Sample records for luciferase complementation imaging

  1. Luciferase Protein Complementation Assays for Bioluminescence Imaging of Cells and Mice

    PubMed Central

    Luker, Gary D.; Luker, Kathryn E.

    2015-01-01

    Summary Protein fragment complementation assays (PCAs) with luciferase reporters currently are the preferred method for detecting and quantifying protein-protein interactions in living animals. At the most basic level, PCAs involve fusion of two proteins of interest to enzymatically inactive fragments of luciferase. Upon association of the proteins of interest, the luciferase fragments are capable of reconstituting enzymatic activity to generate luminescence in vivo. In addition to bi-molecular luciferase PCAs, unimolecular biosensors for hormones, kinases, and proteases also have been developed using target peptides inserted between inactive luciferase fragments. Luciferase PCAs offer unprecedented opportunities to quantify dynamics of protein-protein interactions in intact cells and living animals, but successful use of luciferase PCAs in cells and mice involves careful consideration of many technical factors. This chapter discusses the design of luciferase PCAs appropriate for animal imaging, including construction of reporters, incorporation of reporters into cells and mice, imaging techniques, and data analysis. PMID:21153371

  2. Luciferase Complementation Imaging Assay in Nicotiana benthamiana Leaves for Transiently Determining Protein-protein Interaction Dynamics.

    PubMed

    Sun, Kaiwen; Zheng, Yuyu; Zhu, Ziqiang

    2017-11-20

    Protein-protein interactions are fundamental mechanisms for relaying signal transduction in most cellular processes; therefore, identification of novel protein-protein interaction pairs and monitoring protein interaction dynamics are of particular interest for revealing how plants respond to environmental factors and/or developmental signals. A plethora of approaches have been developed to examine protein-protein interactions, either in vitro or in vivo. Among them, the recently established luciferase complementation imaging (LCI) assay is the simplest and fastest method for demonstrating in vivo protein-protein interactions. In this assay, protein A or protein B is fused with the amino-terminal or carboxyl-terminal half of luciferase, respectively. When protein A interacts with protein B, the two halves of luciferase will be reconstituted to form a functional and active luciferase enzyme. Luciferase activity can be recorded with a luminometer or CCD-camera. Compared with other approaches, the LCI assay shows protein-protein interactions both qualitatively and quantitatively. Agrobacterium infiltration in Nicotiana benthamiana leaves is a widely used system for transient protein expression. With the combination of LCI and transient expression, these approaches show that the physical interaction between COP1 and SPA1 was gradually reduced after jasmonate treatment.

  3. Bioluminescent indicators for Ca2+ based on split Renilla luciferase complementation in living cells.

    PubMed

    Kaihara, Asami; Umezawa, Yoshio; Furukawa, Tetsushi

    2008-01-01

    Genetically encoded bioluminescent indicators for intracellular Ca2+ are described here with CaM-M13 interaction-induced complementation of split Renilla luciferase. The Ca2+-induced interaction between CaM and M13 leads to complementation of the N- and C-terminal halves of split Renilla luciferase in living cells. This intramolecular interaction results in the spontaneous and simultaneous emission of bioluminescence split Renilla luciferase. This is how intracellular Ca2+ is illuminated with the intramolecular complementation of split Renilla luciferase. The Ca2+-dependent spontaneous and simultaneous emission of bioluminescence promises to reveal Ca2+ dynamics in living cells, and also in vivo using the present indicators.

  4. Novel Bioluminescent Activatable Reporter for Src Tyrosine Kinase Activity in Living Mice

    PubMed Central

    Leng, Weibing; Li, Dezhi; Chen, Liang; Xia, Hongwei; Tang, Qiulin; Chen, Baoqin; Gong, Qiyong; Gao, Fabao; Bi, Feng

    2016-01-01

    Aberrant activation of the Src kinase is implicated in the development of a variety of human malignancies. However, it is almost impossible to monitor Src activity in an in vivo setting with current biochemical techniques. To facilitate the noninvasive investigation of the activity of Src kinase both in vitro and in vivo, we developed a genetically engineered, activatable bioluminescent reporter using split-luciferase complementation. The bioluminescence of this reporter can be used as a surrogate for Src activity in real time. This hybrid luciferase reporter was constructed by sandwiching a Src-dependent conformationally responsive unit (SH2 domain-Srcpep) between the split luciferase fragments. The complementation bioluminescence of this reporter was dependent on the Src activity status. In our study, Src kinase activity in cultured cells and tumor xenografts was monitored quantitatively and dynamically in response to clinical small-molecular kinase inhibitors, dasatinib and saracatinib. This system was also applied for high-throughput screening of Src inhibitors against a kinase inhibitor library in living cells. These results provide unique insights into drug development and pharmacokinetics/phoarmocodynamics of therapeutic drugs targeting Src signaling pathway enabling the optimization of drug administration schedules for maximum benefit. Using both Firefly and Renilla luciferase imaging, we have successfully monitored Src tyrosine kinase activity and Akt serine/threonine kinase activity concurrently in one tumor xenograft. This dual luciferase reporter imaging system will be helpful in exploring the complex signaling networks in vivo. The strategies reported here can also be extended to study and image other important kinases and the cross-talks among them. PMID:26941850

  5. Monitoring protein-protein interactions using split synthetic renilla luciferase protein-fragment-assisted complementation.

    PubMed

    Paulmurugan, R; Gambhir, S S

    2003-04-01

    In this study we developed an inducible synthetic renilla luciferase protein-fragment-assisted complementation-based bioluminescence assay to quantitatively measure real time protein-protein interactions in mammalian cells. We identified suitable sites to generate fragments of N and C portions of the protein that yield significant recovered activity through complementation. We validate complementation-based activation of split synthetic renilla luciferase protein driven by the interaction of two strongly interacting proteins, MyoD and Id, in five different cell lines utilizing transient transfection studies. The expression level of the system was also modulated by tumor necrosis factor alpha through NFkappaB-promoter/enhancer elements used to drive expression of the N portion of synthetic renilla luciferase reporter gene. This new system should help in studying protein-protein interactions and when used with other split reporters (e.g., split firefly luciferase) should help to monitor different components of an intracellular network.

  6. Monitoring Protein–Protein Interactions Using Split Synthetic Renilla Luciferase Protein-Fragment-Assisted Complementation

    PubMed Central

    Paulmurugan, R.; Gambhir, S. S.

    2014-01-01

    In this study we developed an inducible synthetic renilla luciferase protein-fragment-assisted complementation-based bioluminescence assay to quantitatively measure real time protein–protein interactions in mammalian cells. We identified suitable sites to generate fragments of N and C portions of the protein that yield significant recovered activity through complementation. We validate complementation-based activation of split synthetic renilla luciferase protein driven by the interaction of two strongly interacting proteins, MyoD and Id, in five different cell lines utilizing transient transfection studies. The expression level of the system was also modulated by tumor necrosis factor α through NFκB-promoter/enhancer elements used to drive expression of the N portion of synthetic renilla luciferase reporter gene. This new system should help in studying protein–protein interactions and when used with other split reporters (e.g., split firefly luciferase) should help to monitor different components of an intracellular network. PMID:12705589

  7. Studies of Dynamic Protein-Protein Interactions in Bacteria Using Renilla Luciferase Complementation Are Undermined by Nonspecific Enzyme Inhibition

    PubMed Central

    Hatzios, Stavroula K.; Ringgaard, Simon; Davis, Brigid M.; Waldor, Matthew K.

    2012-01-01

    The luciferase protein fragment complementation assay is a powerful tool for studying protein-protein interactions. Two inactive fragments of luciferase are genetically fused to interacting proteins, and when these two proteins interact, the luciferase fragments can reversibly associate and reconstitute enzyme activity. Though this technology has been used extensively in live eukaryotic cells, split luciferase complementation has not yet been applied to studies of dynamic protein-protein interactions in live bacteria. As proof of concept and to develop a new tool for studies of bacterial chemotaxis, fragments of Renilla luciferase (Rluc) were fused to the chemotaxis-associated response regulator CheY3 and its phosphatase CheZ in the enteric pathogen Vibrio cholerae. Luciferase activity was dependent on the presence of both CheY3 and CheZ fusion proteins, demonstrating the specificity of the assay. Furthermore, enzyme activity was markedly reduced in V. cholerae chemotaxis mutants, suggesting that this approach can measure defects in chemotactic signaling. However, attempts to measure changes in dynamic CheY3-CheZ interactions in response to various chemoeffectors were undermined by nonspecific inhibition of the full-length luciferase. These observations reveal an unexpected limitation of split Rluc complementation that may have implications for existing data and highlight the need for great caution when evaluating small molecule effects on dynamic protein-protein interactions using the split luciferase technology. PMID:22905225

  8. Studies of dynamic protein-protein interactions in bacteria using Renilla luciferase complementation are undermined by nonspecific enzyme inhibition.

    PubMed

    Hatzios, Stavroula K; Ringgaard, Simon; Davis, Brigid M; Waldor, Matthew K

    2012-01-01

    The luciferase protein fragment complementation assay is a powerful tool for studying protein-protein interactions. Two inactive fragments of luciferase are genetically fused to interacting proteins, and when these two proteins interact, the luciferase fragments can reversibly associate and reconstitute enzyme activity. Though this technology has been used extensively in live eukaryotic cells, split luciferase complementation has not yet been applied to studies of dynamic protein-protein interactions in live bacteria. As proof of concept and to develop a new tool for studies of bacterial chemotaxis, fragments of Renilla luciferase (Rluc) were fused to the chemotaxis-associated response regulator CheY3 and its phosphatase CheZ in the enteric pathogen Vibrio cholerae. Luciferase activity was dependent on the presence of both CheY3 and CheZ fusion proteins, demonstrating the specificity of the assay. Furthermore, enzyme activity was markedly reduced in V. cholerae chemotaxis mutants, suggesting that this approach can measure defects in chemotactic signaling. However, attempts to measure changes in dynamic CheY3-CheZ interactions in response to various chemoeffectors were undermined by nonspecific inhibition of the full-length luciferase. These observations reveal an unexpected limitation of split Rluc complementation that may have implications for existing data and highlight the need for great caution when evaluating small molecule effects on dynamic protein-protein interactions using the split luciferase technology.

  9. Dual-Color Click Beetle Luciferase Heteroprotein Fragment Complementation Assays

    PubMed Central

    Villalobos, Victor; Naik, Snehal; Bruinsma, Monique; Dothager, Robin S.; Pan, Mei-Hsiu; Samrakandi, Mustapha; Moss, Britney; Elhammali, Adnan; Piwnica-Worms, David

    2010-01-01

    Summary Understanding the functional complexity of protein interactions requires mapping biomolecular complexes within the cellular environment over biologically-relevant time scales. Herein we describe a novel set of reversible, multicolored heteroprotein complementation fragments based on various firefly and click beetle luciferases that utilize the same substrate, D-luciferin. Luciferase heteroprotein fragment complementation systems enabled dual-color quantification of two discreet pairs of interacting proteins simultaneously or two distinct proteins interacting with a third shared protein in live cells. Using real-time analysis of click beetle green and click beetle red luciferase heteroprotein fragment complementation applied to β-TrCP, an E3-ligase common to the regulation of both β-catenin and IκBα, GSK3β was identified as a novel candidate kinase regulating IκBα processing. These dual-color protein interaction switches may enable directed dynamic analysis of a variety of protein interactions in living cells. PMID:20851351

  10. Dual-Color Luciferase Complementation for Chemokine Receptor Signaling.

    PubMed

    Luker, Kathryn E; Luker, Gary D

    2016-01-01

    Chemokine receptors may share common ligands, setting up potential competition for ligand binding, and association of activated receptors with downstream signaling molecules such as β-arrestin. Determining the "winner" of competition for shared effector molecules is essential for understanding integrated functions of chemokine receptor signaling in normal physiology, disease, and response to therapy. We describe a dual-color click beetle luciferase complementation assay for cell-based analysis of interactions of two different chemokine receptors, CXCR4 and ACKR3, with the intracellular scaffolding protein β-arrestin 2. This assay provides real-time quantification of receptor activation and signaling in response to chemokine CXCL12. More broadly, this general imaging strategy can be applied to quantify interactions of any set of two proteins that interact with a common binding partner. © 2016 Elsevier Inc. All rights reserved.

  11. Dynamic monitoring of p53 translocation to mitochondria for the analysis of specific inhibitors using luciferase-fragment complementation.

    PubMed

    Noda, Natsumi; Awais, Raheela; Sutton, Robert; Awais, Muhammad; Ozawa, Takeaki

    2017-12-01

    Intracellular protein translocation plays a pivotal role in regulating complex biological processes, including cell death. The tumor suppressor p53 is a transcription factor activated by DNA damage and oxidative stress that also translocates from the cytosol into the mitochondrial matrix to facilitate necrotic cell death. However, specific inhibitors of p53 mitochondrial translocation are largely unknown. To explore the inhibitors of p53, we developed a bioluminescent probe to monitor p53 translocation from cytosol to mitochondria using luciferase fragment complementation assays. The probe is composed of a novel pair of luciferase fragments, the N-terminus of green click beetle luciferase CBG68 (CBGN) and multiple-complement luciferase fragment (McLuc1). The combination of luciferase fragments showed significant luminescence intensity and high signal-to-background ratio. When the p53 connected with McLuc1 translocates from cytosol into mitochondrial matrix, CBGN in mitochondrial matrix enables to complement with McLuc1, resulting in the restoration of the luminescence. The luminescence intensity was significantly increased under hydrogen peroxide-induced oxidative stress following the complementation of CBGN and McLuc1. Pifithrin-μ, a selective inhibitor of p53 mitochondrial translocation, prevented the mitochondrial translocation of the p53 probe in a concentration-dependent manner. Furthermore, the high luminescence intensity made it easier to visualize the p53 translocation at a single cell level under a bioluminescence microscope. This p53 mitochondrial translocation assay is a new tool for high-throughput screening to identify novel p53 inhibitors, which could be developed as drugs to treat diseases in which necrotic cell death is a major contributor. © 2017 Wiley Periodicals, Inc.

  12. Quantitative and Dynamic Imaging of ATM Kinase Activity by Bioluminescence Imaging.

    PubMed

    Nyati, Shyam; Young, Grant; Ross, Brian Dale; Rehemtulla, Alnawaz

    2017-01-01

    Ataxia telangiectasia mutated (ATM) is a serine/threonine kinase critical to the cellular DNA damage response, including DNA double strand breaks (DSBs). ATM activation results in the initiation of a complex cascade of events facilitating DNA damage repair, cell cycle checkpoint control, and survival. Traditionally, protein kinases have been analyzed in vitro using biochemical methods (kinase assays using purified proteins or immunological assays) requiring a large number of cells and cell lysis. Genetically encoded biosensors based on optical molecular imaging such as fluorescence or bioluminescence have been developed to enable interrogation of kinase activities in live cells with a high signal to background. We have genetically engineered a hybrid protein whose bioluminescent activity is dependent on the ATM-mediated phosphorylation of a substrate. The engineered protein consists of the split luciferase-based protein complementation pair with a CHK2 (a substrate for ATM kinase activity) target sequence and a phospho-serine/threonine-binding domain, FHA2, derived from yeast Rad53. Phosphorylation of the serine residue within the target sequence by ATM would lead to its interaction with the phospho-serine-binding domain, thereby preventing complementation of the split luciferase pair and loss of reporter activity. Bioluminescence imaging of reporter-expressing cells in cultured plates or as mouse xenografts provides a quantitative surrogate for ATM kinase activity and therefore the cellular DNA damage response in a noninvasive, dynamic fashion.

  13. High-Sensitivity Real-Time Imaging of Dual Protein-Protein Interactions in Living Subjects Using Multicolor Luciferases

    PubMed Central

    Hida, Naoki; Awais, Muhammad; Takeuchi, Masaki; Ueno, Naoto; Tashiro, Mayuri; Takagi, Chiyo; Singh, Tanuja; Hayashi, Makoto; Ohmiya, Yoshihiro; Ozawa, Takeaki

    2009-01-01

    Networks of protein-protein interactions play key roles in numerous important biological processes in living subjects. An effective methodology to assess protein-protein interactions in living cells of interest is protein-fragment complement assay (PCA). Particularly the assays using fluorescent proteins are powerful techniques, but they do not directly track interactions because of its irreversibility or the time for chromophore formation. By contrast, PCAs using bioluminescent proteins can overcome these drawbacks. We herein describe an imaging method for real-time analysis of protein-protein interactions using multicolor luciferases with different spectral characteristics. The sensitivity and signal-to-background ratio were improved considerably by developing a carboxy-terminal fragment engineered from a click beetle luciferase. We demonstrate its utility in spatiotemporal characterization of Smad1–Smad4 and Smad2–Smad4 interactions in early developing stages of a single living Xenopus laevis embryo. We also describe the value of this method by application of specific protein-protein interactions in cell cultures and living mice. This technique supports quantitative analyses and imaging of versatile protein-protein interactions with a selective luminescence wavelength in opaque or strongly auto-fluorescent living subjects. PMID:19536355

  14. Quantitative and Dynamic Imaging of ATM Kinase Activity.

    PubMed

    Nyati, Shyam; Young, Grant; Ross, Brian Dale; Rehemtulla, Alnawaz

    2017-01-01

    Ataxia telangiectasia mutated (ATM) is a serine/threonine kinase critical to the cellular DNA-damage response, including DNA double-strand breaks (DSBs). ATM activation results in the initiation of a complex cascade of events facilitating DNA damage repair, cell cycle checkpoint control, and survival. Traditionally, protein kinases have been analyzed in vitro using biochemical methods (kinase assays using purified proteins or immunological assays) requiring a large number of cells and cell lysis. Genetically encoded biosensors based on optical molecular imaging such as fluorescence or bioluminescence have been developed to enable interrogation of kinase activities in live cells with a high signal to background. We have genetically engineered a hybrid protein whose bioluminescent activity is dependent on the ATM-mediated phosphorylation of a substrate. The engineered protein consists of the split luciferase-based protein complementation pair with a CHK2 (a substrate for ATM kinase activity) target sequence and a phospho-serine/threonine-binding domain, FHA2, derived from yeast Rad53. Phosphorylation of the serine residue within the target sequence by ATM would lead to its interaction with the phospho-serine-binding domain, thereby preventing complementation of the split luciferase pair and loss of reporter activity. Bioluminescence imaging of reporter expressing cells in cultured plates or as mouse xenografts provides a quantitative surrogate for ATM kinase activity and therefore the cellular DNA damage response in a noninvasive, dynamic fashion.

  15. Split luciferase complementation assay for the analysis of G protein-coupled receptor ligand response in Saccharomyces cerevisiae.

    PubMed

    Fukutani, Yosuke; Ishii, Jun; Kondo, Akihiko; Ozawa, Takeaki; Matsunami, Hiroaki; Yohda, Masafumi

    2017-06-01

    The budding yeast Saccharomyces cerevisiae is equipped with G protein-coupled receptors (GPCR). Because the yeast GPCR signaling mechanism is partly similar to that of the mammalian system, S. cerevisiae can be used for a host of mammalian GPCR expression and ligand-mediated activation assays. However, currently available yeast systems require several hours to observe the responses because they depend on the expression of reporter genes. In this study, we attempted to develop a simple GPCR assay system using split luciferase and β-arrestin, which are independent of the endogenous S. cerevisiae GPCR signaling pathways. We applied the split luciferase complementation assay method to S. cerevisiae and found that it can be used to analyze the ligand response of the human somatostatin receptor in S. cerevisiae. On the contrary, the response of the pheromone receptor Ste2 was not observed by the assay. Thus, the split luciferase complementation should be free from the effect of the endogenous GPCR signaling. Biotechnol. Bioeng. 2017;114: 1354-1361. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Split-luciferase complementary assay: applications, recent developments, and future perspectives.

    PubMed

    Azad, Taha; Tashakor, Amin; Hosseinkhani, Saman

    2014-09-01

    Bioluminescent systems are considered as potent reporter systems for bioanalysis since they have specific characteristics, such as relatively high quantum yields and photon emission over a wide range of colors from green to red. Biochemical events are mostly accomplished through large protein machines. These molecular complexes are built from a few to many proteins organized through their interactions. These protein-protein interactions are vital to facilitate the biological activity of cells. The split-luciferase complementation assay makes the study of two or more interacting proteins possible. In this technique, each of the two domains of luciferase is attached to each partner of two interacting proteins. On interaction of those proteins, luciferase fragments are placed close to each other and form a complemented luciferase, which produces a luminescent signal. Split luciferase is an effective tool for assaying biochemical metabolites, where a domain or an intact protein is inserted into an internally fragmented luciferase, resulting in ligand binding, which causes a change in the emitted signals. We review the various applications of this novel luminescent biosensor in studying protein-protein interactions and assaying metabolites involved in analytical biochemistry, cell communication and cell signaling, molecular biology, and the fate of the whole cell, and show that luciferase-based biosensors are powerful tools that can be applied for diagnostic and therapeutic purposes.

  17. Development of red-shifted mutants derived from luciferase of Brazilian click beetle Pyrearinus termitilluminans

    NASA Astrophysics Data System (ADS)

    Nishiguchi, Tomoki; Yamada, Toshimichi; Nasu, Yusuke; Ito, Mashiho; Yoshimura, Hideaki; Ozawa, Takeaki

    2015-10-01

    Luciferase, a bioluminescent protein, has been used as an analytical tool to visualize intracellular phenomena. Luciferase with red light emission is particularly useful for bioluminescence imaging because of its high transmittance in mammalian tissues. However, the luminescence intensity of existing luciferases with their emission over 600 nm is insufficient for imaging studies because of their weak intensities. We developed mutants of Emerald luciferase (Eluc) from Brazilian click beetle (Pyrearinus termitilluminans), which emits the strongest bioluminescence among beetle luciferases. We successively introduced four amino acid mutations into the luciferase based on a predicted structure of Eluc using homology modeling. Results showed that quadruple mutations R214K/H241K/S246H/H347A into the beetle luciferase emit luminescence with emission maximum at 626 nm, 88-nm red-shift from the wild-type luciferase. This mutant luciferase is anticipated for application in in vivo multicolor imaging in living samples.

  18. Development of red-shifted mutants derived from luciferase of Brazilian click beetle Pyrearinus termitilluminans.

    PubMed

    Nishiguchi, Tomoki; Yamada, Toshimichi; Nasu, Yusuke; Ito, Mashiho; Yoshimura, Hideaki; Ozawa, Takeaki

    2015-10-01

    Luciferase, a bioluminescent protein, has been used as an analytical tool to visualize intracellular phenomena. Luciferase with red light emission is particularly useful for bioluminescence imaging because of its high transmittance in mammalian tissues. However, the luminescence intensity of existing luciferases with their emission over 600 nm is insufficient for imaging studies because of their weak intensities. We developed mutants of Emerald luciferase (Eluc) from Brazilian click beetle (Pyrearinus termitilluminans), which emits the strongest bioluminescence among beetle luciferases. We successively introduced four amino acid mutations into the luciferase based on a predicted structure of Eluc using homology modeling. Results showed that quadruple mutations R214K/H241K/S246H/H347A into the beetle luciferase emit luminescence with emission maximum at 626 nm, 88-nm red-shift from the wild-type luciferase. This mutant luciferase is anticipated for application in in vivo multicolor imaging in living samples.

  19. Creation of High Efficient Firefly Luciferase

    NASA Astrophysics Data System (ADS)

    Nakatsu, Toru

    Firefly emits visible yellow-green light. The bioluminescence reaction is carried out by the enzyme luciferase. The bioluminescence of luciferase is widely used as an excellent tool for monitoring gene expression, the measurement of the amount of ATP and in vivo imaging. Recently a study of the cancer metastasis is carried out by in vivo luminescence imaging system, because luminescence imaging is less toxic and more useful for long-term assay than fluorescence imaging by GFP. However the luminescence is much dimmer than fluorescence. Then bioluminescence imaging in living organisms demands the high efficient luciferase which emits near infrared lights or enhances the emission intensity. Here I introduce an idea for creating the high efficient luciferase based on the crystal structure.

  20. In Vitro and in Vivo Molecular Imaging of Estrogen Receptor α and β Homo- and Heterodimerization: Exploration of New Modes of Receptor Regulation

    PubMed Central

    Tamrazi, Anobel; Massoud, Tarik F.; Katzenellenbogen, John A.; Gambhir, Sanjiv S.

    2011-01-01

    Estrogen receptor (ER) biology reflects the actions of estrogens through the two receptors, ERα and ERβ, although little is known regarding the preference for formation of ER homo- vs. heterodimers, and how this is affected by the level of ligand occupancy and preferential ligand affinity for one of the ER subtypes. In this report, we use a split optical reporter-protein complementation system to demonstrate the physical interaction between ERα and ERβ in response to different ER ligands in cells and, for the first time, by in vivo imaging in living animals. The genetically encoded reporter vectors constructed with the ligand-binding domains of ERα and ERβ, fused to split firefly or Renilla luciferase (Fluc or hRluc) fragments, were used for this study. This molecular proteomic technique was used to detect ERα/ERα or ERβ/ERβ homodimerization, or ERα/ERβ heterodimerization induced by ER subtype-selective and nonselective ligands, and selective ER modulators (SERM), as well as in dimers in which one mutant monomer was unable to bind estradiol. The SERM-bound ERα and ERβ form the strongest dimers, and subtype-preferential homodimerization was seen with ERα-selective ligands (methyl piperidino pyrazole/propyl pyrazole triol) and the ERβ-selective ligands (diarylpropionitrile/tetrahydrochrysene/genistein). We also demonstrated that a single ligand-bound monomer can form homo- or heterodimers with an apo-monomer. Xenografts of human embryonic kidney 293T cells imaged in living mice by bioluminescence showed real-time ligand induction of ERα/ERβ heterodimerization and reversal of dimerization upon ligand withdrawal. The results from this study demonstrate the value of the split luciferase-based complementation system for studying ER-subtype interactions in cells and for evaluating them in living animals by noninvasive imaging. They also probe what combinations of ERα and ERβ dimers might be the mediators of the effects of different types of ER ligands given at different doses. PMID:22052998

  1. Molecular Imaging of Phosphorylation Events for Drug Development

    PubMed Central

    Chan, C. T.; Paulmurugan, R.; Reeves, R. E.; Solow-Cordero, D.; Gambhir, S. S.

    2014-01-01

    Purpose Protein phosphorylation mediated by protein kinases controls numerous cellular processes. A genetically encoded, generalizable split firefly luciferase (FL)-assisted complementation system was developed for noninvasive monitoring phosphorylation events and efficacies of kinase inhibitors in cell culture and in small living subjects by optical bioluminescence imaging. Procedures An Akt sensor (AST) was constructed to monitor Akt phosphorylation and the effect of different PI-3K and Akt inhibitors. Specificity of AST was determined using a non-phosphorylable mutant sensor containing an alanine substitution (ASA). Results The PI-3K inhibitor LY294002 and Akt kinase inhibitor perifosine led to temporal- and dose-dependent increases in complemented FL activities in 293T human kidney cancer cells stably expressing AST (293T/AST) but not in 293T/ASA cells. Inhibition of endogenous Akt phosphorylation and kinase activities by perifosine also correlated with increase in complemented FL activities in 293T/AST cells but not in 293T/ASA cells. Treatment of nude mice bearing 293T/AST xenografts with perifosine led to a 2-fold increase in complemented FL activities compared to that of 293T/ASA xenografts. Our system was used to screen a small chemical library for novel modulators of Akt kinase activity. Conclusion This generalizable approach for noninvasive monitoring of phosphorylation events will accelerate the discovery and validation of novel kinase inhibitors and modulators of phosphorylation events. PMID:19048345

  2. A Luciferase-fragment Complementation Assay to Detect Lipid Droplet-associated Protein-Protein Interactions*

    PubMed Central

    Kolkhof, Petra; Werthebach, Michael; van de Venn, Anna; Poschmann, Gereon; Chen, Lili; Welte, Michael; Stühler, Kai; Beller, Mathias

    2017-01-01

    A critical challenge for all organisms is to carefully control the amount of lipids they store. An important node for this regulation is the protein coat present at the surface of lipid droplets (LDs), the intracellular organelles dedicated to lipid storage. Only limited aspects of this regulation are understood so far. For the probably best characterized case, the regulation of lipolysis in mammals, some of the major protein players have been identified, and it has been established that this process crucially depends on an orchestrated set of protein-protein interactions. Proteomic analysis has revealed that LDs are associated with dozens, if not hundreds, of different proteins, most of them poorly characterized, with even fewer data regarding which of them might physically interact. To comprehensively understand the mechanism of lipid storage regulation, it will likely be essential to define the interactome of LD-associated proteins. Previous studies of such interactions were hampered by technical limitations. Therefore, we have developed a split-luciferase based protein-protein interaction assay and test for interactions among 47 proteins from Drosophila and from mouse. We confirmed previously described interactions and identified many new ones. In 1561 complementation tests, we assayed for interactions among 487 protein pairs of which 92 (19%) resulted in a successful luciferase complementation. These results suggest that a prominent fraction of the LD-associated proteome participates in protein-protein interactions. In targeted experiments, we analyzed the two proteins Jabba and CG9186 in greater detail. Jabba mediates the sequestration of histones to LDs. We successfully applied our split luciferase complementation assay to learn more about this function as we were e.g. able to map the interaction between Jabba and histones. For CG9186, expression levels affect the positioning of LDs. Here, we reveal the ubiquitination of CG9186, and link this posttranslational modification to LD cluster induction. PMID:27956707

  3. Optical imaging of Renilla luciferase, synthetic Renilla luciferase, and firefly luciferase reporter gene expression in living mice.

    PubMed

    Bhaumik, S; Lewis, X Z; Gambhir, S S

    2004-01-01

    We have recently demonstrated that Renilla luciferase (Rluc) is a promising bioluminescence reporter gene that can be used for noninvasive optical imaging of reporter gene expression in living mice, with the aid of a cooled charged couple device (CCD) camera. In the current study, we explore the expression of a novel synthetic Renilla luciferase reporter gene (hRluc) in living mice, which has previously been reported to be a more sensitive reporter than native Rluc in mammalian cells. We explore the strategies of simultaneous imaging of both Renilla luciferase enzyme (RL) and synthetic Renilla luciferase enzyme (hRL):coelenterazine (substrate for RL/hRL) in the same living mouse. We also demonstrate that hRL:coelenterazine can yield a higher signal when compared to Firefly luciferase enzyme (FL): D-Luciferin, both in cell culture studies and when imaged from cells at the surface and from lungs of living mice. These studies demonstrate that hRluc should be a useful primary reporter gene with high sensitivity when used alone or in conjunction with other bioluminescence reporter genes for imaging in living rodents. (c) 2004 Society of Photo-Optical Instrumentation Engineers.

  4. Split luciferase complementation assay to detect regulated protein-protein interactions in rice protoplasts in a large-scale format

    PubMed Central

    2014-01-01

    Background The rice interactome, in which a network of protein-protein interactions has been elucidated in rice, is a useful resource to identify functional modules of rice signal transduction pathways. Protein-protein interactions occur in cells in two ways, constitutive and regulative. While a yeast-based high-throughput method has been widely used to identify the constitutive interactions, a method to detect the regulated interactions is rarely developed for a large-scale analysis. Results A split luciferase complementation assay was applied to detect the regulated interactions in rice. A transformation method of rice protoplasts in a 96-well plate was first established for a large-scale analysis. In addition, an antibody that specifically recognizes a carboxyl-terminal fragment of Renilla luciferase was newly developed. A pair of antibodies that recognize amino- and carboxyl- terminal fragments of Renilla luciferase, respectively, was then used to monitor quality and quantity of interacting recombinant-proteins accumulated in the cells. For a proof-of-concept, the method was applied to detect the gibberellin-dependent interaction between GIBBERELLIN INSENSITIVE DWARF1 and SLENDER RICE 1. Conclusions A method to detect regulated protein-protein interactions was developed towards establishment of the rice interactome. PMID:24987490

  5. RNA detection using peptide-inserted Renilla luciferase.

    PubMed

    Andou, Takashi; Endoh, Tamaki; Mie, Masayasu; Kobatake, Eiry

    2009-01-01

    A novel complementation system with short peptide-inserted-Renilla luciferase (PI-Rluc) and split-RNA probes was constructed for noninvasive RNA detection. The RNA binding peptides HIV-1 Rev and BIV Tat were used as inserted peptides. They display induced fit conformational changes upon binding to specific RNAs and trigger complementation or discomplementation of Rluc. Split-RNA probes were designed to reform the peptide binding site upon hybridization with arbitrarily selected target RNA. This set of recombinant protein and split-RNA probes enabled a high degree of sensitivity in RNA detection. In this study, we show that the Rluc system is comparable to Fluc, but that its detection limit for arbitrarily selected RNA (at least 100 pM) exceeds that of Fluc by approximately two orders of magnitude.

  6. Development of a cell-based high throughput luciferase enzyme fragment complementation assay to identify nuclear-factor-e2-related transcription factor 2 activators.

    PubMed

    Xie, Wensheng; Pao, Christina; Graham, Taylor; Dul, Ed; Lu, Quinn; Sweitzer, Thomas D; Ames, Robert S; Li, Hu

    2012-12-01

    Nuclear-factor-E2-related transcription factor 2 (Nrf2) regulates a large panel of Phase II genes and plays an important role in cell survival. Nrf2 activation has been shown as preventing cigarette smoke-induced alveolar enlargement in mice. Therefore, activation of the Nrf2 protein by small-molecule activators represents an attractive therapeutic strategy that is used for chronic obstructive pulmonary disease. In this article, we describe a cell-based luciferase enzyme fragment complementation assay that identifies Nrf2 activators. This assay is based on the interaction of Nrf2 with its nuclear partner MafK or runt-related transcription factor 2 (RunX2) and is dependent on the reconstitution of a "split" luciferase. Firefly luciferase is split into two fragments, which are genetically fused to Nrf2 and MafK or RunX2, respectively. BacMam technology was used to deliver the fusion constructs into cells for expression of the tagged proteins. When the BacMam-transduced cells were treated with Nrf2 activators, the Nrf2 protein was stabilized and translocated into the nucleus where it interacted with MafK or RunX2. The interaction of Nrf2 and MafK or RunX2 brought together the two luciferase fragments that form an active luciferase. The assay was developed in a 384-well format and was optimized by titrating the BacMam concentration, transduction time, cell density, and fetal bovine serum concentration. It was further validated with known Nrf2 activators. Our data show that this assay is robust, sensitive, and amenable to high throughput screening of a large compound collection for the identification of novel Nrf2 activators.

  7. Split Renilla Luciferase Protein Fragment-assisted Complementation (SRL-PFAC) to Characterize Hsp90-Cdc37 Complex and Identify Critical Residues in Protein/Protein Interactions*

    PubMed Central

    Jiang, Yiqun; Bernard, Denzil; Yu, Yanke; Xie, Yehua; Zhang, Tao; Li, Yanyan; Burnett, Joseph P.; Fu, Xueqi; Wang, Shaomeng; Sun, Duxin

    2010-01-01

    Hsp90 requires cochaperone Cdc37 to load its clients to the Hsp90 superchaperone complex. The purpose of this study was to utilize split Renilla luciferase protein fragment-assisted complementation (SRL-PFAC) bioluminescence to study the full-length human Hsp90-Cdc37 complex and to identity critical residues and their contributions for Hsp90/Cdc37 interaction in living cells. SRL-PFAC showed that full-length human Hsp90/Cdc37 interaction restored dramatically high luciferase activity through Hsp90-Cdc37-assisted complementation of the N and C termini of luciferase (compared with the set of controls). Immunoprecipitation confirmed that the expressed fusion proteins (NRL-Hsp90 and Cdc37-CRL) preserved their ability to interact with each other and also with native Hsp90 or Cdc37. Molecular dynamic simulation revealed several critical residues in the two interaction patches (hydrophobic and polar) at the interface of Hsp90/Cdc37. Mutagenesis confirmed the critical residues for Hsp90-Cdc37 complex formation. SRL-PFAC bioluminescence evaluated the contributions of these critical residues in Hsp90/Cdc37 interaction. The results showed that mutations in Hsp90 (Q133A, F134A, and A121N) and mutations in Cdc37 (M164A, R167A, L205A, and Q208A) reduced the Hsp90/Cdc37 interaction by 70–95% as measured by the resorted luciferase activity through Hsp90-Cdc37-assisted complementation. In comparison, mutations in Hsp90 (E47A and S113A) and a mutation in Cdc37 (A204E) decreased the Hsp90/Cdc37 interaction by 50%. In contrast, mutations of Hsp90 (R46A, S50A, C481A, and C598A) and mutations in Cdc37 (C54S, C57S, and C64S) did not change Hsp90/Cdc37 interactions. The data suggest that single amino acid mutation in the interface of Hsp90/Cdc37 is sufficient to disrupt its interaction, although Hsp90/Cdc37 interactions are through large regions of hydrophobic and polar interactions. These findings provides a rationale to develop inhibitors for disruption of the Hsp90/Cdc37 interaction. PMID:20413594

  8. Split Renilla luciferase protein fragment-assisted complementation (SRL-PFAC) to characterize Hsp90-Cdc37 complex and identify critical residues in protein/protein interactions.

    PubMed

    Jiang, Yiqun; Bernard, Denzil; Yu, Yanke; Xie, Yehua; Zhang, Tao; Li, Yanyan; Burnett, Joseph P; Fu, Xueqi; Wang, Shaomeng; Sun, Duxin

    2010-07-02

    Hsp90 requires cochaperone Cdc37 to load its clients to the Hsp90 superchaperone complex. The purpose of this study was to utilize split Renilla luciferase protein fragment-assisted complementation (SRL-PFAC) bioluminescence to study the full-length human Hsp90-Cdc37 complex and to identity critical residues and their contributions for Hsp90/Cdc37 interaction in living cells. SRL-PFAC showed that full-length human Hsp90/Cdc37 interaction restored dramatically high luciferase activity through Hsp90-Cdc37-assisted complementation of the N and C termini of luciferase (compared with the set of controls). Immunoprecipitation confirmed that the expressed fusion proteins (NRL-Hsp90 and Cdc37-CRL) preserved their ability to interact with each other and also with native Hsp90 or Cdc37. Molecular dynamic simulation revealed several critical residues in the two interaction patches (hydrophobic and polar) at the interface of Hsp90/Cdc37. Mutagenesis confirmed the critical residues for Hsp90-Cdc37 complex formation. SRL-PFAC bioluminescence evaluated the contributions of these critical residues in Hsp90/Cdc37 interaction. The results showed that mutations in Hsp90 (Q133A, F134A, and A121N) and mutations in Cdc37 (M164A, R167A, L205A, and Q208A) reduced the Hsp90/Cdc37 interaction by 70-95% as measured by the resorted luciferase activity through Hsp90-Cdc37-assisted complementation. In comparison, mutations in Hsp90 (E47A and S113A) and a mutation in Cdc37 (A204E) decreased the Hsp90/Cdc37 interaction by 50%. In contrast, mutations of Hsp90 (R46A, S50A, C481A, and C598A) and mutations in Cdc37 (C54S, C57S, and C64S) did not change Hsp90/Cdc37 interactions. The data suggest that single amino acid mutation in the interface of Hsp90/Cdc37 is sufficient to disrupt its interaction, although Hsp90/Cdc37 interactions are through large regions of hydrophobic and polar interactions. These findings provides a rationale to develop inhibitors for disruption of the Hsp90/Cdc37 interaction.

  9. Orthogonal Luciferase-Luciferin Pairs for Bioluminescence Imaging.

    PubMed

    Jones, Krysten A; Porterfield, William B; Rathbun, Colin M; McCutcheon, David C; Paley, Miranda A; Prescher, Jennifer A

    2017-02-15

    Bioluminescence imaging with luciferase-luciferin pairs is widely used in biomedical research. Several luciferases have been identified in nature, and many have been adapted for tracking cells in whole animals. Unfortunately, the optimal luciferases for imaging in vivo utilize the same substrate and therefore cannot easily differentiate multiple cell types in a single subject. To develop a broader set of distinguishable probes, we crafted custom luciferins that can be selectively processed by engineered luciferases. Libraries of mutant enzymes were iteratively screened with sterically modified luciferins, and orthogonal enzyme-substrate "hits" were identified. These tools produced light when complementary enzyme-substrate partners interacted both in vitro and in cultured cell models. Based on their selectivity, these designer pairs will bolster multicomponent imaging and enable the direct interrogation of cell networks not currently possible with existing tools. Our screening platform is also general and will expedite the identification of more unique luciferases and luciferins, further expanding the bioluminescence toolkit.

  10. Sensitive Dual Color in vivo Bioluminescence Imaging Using a New Red Codon Optimized Firefly Luciferase and a Green Click Beetle Luciferase

    DTIC Science & Technology

    2011-04-01

    Sensitive Dual Color In Vivo Bioluminescence Imaging Using a New Red Codon Optimized Firefly Luciferase and a Green Click Beetle Luciferase Laura...20 nm). Spectral unmixing algorithms were applied to the images where good separation of signals was observed. Furthermore, HEK293 cells that...spectral emissions using a suitable spectral unmixing algorithm . This new D-luciferin-dependent reporter gene couplet opens up the possibility in the future

  11. Beyond D-luciferin: Expanding the Scope of Bioluminescence Imaging in vivo

    PubMed Central

    Adams, Spencer T.; Miller, Stephen C.

    2014-01-01

    The light-emitting chemical reaction catalyzed by the enzyme firefly luciferase is widely used for noninvasive imaging in live mice. However, photon emission from the luciferase is critically dependent on the chemical properties of its substrate, D-luciferin. In this review, we describe recent work to replace the natural luciferase substrate with synthetic analogs that extend the scope of bioluminescence imaging. PMID:25078002

  12. NanoLuc reporter for dual luciferase imaging in living animals.

    PubMed

    Stacer, Amanda C; Nyati, Shyam; Moudgil, Pranav; Iyengar, Rahul; Luker, Kathryn E; Rehemtulla, Alnawaz; Luker, Gary D

    2013-10-01

    Bioluminescence imaging is widely used for cell-based assays and animal imaging studies in biomedical research and drug development, capitalizing on the high signal to background of this technique. A relatively small number of luciferases are available for imaging studies, substantially limiting the ability to image multiple molecular and cellular events, as done commonly with fluorescence imaging. To advance dual reporter bioluminescence molecular imaging, we tested a recently developed, adenosine triphosphate–independent luciferase enzyme from Oplophorus gracilirostris (NanoLuc [NL]) as a reporter for animal imaging. We demonstrated that NL could be imaged in superficial and deep tissues in living mice, although the detection of NL in deep tissues was limited by emission of predominantly blue light by this enzyme. Changes in bioluminescence from NL over time could be used to quantify tumor growth, and secreted NL was detectable in small volumes of serum. We combined NL and firefly luciferase reporters to quantify two key steps in transforming growth factor β signaling in intact cells and living mice, establishing a novel dual luciferase imaging strategy for quantifying signal transduction and drug targeting. Our results establish NL as a new reporter for bioluminescence imaging studies in intact cells and living mice that will expand imaging of signal transduction in normal physiology, disease, and drug development.

  13. NanoLuc Reporter for Dual Luciferase Imaging in Living Animals

    PubMed Central

    Stacer, Amanda C.; Nyati, Shyam; Moudgil, Pranav; Iyengar, Rahul; Luker, Kathryn E.; Rehemtulla, Alnawaz; Luker, Gary D.

    2014-01-01

    Bioluminescence imaging is utilized widely for cell-based assays and animal imaging studies in biomedical research and drug development, capitalizing on high signal-to-background of this technique. A relatively small number of luciferases are available for imaging studies, substantially limiting the ability to image multiple molecular and cellular events as done commonly with fluorescence imaging. To advance dual reporter bioluminescence molecular imaging, we tested a recently developed, ATP-independent luciferase enzyme from Oplophorus gracilirostris (NanoLuc, NL) as a reporter for animal imaging. We demonstrated that NL could be imaged in superficial and deep tissues in living mice, although detection of NL in deep tissues was limited by emission of predominantly blue light by this enzyme. Changes in bioluminescence from NL over time could be used to quantify tumor growth, and secreted NL was detectable in small volumes of serum. We combined NL and firefly luciferase reporters to quantify two key steps in TGF-β signaling in intact cells and living mice, establishing a novel dual luciferase imaging strategy for quantifying signal transduction and drug targeting. Our results establish NL as new reporter for bioluminescence imaging studies in intact cells and living mice that will expand imaging of signal transduction in normal physiology, disease, and drug development. PMID:24371848

  14. Development of a homogeneous immunoassay system using protein A fusion fragmented Renilla luciferase.

    PubMed

    Mie, Masayasu; Thuy, Ngo Phan Bich; Kobatake, Eiry

    2012-03-07

    A homogeneous immunoassay system was developed using fragmented Renilla luciferase (Rluc). The B domain of protein A was fused to two Rluc fragments. When complexes between an antibody and fragmented Rluc fusion proteins bind to target molecules, the Rluc fragments come into close proximity and the luminescence activity of fragmented Rluc is restored by complementation. As proof-of-principle, this fragmented Rluc system was used to detect E. coli homogeneously using an anti-E. coli antibody.

  15. The split Renilla luciferase complementation assay is useful for identifying the interaction of Epstein-Barr virus protein kinase BGLF4 and a heat shock protein Hsp90.

    PubMed

    Wang, J; Guo, W; Long, C; Zhou, H; Wang, H; Sun, X

    2016-03-01

    Protein-protein interactions can regulate different cellular processes, such as transcription, translation, and oncogenic transformation. The split Renilla luciferase complementation assay (SRLCA) is one of the techniques that detect protein-protein interactions. The SRLCA is based on the complementation of the LN and LC non-functional halves of Renilla luciferase fused to possibly interacting proteins which after interaction form a functional enzyme and emit luminescence. The BGLF4 of Epstein-Barr virus (EBV) is a viral protein kinase that is expressed during the early and late stages of lytic cycles, which can regulate multiple cellular and viral substrates to optimize the DNA replication environment. The heat shock protein Hsp90 is a molecular chaperone that maintains the integrity of structure and function of various interacting proteins, which can form a complex with BGLF4 and stabilize its expression in cells. The interaction between BGLF4 and Hsp90 could be specifically detected through the SRLCA. The region of aa 250-295 of BGLF4 is essential for the BGLF4/Hsp90 interaction and the mutation of Phe-254, Leu-266, and Leu-267 can disrupt this interaction. These results suggest that the SRLCA can specifically detect the BGLF4/Hsp90 interaction and provide a reference to develop inhibitors that disrupt the BGLF4/Hsp90 interaction.

  16. Large-scale protein-protein interaction analysis in Arabidopsis mesophyll protoplasts by split firefly luciferase complementation.

    PubMed

    Li, Jian-Feng; Bush, Jenifer; Xiong, Yan; Li, Lei; McCormack, Matthew

    2011-01-01

    Protein-protein interactions (PPIs) constitute the regulatory network that coordinates diverse cellular functions. There are growing needs in plant research for creating protein interaction maps behind complex cellular processes and at a systems biology level. However, only a few approaches have been successfully used for large-scale surveys of PPIs in plants, each having advantages and disadvantages. Here we present split firefly luciferase complementation (SFLC) as a highly sensitive and noninvasive technique for in planta PPI investigation. In this assay, the separate halves of a firefly luciferase can come into close proximity and transiently restore its catalytic activity only when their fusion partners, namely the two proteins of interest, interact with each other. This assay was conferred with quantitativeness and high throughput potential when the Arabidopsis mesophyll protoplast system and a microplate luminometer were employed for protein expression and luciferase measurement, respectively. Using the SFLC assay, we could monitor the dynamics of rapamycin-induced and ascomycin-disrupted interaction between Arabidopsis FRB and human FKBP proteins in a near real-time manner. As a proof of concept for large-scale PPI survey, we further applied the SFLC assay to testing 132 binary PPIs among 8 auxin response factors (ARFs) and 12 Aux/IAA proteins from Arabidopsis. Our results demonstrated that the SFLC assay is ideal for in vivo quantitative PPI analysis in plant cells and is particularly powerful for large-scale binary PPI screens.

  17. Sensitive dual color in vivo bioluminescence imaging using a new red codon optimized firefly luciferase and a green click beetle luciferase.

    PubMed

    Mezzanotte, Laura; Que, Ivo; Kaijzel, Eric; Branchini, Bruce; Roda, Aldo; Löwik, Clemens

    2011-04-22

    Despite a plethora of bioluminescent reporter genes being cloned and used for cell assays and molecular imaging purposes, the simultaneous monitoring of multiple events in small animals is still challenging. This is partly attributable to the lack of optimization of cell reporter gene expression as well as too much spectral overlap of the color-coupled reporter genes. A new red emitting codon-optimized luciferase reporter gene mutant of Photinus pyralis, Ppy RE8, has been developed and used in combination with the green click beetle luciferase, CBG99. Human embryonic kidney cells (HEK293) were transfected with vectors that expressed red Ppy RE8 and green CBG99 luciferases. Populations of red and green emitting cells were mixed in different ratios. After addition of the shared single substrate, D-luciferin, bioluminescent (BL) signals were imaged with an ultrasensitive cooled CCD camera using a series of band pass filters (20 nm). Spectral unmixing algorithms were applied to the images where good separation of signals was observed. Furthermore, HEK293 cells that expressed the two luciferases were injected at different depth in the animals. Spectrally-separate images and quantification of the dual BL signals in a mixed population of cells was achieved when cells were either injected subcutaneously or directly into the prostate. We report here the re-engineering of different luciferase genes for in vitro and in vivo dual color imaging applications to address the technical issues of using dual luciferases for imaging. In respect to previously used dual assays, our study demonstrated enhanced sensitivity combined with spatially separate BL spectral emissions using a suitable spectral unmixing algorithm. This new D-luciferin-dependent reporter gene couplet opens up the possibility in the future for more accurate quantitative gene expression studies in vivo by simultaneously monitoring two events in real time.

  18. Sensitive Dual Color In Vivo Bioluminescence Imaging Using a New Red Codon Optimized Firefly Luciferase and a Green Click Beetle Luciferase

    PubMed Central

    Mezzanotte, Laura; Que, Ivo; Kaijzel, Eric; Branchini, Bruce; Roda, Aldo; Löwik, Clemens

    2011-01-01

    Background Despite a plethora of bioluminescent reporter genes being cloned and used for cell assays and molecular imaging purposes, the simultaneous monitoring of multiple events in small animals is still challenging. This is partly attributable to the lack of optimization of cell reporter gene expression as well as too much spectral overlap of the color-coupled reporter genes. A new red emitting codon-optimized luciferase reporter gene mutant of Photinus pyralis, Ppy RE8, has been developed and used in combination with the green click beetle luciferase, CBG99. Principal Findings Human embryonic kidney cells (HEK293) were transfected with vectors that expressed red Ppy RE8 and green CBG99 luciferases. Populations of red and green emitting cells were mixed in different ratios. After addition of the shared single substrate, D-luciferin, bioluminescent (BL) signals were imaged with an ultrasensitive cooled CCD camera using a series of band pass filters (20 nm). Spectral unmixing algorithms were applied to the images where good separation of signals was observed. Furthermore, HEK293 cells that expressed the two luciferases were injected at different depth in the animals. Spectrally-separate images and quantification of the dual BL signals in a mixed population of cells was achieved when cells were either injected subcutaneously or directly into the prostate. Significance We report here the re-engineering of different luciferase genes for in vitro and in vivo dual color imaging applications to address the technical issues of using dual luciferases for imaging. In respect to previously used dual assays, our study demonstrated enhanced sensitivity combined with spatially separate BL spectral emissions using a suitable spectral unmixing algorithm. This new D-luciferin-dependent reporter gene couplet opens up the possibility in the future for more accurate quantitative gene expression studies in vivo by simultaneously monitoring two events in real time. PMID:21544210

  19. F-18 Labeled Diabody-Luciferase Fusion Proteins for Optical-ImmunoPET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Anna M.

    2013-01-18

    The goal of the proposed work is to develop novel dual-labeled molecular imaging probes for multimodality imaging. Based on small, engineered antibodies called diabodies, these probes will be radioactively tagged with Fluorine-18 for PET imaging, and fused to luciferases for optical (bioluminescence) detection. Performance will be evaluated and validated using a prototype integrated optical-PET imaging system, OPET. Multimodality probes for optical-PET imaging will be based on diabodies that are dually labeled with 18F for PET detection and fused to luciferases for optical imaging. 1) Two sets of fusion proteins will be built, targeting the cell surface markers CEA or HER2.more » Coelenterazine-based luciferases and variant forms will be evaluated in combination with native substrate and analogs, in order to obtain two distinct probes recognizing different targets with different spectral signatures. 2) Diabody-luciferase fusion proteins will be labeled with 18F using amine reactive [18F]-SFB produced using a novel microwave-assisted, one-pot method. 3) Sitespecific, chemoselective radiolabeling methods will be devised, to reduce the chance that radiolabeling will inactivate either the target-binding properties or the bioluminescence properties of the diabody-luciferase fusion proteins. 4) Combined optical and PET imaging of these dual modality probes will be evaluated and validated in vitro and in vivo using a prototype integrated optical-PET imaging system, OPET. Each imaging modality has its strengths and weaknesses. Development and use of dual modality probes allows optical imaging to benefit from the localization and quantitation offered by the PET mode, and enhances the PET imaging by enabling simultaneous detection of more than one probe.« less

  20. A method to rapidly and accurately compare relative efficacies of non-invasive imaging reporter genes in a mouse model, and its application to luciferase reporters

    PubMed Central

    Gil, Jose S.; Machado, Hidevaldo B.; Herschman, Harvey R.

    2013-01-01

    Purpose Our goal is to develop a simple, quantitative, robust method to compare the efficacy of imaging reporter genes in culture and in vivo. We describe an adenoviral vector-liver transduction procedure, and compare the luciferase reporter efficacies. Procedures Alternative reporter genes are expressed in a common adenoviral vector. Vector amounts used in vivo are based on cell culture titrations, ensuring the same transduction efficacy is used for each vector. After imaging, in vivo and in vitro values are normalized to hepatic vector transduction using quantitative real-time PCR. Results We assayed standard firefly luciferase (FLuc), enhanced firefly luciferase (EFLuc), luciferase 2 (Luc2), humanized Renilla luciferase (hRLuc), Renilla luciferase 8.6-535 (RLuc8.6), and a membrane-bound Gaussia luciferase variant (extGLuc) in cell culture and in vivo. We observed a greater that 100-fold increase in bioluminescent signal for both EFLuc and Luc2 when compared to FLuc, and a greater than 106-fold increase for RLuc8.6 when compared to hRLuc. ExtGLuc was not detectable in liver. Conclusions Our findings contrast, in some cases, with conclusions drawn in prior comparisons of these reporter genes, and demonstrate the need for a standardized method to evaluate alternative reporter genes in vivo. Our procedure can be adapted for reporter genes that utilize alternative imaging modalities (fluorescence, bioluminescence, MRI, SPECT, PET). PMID:21850545

  1. Enhanced Beetle Luciferase for High-Resolution Bioluminescence Imaging

    PubMed Central

    Nakajima, Yoshihiro; Yamazaki, Tomomi; Nishii, Shigeaki; Noguchi, Takako; Hoshino, Hideto; Niwa, Kazuki; Viviani, Vadim R.; Ohmiya, Yoshihiro

    2010-01-01

    We developed an enhanced green-emitting luciferase (ELuc) to be used as a bioluminescence imaging (BLI) probe. ELuc exhibits a light signal in mammalian cells that is over 10-fold stronger than that of the firefly luciferase (FLuc), which is the most widely used luciferase reporter gene. We showed that ELuc produces a strong light signal in primary cells and tissues and that it enables the visualization of gene expression with high temporal resolution at the single-cell level. Moreover, we successfully imaged the nucleocytoplasmic shuttling of importin α by fusing ELuc at the intracellular level. These results demonstrate that the use of ELuc allows a BLI spatiotemporal resolution far greater than that provided by FLuc. PMID:20368807

  2. Different Epidermal Growth Factor (EGF) Receptor Ligands Show Distinct Kinetics and Biased or Partial Agonism for Homodimer and Heterodimer Formation*

    PubMed Central

    Macdonald-Obermann, Jennifer L.; Pike, Linda J.

    2014-01-01

    The EGF receptor has seven different cognate ligands. Previous work has shown that these different ligands are capable of inducing different biological effects, even in the same cell. To begin to understand the molecular basis for this variation, we used luciferase fragment complementation to measure ligand-induced dimer formation and radioligand binding to study the effect of the ligands on subunit-subunit interactions in EGF receptor (EGFR) homodimers and EGFR/ErbB2 heterodimers. In luciferase fragment complementation imaging studies, amphiregulin (AREG) functioned as a partial agonist, inducing only about half as much total dimerization as the other three ligands. However, unlike the other ligands, AREG showed biphasic kinetics for dimer formation, suggesting that its path for EGF receptor activation involves binding to both monomers and preformed dimers. EGF, TGFα, and betacellulin (BTC) appear to mainly stimulate receptor activation through binding to and dimerization of receptor monomers. In radioligand binding assays, EGF and TGFα exhibited increased affinity for EGFR/ErbB2 heterodimers compared with EGFR homodimers. By contrast, BTC and AREG showed a similar affinity for both dimers. Thus, EGF and TGFα are biased agonists, whereas BTC and AREG are balanced agonists with respect to selectivity of dimer formation. These data suggest that the differences in biological response to different EGF receptor ligands may result from partial agonism for dimer formation, differences in the kinetic pathway utilized to generate activated receptor dimers, and biases in the formation of heterodimers versus homodimers. PMID:25086039

  3. Antisense imaging of gene expression in the brain in vivo

    NASA Astrophysics Data System (ADS)

    Shi, Ningya; Boado, Ruben J.; Pardridge, William M.

    2000-12-01

    Antisense radiopharmaceuticals could be used to image gene expression in the brain in vivo, should these polar molecules be made transportable through the blood-brain barrier. The present studies describe an antisense imaging agent comprised of an iodinated peptide nucleic acid (PNA) conjugated to a monoclonal antibody to the rat transferrin receptor by using avidin-biotin technology. The PNA was a 16-mer antisense to the sequence around the methionine initiation codon of the luciferase mRNA. C6 rat glioma cells were permanently transfected with a luciferase expression plasmid, and C6 experimental brain tumors were developed in adult rats. The expression of the luciferase transgene in the tumors in vivo was confirmed by measurement of luciferase enzyme activity in the tumor extract. The [125I]PNA conjugate was injected intravenously in anesthetized animals with brain tumors and killed 2 h later for frozen sectioning of brain and film autoradiography. No image of the luciferase gene expression was obtained after the administration of either the unconjugated antiluciferase PNA or a PNA conjugate that was antisense to the mRNA of a viral transcript. In contrast, tumors were imaged in all rats administered the [125I]PNA that was antisense to the luciferase sequence and was conjugated to the targeting antibody. In conclusion, these studies demonstrate gene expression in the brain in vivo can be imaged with antisense radiopharmaceuticals that are conjugated to a brain drug-targeting system.

  4. Site-directed mutagenesis of firefly luciferase: implication of conserved residue(s) in bioluminescence emission spectra among firefly luciferases.

    PubMed

    Tafreshi, Narges Kh; Sadeghizadeh, Majid; Emamzadeh, Rahman; Ranjbar, Bijan; Naderi-Manesh, Hossein; Hosseinkhani, Saman

    2008-05-15

    The bioluminescence colours of firefly luciferases are determined by assay conditions and luciferase structure. Owing to red light having lower energy than green light and being less absorbed by biological tissues, red-emitting luciferases have been considered as useful reporters in imaging technology. A set of red-emitting mutants of Lampyris turkestanicus (Iranian firefly) luciferase has been made by site-directed mutagenesis. Among different beetle luciferases, those from Phrixothrix (railroad worm) emit either green or red bioluminescence colours naturally. By substitution of three specific amino acids using site-specific mutagenesis in a green-emitting luciferase (from L. turkestanicus), the colour of emitted light was changed to red concomitant with decreasing decay rate. Different specific mutations (H245N, S284T and H431Y) led to changes in the bioluminescence colour. Meanwhile, the luciferase reaction took place with relative retention of its basic kinetic properties such as K(m) and relative activity. Structural comparison of the native and mutant luciferases using intrinsic fluorescence, far-UV CD spectra and homology modelling revealed a significant conformational change in mutant forms. A change in the colour of emitted light indicates the critical role of these conserved residues in bioluminescence colour determination among firefly luciferases. Relatively high specific activity and emission of red light might make these mutants suitable as reporters for the study of gene expression and bioluminescence imaging.

  5. Bifunctional antibody-Renilla luciferase fusion protein for in vivo optical detection of tumors.

    PubMed

    Venisnik, Katy M; Olafsen, Tove; Loening, Andreas M; Iyer, Meera; Gambhir, Sanjiv S; Wu, Anna M

    2006-10-01

    An anti-carcinoembryonic antigen (CEA) antibody fragment, the anti-CEA diabody, was fused to the bioluminescence enzyme Renilla luciferase (RLuc) to generate a novel optical imaging probe. Native RLuc or one of two stabilized variants (RLucC124A, RLuc8) was used as the bioluminescent moiety. A bioluminescence ELISA showed that diabody-luciferase could simultaneously bind to CEA and emit light. In vivo optical imaging of tumor-bearing mice demonstrated specific targeting of diabody-RLuc8 to CEA-positive xenografts, with a tumor:background ratio of 6.0 +/- 0.8 at 6 h after intravenous injection, compared with antigen-negative tumors at 1.0 +/- 0.1 (P = 0.05). Targeting and distribution was also evaluated by microPET imaging using (124)I-diabody-RLuc8 and confirmed that the optical signal was due to antibody-mediated localization of luciferase. Renilla luciferase, fused to biospecific sequences such as engineered antibodies, can be administered systemically to provide a novel, sensitive method for optical imaging based on expression of cell surface receptors in living organisms.

  6. Flexible Measurement of Bioluminescent Reporters Using an Automated Longitudinal Luciferase Imaging Gas- and Temperature-optimized Recorder (ALLIGATOR).

    PubMed

    Crosby, Priya; Hoyle, Nathaniel P; O'Neill, John S

    2017-12-13

    Luciferase-based reporters of cellular gene expression are in widespread use for both longitudinal and end-point assays of biological activity. In circadian rhythms research, for example, clock gene fusions with firefly luciferase give rise to robust rhythms in cellular bioluminescence that persist over many days. Technical limitations associated with photomultiplier tubes (PMT) or conventional microscopy-based methods for bioluminescence quantification have typically demanded that cells and tissues be maintained under quite non-physiological conditions during recording, with a trade-off between sensitivity and throughput. Here, we report a refinement of prior methods that allows long-term bioluminescence imaging with high sensitivity and throughput which supports a broad range of culture conditions, including variable gas and humidity control, and that accepts many different tissue culture plates and dishes. This automated longitudinal luciferase imaging gas- and temperature-optimized recorder (ALLIGATOR) also allows the observation of spatial variations in luciferase expression across a cell monolayer or tissue, which cannot readily be observed by traditional methods. We highlight how the ALLIGATOR provides vastly increased flexibility for the detection of luciferase activity when compared with existing methods.

  7. A transgenic rat with ubiquitous expression of firefly luciferase gene

    NASA Astrophysics Data System (ADS)

    Hakamata, Yoji; Murakami, Takashi; Kobayashi, Eiji

    2006-02-01

    In vivo imaging strategies provide cellular and molecular events in real time that helps us to understand biological processes in living animals. The development of molecular tags such as green fluorescent proteins and luciferase from the firefly Photinus pyralis has lead to a revolution in the visualization of complex biochemical processes. We developed a novel inbred transgenic rat strain containing firefly luciferase based on the transgenic (Tg) technique in rats. This Tg rat expressed the luciferase gene ubiquitously under control of the ROSA26 promoter. Cellular immune responsiveness against the luciferase protein was evaluated using conventional skin grafting and resulted in the long-term acceptance of Tg rat skin on wild-type rats. Strikingly, organ transplant with heart and small bowel demonstrated organ viability and graft survival, suggesting that cells from luciferase-Tg are transplantable to track their fate. Taking advantage of the less immunogenic luciferase, we also tested the role of hepatocyte-infusion in a liver injury model, and bone marrow-derived cells in a skin defect model. Employed in conjunction with modern advances in optical imaging, this luciferase-Tg rat system provides an innovative animal tool and a new means of facilitating biomedical research such as in the case of regeneration medicine.

  8. Fabrication of a New Lineage of Artificial Luciferases from Natural Luciferase Pools.

    PubMed

    Kim, Sung Bae; Nishihara, Ryo; Citterio, Daniel; Suzuki, Koji

    2017-09-11

    The fabrication of artificial luciferases (ALucs) with unique optical properties has a fundamental impact on bioassays and molecular imaging. In this study, we developed a new lineage of ALucs with unique substrate preferences by extracting consensus amino acids from the alignment of 25 copepod luciferase sequences available in natural luciferase pools. The primary sequence was first created with a sequence logo generator resulting in a total of 11 sibling sequences. Phylogenetic analysis shows that the newly fabricated ALucs form an independent branch, genetically isolated from the natural luciferases, and from a prior series of ALucs produced by our laboratory using a smaller basis set. The new lineage of ALucs were strongly luminescent in living mammalian cells with specific substrate selectivity to native coelenterazine. A single-residue-level comparison of the C-terminal sequences of new ALucs reveals that some amino acids in the C-terminal ends are greatly influential on the optical intensities but limited in the color variance. The success of this approach guides on how to engineer and functionalize marine luciferases for bioluminescence imaging and assays.

  9. Luciferase-tagged wild-type and tropism-deficient mouse cytomegaloviruses reveal early dynamics of host colonization following peripheral challenge.

    PubMed

    Farrell, Helen; Oliveira, Martha; Macdonald, Kate; Yunis, Joseph; Mach, Michael; Bruce, Kimberley; Stevenson, Philip; Cardin, Rhonda; Davis-Poynter, Nicholas

    2016-12-01

    Cytomegaloviruses (CMVs) establish persistent, systemic infections and cause disease by maternal-foetal transfer, suggesting that their dissemination is a key target for antiviral intervention. Late clinical presentation has meant that human CMV (HCMV) dissemination is not well understood. Murine CMV (MCMV) provides a tractable model. Whole mouse imaging of virus-expressed luciferase has proved a useful way to track systemic infections. MCMV, in which the abundant lytic gene M78 was luciferase-tagged via a self-cleaving peptide (M78-LUC), allowed serial, unbiased imaging of systemic and peripheral infection without significant virus attenuation. Ex vivo luciferase imaging showed greater sensitivity than plaque assay, and revealed both well-known infection sites (the lungs, lymph nodes, salivary glands, liver, spleen and pancreas) and less explored sites (the bone marrow and upper respiratory tract). We applied luciferase imaging to tracking MCMV lacking M33, a chemokine receptor conserved in HCMV and a proposed anti-viral drug target. M33-deficient M78-LUC colonized normally in peripheral sites and local draining lymph nodes but spread poorly to the salivary gland, suggesting a defect in vascular transport consistent with properties of a chemokine receptor.

  10. Quantification of dynamic protein complexes using Renilla luciferase fragment complementation applied to protein kinase A activities in vivo.

    PubMed

    Stefan, E; Aquin, S; Berger, N; Landry, C R; Nyfeler, B; Bouvier, M; Michnick, S W

    2007-10-23

    The G protein-coupled receptor (GPCR) superfamily represents the most important class of pharmaceutical targets. Therefore, the characterization of receptor cascades and their ligands is a prerequisite to discovering novel drugs. Quantification of agonist-induced second messengers and downstream-coupled kinase activities is central to characterization of GPCRs or other pathways that converge on GPCR-mediated signaling. Furthermore, there is a need for simple, cell-based assays that would report on direct or indirect actions on GPCR-mediated effectors of signaling. More generally, there is a demand for sensitive assays to quantify alterations of protein complexes in vivo. We describe the development of a Renilla luciferase (Rluc)-based protein fragment complementation assay (PCA) that was designed specifically to investigate dynamic protein complexes. We demonstrate these features for GPCR-induced disassembly of protein kinase A (PKA) regulatory and catalytic subunits, a key effector of GPCR signaling. Taken together, our observations show that the PCA allows for direct and accurate measurements of live changes of absolute values of protein complex assembly and disassembly as well as cellular imaging and dynamic localization of protein complexes. Moreover, the Rluc-PCA has a sufficiently high signal-to-background ratio to identify endogenously expressed Galpha(s) protein-coupled receptors. We provide pharmacological evidence that the phosphodiesterase-4 family selectively down-regulates constitutive beta-2 adrenergic- but not vasopressin-2 receptor-mediated PKA activities. Our results show that the sensitivity of the Rluc-PCA simplifies the recording of pharmacological profiles of GPCR-based candidate drugs and could be extended to high-throughput screens to identify novel direct modulators of PKA or upstream components of GPCR signaling cascades.

  11. Comparison of human optimized bacterial luciferase, firefly luciferase, and green fluorescent protein for continuous imaging of cell culture and animal models

    NASA Astrophysics Data System (ADS)

    Close, Dan M.; Hahn, Ruth E.; Patterson, Stacey S.; Baek, Seung J.; Ripp, Steven A.; Sayler, Gary S.

    2011-04-01

    Bioluminescent and fluorescent reporter systems have enabled the rapid and continued growth of the optical imaging field over the last two decades. Of particular interest has been noninvasive signal detection from mammalian tissues under both cell culture and whole animal settings. Here we report on the advantages and limitations of imaging using a recently introduced bacterial luciferase (lux) reporter system engineered for increased bioluminescent expression in the mammalian cellular environment. Comparison with the bioluminescent firefly luciferase (Luc) system and green fluorescent protein system under cell culture conditions demonstrated a reduced average radiance, but maintained a more constant level of bioluminescent output without the need for substrate addition or exogenous excitation to elicit the production of signal. Comparison with the Luc system following subcutaneous and intraperitoneal injection into nude mice hosts demonstrated the ability to obtain similar detection patterns with in vitro experiments at cell population sizes above 2.5 × 104 cells but at the cost of increasing overall image integration time.

  12. How to Fabricate Functional Artificial Luciferases for Bioassays.

    PubMed

    Kim, Sung-Bae; Fujii, Rika

    2016-01-01

    The present protocol introduces fabrication of artificial luciferases (ALuc(®)) by extracting the consensus amino acids from the alignment of copepod luciferase sequences. The made ALucs have unique sequential identities that are phylogenetically distinctive from those of any existing copepod luciferase. Some ALucs exhibited heat stability, and strong and greatly prolonged optical intensities. The made ALucs are applicable to various bioassays as an optical readout, including live cell imaging, single-chain probes, and bioluminescent tags of antibodies. The present protocol guides on how to fabricate a unique artificial luciferase with designed optical properties and functionalities.

  13. An ultrasensitive NanoLuc-based luminescence system for monitoring Plasmodium berghei throughout its life cycle.

    PubMed

    De Niz, Mariana; Stanway, Rebecca R; Wacker, Rahel; Keller, Derya; Heussler, Volker T

    2016-04-21

    Bioluminescence imaging is widely used for cell-based assays and animal imaging studies, both in biomedical research and drug development. Its main advantages include its high-throughput applicability, affordability, high sensitivity, operational simplicity, and quantitative outputs. In malaria research, bioluminescence has been used for drug discovery in vivo and in vitro, exploring host-pathogen interactions, and studying multiple aspects of Plasmodium biology. While the number of fluorescent proteins available for imaging has undergone a great expansion over the last two decades, enabling simultaneous visualization of multiple molecular and cellular events, expansion of available luciferases has lagged behind. The most widely used bioluminescent probe in malaria research is the Photinus pyralis firefly luciferase, followed by the more recently introduced Click-beetle and Renilla luciferases. Ultra-sensitive imaging of Plasmodium at low parasite densities has not been previously achieved. With the purpose of overcoming these challenges, a Plasmodium berghei line expressing the novel ultra-bright luciferase enzyme NanoLuc, called PbNLuc has been generated, and is presented in this work. NanoLuc shows at least 150 times brighter signal than firefly luciferase in vitro, allowing single parasite detection in mosquito, liver, and sexual and asexual blood stages. As a proof-of-concept, the PbNLuc parasites were used to image parasite development in the mosquito, liver and blood stages of infection, and to specifically explore parasite liver stage egress, and pre-patency period in vivo. PbNLuc is a suitable parasite line for sensitive imaging of the entire Plasmodium life cycle. Its sensitivity makes it a promising line to be used as a reference for drug candidate testing, as well as the characterization of mutant parasites to explore the function of parasite proteins, host-parasite interactions, and the better understanding of Plasmodium biology. Since the substrate requirements of NanoLuc are different from those of firefly luciferase, dual bioluminescence imaging for the simultaneous characterization of two lines, or two separate biological processes, is possible, as demonstrated in this work.

  14. Evaluating reporter genes of different luciferases for optimized in vivo bioluminescence imaging of transplanted neural stem cells in the brain.

    PubMed

    Mezzanotte, Laura; Aswendt, Markus; Tennstaedt, Annette; Hoeben, Rob; Hoehn, Mathias; Löwik, Clemens

    2013-01-01

    Bioluminescence imaging (BLI) has become the method of choice for optical tracking of cells in small laboratory animals. However, the use of luciferases from different species, depending on different substrates and emitting at distinct wavelengths, has not been optimized for sensitive neuroimaging. In order to identify the most suitable luciferase, this quantitative study compared the luciferases Luc2, CBG99, PpyRE9 and hRluc. Human embryonic kidney (HEK-293) cells and mouse neural stem cells were transduced by lentiviral vector-mediated transfer to express one of the four luciferases, together with copGFP. A T2A peptide linker promoted stoichiometric expression between both imaging reporters and the comparison of cell populations upon flow cytometry. Cell dilution series were used to determine highest BLI sensitivity in vitro for Luc2. However, Coelenterazine h-dependent hRluc signals clearly exceeded d-luciferin-dependent BLI in vitro. For the quantitative in vivo analysis, cells were transplanted into mouse brain and BLI was performed including the recording of emission kinetics and spectral characteristics. Differences in light kinetics were observed for d-luciferin vs Coelenterazine h. The emission spectra of Luc2 and PpyRE9 remained almost unchanged, while the emission spectrum of CBG99 became biphasic. Most importantly, photon emission decreased in the order of Luc2, CBG99, PpyRE9 to hRluc. The feasibility of combining different luciferases for dual color and dual substrate neuroimaging was tested and discussed. This investigation provides the first complete quantitative comparison of different luciferases expressed by neural stem cells. It results in a clear recommendation of Luc2 as the best luciferase selection for in vivo neuroimaging. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Rational Design of a Triple Reporter Gene for Multimodality Molecular Imaging

    PubMed Central

    Hsieh, Ya-Ju; Ke, Chien-Chih; Yeh, Skye Hsin-Hsien; Lin, Chien-Feng; Chen, Fu-Du; Lin, Kang-Ping; Chen, Ran-Chou; Liu, Ren-Shyan

    2014-01-01

    Multimodality imaging using noncytotoxic triple fusion (TF) reporter genes is an important application for cell-based tracking, drug screening, and therapy. The firefly luciferase (fl), monomeric red fluorescence protein (mrfp), and truncated herpes simplex virus type 1 thymidine kinase SR39 mutant (ttksr39) were fused together to create TF reporter gene constructs with different order. The enzymatic activities of TF protein in vitro and in vivo were determined by luciferase reporter assay, H-FEAU cellular uptake experiment, bioluminescence imaging, and micropositron emission tomography (microPET). The TF construct expressed in H1299 cells possesses luciferase activity and red fluorescence. The tTKSR39 activity is preserved in TF protein and mediates high levels of H-FEAU accumulation and significant cell death from ganciclovir (GCV) prodrug activation. In living animals, the luciferase and tTKSR39 activities of TF protein have also been successfully validated by multimodality imaging systems. The red fluorescence signal is relatively weak for in vivo imaging but may expedite FACS-based selection of TF reporter expressing cells. We have developed an optimized triple fusion reporter construct DsRedm-fl-ttksr39 for more effective and sensitive in vivo animal imaging using fluorescence, bioluminescence, and PET imaging modalities, which may facilitate different fields of biomedical research and applications. PMID:24809057

  16. Luciferin Amides Enable in Vivo Bioluminescence Detection of Endogenous Fatty Acid Amide Hydrolase Activity.

    PubMed

    Mofford, David M; Adams, Spencer T; Reddy, G S Kiran Kumar; Reddy, Gadarla Randheer; Miller, Stephen C

    2015-07-15

    Firefly luciferase is homologous to fatty acyl-CoA synthetases. We hypothesized that the firefly luciferase substrate d-luciferin and its analogs are fatty acid mimics that are ideally suited to probe the chemistry of enzymes that release fatty acid products. Here, we synthesized luciferin amides and found that these molecules are hydrolyzed to substrates for firefly luciferase by the enzyme fatty acid amide hydrolase (FAAH). In the presence of luciferase, these molecules enable highly sensitive and selective bioluminescent detection of FAAH activity in vitro, in live cells, and in vivo. The potency and tissue distribution of FAAH inhibitors can be imaged in live mice, and luciferin amides serve as exemplary reagents for greatly improved bioluminescence imaging in FAAH-expressing tissues such as the brain.

  17. Luciferin Amides Enable in Vivo Bioluminescence Detection of Endogenous Fatty Acid Amide Hydrolase Activity

    PubMed Central

    2015-01-01

    Firefly luciferase is homologous to fatty acyl-CoA synthetases. We hypothesized that the firefly luciferase substrate d-luciferin and its analogs are fatty acid mimics that are ideally suited to probe the chemistry of enzymes that release fatty acid products. Here, we synthesized luciferin amides and found that these molecules are hydrolyzed to substrates for firefly luciferase by the enzyme fatty acid amide hydrolase (FAAH). In the presence of luciferase, these molecules enable highly sensitive and selective bioluminescent detection of FAAH activity in vitro, in live cells, and in vivo. The potency and tissue distribution of FAAH inhibitors can be imaged in live mice, and luciferin amides serve as exemplary reagents for greatly improved bioluminescence imaging in FAAH-expressing tissues such as the brain. PMID:26120870

  18. Use of Humanized RS-ATL8 Reporter System for Detection of Allergen-Specific IgE Sensitization in Human Food Allergy.

    PubMed

    Ali, Eman Ali; Nakamura, Ryosuke; Falcone, Franco H

    2017-01-01

    Allergen-specific Immunoglobulin E (IgE) determination lies at the heart of diagnosis of sensitization to food and other allergens. In the past few years, reporter systems capable of detecting the presence of allergen-specific IgE have been developed by several labs. These rely on humanized rat basophil leukemia cell lines stably transfected with reporter genes such as firefly luciferase. In this chapter, we describe protocols for the use of the RS-ATL8 cell line (IgE cross-linking-induced luciferase expression; EXiLE) in 96-well and 384-well formats. We also describe optional treatment steps for enveloped virus and complement inactivation.

  19. Click beetle luciferase mutant and near infrared naphthyl-luciferins for improved bioluminescence imaging.

    PubMed

    Hall, Mary P; Woodroofe, Carolyn C; Wood, Monika G; Que, Ivo; Van't Root, Moniek; Ridwan, Yanto; Shi, Ce; Kirkland, Thomas A; Encell, Lance P; Wood, Keith V; Löwik, Clemens; Mezzanotte, Laura

    2018-01-09

    The sensitivity of bioluminescence imaging in animals is primarily dependent on the amount of photons emitted by the luciferase enzyme at wavelengths greater than 620 nm where tissue penetration is high. This area of work has been dominated by firefly luciferase and its substrate, D-luciferin, due to the system's peak emission (~ 600 nm), high signal to noise ratio, and generally favorable biodistribution of D-luciferin in mice. Here we report on the development of a codon optimized mutant of click beetle red luciferase that produces substantially more light output than firefly luciferase when the two enzymes are compared in transplanted cells within the skin of black fur mice or in deep brain. The mutant enzyme utilizes two new naphthyl-luciferin substrates to produce near infrared emission (730 nm and 743 nm). The stable luminescence signal and near infrared emission enable unprecedented sensitivity and accuracy for performing deep tissue multispectral tomography in mice.

  20. Mini G protein probes for active G protein-coupled receptors (GPCRs) in live cells.

    PubMed

    Wan, Qingwen; Okashah, Najeah; Inoue, Asuka; Nehmé, Rony; Carpenter, Byron; Tate, Christopher G; Lambert, Nevin A

    2018-05-11

    G protein-coupled receptors (GPCRs) are key signaling proteins that regulate nearly every aspect of cell function. Studies of GPCRs have benefited greatly from the development of molecular tools to monitor receptor activation and downstream signaling. Here, we show that mini G proteins are robust probes that can be used in a variety of assay formats to report GPCR activity in living cells. Mini G (mG) proteins are engineered GTPase domains of Gα subunits that were developed for structural studies of active-state GPCRs. Confocal imaging revealed that mG proteins fused to fluorescent proteins were located diffusely in the cytoplasm and translocated to sites of receptor activation at the cell surface and at intracellular organelles. Bioluminescence resonance energy transfer (BRET) assays with mG proteins fused to either a fluorescent protein or luciferase reported agonist, superagonist, and inverse agonist activities. Variants of mG proteins (mGs, mGsi, mGsq, and mG12) corresponding to the four families of Gα subunits displayed appropriate coupling to their cognate GPCRs, allowing quantitative profiling of subtype-specific coupling to individual receptors. BRET between luciferase-mG fusion proteins and fluorescent markers indicated the presence of active GPCRs at the plasma membrane, Golgi apparatus, and endosomes. Complementation assays with fragments of NanoLuc luciferase fused to GPCRs and mG proteins reported constitutive receptor activity and agonist-induced activation with up to 20-fold increases in luminescence. We conclude that mG proteins are versatile tools for studying GPCR activation and coupling specificity in cells and should be useful for discovering and characterizing G protein subtype-biased ligands. © 2018 Wan et al.

  1. Bioluminescent magnetic nanoparticles as potential imaging agents for mammalian spermatozoa.

    PubMed

    Vasquez, Erick S; Feugang, Jean M; Willard, Scott T; Ryan, Peter L; Walters, Keisha B

    2016-03-17

    Nanoparticles have emerged as key materials for developing applications in nanomedicine, nanobiotechnology, bioimaging and theranostics. Existing bioimaging technologies include bioluminescent resonance energy transfer-conjugated quantum dots (BRET-QDs). Despite the current use of BRET-QDs for bioimaging, there are strong concerns about QD nanocomposites containing cadmium which exhibits potential cellular toxicity. In this study, bioluminescent composites comprised of magnetic nanoparticles and firefly luciferase (Photinus pyralis) are examined as potential light-emitting agents for imaging, detection, and tracking mammalian spermatozoa. Characterization was carried out using infrared spectroscopy, TEM and cryo-TEM imaging, and ζ-potential measurements to demonstrate the successful preparation of these nanocomposites. Binding interactions between the synthesized nanoparticles and spermatozoon were characterized using confocal and atomic/magnetic force microscopy. Bioluminescence imaging and UV-visible-NIR microscopy results showed light emission from sperm samples incubated with the firefly luciferase-modified nanoparticles. Therefore, these newly synthesized luciferase-modified magnetic nanoparticles show promise as substitutes for QD labeling, and can potentially also be used for in vivo manipulation and tracking, as well as MRI techniques. These preliminary data indicate that luciferase-magnetic nanoparticle composites can potentially be used for spermatozoa detection and imaging. Their magnetic properties add additional functionality to allow for manipulation, sorting, or tracking of cells using magnetic techniques.

  2. A bright future for bioluminescent imaging in viral research

    PubMed Central

    Coleman, Stewart M; McGregor, Alistair

    2015-01-01

    Summary Bioluminescence imaging (BLI) has emerged as a powerful tool in the study of animal models of viral disease. BLI enables real-time in vivo study of viral infection, host immune response and the efficacy of intervention strategies. Substrate dependent light emitting luciferase enzyme when incorporated into a virus as a reporter gene enables detection of bioluminescence from infected cells using sensitive charge-coupled device (CCD) camera systems. Advantages of BLI include low background, real-time tracking of infection in the same animal and reduction in the requirement for larger animal numbers. Transgenic luciferase-tagged mice enable the use of pre-existing nontagged viruses in BLI studies. Continued development in luciferase reporter genes, substrates, transgenic animals and imaging systems will greatly enhance future BLI strategies in viral research. PMID:26413138

  3. Long-term ex vivo and in vivo monitoring of tumor progression by using dual luciferases.

    PubMed

    Morita, Naoki; Haga, Sanae; Ohmiya, Yoshihiro; Ozaki, Michitaka

    2016-03-15

    We propose a new concept of tumor progression monitoring using dual luciferases in living animals to reduce stress for small animals and the cost of luciferin. The secreted Cypridina luciferase (CLuc) was used as an ex vivo indicator to continuously monitor tumor progression. On the other hand, the non-secreted firefly luciferase was used as an in vivo indicator to analyze the spatial distribution of the tumor at suitable time points indicated by CLuc. Thus, the new monitoring systems that use dual luciferases are available, allowing long-term bioluminescence imaging under minimal stress for the experimental animals. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. In Vivo Imaging of Chikungunya Virus in Mice and Aedes Mosquitoes Using a Renilla Luciferase Clone

    PubMed Central

    Ziegler, Sarah A.; Nuckols, John; McGee, Charles E.; Huang, Yan-Jang Scott; Vanlandingham, Dana L.; Tesh, Robert B.

    2011-01-01

    Abstract Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that in humans causes an acute febrile illness characterized by fever, arthralgia, and rash. It is currently associated with large outbreaks in Asia, Africa, and islands of the Indian Ocean and has been introduced from these tropical regions into Europe, where local transmission has been recorded on two occasions. The underlying basis of the pathogenesis of CHIKV and related alphaviruses that produce similar symptoms remains unclear. By applying new techniques, for example, in vivo imaging in live animals and arthropods, we may improve our understanding of viral pathogenesis in vertebrates and viral replication in mosquitoes. This technical report describes the evaluation of a CHIKV–luciferase clone to visualize infection and dissemination in both Aedes aegypti and Aedes albopictus mosquitoes and mice. In mosquitoes, luciferase activity was seen at 3 and 7 days post-infection in both head and abdomens. In vivo imaging of CHIKV–luciferase was detected in mice for up to 5 days post-infection at the site of inoculation with limited dissemination to the skeletal muscle. PMID:21668347

  5. In vivo imaging of chikungunya virus in mice and Aedes mosquitoes using a Renilla luciferase clone.

    PubMed

    Ziegler, Sarah A; Nuckols, John; McGee, Charles E; Huang, Yan-Jang Scott; Vanlandingham, Dana L; Tesh, Robert B; Higgs, Stephen

    2011-11-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that in humans causes an acute febrile illness characterized by fever, arthralgia, and rash. It is currently associated with large outbreaks in Asia, Africa, and islands of the Indian Ocean and has been introduced from these tropical regions into Europe, where local transmission has been recorded on two occasions. The underlying basis of the pathogenesis of CHIKV and related alphaviruses that produce similar symptoms remains unclear. By applying new techniques, for example, in vivo imaging in live animals and arthropods, we may improve our understanding of viral pathogenesis in vertebrates and viral replication in mosquitoes. This technical report describes the evaluation of a CHIKV?luciferase clone to visualize infection and dissemination in both Aedes aegypti and Aedes albopictus mosquitoes and mice. In mosquitoes, luciferase activity was seen at 3 and 7 days post-infection in both head and abdomens. In vivo imaging of CHIKV-luciferase was detected in mice for up to 5 days post-infection at the site of inoculation with limited dissemination to the skeletal muscle.

  6. MG53-IRS-1 (Mitsugumin 53-Insulin Receptor Substrate-1) Interaction Disruptor Sensitizes Insulin Signaling in Skeletal Muscle.

    PubMed

    Lee, Hyun; Park, Jung-Jin; Nguyen, Nga; Park, Jun Sub; Hong, Jin; Kim, Seung-Hyeob; Song, Woon Young; Kim, Hak Joong; Choi, Kwangman; Cho, Sungchan; Lee, Jae-Seon; Kim, Bong-Woo; Ko, Young-Gyu

    2016-12-23

    Mitsugumin 53 (MG53) is an E3 ligase that interacts with and ubiquitinates insulin receptor substrate-1 (IRS-1) in skeletal muscle; thus, an MG53-IRS-1 interaction disruptor (MID), which potentially sensitizes insulin signaling with an elevated level of IRS-1 in skeletal muscle, is an excellent candidate for treating insulin resistance. To screen for an MID, we developed a bimolecular luminescence complementation system using an N-terminal luciferase fragment fused with IRS-1 and a C-terminal luciferase fragment fused with an MG53 C14A mutant that binds to IRS-1 but does not have E3 ligase activity. An MID, which was discovered using the bimolecular luminescence complementation system, disrupted the molecular association of MG53 with IRS-1, thus abolishing MG53-mediated IRS-1 ubiquitination and degradation. Thus, the MID sensitized insulin signaling and increased insulin-elicited glucose uptake with an elevated level of IRS-1 in C2C12 myotubes. These data indicate that this MID holds promise as a drug candidate for treating insulin resistance. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Red-shifted Renilla reniformis luciferase variants for imaging in living subjects.

    PubMed

    Loening, Andreas Markus; Wu, Anna M; Gambhir, Sanjiv Sam

    2007-08-01

    The use of R. reniformis luciferase (RLuc) as a reporter gene in small-animal imaging has been hampered by its 481 nm peaked emission spectrum, as blue wavelengths are strongly attenuated in biological tissues. To overcome this, we generated variants of RLuc with bathochromic (red) shifts of up to 66 nm (547 nm peak) that also had greater stability and higher light emission than native RLuc.

  8. Molecular imaging of drug-modulated protein-protein interactions in living subjects.

    PubMed

    Paulmurugan, Ramasamy; Massoud, Tarik F; Huang, Jing; Gambhir, Sanjiv S

    2004-03-15

    Networks of protein interactions mediate cellular responses to environmental stimuli and direct the execution of many different cellular functional pathways. Small molecules synthesized within cells or recruited from the external environment mediate many protein interactions. The study of small molecule-mediated interactions of proteins is important to understand abnormal signal transduction pathways in cancer and in drug development and validation. In this study, we used split synthetic renilla luciferase (hRLUC) protein fragment-assisted complementation to evaluate heterodimerization of the human proteins FRB and FKBP12 mediated by the small molecule rapamycin. The concentration of rapamycin required for efficient dimerization and that of its competitive binder ascomycin required for dimerization inhibition were studied in cell lines. The system was dually modulated in cell culture at the transcription level, by controlling nuclear factor kappaB promoter/enhancer elements using tumor necrosis factor alpha, and at the interaction level, by controlling the concentration of the dimerizer rapamycin. The rapamycin-mediated dimerization of FRB and FKBP12 also was studied in living mice by locating, quantifying, and timing the hRLUC complementation-based bioluminescence imaging signal using a cooled charged coupled device camera. This split reporter system can be used to efficiently screen small molecule drugs that modulate protein-protein interactions and also to assess drugs in living animals. Both are essential steps in the preclinical evaluation of candidate pharmaceutical agents targeting protein-protein interactions, including signaling pathways in cancer cells.

  9. In vivo bioluminescence imaging validation of a human biopsy-derived orthotopic mouse model of glioblastoma multiforme.

    PubMed

    Jarzabek, Monika A; Huszthy, Peter C; Skaftnesmo, Kai O; McCormack, Emmet; Dicker, Patrick; Prehn, Jochen H M; Bjerkvig, Rolf; Byrne, Annette T

    2013-05-01

    Glioblastoma multiforme (GBM), the most aggressive brain malignancy, is characterized by extensive cellular proliferation, angiogenesis, and single-cell infiltration into the brain. We have previously shown that a xenograft model based on serial xenotransplantation of human biopsy spheroids in immunodeficient rodents maintains the genotype and phenotype of the original patient tumor. The present work further extends this model for optical assessment of tumor engraftment and growth using bioluminescence imaging (BLI). A method for successful lentiviral transduction of the firefly luciferase gene into multicellular spheroids was developed and implemented to generate optically active patient tumor cells. Luciferase-expressing spheroids were injected into the brains of immunodeficient mice. BLI photon counts and tumor volumes from magnetic resonance imaging (MRI) were correlated. Luciferase-expressing tumors recapitulated the histopathologic hallmarks of human GBMs and showed proliferation rates and microvessel density counts similar to those of wild-type xenografts. Moreover, we detected widespread invasion of luciferase-positive tumor cells in the mouse brains. Herein we describe a novel optically active model of GBM that closely mimics human pathology with respect to invasion, angiogenesis, and proliferation indices. The model may thus be routinely used for the assessment of novel anti-GBM therapeutic approaches implementing well-established and cost-effective optical imaging strategies.

  10. The Role of Lymphangiogenesis in Orthotopic Prostatic Tumor-Environment on Regional and Systemic Metastasis

    DTIC Science & Technology

    2008-01-01

    expressing Renilla luciferase and VEGF-C shRNA or irrelevant firefly luciferase shRNA (Ctrl) were implanted orthotopically as before. To determine the...on metastasis in Pten knockout model (Month 10-24): a) Generate Ubc/sVEGFR-3 and Ubc/ Renilla luciferase (RL) lentiviral vectors by subcloning...progression (month 10-12) c) Monitor efficiency of Ubc/lentiviral transduction and expression in Pten (-/-) prostate using optical imaging of Renilla

  11. In Vivo Imaging of MDR1A Gene Expression

    DTIC Science & Technology

    2004-12-01

    Engineer PGK-neo and Renilla luciferase cassettes, already available, with appropriate loxP sites, into mdrla locus. Repeat for HSV-tk reporter. The...of the gene-targeting vector. under the control of the PGK promoter. Luc: Renilla luciferase fused in- frame with the translated sequences of exon 2...between the two loxP sites, upstream of the Neo cassette. A cloning strategy was then devised to fuse Renilla luciferase in-frame with the translated

  12. Rapid obtention of stable, bioluminescent tumor cell lines using a tCD2-luciferase chimeric construct

    PubMed Central

    2011-01-01

    Background Bioluminescent tumor cell lines are experimental tools of major importance for cancer investigation, especially imaging of tumors in xenografted animals. Stable expression of exogenous luciferase in tumor cells combined to systemic injection of luciferin provides an excellent signal/background ratio for external optical imaging. Therefore, there is a need to rationalize and speed up the production of luciferase-positive tumor cell lines representative of multiple tumor phenotypes. For this aim we have designed a fusion gene linking the luciferase 2 protein to the c-terminus of a truncated form of the rat CD2 protein (tCD2-luc2). To allow simultaneous assessment of the wild-type luciferase 2 in a context of tCD2 co-expression, we have made a bicistronic construct for concomitant but separate expression of these two proteins (luc2-IRES-tCD2). Both the mono- and bi-cistronic constructs were transduced in lymphoid and epithelial cells using lentiviral vectors. Results The tCD2-luc2 chimera behaves as a type I membrane protein with surface presentation of CD2 epitopes. One of these epitopes reacts with the OX34, a widely spread, high affinity monoclonal antibody. Stably transfected cells are sorted by flow cytometry on the basis of OX34 staining. In vitro and, moreover, in xenografted tumors, the tCD2-luc2 chimera retains a substantial and stable luciferase activity, although not as high as the wild-type luciferase expressed from the luc2-IRES-tCD2 construct. Expression of the tCD2-luc2 chimera does not harm cell and tumor growth. Conclusion Lentiviral transduction of the chimeric tCD2-luc2 fusion gene allows selection of cell clones with stable luciferase expression in less than seven days without antibiotic selection. We believe that it will be helpful to increase the number of tumor cell lines available for in vivo imaging and assessment of novel therapeutic modalities. On a longer term, the tCD2-luc2 chimera has the potential to be expressed from multi-cassette vectors in combination with various inserts of interest. PMID:21435248

  13. Molecular Origin of Color Variation in Firefly (Beetle) Bioluminescence: A Chemical Basis for Biological Imaging.

    PubMed

    Hirano, Takashi

    2016-01-01

    Firefly shows bioluminescence by "luciferin-luciferase" (L-L) reaction using luciferin, luciferase, ATP and O2. The chemical photon generation by an enzymatic reaction is widely utilized for analytical methods including biological imaging in the life science fields. To expand photondetecting analyses with firefly bioluminescence, it is important for users to understand the chemical basis of the L-L reaction. In particular, the emission color variation of the L-L reaction is one of the distinguishing characteristics for multicolor luciferase assay and in vivo imaging. From the viewpoint of fundamental chemistry, this review explains the recent progress in the studies on the molecular mechanism of emission color variation after showing the outline of the reaction mechanism of the whole L-L reaction. On the basis of the mechanism, the progresses in organic synthesis of luciferin analogs modulating their emission colors are also presented to support further developments of red/near infrared in vivo biological imaging utility of firefly bioluminescence.

  14. In Vivo Imaging of mdrla Gene Expression

    DTIC Science & Technology

    2005-06-01

    svImJ mouse strain, compatible with the ES cells used in our Transgenic Mouse Facility. b. Engineer PGK-neo and Renilla luciferase cassettes...inserted between the two loxP sites, upstream of the Neo cassette. A cloning strategy was then devised to fuse Renilla luciferase in-frame with the...sites: B, BamHI; E, EcoRI; S, ScaI. PGK-neo: neo under the control of the PGK promoter. Luc: Renilla luciferase fused in- frame with the translated

  15. Imaging CXCL12-CXCR4 Signaling and Inhibition in Ovarian Cancer

    DTIC Science & Technology

    2013-10-01

    arrestin 2 and reconstitution of luciferase enzymes to produce light (see attached manuscript from PLoS One). Fig 2. CXCL12-dependent activation...With the luciferase complementa- tion system, interactions between CXCR4 and b-arrestin 2 reconstitute active click beetle luciferase to produce light ...dimensional cell culture experiments We plated 1.56104 HeyA8-CXCR4-CBRN/Ar-CBC cells per well in black wall 96 well plates one day before assays. We

  16. Bacterial expression and re-engineering of Gaussia princeps luciferase and its use as a reporter protein.

    PubMed

    Wu, Nan; Rathnayaka, Tharangani; Kuroda, Yutaka

    2015-10-01

    Bioluminescence, the generation of visible light in a living organism, is widely observed in nature, and a large variety of bioluminescent proteins have been discovered and characterized. Luciferase is a generic term for bioluminescent enzymes that catalyze the emission of light through the oxidization of a luciferin (also a generic term). Luciferase are not necessarily evolutionary related and do not share sequence or structural similarities. Some luciferases, such as those from fireflies and Renilla, have been thoroughly characterized and are being used in a wide range of applications in bio-imaging. Gaussia luciferase (GLuc) from the marine copepod Gaussia princeps is the smallest known luciferase, and it is attracting much attention as a potential reporter protein. GLuc identification is relatively recent, and its structure and its biophysical properties remain to be fully characterized. Here, we review the bacterial production of natively folded GLuc with special emphasis on its disulfide bond formation and the re-engineering of its bioluminescence properties. We also compare the bioluminescent properties under a strictly controlled in vitro condition of selected GLuc's variants using extensively purified proteins with native disulfide bonds. Furthermore, we discuss and predict the domain structure and location of the catalytic core based on literature and on bioinformatics analysis. Finally, we review some examples of GLuc's emerging use in biomolecular imaging and biochemical assay systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Luciferase-Specific Coelenterazine Analogues for Optical Contamination-Free Bioassays.

    PubMed

    Nishihara, Ryo; Abe, Masahiro; Nishiyama, Shigeru; Citterio, Daniel; Suzuki, Koji; Kim, Sung Bae

    2017-04-19

    Spectral overlaps among the multiple optical readouts commonly cause optical contamination in fluorescence and bioluminescence. To tackle this issue, we created five-different lineages of coelenterazine (CTZ) analogues designed to selectively illuminate a specific luciferase with unique luciferase selectivity. In the attempt, we found that CTZ analogues with ethynyl or styryl groups display dramatically biased bioluminescence to specific luciferases and pHs by modifying the functional groups at the C-2 and C-6 positions of the imidazopyradinone backbone of CTZ. The optical contamination-free feature was exemplified with the luciferase-specific CTZ analogues, which illuminated anti-estrogenic and rapamycin activities in a mixture of optical probes. This unique bioluminescence platform has great potential for specific and high throughput imaging of multiple optical readouts in bioassays without optical contamination.

  18. Development of a rapid and quantitative method for the analysis of viral entry and release using a NanoLuc luciferase complementation assay.

    PubMed

    Sasaki, Michihito; Anindita, Paulina D; Phongphaew, Wallaya; Carr, Michael; Kobayashi, Shintaro; Orba, Yasuko; Sawa, Hirofumi

    2018-01-02

    Subviral particles (SVPs) self-assemble and are released from cells transfected with expression plasmids encoding flavivirus structural proteins. Flavivirus-like particles (VLPs), consisting of flavivirus structural proteins and a subgenomic replicon, can enter cells and cause single-round infections. Neither SVPs or VLPs possess complete viral RNA genomes, therefore are replication-incompetent systems; however, they retain the capacity to fuse and bud from target cells and follow the same maturation process as whole virions. SVPs and VLPs have been previously employed in studies analyzing entry and release steps of viral life cycles. In this study, we have developed quantitative methods for the detection of cellular entry and release of SVPs and VLPs by applying a luciferase complementation assay based on the high affinity interaction between the split NanoLuc luciferase protein, LgBiT and the small peptide, HiBiT. We introduced HiBiT into the structural protein of West Nile virus and generated SVPs and VLPs harboring HiBiT (SVP-HiBiT and VLP-HiBiT, respectively). As SVP-HiBiT emitted strong luminescence upon exposure to LgBiT and its substrate, the nascently budded SVP-HiBiT in the supernatant was readily quantified by luminometry. Similarly, the cellular entry of VLP-HiBiT generated luminescence when VLP-HiBiT was infected into LgBiT-expressing cells. These methods utilizing SVP-HiBiT and VLP-HiBiT will facilitate research into life cycles of flaviviruses, including WNV. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Combining Optical Reporter Proteins with Different Half-lives to Detect Temporal Evolution of Hypoxia and Reoxygenation in Tumors

    PubMed Central

    Danhier, Pierre; Krishnamachary, Balaji; Bharti, Santosh; Kakkad, Samata; Mironchik, Yelena; Bhujwalla, Zaver M.

    2015-01-01

    Here we have developed a hypoxia response element driven imaging strategy that combined the hypoxia-driven expression of two optical reporters with different half-lives to detect temporal changes in hypoxia and hypoxia inducible factor (HIF) activity. For this purpose, human prostate cancer PC3 cells were transfected with the luciferase gene fused with an oxygen-dependent degradation domain (ODD-luc) and a variant of the enhanced green fluorescent protein (EGFP). Both ODD-luciferase and EGFP were under the promotion of a poly-hypoxia-response element sequence (5xHRE). The cells constitutively expressed tdTomato red fluorescent protein. For validating the imaging strategy, cells were incubated under hypoxia (1% O2) for 48 hours and then reoxygenated. The luciferase activity of PC3-HRE-EGFP/HRE-ODD-luc/tdtomato cells detected by bioluminescent imaging rapidly decreased after reoxygenation, whereas EGFP levels in these cells remained stable for several hours. After in vitro validation, PC3-HRE-EGFP/HRE-ODD-luc/tdtomato tumors were implanted subcutaneously and orthotopically in nude male mice and imaged in vivo and ex vivo using optical imaging in proof-of-principle studies to demonstrate differences in optical patterns between EGFP expression and bioluminescence. This novel "timer" imaging strategy of combining the short-lived ODD-luciferase and the long-lived EGFP can provide a time frame of HRE activation in PC3 prostate cancer cells and will be useful to understand the temporal changes in hypoxia and HIF activity during cancer progression and following treatments including HIF targeting strategies. PMID:26696369

  20. A panel of Trypanosoma brucei strains tagged with blue and red-shifted luciferases for bioluminescent imaging in murine infection models.

    PubMed

    Van Reet, Nick; Van de Vyver, Hélène; Pyana, Patient Pati; Van der Linden, Anne Marie; Büscher, Philippe

    2014-08-01

    Genetic engineering with luciferase reporter genes allows monitoring Trypanosoma brucei (T.b.) infections in mice by in vivo bioluminescence imaging (BLI). Until recently, luminescent T.b. models were based on Renilla luciferase (RLuc) activity. Our study aimed at evaluating red-shifted luciferases for in vivo BLI in a set of diverse T.b. strains of all three subspecies, including some recently isolated from human patients. We transfected T.b. brucei, T.b. rhodesiense and T.b. gambiense strains with either RLuc, click beetle red (CBR) or Photinus pyralis RE9 (PpyRE9) luciferase and characterised their in vitro luciferase activity, growth profile and drug sensitivity, and their potential for in vivo BLI. Compared to RLuc, the red-shifted luciferases, CBR and PpyRE9, allow tracking of T.b. brucei AnTaR 1 trypanosomes with higher details on tissue distribution, and PpyRE9 allows detection of the parasites with a sensitivity of at least one order of magnitude higher than CBR luciferase. With CBR-tagged T.b. gambiense LiTaR1, T.b. rhodesiense RUMPHI and T.b. gambiense 348 BT in an acute, subacute and chronic infection model respectively, we observed differences in parasite tropism for murine tissues during in vivo BLI. Ex vivo BLI on the brain confirmed central nervous system infection by all luminescent strains of T.b. brucei AnTaR 1, T.b. rhodesiense RUMPHI and T.b. gambiense 348 BT. We established a genetically and phenotypically diverse collection of bioluminescent T.b. brucei, T.b. gambiense and T.b. rhodesiense strains, including drug resistant strains. For in vivo BLI monitoring of murine infections, we recommend trypanosome strains transfected with red-shifted luciferase reporter genes, such as CBR and PpyRE9. Red-shifted luciferases can be detected with a higher sensitivity in vivo and at the same time they improve the spatial resolution of the parasites in the entire body due to the better kinetics of their substrate D-luciferin.

  1. A Panel of Trypanosoma brucei Strains Tagged with Blue and Red-Shifted Luciferases for Bioluminescent Imaging in Murine Infection Models

    PubMed Central

    Van Reet, Nick; Van de Vyver, Hélène; Pyana, Patient Pati; Van der Linden, Anne Marie; Büscher, Philippe

    2014-01-01

    Background Genetic engineering with luciferase reporter genes allows monitoring Trypanosoma brucei (T.b.) infections in mice by in vivo bioluminescence imaging (BLI). Until recently, luminescent T.b. models were based on Renilla luciferase (RLuc) activity. Our study aimed at evaluating red-shifted luciferases for in vivo BLI in a set of diverse T.b. strains of all three subspecies, including some recently isolated from human patients. Methodology/Principal findings We transfected T.b. brucei, T.b. rhodesiense and T.b. gambiense strains with either RLuc, click beetle red (CBR) or Photinus pyralis RE9 (PpyRE9) luciferase and characterised their in vitro luciferase activity, growth profile and drug sensitivity, and their potential for in vivo BLI. Compared to RLuc, the red-shifted luciferases, CBR and PpyRE9, allow tracking of T.b. brucei AnTaR 1 trypanosomes with higher details on tissue distribution, and PpyRE9 allows detection of the parasites with a sensitivity of at least one order of magnitude higher than CBR luciferase. With CBR-tagged T.b. gambiense LiTaR1, T.b. rhodesiense RUMPHI and T.b. gambiense 348 BT in an acute, subacute and chronic infection model respectively, we observed differences in parasite tropism for murine tissues during in vivo BLI. Ex vivo BLI on the brain confirmed central nervous system infection by all luminescent strains of T.b. brucei AnTaR 1, T.b. rhodesiense RUMPHI and T.b. gambiense 348 BT. Conclusions/Significance We established a genetically and phenotypically diverse collection of bioluminescent T.b. brucei, T.b. gambiense and T.b. rhodesiense strains, including drug resistant strains. For in vivo BLI monitoring of murine infections, we recommend trypanosome strains transfected with red-shifted luciferase reporter genes, such as CBR and PpyRE9. Red-shifted luciferases can be detected with a higher sensitivity in vivo and at the same time they improve the spatial resolution of the parasites in the entire body due to the better kinetics of their substrate D-luciferin. PMID:25144573

  2. Luciferase from Fulgeochlizus bruchi (Coleoptera:Elateridae), a Brazilian click-beetle with a single abdominal lantern: molecular evolution, biological function and comparison with other click-beetle luciferases.

    PubMed

    Amaral, Danilo T; Prado, Rogilene A; Viviani, Vadim R

    2012-07-01

    Bioluminescent click-beetles emit a wide range of bioluminescence colors (λ(Max) = 534-594 nm) from thoracic and abdominal lanterns, which are used for courtship. Only the luciferases from Pyrophorus and Pyrearinus species were cloned and sequenced. The Brazilian Fulgeochlizus bruchi click-beetle, which inhabits the Central-west Cerrado (Savannas), is noteworthy because, differently from other click-beetles, the adult stage displays only a functional abdominal lantern, which produces a bright green bioluminescence for sexual attraction purposes, and lacks functional thoracic lanterns. We cloned the cDNA for the abdominal lantern luciferase of this species. Notably, the primary sequence of this luciferase showed slightly higher identity with the green emitting dorsal lantern luciferases of the Pyrophorus genus instead of the abdominal lanterns luciferases. This luciferase displays a blue-shifted spectrum (λ(Max) = 540 nm), which is pH-insensitive from pH 7.5 to 9.5 and undergoes a slight red shift and broadening above this pH; the lowest K(M) for luciferin among studied click-beetle luciferases, and the highest optimum pH (9.0) ever reported for a beetle luciferase. At pH 9.0, the K(M) for luciferin increases, showing a decrease of affinity for this substrate, despite the higher activity. The slow luminescence decay rate of F. bruchi luciferase in vitro reaction could be an adaptation of this luciferase for the long and sustained in vivo luminescence display of the click-beetle during the courtship, and could be useful for in vivo intracellular imaging.

  3. A protein folding molecular imaging biosensor monitors the effects of drugs that restore mutant p53 structure and its downstream function in glioblastoma cells

    PubMed Central

    Paulmurugan, Ramasamy; Afjei, Rayhaneh; Sekar, Thillai V.; Babikir, Husam A.; Massoud, Tarik F.

    2018-01-01

    Misfolding mutations in the DNA-binding domain of p53 alter its conformation, affecting the efficiency with which it binds to chromatin to regulate target gene expression and cell cycle checkpoint functions in many cancers, including glioblastoma. Small molecule drugs that recover misfolded p53 structure and function may improve chemotherapy by activating p53-mediated senescence. We constructed and optimized a split Renilla luciferase (RLUC) complementation molecular biosensor (NRLUC-p53-CRLUC) to determine small molecule-meditated folding changes in p53 protein. After initial evaluation of the biosensor in three different cells lines, we engineered endogenously p53P98L mutant (i.e. not affecting the DNA-binding domain) Ln229 glioblastoma cells, to express the biosensor containing one of four different p53 proteins: p53wt, p53Y220C, p53G245S and p53R282W. We evaluated the consequent phenotypic changes in these four variant cells as well as the parental cells after exposure to PhiKan083 and SCH529074, drugs previously reported to activate mutant p53 folding. Specifically, we measured induced RLUC complementation and consequent therapeutic response. Upon stable transduction with the p53 biosensors, we demonstrated that these originally p53P98L Ln229 cells had acquired p53 cellular phenotypes representative of each p53 protein expressed within the biosensor fusion protein. In these engineered variants we found a differential drug response when treated with doxorubicin and temozolomide, either independently or in combination with PhiKan083 or SCH529074. We thus developed a molecular imaging complementation biosensor that mimics endogenous p53 function for use in future applications to screen novel or repurposed drugs that counter the effects of misfolding mutations responsible for oncogenic structural changes in p53. PMID:29765555

  4. Combining Optical Reporter Proteins with Different Half-lives to Detect Temporal Evolution of Hypoxia and Reoxygenation in Tumors.

    PubMed

    Danhier, Pierre; Krishnamachary, Balaji; Bharti, Santosh; Kakkad, Samata; Mironchik, Yelena; Bhujwalla, Zaver M

    2015-12-01

    Here we have developed a hypoxia response element driven imaging strategy that combined the hypoxia-driven expression of two optical reporters with different half-lives to detect temporal changes in hypoxia and hypoxia inducible factor (HIF) activity. For this purpose, human prostate cancer PC3 cells were transfected with the luciferase gene fused with an oxygen-dependent degradation domain (ODD-luc) and a variant of the enhanced green fluorescent protein (EGFP). Both ODD-luciferase and EGFP were under the promotion of a poly-hypoxia-response element sequence (5xHRE). The cells constitutively expressed tdTomato red fluorescent protein. For validating the imaging strategy, cells were incubated under hypoxia (1% O2) for 48 hours and then reoxygenated. The luciferase activity of PC3-HRE-EGFP/HRE-ODD-luc/tdtomato cells detected by bioluminescent imaging rapidly decreased after reoxygenation, whereas EGFP levels in these cells remained stable for several hours. After in vitro validation, PC3-HRE-EGFP/HRE-ODD-luc/tdtomato tumors were implanted subcutaneously and orthotopically in nude male mice and imaged in vivo and ex vivo using optical imaging in proof-of-principle studies to demonstrate differences in optical patterns between EGFP expression and bioluminescence. This novel "timer" imaging strategy of combining the short-lived ODD-luciferase and the long-lived EGFP can provide a time frame of HRE activation in PC3 prostate cancer cells and will be useful to understand the temporal changes in hypoxia and HIF activity during cancer progression and following treatments including HIF targeting strategies. Copyright © 2015 Nencki Institute of Experimental Biology, Polish Academy of Sciences,. Published by Elsevier Inc. All rights reserved.

  5. Quantitative, non-invasive imaging of radiation-induced DNA double strand breaks in vivo

    PubMed Central

    Li, Wenrong; Li, Fang; Huang, Qian; Shen, Jingping; Wolf, Frank; He, Yujun; Liu, Xinjian; Hu, Y. Angela; Bedford, Joel. S.; Li, Chuan-Yuan

    2011-01-01

    DNA double strand breaks is a major form of DNA damage and a key mechanism through which radiotherapy and some chemotherapeutic agents kill cancer cells. Despite its importance, measuring DNA double strand breaks is still a tedious task that is normally carried out by gel electrophoresis or immunofluorescence staining. Here we report a novel approach to image and quantify DNA double strand breaks in live mammalian cells through bi-fragment luciferase reconstitution. N- and C- terminal fragments of firefly luciferase gene were fused with H2AX and MDC1 genes, respectively. Our strategy was based on the established fact that at the sites of DNA double strand breaks, H2AX protein is phosphoryated and physically associates with the MDC1 protein, thus bringing together N- and C- luciferase fragments and reconstituting luciferase activity. Our strategy allowed serial, non-invasive quantification of DNA double strand breaks in cells irradiated with x-rays and 56Fe ions. Furthermore, it allowed for the evaluation of DNA double strand breaks (DSBs) non-invasively in vivo in irradiated tumors over two weeks. Surprisingly, we detected a second wave of DSB induction in irradiated tumor cells days after radiation exposure in addition to the initial rapid induction of DSBs. We conclude that our new split-luciferase based method for imaging γ-H2AX-MDC1 interaction is a powerful new tool to study DNA double strand break repair kinetics in vivo with considerable advantage for experiments requiring observations over an extended period of time. PMID:21527553

  6. Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output.

    PubMed

    Loening, Andreas Markus; Fenn, Timothy David; Wu, Anna M; Gambhir, Sanjiv Sam

    2006-09-01

    Luciferases, which have seen expansive employment as reporter genes in biological research, could also be used in applications where the protein itself is conjugated to ligands to create probes that are appropriate for use in small animal imaging. As the bioluminescence activity of commonly used luciferases is too labile in serum to permit this application, specific mutations of Renilla luciferase, selected using a consensus sequence driven strategy, were screened for their ability to confer stability of activity in serum as well as their light output. Using this information, a total of eight favorable mutations were combined to generate a mutant Renilla luciferase (RLuc8) that, compared with the parental enzyme, is 200-fold more resistant to inactivation in murine serum and exhibits a 4-fold improvement in light output. Results of the mutational analysis were also used to generate a double mutant optimized for use as a reporter gene. The double mutant had half the resistance to inactivation in serum of the native enzyme while yielding a 5-fold improvement in light output. These variants of Renilla luciferase, which exhibit significantly improved properties compared with the native enzyme, will allow enhanced sensitivity in existing luciferase-based assays as well as enable the development of novel probes labeled with the luciferase protein.

  7. The smallest natural high-active luciferase: cloning and characterization of novel 16.5-kDa luciferase from copepod Metridia longa.

    PubMed

    Markova, Svetlana V; Larionova, Marina D; Burakova, Ludmila P; Vysotski, Eugene S

    2015-01-30

    Coelenterazine-dependent copepod luciferases containing natural signal peptide for secretion are a very convenient analytical tool as they enable monitoring of intracellular events with high sensitivity, without destroying cells or tissues. This property is well suited for application in biomedical research and development of cell-based assays for high throughput screening. We report the cloning of cDNA gene encoding a novel secreted non-allelic 16.5-kDa isoform (MLuc7) of Metridia longa luciferase, which, in fact, is the smallest natural luciferase of known for today. Despite the small size, isoform contains 10 conservative Cys residues suggesting the presence of up to 5 SS bonds. This hampers the efficient production of functionally active recombinant luciferase in bacterial expression systems. With the use of the baculovirus expression system, we produced substantial amounts of the proper folded MLuc7 luciferase with a yield of ∼3 mg/L of a high purity protein. We demonstrate that MLuc7 produced in insect cells is highly active and extremely thermostable, and is well suited as a secreted reporter when expressed in mammalian cells ensuring higher sensitivity of detection as compared to another Metridia luciferase isoform (MLuc164) which is widely employed in real-time imaging. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Quantitative bioluminescence imaging of transgene expression in intact porcine antral follicles in vitro.

    PubMed

    Jung, Song-yi; Willard, Scott T

    2014-01-30

    The porcine oocyte maturation in vivo occurs within the ovarian follicle and is regulated by the interactions between oocytes and surrounding follicular components, including theca, granulosa, and cumulus cells, and follicular fluid. Therefore, the antral follicle is an essential microenvironment for efficient oocyte maturation and its developmental competence. Quantitative bioluminescence imaging of firefly luciferase reporter genes in an intact antral follicle would allow investigation of changes in cellular and molecular events and in the context of the whole follicles. In this study, we investigate factors influencing bioluminescence measurements as a first step towards developing a new bioluminescence imaging system for intact antral follicles. We analyzed the time course of bioluminescence emitted from transfected living intact follicles using a cationic lipid mediated gene transfer method with increasing doses (1-3 μg) of firefly luciferase reporter gene (pGL4). In addition, a standard luciferase assay was used to confirm the luciferase expression in granulosa cells in the transfected intact antral follicles. Finally, the dose effects of substrate, D-luciferin, were determined for optimal quantitative bioluminescence imaging of intact porcine antral follicles in vitro. The level of luciferase activity of follicles with 3 μg pGL4 was significantly (P < 0.05) greater than the 1 μg and 2 μg groups at 1 min after D-luciferin injection. The bioluminescence intensity of transfected follicles reached a peak at 1 min, and then it was significantly (P < 0.05) reduced within 2 min after injection of D-luciferin; with the level of bioluminescence emission remained constant from 2.5 to 10 min. The bioluminescence emission was maximal with 300 μg of D-luciferin. The results of this study suggested that the investigation of factors influencing bioluminescence measurements is a critical step toward developing a new bioluminescence imaging model. This study is the first to demonstrate that reporter genes can be transferred to intact granulosa cells with a lipid-mediated gene transfer method within intact follicles in vitro, and the level of transgene expression can be assessed by bioluminescence imaging in living intact antral follicles.

  9. Coelenterazine-v ligated to Ca2+-triggered coelenterazine-binding protein is a stable and efficient substrate of the red-shifted mutant of Renilla muelleri luciferase.

    PubMed

    Stepanyuk, Galina A; Unch, James; Malikova, Natalia P; Markova, Svetlana V; Lee, John; Vysotski, Eugene S

    2010-10-01

    It has been shown that the coelenterazine analog, coelenterazine-v, is an efficient substrate for a reaction catalyzed by Renilla luciferase. The resulting bioluminescence emission maximum is shifted to a longer wavelength up to 40 nm, which allows the use of some "yellow" Renilla luciferase mutants for in vivo imaging. However, the utility of coelenterazine-v in small-animal imaging has been hampered by its instability in solution and in biological tissues. To overcome this drawback, we ligated coelenterazine-v to Ca(2+)-triggered coelenterazine-binding protein from Renilla muelleri, which apparently functions in the organism for stabilizing and protecting coelenterazine from oxidation. The coelenterazine-v bound within coelenterazine-binding protein has revealed a greater long-term stability at both 4 and 37 °C. In addition, the coelenterazine-binding protein ligated by coelenterazine-v yields twice the total light over free coelenterazine-v as a substrate for the red-shifted R. muelleri luciferase. These findings suggest the possibility for effective application of coelenterazine-v in various in vitro assays.

  10. A potential role for imaging technology in anticancer efficacy evaluations.

    PubMed

    Hollingshead, M G; Bonomi, C A; Borgel, S D; Carter, J P; Shoemaker, R; Melillo, G; Sausville, E A

    2004-04-01

    The introduction of imaging methods suitable for rodents offers opportunities for new anticancer efficacy models. Traditional models do not provide the level of sensitivity afforded by these precise and quantitative techniques. Bioluminescent endpoints, now feasible because of sensitive charge-coupled device cameras, can be non-invasively detected in live animals. Currently, the most common luminescence endpoint is firefly luciferase, which, in the presence of O(2) and ATP, catalyses the cleavage of the substrate luciferin and results in the emission of a photon of light. In vivo implantation of tumour cells transfected with the luciferase gene allows sequential monitoring of tumour growth within the viscera by measuring these photon signals. Furthermore, tumour cell lines containing the luciferase gene transcribed from an inducible promoter offer opportunities to study molecular-target modulation without the need for ex vivo evaluations of serial tumour samples. In conjunction with this, transgenic mice bearing a luciferase reporter mechanism can be used to monitor the tumour microenvironment as well as to signal when transforming events occur. This technology has the potential to reshape the efficacy evaluations and drug-testing algorithms of the future.

  11. A multimodality imaging model to track viable breast cancer cells from single arrest to metastasis in the mouse brain

    PubMed Central

    Parkins, Katie M.; Hamilton, Amanda M.; Makela, Ashley V.; Chen, Yuanxin; Foster, Paula J.; Ronald, John A.

    2016-01-01

    Cellular MRI involves sensitive visualization of iron-labeled cells in vivo but cannot differentiate between dead and viable cells. Bioluminescence imaging (BLI) measures cellular viability, and thus we explored combining these tools to provide a more holistic view of metastatic cancer cell fate in mice. Human breast carcinoma cells stably expressing Firefly luciferase were loaded with iron particles, injected into the left ventricle, and BLI and MRI were performed on days 0, 8, 21 and 28. The number of brain MR signal voids (i.e., iron-loaded cells) on day 0 significantly correlated with BLI signal. Both BLI and MRI signals decreased from day 0 to day 8, indicating a loss of viable cells rather than a loss of iron label. Total brain MR tumour volume on day 28 also correlated with BLI signal. Overall, BLI complemented our sensitive cellular MRI technologies well, allowing us for the first time to screen animals for successful injections, and, in addition to MR measures of cell arrest and tumor burden, provided longitudinal measures of cancer cell viability in individual animals. We predict this novel multimodality molecular imaging framework will be useful for evaluating the efficacy of emerging anti-cancer drugs at different stages of the metastatic cascade. PMID:27767185

  12. A multimodality imaging model to track viable breast cancer cells from single arrest to metastasis in the mouse brain.

    PubMed

    Parkins, Katie M; Hamilton, Amanda M; Makela, Ashley V; Chen, Yuanxin; Foster, Paula J; Ronald, John A

    2016-10-21

    Cellular MRI involves sensitive visualization of iron-labeled cells in vivo but cannot differentiate between dead and viable cells. Bioluminescence imaging (BLI) measures cellular viability, and thus we explored combining these tools to provide a more holistic view of metastatic cancer cell fate in mice. Human breast carcinoma cells stably expressing Firefly luciferase were loaded with iron particles, injected into the left ventricle, and BLI and MRI were performed on days 0, 8, 21 and 28. The number of brain MR signal voids (i.e., iron-loaded cells) on day 0 significantly correlated with BLI signal. Both BLI and MRI signals decreased from day 0 to day 8, indicating a loss of viable cells rather than a loss of iron label. Total brain MR tumour volume on day 28 also correlated with BLI signal. Overall, BLI complemented our sensitive cellular MRI technologies well, allowing us for the first time to screen animals for successful injections, and, in addition to MR measures of cell arrest and tumor burden, provided longitudinal measures of cancer cell viability in individual animals. We predict this novel multimodality molecular imaging framework will be useful for evaluating the efficacy of emerging anti-cancer drugs at different stages of the metastatic cascade.

  13. A multimodality imaging model to track viable breast cancer cells from single arrest to metastasis in the mouse brain

    NASA Astrophysics Data System (ADS)

    Parkins, Katie M.; Hamilton, Amanda M.; Makela, Ashley V.; Chen, Yuanxin; Foster, Paula J.; Ronald, John A.

    2016-10-01

    Cellular MRI involves sensitive visualization of iron-labeled cells in vivo but cannot differentiate between dead and viable cells. Bioluminescence imaging (BLI) measures cellular viability, and thus we explored combining these tools to provide a more holistic view of metastatic cancer cell fate in mice. Human breast carcinoma cells stably expressing Firefly luciferase were loaded with iron particles, injected into the left ventricle, and BLI and MRI were performed on days 0, 8, 21 and 28. The number of brain MR signal voids (i.e., iron-loaded cells) on day 0 significantly correlated with BLI signal. Both BLI and MRI signals decreased from day 0 to day 8, indicating a loss of viable cells rather than a loss of iron label. Total brain MR tumour volume on day 28 also correlated with BLI signal. Overall, BLI complemented our sensitive cellular MRI technologies well, allowing us for the first time to screen animals for successful injections, and, in addition to MR measures of cell arrest and tumor burden, provided longitudinal measures of cancer cell viability in individual animals. We predict this novel multimodality molecular imaging framework will be useful for evaluating the efficacy of emerging anti-cancer drugs at different stages of the metastatic cascade.

  14. A reversible Renilla luciferase protein complementation assay for rapid identification of protein–protein interactions reveals the existence of an interaction network involved in xyloglucan biosynthesis in the plant Golgi apparatus

    PubMed Central

    Lund, Christian H.; Bromley, Jennifer R.; Stenbæk, Anne; Rasmussen, Randi E.; Scheller, Henrik V.; Sakuragi, Yumiko

    2015-01-01

    A growing body of evidence suggests that protein–protein interactions (PPIs) occur amongst glycosyltransferases (GTs) required for plant glycan biosynthesis (e.g. cell wall polysaccharides and N-glycans) in the Golgi apparatus, and may control the functions of these enzymes. However, identification of PPIs in the endomembrane system in a relatively fast and simple fashion is technically challenging, hampering the progress in understanding the functional coordination of the enzymes in Golgi glycan biosynthesis. To solve the challenges, we adapted and streamlined a reversible Renilla luciferase protein complementation assay (Rluc-PCA), originally reported for use in human cells, for transient expression in Nicotiana benthamiana. We tested Rluc-PCA and successfully identified luminescence complementation amongst Golgi-localizing GTs known to form a heterodimer (GAUT1 and GAUT7) and those which homooligomerize (ARAD1). In contrast, no interaction was shown between negative controls (e.g. GAUT7, ARAD1, IRX9). Rluc-PCA was used to investigate PPIs amongst Golgi-localizing GTs involved in biosynthesis of hemicelluloses. Although no PPI was identified among six GTs involved in xylan biosynthesis, Rluc-PCA confirmed three previously proposed interactions and identified seven novel PPIs amongst GTs involved in xyloglucan biosynthesis. Notably, three of the novel PPIs were confirmed by a yeast-based split-ubiquitin assay. Finally, Gateway-enabled expression vectors were generated, allowing rapid construction of fusion proteins to the Rluc reporters and epitope tags. Our results show that Rluc-PCA coupled with transient expression in N. benthamiana is a fast and versatile method suitable for analysis of PPIs between Golgi resident proteins in an easy and mid-throughput fashion in planta. PMID:25326916

  15. A reversible Renilla luciferase protein complementation assay for rapid identification of protein-protein interactions reveals the existence of an interaction network involved in xyloglucan biosynthesis in the plant Golgi apparatus

    DOE PAGES

    Lund, C. H.; Bromley, J. R.; Stenbaek, A.; ...

    2014-10-18

    A growing body of evidence suggests that protein–protein interactions (PPIs) occur amongst glycosyltransferases (GTs) required for plant glycan biosynthesis (e.g. cell wall polysaccharides and N-glycans) in the Golgi apparatus, and may control the functions of these enzymes. However, identification of PPIs in the endomembrane system in a relatively fast and simple fashion is technically challenging, hampering the progress in understanding the functional coordination of the enzymes in Golgi glycan biosynthesis. To solve the challenges, we adapted and streamlined a reversible Renilla luciferase protein complementation assay (Rluc-PCA), originally reported for use in human cells, for transient expression in Nicotiana benthamiana. Wemore » tested Rluc-PCA and successfully identified luminescence complementation amongst Golgi-localizing GTs known to form a heterodimer (GAUT1 and GAUT7) and those which homooligomerize (ARAD1). In contrast, no interaction was shown between negative controls (e.g. GAUT7, ARAD1, IRX9). Rluc-PCA was used to investigate PPIs amongst Golgi-localizing GTs involved in biosynthesis of hemicelluloses. Although no PPI was identified among six GTs involved in xylan biosynthesis, Rluc-PCA confirmed three previously proposed interactions and identified seven novel PPIs amongst GTs involved in xyloglucan biosynthesis. Notably, three of the novel PPIs were confirmed by a yeast-based split-ubiquitin assay. Finally, Gateway-enabled expression vectors were generated, allowing rapid construction of fusion proteins to the Rluc reporters and epitope tags. In conclusion, our results show that Rluc-PCA coupled with transient expression in N. benthamiana is a fast and versatile method suitable for analysis of PPIs between Golgi resident proteins in an easy and mid-throughput fashion in planta.« less

  16. A quantitative assay for mitochondrial fusion using Renilla luciferase complementation

    PubMed Central

    Huang, Huiyan; Choi, Seok-Yong; Frohman, Michael A.

    2010-01-01

    Mitochondria continuously undergo fusion and fission, the relative rates of which define their morphology. Large mitochondria produce energy more efficiently, whereas small mitochondria translocate better to subcellular sites where local production of ATP is acutely required. Mitochondrial fusion is currently assayed by fusing together cells expressing GFP or RFP in their mitochondria and then scoring the frequency of cells with yellow mitochondria (representing fused green and red mitochondria). However, this assay is labor-intensive and only semi-quantitative. We describe here a reporter system consisting of split fragments of Renilla luciferase and YFP fused to mitochondrial matrix-targeting sequences and to leucine zippers to trigger dimerization. The assay enables fusion to be quantitated both visually for individual cells and on a population level using chemiluminescence, laying the foundation for high throughput small molecule and RNAi screens for modulators of mitochondrial fusion. We use the assay to examine cytoskeletal roles in fusion progression. PMID:20488258

  17. Comparison of red-shifted firefly luciferase Ppy RE9 and conventional Luc2 as bioluminescence imaging reporter genes for in vivo imaging of stem cells

    NASA Astrophysics Data System (ADS)

    Liang, Yajie; Walczak, Piotr; Bulte, Jeff W. M.

    2012-01-01

    One critical issue for noninvasive imaging of transplanted bioluminescent cells is the large amount of light absorption in tissue when emission wavelengths below 600 nm are used. Luciferase with a red-shifted spectrum can potentially bypass this limitation. We assessed and compared a mutant of firefly luciferase (Ppy RE9, PRE9) against the yellow luciferase luc2 gene for use in cell transplantation studies. C17.2 neural stem cells expressing PRE9-Venus and luc2-Venus were sorted by flow cytometry and assessed for bioluminescence in vitro in culture and in vivo after transplantation into the brain of immunodeficient Rag2-/- mice. We found that the luminescence from PRE9 was stable, with a peak emission at 620 nm, shifted to the red compared to that of luc2. The emission peak for PRE9 was pH-independent, in contrast to luc2, and much less affected by tissue absorbance compared to that of luc2. However, the total emitted light radiance from PRE9 was substantially lower than that of luc2, both in vitro and in vivo. We conclude that PRE9 has favorable properties as compared to luc2 in terms of pH independence, red-shifted spectrum, tissue light penetration, and signal quantification, justifying further optimization of protein expression and enzymatic activity.

  18. Let there be bioluminescence – Development of a biophotonic imaging platform for in situ analyses of oral biofilms in animal models

    PubMed Central

    Merritt, Justin; Senpuku, Hidenobu; Kreth, Jens

    2016-01-01

    Summary In the current study, we describe a novel biophotonic imaging-based reporter system that is particularly useful for the study of virulence in polymicrobial infections and interspecies interactions within animal models. A suite of luciferase enzymes was compared using three early colonizing species of the human oral flora (Streptococcus mutans, Streptococcus gordonii, and Streptococcus sanguinis) to determine the utility of the different reporters for multiplexed imaging studies in vivo. Using the multiplex approach, we were able to track individual species within a dual species oral infection model in mice with both temporal and spatial resolution. We also demonstrate how biophotonic imaging of multiplexed luciferase reporters could be adapted for real-time quantification of bacterial gene expression in situ. By creating an inducible dual-luciferase expressing reporter strain of S. mutans, we were able to exogenously control and measure expression of nlmAB (encoding the bacteriocin mutacin IV) within mice to assess its importance for the persistence ability of S. mutans in the oral cavity. The imaging system described in the current study circumvents many of the inherent limitations of current animal model systems, which should now make it feasible to test hypotheses that were previously impractical to model. PMID:26119252

  19. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat.

    PubMed

    Zou, Shenghao; Wang, Huan; Li, Yiwen; Kong, Zhaosheng; Tang, Dingzhong

    2018-04-01

    Powdery mildew is one of the most devastating diseases of wheat. To date, few powdery mildew resistance genes have been cloned from wheat due to the size and complexity of the wheat genome. Triticum urartu is the progenitor of the A genome of wheat and is an important source for powdery mildew resistance genes. Using molecular markers designed from scaffolds of the sequenced T. urartu accession and standard map-based cloning, a powdery mildew resistance locus was mapped to a 356-kb region, which contains two nucleotide-binding and leucine-rich repeat domain (NB-LRR) protein-encoding genes. Virus-induced gene silencing, single-cell transient expression, and stable transformation assays demonstrated that one of these two genes, designated Pm60, confers resistance to powdery mildew. Overexpression of full-length Pm60 and two allelic variants in Nicotiana benthamiana leaves induced hypersensitive cell death response, but expression of the coiled-coil domain alone was insufficient to induce hypersensitive response. Yeast two-hybrid, bimolecular fluorescence complementation and luciferase complementation imaging assays showed that Pm60 protein interacts with its neighboring NB-containing protein, suggesting that they might be functionally related. The identification and cloning of this novel wheat powdery mildew resistance gene will facilitate breeding for disease resistance in wheat. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  20. A transgenic Plasmodium falciparum NF54 strain that expresses GFP-luciferase throughout the parasite life cycle.

    PubMed

    Vaughan, Ashley M; Mikolajczak, Sebastian A; Camargo, Nelly; Lakshmanan, Viswanathan; Kennedy, Mark; Lindner, Scott E; Miller, Jessica L; Hume, Jen C C; Kappe, Stefan H I

    2012-12-01

    Plasmodium falciparum is the pathogenic agent of the most lethal of human malarias. Transgenic P. falciparum parasites expressing luciferase have been created to study drug interventions of both asexual and sexual blood stages but luciferase-expressing mosquito stage and liver stage parasites have not been created which has prevented the easy quantification of mosquito stage development (e.g. for transmission blocking interventions) and liver stage development (for interventions that prevent infection). To overcome this obstacle, we have created a transgenic P. falciparum NF54 parasite that expresses a GFP-luciferase transgene throughout the life cycle. Luciferase expression is robust and measurable at all life cycle stages, including midgut oocyst, salivary gland sporozoites and liver stages, where in vivo development is easily measurable using humanized mouse infections in conjunction with an in vivo imaging system. This parasite reporter strain will accelerate testing of interventions against pre-erythrocytic life cycle stages. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Bioluminescence imaging of a tumor-selective, thymidine kinase-defective vaccinia virus Guang9 strain after intratumoral or intraperitoneal administration in mice

    PubMed Central

    Ding, Yuedi; Fan, Jun; Deng, Lili; Peng, Ying; Zhang, Jue; Huang, Biao

    2017-01-01

    Vaccinia virus has been used as an oncolytic virus because of its capacity to preferentially infect tumors rather than normal tissues. The vaccinia Tian Tan strain, used as a vaccine against smallpox for millions of people in China, is a promising candidate for cancer therapy. In this study, we constructed an attenuated Tian Tan strain of Guang9 with a disrupted thymidine kinase gene to enhance tumor selectivity and an inserted firefly luciferase to monitor the viral distribution by in vivo bioluminescence imaging. Living animal imaging confirmed the high specificity of vaccinia Guang9 for tumor targeting after intratumoral and intraperitoneal administration. In addition, the vaccinia Guang9 strain produced higher in vivo luciferase activity and endured longer in immunocompromised nude mice than in immunocompetent C57BL/6 mice, all of which had been tumor-challenged. The luciferase activity and viral titers in excised tissues confirmed these conclusions. These data provide evidence for the safety and efficacy of the clinical application of vaccinia virus, which would be a promising approach for cancer therapy. PMID:29179469

  2. Dual-Color Bioluminescence Imaging for Simultaneous Monitoring of the Intestinal Persistence of Lactobacillus plantarum and Lactococcus lactis in Living Mice

    PubMed Central

    Poiret, Sabine; Dennin, Véronique; Boutillier, Denise; Lacorre, Delphine Armelle; Foligné, Benoit; Pot, Bruno

    2015-01-01

    Lactic acid bacteria are found in the gastrointestinal tract of mammals and have received tremendous attention due to their health-promoting properties. We report the development of two dual-color luciferase-producing Lactobacillus (Lb.) plantarum and Lactococcus (Lc.) lactis strains for noninvasive simultaneous tracking in the mouse gastrointestinal tract. We previously described the functional expression of the red luciferase mutant (CBRluc) from Pyrophorus plagiophthalamus in Lb. plantarum NCIMB8826 and Lc. lactis MG1363 (C. Daniel, S. Poiret, V. Dennin, D. Boutillier, and B. Pot, Appl Environ Microbiol 79:1086–1094, 2013, http://dx.doi.org/10.1128/AEM.03221-12). In this study, we determined that CBRluc is a better-performing luciferase for in vivo localization of both lactic acid bacteria after oral administration than the green click beetle luciferase mutant construct developed in this study. We further established the possibility to simultaneously detect red- and green-emitting lactic acid bacteria by dual-wavelength bioluminescence imaging in combination with spectral unmixing. The difference in spectra of light emission by the red and green click beetle luciferase mutants and dual bioluminescence detection allowed in vitro and in vivo quantification of the red and green emitted signals; thus, it allowed us to monitor the dynamics and fate of the two bacterial populations simultaneously. Persistence and viability of both strains simultaneously administered to mice in different ratios was studied in vivo in anesthetized mice and ex vivo in mouse feces. The application of dual-luciferase-labeled bacteria has considerable potential to simultaneously study the interactions and potential competitions of different targeted bacteria and their hosts. PMID:26025906

  3. Quantitative bioluminescence imaging of transgene expression in intact porcine antral follicles in vitro

    PubMed Central

    2014-01-01

    Background The porcine oocyte maturation in vivo occurs within the ovarian follicle and is regulated by the interactions between oocytes and surrounding follicular components, including theca, granulosa, and cumulus cells, and follicular fluid. Therefore, the antral follicle is an essential microenvironment for efficient oocyte maturation and its developmental competence. Quantitative bioluminescence imaging of firefly luciferase reporter genes in an intact antral follicle would allow investigation of changes in cellular and molecular events and in the context of the whole follicles. In this study, we investigate factors influencing bioluminescence measurements as a first step towards developing a new bioluminescence imaging system for intact antral follicles. Methods We analyzed the time course of bioluminescence emitted from transfected living intact follicles using a cationic lipid mediated gene transfer method with increasing doses (1-3 μg) of firefly luciferase reporter gene (pGL4). In addition, a standard luciferase assay was used to confirm the luciferase expression in granulosa cells in the transfected intact antral follicles. Finally, the dose effects of substrate, D-luciferin, were determined for optimal quantitative bioluminescence imaging of intact porcine antral follicles in vitro. Results The level of luciferase activity of follicles with 3 μg pGL4 was significantly (P < 0.05) greater than the 1 μg and 2 μg groups at 1 min after D-luciferin injection. The bioluminescence intensity of transfected follicles reached a peak at 1 min, and then it was significantly (P < 0.05) reduced within 2 min after injection of D-luciferin; with the level of bioluminescence emission remained constant from 2.5 to 10 min. The bioluminescence emission was maximal with 300 μg of D-luciferin. Conclusions The results of this study suggested that the investigation of factors influencing bioluminescence measurements is a critical step toward developing a new bioluminescence imaging model. This study is the first to demonstrate that reporter genes can be transferred to intact granulosa cells with a lipid-mediated gene transfer method within intact follicles in vitro, and the level of transgene expression can be assessed by bioluminescence imaging in living intact antral follicles. PMID:24479789

  4. Expanded palette of Nano-lanterns for real-time multicolor luminescence imaging.

    PubMed

    Takai, Akira; Nakano, Masahiro; Saito, Kenta; Haruno, Remi; Watanabe, Tomonobu M; Ohyanagi, Tatsuya; Jin, Takashi; Okada, Yasushi; Nagai, Takeharu

    2015-04-07

    Fluorescence live imaging has become an essential methodology in modern cell biology. However, fluorescence requires excitation light, which can sometimes cause potential problems, such as autofluorescence, phototoxicity, and photobleaching. Furthermore, combined with recent optogenetic tools, the light illumination can trigger their unintended activation. Because luminescence imaging does not require excitation light, it is a good candidate as an alternative imaging modality to circumvent these problems. The application of luminescence imaging, however, has been limited by the two drawbacks of existing luminescent protein probes, such as luciferases: namely, low brightness and poor color variants. Here, we report the development of bright cyan and orange luminescent proteins by extending our previous development of the bright yellowish-green luminescent protein Nano-lantern. The color change and the enhancement of brightness were both achieved by bioluminescence resonance energy transfer (BRET) from enhanced Renilla luciferase to a fluorescent protein. The brightness of these cyan and orange Nano-lanterns was ∼20 times brighter than wild-type Renilla luciferase, which allowed us to perform multicolor live imaging of intracellular submicron structures. The rapid dynamics of endosomes and peroxisomes were visualized at around 1-s temporal resolution, and the slow dynamics of focal adhesions were continuously imaged for longer than a few hours without photobleaching or photodamage. In addition, we extended the application of these multicolor Nano-lanterns to simultaneous monitoring of multiple gene expression or Ca(2+) dynamics in different cellular compartments in a single cell.

  5. Effects of Epigenetic Modulation on Reporter Gene Expression: Implications for Stem Cell Imaging

    PubMed Central

    Krishnan, Manickam; Park, Jinha M.; Cao, Feng; Wang, Dongxu; Paulmurugan, Ramasay; Tseng, Jeffrey R.; Gonzalgo, Mark L.; Gambhir, Sanjiv S.; Wu, Joseph C.

    2013-01-01

    Tracking stem cell localization, survival, differentiation, and proliferation following transplantation in living subjects is essential for understanding stem cell biology and physiology. In this study, we investigated the long-term stability of reporter gene expression in an embryonic rat cardiomyoblast cell line and the role of epigenetic modulation on reversing reporter gene silencing. Cells were stably transfected with plasmids carrying cytomegalovirus promoter driving firefly luciferase reporter gene (CMV-Fluc) and passaged repeatedly for 3–8 months. Within the highest expressor clone, the firefly luciferase activity decreased progressively from passage-1 (843±28) to passage-20 (250±10) to passage-40 (44±3) to passage-60 (3±1 RLU/µg) (P<0.05 vs. passage-1). Firefly luciferase activity was maximally rescued by treatment with 5-azacytidine (DNA methyltransferase inhibitor) compared to trichostatin A (histone deacetylase inhibitor) and retinoic acid (transcriptional activator) (P<0.05). Increasing dosages of 5-azacytidine treatment led to higher levels of firefly luciferase mRNA (RT-PCR) and protein (Western blots) and inversely lower levels of methylation in the CMV promoter (DNA nucleotide sequence). These in vitro results were extended to in vivo bioluminescence imaging (BLI) of cell transplant in living animals. Cells treated with 5-azacytidine were monitored for 2 weeks compared to 1 week for untreated cells (P<0.05). These findings should have important implications for reporter gene-based imaging of stem cell transplantation. PMID:16246867

  6. Efficient production of glycosylated Cypridina luciferase using plant cells.

    PubMed

    Mitani, Yasuo; Oshima, Yoshimi; Mitsuda, Nobutaka; Tomioka, Azusa; Sukegawa, Masako; Fujita, Mika; Kaji, Hiroyuki; Ohmiya, Yoshihiro

    2017-05-01

    Cypridina noctiluca luciferase has been utilized for biochemical and molecular biological applications, including bioluminescent enzyme immunoassays, far-red luminescence imaging, and high-throughput reporter assays. Some of these applications require a large amount of purified luciferase. However, conventional protein expression systems are not capable of producing sufficient quantities of protein with a high quality and purity without laborious and costly purification processes. To improve the productivity and expand the breadth of possibilities for Cypridina luciferase applications, we employed a variety of secretion expression systems, including yeast, mammalian cells, and silk worms. In this study, we established a simple production procedure using plant cell cultures. The plant cell culture BY-2 efficiently secreted luciferase, which was easily purified using a simple one-step ion-exchange chromatography method. The production yield was 20-30 mg of luciferase per liter of culture medium, and its Km for the luciferin (0.45 μM) was similar to that of the native protein. Additionally, we characterized its glycosylation pattern and confirmed that the two potential N-glycosylation sites were modified with plant-type oligosaccharide chains. Interestingly, the oligosaccharide chains could be trimmed without any detectable decrease in recombinant protein activity. Therefore, the results of our study indicate that this method offers a more cost-effective production method for Cypridina luciferase than conventional methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Prolonged bioluminescence imaging in living cells and mice using novel pro-substrates for Renilla luciferase.

    PubMed

    Yuan, Mingliang; Ma, Xiaojie; Jiang, Tianyu; Gao, Yuqi; Cui, Yuanyuan; Zhang, Chaochao; Yang, Xingye; Huang, Yun; Du, Lupei; Yampolsky, Ilia; Li, Minyong

    2017-12-13

    The prodrug or caged-luciferin strategy affords an excellent platform for persistent bioluminescence imaging. In the current work, we designed and synthesized ten novel pro-substrates for Renilla luciferase by introducing ester protecting groups of different sizes into the carbonyl group of the free luciferin 1. Taking advantage of intracellular esterases, lipases, and nucleophilic substances, the ester protecting groups were hydrolyzed, resulting in the release of a free luciferin and a bioluminescence signal turn-on. Among the tested pro-substrates, the butyryloxymethyl luciferin 7 exhibited low cytotoxicity and a prolonged luminescence signal both in cellulo and in vivo. Therefore, the butyryloxymethyl luciferin 7 can act as a promising substrate for noninvasive extended imaging in diagnostic and therapeutic fields.

  8. Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis.

    PubMed

    Loening, Andreas Markus; Fenn, Timothy David; Gambhir, Sanjiv Sam

    2007-12-07

    Due to its ability to emit light, the luciferase from Renilla reniformis (RLuc) is widely employed in molecular biology as a reporter gene in cell culture experiments and small animal imaging. To accomplish this bioluminescence, the 37-kDa enzyme catalyzes the degradation of its substrate coelenterazine in the presence of molecular oxygen, resulting in the product coelenteramide, carbon dioxide, and the desired photon of light. We successfully crystallized a stabilized variant of this important protein (RLuc8) and herein present the first structures for any coelenterazine-using luciferase. These structures are based on high-resolution data measured to 1.4 A and demonstrate a classic alpha/beta-hydrolase fold. We also present data of a coelenteramide-bound luciferase and reason that this structure represents a secondary conformational form following shift of the product out of the primary active site. During the course of this work, the structure of the luciferase's accessory green fluorescent protein (RrGFP) was also determined and shown to be highly similar to that of Aequorea victoria GFP.

  9. Bioluminescent Imaging of Trypanosoma brucei Shows Preferential Testis Dissemination Which May Hamper Drug Efficacy in Sleeping Sickness

    PubMed Central

    Claes, Filip; Vodnala, Suman K.; van Reet, Nick; Boucher, Nathalie; Lunden-Miguel, Hilda; Baltz, Theo; Goddeeris, Bruno Maria; Büscher, Philippe; Rottenberg, Martin E.

    2009-01-01

    Monitoring Trypanosoma spread using real-time imaging in vivo provides a fast method to evaluate parasite distribution especially in immunoprivileged locations. Here, we generated monomorphic and pleomorphic recombinant Trypanosoma brucei expressing the Renilla luciferase. In vitro luciferase activity measurements confirmed the uptake of the coelenterazine substrate by live parasites and light emission. We further validated the use of Renilla luciferase-tagged trypanosomes for real-time bioluminescent in vivo analysis. Interestingly, a preferential testis tropism was observed with both the monomorphic and pleomorphic recombinants. This is of importance when considering trypanocidal drug development, since parasites might be protected from many drugs by the blood-testis barrier. This hypothesis was supported by our final study of the efficacy of treatment with trypanocidal drugs in T. brucei-infected mice. We showed that parasites located in the testis, as compared to those located in the abdominal cavity, were not readily cleared by the drugs. PMID:19621071

  10. Multimodality Molecular Imaging of Cardiac Cell Transplantation: Part I. Reporter Gene Design, Characterization, and Optical in Vivo Imaging of Bone Marrow Stromal Cells after Myocardial Infarction

    PubMed Central

    Parashurama, Natesh; Ahn, Byeong-Cheol; Ziv, Keren; Ito, Ken; Paulmurugan, Ramasamy; Willmann, Jürgen K.; Chung, Jaehoon; Ikeno, Fumiaki; Swanson, Julia C.; Merk, Denis R.; Lyons, Jennifer K.; Yerushalmi, David; Teramoto, Tomohiko; Kosuge, Hisanori; Dao, Catherine N.; Ray, Pritha; Patel, Manishkumar; Chang, Ya-fang; Mahmoudi, Morteza; Cohen, Jeff Eric; Goldstone, Andrew Brooks; Habte, Frezghi; Bhaumik, Srabani; Yaghoubi, Shahriar; Robbins, Robert C.; Dash, Rajesh; Yang, Phillip C.; Brinton, Todd J.; Yock, Paul G.; McConnell, Michael V.

    2016-01-01

    Purpose To use multimodality reporter-gene imaging to assess the serial survival of marrow stromal cells (MSC) after therapy for myocardial infarction (MI) and to determine if the requisite preclinical imaging end point was met prior to a follow-up large-animal MSC imaging study. Materials and Methods Animal studies were approved by the Institutional Administrative Panel on Laboratory Animal Care. Mice (n = 19) that had experienced MI were injected with bone marrow–derived MSC that expressed a multimodality triple fusion (TF) reporter gene. The TF reporter gene (fluc2-egfp-sr39ttk) consisted of a human promoter, ubiquitin, driving firefly luciferase 2 (fluc2), enhanced green fluorescent protein (egfp), and the sr39tk positron emission tomography reporter gene. Serial bioluminescence imaging of MSC-TF and ex vivo luciferase assays were performed. Correlations were analyzed with the Pearson product-moment correlation, and serial imaging results were analyzed with a mixed-effects regression model. Results Analysis of the MSC-TF after cardiac cell therapy showed significantly lower signal on days 8 and 14 than on day 2 (P = .011 and P = .001, respectively). MSC-TF with MI demonstrated significantly higher signal than MSC-TF without MI at days 4, 8, and 14 (P = .016). Ex vivo luciferase activity assay confirmed the presence of MSC-TF on days 8 and 14 after MI. Conclusion Multimodality reporter-gene imaging was successfully used to assess serial MSC survival after therapy for MI, and it was determined that the requisite preclinical imaging end point, 14 days of MSC survival, was met prior to a follow-up large-animal MSC study. © RSNA, 2016 Online supplemental material is available for this article. PMID:27308957

  11. Quantifying the activity of adenoviral E1A CR2 deletion mutants using renilla luciferase bioluminescence and 3'-deoxy-3'-[18F]fluorothymidine positron emission tomography imaging.

    PubMed

    Leyton, Julius; Lockley, Michelle; Aerts, Joeri L; Baird, Sarah K; Aboagye, Eric O; Lemoine, Nicholas R; McNeish, Iain A

    2006-09-15

    The adenoviral E1A CR2 mutant dl922-947 has potent activity in ovarian cancer. We have used Renilla luciferase bioluminescence imaging to monitor viral E1A expression and replication and [18F]fluorothymidine positron emission tomography ([18F]FLT-PET) to quantify the activity of dl922-947 in vivo. We created dlCR2 Ren, with the same E1A CR2 deletion as dl922-947 and the luciferase gene from Renilla reniformis downstream of E1. Light emitted from s.c. and i.p. IGROV1 ovarian carcinoma xenografts was measured following treatment with dlCR2 Ren. Mice bearing s.c. IGROV1 xenografts were injected with 2.96 to 3.7 MBq of [18F]FLT 48 and 168 hours following i.t. injection of dl922-947 or control virus Ad LM-X. The presence of Renilla luciferase in dlCR2 Ren did not reduce in vitro nor in vivo potency compared with dl922-947. Light emission correlated closely with E1A expression in vitro and peaked 48 hours after dlCR2 Ren injection in both s.c. and i.p. IGROV1 xenografts. It diminished by 168 hours in s.c. tumors but persisted for at least 2 weeks in i.p. models. Normalized tumor [18F]FLT uptake at 60 minutes (NUV60), fractional retention, and area under radioactivity curve all decreased marginally 48 hours after dl922-947 treatment and significantly at 168 hours compared with controls. There was a close linear correlation between NUV60 and both tumor proliferation (Ki67 labeling index) and thymidine kinase 1 expression. Renilla luciferase bioluminescence and [18F]FLT-PET imaging are capable of quantifying the activity and effectiveness of E1A CR2-deleted adenoviral mutants in ovarian cancer.

  12. Effect of antiangiogenic therapy on luciferase activity in a cytomegalovirus- or HSP70-promoter-transfected M21 tumor model

    NASA Astrophysics Data System (ADS)

    Hundt, Walter; Schink, Christian; Steinbach, Silke; O'Connell-Rodwell, Caitlin E.; Kiessling, Andreas; Librizzi, Damiano; Burbelko, Mykhaylo; Guccione, Samira

    2012-06-01

    We investigated the effect of targeted gene therapy on heat shock protein 70 expression (Hsp70) and protein production (HSP70) in a melanoma tumor model (M21; M21-L). M21 and M21-L cells transfected with a plasmid containing the Hsp70 (Hspa1b) or the cytomegalovirus (CMV) promoter and the luciferase reporter gene were injected into mice; the resulting tumors grew to a size of 650 mm3. Mice (five per group) were intravenously treated with an Arg-Gly-Asp peptide-nanoparticle/Raf-1 kinase inhibitor protein complex [RGD-NP/RAF(-)] or with a nanoparticle control. Bioluminescence imaging (IVIS®, Xenogen, USA) was performed at 12, 24, 48, and 72 h after the treatment cycle. Western blot analysis of HSP70 protein was performed to monitor protein expression. The size of the treated M21 tumors remained fairly constant (647.8+/-103.4 mm2 at the beginning versus 704.8+/-94.4 mm3 at the end of the experiment). The size of the M21-L tumors increased, similar to the untreated control tumors. Bioluminescent imaging demonstrated that when transcription was controlled by the CMV promoter, luciferase activity decreased to 17.9%+/-4.3% of baseline values in the treated M21 tumors. When transcription was controlled by the Hsp70 promoter, the highest luciferase activity (4.5+/-0.7-fold increase over base-line values) was seen 24 h after injection in the M21 tumors; however, no luciferase activity was seen in the M21-L tumors. In accordance with bioluminescent imaging, western blot analysis showed a peak in HSP70 production at 24 h after the injection of the RGD-NP/RAF(-) complex in the M21 tumors; however, no HSP70 protein induction was seen in the M21-L tumors. Thus, targeted antiangiogenic therapy can induce Hsp70 expression and HSP70 protein in melanoma tumors.

  13. Illuminating Cancer Systems With Genetically-Engineered Mouse Models and Coupled Luciferase Reporters In Vivo

    PubMed Central

    Kocher, Brandon; Piwnica-Worms, David

    2013-01-01

    Bioluminescent imaging (BLI) is a powerful non-invasive tool that has dramatically accelerated the in vivo interrogation of cancer systems and longitudinal analysis of mouse models of cancer over the past decade. Various luciferase enzymes have been genetically engineered into mouse models (GEMMs) of cancer which permit investigation of cellular and molecular events associated with oncogenic transcription, post-transcriptional processing, protein-protein interactions, transformation and oncogene addiction in live cells and animals. Luciferase-coupled GEMMs ultimately serve as a non-invasive, repetitive, longitudinal, and physiological means by which cancer systems and therapeutic responses can be investigated accurately within the autochthonous context of a living animal. PMID:23585416

  14. A quantitative assay for mitochondrial fusion using Renilla luciferase complementation.

    PubMed

    Huang, Huiyan; Choi, Seok-Yong; Frohman, Michael A

    2010-08-01

    Mitochondria continuously undergo fusion and fission, the relative rates of which define their morphology. Large mitochondria produce energy more efficiently, whereas small mitochondria translocate better to subcellular sites where local production of ATP is acutely required. Mitochondrial fusion is currently assayed by fusing together cells expressing GFP or RFP in their mitochondria and then scoring the frequency of cells with yellow mitochondria (representing fused green and red mitochondria). However, this assay is labor-intensive and only semi-quantitative. We describe here a reporter system consisting of split fragments of Renilla luciferase and YFP fused to mitochondrial matrix-targeting sequences and to leucine zippers to trigger dimerization. The assay enables fusion to be quantitated both visually for individual cells and on a population level using chemiluminescence, laying the foundation for high throughput small molecule and RNAi screens for modulators of mitochondrial fusion. We use the assay to examine cytoskeletal roles in fusion progression. (c) 2010 Mitochondria Research Society. Published by Elsevier B.V. All rights reserved.

  15. Optimization of Enzyme-Substrate Pairing for Bioluminescence Imaging of Gene Transfer Using Renilla and Gaussia Luciferases

    PubMed Central

    Kimura, Takahiro; Hiraoka, Kei; Kasahara, Noriyuki; Logg, Christopher R.

    2010-01-01

    Background Bioluminescence imaging (BLI) permits the noninvasive quantitation and localization of transduction and expression by gene transfer vectors. The tendency of tissue to attenuate light in the optical region, however, limits the sensitivity of BLI. Improvements in light output from bioluminescent reporter systems would allow the detection of lower levels of expression, smaller numbers of cells and expression from deeper and more attenuating tissues within an animal. Methods With the goal of identifying substrates that allow improved sensitivity with Renilla luciferase (RLuc) and Gaussia luciferase (GLuc) reporter genes, we evaluated native coelenterazine and three of its most promising derivatives in BLI of cultured cells transduced with retroviral vectors encoding these reporters. Of the eight enzyme-substrate pairs tested, the two that performed best were further evaluated in mice to compare their effectiveness for imaging vector-modified cells in live animals. Results In cell culture, we observed striking differences in luminescence levels from the various enzyme-substrate combinations and found that the two luciferases exhibited markedly distinct abilities to generate light with the substrates. The most effective pairs were RLuc with the synthetic coelenterazine derivative ViviRen, and GLuc with native coelenterazine. In animals, these two pairs allowed similar detection sensitivities, which were 8–15 times higher than that of the prototypical RLuc-native coelenterazine combination. Conclusions Our results demonstrate that substrate selection can dramatically influence the detection sensitivity of RLuc and GLuc and that appropriate selection of substrate can greatly improve the performance of reporter genes encoding these enzymes for monitoring gene transfer by BLI. PMID:20527045

  16. Optimization of enzyme-substrate pairing for bioluminescence imaging of gene transfer using Renilla and Gaussia luciferases.

    PubMed

    Kimura, Takahiro; Hiraoka, Kei; Kasahara, Noriyuki; Logg, Christopher R

    2010-06-01

    Bioluminescence imaging (BLI) permits the non-invasive quantification and localization of transduction and expression by gene transfer vectors. The tendency of tissue to attenuate light in the optical region, however, limits the sensitivity of BLI. Improvements in light output from bioluminescent reporter systems would allow the detection of lower levels of expression, smaller numbers of cells and expression from deeper and more attenuating tissues within an animal. With the goal of identifying substrates that allow improved sensitivity with Renilla luciferase (RLuc) and Gaussia luciferase (GLuc) reporter genes, we evaluated native coelenterazine and three of its most promising derivatives in BLI of cultured cells transduced with retroviral vectors encoding these reporters. Of the eight enzyme-substrate pairs tested, the two that performed best were further evaluated in mice to compare their effectiveness for imaging vector-modified cells in live animals. In cell culture, we observed striking differences in luminescence levels from the various enzyme-substrate combinations and found that the two luciferases exhibited markedly distinct abilities to generate light with the substrates. The most effective pairs were RLuc with the synthetic coelenterazine derivative ViviRen, and GLuc with native coelenterazine. In animals, these two pairs allowed similar detection sensitivities, which were eight- to 15-fold higher than that of the prototypical RLuc-native coelenterazine combination. Substrate selection can dramatically influence the detection sensitivity of RLuc and GLuc and appropriate choice of substrate can greatly improve the performance of reporter genes encoding these enzymes for monitoring gene transfer by BLI.

  17. Systemic activation of NF-κB driven luciferase activity in transgenic mice fed advanced glycation end products modified albumin.

    PubMed

    Nass, Norbert; Bayreuther, Kristina; Simm, Andreas

    2017-04-01

    Advanced glycation end products (AGEs) are stable end products of the Maillard reaction and accumulate with progressing ageing and degenerative diseases. Significant amounts of AGE-modified peptides are also consumed with processed food. AGEs bind to specific receptors, especially the receptor of AGEs (RAGE). Activation of RAGE then evokes intracellular signalling, finally resulting in the activation of the NF-κB transcription factor and therefore a proinflammatory state. We here analysed, whether NF-κB is activated in short term upon feeding an AGE-modified protein in-vivo. Transgenic mice expressing firefly luciferase under the control of an NF-κB responsive promoter were intraperitoneally injected or fed with AGE-modified- or control albumin and luciferase expression was analysed by in-vivo imaging and by in-vitro by determination of luciferase enzyme activity in heart, lung, gut, spleen, liver and kidney. In all organs, an activation of the luciferase reporter gene was observed in response to AGE-BSA feeding, however with different intensity and timing. The gut exhibited highest luciferase activity and this activity peaked 6-8 h post AGE-feeding. In heart and kidney, luciferase activity increased for up to 12 h post feeding. All other organs tested, exhibited highest activity at 10 h after AGE-consumption. Altogether, these data demonstrate that feeding AGE-modified protein resulted in a transient and systemic activation of the NF-κB reporter.

  18. Fluorophore-NanoLuc BRET Reporters Enable Sensitive In Vivo Optical Imaging and Flow Cytometry for Monitoring Tumorigenesis

    PubMed Central

    Schaub, Franz X; Reza, Md Shamim; Flaveny, Colin A; Li, Weimin; Musicant, Adele M; Hoxha, Sany; Guo, Min; Cleveland, John L; Amelio, Antonio L

    2015-01-01

    Fluorescent proteins are widely used to study molecular and cellular events, yet this traditionally relies on delivery of excitation light, which can trigger autofluorescence, photoxicity, and photobleaching, impairing their use in vivo. Accordingly, chemiluminescent light sources such as those generated by luciferases have emerged, as they do not require excitation light. However, current luciferase reporters lack the brightness needed to visualize events in deep tissues. We report the creation of chimeric eGFP-NanoLuc (GpNLuc) and LSSmOrange-NanoLuc (OgNLuc) fusion reporter proteins coined LumiFluors, which combine the benefits of eGFP or LSSmOrange fluorescent proteins with the bright, glow-type bioluminescent light generated by an enhanced small luciferase subunit (NanoLuc) of the deep sea shrimp Oplophorus gracilirostris. The intramolecular bioluminescence resonance energy transfer (BRET) that occurs between NanoLuc and the fused fluorophore generates the brightest bioluminescent signal known to date, including improved intensity, sensitivity and durable spectral properties, thereby dramatically reducing image acquisition times and permitting highly sensitive in vivo imaging. Notably, the self-illuminating and bi-functional nature of these LumiFluor reporters enables greatly improved spatio-temporal monitoring of very small numbers of tumor cells via in vivo optical imaging and also allows the isolation and analyses of single cells by flow cytometry. Thus, LumiFluor reporters are inexpensive, robust, non-invasive tools that allow for markedly improved in vivo optical imaging of tumorigenic processes. PMID:26424696

  19. A reversible Renilla luciferase protein complementation assay for rapid identification of protein-protein interactions reveals the existence of an interaction network involved in xyloglucan biosynthesis in the plant Golgi apparatus.

    PubMed

    Lund, Christian H; Bromley, Jennifer R; Stenbæk, Anne; Rasmussen, Randi E; Scheller, Henrik V; Sakuragi, Yumiko

    2015-01-01

    A growing body of evidence suggests that protein-protein interactions (PPIs) occur amongst glycosyltransferases (GTs) required for plant glycan biosynthesis (e.g. cell wall polysaccharides and N-glycans) in the Golgi apparatus, and may control the functions of these enzymes. However, identification of PPIs in the endomembrane system in a relatively fast and simple fashion is technically challenging, hampering the progress in understanding the functional coordination of the enzymes in Golgi glycan biosynthesis. To solve the challenges, we adapted and streamlined a reversible Renilla luciferase protein complementation assay (Rluc-PCA), originally reported for use in human cells, for transient expression in Nicotiana benthamiana. We tested Rluc-PCA and successfully identified luminescence complementation amongst Golgi-localizing GTs known to form a heterodimer (GAUT1 and GAUT7) and those which homooligomerize (ARAD1). In contrast, no interaction was shown between negative controls (e.g. GAUT7, ARAD1, IRX9). Rluc-PCA was used to investigate PPIs amongst Golgi-localizing GTs involved in biosynthesis of hemicelluloses. Although no PPI was identified among six GTs involved in xylan biosynthesis, Rluc-PCA confirmed three previously proposed interactions and identified seven novel PPIs amongst GTs involved in xyloglucan biosynthesis. Notably, three of the novel PPIs were confirmed by a yeast-based split-ubiquitin assay. Finally, Gateway-enabled expression vectors were generated, allowing rapid construction of fusion proteins to the Rluc reporters and epitope tags. Our results show that Rluc-PCA coupled with transient expression in N. benthamiana is a fast and versatile method suitable for analysis of PPIs between Golgi resident proteins in an easy and mid-throughput fashion in planta. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Elucidating Mechanisms of Farnesyltransferase Inhibitor Action and Resistance in Breast Cancer by Bioluminescence Imaging

    DTIC Science & Technology

    2009-06-01

    Ras or Cdc42, and a downstream IRES (internal ribosome entry site) to express Renilla luciferase for normalization of infection efficiency. As...internal ribosome entry site (IRES) downstream of Gal4-GFP-VP16-H-Ras/Cdc42 to drive constitutive expression of Renilla luciferase as a means of...for infection efficiency ( renilla luc). 8 mechanisms determining FTI or GGTI sensitivity and resistance in tumors. The system now will be

  1. Real time imaging of live cell ATP leaking or release events by chemiluminescence microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yun

    The purpose of this research was to expand the chemiluminescence microscopy applications in live bacterial/mammalian cell imaging and to improve the detection sensitivity for ATP leaking or release events. We first demonstrated that chemiluminescence (CL) imaging can be used to interrogate single bacterial cells. While using a luminometer allows detecting ATP from cell lysate extracted from at least 10 bacterial cells, all previous cell CL detection never reached this sensitivity of single bacteria level. We approached this goal with a different strategy from before: instead of breaking bacterial cell membrane and trying to capture the transiently diluted ATP with themore » firefly luciferase CL assay, we introduced the firefly luciferase enzyme into bacteria using the modern genetic techniques and placed the CL reaction substrate D-luciferin outside the cells. By damaging the cell membrane with various antibacterial drugs including antibiotics such as Penicillins and bacteriophages, the D-luciferin molecules diffused inside the cell and initiated the reaction that produces CL light. As firefly luciferases are large protein molecules which are retained within the cells before the total rupture and intracellular ATP concentration is high at the millmolar level, the CL reaction of firefly luciferase, ATP and D-luciferin can be kept for a relatively long time within the cells acting as a reaction container to generate enough photons for detection by the extremely sensitive intensified charge coupled device (ICCD) camera. The result was inspiring as various single bacterium lysis and leakage events were monitored with 10-s temporal resolution movies. We also found a new way of enhancing diffusion D-luciferin into cells by dehydrating the bacteria. Then we started with this novel single bacterial CL imaging technique, and applied it for quantifying gene expression levels from individual bacterial cells. Previous published result in single cell gene expression quantification mainly used a fluorescence method; CL detection is limited because of the difficulty to introduce enough D-luciferin molecules. Since dehydration could easily cause proper size holes in bacterial cell membranes and facilitate D-luciferin diffusion, we used this method and recorded CL from individual cells each hour after induction. The CL light intensity from each individual cell was integrated and gene expression levels of two strain types were compared. Based on our calculation, the overall sensitivity of our system is already approaching the single enzyme level. The median enzyme number inside a single bacterium from the higher expression strain after 2 hours induction was quantified to be about 550 molecules. Finally we imaged ATP release from astrocyte cells. Upon mechanical stimulation, astrocyte cells respond by increasing intracellular Ca 2+ level and releasing ATP to extracellular spaces as signaling molecules. The ATP release imaged by direct CL imaging using free firefly luciferase and D-luciferin outside cells reflects the transient release as well as rapid ATP diffusion. Therefore ATP release detection at the cell surface is critical to study the ATP release mechanism and signaling propagation pathway. We realized this cell surface localized ATP release imaging detection by immobilizing firefly luciferase to streptavidin beads that attached to the cell surface via streptavidin-biotin interactions. Both intracellular Ca 2+ propagation wave and extracellular ATP propagation wave at the cell surface were recorded with fluorescence and CL respectively. The results imply that at close distances from the stimulation center (<120 μm) extracellular ATP pathway is faster, while at long distances (>120 μm) intracellular Ca 2+ signaling through gap junctions seems more effective.« less

  2. Highly specific expression of luciferase gene in lungs of naive nude mice directed by prostate-specific antigen promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Hongwei; Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA 22908; Li Jinzhong

    PSA promoter has been demonstrated the utility for tissue-specific toxic gene therapy in prostate cancer models. Characterization of foreign gene overexpression in normal animals elicited by PSA promoter should help evaluate therapy safety. Here we constructed an adenovirus vector (AdPSA-Luc), containing firefly luciferase gene under the control of the 5837 bp long prostate-specific antigen promoter. A charge coupled device video camera was used to non-invasively image expression of firefly luciferase in nude mice on days 3, 7, 11 after injection of 2 x 10{sup 9} PFU of AdPSA-Luc virus via tail vein. The result showed highly specific expression of themore » luciferase gene in lungs of mice from day 7. The finding indicates the potential limitations of the suicide gene therapy of prostate cancer based on selectivity of PSA promoter. By contrary, it has encouraging implications for further development of vectors via PSA promoter to enable gene therapy for pulmonary diseases.« less

  3. Functional artificial luciferases as an optical readout for bioassays.

    PubMed

    Kim, Sung Bae; Izumi, Hiroshi

    2014-06-13

    This study elucidates functional artificial luciferases (ALucs) wholly synthesized for bioassays and molecular imaging. The ALucs bearing epitopes were newly created by amending the sequences of our previously reported ALucs in light of a multi-sequence alignment and hydrophobicity search. The synthesized ALucs are survived in live cells and stable in culture media for 25 days after secretion. The epitopes in ALucs are exposed during the secretion process and indeed valid for column purification and immunological assays. The ALucs exerted a 9400-times stronger optical intensity with a coelenterazine derivative (CTZ i), when compared with Renilla reniformis luciferase 8.6-535. A supersecondary structure of ALuc30 was predicted with respect to the X-ray crystallographic information of the coelenterazine-binding protein (CBP). The structure revealed that ALuc30 has a room for accommodating the iodide of CTZ i. This study guides on how to create functional artificial luciferases and predicts the structural details with the current bioinformatics technologies. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Bioluminescent system for dynamic imaging of cell and animal behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hara-Miyauchi, Chikako; Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, Saitama 351-0198; Department of Biophysics and Biochemistry, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo 113-8510

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer We combined a yellow variant of GFP and firefly luciferase to make ffLuc-cp156. Black-Right-Pointing-Pointer ffLuc-cp156 showed improved photon yield in cultured cells and transgenic mice. Black-Right-Pointing-Pointer ffLuc-cp156 enabled video-rate bioluminescence imaging of freely-moving animals. Black-Right-Pointing-Pointer ffLuc-cp156 mice enabled tracking real-time drug delivery in conscious animals. -- Abstract: The current utility of bioluminescence imaging is constrained by a low photon yield that limits temporal sensitivity. Here, we describe an imaging method that uses a chemiluminescent/fluorescent protein, ffLuc-cp156, which consists of a yellow variant of Aequorea GFP and firefly luciferase. We report an improvement in photon yield by over threemore » orders of magnitude over current bioluminescent systems. We imaged cellular movement at high resolution including neuronal growth cones and microglial cell protrusions. Transgenic ffLuc-cp156 mice enabled video-rate bioluminescence imaging of freely moving animals, which may provide a reliable assay for drug distribution in behaving animals for pre-clinical studies.« less

  5. Intelligent Design of Nano-Scale Molecular Imaging Agents

    PubMed Central

    Kim, Sung Bae; Hattori, Mitsuru; Ozawa, Takeaki

    2012-01-01

    Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs), biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on–off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents. PMID:23235326

  6. Intelligent design of nano-scale molecular imaging agents.

    PubMed

    Kim, Sung Bae; Hattori, Mitsuru; Ozawa, Takeaki

    2012-12-12

    Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs), biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on-off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents.

  7. Delivery of Na/I symporter gene into skeletal muscle using nanobubbles and ultrasound: visualization of gene expression by PET.

    PubMed

    Watanabe, Yukiko; Horie, Sachiko; Funaki, Yoshihito; Kikuchi, Youhei; Yamazaki, Hiromichi; Ishii, Keizo; Mori, Shiro; Vassaux, Georges; Kodama, Tetsuya

    2010-06-01

    The development of nonviral gene delivery systems is essential in gene therapy, and the use of a minimally invasive imaging methodology can provide important clinical endpoints. In the current study, we present a new methodology for gene therapy-a delivery system using nanobubbles and ultrasound as a nonviral gene delivery method. We assessed whether the gene transfer allowed by this methodology was detectable by PET and bioluminescence imaging. Two kinds of reported vectors (luciferase and human Na/I symporter [hNIS]) were transfected or cotransfected into the skeletal muscles of normal mice (BALB/c) using the ultrasound-nanobubbles method. The kinetics of luciferase gene expression were analyzed in vivo using bioluminescence imaging. At the peak of gene transfer, PET of hNIS expression was performed using our recently developed PET scanner, after (124)I injection. The imaging data were confirmed using reverse-transcriptase polymerase chain reaction amplification, biodistribution, and a blocking study. The imaging potential of the 2 methodologies was evaluated in 2 mouse models of human pathology (McH/lpr-RA1 mice showing vascular disease and C57BL/10-mdx Jic mice showing muscular dystrophy). Peak luciferase gene activity was observed in the skeletal muscle 4 d after transfection. On day 2 after hNIS and luciferase cotransfection, the expression of these genes was confirmed by reverse-transcriptase polymerase chain reaction on a muscle biopsy. PET of the hNIS gene, biodistribution, the blocking study, and autoradiography were performed on day 4 after transfection, and it was indicated that hNIS expression was restricted to the site of plasmid administration (skeletal muscle). Similar localized PET and (124)I accumulation were successfully obtained in the disease-model mice. The hNIS gene was delivered into the skeletal muscle of healthy and disease-model mice by the ultrasound-nanobubbles method, and gene expression was successfully visualized with PET. The combination of ultrasound-nanobubble gene transfer and PET may be applied to gene therapy clinical protocols.

  8. Combined image guided monitoring the pharmacokinetics of rapamycin loaded human serum albumin nanoparticles with a split luciferase reporter

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Yang, Kai; Wang, Zhe; Ma, Ying; Gutkind, J. Silvio; Hida, Naoki; Niu, Gang; Tian, Jie

    2016-02-01

    Imaging guided techniques have been increasingly employed to investigate the pharmacokinetics (PK) and biodistribution of nanoparticle based drug delivery systems. In most cases, however, the PK profiles of drugs could vary significantly from those of drug delivery carriers upon administration in the blood circulation, which complicates the interpretation of image findings. Herein we applied a genetically encoded luciferase reporter in conjunction with near infrared (NIR) fluorophores to investigate the respective PK profiles of a drug and its carrier in a biodegradable drug delivery system. In this system, a prototype hydrophobic agent, rapamycin (Rapa), was encapsulated into human serum albumin (HSA) to form HSA Rapa nanoparticles, which were then labeled with Cy5 fluorophore to facilitate the fluorescence imaging of HSA carrier. Meanwhile, we employed transgenetic HN12 cells that were modified with a split luciferase reporter, whose bioluminescence function is regulated by Rapa, to reflect the PK profile of the encapsulated agent. It was interesting to discover that there existed an obvious inconsistency of PK behaviors between HSA carrier and rapamycin in vitro and in vivo through near infrared fluorescence imaging (NIFRI) and bioluminescence imaging (BLI) after treatment with Cy5 labeled HSA Rapa. Nevertheless, HSA Rapa nanoparticles manifested favorable in vivo PK and tumor suppression efficacy in a follow-up therapeutic study. The developed strategy of combining a molecular reporter and a fluorophore in this study could be extended to other drug delivery systems to provide profound insights for non-invasive real-time evaluation of PK profiles of drug-loaded nanoparticles in pre-clinical studies.Imaging guided techniques have been increasingly employed to investigate the pharmacokinetics (PK) and biodistribution of nanoparticle based drug delivery systems. In most cases, however, the PK profiles of drugs could vary significantly from those of drug delivery carriers upon administration in the blood circulation, which complicates the interpretation of image findings. Herein we applied a genetically encoded luciferase reporter in conjunction with near infrared (NIR) fluorophores to investigate the respective PK profiles of a drug and its carrier in a biodegradable drug delivery system. In this system, a prototype hydrophobic agent, rapamycin (Rapa), was encapsulated into human serum albumin (HSA) to form HSA Rapa nanoparticles, which were then labeled with Cy5 fluorophore to facilitate the fluorescence imaging of HSA carrier. Meanwhile, we employed transgenetic HN12 cells that were modified with a split luciferase reporter, whose bioluminescence function is regulated by Rapa, to reflect the PK profile of the encapsulated agent. It was interesting to discover that there existed an obvious inconsistency of PK behaviors between HSA carrier and rapamycin in vitro and in vivo through near infrared fluorescence imaging (NIFRI) and bioluminescence imaging (BLI) after treatment with Cy5 labeled HSA Rapa. Nevertheless, HSA Rapa nanoparticles manifested favorable in vivo PK and tumor suppression efficacy in a follow-up therapeutic study. The developed strategy of combining a molecular reporter and a fluorophore in this study could be extended to other drug delivery systems to provide profound insights for non-invasive real-time evaluation of PK profiles of drug-loaded nanoparticles in pre-clinical studies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07308a

  9. Molecular Imaging of Tumor Angiogenesis and Therapeutic Effects with Dual Bioluminescence.

    PubMed

    Wang, Ran; Zhang, Kaiyue; Tao, Hongyan; Du, Wei; Wang, Di; Huang, Ziwei; Zhou, Manqian; Xu, Yang; Wang, Yuebing; Liu, Na; Wang, Hui; Li, Zongjin

    2017-01-01

    Angiogenesis is critical for the growth of tumor by supplying nutrients and oxygen that exacerbates the metastasis and progression of cancer. Noninvasive imaging of angiogenesis during the tumor therapeutic processes may provide novel opportunities for image-guided tumor management. Here, we want to develop a mouse animal model for assessing cancer progression and angiogenesis in the same individuals by molecular imaging. Breast cancer model was developed with mouse breast cancer cell line 4T1 carrying a reporter system encoding a triple fusion (TF) reporter gene consisting of renilla luciferase (Rluc), red fluorescent protein (RFP) and herpes simplex virus truncated thymidine kinase (HSV-ttk) in transgenic mice, which expressed firefly luciferase (Fluc) under the promoter of vascular endothelial growth factor receptor 2 (Vegfr2-luc). The mice were subsequently treated with ganciclovir (GCV) and the tumor angiogenesis was tracked by Fluc imaging and the growth status of tumor was monitored by imaging of Rluc simultaneously. Overall, this traceable breast cancer model can simultaneously image the tumor growth and angiogenesis in single individual, which may facilitate a better understanding the mechanisms of angiogenesis in the progression and regression of tumor. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Development of an ultralow-light-level luminescence image analysis system for dynamic measurements of transcriptional activity in living and migrating cells.

    PubMed

    Maire, E; Lelièvre, E; Brau, D; Lyons, A; Woodward, M; Fafeur, V; Vandenbunder, B

    2000-04-10

    We have developed an approach to study in single living epithelial cells both cell migration and transcriptional activation, which was evidenced by the detection of luminescence emission from cells transfected with luciferase reporter vectors. The image acquisition chain consists of an epifluorescence inverted microscope, connected to an ultralow-light-level photon-counting camera and an image-acquisition card associated to specialized image analysis software running on a PC computer. Using a simple method based on a thin calibrated light source, the image acquisition chain has been optimized following comparisons of the performance of microscopy objectives and photon-counting cameras designed to observe luminescence. This setup allows us to measure by image analysis the luminescent light emitted by individual cells stably expressing a luciferase reporter vector. The sensitivity of the camera was adjusted to a high value, which required the use of a segmentation algorithm to eliminate the background noise. Following mathematical morphology treatments, kinetic changes of luminescent sources were analyzed and then correlated with the distance and speed of migration. Our results highlight the usefulness of our image acquisition chain and mathematical morphology software to quantify the kinetics of luminescence changes in migrating cells.

  11. Use of GFP for in vivo imaging: concepts and misconceptions

    NASA Astrophysics Data System (ADS)

    Hoffman, Robert M.

    2008-02-01

    Although GFP and fluorescent proteins are used extensively for in vivo imaging, there are many misconceptions about GFP imaging especially compared to luciferase. GFP is not toxic, indeed, transgenic animals with GFP expressed in every cell (1) live as long as non-transgenic animals. Cancer cells with GFP are as aggressive and malignant as the cells without GFP (2-4). Cell lines can be made very bright with fluorescent proteins with no toxicity. The in vivo signal from fluorescent proteins is at least 1,000 times greater than luciferase (5). GFP is so bright that a single molecule of GFP can be seen in a bacterium (6). GFP can be observed through the skin on deep organs (7). Skin autofluorescence presents no problem for in vivo GFP imaging with proper filters (8). Fur can be rapidly clipped removing this autofluorescence (9). GFP is readily quantified by the image area which correlates to tumor volume (10). There are now numerous clones of GFP, RFP, YFP and proteins that change color (11) that can be used in vivo.

  12. Crystal Structures of the Luciferase and Green Fluorescent Protein from Renilla reniformis

    PubMed Central

    Loening, Andreas Markus; Fenn, Timothy David; Gambhir, Sanjiv Sam

    2009-01-01

    Due to its ability to emit light, the luciferase from Renilla reniformis (RLuc) is widely employed in molecular biology as a reporter gene in both cell culture experiments and small animal imaging. To accomplish this bioluminesce, the 37 KDa enzyme catalyzes the degradation of its substrate coelenterazine in the presence of molecular oxygen, resulting in the product coelenteramide, carbon dioxide, and the desired photon of light. We successfully crystallized a stabilized variant of this important protein (RLuc8), and present the first structures for any coelenterazine-using luciferase. These structures are based on high resolution data measured to 1.4 Å and demonstrate a classic α/β-hydrolase fold. We also present data of a coe-lenteramide bound-luciferase, and reason that this structure represents a secondary conformational form following shift of the product out of the primary active site. During the course of this work, the structure of the luciferase’s accessory green fluorescent protein (RrGFP) was determined as well and shown to be highly similar to that of Aequorea GFP. PMID:17980388

  13. Brominated Luciferins Are Versatile Bioluminescent Probes

    DOE PAGES

    Steinhardt, Rachel C.; Rathbun, Colin M.; Krull, Brandon T.; ...

    2016-12-08

    Here, we report a set of brominated luciferins for bioluminescence imaging. These regioisomeric scaffolds were accessed by using a common synthetic route. All analogues produced light with firefly luciferase, although varying levels of emission were observed. Differences in photon output were analyzed by computation and photophysical measurements. The brightest brominated luciferin was further evaluated in cell and animal models. At low doses, the analogue outperformed the native substrate in cells. The remaining luciferins, although weak emitters with firefly luciferase, were inherently capable of light production and thus potential substrates for orthogonal mutant enzymes.

  14. Multimodal Imaging of Pathophysiological Changes and Their Role in Development of Breast Cancer Brain Metastasis

    DTIC Science & Technology

    2010-09-01

    vascular and tissue oxygenation. Moreover, by introducing hypoxia reporter gene ( HRE -luciferase) into breast tumor lines, we will be able to use...luciferase re porter gene under the re gulation of an artificial HIF-1-dependent promoter, 5 HRE (14, 1 5). Integrati on of MRI and BLI will provide...mor hypoxi a. 5 x 10 4 MDA-MB231- HRE -ODD-luc cells were directly inje cted into caudal nucle ar area of right side mouse brain. BLI was applied to

  15. Self-illuminating nanoprobe for in vivo imaging of cancers over-expressing the folate receptor

    NASA Astrophysics Data System (ADS)

    Miller, Steven C.; Beviglia, Lucia; Yeung, Pete; Bhattacharyya, Sukanta; Sobek, Daniel

    2012-03-01

    New in vivo imaging reagents with increased sensitivity and penetration depth are needed to advance our understanding of metastases and accelerate the development of therapeutics. The folate receptor (FR) is a promising imaging target that is up-regulated in many human carcinomas, including cancers of the ovary, breast, pancreas, endometrium, lungs, kidneys, colon, brain, and myeloid cells. Zymera has developed a self-illuminating Bioluminescence Resonance Energy Transfer Quantum Dot (BRET-Qdot) nanoprobe conjugated with folate (BQ-Folate) for in vivo imaging of cancers overexpressing FR. BQ-Folate is a novel nanoprobe formed by co-conjugating Renilla reniformis luciferase enzyme and folate to near-infrared (NIR) emitting quantum dots. The luciferase substrate, coelenterazine, activates the BQ-Folate nanoprobe generating luminescence emission in the near-infrared (NIR) region (655 nm) for increased sensitivity and penetration depth. Because BQ-Folate requires no external light source for light emission, it has significant advantages for challenging in vivo preclinical optical imaging applications, such as the detection of early stage metastases. Zymera and OncoMed Pharmaceuticals have demonstrated that in vivo imaging with the BQ-Folate nanoprobe detected the primary tumor and early stage metastases in an orthotopic NOD/SCID mouse model of human pancreatic cancer.

  16. Functional Characterization of Promoter Variants of the Adiponectin Gene Complemented by Epidemiological Data

    PubMed Central

    Laumen, Helmut; Saningong, Akuma D.; Heid, Iris M.; Hess, Jochen; Herder, Christian; Claussnitzer, Melina; Baumert, Jens; Lamina, Claudia; Rathmann, Wolfgang; Sedlmeier, Eva-Maria; Klopp, Norman; Thorand, Barbara; Wichmann, H.-Erich; Illig, Thomas; Hauner, Hans

    2009-01-01

    OBJECTIVE Adiponectin (APM1, ACDC) is an adipocyte-derived protein with downregulated expression in obesity and insulin-resistant states. Several potentially regulatory single nucleotide polymorphisms (SNPs) within the APM1 gene promoter region have been associated with circulating adiponectin levels. None of them have been functionally characterized in adiponectin-expressing cells. Hence, we investigated three SNPs (rs16861194, rs17300539, and rs266729) for their influence on adiponectin promoter activity and their association with circulating adiponectin levels. RESEARCH DESIGN AND METHODS Basal and rosiglitazone-induced promoter activity of different SNP combinations (haplotypes) was analyzed in 3T3-L1 adipocytes using luciferase reporter gene assays and DNA binding studies comparing all possible APM1 haplotypes. This functional approach was complemented with analysis of epidemiological population-based data of 1,692 participants of the MONICA/KORA S123 cohort and 696 participants from the KORA S4 cohort for SNP and haplotype association with circulating adiponectin levels. RESULTS Major to minor allele replacements of the three SNPs revealed significant effects on promoter activity in luciferase assays. Particularly, a minor variant in rs16861194 resulted in reduced basal and rosiglitazone-induced promoter activity and hypoadiponectinemia in the epidemiological datasets. The haplotype with the minor allele in all three SNPs showed a complete loss of promoter activity, and no subject carried this haplotype in either of the epidemiological samples (combined P value for statistically significant difference from a random sample was 0.006). CONCLUSIONS Our results clearly demonstrate that promoter variants associated with hypoadiponectinemia in humans substantially affect adiponectin promoter activity in adipocytes. Our combination of functional experiments with epidemiological data overcomes the drawback of each approach alone. PMID:19074982

  17. Rational and random mutagenesis of firefly luciferase to identify an efficient emitter of red bioluminescence

    NASA Astrophysics Data System (ADS)

    Branchini, Bruce R.; Southworth, Tara L.; Khattak, Neelum F.; Murtiashaw, Martha H.; Fleet, Sarah E.

    2004-06-01

    Firefly luciferase, which emits yellow-green (557 nm) light, and the corresponding cDNA have been used successfully as a bioluminescence reporter of gene expression. One particularly exciting application is in the area of in vivo bioluminescence imaging. Our interest is in developing improved reagents by identifying Photinus pyralis luciferase mutants that efficiently emit red bioluminescence. In this way, the proven advantages of the P. pyralis protein can be combined with the potential advantages of a red-shifted emitter. Using site-directed mutagenesis techniques, we have identified many mutants emitting red bioluminescence. Unfortunately, these enzymes generally have significantly decreased bioluminescence activity. Interestingly, we discovered a mutation, Ile351Ala, that produced a moderate 16 nm red-shift, while maintaining excellent bioluminescence activity. We then undertook a random mutagenesis approach to identify luciferase mutants that emit further red-shifted bioluminescence with minimal loss of activity. Libraries of mutants were created using an error-prone PCR method and the Ile351Ala luciferase mutant as the template DNA. The libraries were screened by in vivo bacterial assays and the promising mutants were purified to enable accurate determination of bioluminescence emission spectra and total bioluminescence activity. We will report the characterization results, including the identification of the randomly altered amino acids, of several mutants that catalyze bioluminescence with emission maxima of approximately 600 nm.

  18. Non-invasive activation of optogenetic actuators

    NASA Astrophysics Data System (ADS)

    Birkner, Elisabeth; Berglund, Ken; Klein, Marguerita E.; Augustine, George J.; Hochgeschwender, Ute

    2014-03-01

    The manipulation of genetically targeted neurons with light (optogenetics) continues to provide unprecedented avenues into studying the function of the mammalian brain. However, potential translation into the clinical arena faces a number of significant hurdles, foremost among them the need for insertion of optical fibers into the brain to deliver light to opsins expressed on neuronal membranes. In order to overcome these hardware-related problems, we have developed an alternative strategy for delivering light to opsins which does not involve fiber implants. Rather, the light is produced by a protein, luciferase, which oxidizes intravenously applied substrate, thereby emitting bioluminescence. In proof-ofprinciple studies employing a fusion protein of a light-generating luciferase to a light-sensing opsin (luminopsin), we showed that light emitted by Gaussia luciferase is indeed able to activate channelrhodopsin, allowing modulation of neuronal activity when expressed in cultured neurons. Here we assessed applicability of the concept in vivo in mice expressing luminopsins from viral vectors and from genetically engineered transgenes. The experiments demonstrate that intravenously applied substrate reaches neurons in the brain, causing the luciferase to produce bioluminescence which can be imaged in vivo, and that activation of channelrhodopsin by bioluminescence is sufficient to affect behavior. Further developments of such technology based on combining optogenetics with bioluminescence - i.e. combining lightsensing molecules with biologically produced light through luciferases - should bring optogenetics closer to clinical applications.

  19. Positive radionuclide imaging of miRNA expression using RILES and the human sodium iodide symporter as reporter gene is feasible and supports a protective role of miRNA-23a in response to muscular atrophy

    PubMed Central

    Simion, Viorel; Sobilo, Julien; Clemoncon, Rudy; Natkunarajah, Sharuja; Ezzine, Safia; Abdallah, Florence; Lerondel, Stephanie; Pichon, Chantal

    2017-01-01

    MicroRNAs (miRNAs) are key players in many biological processes and are considered as an emerging class of pharmacology drugs for diagnosis and therapy. However to fully exploit the therapeutic potential of miRNAs, it is becoming crucial to monitor their expression pattern using medical imaging modalities. Recently, we developed a method called RILES, for RNAi-Inducible Luciferase Expression System that relies on an engineered regulatable expression system to switch-ON the expression of the luciferase gene when a miRNA of interest is expressed in cells. Here we investigated whether replacing the luciferase reporter gene with the human sodium iodide symporter (hNIS) reporter gene will be also suited to monitor the expression of miRNAs in a clinical setting context. We provide evidence that radionuclide imaging of miRNA expression using hNIS is feasible although it is not as robust as when the luciferase reporter gene is used. However, under appropriate conditions, we monitored the expression of several miRNAs in cells, in the liver and in the tibialis anterior muscle of mice undergoing muscular atrophy. We demonstrated that radiotracer accumulation in transfected cells correlated with the induction of hNIS and with the expression of miRNAs detected by real time PCR. We established the kinetic of miRNA-23a expression in mice and demonstrated that this miRNA follows a biphasic expression pattern characterized by a loss of expression at a late time point of muscular atrophy. At autopsy, we found an opposite expression pattern between miRNA-23a and one of the main transcriptional target of this miRNA, APAF-1, and as downstream target, Caspase 9. Our results report the first positive monitoring of endogenously expressed miRNAs in a nuclear medicine imaging context and support the development of additional work to establish the potential therapeutic value of miRNA-23 to prevent the damaging effects of muscular atrophy. PMID:28493972

  20. Positive radionuclide imaging of miRNA expression using RILES and the human sodium iodide symporter as reporter gene is feasible and supports a protective role of miRNA-23a in response to muscular atrophy.

    PubMed

    Simion, Viorel; Sobilo, Julien; Clemoncon, Rudy; Natkunarajah, Sharuja; Ezzine, Safia; Abdallah, Florence; Lerondel, Stephanie; Pichon, Chantal; Baril, Patrick

    2017-01-01

    MicroRNAs (miRNAs) are key players in many biological processes and are considered as an emerging class of pharmacology drugs for diagnosis and therapy. However to fully exploit the therapeutic potential of miRNAs, it is becoming crucial to monitor their expression pattern using medical imaging modalities. Recently, we developed a method called RILES, for RNAi-Inducible Luciferase Expression System that relies on an engineered regulatable expression system to switch-ON the expression of the luciferase gene when a miRNA of interest is expressed in cells. Here we investigated whether replacing the luciferase reporter gene with the human sodium iodide symporter (hNIS) reporter gene will be also suited to monitor the expression of miRNAs in a clinical setting context. We provide evidence that radionuclide imaging of miRNA expression using hNIS is feasible although it is not as robust as when the luciferase reporter gene is used. However, under appropriate conditions, we monitored the expression of several miRNAs in cells, in the liver and in the tibialis anterior muscle of mice undergoing muscular atrophy. We demonstrated that radiotracer accumulation in transfected cells correlated with the induction of hNIS and with the expression of miRNAs detected by real time PCR. We established the kinetic of miRNA-23a expression in mice and demonstrated that this miRNA follows a biphasic expression pattern characterized by a loss of expression at a late time point of muscular atrophy. At autopsy, we found an opposite expression pattern between miRNA-23a and one of the main transcriptional target of this miRNA, APAF-1, and as downstream target, Caspase 9. Our results report the first positive monitoring of endogenously expressed miRNAs in a nuclear medicine imaging context and support the development of additional work to establish the potential therapeutic value of miRNA-23 to prevent the damaging effects of muscular atrophy.

  1. A bright cyan-excitable orange fluorescent protein facilitates dual-emission microscopy and enhances bioluminescence imaging in vivo

    PubMed Central

    Chu, Jun; Oh, Young-Hee; Sens, Alex; Ataie, Niloufar; Dana, Hod; Macklin, John J.; Laviv, Tal; Welf, Erik S.; Dean, Kevin M.; Zhang, Feijie; Kim, Benjamin B.; Tang, Clement Tran; Hu, Michelle; Baird, Michelle A.; Davidson, Michael W.; Kay, Mark A.; Fiolka, Reto; Yasuda, Ryohei; Kim, Douglas S.; Ng, Ho-Leung; Lin, Michael Z.

    2016-01-01

    Orange-red fluorescent proteins (FPs) are widely used in biomedical research for multiplexed epifluorescence microscopy with GFP-based probes, but their different excitation requirements make multiplexing with new advanced microscopy methods difficult. Separately, orange-red FPs are useful for deep-tissue imaging in mammals due to the relative tissue transmissibility of orange-red light, but their dependence on illumination limits their sensitivity as reporters in deep tissues. Here we describe CyOFP1, a bright engineered orange-red FP that is excitable by cyan light. We show that CyOFP1 enables single-excitation multiplexed imaging with GFP-based probes in single-photon and two-photon microscopy, including time-lapse imaging in light-sheet systems. CyOFP1 also serves as an efficient acceptor for resonance energy transfer from the highly catalytic blue-emitting luciferase NanoLuc. An optimized fusion of CyOFP1 and NanoLuc, called Antares, functions as a highly sensitive bioluminescent reporter in vivo, producing substantially brighter signals from deep tissues than firefly luciferase and other bioluminescent proteins. PMID:27240196

  2. Long Term Non-Invasive Imaging of Embryonic Stem Cells Using Reporter Genes

    PubMed Central

    Sun, Ning; Lee, Andrew; Wu, Joseph C.

    2013-01-01

    Development of non-invasive and accurate methods to track cell fate following delivery will greatly expedite transition of embryonic stem (ES) cell therapy to the clinic. Here we describe a protocol for the in vivo monitoring of stem cell survival, proliferation, and migration using reporter genes. We established stable ES cell lines constitutively expressing double fusion (DF; enhanced green fluorescent protein and firefly luciferase) or triple fusion (TF; monomeric red fluorescent protein, firefly luciferase, and herpes simplex virus thymidine kinase) reporter genes using lentiviral transduction. We used fluorescence activated cell sorting to purify these populations in vitro, bioluminescence imaging and positron emission tomography imaging to track them in vivo, and fluorescence immunostaining to confirm the results ex vivo. Unlike other methods of cell tracking such as iron particle and radionuclide labeling, reporter genes are inherited genetically and can be used to monitor cell proliferation and survival for the lifetime of transplanted cells and their progeny. PMID:19617890

  3. Elucidating Mechanisms of Farnesyltransferase Inhibitor Action and Resistance in Breast Cancer by Bioluminescence Imaging

    DTIC Science & Technology

    2010-06-30

    IRES (internal ribosome  entry site) to express  Renilla  luciferase for  normalization of infection efficiency.  As shown  in Figure 6, induction of...site (IRES) downstream of Gal4‐GFP‐VP16‐H‐Ras/Cdc42 to drive  constitutive expression of  Renilla  luciferase as a means of normalizing expression of the...activity (fluc) normalized for infection  efficiency ( renilla  luc).  8    No‐Cost‐Extension Year 3  Accordingly, we modified our  strategy to image

  4. Organic anion transporter 1 (OAT1/SLC22A6) enhances bioluminescence based on d-luciferin-luciferase reaction in living cells by facilitating the intracellular accumulation of d-luciferin.

    PubMed

    Furuya, Takahito; Takehara, Issey; Shimura, Asuka; Kishimoto, Hisanao; Yasujima, Tomoya; Ohta, Kinya; Shirasaka, Yoshiyuki; Yuasa, Hiroaki; Inoue, Katsuhisa

    2018-01-15

    Bioluminescence (BL) imaging based on d-luciferin (d-luc)-luciferase reaction allows noninvasive and real-time monitoring of luciferase-expressing cells. Because BL intensity depends on photons generated through the d-luc-luciferase reaction, an approach to increase intracellular levels of d-luc could improve the detection sensitivity. In the present study, we showed that organic anion transporter 1 (OAT1) is useful, as a d-luc transporter, in boosting the BL intensity in luciferase-expressing cells. Functional screening of several transporters showed that the expression of OAT1 in HEK293 cells stably expressing Pyrearinus termitilluminans luciferase (HEK293/eLuc) markedly enhanced BL intensity in the presence of d-luc. When OAT1 was transiently expressed in HEK293 cells, intracellular accumulation of d-luc was higher than that in control cells, and the specific d-luc uptake mediated by OAT1 was saturable with a Michaelis constant (K m ) of 0.23 μM. The interaction between OAT1 and d-luc was verified using 6-carboxyfluorescein, a typical substrate of OAT1, which showed that d-luc inhibited the uptake of 6-carboxyfluorescein mediated by OAT1. BL intensity was concentration-dependent at steady states in HEK293/eLuc cells stably expressing OAT1, and followed Michaelis-Menten kinetics with an apparent K m of 0.36 μM. In addition, the enhanced BL was significantly inhibited by OAT1-specific inhibitors. Thus, OAT1-mediated transport of d-luc could be a rate-limiting step in the d-luc-luciferase reaction. Furthermore, we found that expressing OAT1 in HEK293/eLuc cells implanted subcutaneously in mice also significantly increased the BL after intraperitoneal injection of d-luc. Our findings suggest that because OAT1 is capable of transporting d-luc, it can also be used to improve visualization and monitoring of luciferase-expressing cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. In vivo testing of Renilla luciferase substrate analogs in an orthotopic murine model of human glioblastoma.

    PubMed

    Otto-Duessel, Maya; Khankaldyyan, Vazgen; Gonzalez-Gomez, Ignacio; Jensen, Michael C; Laug, Walter E; Rosol, Michael

    2006-01-01

    In vivo bioluminescent imaging using cells expressing Renilla luciferase is becoming increasingly common. Hindrances to the more widespread use of Renilla luciferase are the high autoluminescence of its natural substrate, coelenterazine, in plasma, the relatively high absorbance by tissue of the light emitted by the enzyme-substrate reaction; rapid clearance of the substrate; and significant cost. These factors, save for the cost, which has its own limiting effect on use, can combine to reduce the sensitivity of in vivo assays utilizing this reporter system, and methods of increasing light output or decreasing autoluminescence could be of great benefit. A number of analogs of coelenterazine are being investigated may accomplish one or both of these goals. In this study that we report on the testing of two new substrate analogs, EnduRen and ViViren, manufactured by Promega Corporation, in an orthotopic murine model of human glioblastoma expressing Renilla luciferase. We have tested these analogs in this cell line both in vitro and in vivo, and find that the substrate viviren results in significantly greater light output than the natural substrate or the other analog EnduRen. This new substrate could be valuable for studies where greater sensitivity is important.

  6. Renilla luciferase- Aequorea GFP (Ruc-GFP) fusion protein, a novel dual reporter for real-time imaging of gene expression in cell cultures and in live animals.

    PubMed

    Wang, Y; Yu, Y A; Shabahang, S; Wang, G; Szalay, A A

    2002-10-01

    Light-emitting reporter proteins play an increasing role in the study of gene expression in vitro and in vivo. Here we present a ruc-gfp fusion gene construct generated by fusing a cDNA for Renilla luciferase (ruc) in-frame with a cDNA encoding the "humanized" GFP (gfp) from Aequorea. A plasmid containing the fusion gene construct was successfully transformed into, and expressed in, mammalian cells. The transformed cells exhibited both Renilla luciferase activity in the presence of coelenterazine and GFP fluorescence upon excitation with UV light. Spectrofluorometry of cells containing the Ruc-GFP fusion protein, in the absence of wavelengths capable of exciting GFP fluorescence but in the presence of the luciferase substrate, coelenterazine, showed an emission spectrum with two peaks at 475 nm and 508 nm. These two peaks correspond to the emission maximum of Renilla luciferase at 475 nm and that of GFP at 508 nm. The peak at 508 nm generated in the presence of coelenterazine alone (without UV excitation) is the result of intramolecular energy transfer from Renilla luciferase to Aequorea GFP. Southern analysis of genomic DNA purified from transformed Chinese hamster ovary (CHO) cells and fluorescence in situ hybridization (FISH) to metaphase chromosomes confirmed the integration of the ruc-gfp fusion gene on a single chromosome. The bifunctional Ruc-GFP fusion protein allows the detection of gene expression at the single-cell level based on green fluorescence, and in a group of cells based on luminescence emission. Furthermore, animal experiments revealed that light emission from the Ruc-GFP fusion protein can be detected externally in the organs or tissues of live animals bearing the gene construct.

  7. R/L, a double reporter mouse line that expresses luciferase gene upon Cre-mediated excision, followed by inactivation of mRFP expression.

    PubMed

    Jia, Junshuang; Lin, Xiaolin; Lin, Xia; Lin, Taoyan; Chen, Bangzhu; Hao, Weichao; Cheng, Yushuang; Liu, Yu; Dian, Meijuan; Yao, Kaitai; Xiao, Dong; Gu, Weiwang

    2016-10-01

    The Cre/loxP system has become an important tool for the conditional gene knockout and conditional gene expression in genetically engineered mice. The applications of this system depend on transgenic reporter mouse lines that provide Cre recombinase activity with a defined cell type-, tissue-, or developmental stage-specificity. To develop a sensitive assay for monitoring Cre-mediated DNA excisions in mice, we generated Cre-mediated excision reporter mice, designated R/L mice (R/L: mRFP(monomeric red fluorescent protein)/luciferase), express mRFP throughout embryonic development and adult stages, while Cre-mediated excision deletes a loxP-flanked mRFP reporter gene and STOP sequence, thereby activating the expression of the second reporter gene luciferase, as assayed by in vivo and ex vivo bioluminescence imaging. After germ line deletion of the floxed mRFP and STOP sequence in R/L mice by EIIa-Cre mice, the resulting luciferase transgenic mice in which the loxP-mRFP-STOP-loxP cassette is excised from all cells express luciferase in all tissues and organs examined. The expression of luciferase transgene was activated in liver of RL/Alb-Cre double transgenic mice and in brain of RL/Nestin-Cre double transgenic mice when R/L reporter mice were mated with Alb-Cre mice and Nestin-Cre mice, respectively. Our findings reveal that the double reporter R/L mouse line is able to indicate the occurrence of Cre-mediated excision from early embryonic to adult lineages. Taken together, these findings demonstrate that the R/L mice serve as a sensitive reporter for Cre-mediated DNA excision both in living animals and in organs, tissues, and cells following necropsy.

  8. Optical imaging of tumor cells in hollow fibers: evaluation of the antitumor activities of anticancer drugs and target validation.

    PubMed

    Zhang, Guo-Jun; Chen, Tsing-Bau; Bednar, Bohumil; Connolly, Brett M; Hargreaves, Richard; Sur, Cyrille; Williams, David L

    2007-08-01

    The in vivo hollow fiber assay, in which semipermeable hollow fibers filled with tumor cells, are implanted into animals, was originally developed to screen for anticancer compounds before assessment in more complex tumor models. To enhance screening and evaluation of anticancer drugs, we have applied optical imaging technology to this assay. To demonstrate that tumor cells inside hollow fibers can communicate with the host mice, we have used fluorescence imaging in vivo and CD31 immunostaining ex vivo to show that angiogenesis occurs around cell-filled hollow fibers by 2 weeks after subcutaneous implantation. Bioluminescence imaging has been used to follow the number of luciferase-expressing tumor cells within implanted hollow fibers; proliferation of those cells was found to be significantly inhibited by docetaxel or irinotecan. We also used bioluminescence imaging of hollow fibers to monitor the nuclear factor kappaB (NFkappaB) pathway in vivo; NFkappaB activation by lipopolysaccharide and tumor necrosis factor-alpha was evaluated in tumor cell lines genetically engineered to express luciferase controlled by an NFkappaB-responsive element. These results demonstrate that optical imaging of hollow fibers containing reporter tumor cells can be used for the rapid and accurate evaluation of antitumor activities of anticancer drugs and for measurement of molecular pathways.

  9. Near infrared bioluminescence resonance energy transfer from firefly luciferase—quantum dot bionanoconjugates

    NASA Astrophysics Data System (ADS)

    Alam, Rabeka; Karam, Liliana M.; Doane, Tennyson L.; Zylstra, Joshua; Fontaine, Danielle M.; Branchini, Bruce R.; Maye, Mathew M.

    2014-12-01

    The bioluminescence resonance energy transfer (BRET) between firefly luciferase enzymes and semiconductive quantum dots (QDs) with near infrared emission is described. The QD were phase transferred to aqueous buffers using a histidine mediated phase transfer route, and incubated with a hexahistidine tagged, green emitting variant of firefly luciferase from Photinus pyralis (PPyGRTS). The PPyGRTS were bound to the QD interface via the hexahistidine tag, which effectively displaces the histidine layer and binds directly to the QD interfaces, allowing for short donor-acceptor distances (˜5.5 nm). Due to this, high BRET efficiency ratios of ˜5 were obtained. These PPyGRTS-QD bio-nano conjugates were characterized by transmission electron microscopy, thermal gravimetric analysis, Fourier transform infrared spectroscopy and BRET emission studies. The final optimized conjugate was easily observable by night vision imaging, demonstrating the potential of these materials in imaging and signaling/sensing applications.

  10. Visualization of Notch signaling oscillation in cells and tissues.

    PubMed

    Shimojo, Hiromi; Harima, Yukiko; Kageyama, Ryoichiro

    2014-01-01

    The Notch signaling effectors Hes1 and Hes7 exhibit oscillatory expression with a period of about 2-3 h during embryogenesis. Hes1 oscillation is important for proliferation and differentiation of neural stem cells, whereas Hes7 oscillation regulates periodic formation of somites. Continuous expression of Hes1 and Hes7 inhibits these developmental processes. Thus, expression dynamics are very important for gene functions, but it is difficult to distinguish between oscillatory and persistent expression by conventional methods such as in situ hybridization and immunostaining. Here, we describe time-lapse imaging methods using destabilized luciferase reporters and a highly sensitive cooled charge-coupled device camera, which can monitor dynamic gene expression. Furthermore, the expression of two genes can be examined simultaneously by a dual reporter system using two-color luciferase reporters. Time-lapse imaging analyses reveal how dynamically gene expression changes in many biological events.

  11. In vivo image analysis of BoHV-4-based vector in mice.

    PubMed

    Franceschi, Valentina; Stellari, Fabio Franco; Mangia, Carlo; Jacca, Sarah; Lavrentiadou, Sophia; Cavirani, Sandro; Heikenwalder, Mathias; Donofrio, Gaetano

    2014-01-01

    Due to its biological characteristics bovine herpesvirus 4 (BoHV-4) has been considered as an appropriate gene delivery vector. Its genomic clone, modified as a bacterial artificial chromosome (BAC), is better genetically manipulable and can be used as an efficient gene delivery and vaccine vector. Although a large amount of data have been accumulated in vitro on this specific aspect, the same cannot be asserted for the in vivo condition. Therefore, here we investigated the fate of a recombinant BoHV-4 strain expressing luciferase (BoHV-4-A-CMVlucΔTK) after intraperitoneal or intravenous inoculation in mice, by generating a novel recombinant BoHV-4 expressing luciferase (BoHV-4-A-CMVlucΔTK) and by following the virus replication through in vivo imaging analysis. BoHV-4-A-CMVlucΔTK was first characterized in vitro where it was shown, on one hand that its replication properties are identical to those of the parental virus, and on the other that the transduced/infected cells strongly express luciferase. When BoHV-4-A-CMVlucΔTK was inoculated in mice, either intraperitoneally or intravenously, BoHV-4-A-CMVlucΔTK infection/transduction was exclusively localized to the liver, as detected by in vivo image analysis, and in particular almost exclusively in the hepatocytes, as determined by immuno-histochemistry. These data, that add a new insight on the biology of BoHV-4 in vivo, provide the first indication for the potential use of a BoHV-4-based vector in gene-transfer in the liver.

  12. Thermostable luciferase from Luciola cruciate for imaging of carbon nanotubes and carbon nanotubes carrying doxorubicin using in vivo imaging system.

    PubMed

    El-Sayed, Ramy; Eita, Mohamed; Barrefelt, Asa; Ye, Fei; Jain, Himanshu; Fares, Mona; Lundin, Arne; Crona, Mikael; Abu-Salah, Khalid; Muhammed, Mamoun; Hassan, Moustapha

    2013-04-10

    In the present study, we introduce a novel method for in vivo imaging of the biodistribution of single wall carbon nanotubes (SWNTs) labeled with recombinant thermo-stable Luciola cruciata luciferase (LcL). In addition, we highlight a new application for green fluorescent proteins in which they are utilized as imaging moieties for SWNTs. Carbon nanotubes show great positive potential compared to other drug nanocarriers with respect to loading capacity, cell internalization, and biodegradability. We have also studied the effect of binding mode (chemical conjugation and physical adsorption) on the chemiluminescence activity, decay rate, and half-life. We have shown that through proper chemical conjugation of LcL to CNTs, LcL remained biologically active for the catalysis of d-luciferin in the presence of ATP to release detectable amounts of photons for in vivo imaging. Chemiluminescence of LcL allows imaging of CNTs and their cargo in nonsuperficial locations at an organ resolution with no need of an excitation source. Loading LcL-CNTs with the antitumor antibiotic doxorubicin did not alter their biological activity for imaging. In vivo imaging of LcL-CNTs has been carried out using "IVIS spectrum" showing the uptake of LcL-CNTs by different organs in mice. We believe that the LcL-CNT system is an advanced powerful tool for in vivo imaging and therefore a step toward the advancement of the nanomedicine field.

  13. Imaging of bioluminescent LNCaP-luc-M6 tumors: a new animal model for the study of metastatic human prostate cancer.

    PubMed

    Scatena, Caroline D; Hepner, Mischa A; Oei, Yoko A; Dusich, Joan M; Yu, Shang-Fan; Purchio, Tony; Contag, Pamela R; Jenkins, Darlene E

    2004-05-15

    Animal experiments examining hormone-sensitive metastatic prostate cancer using the human LNCaP cell line have been limited to endpoint analyses. To permit longitudinal studies, we generated a luciferase-expressing cell line and used bioluminescent imaging (BLI) to non-invasively monitor the in vivo growth of primary LNCaP tumors and metastasis. LNCaP.FGC cells were transfected to constitutively express firefly luciferase. LNCaP-luc-M6 cells were tested for bioluminescent signal intensity and hormone responsiveness in vitro. The cells were implanted in subcutaneous and orthotopic sites in SCID-bg mice and imaged over time. The LNCaP-luc-M6 cells formed subcutaneous and orthotopic tumors in SCID-bg mice, and nearly all tumor-bearing animals developed pulmonary metastases. Early detection and temporal growth of primary tumors and metastatic lesions was successfully monitored by BLI. The LNCaP-luc-M6 cell line is a bioluminescent, hormone-sensitive prostate cancer cell line applicable for BLI studies to non-invasively monitor subcutaneous and orthotopic prostate tumor growth and metastasis in vivo. Copyright 2004 Wiley-Liss, Inc.

  14. Cardiac Gene Expression Knockdown Using Small Inhibitory RNA-Loaded Microbubbles and Ultrasound.

    PubMed

    Kopechek, Jonathan A; Carson, Andrew R; McTiernan, Charles F; Chen, Xucai; Klein, Edwin C; Villanueva, Flordeliza S

    2016-01-01

    RNA interference has potential therapeutic value for cardiac disease, but targeted delivery of interfering RNA is a challenge. Custom designed microbubbles, in conjunction with ultrasound, can deliver small inhibitory RNA to target tissues in vivo. The efficacy of cardiac RNA interference using a microbubble-ultrasound theranostic platform has not been demonstrated in vivo. Therefore, our objective was to test the hypothesis that custom designed microbubbles and ultrasound can mediate effective delivery of small inhibitory RNA to the heart. Microbubble and ultrasound mediated cardiac RNA interference was tested in transgenic mice displaying cardiac-restricted luciferase expression. Luciferase expression was assayed in select tissues of untreated mice (n = 14). Mice received intravenous infusion of cationic microbubbles bearing small inhibitory RNA directed against luciferase (n = 9) or control RNA (n = 8) during intermittent cardiac-directed ultrasound at mechanical index of 1.6. Simultaneous echocardiography in a separate group of mice (n = 3) confirmed microbubble destruction and replenishment during treatment. Three days post treatment, cardiac luciferase messenger RNA and protein levels were significantly lower in ultrasound-treated mice receiving microbubbles loaded with small inhibitory RNA directed against luciferase compared to mice receiving microbubbles bearing control RNA (23±7% and 33±7% of control mice, p<0.01 and p = 0.03, respectively). Passive cavitation detection focused on the heart confirmed that insonification resulted in inertial cavitation. In conclusion, small inhibitory RNA-loaded microbubbles and ultrasound directed at the heart significantly reduced the expression of a reporter gene. Ultrasound-targeted destruction of RNA-loaded microbubbles may be an effective image-guided strategy for therapeutic RNA interference in cardiac disease.

  15. A portable bioluminescence engineered cell-based biosensor for on-site applications.

    PubMed

    Roda, Aldo; Cevenini, Luca; Michelini, Elisa; Branchini, Bruce R

    2011-04-15

    We have developed a portable biosensing device based on genetically engineered bioluminescent (BL) cells. Cells were immobilized on a 4 × 3 multiwell cartridge using a new biocompatible matrix that preserved their vitality. Using a fiber optic taper, the cartridge was placed in direct contact with a cooled CCD sensor to image and quantify the BL signals. Yeast and bacterial cells were engineered to express recognition elements, whose interaction with the analyte led to luciferase expression, via reporter gene technology. Three different biosensors were developed. The first detects androgenic compounds using yeast cells carrying a green-emitting P. pyralis luciferase regulated by the human androgen receptor and a red mutant of the same species as internal vitality control. The second biosensor detects two classes of compounds (androgens and estrogens) using yeast strains engineered to express green-or red-emitting mutant firefly luciferases in response to androgens or estrogens, respectively. The third biosensor detects lactose analogue isopropyl β-d-1-thiogalactopyranoside using two E. coli strains. One strain exploits the lac operon as recognition element for the expression of P. pyralis luciferase. The other strain serves as a vitality control expressing Gaussia princeps luciferase, which requires a different luciferin substrate. The immobilized cells were stable for up to 1 month. The analytes could be detected at nanomolar levels with good precision and accuracy when the specific signal was corrected using the internal vitality control. This portable device can be used for on-site multiplexed bioassays for different compound classes. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Secreted Gaussia princeps luciferase as a reporter of Escherichia coli replication in a mouse tissue cage model of infection.

    PubMed

    Liu, Mingyu; Blinn, Christina; McLeod, Sarah M; Wiseman, John W; Newman, Joseph V; Fisher, Stewart L; Walkup, Grant K

    2014-01-01

    Measurement of bacterial burden in animal infection models is a key component for both bacterial pathogenesis studies and therapeutic agent research. The traditional quantification means for in vivo bacterial burden requires frequent animal sacrifice and enumerating colony forming units (CFU) recovered from infection loci. To address these issues, researchers have developed a variety of luciferase-expressing bacterial reporter strains to enable bacterial detection in living animals. To date, all such luciferase-based bacterial reporters are in cell-associated form. Production of luciferase-secreting recombinant bacteria could provide the advantage of reporting CFU from both infection loci themselves and remote sampling (eg. body fluid and plasma). Toward this end, we have genetically manipulated a pathogenic Escherichia coli (E. coli) strain, ATCC25922, to secrete the marine copepod Gaussia princeps luciferase (Gluc), and assessed the use of Gluc as both an in situ and ex situ reporter for bacterial burden in mouse tissue cage infections. The E. coli expressing Gluc demonstrates in vivo imaging of bacteria in a tissue cage model of infection. Furthermore, secreted Gluc activity and bacterial CFUs recovered from tissue cage fluid (TCF) are correlated along 18 days of infection. Importantly, secreted Gluc can also be detected in plasma samples and serve as an ex situ indicator for the established tissue cage infection, once high bacterial burdens are achieved. We have demonstrated that Gluc from marine eukaryotes can be stably expressed and secreted by pathogenic E. coli in vivo to enable a facile tool for longitudinal evaluation of persistent bacterial infection.

  17. Bioluminescence resonance energy transfer (BRET) imaging of protein–protein interactions within deep tissues of living subjects

    PubMed Central

    Dragulescu-Andrasi, Anca; Chan, Carmel T.; Massoud, Tarik F.; Gambhir, Sanjiv S.

    2011-01-01

    Identifying protein–protein interactions (PPIs) is essential for understanding various disease mechanisms and developing new therapeutic approaches. Current methods for assaying cellular intermolecular interactions are mainly used for cells in culture and have limited use for the noninvasive assessment of small animal disease models. Here, we describe red light-emitting reporter systems based on bioluminescence resonance energy transfer (BRET) that allow for assaying PPIs both in cell culture and deep tissues of small animals. These BRET systems consist of the recently developed Renilla reniformis luciferase (RLuc) variants RLuc8 and RLuc8.6, used as BRET donors, combined with two red fluorescent proteins, TagRFP and TurboFP635, as BRET acceptors. In addition to the native coelenterazine luciferase substrate, we used the synthetic derivative coelenterazine-v, which further red-shifts the emission maxima of Renilla luciferases by 35 nm. We show the use of these BRET systems for ratiometric imaging of both cells in culture and deep-tissue small animal tumor models and validate their applicability for studying PPIs in mice in the context of rapamycin-induced FK506 binding protein 12 (FKBP12)-FKBP12 rapamycin binding domain (FRB) association. These red light-emitting BRET systems have great potential for investigating PPIs in the context of drug screening and target validation applications. PMID:21730157

  18. “Glowing Head” Mice: A Genetic Tool Enabling Reliable Preclinical Image-Based Evaluation of Cancers in Immunocompetent Allografts

    PubMed Central

    Day, Chi-Ping; Carter, John; Ohler, Zoe Weaver; Bonomi, Carrie; El Meskini, Rajaa; Martin, Philip; Graff-Cherry, Cari; Feigenbaum, Lionel; Tüting, Thomas; Van Dyke, Terry; Hollingshead, Melinda; Merlino, Glenn

    2014-01-01

    Preclinical therapeutic assessment currently relies on the growth response of established human cell lines xenografted into immunocompromised mice, a strategy that is generally not predictive of clinical outcomes. Immunocompetent genetically engineered mouse (GEM)-derived tumor allograft models offer highly tractable preclinical alternatives and facilitate analysis of clinically promising immunomodulatory agents. Imageable reporters are essential for accurately tracking tumor growth and response, particularly for metastases. Unfortunately, reporters such as luciferase and GFP are foreign antigens in immunocompetent mice, potentially hindering tumor growth and confounding therapeutic responses. Here we assessed the value of reporter-tolerized GEMs as allograft recipients by targeting minimal expression of a luciferase-GFP fusion reporter to the anterior pituitary gland (dubbed the “Glowing Head” or GH mouse). The luciferase-GFP reporter expressed in tumor cells induced adverse immune responses in wildtype mouse, but not in GH mouse, as transplantation hosts. The antigenicity of optical reporters resulted in a decrease in both the growth and metastatic potential of the labeled tumor in wildtype mice as compared to the GH mice. Moreover, reporter expression can also alter the tumor response to chemotherapy or targeted therapy in a context-dependent manner. Thus the GH mice and experimental approaches vetted herein provide concept validation and a strategy for effective, reproducible preclinical evaluation of growth and response kinetics for traceable tumors. PMID:25369133

  19. Bioluminescent luciferase-modified magnetic nanoparticles as potential imaging agents for mammalian spermatozoa detection and tracking

    USDA-ARS?s Scientific Manuscript database

    Background: Nanoparticles have emerged as key materials for developing applications in nanomedicine, nanobiotechnology, bioimaging and theranostics. Existing bioimaging technologies include bioluminescent resonance energy transfer-conjugated quantum dots (BRET-QDs). Despite the current use of BRET-Q...

  20. A Comparison of Red Fluorescent Proteins to Model DNA Vaccine Expression by Whole Animal In Vivo Imaging.

    PubMed

    Kinnear, Ekaterina; Caproni, Lisa J; Tregoning, John S

    2015-01-01

    DNA vaccines can be manufactured cheaply, easily and rapidly and have performed well in pre-clinical animal studies. However, clinical trials have so far been disappointing, failing to evoke a strong immune response, possibly due to poor antigen expression. To improve antigen expression, improved technology to monitor DNA vaccine transfection efficiency is required. In the current study, we compared plasmid encoded tdTomato, mCherry, Katushka, tdKatushka2 and luciferase as reporter proteins for whole animal in vivo imaging. The intramuscular, subcutaneous and tattooing routes were compared and electroporation was used to enhance expression. We observed that overall, fluorescent proteins were not a good tool to assess expression from DNA plasmids, with a highly heterogeneous response between animals. Of the proteins used, intramuscular delivery of DNA encoding either tdTomato or luciferase gave the clearest signal, with some Katushka and tdKatushka2 signal observed. Subcutaneous delivery was weakly visible and nothing was observed following DNA tattooing. DNA encoding haemagglutinin was used to determine whether immune responses mirrored visible expression levels. A protective immune response against H1N1 influenza was induced by all routes, even after a single dose of DNA, though qualitative differences were observed, with tattooing leading to high antibody responses and subcutaneous DNA leading to high CD8 responses. We conclude that of the reporter proteins used, expression from DNA plasmids can best be assessed using tdTomato or luciferase. But, the disconnect between visible expression level and immunogenicity suggests that in vivo whole animal imaging of fluorescent proteins has limited utility for predicting DNA vaccine efficacy.

  1. Bioluminescence methodology for the detection of protein-protein interactions within the voltage-gated sodium channel macromolecular complex.

    PubMed

    Shavkunov, Alexander; Panova, Neli; Prasai, Anesh; Veselenak, Ron; Bourne, Nigel; Stoilova-McPhie, Svetla; Laezza, Fernanda

    2012-04-01

    Protein-protein interactions are critical molecular determinants of ion channel function and emerging targets for pharmacological interventions. Yet, current methodologies for the rapid detection of ion channel macromolecular complexes are still lacking. In this study we have adapted a split-luciferase complementation assay (LCA) for detecting the assembly of the voltage-gated Na+ (Nav) channel C-tail and the intracellular fibroblast growth factor 14 (FGF14), a functionally relevant component of the Nav channelosome that controls gating and targeting of Nav channels through direct interaction with the channel C-tail. In the LCA, two complementary N-terminus and C-terminus fragments of the firefly luciferase were fused, respectively, to a chimera of the CD4 transmembrane segment and the C-tail of Nav1.6 channel (CD4-Nav1.6-NLuc) or FGF14 (CLuc-FGF14). Co-expression of CLuc-FGF14 and CD4-Nav1.6-NLuc in live cells led to a robust assembly of the FGF14:Nav1.6 C-tail complex, which was attenuated by introducing single-point mutations at the predicted FGF14:Nav channel interface. To evaluate the dynamic regulation of the FGF14:Nav1.6 C-tail complex by signaling pathways, we investigated the effect of kinase inhibitors on the complex formation. Through a platform of counter screenings, we show that the p38/MAPK inhibitor, PD169316, and the IκB kinase inhibitor, BAY 11-7082, reduce the FGF14:Nav1.6 C-tail complementation, highlighting a potential role of the p38MAPK and the IκB/NFκB pathways in controlling neuronal excitability through protein-protein interactions. We envision the methodology presented here as a new valuable tool to allow functional evaluations of protein-channel complexes toward probe development and drug discovery targeting ion channels implicated in human disorders.

  2. Demonstration of protein-fragment complementation assay using purified firefly luciferase fragments

    PubMed Central

    2013-01-01

    Background Human interactome is predicted to contain 150,000 to 300,000 protein-protein interactions, (PPIs). Protein-fragment complementation assay (PCA) is one of the most widely used methods to detect PPI, as well as Förster resonance energy transfer (FRET). To date, successful applications of firefly luciferase (Fluc)-based PCA have been reported in vivo, in cultured cells and in cell-free lysate, owing to its high sensitivity, high signal-to-background (S/B) ratio, and reversible response. Here we show the assay also works with purified proteins with unexpectedly rapid kinetics. Results Split Fluc fragments both fused with a rapamycin-dependently interacting protein pair were made and expressed in E. coli system, and purified to homogeneity. When the proteins were used for PCA to detect rapamycin-dependent PPI, they enabled a rapid detection (~1 s) of PPI with high S/B ratio. When Fn7-8 domains (7 nm in length) that was shown to abrogate GFP mutant-based FRET was inserted between split Fluc and FKBP12 as a rigid linker, it still showed some response, suggesting less limitation in interacting partner’s size. Finally, the stability of the probe was investigated. Preincubation of the probes at 37 degreeC up to 1 h showed marked decrease of the luminescent signal to 1.5%, showing the limited stability of this system. Conclusion Fluc PCA using purified components will enable a rapid and handy detection of PPIs with high S/B ratio, avoiding the effects of concomitant components. Although the system might not be suitable for large-scale screening due to its limited stability, it can detect an interaction over larger distance than by FRET. This would be the first demonstration of Fluc PCA in vitro, which has a distinct advantage over other PPI assays. Our system enables detection of direct PPIs without risk of perturbation by PPI mediators in the complex cellular milieu. PMID:23536995

  3. Molecular Imaging of Smoke-Induced Changes in Nuclear Factor-Kappa B Expression in Murine Tissues Including the Lung.

    PubMed

    Syrkina, Olga; Hales, Charles H; Bonab, Ali A; Hamrahi, Victoria; Paul, Kasie; Jung, Walter J; Tompkins, Ronald G; Fischman, Alan J; Carter, Edward A

    Many inflammatory responses are mediated by activation of the transcription factor, nuclear factor-kappa B (NF-κB), and a wide variety of human diseases involve abnormal regulation of its expression. In this investigation, we evaluated the effect of smoke inhalation injury on NF-κB expression in lung using two strains of NF-κB reporter mice. Groups of reporter mice with viral thymidine kinase (TK) or "fire fly" luciferase (Luc) genes under control by the NF-κB promoter (TK/NF-κB mice and Luc/NF-κB mice) were subjected to nonlethal smoke inhalation injury. Sham-treated animals served as controls. Twenty-four hours (each animal was injected intravenously with either 9-(4-18F-fluoro-3-[hydroxymethyl]butyl)guanine (FHBG) (~ 1.0 mCi) or luciferin (1.0 mg). One hour later, the TK/NF-κB mice were studied by micro-positron emission tomography (µ-PET) imaging using a Concord P4 µ-PET camera, and the Luc/NF-κB mice were studied by bioluminescence imaging with a charge-coupled device camera. The µ-PET data demonstrated that smoke injury produced massive increases in NF-κB expression (FHBG-standardized uptake value: 3.1 vs 0.0) 24 hours after smoke inhalation, which was reduced 48 hours after smoke inhalation, but still significantly different than the control. Qualitative analysis of the bioluminescence data revealed a remarkably similar effect of burn NF-κB luciferase expression in vivo. Biodistribution studies of FHBG uptake and luciferase activity in lung tissue demonstrated a similar increase 24 hours after injury, which was reduced 48 hours later, but still significantly higher than the sham. The present data with these models providing longitudinal imaging data on the same mouse may prove useful in the examination of the factors producing lung injury by smoke inhalation, as well as the treatment(s) for the damage produced with and without burn injury.

  4. Enhanced red-emitting railroad worm luciferase for bioassays and bioimaging

    PubMed Central

    Li, Xueyan; Nakajima, Yoshihiro; Niwa, Kazuki; Viviani, Vadim R; Ohmiya, Yoshihiro

    2010-01-01

    A luciferase from the railroad worm (Phrixothrix hirtus) is the only red-emitting bioluminescent enzyme in nature that is advantageous in multicolor luciferase assays and in bioluminescence imaging (BLI). However, it is not used widely in scientific or industrial applications because of its low activity and stability. By using site-directed mutagenesis, we produced red-emitting mutants with higher activity and better stability. Compared with the wild-type (WT), the luminescent activities from extracts of cultured mammalian cells expressing mutant luciferase were 9.8-fold in I212L/N351K, 8.4-fold in I212L, and 7.8-fold in I212L/S463R; and the cell-based activities were 3.6-fold in I212L/N351K and 3.4-fold in N351K. The remaining activities after incubation at 37°C for 10 min were 50.0% for I212L/S463R, 31.8% for I212L, and 23.0% for I212L/N351K, but only 5.2% for WT. To demonstrate an application of I212L/N351K, cell-based BLI was performed, and the luminescence signal was 3.6-fold higher than in WT. These results indicate that the mutants might improve the practicability of this signaling in bioassays and BLI. PMID:19866487

  5. Genetically Encoded Molecular Tension Probe for Tracing Protein-Protein Interactions in Mammalian Cells.

    PubMed

    Kim, Sung Bae; Nishihara, Ryo; Citterio, Daniel; Suzuki, Koji

    2016-02-17

    Optical imaging of protein-protein interactions (PPIs) facilitates comprehensive elucidation of intracellular molecular events. We demonstrate an optical measure for visualizing molecular tension triggered by any PPI in mammalian cells. Twenty-three kinds of candidate designs were fabricated, in which a full-length artificial luciferase (ALuc) was sandwiched between two model proteins of interest, e.g., FKBP and FRB. One of the designs greatly enhanced the bioluminescence in response to varying concentrations of rapamycin. It is confirmed with negative controls that the elevated bioluminescence is solely motivated from the molecular tension. The probe design was further modified toward eliminating the C-terminal end of ALuc and was found to improve signal-to-background ratios, named "a combinational probe". The utilities were elucidated with detailed substrate selectivity, bioluminescence imaging of live cells, and different PPI models. This study expands capabilities of luciferases as a tool for analyses of molecular dynamics and cell signaling in living subjects.

  6. Cardiac Gene Expression Knockdown Using Small Inhibitory RNA-Loaded Microbubbles and Ultrasound

    PubMed Central

    McTiernan, Charles F.; Chen, Xucai; Klein, Edwin C.; Villanueva, Flordeliza S.

    2016-01-01

    RNA interference has potential therapeutic value for cardiac disease, but targeted delivery of interfering RNA is a challenge. Custom designed microbubbles, in conjunction with ultrasound, can deliver small inhibitory RNA to target tissues in vivo. The efficacy of cardiac RNA interference using a microbubble-ultrasound theranostic platform has not been demonstrated in vivo. Therefore, our objective was to test the hypothesis that custom designed microbubbles and ultrasound can mediate effective delivery of small inhibitory RNA to the heart. Microbubble and ultrasound mediated cardiac RNA interference was tested in transgenic mice displaying cardiac-restricted luciferase expression. Luciferase expression was assayed in select tissues of untreated mice (n = 14). Mice received intravenous infusion of cationic microbubbles bearing small inhibitory RNA directed against luciferase (n = 9) or control RNA (n = 8) during intermittent cardiac-directed ultrasound at mechanical index of 1.6. Simultaneous echocardiography in a separate group of mice (n = 3) confirmed microbubble destruction and replenishment during treatment. Three days post treatment, cardiac luciferase messenger RNA and protein levels were significantly lower in ultrasound-treated mice receiving microbubbles loaded with small inhibitory RNA directed against luciferase compared to mice receiving microbubbles bearing control RNA (23±7% and 33±7% of control mice, p<0.01 and p = 0.03, respectively). Passive cavitation detection focused on the heart confirmed that insonification resulted in inertial cavitation. In conclusion, small inhibitory RNA-loaded microbubbles and ultrasound directed at the heart significantly reduced the expression of a reporter gene. Ultrasound-targeted destruction of RNA-loaded microbubbles may be an effective image-guided strategy for therapeutic RNA interference in cardiac disease. PMID:27471848

  7. Markedly Enhanced Skeletal Muscle Transfection Achieved by the Ultrasound-Targeted Delivery of Non-Viral Gene Nanocarriers with Microbubbles

    PubMed Central

    Burke, Caitlin W.; Suk, Jung Soo; Kim, Anthony J.; Hsiang, Yu-Han J.; Klibanov, Alexander L.; Hanes, Justin; Price, Richard J.

    2012-01-01

    Our goal was to enhance ultrasound (US)-targeted skeletal muscle transfection through the use of poly(ethyleneglycol) (PEG)/polyethylenimine (PEI) nanocomplex gene carriers and adjustments to US and microbubble (MB) parameters. C57BL/6 mice received an intravenous infusion of MBs and either “naked” luciferase plasmid or luciferase plasmid condensed in PEG/PEI nanocomplexes. Pulsed ultrasound (1MHz; 0.6 MPa or 0.8 MPa) was applied to the right hindlimb for 12 mins. Luciferase activity in both hindlimbs was assessed at 3, 5, 7, and 10 days post-treatment by bioluminescent imaging. When targeted to hindlimb using unsorted MBs and 0.6 MPa US, 7 days after treatment, we observed a >60-fold increase in luciferase activity in PEG/PEI nanocomplex treated muscles over muscles treated with “naked” plasmid DNA. Luciferase activity was consistently greater after treatment with PEG/PEI nanocomplexes at 0.6 MPa as compared to 0.8 MPa. The combination of small diameter MBs and 0.6 MPa US also resulted in significantly greater gene expression when compared to concentration matched intramuscular injections, a control condition in which considerably more PEG/PEI nanocomplexes were present in tissue. This result suggests that, in addition to facilitating PEG/PEI nanocomplex delivery from the bloodstream to tissue, US enhances transfection via one or more secondary mechanisms, including increased cellular uptake and/or trafficking to the nucleus of PEG/PEI nanocomplexes. We conclude that PEG/PEI nanocomplexes may be used to markedly enhance the amplitude of US-MB-targeted skeletal muscle transfection and that activating “small” MBs with a moderate level (0.6 MPa) of acoustic pressure can further enhance these effects. PMID:22800583

  8. A route from darkness to light: emergence and evolution of luciferase activity in AMP-CoA-ligases inferred from a mealworm luciferase-like enzyme.

    PubMed

    Viviani, V R; Prado, R A; Neves, D R; Kato, D; Barbosa, J A

    2013-06-11

    The origin of luciferases and of bioluminescence is enigmatic. In beetles, luciferases seem to have evolved from AMP-CoA-ligases. How the new oxygenase luminogenic function originated from AMP-ligases leading to luciferases is one of the most challenging mysteries of bioluminescence. Comparison of the cloned luciferase-like enzyme from the nonluminescent Zophobas morio mealworm and beetle luciferases showed that the oxygenase activity may have emerged as a stereoselective oxidative drift with d-luciferin, a substrate that cannot be easily thioesterified to CoA as in the case of the l-isomer. While the overall kcat displayed by beetle luciferases is orders of magnitude greater than that of the luciferase-like enzyme, the respective oxidation rates and quantum yields of bioluminescence are roughly similar, suggesting that the rate constant of the AMP-ligase activity exerted on the new d-luciferin substrate in beetle protoluciferases was the main enzymatic property that suffered optimization during the evolution of luciferases. The luciferase-like enzyme and luciferases boost the rate of luciferyl-adenylate chemiluminescent oxidation by factors of 10(6) and 10(7), respectively, as compared to the substrate spontaneous oxidation in buffer. A similar enhancement of luciferyl-adenylate chemiluminescence is provided by nucleophilic aprotic solvents, implying that the peptide bonds in the luciferin binding site of beetle luciferase could provide a similar catalytically favorable environment. These data suggest that the luciferase-like enzyme and other similar AMP-ligases are potential alternative oxygenases. Site-directed mutagenesis studies of the luciferase-like enzyme and the red light-producing luciferase of Phrixotrix hirtus railroadworm confirm here a critical role for T/S345 in luciferase function. Mutations such as I327T/S in the luciferase-like enzyme, which simultaneously increases luciferase activity and promotes blue shifts in the emission spectrum, could have been critical for evolving functional bioluminescence from red-emitting protoluciferases. Through the combination of I327T/S mutations and N-terminal fusion, the luminescence activity of this enzyme was increased to visible levels, with the development of a totally new orange-emitting luciferase. These results open the possibility of engineering luciferase activity in a set of AMP-CoA-ligases.

  9. Multicolor Bioluminescence Boosts Malaria Research: Quantitative Dual-Color Assay and Single-Cell Imaging in Plasmodium falciparum Parasites

    PubMed Central

    2015-01-01

    New reliable and cost-effective antimalarial drug screening assays are urgently needed to identify drugs acting on different stages of the parasite Plasmodium falciparum, and particularly those responsible for human-to-mosquito transmission, that is, the P. falciparum gametocytes. Low Z′ factors, narrow dynamic ranges, and/or extended assay times are commonly reported in current gametocyte assays measuring gametocyte-expressed fluorescent or luciferase reporters, endogenous ATP levels, activity of gametocyte enzymes, or redox-dependent dye fluorescence. We hereby report on a dual-luciferase gametocyte assay with immature and mature P. falciparum gametocyte stages expressing red and green-emitting luciferases from Pyrophorus plagiophthalamus under the control of the parasite sexual stage-specific pfs16 gene promoter. The assay was validated with reference antimalarial drugs and allowed to quantitatively and simultaneously measure stage-specific drug effects on parasites at different developmental stages. The optimized assay, requiring only 48 h incubation with drugs and using a cost-effective luminogenic substrate, significantly reduces assay cost and time in comparison to state-of-the-art analogous assays. The assay had a Z′ factor of 0.71 ± 0.03, and it is suitable for implementation in 96- and 384-well microplate formats. Moreover, the use of a nonlysing d-luciferin substrate significantly improved the reliability of the assay and allowed one to perform, for the first time, P. falciparum bioluminescence imaging at single-cell level. PMID:25102353

  10. Different Types of Luciferase Reporters Show Distinct Susceptibility to T3-Evoked Downregulation.

    PubMed

    Kollár, Anna; Kvárta-Papp, Zsuzsanna; Egri, Péter; Gereben, Balázs

    2016-01-01

    The firefly luciferase reporter protein is a crucial tool for studies targeting a broad range of biological questions. Importantly, luciferase assays are also widely used to explore mechanisms underlying thyroid hormone dependent regulation of gene expression. However, it was demonstrated that the firefly luciferase reporter is subject to triiodothyronine (T3)-evoked, promoter independent downregulation that is mediated by the thyroid hormone receptor. Since this effect can interfere with readout accuracy, the study aimed to find luciferase reporters that are not susceptible to this phenomenon. Luciferase reporter constructs were generated under the control of a minimal thymidine kinase (TK) promoter and transiently transfected into JEG-3 cells to test their activity upon T3 treatment. Activity of the TK-(dCpG)Luc encoding a synthetic (dCpG)Luciferase and TK-NanoLuc expressing the NanoLuc reporter was not significantly changed by T3 treatment while the firefly luciferase control was suppressed by ∼2.6-fold. T3 also downregulated the activity of Renilla luciferase by ∼30%. Novel types of luciferase reporters, especially the synthetic (dCpG)Luciferase, can be more accurate to study T3-regulated gene expression than the classical firefly luciferase reporter. Renilla luciferase, a popular transfection control of dual luciferase assays, should be used with caution in conditions with T3 treatment.

  11. A new firefly luciferase with bimodal spectrum: identification of structural determinants of spectral pH-sensitivity in firefly luciferases.

    PubMed

    Viviani, Vadim R; Oehlmeyer, T L; Arnoldi, F G C; Brochetto-Braga, M R

    2005-01-01

    Fireflies emit flashes in the green-yellow region of the spectrum for the purpose of sexual attraction. The bioluminescence color is determined by the luciferases. It is well known that the in vitro bioluminescence color of firefly luciferases can be shifted toward the red by lower pH and higher temperature; for this reason they are classified as pH-sensitive luciferases. However, the mechanism and structural origin of pH sensitivity in fireflies remains unknown. Here we report the cloning of a new luciferase from the Brazilian twilight active firefly Macrolampis sp2, which displays an unusual bimodal spectrum. The recombinant luciferase displays a sensitive spectrum with the peak at 569 nm and a shoulder in the red region. Comparison of the bioluminescence spectra of Macrolampis, Photinus and Cratomorphus firefly luciferases shows that the distinct colors are determined by the ratio between green and red emitters under luciferase influence. Comparison of Macrolampis luciferase with the highly similar North American Photinus pyralis luciferase (91%) showed few substitutions potentially involved with the higher spectral sensitivity in Macrolampis luciferase. Site-directed mutagenesis showed that the natural substitution E354N determines the appearance of the shoulder in the red region of Macrolampis luciferase bioluminescence spectrum, helping to identify important interactions and residues involved in the pH-sensing mechanism in firefly luciferases.

  12. Dual luciferase assay for secreted luciferases based on Gaussia and NanoLuc.

    PubMed

    Heise, Kerstin; Oppermann, Henry; Meixensberger, Jürgen; Gebhardt, Rolf; Gaunitz, Frank

    2013-05-01

    Just recently, NanoLuc, a new engineered luciferase based on the small subunit of the luciferase from Oplophorus gracilirostris was introduced. Like the luciferase from Gaussia princeps, this luciferase is secreted into the medium. Both luciferases are the smallest and brightest luciferases known and well-suited for reporter assays. In our experiments, we demonstrate that both luciferases can be used together in a dual-reporter assay by solving the problem that NanoLuc produces a significant signal with coelenterazine, which is the substrate for Gaussia luciferase. We found that the background signal from NanoLuc with coelenterazine can be calculated from the determination of NanoLuc activity in the presence of its substrate furimazine. This in turn allows the precise determination of the activity of Gaussia which does not produce light in the presence of furimazine. Based on this observation, we developed a high sensitive dual secreted luciferase assay which allows the determination of both activities in a single cotransfection experiment. We demonstrate the versatility and robustness of the assay for the normalization of reporter gene activities. Since Gaussia luciferase and NanoLuc are nonhomologous reporters, the method to determine both luciferase activities may also be useful for coincidence reporter gene systems for high-throughput screening.

  13. Pyrearinus termitilluminans larval click beetle luciferase: active site properties, structure and function relationships and comparison with other beetle luciferases.

    PubMed

    Silva Neto, A J; Scorsato, V; Arnoldi, F G C; Viviani, V R

    2009-12-01

    Several beetle luciferases have been cloned and sequenced. However, most studies on structure and function relationships and bioanalytical applications were done with firefly luciferases, which are pH sensitive. Several years ago we cloned Pyrearinus termitilluminans larval click beetle luciferase, which displays the most blue-shifted bioluminescence among beetle luciferases and is pH insensitive. This enzyme was expressed in E. coli, purified, and its properties investigated. This luciferase shows slower luminescence kinetics, K(M) values comparable to other beetle luciferases and high catalytic constant. Fluorescence studies with 8-anilino-1-naphtalene-sulfonic acid (1,8-ANS) and modeling studies suggest that the luciferin binding site of this luciferase is very hydrophobic, supporting the solvent and orientation polarizability effects as determining mechanisms for bioluminescence colors. Although pH insensitive in the range between pH 6-8, at pH 10 this luciferase displays a remarkable red-shift and broadening of the bioluminescence spectrum. Modeling studies suggest that the residue C312 may play an important role in bioluminescence color modulation. Compared to other beetle luciferases, Pyrearinus termitilluminans luciferase also displays higher thermostability and sustained luminescence in a bacterial cell environment, which makes this luciferase particularly suitable for in vivo cell analysis and bioimaging.

  14. Computational analysis and functional expression of ancestral copepod luciferase.

    PubMed

    Takenaka, Yasuhiro; Noda-Ogura, Akiko; Imanishi, Tadashi; Yamaguchi, Atsushi; Gojobori, Takashi; Shigeri, Yasushi

    2013-10-10

    We recently reported the cDNA sequences of 11 copepod luciferases from the superfamily Augaptiloidea in the order Calanoida. They were classified into two groups, Metridinidae and Heterorhabdidae/Lucicutiidae families, by phylogenetic analyses. To elucidate the evolutionary processes, we have now further isolated 12 copepod luciferases from Augaptiloidea species (Metridia asymmetrica, Metridia curticauda, Pleuromamma scutullata, Pleuromamma xiphias, Lucicutia ovaliformis and Heterorhabdus tanneri). Codon-based synonymous/nonsynonymous tests of positive selection for 25 identified copepod luciferases suggested that positive Darwinian selection operated in the evolution of Heterorhabdidae luciferases, whereas two types of Metridinidae luciferases had diversified via neutral mechanism. By in silico analysis of the decoded amino acid sequences of 25 copepod luciferases, we inferred two protein sequences as ancestral copepod luciferases. They were expressed in HEK293 cells where they exhibited notable luciferase activity both in intracellular lysates and cultured media, indicating that the luciferase activity was established before evolutionary diversification of these copepod species. © 2013.

  15. A puzzling homology: a brittle star using a putative cnidarian-type luciferase for bioluminescence.

    PubMed

    Delroisse, Jérôme; Ullrich-Lüter, Esther; Blaue, Stefanie; Ortega-Martinez, Olga; Eeckhaut, Igor; Flammang, Patrick; Mallefet, Jérôme

    2017-04-01

    Bioluminescence relies on the oxidation of a luciferin substrate catalysed by a luciferase enzyme. Luciferins and luciferases are generic terms used to describe a large variety of substrates and enzymes. Whereas luciferins can be shared by phylogenetically distant organisms which feed on organisms producing them, luciferases have been thought to be lineage-specific enzymes. Numerous light emission systems would then have co-emerged independently along the tree of life resulting in a plethora of non-homologous luciferases. Here, we identify for the first time a candidate luciferase of a luminous echinoderm, the ophiuroid Amphiura filiformis Phylogenomic analyses identified the brittle star predicted luciferase as homologous to the luciferase of the sea pansy Renilla (Cnidaria), contradicting with the traditional viewpoint according to which luciferases would generally be of convergent origins. The similarity between the Renilla and Amphiura luciferases allowed us to detect the latter using anti- Renilla luciferase antibodies. Luciferase expression was specifically localized in the spines which were demonstrated to be the bioluminescent organs in vivo However, enzymes homologous to the Renilla luciferase but unable to trigger light emission were also identified in non-luminous echinoderms and metazoans. Our findings strongly indicate that those enzymes, belonging to the haloalkane dehalogenase family, might then have been convergently co-opted into luciferases in cnidarians and echinoderms. In these two benthic suspension-feeding species, similar ecological pressures would constitute strong selective forces for the functional shift of these enzymes and the emergence of bioluminescence. © 2017 The Authors.

  16. A puzzling homology: a brittle star using a putative cnidarian-type luciferase for bioluminescence

    PubMed Central

    Ullrich-Lüter, Esther; Blaue, Stefanie; Ortega-Martinez, Olga; Eeckhaut, Igor; Flammang, Patrick; Mallefet, Jérôme

    2017-01-01

    Bioluminescence relies on the oxidation of a luciferin substrate catalysed by a luciferase enzyme. Luciferins and luciferases are generic terms used to describe a large variety of substrates and enzymes. Whereas luciferins can be shared by phylogenetically distant organisms which feed on organisms producing them, luciferases have been thought to be lineage-specific enzymes. Numerous light emission systems would then have co-emerged independently along the tree of life resulting in a plethora of non-homologous luciferases. Here, we identify for the first time a candidate luciferase of a luminous echinoderm, the ophiuroid Amphiura filiformis. Phylogenomic analyses identified the brittle star predicted luciferase as homologous to the luciferase of the sea pansy Renilla (Cnidaria), contradicting with the traditional viewpoint according to which luciferases would generally be of convergent origins. The similarity between the Renilla and Amphiura luciferases allowed us to detect the latter using anti-Renilla luciferase antibodies. Luciferase expression was specifically localized in the spines which were demonstrated to be the bioluminescent organs in vivo. However, enzymes homologous to the Renilla luciferase but unable to trigger light emission were also identified in non-luminous echinoderms and metazoans. Our findings strongly indicate that those enzymes, belonging to the haloalkane dehalogenase family, might then have been convergently co-opted into luciferases in cnidarians and echinoderms. In these two benthic suspension-feeding species, similar ecological pressures would constitute strong selective forces for the functional shift of these enzymes and the emergence of bioluminescence. PMID:28381628

  17. Noninvasive bioluminescence imaging of normal and spontaneously transformed prostate tissue in mice.

    PubMed

    Lyons, Scott K; Lim, Ed; Clermont, Anne O; Dusich, Joan; Zhu, Lingyun; Campbell, Kenneth D; Coffee, Richard J; Grass, David S; Hunter, John; Purchio, Tony; Jenkins, Darlene

    2006-05-01

    Several transgenic mouse models of prostate cancer have been developed recently that are able to recapitulate many key biological features of the human condition. It would, therefore, be desirable to employ these models to test the efficacy of new therapeutics before clinical trial; however, the variable onset and non-visible nature of prostate tumor development limit their use for such applications. We now report the generation of a transgenic reporter mouse that should obviate these limitations by enabling noninvasive in vivo bioluminescence imaging of normal and spontaneously transformed prostate tissue in the mouse. We used an 11-kb fragment of the human prostate-specific antigen (PSA) promoter to achieve specific and robust expression of firefly luciferase in the prostate glands of transgenic mice. Ex vivo bioluminescence imaging and in situ hybridization analysis confirmed that luciferase expression was restricted to the epithelium in all four lobes of the prostate. We also show that PSA-Luc mice exhibit decreased but readily detectable levels of in vivo bioluminescence over extended time periods following androgen ablation. These results suggest that this reporter should enable in vivo imaging of both androgen-dependent and androgen-independent prostate tumor models. As proof-of-principle, we show that we could noninvasively image SV40 T antigen-induced prostate tumorigenesis in mice with PSA-Luc. Furthermore, we show that our noninvasive imaging strategy can be successfully used to image tumor response to androgen ablation in transgenic mice and, as a result, that we can rapidly identify individual animals capable of sustaining tumor growth in the absence of androgen.

  18. Molecular Targeting of Prostate Cancer During Androgen Ablation: Inhibition of CHES1/FOXN3

    DTIC Science & Technology

    2011-05-01

    activity (Firefly luciferase) was normalized to Renilla luciferase activity. Results are presented as fold-change in PSA reporter activity...reporter (DLR) assays performed. In each sample, the CHES1-RR1/3.5 reporter activity (Firefly luciferase) was normalized to Renilla luciferase...4.0) reporter activity (Firefly luciferase) was normalized to Renilla luciferase activity. Results are presented as fold-change in BNIP3 reporter

  19. Role of Cyclin D1 and cdk Inhibitors in Breast Cancer Pathogenesis

    DTIC Science & Technology

    2001-10-01

    0.1 [tg of a Renilla luciferase expression plasmid (pRL-SV40 Promega) to normalize for transfection efficiency. After an overnight recovery, the...saline, collected, lysed, and analyzed for luciferase and Renilla luciferase activity by using the Dual-Luciferase reporter assay system (Promega...Cyclin A promoter-driven luciferase activity was then normalized to a constant activity of Renilla luciferase. 7 Results In our previous reports we

  20. Modulation of Beta-catenin Activity With PKD1 Prostate Cancer

    DTIC Science & Technology

    2009-04-01

    mutated site as a negative control (FOPFlash) with pRL-TK ( Renilla luciferase) in C4-2- PKD1-GFP cells activated with Bryostatin 1 or DMSO. The...firefly and Renilla luciferase activities were measured with the Dual-Luciferase Reporter (DLR) Assay System. After normalizing the firefly luciferase...activity to that of Renilla luciferase, the FOPFlash reporter plasmid luciferase values were subtracted from the normalized values obtained with the

  1. Predoctoral Fellowship to Study an ER Variant Identified from Breast Hyperplasias.

    DTIC Science & Technology

    1999-07-01

    Spl and Sp3 in Drosophila SL2 cells, which do not express any of the Spl family members. The plasmid pNull- Renilla (Promega) was co- transfected for...10 M. Luciferase values were normalized to Renilla luciferase expression. Fold induction was calculated relative to the normalized luciferase...to 10 M. Luciferase values were normalized to Renilla luciferase expression. Fold induction was calculated relative to the normalized luciferase

  2. Evidence for transcriptional interference in a dual-luciferase reporter system.

    PubMed

    Wu, Guo-Qing; Wang, Xiao; Zhou, Hong-Ying; Chai, Ke-Qun; Xue, Qian; Zheng, Ai-Hong; Zhu, Xiu-Ming; Xiao, Jian-Yong; Ying, Xu-Hua; Wang, Fu-Wei; Rui, Tao; Xu, Li-Yun; Zhang, Yong-Kui; Liao, Yi-Ji; Xie, Dan; Lu, Li-Qin; Huang, Dong-Sheng

    2015-12-01

    The dual-luciferase reporter assay is widely used for microRNA target identification and the functional validation of predicted targets. To determine whether curcumin regulates expression of the histone methyltransferase enhancer of zeste homolog 2 (EZH2) by targeting its 3'untranslated region (3'UTR), two luciferase reporter systems containing exactly the same sequence of the EZH2 3'UTR were used to perform dual-luciferase reporter assays. Surprisingly, there were certain discrepancies between the luciferase activities derived from these two reporter constructs. We normalized luciferase activity to an internal control to determine the amount of the reporter construct successfully transfected into cells, induced a transcriptional block with flavopiridol, quantified renilla luciferase mRNA levels, and compared the absolute luciferase activity among the different groups. The results suggested that curcumin promoted the transcription of the luciferase genes located downstream of the simian vacuolating virus 40 (SV40) early enhancer/promoter, but not those located downstream of the human cytomegalovirus (CMV) immediate-early or the herpes simplex virus thymidine kinase (HSV-TK) promoters. These results explain the discrepancies between the two luciferase reporter systems. The current study underscores the importance of taking caution when interpreting the results of dual-luciferase reporter assays and provides strategies to overcome the potential pitfall accompanying dual-luciferase reporter systems.

  3. Evidence for transcriptional interference in a dual-luciferase reporter system

    PubMed Central

    Wu, Guo-Qing; Wang, Xiao; Zhou, Hong-Ying; Chai, Ke-Qun; Xue, Qian; Zheng, Ai-Hong; Zhu, Xiu-Ming; Xiao, Jian-Yong; Ying, Xu-Hua; Wang, Fu-Wei; Rui, Tao; Xu, Li-Yun; Zhang, Yong-Kui; Liao, Yi-Ji; Xie, Dan; Lu, Li-Qin; Huang, Dong-Sheng

    2015-01-01

    The dual-luciferase reporter assay is widely used for microRNA target identification and the functional validation of predicted targets. To determine whether curcumin regulates expression of the histone methyltransferase enhancer of zeste homolog 2 (EZH2) by targeting its 3′untranslated region (3′UTR), two luciferase reporter systems containing exactly the same sequence of the EZH2 3′UTR were used to perform dual-luciferase reporter assays. Surprisingly, there were certain discrepancies between the luciferase activities derived from these two reporter constructs. We normalized luciferase activity to an internal control to determine the amount of the reporter construct successfully transfected into cells, induced a transcriptional block with flavopiridol, quantified renilla luciferase mRNA levels, and compared the absolute luciferase activity among the different groups. The results suggested that curcumin promoted the transcription of the luciferase genes located downstream of the simian vacuolating virus 40 (SV40) early enhancer/promoter, but not those located downstream of the human cytomegalovirus (CMV) immediate-early or the herpes simplex virus thymidine kinase (HSV-TK) promoters. These results explain the discrepancies between the two luciferase reporter systems. The current study underscores the importance of taking caution when interpreting the results of dual-luciferase reporter assays and provides strategies to overcome the potential pitfall accompanying dual-luciferase reporter systems. PMID:26620302

  4. Advances in bioluminescence imaging: new probes from old recipes.

    PubMed

    Yao, Zi; Zhang, Brendan S; Prescher, Jennifer A

    2018-06-04

    Bioluminescent probes are powerful tools for visualizing biology in live tissues and whole animals. Recent years have seen a surge in the number of new luciferases, luciferins, and related tools available for bioluminescence imaging. Many were crafted using classic methods of optical probe design and engineering. Here we highlight recent advances in bioluminescent tool discovery and development, along with applications of the probes in cells, tissues, and organisms. Collectively, these tools are improving in vivo imaging capabilities and bolstering new research directions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Synthetic versions of firefly luciferase and Renilla luciferase reporter genes that resist transgene silencing in sugarcane

    PubMed Central

    2014-01-01

    Background Down-regulation or silencing of transgene expression can be a major hurdle to both molecular studies and biotechnology applications in many plant species. Sugarcane is particularly effective at silencing introduced transgenes, including reporter genes such as the firefly luciferase gene. Synthesizing transgene coding sequences optimized for usage in the host plant is one method of enhancing transgene expression and stability. Using specified design rules we have synthesised new coding sequences for both the firefly luciferase and Renilla luciferase reporter genes. We have tested these optimized versions for enhanced levels of luciferase activity and for increased steady state luciferase mRNA levels in sugarcane. Results The synthetic firefly luciferase (luc*) and Renilla luciferase (Renluc*) coding sequences have elevated G + C contents in line with sugarcane codon usage, but maintain 75% identity to the native firefly or Renilla luciferase nucleotide sequences and 100% identity to the protein coding sequences. Under the control of the maize pUbi promoter, the synthetic luc* and Renluc* genes yielded 60x and 15x higher luciferase activity respectively, over the native firefly and Renilla luciferase genes in transient assays on sugarcane suspension cell cultures. Using a novel transient assay in sugarcane suspension cells combining co-bombardment and qRT-PCR, we showed that synthetic luc* and Renluc* genes generate increased transcript levels compared to the native firefly and Renilla luciferase genes. In stable transgenic lines, the luc* transgene generated significantly higher levels of expression than the native firefly luciferase transgene. The fold difference in expression was highest in the youngest tissues. Conclusions We developed synthetic versions of both the firefly and Renilla luciferase reporter genes that resist transgene silencing in sugarcane. These transgenes will be particularly useful for evaluating the expression patterns conferred by existing and newly isolated promoters in sugarcane tissues. The strategies used to design the synthetic luciferase transgenes could be applied to other transgenes that are aggressively silenced in sugarcane. PMID:24708613

  6. Synthetic versions of firefly luciferase and Renilla luciferase reporter genes that resist transgene silencing in sugarcane.

    PubMed

    Chou, Ting-Chun; Moyle, Richard L

    2014-04-08

    Down-regulation or silencing of transgene expression can be a major hurdle to both molecular studies and biotechnology applications in many plant species. Sugarcane is particularly effective at silencing introduced transgenes, including reporter genes such as the firefly luciferase gene.Synthesizing transgene coding sequences optimized for usage in the host plant is one method of enhancing transgene expression and stability. Using specified design rules we have synthesised new coding sequences for both the firefly luciferase and Renilla luciferase reporter genes. We have tested these optimized versions for enhanced levels of luciferase activity and for increased steady state luciferase mRNA levels in sugarcane. The synthetic firefly luciferase (luc*) and Renilla luciferase (Renluc*) coding sequences have elevated G + C contents in line with sugarcane codon usage, but maintain 75% identity to the native firefly or Renilla luciferase nucleotide sequences and 100% identity to the protein coding sequences.Under the control of the maize pUbi promoter, the synthetic luc* and Renluc* genes yielded 60x and 15x higher luciferase activity respectively, over the native firefly and Renilla luciferase genes in transient assays on sugarcane suspension cell cultures.Using a novel transient assay in sugarcane suspension cells combining co-bombardment and qRT-PCR, we showed that synthetic luc* and Renluc* genes generate increased transcript levels compared to the native firefly and Renilla luciferase genes.In stable transgenic lines, the luc* transgene generated significantly higher levels of expression than the native firefly luciferase transgene. The fold difference in expression was highest in the youngest tissues. We developed synthetic versions of both the firefly and Renilla luciferase reporter genes that resist transgene silencing in sugarcane. These transgenes will be particularly useful for evaluating the expression patterns conferred by existing and newly isolated promoters in sugarcane tissues. The strategies used to design the synthetic luciferase transgenes could be applied to other transgenes that are aggressively silenced in sugarcane.

  7. Nondestructive chemical imaging of wood at the micro-scale: advanced technology to complement macro-scale evaluations

    Treesearch

    Barbara L. Illman; Julia Sedlmair; Miriam Unger; Carol Hirschmugl

    2013-01-01

    Chemical images help understanding of wood properties, durability, and cell wall deconstruction for conversion of lignocellulose to biofuels, nanocellulose and other value added chemicals in forest biorefineries. We describe here a new method for nondestructive chemical imaging of wood and wood-based materials at the micro-scale to complement macro-scale methods based...

  8. The development of GADD45α luciferase reporter assays in human cells for assessing the genotoxicity of environmental pollutants.

    PubMed

    Xin, Lili; Wang, Jianshu; Wu, Yanhu; Guo, Sifan

    2015-02-01

    In order to assess the potential carcinogenic and genotoxic responses induced by environmental pollutants, genotoxicity test systems based on a GADD45α promoter-driven luciferase reporter in human A549 and HepG2 cells were established. Four different types of environmental toxicants including DNA alkylating agents, precarcinogenic agents, DNA cross-linking agents and non-carcinogenic agents, and three environmental samples collected from a coke oven plant were used to evaluate the test systems. After treated with the tested agents and environmental samples for 12 h, the cell viabilities and luciferase activities of the luciferase reporter cells were determined, respectively. Methyl methanesulfonate, benzo[a]pyrene, formaldehyde and the extractable organic matter (EOM) from coke oven emissions in ambient air generally produced significant induction of relative luciferase activity in a similar dose-dependent manner in A549- and HepG2-luciferase cells. No significant increases in relative luciferase activity were observed in pyrene-treated A549- or HepG2-luciferase cells. Significant increase in relative luciferase activity was already evident after 2.5 µM benzo[a]pyrene, 5 µM formaldehyde, 0.006 µg/L bottom-EOM, 0.10 µg/L side-EOM or 0.06 µg/L top-EOM, where no cytotoxic damage was observed. Compared with the A549-luciferase cells, the tested pollutants produced higher induction of relative luciferase activity in HepG2-luciferase cells. Therefore, the new genotoxicity test systems can detect different types of genotoxic agents and low concentrations of environmental samples. The luciferase reporter cells, especially the HepG2-luciferase cells, could provide a valuable tool for rapid screening of the genotoxic damage of environmental pollutants and their complex mixtures.

  9. Reporter enzyme inhibitor study to aid assembly of orthogonal reporter gene assays.

    PubMed

    Ho, Pei-i; Yue, Kimberley; Pandey, Pramod; Breault, Lyne; Harbinski, Fred; McBride, Aaron J; Webb, Brian; Narahari, Janaki; Karassina, Natasha; Wood, Keith V; Hill, Adam; Auld, Douglas S

    2013-05-17

    Reporter gene assays (RGAs) are commonly used to measure biological pathway modulation by small molecules. Understanding how such compounds interact with the reporter enzyme is critical to accurately interpret RGA results. To improve our understanding of reporter enzymes and to develop optimal RGA systems, we investigated eight reporter enzymes differing in brightness, emission spectrum, stability, and substrate requirements. These included common reporter enzymes such as firefly luciferase (Photinus pyralis), Renilla reniformis luciferase, and β-lactamase, as well as mutated forms of R. reniformis luciferase emitting either blue- or green-shifted luminescence, a red-light emitting form of Luciola cruciata firefly luciferase, a mutated form of Gaussia princeps luciferase, and a proprietary luciferase termed "NanoLuc" derived from the luminescent sea shrimp Oplophorus gracilirostris. To determine hit rates and structure-activity relationships, we screened a collection of 42,460 PubChem compounds at 10 μM using purified enzyme preparations. We then compared hit rates and chemotypes of actives for each enzyme. The hit rates ranged from <0.1% for β-lactamase to as high as 10% for mutated forms of Renilla luciferase. Related luciferases such as Renilla luciferase mutants showed high degrees of inhibitor overlap (40-70%), while unrelated luciferases such as firefly luciferases, Gaussia luciferase, and NanoLuc showed <10% overlap. Examination of representative inhibitors in cell-based assays revealed that inhibitor-based enzyme stabilization can lead to increases in bioluminescent signal for firefly luciferase, Renilla luciferase, and NanoLuc, with shorter half-life reporters showing increased activation responses. From this study we suggest strategies to improve the construction and interpretation of assays employing these reporter enzymes.

  10. Image analyzing method to evaluate in situ bioluminescence from an obligate anaerobe cultivated under various dissolved oxygen concentrations.

    PubMed

    Ninomiya, Kazuaki; Yamada, Ryuji; Matsumoto, Masami; Fukiya, Satoru; Katayama, Takane; Ogino, Chiaki; Shimizu, Nobuaki

    2013-02-01

    An image analyzing method was developed to evaluate in situ bioluminescence expression, without exposing the culture sample to the ambient oxygen atmosphere. Using this method, we investigated the effect of dissolved oxygen concentration on bioluminescence from an obligate anaerobe Bifidobacterium longum expressing bacterial luciferase which catalyzes an oxygen-requiring bioluminescent reaction. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Super-duper chemiluminescent proteins applicable to wide range of bioimaging

    NASA Astrophysics Data System (ADS)

    Suzuki, Kazushi; Nagai, Takeharu

    2017-02-01

    We report five new spectral variants of bright luminescent protein made by concatenation of the brightest luciferase, NanoLuc, with various color hues of fluorescent proteins. These proteins, which we call enhanced Nano-lanterns (eNLs), allow five-color live-cell imaging without external light illumination as well as detection of single molecules. Furthermore, eNL-based Ca2+ indicators could be used to image long-term Ca2+ dynamics in iPS-derived cardiomyocytes.

  12. Expression, purification and luminescence properties of coelenterazine-utilizing luciferases from Renilla, Oplophorus and Gaussia: comparison of substrate specificity for C2-modified coelenterazines.

    PubMed

    Inouye, Satoshi; Sahara-Miura, Yuiko; Sato, Jun-ichi; Iimori, Rie; Yoshida, Suguru; Hosoya, Takamitsu

    2013-03-01

    The cold-induced expression system in Escherichia coli is useful and we have applied this system to prepare the coelenterazine-utilizing luciferases including Renilla luciferase (RLase), a red-shifted variant of Renilla luciferase (RLase-547), the catalytic domain of Oplophorus luciferase (19kOLase) and Gaussia luciferase (GLase). The luminescence properties of the purified luciferases were characterized by using 10 kinds of C2-modified coelenterazine analogues as a substrate. The order of the maximal luminescence intensity for native coelenterazine was GLase (100%)>RLase (8.0%)>RLase-547 (0.73%)>19kOLase (0.09%) under our assay conditions. The substrate specificities of coelenterazine-utilizing luciferases for the C2-modified analogues showed significant differences, but the emission peaks catalyzed by coelenterazine-utilizing luciferases were not affected by the C2-substituted coelenterazine. These results suggest that the catalytic environment for the oxygenation process of coelenterazine and the excited species of coelenteramide might be different among coelenterazine-utilizing luciferases. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Study on recognition technology of complementary image

    NASA Astrophysics Data System (ADS)

    Liu, Chengxiang; Hu, Xuejuan; Jian, Yaobo; Zhang, Li

    2006-11-01

    Complementation image is often used as a guard technology in the trademark and paper currency. The key point of recognizing this kind of images is judging the complementary effect of complementation printing. The perspective images are usually not clear and legible, so it is difficult to recognize them. In this paper, a new method is proposed. Firstly, capture the image by reflex. Secondly, find the same norm to man-made pair printing. Lastly, judge the true and false of paper currency by the complementary effect of complementation printing. This is the purpose of inspecting the false. Theoretic analysis and simulation results reveal that the effect of man-made pair printing is good, the method has advantages such as simplicity, high calculating speed, and good robust to different RMB. The experiment results reveal that the conclusion is reasonable, and demonstrates that this approach is effective.

  14. Development of HSPA1A promoter-driven luciferase reporter gene assays in human cells for assessing the oxidative damage induced by silver nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xin, Lili, E-mail: llxin@suda.edu.cn

    The exponential increase in the total number of engineered nanoparticles in consumer products requires novel tools for rapid and cost-effective toxicology screening. In order to assess the oxidative damage induced by nanoparticles, toxicity test systems based on a human HSPA1A promoter-driven luciferase reporter in HepG2, LO2, A549, and HBE cells were established. After treated with heat shock and a group of silver nanoparticles (AgNPs) with different primary particle sizes, the cell viability, oxidative damage, and luciferase activity were determined. The time-dependent Ag{sup +} ions release from AgNPs in cell medium was also evaluated. Our results showed that heat shock producedmore » a strong time-dependent induction of relative luciferase activity in the four luciferase reporter cells. Surprisingly, at 4 h of recovery, the relative luciferase activity was > 98 × the control level in HepG2-luciferase cells. Exposure to different sizes of AgNPs resulted in activation of the HSPA1A promoter in a dose-dependent manner, even at low cytotoxic or non-cytotoxic doses. The smaller (5 nm) AgNPs were more potent in luciferase induction than the larger (50 and 75 nm) AgNPs. These results were generally in accordance with the oxidative damage indicated by malondialdehyde concentration, reactive oxygen species induction and glutathione depletion, and Ag{sup +} ions release in cell medium. Compared with the other three luciferase reporter cells, the luciferase signal in HepG2-luciferase cells is obviously more sensitive and stable. We conclude that the luciferase reporter cells, especially the HepG2-luciferase cells, could provide a valuable tool for rapid screening of the oxidative damage induced by AgNPs. - Highlights: • We established the stable HSPA1A promoter-driven luciferase reporter cells. • Silver nanoparticles induced dose-dependent increases in luciferase activity. • HSPA1A promoter activity is a sensitive and responsive indicator of oxidative stress. • HepG2-luciferase cells can be used to assess the toxicity of silver nanoparticles.« less

  15. Comparison of the thermostability of recombinant luciferases from Brazilian bioluminescent beetles: Relationship with kinetics and bioluminescence colours.

    PubMed

    Oliveira, Gabriela; Viviani, Vadim R

    2018-03-01

    Firefly luciferases have been used extensively as bioanalytical reagents and their cDNAs as reporter genes for biosensors and bioimaging, but they are in general unstable at temperatures above 30°C. In the past few years, efforts have been made to stabilize some firefly luciferases for better application as analytical reagents. Novel luciferases from different beetle families, displaying distinct bioluminescence colours and kinetics, may offer desirable alternatives to extend the range of applications. In the past years, our group has cloned the largest variety of luciferases from the three main families of bioluminescent beetles (Elateridae: P. termitilluminans, F. bruchi, P. angustus; Phengodidae: P. hirtus, P. vivianii; and Lampyridae: A. vivianii, C. distinctus and Macrolampis sp2) occurring in Brazilian biomes. We compared the thermostability of these recombinant luciferases and investigated their relationships with bioluminescence spectra and kinetics. The most thermostable luciferases were those of Pyrearinus termitilluminans larval click beetle (534 nm), Amydetes vivianii firefly (539 nm) and Phrixotrix vivianii railroad worm (546 nm), which are the most blue-shifted examples in each family, confirming the trend that the most blue-shifted emitting luciferases are also the most thermostable. Comparatively, commercial P. pyralis firefly luciferase was less thermostable than P. termitilluminans click beetle and A. vivianii firefly luciferases. The higher thermostability in these luciferases could be related to higher degree of hydrophobic packing and disulfide bond content (for firefly luciferases). Copyright © 2017 John Wiley & Sons, Ltd.

  16. The origin of luciferase activity in Zophobas mealworm AMP/CoA-ligase (protoluciferase): luciferin stereoselectivity as a switch for the oxygenase activity.

    PubMed

    Viviani, Vadim R; Scorsato, Valeria; Prado, Rogilene A; Pereira, Jose G C; Niwa, Kazuki; Ohmiya, Yoshihiro; Barbosa, João A R G

    2010-08-01

    Beetle luciferases evolved from AMP/CoA-ligases. However, it is unclear how the new luciferase activity evolved. In order to clarify this question, we compared the luminescence and catalytic properties of a recently cloned luciferase-like enzyme from Zophobas mealworm, an AMP/CoA-ligase displaying weak luminescence activity, with those of cloned luciferases from the three main families of luminescent beetles: Phrixthrix hirtus railroad worm; Pyrearinus termitilluminans click beetle and Photinus pyralis firefly. The catalytic constant of the mealworm enzyme was 2-4 orders of magnitude lower than that of beetle luciferases, but 3 orders of magnitude above the non-catalyzed chemiluminescence of luciferyl-adenylate in buffer. Studies with D- and L-luciferin and their adenylates show that the luminescence reaction of the luciferase-like enzyme and beetle luciferases are stereoselective for D-luciferin and its adenylate, and that the selectivity is determined mainly at the adenylation step. Modelling studies showed that the luciferin binding site cavity of this enzyme is smaller and more hydrophobic than that of beetle luciferases. Therefore Zophobas mealworm enzyme displays true luciferase activity, keeping the attributes of an ancient protoluciferase. These results suggest that stereoselectivity for D-luciferin may have been a key event for the origin of oxygenase/luciferase activity in AMP/CoA-ligases, and that efficient luciferase activity may have further evolved mainly by increasing the catalytic constant of the oxidative reaction and the quantum yield of bioluminescence.

  17. Expression, purification and characterization of the secreted luciferase of the copepod Metridia longa from Sf9 insect cells

    PubMed Central

    Stepanyuk, Galina A.; Xu, Hao; Wu, Chia-Kuei; Markova, Svetlana V.; Lee, John; Vysotski, Eugene S.; Wang, Bi-Cheng

    2008-01-01

    Metridia luciferase is a secreted luciferase from a marine copepod and uses coelenterazine as a substrate to produce a blue bioluminescence (λmax = 480 nm). This luciferase has been successfully applied as a bioluminescent reporter in mammalian cells. The main advantage of secreted luciferase as a reporter is the capability of measuring intracellular events without destroying the cells or tissues and this property is well suited for development of high throughput screening technologies. However because Metridia luciferase is a Cys-rich protein, E. coli expression systems produce an incorrectly folded protein, hindering its biochemical characterization and application for development of in vitro bioluminescent assays. Here we report the successful expression of Metridia luciferase with its signal peptide for secretion, in insect (Sf9) cells using the baculovirus expression system. Functionally active luciferase secreted by insect cells into the culture media has been efficiently purified with a yield of high purity protein of 2–3 mg/L. This Metridia luciferase expressed in the insect cell system is a monomeric protein showing 3.5-fold greater bioluminescence activity than luciferase expressed and purified from E. coli. The near coincidence of the experimental mass of Metridia luciferase purified from insect cells with that calculated from amino acid sequence, indicates that luciferase does not undergo posttranslational modifications such as phosphorylation or glycosylation and also, the cleavage site of the signal peptide for secretion is at VQA-KS, as predicted from sequence analysis. PMID:18595733

  18. Evaluation of the reversal of multidrug resistance by MDR1 ribonucleic acid interference in a human colon cancer model using a Renilla luciferase reporter gene and coelenterazine.

    PubMed

    Jeon, Yong Hyun; Bae, Seon-ae; Lee, Yong Jin; Lee, You La; Lee, Sang-Woo; Yoon, Ghil-Suk; Ahn, Byeong-Cheol; Ha, Jeoung-Hee; Lee, Jaetae

    2010-12-01

    The reversal effect of multidrug resistance (MDR1) gene expression by adenoviral vector-mediated MDR1 ribonucleic acid interference was assessed in a human colon cancer animal model using bioluminescent imaging with Renilla luciferase (Rluc) gene and coelenterazine, a substrate for Rluc or MDR1 gene expression. A fluorescent microscopic examination demonstrated an increased green fluorescent protein signal in Ad-shMDR1- (recombinant adenovirus that coexpressed MDR1 small hairpin ribonucleic acid [shRNA] and green fluorescent protein) infected HCT-15/Rluc cells in a virus dose-dependent manner. Concurrently, with an increasing administered virus dose (0, 15, 30, 60, and 120 multiplicity of infection), Rluc activity was significantly increased in Ad-shMDR1-infected HCT-15/Rluc cells in a virus dose-dependent manner. In vivo bioluminescent imaging showed about 7.5-fold higher signal intensity in Ad-shMDR1-infected tumors than in control tumors (p < .05). Immunohistologic analysis demonstrated marked reduction of P-glycoprotein expression in infected tumor but not in control tumor. In conclusion, the reversal of MDR1 gene expression by MDR1 shRNA was successfully evaluated by bioluminescence imaging with Rluc activity using an in vivo animal model with a multidrug resistance cancer xenograft.

  19. In vivo bioluminescence imaging reveals copper deficiency in a murine model of nonalcoholic fatty liver disease

    PubMed Central

    Heffern, Marie C.; Park, Hyo Min; Au-Yeung, Ho Yu; Van de Bittner, Genevieve C.; Ackerman, Cheri M.; Stahl, Andreas; Chang, Christopher J.

    2016-01-01

    Copper is a required metal nutrient for life, but global or local alterations in its homeostasis are linked to diseases spanning genetic and metabolic disorders to cancer and neurodegeneration. Technologies that enable longitudinal in vivo monitoring of dynamic copper pools can help meet the need to study the complex interplay between copper status, health, and disease in the same living organism over time. Here, we present the synthesis, characterization, and in vivo imaging applications of Copper-Caged Luciferin-1 (CCL-1), a bioluminescent reporter for tissue-specific copper visualization in living animals. CCL-1 uses a selective copper(I)-dependent oxidative cleavage reaction to release d-luciferin for subsequent bioluminescent reaction with firefly luciferase. The probe can detect physiological changes in labile Cu+ levels in live cells and mice under situations of copper deficiency or overload. Application of CCL-1 to mice with liver-specific luciferase expression in a diet-induced model of nonalcoholic fatty liver disease reveals onset of hepatic copper deficiency and altered expression levels of central copper trafficking proteins that accompany symptoms of glucose intolerance and weight gain. The data connect copper dysregulation to metabolic liver disease and provide a starting point for expanding the toolbox of reactivity-based chemical reporters for cell- and tissue-specific in vivo imaging. PMID:27911810

  20. Noninvasive imaging of cationic lipid-mediated delivery of optical and PET reporter genes in living mice.

    PubMed

    Iyer, Meera; Berenji, Manijeh; Templeton, Nancy S; Gambhir, Sanjiv S

    2002-10-01

    Gene therapy involves the safe and effective delivery of one or more genes of interest to target cells in vivo. The advantages of using nonviral delivery systems include ease of preparation, low toxicity, and weak immunogenicity. Nonviral delivery methods, when combined with a noninvasive, clinically applicable imaging assay, will greatly aid in the optimization of gene therapy approaches for cancer. We demonstrate cationic lipid-mediated noninvasive monitoring of reporter gene expression of firefly (Photinus pyralis) luciferase (fl) and a mutant herpes simplex virus type I thymidine kinase (HSV1-sr39tk, tk) in living mice using a cooled charge coupled device (CCD) camera and positron emission tomography (PET), respectively. We observe a high level of fl and tk reporter gene expression predominantly in the lungs after a single injection of the extruded DOTAP:cholesterol DNA liposome complexes by way of the tail vein, seen to be time- and dose-dependent. We observe a good correlation between the in vivo bioluminescent signal and the ex vivo firefly luciferase enzyme (FL) activity in different organs. We further demonstrate the feasibility of noninvasively imaging both optical and PET reporter gene expression in the same animal using the CCD camera and microPET, respectively.

  1. Development of HSPA1A promoter-driven luciferase reporter gene assays in human cells for assessing the oxidative damage induced by silver nanoparticles.

    PubMed

    Xin, Lili; Wang, Jianshu; Zhang, Leshuai W; Che, Bizhong; Dong, Guangzhu; Fan, Guoqiang; Cheng, Kaiming

    2016-08-01

    The exponential increase in the total number of engineered nanoparticles in consumer products requires novel tools for rapid and cost-effective toxicology screening. In order to assess the oxidative damage induced by nanoparticles, toxicity test systems based on a human HSPA1A promoter-driven luciferase reporter in HepG2, LO2, A549, and HBE cells were established. After treated with heat shock and a group of silver nanoparticles (AgNPs) with different primary particle sizes, the cell viability, oxidative damage, and luciferase activity were determined. The time-dependent Ag(+) ions release from AgNPs in cell medium was also evaluated. Our results showed that heat shock produced a strong time-dependent induction of relative luciferase activity in the four luciferase reporter cells. Surprisingly, at 4h of recovery, the relative luciferase activity was >98× the control level in HepG2-luciferase cells. Exposure to different sizes of AgNPs resulted in activation of the HSPA1A promoter in a dose-dependent manner, even at low cytotoxic or non-cytotoxic doses. The smaller (5nm) AgNPs were more potent in luciferase induction than the larger (50 and 75nm) AgNPs. These results were generally in accordance with the oxidative damage indicated by malondialdehyde concentration, reactive oxygen species induction and glutathione depletion, and Ag(+) ions release in cell medium. Compared with the other three luciferase reporter cells, the luciferase signal in HepG2-luciferase cells is obviously more sensitive and stable. We conclude that the luciferase reporter cells, especially the HepG2-luciferase cells, could provide a valuable tool for rapid screening of the oxidative damage induced by AgNPs. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Bioorthogonal Catalysis: A General Method To Evaluate Metal-Catalyzed Reactions in Real Time in Living Systems Using a Cellular Luciferase Reporter System.

    PubMed

    Hsu, Hsiao-Tieh; Trantow, Brian M; Waymouth, Robert M; Wender, Paul A

    2016-02-17

    The development of abiological catalysts that can function in biological systems is an emerging subject of importance with significant ramifications in synthetic chemistry and the life sciences. Herein we report a biocompatible ruthenium complex [Cp(MQA)Ru(C3H5)](+)PF6(-) 2 (Cp = cyclopentadienyl, MQA = 4-methoxyquinoline-2-carboxylate) and a general analytical method for evaluating its performance in real time based on a luciferase reporter system amenable to high throughput screening in cells and by extension to evaluation in luciferase transgenic animals. Precatalyst 2 activates alloc-protected aminoluciferin 4b, a bioluminescence pro-probe, and releases the active luminophore, aminoluciferin (4a), in the presence of luciferase-transfected cells. The formation and enzymatic turnover of 4a, an overall process selected because it emulates pro-drug activation and drug turnover by an intracellular target, is evaluated in real time by photon counting as 4a is converted by intracellular luciferase to oxyaminoluciferin and light. Interestingly, while the catalytic conversion (activation) of 4b to 4a in water produces multiple products, the presence of biological nucleophiles such as thiols prevents byproduct formation and provides almost exclusively luminophore 4a. Our studies show that precatalyst 2 activates 4b extracellularly, exhibits low toxicity at concentrations relevant to catalysis, and is comparably effective in two different cell lines. This proof of concept study shows that precatalyst 2 is a promising lead for bioorthogonal catalytic activation of pro-probes and, by analogy, similarly activatable pro-drugs. More generally, this study provides an analytical method to measure abiological catalytic activation of pro-probes and, by analogy with our earlier studies on pro-Taxol, similarly activatable pro-drugs in real time using a coupled biological catalyst that mediates a bioluminescent readout, providing tools for the study of imaging signal amplification and of targeted therapy.

  3. The influence of the loop between residues 223-235 in beetle luciferase bioluminescence spectra: a solvent gate for the active site of pH-sensitive luciferases.

    PubMed

    Viviani, Vadim R; Silva Neto, Antonio J; Arnoldi, Frederico G C; Barbosa, João A R G; Ohmiya, Yoshihiro

    2008-01-01

    Beetle luciferases emit a wide range of bioluminescence colors, ranging from green to red. Firefly luciferases can shift the spectrum to red in response to pH and temperature changes, whereas click beetle and railroadworm luciferases do not. Despite many studies on firefly luciferases, the origin of pH-sensitivity is far from being understood. Through comparative site-directed mutagenesis and modeling studies, using the pH-sensitive luciferases (Macrolampis and Cratomorphus distinctus fireflies) and the pH-insensitive luciferases (Pyrearinus termitilluminans, Phrixotrix viviani and Phrixotrix hirtus) cloned by our group, here we show that substitutions dramatically affecting bioluminescence colors in both groups of luciferases are clustered in the loop between residues 223-235 (Photinus pyralis sequence). The substitutions at positions 227, 228 and 229 (P. pyralis sequence) cause dramatic redshift and temporal shift in both groups of luciferases, indicating their involvement in labile interactions. Modeling studies showed that the residues Y227 and N229 are buried in the protein core, fixing the loop to other structural elements participating at the bottom of the luciferin binding site. Changes in pH and temperature (in firefly luciferases), as well as point mutations in this loop, may disrupt the interactions of these structural elements exposing the active site and modulating bioluminescence colors.

  4. Translational Regulation of PTEN/MMAC1 Expression in Prostate Cancer

    DTIC Science & Technology

    2003-05-01

    the transcription of dicistronic RNA encoding Renilla luciferase as the first cistron and firefly luciferase as the second cistron. Translation of the...first cistron ( Renilla luciferase) serves as an indicator of cap-dependent translation while translation of the second cistron (firefly luciferase...cellular IRES (Sachs, 2000). These dicistronic constructs were transfected into HeLa cells and both Renilla and firefly luciferase activities were measured

  5. Inhibitory effects associated with use of modified Photinus pyralis and Renilla reniformis luciferase vectors in dual reporter assays and implications for analysis of ISGs.

    PubMed

    Ghazawi, Ibtisam; Cutler, Samuel J; Low, Pauline; Mellick, Albert S; Ralph, Stephen J

    2005-02-01

    Luciferase reporter constructs are widely used for analysis of gene regulation when characterizing promoter and enhancer elements. We report that the recently developed codon-modified Renilla luciferase construct included as an internal standard for cotransfection must be used with great caution with respect to the amount of DNA transfected. Also, the dual-luciferase reporter vectors encoding Photinus pyralis firefly or Renilla reniformis luciferase showed a linear increase in dose-response with increasing amounts of transfected DNA, but at higher levels of transfected DNA, a reduction in expressed levels of luciferase activity resulted. In addition, treatment with type I interferon (IFN) was found to significantly reduce levels of P. pyralis firefly and Renilla luciferase activity. In contrast, cells transfected with a green fluorescent protein (GFP) reporter construct showed no significant IFN-associated change. The reduction in luciferase activity resulting from IFN treatment was not due to IFN-mediated cytotoxicity, as no change in cellular propidium iodide (PI) staining was observed by flow cytometry. IFN treatment did not alter the levels of firefly luciferase activity in cell culture supernatants or the luciferase mRNA levels determined by quantitative real-time RT-PCR analysis. Based on these results, it is probable that the IFN-induced reduction in levels of luciferase activity detected in reporter assays occurs via a posttranscriptional mechanism. Thus, it is important to be aware of these complications when using luciferase reporter systems in general or for analyzing cytokine-mediated responsive regulation of target genes, particularly by the type I IFNs.

  6. Factors modulating expression of Renilla luciferase from control plasmids used in luciferase reporter gene assays1

    PubMed Central

    Shifera, Amde Selassie; Hardin, John A.

    2009-01-01

    The Renilla luciferase gene is commonly used as an internal control in luciferase-based reporter gene assays to normalize the values of the experimental reporter gene for variations that could be caused by transfection efficiency and sample handling. Various plasmids encoding Renilla luciferase under different promoter constructs are commercially available. The validity of the use of Renilla luciferase as an internal control is based on the assumption that it is constitutively expressed in transfected cells and that its constitutive expression is not modulated by experimental factors that could result in either the upregulation or the downregulation of the amounts of the enzyme produced. During the past ten years, a number of reports have appeared that identified a variety of conditions that could alter the basal constitutive expression of Renilla luciferase. The use of Renilla luciferase in those circumstances would not be valid and an alternative way of normalization would be necessary. This review covers the factors that have been reported thus far as modulating the expression of Renilla luciferase from plasmid constructs. PMID:19788887

  7. Visualising Androgen Receptor Activity in Male and Female Mice

    PubMed Central

    Dart, D. Alwyn; Waxman, Jonathan; Aboagye, Eric O.; Bevan, Charlotte L.

    2013-01-01

    Androgens, required for normal development and fertility of males and females, have vital roles in the reproductive tract, brain, cardiovascular system, smooth muscle and bone. Androgens function via the androgen receptor (AR), a ligand-dependent transcription factor. To assay and localise AR activity in vivo we generated the transgenic “ARE-Luc” mouse, expressing a luciferase reporter gene under the control of activated endogenous AR. In vivo imaging of androgen-mediated luciferase activity revealed several strongly expressing tissues in the male mouse as expected and also in certain female tissues. In males the testes, prostate, seminal vesicles and bone marrow all showed high AR activity. In females, strong activity was seen in the ovaries, uterus, omentum tissue and mammary glands. In both sexes AR expression and activity was also found in salivary glands, the eye (and associated glands), adipose tissue, spleen and, notably, regions of the brain. Luciferase protein expression was found in the same cell layers as androgen receptor expression. Additionally, mouse AR expression and activity correlated well with AR expression in human tissues. The anti-androgen bicalutamide reduced luciferase signal in all tissues. Our model demonstrates that androgens can act in these tissues directly via AR, rather than exclusively via androgen aromatisation to estrogens and activation of the estrogen receptor. Additionally, it visually demonstrates the fundamental importance of AR signalling outside the normal role in the reproductive organs. This model represents an important tool for physiological and developmental analysis of androgen signalling, and for characterization of known and novel androgenic or antiandrogenic compounds. PMID:23940781

  8. Genetic Dissection of PTEN Signaling Mechanisms in Prostate Cancer

    DTIC Science & Technology

    2005-03-01

    Renilla luciferase reporter to be used as a control for cell number and transfection efficiency. Luciferase assays were performed using the Dual...Luciferase Assay Kit from Promega. Reporter activities were normalized with the TK- Renilla luciferase control obtained from Promega. All assays were...Invitrogen). In addition to these components all transfections included 100 nanograms on the TK- Renilla luciferase reporter to be used as a control for cell

  9. Regulation of AR and (Beta)-Catenin Signaling by Pin 1 in Prostate Cancer

    DTIC Science & Technology

    2005-10-01

    Renilla luciferase activities were determined using a dual-luciferase reporter assay kit (Promega, Madison, WI), and Renilla activities were not...consistently affected by any of the cotransfected vectors. The firefly luciferase was divided by the control Renilla luciferase and the results, given as...transfected with pTopflash (50 ng) and CMV- Renilla (2.5 ng) reporter plasmids. Firefly versus Renilla luciferase activities were determined and

  10. Crystal structure of native and a mutant of Lampyris turkestanicus luciferase implicate in bioluminescence color shift.

    PubMed

    Kheirabadi, Mitra; Sharafian, Zohreh; Naderi-Manesh, Hossein; Heineman, Udo; Gohlke, Ulrich; Hosseinkhani, Saman

    2013-12-01

    Firefly bioluminescence reaction in the presence of Mg(2+), ATP and molecular oxygen is carried out by luciferase. The luciferase structure alterations or modifications of assay conditions determine the bioluminescence color of firefly luciferase. Among different beetle luciferases, Phrixothrix hirtus railroad worm emits either yellow or red bioluminescence color. Sequence alignment analysis shows that the red-emitter luciferase from Phrixothrix hirtus has an additional arginine residue at 353 that is absent in other firefly luciferases. It was reported that insertion of Arg in an important flexible loop350-359 showed changes in bioluminescence color from green to red and the optimum temperature activity was also increased. To explain the color tuning mechanism of firefly luciferase, the structure of native and a mutant (E354R/356R/H431Y) of Lampyris turkestanicus luciferase is determined at 2.7Å and 2.2Å resolutions, respectively. The comparison of structure of both types of Lampyris turkestanicus luciferases reveals that the conformation of this flexible loop is significantly changed by addition of two Arg in this region. Moreover, its surface accessibility is affected considerably and some ionic bonds are made by addition of two positive charge residues. Furthermore, we noticed that the hydrogen bonding pattern of His431 with the flexible loop is changed by replacing this residue with Tyr at this position. Juxtaposition of a flexible loop (residues 351-359) in firefly luciferase and corresponding ionic and hydrogen bonds are essential for color emission. © 2013.

  11. Structural evolution of luciferase activity in Zophobas mealworm AMP/CoA-ligase (protoluciferase) through site-directed mutagenesis of the luciferin binding site.

    PubMed

    Prado, R A; Barbosa, J A; Ohmiya, Y; Viviani, V R

    2011-07-01

    The structural origin and evolution of bioluminescent activity of beetle luciferases from AMP/CoA ligases remains a mystery. Previously we cloned the luciferase-like enzyme from Zophobas morio mealworm, a reasonable protoluciferase model that could shine light on this mystery. Kinetic characterization and studies with D- and L-luciferin and their adenylates showed that stereoselectivity constitutes a critical feature for the origin of luciferase activity in AMP/CoA ligases. Comparison of the primary structures and modeling studies of this protoluciferase and the three main families of beetle luciferases showed that the carboxylic acid substrate binding site of this enzyme is smaller and more hydrophobic than the luciferin binding site of beetle luciferases, showing several substitutions of otherwise conserved residues. Thus, here we performed a site-directed mutagenesis survey of the carboxylic binding site motifs of the protoluciferase by replacing their residues by the respective conserved ones found in beetle luciferases in order to identify the structural determinants of luciferase/oxygenase activity. Although most of the substitutions had negative impact on the luminescence activity of the protoluciferase, only the substitution I327T improved the luminescence activity, resulting in a broad and 15 nm blue-shifted luminescence spectrum. Such substitution indicates the importance of the loop motif 322YGMSEI327 (341YGLTETT347 in Photinus pyralis luciferase) for luciferase activity, and indicates a possible route for the evolution of bioluminescence function of beetle luciferases.

  12. Automatic polymerase chain reaction product detection system for food safety monitoring using zinc finger protein fused to luciferase.

    PubMed

    Yoshida, Wataru; Kezuka, Aki; Murakami, Yoshiyuki; Lee, Jinhee; Abe, Koichi; Motoki, Hiroaki; Matsuo, Takafumi; Shimura, Nobuaki; Noda, Mamoru; Igimi, Shizunobu; Ikebukuro, Kazunori

    2013-11-01

    An automatic polymerase chain reaction (PCR) product detection system for food safety monitoring using zinc finger (ZF) protein fused to luciferase was developed. ZF protein fused to luciferase specifically binds to target double stranded DNA sequence and has luciferase enzymatic activity. Therefore, PCR products that comprise ZF protein recognition sequence can be detected by measuring the luciferase activity of the fusion protein. We previously reported that PCR products from Legionella pneumophila and Escherichia coli (E. coli) O157 genomic DNA were detected by Zif268, a natural ZF protein, fused to luciferase. In this study, Zif268-luciferase was applied to detect the presence of Salmonella and coliforms. Moreover, an artificial zinc finger protein (B2) fused to luciferase was constructed for a Norovirus detection system. In the luciferase activity detection assay, several bound/free separation process is required. Therefore, an analyzer that automatically performed the bound/free separation process was developed to detect PCR products using the ZF-luciferase fusion protein. By means of the automatic analyzer with ZF-luciferase fusion protein, target pathogenic genomes were specifically detected in the presence of other pathogenic genomes. Moreover, we succeeded in the detection of 10 copies of E. coli BL21 without extraction of genomic DNA by the automatic analyzer and E. coli was detected with a logarithmic dependency in the range of 1.0×10 to 1.0×10(6) copies. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Evaluation of Gaussia luciferase and foot-and-mouth disease virus 2A translational interrupter chimeras as polycistronic reporters for transgene expression.

    PubMed

    Puckette, Michael; Burrage, Thomas; Neilan, John G; Rasmussen, Max

    2017-06-12

    The Gaussia princeps luciferase is used as a stand-alone reporter of transgene expression for in vitro and in vivo expression systems due to the rapid and easy monitoring of luciferase activity. We sought to simultaneously quantitate production of other recombinant proteins by transcriptionally linking the Gaussia princeps luciferase gene to other genes of interest through the foot-and-mouth disease virus 2A translational interrupter sequence. We produced six plasmids, each encoding a single open reading frame, with the foot-and-mouth disease virus 2A sequence placed either N-terminal or C-terminal to the Gaussia princeps luciferase gene. Two plasmids included novel Gaussia princeps luciferase variants with the position 1 methionine deleted. Placing a foot-and-mouth disease virus 2A translational interrupter sequence on either the N- or C-terminus of the Gaussia princeps luciferase gene did not prevent the secretion or luminescence of resulting chimeric luciferase proteins. We also measured the ability of another polycistronic plasmid vector with a 2A-luciferase sequence placed downstream of the foot-and-mouth disease virus P1 and 3C protease genes to produce of foot-and-mouth disease virus-like particles and luciferase activity from transfected cells. Incorporation of the 2A-luciferase sequence into a transgene encoding foot-and-mouth disease virus structural proteins retained luciferase activity and the ability to form virus-like particles. We demonstrated a mechanism for the near real-time, sequential, non-destructive quantitative monitoring of transcriptionally-linked recombinant proteins and a valuable method for monitoring transgene expression in recombinant vaccine constructs.

  14. Bioluminescent Reaction by Immobilized Luciferase

    NASA Astrophysics Data System (ADS)

    Tanaka, Ryuta; Takahama, Eriko; Iinuma, Masataka; Ikeda, Takeshi; Kadoya, Yutaka; Kuroda, Akio

    We have investigated an effect of immobilization of luciferase molecules at the optical fiber end on a bioluminescent reaction. The time dependence of measured count rates of emitted photons has been analyzed by fitting with numerical solution of differential equations including the effect of the product-inhibitor and the deactivation of the luciferase. Through the analysis, we have successfully extracted kinetic constants such as, reaction rate, number of active luciferase molecules, etc. Ratio of active molecules to total luciferase molecules in immobilization was one order of magnitude lower than that in solution. The reaction rate of the bioluminescent process was also different from the one of free luciferase in solution.

  15. The nuclear factor κB inhibitor (E)-2-fluoro-4'-methoxystilbene inhibits firefly luciferase.

    PubMed

    Braeuning, Albert; Vetter, Silvia

    2012-12-01

    Photinus pyralis (firefly) luciferase is widely used as a reporter system to monitor alterations in gene promoter and/or signalling pathway activities in vitro. The enzyme catalyses the formation of oxyluciferin from D-luciferin in an ATP-consuming reaction involving photon emission. The purpose of the present study was to characterize the luciferase-inhibiting potential of (E)-2-fluoro-4'-methoxystilbene, which is known as a potent inhibitor of the NF-κB (nuclear factor κB) signalling pathway that is used to modulate the NF-κB signalling pathway in vitro. Results show that (E)-2-fluoro-4'-methoxystilbene effectively inhibits firefly luciferase activity in cell lysates and living cells in a non-competitive manner with respect to the luciferase substrates D-luciferin and ATP. By contrast, the compound has no effect on Renilla and Gaussia luciferases. The mechanism of firefly luciferase inhibition by (E)-2-fluoro-4'-methoxystilbene, as well as its potency is comparable to its structure analogue resveratrol. The in vitro use of trans-stilbenes such as (E)-2-fluoro-4'-methoxystilbene or resveratrol compromises firefly luciferase reporter assays as well as ATP/luciferase-based cell viability assays.

  16. The nuclear factor κB inhibitor (E)-2-fluoro-4′-methoxystilbene inhibits firefly luciferase

    PubMed Central

    Braeuning, Albert; Vetter, Silvia

    2012-01-01

    Photinus pyralis (firefly) luciferase is widely used as a reporter system to monitor alterations in gene promoter and/or signalling pathway activities in vitro. The enzyme catalyses the formation of oxyluciferin from D-luciferin in an ATP-consuming reaction involving photon emission. The purpose of the present study was to characterize the luciferase-inhibiting potential of (E)-2-fluoro-4′-methoxystilbene, which is known as a potent inhibitor of the NF-κB (nuclear factor κB) signalling pathway that is used to modulate the NF-κB signalling pathway in vitro. Results show that (E)-2-fluoro-4′-methoxystilbene effectively inhibits firefly luciferase activity in cell lysates and living cells in a non-competitive manner with respect to the luciferase substrates D-luciferin and ATP. By contrast, the compound has no effect on Renilla and Gaussia luciferases. The mechanism of firefly luciferase inhibition by (E)-2-fluoro-4′-methoxystilbene, as well as its potency is comparable to its structure analogue resveratrol. The in vitro use of trans-stilbenes such as (E)-2-fluoro-4′-methoxystilbene or resveratrol compromises firefly luciferase reporter assays as well as ATP/luciferase-based cell viability assays. PMID:22789175

  17. A synthetic luciferin improves in vivo bioluminescence imaging of gene expression in cardiovascular brain regions.

    PubMed

    Simonyan, Hayk; Hurr, Chansol; Young, Colin N

    2016-10-01

    Bioluminescence imaging is an effective tool for in vivo investigation of molecular processes. We have demonstrated the applicability of bioluminescence imaging to spatiotemporally monitor gene expression in cardioregulatory brain nuclei during the development of cardiovascular disease, via incorporation of firefly luciferase into living animals, combined with exogenous d-luciferin substrate administration. Nevertheless, d-luciferin uptake into the brain tissue is low, which decreases the sensitivity of bioluminescence detection, particularly when considering small changes in gene expression in tiny central areas. Here, we tested the hypothesis that a synthetic luciferin, cyclic alkylaminoluciferin (CycLuc1), would be superior to d-luciferin for in vivo bioluminescence imaging in cardiovascular brain regions. Male C57B1/6 mice underwent targeted delivery of an adenovirus encoding the luciferase gene downstream of the CMV promoter to the subfornical organ (SFO) or paraventricular nucleus of hypothalamus (PVN), two crucial cardioregulatory neural regions. While bioluminescent signals could be obtained following d-luciferin injection (150 mg/kg), CycLuc1 administration resulted in a three- to fourfold greater bioluminescent emission from the SFO and PVN, at 10- to 20-fold lower substrate concentrations (7.5-15 mg/kg). This CycLuc1-mediated enhancement in bioluminescent emission was evident early following substrate administration (i.e., 6-10 min) and persisted for up to 1 h. When the exposure time was reduced from 60 s to 1,500 ms, minimal signal in the PVN was detectable with d-luciferin, whereas bioluminescent images could be reliably captured with CycLuc1. These findings demonstrate that bioluminescent imaging with the synthetic luciferin CycLuc1 provides an improved physiological genomics tool to investigate molecular events in discrete cardioregulatory brain nuclei. Copyright © 2016 the American Physiological Society.

  18. Endothelial nuclear lamina is not required for glucocorticoid receptor nuclear import but does affect receptor-mediated transcription activation.

    PubMed

    Nayebosadri, Arman; Ji, Julie Y

    2013-08-01

    The lamina serves to maintain the nuclear structure and stiffness while acting as a scaffold for heterochromatin and many transcriptional proteins. Its role in endothelial mechanotransduction, specifically how nuclear mechanics impact gene regulation under shear stress, is not fully understood. In this study, we successfully silenced lamin A/C in bovine aortic endothelial cells to determine its role in both glucocorticoid receptor (GR) nuclear translocation and glucocorticoid response element (GRE) transcriptional activation in response to dexamethasone and shear stress. Nuclear translocation of GR, an anti-inflammatory nuclear receptor, in response to dexamethasone or shear stress (5, 10, and 25 dyn/cm(2)) was observed via time-lapse cell imaging and quantified using a Bayesian image analysis algorithm. Transcriptional activity of the GRE promoter was assessed using a dual-luciferase reporter plasmid. We found no dependence on nuclear lamina for GR translocation from the cytoplasm into the nucleus. However, the absence of lamin A/C led to significantly increased expression of luciferase under dexamethasone and shear stress induction as well as changes in histone protein function. PCR results for NF-κB inhibitor alpha (NF-κBIA) and dual specificity phosphatase 1 (DUSP1) genes further supported our luciferase data with increased expression in the absence of lamin. Our results suggest that absence of lamin A/C does not hinder passage of GR into the nucleus, but nuclear lamina is important to properly regulate GRE transcription. Nuclear lamina, rather than histone deacetylase (HDAC), is a more significant mediator of shear stress-induced transcriptional activity, while dexamethasone-initiated transcription is more HDAC dependent. Our findings provide more insights into the molecular pathways involved in nuclear mechanotransduction.

  19. Endothelial nuclear lamina is not required for glucocorticoid receptor nuclear import but does affect receptor-mediated transcription activation

    PubMed Central

    Nayebosadri, Arman

    2013-01-01

    The lamina serves to maintain the nuclear structure and stiffness while acting as a scaffold for heterochromatin and many transcriptional proteins. Its role in endothelial mechanotransduction, specifically how nuclear mechanics impact gene regulation under shear stress, is not fully understood. In this study, we successfully silenced lamin A/C in bovine aortic endothelial cells to determine its role in both glucocorticoid receptor (GR) nuclear translocation and glucocorticoid response element (GRE) transcriptional activation in response to dexamethasone and shear stress. Nuclear translocation of GR, an anti-inflammatory nuclear receptor, in response to dexamethasone or shear stress (5, 10, and 25 dyn/cm2) was observed via time-lapse cell imaging and quantified using a Bayesian image analysis algorithm. Transcriptional activity of the GRE promoter was assessed using a dual-luciferase reporter plasmid. We found no dependence on nuclear lamina for GR translocation from the cytoplasm into the nucleus. However, the absence of lamin A/C led to significantly increased expression of luciferase under dexamethasone and shear stress induction as well as changes in histone protein function. PCR results for NF-κB inhibitor alpha (NF-κBIA) and dual specificity phosphatase 1 (DUSP1) genes further supported our luciferase data with increased expression in the absence of lamin. Our results suggest that absence of lamin A/C does not hinder passage of GR into the nucleus, but nuclear lamina is important to properly regulate GRE transcription. Nuclear lamina, rather than histone deacetylase (HDAC), is a more significant mediator of shear stress-induced transcriptional activity, while dexamethasone-initiated transcription is more HDAC dependent. Our findings provide more insights into the molecular pathways involved in nuclear mechanotransduction. PMID:23703529

  20. Gene transfer of inducible nitric oxide synthase complementary DNA regresses the fibrotic plaque in an animal model of Peyronie's disease.

    PubMed

    Davila, Hugo H; Magee, Thomas R; Vernet, Dolores; Rajfer, Jacob; Gonzalez-Cadavid, Nestor F

    2004-11-01

    The goal of the present study was to investigate the antifibrotic role of inducible nitric oxide synthase (iNOS) in Peyronie's disease (PD) by determining whether a plasmid expressing iNOS (piNOS) injected into a PD-like plaque can induce regression of the plaque. A PD-like plaque was induced with fibrin in the penile tunica albuginea of mice and then injected with a luciferase-expressing plasmid (pLuc), either alone or with piNOS, following luciferase expression in vivo by bioluminescence imaging. Rats were treated with either piNOS, an empty control plasmid (pC), or saline. Other groups were treated with pC or piNOS, in the absence of fibrin. Tissue sections were stained for collagen, transforming growth factor (TGF) beta1, and plasminogen-activator inhibitor (PAI-1) as profibrotic factors; copper-zinc superoxide dismutase (CuZn SOD) as scavenger of reactive oxygen species (ROS); and nitrotyrosine to detect nitric oxide reaction with ROS. Quantitative image analysis was applied. Both iNOS and xanthine oxido-reductase (XOR; oxidative stress) were estimated by Western blot analysis. Luciferase reporter expression was restricted to the penis, peaked at 3 days after injection, but continued for at least 3 wk. In rats receiving piNOS, iNOS expression also peaked at 3 days, but expression decreased at the end of treatment, when a considerable reduction of plaque size occurred. Protein nitrotyrosine, XOR, and CuZn SOD increased, and TGFbeta1 and PAI-1 decreased. The piNOS gene transfer regressed the PD plaque and expression of profibrotic factors, supporting the view that endogenous iNOS induction in PD is defense mechanism by the tissue against fibrosis.

  1. Disruption of bbe02 by Insertion of a Luciferase Gene Increases Transformation Efficiency of Borrelia burgdorferi and Allows Live Imaging in Lyme Disease Susceptible C3H Mice

    PubMed Central

    Chan, Kamfai; Alter, Laura; Barthold, Stephen W.; Parveen, Nikhat

    2015-01-01

    Lyme disease is the most prevalent tick-borne disease in North America and Europe. The causative agent, Borrelia burgdorferi persists in the white-footed mouse. Infection with B. burgdorferi can cause acute to persistent multisystemic Lyme disease in humans. Some disease manifestations are also exhibited in the mouse model of Lyme disease. Genetic manipulation of B. burgdorferi remains difficult. First, B. burgdorferi contains a large number of endogenous plasmids with unique sequences encoding unknown functions. The presence of these plasmids needs to be confirmed after each genetic manipulation. Second, the restriction modification defense systems, including that encoded by bbe02 gene lead to low transformation efficiency in B. burgdorferi. Therefore, studying the molecular basis of Lyme pathogenesis is a challenge. Furthermore, investigation of the role of a specific B. burgdorferi protein throughout infection requires a large number of mice, making it labor intensive and expensive. To overcome the problems associated with low transformation efficiency and to reduce the number of mice needed for experiments, we disrupted the bbe02 gene of a highly infectious and pathogenic B. burgdorferi strain, N40 D10/E9 through insertion of a firefly luciferase gene. The bbe02 mutant shows higher transformation efficiency and maintains luciferase activity throughout infection as detected by live imaging of mice. Infectivity and pathogenesis of this mutant were comparable to the wild-type N40 strain. This mutant will serve as an ideal parental strain to examine the roles of various B. burgdorferi proteins in Lyme pathogenesis in the mouse model in the future. PMID:26069970

  2. Characterization of BRCA2 Transcriptional Regulation

    DTIC Science & Technology

    2000-08-01

    Renilla luciferase vector (Promega) with 4 ll of Fugene-6 was used for each transfection. The pRL-TK Renilla luciferase activity was used to control for...experiments, cells received 0.5 jig of BRCA2 promoter construct, 0.1 jig of pRL-TK Renilla luciferase vector, and 0.5 jig of the indicated expression...Myc, and pCMV-Max. Firefly lucifer- ase and renilla luciferase assays were performed using the Dual-Luciferase Reporter Assay Sys- tem (Promega

  3. Identification of Small Molecules Targeting the Posttranscriptional Control of ERG Expression

    DTIC Science & Technology

    2012-10-01

    ied. To establish a cell line expressing lucife rase-ERG fusion protein, the vector along pRL-CMV-Rluc expressing Renilla luciferase gene was...expanded, and examined for the e xpression of t wo different luciferases. A clone expressing both Firefly luciferase and Renilla luciferase was selected...treated with the individual chemical at 10 μM for 24 h. The dual luciferase activities were measured. The ratio of Firefly to Renilla lu ciferase

  4. Combination Therapy Employing Retinoids and Chromatin Remodeling Agents in Human Breast Carcinomas

    DTIC Science & Technology

    2004-10-01

    transfected with 1.5 ýtg of a Renilla luciferase plasmid as a transfection control. Sixteen hours after the transfection, fresh medium was replaced in the...luciferase activity was normalized to the corresponding Renilla luciferase activity. Relative luciferase activity was calculated as a ratio over

  5. Mapping of forested wetland: use of Seasat radar images to complement conventional sources ( USA).

    USGS Publications Warehouse

    Place, J.L.

    1985-01-01

    Distinguishing forested wetland from dry forest using aerial photographs is handicapped because photographs often do not reveal the presence of water below tree canopies. Radar images obtained by the Seasat satellite reveal forested wetland as highly reflective patterns on the coastal plain between Maryland and Florida. Seasat radar images may complement aerial photographs for compiling maps of wetland. A test with experienced photointerpreters revealed that interpretation accuracy was significantly higher when using Seasat radar images than when using only conventional sources.-Author

  6. Functional Geno,ic Analysis of Breast Cancer Cell Tumorigenicity Using a Noval Gene Silencing Resource

    DTIC Science & Technology

    2006-04-01

    Fig. 2B). In addition, luciferase assay on cells co-transfected with constructs expressing firefly and renilla luciferase genes showed a significant...positive cells. (C) BT474 cells were co-transfected with pGL3 plasmid expressing firefly luciferase, pRL plasmid expressing renilla luciferase, and...genes Per1 (A) and Bmal1 (B). BT474 cells were transfected with Per1 (A) and Bmal1 (B) firefly luciferase reporters, pRL plasmid expressing renilla

  7. [Trigger factor dependent refolding of bacterial luciferases in Escherichia coli cells: kinetics, efficiency and effect of the bichaperone system, DnaKJE-ClpB].

    PubMed

    Mel'kina, O E; Gorianin, I I; Manukhov, I V; Zavil'gel'skiĭ, G B

    2013-01-01

    Here were determined the basic parameters of the Tigger Factor (TF) -dependent refolding of thermal inactivated bacterial luciferases. The TF-dependent refolding is less efficient and requires more time than DnaKJE-dependent refolding. The increase in the intracellular concentration of TF leads to an apparent decrease in the level of the thermal inactivated bacterial luciferase refolding. For thermolabile luciferases, the level of TF-dependent refolding is significantly higher, than for thermostable luciferases: 30-40%--for the thermolabile Aliivibrio fischeri and Photobacterium leiognathi luciferases, and 10 and 0.5% for the thermostable Vibrio harveyi and Photorhabdus luminescens luciferases, respectively. The negative effect of the ClpB protein on the TF-dependent refolding was shown: in Escherichia coli clpB::kan TF-dependent refolding is more efficient than in the E. coli clpB+.

  8. A Luciferase Reporter Gene System for High-Throughput Screening of γ-Globin Gene Activators.

    PubMed

    Xie, Wensheng; Silvers, Robert; Ouellette, Michael; Wu, Zining; Lu, Quinn; Li, Hu; Gallagher, Kathleen; Johnson, Kathy; Montoute, Monica

    2016-01-01

    Luciferase reporter gene assays have long been used for drug discovery due to their high sensitivity and robust signal. A dual reporter gene system contains a gene of interest and a control gene to monitor non-specific effects on gene expression. In our dual luciferase reporter gene system, a synthetic promoter of γ-globin gene was constructed immediately upstream of the firefly luciferase gene, followed downstream by a synthetic β-globin gene promoter in front of the Renilla luciferase gene. A stable cell line with the dual reporter gene was cloned and used for all assay development and HTS work. Due to the low activity of the control Renilla luciferase, only the firefly luciferase activity was further optimized for HTS. Several critical factors, such as cell density, serum concentration, and miniaturization, were optimized using tool compounds to achieve maximum robustness and sensitivity. Using the optimized reporter assay, the HTS campaign was successfully completed and approximately 1000 hits were identified. In this chapter, we also describe strategies to triage hits that non-specifically interfere with firefly luciferase.

  9. Quantitative and Functional Requirements for Bioluminescent Cancer Models.

    PubMed

    Feys, Lynn; Descamps, Benedicte; Vanhove, Christian; Vermeulen, Stefan; Vandesompele, J O; Vanderheyden, Katrien; Messens, Kathy; Bracke, Marc; De Wever, Olivier

    2016-01-01

    Bioluminescent cancer models are widely used but detailed quantification of the luciferase signal and functional comparison with a non-transfected control cell line are generally lacking. In the present study, we provide quantitative and functional tests for luciferase-transfected cells. We quantified the luciferase expression in BLM and HCT8/E11 transfected cancer cells, and examined the effect of long-term luciferin exposure. The present study also investigated functional differences between parental and transfected cancer cells. Our results showed that quantification of different single-cell-derived populations are superior with droplet digital polymerase chain reaction. Quantification of luciferase protein level and luciferase bioluminescent activity is only useful when there is a significant difference in copy number. Continuous exposure of cell cultures to luciferin leads to inhibitory effects on mitochondrial activity, cell growth and bioluminescence. These inhibitory effects correlate with luciferase copy number. Cell culture and mouse xenograft assays showed no significant functional differences between luciferase-transfected and parental cells. Luciferase-transfected cells should be validated by quantitative and functional assays before starting large-scale experiments. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Novel functional Renilla luciferase mutant provides long-term serum stability and high luminescence activity.

    PubMed

    Song, Woo Chul; Sung, Hye-Jin; Park, Kyung Soo; Choi, Jeong-Woo; Cho, Je-Yeol; Um, Soong Ho

    2013-10-01

    Fluorescent and luminescent chemical probes are essential in recent medical diagnostics. However, the use of these probes in vivo has raised concerns due to their low sensitivity, background signal interference, and non-biocompatibility. Therefore, biological chromophores have received much attention as new alternatives. In particular, luciferase, a class of oxidative enzyme with bioluminescence, has emerged as a promising fluorophore due to its improved biocompatibility. However, the enzyme usually possesses weaker luminescence and stability relative to its chemically-based competitors. Here, we report a novel functional mutant luciferase with both enhanced luminescence and long-term serum stability. For the preparation of the modified Renilla luciferase, a new bacterial subcloning design was established. The luciferase coding DNA sequence was redesigned so that mutant luciferase could be easily expressed in an Escherichia coli system. The mutant Renilla luciferase, which we called "m-Rluc," demonstrated characteristic enzymatic functions and showed a 5.6-fold increase in luminescence activity. In addition, the enzyme's physiological stability remained >80% for more than 5days, in contrast to conventional luciferase, termed "hrluc," which disappeared within a few hours. We suggest that this novel biological luciferase probe may be a great tool for both in vitro and in vivo medical diagnostics. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Luciferin-Regenerating Enzyme Mediates Firefly Luciferase Activation Through Direct Effects of D-Cysteine on Luciferase Structure and Activity.

    PubMed

    Hemmati, Roohullah; Hosseinkhani, Saman; Sajedi, Reza H; Azad, Taha; Tashakor, Amin; Bakhtiari, Nuredin; Ataei, Farangis

    2015-01-01

    Luciferin-regenerating enzyme (LRE) contributes to in vitro recycling of D-luciferin. In this study, reinvestigation of the luciferase-based LRE assay is reported. Here, using quick change site-directed mutagenesis seven T-LRE (Lampyris turkestanicusLRE) mutants were constructed and the most functional mutant of T-LRE (T(69)R) was selected for this research and the effects of D- and L-cysteine on T(69)R T-LRE-luciferase-coupled assay are examined. Our results demonstrate that bioluminescent signal of T(69)R T-LRE-luciferase-coupled assay increases and then reach equilibrium state in the presence of 5 mm D-cysteine. In addition, results reveal that 5 mm D- and L-cysteine in the absence of T(69)R T-LRE cause a significant increase in bioluminescence intensity of luciferase over a long time as well as decrease in decay rate. Based on activity measurements, far-UV CD analysis, ANS fluorescence and DLS (Dynamic light scattering) results, D-cysteine increases the activity of luciferase due to weak redox potential, antiaggregatory effects, induction of changes in conformational structure and kinetics properties. In conclusion, in spite of previous reports on the effect of LRE on luciferase bioluminescent intensity, the majority of increase in luciferase light output and time-course originate from the direct effects of D-cysteine on structure and activity of firefly luciferase. © 2015 The American Society of Photobiology.

  12. Improved Dual-Luciferase Reporter Assays for Nuclear Receptors

    PubMed Central

    Paguio, Aileen; Stecha, Pete; Wood, Keith V; Fan, Frank

    2010-01-01

    Nuclear receptors play important roles in many cellular functions through control of gene transcription. It is also a large target class for drug discovery. Luciferase reporter assays are frequently used to study nuclear receptor function because of their wide dynamic range, low endogenous activity, and ease of use. Recent improvements of luciferase genes and vectors have further enhanced their utilities. Here we applied these improvements to two reporter formats for studying nuclear receptors. The first assay contains a Murine Mammary Tumor Virus promoter upstream of a destabilized luciferase. The presence of response elements for nuclear hormone receptor in this promoter allows the studies of endogenous and/or exogenous full length receptors. The second assay contains a ligand binding domain (LBD) of a nuclear receptor fused to the GAL4 DNA binding domain (DBD) on one vector and multiple Gal4 Upstream Activator Sequences (UAS) upstream of luciferase reporter on another vector. We showed that codon optimization of luciferase reporter genes increased expression levels in conjunction with the incorporation of protein destabilizing sequences into luciferase led to a larger assay dynamic range in both formats. The optimum number of UAS to generate the best response was determined. The expression vector for nuclear receptor LBD/GAL4 DBD fusion also constitutively expresses a Renilla luciferase-neoR fusion protein, which provides selection capability (G418 resistance, neoR) as well as an internal control (Renilla luciferase). This dual-luciferase format allowed detecting compound cytotoxicity or off-target change in expression during drug screening, therefore improved data quality. These luciferase reporter assays provided better research and drug discovery tools for studying the functions of full length nuclear receptors and ligand binding domains. PMID:21687560

  13. A new blue-shifted luciferase from the Brazilian Amydetes fanestratus (Coleoptera: Lampyridae) firefly: molecular evolution and structural/functional properties.

    PubMed

    Viviani, Vadim R; Amaral, Danilo; Prado, Rogilene; Arnoldi, Frederico G C

    2011-12-01

    Firefly luciferases usually produce bioluminescence in the yellow-green region, with colors in the green and yellow-orange extremes of the spectrum being less common. Several firefly luciferases have already been cloned and sequenced, and site-directed mutagenesis studies have already identified important regions and residues for bioluminescence colors. However the structural determinants and mechanisms of bioluminescence colors turned out to be elusive, mainly when comparing luciferases with a high degree of divergence. Thus comparison of more similar luciferases producing colors in the two extremes of the spectrum could be revealing. The South-American fauna of fireflies remains largely unstudied, with some unique taxa that are not found anywhere else in the world and that produce a wide range of bioluminescence colors. Among them, fireflies of the genus Amydetes are especially interesting because its taxonomical status as an independent subfamily or as a tribe is not yet solved, and because they usually produce a continuous bright blue-shifted bioluminescence. In this work we cloned the cDNA for the luciferase of the Atlantic rain forest Amydetes fanestratus firefly, which is found near Sorocaba municipality (São Paulo, Brazil). Despite showing a higher degree of identity with the South-American Cratomorphus, the European Lampyris and the Asiatic Pyrocoelia, phylogenetical analysis of the luciferase sequence support the inclusion of Amydetes as an independent subfamily. Amydetes luciferase displays one of the most blue-shifted emission spectra (λ(max) = 538 nm) among beetle luciferases, with lower pH-sensitivity and higher affinity for ATP when compared to other luciferases, making this luciferase attractive for sensitive ATP and reporter assays.

  14. Diversity in Genetic In Vivo Methods for Protein-Protein Interaction Studies: from the Yeast Two-Hybrid System to the Mammalian Split-Luciferase System

    PubMed Central

    Stynen, Bram; Tournu, Hélène; Tavernier, Jan

    2012-01-01

    Summary: The yeast two-hybrid system pioneered the field of in vivo protein-protein interaction methods and undisputedly gave rise to a palette of ingenious techniques that are constantly pushing further the limits of the original method. Sensitivity and selectivity have improved because of various technical tricks and experimental designs. Here we present an exhaustive overview of the genetic approaches available to study in vivo binary protein interactions, based on two-hybrid and protein fragment complementation assays. These methods have been engineered and employed successfully in microorganisms such as Saccharomyces cerevisiae and Escherichia coli, but also in higher eukaryotes. From single binary pairwise interactions to whole-genome interactome mapping, the self-reassembly concept has been employed widely. Innovative studies report the use of proteins such as ubiquitin, dihydrofolate reductase, and adenylate cyclase as reconstituted reporters. Protein fragment complementation assays have extended the possibilities in protein-protein interaction studies, with technologies that enable spatial and temporal analyses of protein complexes. In addition, one-hybrid and three-hybrid systems have broadened the types of interactions that can be studied and the findings that can be obtained. Applications of these technologies are discussed, together with the advantages and limitations of the available assays. PMID:22688816

  15. Digital imaging and image analysis applied to numerical applications in forensic hair examination.

    PubMed

    Brooks, Elizabeth; Comber, Bruce; McNaught, Ian; Robertson, James

    2011-03-01

    A method that provides objective data to complement the hair analysts' microscopic observations, which is non-destructive, would be of obvious benefit in the forensic examination of hairs. This paper reports on the use of objective colour measurement and image analysis techniques of auto-montaged images. Brown Caucasian telogen scalp hairs were chosen as a stern test of the utility of these approaches. The results show the value of using auto-montaged images and the potential for the use of objective numerical measures of colour and pigmentation to complement microscopic observations. 2010. Published by Elsevier Ireland Ltd. All rights reserved.

  16. NtLTP4, a lipid transfer protein that enhances salt and drought stresses tolerance in Nicotiana tabacum.

    PubMed

    Xu, Yang; Zheng, Xinxin; Song, Yunzhi; Zhu, Lifei; Yu, Zipeng; Gan, Liming; Zhou, Shumei; Liu, Hongmei; Wen, Fujiang; Zhu, Changxiang

    2018-06-11

    Lipid transfer proteins (LTPs), a class of small, ubiquitous proteins, play critical roles in various environmental stresses. However, their precise biological functions remain unknown. Here we isolated an extracellular matrix-localised LTP, NtLTP4, from Nicotiana tabacum. The overexpression of NtLTP4 in N. tabacum enhanced resistance to salt and drought stresses. Upon exposure to high salinity, NtLTP4-overexpressing lines (OE lines) accumulated low Na + levels. Salt-responsive genes, including Na + /H + exchangers (NHX1) and high-affinity K + transporter1 (HKT1), were dramatically higher in OE lines than in wild-type lines. NtLTP4 might regulate transcription levels of NHX1 and HKT1 to alleviate the toxicity of Na + . Interestingly, OE lines enhanced the tolerance of N. tabacum to drought stress by reducing the transpiration rate. Moreover, NtLTP4 could increase reactive oxygen species (ROS)-scavenging enzyme activity and expression levels to scavenge excess ROS under drought and high salinity conditions. We used a two-hybrid yeast system and screened seven putative proteins that interact with NtLTP4 in tobacco. An MAPK member, wound-induced protein kinase, was confirmed to interact with NtLTP4 via co-immunoprecipitation and a firefly luciferase complementation imaging assay. Taken together, this is the first functional analysis of NtLTP4, and proves that NtLTP4 positively regulates salt and drought stresses in N. tabacum.

  17. Characterization of Basigin Isoforms and the Inhibitory Function of Basigin-3 in Human Hepatocellular Carcinoma Proliferation and Invasion ▿

    PubMed Central

    Liao, Cheng-Gong; Kong, Ling-Min; Song, Fei; Xing, Jin-Liang; Wang, Long-Xin; Sun, Zhi-Jian; Tang, Hao; Yao, Hui; Zhang, Yang; Wang, Li; Wang, Yu; Yang, Xiang-Min; Li, Yu; Chen, Zhi-Nan

    2011-01-01

    Basigin, which has four isoforms, plays an important role in invasion of hepatocellular carcinoma (HCC). Detailed transcriptional regulation and functions of the basigin isoforms have not been reported except in the case of the predominant isoform basigin-2, which act as inducer of matrix metalloproteinases (MMPs). Here we determined that basigin-2, basigin-3, and basigin-4 were the most abundant transcript variants in human cell lines. GeneRacer PCR and luciferase reporter assays showed that basigin-3 and basigin-4 were initiated from an alternative promoter. Basigin-3 and basigin-4 were widely expressed in various normal human tissues at the mRNA level and were upregulated in HCC tissues compared to in normal tissues. Western blotting and confocal imaging showed that glycosylated basigin-3 and basigin-4 were expressed and localized to the plasma membrane. However, in cultured cell lines, only native basigin-3, and not basigin-4, was detected at protein level. Overexpression of basigin-3 inhibited HCC cell proliferation, MMP induction, and cell invasion in vitro and in vivo. Bimolecular fluorescence complementation assays and nuclear magnetic resonance (NMR) analysis indicated that basigin-3 interacted with basigin-2 to form hetero-oligomers. In conclusion, we systematically investigated the alternative splicing of basigin and found that basigin-3 could inhibit HCC proliferation and invasion, probably through interaction with basigin-2 as an endogenous inhibitor via hetero-oligomerization. PMID:21536654

  18. Polymer nanoassemblies with hydrophobic pendant groups in the core induce false positive siRNA transfection in luciferase reporter assays.

    PubMed

    Rheiner, Steven; Reichel, Derek; Rychahou, Piotr; Izumi, Tadahide; Yang, Hsin-Sheng; Bae, Younsoo

    2017-08-07

    Poly(ethylene glycol)-conjugated polyethylenimine (PEG-PEI) is a widely studied cationic polymer used to develop non-viral vectors for siRNA therapy of genetic disorders including cancer. Cell lines stably expressing luciferase reporter protein typically evaluate the transfection efficacy of siRNA/PEG-PEI complexes, however recent findings revealed that PEG-PEI can reduce luciferase expression independent of siRNA. This study elucidates a cause of the false positive effect in luciferase assays by using polymer nanoassemblies (PNAs) made from PEG, PEI, poly-(l-lysine) (PLL), palmitate (PAL), and deoxycholate (DOC): PEG-PEI (2P), PEG-PEI-PAL (3P), PEG-PLL (2P'), PEG-PLL-PAL (3P'), and PEG-PEI-DOC (2PD). In vitro transfection and western blot assays of luciferase using a colorectal cancer cell line expressing luciferase (HT29/LUC) concluded that 2P and 2P' caused no luciferase expression reduction while hydrophobically modified PNAs induced a 35-50% reduction (3P'<2PD<3P). Although cell viability remained stagnant, 3P triggered cellular stress responses including increased membrane porosity and decreased ATP and cellular protein concentrations. Raman spectroscopy suggested that hydrophobic groups influence PNA conformation changes, which may have caused over-ubiquitination and degradation of luciferase in the cells. These results indicate that hydrophobically modified PEG-PEI induces cellular distress causing over-ubiquitination of the luciferase protein, producing false positive siRNA transfection in the luciferase assay. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effects of APC De-targeting and GAr modification on the duration of luciferase expression from plasmid DNA delivered to skeletal muscle.

    PubMed

    Subang, Maria C; Fatah, Rewas; Wu, Ying; Hannaman, Drew; Rice, Jason; Evans, Claire F; Chernajovsky, Yuti; Gould, David

    2015-01-01

    Immune responses to expressed foreign transgenes continue to hamper progress of gene therapy development. Translated foreign proteins with intracellular location are generally less accessible to the immune system, nevertheless they can be presented to the immune system through both MHC Class I and Class II pathways. When the foreign protein luciferase was expressed following intramuscular delivery of plasmid DNA in outbred mice, expression rapidly declined over 4 weeks. Through modifications to the expression plasmid and the luciferase transgene we examined the effect of detargeting expression away from antigen-presenting cells (APCs), targeting expression to skeletal muscle and fusion with glycine-alanine repeats (GAr) that block MHC-Class I presentation on the duration of luciferase expression. De-targeting expression from APCs with miR142-3p target sequences incorporated into the luciferase 3'UTR reduced the humoral immune response to both native and luciferase modified with a short GAr sequence but did not prolong the duration of expression. When a skeletal muscle specific promoter was combined with the miR target sequences the humoral immune response was dampened and luciferase expression persisted at higher levels for longer. Interestingly, fusion of luciferase with a longer GAr sequence promoted the decline in luciferase expression and increased the humoral immune response to luciferase. These studies demonstrate that expression elements and transgene modifications can alter the duration of transgene expression but other factors will need to overcome before foreign transgenes expressed in skeletal muscle are immunologically silent.

  20. Purification and characterization of a novel thermostable luciferase from Benthosema pterotum.

    PubMed

    Homaei, Ahmad Abolpour; Mymandi, Asma Bahari; Sariri, Reyhaneh; Kamrani, Ehsan; Stevanato, Roberto; Etezad, Seyed-Masoud; Khajeh, Khosro

    2013-08-05

    A novel luciferase from Benthosema pterotum, collected from Port of Jask, close to Persian Gulf, was purified for the first time, using Q-Sepharose anion exchange chromatography. The molecular mass of the novel enzyme, measured by SDS-PAGE technique, was about 27 kDa and its Km value is 0.4 μM; both values are similar to those of other coelenterazine luciferases. B. pterotum (BP) luciferase showed maximum intensity of emitted light at 40°C, in 20mM Tris buffer, pH 9 and 20 mM magnesium concentration. Experimental measurements indicated that BP luciferase is a relatively thermostable enzyme; furthermore it shows a high residual activity at extreme pH values. Its biological activity is strongly inhibited by 1 mM Cu(2+), Zn(2+) and Ni(2+), while calcium and mainly magnesium ions strongly increase BP luciferase activity. The B. pterotum luciferase generated blue light with a maximum emission wavelength at 475 nm and showed some similarity with other luciferases, while other parameters appeared quite different, in this way, confirming that a novel protein has been purified. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Genomic Structure of the Luciferase Gene from the Bioluminescent Beetle, Nyctophila cf. Caucasica

    PubMed Central

    Day, John C.; Chaichi, Mohammad J.; Najafil, Iraj; Whiteley, Andrew S.

    2006-01-01

    The gene coding for beetle luciferase, the enzyme responsible for bioluminescence in over two thousand coleopteran species has, to date, only been characterized from one Palearctic species of Lampyridae. Here we report the characterization of the luciferase gene from a female beetle of an Iranian lampyrid species, Nyctophila cf. caucasica (Coleoptera:Lampyridae). The luciferase gene was composed of seven exons, coding for 547 amino acids, separated by six introns spanning 1976 bp of genomic DNA. The deduced amino acid sequences of the luciferase gene of N. caucasica showed 98.9% homology to that of the Palearctic species Lampyris noctiluca. Analysis of the 810 bp upstream region of the luciferase gene revealed three TATA boxes and several other consensus transcriptional factor recognition sequences presenting evidence for a putative core promoter region conserved in Lampyrinae from -190 through to -155 upstream of the luciferase start codon. Along with the core promoter region the luciferase gene was compared with orthologous sequences from other lampyrid species and found to have greatest identity to Lampyris turkistanicus and Lampyris noctiluca. The significant sequence identity to the former is discussed in relation to taxonomic issues of Iranian lampyrids. PMID:20298115

  2. Detailed assessment of gene activation levels by multiple hypoxia-responsive elements under various hypoxic conditions.

    PubMed

    Takeuchi, Yasuto; Inubushi, Masayuki; Jin, Yong-Nan; Murai, Chika; Tsuji, Atsushi B; Hata, Hironobu; Kitagawa, Yoshimasa; Saga, Tsuneo

    2014-12-01

    HIF-1/HRE pathway is a promising target for the imaging and the treatment of intractable malignancy (HIF-1; hypoxia-inducible factor 1, HRE; hypoxia-responsive element). The purposes of our study are: (1) to assess the gene activation levels resulting from various numbers of HREs under various hypoxic conditions, (2) to evaluate the bidirectional activity of multiple HREs, and (3) to confirm whether multiple HREs can induce gene expression in vivo. Human colon carcinoma HCT116 cells were transiently transfected by the constructs containing a firefly luciferase reporter gene and various numbers (2, 4, 6, 8, 10, and 12) of HREs (nHRE+, nHRE-). The relative luciferase activities were measured under various durations of hypoxia (6, 12, 18, and 24 h), O2 concentrations (1, 2, 4, 8, and 16 %), and various concentrations of deferoxamine mesylate (20, 40, 80, 160, and 320 µg/mL growth medium). The bidirectional gene activation levels by HREs were examined in the constructs (dual-luc-nHREs) containing firefly and Renilla luciferase reporter genes at each side of nHREs. Finally, to test whether the construct containing 12HRE and the NIS reporter gene (12HRE-NIS) can induce gene expression in vivo, SPECT imaging was performed in a mouse xenograft model. (1) gene activation levels by HREs tended to increase with increasing HRE copy number, but a saturation effect was observed in constructs with more than 6 or 8 copies of an HRE, (2) gene activation levels by HREs increased remarkably during 6-12 h of hypoxia, but not beyond 12 h, (3) gene activation levels by HREs decreased with increasing O2 concentrations, but could be detected even under mild hypoxia at 16 % O2, (4) the bidirectionally proportional activity of the HRE was confirmed regardless of the hypoxic severity, and (5) NIS expression driven by 12 tandem copies of an HRE in response to hypoxia could be visualized on in vivo SPECT imaging. The results of this study will help in the understanding and assessment of the activity of multiple HREs under hypoxia and become the basis for hypoxia-targeted imaging and therapy in the future.

  3. Molecular Cloning of Secreted Luciferases from Marine Planktonic Copepods.

    PubMed

    Takenaka, Yasuhiro; Ikeo, Kazuho; Shigeri, Yasushi

    2016-01-01

    Secreted luciferases isolated from copepod crustaceans are frequently used for nondisruptive reporter-gene assays, such as the continuous, automated and/or high-throughput monitoring of gene expression in living cells. All known copepod luciferases share highly conserved amino acid residues in two similar, repeated domains in the sequence. The similarity in the domains are ideal nature for designing PCR primers to amplify cDNA fragments of unidentified copepod luciferases from bioluminescent copepod crustaceans. Here, we introduce how to establish a cDNA encoding novel copepod luciferases from a copepod specimen by PCR with degenerated primers.

  4. Multimodal Fluorescence and Bioluminescence Imaging Reveals Transfection Potential of Intratracheally Administered Polyplexes for Breast Cancer Lung Metastases.

    PubMed

    Geyer, Antonia; Taschauer, Alexander; Alioglu, Fatih; Anton, Martina; Maier, Julia; Drothler, Elisabeth; Simlinger, Manuela; Yavuz, Sümeyye; Sami, Haider; Ogris, Manfred

    2017-12-01

    Local delivery of anticancer agents or gene therapeutics to lung tumors can circumvent side effects or accumulation in non-target organs, but accessibility via the alveolar side of the blood-air barrier remains challenging. Polyplexes based on plasmid and linear polyethylenimine (LPEI) transfect healthy lung tissue when applied intravenously (i.v.) in the mouse, but direct delivery into the lungs results in low transfection of lung tissue. Nevertheless, LPEI could offer the potential to transfect lung tumors selectively, if accessible from the alveolar side. This study combined near infrared fluorescent protein 720 (iRFP720) and firefly luciferase as reporter genes for detection of tumor lesions and transfection efficiency of LPEI polyplexes, after intratracheal microspraying in mice bearing 4T1 triple negative breast cancer lung metastases. Simultaneous flow cytometric analysis of iRFP720 and enhanced green fluorescent protein expression in vitro demonstrated the potential to combine these reporter genes within transfection studies. Polyplex biophysics was characterized by single nanoparticle tracking analysis (NTA) to monitor physical integrity after microspraying in vitro. 4T1 cells were transduced with iRFP720-encoding lentivirus and evaluated by flow cytometry for stable iRFP720 expression. Growth of 4T1-iRFP720 cells was monitored in Balb/c mice by tomographic near infrared imaging, tissue and tumor morphology by computed tomography and magnetic resonance imaging. In 4T1-iRFP720 tumor-bearing mice, intratracheal administration of luciferase-encoding plasmid DNA by LPEI polyplexes resulted in successful tumor transfection, as revealed by bioluminescence imaging.

  5. Artificial MicroRNAs as Novel Secreted Reporters for Cell Monitoring in Living Subjects.

    PubMed

    Ronald, John A; D'Souza, Aloma L; Chuang, Hui-Yen; Gambhir, Sanjiv Sam

    2016-01-01

    Reporter genes are powerful technologies that can be used to directly inform on the fate of transplanted cells in living subjects. Imaging reporter genes are often employed to quantify cell number, location(s), and viability with various imaging modalities. To complement this, reporters that are secreted from cells can provide a low-cost, in vitro diagnostic test to monitor overall cell viability at relatively high frequency without knowing the locations of all cells. Whereas protein-based secretable reporters have been developed, an RNA-based reporter detectable with amplification inherent PCR-based assays has not been previously described. MicroRNAs (miRNAs) are short non-coding RNAs (18-22 nt) that regulate mRNA translation and are being explored as relatively stable blood-based disease biomarkers. We developed an artificial miRNA-based secreted reporter, called Sec-miR, utilizing a coding sequence that is not expressed endogenously and does not have any known vertebrate target. Sec-miR was detectable in both the cells and culture media of transiently transfected cells. Cells stably expressing Sec-miR also reliably secreted it into the culture media. Mice implanted with parental HeLa cells or HeLa cells expressing both Sec-miR and the bioluminescence imaging (BLI) reporter gene Firefly luciferase (FLuc) were monitored over time for tumor volume, FLuc signal via BLI, and blood levels of Sec-miR. Significantly (p<0.05) higher Sec-miR was found in the blood of mice bearing Sec-miR-expressing tumors compared to parental cell tumors at 21 and 28 days after implantation. Importantly, blood Sec-miR reporter levels after day 21 showed a trend towards correlation with tumor volume (R2 = 0.6090; p = 0.0671) and significantly correlated with FLuc signal (R2 = 0.7067; p<0.05). Finally, we could significantly (p<0.01) amplify Sec-miR secretion into the cell media by chaining together multiple Sec-miR copies (4 instead of 1 or 2) within an expression cassette. Overall, we show that a novel complement of BLI together with a unique Sec-miR reporter adds an in vitro RNA-based diagnostic to enhance the monitoring of transplanted cells. While Sec-miR was not as sensitive as BLI for monitoring cell number, it may be more sensitive than clinically-relevant positron emission tomography (PET) reporter assays. Future work will focus on improving cell detectability via improved secretion of Sec-miR reporters from cells and more sensitive detection platforms, as well as, exploring other miRNA sequences to allow multiplexed monitoring of more than one cell population at a time. Continued development may lead to more refined and precise monitoring of cell-based therapies.

  6. Inhibition of Th17 Cell Differentiation as a Treatment for Multiple Sclerosis

    DTIC Science & Technology

    2013-10-01

    luciferase reporter construct into the cells. This reporter construct allows for both measurement of the transfection efficiency by Renilla luciferase...miR326 (delivered either by lentivirus or cotransfection) should result in reduced Firefly luminescence, with no change in Renilla luminescence. The...using Lipofectamine. After 48 hours Dual Glo substrate was added to the cells and luciferase activity and Renilla Luciferase activity were measured

  7. Characterization of luciferases and its paralogue in the Panamanian luminous click beetle Pyrophorus angustus: a click beetle luciferase lacks the fatty acyl-CoA synthetic activity.

    PubMed

    Oba, Yuichi; Kumazaki, Mizuho; Inouye, Satoshi

    2010-02-15

    Two luciferase genes (dPaLuc and vPaLuc) and one paralogue of luciferase (PaLL) were isolated from the Panamanian luminous click beetle, Pyrophorus angustus (Elateridae, Pyrophorinae). The transcripts of dPaLuc and vPaLuc were predominantly detected in the body parts with dorsal photophore and ventral photophore, respectively, and the transcript of PaLL was detected in both parts. The gene products of dPaLuc and vPaLuc possessed luminescence activity with firefly luciferin (lambda(max)=536 and 566 nm, respectively) but did not show significant activity of fatty acyl-CoA synthesis. On the other hand, the gene product of PaLL had fatty acyl-CoA synthetic activity with very weak luminescence activity. The catalytic properties of click beetle luciferase are different from our previous results that firefly luciferase has both luminescence activity and fatty acyl-CoA synthetic activity. These results suggested that the ancestral fatty acyl-CoA synthetase in the Pyrophorinae lineage has undergone gene duplication event, followed by specialization of one copy in luciferase. Subsequently, the luciferase was duplicated again and the two copies diverged in their luminescent color and expression pattern. Copyright 2009 Elsevier B.V. All rights reserved.

  8. Correlation between luminescence intensity and cytotoxicity in cell-based cytotoxicity assay using luciferase.

    PubMed

    Wakuri, S; Yamakage, K; Kazuki, Y; Kazuki, K; Oshimura, M; Aburatani, S; Yasunaga, M; Nakajima, Y

    2017-04-01

    The luciferase reporter assay has become one of the conventional methods for cytotoxicity evaluation. Typically, the decrease of luminescence expressed by a constitutive promoter is used as an index of cytotoxicity. However, to our knowledge, there have been no reports of the correlation between cytotoxicity and luminescence intensity. In this study, to accurately verify the correlation between them, beetle luciferase was stably expressed in human hepatoma HepG2 cells harboring the multi-integrase mouse artificial chromosome vector. We showed that the cytotoxicity assay using luciferase does not depend on the stability of luciferase protein and the kind of constitutive promoter. Next, HepG2 cells in which green-emitting beetle luciferase was expressed under the control of CAG promoter were exposed to 58 compounds. The luminescence intensity and cytotoxicity curves of cells exposed to 48 compounds showed similar tendencies, whereas those of cells exposed to 10 compounds did not do so, although the curves gradually approached each other with increasing exposure time. Finally, we demonstrated that luciferase expressed under the control of a constitutive promoter can be utilized both as an internal control reporter for normalizing a test reporter and for monitoring cytotoxicity when two kinds of luciferases are simultaneously used in the cytotoxicity assay. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Luciferase reporter assay in Drosophila and mammalian tissue culture cells

    PubMed Central

    Yun, Chi

    2014-01-01

    Luciferase reporter gene assays are one of the most common methods for monitoring gene activity. Because of their sensitivity, dynamic range, and lack of endogenous activity, luciferase assays have been particularly useful for functional genomics in cell-based assays, such as RNAi screening. This unit describes delivery of two luciferase reporters with other nucleic acids (siRNA /dsRNA), measurement of the dual luciferase activities, and analysis of data generated. The systematic query of gene function (RNAi) combined with the advances in luminescent technology have made it possible to design powerful whole genome screens to address diverse and significant biological questions. PMID:24652620

  10. Visualizing and quantifying protein secretion using a Renilla luciferase-GFP fusion protein.

    PubMed

    Liu, J; Wang, Y; Szalay, A A; Escher, A

    2000-01-01

    We have shown previously that an engineered form of Renilla luciferase (SRUC) can be secreted as a functional enzyme by mammalian cells, and that fusing wild-type Renilla luciferase with the green fluorescent protein from Aequorea victoria (GFP) yields a chimeric protein retaining light-emission properties similar to that of unfused Renilla luciferase and GFP. In the work presented here, SRUC was fused with GFP to determine whether it could be used to both visualize and quantify protein secretion in mammalian cells. Simian COS-7 and Chinese hamster ovary (CHO) cells were transiently transfected with gene constructs encoding a secreted or an intracellular version of a Renilla luciferase-GFP fusion protein. Renilla luciferase activity was measured from COS-7 cell lysates and culture media, and GFP activity was detected in CHO cells using fluorescence microscopy. Data indicated that the SRUC-GFP fusion protein was secreted as a chimeric protein that had both Renilla luciferase and GFP activity. This fusion protein could be a useful marker for the study of protein secretion in mammalian cells. Copyright 2000 John Wiley & Sons, Ltd.

  11. Characterization of CG6178 gene product with high sequence similarity to firefly luciferase in Drosophila melanogaster.

    PubMed

    Oba, Yuichi; Ojika, Makoto; Inouye, Satoshi

    2004-03-31

    This is the first identification of a long-chain fatty acyl-CoA synthetase in Drosophila by enzymatic characterization. The gene product of CG6178 (CG6178) in Drosophila melanogaster genome, which has a high sequence similarity to firefly luciferase, has been expressed and characterized. CG6178 showed long-chain fatty acyl-CoA synthetic activity in the presence of ATP, CoA and Mg(2+), suggesting a fatty acyl adenylate is an intermediate. Recently, it was revealed that firefly luciferase has two catalytic functions, monooxygenase (luciferase) and AMP-mediated CoA ligase (fatty acyl-CoA synthetase). However, unlike firefly luciferase, CG6178 did not show luminescence activity in the presence of firefly luciferin, ATP, CoA and Mg(2+). The enzymatic properties of CG6178 including substrate specificity, pH dependency and optimal temperature were close to those of firefly luciferase and rat fatty acyl-CoA synthetase. Further, phylogenic analyses strongly suggest that the firefly luciferase gene may have evolved from a fatty acyl-CoA synthetase gene as a common ancestral gene.

  12. Re-engineering of Bacterial Luciferase; For New Aspects of Bioluminescence.

    PubMed

    Kim, Da-Som; Choi, Jeong-Ran; Ko, Jeong-Ae; Kim, Kangmin

    2018-01-01

    Bacterial luminescence is the end-product of biochemical reactions catalyzed by the luciferase enzyme. Nowadays, this fascinating phenomenon has been widely used as reporter and/or sensors to detect a variety of biological and environmental processes. The enhancement or diversification of the luciferase activities will increase the versatility of bacterial luminescence. Here, to establish the strategy for luciferase engineering, we summarized the identity and relevant roles of key amino acid residues modulating luciferase in Vibrio harveyi, a model luminous bacterium. The current opinions on crystal structures and the critical amino acid residues involved in the substrate binding sites and unstructured loop have been delineated. Based on these, the potential target residues and/or parameters for enzyme engineering were also suggested in limited scale. In conclusion, even though the accurate knowledge on the bacterial luciferase is yet to be reported, the structure-guided site-directed mutagenesis approaches targeting the regulatory amino acids will provide a useful platform to re-engineer the bacterial luciferase in the future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. In-vivo detection of binary PKA network interactions upon activation of endogenous GPCRs

    PubMed Central

    Röck, Ruth; Bachmann, Verena; Bhang, Hyo-eun C; Malleshaiah, Mohan; Raffeiner, Philipp; Mayrhofer, Johanna E; Tschaikner, Philipp M; Bister, Klaus; Aanstad, Pia; Pomper, Martin G; Michnick, Stephen W; Stefan, Eduard

    2015-01-01

    Membrane receptor-sensed input signals affect and modulate intracellular protein-protein interactions (PPIs). Consequent changes occur to the compositions of protein complexes, protein localization and intermolecular binding affinities. Alterations of compartmentalized PPIs emanating from certain deregulated kinases are implicated in the manifestation of diseases such as cancer. Here we describe the application of a genetically encoded Protein-fragment Complementation Assay (PCA) based on the Renilla Luciferase (Rluc) enzyme to compare binary PPIs of the spatially and temporally controlled protein kinase A (PKA) network in diverse eukaryotic model systems. The simplicity and sensitivity of this cell-based reporter allows for real-time recordings of mutually exclusive PPIs of PKA upon activation of selected endogenous G protein-coupled receptors (GPCRs) in cancer cells, xenografts of mice, budding yeast, and zebrafish embryos. This extends the application spectrum of Rluc PCA for the quantification of PPI-based receptor-effector relationships in physiological and pathological model systems. PMID:26099953

  14. Discovery of a Small Molecule Probe That Post-Translationally Stabilizes the Survival Motor Neuron Protein for the Treatment of Spinal Muscular Atrophy.

    PubMed

    Rietz, Anne; Li, Hongxia; Quist, Kevin M; Cherry, Jonathan J; Lorson, Christian L; Burnett, Barrington G; Kern, Nicholas L; Calder, Alyssa N; Fritsche, Melanie; Lusic, Hrvoje; Boaler, Patrick J; Choi, Sungwoon; Xing, Xuechao; Glicksman, Marcie A; Cuny, Gregory D; Androphy, Elliot J; Hodgetts, Kevin J

    2017-06-08

    Spinal muscular atrophy (SMA) is the leading genetic cause of infant death. We previously developed a high-throughput assay that employs an SMN2-luciferase reporter allowing identification of compounds that act transcriptionally, enhance exon recognition, or stabilize the SMN protein. We describe optimization and characterization of an analog suitable for in vivo testing. Initially, we identified analog 4m that had good in vitro properties but low plasma and brain exposure in a mouse PK experiment due to short plasma stability; this was overcome by reversing the amide bond and changing the heterocycle. Thiazole 27 showed excellent in vitro properties and a promising mouse PK profile, making it suitable for in vivo testing. This series post-translationally stabilizes the SMN protein, unrelated to global proteasome or autophagy inhibition, revealing a novel therapeutic mechanism that should complement other modalities for treatment of SMA.

  15. Real-time monitoring of stress erythropoiesis in vivo using Gata1 and beta-globin LCR luciferase transgenic mice.

    PubMed

    Suzuki, Mikiko; Ohneda, Kinuko; Hosoya-Ohmura, Sakie; Tsukamoto, Saho; Ohneda, Osamu; Philipsen, Sjaak; Yamamoto, Masayuki

    2006-07-15

    Erythroid progenitors have the potential to proliferate rapidly in response to environmental stimuli. This process is referred to as stress erythropoiesis, with erythropoietin (EPO) playing central roles in its promotion. In this study, we wanted to elucidate the molecular mechanisms governing the regulation of stress erythropoiesis and the maintenance of red-cell homeostasis. This was achieved by our development of a noninvasive real-time monitoring system for erythropoiesis using transgenic mouse lines expressing luciferase under the control of the mouse Gata1 hematopoietic regulatory domain (G1-HRD-luc) or human beta-globin locus control region (Hbb-LCR-luc). Optical bioluminescence images revealed that the luciferase was specifically expressed in spleen and bone marrow and was induced rapidly in response to anemia and hypoxia stimuli. The G1-HRD-luc activity tracked the emergence and disappearance of proerythroblast-stage progenitors, whereas the Hbb-LCR-luc activity tracked erythroblasts and later stage erythroid cells. Increased plasma EPO concentration preceded an increase in G1-HRD-luc, supporting our contention that EPO acts as the key upstream signal in stress erythropoiesis. Hence, we conclude that G1-HRD-luc and Hbb-LCR-luc reporters are differentially activated during stress erythropoiesis and that the transgenic mouse lines used serve as an important means for understanding the homeostatic regulation of erythropoiesis.

  16. Luciferase-Zinc-Finger System for the Rapid Detection of Pathogenic Bacteria.

    PubMed

    Shi, Chu; Xu, Qing; Ge, Yue; Jiang, Ling; Huang, He

    2017-08-09

    Rapid and reliable detection of pathogenic bacteria is crucial for food safety control. Here, we present a novel luciferase-zinc finger system for the detection of pathogens that offers rapid and specific profiling. The system, which uses a zinc-finger protein domain to probe zinc finger recognition sites, was designed to bind the amplified conserved regions of 16S rDNA, and the obtained products were detected using a modified luciferase. The luciferase-zinc finger system not only maintained luciferase activity but also allowed the specific detection of different bacterial species, with a sensitivity as low as 10 copies and a linear range from 10 to 10 4 copies per microliter of the specific PCR product. Moreover, the system is robust and rapid, enabling the simultaneous detection of 6 species of bacteria in artificially contaminated samples with excellent accuracy. Thus, we envision that our luciferase-zinc finger system will have far-reaching applications.

  17. High-Throughput Screening of a Luciferase Reporter of Gene Silencing on the Inactive X Chromosome.

    PubMed

    Keegan, Alissa; Plath, Kathrin; Damoiseaux, Robert

    2018-01-01

    Assays of luciferase gene activity are a sensitive and quantitative reporter system suited to high-throughput screening. We adapted a luciferase assay to a screening strategy for identifying factors that reactivate epigenetically silenced genes. This epigenetic luciferase reporter is subject to endogenous gene silencing mechanisms on the inactive X chromosome (Xi) in primary mouse cells and thus captures the multilayered nature of chromatin silencing in development. Here, we describe the optimization of an Xi-linked luciferase reactivation assay in 384-well format and adaptation of the assay for high-throughput siRNA and chemical screening. Xi-luciferase reactivation screening has applications in stem cell biology and cancer therapy. We have used the approach described here to identify chromatin-modifying proteins and to identify drug combinations that enhance the gene reactivation activity of the DNA demethylating drug 5-aza-2'-deoxycytidine.

  18. Luciferase assay to study the activity of a cloned promoter DNA fragment.

    PubMed

    Solberg, Nina; Krauss, Stefan

    2013-01-01

    Luciferase based assays have become an invaluable tool for the analysis of cloned promoter DNA fragments, both for verifying the ability of a potential promoter fragment to drive the expression of a luciferase reporter gene in various cellular contexts, and for dissecting binding elements in the promoter. Here, we describe the use of the Dual-Luciferase(®) Reporter Assay System created by Promega (Promega Corporation, Wisconsin, USA) to study the cloned 6.7 kilobases (kb) mouse (m) Tcf3 promoter DNA fragment in mouse embryonic derived neural stem cells (NSC). In this system, the expression of the firefly luciferase driven by the cloned mTcf3 promoter DNA fragment (including transcription initiation sites) is correlated with a co-transfected control reporter expressing Renilla luciferase from the herpes simplex virus (HSV) thymidine kinase promoter. Using an internal control reporter allows to normalize the activity of the experimental reporter to the internal control, which minimizes experimental variability.

  19. Improvement of thermostability and activity of firefly luciferase through [TMG][Ac] ionic liquid mediator.

    PubMed

    Ebrahimi, Mehdi; Hosseinkhani, Saman; Heydari, Akbar; Khavari-Nejad, Ramazan Ali; Akbari, Jafar

    2012-10-01

    Firefly luciferase catalyzes production of light from luciferin in the presence of Mg(2+)-ATP and oxygen. This enzyme has wide range of applications in biotechnology and development of biosensors. The low thermal stability of wild-type firefly luciferase is a limiting factor in most applications. Improvements in activity and stability of few enzymes in the presence of ionic liquids were shown in many reports. In this study, kinetic and thermal stability of firefly luciferase from Photinus pyralis in the presence of three tetramethylguanidine-based ionic liquids was investigated. The enzyme has shown improved activity in the presence of [1, 1, 3, 3-tetramethylguanidine][acetate], but in the presence of [TMG][trichloroacetate] and [TMG][triflouroacetate] activity, it decreased or unchanged significantly. Among these ionic liquids, only [TMG][Ac] has increased the thermal stability of luciferase. Incubation of [TMG][Ac] with firefly luciferase brought about with decrease of K(m) for ATP.

  20. Novel Fusion Protein Approach for Efficient High-Throughput Screening of Small Molecule–Mediating Protein-Protein Interactions in Cells and Living Animals

    PubMed Central

    Paulmurugan, Ramasamy; Gambhir, Sanjiv S.

    2014-01-01

    Networks of protein interactions execute many different intracellular pathways. Small molecules either synthesized within the cell or obtained from the external environment mediate many of these protein-protein interactions. The study of these small molecule–mediated protein-protein interactions is important in understanding abnormal signal transduction pathways in a variety of disorders, as well as in optimizing the process of drug development and validation. In this study, we evaluated the rapamycin-mediated interaction of the human proteins FK506-binding protein (FKBP12) rapamycin-binding domain (FRB) and FKBP12 by constructing a fusion of these proteins with a split-Renilla luciferase or a split enhanced green fluorescent protein (split-EGFP) such that complementation of the reporter fragments occurs in the presence of rapamycin. Different linker peptides in the fusion protein were evaluated for the efficient maintenance of complemented reporter activity. This system was studied in both cell culture and xenografts in living animals. We found that peptide linkers with two or four EAAAR repeat showed higher protein-protein interaction–mediated signal with lower background signal compared with having no linker or linkers with amino acid sequences GGGGSGGGGS, ACGSLSCGSF, and ACGSLSCGS-FACGSLSCGSF. A 9 ± 2-fold increase in signal intensity both in cell culture and in living mice was seen compared with a system that expresses both reporter fragments and the interacting proteins separately. In this fusion system, rapamycin induced heterodimerization of the FRB and FKBP12 moieties occurred rapidly even at very lower concentrations (0.00001 nmol/L) of rapamycin. For a similar fusion system employing split-EGFP, flow cytometry analysis showed significant level of rapamycin-induced complementation. PMID:16103094

  1. Novel fusion protein approach for efficient high-throughput screening of small molecule-mediating protein-protein interactions in cells and living animals.

    PubMed

    Paulmurugan, Ramasamy; Gambhir, Sanjiv S

    2005-08-15

    Networks of protein interactions execute many different intracellular pathways. Small molecules either synthesized within the cell or obtained from the external environment mediate many of these protein-protein interactions. The study of these small molecule-mediated protein-protein interactions is important in understanding abnormal signal transduction pathways in a variety of disorders, as well as in optimizing the process of drug development and validation. In this study, we evaluated the rapamycin-mediated interaction of the human proteins FK506-binding protein (FKBP12) rapamycin-binding domain (FRB) and FKBP12 by constructing a fusion of these proteins with a split-Renilla luciferase or a split enhanced green fluorescent protein (split-EGFP) such that complementation of the reporter fragments occurs in the presence of rapamycin. Different linker peptides in the fusion protein were evaluated for the efficient maintenance of complemented reporter activity. This system was studied in both cell culture and xenografts in living animals. We found that peptide linkers with two or four EAAAR repeat showed higher protein-protein interaction-mediated signal with lower background signal compared with having no linker or linkers with amino acid sequences GGGGSGGGGS, ACGSLSCGSF, and ACGSLSCGSFACGSLSCGSF. A 9 +/- 2-fold increase in signal intensity both in cell culture and in living mice was seen compared with a system that expresses both reporter fragments and the interacting proteins separately. In this fusion system, rapamycin induced heterodimerization of the FRB and FKBP12 moieties occurred rapidly even at very lower concentrations (0.00001 nmol/L) of rapamycin. For a similar fusion system employing split-EGFP, flow cytometry analysis showed significant level of rapamycin-induced complementation.

  2. Visualization of glucagon secretion from pancreatic α cells by bioluminescence video microscopy: Identification of secretion sites in the intercellular contact regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokawa, Satoru; School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650; Suzuki, Takahiro

    We have firstly visualized glucagon secretion using a method of video-rate bioluminescence imaging. The fusion protein of proglucagon and Gaussia luciferase (PGCG-GLase) was used as a reporter to detect glucagon secretion and was efficiently expressed in mouse pancreatic α cells (αTC1.6) using a preferred human codon-optimized gene. In the culture medium of the cells expressing PGCG-GLase, luminescence activity determined with a luminometer was increased with low glucose stimulation and KCl-induced depolarization, as observed for glucagon secretion. From immunochemical analyses, PGCG-GLase stably expressed in clonal αTC1.6 cells was correctly processed and released by secretory granules. Luminescence signals of the secreted PGCG-GLase frommore » the stable cells were visualized by video-rate bioluminescence microscopy. The video images showed an increase in glucagon secretion from clustered cells in response to stimulation by KCl. The secretory events were observed frequently at the intercellular contact regions. Thus, the localization and frequency of glucagon secretion might be regulated by cell-cell adhesion. - Highlights: • The fused protein of proglucagon to Gaussia luciferase was used as a reporter. • The fusion protein was highly expressed using a preferred human-codon optimized gene. • Glucagon secretion stimulated by depolarization was determined by luminescence. • Glucagon secretion in α cells was visualized by bioluminescence imaging. • Glucagon secretion sites were localized in the intercellular contact regions.« less

  3. NanoLuc: A Small Luciferase is Brightening up the Field of Bioluminescence

    PubMed Central

    Cai, Weibo

    2016-01-01

    The biomedical field has greatly benefited from the discovery of bioluminescent proteins. Currently, scientists employ bioluminescent systems for numerous biomedical applications, ranging from highly sensitive cellular assays to bioluminescence-based molecular imaging. Traditionally, these systems are based on Firefly and Renilla luciferases; however, the applicability of these enzymes is limited by their size, stability, and luminescence efficiency. NanoLuc (NLuc), a novel bioluminescence platform, offers several advantages over established systems, including enhanced stability, smaller size, and >150-fold increase in luminescence. In addition, the substrate for NLuc displays enhanced stability and lower background activity, opening up new possibilities in the field of bioluminescence imaging. The NLuc system is incredibly versatile and may be utilized for a wide array of applications. The increased sensitivity, high stability, and small size of the NLuc system have the potential to drastically change the field of reporter assays in the future. However, as with all such technology, NLuc has limitations (including a non-ideal emission for in vivo applications and its unique substrate) which may cause it to find restricted use in certain areas of molecular biology. As this unique technology continues to broaden, NLuc may have a significant impact in both preclinical and clinical fields, with potential roles in disease detection, molecular imaging, and therapeutic monitoring. This review will present the NLuc technology to the scientific community in a non-biased manner, allowing the audience to adopt their own views of this novel system. PMID:27045664

  4. Dual Luciferase Assay System for Rapid Assessment of Gene Expression in Saccharomyces cerevisiae

    PubMed Central

    McNabb, David S.; Reed, Robin; Marciniak, Robert A.

    2005-01-01

    A new reporter system has been developed for quantifying gene expression in the yeast Saccharomyces cerevisiae. The system relies on two different reporter genes, Renilla and firefly luciferase, to evaluate regulated gene expression. The gene encoding Renilla luciferase is fused to a constitutive promoter (PGK1 or SPT15) and integrated into the yeast genome at the CAN1 locus as a control for normalizing the assay. The firefly luciferase gene is fused to the test promoter and integrated into the yeast genome at the ura3 or leu2 locus. The dual luciferase assay is performed by sequentially measuring the firefly and Renilla luciferase activities of the same sample, with the results expressed as the ratio of firefly to Renilla luciferase activity (Fluc/Rluc). The yeast dual luciferase reporter (DLR) was characterized and shown to be very efficient, requiring approximately 1 minute to complete each assay, and has proven to yield data that accurately and reproducibly reflect promoter activity. A series of integrating plasmids were generated that contain either the firefly or Renilla luciferase gene preceded by a multicloning region in two different orientations and the three reading frames to make possible the generation of translational fusions. Additionally, each set of plasmids contains either the URA3 or LEU2 marker for genetic selection in yeast. A series of S288C-based yeast strains, including a two-hybrid strain, were developed to facilitate the use of the yeast DLR assay. This assay can be readily adapted to a high-throughput platform for studies requiring numerous measurements. PMID:16151247

  5. Hepa1-6-FLuc cell line with the stable expression of firefly luciferase retains its primary properties with promising bioluminescence imaging ability.

    PubMed

    Li, Yasha; Liu, Mengnan; Cui, Jiejie; Yang, Ke; Zhao, Li; Gong, Mengjia; Wang, Yi; He, Yun; He, Tongchuan; Bi, Yang

    2018-05-01

    Reliable animal models are required for the in vivo study of the molecular mechanisms and effects of chemotherapeutic drugs in hepatocarcinoma. In vivo tracing techniques based on firefly luciferase (FLuc) may optimize the non-invasive monitoring of experimental animals. The present study established a murine Hepa1-6-FLuc cell line that stably expressed a retrovirus-delivered FLuc protein gene. The cell morphology, proliferation, migration and invasion ability of Hepa1-6-FLuc cells were the same as that of the Hepa1-6 cells, and thus is suitable to replace Hepa1-6 cells in the construction of hepatocarcinoma animal models. No differences in subcutaneous tumor mass and its pathomorphology from implanted Hepa1-6-FLuc cells were observed compared with Hepa1-6 control tumors. Bioluminescence imaging indicated that the Luc signal of the Hepa1-6-FLuc cells was consistently strengthened with increases in tumor mass; however, the Luc signal of Hepa1-6-AdFLuc became weaker and eventually disappeared during tumor development. Therefore, compared with the transient expression by adenovirus, stable expression of the FLuc gene in Hepa1-6 cells may better reflect cell proliferation and survival in vivo , and provide a reliable source for the establishment of hepatocarcinoma models.

  6. On-Chip Synthesis of Protein Microarrays from DNA Microarrays Via Coupled In Vitro Transcription and Translation for Surface Plasmon Resonance Imaging Biosensor Applications

    PubMed Central

    Seefeld, Ting H.; Halpern, Aaron R.; Corn, Robert M.

    2012-01-01

    Protein microarrays are fabricated from double-stranded DNA (dsDNA) microarrays by a one-step, multiplexed enzymatic synthesis in an on-chip microfluidic format and then employed for antibody biosensing measurements with surface plasmon resonance imaging (SPRI). A microarray of dsDNA elements (denoted as generator elements) that encode either a His-tagged green fluorescent protein (GFP) or a His-tagged luciferase protein is utilized to create multiple copies of messenger RNA (mRNA) in a surface RNA polymerase reaction; the mRNA transcripts are then translated into proteins by cell-free protein synthesis in a microfluidic format. The His-tagged proteins diffuse to adjacent Cu(II)-NTA microarray elements (denoted as detector elements) and are specifically adsorbed. The net result is the on-chip, cell-free synthesis of a protein microarray that can be used immediately for SPRI protein biosensing. The dual element format greatly reduces any interference from the nonspecific adsorption of enzyme or proteins. SPRI measurements for the detection of the antibodies anti-GFP and anti-luciferase were used to verify the formation of the protein microarray. This convenient on-chip protein microarray fabrication method can be implemented for multiplexed SPRI biosensing measurements in both clinical and research applications. PMID:22793370

  7. In Vivo Imaging of Local Gene Expression Induced by Magnetic Hyperthermia

    PubMed Central

    Sandre, Olivier; Genevois, Coralie; Garaio, Eneko; Adumeau, Laurent; Mornet, Stéphane; Couillaud, Franck

    2017-01-01

    The present work aims to demonstrate that colloidal dispersions of magnetic iron oxide nanoparticles stabilized with dextran macromolecules placed in an alternating magnetic field can not only produce heat, but also that these particles could be used in vivo for local and noninvasive deposition of a thermal dose sufficient to trigger thermo-induced gene expression. Iron oxide nanoparticles were first characterized in vitro on a bio-inspired setup, and then they were assayed in vivo using a transgenic mouse strain expressing the luciferase reporter gene under transcriptional control of a thermosensitive promoter. Iron oxide nanoparticles dispersions were applied topically on the mouse skin or injected subcutaneously with Matrigel™ to generate so-called pseudotumors. Temperature was monitored continuously with a feedback loop to control the power of the magnetic field generator and to avoid overheating. Thermo-induced luciferase expression was followed by bioluminescence imaging 6 h after heating. We showed that dextran-coated magnetic iron oxide nanoparticle dispersions were able to induce in vivo mild hyperthermia compatible with thermo-induced gene expression in surrounding tissues and without impairing cell viability. These data open new therapeutic perspectives for using mild magnetic hyperthermia as noninvasive modulation of tumor microenvironment by local thermo-induced gene expression or drug release. PMID:28208731

  8. Real-time monitoring of artemin in vivo chaperone activity using luciferase as an intracellular reporter.

    PubMed

    Takalloo, Zeinab; Sajedi, Reza H; Hosseinkhani, Saman; Asghari, S Mohsen

    2016-11-15

    Artemin is an abundant thermostable protein in Artemia encysted embryos and considered as a stress protein, as its highly regulated expression is associated with stress resistance. Artemin cDNA was previously isolated and cloned from Artemia urmiana and artemin was found as an efficient molecular chaperone in vitro. Here, co-transformation of E. coli was performed with two expression vectors containing artemin and firefly luciferase for in vivo studies. The time-course of luciferase inactivation at low and elevated temperatures showed that luciferase was rapidly inactivated in control cells, but it was found that luciferase was protected significantly in artemin expressing cells. More interestingly, luciferase activity was completely regained in heat treated artemin expressing cells at room temperature. In addition, in both stress conditions, similar to residual activity of luciferase, cell viability in induced cultures over-expressing artemin was significantly higher than non-expressed artemin cells. It can be suggested that artemin confers impressive resistance in stressful conditions when introduced into E. coli cells, which is due to that it protects proteins against aggregation. Such luciferase co-expression system can be used as a real-time reporter to investigate the activity of chaperone proteins in vivo and provide a rapid and simple test for molecular chaperones. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. A Novel Cytosolic Isoform of Mitochondrial Trans-2-Enoyl-CoA Reductase Enhances Peroxisome Proliferator-Activated Receptor α Activity.

    PubMed

    Kim, Dong-Gyu; Yoo, Jae Cheal; Kim, Eunju; Lee, Young-Sun; Yarishkin, Oleg V; Lee, Da Yong; Lee, Kun Ho; Hong, Seong-Geun; Hwang, Eun Mi; Park, Jae-Yong

    2014-06-01

    Mitochondrial trans-2-enoyl-CoA reductase (MECR) is involved in mitochondrial synthesis of fatty acids and is highly expressed in mitochondria. MECR is also known as nuclear receptor binding factor-1, which was originally reported with yeast two-hybrid screening as a binding protein of the nuclear hormone receptor peroxisome proliferator-activated receptor α (PPARα). However, MECR and PPARα are localized at different compartment, mitochondria, and the nucleus, respectively. Therefore, the presence of a cytosolic or nuclear isoform of MECR is necessary for functional interaction between MECR and PPARα. To identify the expression pattern of MECR and the cytosolic form of MECR (cMECR), we performed reverse transcription polymerase chain reaction (RT-PCR) with various tissue samples from Sprague-Dawley rats. To confirm the interaction between cMECR and PPARα, we performed several binding assays such as yeast two-hybrid, coimmunoprecipitation, and bimolecular fluorescence complementation. To observe subcellular localization of these proteins, immunocytochemistry was performed. A luciferase assay was used to measure PPARα activity. We provide evidence of an alternatively spliced variant of the rat MECR gene that yields cMECR. The cMECR lacks the N-terminal 76 amino acids of MECR and shows uniform distribution in the cytoplasm and nucleus of HeLa cells. cMECR directly bound PPARα in the nucleus and increased PPARα-dependent luciferase activity in HeLa cells. We found the cytosolic form of MECR (cMECR) was expressed in the cytosolic and/or nuclear region, directly binds with PPARα, and enhances PPARα activity.

  10. Laboratory procedures manual for the firefly luciferase assay for adenosine triphosphate (ATP)

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Picciolo, G. L.; Curtis, C. A.; Knust, E. A.; Nibley, D. A.; Vance, R. B.

    1975-01-01

    A manual on the procedures and instruments developed for the adenosine triphosphate (ATP) luciferase assay is presented. Data cover, laboratory maintenance, maintenance of bacterial cultures, bacteria measurement, reagents, luciferase procedures, and determination of microbal susceptibility to antibiotics.

  11. The disulfide-rich Metridia luciferase refolded from E. coli inclusion bodies reveals the properties of a native folded enzyme produced in insect cells.

    PubMed

    Markova, Svetlana V; Larionova, Marina D; Gorbunova, Darya A; Vysotski, Eugene S

    2017-10-01

    The bioluminescence of a marine copepod Metridia longa is determined by a small secreted coelenterazine-dependent luciferase that uses coelenterazine as a substrate of enzymatic reaction to generate light (λ max =480nm). To date, four different isoforms of the luciferase differing in size, sequences, and properties have been cloned by functional screening. All of them contain ten conserved Cys residues that suggests up to five SS intramolecular bonds per luciferase molecule. Whereas the use of copepod luciferases as bioluminescent reporters in biomedical research in vivo is growing from year to year, their application for in vitro assays is still limited by the difficulty in obtaining significant amounts of luciferase. The most cost-effective host for producing recombinant proteins is Escherichia coli. However, prokaryotic and eukaryotic cells maintain the reductive environment in cytoplasm that hinders the disulfide bond formation and consequently the proper folding of luciferase. Here we report the expression of the MLuc7 isoform of M. longa luciferase in E. coli cells and the efficient procedure for refolding from inclusion bodies yielding a high-active monomeric protein. Furthermore, in a set of identical experiments we demonstrate that bioluminescent and structural features of MLuc7 produced in bacterial cells are identical to those of MLuc7 isoform produced from culture medium of insect cells. Although the yield of high-purity protein is only 6mg/L, the application of E. coli cells to produce the luciferase is simpler and more cost-effective than the use of insect cells. We expect that the suggested technology of Metridia luciferase production allows obtaining of sufficient amounts of protein both for the development of novel in vitro analytical assays with the use of MLuc7 as a label and for structural studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. [Construction and function identification of luciferase reporter gene vectors containing SNPs in NFKBIA gene 3'UTR].

    PubMed

    Yang, Shuo; Li, Jia-li; Bi, Hui-chang; Zhou, Shou-ning; Liu, Xiao-man; Zeng, Hang; Hu, Bing-fang; Huang, Min

    2016-01-01

    This study aims to investigate the function of two SNPs (rs8904C > T and rs696G >A) in 3' untranslated region (3'UTR) of NFKBIA gene by constructing luciferase reporter gene. A patient's genomic DNA with rs8904 CC and rs696 GA genotype was used as the PCR template. Full-length 3'UTR of NFKBIA gene was amplified by different primers. After sequencing validation, these fragments were inserted to the luciferase reporter vector, pGL3-promoter to construct recombinant plasmids containing four kinds of haplotypes, pGL3-rs8904C/rs696G, pGL3-rs8904C/rs696A, pGL3-rs8904T/rs696G and pGL3-rs8904T/rs696A. Then these plasmids were transfected into LS174T cells and the luciferase activity was detected. Compared with pGL3-vector transfected cells (negative control), the luciferase activity of the four kinds of recombinant plasmids was significantly decreased (P < 0.001). For rs696G > A, the luciferase activity of the recombinant plasmids containing A allele (pGL3-rs8904C/rs696A and pGL3-rs8904T/rs696A) was about 45.1% (P < 0.05) and 56.1% (P < 0.001) lower than those containing G allele (pGL3-rs8904C/rs696G and pGL3-rs8904T/rs696G), respectively. For rs8904C > T, there were no significant differences in the luciferase activity between the recombinant plasmids containing T allele and those with C allele. Together, the luciferase reporter gene vectors containing SNPs in NFKBIA gene 3'UTR were constructed successfully and rs696G > A could decrease the luciferase activity while rs8904C >T didn't have much effect on the luciferase activity.

  13. Use of a Fluorometric Imaging Plate Reader in high-throughput screening

    NASA Astrophysics Data System (ADS)

    Groebe, Duncan R.; Gopalakrishnan, Sujatha; Hahn, Holly; Warrior, Usha; Traphagen, Linda; Burns, David J.

    1999-04-01

    High-throughput screening (HTS) efforts at Abbott Laboratories have been greatly facilitated by the use of a Fluorometric Imaging Plate Reader. The FLIPR consists of an incubated cabinet with integrated 96-channel pipettor and fluorometer. An argon laser is used to excite fluorophores in a 96-well microtiter plate and the emitted fluorometer. An argon laser is used to excite fluorophores in a 96-well microtiter plate and the emitted fluorescence is imaged by a cooled CCD camera. The image data is downloaded from the camera and processed to average the signal form each well of the microtiter pate for each time point. The data is presented in real time on the computer screen, facilitating interpretation and trouble-shooting. In addition to fluorescence, the camera can also detect luminescence form firefly luciferase.

  14. Bifunctional role of leucine 300 of firefly luciferase in structural rigidity.

    PubMed

    Yousefi, Farzad; Ataei, Farangis; Mortazavi, Mojtaba; Hosseinkhani, Saman

    2017-08-01

    Firefly luciferase is susceptible to thermal inactivation, thereby its intracellular half-life decreased. Previous reports indicated that L 300 R mutation (LRR mutant) in E 354 R/Arg 356 double mutant (ERR mutant) from Lampyris turkestanicus luciferase has increased its thermal stability and rigidity through induction of some ionic bonds with Asp 270 and 271. Disruption of the deduced ionic bonds in an ultra-rigid mutant of firefly luciferase did not reverse the flexibility of the protein. In this study, we investigated the effects of this residue to find the truth behind an extraordinary increase in thermal stability and rigidity of luciferase after replacement of leucine 300 by arginine based on previous reports. For this purpose, L 300 R, L 300 K and L 300 E mutations were performed to compare the effects of these mutations on the native firefly luciferase. In spite of increase of intrinsic fluorescence of the mutants a slight increase in thermostability and retention of kinetic properties was observed. Based on our results, we can conclude that L 300 R mutation in LRR mutant accompanying with alteration in a flexible loop (352-359) increased thermostability and rigidity of luciferase. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Cycloheximide- and puromycin-induced heat resistance: different effects on cytoplasmic and nuclear luciferases

    PubMed Central

    Michels, Annemieke A; Kanon, Bart; Konings, Antonius W.T; Bensaude, Olivier; Kampinga, Harm H

    2000-01-01

    Inhibition of translation can result in cytoprotection against heat shock. The mechanism of this protection has remained elusive so far. Here, the thermoprotective effects of the translation inhibitor cycloheximide (CHX) and puromycin were investigated, using as reporter firefly luciferase localized either in the nucleus or in the cytoplasm. A short preincubation of O23 cells with either translation inhibitor was found to attenuate the heat inactivation of a luciferase directed into the cytoplasm, whereas the heat sensitivity of a nuclear-targeted luciferase remained unaffected. After a long-term CHX pretreatment, both luciferases were more heat resistant. Both the cytoplasmic and the nuclear luciferase are protected against heat-induced inactivation in thermotolerant cells and in cells overexpressing heat shock protein (Hsp)70. CHX incubations further attenuated cytoplasmic luciferase inactivation in thermotolerant and in Hsp70 overexpressing cells, even when Hsp70-mediated protection was saturated. It is concluded that protection by translation inhibition is unlikely due to an increase in the pool of free Hsps normally engaged in translation and released from the nascent polypeptide chains on the ribosomes. Rather, a decrease in nascent chains and thermolabile polypeptides may account for the heat resistance promoted by inhibitors of translation. PMID:11005376

  16. Use of fluorescent proteins and color-coded imaging to visualize cancer cells with different genetic properties.

    PubMed

    Hoffman, Robert M

    2016-03-01

    Fluorescent proteins are very bright and available in spectrally-distinct colors, enable the imaging of color-coded cancer cells growing in vivo and therefore the distinction of cancer cells with different genetic properties. Non-invasive and intravital imaging of cancer cells with fluorescent proteins allows the visualization of distinct genetic variants of cancer cells down to the cellular level in vivo. Cancer cells with increased or decreased ability to metastasize can be distinguished in vivo. Gene exchange in vivo which enables low metastatic cancer cells to convert to high metastatic can be color-coded imaged in vivo. Cancer stem-like and non-stem cells can be distinguished in vivo by color-coded imaging. These properties also demonstrate the vast superiority of imaging cancer cells in vivo with fluorescent proteins over photon counting of luciferase-labeled cancer cells.

  17. Six1-Eya-Dach Network in Breast Cancer

    DTIC Science & Technology

    2009-05-01

    Ctrl scramble controls. Responsiveness was tested using luciferase activity of the 3TP reporter construct and normalized to renilla luciferase...construct and normalized to renilla luciferase activity. Data points show the mean of two individual clones from two experiments and error bars represent

  18. Characterization of BRCA2 Transcriptional Regulation

    DTIC Science & Technology

    2001-12-01

    tig of BRCA2 promoter construct and 0.1 and we verify the role of USF in regulation of basal activity of jig of pRL-TK Renilla luciferase vector...Promega) with 4 1 l of Fugene-6 the promoter. was used for each transfection. The pRL-TK Renilla luciferase activity was used to control for transfection...pCMV-CREB, pCMV-Myc, BRCA2 Reporter Constructs-A BAC clone (B489G) containing the 5’ and pCMV-Max. Firefly luciferase and Renilla luciferase assays

  19. AR-NCoR Interaction as a Therapeutic Target for Prostate Cancer Prevention and Treatment

    DTIC Science & Technology

    2007-10-01

    reporter and a control CMV regulated Renilla luciferase plasmid (pRL-CMV). Cells were incubated for 24 hrs in steroid-hormone depleted medium (DMEM...5% CDS-FBS) treated with A, 10 nM DHT; B, 1 µM androstenedione; C, 1 µM progesterone; or D, 10 µM cyproterone acetate. Luciferase versus Renilla ...and luciferase versus Renilla luciferase activities were determined from triplicate samples. The data are expressed as relative light units (RLU

  20. [Using the stable HSPA1A promoter-driven luciferase reporter HepG2 cells to assess the overall toxicity of coke oven emissions].

    PubMed

    Xin, Li-li; Li, Xiao-hai; Deng, Hua-xin; Kuang, Dan; Dai, Xia-yun; Huang, Su-Li; Wang, Feng; He, Mei-an; Currie, R William; Wu, Tang-chun

    2012-12-01

    Using the stable HSPA1A (HSP70-1) promoter-driven luciferase reporter HepG2 cells (HepG2/HSPA1A cells) to assess the overall toxicity of coke oven emissions. The stable HepG2/HSPA1A cells were treated with different concentrations of coke oven emissions (COEs) collected from the top, side, and bottom of a coke oven battery for 24 h. After the treatments, luciferase activity, cell viability, malondialdehyde (MDA) concentration, Olive tail moment, and micronuclei frequency were determined, respectively. The bottom COEs induced significant increases (P < 0.01) in relative luciferase activity up to 1.4 times the control level at 0.15 µg/L. The low dose of side COEs (0.02 µg/L) led to a significant increase (P < 0.01) in relative luciferase activity that progressively increased to 2.1 times the control level at 65.4 µg/L. The top COEs produced a strong dose-dependent induction of relative luciferase activity up to over 5 times the control level at the highest concentration tested (202 µg/L). In HepG2/HSPA1A cells treated with the bottom COEs, relative luciferase activity was positively correlated with MDA concentration (r = 0.404, P < 0.05). For the three COEs samples, positive correlations were observed between relative luciferase activity and Olive tail moment and micronuclei frequency. The relative luciferase activity in HepG2/HSPA1A cells can sensitively reflect the overall toxicity of COEs. The stable HepG2/HSPA1A cells can be used for rapid screening of the overall toxicity of complex air pollutants in the workplace.

  1. Detection of receptor ligands by monitoring selective stabilization of a Renilla luciferase-tagged, constitutively active mutant, G-protein-coupled receptor

    PubMed Central

    Ramsay, Douglas; Bevan, Nicola; Rees, Stephen; Milligan, Graeme

    2001-01-01

    The wild-type β2-adrenoceptor and a constitutively active mutant of this receptor were C-terminally tagged with luciferase from the sea pansy Renilla reniformis. C-terminal addition of Renilla luciferase did not substantially alter the levels of expression of either form of the receptor, the elevated constitutive activity of the mutant β2-adrenoceptor nor the capacity of isoprenaline to elevate cyclic AMP levels in intact cells expressing these constructs. Treatment of cells expressing constitutively active mutant β2-adrenoceptor-Renilla luciferase with antagonist/inverse agonist ligands resulted in upregulation of levels of this polypeptide which could be monitored by the elevated luciferase activity. The pEC50 for ligand-induced luciferase upregulation and ligand affinity to bind the receptor were highly correlated. Similar upregulation could be observed following sustained treatment with agonist ligands. These effects were only observed at a constitutively active mutant of the β2-adrenoceptor. Co-expression of the wild-type β2-adrenoceptor C-terminally tagged with the luciferase from Photinus pyralis did not result in ligand-induced upregulation of the levels of activity of this luciferase. Co-expression of the constitutively active mutant β2-adrenoceptor-Renilla luciferase and an equivalent mutant of the α1b-adrenoceptor C-terminally tagged with green fluorescent protein allowed pharmacological selectivity of adrenoceptor antagonists to be demonstrated. This approach offers a sensitive and convenient means, which is amenable to high throughput analysis, to monitor ligand binding to a constitutively active mutant receptor. As no prior knowledge of receptor ligands is required this approach may be suitable to identify ligands at orphan G protein-coupled receptors. PMID:11350868

  2. Development and evaluation of yeast-based GFP and luciferase reporter assays for chemical-induced genotoxicity and oxidative damage.

    PubMed

    Suzuki, Hajime; Sakabe, Takahiro; Hirose, Yuu; Eki, Toshihiko

    2017-01-01

    We aimed to develop the bioassays for genotixicity and/or oxidative damage using the recombinant yeast. A genotoxicity assay was developed using recombinant Saccharomyces cerevisiae strain BY4741 with a green fluorescent protein (GFP) reporter plasmid, driven by the DNA damage-responsive RNR3 promoter. Enhanced fluorescence induction was observed in DNA repair-deficient strains treated with methyl methanesulfonate, but not with hydrogen peroxide. A GFP reporter yeast strain driven by the oxidative stress-responsive TRX2 promoter was newly developed to assess oxidative damage, but fluorescence was poorly induced by oxidants. In place of GFP, yeast strains with luciferase gene reporter plasmids (luc2 and luc2CP, encoding stable and unstable luciferase, respectively) were prepared. Transient induction of luciferase activity was clearly detected only in a TRX2 promoter-driven luc2CP reporter strain within 90 min of oxidant exposure. However, luciferase was strongly induced by hydroxyurea in the RNR3 promoter-driven luc2 and GFP reporter strains over 8 h after the exposure, suggesting that the RNR3 promoter is continuously upregulated by DNA damage, whereas the TRX2 promoter is transiently activated by oxidative agents. Luciferase activity levels were also increased in a TRX2-promoter-driven luc2CP reporter strain treated with tert-butyl hydroperoxide and menadione and weakly induced with diamide and diethyl maleate. Weakly enhanced luciferase activity induction was detected in the sod1Δ, sod2Δ, and rad27Δ strains treated with hydrogen peroxide compared with that in the wild-type strain. In conclusion, tests using GFP and stable luciferase reporters are useful for genotoxicity, and oxidative damage can be clearly detected by assay with an unstable luciferase reporter.

  3. Space-time analysis of gravitropism in etiolated Arabidopsis hypocotyls using bioluminescence imaging of the IAA19 promoter fusion with a destabilized luciferase reporter.

    PubMed

    Yamamoto, Kotaro T; Watahiki, Masaaki K; Matsuzaki, Jun; Satoh, Soichirou; Shimizu, Hisayo

    2017-07-01

    Imaging analysis was carried out during the gravitropic response of etiolated Arabidopsis hypocotyls, using an IAA19 promoter fusion of destabilized luciferase as a probe. From the bright-field images we obtained the local deflection angle to the vertical, A, local curvature, C, and the partial derivative of C with respect to time, [Formula: see text]. These were determined every 19.9 µm along the curvilinear length of the hypocotyl, at ~10 min intervals over a period of ~6 h after turning hypocotyls through 90° to the horizontal. Similarly from the luminescence images we measured the luminescence intensity of the convex and concave flanks of the hypocotyl as well as along the median of the hypocotyl, to determine differential expression of auxin-inducible IAA19. Comparison of these parameters as a function of time and curvilinear length shows that the gravitropic response is composed of three successive elements: the first and second curving responses and a decurving response (autostraightening). The maximum of the first curving response occurs when A is 76° along the entire length of the hypocotyl, suggesting that A is the sole determinant in this response; in contrast, the decurving response is a function of both A and C, as predicted by the newly-proposed graviproprioception model (Bastien et al., Proc Natl Acad Sci USA 110:755-760, 2013). Further, differential expression of IAA19, with higher expression in the convex flank, is observed at A = 44°, and follows the Sachs' sine law. This also suggests that IAA19 is not involved in the first curving response. In summary, the gravitropic response of Arabidopsis hypocotyls consists of multiple elements that are each determined by separate principles.

  4. Genetic modification of embryonic stem cells with VEGF enhances cell survival and improves cardiac function.

    PubMed

    Xie, Xiaoyan; Cao, Feng; Sheikh, Ahmad Y; Li, Zongjin; Connolly, Andrew J; Pei, Xuetao; Li, Ren-Ke; Robbins, Robert C; Wu, Joseph C

    2007-01-01

    Cardiac stem cell therapy remains hampered by acute donor cell death posttransplantation and the lack of reliable methods for tracking cell survival in vivo. We hypothesize that cells transfected with inducible vascular endothelial growth factor 165 (VEGF(165)) can improve their survival as monitored by novel molecular imaging techniques. Mouse embryonic stem (ES) cells were transfected with an inducible, bidirectional tetracycline (Bi-Tet) promoter driving VEGF(165) and renilla luciferase (Rluc). Addition of doxycycline induced Bi-Tet expression of VEGF(165) and Rluc significantly compared to baseline (p<0.05). Expression of VEGF(165) enhanced ES cell proliferation and inhibited apoptosis as determined by Annexin-V staining. For noninvasive imaging, ES cells were transduced with a double fusion (DF) reporter gene consisting of firefly luciferase and enhanced green fluorescence protein (Fluc-eGFP). There was a robust correlation between cell number and Fluc activity (R(2)=0.99). Analysis by immunostaining, histology, and RT-PCR confirmed that expression of Bi-Tet and DF systems did not affect ES cell self-renewal or pluripotency. ES cells were differentiated into beating embryoid bodies expressing cardiac markers such as troponin, Nkx2.5, and beta-MHC. Afterward, 5 x 10(5) cells obtained from these beating embryoid bodies or saline were injected into the myocardium of SV129 mice (n=36) following ligation of the left anterior descending (LAD) artery. Bioluminescence imaging (BLI) and echocardiography showed that VEGF(165) induction led to significant improvements in both transplanted cell survival and cardiac function (p<0.05). This is the first study to demonstrate imaging of embryonic stem cell-mediated gene therapy targeting cardiovascular disease. With further validation, this platform may have broad applications for current basic research and further clinical studies.

  5. False responses of Renilla luciferase reporter control to nuclear receptor TR4.

    PubMed

    Zhang, Dongyun; Atlasi, Sam S; Patel, Krishna K; Zhuang, Zihao; Heaney, Anthony P

    2017-06-01

    Renilla luciferase reporter is a widely used internal control in dual luciferase reporter assay system, where its transcription is driven by a constitutively active promoter. However, the authenticity of the Renilla luciferase response in some experimental settings has recently been questioned. Testicular receptor 4 (TR4, also known as NR2C2) belongs to the subfamily 2 of nuclear receptors. TR4 binds to a direct repeat regulatory element in the promoter of a variety of target genes and plays a key role in tumorigenesis, lipoprotein regulation, and central nervous system development. In our experimental system using murine pituitary corticotroph tumor AtT20 cells to investigate TR4 actions on POMC transcription, we found that overexpression of TR4 resulted in reduced Renilla luciferase expression whereas knockdown TR4 increased Renilla luciferase expression. The TR4 inhibitory effect was mediated by the TR4 DNA-binding domain and behaved similarly to the GR and its agonist, Dexamethasone. We further demonstrated that the chimeric intron, commonly present in various Renilla plasmid backbones such as pRL-Null, pRL-SV40, and pRL-TK, was responsible for TR4's inhibitory effect. The results suggest that an intron-free Renilla luciferase reporter may provide a satisfactory internal control for TR4 at certain dose range. Our findings advocate caution on the use of Renilla luciferase as an internal control in TR4-directed studies to avoid misleading data interpretation.

  6. Step-wise addition of disulfide bridge in firefly luciferase controls color shift through a flexible loop: a thermodynamic perspective.

    PubMed

    Nazari, Mahboobeh; Hosseinkhani, Saman; Hassani, Leila

    2013-02-01

    Multi-color bioluminescence is developed using the introduction of single/double disulfide bridges in firefly luciferase. The bioluminescence reaction, which uses luciferin, Mg(2+)-ATP and molecular oxygen to yield an electronically excited oxyluciferin, is carried out by the luciferase and emits visible light. The bioluminescence color of firefly luciferases is determined by the luciferase sequence and assay conditions. It has been proposed that the stability of a protein may increase through the introduction of a disulfide bridge that decreases the configurational entropy of unfolding. Single and double disulfide bridges are introduced into Photinus pyralis firefly luciferase to make separate mutant enzymes with a single/double bridge (C(81)-A(105)C, L(306)C-L(309)C, P(451)C-V(469)C; C(81)-A(105)C/P(451)C-V(469)C, and A(296)C-A(326)C/P(451)C-V(469)C). By introduction of disulfide bridges using site-directed mutagenesis in Photinus pyralis luciferase the color of emitted light was changed to red or kept in different extents. The bioluminescence color shift occurred with displacement of a critical loop in the luciferase structure without any change in green emitter mutants. Thermodynamic analysis revealed that among mutants, L(306)C-L(309)C shows a remarkable stability against urea denaturation and also a considerable increase in kinetic stability and a clear shift in bioluminescence spectra towards red.

  7. Surface charge modification increases firefly luciferase rigidity without alteration in bioluminescence spectra.

    PubMed

    Mortazavi, Mojtaba; Hosseinkhani, Saman

    2017-01-01

    Protein engineering can provide useful approaches for loop anchoring and mutation of surface-exposed loop residues to Arg for the design of thermostable proteins. In this context and due to the high proportion of surface loops, some of the solvent-exposed residues in the Lampyris turkestanicus luciferase were mutated to Arg. Using the red-emitter mutant luciferase (E354R/Arg356), the single (-Q35R, -I182R, -I232R and -L300R), double (-Q35R/I232R) and triple (-Q35R/I232R/I182R) mutant luciferases were introduced. The relative remaining activity of -I232R, double and triple mutants increased significantly compared to the wild-type at 40°C. The optimal temperature of these mutants increased up to 40°C which were 15°C more than wild-type luciferase. It is anticipated that these mutations increased the local interactions that finally improved the thermostability and optimum temperature of luciferase. It should be noted that Arg substitution at amino acid positions 35, 182 and 232 had no effect on the bioluminescence emission spectra. Furthermore, these mutations have not significantly changed the specific activities of firefly luciferases. Finally, with the use of the homology modeling and molecular docking, the effects of these substitutions were evaluated. In conclusion, this study provides beneficial insights on how the thermal stability of luciferase can be improved by protein engineering for biological applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Discovery, adaptation and transcriptional activity of two tick promoters: Construction of a dual luciferase reporter system for optimization of RNA interference in rhipicephalus (boophilus) microplus cell lines.

    PubMed

    Tuckow, A P; Temeyer, K B

    2015-08-01

    Dual luciferase reporter systems are valuable tools for functional genomic studies, but have not previously been developed for use in tick cell culture. We evaluated expression of available luciferase constructs in tick cell cultures derived from Rhipicephalus (Boophilus) microplus, an important vector of bovine babesiosis and anaplasmosis. Commercial promoters were evaluated for transcriptional activity driving luciferase expression in the tick cell lines. The human phosphoglycerate kinase (PGK) promoter resulted in detectable firefly luciferase activity within 2 days post-transfection of the R. microplus cell line BME26, with maximal activity at 5 days post-transfection. Several other promoters were weaker or inactive in the tick cells, prompting identification and assessment of transcriptional activity of the homologous ribosomal protein L4 (rpL4, GenBank accession no.: KM516205) and elongation factor 1α (EF-1α, GenBank accession no.: KM516204) promoters cloned from R. microplus. Evaluation of luciferase expression driven by various promoters in tick cell culture resulted in selection of the R. microplus rpL4 promoter and the human PGK promoter driving transcription of sequences encoding modified firefly and NanoLuc® luciferases for construction of a dual luciferase reporter system for use in tick cell culture. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  9. Exploiting NanoLuc luciferase for smartphone-based bioluminescence cell biosensor for (anti)-inflammatory activity and toxicity.

    PubMed

    Cevenini, Luca; Calabretta, Maria Maddalena; Lopreside, Antonia; Tarantino, Giuseppe; Tassoni, Annalisa; Ferri, Maura; Roda, Aldo; Michelini, Elisa

    2016-12-01

    The availability of smartphones with high-performance digital image sensors and processing power has completely reshaped the landscape of point-of-need analysis. Thanks to the high maturity level of reporter gene technology and the availability of several bioluminescent proteins with improved features, we were able to develop a bioluminescence smartphone-based biosensing platform exploiting the highly sensitive NanoLuc luciferase as reporter. A 3D-printed smartphone-integrated cell biosensor based on genetically engineered Hek293T cells was developed. Quantitative assessment of (anti)-inflammatory activity and toxicity of liquid samples was performed with a simple and rapid add-and-measure procedure. White grape pomace extracts, known to contain several bioactive compounds, were analyzed, confirming the suitability of the smartphone biosensing platform for analysis of untreated complex biological matrices. Such approach could meet the needs of small medium enterprises lacking fully equipped laboratories for first-level safety tests and rapid screening of new bioactive products. Graphical abstract Smartphone-based bioluminescence cell biosensor.

  10. Improve T Cell Therapy in Neuroblastoma

    DTIC Science & Technology

    2015-09-01

    bioluminescence was then measured overtime. The graph is representative of one of 4 experiments using CMV-CTLs from 4 donors. Panel E. Kaplan-Meier...whole-cell vaccine expressing the iC9 gene and labeled with an enhanced firefly luciferase. Tumor growth was measured by in vivo imaging. Panel E...down regulation in LTE -T cells is not caused by specific culture conditions. T lymphocytes were activated with immobilized OKT3 (1 μg ml) and

  11. Caloric restriction coupled with radiation decreases metastatic burden in triple negative breast cancer.

    PubMed

    Simone, Brittany A; Dan, Tu; Palagani, Ajay; Jin, Lianjin; Han, Sunny Y; Wright, Christopher; Savage, Jason E; Gitman, Robert; Lim, Meng Kieng; Palazzo, Juan; Mehta, Minesh P; Simone, Nicole L

    2016-09-01

    Metastatic breast cancer is devastating and triple negative breast cancers (TNBC) have a higher propensity for metastasis. Improved local control upfront in this aggressive cancer could potentially decrease its propensity toward metastasis. We sought to determine if using caloric restriction (CR) as a systemic therapy, combined with radiation therapy (IR) to the primary tumor, may impact metastatic disease. An orthotopic mouse model using a highly metastatic, luciferase-tagged TNBC cell line (4T1), was used to generate palpable tumors. Mice were then treated with CR, IR, and a combination of the two. In vivo imaging was performed for metastatic evaluation. Molecular evaluation of the tumors was performed, generating a mechanistic hypothesis for CR, which was then tested with pertinent pathway inhibition in the model. CR significantly increased the time to developing metastases, decreased the overall number and volume of lung metastases, and increased survival. CR decreased proliferation, increased apoptosis and globally downregulated the IGF-1R signaling pathway. Adding an IGF-1R/INSR inhibitor to local IR in vivo accomplished a decrease in metastases similar to CR plus IR, demonstrating the importance of the IGF-1R signaling pathway, and underscoring it as a possible mechanism for CR. CR decreased metastatic burden and therefore may complement cytotoxic therapies being used in the clinical setting for metastatic disease. Downregulation of the IGF-1R pathway, is in part responsible for this response and modulating IGF-1R directly resulted in similar improved progression-free survival. The novel use of CR has the potential to enhance clinical outcomes for patients with metastatic breast cancer.

  12. Modification of the Microtiter Reading Mirror for Use in the Standardized Micro Complement Fixation Test

    PubMed Central

    Hui, Gabriel W. K.

    1971-01-01

    Modification of the Microtiter reading mirror used in the standardized diagnostic complement fixation method permits convenient estimation of the results in per cent hemolysis by direct visual comparison with the hemolytic standards. Images PMID:5564678

  13. Identification, characterization and use of two tick promoters for construction of a dual luciferase reporter vector

    USDA-ARS?s Scientific Manuscript database

    Dual luciferase reporter systems are valuable tools for functional genomic studies, but have not previously been developed for use in tick cell culture. We evaluated expression of available luciferase constructs in tick cell cultures derived from Rhipicephalus (Boophilus) microplus, an important vec...

  14. Cloning and characterization of luciferase from a Fijian luminous click beetle.

    PubMed

    Mitani, Yasuo; Futahashi, Ryo; Niwa, Kazuki; Ohba, Nobuyoshi; Ohmiya, Yoshihiro

    2013-01-01

    Luminous click beetle is distributed almost exclusively in Central and South America with a single genus in Melanesia. Among these click beetles, the description of Melanesian species has been fragmentary, and its luciferase gene and phylogenetic relation to other click beetles still remain uncertain. We collected a living luminous click beetle, Photophorus jansonii in Fiji. It emits green-yellow light from two spots on the pronotum and has no ventral luminous organ. Here, we cloned a luciferase gene from this insect by RT-PCR. The deduced amino acid sequence showed high identity of ~85% to the luciferases derived from other click beetle species. The luciferase of the Fijian click beetle was produced as a recombinant protein to characterize its biochemical properties. The Km for D-luciferin and ATP were 173 and 270 μm, respectively. The luciferase was pH-insensitive and the spectrum measured at pH 8.0 showed a peak at 559 nm, which was in the range of green-yellow light as seen in the luminous spot of the living Fijian click beetle. The Fijian click beetle luciferase was assigned to the Elateridae clade by a phylogenetic analysis, but it made a clearly different branch from Pyrophorus group examined in this study. © 2013 The American Society of Photobiology.

  15. Effect of solvents on the fluorescence spectra of bacterial luciferase

    NASA Astrophysics Data System (ADS)

    Sukovataya, Irina E.; Tyulkova, Natalya A.; Kaykova, Elisaveta V.

    2006-08-01

    Bacteria luciferases catalyze the oxidation reaction of the long-chain aliphatic aldehyde and reduced flavinmononucleotide involving molecular oxygen to a respective fatty acid emitting light quanta in the visible spectrum. Fluorescence emission of luciferases from Photobacterium leiognathi dissolved in organic solvent-water mixtures was investigated. Methanol, acetone, dimethyl sulfoxide and formamide were used as organic solvents. As the methanol and acetone concentration is increased the emission maximum peak is decrease. In contrast, with dimethyl sulfoxide and formamide addition induced a increasing of the emission maximum intensity. The values of wavelength maximum (λ max) at the addition of this solvent can shows the spectra shifted to the red by about 12 nm. These increasing in the fluorescence intensity and in the λ max may be due to luciferase denaturation, resulting from the more intensive contact of chromospheres of luciferase with the solvent. At all used concentrations of methanol, acetone and formamide the shape of the fluorescence spectra was not changed. These studies demonstrate that the luciferase tryptophan fluorescence is sensitive to changes of physical-chemical property of enzyme environment. A comparison of activation/inactivation and fluorescence spectra of luciferase in methanol or acetone solutions shows that the extent of inactivation is larger than the extent of fluorescence changes at the same methanol or acetone concentration.

  16. Suitability of Macrolampis firefly and Pyrearinus click beetle luciferases for bacterial light off toxicity biosensor.

    PubMed

    Gabriel, Gabriele V M; Lopes, P S; Viviani, V R

    2014-01-15

    Bioluminescence is widely used in biosensors. For water toxicity analysis, the naturally bioluminescent bacteria Vibrio fischeri have been used extensively. We investigated the suitability of two new beetle luciferases for Escherichia coli light off biosensors: Macrolampis firefly and Pyrearinus termitilluminans click beetle luciferases. The bioluminescence detection assay using this system is very sensitive, being comparable or superior to V. fischeri. The luciferase of P. termitilluminans produces a strong and sustained bioluminescence that is useful for less sensitive and inexpensive assays that require integration of the emission, whereas Macrolampis luciferase displays a flash-like luminescence that is useful for fast and more sensitive assays. The effect of heavy metals and sanitizing agents was analyzed. Zinc, copper, 1-propanol, and iodide had inhibitory effects on bioluminescence and growth assays; however, in these cases the bioluminescence was not a very reliable indicator of cell growth and metabolic activity because these agents also inhibited the luciferase. On the other hand, mercury and silver strongly affected cell bioluminescence and growth but not the luciferase activity, indicating that bioluminescence was a reliable indicator of cell growth and metabolic activity in this case. Finally, bioluminescent E. coli immobilized in agarose matrix gave a more stable format for environmental assays. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Current advances in molecular imaging: noninvasive in vivo bioluminescent and fluorescent optical imaging in cancer research.

    PubMed

    Choy, Garry; Choyke, Peter; Libutti, Steven K

    2003-10-01

    Recently, there has been tremendous interest in developing techniques such as MRI, micro-CT, micro-PET, and SPECT to image function and processes in small animals. These technologies offer deep tissue penetration and high spatial resolution, but compared with noninvasive small animal optical imaging, these techniques are very costly and time consuming to implement. Optical imaging is cost-effective, rapid, easy to use, and can be readily applied to studying disease processes and biology in vivo. In vivo optical imaging is the result of a coalescence of technologies from chemistry, physics, and biology. The development of highly sensitive light detection systems has allowed biologists to use imaging in studying physiological processes. Over the last few decades, biochemists have also worked to isolate and further develop optical reporters such as GFP, luciferase, and cyanine dyes. This article reviews the common types of fluorescent and bioluminescent optical imaging, the typical system platforms and configurations, and the applications in the investigation of cancer biology.

  18. In Vivo Follow-up of Brain Tumor Growth via Bioluminescence Imaging and Fluorescence Tomography

    PubMed Central

    Genevois, Coralie; Loiseau, Hugues; Couillaud, Franck

    2016-01-01

    Reporter gene-based strategies are widely used in experimental oncology. Bioluminescence imaging (BLI) using the firefly luciferase (Fluc) as a reporter gene and d-luciferin as a substrate is currently the most widely employed technique. The present paper compares the performances of BLI imaging with fluorescence imaging using the near infrared fluorescent protein (iRFP) to monitor brain tumor growth in mice. Fluorescence imaging includes fluorescence reflectance imaging (FRI), fluorescence diffuse optical tomography (fDOT), and fluorescence molecular Imaging (FMT®). A U87 cell line was genetically modified for constitutive expression of both the encoding Fluc and iRFP reporter genes and assayed for cell, subcutaneous tumor and brain tumor imaging. On cultured cells, BLI was more sensitive than FRI; in vivo, tumors were first detected by BLI. Fluorescence of iRFP provided convenient tools such as flux cytometry, direct detection of the fluorescent protein on histological slices, and fluorescent tomography that allowed for 3D localization and absolute quantification of the fluorescent signal in brain tumors. PMID:27809256

  19. In Vivo Follow-up of Brain Tumor Growth via Bioluminescence Imaging and Fluorescence Tomography.

    PubMed

    Genevois, Coralie; Loiseau, Hugues; Couillaud, Franck

    2016-10-31

    Reporter gene-based strategies are widely used in experimental oncology. Bioluminescence imaging (BLI) using the firefly luciferase (Fluc) as a reporter gene and d-luciferin as a substrate is currently the most widely employed technique. The present paper compares the performances of BLI imaging with fluorescence imaging using the near infrared fluorescent protein (iRFP) to monitor brain tumor growth in mice. Fluorescence imaging includes fluorescence reflectance imaging (FRI), fluorescence diffuse optical tomography (fDOT), and fluorescence molecular Imaging (FMT ® ). A U87 cell line was genetically modified for constitutive expression of both the encoding Fluc and iRFP reporter genes and assayed for cell, subcutaneous tumor and brain tumor imaging. On cultured cells, BLI was more sensitive than FRI; in vivo, tumors were first detected by BLI. Fluorescence of iRFP provided convenient tools such as flux cytometry, direct detection of the fluorescent protein on histological slices, and fluorescent tomography that allowed for 3D localization and absolute quantification of the fluorescent signal in brain tumors.

  20. Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection.

    PubMed

    Takahashi, Yuki; Nishikawa, Makiya; Shinotsuka, Haruka; Matsui, Yuriko; Ohara, Saori; Imai, Takafumi; Takakura, Yoshinobu

    2013-05-20

    The development of exosomes as delivery vehicles requires understanding how and where exogenously administered exosomes are distributed in vivo. In the present study, we designed a fusion protein consisting of Gaussia luciferase and a truncated lactadherin, gLuc-lactadherin, and constructed a plasmid expressing the fusion protein. B16-BL6 murine melanoma cells were transfected with the plasmid, and exosomes released from the cells were collected by ultracentrifugation. Strong luciferase activity was detected in the fraction containing exosomes, indicating their efficient labeling with gLuc-lactadherin. Then, the labeled B16-BL6 exosomes were intravenously injected into mice, and their tissue distribution was evaluated. Pharmacokinetic analysis of the exosome blood concentration-time profile revealed that B16-BL6 exosomes disappeared very quickly from the blood circulation with a half-life of approximately 2min. Little luciferase activity was detected in the serum at 4h after exosome injection, suggesting rapid clearance of B16-BL6 exosomes in vivo. Moreover, sequential in vivo imaging revealed that the B16-BL6 exosome-derived signals distributed first to the liver and then to the lungs. These results indicate that gLuc-lactadherin labeling is useful for tracing exosomes in vivo and that B16-BL6 exosomes are rapidly cleared from the blood circulation after systemic administration. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Glu311 and Arg337 Stabilize a Closed Active-site Conformation and Provide a Critical Catalytic Base and Countercation for Green Bioluminescence in Beetle Luciferases.

    PubMed

    Viviani, V R; Simões, A; Bevilaqua, V R; Gabriel, G V M; Arnoldi, F G C; Hirano, T

    2016-08-30

    Beetle luciferases elicit the emission of different bioluminescence colors from green to red. Whereas firefly luciferases emit yellow-green light and are pH-sensitive, undergoing a typical red-shift at acidic pH and higher temperatures and in the presence of divalent heavy metals, click beetle and railroadworm luciferases emit a wider range of colors from green to red but are pH-independent. Despite many decades of study, the structural determinants and mechanisms of bioluminescence colors and pH sensitivity remain enigmatic. Here, through modeling studies, site-directed mutagenesis, and spectral and kinetic studies using recombinant luciferases from the three main families of bioluminescent beetles that emit different colors of light (Macrolampis sp2 firefly, Phrixotrix hirtus railroadworm, and Pyrearinus termitilluminans click beetle), we investigated the role of E311 and R337 in bioluminescence color determination. All mutations of these residues in firefly luciferase produced red mutants, indicating that the preservation of opposite charges and the lengths of the side chains of E311 and R337 are essential for keeping a salt bridge that stabilizes a closed hydrophobic conformation favorable for green light emission. Kinetic studies indicate that residue R337 is important for binding luciferin and creating a positively charged environment around excited oxyluciferin phenolate. In Pyrearinus green-emitting luciferase, the R334A mutation causes a 27 nm red-shift, whereas in Phrixotrix red-emitting luciferase, the L334R mutation causes a blue-shift that is no longer affected by guanidine. These results provide compelling evidence that the presence of arginine at position 334 is essential for blue-shifting the emission spectra of most beetle luciferases. Therefore, residues E311 and R337 play both structural and catalytic roles in bioluminescence color determination, by stabilizing a closed hydrophobic conformation favorable for green light emission, and also providing a base to accept excited oxyluciferin phenol proton, and a countercation to shield the negative charge of E311 and to stabilize excited oxyluciferin phenolate, blue-shifting emission spectra in most beetle luciferases.

  2. Bioluminescence of beetle luciferases with 6'-amino-D-luciferin analogues reveals excited keto-oxyluciferin as the emitter and phenolate/luciferin binding site interactions modulate bioluminescence colors.

    PubMed

    Viviani, Vadim R; Neves, Deimison Rodrigues; Amaral, Danilo Trabuco; Prado, Rogilene A; Matsuhashi, Takuto; Hirano, Takashi

    2014-08-19

    Beetle luciferases produce different bioluminescence colors from green to red using the same d-luciferin substrate. Despite many studies of the mechanisms and structural determinants of bioluminescence colors with firefly luciferases, the identity of the emitters and the specific active site interactions responsible for bioluminescence color modulation remain elusive. To address these questions, we analyzed the bioluminescence spectra with 6'-amino-D-luciferin (aminoluciferin) and its 5,5-dimethyl analogue using a set of recombinant beetle luciferases that naturally elicit different colors and different pH sensitivities (pH-sensitive, Amydetes vivianii λmax=538 nm, Macrolampis sp2 λmax=564 nm; pH-insensitive, Phrixotrix hirtus λmax=623 nm, Phrixotrix vivianii λmax=546 nm, and Pyrearinus termitilluminans λmax=534 nm), a luciferase-like enzyme (Tenebrionidae, Zophobas morio λmax=613 nm), and mutants of C311 (S314). The green-yellow-emitting luciferases display red-shifted bioluminescence spectra with aminoluciferin in relation to those with D-luciferin, whereas the red-emitting luciferases displayed blue-shifted spectra. Bioluminescence spectra with 5,5-dimethylaminoluciferin, in which enolization is blocked, were almost identical to those of aminoluciferin. Fluorescence probing using 2-(4-toluidino)naphthalene-6-sulfonate and inference with aminoluciferin confirm that the luciferin binding site of the red-shifted luciferases is more polar than in the case of the green-yellow-emitting luciferases. Altogether, the results show that the keto form of excited oxyluciferin is the emitter in beetle bioluminescence and that bioluminescence colors are essentially modulated by interactions of the 6'-hydroxy group of oxyluciferin and basic moieties under the influence of the microenvironment polarity of the active site: a strong interaction between a base moiety and oxyluciferin phenol in a hydrophobic microenvironment promotes green-yellow emission, whereas a more polar environment weakens such interaction promoting red shifts. In pH-sensitive luciferases, a pH-mediated switch from a closed hydrophobic conformation to a more open polar conformation promotes the typical red shift.

  3. A dual function fusion protein of Herpes simplex virus type 1 thymidine kinase and firefly luciferase for noninvasive in vivo imaging of gene therapy in malignant glioma.

    PubMed

    Söling, Ariane; Theiss, Christian; Jungmichel, Stephanie; Rainov, Nikolai G

    2004-08-04

    BACKGROUND: Suicide gene therapy employing the prodrug activating system Herpes simplex virus type 1 thymidine kinase (HSV-TK)/ ganciclovir (GCV) has proven to be effective in killing experimental brain tumors. In contrast, glioma patients treated with HSV-TK/ GCV did not show significant treatment benefit, most likely due to insufficient transgene delivery to tumor cells. Therefore, this study aimed at developing a strategy for real-time noninvasive in vivo monitoring of the activity of a therapeutic gene in brain tumor cells. METHODS: The HSV-TK gene was fused to the firefly luciferase (Luc) gene and the fusion construct HSV-TK-Luc was expressed in U87MG human malignant glioma cells. Nude mice with subcutaneous gliomas stably expressing HSV-TK-Luc were subjected to GCV treatment and tumor response to therapy was monitored in vivo by serial bioluminescence imaging. Bioluminescent signals over time were compared with tumor volumes determined by caliper. RESULTS: Transient and stable expression of the HSV-TK-Luc fusion protein in U87MG glioma cells demonstrated close correlation of both enzyme activities. Serial optical imaging of tumor bearing mice detected in all cases GCV induced death of tumor cells expressing the fusion protein and proved that bioluminescence can be reliably used for repetitive and noninvasive quantification of HSV-TK/ GCV mediated cell kill in vivo. CONCLUSION: This approach may represent a valuable tool for the in vivo evaluation of gene therapy strategies for treatment of malignant disease.

  4. In vivo bioluminescence and reflectance imaging of multiple organs in bioluminescence reporter mice by bundled-fiber-coupled microscopy

    PubMed Central

    Ando, Yoriko; Sakurai, Takashi; Koida, Kowa; Tei, Hajime; Hida, Akiko; Nakao, Kazuki; Natsume, Mistuo; Numano, Rika

    2016-01-01

    Bioluminescence imaging (BLI) is used in biomedical research to monitor biological processes within living organisms. Recently, fiber bundles with high transmittance and density have been developed to detect low light with high resolution. Therefore, we have developed a bundled-fiber-coupled microscope with a highly sensitive cooled-CCD camera that enables the BLI of organs within the mouse body. This is the first report of in vivo BLI of the brain and multiple organs in luciferase-reporter mice using bundled-fiber optics. With reflectance imaging, the structures of blood vessels and organs can be seen clearly with light illumination, and it allowed identification of the structural details of bioluminescence images. This technique can also be applied to clinical diagnostics in a low invasive manner. PMID:27231601

  5. A Multi-Camera System for Bioluminescence Tomography in Preclinical Oncology Research

    PubMed Central

    Lewis, Matthew A.; Richer, Edmond; Slavine, Nikolai V.; Kodibagkar, Vikram D.; Soesbe, Todd C.; Antich, Peter P.; Mason, Ralph P.

    2013-01-01

    Bioluminescent imaging (BLI) of cells expressing luciferase is a valuable noninvasive technique for investigating molecular events and tumor dynamics in the living animal. Current usage is often limited to planar imaging, but tomographic imaging can enhance the usefulness of this technique in quantitative biomedical studies by allowing accurate determination of tumor size and attribution of the emitted light to a specific organ or tissue. Bioluminescence tomography based on a single camera with source rotation or mirrors to provide additional views has previously been reported. We report here in vivo studies using a novel approach with multiple rotating cameras that, when combined with image reconstruction software, provides the desired representation of point source metastases and other small lesions. Comparison with MRI validated the ability to detect lung tumor colonization in mouse lung. PMID:26824926

  6. Optimisation of intradermal DNA electrotransfer for immunisation.

    PubMed

    Vandermeulen, Gaëlle; Staes, Edith; Vanderhaeghen, Marie Lise; Bureau, Michel Francis; Scherman, Daniel; Préat, Véronique

    2007-12-04

    The development of DNA vaccines requires appropriate delivery technologies. Electrotransfer is one of the most efficient methods of non-viral gene transfer. In the present study, intradermal DNA electrotransfer was first optimised. Strong effects of the injection method and the dose of DNA on luciferase expression were demonstrated. Pre-treatments were evaluated to enhance DNA diffusion in the skin but neither hyaluronidase injection nor iontophoresis improved efficiency of intradermal DNA electrotransfer. Then, DNA immunisation with a weakly immunogenic model antigen, luciferase, was investigated. After intradermal injection of the plasmid encoding luciferase, electrotransfer (HV 700 V/cm 100 micros, LV 200 V/cm 400 ms) was required to induce immune response. The response was Th1-shifted compared to immunisation with the luciferase recombinant protein. Finally, DNA electrotransfer in the skin, the muscle or the ear pinna was compared. Muscle DNA electrotransfer resulted in the highest luciferase expression and the best IgG response. Nevertheless electrotransfer into the skin, the muscle and the ear pinna all resulted in IFN-gamma secretion by luciferase-stimulated splenocytes suggesting that an efficient Th1 response was induced in all case.

  7. A novel luciferase knock-in reporter system for studying transcriptional regulation of the human Sox2 gene.

    PubMed

    Xiao, Dan; Zhang, Weifeng; Li, Yan; Liu, Kuan; Zhao, Junli; Sun, Xiaohong; Shan, Linlin; Mao, Qinwen; Xia, Haibin

    2016-02-10

    Sox2 is an important transcriptional factor that has multiple functions in stem cell maintenance and tumorigenesis. To investigate the transcriptional regulation of the Sox2 gene, a luciferase knock-in reporter system was established in HEK293 cells by placing the luciferase gene in the genome under the control of the Sox2 gene promoter using a transcription activator-like effector nuclease (TALEN)-mediated genome editing technique. PCR and Southern blot results confirmed the site-specific integration of a single copy of the exogenous luciferase gene into the genome. To prove the reliability and sensitivity of this novel luciferase knock-in system, a CRISPR/Cas transcription activation system for the Sox2 gene was constructed and applied to the knock-in system. The results indicated that luciferase activity was directly correlated with the activity of the Sox2 endogenous promoter. This novel system will be a useful tool to study the transcriptional regulation of Sox2, and has great potential in medical and industrial applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. [Microplate luminometry for toxicity bioassay of chemicals on luciferase].

    PubMed

    Ge, Hui-Lin; Liu, Shu-Shen; Chen, Fu; Luo, Jin-Hui; Lü, Dai-Zhu; Su, Bing-Xia

    2013-10-01

    A new microplate luminometry for the toxicity bioassay of chemicals on firefly luciferase, was developed using the multifunctional microplate reader (SpectraMax M5) to measure the luminous intensity of luciferase. Efects of luciferase concentration, luciferin concentration, ATP concentration, pH, temperature, and reaction time on the luminescence were systematically investigated. It was found that ATP exerted a biphasic response on the luciferase luminescence and the maximum relative light units (RLU) occurred at an ATP concentration of 1.1 x 10(-4) mol x L(-1). The method was successfully employed in the toxic effect test of NaF, NaCl, KBr and NaBF4 on luciferase. Using nonlinear least square technique, the dose-response curves (DRC) of the 4 chemicals were accurately fitted with the coefficient of determination (R2) between the fitted and observed responses being greater than 0.99. The median effective concentration (EC50) of the 4 chemicals were accurately measured from the DRC models. Compared with some literatures, the bioassay is a fast easy-operate and cost-effective method with high accuracy.

  9. Generation of a recombinant West Nile virus stably expressing the Gaussia luciferase for neutralization assay.

    PubMed

    Zhang, Pan-Tao; Shan, Chao; Li, Xiao-Dan; Liu, Si-Qing; Deng, Cheng-Lin; Ye, Han-Qing; Shang, Bao-Di; Shi, Pei-Yong; Lv, Ming; Shen, Bei-Fen; Qin, Cheng-Feng; Zhang, Bo

    2016-01-04

    West Nile virus (WNV) is a neurotropic human pathogen that has caused increasing infected cases over recent years. There is currently no licensed vaccine or effective drug for prevention and treatment of WNV infection in humans. To facilitate antiviral drug discovery and neutralizing antibody detection, a WNV cDNA clone containing a luciferase reporter gene was constructed through incorporating Gaussia luciferase (Gluc) gene within the capsid-coding region of WNV genome. Transfection of BHK-21 cells with the cDNA clone-derived RNA generated luciferase reporter WNV (WNV-Gluc) and the stable WNV-Gluc with high titers (>10(7)PFU/ml) was obtained through plaque purification. Luciferase activity was used to effectively quantify the viral production of WNV-Gluc. Using the reporter virus WNV-Gluc, we developed a luciferase based assay in a 12-well format for evaluating neutralizing antibodies. The reporter virus could be a powerful tool for epidemiological investigation of WNV, vaccine evaluation, antiviral drug screening, and the study of WNV replication and pathogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Substrate Cooperativity in Marine Luciferases

    PubMed Central

    Tzertzinis, George; Schildkraut, Ezra; Schildkraut, Ira

    2012-01-01

    Marine luciferases are increasingly used as reporters to study gene regulation. These luciferases have utility in bioluminescent assay development, although little has been reported on their catalytic properties in response to substrate concentration. Here, we report that the two marine luciferases from the copepods, Gaussia princeps (GLuc) and Metridia longa (MLuc) were found, surprisingly, to produce light in a cooperative manner with respect to their luciferin substrate concentration; as the substrate concentration was decreased 10 fold the rate of light production decreased 1000 fold. This positive cooperative effect is likely a result of allostery between the two proposed catalytic domains found in Gaussia and Metridia. In contrast, the marine luciferases from Renilla reniformis (RLuc) and Cypridina noctiluca (CLuc) demonstrate a linear relationship between the concentration of their respective luciferin and the rate of light produced. The consequences of these enzyme responses are discussed. PMID:22768230

  11. The luciferin binding site residues C/T311 (S314) influence the bioluminescence color of beetle luciferases through main-chain interaction with oxyluciferin phenolate.

    PubMed

    Viviani, V R; Amaral, D T; Neves, D R; Simões, A; Arnoldi, F G C

    2013-01-08

    Beetle luciferases emit different bioluminescence colors from green to red; however, no clear relationship between the identity of the luciferin binding site residues and bioluminescence colors was found in different luciferases, and it is unclear whether critical interactions affecting emission spectra occur on the thiazolyl or on the benzothiazolyl sides of the luciferin binding site. Through homology modeling and site-directed mutagenesis using our multicolor set of beetle luciferases (Pyrearinus termitilluminans larval click beetle, Pte, λ(max) = 534 nm; Phrixothrix hirtus railroad worm red emitting, PxRE, λ(max) = 623 nm; and Macrolampis sp2 firefly, Mac, λ(max) = 564 nm), we show that the residues C/T311 (S314) play an important role in bioluminescence color determination. Modeling studies indicate that the main-chain carbonyls of these residues are close to both oxyluciferin phenolate and AMP, whereas the side chains pack against second-shell residues. The C311(S314)A mutation considerably red shifts the spectra of the green-yellow-emitting luciferases (Pte λ(max) = 534 to 590 nm; Mac λ(max) = 564 to 583/613 nm) and affects the K(M) values for luciferin and ATP, but not the spectrum of the red-emitting luciferase. On the other hand, whereas the exchange between C/T311 (S314) caused smaller effects on the emission spectra of green-yellow-emitting luciferases, the C311T substitution (naturally found in green-emitting railroad worm luciferases) resulted in the largest reported blue shift in P. hirtus red-emitting luciferase (λ(max) = 623 to 606 nm). Altogether, these results indicate that the stability of residues C/T311 (S314) and the size of the cavity around oxyluciferin phenolate affect bioluminescence colors and suggest, for the first time, the occurrence of a critical interaction between main-chain carbonyls of position 311 (314) residues and oxyluciferin phenolate.

  12. Histopathological Image Analysis: A Review

    PubMed Central

    Gurcan, Metin N.; Boucheron, Laura; Can, Ali; Madabhushi, Anant; Rajpoot, Nasir; Yener, Bulent

    2010-01-01

    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement to the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe. PMID:20671804

  13. [Establishment of a human bladder cancer cell line stably co-expressing hSPRY2 and luciferase genes and its subcutaneous tumor xenograft model in nude mice].

    PubMed

    Yin, Xiaotao; Li, Fanglong; Jin, Yipeng; Yin, Zhaoyang; Qi, Siyong; Wu, Shuai; Wang, Zicheng; Wang, Lin; Yu, Jiyun; Gao, Jiangping

    2017-03-01

    Objective To establish a human bladder cancer cell line stably co-expressing human sprouty2 (hSPRY2) and luciferase (Luc) genes simultaneously, and develop its subcutaneous tumor xenograft model in nude mice. Methods The hSPRY2 and Luc gene segments were amplified by PCR, and were cloned into lentiviral vector pCDH and pLVX respectively to produce corresponding lentivirus particles. The J82 human bladder cancer cells were infected with these two kinds of lentivirus particles, and then further screened by puromycin and G418. The expressions of hSPRY2 and Luc genes were detected by bioluminescence, immunofluorescence and Western blot analysis. The screened J82-hSPRY2/Luc cells were injected subcutaneously into BALB/c nude mice, and the growth of tumor was monitored dynamically using in vivo fluorescence imaging system. Results J82-hSPRY2/Luc cell line stably expressing hSPRY2 and Luc genes was established successfully. Bioluminescence, immunofluorescence and Western blot analysis validated the expressions of hSPRY2 and Luc genes. The in vivo fluorescence imaging system showed obvious fluorescence in subcutaneous tumor xenograft in nude mice. Conclusion The J82-hSPRY2/Luc bladder cancer cell line and its subcutaneous tumor xenograft model in nude mice have been established successfully.

  14. Multiplex detection of protein-protein interactions using a next generation luciferase reporter.

    PubMed

    Verhoef, Lisette G G C; Mattioli, Michela; Ricci, Fernanda; Li, Yao-Cheng; Wade, Mark

    2016-02-01

    Cell-based assays of protein-protein interactions (PPIs) using split reporter proteins can be used to identify PPI agonists and antagonists. Generally, such assays measure one PPI at a time, and thus counterscreens for on-target activity must be run in parallel or at a subsequent stage; this increases both the cost and time during screening. Split luciferase systems offer advantages over those that use split fluorescent proteins (FPs). This is since split luciferase offers a greater signal:noise ratio and, unlike split FPs, the PPI can be reversed upon small molecule treatment. While multiplexed PPI assays using luciferase have been reported, they suffer from low signal:noise and require fairly complex spectral deconvolution during analysis. Furthermore, the luciferase enzymes used are large, which limits the range of PPIs that can be interrogated due to steric hindrance from the split luciferase fragments. Here, we report a multiplexed PPI assay based on split luciferases from Photinus pyralis (firefly luciferase, FLUC) and the deep-sea shrimp, Oplophorus gracilirostris (NanoLuc, NLUC). Specifically, we show that the binding of the p53 tumor suppressor to its two major negative regulators, MDM2 and MDM4, can be simultaneously measured within the same sample, without the requirement for complex filters or deconvolution. We provide chemical and genetic validation of this system using MDM2-targeted small molecules and mutagenesis, respectively. Combined with the superior signal:noise and smaller size of split NanoLuc, this multiplexed PPI assay format can be exploited to study the induction or disruption of pairwise interactions that are prominent in many cell signaling pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Cytotoxicity and genotoxicity of nanosilver in stable GADD45α promoter-driven luciferase reporter HepG2 and A549 cells.

    PubMed

    Che, Bizhong; Luo, Qiulin; Zhai, Bingzhong; Fan, Guoqiang; Liu, Zhiyong; Cheng, Kaiming; Xin, Lili

    2017-09-01

    The intense commercial application of silver nanoparticles (AgNPs) has been raising concerns about their potential adverse health effects to human. This study aimed to explore the potency of AgNPs to induce GADD45α gene, an important stress sensor, and its relationships with the cytotoxicity and genotoxicity elicited by AgNPs. Two established HepG2 and A549 cell lines containing the GADD45α promoter-driven luciferase reporter were treated with increasing concentrations of AgNPs for 48 hours. After the treatment, transcriptional activation of GADD45α indicated by luciferase activity, cell viability, cell cycle arrest, and levels of genotoxicity were determined. The uptake and intracellular localization of AgNPs, cellular Ag doses as well as Ag + release were also detected. AgNPs could activate GADD45α gene at the transcriptional level as demonstrated by the dose-dependent increases in luciferase activity in both the reporter cells. The relative luciferase activity was greater than 12× the control level in HepG2-luciferase cells at the highest concentration tested where the cell viability decreased to 17.0% of the control. These results was generally in accordance with the positive responses in cytotoxicity, cell cycle arrest of Sub G1 and G2/M phase, Olive tail moment, micronuclei frequency, and the cellular Ag content. The cytotoxicity and genotoxicity of AgNPs seems to occur mainly via particles uptake and the subsequent liberation of ions inside the cells. And furthermore, the GADD45α promoter-driven luciferase reporter cells, especially the HepG2-luciferase cells, could provide a new and valuable tool for predicting nanomaterials genotoxicity in humans. © 2017 Wiley Periodicals, Inc.

  16. Reassembly of a bioluminescent protein Renilla luciferase directed through DNA hybridization.

    PubMed

    Cissell, Kyle A; Rahimi, Yasmeen; Shrestha, Suresh; Deo, Sapna K

    2009-01-01

    Reassembly of split reporter proteins, also referred to as protein complementation, is utilized in the detection of protein-protein or protein-nucleic acid interactions. In this strategy, a reporter protein is fragmented into two inactive polypeptides to which interacting/binding partners are fused. The interaction between fused partners leads to the formation of a reassembled, active reporter. In this Communication, we have presented a proof-of-concept for the detection of a target nucleic acid sequence based on the reassembly of the bioluminescent reporter Renilla luciferase (Rluc), which is driven by DNA hybridization. Although, reassembly of Rluc though protein interactions has been demonstrated by others, the Rluc reassembly through DNA hybridization has not been shown yet, which is the novelty of this work. It is well established that bioluminescence detection offers significant advantages due to the absence of any background signal. In our study, two rationally designed fragments of Rluc were conjugated to complementary oligonucleotide probes. Hybridization of the two probes with fused Rluc fragments resulted in the reassembly of the fragments, generating active Rluc, measurable by the intensity of light given off upon addition of coelenterazine. Our study also shows that the reassembly of Rluc can be inhibited by an oligonucleotide probe that competes to bind to the hybridized probe-Rluc fragment complex, indicating a potential strategy for the quantitative detection of target nucleic acid. We were able to achieve the reassembly of Rluc fused to oligonucleotide probes using femtomole amounts of the probe-fragment protein conjugate. This concentration is approximately 4 orders of magnitude less than that reported using green fluorescent protein (GFP) as the reporter. A DNA-driven Rluc reassembly study performed in a cellular matrix did not show any interference from the matrix.

  17. The Molybdenum Cofactor Biosynthesis Network: In vivo Protein-Protein Interactions of an Actin Associated Multi-Protein Complex.

    PubMed

    Kaufholdt, David; Baillie, Christin-Kirsty; Meinen, Rieke; Mendel, Ralf R; Hänsch, Robert

    2017-01-01

    Survival of plants and nearly all organisms depends on the pterin based molybdenum cofactor (Moco) as well as its effective biosynthesis and insertion into apo-enzymes. To this end, both the central Moco biosynthesis enzymes are characterized and the conserved four-step reaction pathway for Moco biosynthesis is well-understood. However, protection mechanisms to prevent degradation during biosynthesis as well as transfer of the highly oxygen sensitive Moco and its intermediates are not fully enlightened. The formation of protein complexes involving transient protein-protein interactions is an efficient strategy for protected metabolic channelling of sensitive molecules. In this review, Moco biosynthesis and allocation network is presented and discussed. This network was intensively studied based on two in vivo interaction methods: bimolecular fluorescence complementation (BiFC) and split-luciferase. Whereas BiFC allows localisation of interacting partners, split-luciferase assay determines interaction strengths in vivo . Results demonstrate (i) interaction of Cnx2 and Cnx3 within the mitochondria and (ii) assembly of a biosynthesis complex including the cytosolic enzymes Cnx5, Cnx6, Cnx7, and Cnx1, which enables a protected transfer of intermediates. The whole complex is associated with actin filaments via Cnx1 as anchor protein. After biosynthesis, Moco needs to be handed over to the specific apo-enzymes. A potential pathway was discovered. Molybdenum-containing enzymes of the sulphite oxidase family interact directly with Cnx1. In contrast, the xanthine oxidoreductase family acquires Moco indirectly via a Moco binding protein (MoBP2) and Moco sulphurase ABA3. In summary, the uncovered interaction matrix enables an efficient transfer for intermediate and product protection via micro-compartmentation.

  18. OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of gibberellin biosynthesis in Oryza sativa.

    PubMed

    Wu, Jiahe; Zhu, Chuanfeng; Pang, Jinhuan; Zhang, Xiangrong; Yang, Chunlin; Xia, Guixian; Tian, Yingchuan; He, Chaozu

    2014-12-01

    Seed germination is a key developmental process in the plant life cycle that is influenced by various environmental cues and phytohormones through gene expression and a series of metabolism pathways. In the present study, we investigated a C2C2-type finger protein, OsLOL1, which promotes gibberellin (GA) biosynthesis and affects seed germination in Oryza sativa (rice). We used OsLOL1 antisense and sense transgenic lines to explore OsLOL1 functions. Seed germination timing in antisense plants was restored to wild type when exogenous GA3 was applied. The reduced expression of the GA biosynthesis gene OsKO2 and the accumulation of ent-kaurene were observed during germination in antisense plants. Based on yeast two-hybrid and firefly luciferase complementation analyses, OsLOL1 interacted with the basic leucine zipper protein OsbZIP58. The results from electrophoretic mobility shift and dual-luciferase reporter assays showed that OsbZIP58 binds the G-box cis-element of the OsKO2 promoter and activates LUC reporter gene expression, and that interaction between OsLOL1 and OsbZIP58 activates OsKO2 gene expression. In addition, OsLOL1 decreased SOD1 gene expression and accelerated programmed cell death (PCD) in the aleurone layer of rice grains. These findings demonstrate that the interaction between OsLOL1 and OsbZIP58 influences GA biosynthesis through the activation of OsKO2 via OsbZIP58, thereby stimulating aleurone PCD and seed germination. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  19. Cytochrome P4501A induction in avian hepatocyte cultures exposed to polychlorinated biphenyls: Comparisons with AHR1-mediated reporter gene activity and in ovo toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manning, Gillian E., E-mail: gmann017@uottawa.ca; Environment Canada, National Wildlife Research Centre, Ottawa, ON, Canada K1A 0H3; Mundy, Lukas J., E-mail: lukas.mundy@ec.gc.ca

    2013-01-01

    Avian-specific toxic equivalency factors (TEFs) were developed by the World Health Organization to simplify environmental risk assessments of dioxin-like compounds (DLCs), but TEFs do not account for differences in the toxic and biochemical potencies of DLCs among species of birds. Such variability may be due to differences in species sensitivity to individual DLCs. The sensitivity of avian species to DLCs was recently associated with the identity of amino acids 324 and 380 in the aryl hydrocarbon receptor 1 (AHR1) ligand binding domain. A luciferase reporter gene (LRG) assay, measuring AHR1-mediated induction of a cytochrome P450 1A5 (CYP1A5) reporter gene, inmore » combination with a species' AHR1 ligand binding domain sequence, were also shown to predict avian species sensitivity to polychlorinated biphenyls (PCBs) and PCB relative potency in a given species. The goals of the present study were to (1) characterize the concentration-dependent effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and PCBs 126, 77, 105 and 118 on induction of ethoxyresorufin O-deethylase (EROD) activity and CYP1A4/5 mRNA in chicken, ring-necked pheasant and Japanese quail embryo hepatocytes and (2) compare these in vitro results to those previously generated by the LRG assay and in ovo toxicity studies. EROD activity and CYP1A4/5 mRNA expression data support and complement the findings of the LRG assay. CYP1A enzyme activity and mRNA expression were significantly correlated both with luciferase activity and in ovo toxicity induced by PCBs. Relative potency values were generally similar between the LRG and EROD assays and indicate that the relative potency of some PCBs may differ among species. -- Highlights: ► The chicken isn't the most sensitive species to CYP1A induction by PCB 105 and 118. ► The relative potency of PCBs differs between avian species. ► EROD activity was correlated with luciferase activity from the LRG assay. ► EROD activity was a better predictor of toxicity than CYP1A4/5 mRNA expression.« less

  20. Discovery, adaptation and transcriptional activity of two tick promoters: Construction of a dual luciferase reporter system for optimization of RNA interference in Rhipicephalus (Boophilus) microplus cell lines

    USDA-ARS?s Scientific Manuscript database

    Dual luciferase reporter systems are valuable tools for functional genomic studies, but have not previously been developed for use in tick cell culture. We evaluated expression of available luciferase constructs in tick cell cultures derived from Rhipicephalus (Boophilus) microplus, an important vec...

  1. Comparative theoretical study of the binding of luciferyl-adenylate and dehydroluciferyl-adenylate to firefly luciferase

    NASA Astrophysics Data System (ADS)

    Pinto da Silva, Luís; Vieira, João; Esteves da Silva, Joaquim C. G.

    2012-08-01

    This is the first report of a study employing a computational approach to study the binding of (D/L)-luciferyl-adenlyates and dehydroluciferyl-adenylate to firefly luciferase. A semi-empirical/molecular mechanics methodology was used to study the interaction between these ligands and active site molecules. All adenylates are complexed with the enzyme, mostly due to electrostatic interactions with cationic residues. Dehydroluciferyl-adenylate is expected to be a competitive inhibitor of luciferyl-adenylate, as their binding mechanism and affinity to luciferase are very similar. Both luciferyl-adenylates adopt the L-orientation in the active site of luciferase.

  2. Use of luciferase probes to measure ATP in living cells and animals.

    PubMed

    Morciano, Giampaolo; Sarti, Alba Clara; Marchi, Saverio; Missiroli, Sonia; Falzoni, Simonetta; Raffaghello, Lizzia; Pistoia, Vito; Giorgi, Carlotta; Di Virgilio, Francesco; Pinton, Paolo

    2017-08-01

    ATP, the energy exchange factor that connects anabolism and catabolism, is required for major reactions and processes that occur in living cells, such as muscle contraction, phosphorylation and active transport. ATP is also the key molecule in extracellular purinergic signaling mechanisms, with an established crucial role in inflammation and several additional disease conditions. Here, we describe detailed protocols to measure the ATP concentration in isolated living cells and animals using luminescence techniques based on targeted luciferase probes. In the presence of magnesium, oxygen and ATP, the protein luciferase catalyzes oxidation of the substrate luciferin, which is associated with light emission. Recombinantly expressed wild-type luciferase is exclusively cytosolic; however, adding specific targeting sequences can modify its cellular localization. Using this strategy, we have constructed luciferase chimeras targeted to the mitochondrial matrix and the outer surface of the plasma membrane. Here, we describe optimized protocols for monitoring ATP concentrations in the cytosol, mitochondrial matrix and pericellular space in living cells via an overall procedure that requires an average of 3 d. In addition, we present a detailed protocol for the in vivo detection of extracellular ATP in mice using luciferase-transfected reporter cells. This latter procedure may require up to 25 d to complete.

  3. Engineering the metal sensitive sites in Macrolampis sp2 firefly luciferase and use as a novel bioluminescent ratiometric biosensor for heavy metals.

    PubMed

    Gabriel, Gabriele V M; Viviani, Vadim R

    2016-12-01

    Most luminescent biosensors for heavy metals are fluorescent and rely on intensity measurements, whereas a few are ratiometric and rely on spectral changes. Bioluminescent biosensors for heavy metals are less common. Firefly luciferases have been coupled to responsive promoters for mercury and arsenium, and used as light on biosensors. Firefly luciferase bioluminescence spectrum is naturally sensitive to heavy metal cations such as zinc and mercury and to pH. Although pH sensitivity of firefly luciferases was shown to be useful for ratiometric estimation of intracellular pH, its potential use for ratiometric estimation of heavy metals was never considered. Using the yellow-emitting Macrolampis sp2 firefly luciferase and site-directed mutagenesis, we show that the residues H310 and E354 constitute two critical sites for metal sensitivity that can be engineered to increase sensitivity to zinc, nickel, and mercury. A linear relationship between cation concentration and the ratio of bioluminescence intensities at 550 and 610 nm allowed, for the first time, the ratiometric estimation of heavy metals concentrations down to 0.10 mM, demonstrating the potential applicability of firefly luciferases as enzymatic and intracellular ratiometric metal biosensors.

  4. Use of a special Brazilian red-light emitting railroad worm Luciferase in bioassays of NEK7 protein Kinase and Creatine Kinase.

    PubMed

    Marina Perez, Arina; Aquino, Bruno; Viviani, Vadim; Kobarg, Jörg

    2017-07-19

    Luciferases, enzymes that catalyze bioluminescent reactions in different organisms, have been extensively used for bioanalytical purposes. The most well studied bioluminescent system is that of firefly and other beetles, which depends on a luciferase, a benzothiazolic luciferin and ATP, and it is being widely used as a bioanalytical reagent to quantify ATP. Protein kinases are proteins that modify other proteins by transferring phosphate groups from a nucleoside triphosphate, usually ATP. Here, we used a red-light emitting luciferase from Phrixotrix hirtus railroad worm to determine the activity of kinases in a coupled assay, based on luminescence that is generated when luciferase is in the presence of its substrate, the luciferin, and ATP. In this work we used, after several optimization reactions, creatine kinase isoforms as well as NEK7 protein kinase in the absence or presence of ATP analogous inhibitors  to validate this new luminescence method. With this new approach we validated a luminescence method to quantify kinase activity, with different substrates and inhibition screening tests, using a novel red-light emitting luciferase as a reporter enzyme.

  5. Dual-Color Monitoring Overcomes the Limitations of Single Bioluminescent Reporters in Fast-Growing Microbes and Reveals Phase-Dependent Protein Productivity during the Metabolic Rhythms of Saccharomyces cerevisiae

    PubMed Central

    Krishnamoorthy, Archana

    2015-01-01

    Luciferase is a useful, noninvasive reporter of gene regulation that can be continuously monitored over long periods of time; however, its use is problematic in fast-growing microbes like bacteria and yeast because rapidly changing cell numbers and metabolic states also influence bioluminescence, thereby confounding the reporter's signal. Here we show that these problems can be overcome in the budding yeast Saccharomyces cerevisiae by simultaneously monitoring bioluminescence from two different colors of beetle luciferase, where one color (green) reports activity of a gene of interest, while a second color (red) is stably expressed and used to continuously normalize green bioluminescence for fluctuations in signal intensity that are unrelated to gene regulation. We use this dual-luciferase strategy in conjunction with a light-inducible promoter system to test whether different phases of yeast respiratory oscillations are more suitable for heterologous protein production than others. By using pulses of light to activate production of a green luciferase while normalizing signal variation to a red luciferase, we show that the early reductive phase of the yeast metabolic cycle produces more luciferase than other phases. PMID:26162874

  6. Implementation of digital image encryption algorithm using logistic function and DNA encoding

    NASA Astrophysics Data System (ADS)

    Suryadi, MT; Satria, Yudi; Fauzi, Muhammad

    2018-03-01

    Cryptography is a method to secure information that might be in form of digital image. Based on past research, in order to increase security level of chaos based encryption algorithm and DNA based encryption algorithm, encryption algorithm using logistic function and DNA encoding was proposed. Digital image encryption algorithm using logistic function and DNA encoding use DNA encoding to scramble the pixel values into DNA base and scramble it in DNA addition, DNA complement, and XOR operation. The logistic function in this algorithm used as random number generator needed in DNA complement and XOR operation. The result of the test show that the PSNR values of cipher images are 7.98-7.99 bits, the entropy values are close to 8, the histogram of cipher images are uniformly distributed and the correlation coefficient of cipher images are near 0. Thus, the cipher image can be decrypted perfectly and the encryption algorithm has good resistance to entropy attack and statistical attack.

  7. Recombinant porcine reproductive and respiratory syndrome virus expressing luciferase genes provide a new indication of viral propagation in both permissive and target cells.

    PubMed

    Gao, Fei; Qu, Zehui; Li, Liwei; Yu, Lingxue; Jiang, Yifeng; Zhou, Yanjun; Yang, Shen; Zheng, Hao; Huang, Qinfeng; Tong, Wu; Tong, Guangzhi

    2016-08-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) has a condensed single-stranded positive-sense RNA genome that contains several overlapping regions. The transcription regulatory sequence (TRS) is the important cis-acting element participating in PRRSV discontinuous transcription process. Based on reverse genetic system of type 2 highly pathogenic PRRSV cell-passage attenuated strain pHuN4-F112, firefly luciferase or Renilla luciferase genes were inserted between ORF1b and ORF2. An extra TRS6 was embedded behind the foreign luciferase genes. pA-Fluc and pA-Rluc were constructed and successfully rescued in MARC-145 cells. The phenotypical characteristics of the progeny virus were indistinguishable from those of vHuN4-F112 and were genetically stable for at least 25 cell passages. Mutant virus-infected cells were lysed at different time points to assess luciferase activities and measure foreign gene expression levels. The results showed identical variations in the luciferase activities of the recombinants in MARC-145 cells, indicating that they were suitable for monitoring viral propagation in PRRSV-permissive cell cultures. They were also used to infect pulmonary alveolar macrophages, which yielded similar variations in luciferase activities. Therefore, vA-Fluc and vA-Rluc present powerful new tools to monitor PRRSV propagation in both passaged and target cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Physicochemical characterization and study of in vitro interactions of pH-sensitive liposomes with the complement system.

    PubMed

    Carmo, Vildete A S; De Oliveira, Mônica C; Reis, Eduardo C O; Guimarães, Tânia M P D; Vilela, José M C; Andrade, Margareth S; Michalick, Marilene S M; Cardoso, Valbert N

    2008-01-01

    Complement activation is an important step in the acceleration of liposome clearance. The anaphylatoxins released following complement activation may motivate a wide variety of physiologic changes. We performed physicochemical characterization and in vitro studies of the interaction of complement system with both noncirculating and long-circulating pH-sensitive and nonpH-sensitive liposomes. The liposomes were characterized by diameter, zeta potential, and atomic force microscopy (AFM). The study of liposome interactions with complement system was conducted using hemolytic assay in rat serum. All liposomes presented a similar mean diameter (between 99.8 and 124.3 nm). The zeta potential was negative in all liposome preparations, except in liposomes modified with aminopoly (ethyleneglycol) 2000-distearoylphosphatidylethanolamine (aPEG(2000)-DSPE), which presented positive zeta potential. Atomic force microscopy images showed that non-long-circulating pH-sensitive liposomes are prone to vesicles aggregation. Non-pH-sensitive liposomes complement system activates, while pH-sensitive liposomes showed to be poor complement activators in rat serum.

  9. Accumulation and processing of a recombinant protein designed as a cleavable fusion to the endogenous Rubisco LSU protein in Chlamydomonas chloroplast

    PubMed Central

    Muto, Machiko; Henry, Ryan E; Mayfield, Stephen P

    2009-01-01

    Background Expression of recombinant proteins in green algal chloroplast holds substantial promise as a platform for the production of human therapeutic proteins. A number of proteins have been expressed in the chloroplast of Chlamydomonas reinhardtii, including complex mammalian proteins, but many of these proteins accumulate to significantly lower levels than do endogenous chloroplast proteins. We examined if recombinant protein accumulation could be enhanced by genetically fusing the recombinant reporter protein, luciferase, to the carboxy-terminal end of an abundant endogenous protein, the large subunit of ribulose bisphosphate carboxylase (Rubisco LSU). Additionally, as recombinant proteins fused to endogenous proteins are of little clinical or commercial value, we explored the possibility of engineering our recombinant protein to be cleavable from the endogenous protein in vivo. This strategy would obviate the need for further in vitro processing steps in order to produce the desired recombinant protein. To achieve this, a native protein-processing site from preferredoxin (preFd) was placed between the Rubisco LSU and luciferase coding regions in the fusion protein construct. Results The luciferase from the fusion protein accumulated to significantly higher levels than luciferase expressed alone. By eliminating the endogenous Rubisco large subunit gene (rbcL), we achieved a further increase in luciferase accumulation with respect to luciferase expression in the WT background. Importantly, near-wild type levels of functional Rubisco holoenzyme were generated following the proteolytic removal of the fused luciferase, while luciferase activity for the fusion protein was almost ~33 times greater than luciferase expressed alone. These data demonstrate the utility of using fusion proteins to enhance recombinant protein accumulation in algal chloroplasts, and also show that engineered proteolytic processing sites can be used to liberate the exogenous protein from the endogenous fusion partner, allowing for the purification of the intended mature protein. Conclusion These results demonstrate the utility of fusion proteins in algal chloroplast as a method to increase accumulation of recombinant proteins that are difficult to express. Since Rubisco is ubiquitous to land plants and green algae, this strategy may also be applied to higher plant transgenic expression systems. PMID:19323825

  10. Multimodal Imaging of Pathophysiological Changes and Their Role in Development of Breast Cancer Brain Metastasis

    DTIC Science & Technology

    2012-09-01

    and tissue oxygenation. Moreover, by introducing hypoxia reporter gene ( HRE -luciferase) into breast tumor lines, we will be able to use...hypoxia reporter gene, HRE -ODD-luc. The single nodule lesion was visualized and followed up by both BLI and MRI. As an example presented in Figure 1...MDA-MB231 cells with stable transfection of a hypoxia reporter gene, HRE -ODD-luc. a. 3 × 105 MDA-MB231/5HRE-ODD-luc cells incubated in each well of

  11. [Establishment of an iRFP and luciferase dual-color fluorescence-traced hepatocellular carcinoma transplantation model in nude mice].

    PubMed

    Li, Hongjun; Yang, Tianhua; Huang, Yanping; Liu, Mingzhu; Qin, Zhongqiang; Chu, Fei; Li, Zhenghong; Li, Yonghai

    2017-11-01

    Objective To establish a hepatocellular carcinoma xenograft model in nude mice which could stably express gene and be monitored dynamically. Methods We first constructed the lentiviral particles containing luciferase (Luc) and near-infrared fluorescent protein (iRFP) and puromycin resistance gene, and then transduced them into the HepG2 hepatoma cells. The cell line stably expressing Luc and iRFP genes were screened and inoculated into nude mice to establish xenograft tumor model. Tumor growth was monitored using in vivo imaging system. HE staining and immunohistochemistry were used to evaluate the pathological features and tumorigenic ability. Results HepG2 cells stably expressing iRFP and Luc were obtained; with the engineered cell line, xenograft model was successfully established with the features of proper tumor developing time and high rate of tumor formation as well as typical pathological features as showed by HE staining and immunohistochemistry. Conclusion Hepatocellular carcinoma model in nude mice with the features of stable gene expression and dynamical monitoring has been established successfully with the HepG2-iRFP-Luc cell line.

  12. Quantifying spontaneous metastasis in a syngeneic mouse melanoma model using real time PCR.

    PubMed

    Deng, Wentao; McLaughlin, Sarah L; Klinke, David J

    2017-08-07

    Modeling metastasis in vivo with animals is a priority for both revealing mechanisms of tumor dissemination and developing therapeutic methods. While conventional intravenous injection of tumor cells provides an efficient and consistent system for studying tumor cell extravasation and colonization, studying spontaneous metastasis derived from orthotopic tumor sites has the advantage of modeling more aspects of the metastatic cascade, but is challenging as it is difficult to detect small numbers of metastatic cells. In this work, we developed an approach for quantifying spontaneous metastasis in the syngeneic mouse B16 system using real time PCR. We first transduced B16 cells with lentivirus expressing firefly luciferase Luc2 gene for bioluminescence imaging. Next, we developed a real time quantitative PCR (qPCR) method for the detection of luciferase-expressing, metastatic tumor cells in mouse lungs and other organs. To illustrate the approach, we quantified lung metastasis in both spontaneous and experimental scenarios using B16F0 and B16F10 cells in C57BL/6Ncrl and NOD-Scid Gamma (NSG) mice. We tracked B16 melanoma metastasis with both bioluminescence imaging and qPCR, which were found to be self-consistent. Using this assay, we can quantitatively detect one Luc2 positive tumor cell out of 10 4 tissue cells, which corresponds to a metastatic burden of 1.8 × 10 4 metastatic cells per whole mouse lung. More importantly, the qPCR method was at least a factor of 10 more sensitive in detecting metastatic cell dissemination and should be combined with bioluminescence imaging as a high-resolution, end-point method for final metastatic cell quantitation. Given the rapid growth of primary tumors in many mouse models, assays with improved sensitivity can provide better insight into biological mechanisms that underpin tumor metastasis.

  13. Luciferase genes cloned from the unculturable luminous bacteroid symbiont of the Caribbean flashlight fish, Kryptophanaron alfredi.

    PubMed

    Haygood, M G; Cohn, D H

    1986-01-01

    Light organs of anomalopid (flashlight) fish contain luminous bacteroids that have never been cultured and, consequently, have been difficult to study. We have characterized the luciferase (lux) region of DNA extracted from light organs of the Caribbean flashlight fish Kryptophanaron alfredi by hybridization of cloned Vibrio harveyi lux genes to restriction-endonuclease-digested, light organ DNA. Comparison of the hybridization pattern of light organ DNA with that of DNA of a putative symbiotic isolate provides a method for identifying the authentic luminous symbiont regardless of its luminescence, and was used to reject one such isolate. Light organ DNA was further used to construct a cosmid clone bank and the luciferase genes were isolated. Unlike other bacterial luciferase genes, the genes were not expressed in Escherichia coli. When placed under the control of the E. coli trp promoter, the genes were transcribed but no luciferase was detected, suggesting a posttranscriptional block to expression.

  14. Establishment of a luciferase assay-based screening system: Fumitremorgin C selectively inhibits cellular proliferation of immortalized astrocytes expressing an active form of AKT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Lei; Sasai, Ken; Akagi, Tsuyoshi

    2008-08-29

    The AKT pathway is frequently activated in glioblastoma, and as such, inhibitors of this pathway could prove very useful as anti-glioblastoma therapies. Here we established immortalized astrocytes expressing Renilla luciferase as well as those expressing both an active form of AKT and firefly luciferase. Since both luciferase activities represent the numbers of corresponding cell lines, novel inhibitors of the AKT pathway can be identified by treating co-cultures containing the two types of luciferase-expressing cells with individual compounds. Indeed, such a screening system succeeded in identifying fumitremorgin C as an efficient inhibitor of the AKT pathway, which was further confirmed bymore » the ability of fumitremorgin C to selectively inhibit the growth of immortalized astrocytes expressing an active form of AKT. The present study proposes a broadly applicable approach for identifying therapeutic agents that target the pathways and/or molecules responsible for cancer development.« less

  15. Impact of Site-Directed Mutant Luciferase on Quantitative Green and Orange/Red Emission Intensities in Firefly Bioluminescence

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Akiyama, Hidefumi; Terakado, Kanako; Nakatsu, Toru

    2013-08-01

    Firefly bioluminescence has attracted great interest because of its high quantum yield and intriguing modifiable colours. Modifications to the structure of the enzyme luciferase can change the emission colour of firefly bioluminescence, and the mechanism of the colour change has been intensively studied by biochemists, structural biologists, optical physicists, and quantum-chemistry theorists. Here, we report on the quantitative spectra of firefly bioluminescence catalysed by wild-type and four site-directed mutant luciferases. While the mutation caused different emission spectra, the spectra differed only in the intensity of the green component (λmax ~ 560 nm). In contrast, the orange (λmax ~ 610 nm) and red (λmax ~ 650 nm) components present in all the spectra were almost unaffected by the modifications to the luciferases and changes in pH. Our results reveal that the intensity of the green component is the unique factor that is influenced by the luciferase structure and other reaction conditions.

  16. Simultaneous monitoring of independent gene expression patterns in two types of cocultured fibroblasts with different color-emitting luciferases

    PubMed Central

    Noguchi, Takako; Ikeda, Masaaki; Ohmiya, Yoshihiro; Nakajima, Yoshihiro

    2008-01-01

    Background Luciferase assay systems enable the real-time monitoring of gene expression in living cells. We have developed a dual-color luciferase assay system in which the expression of multiple genes can be tracked simultaneously using green- and red-emitting beetle luciferases. We have applied the system to monitoring independent gene expressions in two types of cocultured fibroblasts in real time. Results Two Rat-1 cell lines were established that stably express either green- or red-emitting luciferases under the control of the mBmal1 promoter, a canonical clock gene. We cocultured these cell lines, and gene expression profiles in both were monitored simultaneously. The circadian rhythms of these cell lines are independent, oscillating following their intrinsic circadian phases, even when cocultured. Furthermore, the independent rhythms were synchronized by medium change as an external stimulus. Conclusion Using this system, we successfully monitored independent gene expression patterns in two lines of cocultured fibroblasts. PMID:18416852

  17. Fe65 does not stabilize AICD during activation of transcription in a luciferase assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huysseune, Sandra; Kienlen-Campard, Pascal; Octave, Jean-Noel

    2007-09-21

    The APP intracellular domain (AICD) could be involved in signaling via interaction with the adaptor protein Fe65, and with the histone acetyl transferase Tip60. However, the real function of AICD and Fe65 in regulation of transcription remains controversial. In this study, the human APPGal4 fusion protein was expressed in CHO cells and the transcriptional activity of AICDGal4 was measured in a luciferase-based reporter assay. AICDGal4 was stabilized by expression of Fe65 and levels of AICDGal4 controlled luciferase activity. On the contrary, when human APP was expressed in CHO cells, coexpression of Fe65 increased luciferase activity without affecting the amount ofmore » AICD fragment. AICD produced from APP was protected from degradation by orthophenanthroline, but not by lactacystine, indicating that AICD is not a substrate of the chymotryptic activity of the proteasome. It is concluded that Fe65 can control luciferase activity without stabilizing the labile AICD fragment.« less

  18. Cationic microbubbles and antibiotic-free miniplasmid for sustained ultrasound-mediated transgene expression in liver.

    PubMed

    Manta, Simona; Renault, Gilles; Delalande, Anthony; Couture, Olivier; Lagoutte, Isabelle; Seguin, Johanne; Lager, Franck; Houzé, Pascal; Midoux, Patrick; Bessodes, Michel; Scherman, Daniel; Bureau, Michel-Francis; Marie, Corinne; Pichon, Chantal; Mignet, Nathalie

    2017-09-28

    Despite the increasing number of clinical trials in gene therapy, no ideal methods still allow non-viral gene transfer in deep tissues such as the liver. We were interested in ultrasound (US)-mediated gene delivery to provide long term liver expression. For this purpose, new positively charged microbubbles were designed and complexed with pFAR4, a highly efficient small length miniplasmid DNA devoid of antibiotic resistance sequence. Sonoporation parameters, such as insonation time, acoustic pressure and duration of plasmid injection were controlled under ultrasound imaging guidance. The optimization of these various parameters was performed by bioluminescence optical imaging of luciferase reporter gene expression in the liver. Mice were injected with 50μg pFAR4-LUC either alone, or complexed with positively charged microbubbles, or co-injected with neutral MicroMarker™ microbubbles, followed by low ultrasound energy application to the liver. Injection of the pFAR4 encoding luciferase alone led to a transient transgene expression that lasted only for two days. The significant luciferase signal obtained with neutral microbubbles decreased over 2days and reached a plateau with a level around 1 log above the signal obtained with pFAR4 alone. With the newly designed positively charged microbubbles, we obtained a much stronger bioluminescence signal which increased over 2days. The 12-fold difference (p<0.05) between MicroMarker™ and our positively charged microbubbles was maintained over a period of 6months. Noteworthy, the positively charged microbubbles led to an improvement of 180-fold (p<0.001) as regard to free pDNA using unfocused ultrasound performed at clinically tolerated ultrasound amplitude. Transient liver damage was observed when using the cationic microbubble-pFAR4 complexes and the optimized sonoporation parameters. Immunohistochemistry analyses were performed to determine the nature of cells transfected. The pFAR4 miniplasmid complexed with cationic microbubbles allowed to transfect mostly hepatocytes compared to its co-injection with MicroMarker™ which transfected more preferentially endothelial cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. SIRT3 is a Mitochondrial Tumor Suppressor and Genetic Loss Results in a Murine Model for ER/PR-Positive Mammary Tumors Connecting Metabolism and Carcinogenesis Mitochondrial Tumor Suppressor. Revision

    DTIC Science & Technology

    2013-11-01

    dependent gene expression, as shown by co-transfection assays using an HRE luciferase reporter (Fig. 4b, bar 1 vs. 2). In addition, exposure to NAC...transfected with p3x- HRE -luciferase with or without NAC or stigmatellin and 40 hours afterwards luciferase levels were determined. (c) MTCLT3

  20. SIRT3 is a Mitochondrial Tumor Suppressor and Genetic Loss Results in a Murine Model for ER/PR Positive Mammary Tumors Connecting Metabolism and Carcinogenesis

    DTIC Science & Technology

    2011-09-01

    as well as HIF-1 dependent gene expression, as shown by co-transfection assays using an HRE luciferase reporter (Fig. 4b, bar 1 vs. 2). In...antibody. (b) MEFs were co-transfected with p3x- HRE -luciferase with or without NAC or stigmatellin and 40 hours afterwards luciferase levels were

  1. Detecting protein-protein interactions using Renilla luciferase fusion proteins.

    PubMed

    Burbelo, Peter D; Kisailus, Adam E; Peck, Jeremy W

    2002-11-01

    We have developed a novel system designated the luciferase assay for protein detection (LAPD) to study protein-protein interactions. This method involves two protein fusions, a soluble reporter fusion and a fusion for immobilizing the target protein. The soluble reporter is an N-terminal Renilla luciferase fusion protein that exhibits high Renilla luciferase activity. Crude cleared lysates from transfected Cos1 cells that express the Renilla luciferase fusion protein can be used in binding assays with immobilized target proteins. Following incubation and washing, target-bound Renilla luciferase fusion proteins produce light from the coelenterazine substrate, indicating an interaction between the two proteins of interest. As proof of the principle, we reproduced known, transient protein-protein interactions between the Cdc42 GTPase and its effector proteins. GTPase Renilla fusion proteins produced in Cos1 cells were tested with immobilized recombinant GST-N-WASP and CEP5 effector proteins. Using this assay, we could detect specific interactions of Cdc42 with these effector proteins in approximately 50 min. The specificity of these interactions was demonstrated by showing that they were GTPase-specific and GTP-dependent and not seen with other unrelated target proteins. These results suggest that the LAPD method, which is both rapid and sensitive, may have research and practical applications.

  2. Coelenterazine-binding protein of Renilla muelleri: cDNA cloning, overexpression, and characterization as a substrate of luciferase.

    PubMed

    Titushin, Maxim S; Markova, Svetlana V; Frank, Ludmila A; Malikova, Natalia P; Stepanyuk, Galina A; Lee, John; Vysotski, Eugene S

    2008-02-01

    The Renilla bioluminescent system in vivo is comprised of three proteins--the luciferase, green-fluorescent protein, and coelenterazine-binding protein (CBP), previously called luciferin-binding protein (LBP). This work reports the cloning of the full-size cDNA encoding CBP from soft coral Renilla muelleri, its overexpression and properties of the recombinant protein. The apo-CBP was quantitatively converted to CBP by simple incubation with coelenterazine. The physicochemical properties of this recombinant CBP are determined to be practically the same as those reported for the CBP (LBP) of R. reniformis. CBP is a member of the four-EF-hand Ca(2+)-binding superfamily of proteins with only three of the EF-hand loops having the Ca(2+)-binding consensus sequences. There is weak sequence homology with the Ca(2+)-regulated photoproteins but only as a result of the necessary Ca(2+)-binding loop structure. In combination with Renilla luciferase, addition of only one Ca(2+) is sufficient to release the coelenterazine as a substrate for the luciferase for bioluminescence. This combination of the two proteins generates bioluminescence with higher reaction efficiency than using free coelenterazine alone as the substrate for luciferase. This increased quantum yield, a difference of bioluminescence spectra, and markedly different kinetics, implicate that a CBP-luciferase complex might be involved.

  3. Synthesis of α,β-unsaturated aldehydes as potential substrates for bacterial luciferases.

    PubMed

    Brodl, Eveline; Ivkovic, Jakov; Tabib, Chaitanya R; Breinbauer, Rolf; Macheroux, Peter

    2017-02-15

    Bacterial luciferase catalyzes the monooxygenation of long-chain aldehydes such as tetradecanal to the corresponding acid accompanied by light emission with a maximum at 490nm. In this study even numbered aldehydes with eight, ten, twelve and fourteen carbon atoms were compared with analogs having a double bond at the α,β-position. These α,β-unsaturated aldehydes were synthesized in three steps and were examined as potential substrates in vitro. The luciferase of Photobacterium leiognathi was found to convert these analogs and showed a reduced but significant bioluminescence activity compared to tetradecanal. This study showed the trend that aldehydes, both saturated and unsaturated, with longer chain lengths had higher activity in terms of bioluminescence than shorter chain lengths. The maximal light intensity of (E)-tetradec-2-enal was approximately half with luciferase of P. leiognathi, compared to tetradecanal. Luciferases of Vibrio harveyi and Aliivibrio fisheri accepted these newly synthesized substrates but light emission dropped drastically compared to saturated aldehydes. The onset and the decay rate of bioluminescence were much slower, when using unsaturated substrates, indicating a kinetic effect. As a result the duration of the light emission is doubled. These results suggest that the substrate scope of bacterial luciferases is broader than previously reported. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Protective effects of anti-ricin A-chain RNA aptamer against ricin toxicity

    PubMed Central

    Fan, Shaoan; Wu, Feng; Martiniuk, Frank; Hale, Martha L; Ellington, Andrew D; Tchou-Wong, Kam-Meng

    2008-01-01

    AIM: To investigate the therapeutic potential of an RNA ligand (aptamer) specific for the catalytic ricin A-chain (RTA), the protective effects of a 31-nucleotide RNA aptamer (31RA), which formed a high affinity complex with RTA, against ricin-induced toxicity in cell-based luciferase translation and cell cytotoxicity assays were evaluated. METHODS: To test the therapeutic potential of anti-RTA aptamers in Chinese hamster ovary (CHO) AA8 cells stably transfected with a tetracycline regulatable promoter, ricin ribotoxicity was measured using luciferase and ricin-induced cytotoxicity was ascertained by MTS cell proliferation assay with tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium]. RESULTS: Inhibition of protein synthesis by ricin in CHO AA8 cells resulted in diminished luciferase activity and treatment with polyclonal antibody against deglycosylated RTA (dgA) neutralized the inhibitory effects of ricin on luciferase activity and protected against ricin-induced cytotoxicity as measured by MTS assay. The 31RA anti-RTA aptamer inhibited the translation of luciferase mRNA in cell-free reticulocyte translation assay. 31RA aptamer also partially neutralized the inhibitory effects of ricin on luciferase activity and partially protected against ricin-induced cytotoxicity in CHO AA8 cells. CONCLUSION: We have shown that anti-RTA RNA aptamer can protect against ricin ribotoxicity in cell-based luciferase and cell cytotoxicity assays. Hence, RNA aptamer that inhibits RTA enzymatic activity represents a novel class of nucleic acid inhibitor that has the potential to be developed as a therapeutic agent for the treatment of ricin intoxication. PMID:19009652

  5. Prediction of luciferase inhibitors by the high-performance MIEC-GBDT approach based on interaction energetic patterns.

    PubMed

    Chen, Fu; Sun, Huiyong; Liu, Hui; Li, Dan; Li, Youyong; Hou, Tingjun

    2017-04-12

    High-throughput screening (HTS) is widely applied in many fields ranging from drug discovery to clinical diagnostics and toxicity assessment. Firefly luciferase is commonly used as a reporter to monitor the effect of chemical compounds on the activity of a specific target or pathway in HTS. However, the false positive rate of luciferase-based HTS is relatively high because many artifacts or promiscuous compounds that have direct interaction with the luciferase reporter enzyme are usually identified as active compounds (hits). Therefore, it is necessary to develop a rapid screening method to identify these compounds that can inhibit the luciferase activity directly. In this study, a virtual screening (VS) classification model called MIEC-GBDT (MIEC: Molecular Interaction Energy Components; GBDT: Gradient Boosting Decision Tree) was developed to distinguish luciferase inhibitors from non-inhibitors. The MIECs calculated by Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) free energy decomposition were used to energetically characterize the binding pattern of each small molecule at the active site of luciferase, and then the GBDT algorithm was employed to construct the classifiers based on MIECs. The predictions to the test set show that the optimized MIEC-GBDT model outperformed molecular docking and MM/GBSA rescoring. The best MIEC-GBDT model based on the MIECs with the energy terms of ΔG ele , ΔG vdW , ΔG GB , and ΔG SA achieves the prediction accuracies of 87.2% and 90.3% for the inhibitors and non-inhibitors in the test sets, respectively. Moreover, the energetic analysis of the vital residues suggests that the energetic contributions of the vital residues to the binding of inhibitors are quite different from those to the binding of non-inhibitors. These results suggest that the MIEC-GBDT model is reliable and can be used as a powerful tool to identify potential interference compounds in luciferase-based HTS experiments.

  6. Caloric restriction coupled with radiation decreases metastatic burden in triple negative breast cancer

    PubMed Central

    Simone, Brittany A.; Dan, Tu; Palagani, Ajay; Jin, Lianjin; Han, Sunny Y.; Wright, Christopher; Savage, Jason E.; Gitman, Robert; Lim, Meng Kieng; Palazzo, Juan; Mehta, Minesh P.; Simone, Nicole L.

    2016-01-01

    ABSTRACT Purpose: Metastatic breast cancer is devastating and triple negative breast cancers (TNBC) have a higher propensity for metastasis. Improved local control upfront in this aggressive cancer could potentially decrease its propensity toward metastasis. We sought to determine if using caloric restriction (CR) as a systemic therapy, combined with radiation therapy (IR) to the primary tumor, may impact metastatic disease. Methods: An orthotopic mouse model using a highly metastatic, luciferase-tagged TNBC cell line (4T1), was used to generate palpable tumors. Mice were then treated with CR, IR, and a combination of the two. In vivo imaging was performed for metastatic evaluation. Molecular evaluation of the tumors was performed, generating a mechanistic hypothesis for CR, which was then tested with pertinent pathway inhibition in the model. Results: CR significantly increased the time to developing metastases, decreased the overall number and volume of lung metastases, and increased survival. CR decreased proliferation, increased apoptosis and globally downregulated the IGF-1R signaling pathway. Adding an IGF-1R/INSR inhibitor to local IR in vivo accomplished a decrease in metastases similar to CR plus IR, demonstrating the importance of the IGF-1R signaling pathway, and underscoring it as a possible mechanism for CR. Conclusions: CR decreased metastatic burden and therefore may complement cytotoxic therapies being used in the clinical setting for metastatic disease. Downregulation of the IGF-1R pathway, is in part responsible for this response and modulating IGF-1R directly resulted in similar improved progression-free survival. The novel use of CR has the potential to enhance clinical outcomes for patients with metastatic breast cancer. PMID:27027731

  7. The Role of AhR in Breast Cancer Development

    DTIC Science & Technology

    2004-07-01

    The renilla luciferase vectorphRL-TK (0.05 rtg) was co-transfected with firefly luciferase reporter constructs (0.1 ptg pGudLuc, 0.5-1.0 [tg wildtype...Glo Luciferase system (Promega, Madison, WI ) which allowed sequential reading of the firefly and renilla signals. Cells were lysed according to the...Madison, WI ). The renilla signal was read after quenching the firefly output, thus allowing normalization between sample wells. The normalized firefly

  8. Effect of Permeation Enhancers on the Buccal Permeability of Nicotine: Ex vivo Transport Studies Complemented by MALDI MS Imaging.

    PubMed

    Marxen, Eva; Jin, Liang; Jacobsen, Jette; Janfelt, Christian; Hyrup, Birgitte; Nicolazzo, Joseph A

    2018-02-21

    The purpose of this study was to assess the effect of several chemical permeation enhancers on the buccal permeability of nicotine and to image the spatial distribution of nicotine in buccal mucosa with and without buccal permeation enhancers. The impact of sodium taurodeoxycholate (STDC), sodium dodecyl sulphate (SDS), dimethyl sulfoxide (DMSO) and Azone® on the permeability of [ 3 H]-nicotine and [ 14 C]-mannitol (a paracellular marker) across porcine buccal mucosa was studied ex vivo in modified Ussing chambers. The distribution of nicotine, mannitol and permeation enhancers was imaged using using matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI). Despite STDC significantly increasing permeability of [ 14 C]-mannitol, no enhancing effect was seen on [ 3 H]-nicotine permeability with any of the permeation enhancers. Rather, SDS and DMSO retarded nicotine permeability, likely due to nicotine being retained in the donor compartment. The permeability results were complemented by the spatial distribution of nicotine and mannitol determined with MALDI MSI. The buccal permeability of nicotine was affected in an enhancer specific manner, suggesting that nicotine primarily diffuses via the transcellular pathway. MALDI MSI was shown to complement ex vivo permeability studies and to be a useful qualitative tool for visualizing drug and penetration enhancer distribution in buccal mucosa.

  9. A real-time bioluminescent HTS method for measuring protein kinase activity influenced neither by ATP concentration nor by luciferase inhibition.

    PubMed

    Lundin, Arne; Eriksson, Jonas

    2008-08-01

    The firefly luciferin-luciferase reaction has been used to set up an assay for protein kinase based on measuring ATP consumption rate as the first-order rate constant for the kinase reaction. The assay obviates the problems encountered with previous bioluminescent protein kinase assays such as interference with the luciferase reaction from library compounds, nonlinear standard curves, and limited dynamic ranges. In the assay described in the present paper luciferase and luciferin are present during the entire kinase reaction, and the light emission can be measured continuously. In an HTS situation the light emission is measured only twice, i.e., initially and after a predetermined time. After a fivefold reduction of the ATP concentration a Z' value of 0.96 was obtained. Light emission data from samples with kinase are normalized with light emission data from blanks without kinase. First-order rate constants for the kinase reaction calculated from normalized light emission are not affected by a moderate degree of inactivation of luciferase and luciferin during the measuring time. The constants have the same value at all ATP concentrations much lower than the K(m) of the luciferase and the kinase. These factors make the assay very robust and influenced neither by ATP concentration nor by luciferase inhibition. The measuring time depends on the kinase activity and can be varied from minutes to more than 8 h provided the kinase is stable and the evaporation of water from the wells is acceptable. The assay is linear with respect to kinase activity over three orders of magnitude. The new reagents also allowed us to determine K(m) values for ATP and for Kemptide.

  10. Highly sensitive luciferase reporter assay using a potent destabilization sequence of calpain 3.

    PubMed

    Yasunaga, Mayu; Murotomi, Kazutoshi; Abe, Hiroko; Yamazaki, Tomomi; Nishii, Shigeaki; Ohbayashi, Tetsuya; Oshimura, Mitsuo; Noguchi, Takako; Niwa, Kazuki; Ohmiya, Yoshihiro; Nakajima, Yoshihiro

    2015-01-20

    Reporter assays that use luciferases are widely employed for monitoring cellular events associated with gene expression in vitro and in vivo. To improve the response of the luciferase reporter to acute changes of gene expression, a destabilization sequence is frequently used to reduce the stability of luciferase protein in the cells, which results in an increase of sensitivity of the luciferase reporter assay. In this study, we identified a potent destabilization sequence (referred to as the C9 fragment) consisting of 42 amino acid residues from human calpain 3 (CAPN3). Whereas the half-life of Emerald Luc (ELuc) from the Brazilian click beetle Pyrearinus termitilluminans was reduced by fusing PEST (t1/2=9.8 to 2.8h), the half-life of C9-fused ELuc was significantly shorter (t1/2=1.0h) than that of PEST-fused ELuc when measurements were conducted at 37°C. In addition, firefly luciferase (luc2) was also markedly destabilized by the C9 fragment compared with the humanized PEST sequence. These results indicate that the C9 fragment from CAPN3 is a much more potent destabilization sequence than the PEST sequence. Furthermore, real-time bioluminescence recording of the activation kinetics of nuclear factor-κB after transient treatment with tumor necrosis factor α revealed that the response of C9-fused ELuc is significantly greater than that of PEST-fused ELuc, demonstrating that the use of the C9 fragment realizes a luciferase reporter assay that has faster response speed compared with that provided by the PEST sequence. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. SIRT3 is a Mitochondrial Tumor Suppressor and Genetic Loss Results in a Murine Model for ER/PR-Positive Mammary Tumors Connecting Metabolism and Carcinogenesis SIRT3 is a Mitochondrial Tumor Suppressor

    DTIC Science & Technology

    2012-09-01

    well as HIF-1α dependent gene expression, as shown by co-transfection assays using an HRE luciferase reporter (Fig. 4b, bar 1 vs. 2). In addition...MEFs were co-transfected with p3x- HRE -luciferase with or without NAC or stigmatellin and 40 hours afterwards luciferase levels were determined. (c

  12. A protocol for combined Photinus and Renilla luciferase quantification compatible with protein assays.

    PubMed

    Hampf, Mathias; Gossen, Manfred

    2006-09-01

    We established a quantitative reporter gene protocol, the P/Rluc assay system, allowing the sequential measurement of Photinus and Renilla luciferase activities from the same extract. Other than comparable commercial reporter assay systems and their noncommercial counterparts, the P/Rluc assay system was formulated under the aspect of full compatibility with standard methods for protein assays. This feature greatly expands the range of applications for assay systems quantifying the expression of multiple luciferase reporters.

  13. A cooled CCD camera-based protocol provides an effective solution for in vitro monitoring of luciferase.

    PubMed

    Afshari, Amirali; Uhde-Stone, Claudia; Lu, Biao

    2015-03-13

    Luciferase assay has become an increasingly important technique to monitor a wide range of biological processes. However, the mainstay protocols require a luminometer to acquire and process the data, therefore limiting its application to specialized research labs. To overcome this limitation, we have developed an alternative protocol that utilizes a commonly available cooled charge-coupled device (CCCD), instead of a luminometer for data acquiring and processing. By measuring activities of different luciferases, we characterized their substrate specificity, assay linearity, signal-to-noise levels, and fold-changes via CCCD. Next, we defined the assay parameters that are critical for appropriate use of CCCD for different luciferases. To demonstrate the usefulness in cultured mammalian cells, we conducted a case study to examine NFκB gene activation in response to inflammatory signals in human embryonic kidney cells (HEK293 cells). We found that data collected by CCCD camera was equivalent to those acquired by luminometer, thus validating the assay protocol. In comparison, The CCCD-based protocol is readily amenable to live-cell and high-throughput applications, offering fast simultaneous data acquisition and visual and quantitative data presentation. In conclusion, the CCCD-based protocol provides a useful alternative for monitoring luciferase reporters. The wide availability of CCCD will enable more researchers to use luciferases to monitor and quantify biological processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Androgen responsiveness of Renilla luciferase reporter vectors is promoter, transgene, and cell line dependent.

    PubMed

    Mulholland, David J; Cox, Michael; Read, Jason; Rennie, Paul; Nelson, Colleen

    2004-05-01

    Renilla based reporters are frequently used as transfection controls for luciferase transcriptional reporter assays. However, recent evidence suggests that a commonly used reporter (HSV-thymidine kinase driven Renilla) is responsive to androgen receptor (AR) and glucocorticoid receptors in the presence of the cognate ligands, dihydrotestosterone (DHT) and dexamethasone (DEX), respectively [1]. We further validate this important technical difficulty by illustrating that in LNCaP prostate cancer cells, spurious Renilla luciferase activity is a function of (a) the promoter driving Renilla expression, (b) the presence of co-transfected transgenes, and (c) the androgen responsiveness of the cell line used. Using inhibitors of transcription and translation we showed that transcript interference or translational modulation is not a major means by which androgens affect Renilla luciferase activity. As luciferase reporter assays are a frequent means of studying transcriptional co-regulation in the highly androgen dependent LNCaP cell line, our data serves as a cautionary note that alternative normalization techniques should be employed to avoid misinterpretation of data. Copyright 2004 Wiley-Liss, Inc.

  15. Reporter gene expression in fish following cutaneous infection with pantropic retroviral vectors.

    PubMed

    Paul, T A; Burns, J C; Shike, H; Getchell, R; Bowser, P R; Whitlock, K E; Casey, J W

    2001-06-01

    A central issue in gene delivery systems is choosing promoters that will direct defined and sustainable levels of gene expression. Pantropic retroviral vectors provide a means to insert genes into either somatic or germline cells. In this study, we focused on somatic cell infection by evaluating the activity of 3 promoters inserted by vectors into fish cell lines and fish skin using pantropic retroviruses. In bluegill and zebrafish cell lines, the highest levels of luciferase expression were observed from the 5' murine leukemia virus long terminal repeat of the retroviral vector. The Rous sarcoma virus long terminal repeat and cytomegalovirus early promoter, as internal promoters, generated lower levels of luciferase. Luciferase reporter vectors infected zebrafish skin, as measured by the presence of viral DNA, and expressed luciferase. We infected developing walleye dermal sarcomas with retroviral vectors to provide an environment with enhanced cell proliferation, a condition necessary for integration of the provirus into the host genome. We demonstrated a 4-fold to 7-fold increase in luciferase gene expression in tumor tissue over infections in normal walleye skin.

  16. Modeling and image reconstruction in spectrally resolved bioluminescence tomography

    NASA Astrophysics Data System (ADS)

    Dehghani, Hamid; Pogue, Brian W.; Davis, Scott C.; Patterson, Michael S.

    2007-02-01

    Recent interest in modeling and reconstruction algorithms for Bioluminescence Tomography (BLT) has increased and led to the general consensus that non-spectrally resolved intensity-based BLT results in a non-unique problem. However, the light emitted from, for example firefly Luciferase, is widely distributed over the band of wavelengths from 500 nm to 650 nm and above, with the dominant fraction emitted from tissue being above 550 nm. This paper demonstrates the development of an algorithm used for multi-wavelength 3D spectrally resolved BLT image reconstruction in a mouse model. It is shown that using a single view data, bioluminescence sources of up to 15 mm deep can be successfully recovered given correct information about the underlying tissue absorption and scatter.

  17. Problem areas in the use of the firefly luciferase assay for bacterial detection

    NASA Technical Reports Server (NTRS)

    Picciolo, G. L.; Chappelle, E. W.; Knust, E. A.; Tuttle, S. A.; Curtis, C. A.

    1975-01-01

    By purifying the firefly luciferase extract and adding all necessary chemicals but ATP in excess, an assay for ATP was performed by measuring the amount of light produced when a sample containing soluble ATP is added to the luciferase reaction mixture. Instrumentation, applications, and basic characteristics of the luciferase assay are presented. Effect of the growth medium and length of time grown in this medium on ATP per viable E. coli values is shown in graphic form, along with an ATP concentration curve showing relative light units versus ATP injected. Reagent functions and concentration methods are explored. Efforts to develop a fast automatable system to detect the presence of bacteria in biological fluids, especially urine, resulted in the optimization of procedures for use with different types of samples.

  18. Boron nitride nanotubes for gene silencing.

    PubMed

    Şen, Özlem; Çobandede, Zehra; Emanet, Melis; Bayrak, Ömer Faruk; Çulha, Mustafa

    2017-09-01

    Non-viral gene delivery is increasingly investigated as an alternative to viral vectors due to low toxicity and immunogenicity, easy preparation, tissue specificity, and ability to transfer larger sizes of genes. In this study, boron nitride nanotubes (BNNTs) are functionalized with oligonucleotides (oligo-BNNTs). The morpholinos complementary to the oligonucleotides attached to the BNNTs (morpholino/oligo-BNNTs) are hybridized to silence the luciferase gene. The morpholino/oligo-BNNTs conjugates are administered to luciferase-expressing cells (MDA-MB-231-luc2) and the luciferase activity is monitored. The luciferase activity is decreased when MDA-MB-231-luc2 cells were treated with morpholino/oligo-BNNTs. The study suggests that BNNTs can be used as a potential vector to transfect cells. BNNTs are potential new nanocarriers for gene delivery applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Exploring the Role of Ubiquitination in Progesterone Receptor Transcriptional Activation and Turnover in Breast Cancer Cells

    DTIC Science & Technology

    2006-06-01

    factors. T47DY cells were cotransfected with a PR construct, a PRE- luciferase plasmid and a renilla plasmid, for transfection control. The cells...PR-B or S294A PR-B, PRE-luciferase reporter constructs and a Renilla control plasmid. Cells were treated for 24hrs with or without R5020 (10nM...plasmid and a plasmid constitutively expressing renilla luciferase for transfection control. Cell were starved for one day and treated with or without

  20. Analysis of structural changes in active site of luciferase adsorbed on nanofabricated hydrophilic Si surface by molecular-dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishiyama, Katsuhiko; Hoshino, Tadatsugu; Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522

    2007-05-21

    Interactions between luciferase and a nanofabricated hydrophilic Si surface were explored by molecular-dynamics simulations. The structural changes in the active-site residues, the residues affecting the luciferin binding, and the residues affecting the bioluminescence color were smaller on the nanofabricated hydrophilic Si surface than on both a hydrophobic Si surface and a hydrophilic Si surface. The nanofabrication and wet-treatment techniques are expected to prevent the decrease in activity of luciferase on the Si surface.

  1. Corneal NF-kappaB activity is necessary for the retention of transparency in the cornea of UV-B-exposed transgenic reporter mice.

    PubMed

    Alexander, George; Carlsen, Harald; Blomhoff, Rune

    2006-04-01

    To determine the dynamics of Nuclear Factor-kappaB (NF-kappaB) in murine corneal pathology and the role of NF-kappaB in maintaining corneal clarity after ultraviolet B radiation insult, transgenic mice containing NF-kappaB-luciferase reporter were exposed to LPS (bacterial lipopolysaccharide), TNF-alpha (Tumor Necrosis Factor-alpha) or 4 kJ m(-2) UV-B radiation. NF-kappaB decoy oligonucleotides were also administered in some of the UV-B experiments. Following various exposure times, the mice were sacrificed and whole eyes or corneal tissues were obtained. Whole eyes were examined for scattering using a point-source optical imaging technique. Tissue homogenates were examined for luciferase activity using a luminometer. TNF-alpha and LPS-injected NF-kappaB-luciferase transgenic mice demonstrated 3-10-fold increases in cornea NF-kappaB with peak activities at 4 and 6 hr post-injection, respectively. Mice exposed to 4 kJ m(-2) UV-B exhibited a 3-fold increase in NF-kappaB activity 4 hr post-exposure. The administration of NF-kappaB-decoy oligonucleotides to mice had the effect of reducing UV-B-induced NF-kappaB activity in the cornea and significantly increasing the amount of light scattering in UV-B exposed corneas 7 days post-UV-B exposure when compared to sham injected mice. These results indicate that NF-kappaB is activated in cornea in pathologies that involves increased plasma levels of LPS and TNF-alpha, as well as direct UV-B exposure, and suggest that NF-kappaB activation play an essential part in the corneal healing process.

  2. Synthetic Aperture Acoustic Imaging of Non-Metallic Cords

    DTIC Science & Technology

    2012-04-01

    Washington Headquarters Services , Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302...collected with a research prototype synthetic aperture acoustic ( SAA ) imaging system. SAA imaging is an emerging technique that can serve as an...inexpensive alternative or logical complement to synthetic aperture radar (SAR). The SAA imaging system uses an acoustic transceiver (speaker and

  3. Cover art complementing article: "secondary metabolites from entomopathogenic Hypocrealean fungi" by Istvan Molnar

    USDA-ARS?s Scientific Manuscript database

    This contribution is a set of three images of entomopathogenic fungi that were taken and composited by RA Humber from individual specimens. Each of these images is a montage of many individual planes of focus integrated by software and then adjusted for realistic color, to further sharpen the images...

  4. A High-Throughput Genetic Complementation Assay in Yeast Cells Identified Selective Inhibitors of Sphingosine Kinase 1 Not Found Using a Cell-Free Enzyme Assay.

    PubMed

    Kashem, Mohammed A; Kennedy, Charles A; Fogarty, Kylie E; Dimock, Janice R; Zhang, Yunlong; Sanville-Ross, Mary L; Skow, Donna J; Brunette, Steven R; Swantek, Jennifer L; Hummel, Heidi S; Swindle, John; Nelson, Richard M

    2016-01-01

    Sphingosine kinase 1 (SphK1) is a lipid kinase that phosphorylates sphingosine to produce the bioactive sphingolipid, sphingosine-1-phosphate (S1P), and therefore represents a potential drug target for a variety of pathological processes such as fibrosis, inflammation, and cancer. We developed two assays compatible with high-throughput screening to identify small-molecule inhibitors of SphK1: a purified component enzyme assay and a genetic complementation assay in yeast cells. The biochemical enzyme assay measures the phosphorylation of sphingosine-fluorescein to S1P-fluorescein by recombinant human full-length SphK1 using an immobilized metal affinity for phosphochemicals (IMAP) time-resolved fluorescence resonance energy transfer format. The yeast assay employs an engineered strain of Saccharomyces cerevisiae, in which the human gene encoding SphK1 replaced the yeast ortholog and quantitates cell viability by measuring intracellular adenosine 5'-triphosphate (ATP) using a luciferase-based luminescent readout. In this assay, expression of human SphK1 was toxic, and the resulting yeast cell death was prevented by SphK1 inhibitors. We optimized both assays in a 384-well format and screened ∼10(6) compounds selected from the Boehringer Ingelheim library. The biochemical IMAP high-throughput screen identified 5,561 concentration-responsive hits, most of which were ATP competitive and not selective over sphingosine kinase 2 (SphK2). The yeast screen identified 205 concentration-responsive hits, including several distinct compound series that were selective against SphK2 and were not ATP competitive.

  5. Super RLuc8: A novel engineered Renilla luciferase with a red-shifted spectrum and stable light emission.

    PubMed

    Rahnama, Somaieh; Saffar, Behnaz; Kahrani, Zahra Fanaei; Nazari, Mahboobeh; Emamzadeh, Rahman

    2017-01-01

    Renilla luciferase is a bioluminescent enzyme which is broadly used as a reporter protein in molecular biosensors. In this study, a novel luciferase with desired light emission wavelength and thermostability is reported. The results indicated that the new luciferase, namely super RLuc8, had a red-shifted spectrum and showed stable light emission. Super RLuc8 showed a 10-fold (p-value=0.0084) increase in the thermostability at 37°C after 20min incubation, in comparison to the native enzyme. The optimum temperature of the mutant increased from 30 to 37°C. Molecular dynamics simulation analysis indicated that the increased thermostability was most probably caused by a better structural compactness and more local rigidity in the regions out of the emitter site. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Application to processing system using intra-molecular BRET

    NASA Astrophysics Data System (ADS)

    Otsuji, Tomomi; Okuda-Ashitaka, Emiko; Kojima, Satoshi; Akiyama, Hidehumi; Ito, Seiji; Ohmiya, Yoshihiro

    2003-07-01

    Luciferases are used as the reporter gene for promoter activity, whereas a green fluorescent protein (GFP) is used as marker for cellular function and localization. Recently, bioluminescence resonance energy transfer (BRET) between luciferase and YFP is used for analysis of inter-molecular reaction such as ligand-receptor in the living cells. The neuropeptides nocistatin (NST) and nociceptin/orphanin FQ (Noc/OFQ) are derived from the same precursor protein, while NST exhibits antagonism against Noc/OFQ-actions. In this study, we attempt an intra-molecular BRET system for monitoring dynamic biological process of the production of NST and Noc/OFQ in the living cells. At first, we constructed a fusion protein (Rluc-GFP) covalently linking luciferase (Renilla luciferase; Rluc) to Aequorea GFP as an intra-molecular BRET partner. Furthermore, we inserted constructs of mouse NST and Noc/OFQ (Rluc-m-GFP) or bovine NST and Noc/OFQ (Rluc-b-GFP) containing a proteolytic cleavage motif (Lys-Arg) within Rluc-GFP. When these constructions were transfected into Cos7 cells, all fusion proteins had luciferase activity and specific fluorescence. Luminescence spectra of Rluc-GFP, Rluc-m-GFP and Rluc-b-GFP fusion proteins with DeepBlueC as a substrate showed two peaks centered at 400 nm and 510 nm, whereas Rluc showed one peak centered at 400 nm. These results indicate that the proteolytic cleavage motif inserted fusion proteins between luciferase and GFP are available for intra-molecular BRET systems at first step.

  7. Dimeric, trimeric and tetrameric complexes of immunoglobulin G fix complement.

    PubMed Central

    Wright, J K; Tschopp, J; Jaton, J C; Engel, J

    1980-01-01

    The binding of pure dimers, trimers and tetramers of randomly cross-linked non-immune rabbit immunoglobulin G to the first component and subcomponent of the complement system, C1 and C1q respectively, was studied. These oligomers possessed open linear structures. All three oligomers fixed complement with decreasing affinity in the order: tetramer, trimer, dimer. Complement fixation by dimeric immunoglobulin exhibited the strongest concentration-dependence. No clear distinction between a non-co-operative and a co-operative binding mechanism could be achieved, although the steepness of the complement-fixation curves for dimers and trimers was better reflected by the co-operative mechanism. Intrinsic binding constants were about 10(6)M-1 for dimers, 10(7)M-1 for trimers and 3 X 10(9)M-1 for tetramers, assuming non-co-operative binding. The data are consistent with a maximum valency of complement component C1 for immunoglobulin G protomers in the range 6-18. The binding of dimers to purified complement subcomponent C1q was demonstrated by sedimentation-velocity ultracentrifugation. Mild reduction of the complexes by dithioerythritol caused the immunoglobulin to revert to the monomeric state (S20,w = 6.2-6.5S) with concomitant loss of complement-fixing ability. Images Fig. 2. PMID:6985362

  8. Homologous species restriction of the complement-mediated killing of nucleated cells.

    PubMed Central

    Yamamoto, H; Blaas, P; Nicholson-Weller, A; Hänsch, G M

    1990-01-01

    The homologous restriction of complement (C) lysis is attributed to membrane proteins: decay-accelerating factor (DAF), C8 binding protein (C8bp) and P18/CD59. Since these proteins are also expressed on peripheral blood cells, species restriction was tested for in the complement-mediated killing of antibody-coated human leucocytes by human or rabbit complement. Killing was more efficient when rabbit complement was used. Preincubation of cells with an antibody to DAF abolished the difference. When C1-7 sites were first attached to the cells and either rabbit or human C8, C9 were added, the killing of monocytes and lymphocytes was equally efficient; only in polymorphonuclear neutrophils was a higher efficiency of rabbit C8, C9 seen. Thus, in contrast to haemolysis, restriction occurred predominantly at the C3 level and the action of the terminal complement components was not inhibited. Since C8bp isolated from peripheral blood cells showed essentially similar characteristics as the erythrocyte-derived C8bp, the failure of C8bp to inhibit the action of the terminal components on nucleated cells might reflect differences of the complement membrane interactions between erythrocytes or nucleated cells, respectively. Images Figure 5 PMID:1697561

  9. A new indicator cell line established to monitor bovine foamy virus infection.

    PubMed

    Guo, Hong-Yan; Liang, Zhi-Bin; Li, Yue; Tan, Juan; Chen, Qi-Min; Qiao, Wen-Tao

    2011-10-01

    In order to improve the accuracy for quantitating the bovine foamy virus (BFV) in vitro, we developed a baby hamster kidney cell (BHK)-21-derived indicator cell line containing a plasmid that encodes the firefly luciferase driven by the BFV long terminal repeat promoter (LTR, from -7 to 1012). The BFV titer could be determined by detecting the luciferase expression since the viral trans-activator BTas protein activates the promoter activity of the LTR. One clone, designated BFVL, was selected from ten neomycin-resistant clones. BFVL showed a specific and inducible dose- and time-dependent luciferase activity in response to BFV infection. Although the changes in luciferase activity of BFVL peaked at 84 h post infection, it was possible to differentiate infected and uninfected cells at 48 h post infection. A linear relationship was established between the multiplicity of infection (MOI) of BFV and the activated ratio of luciferase expression in BFVL. Moreover, the sensitivity of the BFVL-based assay for detecting infectious BFV was 10,000 times higher than the conventional CPE-based assay at 48 h post infection. These findings suggest that the BFVL-based assay is rapid, easy, sensitive, quantitative and specific for detection of BFV infection.

  10. Mutagenesis of solvent-exposed amino acids in Photinus pyralis luciferase improves thermostability and pH-tolerance

    PubMed Central

    Law, G. H. Erica; Gandelman, Olga A.; Tisi, Laurence C.; Lowe, Christopher R.; Murray, James A. H.

    2006-01-01

    Firefly luciferase catalyses a two-step reaction, using ATP-Mg2+, firefly luciferin and molecular oxygen as substrates, leading to the efficient emission of yellow–green light. We report the identification of novel luciferase mutants which combine improved pH-tolerance and thermostability and that retain the specific activity of the wild-type enzyme. These were identified by the mutagenesis of solvent-exposed non-conserved hydrophobic amino acids to hydrophilic residues in Photinus pyralis firefly luciferase followed by in vivo activity screening. Mutants F14R, L35Q, V182K, I232K and F465R were found to be the preferred substitutions at the respective positions. The effects of these amino acid replacements are additive, since combination of the five substitutions produced an enzyme with greatly improved pH-tolerance and stability up to 45 °C. All mutants, including the mutant with all five substitutions, showed neither a decrease in specific activity relative to the recombinant wild-type enzyme, nor any substantial differences in kinetic constants. It is envisaged that the combined mutant will be superior to wild-type luciferase for many in vitro and in vivo applications. PMID:16551268

  11. A new orange emitting luciferase from the Southern-Amazon Pyrophorus angustus (Coleoptera: Elateridae) click-beetle: structure and bioluminescence color relationship, evolutional and ecological considerations.

    PubMed

    Amaral, Danilo T; Oliveira, Gabriela; Silva, Jaqueline R; Viviani, Vadim R

    2016-08-31

    Bioluminescent click-beetles display a wide variation of bioluminescence colors ranging from green to orange, including an unusual intra-specific color variation in the Jamaican Pyrophorus plagiophthalamus. Recently, we collected individuals of the Pyrophorus angustus species from the Southern Amazon forest, in Brazil, which displays an orange light emitting abdominal lantern. This species was also previously described from Central America, but displaying a bioluminescence spectrum from 536 nm (dorsal) to 578 nm (ventral). The biogeographic variation of the bioluminescence color in this species could be an adaptation to environmental reflectance and inter/intraspecific sexual competition. Here, we cloned, sequenced, characterized and performed site-direct mutagenesis of this new orange emitting luciferase. The in vitro luciferase spectrum displayed a peak at 594 nm, KM values for ATP and d-luciferin of 160 μM and 17 μM, respectively, and an optimum pH of approximately 8.5. Comparative multialignment and site-directed mutagenesis using different color emitting click-beetle luciferases from P. angustus, Fulgeochlizus bruchi and Pyrearinus termitilluminans luciferases cloned by our group showed an integral role of residue 247 in bioluminescence color modulation.

  12. Statistical Coupling Analysis-Guided Library Design for the Discovery of Mutant Luciferases.

    PubMed

    Liu, Mira D; Warner, Elliot A; Morrissey, Charlotte E; Fick, Caitlyn W; Wu, Taia S; Ornelas, Marya Y; Ochoa, Gabriela V; Zhang, Brendan S; Rathbun, Colin M; Porterfield, William B; Prescher, Jennifer A; Leconte, Aaron M

    2018-02-06

    Directed evolution has proven to be an invaluable tool for protein engineering; however, there is still a need for developing new approaches to continue to improve the efficiency and efficacy of these methods. Here, we demonstrate a new method for library design that applies a previously developed bioinformatic method, Statistical Coupling Analysis (SCA). SCA uses homologous enzymes to identify amino acid positions that are mutable and functionally important and engage in synergistic interactions between amino acids. We use SCA to guide a library of the protein luciferase and demonstrate that, in a single round of selection, we can identify luciferase mutants with several valuable properties. Specifically, we identify luciferase mutants that possess both red-shifted emission spectra and improved stability relative to those of the wild-type enzyme. We also identify luciferase mutants that possess a >50-fold change in specificity for modified luciferins. To understand the mutational origin of these improved mutants, we demonstrate the role of mutations at N229, S239, and G246 in altered function. These studies show that SCA can be used to guide library design and rapidly identify synergistic amino acid mutations from a small library.

  13. Watch out for reporter gene assays with Renilla luciferase and paclitaxel.

    PubMed

    Theile, Dirk; Spalwisz, Adriana; Weiss, Johanna

    2013-06-15

    Luminescence-based reporter gene assays are widely used in biochemistry. Signals from reporter genes (e.g., firefly luminescence) are usually normalized to signals from constantly luminescing luciferases such as Renilla luciferase. This normalization step can be performed by modern luminometry devices automatically providing final results. Here we demonstrate paclitaxel to strikingly enhance Renilla luminescence, thereby potentially flawing results from reporter gene assays. In consequence, these data advocate for careful examination of raw data and militate against automatic data processing. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Quantum/molecular mechanics study of firefly bioluminescence on luciferase oxidative conformation

    NASA Astrophysics Data System (ADS)

    Pinto da Silva, Luís; Esteves da Silva, Joaquim C. G.

    2014-07-01

    This is the first report of a computational study of the color tuning mechanism of firefly bioluminescence, using the oxidative conformation of luciferase. The results of these calculations demonstrated that the electrostatic field generated by luciferase is fundamental both for the emission shift and efficiency. Further calculations indicated that a shift in emission is achieved by modulating the energy, at different degrees, of the emissive and ground states. These differences in energy modulation will then lead to changes in the energy gap between the states.

  15. Identification of a P2X7 receptor in GH(4)C(1) rat pituitary cells: a potential target for a bioactive substance produced by Pfiesteria piscicida.

    PubMed Central

    Kimm-Brinson, K L; Moeller, P D; Barbier, M; Glasgow, H; Burkholder, J M; Ramsdell, J S

    2001-01-01

    We examined the pharmacologic activity of a putative toxin (pPfTx) produced by Pfiesteria piscicida by characterizing the signaling pathways that induce the c-fos luciferase construct in GH(4)C(1) rat pituitary cells. Adenosine-5'-triphosphate (ATP) was determined to increase and, at higher concentrations, decrease luciferase activity in GH(4)C(1) rat pituitary cells that stably express c-fos luciferase. The inhibition of luciferase results from cytotoxicity, characteristic of the putative P. piscicida toxin (pPfTx). The actions of both pPfTx and ATP to induce c-fos luciferase were inhibited by the purinogenic receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). Further characterization of a P2X receptor on the GH(4)C(1) cell was determined by the analog selectivity of P2X agonists. The P2X1/P2X3 agonist alpha,beta-methylene ATP (alpha,beta-MeATP) failed to increase or decrease c-fos luciferase. However, the P2X7 agonist 2',3'-(4-benzoyl)benzoyl ATP (BzATP), which had a predominant cytotoxic effect, was more potent than ATP. Immunoblot analysis of GH(4)C(1) cell membranes confirmed the presence of a 70-kDa protein that was immunoreactive to an antibody directed against the carboxy-terminal domain unique to the P2X7 receptor. The P2X7 irreversible antagonist oxidized-ATP (oxATP) inhibited the action of ATP, BzATP, and pPfTx. These findings indicate that GH(4)C(1) cells express purinogenic receptors with selectivity consistent with the P2X7 subtype and that this receptor pathway mediates the induction of the c-fos luciferase reporter gene by ATP and the putative Pfiesteria toxin PMID:11401756

  16. Illuminating insights into firefly luciferase and other bioluminescent reporters used in chemical biology

    PubMed Central

    Thorne, Natasha; Inglese, James; Auld, Douglas S.

    2010-01-01

    Summary Understanding luciferase enzymology and the structure of compounds that modulate luciferase activity can be used to improve the design of luminescence-based assays. This review provides an overview of these popular reporters with an emphasis on the commonly used firefly luciferase from Photinus pyralis (FLuc). Large-scale chemical profile studies have identified a variety of scaffolds that inhibit FLuc. In some cell-based assays these inhibitors can act in a counter-intuitive way –leading to a gain in luminescent signal. Although formerly attributed to transcriptional activation, intracellular stabilization of FLuc is the primary mechanism underlying this observation. FLuc inhibition/stabilization can be complex, as illustrated by the compound PTC124, which is converted by FLuc in the presence of ATP to a high affinity multi-substrate-adduct inhibitor, PTC124-AMP. The potential influence these findings can have on drug discovery efforts is provided here. PMID:20609414

  17. Posttranslationally caused bioluminescence burst of the Escherichia coli luciferase reporter strain.

    PubMed

    Ideguchi, Yamato; Oshikoshi, Yuta; Ryo, Masashi; Motoki, Shogo; Kuwano, Takashi; Tezuka, Takafumi; Aoki, Setsuyuki

    2016-01-01

    We continuously monitored bioluminescence from a wild-type reporter strain of Escherichia coli (lacp::luc+/WT), which carries the promoter of the lac operon (lacp) fused with the firefly luciferase gene (luc+). This strain showed a bioluminescence burst when shifted into the stationary growth phase. Bioluminescence profiles of other wild-type reporter strains (rpsPp::luc+ and argAp::luc+) and gene-deletion reporter strains (lacp::luc+/crp- and lacp::luc+/lacI-) indicate that transcriptional regulation is not responsible for generation of the burst. Consistently, changes in the luciferase protein levels did not recapitulate the profile of the burst. On the other hand, dissolved oxygen levels increased over the period across the burst, suggesting that the burst is, at least partially, caused by an increase in intracellular oxygen levels. We discuss limits of the firefly luciferase when used as a reporter for gene expression and its potential utility for monitoring metabolic changes in cells.

  18. The Fibroblast Growth Factor 14·Voltage-gated Sodium Channel Complex Is a New Target of Glycogen Synthase Kinase 3 (GSK3)*

    PubMed Central

    Shavkunov, Alexander S.; Wildburger, Norelle C.; Nenov, Miroslav N.; James, Thomas F.; Buzhdygan, Tetyana P.; Panova-Elektronova, Neli I.; Green, Thomas A.; Veselenak, Ronald L.; Bourne, Nigel; Laezza, Fernanda

    2013-01-01

    The FGF14 protein controls biophysical properties and subcellular distribution of neuronal voltage-gated Na+ (Nav) channels through direct binding to the channel C terminus. To gain insights into the dynamic regulation of this protein/protein interaction complex, we employed the split luciferase complementation assay to screen a small molecule library of kinase inhibitors against the FGF14·Nav1.6 channel complex and identified inhibitors of GSK3 as hits. Through a combination of a luminescence-based counter-screening, co-immunoprecipitation, patch clamp electrophysiology, and quantitative confocal immunofluorescence, we demonstrate that inhibition of GSK3 reduces the assembly of the FGF14·Nav channel complex, modifies FGF14-dependent regulation of Na+ currents, and induces dissociation and subcellular redistribution of the native FGF14·Nav channel complex in hippocampal neurons. These results further emphasize the role of FGF14 as a critical component of the Nav channel macromolecular complex, providing evidence for a novel GSK3-dependent signaling pathway that might control excitability through specific protein/protein interactions. PMID:23640885

  19. A novel de novo activating mutation in STAT3 identified in a patient with common variable immunodeficiency (CVID).

    PubMed

    Russell, Mark A; Pigors, Manuela; Houssen, Maha E; Manson, Ania; Kelsell, David; Longhurst, Hilary; Morgan, Noel G

    2018-02-01

    Common variable immunodeficiency (CVID) is characterised by repeated infection associated with primary acquired hypogammaglobulinemia. CVID frequently has a complex aetiology but, in certain cases, it has a monogenic cause. Recently, variants within the gene encoding the transcription factor STAT3 were implicated in monogenic CVID. Here, we describe a patient presenting with symptoms synonymous with CVID, who displayed reduced levels of IgG and IgA, repeated viral infections and multiple additional co-morbidities. Whole-exome sequencing revealed a de novo novel missense mutation in the coiled-coil domain of STAT3 (c.870A>T; p.K290N). Accordingly, the K290N variant of STAT3 was generated, and a STAT3 responsive dual-luciferase reporter assay revealed that the variant strongly enhances STAT3 transcriptional activity both under basal and stimulated (with IL-6) conditions. Overall, these data complement earlier studies in which CVID-associated STAT3 mutations are predicted to enhance transcriptional activity, suggesting that such patients may respond favourably to IL-6 receptor antagonists (e.g. tocilizumab). Copyright © 2017 Elsevier Inc. All rights reserved.

  20. A Dual Luciferase Reporter System for B. burgdorferi Measures Transcriptional Activity during Tick-Pathogen Interactions

    PubMed Central

    Adams, Philip P.; Flores Avile, Carlos; Jewett, Mollie W.

    2017-01-01

    Knowledge of the transcriptional responses of vector-borne pathogens at the vector-pathogen interface is critical for understanding disease transmission. Borrelia (Borreliella) burgdorferi, the causative agent of Lyme disease in the United States, is transmitted by the bite of infected Ixodes sp. ticks. It is known that B. burgdorferi has altered patterns of gene expression during tick acquisition, persistence and transmission. Recently, we and others have discovered in vitro expression of RNAs found internal, overlapping, and antisense to annotated open reading frames in the B. burgdorferi genome. However, there is a lack of molecular genetic tools for B. burgdorferi for quantitative, strand-specific, comparative analysis of these transcripts in distinct environments such as the arthropod vector. To address this need, we have developed a dual luciferase reporter system to quantify B. burgdorferi promoter activities in a strand-specific manner. We demonstrate that constitutive expression of a B. burgdorferi codon-optimized Renilla reniformis luciferase gene (rlucBb) allows normalization of the activity of a promoter of interest when fused to the B. burgdorferi codon-optimized Photinus pyralis luciferase gene (flucBb) on the same plasmid. Using the well characterized, differentially regulated, promoters for flagellin (flaBp), outer surface protein A (ospAp) and outer surface protein C (ospCp), we document the efficacy of the dual luciferase system for quantitation of promoter activities during in vitro growth and in infected ticks. Cumulatively, the dual luciferase method outlined herein is the first dual reporter system for B. burgdorferi, providing a novel and highly versatile approach for strand-specific molecular genetic analyses. PMID:28620587

  1. A Dual Luciferase Reporter System for B. burgdorferi Measures Transcriptional Activity during Tick-Pathogen Interactions.

    PubMed

    Adams, Philip P; Flores Avile, Carlos; Jewett, Mollie W

    2017-01-01

    Knowledge of the transcriptional responses of vector-borne pathogens at the vector-pathogen interface is critical for understanding disease transmission. Borrelia ( Borreliella ) burgdorferi , the causative agent of Lyme disease in the United States, is transmitted by the bite of infected Ixodes sp . ticks. It is known that B. burgdorferi has altered patterns of gene expression during tick acquisition, persistence and transmission. Recently, we and others have discovered in vitro expression of RNAs found internal, overlapping, and antisense to annotated open reading frames in the B. burgdorferi genome. However, there is a lack of molecular genetic tools for B. burgdorferi for quantitative, strand-specific, comparative analysis of these transcripts in distinct environments such as the arthropod vector. To address this need, we have developed a dual luciferase reporter system to quantify B. burgdorferi promoter activities in a strand-specific manner. We demonstrate that constitutive expression of a B. burgdorferi codon-optimized Renilla reniformis luciferase gene ( rluc Bb ) allows normalization of the activity of a promoter of interest when fused to the B. burgdorferi codon-optimized Photinus pyralis luciferase gene ( fluc Bb ) on the same plasmid. Using the well characterized, differentially regulated, promoters for flagellin ( flaBp ), outer surface protein A ( ospAp ) and outer surface protein C ( ospCp ), we document the efficacy of the dual luciferase system for quantitation of promoter activities during in vitro growth and in infected ticks. Cumulatively, the dual luciferase method outlined herein is the first dual reporter system for B. burgdorferi , providing a novel and highly versatile approach for strand-specific molecular genetic analyses.

  2. Competing Pathways and Multiple Folding Nuclei in a Large Multidomain Protein, Luciferase.

    PubMed

    Scholl, Zackary N; Yang, Weitao; Marszalek, Piotr E

    2017-05-09

    Proteins obtain their final functional configuration through incremental folding with many intermediate steps in the folding pathway. If known, these intermediate steps could be valuable new targets for designing therapeutics and the sequence of events could elucidate the mechanism of refolding. However, determining these intermediate steps is hardly an easy feat, and has been elusive for most proteins, especially large, multidomain proteins. Here, we effectively map part of the folding pathway for the model large multidomain protein, Luciferase, by combining single-molecule force-spectroscopy experiments and coarse-grained simulation. Single-molecule refolding experiments reveal the initial nucleation of folding while simulations corroborate these stable core structures of Luciferase, and indicate the relative propensities for each to propagate to the final folded native state. Both experimental refolding and Monte Carlo simulations of Markov state models generated from simulation reveal that Luciferase most often folds along a pathway originating from the nucleation of the N-terminal domain, and that this pathway is the least likely to form nonnative structures. We then engineer truncated variants of Luciferase whose sequences corresponded to the putative structure from simulation and we use atomic force spectroscopy to determine their unfolding and stability. These experimental results corroborate the structures predicted from the folding simulation and strongly suggest that they are intermediates along the folding pathway. Taken together, our results suggest that initial Luciferase refolding occurs along a vectorial pathway and also suggest a mechanism that chaperones may exploit to prevent misfolding. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Complementation studies in Niemann-Pick disease type C indicate the existence of a second group.

    PubMed Central

    Steinberg, S J; Ward, C P; Fensom, A H

    1994-01-01

    Niemann-Pick disease type C is a clinically heterogeneous storage disorder with an unknown primary metabolic defect. We have undertaken somatic cell hybridisation experiments using skin fibroblast strains from 12 patients representing a wide clinical spectrum. Preliminary experiments using filipin staining of free cholesterol as a marker for complementation indicated the existence of one major group (group alpha) and one minor group (group beta) represented by one mutant strain. Subsequent experiments in which sphingomyelinase activity was measured as a marker for complementation using five mutant strains showing activity consistently < 40% control levels confirmed the existence of the second group. Images PMID:8071958

  4. Methanol extract of grain dust shows complement fixing activity and other characteristics similar to tannic acid.

    PubMed Central

    Skea, D; Broder, I

    1986-01-01

    We have found several similarities between tannic acid and grain dust extract prepared with methanol. Both formed a precipitate with IgG, and these interactions were inhibited by albumin. In addition, both preparations fixed complement; this activity was heat stable and was removed by prior adsorption of the preparations with hide powder. Adsorption with polyvinyl polypyrrolidone reduced the complement-fixing activity of tannic acid but not that of the methanol grain dust extract. The similarities between tannic acid and the methanol grain dust extract are consistent with the presence of a tannin or tanninlike material in grain dust. Images FIGURE 1. PMID:3709479

  5. Mass culture of photobacteria to obtain luciferase

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Picciolo, G. L.; Rich, E., Jr.

    1969-01-01

    Inoculating preheated trays containing nutrient agar with photobacteria provides a means for mass culture of aerobic microorganisms in order to obtain large quantities of luciferase. To determine optimum harvest time, growth can be monitored by automated light-detection instrumentation.

  6. Studying the inner regions of young stars and their disks with aperture masking interferometry

    NASA Astrophysics Data System (ADS)

    Greenbaum, Alexandra; Sivaramakrishnan, Anand; GPI Instrument Team; NIRISS Instrument Team

    2017-01-01

    High resolution aperture masking interferometry complements coronagraphic imagers to provide a unique perspective on star and planet formation at more moderate contrast. By targeting young stars, especially those with disks, we aim to understand complex protoplanetary environments. Ground-based non-redundant masking (NRM) paired with spectrographs and polarimeters probes both thermally emitting young companions, possibly embedded in the disk or gap and scattered light in protoplanetary disks. And soon the community will have access to the most stable NRM conditions yet, with the Near Infrared Imager and Slitless Spectrograph (NIRISS) Aperture Masking Interferometry (AMI) mode on the James Webb Space Telescope. I will present my thesis work commissioning the Gemini Planet Imager’s NRM, highlighting results through both its spectroscopy and polarimetry modes, which set the stage for future space-based imaging. I will also give an overview of NIRISS-AMI capabilities and performance predictions for imaging young low-mass companions and disks, and how it will complement other instruments on JWST.

  7. Alternative complement pathway activation increases mortality in a model of burn injury in mice.

    PubMed Central

    Gelfand, J A; Donelan, M; Hawiger, A; Burke, J F

    1982-01-01

    We have studied the role of the complement system in burn injury in an experimental model in mice. A 25% body surface area, full-thickness scald wound was produced in anesthetized animals. Massive activation of the alternative complement pathway, but not the classical pathway, was seen. This activation was associated with the generation of neutrophil aggregating activity in the plasma, neutrophil aggregates in the lungs, increased pulmonary vascular permeability, and increased lung edema formation. Decomplementation with cobra venom factor (CVF) or genetic C5 deficiency diminished these pathologic changes, and CVF pretreatment substantially reduced burn mortality in the first 24 h. Preliminary data show that human burn patients have a similar pattern of complement activation involving predominantly the alternative pathway, indicating the possible relevance of the murine model to human disease. Images PMID:7174787

  8. Mechanical control of Renilla luciferase.

    PubMed

    Tseng, Chiao-Yu; Zocchi, Giovanni

    2013-08-14

    We report experiments where the activity of the enzyme luciferase from Renilla reniformis is controlled through a DNA spring attached to the enzyme. In the wake of previous work on kinases, these results establish that mechanical stress applied through the DNA springs is indeed a general method for the artificial control of enzymes, and for the quantitative study of mechano-chemical coupling in these molecules. We also show proof of concept of the luciferase construct as a sensitive molecular probe, detecting a specific DNA target sequence in an easy, one-step, homogeneous assay, as well as SNP detection without melting curve analysis.

  9. Brazilian Bioluminescent Beetles: Reflections on Catching Glimpses of Light in the Atlantic Forest and Cerrado.

    PubMed

    Bechara, Etelvino J H; Stevani, Cassius V

    2018-01-01

    Bioluminescence - visible and cold light emission by living organisms - is a worldwide phenomenon, reported in terrestrial and marine environments since ancient times. Light emission from microorganisms, fungi, plants and animals may have arisen as an evolutionary response against oxygen toxicity and was appropriated for sexual attraction, predation, aposematism, and camouflage. Light emission results from the oxidation of a substrate, luciferin, by molecular oxygen, catalyzed by a luciferase, producing oxyluciferin in the excited singlet state, which decays to the ground state by fluorescence emission. Brazilian Atlantic forests and Cerrados are rich in luminescent beetles, which produce the same luciferin but slightly mutated luciferases, which result in distinct color emissions from green to red depending on the species. This review focuses on chemical and biological aspects of Brazilian luminescent beetles (Coleoptera) belonging to the Lampyridae (fireflies), Elateridae (click-beetles), and Phengodidae (railroad-worms) families. The ATP-dependent mechanism of bioluminescence, the role of luciferase tuning the color of light emission, the "luminous termite mounds" in Central Brazil, the cooperative roles of luciferase and superoxide dismutase against oxygen toxicity, and the hypothesis on the evolutionary origin of luciferases are highlighted. Finally, we point out analytical uses of beetle bioluminescence for biological, clinical, environmental, and industrial samples.

  10. Development of a Reporter System to Explore MMEJ in the Context of Replacing Large Genomic Fragments.

    PubMed

    Yanik, Mert; Ponnam, Surya Prakash Goud; Wimmer, Tobias; Trimborn, Lennart; Müller, Carina; Gambert, Isabel; Ginsberg, Johanna; Janise, Annabella; Domicke, Janina; Wende, Wolfgang; Lorenz, Birgit; Stieger, Knut

    2018-06-01

    Common genome-editing strategies are either based on non-homologous end joining (NHEJ) or, in the presence of a template DNA, based on homologous recombination with long (homology-directed repair [HDR]) or short (microhomology-mediated end joining [MMEJ]) homologous sequences. In the current study, we aim to develop a model system to test the activity of MMEJ after CRISPR/Cas9-mediated cleavage in cell culture. Following successful proof of concept in an episomally based reporter system, we tested template plasmids containing a promoter-less luciferase gene flanked by microhomologous sequences (mhs) of different length (5, 10, 15, 20, 30, and 50 bp) that are complementary to the mouse retinitis pigmentosa GTPase regulator (RPGR)-ORF15, which is under the control of a CMV promoter stably integrated into a HEK293 cell line. Luciferase signal appearance represented successful recombination events and was highest when the mhs were 5 bp long, while longer mhs revealed lower luciferase signal. In addition, presence of Csy4 RNase was shown to increase luciferase signaling. The luciferase reporter system is a valuable tool to study the input of the different DNA repair mechanisms in the replacement of large DNA sequences by mhs. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Purification and properties of Renilla reniformis luciferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, J.C.; Hori, K.; Cormier, M.J.

    1977-01-11

    Luciferase from the anthozoan coelenterate Renilla reniformis (Renilla luciferin:oxygen 2-oxidoreductase (decarboxylating), EC 1.13.12.5.) catalyzes the bioluminescent oxidation of Renilla luciferin producing light (lambda/sub B/ 480 nm, Q/sub B/ 5.5 percent), oxyluciferin, and CO/sub 2/. Using a combination of ion-exchange, molecular-sieve, sulfhydryl-exchange, and affinity chromatography, luciferase has been purified, approximately 12,000-fold with 24 percent recovery, to homogeneity as judged by analysis with disc and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, gel filtration, and ultracentrifugation. Renilla luciferase is active as a nearly spherical single polypeptide chain monomer of 3.5 x 10/sup 4/ daltons having a specific activity of 1.8 x 10/sup 15/ h..nu..s/supmore » -1/ mg/sup -1/ and a turnover number of 111 ..mu..mol min/sup -/1 ..mu..mol/sup -1/ of enzyme. This enzyme has a high content of aromatic and hydrophobic amino acids such that it has an epsilon/sub 280 nm/ 0.1 percent/ of 2.1 and an average hydrophobicity of 1200 cal residue/sup -1/. The high average hydrophobicity of luciferase, which places it among the more hydrophobic proteins reported, is believed to account, at least in part, for its tendency to self-associate forming inactive dimers and higher molecular weight species.« less

  12. Visualization of Oxidative Stress Induced by Experimental Periodontitis in Keap1-Dependent Oxidative Stress Detector-Luciferase Mice.

    PubMed

    Kataoka, Kota; Ekuni, Daisuke; Tomofuji, Takaaki; Irie, Koichiro; Kunitomo, Muneyoshi; Uchida, Yoko; Fukuhara, Daiki; Morita, Manabu

    2016-11-16

    The aim of this study was to investigate whether a Keap1-dependent oxidative stress detector-luciferase (OKD-LUC) mouse model would be useful for the visualization of oxidative stress induced by experimental periodontitis. A ligature was placed around the mandibular first molars for seven days to induce periodontitis. Luciferase activity was measured with an intraperitoneal injection of d-luciferin on days 0, 1, and 7. The luciferase activity in the periodontitis group was significantly greater than that in the control group at seven days. The expressions of heme oxygenase-1 (HO-1) and malondialdehyde in periodontal tissue were significantly higher in the periodontitis group than in the control group. Immunofluorescent analysis confirmed that the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) occurred more frequently in the periodontitis group than in the control group. This study found that under oxidative stress induced by experimental periodontitis, the Nrf2/antioxidant defense pathway was activated and could be visualized from the luciferase activity in the OKD-LUC model. Thus, the OKD-LUC mouse model may be useful for exploring the mechanism underlying the relationship between the Nrf2/antioxidant defense pathway and periodontitis by enabling the visualization of oxidative stress over time.

  13. Biosynthesis-inspired deracemizative production of d-luciferin by combining luciferase and thioesterase.

    PubMed

    Maeda, Juri; Kato, Dai-Ichiro; Okuda, Masatoshi; Takeo, Masahiro; Negoro, Seiji; Arima, Kazunari; Ito, Yuji; Niwa, Kazuki

    2017-08-01

    Due to the strict enantioselectivity of firefly luciferase, only d-luciferin can be used as a substrate for bioluminescence reactions. Unfortunately, luciferin racemizes easily and accumulation of nonluminous l-luciferin has negative influences on the light emitting reaction. Thus, maintaining the enantiopurity of luciferin in the reaction mixture is one of the most important demands in bioluminescence applications using firefly luciferase. In fireflies, however, l-luciferin is the biosynthetic precursor of d-luciferin, which is produced from the L-form undergoing deracemization. This deracemization consists of three successive reactions: l-enantioselective thioesterification by luciferase, in situ epimerization, and hydrolysis by thioesterase. In this work, we introduce a deracemizative luminescence system inspired by the biosynthetic pathway of d-luciferin using a combination of firefly luciferase from Luciola cruciata (LUC-G) and fatty acyl-CoA thioesterase II from Escherichia coli (TESB). The enzymatic reaction property analysis indicated the importance of the concentration balance between LUC-G and TESB for efficient d-luciferin production and light emission. Using this deracemizative luminescence system, a highly sensitive quantitative analysis method for l-cysteine was constructed. This LUC-G-TESB combination system can improve bioanalysis applications using the firefly bioluminescence reaction by efficient deracemization of D-luciferin. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Novel Luciferase-Based Reporter System to Monitor Activation of ErbB2/Her2/neu Pathway Noninvasively During Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Frank; Li Wenrong; Li Fang

    2011-01-01

    Purpose: To develop a split-luciferase-based reporter system that allows for noninvasive monitoring of activation of the Her2/neu pathway in vivo in a quantitative and sensitive manner. Methods and Materials: Fusion proteins of the ErbB2/Her2/neu receptor to the N-terminal fragment of luciferase and of its downstream binding partner Shc to the C-terminal fragment of luciferase have been engineered owing to the rationale that on activation and binding of the Her2 receptor molecule to Shc, luciferase function will be reconstituted. Thus, the resulting bioluminescence signals can serve as a surrogate measure of receptor activation. Results: We have shown that our reporter systemsmore » functions well in vitro in breast cancer cells and in vivo in xenograft tumors. In particular, the activities of Her2/neu in xenograft tumors could be monitored serially for an extended period after radiotherapy. Conclusions: We believe that the novel ErbB2/Her2/neu reporter we have presented is a powerful tool to study the biology of the Her2-neu pathway in vitro and in vivo. It should also facilitate the development and rapid evaluation of new Her2/neu-targeted therapeutic agents.« less

  15. Expression of a soluble truncated Vargula luciferase in Escherichia coli

    PubMed Central

    Hunt, Eric A.; Moutsiopoulou, Angeliki; Broyles, David; Head, Trajen; Dikici, Emre; Daunert, Sylvia; Deo, Sapna K.

    2017-01-01

    Marine luciferases are regularly employed as useful reporter molecules across a range of various applications. However, attempts to transition expression from their native eukaryotic environment into a more economical prokaryotic, i.e. bacterial, expression system often presents several challenges. Specifically, bacterial protein expression inherently lacks chaperone proteins to aid in the folding process, while Escherichia coli presents a reducing cytoplasmic environment in. These conditions contribute to the inhibition of proper folding of cysteine-rich proteins, leading to incorrect tertiary structure and ultimately inactive and potentially insoluble protein. Vargula luciferase (Vluc) is a cysteine-rich marine luciferase that exhibits glow-type bioluminescence through a reaction between its unique native substrate and molecular oxygen. Because most other commonly used bioluminescent proteins exhibit flash-type emission kinetics, this emission characteristic of Vluc is desirable for high-throughput applications where stability of emission is required for the duration of data collection. A truncated form of Vluc that retains considerable bioluminescence activity (55%) compared to the native full-length protein has been reported in the literature. However, expression and purification of this luciferase from bacterial systems has proven difficult. Herein, we demonstrate the expression and purification of a truncated form of Vluc from E. coli. This truncated Vluc (tVluc) was subsequently characterized in terms of both its biophysical and bioluminescence properties. PMID:28108349

  16. A novel dual luciferase assay for the simultaneous monitoring of HIV infection and cell viability.

    PubMed

    Mitsuki, Yu-Ya; Yamamoto, Takuya; Mizukoshi, Fuminori; Momota, Masatoshi; Terahara, Kazutaka; Yoshimura, Kazuhisa; Harada, Shigeyoshi; Tsunetsugu-Yokota, Yasuko

    2016-05-01

    Human immunodeficiency virus type 1 (HIV-1) reporter cell lines are critical tools for drug development. However, one disadvantage of HIV-1 reporter cell lines is that reductions in reporter gene activity need to be normalized to cytotoxicity, i.e., live cell numbers. Here, we developed a dual luciferase assay based on a R. reniformis luciferase (hRLuc)-expressing R5-type HIV-1 (NLAD8-hRLuc) and a CEM cell line expressing CCR5 and firefly luciferase (R5CEM-FiLuc). The NLAD8-hRLuc reporter virus was replication competent in peripheral blood mononuclear cells. The level of hRLuc was correlated with p24 antigen levels (p<0.001, R=0.862). The target cell line, R5CEM-FiLuc, stably expressed the firefly luciferase (FiLuc) reporter gene and allowed the simultaneous monitoring of compound cytotoxicity. The dual reporter assay combining a NLAD8-hRLuc virus with R5CEM-FiLuc cells permitted the accurate determination of drug susceptibility for entry, reverse transcriptase, integrase, and protease inhibitors at different multiplicities of infection. This dual reporter assay provides a rapid and direct method for the simultaneous monitoring of HIV infection and cell viability. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A single secreted luciferase-based gene reporter assay.

    PubMed

    Barriscale, Kathy A; O'Sullivan, Sharon A; McCarthy, Tommie V

    2014-05-15

    Promoter analysis typically employs a reporter gene fused to a test promoter combined with a second reporter fused to a control promoter that is used for normalization purposes. However, this approach is not valid when experimental conditions affect the control promoter. We have developed and validated a single secreted luciferase reporter (SSLR) assay for promoter analysis that avoids the use of a control reporter. The approach uses an early level of expression of a secreted luciferase linked to a test promoter as an internal normalization control for subsequent analysis of the same promoter. Comparison of the SSLR assay with the dual luciferase reporter (DLR) assay using HMGCR (3-hydroxy-3-methylglutaryl-coenzyme A reductase) and LDLR (low-density lipoprotein receptor) promoter constructs, which are down-regulated by 25-hydroxycholesterol, show that both assays yield similar results. Comparison of the response of the HMGCR promoter in SSLR transient assays compared very favorably with the response of the same promoter in the stable cell line. Overall, the SSLR assay proved to be a valid alternative to the DLR assay for certain applications and had significant advantages in that measurement of only one luciferase is required and monitoring can be continuous because cell lysis is not necessary. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Ringed impact craters on Venus: An analysis from Magellan images

    NASA Technical Reports Server (NTRS)

    Alexopoulos, Jim S.; Mckinnon, William B.

    1992-01-01

    We have analyzed cycle 1 Magellan images covering approximately 90 percent of the venusian surface and have identified 55 unequivocal peak-ring craters and multiringed impact basins. This comprehensive study (52 peak-ring craters and at least 3 multiringed impact basins) complements our earlier independent analysis of Arecibo and Venera images and initial Magellan data and that of the Magellan team.

  19. Assessing activity of Hepatitis A virus 3C protease using a cyclized luciferase-based biosensor.

    PubMed

    Zhou, Junwei; Wang, Dang; Xi, Yongqiang; Zhu, Xinyu; Yang, Yuting; Lv, Mengting; Luo, Chuanzhen; Chen, Jiyao; Ye, Xu; Fang, Liurong; Xiao, Shaobo

    2017-07-08

    Hepatitis A is an acute infection caused by Hepatitis A virus (HAV), which is widely distributed throughout the world. The HAV 3C cysteine protease (3C pro ), an important nonstructural protein, is responsible for most cleavage within the viral polyprotein and is critical for the processes of viral replication. Our group has previously demonstrated that HAV 3C pro cleaves human NF-κB essential modulator (NEMO), a kinase required in interferon signaling. Based on this finding, we generated four luciferase-based biosensors containing the NEMO sequence (PVLKAQ↓ADIYKA) that is cleaved by HAV 3C pro and/or the Nostoc punctiforme DnaE intein, to monitor the activity of HAV 3C pro in human embryonic kidney cells (HEK-293T). Western blotting showed that HAV 3C pro recognized and cleaved the NEMO cleavage sequence incorporated in the four biosensors, whereas only one cyclized luciferase-based biosensor (233-DnaE-HAV, 233DH) showed a measurable and reliable increase in firefly luciferase activity, with very low background, in the presence of HAV 3C pro . With this biosensor (233DH), we monitored HAV 3C pro activity in HEK-293T cells, and tested it against a catalytically deficient mutant HAV 3C pro and other virus-encoded proteases. The results showed that the activity of this luciferase biosensor is specifically dependent on HAV 3C pro . Collectively, our data demonstrate that the luciferase biosensor developed here might provide a rapid, sensitive, and efficient evaluation of HAV 3C pro activity, and should extend our better understanding of the biological relevance of HAV 3C pro . Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Detection of neuroendocrine tumors using promoter-specific secreted Gaussia luciferase.

    PubMed

    Tseng, Alan Wei-Shun; Akerstrom, Victoria; Chen, Chiachen; Breslin, Mary B; Lan, Michael S

    2016-01-01

    Accurate detection of neuroendocrine (NE) tumors is critically important for better prognosis and treatment outcomes in patients. To demonstrate the efficacy of using an adenoviral vector for the detection of NE tumors, we have constructed a pair of adenoviral vectors which, in combination, can conditionally replicate and release Gaussia luciferase into the circulation after infecting the NE tumors. The expression of these two vectors is regulated upstream by an INSM1-promoter (insulinoma-associated-1) that is specifically active in NE tumors and developing NE tissues, but silenced in normal adult tissues. In order to retain the tumor-specificity of the INSM1 promoter, we have modified the promoter using the core insulator sequence from the chicken β-globin HS4 insulator and the neuronal restrictive silencing element (NRSE). This modified INSM1-promoter can retain NE tumor specificity in an adenoviral construct while driving a mutated adenovirus E1A gene (∆24E1A), the Metridia, or Gaussia luciferase gene. The in vitro cell line and mouse xenograft human tumor studies revealed the NE specificity of the INSM1-promoter in NE lung cancer, neuroblastoma, medulloblastoma, retinoblastoma, and insulinoma. When we combined the INSM1-promoter driven Gaussia luciferase with ∆24E1A, the co-infected NE tumor secreted higher levels of Gaussia luciferase as compared to the INSM1p-Gaussia virus alone. In a mouse subcutaneous xenograft tumor model, the combination viruses secreted detectable level of Gaussia luciferase after infecting an INSM1-positive NE lung tumor for ≥12 days. Therefore, the INSM1-promoter specific conditional replicating adenovirus represents a sensitive diagnostic tool to aid clinicians in the detection of NE tumors.

  1. Vasculature-Specific Adenovirus Vectors for Gene Therapy of Prostate Cancer

    DTIC Science & Technology

    2007-02-01

    reporter gene. To this end, a recombinant replication-deficient retrovirus vector containing an open reading frame of Renilla luciferase (hRLuc...dual-mode reporter gene ( Renilla luciferase and green fluorescent protein) has been designed and produced in a pan- tropic configuration. • Dual

  2. FIREFLY LUCIFERASE ATP ASSAY DEVELOPMENT FOR MONITORING BACTERIAL CONCENTRATIONS IN WATER SUPPLIES

    EPA Science Inventory

    This research program was initiated to develop a rapid, automatable system for measuring total viable microorganisms in potable drinking water supplies using the firefly luciferase ATP assay. The assay was adapted to an automatable flow system that provided comparable sensitivity...

  3. Protein sterilization method of firefly luciferase using reduced pressure and molecular sieves

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Rich, E., Jr. (Inventor)

    1973-01-01

    The sterilization of the protein fruitfly luciferase under conditions that prevent denaturation is examined. Denaturation is prevented by heating the protein in contact with molecular seives and under a reduced pressure of the order of 0.00005 millimeters of mercury.

  4. Development of Neh2-Luciferase Reporter and Its Application for High Throughput Screening and Real-Time Monitoring of Nrf2 Activators

    PubMed Central

    Smirnova, Natalya A.; Haskew-Layton, Renee E.; Basso, Manuela; Hushpulian, Dmitry M.; Payappilly, Jimmy B.; Speer, Rachel E.; Ahn, Young-Hoon; Rakhman, Ilay; Cole, Philip A.; Pinto, John T.; Ratan, Rajiv R.; Gazaryan, Irina G.

    2011-01-01

    SUMMARY The NF-E2-related factor 2 (Nrf2) is a key transcriptional regulator of antioxidant defense and detoxification. To directly monitor stabilization of Nrf2, we fused its Neh2 domain, responsible for the interaction with its nucleocytoplasmic regulator, Keap1, to firefly luciferase (Neh2-luciferase). We show that Neh2 domain is sufficient for recognition, ubiquitination, and proteasomal degradation of Neh2-luciferase fusion protein. The Neh2-luc reporter system allows direct monitoring of the adaptive response to redox stress and classification of drugs based on the time course of reporter activation. The reporter was used to screen the Spectrum library of 2000 biologically active compounds to identify activators of Nrf2. The most robust and yet nontoxic Nrf2 activators found—nordihydroguaiaretic acid, fisetin, and gedunin—induced astrocyte-dependent neuroprotection from oxidative stress via an Nrf2-dependent mechanism. PMID:21700211

  5. Cloning and characterization of a tuberous root-specific promoter from cassava (Manihot esculenta Crantz).

    PubMed

    Koehorst-van Putten, Herma J J; Wolters, Anne-Marie A; Pereira-Bertram, Isolde M; van den Berg, Hans H J; van der Krol, Alexander R; Visser, Richard G F

    2012-12-01

    In order to obtain a tuberous root-specific promoter to be used in the transformation of cassava, a 1,728 bp sequence containing the cassava granule-bound starch synthase (GBSSI) promoter was isolated. The sequence proved to contain light- and sugar-responsive cis elements. Part of this sequence (1,167 bp) was cloned into binary vectors to drive expression of the firefly luciferase gene. Cassava cultivar Adira 4 was transformed with this construct or a control construct in which the luciferase gene was cloned behind the 35S promoter. Luciferase activity was measured in leaves, stems, roots and tuberous roots. As expected, the 35S promoter induced luciferase activity in all organs at similar levels, whereas the GBSSI promoter showed very low expression in leaves, stems and roots, but very high expression in tuberous roots. These results show that the cassava GBSSI promoter is an excellent candidate to achieve tuberous root-specific expression in cassava.

  6. Protein expression of preferred human codon-optimized Gaussia luciferase genes with an artificial open-reading frame in mammalian and bacterial cells.

    PubMed

    Inouye, Satoshi; Suzuki, Takahiro

    2016-12-01

    The protein expressions of three preferred human codon-optimized Gaussia luciferase genes (pGLuc, EpGLuc, and KpGLuc) were characterized in mammalian and bacterial cells by comparing them with those of wild-type Gaussia luciferase gene (wGLuc) and human codon-optimized Gaussia luciferase gene (hGLuc). Two synthetic genes of EpGLuc and KpGLuc containing the complete preferred human codons have an artificial open-reading frame; however, they had the similar protein expression levels to those of pGLuc and hGLuc in mammalian cells. In bacterial cells, the protein expressions of pGLuc, EpGLuc, and KpGLuc with approximately 65% GC content were the same and showed approximately 60% activities of wGLuc and hGLuc. The artificial open-reading frame in EpGLuc and KpGLuc did not affect the protein expression in mammalian and bacterial cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Light without substrate amendment: the bacterial luciferase gene cassette as a mammalian bioreporter

    NASA Astrophysics Data System (ADS)

    Close, Dan M.; Xu, Tingting; Smartt, Abby E.; Jegier, Pat; Ripp, Steven A.; Sayler, Gary S.

    2011-06-01

    Bioluminescent production represents a facile method for bioreporter detection in mammalian tissues. The lack of endogenous bioluminescent reactions in these tissues allows for high signal to noise ratios even at low signal strength compared to fluorescent signal detection. While the luciferase enzymes commonly employed for bioluminescent detection are those from class Insecta (firefly and click beetle luciferases), these are handicapped in that they require concurrent administration of a luciferin compound to elicit a bioluminescent signal. The bacterial luciferase (lux) gene cassette offers the advantages common to other bioluminescent proteins, but is simultaneously capable of synthesizing its own luciferin substrates using endogenously available cellular compounds. The longstanding shortcoming of the lux cassette has been its recalcitrance to function in the mammalian cellular environment. This paper will present an overview of the work completed to date to overcome this limitation and provide examples of mammalian lux-based bioreporter technologies that could provide the framework for advanced, biomedically relevant real-time sensor development.

  8. Development of a Sensitive Luciferase-Based Sandwich ELISA System for the Detection of Human Extracellular Matrix 1 Protein.

    PubMed

    Li, Ya; Li, Yanqing; Zhao, Junli; Zheng, Xiaojing; Mao, Qinwen; Xia, Haibin

    2016-12-01

    Enzyme-linked immunosorbent assay (ELISA) has been one of the main methods for detecting an antigen in an aqueous sample for more than four decades. Nowadays, one of the biggest concerns for ELISA is still how to improve the sensitivity of the assay, and the luciferase-luciferin reaction system has been noticed as a new detection method with high sensitivity. In this study, a luciferin-luciferase reaction system was used as the detection method for a sandwich ELISA system. It was shown that this new system led to an increase in the detection sensitivity of at least two times when compared with the traditional horseradish peroxidase (HRP) detection method. Lastly, the serum levels of the human extracellular matrix 1 protein of breast cancer patients were determined by the new system, which were overall similar to the HRP chemiluminescent system. Furthermore, this new luciferase reporter can be implemented into other ELISA systems for the purpose of increasing the assay sensitivity.

  9. Characterization and isolation of a T-DNA tagged banana promoter active during in vitro culture and low temperature stress.

    PubMed

    Santos, Efrén; Remy, Serge; Thiry, Els; Windelinckx, Saskia; Swennen, Rony; Sági, László

    2009-06-24

    Next-generation transgenic plants will require a more precise regulation of transgene expression, preferably under the control of native promoters. A genome-wide T-DNA tagging strategy was therefore performed for the identification and characterization of novel banana promoters. Embryogenic cell suspensions of a plantain-type banana were transformed with a promoterless, codon-optimized luciferase (luc+) gene and low temperature-responsive luciferase activation was monitored in real time. Around 16,000 transgenic cell colonies were screened for baseline luciferase activity at room temperature 2 months after transformation. After discarding positive colonies, cultures were re-screened in real-time at 26 degrees C followed by a gradual decrease to 8 degrees C. The baseline activation frequency was 0.98%, while the frequency of low temperature-responsive luciferase activity was 0.61% in the same population of cell cultures. Transgenic colonies with luciferase activity responsive to low temperature were regenerated to plantlets and luciferase expression patterns monitored during different regeneration stages. Twenty four banana DNA sequences flanking the right T-DNA borders in seven independent lines were cloned via PCR walking. RT-PCR analysis in one line containing five inserts allowed the identification of the sequence that had activated luciferase expression under low temperature stress in a developmentally regulated manner. This activating sequence was fused to the uidA reporter gene and back-transformed into a commercial dessert banana cultivar, in which its original expression pattern was confirmed. This promoter tagging and real-time screening platform proved valuable for the identification of novel promoters and genes in banana and for monitoring expression patterns throughout in vitro development and low temperature treatment. Combination of PCR walking techniques was efficient for the isolation of candidate promoters even in a multicopy T-DNA line. Qualitative and quantitative GUS expression analyses of one tagged promoter in a commercial cultivar demonstrated a reproducible promoter activity pattern during in vitro culture. Thus, this promoter could be used during in vitro selection and generation of commercial transgenic plants.

  10. Retrofitting BACs with G418 resistance, luciferase, and oriP and EBNA-1 – new vectors for in vitro and in vivo delivery

    PubMed Central

    Magin-Lachmann, Christine; Kotzamanis, George; D'Aiuto, Leonardo; Wagner, Ernst; Huxley, Clare

    2003-01-01

    Background Bacterial artificial chromosomes (BACs) have been used extensively for sequencing the human and mouse genomes and are thus readily available for most genes. The large size of BACs means that they can generally carry intact genes with all the long range controlling elements that drive full levels of tissue-specific expression. For gene expression studies and gene therapy applications it is useful to be able to retrofit the BACs with selectable genes such as G418 resistance, reporter genes such as luciferase, and oriP/EBNA-1 from Epstein Barr virus which allows long term episomal maintenance in mammalian cells. Results We describe a series of retrofitting plasmids and a protocol for in vivo loxP/Cre recombination. The vector pRetroNeo carries a G418 resistance cassette, pRetroNeoLuc carries G418 resistance and a luciferase expression cassette, pRetroNeoLucOE carries G418 resistance, luciferase and an oriP/EBNA-1 cassette and pRetroNeoOE carries G418 resistance and oriP/EBNA-1. These vectors can be efficiently retrofitted onto BACs without rearrangement of the BAC clone. The luciferase cassette is expressed efficiently from the retrofitting plasmids and from retrofitted BACs after transient transfection of B16F10 cells in tissue culture and after electroporation into muscles of BALB/c mice in vivo. We also show that a BAC carrying GFP, oriP and EBNA-1 can be transfected into B16F10 cells with Lipofectamine 2000 and can be rescued intact after 5 weeks. Conclusion The pRetro vectors allow efficient retrofitting of BACs with G418 resistance, luciferase and/or oriP/EBNA-1 using in vivo expression of Cre. The luciferase reporter gene is expressed after transient transfection of retrofitted BACs into cells in tissue culture and after electroporation into mouse muscle in vivo. OriP/EBNA-1 allows stable maintenance of a 150-kb BAC without rearrangement for at least 5 weeks. PMID:12609052

  11. CRE Activation in Antiestrogen Resistance

    DTIC Science & Technology

    2005-05-01

    differences in transfection efficiency, 0.1 ug of a plasmid containing the Renilla luciferase gene was also cotransfected into the cells. Both plasmid DNAs...containing the Renilla luciferase gene was also cotransfected into the cells. Both plasmid DNAs were added to a mix of Fugene 6 (Roche) and serum free

  12. Modification of the hTERT promoter by heat shock elements enhances the efficiency and specificity of cancer targeted gene therapy.

    PubMed

    Wang, Xiaolong; Zhou, PeiHua; Sun, XueJun; Wei, GuangBing; Zhang, Li; Wang, Hui; Yao, JianFeng; Jia, PengBo; Zheng, JianBao

    2016-05-01

    One of the current challenges facing cancer gene therapy is the tumour-specific targeting of therapeutic genes. Effective targeting in gene therapy requires accurate spatial and temporal control of gene expression. To develop a sufficient and accurate tumour-targeting method for cancer gene therapy, we have investigated the use of hyperthermia to control the expression of a transgene under the control of the human telomerase reverse transcriptase (hTERT) promoter and eight heat shock elements (8HSEs). Luciferase reporters were constructed by inserting eight HSEs and the hTERT promoter (8HSEs-hTERTp) upstream of the pGL4.20 vector luciferase gene. The luciferase activity of the hTERT promoter and 8HSEs-hTERT promoter were then compared in the presence and absence of heat. The differences in luciferase activity were analysed using dual luciferase assays in SW480 (high hTERT expression), MKN28 and MRC-5 cells (low hTERT expression). The luciferase activity of the Hsp70B promoter was also compared to the 8HSEs-hTERT promoter in the above listed cell lines. Lentiviral vector and heat-induced expression of EGFP expression under the control of the 8HSEs-hTERT promoter in cultured cells and mouse tumour xenografts was measured by reverse transcription polymerase (RT-PCR), Western blot and immunofluorescence assays. hTERT promoter activity was higher in SW480 cells than in MKN28 or MRC-5 cells. At 43 °C, the luciferase activity of the 8HSEs-hTERT promoter was significantly increased in SW480 cells, but not in MKN28 or MRC-5 cells. Importantly, the differences in luciferase activity were much more obvious in both high (SW480) and low (MKN28 and MRC-5) hTERT expressing cells when the activity of the 8HSEs-hTERT promoter was compared to the Hsp70B promoter. Moreover, under the control of 8HSEs-hTERT promoter in vitro and in vivo, EGFP expression was obviously increased by heat treatment in SW480 cells but not in MKN28 or MRC-5 cells, nor was expression increased under normal temperature conditions. The hTERT promoter is a potentially powerful tumour-specific promoter and gene therapy tool for cancer treatment. Incorporating heat-inducible therapeutic elements (8HSEs) into the hTERT promoter may enhance the efficiency and specificity of cancer targeting gene therapy under hyperthermic clinical conditions.

  13. Hormone treatment enhances WT1 activation of Renilla luciferase constructs in LNCaP cells.

    PubMed

    Hanson, Julie; Reese, Jennifer; Gorman, Jacquelyn; Cash, Jennifer; Fraizer, Gail

    2007-01-01

    The zinc finger transcription factor, WT1, regulates many growth control genes, repressing or activating transcription depending on the gene and cell type. Based on earlier analyses of the effect of WT1 on androgen responsive genes, we hypothesized that there may be an interaction between the androgen signaling pathway and WT1, such that the commonly used Renilla luciferase control vectors were activated in LNCaP prostate cancer cells. Using cotransfection assays we tested the effects of WT1 and/or the androgen analog, R1881, on two Renilla luciferase vectors, pRL-SV40 and the promoter-less pRL-null. To determine whether the zinc finger DNA binding domain was required, the zinc finger mutant DDS-WT1 (R394W) was tested; but it had no significant effect on the Renilla luciferase vectors. To determine whether the androgen signaling pathway was required, WT1 was co-transfected with Renilla vectors in cells with varied hormone responsiveness. The WT1 effect on pRL-null varied from no significant effect in 293 and PC3 cells to very strong enhancement in LNCaP cells treated with 5 nM R1881. Overall, these results suggest that hormone enhanced WT1 mediated activation of Renilla luciferase and that these interactions require an intact WT1 zinc finger DNA binding domain.

  14. Secreted dual reporter assay with Gaussia luciferase and the red fluorescent protein mCherry

    PubMed Central

    Wider, Diana

    2017-01-01

    The availability of a wide range of reporter proteins, which can easily be quantitated, has had a major impact on many fields of biomedical research. In some experiments with tissue culture cells, it is necessary to control for differences in transfection efficiency and in other expression parameters. This requirement has been very conveniently met with the popular dual luciferase assay. Its disadvantages are the requirement for cell lysis, the inability to analyze the same cells repeatedly, and the cost, at least in its most commonly used commercial format. Here we describe a novel dual reporter assay with the naturally secreted luciferase from Gaussia princeps as the main reporter protein and a secreted version of the red fluorescent protein mCherry as internal standard. After first measuring mCherry fluorescence in the medium, an enzyme buffer with coelenterazine as substrate is added to the same sample to trigger a glow-type luminescence of the luciferase. The simple and cheap assay can easily be adapted to a variety of experimental situations. As a case in point, we have developed a panel of Gaussia luciferase reporter genes for transcriptional activation assays with estrogen and glucocorticoid response elements, and with response elements for fusion proteins with the Gal4 DNA binding domain for use in mammalian cells. Our secreted dual reporter assay should be an attractive alternative to the currently available commercial kits. PMID:29220385

  15. Secreted dual reporter assay with Gaussia luciferase and the red fluorescent protein mCherry.

    PubMed

    Wider, Diana; Picard, Didier

    2017-01-01

    The availability of a wide range of reporter proteins, which can easily be quantitated, has had a major impact on many fields of biomedical research. In some experiments with tissue culture cells, it is necessary to control for differences in transfection efficiency and in other expression parameters. This requirement has been very conveniently met with the popular dual luciferase assay. Its disadvantages are the requirement for cell lysis, the inability to analyze the same cells repeatedly, and the cost, at least in its most commonly used commercial format. Here we describe a novel dual reporter assay with the naturally secreted luciferase from Gaussia princeps as the main reporter protein and a secreted version of the red fluorescent protein mCherry as internal standard. After first measuring mCherry fluorescence in the medium, an enzyme buffer with coelenterazine as substrate is added to the same sample to trigger a glow-type luminescence of the luciferase. The simple and cheap assay can easily be adapted to a variety of experimental situations. As a case in point, we have developed a panel of Gaussia luciferase reporter genes for transcriptional activation assays with estrogen and glucocorticoid response elements, and with response elements for fusion proteins with the Gal4 DNA binding domain for use in mammalian cells. Our secreted dual reporter assay should be an attractive alternative to the currently available commercial kits.

  16. Expression of a soluble truncated Vargula luciferase in Escherichia coli.

    PubMed

    Hunt, Eric A; Moutsiopoulou, Angeliki; Broyles, David; Head, Trajen; Dikici, Emre; Daunert, Sylvia; Deo, Sapna K

    2017-04-01

    Marine luciferases are regularly employed as useful reporter molecules across a range of various applications. However, attempts to transition expression from their native eukaryotic environment into a more economical prokaryotic, i.e. bacterial, expression system often presents several challenges. Specifically, bacterial protein expression inherently lacks chaperone proteins to aid in the folding process, while Escherichia coli presents a reducing cytoplasmic environment in. These conditions contribute to the inhibition of proper folding of cysteine-rich proteins, leading to incorrect tertiary structure and ultimately inactive and potentially insoluble protein. Vargula luciferase (Vluc) is a cysteine-rich marine luciferase that exhibits glow-type bioluminescence through a reaction between its unique native substrate and molecular oxygen. Because most other commonly used bioluminescent proteins exhibit flash-type emission kinetics, this emission characteristic of Vluc is desirable for high-throughput applications where stability of emission is required for the duration of data collection. A truncated form of Vluc that retains considerable bioluminescence activity (55%) compared to the native full-length protein has been reported in the literature. However, expression and purification of this luciferase from bacterial systems has proven difficult. Herein, we demonstrate the expression and purification of a truncated form of Vluc from E. coli. This truncated Vluc (tVluc) was subsequently characterized in terms of both its biophysical and bioluminescence properties. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Generation of a Gaussia luciferase-expressing endotheliotropic cytomegalovirus for screening approaches and mutant analyses.

    PubMed

    Falk, Jessica J; Laib Sampaio, Kerstin; Stegmann, Cora; Lieber, Diana; Kropff, Barbara; Mach, Michael; Sinzger, Christian

    2016-09-01

    For many questions in human cytomegalovirus (HCMV) research, assays are desired that allow robust and fast quantification of infection efficiencies under high-throughput conditions. The secreted Gaussia luciferase has been demonstrated as a suitable reporter in the context of a fibroblast-adapted HCMV strain, which however is greatly restricted in the number of cell types to which it can be applied. We inserted the Gaussia luciferase expression cassette into the BAC-cloned virus strain TB40-BAC4, which displays the natural broad cell tropism of HCMV and hence allows application to screening approaches in a variety of cell types including fibroblasts, epithelial, and endothelial cells. Here, we applied the reporter virus TB40-BAC4-IE-GLuc to identify mouse hybridoma clones that preferentially neutralize infection of endothelial cells. In addition, as the Gaussia luciferase is secreted into culture supernatants from infected cells it allows kinetic analyses in living cultures. This can speed up and facilitate phenotypic characterization of BAC-cloned mutants. For example, we analyzed a UL74 stop-mutant of TB40-BAC4-IE-GLuc immediately after reconstitution in transfected cultures and found the increase of luciferase delayed and reduced as compared to wild type. Phenotypic monitoring directly in transfected cultures can minimize the risk of compensating mutations that might occur with extended passaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Probing the emitter site of Renilla luciferase using small organic molecules; an attempt to understand the molecular architecture of the emitter site.

    PubMed

    Salehi, Farajollah; Emamzadeh, Rahman; Nazari, Mahboobeh; Rasa, Seyed Mohammad Mahdi

    2016-12-01

    Renilla luciferase is a sensitive enzyme and has wide applications in biotechnology such as drug screening. Previous studies have tried to show the catalytic residues, nevertheless, the accurate architecture and molecular behavior of its emitter site remains uncharacterized. In this study, the activity of Renilla luciferase, in the presence of two small organic molecules including dimethyl sulfoxide (DMSO) and isopropanol was considered and the structure was studied by circular dichroism (CD) and fluorescence spectroscopy. Moreover, the interaction of small organic molecules with the Renilla luciferase was studied using molecular dynamics simulations. Kinetics studies showed that at low concentration of DMSO (16.6-66mM) and isopropanol (19.3-76mM) the K m changed and a competitive inhibition pattern was observed. Moreover, spectroscopy studies reveled that the changes of activity of Renilla luciferase in the presence of low concentrations of small organic molecules was not associated with structural collapse or severe changes in the enzyme conformation. Molecular dynamics simulations indicated that DMSO and isopropanol, as probing molecules, were both able to bind to the emitter site and remained with the residues of the emitter site. Based on the probing data, the architecture of the emitter site in the "non-binding" model was proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Cholecystokinin Activates Pancreatic Calcineurin-NFAT Signaling In Vitro and In Vivo

    PubMed Central

    Guo, LiLi; Lee, Sae-Hong; Molkentin, Jeffery D.; Williams, John A.

    2008-01-01

    Elevated endogenous cholecystokinin (CCK) release induced by protease inhibitors leads to pancreatic growth. This response has been shown to be mediated by the phosphatase calcineurin, but its downstream effectors are unknown. Here we examined activation of calcineurin-regulated nuclear factor of activated T-cells (NFATs) in isolated acinar cells, as well as in an in vivo model of pancreatic growth. Western blotting of endogenous NFATs and confocal imaging of NFATc1-GFP in pancreatic acini showed that CCK dose-dependently stimulated NFAT translocation from the cytoplasm to the nucleus within 0.5–1 h. This shift in localization correlated with CCK-induced activation of NFAT-driven luciferase reporter and was similar to that induced by a calcium ionophore and constitutively active calcineurin. The effect of CCK was dependent on calcineurin, as these changes were blocked by immunosuppressants FK506 and CsA and by overexpression of the endogenous protein inhibitor CAIN. Parallel NFAT activation took place in vivo. Pancreatic growth was accompanied by an increase in nuclear NFATs and subsequent elevation in expression of NFAT-luciferase in the pancreas, but not in organs unresponsive to CCK. The changes also required calcineurin, as they were blocked by FK506. We conclude that CCK activates NFATs in a calcineurin-dependent manner, both in vitro and in vivo. PMID:17978097

  20. Minimal-length Synthetic shRNAs Formulated with Lipid Nanoparticles are Potent Inhibitors of Hepatitis C Virus IRES-linked Gene Expression in Mice

    PubMed Central

    Dallas, Anne; Ilves, Heini; Shorenstein, Joshua; Judge, Adam; Spitler, Ryan; Contag, Christopher; Wong, Suet Ping; Harbottle, Richard P; MacLachlan, Ian; Johnston, Brian H

    2013-01-01

    We previously identified short synthetic shRNAs (sshRNAs) that target a conserved hepatitis C virus (HCV) sequence within the internal ribosome entry site (IRES) of HCV and potently inhibit HCV IRES-linked gene expression. To assess in vivo liver delivery and activity, the HCV-directed sshRNA SG220 was formulated into lipid nanoparticles (LNP) and injected i.v. into mice whose livers supported stable HCV IRES-luciferase expression from a liver-specific promoter. After a single injection, RNase protection assays for the sshRNA and 3H labeling of a lipid component of the nanoparticles showed efficient liver uptake of both components and long-lasting survival of a significant fraction of the sshRNA in the liver. In vivo imaging showed a dose-dependent inhibition of luciferase expression (>90% 1 day after injection of 2.5 mg/kg sshRNA) with t1/2 for recovery of about 3 weeks. These results demonstrate the ability of moderate levels of i.v.-injected, LNP-formulated sshRNAs to be taken up by liver hepatocytes at a level sufficient to substantially suppress gene expression. Suppression is rapid and durable, suggesting that sshRNAs may have promise as therapeutic agents for liver indications. PMID:24045712

  1. Auto-luminescent genetically encoded ratiometric indicator for real-time Ca2+ imaging at the single cell level

    NASA Astrophysics Data System (ADS)

    Saito, Kenta; Kobayashi, Kentaro; Nagai, Takeharu

    2011-12-01

    Efficient bioluminescence resonance energy transfer (BRET) from a bioluminescent protein to a fluorescent protein with high fluorescent quantum yield has been utilized to enhance luminescence intensity, allowing single-cell imaging in near real time without external light illumination. We have applied this strategy to develop an autoluminescent Ca2+ indicator, BRAC, which is composed of Ca2+-binding protein, calmodulin, and its target peptide, M13, sandwiched between a yellow fluorescent protein variant, Venus, and an enhanced Renilla luciferase, RLuc8. With this BRAC, we succeeded visualization of Ca2+ dynamics at the single-cell level with temporal resolution at 1 Hz. Moreover, BRAC signals were acquired by ratiometric imaging capable of canceling out Ca2+-independent signal drifts due to change in cell shape, focus shift, etc. Taking advantage of the bioluminescence imaging property that does not require external excitation light, BRAC might become a powerful tool applicable in conjunction with so-called optogenetic technology by which we can control cellular and protein function by light illumination.

  2. Histone Methylation and Epigenetic Silencing in Breast Cancer

    DTIC Science & Technology

    2010-07-01

    bars show relative luciferase expression levels (firefly versus Renilla control) in SKBR3 cells treated with a control non-targeted dsRNA (NT2) and red...luciferase expression levels (firefly versus Renilla control) in SKBR3 cells treated with a control non-targeted dsRNA (NT2) and red bars depict

  3. Structural and Functional Analysis of the Six1 Transcriptional Complex for Anti-Breast Cancer Drug Design

    DTIC Science & Technology

    2010-04-30

    scrambled controls. Responsiveness was tested using luciferase activity of the 3TP reporter construct and normalized to renilla activity. Data points...was tested using luciferase activity of the TOP-flash reporter construct and normalized to renilla activity. Data points for fractionation and

  4. Mechanisms of energy conversion and transfer in bioluminescence. Progress report, August 15, 1976--November 14, 1977. [Renilla (anthozoa)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cormier, M.J.

    1977-01-01

    Progress is reported on the following studies: isolation of luciferase and green fluorescent protein (GFP) from Renilla; chemical properties and chemical reactions of luciferase and GFP; and analogy of energy transfer in bioluminescence to energy transfer in photosynthesis. (HLW)

  5. Can Imageability Help Us Draw the Line between Storage and Composition?

    ERIC Educational Resources Information Center

    Prado, Elizabeth L.; Ullman, Michael T.

    2009-01-01

    Language requires both storage and composition. However, exactly what is retrieved from memory and what is assembled remains controversial, especially for inflected words. Here, "imageability effects" is introduced as a new diagnostic of storage and a complement to frequency effects. In 2 studies of past-tense morphology, more reliable…

  6. Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling.

    PubMed

    Yuan, Yinyin; Failmezger, Henrik; Rueda, Oscar M; Ali, H Raza; Gräf, Stefan; Chin, Suet-Feung; Schwarz, Roland F; Curtis, Christina; Dunning, Mark J; Bardwell, Helen; Johnson, Nicola; Doyle, Sarah; Turashvili, Gulisa; Provenzano, Elena; Aparicio, Sam; Caldas, Carlos; Markowetz, Florian

    2012-10-24

    Solid tumors are heterogeneous tissues composed of a mixture of cancer and normal cells, which complicates the interpretation of their molecular profiles. Furthermore, tissue architecture is generally not reflected in molecular assays, rendering this rich information underused. To address these challenges, we developed a computational approach based on standard hematoxylin and eosin-stained tissue sections and demonstrated its power in a discovery and validation cohort of 323 and 241 breast tumors, respectively. To deconvolute cellular heterogeneity and detect subtle genomic aberrations, we introduced an algorithm based on tumor cellularity to increase the comparability of copy number profiles between samples. We next devised a predictor for survival in estrogen receptor-negative breast cancer that integrated both image-based and gene expression analyses and significantly outperformed classifiers that use single data types, such as microarray expression signatures. Image processing also allowed us to describe and validate an independent prognostic factor based on quantitative analysis of spatial patterns between stromal cells, which are not detectable by molecular assays. Our quantitative, image-based method could benefit any large-scale cancer study by refining and complementing molecular assays of tumor samples.

  7. Infectivity of attenuated poxvirus vaccine vectors and immunogenicity of a raccoonpox vectored rabies vaccine in the Brazilian Free-tailed bat (Tadarida brasiliensis)

    USGS Publications Warehouse

    Stading, Benjamin; Osorio, Jorge E.; Velasco-Villa, Andres; Smotherman, Michael; Kingstad-Bakke, Brock; Rocke, Tonie E.

    2016-01-01

    Bats (Order Chiroptera) are an abundant group of mammals with tremendous ecological value as insectivores and plant dispersers, but their role as reservoirs of zoonotic diseases has received more attention in the last decade. With the goal of managing disease in free-ranging bats, we tested modified vaccinia Ankara (MVA) and raccoon poxvirus (RCN) as potential vaccine vectors in the Brazilian Free-tailed bat (Tadarida brasiliensis), using biophotonic in vivo imaging and immunogenicity studies. Animals were administered recombinant poxviral vectors expressing the luciferase gene (MVA-luc, RCN-luc) through oronasal (ON) or intramuscular (IM) routes and subsequently monitored for bioluminescent signal indicative of viral infection. No clinical illness was noted after exposure to any of the vectors, and limited luciferase expression was observed. Higher and longer levels of expression were observed with the RCN-luc construct. When given IM, luciferase expression was limited to the site of injection, while ON exposure led to initial expression in the oral cavity, often followed by secondary replication at another location, likely the gastric mucosa or gastric associated lymphatic tissue. Viral DNA was detected in oral swabs up to 7 and 9 days post infection (dpi) for MVA and RCN, respectively. While no live virus was detected in oral swabs from MVA-infected bats, titers up to 3.88 x 104 PFU/ml were recovered from oral swabs of RCN-infected bats. Viral DNA was also detected in fecal samples from two bats inoculated IM with RCN, but no live virus was recovered. Finally, we examined the immunogenicity of a RCN based rabies vaccine (RCN-G) following ON administration. Significant rabies neutralizing antibody titers were detected in the serum of immunized bats using the rapid fluorescence focus inhibition test (RFFIT). These studies highlight the safety and immunogenicity of attenuated poxviruses and their potential use as vaccine vectors in bats.

  8. Infectivity of attenuated poxvirus vaccine vectors and immunogenicity of a raccoonpox vectored rabies vaccine in the Brazilian Free-tailed bat (Tadarida brasiliensis)

    PubMed Central

    Stading, Ben R.; Osorio, Jorge E.; Velasco-Villa, Andres; Smotherman, Michael; Kingstad-Bakke, Brock

    2017-01-01

    Bats (Order Chiroptera) are an abundant group of mammals with tremendous ecological value as insectivores and plant dispersers, but their role as reservoirs of zoonotic diseases has received more attention in the last decade. With the goal of managing disease in free-ranging bats, we tested modified vaccinia Ankara (MVA) and raccoon poxvirus (RCN) as potential vaccine vectors in the Brazilian Free-tailed bat (Tadarida brasiliensis), using biophotonic in vivo imaging and immunogenicity studies. Animals were administered recombinant poxviral vectors expressing the luciferase gene (MVA-luc, RCN-luc) through oronasal (ON) or intramuscular (IM) routes and subsequently monitored for bioluminescent signal indicative of viral infection. No clinical illness was noted after exposure to any of the vectors, and limited luciferase expression was observed. Higher and longer levels of expression were observed with the RCN-luc construct. When given IM, luciferase expression was limited to the site of injection, while ON exposure led to initial expression in the oral cavity, often followed by secondary replication at another location, likely the gastric mucosa or gastric associated lymphatic tissue. Viral DNA was detected in oral swabs up to 7 and 9 days post infection (dpi) for MVA and RCN, respectively. While no live virus was detected in oral swabs from MVA-infected bats, titers up to 3.88 × 104 PFU/ml were recovered from oral swabs of RCN-infected bats. Viral DNA was also detected in fecal samples from two bats inoculated IM with RCN, but no live virus was recovered. Finally, we examined the immunogenicity of a RCN based rabies vaccine (RCN-G) following ON administration. Significant rabies neutralizing antibody titers were detected in the serum of immunized bats using the rapid fluorescence focus inhibition test (RFFIT). These studies highlight the safety and immunogenicity of attenuated poxviruses and their potential use as vaccine vectors in bats. PMID:27650872

  9. Far Ultraviolet Imaging from the Image Spacecraft

    NASA Technical Reports Server (NTRS)

    Mende, S. B.; Heetderks, H.; Frey, H. U.; Lampton, M.; Geller, S. P.; Stock, J. M.; Abiad, R.; Siegmund, O. H. W.; Tremsin, A. S.; Habraken, S.

    2000-01-01

    Direct imaging of the magnetosphere by the IMAGE spacecraft will be supplemented by observation of the global aurora. The IMAGE satellite instrument complement includes three Far Ultraviolet (FUV) instruments. The Wideband Imaging Camera (WIC) will provide broad band ultraviolet images of the aurora for maximum spatial and temporal resolution by imaging the LBH N2 bands of the aurora. The Spectrographic Imager (SI), a novel form of monochromatic imager, will image the aurora, filtered by wavelength. The proton-induced component of the aurora will be imaged separately by measuring the Doppler-shifted Lyman-a. Finally, the GEO instrument will observe the distribution of the geocoronal emission to obtain the neutral background density source for charge exchange in the magnetosphere. The FUV instrument complement looks radially outward from the rotating IMAGE satellite and, therefore, it spends only a short time observing the aurora and the Earth during each spin. To maximize photon collection efficiency and use efficiently the short time available for exposures the FUV auroral imagers WIC and SI both have wide fields of view and take data continuously as the auroral region proceeds through the field of view. To minimize data volume, the set of multiple images are electronically co-added by suitably shifting each image to compensate for the spacecraft rotation. In order to minimize resolution loss, the images have to be distort ion-corrected in real time. The distortion correction is accomplished using high speed look up tables that are pre-generated by least square fitting to polynomial functions by the on-orbit processor. The instruments were calibrated individually while on stationary platforms, mostly in vacuum chambers. Extensive ground-based testing was performed with visible and near UV simulators mounted on a rotating platform to emulate their performance on a rotating spacecraft.

  10. Improved QD-BRET conjugates for detection and imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing Yun; So, Min-kyung; Koh, Ai Leen

    2008-08-01

    Self-illuminating quantum dots, also known as QD-BRET conjugates, are a new class of quantum dot bioconjugates which do not need external light for excitation. Instead, light emission relies on the bioluminescence resonance energy transfer from the attached Renilla luciferase enzyme, which emits light upon the oxidation of its substrate. QD-BRET combines the advantages of the QDs (such as superior brightness and photostability, tunable emission, multiplexing) as well as the high sensitivity of bioluminescence imaging, thus holding the promise for improved deep tissue in vivo imaging. Although studies have demonstrated the superior sensitivity and deep tissue imaging potential, the stability ofmore » the QD-BRET conjugates in biological environment needs to be improved for long-term imaging studies such as in vivo cell tracking. In this study, we seek to improve the stability of QD-BRET probes through polymeric encapsulation with a polyacrylamide gel. Results show that encapsulation caused some activity loss, but significantly improved both the in vitro serum stability and in vivo stability when subcutaneously injected into the animal. Stable QD-BRET probes should further facilitate their applications for both in vitro testing as well as in vivo cell tracking studies.« less

  11. Fluorescence imaging to study cancer burden on lymph nodes

    NASA Astrophysics Data System (ADS)

    D'Souza, Alisha V.; Elliott, Jonathan T.; Gunn, Jason R.; Samkoe, Kimberley S.; Tichauer, Kenneth M.; Pogue, Brian W.

    2015-03-01

    Morbidity and complexity involved in lymph node staging via surgical resection and biopsy calls for staging techniques that are less invasive. While visible blue dyes are commonly used in locating sentinel lymph nodes, since they follow tumor-draining lymphatic vessels, they do not provide a metric to evaluate presence of cancer. An area of active research is to use fluorescent dyes to assess tumor burden of sentinel and secondary lymph nodes. The goal of this work was to successfully deploy and test an intra-nodal cancer-cell injection model to enable planar fluorescence imaging of a clinically relevant blue dye, specifically methylene blue along with a cancer targeting tracer, Affibody labeled with IRDYE800CW and subsequently segregate tumor-bearing from normal lymph nodes. This direct-injection based tumor model was employed in athymic rats (6 normal, 4 controls, 6 cancer-bearing), where luciferase-expressing breast cancer cells were injected into axillary lymph nodes. Tumor presence in nodes was confirmed by bioluminescence imaging before and after fluorescence imaging. Lymphatic uptake from the injection site (intradermal on forepaw) to lymph node was imaged at approximately 2 frames/minute. Large variability was observed within each cohort.

  12. Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle.

    PubMed

    Santos, Silvia; Chu, Kengyeh K; Lim, Daryl; Bozinovic, Nenad; Ford, Tim N; Hourtoule, Claire; Bartoo, Aaron C; Singh, Satish K; Mertz, Jerome

    2009-01-01

    We present an endomicroscope apparatus that exhibits out-of-focus background rejection based on wide-field illumination through a flexible imaging fiber bundle. Our technique, called HiLo microscopy, involves acquiring two images, one with grid-pattern illumination and another with standard uniform illumination. An evaluation of the image contrast with grid-pattern illumination provides an optically sectioned image with low resolution. This is complemented with high-resolution information from the uniform illumination image, leading to a full-resolution image that is optically sectioned. HiLo endomicroscope movies are presented of fluorescently labeled rat colonic mucosa.

  13. Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle

    NASA Astrophysics Data System (ADS)

    Santos, Silvia; Chu, Kengyeh K.; Lim, Daryl; Bozinovic, Nenad; Ford, Tim N.; Hourtoule, Claire; Bartoo, Aaron C.; Singh, Satish K.; Mertz, Jerome

    2009-05-01

    We present an endomicroscope apparatus that exhibits out-of-focus background rejection based on wide-field illumination through a flexible imaging fiber bundle. Our technique, called HiLo microscopy, involves acquiring two images, one with grid-pattern illumination and another with standard uniform illumination. An evaluation of the image contrast with grid-pattern illumination provides an optically sectioned image with low resolution. This is complemented with high-resolution information from the uniform illumination image, leading to a full-resolution image that is optically sectioned. HiLo endomicroscope movies are presented of fluorescently labeled rat colonic mucosa.

  14. Searching for Extant Life on Mars - The ATP-Firefly LuciferinLuciferase Technique

    NASA Astrophysics Data System (ADS)

    Obousy, R. K.; Tziolas, A. C.; Kaltsas, K.; Sims, M. R.; Grant, W. D.

    We have investigated the use of the ATP-Firefly Luciferin/Luciferase (FFL) enzymic photoluminescent reaction as a possible means of detecting extant life in the Martian environment. Experiments carried out by the authors illustrate the capacity of the method to successfully detect extant forms of life on Mars assuming ATP is an intrinsic part of the biochemistry of such life-forms. A photodiode based apparatus, built to test the assumptions and applicability of the ATP-Firefly Luciferase/Luciferin technique to an exobiologically inclined mission to Mars, revealed the adequate resolution and reproducibility of the methodology plus areas of improvement. Also detailed are extraction, delivery and analysis system concepts, proposed for future Mars missions.

  15. Overcoming Resistance to Inhibitors of the Akt Protein Kinase by Modulation of the Pim Kinase Pathway

    DTIC Science & Technology

    2014-10-01

    during hypoxia were biologically meaningful, we investigated the activity of a reporter with multiple HIF binding sites ( HRE ) in front of a luciferase...inhibitors in a dose dependent fashion blocked the activity of the HRE to activate luciferase mRNA and protein production. This result demonstrates that

  16. Inhibition of Th17 Cell Differentiation as a Treatment for Multiple Sclerosis

    DTIC Science & Technology

    2012-10-01

    sequence) using Lipofectamine . After 48 hours Dual Glo substrate was added to the cells and luciferase activity and Renilla Luciferase activity were...pmirGLO326 and pMR04 (encoding mir-326) using Lipofectamine . After 48 hours Dual Glo substrate was added to the cells and Firefly and Renilla

  17. Utilization of RNA polymerase I promoter and terminator sequences to develop a DNA transfection system for the study of hepatitis C virus internal ribosomal entry site-dependent translation.

    PubMed

    Oem, Jae-Ku; Xiang, Zhonghua; Zhou, Yan; Babiuk, Lorne A; Liu, Qiang

    2007-09-01

    Hepatitis C virus (HCV) causes severe liver diseases in a large population worldwide. HCV protein translation is controlled by an internal ribosomal entry site (IRES) within the 5'-untranslated region (UTR). HCV IRES-dependent translation is critical for HCV-associated pathogenesis. To develop a plasmid DNA transfection system by using RNA polymerase I promoter and terminator sequences for studying HCV IRES-dependent translation. A gene cassette containing HCV 5'-UTR, Renilla luciferase reporter gene, and HCV 3'-UTR was inserted between RNA polymerase I promoter and terminator sequences. HCV IRES-directed translation was determined by luciferase assay after transfection. Transfection of the RNA polymerase I-HCV IRES plasmid into human hepatoma Huh-7 and HepG2 cells resulted in luciferase gene expression. Deletion of the IIIf domain in HCV IRES dramatically reduced luciferase activity. Our results indicated that the plasmid vector system-based on RNA polymerase I promoter and terminator sequences represents an effective approach for the study of HCV IRES-dependent translation.

  18. 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine.

    PubMed

    Kaskova, Zinaida M; Tsarkova, Aleksandra S; Yampolsky, Ilia V

    2016-10-24

    Bioluminescence (BL) is a spectacular phenomenon involving light emission by live organisms. It is caused by the oxidation of a small organic molecule, luciferin, with molecular oxygen, which is catalysed by the enzyme luciferase. In nature, there are approximately 30 different BL systems, of which only 9 have been studied to various degrees in terms of their reaction mechanisms. A vast range of in vitro and in vivo analytical techniques have been developed based on BL, including tests for different analytes, immunoassays, gene expression assays, drug screening, bioimaging of live organisms, cancer studies, the investigation of infectious diseases and environmental monitoring. This review aims to cover the major existing applications for bioluminescence in the context of the diversity of luciferases and their substrates, luciferins. Particularly, the properties and applications of d-luciferin, coelenterazine, bacterial, Cypridina and dinoflagellate luciferins and their analogues along with their corresponding luciferases are described. Finally, four other rarely studied bioluminescent systems (those of limpet Latia, earthworms Diplocardia and Fridericia and higher fungi), which are promising for future use, are also discussed.

  19. The dark and bright sides of an enzyme: a three dimensional structure of the N-terminal domain of Zophobas morio luciferase-like enzyme, inferences on the biological function and origin of oxygenase/luciferase activity.

    PubMed

    Prado, R A; Santos, C R; Kato, D I; Murakami, M T; Viviani, V R

    2016-05-11

    Beetle luciferases, the enzymes responsible for bioluminescence, are special cases of CoA-ligases which have acquired a novel oxygenase activity, offering elegant models to investigate the structural origin of novel catalytic functions in enzymes. What the original function of their ancestors was, and how the new oxygenase function emerged leading to bioluminescence remains unclear. To address these questions, we solved the crystal structure of a recently cloned Malpighian luciferase-like enzyme of unknown function from Zophobas morio mealworms, which displays weak luminescence with ATP and the xenobiotic firefly d-luciferin. The three dimensional structure of the N-terminal domain showed the expected general fold of CoA-ligases, with a unique carboxylic substrate binding pocket, permitting the binding and CoA-thioesterification activity with a broad range of carboxylic substrates, including short-, medium-chain and aromatic acids, indicating a generalist function consistent with a xenobiotic-ligase. The thioesterification activity with l-luciferin, but not with the d-enantiomer, confirms that the oxygenase activity emerged from a stereoselective impediment of the thioesterification reaction with the latter, favoring the alternative chemiluminescence oxidative reaction. The structure and site-directed mutagenesis support the involvement of the main-chain amide carbonyl of the invariant glycine G323 as the catalytic base for luciferin C4 proton abstraction during the oxygenase activity in this enzyme and in beetle luciferases (G343).

  20. Development of a dual luciferase activity and fluorescamine protein assay adapted to a 384 micro-well plate format: Reducing variability in human luciferase transactivation cell lines aimed at endocrine active substances.

    PubMed

    Brennan, Jennifer C; Tillitt, Donald E

    2018-03-01

    There is a need to adapt cell bioassays to 384-well and 1536-well formats instead of the traditional 96-well format as high-throughput screening (HTS) demands increase. However, the sensitivity and performance of the bioassay must be re-verified in these higher micro-well plates, and verification of cell health must also be HT (high-throughput). We have adapted two commonly used human breast luciferase transactivation cell bioassays, the recently re-named estrogen agonist/antagonist screening VM7Luc4E2 cell bioassay (previously designated BG1Luc4E2) and the androgen/glucocorticoid screening MDA-kb2 cell bioassay, to 384-well formats for HTS of endocrine-active substances (EASs). This cost-saving adaptation includes a fast, accurate, and easy measurement of protein amount in each well via the fluorescamine assay with which to normalize luciferase activity of cell lysates without requiring any transfer of the cell lysates. Here we demonstrate that by accounting for protein amount in the cell lysates, antagonistic agents can easily be distinguished from cytotoxic agents in the MDA-kb2 and VM7Luc4E2 cell bioassays. Additionally, we demonstrate via the fluorescamine assay improved interpretation of luciferase activity in wells along the edge of the plate (the so-called "edge effect"), thereby increasing usable wells to the entire plate, not just interior wells. Published by Elsevier Ltd.

  1. Development of a dual luciferase activity and fluorescamine protein assay adapted to a 384 micro-well plate format: Reducing variability in human luciferase transactivation cell lines aimed at endocrine active substances

    USGS Publications Warehouse

    Brennan, Jennifer; Tillitt, Donald E.

    2018-01-01

    There is a need to adapt cell bioassays to 384-well and 1536-well formats instead of the traditional 96-well format as high-throughput screening (HTS) demands increase. However, the sensitivity and performance of the bioassay must be re-verified in these higher micro-well plates, and verification of cell health must also be HT (high-throughput). We have adapted two commonly used human breast luciferase transactivation cell bioassays, the recently re-named estrogen agonist/antagonist screening VM7Luc4E2 cell bioassay (previously designated BG1Luc4E2) and the androgen/glucocorticoid screening MDA-kb2 cell bioassay, to 384-well formats for HTS of endocrine-active substances (EASs). This cost-saving adaptation includes a fast, accurate, and easy measurement of protein amount in each well via the fluorescamine assay with which to normalize luciferase activity of cell lysates without requiring any transfer of the cell lysates. Here we demonstrate that by accounting for protein amount in the cell lysates, antagonistic agents can easily be distinguished from cytotoxic agents in the MDA-kb2 and VM7Luc4E2 cell bioassays. Additionally, we demonstrate via the fluorescamine assay improved interpretation of luciferase activity in wells along the edge of the plate (the so-called “edge effect”), thereby increasing usable wells to the entire plate, not just interior wells.

  2. Comparison of intra-organellar chaperone capacity for dealing with stress-induced protein unfolding.

    PubMed

    Hageman, Jurre; Vos, Michel J; van Waarde, Maria A W H; Kampinga, Harm H

    2007-11-23

    Molecular chaperones are essential for cells to prevent that partially unfolded proteins form non-functional, toxic aggregates. This requirement is increased when cells experience protein unfolding stresses and such could affect all compartments in the eukaryotic cell. Whether all organelles are equipped with comparable chaperone capacities is largely unknown, mainly due to the lack of suitable reporters that allow such a comparison. Here we describe the development of fluorescent luciferase reporters that are sorted to various cellular locations (nucleus, cytoplasm, endoplasmic reticulum, and peroxisomes) and that differ minimally in their intrinsic thermal stability properties. When heating living cells, the rate of inactivation was most rapid for the nuclear-targeted luciferase, indicating that the nucleus is the most sensitive organelle toward heat-induced denaturing stress. Post-heat re-activation, however, occurred at equal kinetics irrespective of luciferase localization. Also, induction of thermotolerance by a priming heat treatment, that coordinately up-regulates all heat-inducible chaperones, resulted in a transient heat resistance of the luciferase in all organelles in a comparable manner. Overexpression of the main heat-inducible Hsp70 family member, HspA1A, protected only the cytosolic and nuclear, but not the other luciferases. Together, our data suggest that in each compartment investigated, including the peroxisome in which so far no chaperones could be detected, chaperone machines are present and can be induced with activities similar to those present in the cytosolic/nuclear compartment.

  3. Role of Lon, an ATP-Dependent Protease Homolog, in Resistance of Pseudomonas aeruginosa to Ciprofloxacin▿

    PubMed Central

    Brazas, Michelle D.; Breidenstein, Elena B. M.; Overhage, Joerg; Hancock, Robert E. W.

    2007-01-01

    With few novel antimicrobials in the pharmaceutical pipeline, resistance to the current selection of antibiotics represents a significant therapeutic challenge. Microbial persistence in subinhibitory antibiotic environments has been proposed to contribute to the development of resistance. Pseudomonas aeruginosa cultures pretreated with subinhibitory concentrations of ciprofloxacin were found to exhibit an adaptive resistance phenotype when cultures were subsequently exposed to suprainhibitory ciprofloxacin concentrations. Microarray experiments revealed candidate genes involved in such adaptive resistance. Screening of 10,000 Tn5-luxCDABE mutants identified several mutants with increased or decreased ciprofloxacin susceptibilities, including mutants in PA1803, a close homolog of the ATP-dependent lon protease, which were found to exhibit ≥4-fold-increased susceptibilities to ciprofloxacin and other fluoroquinolones, but not to gentamicin or imipenem, as well as a characteristic elongated morphology. Complementation of the lon mutant restored wild-type antibiotic susceptibility and cell morphology. Expression of the lon mutant, as monitored through a luciferase reporter fusion, was found to increase over time in the presence of subinhibitory ciprofloxacin concentrations. The data are consistent with the hypothesis that the induction of Lon by ciprofloxacin is involved in adaptive resistance. PMID:17893152

  4. Single hind limb burn injury to mice alters nuclear factor-κB expression and [¹⁸F] 2-fluoro-2-deoxy-D-glucose uptake.

    PubMed

    Carter, Edward A; Hamrahi, Victoria; Paul, Kasie; Bonab, Ali A; Jung, Walter; Tompkins, Ronald G; Fischman, Alan J

    2014-01-01

    Burn trauma to the extremities can produce marked systemic effects in mice. Burn injury to the dorsal surface of mice is also associated with changes in glucose metabolism ([18F] 2-fluoro-2-deoxy-D-glucose [18FDG] uptake) by brown adipose tissue (BAT) and nuclear factor (NF)-κB activity in several tissues including skeletal muscle. This study examined the effect of a single hind limb burn in mice on 18FDG uptake by NF-κB activity in vivo, and blood flow was determined by laser Doppler techniques. Male NF-κB luciferase reporter mice (28-30 g) were anesthetized, both legs were shaven, and the right leg was subjected to scald injury by immersion in 90°C water for 5 seconds. Sham-treated animals were used as controls. Each burned and sham mouse was resuscitated with saline (2 mL, i.p.). The individual animals were placed in wire bottom cages with no food and free access to water. After 24 hours, the animals were imaged with laser Doppler for measuring blood flow in the hind limb. The animals were then unanesthetized with 50 μCi of FDG or luciferin (1.0 mg, i.v.) via tail vein. Five minutes after luciferin injection, NF-κB mice were studied by bioluminescence imaging with a charge-coupled device camera. One hour after 18FDG injection, the animals were killed with carbon dioxide overdose, and 18FDG biodistribution was measured. Tissues were also analyzed for NF-κB luciferase activity. The scalding procedure used here produced a full-thickness burn injury to the leg with sharp margins. 18FDG uptake by the burned leg was lower than that in the contralateral limb. Similarly, luciferase activity and blood flow in the burned leg were lower than those in the contralateral leg. 18FDG uptake by BAT and heart increased, whereas that by brain decreased. In conclusion, the present study suggests that burn injury to a single leg decreased FDG uptake by skeletal muscle but increased 18FDG uptake by BAT. The injury to the leg reduced NF-κB expression compared with the contralateral leg and the uninjured skeletal muscle of the sham but activated NF-κB expression in a number of other organs. These findings are consistent with the hypothesis that burn trauma to the extremities can produce marked systemic effects, including activation of NF-κB expression and activation of 18FDG uptake by BAT.

  5. Bioluminescence Imaging of Transplanted Mesenchymal Stem Cells by Overexpression of Hepatocyte Nuclear Factor4α: Tracking Biodistribution and Survival.

    PubMed

    Xie, Peiyi; Hu, Xiaojun; Li, Dan; Xie, Sidong; Zhou, Zhiyang; Meng, Xiaochun; Shan, Hong

    2018-05-14

    The purposes of this study were to construct immortalized human bone marrow mesenchymal stem cells (UE7T-13) with overexpression of the hepatocyte nuclear factor4α (hHNF4α) and luciferase2-mKate2 dual-fusion reporter gene, further investigate their impact on treating acute liver injury (ALI) in rats, and track their biodistribution and survival by bioluminescence imaging (BLI). The hHNF4α and luciferase2-mKate2 genes were transduced by a lentiviral vector into UE7T-13 cells (named E7-hHNF4α-R cells), and expression was verified by immunofluorescence, RT-PCR, and flow cytometry. E7-hGFP-R cells expressing the luciferase2-mKate2/hGFP gene served as a negative group. A correlation between the bioluminescence signal and cell number was detected by BLI. The ALI rats were established and divided into three groups: PBS, E7-hGFP-R, and E7-hHNF4α-R. After transplantation of 2.0 × 10 6 cells, BLI was used to dynamically track their biodistribution and survival. The restoration of biological functions was assessed by serum biochemical and histological analyses. Stable high-level expression of hHNF4α and mKate2 protein was established in the E7-hHNF4α-R cells in vitro. The E7-hHNF4α-R cells strongly expressed hGFP, hHNF4α, and mKate2 proteins, and the hHNF4α gene. hGFP-mKate2 dual-positive cell expression reached approximately 93 %. BLI verified that a linear relationship existed between the cell number and bioluminescence signal (R 2  = 0.9991). The cells improved liver function in vivo after transplantation into the ALI rat liver, as evidenced by the fact that AST and ALT temporarily returned to normal levels in the recipient ALI rats. The presence of the transplanted E7-hGFP-R and E7-hHNF4α-R cells in recipient rat livers was confirmed by BLI and immunohistochemistry. However, the cells were cleared by the immune system a short time after transplantation into ALI rats with a normal immune system. Our data revealed that the E7-hHNF4α-R cells can transiently improve damaged liver function and were rapidly cleared by the immune system. In addition, BLI is a useful tool to track transplanted cell biodistribution and survival.

  6. Single Hind Limb Burn Injury to Mice Alters NF Kappa B (NF-κB) Expression and [18F] 2-Fluoro-2-Deoxy-d-Glucose (FDG) Uptake

    PubMed Central

    Carter, Edward A.; Hamrahi, Victoria; Paul, Kasie; Bonab, Ali A.; Jung, Walter; Tompkins, Ronald G.; Fischman, Alan J.

    2014-01-01

    Burn trauma to the extremities can produce marked systemic effects in mice1, 6, 7. Burn injury to the dorsal surface of mice is also associated with changes in glucose metabolism (18FDG uptake) by brown adipose tissue (BAT) and NF-κB activity in a number of tissues including skeletal muscle. This study examined the effect of a single hindlimb burn in mice on 18FDG uptake by in vivo, NF-κB activity in vivo, and blood flow determined by laser Doppler techniques. Male mice NF-κB luciferase reporter mice (28 grams- 30 grams, male) were anesthetized, both legs were shaven, and the right leg was subjected to scald injury by immersion in 90°C water for 5 seconds. Sham treated animals were used as controls. Each burned and sham mouse was resuscitated with saline (2 ml, IP). The individual animals were placed in wire bottom cages with no food and free access to water. 24 hrs later, the animals were imaged with Laser Doppler for measurements of blood flow in the hind limb. The animals were then injected unanesthetized with 50 µCi of FDG or luciferin (1.0 mg), I.V. via tail vein. Five minutes after luciferin injection, NF-kB mice were studied by bioluminescence imaging with a CCD camera. One hour after 18FDG injection the animals were euthanized with carbon dioxide overdose and 18FDG biodistribution was measured. Tissues were also analyzed for NF-κB luciferase activity. The scalding procedure used here produced a full thickness burn injury to the leg with sharp margins. 18FDG uptake by the burned leg was lower than in the contralateral limb. Similarly luciferase activity and blood flow in the burned leg were lower than in the contralateral leg. 18FDG uptake by BAT and heart was increased, while brain was decreased. In conclusion, the present study suggests that burn injury to a single leg reduced 18FDG uptake by skeletal muscle but increased 18FDG uptake by BAT. The injury to the leg reduced NF-κB expression as compared to the contralateral leg and the uninjured skeletal muscle of the sham, but activated NF-κB expression in a number of other organs. These findings are consistent with the hypothesis that burn trauma to the extremities can produce marked systemic effects, including activation of NF-κB expression and activation of 18FDG uptake by BAT. PMID:25100541

  7. Optogenetic control of ATP release

    NASA Astrophysics Data System (ADS)

    Lewis, Matthew A.; Joshi, Bipin; Gu, Ling; Feranchak, Andrew; Mohanty, Samarendra K.

    2013-03-01

    Controlled release of ATP can be used for understanding extracellular purinergic signaling. While coarse mechanical forces and hypotonic stimulation have been utilized in the past to initiate ATP release from cells, these methods are neither spatially accurate nor temporally precise. Further, these methods cannot be utilized in a highly effective cell-specific manner. To mitigate the uncertainties regarding cellular-specificity and spatio-temporal release of ATP, we herein demonstrate use of optogenetics for ATP release. ATP release in response to optogenetic stimulation was monitored by Luciferin-Luciferase assay (North American firefly, photinus pyralis) using luminometer as well as mesoscopic bioluminescence imaging. Our result demonstrates repetitive release of ATP subsequent to optogenetic stimulation. It is thus feasible that purinergic signaling can be directly detected via imaging if the stimulus can be confined to single cell or in a spatially-defined group of cells. This study opens up new avenue to interrogate the mechanisms of purinergic signaling.

  8. High Throughput Screen to Identify Novel Drugs that Inhibit Prostate Cancer Metastasis

    DTIC Science & Technology

    2005-10-01

    mutants of the SSeCKS α promoter fused to luciferase reporter cassettes (left) were transiently expressed along with pRL-TK- renilla in either P69 or...DU145 cells, and the resulting luciferase activity was normalized to that of renilla activity. Figure 3. Semi quantitative RT-PCR of SSeCKS (either

  9. Restoration of Wild-Type Activity to Mutant p53 in Prostate Cancer: A Novel Therapeutic Approach

    DTIC Science & Technology

    2006-01-01

    B) Cells were transfected with 1 mg of the indicated luciferase reporter constructs and 50 ng of pRL- Renilla . 24 hrs post transfections p53 was...induced by removal of tetracyline. Cells were lysed and assayed for luciferase and Renilla activities 24 hrs after induction of p53. The indicated

  10. Application of the luciferin-luciferase enzyme system for determination of adenosine triphosphate (ATP) to studies on the mechanisms of herbicide action

    NASA Technical Reports Server (NTRS)

    St.john, J. B.

    1975-01-01

    The luciferin-luciferase enzyme system for determination of ATP is valuable for studies on the mechanisms of herbicide action. Investigations using this system have shown that certain herbicides may act by interfering with ATP production or by blocking ATP use, or by both mechanisms.

  11. Cloning and characterization of new bioluminescent proteins

    NASA Astrophysics Data System (ADS)

    Szent-Gyorgyi, Christopher; Ballou, Byron T.; Dagnal, Erich; Bryan, Bruce

    1999-07-01

    Over the past two years Prolume has undertaken a comprehensive program to clone luciferases and associated 'green fluorescent proteins' (GFPs) from marine animals that use coelenterazine as the luciferin. To data we have cloned several bioluminescent proteins, including two novel copepod luciferases and two anthozoan GFPs. These four proteins have sequences that differ greatly form previously cloned analogous proteins; the sequence diversity apparently is due to independent evolutionary origins and unusual evolutionary constraints. Thus coelenterazine-based bioluminescent systems may also manifest a variety of useful properties. We discuss form this taxonomic perspective the initial biochemical and spectral characterization of our cloned proteins. Emphasis is placed on the anthozoan luciferase-GFP systems, whose efficient resonance energy transfer has elicited much current interest.

  12. MO-DE-210-03: Ultrasound imaging is an attractive method for image guided radiation treatment (IGRT), by itself or to complement other imaging modalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, K.

    Ultrasound imaging is an attractive method for image guided radiation treatment (IGRT), by itself or to complement other imaging modalities. It is inexpensive, portable and provides good soft tissue contrast. For challenging soft tissue targets such as pancreatic cancer, ultrasound imaging can be used in combination with pre-treatment MRI and/or CT to transfer important anatomical features for target localization at time of treatment. The non-invasive and non-ionizing nature of ultrasound imaging is particularly powerful for intra-fraction localization and monitoring. Recognizing these advantages, efforts are being made to incorporate novel robotic approaches to position and manipulate the ultrasound probe during irradiation.more » These recent enabling developments hold potential to bring ultrasound imaging to a new level of IGRT applications. However, many challenges, not limited to image registration, robotic deployment, probe interference and image acquisition rate, need to be addressed to realize the full potential of IGRT with ultrasound imaging. Learning Objectives: Understand the benefits and limitations in using ultrasound to augment MRI and/or CT for motion monitoring during radiation therapy delivery. Understanding passive and active robotic approaches to implement ultrasound imaging for intra-fraction monitoring. Understand issues of probe interference with radiotherapy treatment. Understand the critical clinical workflow for effective and reproducible IGRT using ultrasound guidance. The work of X.L. is supported in part by Elekta; J.W. and K.D. is supported in part by a NIH grant R01 CA161613 and by Elekta; D.H. is support in part by a NIH grant R41 CA174089.« less

  13. Paul Lampe/McGarry Houghton | Division of Cancer Prevention

    Cancer.gov

    Project Title/Research Areas: Hybrid Plasma Markers that Complement CT Imaging for Early Lung Cancer DetectionPrincipal Investigator/Institution:  Paul Lampe/McGarry Houghton, Fred Hutchinson Cancer Research Center |

  14. Evaluation of viral and mammalian promoters for driving transgene expression in mouse liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Dosari, Mohammed; Zhang Guisheng; Knapp, Joseph E.

    2006-01-13

    Fifteen luciferase plasmid constructs driven by various promoters including cytomegalovirus (CMV), Rous sarcoma virus (RSV), human serum albumin (SA), {alpha}-1 antitrypsin (AAT), cytochrome P450 CYP1A2, CYP2C9, CYP2C18, CYP2D6, CYP3A4, mouse CYP2b10, human amyloid precursor protein (APP), chicken {beta} actin (ACT), nuclear factor {kappa} B (NF{kappa}B), and heat shock protein 70 (HS) promoters were hydrodynamically introduced into mouse hepatocytes, and the level and persistence of luciferase gene expression were examined. Eight hours post-gene transfer, the CMV and AAT promoters showed the highest activity, followed by the CYP2D6, HS, and RSV promoters which were slightly less active. The human serum albumin promotermore » exhibited the lowest activity among the promoters examined. The time course of gene expression showed a two-phase decline in luciferase activity with a rapid phase within First 5-7 days and a slower decline thereafter. Results from Southern and Northern blot analyses revealed a good correlation between the decline of luciferase activity and the decrease in mRNA level, suggesting promoter silencing as the possible mechanism for the observed transient luciferase gene expression. Inclusion of EBN1 and oriP sequences of Epstein-Barr virus into the plasmid extended the period of active transcription for about one week. These results provide important information concerning the role of promoters in regulating transgene expression and for the proper design of plasmids for gene expression and gene therapy.« less

  15. miR-Sens--a retroviral dual-luciferase reporter to detect microRNA activity in primary cells.

    PubMed

    Beillard, Emmanuel; Ong, Siau Chi; Giannakakis, Antonis; Guccione, Ernesto; Vardy, Leah A; Voorhoeve, P Mathijs

    2012-05-01

    MicroRNA-mRNA interactions are commonly validated and deconstructed in cell lines transfected with luciferase reporters. However, due to cell type-specific variations in microRNA or RNA-binding protein abundance, such assays may not reliably reflect microRNA activity in other cell types that are less easily transfected. In order to measure miRNA activity in primary cells, we constructed miR-Sens, a MSCV-based retroviral vector that encodes both a Renilla luciferase reporter gene controlled by microRNA binding sites in its 3' UTR and a Firefly luciferase normalization gene. miR-Sens sensors can be efficiently transduced in primary cells such as human fibroblasts and mammary epithelial cells, and allow the detection of overexpressed and, more importantly, endogenous microRNAs. Notably, we find that the relative luciferase activity is correlated to the miRNA expression, allowing quantitative measurement of microRNA activity. We have subsequently validated the miR-Sens 3' UTR vectors with known human miRNA-372, miRNA-373, and miRNA-31 targets (LATS2 and TXNIP). Overall, we observe that miR-Sens-based assays are highly reproducible, allowing detection of the independent contribution of multiple microRNAs to 3' UTR-mediated translational control of LATS2. In conclusion, miR-Sens is a new tool for the efficient study of microRNA activity in primary cells or panels of cell lines. This vector will not only be useful for studies on microRNA biology, but also more broadly on other factors influencing the translation of mRNAs.

  16. Structural and dynamical insight into thermally induced functional inactivation of firefly luciferase

    PubMed Central

    Jazayeri, Fatemeh S.; Hosseinkhani, Saman

    2017-01-01

    Luciferase is the key component of light production in bioluminescence process. Extensive and advantageous application of this enzyme in biotechnology is restricted due to its low thermal stability. Here we report the effect of heating up above Tm on the structure and dynamical properties of luciferase enzyme compared to temperature at 298 K. In this way we demonstrate that the number of hydrogen bonds between N- and C-domain is increased for the free enzyme at 325 K. Increased inter domain hydrogen bonds by three at 325 K suggests that inter domain contact is strengthened. The appearance of simultaneous strong salt bridge and hydrogen bond between K529 and D422 and increased existence probability between R533 and E389 could mechanistically explain stronger contact between N- and C-domain. Mutagenesis studies demonstrated the importance of K529 and D422 experimentally. Also the significant reduction in SASA for experimentally important residues K529, D422 and T343 which are involved in active site region was observed. Principle component analysis (PCA) in our study shows that the dynamical behavior of the enzyme is changed upon heating up which mainly originated from the change of motion modes and associated extent of those motions with respect to 298 K. These findings could explain why heating up of the enzyme or thermal fluctuation of protein conformation reduces luciferase activity in course of time as a possible mechanism of thermal functional inactivation. According to these results we proposed two strategies to improve thermal stability of functional luciferase. PMID:28672033

  17. miR-Sens—a retroviral dual-luciferase reporter to detect microRNA activity in primary cells

    PubMed Central

    Beillard, Emmanuel; Ong, Siau Chi; Giannakakis, Antonis; Guccione, Ernesto; Vardy, Leah A.; Voorhoeve, P. Mathijs

    2012-01-01

    MicroRNA–mRNA interactions are commonly validated and deconstructed in cell lines transfected with luciferase reporters. However, due to cell type-specific variations in microRNA or RNA-binding protein abundance, such assays may not reliably reflect microRNA activity in other cell types that are less easily transfected. In order to measure miRNA activity in primary cells, we constructed miR-Sens, a MSCV-based retroviral vector that encodes both a Renilla luciferase reporter gene controlled by microRNA binding sites in its 3′ UTR and a Firefly luciferase normalization gene. miR-Sens sensors can be efficiently transduced in primary cells such as human fibroblasts and mammary epithelial cells, and allow the detection of overexpressed and, more importantly, endogenous microRNAs. Notably, we find that the relative luciferase activity is correlated to the miRNA expression, allowing quantitative measurement of microRNA activity. We have subsequently validated the miR-Sens 3′ UTR vectors with known human miRNA-372, miRNA-373, and miRNA-31 targets (LATS2 and TXNIP). Overall, we observe that miR-Sens-based assays are highly reproducible, allowing detection of the independent contribution of multiple microRNAs to 3′ UTR–mediated translational control of LATS2. In conclusion, miR-Sens is a new tool for the efficient study of microRNA activity in primary cells or panels of cell lines. This vector will not only be useful for studies on microRNA biology, but also more broadly on other factors influencing the translation of mRNAs. PMID:22417692

  18. An Optimized Transient Dual Luciferase Assay for Quantifying MicroRNA Directed Repression of Targeted Sequences

    PubMed Central

    Moyle, Richard L.; Carvalhais, Lilia C.; Pretorius, Lara-Simone; Nowak, Ekaterina; Subramaniam, Gayathery; Dalton-Morgan, Jessica; Schenk, Peer M.

    2017-01-01

    Studies investigating the action of small RNAs on computationally predicted target genes require some form of experimental validation. Classical molecular methods of validating microRNA action on target genes are laborious, while approaches that tag predicted target sequences to qualitative reporter genes encounter technical limitations. The aim of this study was to address the challenge of experimentally validating large numbers of computationally predicted microRNA-target transcript interactions using an optimized, quantitative, cost-effective, and scalable approach. The presented method combines transient expression via agroinfiltration of Nicotiana benthamiana leaves with a quantitative dual luciferase reporter system, where firefly luciferase is used to report the microRNA-target sequence interaction and Renilla luciferase is used as an internal standard to normalize expression between replicates. We report the appropriate concentration of N. benthamiana leaf extracts and dilution factor to apply in order to avoid inhibition of firefly LUC activity. Furthermore, the optimal ratio of microRNA precursor expression construct to reporter construct and duration of the incubation period post-agroinfiltration were determined. The optimized dual luciferase assay provides an efficient, repeatable and scalable method to validate and quantify microRNA action on predicted target sequences. The optimized assay was used to validate five predicted targets of rice microRNA miR529b, with as few as six technical replicates. The assay can be extended to assess other small RNA-target sequence interactions, including assessing the functionality of an artificial miRNA or an RNAi construct on a targeted sequence. PMID:28979287

  19. Bromodomain and Extra-terminal (BET) Protein Inhibitors Suppress Chondrocyte Differentiation and Restrain Bone Growth.

    PubMed

    Niu, Ningning; Shao, Rui; Yan, Guang; Zou, Weiguo

    2016-12-23

    Small molecule inhibitors for bromodomain and extra-terminal (BET) proteins have recently emerged as potential therapeutic agents in clinical trials for various cancers. However, to date, it is unknown whether these inhibitors have side effects on bone structures. Here, we report that inhibition of BET bromodomain proteins may suppress chondrocyte differentiation and restrain bone growth. We generated a luciferase reporter system using the chondrogenic cell line ATDC5 in which the luciferase gene was driven by the promoter of Col2a1, an elementary collagen of the chondrocyte. The Col2a1-luciferase ATDC5 system was used for rapidly screening both activators and repressors of human collagen Col2a1 gene expression, and we found that BET bromodomain inhibitors reduce the Col2a1-luciferase. Consistent with the luciferase assay, BET inhibitors decrease the expression of Col2a1 Furthermore, we constructed a zebrafish line in which the enhanced green fluorescent protein (EGFP) expression was driven by col2a1 promoter. The transgenic (col2a1-EGFP) zebrafish line demonstrated that BET inhibitors I-BET151 and (+)-JQ1 may affect EGFP expression in zebrafish. Furthermore, we found that I-BET151 and (+)-JQ1 may affect chondrocyte differentiation in vitro and inhibit zebrafish growth in vivo Mechanistic analysis revealed that BET inhibitors influenced the depletion of RNA polymerase II from the Col2a1 promoter. Collectively, these results suggest that BET bromodomain inhibition may have side effects on skeletal bone structures. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Influenza A Virus Encoding Secreted Gaussia Luciferase as Useful Tool to Analyze Viral Replication and Its Inhibition by Antiviral Compounds and Cellular Proteins

    PubMed Central

    Palanisamy, Navaneethan; Goedecke, Ulrike; Jäger, Nils; Pöhlmann, Stefan; Winkler, Michael

    2014-01-01

    Reporter genes inserted into viral genomes enable the easy and rapid quantification of virus replication, which is instrumental to efficient in vitro screening of antiviral compounds or in vivo analysis of viral spread and pathogenesis. Based on a published design, we have generated several replication competent influenza A viruses carrying either fluorescent proteins or Gaussia luciferase. Reporter activity could be readily quantified in infected cultures, but the virus encoding Gaussia luciferase was more stable than viruses bearing fluorescent proteins and was therefore analyzed in detail. Quantification of Gaussia luciferase activity in the supernatants of infected culture allowed the convenient and highly sensitive detection of viral spread, and enzymatic activity correlated with the number of infectious particles released from infected cells. Furthermore, the Gaussia luciferase encoding virus allowed the sensitive quantification of the antiviral activity of the neuraminidase inhibitor (NAI) zanamivir and the host cell interferon-inducible transmembrane (IFITM) proteins 1–3, which are known to inhibit influenza virus entry. Finally, the virus was used to demonstrate that influenza A virus infection is sensitive to a modulator of endosomal cholesterol, in keeping with the concept that IFITMs inhibit viral entry by altering cholesterol levels in the endosomal membrane. In sum, we report the characterization of a novel influenza A reporter virus, which allows fast and sensitive detection of viral spread and its inhibition, and we show that influenza A virus entry is sensitive to alterations of endosomal cholesterol levels. PMID:24842154

  1. GENERATION OF TWO NOVEL CELL LINES THAT STABLY EXPRESS HAR AND FIREFLY LUCIFERASE GENES FOR ENDOCRINE SCREENING

    EPA Science Inventory

    Generation of Two Novel Cell Lines that Stably Express hAR and Firefly Luciferase Genes for Endocrine Screening
    K.L. Bobseine*1, W.R. Kelce2, P.C. Hartig*1, and L.E. Gray, Jr.1
    1USEPA, NHEERL, Reproductive Toxicology Division, RTP, NC, 2Searle, Reproductive Toxicology Divi...

  2. FcUni-RLuc: an engineered Renilla luciferase with Fc binding ability and light emission activity.

    PubMed

    Farzannia, A; Roghanian, R; Zarkesh-Esfahani, S H; Nazari, M; Emamzadeh, R

    2015-03-07

    A novel and advanced Fc-binding probe – FcUni-RLuc namely – has been produced and functionally assayed for labelling IgGs. The Fc antibody binding sequence – HWRGWV – was fused to Renilla luciferase, and the purified probe was employed for bioluminescence enzyme-linked immunoabsorbance assay of Her2 positive cells.

  3. Inability to empathize: brain lesions that disrupt sharing and understanding another’s emotions

    PubMed Central

    2014-01-01

    Emotional empathy—the ability to recognize, share in, and make inferences about another person’s emotional state—is critical for all social interactions. The neural mechanisms underlying emotional empathy have been widely studied with functional imaging of healthy participants. However, functional imaging studies reveal correlations between areas of activation and performance of a task, so that they can only reveal areas engaged in a task, rather than areas of the brain that are critical for the task. Lesion studies complement functional imaging, to identify areas necessary for a task. Impairments in emotional empathy have been mostly studied in neurological diseases with fairly diffuse injury, such as traumatic brain injury, autism and dementia. The classic ‘focal lesion’ is stroke. There have been scattered studies of patients with impaired empathy after stroke and other focal injury, but these studies have included small numbers of patients. This review will bring together data from these studies, to complement evidence from functional imaging. Here I review how focal lesions affect emotional empathy. I will show how lesion studies contribute to the understanding of the cognitive and neural mechanisms underlying emotional empathy, and how they contribute to the management of patients with impaired emotional empathy. PMID:24293265

  4. Effect of tape stripping and adjuvants on immune response after intradermal DNA electroporation.

    PubMed

    Vandermeulen, Gaëlle; Daugimont, Liévin; Richiardi, Hervé; Vanderhaeghen, Marie-Lise; Lecouturier, Nathalie; Ucakar, Bernard; Préat, Véronique

    2009-07-01

    DNA vaccines require both efficient delivery methods and appropriate adjuvants. Based on their mechanisms of action, we hypothesised that some adjuvants could enhance vaccine immunogenicity or direct the response towards Th1 profile after intradermal DNA electroporation. After intradermal electroporation of plasmid DNA encoding luciferase, mice received hyaluronidase, imiquimod, monophosphoryl lipid A or were tape stripped in order to modulate the immune response against the encoded protein. We measured total immunoglobulin G, IgG1, IgG2a titres and the cytokines produced by splenocyte cultures to assess both humoral and cellular response. The effect of tape stripping on the response against intradermally delivered ovalbumin protein was also assessed. Neither hyaluronidase nor imiquimod improved the immune response against the encoded luciferase. Monophosphoryl lipid A did not modify the cytokines production but increased the anti-luciferase IgG2a titres. Tape stripping significantly increased anti-luciferase IgG2a and IFN-gamma responses. It also enhanced the humoral response after intradermal injection of the ovalbumin protein. Tape stripping is able to increase the Th1 immune response against both DNA and protein vaccines. Therefore, tape stripping appears to have interesting adjuvant effect on intradermal vaccination.

  5. Transgenic mouse model harboring the transcriptional fusion ccl20-luciferase as a novel reporter of pro-inflammatory response.

    PubMed

    Crispo, Martina; Van Maele, Laurye; Tabareau, Julien; Cayet, Delphine; Errea, Agustina; Ferreira, Ana María; Rumbo, Martin; Sirard, Jean Claude

    2013-01-01

    The chemokine CCL20, the unique ligand of CCR6 functions as an attractant of immune cells. Expression of CCL20 is induced by Toll-like Receptor (TLR) signaling or proinflammatory cytokine stimulation. However CCL20 is also constitutively produced at specific epithelial sites of mucosa. This expression profile is achieved by transcriptional regulation. In the present work we characterized regulatory features of mouse Ccl20 gene. Transcriptional fusions between the mouse Ccl20 promoter and the firefly luciferase (luc) encoding gene were constructed and assessed in in vitro and in vivo assays. We found that liver CCL20 expression and luciferase activity were upregulated by systemic administration of the TLR5 agonist flagellin. Using shRNA and dominant negative form specific for mouse TLR5, we showed that this expression was controlled by TLR5. To address in situ the regulation of gene activity, a transgenic mouse line harboring a functional Ccl20-luc fusion was generated. The luciferase expression was highly concordant with Ccl20 expression in different tissues. Our data indicate that the transgenic mouse model can be used to monitor activation of innate response in vivo.

  6. Measuring fast gene dynamics in single cells with time-lapse luminescence microscopy

    PubMed Central

    Mazo-Vargas, Anyimilehidi; Park, Heungwon; Aydin, Mert; Buchler, Nicolas E.

    2014-01-01

    Time-lapse fluorescence microscopy is an important tool for measuring in vivo gene dynamics in single cells. However, fluorescent proteins are limited by slow chromophore maturation times and the cellular autofluorescence or phototoxicity that arises from light excitation. An alternative is luciferase, an enzyme that emits photons and is active upon folding. The photon flux per luciferase is significantly lower than that for fluorescent proteins. Thus time-lapse luminescence microscopy has been successfully used to track gene dynamics only in larger organisms and for slower processes, for which more total photons can be collected in one exposure. Here we tested green, yellow, and red beetle luciferases and optimized substrate conditions for in vivo luminescence. By combining time-lapse luminescence microscopy with a microfluidic device, we tracked the dynamics of cell cycle genes in single yeast with subminute exposure times over many generations. Our method was faster and in cells with much smaller volumes than previous work. Fluorescence of an optimized reporter (Venus) lagged luminescence by 15–20 min, which is consistent with its known rate of chromophore maturation in yeast. Our work demonstrates that luciferases are better than fluorescent proteins at faithfully tracking the underlying gene expression. PMID:25232010

  7. THE ANALYSIS OF BIOLUMINESCENCES OF SHORT DURATION, RECORDED WITH PHOTOELECTRIC CELL AND STRING GALVANOMETER

    PubMed Central

    Harvey, E. Newton; Snell, Peter A.

    1931-01-01

    1. The rapid decay of luminescence in extracts of the ostracod crustacean Cypridina hilgendorfii, has been studied by means of a photoelectric-amplifier-string galvanometer recording system. 2. For rapid flashes of luminescence, the decay is logarithmic if ratio of luciferin to luciferase is small; logarithmic plus an initial flash, if ratio of luciferin to luciferase is greater than five. The logarithmic plot of luminescence intensity against time is concave to time axis if ratio of luciferin to luciferase is very large. 3. The velocity constant of rapid flashes of luminescence is approximately proportional to enzyme concentration, is independent of luciferin concentration, and varies approximately inversely as the square root of the total luciferin (luciferin + oxyluciferin) concentration. For large total luciferin concentrations, the velocity constant is almost independent of the total luciferin. 4. The variation of velocity constant with total luciferin concentration (luciferin + oxyluciferin) and its independence of luciferin concentration is explained by assuming that light intensity is a measure of the luciferin molecules which become activated to oxidize (accompanied with luminescence) by adsorption on luciferase. The adsorption equilibrium is the same for luciferin and oxyluciferin and determines the velocity constant. PMID:19872603

  8. Faster experimental validation of microRNA targets using cold fusion cloning and a dual firefly-Renilla luciferase reporter assay.

    PubMed

    Alvarez, M Lucrecia

    2014-01-01

    Different target prediction algorithms have been developed to provide a list of candidate target genes for a given animal microRNAs (miRNAs). However, these computational approaches provide both false-positive and false-negative predictions. Therefore, the target genes of a specific miRNA identified in silico should be experimentally validated. In this chapter, we describe a step-by-step protocol for the experimental validation of a direct miRNA target using a faster Dual Firefly-Renilla Luciferase Reporter Assay. We describe how to construct reporter plasmids using the simple, fast, and highly efficient cold fusion cloning technology, which does not require ligase, phosphatase, or restriction enzymes. In addition, we provide a protocol for co-transfection of reporter plasmids with either miRNA mimics or miRNA inhibitors in human embryonic kidney 293 (HEK293) cells, as well as a description on how to measure Firefly and Renilla luciferase activity using the Dual-Glo Luciferase Assay kit. As an example of the use of this technology, we will validate glucose-6-phosphate dehydrogenase (G6PD) as a direct target of miR-1207-5p.

  9. Transgenic Mouse Model Harboring the Transcriptional Fusion Ccl20-Luciferase as a Novel Reporter of Pro-Inflammatory Response

    PubMed Central

    Crispo, Martina; Van Maele, Laurye; Tabareau, Julien; Cayet, Delphine; Errea, Agustina; Ferreira, Ana María; Rumbo, Martin; Sirard, Jean Claude

    2013-01-01

    The chemokine CCL20, the unique ligand of CCR6 functions as an attractant of immune cells. Expression of CCL20 is induced by Toll-like Receptor (TLR) signaling or proinflammatory cytokine stimulation. However CCL20 is also constitutively produced at specific epithelial sites of mucosa. This expression profile is achieved by transcriptional regulation. In the present work we characterized regulatory features of mouse Ccl20 gene. Transcriptional fusions between the mouse Ccl20 promoter and the firefly luciferase (luc) encoding gene were constructed and assessed in in vitro and in vivo assays. We found that liver CCL20 expression and luciferase activity were upregulated by systemic administration of the TLR5 agonist flagellin. Using shRNA and dominant negative form specific for mouse TLR5, we showed that this expression was controlled by TLR5. To address in situ the regulation of gene activity, a transgenic mouse line harboring a functional Ccl20-luc fusion was generated. The luciferase expression was highly concordant with Ccl20 expression in different tissues. Our data indicate that the transgenic mouse model can be used to monitor activation of innate response in vivo. PMID:24265691

  10. Extracting relevant information for cancer diagnosis from dynamic full field OCT through image processing and learning

    NASA Astrophysics Data System (ADS)

    Apelian, Clément; Gastaud, Clément; Boccara, A. Claude

    2017-02-01

    For a large number of cancer surgeries, the lack of reliable intraoperative diagnosis leads to reoperations or bad outcomes for the patients. To deliver better diagnosis, we developed Dynamic Full Field OCT (D-FFOCT) as a complement to FFOCT. FFOCT already presents interesting results for cancer diagnosis e.g. Mohs surgery and reaching 96% accuracy on prostate cancer. D-FFOCT accesses the dynamic processes of metabolism and gives new tools to diagnose the state of a tissue at the cellular level to complement FFOCT contrast. We developed a processing framework that intends to maximize the information provided by the FFOCT technology as well as D-FFOCT and synthetize this as a meaningful image. We use different time processing to generate metrics (standard deviation of time signals, decorrelation times and more) and spatial processing to sort out structures and the corresponding imaging modality, which is the most appropriate. Sorting was achieved through quadratic discriminant analysis in a N-dimension parametric space corresponding to our metrics. Combining the best imaging modalities for each structure leads to a rich morphology image. This image displaying the morphology is then colored to represent the dynamic behavior of these structures (slow or fast) and to be quickly analyzed by doctors. Therefore, we achieved a micron resolved image, rich of both FFOCT ability of imaging fixed and highly backscattering structures as well as D-FFOCT ability of imaging low level scattering cellular level details. We believe that this morphological contrast close to histology and the dynamic behavior contrast will push forward the limits of intraoperative diagnosis further on.

  11. Comparison of chemical-activated luciferase gene expression bioassay and gas chromatography for PCB determination in human serum and follicular fluid.

    PubMed Central

    Pauwels, A; Cenijn, P H; Schepens, P J; Brouwer, A

    2000-01-01

    We assessed exposure to dioxin-like compounds using chemical and bioassay analysis in different matrices in a female population. A total of 106 serum and 9 follicular fluid samples were collected from infertile women attending Centers for Reproductive Medicine in Belgium from 1996 to 1998. Major polychlorinated biphenyl (PCB) congeners were quantified by chemical analysis using gas chromatography with electron-capture detection, and the chemical-activated luciferase gene expression (CALUX) bioassay was used to determine the total dioxin-like toxic equivalence (TEQ) of mixtures of polyhalogenated aromatic hydrocarbons present in body fluids, such as serum and follicular fluid. To the best of our knowledge, this is the first investigation to determine TEQ values by the CALUX bioassay in follicular fluid. The TEQ levels in both matrices are well correlated (r = 0.83, p = 0.02). As the chemical and bioassay analysis executed in this study do not cover the same span of polyhalogenated aromatic hydrocarbons, we did not expect totally correlated results. Moreover, the sample workup and quantification of the analytes differed completely. Nonetheless, the TEQ values in human extracts correlated well with the sum of four major PCB congeners chemically determined in both serum and follicular fluid. These results indicate that the CALUX bioassay may serve as a simple, relatively inexpensive prescreening tool for exposure assessment in epidemiologic surveys. Images Figure 1 Figure 2 PMID:10856030

  12. RNA-induced silencing complex-bound small interfering RNA is a determinant of RNA interference-mediated gene silencing in mice.

    PubMed

    Wei, Jie; Jones, Jeffrey; Kang, Jing; Card, Ananda; Krimm, Michael; Hancock, Paula; Pei, Yi; Ason, Brandon; Payson, Elmer; Dubinina, Natalya; Cancilla, Mark; Stroh, Mark; Burchard, Julja; Sachs, Alan B; Hochman, Jerome H; Flanagan, W Michael; Kuklin, Nelly A

    2011-06-01

    Deeper knowledge of pharmacokinetic and pharmacodynamic (PK/PD) concepts for RNA therapeutics is important to streamline the drug development process and for rigorous selection of best performing drug candidates. Here we characterized the PK/PD relationship for small interfering RNAs (siRNAs) targeting luciferase by examining siRNA concentration in plasma and liver, the temporal RNA-induced silencing complex binding profiles, mRNA reduction, and protein inhibition measured by noninvasive bioluminescent imaging. A dose-dependent and time-related decrease in bioluminescence was detected over 25 days after a single treatment of a lipid nanoparticle-formulated siRNA targeting luciferase messenger RNA. A direct relationship was observed between the degree of in vivo mRNA and protein reduction and the Argonaute2 (Ago2)-bound siRNA fraction but not with the total amount of siRNA found in the liver, suggesting that the Ago2-siRNA complex is the key determinant of target inhibition. These observations were confirmed for an additional siRNA that targets endogenously expressed Sjögren syndrome antigen B (Ssb) mRNA, indicating that our observations are not limited to a transgenic mouse system. Our data provide detailed information of the temporal regulation of siRNA liver delivery, Ago2 loading, mRNA reduction, and protein inhibition that are essential for the rapid and cost-effective clinical development of siRNAs therapeutics.

  13. Identification of a peroxisome proliferator-responsive element upstream of the gene encoding rat peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase.

    PubMed Central

    Zhang, B; Marcus, S L; Sajjadi, F G; Alvares, K; Reddy, J K; Subramani, S; Rachubinski, R A; Capone, J P

    1992-01-01

    Ciprofibrate, a hypolipidemic drug that acts as a peroxisome proliferator, induces the transcription of genes encoding peroxisomal beta-oxidation enzymes. To identify cis-acting promoter elements involved in this induction, 5.8 kilobase pairs of promoter sequence from the gene encoding rat peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase (EC 4.2.1.17/EC 1.1.1.35) was inserted upstream of a luciferase reporter gene. Transfection of this expression vector into rat hepatoma H4IIEC3 cells in the presence of ciprofibrate resulted in a 5- to 10-fold, cell type-specific increase in luciferase activity as compared to cells transfected in the absence of drug. A peroxisome proliferator-responsive element (PPRE) was localized to a 196-nucleotide region centered at position -2943 from the transcription start site. This PPRE conferred ciprofibrate responsiveness on a heterologous promoter and functioned independently of orientation or position. Gel retardation analysis with nuclear extracts demonstrated that ciprofibrate-treated or untreated H4IIEC3 cells, but not HeLa cells or monkey kidney cells, contained sequence-specific DNA binding factors that interact with the PPRE. These results have implications for understanding the mechanisms of coordinated transcriptional induction of genes encoding peroxisomal proteins by hypolipidemic agents and other peroxisome proliferators. Images PMID:1502166

  14. Firefly luciferase-based dynamic bioluminescence imaging: a noninvasive technique to assess tumor angiogenesis.

    PubMed

    Sun, Amy; Hou, Lewis; Prugpichailers, Tiffany; Dunkel, Jason; Kalani, Maziyar A; Chen, Xiaoyuan; Kalani, M Yashar S; Tse, Victor

    2010-04-01

    Bioluminescence imaging (BLI) is emerging as a cost-effective, high-throughput, noninvasive, and sensitive imaging modality to monitor cell growth and trafficking. We describe the use of dynamic BLI as a noninvasive method of assessing vessel permeability during brain tumor growth. With the use of stereotactic technique, 10 firefly luciferase-transfected GL26 mouse glioblastoma multiforme cells were injected into the brains of C57BL/6 mice (n = 80). After intraperitoneal injection of D-luciferin (150 mg/kg), serial dynamic BLI was performed at 1-minute intervals (30 seconds exposure) every 2 to 3 days until death of the animals. The maximum intensity was used as an indirect measurement of tumor growth. The adjusted slope of initial intensity (I90/Im) was used as a proxy to monitor the flow rate of blood into the vascular tree. Using a modified Evans blue perfusion protocol, we calculated the relative permeability of the vascular tree at various time points. Daily maximum intensity correlated strongly with tumor volume. At postinjection day 23, histology and BLI demonstrated an exponential growth of the tumor mass. Slopes were calculated to reflect the flow in the vessels feeding the tumor (adjusted slope = I90/Im). The increase in BLI intensity was correlated with a decrease in adjusted slope, reflecting a decrease in the rate of blood flow as tumor volume increased (y = 93.8e-0.49, R2 = 0.63). Examination of calculated slopes revealed a peak in permeability around postinjection day 20 (n = 42, P < .02 by 1-way analysis of variance) and showed a downward trend in relation to both postinjection day and maximum intensity observed; as angiogenesis progressed, tumor vessel caliber increased dramatically, resulting in sluggish but increased flow. This trend was correlated with Evans blue histology, revealing an increase in Evans blue dye uptake into the tumor, as slope calculated by BLI increases. Dynamic BLI is a practical, noninvasive technique that can semiquantitatively monitor changes in vascular permeability and therefore facilitate the study of tumor angiogenesis in animal models of disease.

  15. Distinct polymer architecture mediates switching of complement activation pathways at the nanosphere-serum interface: implications for stealth nanoparticle engineering.

    PubMed

    Hamad, Islam; Al-Hanbali, Othman; Hunter, A Christy; Rutt, Kenneth J; Andresen, Thomas L; Moghimi, S Moein

    2010-11-23

    Nanoparticles with surface projected polyethyleneoxide (PEO) chains in "mushroom-brush" and "brush" configurations display stealth properties in systemic circulation and have numerous applications in site-specific targeting for controlled drug delivery and release as well as diagnostic imaging. We report on the "structure-activity" relationship pertaining to surface-immobilized PEO of various configurations on model nanoparticles, and the initiation of complement cascade, which is the most ancient component of innate human immunity, and its activation may induce clinically significant adverse reactions in some individuals. Conformational states of surface-projected PEO chains, arising from the block copolymer poloxamine 908 adsorption, on polystyrene nanoparticles trigger complement activation differently. Alteration of copolymer architecture on nanospheres from mushroom to brush configuration not only switches complement activation from C1q-dependent classical to lectin pathway but also reduces the level of generated complement activation products C4d, Bb, C5a, and SC5b-9. Also, changes in adsorbed polymer configuration trigger alternative pathway activation differently and through different initiators. Notably, the role for properdin-mediated activation of alternative pathway was only restricted to particles displaying PEO chains in a transition mushroom-brush configuration. Since nanoparticle-mediated complement activation is of clinical concern, our findings provide a rational basis for improved surface engineering and design of immunologically safer stealth and targetable nanosystems with polymers for use in clinical medicine.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Kalpagam; Liu, Jeff; Kohli, Kirpal

    Purpose: Fusion of electrical impedance tomography (EIT) with computed tomography (CT) can be useful as a clinical tool for providing additional physiological information about tissues, but requires suitable fusion algorithms and validation procedures. This work explores the feasibility of fusing EIT and CT images using an algorithm for coregistration. The imaging performance is validated through feature space assessment on phantom contrast targets. Methods: EIT data were acquired by scanning a phantom using a circuit, configured for injecting current through 16 electrodes, placed around the phantom. A conductivity image of the phantom was obtained from the data using electrical impedance andmore » diffuse optical tomography reconstruction software (EIDORS). A CT image of the phantom was also acquired. The EIT and CT images were fused using a region of interest (ROI) coregistration fusion algorithm. Phantom imaging experiments were carried out on objects of different contrasts, sizes, and positions. The conductive medium of the phantoms was made of a tissue-mimicking bolus material that is routinely used in clinical radiation therapy settings. To validate the imaging performance in detecting different contrasts, the ROI of the phantom was filled with distilled water and normal saline. Spatially separated cylindrical objects of different sizes were used for validating the imaging performance in multiple target detection. Analyses of the CT, EIT and the EIT/CT phantom images were carried out based on the variations of contrast, correlation, energy, and homogeneity, using a gray level co-occurrence matrix (GLCM). A reference image of the phantom was simulated using EIDORS, and the performances of the CT and EIT imaging systems were evaluated and compared against the performance of the EIT/CT system using various feature metrics, detectability, and structural similarity index measures. Results: In detecting distilled and normal saline water in bolus medium, EIT as a stand-alone imaging system showed contrast discrimination of 47%, while the CT imaging system showed a discrimination of only 1.5%. The structural similarity index measure showed a drop of 24% with EIT imaging compared to CT imaging. The average detectability measure for CT imaging was found to be 2.375 ± 0.19 before fusion. After complementing with EIT information, the detectability measure increased to 11.06 ± 2.04. Based on the feature metrics, the functional imaging quality of CT and EIT were found to be 2.29% and 86%, respectively, before fusion. Structural imaging quality was found to be 66% for CT and 16% for EIT. After fusion, functional imaging quality improved in CT imaging from 2.29% to 42% and the structural imaging quality of EIT imaging changed from 16% to 66%. The improvement in image quality was also observed in detecting objects of different sizes. Conclusions: The authors found a significant improvement in the contrast detectability performance of CT imaging when complemented with functional imaging information from EIT. Along with the feature assessment metrics, the concept of complementing CT with EIT imaging can lead to an EIT/CT imaging modality which might fully utilize the functional imaging abilities of EIT imaging, thereby enhancing the quality of care in the areas of cancer diagnosis and radiotherapy treatment planning.« less

  17. Quenching the firefly bioluminescence by various ions.

    PubMed

    Zhang, Huateng; Bai, Haixiu; Jiang, Tianyu; Ma, Zhao; Cheng, Yanna; Zhou, Yubin; Du, Lupei; Li, Minyong

    2016-02-01

    The luciferase reporter gene assay system is broadly applied in various biomedical aspects, including signaling pathway dissection, transcriptional activity analysis, and genetic toxicity testing. It significantly improves the experimental accuracy and reduces the experimental error by the addition of an internal control. In the current research, we discovered some specific ions that could selectively inhibit firefly luciferase while having a negligible effect on renilla luciferase in vitro in the dual-reporter gene assay. We showed that these ionic compounds had a high potential of being utilized as quench-and-activate reagents in the dual-reporter assay. Furthermore, results from kinetic studies on ion-mediated quenching effects indicated that different ions have distinct inhibition modes. Our study is anticipated to guide a more affordable design of quench-and-activate reagents in biomedicine and pharmaceutical analysis.

  18. Two techniques for eliminating luminol interference material and flow system configurations for luminol and firefly luciferase systems

    NASA Technical Reports Server (NTRS)

    Thomas, R. R.

    1976-01-01

    Two methods for eliminating luminol interference materials are described. One method eliminates interference from organic material by pre-reacting a sample with dilute hydrogen peroxide. The reaction rate resolution method for eliminating inorganic forms of interference is also described. The combination of the two methods makes the luminol system more specific for bacteria. Flow system designs for both the firefly luciferase and luminol bacteria detection systems are described. The firefly luciferase flow system incorporating nitric acid extraction and optimal dilutions has a functional sensitivity of 3 x 100,000 E. coli/ml. The luminol flow system incorporates the hydrogen peroxide pretreatment and the reaction rate resolution techniques for eliminating interference. The functional sensitivity of the luminol flow system is 1 x 10,000 E. coli/ml.

  19. Tumor implantation model for rapid testing of lymphatic dye uptake from paw to node in small animals

    NASA Astrophysics Data System (ADS)

    DSouza, Alisha V.; Elliott, Jonathan T.; Gunn, Jason R.; Barth, Richard J.; Samkoe, Kimberley S.; Tichauer, Kenneth M.; Pogue, Brian W.

    2015-03-01

    Morbidity and complexity involved in lymph node staging via surgical resection and biopsy calls for staging techniques that are less invasive. While visible blue dyes are commonly used in locating sentinel lymph nodes, since they follow tumor-draining lymphatic vessels, they do not provide a metric to evaluate presence of cancer. An area of active research is to use fluorescent dyes to assess tumor burden of sentinel and secondary lymph nodes. The goal of this work was to successfully deploy and test an intra-nodal cancer-cell injection model to enable planar fluorescence imaging of a clinically relevant blue dye, specifically methylene blue - used in the sentinel lymph node procedure - in normal and tumor-bearing animals, and subsequently segregate tumor-bearing from normal lymph nodes. This direct-injection based tumor model was employed in athymic rats (6 normal, 4 controls, 6 cancer-bearing), where luciferase-expressing breast cancer cells were injected into axillary lymph nodes. Tumor presence in nodes was confirmed by bioluminescence imaging before and after fluorescence imaging. Lymphatic uptake from the injection site (intradermal on forepaw) to lymph node was imaged at approximately 2 frames/minute. Large variability was observed within each cohort.

  20. Complementary-encoding holographic associative memory using a photorefractive crystal

    NASA Astrophysics Data System (ADS)

    Yuan, ShiFu; Wu, Minxian; Yan, Yingbai; Jin, Guofan

    1996-06-01

    We present a holographic implementation of accurate associative memory with only one holographic memory system. In the implementation, the stored and test images are coded by using complementary-encoding method. The recalled complete image is also a coded image that can be decoded with a decoding mask to get an original image or its complement image. The experiment shows that the complementary encoding can efficiently increase the addressing accuracy in a simple way. Instead of the above complementary-encoding method, a scheme that uses complementary area-encoding method is also proposed for the holographic implementation of gray-level image associative memory with accurate addressing.

  1. Carbon nanotube based respiratory gated micro-CT imaging of a murine model of lung tumors with optical imaging correlation

    NASA Astrophysics Data System (ADS)

    Burk, Laurel M.; Lee, Yueh Z.; Heathcote, Samuel; Wang, Ko-han; Kim, William Y.; Lu, Jianping; Zhou, Otto

    2011-03-01

    Current optical imaging techniques can successfully measure tumor load in murine models of lung carcinoma but lack structural detail. We demonstrate that respiratory gated micro-CT imaging of such models gives information about structure and correlates with tumor load measurements by optical methods. Four mice with multifocal, Kras-induced tumors expressing firefly luciferase were imaged against four controls using both optical imaging and respiratory gated micro-CT. CT images of anesthetized animals were acquired with a custom CNT-based system using 30 ms x-ray pulses during peak inspiration; respiration motion was tracked with a pressure sensor beneath each animal's abdomen. Optical imaging based on the Luc+ signal correlating with tumor load was performed on a Xenogen IVIS Kinetix. Micro-CT images were post-processed using Osirix, measuring lung volume with region growing. Diameters of the largest three tumors were measured. Relationships between tumor size, lung volumes, and optical signal were compared. CT images and optical signals were obtained for all animals at two time points. In all lobes of the Kras+ mice in all images, tumors were visible; the smallest to be readily identified measured approximately 300 microns diameter. CT-derived tumor volumes and optical signals related linearly, with r=0.94 for all animals. When derived for only tumor bearing animals, r=0.3. The trend of each individual animal's optical signal tracked correctly based on the CT volumes. Interestingly, lung volumes also correlated positively with optical imaging data and tumor volume burden, suggesting active remodeling.

  2. D2 as an Integrator of Oncogenic Stimuli in Breast Cancer

    DTIC Science & Technology

    2007-09-01

    expression of luciferase. All cells were also transfected with CMV- Renilla as a control for transfection efficiency. Following transfection, cells were...for renilla values. B) BT-474 cells were transiently transfected with the promoter constructs indicated and then treated with AG825, a selective...HER2 inhibitor. Luciferase values are expressed relative to renilla values, the transfection efficiency control. fairly minor. Furthermore, this low

  3. D2 as an Integrator of Oncogenic Stimuli in Breast Cancer

    DTIC Science & Technology

    2007-08-01

    expression of luciferase. All cells were also transfected with CMV- Renilla as a control for transfection efficiency. Following transfection, cells were...for renilla values. B) BT-474 cells were transiently transfected with the promoter constructs indicated and then treated with AG825, a selective...HER2 inhibitor. Luciferase values are expressed relative to renilla values, the transfection efficiency control. fairly minor. Furthermore, this low

  4. A High Sensitivity Bio Photosensor for Detecting a Luciferase Bioluminescence

    NASA Astrophysics Data System (ADS)

    Kameda, Seiji; Moriyama, Yusuke; Noda, Kenichi; Iwata, Atsushi

    A high sensitivity CMOS bio photosensor applicable to a bioluminescent assay was developed with a 0.18µm CMOS image sensor (CIS) process. The bio photosensor consisting of a photosensor and a PWM 20bit A/D converter achieved high sensitivity for detecting a extremely low bioluminescence due to a large photodiode area, a long exposure time and the other noise reduction techniques. The bio photosensor chip has a 2×4 sensor array on a 2.45×2.45mm2 die. Experimental results with the bioluminescence showed the chip can detect below 10-5lux luminescence at room temperature and the power consumption is 32µW.

  5. The Gly-54-->Asp allelic form of human mannose-binding protein (MBP) fails to bind MBP-associated serine protease.

    PubMed Central

    Matsushita, M; Ezekowitz, R A; Fujita, T

    1995-01-01

    The human mannose-binding protein (MBP) is a pattern recognition molecule that appears to play a role in initial host defence. MBP activates the complement cascade and it may act as an opsonin both in the absence and in the presence of complement. A number of distinct MBP allelic forms exist in different population groups. An allele that occurs in 5-7% of Caucasians was identified by an inability to activate the complement system. A homozygous mutation at base pair 230 of the MBP gene results in a Gly-to-Asp substitution at the fifth collagen repeat. It appears that the resultant protein, MBPD, is able to form high-order multimers that bind bacteria but do not support complement activation. Recently a novel serine protease, the MBP-associated serine protease (MASP), has been described. MBP-MASP complexes circulate in serum and result in the direct activation of a novel complement pathway (lectin pathway) in the absence of the first complement components. In this study we demonstrate that MASP and its proenzyme proMASP are unable to bind to recombinant (r)MBPD. This lack of a MASP-rMBPD association corresponds to a failure of the Gly-54-->Asp form of MBP to activate complement. Our results provide a biochemical basis for the functional deficit in the Gly-54-->Asp allelic form of MBP and suggest that the proMASP/MASP binding site maps to the fifth collagen repeat of MBP. Images Figure 1 PMID:7487919

  6. Increased activity of the complement system in the liver of patients with alcoholic hepatitis.

    PubMed

    Shen, Hong; French, Barbara A; Liu, Hui; Tillman, Brittany C; French, Samuel W

    2014-12-01

    Inflammation has been suggested as a mechanism underlying the development of alcoholic hepatitis (AH). The activation of the complement system plays an important role in inflammation. Although it has been shown that ethanol-induced activation of the complement system contributes to the pathophysiology of ethanol-induced liver injury in mice, whether ethanol consumption activates the complement system in the human liver has not been investigated. Using antibodies against C1q, C3, and C5, the immunoreactivity of the complement system in patients with AH was examined by immunohistochemistry and quantified by morphometric image analysis. The immunoreactivity intensity of C1q, C3, and C5 in patients with AH was significantly higher than that seen in normal controls. Further, the gene expression of C1q, C3, and C5 was examined using real-time PCR. There were increases in the levels of C1q and C5, but not C3 mRNA in AH. Moreover, the immunoreactivity of C5a receptor (C5aR) also increased in AH. To explore the functional implication of the activation of the complement system in AH, we examined the colocalization of C5aR in Mallory-Denk bodies (MDBs) forming balloon hepatocytes. C5aR was focally overexpressed in the MDB forming cells. Collectively, our study suggests that alcohol consumption increases the activity of the complement system in the liver cells, which contributes to the inflammation-associated pathogenesis of AH. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Development of bimolecular fluorescence complementation using rsEGFP2 for detection and super-resolution imaging of protein-protein interactions in live cells

    PubMed Central

    Wang, Sheng; Ding, Miao; Chen, Xuanze; Chang, Lei; Sun, Yujie

    2017-01-01

    Direct visualization of protein-protein interactions (PPIs) at high spatial and temporal resolution in live cells is crucial for understanding the intricate and dynamic behaviors of signaling protein complexes. Recently, bimolecular fluorescence complementation (BiFC) assays have been combined with super-resolution imaging techniques including PALM and SOFI to visualize PPIs at the nanometer spatial resolution. RESOLFT nanoscopy has been proven as a powerful live-cell super-resolution imaging technique. With regard to the detection and visualization of PPIs in live cells with high temporal and spatial resolution, here we developed a BiFC assay using split rsEGFP2, a highly photostable and reversibly photoswitchable fluorescent protein previously developed for RESOLFT nanoscopy. Combined with parallelized RESOLFT microscopy, we demonstrated the high spatiotemporal resolving capability of a rsEGFP2-based BiFC assay by detecting and visualizing specifically the heterodimerization interactions between Bcl-xL and Bak as well as the dynamics of the complex on mitochondria membrane in live cells. PMID:28663931

  8. Regulation of IL-8 promoter activity by verrucarin A in human monocytic THP-1 cells.

    PubMed

    Liu, Jun; Simmons, Steve O; Pei, Ruoting

    2014-01-01

    Macrocyclic trichothecenes have been frequently detected in fungi in water-damaged buildings and exhibited higher toxicity than the well-studied trichothecenes; however, the mechanism underlying their toxicity has been poorly understood. In this study, transcriptional regulation of the cytokine interleukin (IL)-8 by a macrocyclic trichothecene, verrucarin A (VA), in human monocytic THP-1 cells is reported. Consistent with previous findings, VA was 100-fold more cytotoxic than deoxynivalenol (DON), while ochratoxin A (OA) was not cytotoxic. In cells transduced with the wild-type IL-8 promoter luciferase construct, VA induced a biphasic dose response composed of an upregulation of luciferase expression at low concentrations of 0.01-1 ng/ml and a downregulation at high levels of 10 ng/ml and higher. In contrast, DON induced a sigmoid-shaped dose response with the EC50 of 11.6 ng/ml, while OA did not markedly affect the IL-8 expression. When cells were transduced with IL-8 promoter with a mutation of transcription factor nuclear factor-κB (NF-κB)-binding site, VA (1 ng/ml), DON (1000 ng/ml), and tumor necrosis factor (TNF) α (20 ng/ml)-induced luciferase expression were impaired. In addition, the NF-κB inhibitor caffeic acid phenethyl ester inhibited VA-, DON-, and TNFα-induced luciferase expression. Mutation of the CCAAT/enhancer-binding protein (CEBP) β binding site of the IL-8 promoter affected only DON-, but not VA- and TNFα-induced luciferase expression. Taken together, these results suggested that VA activated IL-8 promoter via an NF-κB-dependent, but not CEBPβ-dependent, pathway in human monocytes.

  9. Monitoring autophagic flux using p62/SQSTM1 based luciferase reporters in glioma cells.

    PubMed

    Min, Zhang; Ting, Yao; Mingtao, Gong; Xiaofei, Tang; Dong, Yan; Chenguang, Zhang; Wei, Ding

    2018-02-01

    Autophagy is a highly dynamic process characterized with the term of autophagic flux. In the present study, we developed a quantifiable luciferase reporter system to measure the capacity as well as the dynamics of autophagic flux. Briefly, a luciferase variant of Luc2p was fused with p62/SQSTM1 or its UBA domain deletion mutant (p62ΔU) and transfected into cells. The expressed Luc2p-p62 fusion protein was primarily degraded via autophagy, while Luc2p-p62ΔU was employed as a normalization control due to its resistance to autophagic degradation. The luciferase activity of the lysates from two parallel populations of glioma cells expressing either Luc2p-p62 or Luc2p-p62ΔU was determined and the ratio of Luc2p-p62ΔU/Luc2p-p62 was used to assay the autophagic flux. By this approach, the induction of autophagy was manifested as an increased Luc2p-p62ΔU/Luc2p-p62 ratio, which could be neutralized by autophagy inhibitors or knockdown of ATG5. The performance of our autophagic flux detection system was comparable to a recently reported GFP-LC3-RFP-LC3ΔG probe. We tested the system in TMZ treated glioma cells, and found that coadministration of chloroquine to attenuate cellular autophagic flux significantly improved the TMZ efficacy by triggering more early apoptosis. Collectively, our luciferase-based autophagic flux assay may serve as a useful alternative yet sensitive method for autophagic flux detection in tumor cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Near infrared photoimmunotherapy in the treatment of disseminated peritoneal ovarian cancer

    PubMed Central

    Sato, Kazuhide; Hanaoka, Hirofumi; Watanabe, Rira; Nakajima, Takahito; Choyke, Peter L.; Kobayashi, Hisataka

    2014-01-01

    Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of intravenously injected antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. Herein, we evaluate the efficacy of NIR-PIT in a mouse model of disseminated peritoneal ovarian cancer. In vitro and in vivo experiments were conducted with a HER2-expressing, luciferase expressing, ovarian cancer cell line (SKOV-luc). An antibody-photosensitizer conjugate (APC) consisting of trastuzumab and a phthalocyanine dye, IRDye-700DX, was synthesized (tra-IR700) and cells or tumors were exposed to near infrared (NIR) light. In vitro PIT cytotoxicity was assessed with dead staining and luciferase activity in freely growing cells and in a 3D spheroid model. In vivo NIR-PIT was performed in mice with tumors implanted in the peritoneum and in the flank and these assessed by tumor volume and/or bioluminescence. In vitro NIR-PIT-induced cytotoxicity was light dose dependent. Repeated light exposures induced complete tumor cell killing in the 3D spheroid model. In vivo the anti-tumor effects of NIR-PIT were confirmed by significant reductions in both tumor volume and luciferase activity in the flank model (NIR-PIT vs control in tumor volume changes at day 10; p=0.0001, NIR-PIT vs control in luciferase activity at day 4; p=0.0237), and the peritoneal model (NIR-PIT vs control in luciferase activity at day 7; p=0.0037). NIR-PIT provided effective cell killing in this HER2 positive model of disseminated peritoneal ovarian cancer. Thus, NIR-PIT is a promising new therapy for the treatment of disseminated peritoneal tumors. PMID:25416790

  11. Modulation of post-stroke degenerative and regenerative processes and subacute protection by site-targeted inhibition of the alternative pathway of complement.

    PubMed

    Alawieh, Ali; Elvington, Andrew; Zhu, Hong; Yu, Jin; Kindy, Mark S; Atkinson, Carl; Tomlinson, Stephen

    2015-12-30

    Complement promotes neuroinflammation and injury in models of stroke. However, complement is also being increasingly implicated in repair and regeneration after central nervous system (CNS) injury, and some complement deficiencies have been shown to provide acute, but not subacute, protection after murine stroke. Here, we investigate the dual role of complement in injury and repair after cerebral ischemia and reperfusion. We used complement-deficient mice and different complement inhibitors in a model of transient middle cerebral artery occlusion to investigate complement-dependent cellular and molecular changes that occur through the subacute phase after stroke. C3 deficiency and site-targeted complement inhibition with either CR2-Crry (inhibits all pathways) or CR2-fH (inhibits alternative pathway) significantly reduced infarct size, reduced apoptotic cell death, and improved neurological deficit score in the acute phase after stroke. However, only in CR2-fH-treated mice was there sustained protection with no evolution of injury in the subacute phase. Whereas both inhibitors significantly reduced microglia/macrophage activation and astrogliosis in the subacute phase, only CR2-fH improved neurological deficit and locomotor function, maintained neurogenesis markers, enhanced neuronal migration, and increased VEGF expression. These findings in CR2-fH-treated mice correlated with improved performance in spatial learning and passive avoidance tasks. The complement anaphylatoxins have been implicated in repair and regenerative mechanisms after CNS injury, and in this context CR2-fH significantly reduced, but did not eliminate the generation of C5a within the brain, unlike CR2-Crry that completely blocked C5a generation. Gene expression profiling revealed that CR2-fH treatment downregulated genes associated with apoptosis, TGFβ signaling, and neutrophil activation, and decreased neutrophil infiltration was confirmed by immunohistochemistry. CR2-fH upregulated genes for neural growth factor and mediators of neurogenesis and neuronal migration. Live animal imaging demonstrated that following intravenous injection, CR2-fH targeted specifically to the post-ischemic brain, with a tissue half-life of 48.5 h. Finally, unlike C3 deficiency, targeted complement inhibition did not increase susceptibility to lethal post-stroke infection, an important consideration for stroke patients. Ischemic brain tissue-targeted and selective inhibition of alternative complement pathway provide self-limiting inhibition of complement activation and reduces acute injury while maintaining complement-dependent recovery mechanisms into the subacute phase after stroke.

  12. Monitoring and quantitative assessment of tumor burden using in vivo bioluminescence imaging

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Chi; Hwang, Jeng-Jong; Ting, Gann; Tseng, Yun-Long; Wang, Shyh-Jen; Whang-Peng, Jaqueline

    2007-02-01

    In vivo bioluminescence imaging (BLI) is a sensitive imaging modality that is rapid and accessible, and may comprise an ideal tool for evaluating tumor growth. In this study, the kinetic of tumor growth has been assessed in C26 colon carcinoma bearing BALB/c mouse model. The ability of BLI to noninvasively quantitate the growth of subcutaneous tumors transplanted with C26 cells genetically engineered to stably express firefly luciferase and herpes simplex virus type-1 thymidine kinase (C26/ tk-luc). A good correlation ( R2=0.998) of photon emission to the cell number was found in vitro. Tumor burden and tumor volume were monitored in vivo over time by quantitation of photon emission using Xenogen IVIS 50 and standard external caliper measurement, respectively. At various time intervals, tumor-bearing mice were imaged to determine the correlation of in vivo BLI to tumor volume. However, a correlation of BLI to tumor volume was observed when tumor volume was smaller than 1000 mm 3 ( R2=0.907). γ Scintigraphy combined with [ 131I]FIAU was another imaging modality used for verifying the previous results. In conclusion, this study showed that bioluminescence imaging is a powerful and quantitative tool for the direct assay to monitor tumor growth in vivo. The dual reporter genes transfected tumor-bearing animal model can be applied in the evaluation of the efficacy of new developed anti-cancer drugs.

  13. Studies of Antigens for Complement Fixation and Gel Diffusion Tests in the Diagnosis of Infections Caused by Brucella ovis and Other Brucella

    PubMed Central

    Myers, Donald M.; Jones, Lois M.; Varela-Diaz, Victor M.

    1972-01-01

    Sonically treated and saline-extracted antigens of Brucella ovis, B. canis, B. abortus, and B. melitensis were compared in gel diffusion, complement fixation, and serum absorption tests. All the sonically extracted antigens showed cross-reactions with sera from animals infected or immunized with these species, whereas the saline-extracted antigens were specific for the surface of the rough or smooth colonial phase of the species or strain. The saline-extracted antigens of B. ovis and B. melitensis were both eluted as a single peak in the void volume by Sephadex G-200 column chromatography, in gel diffusion had staining characteristics of lipoproteins, but in immunoelectrophoresis showed distinct mobility patterns. Serological activity for both gel diffusion and complement fixation tests was demonstrated in the immunoglobulin G-containing fraction of sera taken from sheep 12 to 412 days after infection with B. ovis. The gel diffusion test with saline extract of B. ovis is as sensitive as the complement fixation test for the diagnosis of ram epididymitis and is more practical. Images PMID:4624210

  14. The participation of complement in the parietal cell antigen–antibody reaction in pernicious anaemia and atrophic gastritis

    PubMed Central

    Jacob, Elizabeth; Glass, G. B. Jerzy

    1969-01-01

    Indirect evidence suggests that the parietal cell antibody circulating in the serum of pernicious anaemia patients is a complement fixing antibody. In this work, we have presented direct evidence using an immunofluorescent technique, that the antigen–antibody union occurring in the gastric mucosa between this antibody and the parietal cell antigen binds complement (C'). We have further adduced data to indicate that serum C' activity was decreased in more than one-third of our patients with pernicious anaemia and in one-fourth of those with advanced atrophic gastritis. Eighty-five per cent of the patients with lowered serum C' had parietal cell antibody in the serum and some of them also had intrinsic factor antibody. These findings support the concept of the autoimmune mechanism in the development of the gastric atrophic lesion in a proportion of patients with pernicious anaemia and atrophic gastritis. This mechanism includes the participation of complement in the antigen–antibody reaction at the parietal cell level. ImagesFIG. 1FIG. 2 PMID:4905403

  15. GENERATION OF TWO STABLE CELL LINES THAT EXPRESS HER-ALPHA OR HER-ALPHA AND -BETA AND FIREFLY LUCIFERASE GENES FOR ENDOCRINE SCREENING

    EPA Science Inventory

    Generation of Two Stable Cell Lines that Express hERa or
    hERa and b and Firefly Luciferase Genes for Endocrine Screening

    K.L. Bobseine*1, W.R. Kelce2, P.C. Hartig*1, and L.E. Gray, Jr.1

    1USEPA, NHEERL, Reproductive Toxicology Division, RTP, NC, 2Searle, Reprod...

  16. The rapid quantitation of the filamentous blue-green alga plectonema boryanum by the luciferase assay for ATP

    NASA Technical Reports Server (NTRS)

    Bush, V. N.

    1974-01-01

    Plectonema boryanum is a filamentous blue green alga. Blue green algae have a procaryotic cellular organization similar to bacteria, but are usually obligate photoautotrophs, obtaining their carbon and energy from photosynthetic mechanism similar to higher plants. This research deals with a comparison of three methods of quantitating filamentous populations: microscopic cell counts, the luciferase assay for ATP and optical density measurements.

  17. Development of a Suite of Luciferase Gene Probes for the Screening and Detection of Marine Bioluminescent Systems and Organisms

    DTIC Science & Technology

    2006-01-01

    catenella (Balech), Alexandrium fundyense (Balech) and also from a strain of Gonyaulax spinifera (Diesing), which produces bioluminescence...main clusters of the dinoflagellate luciferase sequences, a L. polyedrum clade, Pyrocystis clade, Alexandrium clade, Gonyaulax spinifera and a... Alexandrium cf catenella CCMP 1911 Alexandrium fundyense CCMP 1978 Alexandrium sp CCMP 1909 Alexandrium sp CCMP 1910 100/100 100/100 75/97 100

  18. Fluoro-luminometric real-time measurement of bacterial viability and killing.

    PubMed

    Lehtinen, Janne; Virta, Marko; Lilius, Esa Matti

    2003-10-01

    The viability and killing of Escherichia coli was measured on a real-time basis using a fluoro-luminometric device, which allows successive measurements of fluorescence and bioluminescence without user intervention. Bacteria were made fluorescent and bioluminescent by expression of gfp and insect luciferase (lucFF) genes. The green fluorescent protein (GFP) is a highly fluorescent, extremely stable protein, which accumulates in cells during growth, and therefore the measured fluorescence signal was proportional to the total number of cells. The luciferase reaction is dependent of ATP produced by living cells, so that the bioluminescence level was a direct measure of the viable cells. In contrast to the bacterial luciferase, the insect luciferase uses a water-soluble and nonvolatile substrate, which makes automated multi-well microplate assay possible. For the validation of the assay, the proportion of living and dead cell populations was experimentally modified by incubating E. coli cells in the presence of various ethanol concentrations. Bacterial viability and killing measured by a fluoro-luminometric assay correlated fairly well with the reference methods: conventional plate counting, optical density measurement and various flow cytometric analyses. The real-time assay described here allows following the changes in bacterial cultures and assessing the bactericidal and other effects of various chemical, immunological and physical agents simultaneously in large numbers of samples.

  19. High-throughput, luciferase-based reverse genetics systems for identifying inhibitors of Marburg and Ebola viruses.

    PubMed

    Uebelhoer, Luke S; Albariño, César G; McMullan, Laura K; Chakrabarti, Ayan K; Vincent, Joel P; Nichol, Stuart T; Towner, Jonathan S

    2014-06-01

    Marburg virus (MARV) and Ebola virus (EBOV), members of the family Filoviridae, represent a significant challenge to global public health. Currently, no licensed therapies exist to treat filovirus infections, which cause up to 90% mortality in human cases. To facilitate development of antivirals against these viruses, we established two distinct screening platforms based on MARV and EBOV reverse genetics systems that express secreted Gaussia luciferase (gLuc). The first platform is a mini-genome replicon to screen viral replication inhibitors using gLuc quantification in a BSL-2 setting. The second platform is complementary to the first and expresses gLuc as a reporter gene product encoded in recombinant infectious MARV and EBOV, thereby allowing for rapid quantification of viral growth during treatment with antiviral compounds. We characterized these viruses by comparing luciferase activity to virus production, and validated luciferase activity as an authentic real-time measure of viral growth. As proof of concept, we adapt both mini-genome and infectious virus platforms to high-throughput formats, and demonstrate efficacy of several antiviral compounds. We anticipate that both approaches will prove highly useful in the development of anti-filovirus therapies, as well as in basic research on the filovirus life cycle. Published by Elsevier B.V.

  20. Construction and Cloning of Reporter-Tagged Replicon cDNA for an In Vitro Replication Study of Murine Norovirus-1 (MNV-1).

    PubMed

    Ahmad, Muhammad Khairi; Tabana, Yasser M; Ahmed, Mowaffaq Adam; Sandai, Doblin Anak; Mohamed, Rafeezul; Ismail, Ida Shazrina; Zulkiflie, Nurulisa; Yunus, Muhammad Amir

    2017-12-01

    A norovirus maintains its viability, infectivity and virulence by its ability to replicate. However, the biological mechanisms of the process remain to be explored. In this work, the NanoLuc™ Luciferase gene was used to develop a reporter-tagged replicon system to study norovirus replication. The NanoLuc™ Luciferase reporter protein was engineered to be expressed as a fusion protein for MNV-1 minor capsid protein, VP2. The foot-and-mouth disease virus 2A (FMDV2A) sequence was inserted between the 3'end of the reporter gene and the VP2 start sequence to allow co-translational 'cleavage' of fusion proteins during intracellular transcript expression. Amplification of the fusion gene was performed using a series of standard and overlapping polymerase chain reactions. The resulting amplicon was then cloned into three readily available backbones of MNV-1 cDNA clones. Restriction enzyme analysis indicated that the NanoLucTM Luciferase gene was successfully inserted into the parental MNV-1 cDNA clone. The insertion was further confirmed by using DNA sequencing. NanoLuc™ Luciferase-tagged MNV-1 cDNA clones were successfully engineered. Such clones can be exploited to develop robust experimental assays for in vitro assessments of viral RNA replication.

Top