-induced lung injury by NLRP3 inflammasome inhibition. These findings further suggest that resveratrol may be of great value in the treatment of ALI and a potential and an effective pharmacological agent for inflammasome-relevant diseases.

  9. Terpenoids from Tripterygium hypoglaucum and their inhibition of LPS-induced NO production.

    PubMed

    Zhao, Peng; Wang, Hao; Jin, Da-Qing; Ohizumi, Yasushi; Xu, Jing; Guo, Yuanqiang

    2014-01-01

    One new (1) and three known (2-4) sesquiterpenes and four known diterpenes (5-8) were isolated from the root bark of Tripterygium hypoglaucum. Their structures were elucidated on the basis of extensive spectroscopic analyses (IR, ESI-MS, HR-ESI-MS, 1D-NMR, and 2D-NMR). The inhibitory activity toward LPS-induced NO production of these terpenoids was evaluated, all the compounds showing inhibitory effects.

  10. Cordycepin inhibits LPS-induced inflammatory and matrix degradation in the intervertebral disc

    PubMed Central

    Mao, Lu; Han, Xiuguo; Zhang, Kai; Zhao, Changqing

    2016-01-01

    Cordycepin is a component of the extract obtained from Cordyceps militaris and has many biological activities, including anti-cancer, anti-metastatic and anti-inflammatory effects. Intervertebral disc degeneration (IDD) is a degenerative disease that is closely related to the inflammation of nucleus pulposus (NP) cells. The effect of cordycepin on NP cells in relation to inflammation and degeneration has not yet been studied. In our study, we used a rat NP cell culture and an intervertebral disc (IVD) organ culture model to examine the inhibitory effects of cordycepin on lipopolysaccharide (LPS)-induced gene expression and the production of matrix degradation enzymes (MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5) and oxidative stress-associated factors (nitric oxide and PGE2). We found a protective effect of cordycepin on NP cells and IVDs against LPS-induced matrix degradation and macrophage infiltration. In addition, western blot and luciferase assay results demonstrated that pretreatment with cordycepin significantly suppressed the LPS-induced activation of the NF-κB pathway. Taken together, the results of our research suggest that cordycepin could exert anti-inflammatory and anti-degenerative effects on NP cells and IVDs by inhibiting the activation of the NF-κB pathway. Therefore, cordycepin may be a potential treatment for IDD in the future. PMID:27190710

  11. RAGE Plays a Role in LPS-Induced NF-κB Activation and Endothelial Hyperpermeability.

    PubMed

    Wang, Liqun; Wu, Jie; Guo, Xiaohua; Huang, Xuliang; Huang, Qiaobing

    2017-03-30

    Endothelial functional dysregulation and barrier disruption contribute to the initiation and development of sepsis. The receptor for advanced glycation end products (RAGE) has been demonstrated to be involved in the pathogenesis of sepsis. The present study aimed to investigate the role of RAGE in lipopolysaccharide (LPS)-induced nuclear factor-κB (NF-κB) activation in endothelial cells and the consequent endothelial hyperpermeability. LPS-induced upregulation of RAGE protein expression in human umbilical vein endothelial cells (HUVECs) was detected by western blotting. Activation of NF-κB was revealed using western blotting and immunofluorescent staining. LPS-elicited endothelial hyperpermeability was explored by transendothelial electrical resistance (TER) assay and endothelial monolayer permeability assay. The blocking antibody specific to RAGE was used to confirm the role of RAGE in LPS-mediated NF-κB activation and endothelial barrier disruption. We found that LPS upregulated the protein expression of RAGE in a dose- and time-dependent manner in HUVECs. Moreover, LPS triggered a significant phosphorylation and degradation of IκBα, as well as NF-κB p65 nuclear translocation. Moreover, we observed a significant increase in endothelial permeability after LPS treatment. However, the RAGE blocking antibody attenuated LPS-evoked NF-κB activation and endothelial hyperpermeability. Our results suggest that RAGE plays an important role in LPS-induced NF-κB activation and endothelial barrier dysfunction.

  12. Pulmonary epithelial CCR3 promotes LPS-induced lung inflammation by mediating release of IL-8.

    PubMed

    Li, Bo; Dong, Chunling; Wang, Guifang; Zheng, Huiru; Wang, Xiangdong; Bai, Chunxue

    2011-09-01

    Interleukin (IL)-8 from pulmonary epithelial cells has been suggested to play an important role in the airway inflammation, although the mechanism remains unclear. We envisioned a possibility that pulmonary epithelial CCR3 could be involved in secretion and regulation of IL-8 and promote lipopolysaccharide (LPS)-induced lung inflammation. Human bronchial epithelial cell line NCI-H292 and alveolar type II epithelial cell line A549 were used to test role of CCR3 in production of IL-8 at cellular level. In vivo studies were performed on C57/BL6 mice instilled intratracheally with LPS in a model of acute lung injury (ALI). The activity of a CCR3-specific inhibitor (SB-328437) was measured in both in vitro and in vivo systems. We found that expression of CCR3 in NCI-H292 and A549 cells were increased by 23% and 16%, respectively, 24 h after the challenge with LPS. LPS increased the expression of CCR3 in NCI-H292 and A549 cells in a time-dependent manner, which was inhibited significantly by SB-328437. SB-328437 also diminished neutrophil recruitment in alveolar airspaces and improved LPS-induced ALI and production of IL-8 in bronchoalveolar lavage fluid. These results suggest that pulmonary epithelial CCR3 be involved in progression of LPS-induced lung inflammation by mediating release of IL-8. CCR3 in pulmonary epithelia may be an attractive target for development of therapies for ALI.

  13. Propofol pretreatment attenuates LPS-induced granulocyte-macrophage colony-stimulating factor production in cultured hepatocytes by suppressing MAPK/ERK activity and NF-{kappa}B translocation

    SciTech Connect

    Jawan, Bruno; Kao, Y.-H.; Goto, Shigeru; Pan, M.-C.; Lin, Y.-C.; Hsu, L.-W.; Nakano, Toshiaki; Lai, C.-Y.; Sun, C.-K.; Cheng, Y.-F.; Tai, M.-H.

    2008-06-15

    Propofol (PPF), a widely used intravenous anesthetic for induction and maintenance of anesthesia during surgeries, was found to possess suppressive effect on host immunity. This study aimed at investigating whether PPF plays a modulatory role in the lipopolysaccharide (LPS)-induced inflammatory cytokine expression in a cell line of rat hepatocytes. Morphological observation and viability assay showed that PPF exhibits no cytotoxicity at concentrations up to 300 {mu}M after 48 h incubation. Pretreatment with 100 {mu}M PPF for 24 h prior to LPS stimulation was performed to investigate the modulatory effect on LPS-induced inflammatory gene production. The results of semi-quantitative RT-PCR demonstrated that PPF pretreatment significantly suppressed the LPS-induced toll-like receptor (TLR)-4, CD14, tumor necrosis factor (TNF)-{alpha}, and granulocyte-macrophage colony-stimulating factor (GM-CSF) gene expression. Western blotting analysis showed that PPF pretreatment potentiated the LPS-induced TLR-4 downregulation. Flow cytometrical analysis revealed that PPF pretreatment showed no modulatory effect on the LPS-upregulated CD14 expression on hepatocytes. In addition, PPF pretreatment attenuated the phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and I{kappa}B{alpha}, as well as the nuclear translocation of NF-{kappa}B primed by LPS. Moreover, addition of PD98059, a MAPK kinase inhibitor, significantly suppressed the LPS-induced NF-{kappa}B nuclear translocation and GM-CSF production, suggesting that the PPF-attenuated GM-CSF production in hepatocytes may be attributed to its suppressive effect on MAPK/ERK signaling pathway. In conclusion, PPF as an anesthetic may clinically benefit those patients who are vulnerable to sepsis by alleviating sepsis-related inflammatory response in livers.

  14. Control of pro-inflammatory cytokine release from human monocytes with the use of an interleukin-10 monoclonal antibody.

    PubMed

    Patel, Hardik; Davidson, Dennis

    2014-01-01

    The monocytes (MONOs) can be considered as "double-edge swords"; they have both important pro-inflammatory and anti-inflammatory functions manifested in part by cytokine production and release. Although MONOs are circulating cells, they are the major precursors of a variety of tissue-specific immune cells such as the alveolar macrophage, dendritic cells, microglial cells, and Kupffer cells. Unlike the polymorphonuclear leukocyte, which produces no or very little interleukin-10 (IL-10), the monocyte can produce this potent anti-inflammatory cytokine to control inflammation. IL-10, on an equimolar basis, is a more potent inhibitor of pro-inflammatory cytokines produced by monocytes than many anti-inflammatory glucocorticoids which are used clinically. This chapter describes how to isolate monocytes from human blood and the use of IL-10 monoclonal antibody to determine the effect and timing of endogenous IL-10 release on the production and release of pro-inflammatory cytokines.

  15. 11β-Hydroxysteroid dehydrogenase 1 contributes to the pro-inflammatory response of keratinocytes

    SciTech Connect

    Itoi, Saori; Terao, Mika Murota, Hiroyuki; Katayama, Ichiro

    2013-10-18

    Highlights: •We investigate the role of 11β-HSD1 in skin inflammation. •Various stimuli increase expression of 11β-HSD1 in keratinocytes. •11β-HSD1 knockdown by siRNA decreases cortisol levels in media. •11β-HSD1 knockdown abrogates the response to pro-inflammatory cytokines. •Low-dose versus high-dose cortisol has opposing effects on keratinocyte inflammation. -- Abstract: The endogenous glucocorticoid, cortisol, is released from the adrenal gland in response to various stress stimuli. Extra-adrenal cortisol production has recently been reported to occur in various tissues. Skin is known to synthesize cortisol through a de novo pathway and through an activating enzyme. The enzyme that catalyzes the intracellular conversion of hormonally-inactive cortisone into active cortisol is 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1). We recently reported that 11β-HSD1 is expressed in normal human epidermal keratinocytes (NHEKs) and negatively regulates proliferation of NHEKs. In this study, we investigated the role of 11β-HSD1 in skin inflammation. Expression of 11β-HSD1 was induced by UV-B irradiation and in response to the pro-inflammatory cytokines, IL-1β and TNFα. Increased cortisol concentrations in culture media also increased in response to these stimuli. To investigate the function of increased 11β-HSD1 in response to pro-inflammatory cytokines, we knocked down 11β-HSD1 by transfecting siRNA. Production of IL-6 and IL-8 in response to IL-1β or TNFα stimulation was attenuated in NHEKs transfected with si11β-HSD1 compared with control cells. In addition, IL-1β-induced IL-6 production was enhanced in cultures containing 1 × 10{sup −13} M cortisol, whereas 1 × 10{sup −5} M cortisol attenuated production of IL-6. Thus, cortisol showed immunostimulatory and immunosuppressive activities depending on its concentration. Our results indicate that 11β-HSD1 expression is increased by various stimuli. Thus, regulation of cytosolic cortisol

  16. PPARγ ameliorated LPS induced inflammation of HEK cell line expressing both human Toll-like receptor 4 (TLR4) and MD2.

    PubMed

    Darehgazani, Reyhaneh; Peymani, Maryam; Hashemi, Motahare-Sadat; Omrani, Mir Davood; Movafagh, Abolfazl; Ghaedi, Kamran; Nasr-Esfahani, Mohammad Hossein

    2016-08-01

    TLR4 is transmembrane pattern-recognition receptor that initiates signals in response to diverse pathogen-associated molecular patterns especially LPS. Recently, there have been an increasing number of studies about the role of TLRs in the pathogenesis of several disorders as well as the therapeutic potential of TLR intervention in such diseases. Peroxisome proliferator-activated receptor-gamma (PPARγ) is a ligand-activated transcription factor with numerous biological effects. PPARγ has been shown to exert a potential anti-inflammatory effect through suppression of TLR4-mediated inflammation. Therefore, PPARγ agonists may have a potential to combat inflammatory conditions in pathologic states. The current study aims to show the decrease of inflammation by overexpression of PPARγ in a cell reporter model. To reach this goal, recombinant pBudCE4.1 (+) containing encoding sequences of human TLR4 and MD2 was constructed and used to transfect HEK cells. Subsequently, inflammation was induced by LPS treatment as control group. In the treatment group, overexpression of PPARγ prior to inflammation was performed and the expression of inflammatory markers was assessed in this condition. The expression of inflammatory markers (TNFα and iNOS) was defined by quantitative real time PCR and the amount of phosphorylated NF-κB was measured by western blot. Data indicated expression of TNFα and iNOS increased in LPS induced inflammation of stably transformed HEK cells with MD2 and TLR4. In this cell reporter model overexpression of PPARγ dramatically prevented LPS-induced inflammation through the blocking of TLR4/NF-κB signaling. PPARγ was shown to negatively regulate TLR4 activity and therefore exerts its anti-inflammatory action against LPS induced inflammation.

  17. Pro-inflammatory cytokines can act as intracellular modulators of commensal bacterial virulence

    PubMed Central

    Mahdavi, Jafar; Royer, Pierre-Joseph; Sjölinder, Hong S.; Azimi, Sheyda; Self, Tim; Stoof, Jeroen; Wheldon, Lee M.; Brännström, Kristoffer; Wilson, Raymond; Moreton, Joanna; Moir, James W. B.; Sihlbom, Carina; Borén, Thomas; Jonsson, Ann-Beth; Soultanas, Panos; Ala'Aldeen, Dlawer A. A.

    2013-01-01

    Interactions between commensal pathogens and hosts are critical for disease development but the underlying mechanisms for switching between the commensal and virulent states are unknown. We show that the human pathogen Neisseria meningitidis, the leading cause of pyogenic meningitis, can modulate gene expression via uptake of host pro-inflammatory cytokines leading to increased virulence. This uptake is mediated by type IV pili (Tfp) and reliant on the PilT ATPase activity. Two Tfp subunits, PilE and PilQ, are identified as the ligands for TNF-α and IL-8 in a glycan-dependent manner, and their deletion results in decreased virulence and increased survival in a mouse model. We propose a novel mechanism by which pathogens use the twitching motility mode of the Tfp machinery for sensing and importing host elicitors, aligning with the inflamed environment and switching to the virulent state. PMID:24107297

  18. Microencapsulated drug delivery: a new approach to pro-inflammatory cytokine inhibition

    PubMed Central

    Oettinger, Carl W.; D'Souza, Martin J.

    2012-01-01

    Context: This article reviews the use of albumin microcapsules 3–4 mm in size containing cytokine inhibiting drugs which include neutralizing antibodies to TNF and IL1, CNI-1493, antisense oligonucleotides to TNF and NF-kappaB, and the antioxidant catalase. Objective: Describe the effects, cellular uptake and distribution of microencapsulated drugs and the effect in both a peritonitis model of infection and a model of adjuvant-induced arthritis. Methods: The studies performed by our group are reviewed, the only such studies available. Results: Microencapsulation of these compounds produced high intracellular drug concentrations due to rapid uptake by phagocytic cells, including endothelial cells, without toxicity. All compounds produced excellent inhibition of TNF and IL1 resulting in improved animal survival in a peritonitis model of septic shock and inflammation in an arthritis model. Conclusion: Albumin microencapsulated pro-inflammatory cytokine inhibiting compounds are superior to equivalent concentration of these compounds administered in solution form. PMID:22348221

  19. Phototherapy-treated apoptotic tumor cells induce pro-inflammatory cytokines production in macrophage

    NASA Astrophysics Data System (ADS)

    Lu, Cuixia; Wei, Yanchun; Xing, Da

    2014-09-01

    Our previous studies have demonstrated that as a mitochondria-targeting cancer phototherapy, high fluence low-power laser irradiation (HF-LPLI) induces mitochondrial superoxide anion burst, resulting in oxidative damage to tumor cells. In this study, we further explored the immunological effects of HF-LPLI-induced apoptotic tumor cells. When macrophages were co-incubated with apoptotic cells induced by HF-LPLI, we observed the increased levels of TNF-α secretion and NO production in macrophages. Further experiments showed that NF-κB was activated in macrophages after co-incubation with HF-LPLI-induced apoptotic cells, and inhibition of NF-κB activity by pyrrolidinedithiocarbamic acid (PDTC) reduced the elevated levels of TNF-α secretion and NO production. These data indicate that HF-LPLI-induced apoptotic tumor cells induce the secretion of pro-inflammatory cytokines in macrophages, which may be helpful for better understanding the biological effects of cancer phototherapy.

  20. Regional Brain Shrinkage over Two Years: Individual Differences and Effects of Pro-Inflammatory Genetic Polymorphisms

    PubMed Central

    Persson, N.; Ghisletta, P.; Dahle, C.L.; Bender, A.R.; Yang, Y.; Yuan, P.; Daugherty, A.M.; Raz, N.

    2014-01-01

    We examined regional changes in brain volume in healthy adults (N = 167, age 19-79 years at baseline; N = 90 at follow-up) over approximately two years. With latent change score models, we evaluated mean change and individual differences in rates of change in 10 anatomically-defined and manually-traced regions of interest (ROIs): lateral prefrontal cortex (LPFC), orbital frontal cortex (OF), prefrontal white matter (PFw), hippocampus (HC), parahippocampal gyrus (PhG), caudate nucleus (Cd), putamen (Pt), insula (In), cerebellar hemispheres (CbH), and primary visual cortex (VC). Significant mean shrinkage was observed in the HC, CbH, In, OF, and the PhG, and individual differences in change were noted in all regions, except the OF. Pro-inflammatory genetic variants mediated shrinkage in PhG and CbH. Carriers of two T alleles of interleukin-1β (IL-1βC-511T, rs16944) and a T allele of methylenetetrahydrofolate reductase (MTHFRC677T, rs1801133) polymorphisms showed increased PhG shrinkage. No effects of a pro-inflammatory polymorphism for C-reactive protein (CRP-286C>A>T, rs3091244) or apolipoprotein (APOE) ε4 allele were noted. These results replicate the pattern of brain shrinkage observed in previous studies, with a notable exception of the LPFC thus casting doubt on the unique importance of prefrontal cortex in aging. Larger baseline volumes of CbH and In were associated with increased shrinkage, in conflict with the brain reserve hypothesis. Contrary to previous reports, we observed no significant linear effects of age and hypertension on regional brain shrinkage. Our findings warrant further investigation of the effects of neuroinflammation on structural brain change throughout the lifespan. PMID:25264227

  1. Regional brain shrinkage over two years: individual differences and effects of pro-inflammatory genetic polymorphisms.

    PubMed

    Persson, N; Ghisletta, P; Dahle, C L; Bender, A R; Yang, Y; Yuan, P; Daugherty, A M; Raz, N

    2014-12-01

    We examined regional changes in brain volume in healthy adults (N=167, age 19-79years at baseline; N=90 at follow-up) over approximately two years. With latent change score models, we evaluated mean change and individual differences in rates of change in 10 anatomically-defined and manually-traced regions of interest (ROIs): lateral prefrontal cortex (LPFC), orbital frontal cortex (OF), prefrontal white matter (PFw), hippocampus (Hc), parahippocampal gyrus (PhG), caudate nucleus (Cd), putamen (Pt), insula (In), cerebellar hemispheres (CbH), and primary visual cortex (VC). Significant mean shrinkage was observed in the Hc, CbH, In, OF, and PhG, and individual differences in change were noted in all regions, except the OF. Pro-inflammatory genetic variants modified shrinkage in PhG and CbH. Carriers of two T alleles of interleukin-1β (IL-1β C-511T, rs16944) and a T allele of methylenetetrahydrofolate reductase (MTHFR C677T, rs1801133) polymorphisms showed increased PhG shrinkage. No effects of a pro-inflammatory polymorphism for C-reactive protein (CRP-286C>A>T, rs3091244) or apolipoprotein (APOE) ε4 allele were noted. These results replicate the pattern of brain shrinkage observed in previous studies, with a notable exception of the LPFC, thus casting doubt on the unique importance of prefrontal cortex in aging. Larger baseline volumes of CbH and In were associated with increased shrinkage, in conflict with the brain reserve hypothesis. Contrary to previous reports, we observed no significant linear effects of age and hypertension on regional brain shrinkage. Our findings warrant further investigation of the effects of neuroinflammation on structural brain change throughout the lifespan.

  2. Pro-Inflammatory Effects of Cook Stove Emissions on Human Bronchial Epithelial Cells

    PubMed Central

    Hawley, Brie; Volckens, John

    2012-01-01

    Approximately half the world’s population uses biomass fuel for indoor cooking and heating. This form of combustion typically occurs in open fires or primitive stoves. Human exposure to emissions from indoor biomass combustion is a global health concern, causing an estimated 1.5 million premature deaths each year. Many ‘improved’ stoves have been developed to address this concern; however, studies that examine exposure-response with cleaner-burning, more efficient stoves are few. The objective of this research was to evaluate the effects of traditional and cleaner burning stove emissions on an established model of the bronchial epithelium. We exposed well-differentiated, normal human bronchial epithelial (NHBE) cells to emissions from a single biomass combustion event using either a traditional three-stone fire or one of two energy-efficient stoves. Air-liquid interface cultures were exposed using a novel, aerosol-to-cell deposition system. Cellular expression of a panel of three pro-inflammatory markers was evaluated at 1 and 24 hours following exposure. Cells exposed to emissions from the cleaner burning stoves generated significantly fewer amounts of pro-inflammatory markers than cells exposed to emissions from a traditional, three stone fire. Particulate matter emissions from each cookstove were substantially different, with the three-stone fire producing the largest concentrations of particles (by both number and mass). This study supports emerging evidence that more efficient cookstoves have the potential to reduce respiratory inflammation in settings where solid fuel combustion is used to meet basic domestic needs. PMID:22672519

  3. Dual effects of noradrenaline on astroglial production of chemokines and pro-inflammatory mediators

    PubMed Central

    2013-01-01

    Background Noradrenaline (NA) is known to limit neuroinflammation. However, the previously described induction by NA of a chemokine involved in the progression of immune/inflammatory processes, such as chemokine (C-C motif) ligand 2 (CCL2)/monocyte chemotactic protein-1 (MCP-1), apparently contradicts NA anti-inflammatory actions. In the current study we analyzed NA regulation of astroglial chemokine (C-X3-C motif) ligand 1 (CX3CL1), also known as fractalkine, another chemokine to which both neuroprotective and neurodegenerative actions have been attributed. In addition, NA effects on other chemokines and pro-inflammatory mediators were also analyzed. Methods Primary astrocyte-enriched cultures were obtained from neonatal Wistar rats. These cells were incubated for different time durations with combinations of NA and lipopolysaccharide (LPS). The expression and synthesis of different proteins was measured by RT-PCR and enzyme-linked immunosorbent assay (ELISA) or enzyme immunoassays. Data were analyzed by one-way analysis of variance (ANOVA), followed by Newman-Keuls multiple comparison tests. Results The data presented here show that in control conditions, NA induces the production of CX3CL1 in rat cultured astrocytes, but in the presence of an inflammatory stimulus, such as LPS, NA has the opposite effect inhibiting CX3CL1 production. This inversion of NA effect was also observed for MCP-1. Based on the observation of this dual action, NA regulation of different chemokines and pro-inflammatory cytokines was also analyzed, observing that in most cases NA exerts an inhibitory effect in the presence of LPS. One characteristic exception was the induction of cyclooxygenase-2 (COX-2), where a summative effect was detected for both LPS and NA. Conclusion These data suggest that NA effects on astrocytes can adapt to the presence of an inflammatory agent reducing the production of certain cytokines, while in basal conditions NA may have the opposite effect and help to

  4. Pro-inflammatory responses of human bronchial epithelial cells to acute nitrogen dioxide exposure.

    PubMed

    Ayyagari, Vijayalakshmi N; Januszkiewicz, Adolph; Nath, Jayasree

    2004-04-15

    Nitrogen dioxide (NO2) is an environmental oxidant, known to be associated with lung epithelial injury. In the present study, cellular pro-inflammatory responses following exposure to a brief high concentration of NO2 (45 ppm) were assessed, using normal human bronchial epithelial (NHBE) cells as an in vitro model of inhalation injury. Generation and release of pro-inflammatory mediators such as nitric oxide (NO), IL-8, TNF-alpha, IFN-gamma and IL-1beta were assessed at different time intervals following NO2 exposure. Effects of a pre-existing inflammatory condition was tested by treating the NHBE cells with different inflammatory cytokines such as IFN-gamma, IL-8, TNF-alpha, IL-1beta, either alone or in combination, before exposing them to NO2. Immunofluorescence studies confirmed oxidant-induced formation of 3-nitrotyrosine in the NO2-exposed cells. A marked increase in the levels of nitrite (as an index of NO) and IL-8 were observed in the NO2-exposed cells, which were further enhanced in the presence of the cytokines. Effects of various NO inhibitors combined, with immunofluorescence and Western blotting data, indicated partial contribution of the nitric oxide synthases (NOSs) toward the observed increase in nitrite levels. Furthermore, a significant increase in IL-1beta and TNF-alpha generation was observed in the NO2-exposed cells. Although NO2 exposure alone did induce slight cytotoxicity (<12%), but presence of inflammatory cytokines such as TNF-alpha and IFN-gamma resulted in an increased cell death (28-36%). These results suggest a synergistic role of inflammatory mediators, particularly of NO and IL-8, in NO2-mediated early cellular changes. Our results also demonstrate an increased sensitivity of the cytokine-treated NHBE cells toward NO2, which may have significant functional implications in vivo.

  5. Purification of a lectin from Arisaema erubescens (Wall.) Schott and its pro-inflammatory effects.

    PubMed

    Liu, Xian Qiong; Wu, Hao; Yu, Hong Li; Zhao, Teng Fei; Pan, Yao Zong; Shi, Run Jun

    2011-11-14

    The monocot lectin from the tubers of Arisaema erubescens (Wall.) Schott has been purified by consecutive hydrophobic chromatography and ion exchange chromatography methods. The molecular weight of this A. erubescens lectin (AEL) was determined to be about 12 kDa by high performance liquid chromatography (HPLC) and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) methods. AEL could agglutinate rabbit erythrocytes. The haemagglutination activity of AEL was only inhibited by asialofetuin, while monosaccharide did not react. Rat paw edema and neutrophil migration models were used to investigate the pro-inflammatory activity of AEL. AEL (100 and 200 μg/paw) could induce significant rat paw edema. In addition, AEL (100, 200 and 300 μg/mL/cavity) could induce significant and dose-dependent neutrophil migration in the rat peritoneal cavities. Besides, AEL at doses ranging from 100 to 300 μg/mL/cavity could significantly increase the concentration of nitric oxide (NO), prostaglandin E(2 )(PGE(2)) and tumor necrosis factor alpha (TNF-α) in peritoneal fluid. As compared with control animals, 75% depletion in the number of resident cells following peritoneal lavage did not reduce the AEL-induced neutrophil migration. However, pre-treatment with 3% thioglycollate which increased the peritoneal macrophage population by 201%, enhanced the neutrophil migration induced by AEL (200 μg/mL/cavity) (p < 0.05). Reduction of peritoneal mast cell population by chronic treatment of rat peritoneal cavities with compound 48/80 (N-methyl-p-methoxyphenethylamine with formaldehyde) did not modify AEL-induced neutrophil migration. The results provided the basis for identifying the toxic components of A. erubescens and AEL could be a new useful tool for pro-inflammatory research.

  6. Pro-inflammatory exoprotein characterization of toxic shock syndrome Staphylococcus aureus†

    PubMed Central

    Lin, Ying-Chi; Anderson, Michele J.; Kohler, Petra L.; Strandberg, Kristi L.; Olson, Michael E.; Horswill, Alexander R.; Schlievert, Patrick M.; Peterson, Marnie L.

    2011-01-01

    Pulsed-field gel electrophoresis (PFGE) clonal type USA200 is the most widely disseminated Staphylococcus aureus colonizer of the nose and is a major cause of toxic shock syndrome (TSS). Exoproteins derived from these organisms have been suggested to contribute to their colonization and causation of human diseases, but have not been well-characterized. Two representative S. aureus USA200 isolates, MNPE (α-toxin positive) and CDC587 (α-toxin mutant), isolated from pulmonary post-influenza TSS and menstrual vaginal TSS, respectively, were evaluated. Biochemical, immunobiological and cell-based assays, including mass spectrometry, were used to identify key exoproteins derived from the strains that are responsible for pro-inflammatory and cytotoxic activity on human vaginal epithelial cells. Exoproteins associated with virulence were produced by both strains, and cytolysins (α-toxin and γ-toxin), superantigens, and proteases were identified as the major exoproteins, which caused epithelial cell inflammation and cytotoxicity. Exoprotein fractions from MNPE were more pro-inflammatory and cytotoxic than those from CDC587 due to high concentrations of α-toxin. CDC587 produced a small amount of α-toxin, despite the presence of a stop codon (TAG) at codon 113. Additional exotoxin identification studies of USA200 strain [S. aureus MN8 (α-toxin mutant)] confirmed that MN8 also produced low levels of α-toxin despite the same stop codon. The differences observed in virulence factor profiles of two USA200 strains provide insight into environmental factors that select for specific virulence factors. Cytolysins, superantigens, and proteases were identified as potential targets, where toxin neutralization may prevent or diminish epithelial damage associated with S. aureus. PMID:21749039

  7. Cytosolic dsDNA triggers apoptosis and pro-inflammatory cytokine production in normal human melanocytes.

    PubMed

    Wang, Suiquan; Liu, Dongyin; Ning, Weixuan; Xu, Aie

    2015-04-01

    Considerable evidence implicates that viral infection might be a participant factor in the pathogenesis of vitiligo. However, it is still unclear how viral infection leads to the melanocyte destruction. To elucidate the effects of viral dsDNA on the viability and cytokine synthesis of normal human melanocytes and to explore the underlying mechanisms, primary cultured normal human melanocytes were transfected with poly(dA:dT). The results demonstrated that poly(dA:dT) triggered apoptosis instead of pyroptosis in melanocytes. Knocking down AIM2 or RIG-I by RNA interference partially reduced the poly(dA:dT)-induced LDH release, suggesting the involvement of both nucleic acid sensors in the process of melanocyte death. Poly(dA:dT) induced the expression of pro-inflammatory cytokine genes including IFN-β, TNF-α, IL-6 and IL-8 as well, whereas the pro-inflammatory cytokine production was suppressed by RIG-I siRNA, but not by AIM2 siRNA. Poly(dA:dT) treatment increased the phosphorylation of p38 and JNK and NFκB. Accordingly, NFκB inhibitor Bay 11-7082 and JNK inhibitor SP600125 blocked the induction of the cytokine genes except IFN-β. The production of IL6 and IL8 was also suppressed by p38 inhibitor SB203580. On the contrary, the Poly(dA:dT)-induced melanocyte death was only decreased by SP600125. This study provides the possible mechanism of melanocyte destruction and immuno-stimulation in vitiligo by innate immune response following viral infection.

  8. TRPV1 promotes repetitive febrile seizures by pro-inflammatory cytokines in immature brain.

    PubMed

    Huang, Wen-Xian; Yu, Fang; Sanchez, Russell M; Liu, Yu-Qiang; Min, Jia-Wei; Hu, Jiang-Jian; Bsoul, Najeeb Bassam; Han, Song; Yin, Jun; Liu, Wan-Hong; He, Xiao-Hua; Peng, Bi-Wen

    2015-08-01

    Febrile seizure (FS) is the most common seizure disorder in children, and children with FS are regarded as a high risk for the eventual development of epilepsy. Brain inflammation may be implicated in the mechanism of FS. Transient receptor potential vanilloid 1 (TRPV1) is believed to act as a monitor and regulator of body temperature. The role of inflammation in synaptic plasticity mediation indicates that TRPV1 is relevant to several nervous system diseases, such as epilepsy. Here, we report a critical role for TRPV1 in a febrile seizure mouse model and reveal increased levels of pro-inflammatory factors in the immature brain. Animals were subjected to hyperthermia for 30 min, which generates seizures lasting approximately 20 min, and then were used for experiments. To invoke frequently repetitive febrile seizures, mice are exposed to hyperthermia for three times daily at an interval of 4h between every time induced seizure, and a total of 4 days to induce. Behavioral testing for febrile seizures revealed that a TRPV1 knock-out mouse model demonstrated a prolonged onset latency and a shortened duration and seizure grade of febrile seizure when compared with wild type (WT) mice. The expression levels of both TRPV1 mRNA and protein increased after a hyperthermia-induced febrile seizure in WT mice. Notably, TRPV1 activation resulted in a significant elevation in the expression of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α and HMGB1) in the hippocampus and cortex. These data indicate that the reduction of TRPV1 expression parallels a decreased susceptibility to febrile seizures. Thus, preventative strategies might be developed for use during febrile seizures.

  9. Euscaphic acid isolated from roots of Rosa rugosa inhibits LPS-induced inflammatory responses via TLR4-mediated NF-κB inactivation in RAW 264.7 macrophages.

    PubMed

    Kim, In-Tae; Ryu, Suran; Shin, Ji-Sun; Choi, Jung-Hye; Park, Hee-Juhn; Lee, Kyung-Tae

    2012-06-01

    As an attempt to search for bioactive natural products exerting anti-inflammatory activity, we have evaluated the anti-inflammatory effects of euscaphic acid (19α-hydroxyursane-type triterpenoids, EA) isolated from roots of Rosa rugosa and its underlying molecular mechanisms in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. EA concentration-dependently reduced the production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) induced by LPS in RAW 264.7 macgophages. Consistent with these data, expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and iNOS, COX-2, TNF-α, and IL-1β mRNA were inhibited by EA in a concentration-dependent manner. In addition, EA attenuated LPS-induced DNA binding and transcriptional activity of nuclear factor-kappa B (NF-κB), which was accompanied by a parallel reduction of degradation and phosphorylation of inhibitory kappa Bα (IκBα) and consequently by decreased nuclear translocation of p65 subunit of NF-κB. Pretreatment with EA significantly inhibited the LPS-induced phosphorylation of IκB kinase β (IKKβ), p38, and JNK, whereas the phosphorylation of ERK1/2 was unaffected. Furthermore, EA interfered with the LPS-induced clustering of TNF receptor-associated factor 6 (TRAF6) with interleukin receptor associated kinase 1 (IRAK1) and transforming growth factor-β-activated kinase 1 (TAK1). Taken together, these results suggest that EA inhibits LPS-induced inflammatory responses by interference with the clustering of TRAF6 with IRAK1 and TAK1, resulting in blocking the activation of IKK and MAPKs signal transduction to downregulate NF-κB activations.

  10. Globular Adiponectin Causes Tolerance to LPS-Induced TNF-α Expression via Autophagy Induction in RAW 264.7 Macrophages: Involvement of SIRT1/FoxO3A Axis.

    PubMed

    Pun, Nirmala Tilija; Subedi, Amit; Kim, Mi Jin; Park, Pil-Hoon

    2015-01-01

    Adiponectin, an adipokine predominantly produced from adipose tissue, exhibited potent anti-inflammatory properties. In particular, it inhibits production of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), in macrophages. Autophagy, an intracellular self-digestion process, has been recently shown to regulate inflammatory responses. In the present study, we investigated the role of autophagy induction in the suppression of Lipopolysaccharide (LPS) -induced TNF-α expression by globular adiponectin (gAcrp) and its potential mechanisms. Herein, we found that gAcrp treatment increased expression of genes related with autophagy, including Atg5 and microtubule-associated protein light chain (LC3B), induced autophagosome formation and autophagy flux in RAW 264.7 macrophages. Similar results were observed in primary macrophages isolated peritoneum of mice. Interestingly, inhibition of autophagy by pretreatment with Bafilomycin A1 or knocking down of LC3B gene restored suppression of TNF-α expression, tumor necrosis factor receptor- associated factor 6 (TRAF6) expression and p38MAPK phosphorylation by gAcrp, implying a critical role of autophagy induction in the development of tolerance to LPS-induced TNF-α expression by gAcrp. We also found that knocking-down of FoxO3A, a forkhead box O member of transcription factor, blocked gAcrp-induced expression of LC3II and Atg5. Moreover, gene silencing of Silent information regulator 1 (SIRT1) blocked both gAcrp-induced nuclear translocation of FoxO3A and LC3II expression. Finally, pretreatment with ROS inhibitors, prevented gAcrp-induced SIRT1 expression and further generated inhibitory effects on gAcrp-induced autophagy, indicating a role of ROS production in gAcrp-induced SIRT1 expression and subsequent autophagy induction. Taken together, these findings indicate that globular adiponectin suppresses LPS-induced TNF-α expression, at least in part, via autophagy activation. Furthermore, SIRT1-FoxO3A

  11. Functional Toll-like receptor 4 expressed in lactotrophs mediates LPS-induced proliferation in experimental pituitary hyperplasia

    SciTech Connect

    Sabatino, María Eugenia; Sosa, Liliana del Valle; Petiti, Juan Pablo; Mukdsi, Jorge Humberto; Mascanfroni, Iván Darío; Pellizas, Claudia Gabriela; Gutiérrez, Silvina; Torres, Alicia Inés; De Paul, Ana Lucía

    2013-11-15

    Toll like receptor 4 (TLR4) has been characterized for its ability to recognize bacterial endotoxin lipopolysaccharide (LPS). Considering that infections or inflammatory processes might contribute to the progression of pituitary tumors, we analyzed the TLR4 functional role by evaluating the LPS effect on lactotroph proliferation in primary cultures from experimental pituitary tumors, and examined the involvement of PI3K-Akt and NF-κB activation in this effect. In addition, the role of 17β-estradiol as a possible modulator of LPS-induced PRL cell proliferation was further investigated. In estrogen-induced hyperplasic pituitaries, LPS triggered lactotroph cell proliferation. However, endotoxin failed to increase the number of lactotrophs taking up BrdU in normal pituitaries. Moreover, incubation with anti-TLR4 antibody significantly reduced LPS-induced lactotroph proliferation, suggesting a functional role of this receptor. As a sign of TLR4 activation, an LPS challenge increased IL-6 release in normal and tumoral cells. By flow cytometry, TLR4 baseline expression was revealed at the plasma membrane of tumoral lactotrophs, without changes noted in the percentage of double PRL/TLR4 positive cells after LPS stimulus. Increases in TLR4 intracellular expression were detected as well as rises in CD14, p-Akt and NF-κB after an LPS challenge, as assessed by western blotting. The TLR4/PRL and PRL/NF-κB co-localization was also corroborated by immunofluorescence and the involvement of PI3K/Akt signaling in lactotroph proliferation and IL-6 release was revealed through the PI3K inhibitor Ly-294002. In addition, 17β-estradiol attenuated the LPS-evoked increase in tumoral lactotroph proliferation and IL-6 release. Collectively these results demonstrate the presence of functional TLR4 in lactotrophs from estrogen-induced hyperplasic pituitaries, which responded to the proliferative stimulation and IL-6 release induced by LPS through TLR4/CD14, with a contribution of the PI3K

  12. Endothelial cell tetrahydrobiopterin deficiency attenuates LPS-induced vascular dysfunction and hypotension☆

    PubMed Central

    Chuaiphichai, Surawee; Starr, Anna; Nandi, Manasi; Channon, Keith M.; McNeill, Eileen

    2016-01-01

    Overproduction of nitric oxide (NO) is thought to be a key mediator of the vascular dysfunction and severe hypotension in patients with endotoxaemia and septic shock. The contribution of NO produced directly in the vasculature by endothelial cells to the hypotension seen in these conditions, vs. the broader systemic increase in NO, is unclear. To determine the specific role of endothelium derived NO in lipopolysaccharide (LPS)-induced vascular dysfunction we administered LPS to mice deficient in endothelial cell tetrahydrobiopterin (BH4), the essential co-factor for NO production by NOS enzymes. Mice deficient in endothelial BH4 production, through loss of the essential biosynthesis enzyme Gch1 (Gch1fl/flTie2cre mice) received a 24 hour challenge with LPS or saline control. In vivo LPS treatment increased vascular GTP cyclohydrolase and BH4 levels in aortas, lungs and hearts, but this increase was significantly attenuated in Gch1fl/flTie2cre mice, which were also partially protected from the LPS-induced hypotension. In isometric tension studies, in vivo LPS treatment reduced the vasoconstriction response and impaired endothelium-dependent and independent vasodilatations in mesenteric arteries from wild-type mice, but not in Gch1fl/flTie2cre mesenteric arteries. Ex vivo LPS treatment decreased vasoconstriction response to phenylephrine in aortic rings from wild-type and not in Gch1fl/flTie2cre mice, even in the context of significant eNOS and iNOS upregulation. These data provide direct evidence that endothelial cell NO has a significant contribution to LPS-induced vascular dysfunction and hypotension and may provide a novel therapeutic target for the treatment of systemic inflammation and patients with septic shock. PMID:26276526

  13. Endothelial cell tetrahydrobiopterin deficiency attenuates LPS-induced vascular dysfunction and hypotension.

    PubMed

    Chuaiphichai, Surawee; Starr, Anna; Nandi, Manasi; Channon, Keith M; McNeill, Eileen

    2016-02-01

    Overproduction of nitric oxide (NO) is thought to be a key mediator of the vascular dysfunction and severe hypotension in patients with endotoxaemia and septic shock. The contribution of NO produced directly in the vasculature by endothelial cells to the hypotension seen in these conditions, vs. the broader systemic increase in NO, is unclear. To determine the specific role of endothelium derived NO in lipopolysaccharide (LPS)-induced vascular dysfunction we administered LPS to mice deficient in endothelial cell tetrahydrobiopterin (BH4), the essential co-factor for NO production by NOS enzymes. Mice deficient in endothelial BH4 production, through loss of the essential biosynthesis enzyme Gch1 (Gch1(fl/fl)Tie2cre mice) received a 24hour challenge with LPS or saline control. In vivo LPS treatment increased vascular GTP cyclohydrolase and BH4 levels in aortas, lungs and hearts, but this increase was significantly attenuated in Gch1(fl/fl)Tie2cre mice, which were also partially protected from the LPS-induced hypotension. In isometric tension studies, in vivo LPS treatment reduced the vasoconstriction response and impaired endothelium-dependent and independent vasodilatations in mesenteric arteries from wild-type mice, but not in Gch1(fl/fl)Tie2cre mesenteric arteries. Ex vivo LPS treatment decreased vasoconstriction response to phenylephrine in aortic rings from wild-type and not in Gch1(fl/fl)Tie2cre mice, even in the context of significant eNOS and iNOS upregulation. These data provide direct evidence that endothelial cell NO has a significant contribution to LPS-induced vascular dysfunction and hypotension and may provide a novel therapeutic target for the treatment of systemic inflammation and patients with septic shock.

  14. Differential Pro-Inflammatory Responses of Astrocytes and Microglia Involve STAT3 Activation in Response to 1800 MHz Radiofrequency Fields

    PubMed Central

    Lu, Yonghui; He, Mindi; Zhang, Yang; Xu, Shangcheng; Zhang, Lei; He, Yue; Chen, Chunhai; Liu, Chuan; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2014-01-01

    Microglia and astrocytes play important role in maintaining the homeostasis of central nervous system (CNS). Several CNS impacts have been postulated to be associated with radiofrequency (RF) electromagnetic fields exposure. Given the important role of inflammation in neural physiopathologic processes, we investigated the pro-inflammatory responses of microglia and astrocytes and the involved mechanism in response to RF fields. Microglial N9 and astroglial C8-D1A cells were exposed to 1800 MHz RF for different time with or without pretreatment with STAT3 inhibitor. Microglia and astrocytes were activated by RF exposure indicated by up-regulated CD11b and glial fibrillary acidic protein (GFAP). However, RF exposure induced differential pro-inflammatory responses in astrocytes and microglia, characterized by different expression and release profiles of IL-1β, TNF-α, IL-6, PGE2, nitric oxide (NO), inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). Moreover, the RF exposure activated STAT3 in microglia but not in astrocytes. Furthermore, the STAT3 inhibitor Stattic ameliorated the RF-induced release of pro-inflammatory cytokines in microglia but not in astrocytes. Our results demonstrated that RF exposure differentially induced pro-inflammatory responses in microglia and astrocytes, which involved differential activation of STAT3 in microglia and astrocytes. Our data provide novel insights into the potential mechanisms of the reported CNS impacts associated with mobile phone use and present STAT3 as a promising target to protect humans against increasing RF exposure. PMID:25275372

  15. Synergistic effect of pro-inflammatory TNFα and IL-17 in periostin mediated collagen deposition: Potential role in liver fibrosis

    PubMed Central

    Amara, Suneetha; Lopez, Karina; Banan, Babak; Brown, Sade-Kemi; Whalen, Margaret; Myles, Elbert; Ivy, Michael T; Johnson, Terrance; Schey, Kevin L; Tiriveedhi, Venkataswarup

    2014-01-01

    Background The pro-inflammatory cytokines, tumor necrosis factor (TNF)-α, and interleukin (IL)-17, have been implicated in the pathogenesis of liver fibrosis. In this study, we investigated the role of TNFα and IL-17 towards induction of profibrotic factor, periostin. Methods HepG2 cells were cultured and treated with inflammatory cytokines, TNFα and IL-17. Computational promoter sequence analysis of the periostin promoter was performed to define the putative binding sites for transcription factors. Transcription factors were analyzed by Western blot and Chromatin Immunoprecipitation. Periostin and transcription factor expression analysis was performed by RT-PCR, Western blot, and fluorescence microscopy. Type I collagen expression from fibroblast cultures was analyzed by Western blot and Sircol soluble collagen assay. Results Activation of HepG2 Cells with TNFα and IL-17 enhanced the expression of periostin (3.5 and 4.4 fold, respectively p<0.05) compared to untreated cells. However, combined treatment with both TNFα and IL-17 at similar concentration demonstrated a 13.3 fold increase in periostin (p<0.01), thus suggesting a synergistic role of these cytokines. Periostin promoter analysis and specific siRNA knock-down revealed that TNFα induces periostin through cJun, while IL-17 induced periostin via STAT-3 signaling mechanisms. Treatment of the supernatant from the cytokine activated HepG2 cells on fibroblast cultures induced enhanced expression of type I collagen (>9.1 fold, p<0.01), indicative of a direct fibrogenic effect of TNFα and IL-17. Conclusion TNFα and IL-17 induced fibrogenesis through cJun and STAT-3 mediated expression of profibrotic biomarker, periostin. Therefore, periostin might serve as a novel biomarker in early diagnosis of liver fibrosis. PMID:25467797

  16. Ketamine reduces the induced spinal p38 MAPK and pro-inflammatory cytokines in a neuropathic rats

    PubMed Central

    Kwon, So-Young; Yeom, Jae Hwa

    2014-01-01

    Background Neuropathic rats created by spinal nerve ligation are known to show higher levels of p38, c-Jun NH2-terminal kinase, and extracellular signal-regulated kinase p44/42 (ERK 1/2) of the mitogen-activated protein kinases (MAPKs). The authors of this study aimed to understand the effect of ketamine on p38 MAPK and inflammatory responses, as well as its effect on the development of neuropathic pain. Methods The neuropathic rats were prepared by Chung's method with Sprague-Dawley rats. The research was carried out on three groups, a sham-operated group, a neuropathic pain and normal saline (NP + NS) group, and a neuropathic pain and ketamine (NP + Keta) group. The normal saline or ketamine was infused into the neuropathic rats through a mini-osmotic pump implanted in the subcutaneous space. After a week, the quantities of phospho-p38, p38 MAPK and pro-inflammatory cytokines were measured and compared through western blots and reverse transcriptase-polymerase chain reaction. Results In comparison to the control group, the NP + NS group showed a significant increase of phospho-p38 and p38 MAPK, as well as of the proinflammatory cytokines, tumor necrosis factor α (TNFα), and intercellular adhesion molecule 1 (ICAM1). However, in the NP + Keta group, phospho-p38, p38 MAPK and TNFα and, ICAM1 were reduced in comparison to the NP + NS group. The paw withdrawal threshold test also showed the trend of recovery from the mechanical allodynia in the NP + Keta group. Conclusions In the development of neuropathic pain, p38 MAPK and inflammatory responses are significantly related, and the use of ketamine reduces p38 MAPK and proinflammatory cytokines. Thus, the adequate use of ketamine could be effective for the prevention and treatment of neuropathic pain following peripheral injury. PMID:24567814

  17. Saturated fatty acids activate TLR-mediated pro-inflammatory signaling pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toll-like receptor 4 (TLR4) and TLR2 were shown to be activated by saturated fatty acids (SFAs) but inhibited by docosahexaenoic acid (DHA). However, one report (ATVB 11:1944, 2009) suggested that SFA-induced TLR activation in cell culture systems is due to contaminants in BSA used for conjugating f...

  18. Do mechanical strain and TNF-α interact to amplify pro-inflammatory cytokine production in human annulus fibrosus cells?

    PubMed

    Likhitpanichkul, Morakot; Torre, Olivia M; Gruen, Jadry; Walter, Benjamin A; Hecht, Andrew C; Iatridis, James C

    2016-05-03

    During intervertebral disc (IVD) injury and degeneration, annulus fibrosus (AF) cells experience large mechanical strains in a pro-inflammatory milieu. We hypothesized that TNF-α, an initiator of IVD inflammation, modifies AF cell mechanobiology via cytoskeletal changes, and interacts with mechanical strain to enhance pro-inflammatory cytokine production. Human AF cells (N=5, Thompson grades 2-4) were stretched uniaxially on collagen-I coated chambers to 0%, 5% (physiological) or 15% (pathologic) strains at 0.5Hz for 24h under hypoxic conditions with or without TNF-α (10ng/mL). AF cells were treated with anti-TNF-α and anti-IL-6. ELISA assessed IL-1β, IL-6, and IL-8 production and immunocytochemistry measured F-actin, vinculin and α-tubulin in AF cells. TNF-α significantly increased AF cell pro-inflammatory cytokine production compared to basal conditions (IL-1β:2.0±1.4-84.0±77.3, IL-6:10.6±9.9-280.9±214.1, IL-8:23.9±26.0-5125.1±4170.8pg/ml for basal and TNF-α treatment, respectively) as expected, but mechanical strain did not. Pathologic strain in combination with TNF-α increased IL-1β, and IL-8 but not IL-6 production of AF cells. TNF-α treatment altered F-actin and α-tubulin in AF cells, suggestive of altered cytoskeletal stiffness. Anti-TNF-α (infliximab) significantly inhibited pro-inflammatory cytokine production while anti-IL-6 (atlizumab) did not. In conclusion, TNF-α altered AF cell mechanobiology with cytoskeletal remodeling that potentially sensitized AF cells to mechanical strain and increased TNF-α-induced pro-inflammatory cytokine production. Results suggest an interaction between TNF-α and mechanical strain and future mechanistic studies are required to validate these observations.

  19. Inhibition of IRAK-4 activity for rescuing endotoxin LPS-induced septic mortality in mice by lonicerae flos extract

    SciTech Connect

    Park, Sun Hong; Roh, Eunmiri; Kim, Hyun Soo; Baek, Seung-Il; Choi, Nam Song; Kim, Narae; Hwang, Bang Yeon; Han, Sang-Bae; Kim, Youngsoo

    2013-12-13

    Highlights: •Lonicerae flos extract (HS-23) is a clinical candidate, Phase I for sepsis treatment. •Here, HS-23 or its major constituents rescued LPS-induced septic mortality in mice. •As a mechanism, they directly inhibited IRAK-4-catalyzed kinase activity. •Thus, they suppressed LPS-induced expression of NF-κB/AP-1-target inflammatory genes. -- Abstract: Lonicerae flos extract (HS-23) is a clinical candidate currently undergoing Phase I trial in lipopolysaccharide (LPS)-injected healthy human volunteers, but its molecular basis remains to be defined. Here, we investigated protective effects of HS-23 or its major constituents on Escherichia coli LPS-induced septic mortality in mice. Intravenous treatment with HS-23 rescued LPS-intoxicated C57BL/6J mice under septic conditions, and decreased the levels of cytokines such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β and high-mobility group box-1 (HMGB-1) in the blood. Chlorogenic acid (CGA) and its isomers were assigned as major constituents of HS-23 in the protection against endotoxemia. As a molecular mechanism, HS-23 or CGA isomers inhibited endotoxin LPS-induced autophosphorylation of the IL-1 receptor-associated kinase 4 (IRAK-4) in mouse peritoneal macrophages as well as the kinase activity of IRAK-4 in cell-free reactions. HS-23 consequently suppressed downstream pathways critical for LPS-induced activation of nuclear factor (NF)-κB or activating protein 1 (AP-1) in the peritoneal macrophages. HS-23 also inhibited various toll-like receptor agonists-induced nitric oxide (NO) production, and down-regulated LPS-induced expression of NF-κB/AP-1-target inflammatory genes in the cells. Taken together, HS-23 or CGA isomers exhibited anti-inflammatory therapy against LPS-induced septic mortality in mice, at least in part, mediated through the inhibition of IRAK-4.

  20. Pro-inflammatory cytokines enhance ERAD and ATF6α pathway activity in salivary glands of Sjögren's syndrome patients.

    PubMed

    Barrera, María-José; Aguilera, Sergio; Castro, Isabel; Cortés, Juan; Bahamondes, Verónica; Quest, Andrew F G; Molina, Claudio; González, Sergio; Hermoso, Marcela; Urzúa, Ulises; Leyton, Cecilia; González, María-Julieta

    2016-12-01

    Salivary gland (SG) acinar-cells are susceptible to endoplasmic reticulum (ER) stress related to their secretory activity and the complexity of synthesized secretory products. SGs of Sjögren's syndrome patients (SS)-patients show signs of inflammation and altered proteostasis, associated with low IRE1α/XBP-1 pathway activity without avert increases in apoptosis. Acinar-cells may avoid apoptosis by activation of the ATF6α pathway and ER-associated protein degradation (ERAD). The aim of this study was to evaluate the role of pro-inflammatory cytokines in ATF6α pathway/ERAD activation and cell viability in labial salivary glands (LSG) of SS-patients. In biopsies from SS-patients increased ATF6α signaling pathway activity, as evidenced by generation of the ATF6f cleavage fragment, and increased expression of ERAD machinery components, such as EDEM1, p97, SEL1L, gp78, UBE2J1, UBE2G2, HERP and DERLIN1, were observed compared to controls. Alternatively, for pro- (active-caspase-3) and anti-apoptotic (cIAP2) markers no significant difference between the two experimental groups was detected. Increased presence of ATF6f and ERAD molecules correlated significantly with increased expression of pro-inflammatory cytokines. These observations were corroborated in vitro in 3D-acini treated with TNF-α and/or IFN-γ, where an increase in the expression and activation of the ATF6α sensor and ERAD machinery components was detected under ER stress conditions, while changes in cell viability and caspase-3 activation were not observed. Cytokine stimulation protected cells from death when co-incubated with an ERAD machinery inhibitor. Alternatively, when cytokines were eliminated from the medium prior to ERAD inhibition, cell death increased, suggesting that the presence of pro-inflammatory cytokines in the medium is essential to maintain cell viability. In conclusion, the ATF6α pathway and the ERAD machinery are active in LSG of SS-patients. Both were also activated by TNF

  1. Pro-Inflammatory Cytokine Levels in HIV Infected and Uninfected Pregnant Women with and without Preeclampsia

    PubMed Central

    Maharaj, Niren Ray; Phulukdaree, Alisa; Nagiah, Savania; Ramkaran, Prithiksha; Tiloke, Charlette; Chuturgoon, Anil Amichund

    2017-01-01

    Introduction Preeclampsia and HIV/AIDS are inflammatory conditions that contribute significantly to adverse maternal and foetal outcomes. The immune reconstitution effects of HAART on inflammatory mediators has not been adequately studied in pregnancy and may impact on the inflammatory cytokine network in women with co-morbid preeclampsia. Our study evaluated changes in pro-inflammatory cytokines IL-2, TNF-α, IFN-γ and IL-6 in HIV infected preeclamptic women on HAART. Methods A prospective experimental study was conducted at Prince Mshiyeni Memorial Hospital between July 2013 and September 2014. One hundred and ninety three pregnant women were recruited into 4 groups: uninfected normotensive (50; 26%), infected normotensive (45; 23%), uninfected preeclamptic (53; 28%) and infected preeclamptic women (45; 23%). Serum levels of cytokines TNF-α, IFN- γ, IL-2 and IL-6 were determined using commercially available kits and a Cytometric Bead Array (CBA). Comparative data was recorded and analysed descriptively. Results In the control groups (normotensive), significantly lower values were found in IL-2 (p = 0.010), TNF-α (p = 0.045), and IL-6 (p = 0.005); and a non-significant decrease was observed in IFN-γ (p = 0.345) in HIV infected women on HAART compared to uninfected controls. In the experimental group (preeclamptic) women, significantly reduced levels were observed in IL-2 and TNF-α (p = 0.001; p = 0.000) and non-significant decreases were observed in IFN-γ and IL-6 (p = 0.023; p = 0.086) in HIV infected women on HAART compared with uninfected preeclamptic women. Non-significant differences were observed between uninfected preeclamptic and normotensive women. Conclusion In uncomplicated/normotensive pregnancies, HIV/HAART is associated with significant decreases in IL-2, TNF-α and IL-6, and in preeclamptic women significant decreases in IL-2 and TNF-α were observed. These findings suggest that HIV/HAART impacts on pro-inflammatory cytokines in women with co

  2. Pro-inflammatory Cytokines Impair Vitamin D-induced Host Defense in Cultured Airway Epithelial Cells.

    PubMed

    Schrumpf, Jasmijn A; Amatngalim, Gimano D; Veldkamp, Joris B; Verhoosel, Renate M; Ninaber, Dennis K; Ordonez, Soledad R; van der Does, Anne M; Haagsman, Henk P; Hiemstra, Pieter S

    2017-02-23

    Vitamin D is a regulator of host defense against infections and induces expression of the antimicrobial peptide hCAP18/LL-37. Vitamin D deficiency is associated with chronic inflammatory lung diseases and respiratory infections. However, it is incompletely understood if and how (chronic) airway inflammation affects vitamin D metabolism and action. We hypothesized that long-term exposure of primary bronchial epithelial cells (PBEC) to pro-inflammatory cytokines alters their vitamin D metabolism, antibacterial activity and expression of hCAP18/LL-37. To investigate this, PBEC were differentiated at the air-liquid interphase for 14 days in presence of the pro-inflammatory cytokines TNF-α and IL-1β (TNF-α/IL-1β), and subsequently exposed to vitamin D (inactive 25(OH)D3 and active 1,25(OH)2D3). Expression of hCAP18/LL-37, vitamin D receptor (VDR) and enzymes involved in vitamin D metabolism (CYP24A1 and CYP27B1) was determined using qPCR, Western blot and immunofluorescence staining. Furthermore, vitamin D-mediated antibacterial activity was assessed using non-typeable Haemophilus influenzae (NTHi). We found that TNF-α/IL-1β treatment reduced vitamin D-induced expression of hCAP18/LL-37 and killing of NTHi. In addition, CYP24A1 (a vitamin D-degrading enzyme) was increased by TNF-α/IL-1β, whereas CYP27B1 (that converts 25(OH)D3 to its active form) and VDR expression remained unaffected. Furthermore, we demonstrated that the TNF-α/IL-1β-mediated induction of CYP24A1 was at least in part mediated by the transcription factor specific protein 1 (Sp1) and the EGFR-MAPK-pathway. These findings indicate that TNF-α/IL-1β decreases vitamin D-mediated antibacterial activity and hCAP18/LL-37 expression via induction of CYP24A1, and suggests that chronic inflammation impairs protective responses induced by vitamin D.

  3. Artesunate Inhibits RANKL-induced Osteoclastogenesis and Bone Resorption In Vitro and Prevents LPS-induced Bone Loss In Vivo.

    PubMed

    Wei, Cheng-Ming; Liu, Qian; Song, Fang-Ming; Lin, Xi-Xi; Su, Yi-Ji; Xu, Jiake; Huang, Lin; Zong, Shao-Hui; Zhao, Jin-Min

    2017-03-15

    Osteoclasts are multinuclear giant cells responsible for bone resorption in lytic bone diseases such as osteoporosis, arthritis, periodontitis, and bone tumors. Due to the severe side-effects caused by the currently available drugs, a continuous search for novel bone-protective therapies is essential. Artesunate (Art), the water-soluble derivative of artemisinin has been investigated owing to its anti-malarial properties. However, its effects in osteoclastogenesis have not yet been reported. In this study, Art was shown to inhibit the nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis, the mRNA expression of osteoclastic-specific genes, and resorption pit formation in a dose-dependent manner in primary bone marrow-derived macrophages cells (BMMs). Furthermore, Art markedly blocked the RANKL-induced osteoclastogenesis by attenuating the degradation of IκB and phosphorylation of NF-κB p65. Consistent with the in vitro results, Art inhibited lipopolysaccharide (LPS)-induced bone resorption by suppressing the osteoclastogenesis. Together our data demonstrated that Art inhibits RANKL-induced osteoclastogenesis by suppressing the NF-κB signaling pathway and that it is a promising agent for the treatment of osteolytic diseases. This article is protected by copyright. All rights reserved.

  4. Alliin, a garlic (Allium sativum) compound, prevents LPS-induced inflammation in 3T3-L1 adipocytes.

    PubMed

    Quintero-Fabián, Saray; Ortuño-Sahagún, Daniel; Vázquez-Carrera, Manuel; López-Roa, Rocío Ivette

    2013-01-01

    Garlic (Allium sativum L.) has been used to alleviate a variety of health problems due to its high content of organosulfur compounds and antioxidant activity. The main active component is alliin (S-allyl cysteine sulfoxide), a potent antioxidant with cardioprotective and neuroprotective actions. In addition, it helps to decrease serum levels of glucose, insulin, triglycerides, and uric acid, as well as insulin resistance, and reduces cytokine levels. However its potential anti-inflammatory effect is unknown. We examined the effects of alliin in lipopolysaccharide- (LPS-) stimulated 3T3-L1 adipocytes by RT-PCR, Western blot, and microarrays analysis of 22,000 genes. Incubation of cells for 24 h with 100 μmol/L alliin prevented the increase in the expression of proinflammatory genes, IL-6, MCP-1, and Egr-1 in 3T3-L1 adipocytes exposed to 100 ng/mL LPS for 1 h. Interestingly, the phosphorylation of ERK1/2, which is involved in LPS-induced inflammation in adipocytes, was decreased following alliin treatment. Furthermore, the gene expression profile by microarrays evidentiate an upregulation of genes involved in immune response and downregulation of genes related with cancer. The present results have shown that alliin is able to suppress the LPS inflammatory signals by generating an anti-inflammatory gene expression profile and by modifying adipocyte metabolic profile.

  5. Alliin, a Garlic (Allium sativum) Compound, Prevents LPS-Induced Inflammation in 3T3-L1 Adipocytes

    PubMed Central

    Quintero-Fabián, Saray; Ortuño-Sahagún, Daniel; Vázquez-Carrera, Manuel; López-Roa, Rocío Ivette

    2013-01-01

    Garlic (Allium sativum L.) has been used to alleviate a variety of health problems due to its high content of organosulfur compounds and antioxidant activity. The main active component is alliin (S-allyl cysteine sulfoxide), a potent antioxidant with cardioprotective and neuroprotective actions. In addition, it helps to decrease serum levels of glucose, insulin, triglycerides, and uric acid, as well as insulin resistance, and reduces cytokine levels. However its potential anti-inflammatory effect is unknown. We examined the effects of alliin in lipopolysaccharide- (LPS-) stimulated 3T3-L1 adipocytes by RT-PCR, Western blot, and microarrays analysis of 22,000 genes. Incubation of cells for 24 h with 100 μmol/L alliin prevented the increase in the expression of proinflammatory genes, IL-6, MCP-1, and Egr-1 in 3T3-L1 adipocytes exposed to 100 ng/mL LPS for 1 h. Interestingly, the phosphorylation of ERK1/2, which is involved in LPS-induced inflammation in adipocytes, was decreased following alliin treatment. Furthermore, the gene expression profile by microarrays evidentiate an upregulation of genes involved in immune response and downregulation of genes related with cancer. The present results have shown that alliin is able to suppress the LPS inflammatory signals by generating an anti-inflammatory gene expression profile and by modifying adipocyte metabolic profile. PMID:24453416

  6. Anti-inflammatory effect of strawberry extract against LPS-induced stress in RAW 264.7 macrophages.

    PubMed

    Gasparrini, Massimiliano; Forbes-Hernandez, Tamara Y; Giampieri, Francesca; Afrin, Sadia; Alvarez-Suarez, Josè M; Mazzoni, Luca; Mezzetti, Bruno; Quiles, Josè L; Battino, Maurizio

    2017-04-01

    A common denominator in the pathogenesis of most chronic inflammatory diseases is the involvement of oxidative stress, related to ROS production by all aerobic organisms. Dietary antioxidants from plant foods represent an efficient strategy to counteract this condition. The aim of the present study was to evaluate the protective effects of strawberry extracts on inflammatory status induced by E. Coli LPS on RAW 264.7 macrophages by measuring the main oxidative and inflammatory biomarkers and investigating the molecular pathways involved. Strawberry pre-treatment efficiently counteracted LPS-induced oxidative stress reducing the amount of ROS and nitrite production, stimulating endogenous antioxidant enzyme activities and enhancing protection against lipid, protein and DNA damage (P < 0.05). Strawberry pre-treatment exerted these protective effects primarily through the activation of the Nrf2 pathway, which is markedly AMPK-dependent and also by the modulation of the NF-kB signalling pathway. Finally, an improvement in mitochondria functionality was also detected. The results obtained in this work highlight the health benefit of strawberries against inflammatory and oxidative stress in LPS-stimulated RAW 264.7 macrophages, investigating for the first time the possible involved molecular mechanisms.

  7. Suppression of LPS-induced inflammatory activities by Rosmarinus officinalis L.

    PubMed

    Yu, Mi-Hee; Choi, Jun-Hyeok; Chae, In-Gyeong; Im, Hyo-Gwon; Yang, Seun-Ah; More, Kunal; Lee, In-Seon; Lee, Jinho

    2013-01-15

    Rosemary (Rosmarinus officinalis L.) has been used in folk medicine to treat headaches, epilepsy, poor circulation, and many other ailments. It was found that rosemary could act as a stimulant and mild analgesic and could reduce inflammation. However, the mechanisms underlying the anti-inflammatory effects of rosemary need more study to be established. Therefore, in this study, the effects of rosemary on the activation of nuclear factor kappa beta (NF-kB) and mitogen-activated protein kinases (MAPKs), the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and the production of nitric oxide (NO), prostaglandin E(2) (PGE(2)), and cytokine in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells were investigated. A methanol extract of rosemary and its hexane fraction reduced NO generation with an IC(50) of 2.75 and 2.83 μg/ml, respectively. Also, the methanol extract and the hexane fraction inhibited LPS-induced MAPKs and NF-kB activation associated with the inhibition of iNOS or COX-2 expression. LPS-induced production of PGE(2) and tumour necrosis factor-alpha (TNF-α) were blocked by rosemary. Rosemary extract and its hexane fraction are important for the prevention of phosphorylation of MAPKs, thereby blocking NF-kB activation, which in turn leads to decreased expression of iNOS and COX-2, thus preventing inflammation.

  8. Inhibition of nitric oxide production rescues LPS-induced fetal abortion in mice.

    PubMed

    Athanassakis, I; Aifantis, I; Ranella, A; Giouremou, K; Vassiliadis, S

    1999-06-01

    In this report, we examined the involvement of the cytokines tumor necrosis factor (TNF)-alpha, interferon (IFN)-gamma, interleukin (IL)-4, and IL-10 as well as nitric oxide (NO) in the lipopolysaccharide (LPS)-induced experimental abortion model in BALB/c mice. Although in vivo administration of LPS in pregnant mice showed a 72% decrease of serum IL-10, no significant difference in serum TNF-alpha, IFN-gamma, and IL-4 levels, compared to controls, could be detected. At the same time, a correlation of fetal abortion and maternal splenomegaly with an important increase of NO synthesis in the serum was obtained. Simultaneous administration of LPS and aminoguanidine (AG; an inhibitor to NO synthase) rescued the LPS-induced fetal abortion, reduced maternal spleen weight to physiological levels, and decreased serum NO concentration to control levels. In vitro experiments showed that LPS directly induced NO production in primary placental cells and the TPOPHO-1 trophoblast cell line by stimulating the inducible isoform of NO synthase, which ultimately could be blocked by the NO synthase inhibitors AG and L-NAME. The results indicate that LPS, despite its beneficial involvement in intracellular infections, participates in inflammatory/autoimmune damage during pregnancy, leading to embryotoxicity, which is closely linked to the NO pathway.

  9. Red Blood Cell Supernatant Potentiates LPS-Induced Proinflammatory Cytokine Response From Peripheral Blood Mononuclear Cells

    PubMed Central

    Nydam, Trevor L.; Clarke, Jason H.; Banerjee, Anirban; Silliman, Christopher C.; McCarter, Martin D.

    2009-01-01

    Allogeneic blood transfusion has an immunomodulatory capacity on its recipients through accumulation of immunologically active substances with blood storage, and prestorage leukoreduction reduces many of these mediators. We investigated lipopolysaccharide (LPS)-induced cytokine response of peripheral blood mononuclear cells (PBMCs) exposed to packed red blood cell (PRBC) supernatants from leukoreduced (LR) or non-leukoreduced (NLR) units with variable duration of storage. PRBC units were collected with or without leukoreduction on Day 0 before routine storage. The plasma fraction (supernatant) was isolated from LR and NLR units after 1 day (D1) or 42 days (D42) of storage and exposed to PBMCs versus control media for 24 h, then with LPS for an additional 24 h. Cell supernatants were analyzed for IL-1β, IL-6, IL-8, IL-10, and TNF-α by cytokine bead array. IL-1β, TNF-α, and IL-6 were significantly elevated in PRBC groups versus control. D42 NLR PRBC supernatant significantly increased secretion of IL-1β and IL-6 compared to D1 NLR PRBC supernatant. LR significantly attenuated the cytokine response of IL-1β. Thus, PRBC supernatant potentiates proinflammatory LPS-induced cytokine secretion from PBMCs. This response is accentuated with storage duration and partially attenuated with leukoreduction. These findings may partially explain the immune activation seen clinically after blood transfusion. PMID:19441884

  10. Capsaicin pretreatment attenuates LPS-induced hypothermia through TRPV1-independent mechanisms in chicken.

    PubMed

    Nikami, Hideki; Mahmoud, Motamed Elsayed; Shimizu, Yasutake; Shiina, Takahiko; Hirayama, Haruko; Iwami, Momoe; Dosoky, Reem Mahmoud; Ahmed, Moustafa Mohamed; Takewaki, Tadashi

    2008-06-06

    It has been demonstrated that chicken TRPV1 (transient receptor potential vanilloid of subtype-1) is insensitive to capsaicin (CAP), and therefore, a chicken model is suitable to analyze the CAP-sensitive TRPV1-independent pathway. We elucidated here the possible involvement of the pathway in hypothermia induced by bacterial endotoxin (lipopolysaccharide, LPS) in chickens. Chicks were pretreated with CAP (10 mg/kg, iv) at 1, 2 and 3 days of age to desensitize them towards the CAP-sensitive pathway. An intravenous injection of LPS in 4-day-old chicks caused progressive hypothermia, ending with collapse and 78% mortality within 12 h after injection. The CAP pretreatment rescued the LPS-induced endotoxin shock and hypothermia in chicks. LPS-induced iNOS expression as well as NO production in liver and lung was suppressed by CAP pretreatment. CAP pretreatment also attenuated hypothermia due to exposure of chicks to cold ambient temperature. These findings suggest that a CAP-sensitive TRPV1-independent pathway may be involved in pathophysiological hypothermic reactions through the mediation of NO in chickens.

  11. Mesenchymal Stem Cell-Educated Macrophages Ameliorate LPS-Induced Systemic Response

    PubMed Central

    Hu, Yaoqin; Qin, Chaojin; Zheng, Guoping; Tao, Huikang; Zhang, Yan; Qiu, Guanguan; Ge, Menghua; Huang, Lanfang; Chen, Lina; Cheng, Baoli

    2016-01-01

    Both bone marrow and adipose-derived mesenchymal stem cells (ASCs) have immunomodulatory effects. The goal of this study was to determine whether ASCs-educated macrophages could directly ameliorate LPS-induced systemic response in a mouse model. Mouse peritoneal macrophages were cocultured with ASCs in a Transwell system for 2 days to educate macrophages. Mice were divided into 5 groups: control, LPS, LPS + ASCs, LPS + untreated macrophages, and LPS + educated macrophages. Educated macrophages decreased lung inflammation, weight loss, pulmonary edema, and inflammatory cytokine response. In vitro, ASCs increased expression of M2 macrophages independent of direct cell-to-cell contact when macrophages were treated with LPS or serum from patients with acute respiratory distress syndrome (ARDS). When macrophages were cultured with serum from ARDS patients who were treated with ASCs or placebo in our previous clinical trial, there was no difference in M2 macrophage levels before and after ASCs treatment indicating a suboptimal response to the treatment protocol. ASCs also reduced the levels of LPS-induced proinflammatory cytokines in vitro which were mimicked by IL-10 and blocked by antibodies for IL-10 and IL-10 receptor supporting the notion that educated macrophages exert their anti-inflammatory effects via IL-10-dependent mechanisms. PMID:27546994

  12. Eriodictyol, a plant flavonoid, attenuates LPS-induced acute lung injury through its antioxidative and anti-inflammatory activity

    PubMed Central

    ZHU, GUANG-FA; GUO, HONG-JUAN; HUANG, YAN; WU, CHUN-TING; ZHANG, XIANG-FENG

    2015-01-01

    Acute lung injury (ALI) is characterized by excessive inflammatory responses and oxidative injury in the lung tissue. It has been suggested that anti-inflammatory or antioxidative agents could have therapeutic effects in ALI, and eriodictyol has been reported to exhibit antioxidative and anti-inflammatory activity in vitro. The aim of the present study was to investigate the effect of eriodictyol on lipopolysaccharide (LPS)-induced ALI in a mouse model. The mice were divided into four groups: Phosphate-buffered saline-treated healthy control, LPS-induced ALI, vehicle-treated ALI (LPS + vehicle) and eriodictyol-treated ALI (LPS + eriodictyol). Eriodictyol (30 mg/kg) was administered orally once, 2 days before the induction of ALI. The data showed that eriodictyol pretreatment attenuated LPS-induced ALI through its antioxidative and anti-inflammatory activity. Furthermore, the eriodictyol pretreatment activated the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway in the ALI mouse model, which attenuated the oxidative injury and inhibited the inflammatory cytokine expression in macrophages. In combination, the results of the present study demonstrated that eriodictyol could alleviate the LPS-induced lung injury in mice by regulating the Nrf2 pathway and inhibiting the expression of inflammatory cytokines in macrophages, suggesting that eriodictyol could be used as a potential drug for the treatment of LPS-induced lung injury. PMID:26668626

  13. Long-Term Arthralgia after Mayaro Virus Infection Correlates with Sustained Pro-inflammatory Cytokine Response.

    PubMed

    Santiago, Felix W; Halsey, Eric S; Siles, Crystyan; Vilcarromero, Stalin; Guevara, Carolina; Silvas, Jesus A; Ramal, Cesar; Ampuero, Julia S; Aguilar, Patricia V

    2015-01-01

    Mayaro virus (MAYV), an alphavirus similar to chikungunya virus (CHIKV), causes an acute debilitating disease which results in the development of long-term arthralgia in more than 50% of infected individuals. Currently, the immune response and its role in the development of MAYV-induced persistent arthralgia remain unknown. In this study, we evaluated the immune response of individuals with confirmed MAYV infection in a one-year longitudinal study carried out in Loreto, Peru. We report that MAYV infection elicits robust immune responses that result in the development of a strong neutralizing antibody response and the secretion of pro-inflammatory immune mediators. The composition of these inflammatory mediators, in some cases, differed to those previously observed for CHIKV. Key mediators such as IL-13, IL-7 and VEGF were strongly induced following MAYV infection and were significantly increased in subjects that eventually developed persistent arthralgia. Although a strong neutralizing antibody response was observed in all subjects, it was not sufficient to prevent the long-term outcomes of MAYV infection. This study provides initial immunologic insight that may eventually contribute to prognostic tools and therapeutic treatments against this emerging pathogen.

  14. Comparison of pro-inflammatory cytokines of non-healing and healing cutaneous leishmaniasis.

    PubMed

    Moafi, M; Rezvan, H; Sherkat, R; Taleban, R; Asilian, A; Hamid Zarkesh-Esfahani, S; Nilforoushzadeh, M A; Jaffary, F; Mansourian, M; Sokhanvari, F; Ansari, N

    2017-04-01

    Cutaneous leishmaniasis (CL) heals spontaneously within several weeks or months, but, in rare cases, CL-active lesions last for many years. In this study, we assessed cell-mediated immunity in non-healing CL through the measurement of three pro-inflammatory cytokines: Interferon-γ (IFN-γ), IL-17a and CXCL-11. For this, 32 patients afflicted with healing or non-healing CL were recruited in this study. Peripheral blood mononuclear cells (PBMCs) of every patient were treated with three antigens: purified protein derivative (PPD), soluble Leishmania antigen (SLA) and phytohaemagglutinin (PHA). Cytokine quantification was performed using enzyme-linked immunosorbent assay (ELISA) method. Results of our study showed that neither cytokine produced in the presence of a PPD stimulator (as an irrelevant antigen) significantly differed between the healing and non-healing groups (P-value ≥0.05 for all of them). However, IFN-γ, CXCL-11 and IL-17a levels produced in the presence of PHA or SLA were significantly higher within the healing than in the non-healing group (P-value <0.01 for all of them). It seems that appropriate levels of IFN-γ, as well as IL-17a and CXCL-11, contribute to the control of Leishmania infection.

  15. Upregulation of pro-inflammatory cytokines in the intercostal muscles of COPD patients.

    PubMed

    Casadevall, C; Coronell, C; Ramírez-Sarmiento, A L; Martínez-Llorens, J; Barreiro, E; Orozco-Levi, M; Gea, J

    2007-10-01

    Muscle dysfunction is a characteristic feature of chronic obstructive pulmonary disease (COPD). Recent studies suggest that cytokines may operate as local regulators of both muscle function and regeneration. The aim of the present study was to characterise the expression of different cytokines in the external intercostal muscle of COPD. Muscle biopsies were obtained from 25 stable COPD patients and eight healthy controls. Local tumour necrosis factor (TNF)-alpha, interleukin (IL)-1beta, -6 and -10 expressions (real-time PCR and ELISA), sarcolemmal damage (immunohistochemistry), and the transcript levels of CD18 were assessed. Muscle TNF-alpha and IL-6 transcripts were significantly higher in COPD patients compared with controls, and IL-1beta and sarcolemmal damage showed a strong tendency in the same direction. Similar results were observed at protein level. The CD18 panleukocyte marker was similar in COPD and controls. Respiratory muscle function was impaired in COPD patients and it correlated to both the severity of lung function impairment and TNF-alpha muscle expression. Chronic obstructive pulmonary disease is associated with the upregulation of pro-inflammatory cytokines in the intercostal muscles. This phenomenon might be involved in respiratory muscle dysfunction.

  16. Age-associated pro-inflammatory adaptations of the mouse thoracic aorta.

    PubMed

    Hemmeryckx, Bianca; Hoylaerts, Marc F; Deloose, Eveline; Van Hove, Cor E; Fransen, Paul; Bult, Hidde; Lijnen, H Roger

    2013-10-01

    Arterial ageing may be associated with a reduction in vasodilation due to increased reactive oxygen species (ROS) production, whereas endothelial cell activation induces procoagulant changes. However, little is known on the effect of ageing on expression of anticoagulant endothelial markers such as endothelial protein C receptor (EPCR). To study age-associated alterations in smooth muscle cell (SMC) and endothelial cell (EC) structure and function, the aorta was isolated from 10-week- and 12- and 24-month-old C57BL/6J mice and analysed for its expression of genes involved in senescence, oxidative stress production, coagulation and matrix remodelling. In addition, vasorelaxation experiments were performed using 10-week- and 24-month-old thoracic aortic ring segments in organ chamber baths. The media thickness of the thoracic aorta progressively increased with age, associated with hypertrophy of vascular SMCs. Basal nitric oxide production and sensitivity to acetylcholine-mediated vasodilation in thoracic aorta rings was reduced with age, whereas no significant differences in ROS production could be demonstrated. Gene expression of tissue factor, EPCR and von Willebrand factor was not affected by ageing of the aorta, whereas that of thrombomodulin was mildly reduced and that of xanthine dehydrogenase, NADPH oxidase 4, tumour necrosis factor-α and vascular cell adhesion molecule-1 significantly enhanced. In conclusion, a reduction in endothelial cell-mediated vasodilation in aged thoracic aortas of C57BL/6J mice was accompanied by a shift towards a pro-inflammatory state of the endothelium.

  17. Hierarchical effects of pro-inflammatory cytokines on the post-influenza susceptibility to pneumococcal coinfection

    PubMed Central

    Duvigneau, Stefanie; Sharma-Chawla, Niharika; Boianelli, Alessandro; Stegemann-Koniszewski, Sabine; Nguyen, Van Kinh; Bruder, Dunja; Hernandez-Vargas, Esteban A.

    2016-01-01

    In the course of influenza A virus (IAV) infections, a secondary bacterial infection frequently leads to serious respiratory conditions provoking high hospitalization and death tolls. Although abundant pro-inflammatory responses have been reported as key contributing factors for these severe dual infections, the relative contributions of cytokines remain largely unclear. In the current study, mathematical modelling based on murine experimental data dissects IFN-γ as a cytokine candidate responsible for impaired bacterial clearance, thereby promoting bacterial growth and systemic dissemination during acute IAV infection. We also found a time-dependent detrimental role of IL-6 in curtailing bacterial outgrowth which was not as distinct as for IFN-γ. Our numerical simulations suggested a detrimental effect of IFN-γ alone and in synergism with IL-6 but no conclusive pathogenic effect of IL-6 and TNF-α alone. This work provides a rationale to understand the potential impact of how to manipulate temporal immune components, facilitating the formulation of hypotheses about potential therapeutic strategies to treat coinfections. PMID:27872472

  18. Breastmilk from obese mothers has pro-inflammatory properties and decreased neuroprotective factors

    PubMed Central

    Panagos, PG; Vishwanathan, R; Penfield-Cyr, A; Matthan, NR; Shivappa, N; Wirth, MD; Hebert, JR; Sen, S

    2016-01-01

    OBJECTIVE To determine the impact of maternal obesity on breastmilk composition. STUDY DESIGN Breastmilk and food records from 21 lean and 21 obese women who delivered full-term infants were analyzed at 2 months post-partum. Infant growth and adiposity were measured at birth and 2 months of age. RESULT Breastmilk from obese mothers had higher omega-6 to omega-3 fatty acid ratio and lower concentrations of docosahexaenoic acid, eicosapentaenoic acid, docasapentaenoic acid and lutein compared with lean mothers (P < 0.05), which were strongly associated with maternal body mass index. Breastmilk saturated fatty acid and monounsaturated fatty acid concentrations were positively associated with maternal dietary inflammation, as measured by dietary inflammatory index. There were no differences in infant growth measurements. CONCLUSION Breastmilk from obese mothers has a pro-inflammatory fatty acid profile and decreased concentrations of fatty acids and carotenoids that have been shown to have a critical role in early visual and neurodevelopment. Studies are needed to determine the link between these early-life influences and subsequent cardiometabolic and neurodevelopmental outcomes. PMID:26741571

  19. Hierarchical effects of pro-inflammatory cytokines on the post-influenza susceptibility to pneumococcal coinfection

    NASA Astrophysics Data System (ADS)

    Duvigneau, Stefanie; Sharma-Chawla, Niharika; Boianelli, Alessandro; Stegemann-Koniszewski, Sabine; Nguyen, Van Kinh; Bruder, Dunja; Hernandez-Vargas, Esteban A.

    2016-11-01

    In the course of influenza A virus (IAV) infections, a secondary bacterial infection frequently leads to serious respiratory conditions provoking high hospitalization and death tolls. Although abundant pro-inflammatory responses have been reported as key contributing factors for these severe dual infections, the relative contributions of cytokines remain largely unclear. In the current study, mathematical modelling based on murine experimental data dissects IFN-γ as a cytokine candidate responsible for impaired bacterial clearance, thereby promoting bacterial growth and systemic dissemination during acute IAV infection. We also found a time-dependent detrimental role of IL-6 in curtailing bacterial outgrowth which was not as distinct as for IFN-γ. Our numerical simulations suggested a detrimental effect of IFN-γ alone and in synergism with IL-6 but no conclusive pathogenic effect of IL-6 and TNF-α alone. This work provides a rationale to understand the potential impact of how to manipulate temporal immune components, facilitating the formulation of hypotheses about potential therapeutic strategies to treat coinfections.

  20. Snail up-regulates pro-inflammatory mediators and inhibits differentiation in oral keratinocytes

    PubMed Central

    Lyons, J. Guy; Patel, Vyomesh; Roue, Naomi C.; Fok, Sandra Y.; Soon, Lilian L.; Halliday, Gary M.; Gutkind, J. Silvio

    2008-01-01

    The transcriptional repressor, Snail2, is over-expressed in head and neck squamous cell carcinomas (HNSCCs) relative to non-malignant head and neck mucosal epithelium, and in locally recurrent relative to non-recurrent HNSCCs. We investigated the mechanisms by which Snails might contribute to the pathogenesis of HNSCCs using cell biological and molecular analyses. Oral keratinocytes that expressed Snails acquired an enhanced ability to attract monocytes and to invade a dense interstitial collagen matrix. They were also found to up-regulate production of pro-inflammatory cytokines and cyclooxygenase-2 (COX2), which have previously been shown to correlate with malignancy. Induction of nuclear factor-kappa B transcriptional activity by Snails was weak and not sufficient to account for the elevated levels of COX2, interleukin-6, interleukin-8 or CXCL1. In addition, expression of Snails in oral keratinocytes impaired desquamation in vitro and strongly repressed expression of both ELF3 and matriptase-1, which play important roles in the terminal differentiation of keratinocytes. Re-expression of matriptase-1 in Snail-expressing cells partially rescued desquamation. This implicates Snails as contributing to malignancy both at the early stages, by impeding terminal differentiation, and at later stages, when invasion and inflammation are important. PMID:18559496

  1. Regulation of autoimmune arthritis by the pro-inflammatory cytokine interferon-gamma.

    PubMed

    Kim, Eugene Y; Chi, Howard H; Bouziane, Mohammed; Gaur, Amitabh; Moudgil, Kamal D

    2008-04-01

    The pathogenesis of T cell-mediated diseases like rheumatoid arthritis (RA) has typically been explained in the context of the Th1-Th2 paradigm: the initiation/propagation by pro-inflammatory cytokines, and downregulation by Th2 cytokines. However, in our study based on the adjuvant-induced arthritis (AA) model of RA, we observed that Lewis (LEW) (RT.1(l)) rats at the recovery phase of AA showed the highest level of IFN-gamma in recall response to mycobacterial heat-shock protein 65 (Bhsp65), whereas AA-resistant Wistar-Kyoto (WKY) (RT.1(l)) rats secreted high levels of IFN-gamma much earlier following disease induction. However, no significant secretion of IL-10 or TGF-beta was observed in either strain. Furthermore, pre-treatment of LEW rats with a peptide of self (rat) hsp65 (R465), which induced T cells secreting predominantly IFN-gamma, afforded protection against AA and decreased IL-17 expression by the arthritogenic epitope-restimulated T cells. These results provide a novel perspective on the pathogenesis of autoimmune arthritis.

  2. Long-Term Arthralgia after Mayaro Virus Infection Correlates with Sustained Pro-inflammatory Cytokine Response

    PubMed Central

    Santiago, Felix W.; Halsey, Eric S.; Siles, Crystyan; Vilcarromero, Stalin; Guevara, Carolina; Silvas, Jesus A.; Ramal, Cesar; Ampuero, Julia S.; Aguilar, Patricia V.

    2015-01-01

    Mayaro virus (MAYV), an alphavirus similar to chikungunya virus (CHIKV), causes an acute debilitating disease which results in the development of long-term arthralgia in more than 50% of infected individuals. Currently, the immune response and its role in the development of MAYV-induced persistent arthralgia remain unknown. In this study, we evaluated the immune response of individuals with confirmed MAYV infection in a one-year longitudinal study carried out in Loreto, Peru. We report that MAYV infection elicits robust immune responses that result in the development of a strong neutralizing antibody response and the secretion of pro-inflammatory immune mediators. The composition of these inflammatory mediators, in some cases, differed to those previously observed for CHIKV. Key mediators such as IL-13, IL-7 and VEGF were strongly induced following MAYV infection and were significantly increased in subjects that eventually developed persistent arthralgia. Although a strong neutralizing antibody response was observed in all subjects, it was not sufficient to prevent the long-term outcomes of MAYV infection. This study provides initial immunologic insight that may eventually contribute to prognostic tools and therapeutic treatments against this emerging pathogen. PMID:26496497

  3. Changes in pro-inflammatory cytokines in association with exposure to moisture-damaged building microbes.

    PubMed

    Purokivi, M K; Hirvonen, M R; Randell, J T; Roponen, M H; Meklin, T M; Nevalainen, A L; Husman, T M; Tukiainen, H O

    2001-12-01

    Several epidemiological studies have described an association between adverse health effects and exposure to mould and microbes present in the indoor air of moisture-damaged buildings. However, the biochemical linkage between microbial exposure and the large variety of reported respiratory symptoms is poorly understood. In the present study, the authors compared the respiratory symptoms, the production of inflammatory mediators interleukin (IL)-1, IL-4, IL-6, tumour necrosis factor-alpha (TNF-alpha) and cell count in nasal lavage fluid and induced sputum samples of subjects working in moisture-damaged and control school buildings. The sampling was performed and the questionnaires were completed at the end of the spring term, at the end of the summer vacation (2.5 months), during the winter term and after a 1-week winter holiday. The authors found a significant elevation of IL-1, TNF-alpha and IL-6 in nasal lavage fluid and IL-6 in induced sputum during the spring term in the subjects from the moisture-damaged school building compared to the subjects from the control building. The exposed workers reported sore throat, phlegm, eye irritation, rhinitis, nasal obstruction and cough in parallel with these findings. The present data suggests an association between microbial exposure, and symptoms as well as changes in pro-inflammatory mediators detected from both the upper and lower airways.

  4. Melatonin enhances pro-inflammatory cytokine levels and protects against Chagas disease.

    PubMed

    Santello, Fabricia Helena; Frare, Eduardo Osório; Caetano, Leony Cristina; AlonsoToldo, Míriam Paula; do Prado, José Clóvis

    2008-08-01

    Pro-inflammatory and modulatory cytokines have an essential role in host defense against human and murine Trypanosoma cruzi infection. Control of T. cruzi parasitism during the acute phase of infection is considered to be critically dependent on direct macrophage activation by cytokines. Melatonin has been proposed to regulate the immune system by affecting cytokine production in immunocompetent cells, enhancing the production of several T helper (Th)1 cytokines. The aims of this work were to evaluate in rats, the influences of exogenous melatonin treatment on T. cruzi-infected host's immune responses. With this in mind, several immunological parameters were analyzed, including tumor necrosis factor-alpha, gamma-interferon, interleukin-12, nitric oxide (NO) and macrophage count. The melatonin therapy was provided in one of two different treatment regimens, that is, either beginning 7 days prior to infection or concomitant with the infection. Both treatments triggered an up-regulation of the immune response, with the concomitant treatment being more effective; in this case all cytokines studied, with exception of NO, displayed enhanced concentrations and there was a higher number of peritoneal macrophages, which displayed reduced concentrations under melatonin therapy. We conclude that melatonin plays a pivotal role in up-regulating the Th1 immune response thus controlling parasite replication.

  5. Acute aerocystitis in Piaractus mesopotamicus: participation of eicosanoids and pro-inflammatory cytokines.

    PubMed

    Claudiano, Gustavo da Silva; Petrillo, Thalita R; Manrique, Wilson G; Castro, Marcello P; Loureiro, Bruna A; Marcusso, Paulo F; Belo, Marco A A; Moraes, Julieta R E; de Moraes, Flávio Ruas

    2013-05-01

    A total of 360 pacus (Piaractus mesopotamicus) were used to study vascular permeability (VP) and inflammatory cell component (CC) in induced aerocystitis in P. mesopotamicus through inoculation of inactivated Aeromonas hydrophila, and the effect of steroidal and nonsteroidal anti-inflammatory drugs. It was observed that after inoculation of A. hydrophila, the maximum VP occurred 180 min post-stimulus (MPS). Pretreatment with anti-inflammatory drugs inhibited VP, and the inhibitory effect of dexamethasone was seen earlier than the effects caused by meloxicam and indomethacin. Inoculation of the bacterium caused a gradual increase in the accumulation of cells, which reached a maximum 24 h post-stimulus (HPS). Pretreatment with dexamethasone, indomethacin and meloxicam reduced the accumulation of lymphocytes, thrombocytes, granulocytes and macrophages. There was no significant difference between the different doses of the drugs tested. The results suggest that eicosanoids and pro-inflammatory cytokines participate in chemical mediation in acute inflammation in pacus.

  6. Hantaviruses induce antiviral and pro-inflammatory innate immune responses in astrocytic cells and the brain.

    PubMed

    Shin, Ok Sarah; Song, Gabriella Shinyoung; Kumar, Mukesh; Yanagihara, Richard; Lee, Ho-Wang; Song, Jin-Won

    2014-08-01

    Although hantaviruses are not generally considered neurotropic, neurological complications have been reported occasionally in patients with hemorrhagic fever renal syndrome (HFRS). In this study, we analyzed innate immune responses to hantavirus infection in vitro in human astrocytic cells (A172) and in vivo in suckling ICR mice. Infection of A172 cells with pathogenic Hantaan virus (HTNV) or a novel shrew-borne hantavirus, known as Imjin virus (MJNV), induced activation of antiviral genes and pro-inflammatory cytokines/chemokines. MicroRNA expression profiles of HTNV- and MJNV-infected A172 cells showed distinct changes in a set of miRNAs. Following intraperitoneal inoculation with HTNV or MJNV, suckling ICR mice developed rapidly progressive, fatal central nervous system-associated disease. Immunohistochemical staining of virus-infected mouse brains confirmed the detection of viral antigens within astrocytes. Taken together, these findings suggest that the neurological findings in HFRS patients may be associated with hantavirus-directed modulation of innate immune responses in the brain.

  7. Pro-inflammatory effects of a litchi protein extract in murine RAW264.7 macrophages

    PubMed Central

    Wang, Xiaoli; Hu, Xiaorong; Yan, Huiqing; Ma, Zhaocheng; Deng, Xiuxin

    2016-01-01

    It has been observed that the consumption of litchi often causes symptoms characterized by itching or sore throat, gum swelling, oral cavity ulcers and even fever and inflammation, which significantly impair the quality of life of a large population. Using the RAW264.7 cell line, a step-by-step strategy was used to screen for the components in litchi fruits that elicited adverse reactions. The adverse reaction fractions were identified by mass spectrometry and analyzed using the SMART program, and a sequence alignment of the homologous proteins was performed. MTT tests were used to determine the cytotoxicity of a litchi protein extract in RAW264.7 macrophages, and real-time PCR was applied to analyze the expression of inflammatory genes in the RAW264.7 cells treated with lipopolysaccharide or the litchi protein extract. The results showed that the litchi water-soluble protein extract could increase the production of the pro-inflammatory mediators IL-1β, iNOS and COX-2, and the anti-inflammatory mediator HO-1 in the RAW264.7 cell line. The 14-3-3-like proteins GF14 lambda, GF14 omega and GF14 upsilon were likely the candidate proteins that caused the adverse effects. PMID:27195125

  8. In vitro and in vivo effects of clove on pro-inflammatory cytokines production by macrophages.

    PubMed

    Rodrigues, T G; Fernandes, A; Sousa, J P B; Bastos, J K; Sforcin, J M

    2009-01-01

    Biological properties of clove have been reported, but little is known about its effect on the immune system. This work was aimed to investigate the effect in vivo of a water-soluble part of hydroalcoholic extract of clove on pro-inflammatory cytokines (IL-1beta and IL-6) production by macrophages of BALB/c mice. The action of the essential oil of clove on the production of these cytokines macrophages was also investigated in vitro. The chemical compositions of the extract and of the oil were also investigated. Treatment of mice with water extract of clove was found to inhibit macrophages to produce both IL-1beta and IL-6. The essential oil of clove also inhibited the production of these cytokines in vitro. Eugenol was found to be the major component of the clove extract and essential oil, and probably is the causative agent of cytokine inhibition. Taken together, these data suggest an anti-inflammatory action of this spice.

  9. Virus infection drives IL-2 antibody complexes into pro-inflammatory agonists in mice

    PubMed Central

    Lee, Wendy W. L.; Teo, Teck-Hui; Lum, Fok-Moon; Andiappan, Anand K.; Amrun, Siti Naqiah; Rénia, Laurent; Rötzschke, Olaf; Ng, Lisa F. P.

    2016-01-01

    The use of IL-2/JES6-1 Ab complex (IL-2 Ab Cx) has been considered as a potential therapeutic for inflammatory diseases due to its selective expansion of regulatory T cells (Tregs) in mice. Here, IL-2 Ab Cx was explored as a therapeutic agent to reduce joint inflammation induced by chikungunya virus, an alphavirus causing debilitating joint disease globally. Virus-infected mice treated with IL-2 Ab Cx exhibited exacerbated joint inflammation due to infiltration of highly activated CD4+ effector T cells (Teffs). Virus infection led to upregulation of CD25 on the Teffs, rendering them sensitive towards IL2 Ab Cx. Ready responsiveness of Teffs to IL-2 was further demonstrated in healthy human donors, suggesting that the use of IL-2 Ab Cx in humans is not suitable. Changes in IL-2 sensitivity during active virus infection could change the responsive pattern towards the IL-2 Ab Cx, resulting in the expansion of pro-inflammatory rather than anti-inflammatory responses. PMID:27886209

  10. A phenolic acid phenethyl urea compound inhibits lipopolysaccharide-induced production of nitric oxide and pro-inflammatory cytokines in cell culture.

    PubMed

    Hwang, Jung-Min; Yu, Ji-Yeon; Jang, Young-Oh; Kim, Beom-Tae; Hwang, Ki-Jun; Jeon, Young-Mi; Lee, Jeong-Chae

    2010-04-01

    We previously used the Curtius rearrangement to synthesize various phenolic acid phenethyl urea compounds from phenolic acids and demonstrated their beneficial anti-oxidant and anti-cancer effects. Here, we investigated the effects of one of these synthetic compounds, (E)-1-(3,4-dihydroxystyryl)-3-(4-hydroxyphenethyl)urea (DSHP-U), on nitric oxide (NO) production, inducible nitric oxide synthase (iNOS) expression, and cytokine secretion in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. DSHP-U suppressed LPS-induced NO production and iNOS expression at a concentration of 50 microM and inhibited LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 kinase. Inhibitors of phosphorylated (p)-ERK and p-p38, but not of p-JNK, reduced LPS-stimulated NO production. DSHP-U also prevented the nuclear translocation of the Rel A (p65) subunit and DNA-NF-kappaB binding by suppressing IkappaBalpha phosphorylation and by the degradation of IkappaBalpha in LPS-stimulated cells. Furthermore, DSHP-U decreased the production of tumor necrosis factor-alpha, interleukin (IL)-1beta, and IL-6 in LPS-treated macrophages. However, the LPS-stimulated expression of LPS receptors, such as Toll-like receptor 4, myeloid differentiation factor-2, and CD14, was unchanged after DSHP-U treatment at significantly high levels. Our data suggest that DSHP-U blocks NO and inflammatory cytokine production in LPS-stimulated macrophages and that these effects are mainly mediated through the inhibition of the ERK/p38- and NF-kappaB signaling pathways.

  11. Naegleria fowleri induces MUC5AC and pro-inflammatory cytokines in human epithelial cells via ROS production and EGFR activation.

    PubMed

    Cervantes-Sandoval, Isaac; Serrano-Luna, José de Jesús; Meza-Cervantez, Patricia; Arroyo, Rossana; Tsutsumi, Víctor; Shibayama, Mineko

    2009-11-01

    Naegleria fowleri is an amoeboflagellate responsible for the fatal central nervous system (CNS) disease primary amoebic meningoencephalitis (PAM). This amoeba gains access to the CNS by invading the olfactory mucosa and crossing the cribriform plate. Studies using a mouse model of infection have shown that the host secretes mucus during the very early stages of infection, and this event is followed by an infiltration of neutrophils into the nasal cavity. In this study, we investigated the role of N. fowleri trophozoites in inducing the expression and secretion of airway mucin and pro-inflammatory mediators. Using the human mucoepidermal cell line NCI-H292, we demonstrated that N. fowleri induced the expression of the MUC5AC gene and protein and the pro-inflammatory mediators interleukin-8 (IL-8) and interleukin-1 beta (IL-1 beta), but not tumour necrosis factor-alpha or chemokine c-c motif ligand 11 (eotaxin). Since the production of reactive oxygen species (ROS) is a common phenomenon involved in the signalling pathways of these molecules, we analysed if trophozoites were capable of causing ROS production in NCI-H292 cells by detecting oxidation of the fluorescent probe 2,7-dichlorofluorescein diacetate. NCI-H292 cells generated ROS after 15-30 min of trophozoite stimulation. Furthermore, the expression of MUC5AC, IL-8 and IL-1 beta was inhibited in the presence of the ROS scavenger DMSO. In addition, the use of an epidermal growth factor receptor inhibitor decreased the expression of MUC5AC and IL-8, but not IL-1 beta. We conclude that N. fowleri induces the expression of some host innate defence mechanisms, such as mucin secretion (MUC5AC) and local inflammation (IL-8 and IL-1 beta) in respiratory epithelial cells via ROS production and suggest that these innate immune mechanisms probably prevent most PAM infections.

  12. Isoquercitrin suppresses the expression of histamine and pro-inflammatory cytokines by inhibiting the activation of MAP Kinases and NF-κB in human KU812 cells.

    PubMed

    Li, Li; Zhang, Xiao-Hui; Liu, Guang-Rong; Liu, Chang; Dong, Yin-Mao

    2016-06-01

    Mast cells and basophils are multifunctional effector cells that contain abundant secretory granules in their cytoplasm. Both cell types are involved in a variety of inflammatory and immune events, producing an array of inflammatory mediators, such as cytokines. The aim of the study was to examine whether isoquercitrin modulates allergic and inflammatory reactions in the human basophilic KU812 cells and to elucidate its influence on the phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB activation. The KU812 cells were stimulated with phorbol-12-myristate 13-acetate plus the calcium ionophore A23187 (PMACI). The inhibitory effects of isoquercitrin on the productions of histamine and pro-inflammatory cytokines in the stimulated KU812 cells were measured using cytokine-specific enzyme-linked immunosorbent (ELISA) assays. Western blotting analysis was used to assess the effects of isoquercitrin on the MAPKs and NF-κB protein levels. Our results indicated that the isoquercitrin treatment of PMACI-stimulated KU812 cells significantly reduced the production of histamine and the pro-inflammatory cytokines, such as interleukin (IL)-6, IL-8, IL-1β, and tumor necrosis factor (TNF)-α. The treated cells exhibited decreased phosphorylation of extracellular signal-regulated kinase (ERK), revealing the role of ERK MAPK in isoquercitrin-mediated allergy inhibition. Furthermore, isoquercitrin suppressed the PMACI-mediated activation of NF-κB in the human basophil cells. In conclusion, the results from the present study provide insights into the potential therapeutic use of isoquercitrin for the treatment of inflammatory and allergic reactions.

  13. Modulation of Macrophage Inflammatory Nuclear Factor κB (NF-κB) Signaling by Intracellular Cryptococcus neoformans.

    PubMed

    Hayes, James B; Sircy, Linda M; Heusinkveld, Lauren E; Ding, Wandi; Leander, Rachel N; McClelland, Erin E; Nelson, David E

    2016-07-22

    Cryptococcus neoformans (Cn) is a common facultative intracellular pathogen that can cause life-threatening fungal meningitis in immunocompromised individuals. Shortly after infection, Cn is detectable as both extra- and intracellular yeast particles, with Cn being capable of establishing long-lasting latent infections within host macrophages. Although recent studies have shown that shed capsular polysaccharides and intact extracellular Cn can compromise macrophage function through modulation of NF-κB signaling, it is currently unclear whether intracellular Cn also affects NF-κB signaling. Utilizing live cell imaging and computational modeling, we find that extra- and intracellular Cn support distinct modes of NF-κB signaling in cultured murine macrophages. Specifically, in RAW 264.7 murine macrophages treated with extracellular glucuronoxylomannan (GXM), the major Cn capsular polysaccharide, LPS-induced nuclear translocation of p65 is inhibited, whereas in cells with intracellular Cn, LPS-induced nuclear translocation of p65 is both amplified and sustained. Mathematical simulations and quantification of nascent protein expression indicate that this is a possible consequence of Cn-induced "translational interference," impeding IκBα resynthesis. We also show that long term Cn infection induces stable nuclear localization of p65 and IκBα proteins in the absence of additional pro-inflammatory stimuli. In this case, nuclear localization of p65 is not accompanied by TNFα or inducible NOS (iNOS) expression. These results demonstrate that capsular polysaccharides and intact intracellular yeast manipulate NF-κB via multiple distinct mechanisms and provide new insights into how Cn might modulate cellular signaling at different stages of an infection.

  14. Lugrandoside attenuates LPS-induced acute respiratory distress syndrome by anti-inflammation and anti-apoptosis in mice

    PubMed Central

    Li, Chengbao; Huang, Ying; Yao, Xueya; Hu, Baoji; Wu, Suzhen; Chen, Guannan; Lv, Xin; Tian, Fubo

    2016-01-01

    This study aimed to investigate the protective effects and specific mechanisms of lugrandoside (LG) on lipopolysaccharides (LPS)-induced acute respiratory distress syndrome (ARDS). LG is a novel phenylpropanoid glycoside with many biological properties, isolated from the culinary leaves of Digitalis lutea L. and Digitalis grandiflora Miller. The primary indicators to assess the lung injury were infiltration of inflammatory cells; pulmonary edema; expression of proinflammatory cytokines, cyclo-oxygenase 2, and intracellular adhesion molecule 1; activation of nuclear factor-κB pathways; and cellular apoptosis. The results showed that LG evidently alleviated the inflammatory response, decreased the apoptosis of alveolar macrophages, and improved the lung injury in mice with LPS-induced ARDS. In conclusion, LG improved LPS-induced ARDS by anti-inflammation and anti-apoptosis and might be a promising pharmacological therapy for ARDS. PMID:28078026

  15. Baclofen, a GABABR agonist, ameliorates immune-complex mediated acute lung injury by modulating pro-inflammatory mediators.

    PubMed

    Jin, Shunying; Merchant, Michael L; Ritzenthaler, Jeffrey D; McLeish, Kenneth R; Lederer, Eleanor D; Torres-Gonzalez, Edilson; Fraig, Mostafa; Barati, Michelle T; Lentsch, Alex B; Roman, Jesse; Klein, Jon B; Rane, Madhavi J

    2015-01-01

    Immune-complexes play an important role in the inflammatory diseases of the lung. Neutrophil activation mediates immune-complex (IC) deposition-induced acute lung injury (ALI). Components of gamma amino butyric acid (GABA) signaling, including GABA B receptor 2 (GABABR2), GAD65/67 and the GABA transporter, are present in the lungs and in the neutrophils. However, the role of pulmonary GABABR activation in the context of neutrophil-mediated ALI has not been determined. Thus, the objective of the current study was to determine whether administration of a GABABR agonist, baclofen would ameliorate or exacerbate ALI. We hypothesized that baclofen would regulate IC-induced ALI by preserving pulmonary GABABR expression. Rats were subjected to sham injury or IC-induced ALI and two hours later rats were treated intratracheally with saline or 1 mg/kg baclofen for 2 additional hours and sacrificed. ALI was assessed by vascular leakage, histology, TUNEL, and lung caspase-3 cleavage. ALI increased total protein, tumor necrosis factor α (TNF-α and interleukin-1 receptor associated protein (IL-1R AcP), in the bronchoalveolar lavage fluid (BALF). Moreover, ALI decreased lung GABABR2 expression, increased phospho-p38 MAPK, promoted IκB degradation and increased neutrophil influx in the lung. Administration of baclofen, after initiation of ALI, restored GABABR expression, which was inhibited in the presence of a GABABR antagonist, CGP52432. Baclofen administration activated pulmonary phospho-ERK and inhibited p38 MAPK phosphorylation and IκB degradation. Additionally, baclofen significantly inhibited pro-inflammatory TNF-α and IL-1βAcP release and promoted BAL neutrophil apoptosis. Protective effects of baclofen treatment on ALI were possibly mediated by inhibition of TNF-α- and IL-1β-mediated inflammatory signaling. Interestingly, GABABR2 expression was regulated in the type II pneumocytes in lung tissue sections from lung injured patients, further suggesting a

  16. Role of pro-inflammatory cytokines of pancreatic islets and prospects of elaboration of new methods for the diabetes treatment.

    PubMed

    Cieślak, Marek; Wojtczak, Andrzej; Cieślak, Michał

    2015-01-01

    Several relations between cytokines and pathogenesis of diabetes are reviewed. In type 1 and type 2 diabetes an increased synthesis is observed and as well as the release of pro-inflammatory cytokines, which cause the damage of pancreatic islet cells and, in type 2 diabetes, the development of the insulin resistance. That process results in the disturbed balance between pro-inflammatory and protective cytokines. Pro-inflammatory cytokines such as interleukin 1β (IL-1β), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), as well as recently discovered pancreatic derived factor PANDER are involved in the apoptosis of pancreatic β-cells. Inside β-cells, cytokines activate different metabolic pathways leading to the cell death. IL-1β activates the mitogen-activated protein kinases (MAPK), affects the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and activates the inducible nitric oxide synthase (iNOS). TNF-α and IFN-γ in a synergic way activate calcium channels, what leads to the mitochondrial dysfunction and activation of caspases. Neutralization of pro-inflammatory cytokines, especially interleukin 1β with the IL-1 receptor antagonist (IL-1Ra) and/or IL-1β antibodies might cause the extinction of the inflammatory process of pancreatic islets, and consequently normalize concentration of glucose in blood and decrease the insulin resistance. In type 1 diabetes interleukin-6 participates in regulation of balance between Th17 and regulatory T cells. In type 2 diabetes and obesity, the long-duration increase of IL-6 concentration in blood above 5 pg/ml leads to the chronic and permanent increase in expression of SOCS3, contributing to the increase in the insulin resistance in cells of the skeletal muscles, liver and adipose tissue.

  17. Dark chocolate attenuates intracellular pro-inflammatory reactivity to acute psychosocial stress in men: A randomized controlled trial.

    PubMed

    Kuebler, Ulrike; Arpagaus, Angela; Meister, Rebecca E; von Känel, Roland; Huber, Susanne; Ehlert, Ulrike; Wirtz, Petra H

    2016-10-01

    Flavanol-rich dark chocolate consumption relates to lower risk of cardiovascular mortality, but underlying mechanisms are elusive. We investigated the effect of acute dark chocolate consumption on inflammatory measures before and after stress. Healthy men, aged 20-50years, were randomly assigned to a single intake of either 50g of flavanol-rich dark chocolate (n=31) or 50g of optically identical flavanol-free placebo-chocolate (n=34). Two hours after chocolate intake, both groups underwent the 15-min Trier Social Stress Test. We measured DNA-binding-activity of the pro-inflammatory transcription factor NF-κB (NF-κB-BA) in peripheral blood mononuclear cells, as well as plasma and whole blood mRNA levels of the pro-inflammatory cytokines IL-1β and IL-6, and the anti-inflammatory cytokine IL-10, prior to chocolate intake as well as before and several times after stress. We also repeatedly measured the flavanol epicatechin and the stress hormones epinephrine and cortisol in plasma and saliva, respectively. Compared to the placebo-chocolate-group, the dark-chocolate-group revealed a marginal increase in IL-10 mRNA prior to stress (p=0.065), and a significantly blunted stress reactivity of NF-κB-BA, IL-1β mRNA, and IL-6 mRNA (p's⩽0.036) with higher epicatechin levels relating to lower pro-inflammatory stress reactivity (p's⩽0.033). Stress hormone changes to stress were controlled. None of the other measures showed a significant chocolate effect (p's⩾0.19). Our findings indicate that acute flavanol-rich dark chocolate exerts anti-inflammatory effects both by increasing mRNA expression of the anti-inflammatory cytokine IL-10 and by attenuating the intracellular pro-inflammatory stress response. This mechanism may add to beneficial effects of dark chocolate on cardiovascular health.

  18. Lignans from Arctium lappa and their inhibition of LPS-induced nitric oxide production.

    PubMed

    Park, So Young; Hong, Seong Su; Han, Xiang Hua; Hwang, Ji Sang; Lee, Dongho; Ro, Jai Seup; Hwang, Bang Yeon

    2007-01-01

    A new butyrolactone sesquilignan, isolappaol C (1), together with four known lignans, lappaol C (2), lappaol D (3), lappaol F (4), and diarctigenin (5), were isolated from the methanolic extract of the seeds from the Arctium lappa plant. The structure of isolappaol C (1) was determined by spectral analysis including 1D- and 2D-NMR. All the isolates were evaluated for their inhibitory effects on the LPS-induced nitric oxide production using murine macrophage RAW264.7 cells. Lappaol F (4) and diarctigenin (5) strongly inhibited NO production in the LPS-stimulated RAW264.7 cells with IC(50) values of 9.5 and 9.6 microM, respectively.

  19. Citral and eugenol modulate DNA damage and pro-inflammatory mediator genes in murine peritoneal macrophages.

    PubMed

    Porto, Marilia de Paula; da Silva, Glenda Nicioli; Luperini, Bruno Cesar Ottoboni; Bachiega, Tatiana Fernanda; de Castro Marcondes, João Paulo; Sforcin, José Maurício; Salvadori, Daisy Maria Fávero

    2014-11-01

    Citral and eugenol have been broadly studied because of their anti-inflammatory, antioxidant and antiparasitic potentials. In this study, the effects of citral (25, 50 and 100 µg/mL) and eugenol (0.31, 0.62, 1.24 and 2.48 µg/mL) on the expression (RT-PCR) of the pro-inflammatory mediator genes NF-κB1, COX-2 and TNF-α were evaluated in mouse peritoneal macrophages with or without activation by a bacterial lipopolysaccharide (LPS). Additionally, the genotoxic potentials of two compounds and their capacities to modulate the DNA damage induced by doxorubicin (DXR) were investigated using the comet assay. The data revealed that neither citral nor eugenol changed COX-2, NF-κB1 or TNF-α expression in resting macrophages. However, in LPS-activated cells, citral induced the hypoexpression of COX-2 (100 µg/mL) and TNF-α (50 and 100 µg/mL). Hypoexpression of TNF-α was also detected after cellular exposure to eugenol at the highest concentration (2.48 µg/mL). Both compounds exhibited genotoxic potential (citral at 50 and 100 µg/mL and eugenol at all concentrations) but also showed chemopreventive effects, in various treatment protocols. Both citral and eugenol might modulate inflammatory processes and DXR-induced DNA damage, but the use of these compounds must be viewed with caution because they are also able to induce primary DNA lesions.

  20. Injury Induces Localized Airway Increases in Pro-Inflammatory Cytokines in Humans and Mice

    PubMed Central

    Jonker, Mark A.; Hermsen, Joshua L.; Gomez, F. Enrique; Sano, Yoshifumi

    2011-01-01

    Abstract Background Secretory immunoglobulin A (sIgA) increases in the airways of humans and mice after injury to protect against infection. The pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 are linked molecularly to sIgA production and secretion and are required for sIgA increases in the airway after injury in a mouse model. We investigated the injury effect on airway and serum concentrations to determine the source of the cytokines involved in the airway IgA response. Methods In the first experiment, TNF-α, IL-1β, and IL-6 concentrations in bronchoalveolar lavage (BAL) fluid and serum obtained from 11 ventilated trauma patients within 30 h of admission were compared with those in eight elective surgical patients. In the second experiment, male ICR mice received no injury (n = 7) or injury with sham celiotomy and neck incisions (n = 8) with sacrifice of all animals at 8 h for BAL fluid and serum cytokine measurements by enzyme-linked immunosorbent assay. Results Injured patients had significantly higher BAL fluid and serum TNF-α, IL-1β, and IL-6 concentrations, with greater increases in the BAL fluid than in the serum. Injured mice had significantly increased BAL fluid concentrations of TNF-α, IL-1β, and IL-6 without significant changes in serum TNF-α or IL-1β. Serum IL-6 increased significantly. Conclusions Injury significantly increases human and mouse airway TNF-α, IL-1β, and IL-6. Increases are greater in the airway than in serum, implying a local rather than a systemic stress response to injury. PMID:21166596

  1. Pro-inflammatory phenotype of COPD fibroblasts not compatible with repair in COPD lung.

    PubMed

    Zhang, Jing; Wu, Lian; Qu, Jie-ming; Bai, Chun-xue; Merrilees, Mervyn J; Black, Peter N

    2012-07-01

    Chronic obstructive pulmonary disease (COPD) is characterized by loss of elastic fibres from small airways and alveolar walls, with the decrease in elastin increasing with disease severity. It is unclear why there is a lack of repair of elastic fibres. We have examined fibroblasts cultured from lung tissue from subjects with or without COPD to determine if the secretory profile explains lack of tissue repair. In this study, fibroblasts were cultured from lung parenchyma of patients with mild COPD [Global initiative for chronic Obstructive Lung Disease (GOLD) 1, n= 5], moderate to severe COPD (GOLD 2-3, n= 12) and controls (non-COPD, n= 5). Measurements were made of proliferation, senescence-associated β-galactosidase-1, mRNA expression of IL-6, IL-8, MMP-1, tropoelastin and versican, and protein levels for IL-6, IL-8, PGE(2,) tropoelastin, insoluble elastin, and versican. GOLD 2-3 fibroblasts proliferated more slowly (P < 0.01), had higher levels of senescence-associated β-galactosidase-1 (P < 0.001) than controls and showed significant increases in mRNA and/or protein for IL-6 (P < 0.05), IL-8 (P < 0.01), MMP-1 (P < 0.05), PGE(2) (P < 0.05), versican (P < 0.05) and tropoelastin (P < 0.05). mRNA expression and/or protein levels of tropoelastin (P < 0.01), versican (P < 0.05), IL-6 (P < 0.05) and IL-8 (P < 0.05) were negatively correlated with FEV1% of predicted. Insoluble elastin was not increased. In summary, fibroblasts from moderate to severe COPD subjects display a secretory phenotype with up-regulation of inflammatory molecules including the matrix proteoglycan versican, and increased soluble, but not insoluble, elastin. Versican inhibits assembly of tropoelastin into insoluble elastin and we conclude that the pro-inflammatory phenotype of COPD fibroblasts is not compatible with repair of elastic fibres.

  2. Excessive Pro-Inflammatory Serum Cytokine Concentrations in Virulent Canine Babesiosis

    PubMed Central

    Goddard, Amelia; Leisewitz, Andrew L.; Kjelgaard-Hansen, Mads; Kristensen, Annemarie T.; Schoeman, Johan P.

    2016-01-01

    Babesia rossi infection causes a severe inflammatory response in the dog, which is the result of the balance between pro- and anti-inflammatory cytokine secretion. The aim of this study was to determine whether changes in cytokine concentrations were present in dogs with babesiosis and whether it was associated with disease outcome. Ninety-seven dogs naturally infected with B. rossi were studied and fifteen healthy dogs were included as controls. Diagnosis of babesiosis was confirmed by polymerase chain reaction and reverse line blot. Blood samples were collected from the jugular vein at admission, prior to any treatment. Cytokine concentrations were assessed using a canine-specific multiplex assay on an automated analyser. Serum concentrations of interleukin (IL)-2, IL-6, IL-8, IL-10, IL-18, granulocyte-macrophage colony stimulating factor (GM-CSF) and monocyte chemotactic protein-1 (MCP-1) were measured. Twelve of the Babesia-infected dogs died (12%) and 85 survived (88%). Babesia-infected dogs were also divided into those that presented within 48 hours from displaying clinical signs, and those that presented more than 48 hours after displaying clinical signs. Cytokine concentrations were compared between the different groups using the Mann-Whitney U test. IL-10 and MCP-1 concentrations were significantly elevated for the Babesia-infected dogs compared to the healthy controls. In contrast, the IL-8 concentration was significantly decreased in the Babesia-infected dogs compared to the controls. Concentrations of IL-6 and MCP-1 were significantly increased in the non-survivors compared to the survivors. Concentrations for IL-2, IL-6, IL-18 and GM-CSF were significantly higher in those cases that presented during the more acute stage of the disease. These findings suggest that a mixed cytokine response is present in dogs with babesiosis caused by B. rossi, and that an excessive pro-inflammatory response may result in a poor outcome. PMID:26953797

  3. Association of pro-inflammatory cytokines, cortisol and depression in patients with chronic obstructive pulmonary disease.

    PubMed

    Du, Yi-jie; Yang, Chang-jiang; Li, Bei; Wu, Xiao; Lv, Yu-bao; Jin, Hua-liang; Cao, Yu-xue; Sun, Jing; Luo, Qing-li; Gong, Wei-yi; Zhang, Hong-ying; Liu, Bao-jun; Wu, Jin-Ffng; Dong, Jing-cheng

    2014-08-01

    Evidence suggests that pro-inflammatory cytokines and cortisol play a crucial role in the etiology of chronic obstructive pulmonary disease (COPD) and depression. Depression occurs commonly among COPD patients and an earlier diagnosis would be beneficial. This study investigated the associations between depression, sputum cytokines and salivary cortisol in COPD patients. The diurnal rhythms of sputum IL-1, IL-6, TNF-α and salivary cortisol were measured in COPD patients with depression compared to those only with depression, or COPD and healthy controls. The area under the diurnal variation curves (AUC) over the 24h time course and relative diurnal variation (VAR) were calculated while correlation and regression analysis were performed. Patients with co-morbid depression and COPD showed an increasing sputum IL-1, sputum TNF-α AUC and a decreasing salivary cortisol VAR (P<0.001). The combination of sputum TNF-α AUC, sputum IL-1 AUC, sputum IL-6 AUC and salivary cortisol VAR performed best as a potential biomarker in the diagnosis of depression in COPD patients, with a sensitivity of 94.74% and a specificity of 96.67%. Positive correlations were found between sputum IL-1 AUC and sputum TNF-α AUC versus depressive symptoms, respectively a negative correlation was found between salivary cortisol VAR and depression. They were independently associated with depression in logistic regression models. Depression in COPD is associated with higher 24-h overall levels of sputum IL-1, TNF-α and flattened diurnal salivary cortisol. These non-invasive sputum and salivary biomarkers may serve as a simple clinical tool for the early diagnosis of depression in COPD patients.

  4. Cervical ripening and parturition in cows are driven by a cascade of pro-inflammatory cytokines.

    PubMed

    van Engelen, E; de Groot, M W; Breeveld-Dwarkasing, V N A; Everts, M E; van der Weyden, G C; Taverne, M A M; Rutten, V P M G

    2009-10-01

    The final stages of cervical ripening and parturition resemble an inflammatory process. Although the role of cytokines in both spontaneous and experimentally induced parturitions has been described in several small laboratory animals and humans, the involvement of pro-inflammatory and regulatory cytokines in physiologic parturition in cows has not been determined. In this study, the cytokine expression profiles were assessed in bovine cervical tissue at several stages of pregnancy and at parturition. Serial biopsy samples of the cervix were obtained from 10 cows on day 185 and day 275 of pregnancy (which was on average 5.4 days before parturition) and at parturition. Messenger RNA expression levels of interleukin (IL)-1beta, IL-6, IL-8, IL-10 and tumour necrosis factor (TNF)alpha were determined using real-time polymerase chain reaction and the number of neutrophils and eosinophils was estimated by Luna and Sirius Red staining. At parturition, IL-8 expression had increased 430-fold (p < 0.001) when compared with that of the day 185 of pregnancy, large numbers of neutrophils had invaded the cervix while eosinophils remained scarce, IL-1beta had increased eightfold (p < 0.05) and IL-6 had not changed significantly. Additionally, IL-10 was increased by 10-fold (p < 0.001) and TNFalpha decreased by 57% (p < 0.05) when compared with that of the day 185 of pregnancy. The large increase in expression of IL-8, enabling the influx of neutrophils, is indicative of its important role in the final stage of cervical ripening and at parturition. As previous studies have shown that neutrophils excrete matrix metalloproteinases (MMP), this might contribute to softening of the cervix. In contrast, the only slightly increased levels of IL-1, steady concentrations of IL-6 and decreased TNFalpha, the potential consequences of increased IL-10 expression, indicate that final cervical of cows in ripening at term parturition is an inflammatory process influenced by regulatory cytokines.

  5. Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits type I-IV allergic inflammation and pro-inflammatory enzymes.

    PubMed

    Lee, Ji Yun; Kim, Chang Jong

    2010-06-01

    We previously reported that arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan isolated from Forsythia koreana, exhibits anti-inflammatory, antioxidant, and analgesic effects in animal models. In addition, arctigenin inhibited eosinophil peroxidase and activated myeloperoxidase in inflamed tissues. In this study, we tested the effects of arctigenin on type I-IV allergic inflammation and pro-inflammatory enzymes in vitro and in vivo. Arctigenin significantly inhibited the heterologous passive cutaneous anaphylaxis induced by ovalbumin in mice at 15 mg/kg, p.o., and compound 48/80-induced histamine release from rat peritoneal mast cells at 10 microM. Arctigenin (15 mg/kg, p.o.) significantly inhibited reversed cutaneous anaphylaxis. Further, arctigenin (15 mg/kg, p.o.) significantly inhibited the Arthus reaction to sheep's red blood cells, decreasing the hemolysis titer, the hemagglutination titer, and the plaque-forming cell number for SRBCs. In addition, arctigenin significantly inhibited delayed type hypersensitivity at 15 mg/kg, p.o. and the formation of rosette-forming cells at 45 mg/kg, p.o. Contact dermatitis induced by picrylchloride and dinitrofluorobenzene was significantly (p < 0.05) inhibited by surface treatment with arctigenin (0.3 mg/ear). Furthermore, arctigenin dose-dependently inhibited pro-inflammatory enzymes, such as cyclooxygenase-1 and 2, 5-lipoxygenase, phospholipase A2, and phosphodiesterase. Our results show that arctigenin significantly inhibited B- and T-cell mediated allergic inflammation as well as pro-inflammatory enzymes.

  6. Naegleria fowleri lysate induces strong cytopathic effects and pro-inflammatory cytokine release in rat microglial cells.

    PubMed

    Lee, Yang-Jin; Park, Chang-Eun; Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Jinyoung; Jung, Suk-Yul; Shin, Ho-Joon

    2011-09-01

    Naegleria fowleri, a ubiquitous free-living ameba, causes fatal primary amebic meningoencephalitis in humans. N. fowleri trophozoites are known to induce cytopathic changes upon contact with microglial cells, including necrotic and apoptotic cell death and pro-inflammatory cytokine release. In this study, we treated rat microglial cells with amebic lysate to probe contact-independent mechanisms for cytotoxicity, determining through a combination of light microscopy and scanning and transmission electron microscopy whether N. fowleri lysate could effect on both necrosis and apoptosis on microglia in a time- as well as dose-dependent fashion. A (51)Cr release assay demonstrated pronounced lysate induction of cytotoxicity (71.5%) toward microglial cells by 24 hr after its addition to cultures. In an assay of pro-inflammatory cytokine release, microglial cells treated with N. fowleri lysate produced TNF-α, IL-6, and IL-1β, though generation of the former 2 cytokines was reduced with time, and that of the last increased throughout the experimental period. In summary, N. fowleri lysate exerted strong cytopathic effects on microglial cells, and elicited pro-inflammatory cytokine release as a primary immune response.

  7. Induction of protective therapy for autoimmune diseases by targeted DNA vaccines encoding pro-inflammatory cytokines and chemokines.

    PubMed

    Karin, Nathan

    2004-02-01

    T-cell-mediated autoimmune diseases such as multiple sclerosis, rheumatoid arthritis or type 1 diabetes result from an aggressive attack of self-components by autoimmune T-cells. Pro-inflammatory mediators, particularly cytokines and chemokines, direct the homing and effectorfunction of these cells. It has recently been demonstrated that the immune system, which can attack self-components, also generates 'beneficial' autoimmunity against pro-inflammatory mediators. During the course of an autoimmune condition, and to a much lesser extent in response to microbial inflammation, the immune system produces auto-antibodies to pro-inflammatory mediators. This reduces the harm from these diseases. We also discovered that targeted DNA vaccines could effectively amplify these responses to provide protective immunity. The underlying mechanism is partially understood. At the site of immunization, the relevant gene product is produced and then presented by dendritic cells/macrophages, which undergo activation due to an interaction of plasmid CpG with toll-like receptor 9 on the dendritic cell. This then activates CD4+ T-cells, which help the production of T-cell-dependent antibodies against the gene product of the vaccines. These antibodies neutralize their target product and suppress inflammation. This review explores this interesting concept and its therapeutic implications.

  8. Lovastatin dose-dependently potentiates the pro-inflammatory activity of lipopolysaccharide both in vitro and in vivo.

    PubMed

    Zanin, Valentina; Marcuzzi, Annalisa; Kleiner, Giulio; Piscianz, Elisa; Monasta, Lorenzo; Zacchigna, Serena; Crovella, Sergio; Zauli, Giorgio

    2013-12-01

    Since contradictory findings have been reported on potential effects of statins in modulating the inflammatory response, we have analysed the biological activity of lovastatin both in vitro using the Raw 264.7 murine macrophagic cell line and in vivo using BALB/c mice. When added to Raw 264.7 cells in combination with lipopolysaccharide, lovastatin significantly potentiated the release of interleukin-1β, interleukin-6 and interleukin-12 with respect to lipopolysaccharide alone and showed an additive effect on the release of nitric oxide. Similarly, when lovastatin was intraperitoneally administrated to BALB/c mice, it did not induce any pro-inflammatory effect when used alone, but it significantly potentiated the pro-inflammatory activity of lipopolysaccharide, in terms of number of intraperitoneal cells and serum levels of serum amyloid A, interleukin-1β, interleukin-6 and interleukin-12. A potential clinical implication of our study is that lovastatin might exert a pro-inflammatory activity in subjects affected by inflammatory processes, with clinically evident or subclinical infections.

  9. A TLR4-interacting SPA4 peptide inhibits LPS-induced lung inflammation.

    PubMed

    Ramani, Vijay; Madhusoodhanan, Rakhesh; Kosanke, Stanley; Awasthi, Shanjana

    2013-12-01

    The interaction between surfactant protein-A (SP-A) and TLR4 is important for host defense. We have recently identified an SPA4 peptide region from the interface of SP-A-TLR4 complex. Here, we studied the involvement of the SPA4 peptide region in SP-A-TLR4 interaction using a two-hybrid system, and biological effects of SPA4 peptide in cell systems and a mouse model. HEK293 cells were transfected with plasmid DNAs encoding SP-A or a SP-A-mutant lacking SPA4 peptide region and TLR4. Luciferase activity was measured as the end-point of SP-A-TLR4 interaction. NF-κB activity was also assessed simultaneously. Next, the dendritic cells or mice were challenged with Escherichia coli-derived LPS and treated with SPA4 peptide. Endotoxic shock-like symptoms and inflammatory parameters (TNF-α, NF-κB, leukocyte influx) were assessed. Our results reveal that the SPA4 peptide region contributes to the SP-A-TLR4 interaction and inhibits the LPS-induced NF-κB activity and TNF-α. We also observed that the SPA4 peptide inhibits LPS-induced expression of TNF-α, nuclear localization of NF-κB-p65 and cell influx, and alleviates the endotoxic shock-like symptoms in a mouse model. Our results suggest that the anti-inflammatory activity of the SPA4 peptide through its binding to TLR4 can be of therapeutic benefit.

  10. Transiently enhanced LPS-induced fever following hyperthermic stress in rabbits

    NASA Astrophysics Data System (ADS)

    Shibata, Masaaki; Uno, Tadashi; Riedel, Walter; Nishimaki, Michiyo; Watanabe, Kaori

    2005-11-01

    Hyperthermia has been shown to induce an enhanced febrile response to the bacterial-derived endotoxin lipopolysaccharide (LPS). The aim of the present study was to test the hypothesis that the enhanced LPS-induced fever seen in heat stressed (HS) animals is caused by leakage of intestinal bacterial LPS into the circulation. Male rabbits were rendered transiently hyperthermic (a maximum rectal temperature of 43°C) and divided into three groups. They were then allowed to recover in a room at 24°C for 1, 2 or 3 days post-HS. One day after injection with LPS, the post-HS rabbits exhibited significantly higher fevers than the controls, though this was not seen in rabbits at either 2 or 3 days post-HS. The plasma levels of endogenous LPS were significantly increased during the HS as compared to those seen in normothermic rabbits prior to HS. LPS fevers were not induced in these animals. One day post-HS, rabbits that had been pretreated with oral antibiotics exhibited significantly attenuated LPS levels. When challenged with human recombinant interleukin-1β instead of LPS, the 1-day post-HS rabbits did not respond with enhanced fevers. The plasma levels of TNFα increased similarly during LPS-induced fevers in both the control and 1-day post-HS rabbits, while the plasma levels of corticosterone and the osmolality of the 1-day post-HS rabbits showed no significant differences to those seen prior to the HS. These results suggest that the enhanced fever in the 1-day post-HS rabbits is LPS specific, and may be caused by increased leakage of intestinal endotoxin into blood circulation.

  11. Histone-like DNA binding protein of Streptococcus intermedius induces the expression of pro-inflammatory cytokines in human monocytes via activation of ERK1/2 and JNK pathways.

    PubMed

    Liu, Dali; Yumoto, Hiromichi; Hirota, Katsuhiko; Murakami, Keiji; Takahashi, Kanako; Hirao, Kouji; Matsuo, Takashi; Ohkura, Kazuto; Nagamune, Hideaki; Miyake, Yoichiro

    2008-01-01

    Streptococcus intermedius is a commensal associated with serious, deep-seated purulent infections in major organs, such as the brain and liver. Histone-like DNA binding protein (HLP) is an accessory architectural protein in a variety of bacterial cellular processes. In this study, we investigated the mechanisms of pro-inflammatory cytokine inductions in THP-1 cells by stimulation with recombinant HLP of S. intermedius (rSi-HLP). rSi-HLP stimulation-induced production of pro-inflammatory cytokines (IL-8, IL-1 beta and TNF-alpha) occurred in a time- and dose-dependent manner. In contrast with the heat-stable activity of DNA binding, the induction activity of rSi-HLP was heat-unstable. In subsequent studies, rSi-HLP acted cooperatively with lipoteichoic acid, the synthetic Toll-like receptor 2 agonist, Pam3CSK4, and the cytosolic nucleotide binding oligomerization domain 2 receptor agonist, muramyldipeptide. Furthermore, Western blot and blocking assays with specific inhibitors showed that rSi-HLP stimulation induced the activation of cell signal transduction pathways, extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). In addition to its physiological role in bacterial growth through DNA binding, these results indicate that Si-HLP can trigger a cascade of events that induce pro-inflammatory responses via ERK1/2 and JNK signal pathways, and suggest that bacterial HLP may contribute to the activation of host innate immunity during bacterial infection.

  12. Loss of Jak2 selectively suppresses DC-mediated innate immune response and protects mice from lethal dose of LPS-induced septic shock.

    PubMed

    Zhong, Jixin; Yang, Ping; Muta, Kenjiro; Dong, Robert; Marrero, Mario; Gong, Feili; Wang, Cong-Yi

    2010-03-09

    Given the importance of Jak2 in cell signaling, a critical role for Jak2 in immune cells especially dendritic cells (DCs) has long been proposed. The exact function for Jak2 in DCs, however, remained poorly understood as Jak2 deficiency leads to embryonic lethality. Here we established Jak2 deficiency in adult Cre(+/+)Jak2(fl/fl) mice by tamoxifen induction. Loss of Jak2 significantly impaired DC development as manifested by reduced BMDC yield, smaller spleen size and reduced percentage of DCs in total splenocytes. Jak2 was also crucial for the capacity of DCs to mediate innate immune response. Jak2(-/-) DCs were less potent in response to inflammatory stimuli and showed reduced capacity to secrete proinflammatory cytokines such as TNFalpha and IL-12. As a result, Jak2(-/-) mice were defective for the early clearance of Listeria after infection. However, their potency to mediate adaptive immune response was not affected. Unlike DCs, Jak2(-/-) macrophages showed similar capacity secretion of proinflammatory cytokines, suggesting that Jak2 selectively modulates innate immune response in a DC-dependent manner. Consistent with these results, Jak2(-/-) mice were remarkably resistant to lethal dose of LPS-induced septic shock, a deadly sepsis characterized by the excessive innate immune response, and adoptive transfer of normal DCs restored their susceptibility to LPS-induced septic shock. Mechanistic studies revealed that Jak2/SATA5 signaling is pivotal for DC development and maturation, while the capacity for DCs secretion of proinflammatory cytokines is regulated by both Jak2/STAT5 and Jak2/STAT6 signaling.

  13. Eleutherococcus senticosus extract attenuates LPS-induced iNOS expression through the inhibition of Akt and JNK pathways in murine macrophage.

    PubMed

    Jung, Chang Hwa; Jung, Hee; Shin, Yong-Cheol; Park, Jong-Hyeong; Jun, Chan-Yong; Kim, Hyung-Min; Yim, Hee-Sun; Shin, Min-Gyu; Bae, Hyun-Soo; Kim, Sung-Hoon; Ko, Seong-Gyu

    2007-08-15

    Eleutherococcus senticosus (Araliaceae) is immunological modulator which has been successfully used for anti-inflammatory effectors on anti-rheumatic diseases in oriental medicine. Mitogen-activated protein kinases (MAPKs) and Akt modulate the transcription of many genes involved in the inflammatory process. In this study, we investigated the inhibitory effects of Eleutherococcus senticosus on the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharides (LPS)-activated macrophages. Finally, we studied the involvement of MAPKs and Akt signaling in the protective effect of Eleutherococcus senticosus in LPS-activated macrophages. Eleutherococcus senticosus significantly attenuated LPS-induced iNOS expression but not COX-2 expression. In using the standard inhibitors (MAPKs and Akt), our results show that Eleutherococcus senticosus downregulates inflammatory iNOS expression by blocking JNK and Akt activation.

  14. ROLE OF CELL SIGNALING IN PROTECTION FROM DIESEL AND LPS INDUCED ACUTE LUNG INJURY

    EPA Science Inventory

    We have previously demonstrated in CD-1 mice that pre-administration of N-acetyl cysteine (NAC) or the p38 MAP kinase inhibitor (SB203580) reduces acute lung injury and inflammation following pulmonary exposures to diesel exhaust particles (DEP) or lipopolysaccharide (LPS). Here ...

  15. Marathon performance but not BMI affects post-marathon pro-inflammatory and cartilage biomarkers.

    PubMed

    Mündermann, Annegret; Geurts, Jeroen; Hügle, Thomas; Nickel, Thomas; Schmidt-Trucksäss, Arno; Halle, Martin; Hanssen, Henner

    2017-04-01

    We tested the hypothesis that changes in serum cartilage oligomeric matrix protein (COMP), tumour necrosis factor α (TNF-α), interleukin-6 (IL-6) and high-sensitivity C-reactive protein (hsCRP) concentration after regular endurance training and running a marathon race depend on body mass index (BMI) and/or on marathon performance. Blood samples were collected from 45 runners of varying BMI and running experience before and after a 10-week marathon training programme and before, immediately and 24 h after a marathon race. Serum biomarker concentrations, BMI and marathon finishing time were measured. The mean (95% confidence interval (CI)) changes from before to immediately after the marathon were COMP: 4.09 U/L (3.39-4.79 U/L); TNF-α: -1.17 mg/L (-2.58 to 0.25 mg/L); IL-6: 12.0 pg/mL (11.4-12.5 pg/mL); and hsCRP: -0.08 pg/mL (-0.14 to -0.3 pg/mL). The mean (95% CI) changes from immediately after to 24 h after the marathon were COMP: 0.35 U/L (-0.88 to 1.57 U/L); TNF-α: -0.43 mg/L (-0.99 to 0.13 mg/L); IL-6: -9.9 pg/mL (-10.5 to -9.4 pg/mL); and hsCRP: 1.52 pg/mL (1.25-1.79 pg/mL). BMI did not affect changes in biomarker concentrations. Differences in marathon finishing time explained 32% of variability in changes in serum hsCRP and 28% of variability in changes in serum COMP during the 24 h recovery after the marathon race (P < 0.001). Slower marathon finishing time but not a higher BMI modulates increases in pro-inflammatory markers or cartilage markers following a marathon race.

  16. Prolonged REM sleep restriction induces metabolic syndrome-related changes: Mediation by pro-inflammatory cytokines.

    PubMed

    Venancio, Daniel Paulino; Suchecki, Deborah

    2015-07-01

    Chronic sleep restriction in human beings results in metabolic abnormalities, including changes in the control of glucose homeostasis, increased body mass and risk of cardiovascular disease. In rats, 96h of REM sleep deprivation increases caloric intake, but retards body weight gain. Moreover, this procedure increases the expression of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), which may be involved with the molecular mechanism proposed to mediate insulin resistance. The goal of the present study was to assess the effects of a chronic protocol of sleep restriction on parameters of energy balance (food intake and body weight), leptin plasma levels and its hypothalamic receptors and mediators of the immune system in the retroperitoneal adipose tissue (RPAT). Thirty-four Wistar rats were distributed in control (CTL) and sleep restriction groups; the latter was kept onto individual narrow platforms immersed in water for 18h/day (from 16:00h to 10:00h), for 21days (SR21). Food intake was assessed daily, after each sleep restriction period and body weight was measured daily, after the animals were taken from the sleep deprivation chambers. At the end of the 21day of sleep restriction, rats were decapitated and RPAT was obtained for morphological and immune functional assays and expression of insulin receptor substrate 1 (IRS-1) was assessed in skeletal muscle. Another subset of animals was used to evaluate blood glucose clearance. The results replicated previous findings on energy balance, e.g., increased food intake and reduced body weight gain. There was a significant reduction of RPAT mass (p<0.001), of leptin plasma levels and hypothalamic leptin receptors. Conversely, increased levels of TNF-α and IL-6 and expression of phosphorylated NFκ-β in the RPAT of SR21 compared to CTL rats (p<0.01, for all parameters). SR21 rats also displayed reduced glucose clearance and IRS-1 expression than CTL rats (p<0.01). The

  17. MD-2 as the target of a novel small molecule, L6H21, in the attenuation of LPS-induced inflammatory response and sepsis

    PubMed Central

    Wang, Yi; Shan, Xiaoou; Chen, Gaozhi; Jiang, Lili; Wang, Zhe; Fang, Qilu; Liu, Xing; Wang, Jingying; Zhang, Yali; Wu, Wencan; Liang, Guang

    2015-01-01

    Background and Purpose Myeloid differentiation 2 (MD-2) recognizes LPS, which is required for TLR4 activation, and represents an attractive therapeutic target for severe inflammatory disorders. We previously found that a chalcone derivative, L6H21, could inhibit LPS-induced overexpression of TNF-α and IL-6 in macrophages. Here, we performed a series of biochemical experiments to investigate whether L6H21 specifically targets MD-2 and inhibits the interaction and signalling transduction of LPS-TLR4/MD-2. Experimental Approach The binding affinity of L6H21 to MD-2 protein was analysed using computer docking, surface plasmon resonance analysis, elisa, fluorescence measurements and flow cytometric analysis. The effects of L6H21 on MAPK and NF-κB signalling were determined using EMSA, fluorescence staining, Western blotting and immunoprecipitation. The anti-inflammatory effects of L6H21 were confirmed using elisa and RT-qPCR in vitro. The anti-inflammatory effects of L6H21 were also evaluated in septic C57BL/6 mice. Key Results Compound L6H21 inserted into the hydrophobic region of the MD-2 pocket, forming hydrogen bonds with Arg90 and Tyr102 in the MD-2 pocket. In vitro, L6H21 subsequently suppressed MAPK phosphorylation, NF-κB activation and cytokine expression in macrophages stimulated by LPS. In vivo, L6H21 pretreatment improved survival, prevented lung injury, decreased serum and hepatic cytokine levels in mice subjected to LPS. In addition, mice with MD-2 gene knockout were universally protected from the effects of LPS-induced septic shock. Conclusions and Implications Overall, this work demonstrated that the new chalcone derivative, L6H21, is a potential candidate for the treatment of sepsis. More importantly, the data confirmed that MD-2 is an important therapeutic target for inflammatory disorders. PMID:26076332

  18. Pro-inflammatory human Th17 cells selectively express P-glycoprotein and are refractory to glucocorticoids.

    PubMed

    Ramesh, Radha; Kozhaya, Lina; McKevitt, Kelly; Djuretic, Ivana M; Carlson, Thaddeus J; Quintero, Maria A; McCauley, Jacob L; Abreu, Maria T; Unutmaz, Derya; Sundrud, Mark S

    2014-01-13

    IL-17A-expressing CD4(+) T cells (Th17 cells) are generally regarded as key effectors of autoimmune inflammation. However, not all Th17 cells are pro-inflammatory. Pathogenic Th17 cells that induce autoimmunity in mice are distinguished from nonpathogenic Th17 cells by a unique transcriptional signature, including high Il23r expression, and these cells require Il23r for their inflammatory function. In contrast, defining features of human pro-inflammatory Th17 cells are unknown. We show that pro-inflammatory human Th17 cells are restricted to a subset of CCR6(+)CXCR3(hi)CCR4(lo)CCR10(-)CD161(+) cells that transiently express c-Kit and stably express P-glycoprotein (P-gp)/multi-drug resistance type 1 (MDR1). In contrast to MDR1(-) Th1 or Th17 cells, MDR1(+) Th17 cells produce both Th17 (IL-17A, IL-17F, and IL-22) and Th1 (IFN-γ) cytokines upon TCR stimulation and do not express IL-10 or other anti-inflammatory molecules. These cells also display a transcriptional signature akin to pathogenic mouse Th17 cells and show heightened functional responses to IL-23 stimulation. In vivo, MDR1(+) Th17 cells are enriched and activated in the gut of Crohn's disease patients. Furthermore, MDR1(+) Th17 cells are refractory to several glucocorticoids used to treat clinical autoimmune disease. Thus, MDR1(+) Th17 cells may be important mediators of chronic inflammation, particularly in clinical settings of steroid resistant inflammatory disease.

  19. Imbalances in Mobilization and Activation of Pro-Inflammatory and Vascular Reparative Bone Marrow-Derived Cells in Diabetic Retinopathy.

    PubMed

    Chakravarthy, Harshini; Beli, Eleni; Navitskaya, Svetlana; O'Reilly, Sandra; Wang, Qi; Kady, Nermin; Huang, Chao; Grant, Maria B; Busik, Julia V

    2016-01-01

    Diabetic retinopathy is a sight-threatening complication of diabetes, affecting 65% of patients after 10 years of the disease. Diabetic metabolic insult leads to chronic low-grade inflammation, retinal endothelial cell loss and inadequate vascular repair. This is partly due to bone marrow (BM) pathology leading to increased activity of BM-derived pro-inflammatory monocytes and impaired function of BM-derived reparative circulating angiogenic cells (CACs). We propose that diabetes has a significant long-term effect on the nature and proportion of BM-derived cells that circulate in the blood, localize to the retina and home back to their BM niche. Using a streptozotocin mouse model of diabetic retinopathy with GFP BM-transplantation, we have demonstrated that BM-derived circulating pro-inflammatory monocytes are increased in diabetes while reparative CACs are trapped in the BM and spleen, with impaired release into circulation. Diabetes also alters activation of splenocytes and BM-derived dendritic cells in response to LPS stimulation. A majority of the BM-derived GFP cells that migrate to the retina express microglial markers, while others express endothelial, pericyte and Müller cell markers. Diabetes significantly increases infiltration of BM-derived microglia in an activated state, while reducing infiltration of BM-derived endothelial progenitor cells in the retina. Further, control CACs injected into the vitreous are very efficient at migrating back to their BM niche, whereas diabetic CACs have lost this ability, indicating that the in vivo homing efficiency of diabetic CACs is dramatically decreased. Moreover, diabetes causes a significant reduction in expression of specific integrins regulating CAC migration. Collectively, these findings indicate that BM pathology in diabetes could play a role in both increased pro-inflammatory state and inadequate vascular repair contributing to diabetic retinopathy.

  20. Imbalances in Mobilization and Activation of Pro-Inflammatory and Vascular Reparative Bone Marrow-Derived Cells in Diabetic Retinopathy

    PubMed Central

    Navitskaya, Svetlana; O’Reilly, Sandra; Wang, Qi; Kady, Nermin; Huang, Chao; Grant, Maria B.; Busik, Julia V.

    2016-01-01

    Diabetic retinopathy is a sight-threatening complication of diabetes, affecting 65% of patients after 10 years of the disease. Diabetic metabolic insult leads to chronic low-grade inflammation, retinal endothelial cell loss and inadequate vascular repair. This is partly due to bone marrow (BM) pathology leading to increased activity of BM-derived pro-inflammatory monocytes and impaired function of BM-derived reparative circulating angiogenic cells (CACs). We propose that diabetes has a significant long-term effect on the nature and proportion of BM-derived cells that circulate in the blood, localize to the retina and home back to their BM niche. Using a streptozotocin mouse model of diabetic retinopathy with GFP BM-transplantation, we have demonstrated that BM-derived circulating pro-inflammatory monocytes are increased in diabetes while reparative CACs are trapped in the BM and spleen, with impaired release into circulation. Diabetes also alters activation of splenocytes and BM-derived dendritic cells in response to LPS stimulation. A majority of the BM-derived GFP cells that migrate to the retina express microglial markers, while others express endothelial, pericyte and Müller cell markers. Diabetes significantly increases infiltration of BM-derived microglia in an activated state, while reducing infiltration of BM-derived endothelial progenitor cells in the retina. Further, control CACs injected into the vitreous are very efficient at migrating back to their BM niche, whereas diabetic CACs have lost this ability, indicating that the in vivo homing efficiency of diabetic CACs is dramatically decreased. Moreover, diabetes causes a significant reduction in expression of specific integrins regulating CAC migration. Collectively, these findings indicate that BM pathology in diabetes could play a role in both increased pro-inflammatory state and inadequate vascular repair contributing to diabetic retinopathy. PMID:26760976

  1. Better cognitive control of emotional information is associated with reduced pro-inflammatory cytokine reactivity to emotional stress.

    PubMed

    Shields, Grant S; Kuchenbecker, Shari Young; Pressman, Sarah D; Sumida, Ken D; Slavich, George M

    2016-01-01

    Stress is strongly associated with several mental and physical health problems that involve inflammation, including asthma, cardiovascular disease, certain types of cancer, and depression. It has been hypothesized that better cognitive control of emotional information may lead to reduced inflammatory reactivity to stress and thus better health, but to date no studies have examined whether differences in cognitive control predict pro-inflammatory cytokine responses to stress. To address this issue, we conducted a laboratory-based experimental study in which we randomly assigned healthy young-adult females to either an acute emotional stress (emotionally evocative video) or no-stress (control video) condition. Salivary levels of the key pro-inflammatory cytokines IL-1β, IL-6, and IL-8 were measured before and after the experimental manipulation, and following the last cytokine sample, we assessed participants' cognitive control of emotional information using an emotional Stroop task. We also assessed participants' cortisol levels before and after the manipulation to verify that documented effects were specific to cytokines and not simply due to increased nonwater salivary output. As hypothesized, the emotional stressor triggered significant increases in IL-1β, IL-6, and IL-8. Moreover, even in fully adjusted models, better cognitive control following the emotional (but not control) video predicted less pronounced cytokine responses to that stressor. In contrast, no effects were observed for cortisol. These data thus indicate that better cognitive control specifically following an emotional stressor is uniquely associated with less pronounced pro-inflammatory cytokine reactivity to such stress. These findings may therefore help explain why superior cognitive control portends better health over the lifespan.

  2. Apigenin inhibits PMA-induced expression of pro-inflammatory cytokines and AP-1 factors in A549 cells.

    PubMed

    Patil, Rajeshwari H; Babu, R L; Naveen Kumar, M; Kiran Kumar, K M; Hegde, Shubha M; Ramesh, Govindarajan T; Chidananda Sharma, S

    2015-05-01

    Acute and chronic alveolar or bronchial inflammation is thought to be central to the pathogenesis of many respiratory disorders. Cytokines and granulocyte macrophage colony-stimulating factors (GM-CSF) play an important role in chronic inflammation. Activator protein-1 (AP-1) the superfamily of transcription factors is involved in proliferation, differentiation, apoptosis, and transformation including inflammation. Understanding the function and regulation of proinflammatory factors involved in inflammation may provide the novel therapeutic strategies in the treatment of inflammatory diseases. Our aim of the present study is to investigate the pro-inflammatory cytokines and pattern of AP-1 factors expressed during activation of lung adenocarcinoma A549 cells by Phorbol-12-myristate-13-acetate (PMA) and to understand the anti-inflammatory effect of apigenin. A549 cells were treated with and without PMA or apigenin, and the cell viability was assessed by MTT assay. Expressions of inflammatory mediators and different AP-1 factors were analyzed by semi-quantitative RT-PCR. IL-6 protein secreted was analyzed by ELISA, and expressions of IL-1β, c-Jun, and c-Fos proteins were analyzed by Western blotting. Activation of A549 cells by PMA, induced the expression of pro-inflammatory cytokine (IL-1β, IL-2, IL-6, IL-8, and TNF-α) mRNAs and secretion of IL-6 and the expression of specific AP-1 factors (c-Jun, c-Fos, and Fra-1). Treatment of cells with apigenin, significantly inhibited PMA-stimulated mRNA expression of above pro-inflammatory cytokines, AP-1 factors, cyclooxygenase-2, and secretion of IL-6 protein. Results suggested that the AP-1 factors may be involved in inflammation and apigenin has anti-inflammatory effect, which may be useful for therapeutic management of lung inflammatory diseases.

  3. Pro-inflammatory Macrophages Sustain Pyruvate Oxidation through Pyruvate Dehydrogenase for the Synthesis of Itaconate and to Enable Cytokine Expression.

    PubMed

    Meiser, Johannes; Krämer, Lisa; Sapcariu, Sean C; Battello, Nadia; Ghelfi, Jenny; D'Herouel, Aymeric Fouquier; Skupin, Alexander; Hiller, Karsten

    2016-02-19

    Upon stimulation with Th1 cytokines or bacterial lipopolysaccharides, resting macrophages shift their phenotype toward a pro-inflammatory state as part of the innate immune response. LPS-activated macrophages undergo profound metabolic changes to adapt to these new physiological requirements. One key step to mediate this metabolic adaptation is the stabilization of HIF1α, which leads to increased glycolysis and lactate release, as well as decreased oxygen consumption. HIF1 abundance can result in the induction of the gene encoding pyruvate dehydrogenase kinase 1 (PDK1), which inhibits pyruvate dehydrogenase (PDH) via phosphorylation. Therefore, it has been speculated that pyruvate oxidation through PDH is decreased in pro-inflammatory macrophages. However, to answer this open question, an in-depth analysis of this metabolic branching point was so far lacking. In this work, we applied stable isotope-assisted metabolomics techniques and demonstrate that pyruvate oxidation is maintained in mature pro-inflammatory macrophages. Glucose-derived pyruvate is oxidized via PDH to generate citrate in the mitochondria. Citrate is used for the synthesis of the antimicrobial metabolite itaconate and for lipogenesis. An increased demand for these metabolites decreases citrate oxidation through the tricarboxylic acid cycle, whereas increased glutamine uptake serves to replenish the TCA cycle. Furthermore, we found that the PDH flux is maintained by unchanged PDK1 abundance, despite the presence of HIF1. By pharmacological intervention, we demonstrate that the PDH flux is an important node for M(LPS) macrophage activation. Therefore, PDH represents a metabolic intervention point that might become a research target for translational medicine to treat chronic inflammatory diseases.

  4. Identification of (poly)phenol treatments that modulate the release of pro-inflammatory cytokines by human lymphocytes.

    PubMed

    Ford, Christopher T; Richardson, Siân; McArdle, Francis; Lotito, Silvina B; Crozier, Alan; McArdle, Anne; Jackson, Malcolm J

    2016-05-28

    Diets rich in fruits and vegetables (FV), which contain (poly)phenols, protect against age-related inflammation and chronic diseases. T-lymphocytes contribute to systemic cytokine production and are modulated by FV intake. Little is known about the relative potency of different (poly)phenols in modulating cytokine release by lymphocytes. We compared thirty-one (poly)phenols and six (poly)phenol mixtures for effects on pro-inflammatory cytokine release by Jurkat T-lymphocytes. Test compounds were incubated with Jurkat cells for 48 h at 1 and 30 µm, with or without phorbol ester treatment at 24 h to induce cytokine release. Three test compounds that reduced cytokine release were further incubated with primary lymphocytes at 0·2 and 1 µm for 24 h, with lipopolysaccharide added at 5 h. Cytokine release was measured, and generation of H2O2 by test compounds was determined to assess any potential correlations with cytokine release. A number of (poly)phenols significantly altered cytokine release from Jurkat cells (P<0·05), but H2O2 generation did not correlate with cytokine release. Resveratrol, isorhamnetin, curcumin, vanillic acid and specific (poly)phenol mixtures reduced pro-inflammatory cytokine release from T-lymphocytes, and there was evidence for interaction between (poly)phenols to further modulate cytokine release. The release of interferon-γ induced protein 10 by primary lymphocytes was significantly reduced following treatment with 1 µm isorhamnetin (P<0·05). These results suggest that (poly)phenols derived from onions, turmeric, red grapes, green tea and açai berries may help reduce the release of pro-inflammatory mediators in people at risk of chronic inflammation.

  5. Endometritis Increases Pro-inflammatory Cytokines in Follicular Fluid and Cervico-vaginal Mucus in the Buffalo Cow.

    PubMed

    Boby, Jones; Kumar, Harendra; Gupta, Harihar Prasad; Jan, Mustapha Hussain; Singh, Sanjay Kumar; Patra, Manas Kumar; Nandi, Sukdeb; Abraham, Asha; Krishnaswamy, Narayanan

    2016-11-17

    Emerging evidence shows that some of the pro-inflammatory cytokines are elevated not only in the endometrium but also in the follicular fluid of cows with endometritis. Developing a cervico-vaginal mucus (CVM) based test has the potential for becoming a pen-side test because of the ease of sample collection. The present study describes the results of two different experiments. The first experiment was conducted to investigate the influence of endometritis on the proinflammatory cytokines of follicular fluid based on the reproductive tracts of buffalo collected at a slaughter house Buffalo genitalia were categorized into purulent endometritis (PE), cytological endometritis (CE), and non-endometritis (NE) based on the white-side test and endometrial cytology, respectively (n = 14/group). Each group was subdivided into follicular and mid-luteal stage (n = 7/stage) and the follicular fluid was collected from the largest follicle. Second experiment was done to study the difference in the levels of proinflammatory cytokines in the CVM of repeat breeders with subclinical endometritis presented to the clinic. CVM was collected from the repeaters (n = 10) and non-repeaters (n = 10) through aseptic trans-vaginal aspiration. The pro-inflammatory cytokines such as IL-1β, IL-6, IL-8, and TNFα were quantitated through bovine specific ELISA kits. Significantly higher concentrations of pro-inflammatory cytokines (IL-1β, IL-8, IL-6, and TNFα) along with low intra-follicular estradiol in buffaloes of PE and CE groups suggest that endometritis impedes the follicular steroidogenesis. Significantly higher concentration of IL-1β and TNF-α in the CVM of repeaters indicate their potential as a pen-side diagnostic test for CE.

  6. Pro-inflammatory Macrophages Sustain Pyruvate Oxidation through Pyruvate Dehydrogenase for the Synthesis of Itaconate and to Enable Cytokine Expression*

    PubMed Central

    Meiser, Johannes; Krämer, Lisa; Sapcariu, Sean C.; Battello, Nadia; Ghelfi, Jenny; D'Herouel, Aymeric Fouquier; Skupin, Alexander; Hiller, Karsten

    2016-01-01

    Upon stimulation with Th1 cytokines or bacterial lipopolysaccharides, resting macrophages shift their phenotype toward a pro-inflammatory state as part of the innate immune response. LPS-activated macrophages undergo profound metabolic changes to adapt to these new physiological requirements. One key step to mediate this metabolic adaptation is the stabilization of HIF1α, which leads to increased glycolysis and lactate release, as well as decreased oxygen consumption. HIF1 abundance can result in the induction of the gene encoding pyruvate dehydrogenase kinase 1 (PDK1), which inhibits pyruvate dehydrogenase (PDH) via phosphorylation. Therefore, it has been speculated that pyruvate oxidation through PDH is decreased in pro-inflammatory macrophages. However, to answer this open question, an in-depth analysis of this metabolic branching point was so far lacking. In this work, we applied stable isotope-assisted metabolomics techniques and demonstrate that pyruvate oxidation is maintained in mature pro-inflammatory macrophages. Glucose-derived pyruvate is oxidized via PDH to generate citrate in the mitochondria. Citrate is used for the synthesis of the antimicrobial metabolite itaconate and for lipogenesis. An increased demand for these metabolites decreases citrate oxidation through the tricarboxylic acid cycle, whereas increased glutamine uptake serves to replenish the TCA cycle. Furthermore, we found that the PDH flux is maintained by unchanged PDK1 abundance, despite the presence of HIF1. By pharmacological intervention, we demonstrate that the PDH flux is an important node for M(LPS) macrophage activation. Therefore, PDH represents a metabolic intervention point that might become a research target for translational medicine to treat chronic inflammatory diseases. PMID:26679997

  7. Effects of baicalin on alveolar fluid clearance and α-ENaC expression in rats with LPS-induced acute lung injury.

    PubMed

    Deng, Jia; Wang, Dao-Xin; Liang, Ai-Ling; Tang, Jing; Xiang, Da-Kai

    2017-02-01

    Baicalin has been reported to attenuate lung edema in the process of lung injury. However, the effect of baicalin on alveolar fluid clearance (AFC) and epithelial sodium channel (ENaC) expression has not been tested. Sprague-Dawley rats were anesthetized and intratracheally injected with either 1 mg/kg lipopolysaccharide (LPS) or saline vehicle. Baicalin with various concentrations (10, 50, and 100 mg/kg) was injected intraperitoneally 30 min before administration of LPS. Then lungs were isolated for measurement of AFC, cyclic adenosine monophosphate (cAMP) level, and cellular localization of α-ENaC. Moreover, mouse alveolar type II (ATII) epithelial cell line was incubated with baicalin (30 μmol/L), adenylate cyclase inhibitor SQ22536 (10 μmol/L), or cAMP-dependent protein kinase inhibitor (PKA) KT5720 (0.3 μmol/L) 15 min before LPS (1 μg/mL) incubation. Protein expression of α-ENaC was detected by Western blot. Baicalin increased cAMP concentration and AFC in a dose-dependent manner in rats with LPS-induced acute lung injury. The increase of AFC induced by baicalin was associated with an increase in the abundance of α-ENaC protein. SQ22536 and KT5720 prevented the increase of α-ENaC expression caused by baicalin in vitro. These findings suggest that baicalin prevents LPS-induced reduction of AFC by upregulating α-ENaC protein expression, which is activated by stimulating cAMP/PKA signaling pathway.

  8. The anti-inflammatory effect of alloferon on UVB-induced skin inflammation through the down-regulation of pro-inflammatory cytokines.

    PubMed

    Kim, Yejin; Lee, Seung Koo; Bae, Seyeon; Kim, Hyemin; Park, Yunseong; Chu, Nag Kyun; Kim, Stephanie G; Kim, Hang-Rae; Hwang, Young-Il; Kang, Jae Seung; Lee, Wang Jae

    2013-01-01

    UVB irradiation can induce biological changes in the skin, modulate immune responses and activate inflammatory reactions leading to skin damage. Alloferon, which is isolated from the blood of an experimentally infected insect, the blow fly Calliphora vicina, is known for its anti-viral and anti-tumor activities in mice model. However, the effect of alloferon against UVB irradiation and its specific mechanism are still unknown. In this study, we investigated the effect of alloferon on UVB-induced cutaneous inflammation in a human keratinocyte cell line, HaCaT. RPA and ELISA data showed that alloferon decreased the production of UVB-induced pro-inflammatory cytokines, such as IL-1α, IL-1β, IL-6 and IL-18, both on the mRNA and protein level. Western blot analysis was done to determine if alloferon regulates the MAPK signaling pathway since the MAPK signaling pathway is activated by numerous inflammatory mediators and environmental stresses including UVB irradiation. Alloferon inhibited the activation of p38 mitogen-activated protein kinase (MAPK) induced by UVB irradiation. Furthermore, the topical application of alloferon on the UVB exposed skin of hairless mice showed that alloferon treatment significantly inhibited an increase in epithelial thickness in chronic UVB-irradiated mouse skin. These findings suggest that alloferon has significant anti-inflammatory effects not only on UVB-induced inflammation in the human keratinocyte cell line, HaCaT, but also on mouse skin.

  9. Protective Effects of Platycodin D on Lipopolysaccharide-Induced Acute Lung Injury by Activating LXRα–ABCA1 Signaling Pathway

    PubMed Central

    Hu, Xiaoyu; Fu, Yunhe; Lu, Xiaojie; Zhang, Zecai; Zhang, Wenlong; Cao, Yongguo; Zhang, Naisheng

    2017-01-01

    The purpose of this study was to investigate the protective effects of platycodin D (PLD) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and clarify the possible mechanism. An LPS-induced ALI model was used to confirm the anti-inflammatory activity of PLD in vivo. The A549 lung epithelial cells were used to investigate the molecular mechanism and targets of PLD in vitro. In vivo, the results showed that PLD significantly attenuated lung histopathologic changes, myeloperoxidase activity, and pro-inflammatory cytokines levels, including TNF-α, IL-1β, and IL-6. In vitro, PLD inhibited LPS-induced IL-6 and IL-8 production in LPS-stimulated A549 lung epithelial cells. Western blot analysis showed that PLD suppressed LPS-induced NF-κB and IRF3 activation. Moreover, PLD did not act though affecting the expression of TLR4. We also showed that PLD disrupted the formation of lipid rafts by depleting cholesterol and prevented LPS-induced TLR4 trafficking to lipid rafts, thereby blocking LPS-induced inflammatory response. Finally, PLD activated LXRα–ABCA1-dependent cholesterol efflux. Knockdown of LXRα abrogated the anti-inflammatory effects of PLD. The anti-inflammatory effects of PLD was associated with upregulation of the LXRα–ABCA1 pathway, which resulted in disrupting lipid rafts by depleting cholesterol and reducing translocation of TLR4 to lipid rafts. PMID:28096801

  10. Lycopene inhibits LPS-induced proinflammatory mediator inducible nitric oxide synthase in mouse macrophage cells.

    PubMed

    Rafi, Mohamed M; Yadav, Prem Narayan; Reyes, Marynell

    2007-01-01

    Lycopene is a fat-soluble red-orange carotenoid found primarily in tomatoes and tomato-derived products, including tomato sauce, tomato paste, and ketchup, and other dietary sources, including dried apricots, guava, watermelon, papaya, and pink grapefruit. In this study, we have demonstrated the molecular mechanism underlying the anti-inflammatory properties of lycopene using a mouse macrophage cell line (RAW 264.7). Treatment with lycopene (10 microM) inhibited lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production (40% compared with the control). Western blotting and reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that lycopene treatment decreased LPS-induced inducible nitric oxide synthase (iNOS) protein and mRNA expression in RAW 264.7 cells, respectively. These results suggest that lycopene has anti-inflammatory activity by inhibiting iNOS proteins and mRNA expressions in mouse macrophage cell lines. Furthermore, cyclooxygenase-2 (COX-2) protein and mRNA expression were not affected by treatment with lycopene.

  11. Benznidazole, a drug used in Chagas' disease, ameliorates LPS-induced inflammatory response in mice.

    PubMed

    Pascutti, María Fernanda; Pitashny, Milena; Nocito, Ana Lía; Guermonprez, Pierre; Amigorena, Sebastian; Wietzerbin, Juana; Serra, Esteban; Bottasso, Oscar; Revelli, Silvia

    2004-12-24

    Benznidazole (BZL) is a drug currently used for treating Chagas' disease. Given our earlier demonstration in which BZL downregulated cytokine and nitric oxide (NO) synthesis by LPS and/or IFN-gamma-stimulated murine macrophages, we have now analysed whether this compound could exert