Shi, Yin; Zong, Min; Xu, Xiaoquan; Zou, Yuefen; Feng, Yang; Liu, Wei; Wang, Chuanbing; Wang, Dehang
2015-04-01
To quantitatively evaluate nerve roots by measuring fractional anisotropy (FA) values in healthy volunteers and sciatica patients, visualize nerve roots by tractography, and compare the diagnostic efficacy between conventional magnetic resonance imaging (MRI) and DTI. Seventy-five sciatica patients and thirty-six healthy volunteers underwent MR imaging using DTI. FA values for L5-S1 lumbar nerve roots were calculated at three levels from DTI images. Tractography was performed on L3-S1 nerve roots. ROC analysis was performed for FA values. The lumbar nerve roots were visualized and FA values were calculated in all subjects. FA values decreased in compressed nerve roots and declined from proximal to distal along the compressed nerve tracts. Mean FA values were more sensitive and specific than MR imaging for differentiating compressed nerve roots, especially in the far lateral zone at distal nerves. DTI can quantitatively evaluate compressed nerve roots, and DTT enables visualization of abnormal nerve tracts, providing vivid anatomic information and localization of probable nerve compression. DTI has great potential utility for evaluating lumbar nerve compression in sciatica. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Minimally invasive lumbar foraminotomy.
Deutsch, Harel
2013-07-01
Lumbar radiculopathy is a common problem. Nerve root compression can occur at different places along a nerve root's course including in the foramina. Minimal invasive approaches allow easier exposure of the lateral foramina and decompression of the nerve root in the foramina. This video demonstrates a minimally invasive approach to decompress the lumbar nerve root in the foramina with a lateral to medial decompression. The video can be found here: http://youtu.be/jqa61HSpzIA.
Lumbar Nerve Root Occupancy in the Foramen in Achondroplasia
Modi, Hitesh N.; Song, Hae-Ryong; Yang, Jae Hyuk
2008-01-01
Lumbar stenosis is common in patients with achondroplasia because of narrowing of the neural canal. However, it is unclear what causes stenosis, narrowing of the central canal or foramina. We performed a morphometric analysis of the lumbar nerve roots and intervertebral foramen in 17 patients (170 nerve roots and foramina) with achondroplasia (eight symptomatic, nine asymptomatic) and compared the data with that from 20 (200 nerve roots and foramina) asymptomatic patients without achondroplasia presenting with low back pain without neurologic symptoms. The measurements were made on left and right parasagittal MRI scans of the lumbar spine. The foramen area and root area were reduced at all levels from L1 to L5 between the patients with achondroplasia (Groups I and II) and the nonachondroplasia group (Group III). The percentage of nerve root occupancy in the foramen between Group I and Group II as compared with the patients without achondroplasia was similar or lower. This implied the lumbar nerve root size in patients with achondroplasia was smaller than that of the normal population and thus there is no effective nerve root compression. Symptoms of lumbar stenosis in achondroplasia may be arising from the central canal secondary to degenerative disc disease rather than a true foraminal stenosis. Level of Evidence: Level I, prognostic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18259829
The Relation Between Rotation Deformity and Nerve Root Stress in Lumbar Scoliosis
NASA Astrophysics Data System (ADS)
Kim, Ho-Joong; Lee, Hwan-Mo; Moon, Seong-Hwan; Chun, Heoung-Jae; Kang, Kyoung-Tak
Even though several finite element models of lumbar spine were introduced, there has been no model including the neural structure. Therefore, the authors made the novel lumbar spine finite element model including neural structure. Using this model, we investigated the relation between the deformity pattern and nerve root stress. Two lumbar models with different types of curve pattern (lateral bending and lateral bending with rotation curve) were made. In the model of lateral bending curves without rotation, the principal compressive nerve root stress on the concave side was greater than the principal tensile stress on the convex side at the apex vertebra. Contrarily, in the lateral bending curve with rotational deformity, the nerve stress on the convex side was higher than that on the concave side. Therefore, this study elicit that deformity pattern could have significantly influence on the nerve root stress in the lumbar spine.
Epstein, Nancy E.
2016-01-01
Background: In the lumbar spine, do more nerve root injuries occur utilizing minimally invasive surgery (MIS) techniques versus open lumbar procedures? To answer this question, we compared the frequency of nerve root injuries for multiple open versus MIS operations including diskectomy, laminectomy with/without fusion addressing degenerative disc disease, stenosis, and/or degenerative spondylolisthesis. Methods: Several of Desai et al. large Spine Patient Outcomes Research Trial studies showed the frequency for nerve root injury following an open diskectomy ranged from 0.13% to 0.25%, for open laminectomy/stenosis with/without fusion it was 0%, and for open laminectomy/stenosis/degenerative spondylolisthesis with/without fusion it was 2%. Results: Alternatively, one study compared the incidence of root injuries utilizing MIS transforaminal lumbar interbody fusion (TLIF) versus posterior lumbar interbody fusion (PLIF) techniques; 7.8% of PLIF versus 2% of TLIF patients sustained root injuries. Furthermore, even higher frequencies of radiculitis and nerve root injuries occurred during anterior lumbar interbody fusions (ALIFs) versus extreme lateral interbody fusions (XLIFs). These high frequencies were far from acceptable; 15.8% following ALIF experienced postoperative radiculitis, while 23.8% undergoing XLIF sustained root/plexus deficits. Conclusions: This review indicates that MIS (TLIF/PLIF/ALIF/XLIF) lumbar surgery resulted in a higher incidence of root injuries, radiculitis, or plexopathy versus open lumbar surgical techniques. Furthermore, even a cursory look at the XLIF data demonstrated the greater danger posed to neural tissue by this newest addition to the MIS lumbar surgical armamentariu. The latter should prompt us as spine surgeons to question why the XLIF procedure is still being offered to our patients? PMID:26904372
Military Aircrew Seating: a Human Factors Engineering Approach
1989-12-01
deformation of lumbar motion segments can be reduced by using lumbar support to increase lumbar spine lordosis . 3. Disc pressure can be reduced by using...increase in lumbar lordosis (curve of the lumbar spine), which placed them in a position which closer approximated that of balanced muscle relaxation... lordosis and curvature length. This flattening of the lumbar spine tends to stretch the overlying nerve root, and increases nerve root irritation and
Wu, Weifei; Liang, Jie; Ru, Neng; Zhou, Caisheng; Chen, Jianfeng; Wu, Yongde; Yang, Zong
2016-06-01
A prospective study. To investigate the association between microstructural nerve roots changes on diffusion tensor imaging (DTI) and clinical symptoms and their duration in patients with lumbar disc herniation. The ability to identify microstructural properties of the nervous system with DTI has been demonstrated in many studies. However, there are no data regarding the association between microstructural changes evaluated using DTI and symptoms assessed with the Oswestry Disability Index (ODI) and their duration. Forty consecutive patients with foraminal disc herniation affecting unilateral sacral 1 (S1) nerve roots were enrolled in this study. DTI with tractography was performed on the S1 nerve roots. Clinical symptoms were evaluated using an ODI questionnaire for each patient, and the duration of clinical symptoms was noted based on the earliest instance of leg pain and numbness. Mean fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were calculated from tractography images. The mean FA value of the compressed lumbar nerve roots was significantly lower than the FA of the contralateral nerve roots (P < 0.001). No notable difference in ADC was observed between compressed nerve roots and contralateral nerve roots (P = 0.517). In the compressed nerve roots, a significant negative association was observed between FA values and ODI and symptom duration. However, an obvious positive association was observed between ODI and ADC values and duration on the compressed side. Significant changes in diffusion parameters were found in the compressed sacral nerves in patients with lumbar disc herniation and leg pain, indicating that the microstructure of the nerve root has been damaged. 3.
Suri, Pradeep; Rainville, James; Katz, Jeffrey N.; Jouve, Cristin; Hartigan, Carol; Limke, Janet; Pena, Enrique; Li, Ling; Swaim, Bryan; Hunter, David J
2010-01-01
Study Design Cross-sectional study with prospective recruitment. Objective To determine the accuracy of the physical examination for the diagnosis of midlumbar nerve root impingement (L2, L3, or L4), low lumbar nerve root impingement (L5 or S1) and level-specific lumbar nerve root impingement on magnetic resonance imaging (MRI), using individual tests and combinations of tests. Summary of Background Data The sensitivity and specificity of the physical examination for the localization of nerve root impingement has not been previously studied. Methods Sensitivities, specificities and LRs were calculated for the ability of individual tests and test combinations to predict the presence or absence of nerve root impingement at midlumbar, low lumbar, and specific nerve root levels. Results LRs ≥5.0 indicate moderate to large changes from pre-test probability of nerve root impingement to post-test probability. For the diagnosis of midlumbar impingement, the femoral stretch test (FST), crossed femoral stretch test (CFST), medial ankle pinprick sensation, and patellar reflex testing demonstrated LRs ≥5.0 (LR ∞). LRs ≥5.0 were seen with the combinations of FST and either patellar reflex testing (LR 7.0; 95% CI 2.3–21), or the sit-to-stand test (LR ∞). For the diagnosis of low lumbar impingement, the Achilles reflex test demonstrated a LR ≥5.0 (LR 7.1; CI 0.96–53); test combinations did not increase LRs. For the diagnosis of level-specific impingement, LRs ≥5.0 were seen for anterior thigh sensation at L2 (LR 13; 95% CI 1.8–87); FST at L3 (LR 5.7 ; 95% CI 2.3–4.4); patellar reflex testing (LR 7.7; 95% CI 1.7–35), medial ankle sensation (LR ∞), or CFST (LR 13; 95% CI 1.8–87) at L4; and hip abductor strength at L5(LR 11; 95% CI 1.3–84). Test combinations increased LRs for level-specific root impingement at the L4 level only. Conclusions Individual physical examination tests may provide clinical information which substantially alters the likelihood that midlumbar impingement, low lumbar impingement, or level-specific impingement is present. Test combinations improve diagnostic accuracy for midlumbar impingement. PMID:20543768
Ligament, nerve, and blood vessel anatomy of the lateral zone of the lumbar intervertebral foramina.
Yuan, Shi-Guo; Wen, You-Liang; Zhang, Pei; Li, Yi-Kai
2015-11-01
To provide an anatomical basis for intrusive treatment using an approach through the lateral zones of the lumbar intervertebral foramina (LIF), especially for acupotomology lysis, percutaneous transforaminal endoscopy, and lumbar nerve root block. Blood vessels, ligaments, nerves, and adjacent structures of ten cadavers were exposed through the L1-2 to L5-S1 intervertebral foramina and examined. The lateral zones of the LIF were almost filled by ligaments, nerves, and blood vessels, which were separated into compartments by superior/inferior transforaminal ligaments and corporotransverse superior/inferior ligaments. Two zones relatively lacking in blood vessels and nerves (triangular working zones) were found beside the lamina of the vertebral arch and on the root of the transverse processus. Both the ascending lumbar vein and branches of the intervetebral vein were observed in 12 Kambin's triangles, and in only seven Kambin's triangles were without any veins. Nerves and blood vessels are fixed and protected by transforaminal ligaments and/or corporotransverse ligaments. It is necessary to distinguish the ligaments from nerves using transforaminal endoscopy so that the ligaments can be cut without damaging nerves. Care needs to be taken in intrusive operations because of the veins running through Kambin's triangle. We recommend injecting into the lamina of the vertebral arch and the midpoint between the adjacent roots of the transverse processus when administering nerve root block. Blind percutaneous incision and acupotomology lysis is dangerous in the lateral zones of the LIF, as they are filled with nerves and blood vessels.
Sakai, Takayuki; Doi, Kunio; Yoneyama, Masami; Watanabe, Atsuya; Miyati, Tosiaki; Yanagawa, Noriyuki
2018-06-01
Diffusion tensor imaging (DTI) based on a single-shot echo planer imaging (EPI-DTI) is an established method that has been used for evaluation of lumbar nerve disorders in previous studies, but EPI-DTI has problems such as a long acquisition time, due to a lot of axial slices, and geometric distortion. To solve these problems, we attempted to apply DTI based on a single-shot turbo spin echo (TSE-DTI) with direct coronal acquisition. Our purpose in this study was to investigate whether TSE-DTI may be more useful for evaluation of lumbar nerve disorders than EPI-DTI. First, lumbar nerve roots of five healthy volunteers were evaluated for optimization of imaging parameters with TSE-DTI including b-values and the number of motion proving gradient (MPG) directions. Subsequently, optimized TSE-DTI was quantitatively compared with conventional EPI-DTI by using fractional anisotropy (FA) values and visual scores in subjective visual evaluation of tractography. Lumbar nerve roots of six patients, who had unilateral neurologic symptoms in one leg, were evaluated by the optimized TSE-DTI. TSE-DTI with b-value of 400 s/mm 2 and 32 diffusion-directions could reduce the image distortion compared with EPI-DTI, and showed that the average FA values on the symptomatic side for six patients were significantly lower than those on the non-symptomatic side (P < 0.05). Tractography with TSE-DTI might show damaged areas of lumbar nerve roots without severe image distortion. TSE-DTI might improve the reproducibility in measurements of FA values for quantification of a nerve disorder, and would become a useful tool for diagnosis of low back pain. Copyright © 2018 Elsevier Inc. All rights reserved.
Riva, Nilo; Riva, Nilo; Morana, Paolo; Cerri, Federica; Gerevini, Simonetta; Amadio, Stefano; Formaglio, Fabio; Comi, Giancarlo; Comola, Mauro; Del Carro, Ubaldo
2009-01-01
We report a patient who developed acute myelopathy after intranasal insufflation of amphetamines and heroin. The functional prognosis was very poor; after 4 months, she remained paraplegic. MRI imaging showed selective T2 hyperintensity and intense enhancement confined to the spinal anterior horns and lumbar nerve roots and plexus. This unique MRI pattern, together with neurophysiological data, suggests that the pathological process at the first primary affected spinal anterior horns (SAH), conditioning motoneuron cell death, and then nerve roots and lumbar plexus as a consequence of wallerian degeneration PMID:21686691
Computed tomography of cystic nerve root sleeve dilatation.
Neave, V C; Wycoff, R R
1983-10-01
A case of cystic nerve root sleeve dilatation in the lumbar area associated with a chronic back pain syndrome is presented. Prominent computed tomography (CT) findings include: (a) rounded masses in the region of the foramina isodense with cerebrospinal fluid in the subarachnoid space; (b) associated asymmetry of epidural fat distribution; (c) enlargement of the neural foramina in axial sections with scalloped erosion of the adjacent posteriolateral vertebral body, pedicle, and pedicular-laminar junction with preservation of cortex and without bony sclerosis or infiltrative appearance; (d) prominent or ectatic dural sac with lack of usual epidural landmarks between the sac and vertebral body; and (e) multilevel abnormalities throughout the entire lumbar region. Myelographic and CT correlations are demonstrated with a review of the literature. A discussion of the various cystic abnormalities involving nerve root sheaths is undertaken in an attempt to clarify the confusing nomenclature applied to nerve root sleeve pathology.
Palmer, Keith T; Griffin, Michael; Ntani, Georgia; Shambrook, James; McNee, Philip; Sampson, Madeleine; Harris, E Clare; Coggon, David
2012-01-01
Objectives The aim of this study was to investigate whether whole-body vibration (WBV) is associated with prolapsed lumbar intervertebral disc (PID) and nerve root entrapment among patients with low-back pain (LBP) undergoing magnetic resonance imaging (MRI). Methods A consecutive series of patients referred for lumbar MRI because of LBP were compared with controls X-rayed for other reasons. Subjects were questioned about occupational activities loading the spine, psychosocial factors, driving, personal characteristics, mental health, and certain beliefs about LBP. Exposure to WBV was assessed by six measures, including weekly duration of professional driving, hours driven at a spell, and current 8-hour daily equivalent root-mean-square acceleration A(8). Cases were sub-classified according to whether or not PID/nerve root entrapment was present. Associations with WBV were examined separately for cases with and without these MRI findings, with adjustment for age, sex, and other potential confounders. Results Altogether, 237 cases and 820 controls were studied, including 183 professional drivers and 176 cases with PID and/or nerve root entrapment. Risks associated with WBV tended to be lower for LBP with PID/nerve root entrapment but somewhat higher for risks of LBP without these abnormalities. However, associations with the six metrics of exposure were all weak and not statistically significant. Neither exposure–response relationships nor increased risk of PID/nerve root entrapment from professional driving or exposure at an A(8) above the European Union daily exposure action level were found. Conclusions WBV may be a cause of LBP but it was not associated with PID or nerve root entrapment in this study. PMID:22249859
Trainor, Kate; Pinnington, Mark A
2011-03-01
It has been proposed that neurodynamic examination can assist differential diagnosis of upper/mid lumbar nerve root compression; however, the diagnostic validity of many of these tests has yet to be established. This pilot study aimed to establish the diagnostic validity of the slump knee bend neurodynamic test for upper/mid lumbar nerve root compression in subjects with suspected lumbosacral radicular pain. Two independent examiners performed the slump knee bend test on subjects with radicular leg pain. Inter-tester reliability was calculated using the kappa coefficient. Slump knee bend test results were compared with magnetic resonance imaging findings, and diagnostic accuracy measures were calculated including sensitivity, specificity, predictive values and likelihood ratios. Orthopaedic spinal clinic, secondary care. Sixteen patients with radicular leg pain. All four subjects with mid lumbar nerve root compression on magnetic resonance imaging were correctly identified with the slump knee bend test; however, it was falsely positive in two individuals without the condition. Inter-tester reliability for the slump knee bend test using the kappa coefficient was 0.71 (95% confidence interval 0.33 to 1.0). Diagnostic validity calculations for the slump knee bend test (95% confidence intervals) were: sensitivity, 100% (40 to 100%); specificity, 83% (52 to 98%); positive predictive value, 67% (22 to 96%); negative predictive value, 100% (69 to 100%); positive likelihood ratio, 6.0 (1.58 to 19.4); and negative likelihood ratio, 0 (0 to 0.6). Results indicate good inter-tester reliability and suggest that the slump knee bend test has potential to be a useful clinical test for identifying patients with mid lumbar nerve root compression. Further investigation is needed on larger numbers of patients to confirm these findings. Copyright © 2010 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Miyagi, Ryo; Sakai, Toshinori; Yamabe, Eiko; Yoshioka, Hiroshi
2015-06-27
Diffusion weighted imaging (DWI) and diffusion tensor imaging (DTI) are widely used in the evaluation of the central nervous system and recently have been reported as a potential tool for diagnosis of the peripheral nerve or the lumbar nerve entrapment. The purpose of this study was to evaluate consecutive changes in apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values of normal lumbar nerve roots from the junction of the dura mater. The lumbar spinal nerves were examined in 6 male healthy volunteers (mean age, 35 years) with no experiences of sciatica, with a 3.0-T MR unit using a five-element phased-array surface coil. DTI was performed with the following imaging parameters: 11084.6/73.7 ms for TR/TE; b-value, 800 s/mm2; MPG, 33 directions; slice thickness, 1.5 mm; and total scan time, 7 min 35 s. ADC and FA values at all consecutive points along the L4, L5 and S1 nerves were quantified on every 1.5 mm slice from the junction of the dura mater using short fiber tracking. ADC values of all L4, 5, and S1 nerve roots decreased linearly up to 15 mm from the dura junction and was constant distally afterward. ADC values in the proximal portion demonstrated S1 > L5 > L4 (p < 0.05). On the other hand, FA values increased linearly up to 15 mm from the dura junction, and was constant distally afterward. FA values in the proximal portion showed L4 > L5 > S1 (p < 0.05). Our study demonstrated that ADC and FA values of each L4, 5, and S1 at the proximal portion from the junction of the dura matter changed linearly. It would be useful to know the normal profile of DTI values by location of each nerve root so that we can detect subtle abnormalities in each nerve root.
Romeo-Guitart, David; Forés, Joaquim; Navarro, Xavier; Casas, Caty
2017-09-20
The "gold standard" treatment of patients with spinal root injuries consists of delayed surgical reconnection of nerves. The sooner, the better, but problems such as injury-induced motor neuronal death and muscle atrophy due to long-term denervation mean that normal movement is not restored. Herein we describe a preclinical model of root avulsion with delayed reimplantation of lumbar roots that was used to establish a new adjuvant pharmacological treatment. Chronic treatment (up to 6 months) with NeuroHeal, a new combination drug therapy identified using a systems biology approach, exerted long-lasting neuroprotection, reduced gliosis and matrix proteoglycan content, accelerated nerve regeneration by activating the AKT pathway, promoted the formation of functional neuromuscular junctions, and reduced denervation-induced muscular atrophy. Thus, NeuroHeal is a promising treatment for spinal nerve root injuries and axonal regeneration after trauma.
Value of 3D MR lumbosacral radiculography in the diagnosis of symptomatic chemical radiculitis.
Byun, W M; Ahn, S H; Ahn, M-W
2012-03-01
Radiologic methods for the diagnosis of chemical radiculitis associated with anular tears in the lumbar spine have been rare. Provocative diskography is one of the methods for diagnosing diskogenic chemical radiculitis but is invasive. A reliable imaging method for replacing provocative diskography and diagnosing chemical radiculitis is required. Our aim was to investigate the value of 3D MR radiculography depicted by rendering imaging in the diagnosis of symptomatic chemical radiculopathy associated with anular tears. The study population consisted of 17 patients (age range, 32-88 years) with unilateral radiculopathy. Symptomatic chemical radiculopathy was confirmed with provocative CT diskography and/or provocative selective nerve root block for agreement of sides and levels. Through adhering to the principles of selective excitation (Proset imaging), we acquired 3D coronal FFE sequences with selective water excitation. Morphologic changes in the ipsilateral symptomatic nerve root caused by chemical radiculopathy were compared with those in the contralateral nerve root on 3D MR lumbosacral radiculography. Pain reproduction at the contrast-leak level during diskography (n = 4) and selective nerve root injection (n = 13) showed concordant pain in all patients. All patients with symptomatic chemical radiculopathy showed nerve root swelling in both ipsilateral levels and sides on 3D MR radiculography. The most common nerve root affected by the chemical radiculopathy was the L5 nerve root (n = 13), while the most common segment exhibiting nerve root swelling was the exit nerve root (n = 16). All patients with radicular leg pain caused by chemical radiculopathy showed nerve root swelling on 3D MR radiculography. We believe that in cases without mechanical nerve root compression caused by disk herniation or stenosis in the lumbar spine, nerve root swelling on 3D MR radiculography in patients with radiculopathy associated with an anular tear may be relevant in the diagnosis of symptomatic chemical radiculopathy.
Reduction in nerve root compression by the nucleus pulposus after Feng's Spinal Manipulation☆
Feng, Yu; Gao, Yan; Yang, Wendong; Feng, Tianyou
2013-01-01
Ninety-four patients with lumbar intervertebral disc herniation were enrolled in this study. Of these, 48 were treated with Feng's Spinal Manipulation, hot fomentation, and bed rest (treatment group). The remaining 46 patients were treated with hot fomentation and bed rest only (control group). After 3 weeks of treatment, clinical parameters including the angle of straight-leg raising, visual analogue scale pain score, and Japanese Orthopaedic Association score for low back pain were improved. The treatment group had significantly better improvement in scores than the control group. Magnetic resonance myelography three-dimensional reconstruction imaging of the vertebral canal demonstrated that filling of the compressed nerve root sleeve with cerebrospinal fluid increased significantly in the treatment group. The diameter of the nerve root sleeve was significantly larger in the treatment group than in the control group. However, the sagittal diameter index of the herniated nucleus pulposus and the angle between the nerve root sleeve and the thecal sac did not change significantly in either the treatment or control groups. The effectiveness of Feng's Spinal Manipulation for the treatment of symptoms associated with lumbar intervertebral disc herniation may be attributable to the relief of nerve root compression, without affecting the herniated nucleus pulposus or changing the morphology or position of the nerve root. PMID:25206408
Accuracy of physical examination for chronic lumbar radiculopathy
2013-01-01
Background Clinical examination of patients with chronic lumbar radiculopathy aims to clarify whether there is nerve root impingement. The aims of this study were to investigate the association between findings at clinical examination and nerve root impingement, to evaluate the accuracy of clinical index tests in a specialised care setting, and to see whether imaging clarifies the cause of chronic radicular pain. Methods A total of 116 patients referred with symptoms of lumbar radiculopathy lasting more than 12 weeks and at least one positive index test were included. The tests were the straight leg raising test, and tests for motor muscle strength, dermatome sensory loss, and reflex impairment. Magnetic resonance imaging (n = 109) or computer tomography (n = 7) were imaging reference standards. Images were analysed at the level of single nerve root(s), and nerve root impingement was classified as present or absent. Sensitivities, specificities, and positive and negative likelihood ratios (LR) for detection of nerve root impingement were calculated for each individual index test. An overall clinical evaluation, concluding on the level and side of the radiculopathy, was performed. Results The prevalence of disc herniation was 77.8%. The diagnostic accuracy of individual index tests was low with no tests reaching positive LR >4.0 or negative LR <0.4. The overall clinical evaluation was slightly more accurate, with a positive LR of 6.28 (95% CI 1.06–37.21) for L4, 1.74 (95% CI 1.04–2.93) for L5, and 1.29 (95% CI 0.97–1.72) for S1 nerve root impingement. An overall clinical evaluation, concluding on the level and side of the radiculopathy was also performed, and receiver operating characteristic (ROC) analysis with area under the curve (AUC) calculation for diagnostic accuracy of this evaluation was performed. Conclusions The accuracy of individual clinical index tests used to predict imaging findings of nerve root impingement in patients with chronic lumbar radiculopathy is low when applied in specialised care, but clinicians’ overall evaluation improves diagnostic accuracy slightly. The tests are not very helpful in clarifying the cause of radicular pain, and are therefore inaccurate for guidance in the diagnostic workup of the patients. The study population was highly selected and therefore the results from this study should not be generalised to unselected patient populations in primary care nor to even more selected surgical populations. PMID:23837886
Lohman, Chelsea M; Gilbert, Kerry K; Sobczak, Stéphane; Brismée, Jean-Michel; James, C Roger; Day, Miles; Smith, Michael P; Taylor, LesLee; Dugailly, Pierre-Michel; Pendergrass, Timothy; Sizer, Phillip J
2015-06-01
A cross-sectional cadaveric examination of the mechanical effect of foraminal ligaments on cervical nerve root displacement and strain. To determine the role of foraminal ligaments by examining differences in cervical nerve root displacement and strain during upper limb neural tension testing (ULNTT) before and after selective cutting of foraminal ligaments. Although investigators have determined that lumbar spine foraminal ligaments limit displacement and strain of lumbosacral nerve roots, similar studies have not been conducted to prove that it is true for the cervical region. Because the size, shape, and orientation of cervical spine foraminal ligaments are similar to those in the lumbar spine, it is hypothesized that foraminal ligaments in the cervical spine will function in a similar fashion. Radiolucent markers were implanted into cervical nerve roots C5-C8 of 9 unembalmed cadavers. Posteroanterior fluoroscopic images were captured at resting and upper limb neural tension testing positioning before and after selective cutting of foraminal ligaments. Selective cutting of foraminal ligaments resulted in significant increases in inferolateral displacement (average, 2.94 mm [ligaments intact]-3.87 mm [ligaments cut], P < 0.05) and strain (average, 9.33% [ligaments intact]-16.31% [ligaments cut], P < 0.03) of cervical nerve roots C5-C8 during upper limb neural tension testing. Foraminal ligaments in the cervical spine limited cervical nerve root displacement and strain during upper limb neural tension testing. Foraminal ligaments seem to have a protective role, reducing displacement and strain to cervical nerve roots during tension events. 2.
Sciatica caused by lumbar epidural gas.
Belfquih, Hatim; El Mostarchid, Brahim; Akhaddar, Ali; gazzaz, Miloudi; Boucetta, Mohammed
2014-01-01
Gas production as a part of disc degeneration can occur but rarely causes nerve compression syndromes. The clinical features are similar to those of common sciatica. CT is very useful in the detection of epidural gas accumulation and nerve root compression. We report a case of symptomatic epidural gas accumulation originating from vacuum phenomenon in the intervertebral disc, causing lumbo-sacral radiculopathy. A 45-year-old woman suffered from sciatica for 9 months. The condition worsened in recent days. Computed tomography (CT) demonstrated intradiscal vacuum phenomenon, and accumulation of gas in the lumbar epidural space compressing the dural sac and S1 nerve root. After evacuation of the gas, her pain resolved without recurrence.
Kobayashi, Shigeru
2014-04-18
Spinal nerve roots have a peculiar structure, different from the arrangements in the peripheral nerve. The nerve roots are devoid of lymphatic vessels but are immersed in the cerebrospinal fluid (CSF) within the subarachnoid space. The blood supply of nerve roots depends on the blood flow from both peripheral direction (ascending) and the spinal cord direction (descending). There is no hypovascular region in the nerve root, although there exists a so-called water-shed of the bloodstream in the radicular artery itself. Increased mechanical compression promotes the disturbance of CSF flow, circulatory disturbance starting from the venous congestion and intraradicular edema formation resulting from the breakdown of the blood-nerve barrier. Although this edema may diffuse into CSF when the subarachnoid space is preserved, the endoneurial fluid pressure may increase when the area is closed by increased compression. On the other hand, the nerve root tissue has already degenerated under the compression and the numerous macrophages releasing various chemical mediators, aggravating radicular symptoms that appear in the area of Wallerian degeneration. Prostaglandin E1 (PGE1) is a potent vasodilator as well as an inhibitor of platelet aggregation and has therefore attracted interest as a therapeutic drug for lumbar canal stenosis. However, investigations in the clinical setting have shown that PGE1 is effective in some patients but not in others, although the reason for this is unclear.
Kobayashi, Shigeru
2014-01-01
Spinal nerve roots have a peculiar structure, different from the arrangements in the peripheral nerve. The nerve roots are devoid of lymphatic vessels but are immersed in the cerebrospinal fluid (CSF) within the subarachnoid space. The blood supply of nerve roots depends on the blood flow from both peripheral direction (ascending) and the spinal cord direction (descending). There is no hypovascular region in the nerve root, although there exists a so-called water-shed of the bloodstream in the radicular artery itself. Increased mechanical compression promotes the disturbance of CSF flow, circulatory disturbance starting from the venous congestion and intraradicular edema formation resulting from the breakdown of the blood-nerve barrier. Although this edema may diffuse into CSF when the subarachnoid space is preserved, the endoneurial fluid pressure may increase when the area is closed by increased compression. On the other hand, the nerve root tissue has already degenerated under the compression and the numerous macrophages releasing various chemical mediators, aggravating radicular symptoms that appear in the area of Wallerian degeneration. Prostaglandin E1 (PGE1) is a potent vasodilator as well as an inhibitor of platelet aggregation and has therefore attracted interest as a therapeutic drug for lumbar canal stenosis. However, investigations in the clinical setting have shown that PGE1 is effective in some patients but not in others, although the reason for this is unclear. PMID:24829876
Clinical anatomy and 3D virtual reconstruction of the lumbar plexus with respect to lumbar surgery.
Lu, Sheng; Chang, Shan; Zhang, Yuan-zhi; Ding, Zi-hai; Xu, Xin Ming; Xu, Yong-qing
2011-04-14
Exposure of the anterior or lateral lumbar via the retroperitoneal approach easily causes injuries to the lumbar plexus. Lumbar plexus injuries which occur during anterior or transpsoas lumbar spine exposure and placement of instruments have been reported. This study aims is to provide more anatomical data and surgical landmarks in operations concerning the lumbar plexus in order to prevent lumbar plexus injuries and to increase the possibility of safety in anterior approach lumbar surgery. To study the applied anatomy related to the lumbar plexus of fifteen formaldehyde-preserved cadavers, Five sets of Virtual Human (VH) data set were prepared and used in the study. Three-dimensional (3D) computerized reconstructions of the lumbar plexus and their adjacent structures were conducted from the VH female data set. The order of lumbar nerves is regular. From the anterior view, lumbar plexus nerves are arranged from medial at L5 to lateral at L2. From the lateral view, lumbar nerves are arranged from ventral at L2 to dorsal at L5. The angle of each nerve root exiting outward to the corresponding intervertebral foramen increases from L1 to L5. The lumbar plexus nerves are observed to be in close contact with transverse processes (TP). All parts of the lumbar plexus were located by sectional anatomy in the dorsal third of the psoas muscle. Thus, access to the psoas major muscle at the ventral 2/3 region can safely prevent nerve injuries. 3D reconstruction of the lumbar plexus based on VCH data can clearly show the relationships between the lumbar plexus and the blood vessels, vertebral body, kidney, and psoas muscle. The psoas muscle can be considered as a surgical landmark since incision at the ventral 2/3 of the region can prevent lumbar plexus injuries for procedures requiring exposure of the lateral anterior of the lumbar. The transverse process can be considered as a landmark and reference in surgical operations by its relative position to the lumbar plexus. 3D reconstructions of the lumbar plexus based on VCH data provide a virtual morphological basis for anterior lumbar surgery.
Clinical anatomy and 3D virtual reconstruction of the lumbar plexus with respect to lumbar surgery
2011-01-01
Background Exposure of the anterior or lateral lumbar via the retroperitoneal approach easily causes injuries to the lumbar plexus. Lumbar plexus injuries which occur during anterior or transpsoas lumbar spine exposure and placement of instruments have been reported. This study aims is to provide more anatomical data and surgical landmarks in operations concerning the lumbar plexus in order to prevent lumbar plexus injuries and to increase the possibility of safety in anterior approach lumbar surgery. Methods To study the applied anatomy related to the lumbar plexus of fifteen formaldehyde-preserved cadavers, Five sets of Virtual Human (VH) data set were prepared and used in the study. Three-dimensional (3D) computerized reconstructions of the lumbar plexus and their adjacent structures were conducted from the VH female data set. Results The order of lumbar nerves is regular. From the anterior view, lumbar plexus nerves are arranged from medial at L5 to lateral at L2. From the lateral view, lumbar nerves are arranged from ventral at L2 to dorsal at L5. The angle of each nerve root exiting outward to the corresponding intervertebral foramen increases from L1 to L5. The lumbar plexus nerves are observed to be in close contact with transverse processes (TP). All parts of the lumbar plexus were located by sectional anatomy in the dorsal third of the psoas muscle. Thus, access to the psoas major muscle at the ventral 2/3 region can safely prevent nerve injuries. 3D reconstruction of the lumbar plexus based on VCH data can clearly show the relationships between the lumbar plexus and the blood vessels, vertebral body, kidney, and psoas muscle. Conclusion The psoas muscle can be considered as a surgical landmark since incision at the ventral 2/3 of the region can prevent lumbar plexus injuries for procedures requiring exposure of the lateral anterior of the lumbar. The transverse process can be considered as a landmark and reference in surgical operations by its relative position to the lumbar plexus. 3D reconstructions of the lumbar plexus based on VCH data provide a virtual morphological basis for anterior lumbar surgery. PMID:21492461
Injury to the Lumbar Plexus and its Branches After Lateral Fusion Procedures: A Cadaver Study.
Grunert, Peter; Drazin, Doniel; Iwanaga, Joe; Schmidt, Cameron; Alonso, Fernando; Moisi, Marc; Chapman, Jens R; Oskouian, Rod J; Tubbs, Richard Shane
2017-09-01
Neurologic deficits from lumbar plexus nerve injuries commonly occur in patients undergoing lateral approaches. However, it is not yet clear what types of injury occur, where anatomically they are located, or what mechanism causes them. We aimed to study 1) the topographic anatomy of lumbar plexus nerves and their injuries in human cadavers after lateral transpsoas approaches to the lumbar spine, 2) the structural morphology of those injuries, and 3) the topographic anatomy of the lumbar plexus throughout the mediolateral approach corridor. Fifteen adult fresh frozen cadaveric torsos (26 sides) underwent lateral approaches (L1-L5) by experienced lateral spine surgeons. The cadavers were subsequently opened and the entire plexus dissected and examined for nerve injuries. The topographic anatomy of the lumbar plexus and its branches, their injuries, and the morphology of these injuries were documented. Fifteen injuries were found with complete or partial nerve transections (Sunderland IV and V). Injuries were found throughout the mediolateral approach corridor. At L1/2, the iliohypogastric, ilioinguinal, and subcostal nerves were injured within the psoas major muscle, the retroperitoneal space, or the outer abdominal muscles and subcutaneous tissues. Genitofemoral nerve injuries were found in the retroperitoneal space. Nerve root injuries occurred within the retroperitoneal space and psoas muscle. Femoral nerve injuries were found only within the psoas major muscle. No obturator nerve injuries occurred. Lateral approaches can lead to structural nerve damage. Knowledge of the complex plexus anatomy, specifically its mediolateral course, is critical to avoid approach-related injuries. Copyright © 2017 Elsevier Inc. All rights reserved.
Diffusion-weighted imaging and diffusion tensor imaging of asymptomatic lumbar disc herniation.
Sakai, Toshinori; Miyagi, Ryo; Yamabe, Eiko; Fujinaga, Yasunari; N Bhatia, Nitin; Yoshioka, Hiroshi
2014-01-01
Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) were performed on a healthy 31-year-old man with asymptomatic lumbar disc herniation. Although the left S1 nerve root was obviously entrapped by a herniated mass, neither DWI nor DTI showed any significant findings for the nerve root. Decreased apparent diffusion coefficient (ADC) values and increased fractional anisotropy (FA) values were found. These results are contrary to those in previously published studies of symptomatic patients, in which a combination of increased ADC and decreased FA seem to have a relationship with nerve injury and subsequent symptoms, such as leg pain or palsy. Our results seen in an asymptomatic subject suggest that the compressed nerve with no injury, such as edema, demyelination, or persistent axonal injury, may be indicated by a combination of decreased ADC and increased FA. ADC and FA could therefore be potential tools to elucidate the pathomechanism of radiculopathy.
Xu, Le-qin; Li, Xiao-feng; Zhang, You-wei; Shu, Bing; Shi, Qi; Wang, Yong-jun; Zhou, Chong-jian
2010-12-01
To observe the effects of Yiqi Huayu Recipe, a Chinese compound herbal medicine, on apoptosis of dorsal root ganglion (DRG) neurons and expression of caspase-3 in rats after lumbar nerve root compression injury. A total of 40 male Sprague-Dawley rats were randomly allocated into 4 groups: control group, untreated group, Methylcobal group and Yiqi Huayu Recipe group. Surgery was performed on rats of untreated group, Methylcobal group and Yiqi Huayu Recipe group to place a micro-silica gel on right L₄ DRG, while control group received skin and paravertebral muscle incision only. Rats in Methylcobal group and Yiqi Huayu Recipe group were given Methylcobal by intramuscular injection and Yiqi Huayu Recipe intragastrically respectively. Rats in control group and untreated group received saline intragastrically as equal amount as Yiqi Huayu Recipe group. The compressed nerve roots were harvested at the 10th day after treatment. Apoptosis of DRG neurons was detected by terminal deoxynucleotidyl transferase-mediated nick-end labeling. Caspase-3 activity and mRNA expression in compressed nerve roots were detected with spectrophotography and real-time polymerase chain reaction respectively. Apoptosis of DRG neurons was significantly increased in the rat model. The apoptosis index of untreated group was higher than that of control group (P<0.01). Yiqi Huayu Recipe and Methylcobal could reduce the apoptosis of DRG neurons, and both groups showed a lower apoptosis index than untreated group (P<0.01). Caspase-3 activity and its gene expression were significantly increased in untreated group. The levels of caspase-3 activity and its gene expression in untreated group were higher than those in control group (P<0.05 or P<0.01). Yiqi Huayu Recipe and Methylcobal could reduce the overexpression of caspase-3 mRNA, and statistically significant differences were found between the untreated group and Yiqi Huayu Recipe group or Methylcobal group (P<0.01). Lumbar nerve root compression results in overexpression of caspase-3 in nerve root tissue and increase of DRG neuron apoptosis. Yiqi Huayu Recipe can inhibit the overexpression of caspase-3 and alleviate the apoptosis of DRG neurons after nerve injury.
Uribe, Juan S; Arredondo, Nicolas; Dakwar, Elias; Vale, Fernando L
2010-08-01
The lateral retroperitoneal transpsoas approach is being increasingly employed to treat various spinal disorders. The minimally invasive blunt retroperitoneal and transpsoas dissection poses a risk of injury to major nervous structures. The addition of electrophysiological monitoring potentially decreases the risk of injury to the lumbar plexus. With respect to the use of the direct transpsoas approach, however, there is sparse knowledge regarding the relationship between the retroperitoneum/psoas muscle and the lumbar plexus at each lumbar segment. The authors undertook this anatomical cadaveric dissection study to define the anatomical safe zones relative to the disc spaces for prevention of nerve injuries during the lateral retroperitoneal transpsoas approach. Twenty lumbar segments were dissected and studied. The relationship between the retroperitoneum, psoas muscle, and the lumbar plexus was analyzed. The area between the anterior and posterior edges of the vertebral body (VB) was divided into 4 equal zones. Radiopaque markers were placed in each disc space at the midpoint of Zone III (middle posterior quarter). At each segment, the psoas muscle, lumbar plexus, and nerve roots were dissected. The distribution of the lumbar plexus with reference to the markers at each lumbar segment was analyzed. All parts of the lumbar plexus, including nerve roots, were found within the substance of the psoas muscle dorsal to the posterior fourth of the VB (Zone IV). No Zone III marker was posterior to any part of the lumbar plexus with the exception of the genitofemoral nerve. The genitofemoral nerve travels obliquely in the substance of the psoas muscle from its origin to its innervations. It emerges superficially and anterior from the medial border of the psoas at the L3-4 level and courses along the anterior medial fourth of the L-4 and L-5 VBs (Zone I). The nerves of the plexus that originate at the upper lumbar segments emerge from the lateral border of the psoas major and cross obliquely into the retroperitoneum in front of the quadratus lumborum and the iliacus muscles to the iliac crest. With respect to prevention of direct nerve injury, the safe anatomical zones at the disc spaces from L1-2 to L3-4 are at the middle posterior quarter of the VB (midpoint of Zone III) and the safe anatomical zone at the L4-5 disc space is at the midpoint of the VB (Zone II-Zone III demarcation). There is risk of direct injury to the genitofemoral nerve in Zone II at the L2-3 space and in Zone I at the lower lumbar levels L3-4 and L4-5. There is also a potential risk of injury to the ilioinguinal, iliohypogastric, and lateral femoral cutaneous nerves in the retroperitoneal space where they travel obliquely, inferiorly, and anteriorly to the reach the iliac crest and the abdominal wall.
Du, Jin Peng; Fan, Yong; Liu, Ji Jun; Zhang, Jia Nan; Chang Liu, Shi; Hao, Dingjun
2017-12-01
Application of nerve root block is mainly for diagnosis with less application in intraoperative treatment. The aim of this study was to observe clinical and imaging outcomes of application of gelatin sponge impregnated with a mixture of 3 drugs to intraoperative nerve root block combined with robot-assisted minimally invasive transforaminal lumbar interbody fusion surgery in to treat adult degenerative lumbar scoliosis. From January 2012 to November 2014, 108 patients with adult degenerative lumbar scoliosis were treated with robot-assisted minimally invasive transforaminal lumbar interbody fusion surgery combined with intraoperative gelatin sponge impregnated with a mixture of 3 drugs. Visual analog scale and Oswestry Disability Index scores were used to evaluate postoperative improvement of back and leg pain, and clinical effects were assessed according to the 36-Item Short-Form Health Survey. Imaging was obtained preoperatively, 1 week and 3 months postoperatively, and at the last follow-up. Fusion status, complications, and other outcomes were assessed. Follow-up was complete for 96 patients. Visual analog scale scores of leg and back pain on postoperative days 1-7 were decreased compared with preoperatively. At 1 week postoperatively, 3 months postoperatively, and last follow-up, visual analog scale score, Oswestry Disability Index score, coronal Cobb angle, and coronal and sagittal deviated distance decreased significantly (P = 0.000) and lumbar lordosis angle increased (P = 0.000) compared with preoperatively. Improvement rate of Oswestry Disability Index was 81.8% ± 7.4. Fusion rate between vertebral bodies was 92.7%. Application of gelatin sponge impregnated with 3 drugs combined with robot-assisted minimally invasive transforaminal lumbar interbody fusion for treatment of adult degenerative lumbar scoliosis is safe and feasible with advantages of good short-term analgesia effect, minimal invasiveness, short length of stay, and good long-term clinical outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.
The nerve supply of the lumbar intervertebral disc.
Edgar, M A
2007-09-01
The anatomical studies, basic to our understanding of lumbar spine innervation through the sinu-vertebral nerves, are reviewed. Research in the 1980s suggested that pain sensation was conducted in part via the sympathetic system. These sensory pathways have now been clarified using sophisticated experimental and histochemical techniques confirming a dual pattern. One route enters the adjacent dorsal root segmentally, whereas the other supply is non-segmental ascending through the paravertebral sympathetic chain with re-entry through the thoracolumbar white rami communicantes. Sensory nerve endings in the degenerative lumbar disc penetrate deep into the disrupted nucleus pulposus, insensitive in the normal lumbar spine. Complex as well as free nerve endings would appear to contribute to pain transmission. The nature and mechanism of discogenic pain is still speculative but there is growing evidence to support a 'visceral pain' hypothesis, unique in the muscloskeletal system. This mechanism is open to 'peripheral sensitisation' and possibly 'central sensitisation' as a potential cause of chronic back pain.
Chen, Jinshui; Wang, Juying; Wang, Benhai; Xu, Hao; Lin, Songqing; Zhang, Huihao
2016-01-01
T1- and T2-weighted magnetic resonance images (MRI) can reveal lumbar redundant nerve roots (RNRs), a result of chronic compression and nerve elongation associated with pathogenesis of cauda equina claudication (CEC) in degenerative lumbar canal stenosis (DLCS). The study investigated effects of lumbar lordosis angle and range of motion on functional recovery in lumbar stenosis patents with and without RNRs. A retrospective study was conducted of 93 lumbar spinal stenosis patients who underwent decompressive surgery. Eligible records were assessed by 3 independent blinded radiologists for presence or absence of RNRs on sagittal T2-weighted MR (RNR and non-RNR groups), pre- and post-operative JOA score, lumbar lordosis angle, and range of motion. Of 93 total patients, the RNR group (n=37, 21/37 female) and non-RNR group (n=56; 31/56 female) had similar preoperative conditions (JOA score) and were not significantly different in age (mean 64.19 ± 8.25 vs. 62.8 ± 9.41 years), symptom duration (30.92 ± 22.43 vs. 28.64 ± 17.40 months), or follow-up periods (17.35 ± 4.02 vs. 17.75 ± 4.29 mo) (all p>0.4). The non-RNR group exhibited significantly better final JOA score (p=0.015) and recovery rate (p=0.002). RNR group patients exhibited larger lumbar lordosis angles in the neutral position (p=0.009) and extension (p=0.021) and larger range of motion (p=0.008). Poorer surgical outcomes in patients with RNRs indicated that elevated lumbar lordosis angle and range of motion increased risks of RNR formation, which in turn may cause poorer post-surgical recovery, this information is possibly useful in prognostic assessment of lumbar stenosis complicated by RNRs. Copyright © 2015 Elsevier B.V. All rights reserved.
Morphometric analysis of the working zone for endoscopic lumbar discectomy.
Min, Jun-Hong; Kang, Shin-Hyuk; Lee, Jang-Bo; Cho, Tai-Hyoung; Suh, Jung-Keun; Rhyu, Im-Joo
2005-04-01
Our study's purpose was to analyze the working zone for the current practice of endoscopic discectomy at the lateral exit zone of the intervertebral foramen (IVF) and to define a safe point for clinical practice. One hundred eighty-six nerve roots of the lumbar IVFs of cadaveric spines were studied. Upon lateral inspection, we measured the distance from the nerve root to the most dorsolateral margin of the disc and to the lateral edge of the superior articular process of the vertebra below at the plane of the superior endplate of the vertebra below. The angle between the root and the plane of the disc was also measured. The results showed that the mean distance from the nerve root to the most dorsolateral margin of the disc was 3.4 +/- 2.7 mm (range 0.0-10.8 mm), the mean distance from the nerve root to the lateral edge of the superior articular process of the vertebra below was 11.6 +/- 4.6 mm (range 4.1-24.3 mm), and the mean angle between the nerve root and the plane of the disc was 79.1 degrees +/- 7.6 degrees (range 56.0-90.0 degrees ). The values of the base of the working zone have a wide distribution. Blind puncture of annulus by the working cannula or obturator may be dangerous. The safer procedure would be the direct viewing of the annulus by endoscopy before annulotomy; the working cannula should be inserted into the foramen as close as possible to the facet joint.
Wang, Xiandi; Wang, Hongli; Sun, Chi; Zhou, Shuyi; Meng, Tao; Lv, Feizhou; Ma, Xiaosheng; Xia, Xinlei; Jiang, Jianyuan
2018-04-26
Previous studies have indicated that decreased fractional anisotropy (FA) values on diffusion tensor imaging (DTI) are well correlated with the symptoms of nerve root compression. The aim of our study is to determine primary radiological parameters associated with decreased FA values in patients with lumbar spinal stenosis involving single L5 nerve root. Patients confirmed with single L5 nerve root compression by transforaminal nerve root blocks were included in this study. FA values of L5 nerve roots on both symptomatic and asymptomatic side were obtained. Conventional radiological parameters, such as disc height, degenerative scoliosis, dural sac cross-sectional area (DSCSA), foraminal height (FH), hypertrophic facet joint degeneration (HFJD), sagittal rotation (SR), sedimentation sign, sagittal translation and traction spur were measured. Correlation and regression analyses were performed between the radiological parameters and FA values of the symptomatic L5 nerve roots. A predictive regression equation was established. Twenty-one patients were included in this study. FA values were significantly lower at the symptomatic side comparing to the asymptomatic side (0.263 ± 0.069 vs. 0.334 ± 0.080, P = 0.038). DSCSA, FH, HFJD, and SR were significantly correlated with the decreased FA values, with r = 0.518, 0.443, 0.472 and - 0.910, respectively (P < 0.05). DSCSA and SR were found to be the primary radiological parameters related to the decreased FA values, and the regression equation is FA = - 0.012 × SR + 0.002 × DSCSA. DSCSA and SR were primary contributors to decreased FA values in LSS patients involving single L5 nerve root, indicating that central canal decompression and segmental stability should be the first considerations in preoperative planning of these patients. These slides can be retrieved under Electronic Supplementary Material.
Lumbar degenerative spinal deformity: Surgical options of PLIF, TLIF and MI-TLIF
Hey, Hwee Weng Dennis; Hee, Hwan Tak
2010-01-01
Degenerative disease of the lumbar spine is common in ageing populations. It causes disturbing back pain, radicular symptoms and lowers the quality of life. We will focus our discussion on the surgical options of posterior lumbar interbody fusion (PLIF) and transforaminal lumbar interbody fusion (TLIF) and minimally invasive transforaminal lumbar interbody fusion (MI-TLIF) for lumbar degenerative spinal deformities, which include symptomatic spondylolisthesis and degenerative scoliosis. Through a description of each procedure, we hope to illustrate the potential benefits of TLIF over PLIF. In a retrospective study of 53 ALIF/PLIF patients and 111 TLIF patients we found reduced risk of vessel and nerve injury in TLIF patients due to less exposure of these structures, shortened operative time and reduced intra-operative bleeding. These advantages could be translated to shortened hospital stay, faster recovery period and earlier return to work. The disadvantages of TLIF such as incomplete intervertebral disc and vertebral end-plate removal and potential occult injury to exiting nerve root when under experienced hands are rare. Hence TLIF remains the mainstay of treatment in degenerative deformities of the lumbar spine. However, TLIF being a unilateral transforaminal approach, is unable to decompress the opposite nerve root. This may require contralateral laminotomy, which is a fairly simple procedure. The use of minimally invasive transforaminal lumbar interbody fusion (MI-TLIF) to treat degenerative lumbar spinal deformity is still in its early stages. Although the initial results appear promising, it remains a difficult operative procedure to master with a steep learning curve. In a recent study comparing 29 MI-TLIF patients and 29 open TLIF, MI-TLIF was associated with longer operative time, less blood loss, shorter hospital stay, with no difference in SF-36 scores at six months and two years. Whether it can replace traditional TLIF as the surgery of choice for degenerative lumbar deformity remains unknown and more studies are required to validate the safety and efficiency. PMID:20419002
Extraforaminal Discal Cyst as Cause of Radiculopathy.
Mathon, Bertrand; Bienvenot, Peggy; Leclercq, Delphine
2018-01-01
We report the first extraforaminal location of a lumbar discal cyst. The patient was treated by hemilaminectomy, arthrectomy, cyst resection, and unilateral arthrodesis, achieving complete release of the nerve root. Extraforaminal lumbar discal cyst may represent an unexpected cause of sciatic pain with favorable outcome after surgical resection. Copyright © 2017 Elsevier Inc. All rights reserved.
Influence of needle position on lumbar segmental nerve root block selectivity.
Wolff, André P; Groen, Gerbrand J; Wilder-Smith, Oliver H
2006-01-01
In patients with chronic low back pain radiating to the leg, segmental nerve root blocks (SNRBs) are performed to predict surgical outcome and identify the putative symptomatic spinal nerve. Epidural spread may lead to false interpretation, affecting clinical decision making. Systematic fluoroscopic analysis of epidural local anesthetic spread and its relationship to needle tip location has not been published to date. Study aims include assessment of epidural local anesthetic spread and its relationship to needle position during fluoroscopy-assisted blocks. Patients scheduled for L4, L5, and S1 blocks were included in this prospective observational study. Under fluoroscopy and electrostimulation, they received 0.5 mL of a mixture containing lidocaine 5 mg and iohexol 75 mg. X-rays with needle tip and contrast were scored for no epidural spread (grade 0), local spread epidurally (grade 1), or to adjacent nerve roots (grade 2). Sixty-five patients were analyzed for epidural spread, 62 for needle position. Grade 1 epidural spread occurred in 47% of L4 and 28% of L5 blocks and grade 2 spread in 3 blocks (5%; L5 n = 1, S1 n = 2). For lumbar blocks, the needle was most frequently found in the lateral upper half of the intervertebral foramen. Epidural spread occurred more frequently with medial needle positions (P = .06). The findings suggest (P = .06) that the risk of grade 1 and 2 lumbar epidural spread, which results in decreased SNRB selectivity, is greater with medial needle positions in the intervertebral foramen. The variability in anatomic position of the dorsal root ganglion necessitates electrostimulation to guide SNRB in addition to fluoroscopy.
Preconditioning crush increases the survival rate of motor neurons after spinal root avulsion
Li, Lin; Zuo, Yizhi; He, Jianwen
2014-01-01
In a previous study, heat shock protein 27 was persistently upregulated in ventral motor neurons following nerve root avulsion or crush. Here, we examined whether the upregulation of heat shock protein 27 would increase the survival rate of motor neurons. Rats were divided into two groups: an avulsion-only group (avulsion of the L4 lumbar nerve root only) and a crush-avulsion group (the L4 lumbar nerve root was crushed 1 week prior to the avulsion). Immunofluorescent staining revealed that the survival rate of motor neurons was significantly greater in the crush-avulsion group than in the avulsion-only group, and this difference remained for at least 5 weeks after avulsion. The higher neuronal survival rate may be explained by the upregulation of heat shock protein 27 expression in motor neurons in the crush-avulsion group. Furthermore, preconditioning crush greatly attenuated the expression of nitric oxide synthase in the motor neurons. Our findings indicate that the neuroprotective action of preconditioning crush is mediated through the upregulation of heat shock protein 27 expression and the attenuation of neuronal nitric oxide synthase upregulation following avulsion. PMID:25206852
Gilbert, Kerry K.; Smith, Michael P.; Sobczak, Stéphane; James, C. Roger; Sizer, Phillip S.; Brismée, Jean-Michel
2015-01-01
Objectives Manual and physical therapists incorporate neurodynamic mobilisation (NDM) to improve function and decrease pain. Little is known about the mechanisms by which these interventions affect neural tissue. The objective of this research was to assess the effects of repetitive straight leg raise (SLR) NDM on the fluid dynamics within the fourth lumbar nerve root in unembalmed cadavers. Methods A biomimetic solution (Toluidine Blue Stock 1% and Plasma) was injected intraneurally, deep to the epineurium, into the L4 nerve roots of seven unembalmed cadavers. The initial dye spread was allowed to stabilise and measured with a digital calliper. Once the initial longitudinal dye spread stabilised, an intervention strategy (repetitive SLR) was applied incorporating NDMs (stretch/relax cycles) at a rate of 30 repetitions per minute for 5 minutes. Post-intervention calliper measurements of the longitudinal dye spread were measured. Results The mean experimental posttest longitudinal dye spread measurement (1.1 ± 0.9 mm) was significantly greater (P = 0.02) than the initial stabilised pretest longitudinal dye spread measurement. Increases ranged from 0.0 to 2.6 mm and represented an average of 7.9% and up to an 18.1% increase in longitudinal dye spread. Discussion Passive NDM in the form of repetitive SLR induced a significant increase in longitudinal fluid dispersion in the L4 nerve root of human cadaveric specimen. Lower limb NDM may be beneficial in promoting nerve function by limiting or altering intraneural fluid accumulation within the nerve root, thus preventing the adverse effects of intraneural oedema. PMID:26955255
Massive nerve root enlargement in chronic inflammatory demyelinating polyneuropathy.
Schady, W; Goulding, P J; Lecky, B R; King, R H; Smith, C M
1996-01-01
OBJECTIVE: To report three patients with chronic inflammatory demyelinating polyneuropathy (CIDP) presenting with symptoms suggestive of cervical (one patient) and lumbar root disease. METHODS: Nerve conduction studies, EMG, and nerve biopsy were carried out, having found the nerve roots to be very enlarged on MRI, CT myelography, and at surgery. RESULTS: Clinically, peripheral nerve thickening was slight or absent. Subsequently one patient developed facial nerve hypertrophy. This was mistaken for an inner ear tumour and biopsied, with consequent facial palsy. Neurophysiological tests suggested a demyelinating polyneuropathy. Sural nerve biopsy showed in all cases some loss of myelinated fibres, inflammatory cell infiltration, and a few onion bulbs. Hypertrophic changes were much more prominent on posterior nerve root biopsy in one patient: many fibres were surrounded by several layers of Schwann cell cytoplasm. There was an excellent response to steroids in two patients but not in the third (most advanced) patient, who has benefited only marginally from intravenous immunoglobulin therapy. CONCLUSIONS: MRI of the cauda equina may be a useful adjunct in the diagnosis of CIDP. Images PMID:8971116
Lumbar foraminal stenosis, the hidden stenosis including at L5/S1.
Orita, Sumihisa; Inage, Kazuhide; Eguchi, Yawara; Kubota, Go; Aoki, Yasuchika; Nakamura, Junichi; Matsuura, Yusuke; Furuya, Takeo; Koda, Masao; Ohtori, Seiji
2016-10-01
In patients with lower back and leg pain, lumbar foraminal stenosis (LFS) is one of the most important pathologies, especially for predominant radicular symptoms. LFS pathology can develop as a result of progressing spinal degeneration and is characterized by exacerbation with foraminal narrowing caused by lumbar extension (Kemp's sign). However, there is a lack of critical clinical findings for LFS pathology. Therefore, patients with robust and persistent leg pain, which is exacerbated by lumbar extension, should be suspected of LFS. Radiological diagnosis is performed using multiple radiological modalities, such as magnetic resonance imaging, including plain examination and novel protocols such as diffusion tensor imaging, as well as dynamic X-ray, and computed tomography. Electrophysiological testing can also aid diagnosis. Treatment options include both conservative and surgical approaches. Conservative treatment includes medication, rehabilitation, and spinal nerve block. Surgery should be considered when the pathology is refractory to conservative treatment and requires direct decompression of the exiting nerve root, including the dorsal root ganglia. In cases with decreased intervertebral height and/or instability, fusion surgery should also be considered. Recent advancements in minimally invasive lumbar lateral interbody fusion procedures enable effective and less invasive foraminal enlargement compared with traditional fusion surgeries such as transforaminal lumbar interbody fusion. The lumbosacral junction can cause L5 radiculopathy with greater incidence than other lumbar levels as a result of anatomical and epidemiological factors, which should be better addressed when treating clinical lower back pain.
Hu, Hong-Tao; Ren, Liang; Sun, Xian-Ze; Liu, Feng-Yu; Yu, Jin-He; Gu, Zhen-Fang
2018-04-01
Transforaminal lumbar interbody fusion (TLIF) is an effective treatment for patients with degenerative lumbar disc disorder. Contralateral radiculopathy, as a complication of TLIF, has been recognized in this institution, but is rarely reported in the literature. In this article, we report 2 cases of contralateral radiculopathy after TLIF in our institution and its associated complications. In the 2 cases, the postoperative computed tomography (CT) and magnetic resonance image (MRI) showed obvious upward movement of the superior articular process, leading to contralateral foraminal stenosis. Revision surgery was done at once to partially resect the opposite superior facet and to relieve nerve root compression. After revision surgery, the contralateral radiculopathy disappeared. Contralateral radiculopathy is an avoidable potential complication. It is very important to create careful preoperative plans and to conscientiously plan the use of intraoperative techniques. In case of postoperative contralateral leg pain, the patients should be examined by CT and MRI. If CT and MRI show that the superior articular process significantly migrated upwards, which leads to contralateral foraminal stenosis, revision surgery should be done at once to partially resect the contralateral superior facet so as to relieve nerve root compression and avoid possible long-term impairment.
Bertilson, Bo C; Brosjö, Eva; Billing, Hans; Strender, Lars-Erik
2010-09-10
Detection of nerve involvement originating in the spine is a primary concern in the assessment of spine symptoms. Magnetic resonance imaging (MRI) has become the diagnostic method of choice for this detection. However, the agreement between MRI and other diagnostic methods for detecting nerve involvement has not been fully evaluated. The aim of this diagnostic study was to evaluate the agreement between nerve involvement visible in MRI and findings of nerve involvement detected in a structured physical examination and a simplified pain drawing. Sixty-one consecutive patients referred for MRI of the lumbar spine were - without knowledge of MRI findings - assessed for nerve involvement with a simplified pain drawing and a structured physical examination. Agreement between findings was calculated as overall agreement, the p value for McNemar's exact test, specificity, sensitivity, and positive and negative predictive values. MRI-visible nerve involvement was significantly less common than, and showed weak agreement with, physical examination and pain drawing findings of nerve involvement in corresponding body segments. In spine segment L4-5, where most findings of nerve involvement were detected, the mean sensitivity of MRI-visible nerve involvement to a positive neurological test in the physical examination ranged from 16-37%. The mean specificity of MRI-visible nerve involvement in the same segment ranged from 61-77%. Positive and negative predictive values of MRI-visible nerve involvement in segment L4-5 ranged from 22-78% and 28-56% respectively. In patients with long-standing nerve root symptoms referred for lumbar MRI, MRI-visible nerve involvement significantly underestimates the presence of nerve involvement detected by a physical examination and a pain drawing. A structured physical examination and a simplified pain drawing may reveal that many patients with "MRI-invisible" lumbar symptoms need treatment aimed at nerve involvement. Factors other than present MRI-visible nerve involvement may be responsible for findings of nerve involvement in the physical examination and the pain drawing.
Monie, Aubrey P; Price, Roger I; Lind, Christopher R P; Singer, Kevin P
2017-06-01
A test-retest cohort study was conducted to assess the use of a novel computer-aided, combined movement examination (CME) to measure change in low back movement after pain management intervention in 17 cases of lumbar spondylosis. Additionally we desired to use a CME normal reference range (NRR) to compare and contrast movement patterns identified from 3 specific structural pathologic conditions: intervertebral disc, facet joint, and nerve root compression. Computer-aided CME was used before and after intervention, in a cohort study design, to record lumbar range of movement along with pain, disability, and health self-report questionnaires in 17 participants who received image-guided facet, epidural, and/or rhizotomy intervention. In the majority of cases, CME was reassessed after injection together with 2 serial self-reports after an average of 2 and 14 weeks. A minimal clinically important difference of 30% was used to interpret meaningful change in self-reports. A CME NRR (n = 159) was used for comparison with the 17 cases. Post hoc observation included subgrouping cases into 3 discrete pathologic conditions, intervertebral disc, facet dysfunction, and nerve root compression, in order to report intergroup differences in CME movement. Seven of the 17 participants stated that a "combined" movement was their most painful CME direction. Self-report outcome data indicated that 4 participants experienced significant improvement in health survey, 5 improved by ≥30% on low back function, and 8 reported that low back pain was more bothersome than stiffness, 6 of whom achieved the minimal clinically important difference for self-reported pain. Subgrouping of cases into structure-specific groups provided insight to different CME movement patterns. The use of CME assists in identifying atypical lumbar movement relative to an age and sex NRR. Data from this study, exemplified by representative case studies, provide preliminary evidence for distinct intervertebral disc, facet joint, and nerve root compression CME movement patterns in cases of chronic lumbar spondylosis. Copyright © 2017. Published by Elsevier Inc.
Stretching of roots contributes to the pathophysiology of radiculopathies.
Berthelot, Jean-Marie; Laredo, Jean-Denis; Darrieutort-Laffite, Christelle; Maugars, Yves
2018-01-01
To perform a synthesis of articles addressing the role of stretching on roots in the pathophysiology of radiculopathy. Review of relevant articles on this topic available in the PubMed database. An intraoperative microscopy study of patients with sciatica showed that in all patients the hernia was adherent to the dura mater of nerve roots. During the SLR (Lasègue's) test, the limitation of nerve root movement occurs by periradicular adhesive tissue, and temporary ischemic changes in the nerve root induced by the root stretching cause transient conduction disturbances. Spinal roots are more frail than peripheral nerves, and other mechanical stresses than root compression can also induce radiculopathy, especially if they also impair intraradicular blood flow, or the function of the arachnoid villi intimately related to radicular veins. For instance arachnoiditis, the lack of peridural fat around the thecal sac, and epidural fibrosis following surgery, can all promote sciatica, especially in patients whose sciatic trunks also stick to piriformis or internus obturator muscles. Indeed, stretching of roots is greatly increased by adherence at two levels. As excessive traction of nerve roots is not shown by imaging, many physicians have unlearned to think in terms of microscopic and physiologic changes, although nerve root compression in the lumbar MRI is lacking in more than 10% of patients with sciatica. It should be reminded that, while compression of a spinal nerve root implies stretching of this root, the reverse is not true: stretching of some roots can occur without any visible compression. Copyright © 2017 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.
α-Synuclein pathology in the cranial and spinal nerves in Lewy body disease.
Nakamura, Keiko; Mori, Fumiaki; Tanji, Kunikazu; Miki, Yasuo; Toyoshima, Yasuko; Kakita, Akiyoshi; Takahashi, Hitoshi; Yamada, Masahito; Wakabayashi, Koichi
2016-06-01
Accumulation of phosphorylated α-synuclein in neurons and glial cells is a histological hallmark of Lewy body disease (LBD) and multiple system atrophy (MSA). Recently, filamentous aggregations of phosphorylated α-synuclein have been reported in the cytoplasm of Schwann cells, but not in axons, in the peripheral nervous system in MSA, mainly in the cranial and spinal nerve roots. Here we conducted an immunohistochemical investigation of the cranial and spinal nerves and dorsal root ganglia of patients with LBD. Lewy axons were found in the oculomotor, trigeminal and glossopharyngeal-vagus nerves, but not in the hypoglossal nerve. The glossopharyngeal-vagus nerves were most frequently affected, with involvement in all of 20 subjects. In the spinal nerve roots, Lewy axons were found in all of the cases examined. Lewy axons in the anterior nerves were more frequent and numerous in the thoracic and sacral segments than in the cervical and lumbar segments. On the other hand, axonal lesions in the posterior spinal nerve roots appeared to increase along a cervical-to-sacral gradient. Although Schwann cell cytoplasmic inclusions were found in the spinal nerves, they were only minimal. In the dorsal root ganglia, axonal lesions were seldom evident. These findings indicate that α-synuclein pathology in the peripheral nerves is axonal-predominant in LBD, whereas it is restricted to glial cells in MSA. © 2015 Japanese Society of Neuropathology.
Phan, Kevin; Malham, Greg; Seex, Kevin; Rao, Prashanth J.
2015-01-01
Degenerative disc and facet joint disease of the lumbar spine is common in the ageing population, and is one of the most frequent causes of disability. Lumbar spondylosis may result in mechanical back pain, radicular and claudicant symptoms, reduced mobility and poor quality of life. Surgical interbody fusion of degenerative levels is an effective treatment option to stabilize the painful motion segment, and may provide indirect decompression of the neural elements, restore lordosis and correct deformity. The surgical options for interbody fusion of the lumbar spine include: posterior lumbar interbody fusion (PLIF), transforaminal lumbar interbody fusion (TLIF), minimally invasive transforaminal lumbar interbody fusion (MI-TLIF), oblique lumbar interbody fusion/anterior to psoas (OLIF/ATP), lateral lumbar interbody fusion (LLIF) and anterior lumbar interbody fusion (ALIF). The indications may include: discogenic/facetogenic low back pain, neurogenic claudication, radiculopathy due to foraminal stenosis, lumbar degenerative spinal deformity including symptomatic spondylolisthesis and degenerative scoliosis. In general, traditional posterior approaches are frequently used with acceptable fusion rates and low complication rates, however they are limited by thecal sac and nerve root retraction, along with iatrogenic injury to the paraspinal musculature and disruption of the posterior tension band. Minimally invasive (MIS) posterior approaches have evolved in an attempt to reduce approach related complications. Anterior approaches avoid the spinal canal, cauda equina and nerve roots, however have issues with approach related abdominal and vascular complications. In addition, lateral and OLIF techniques have potential risks to the lumbar plexus and psoas muscle. The present study aims firstly to comprehensively review the available literature and evidence for different lumbar interbody fusion (LIF) techniques. Secondly, we propose a set of recommendations and guidelines for the indications for interbody fusion options. Thirdly, this article provides a description of each approach, and illustrates the potential benefits and disadvantages of each technique with reference to indication and spine level performed. PMID:27683674
Melorheostosis causing lumbar radiculopathy: a case report and a review of the literature.
Saxena, Ankur; Neelakantan, Asha; Jampana, Ravi; Sangra, Meharpal
2013-08-01
Melorheostosis is a rare sclerosing bone disorder with a predilection for the appendicular skeleton. Involvement of the spine is infrequent and largely asymptomatic. Surgical treatment for spinal involvement is therefore uncommon with only one reported case of lumbar fusion for painful lumbosacral melorheostosis. We report a case of lumbar melorheostosis causing disabling radiculopathy treated with nerve root decompression. Melorheostosis of the lumbar spine causing radicular symptoms has not been reported before. Our message from the management of this particular patient is to consider surgical option in symptomatic individuals. Copyright © 2013 Elsevier Inc. All rights reserved.
Hirayama, Jiro; Yamagata, Masatsune; Takahashi, Kazuhisa; Moriya, Hideshige
2005-05-01
The effect of noxious electrical stimulation of the peroneal nerve on the stretch reflex electromyogram activity of the hamstring muscle (semitendinous) was studied. To verify the following hypothetical mechanisms underlying tight hamstrings in lumbar disc herniation: stretch reflex muscle activity of hamstrings is increased by painful inputs from an injured spinal nerve root and the increased stretch reflex muscle activity is maintained by central sensitization. It is reported that stretch reflex activity of the trunk muscles is induced by noxious stimulation of the sciatic nerve and maintained by central sensitization. In spinalized rats (transected spinal cord), the peroneal nerve was stimulated electrically as a conditioning stimulus. Stretch reflex electromyogram activity of the semitendinous muscle was recorded before and after the conditioning stimulus. Even after electrical stimulation was terminated, an increased stretch reflex activity of the hamstring muscle was observed. It is likely that a central sensitization mechanism at the spinal cord level was involved in the increased reflex activity. Central sensitization may play a part in the neuronal mechanisms of tight hamstrings in lumbar disc herniation.
Kaye, Elena A; Monette, Sebastien; Srimathveeravalli, Govindarajan; Maybody, Majid; Solomon, Stephen B; Gulati, Amitabh
2016-01-01
Purpose About 10–40% of chronic low back pain cases involve facet joints, which are commonly treated with lumbar medial branch (MB) radiofrequency neurotomy. Magnetic Resonance Imaging-guided Focused Ultrasound (MRgFUS), a non-invasive, non-ionizing ablation modality used to treat tumors, neuropathic pain and painful bone metastasis, can also be used to disrupt nerve conduction. This work’s purpose was to study the feasibility and safety of direct MRgFUS ablation of the lumbar MB nerve in acute and subacute swine models. Materials and Methods In vivo MRgFUS ablation was performed in six swine (3 acute and 3 subacute) using a clinical MRgFUS system (ExAblate 2000®; InSightec Ltd., Haifa, Israel) and 3 T MRI scanner (SIGNA; GE Healthcare, Waukesha, WI, USA) combination. Behavioral assessment was performed, and imaging and histology were used to assess the treatment. Results and Conclusions Histological analysis of the in vivo studies confirmed thermal necrosis of the MB nerve could be achieved without damaging the spinal cord or adjacent nerve roots. MRgFUS did not cause changes in the animals’ behavior and ambulation. PMID:27443328
Majlesi, Javid; Togay, Halit; Unalan, Halil; Toprak, Sadk
2008-04-01
An accurate and specific diagnosis prevents the recurrences of low back pain and chronic spinal pain. The physical examination is the most useful tool to diagnosis. The examiner must aim to determine the exact tissue that pain arises from to make the specific diagnosis. Lumbar disc herniation is 1 disease that physical examination, symptoms, and findings on imaging technique do not always correlate with each other. The Straight Leg Raising (SLR) test has been used as the primary test to diagnosis lumbar disc herniations and found to have high correlation with findings on operation since its sensitivity is high in only disc herniations leading to root compression that may eventually need operation. More sensitive test, like the Slump, might be used in herniations in which the SLR is negative. The Slump test is really a variant of the SLR and the Lasègue's tests performed in the seated position and is a progressive series of maneuvers designed to place the sciatic nerve roots under increasing tension. At each step in the procedure, the patient informs the examiner what is being felt and whether radicular pain is produced. As a result, the Slump test applies traction to the nerve roots by incorporating spinal and hip joint flexion into the leg raising and would warn the examiner of the presence of nerve root compression when there is a negative SLR test. This study measured the sensitivity and specificity of the Slump test and compare it with the SLR test in patients with and without lumbar disc herniations. A prospective case control study of 75 patients with complaints suggestive of lumbar disc herniation was carried out in the outpatient clinics of the neurosurgery department of a state teaching hospital. Seventy-five referred or self-admitted patients with low back, leg, or low back and leg pain who had results of magnetic resonance imaging (MRI) of the lumbar spine were included in the study. Thirty-eight patients had signs of herniation demonstrated by MRI. Control patients (n = 37) had no disc bulges or herniations on MRI. Both the Slump and SLR tests were performed during the assessment of all the patients by the second author. The MRI results were assessed and recorded by the first author. The Slump test was found to be more sensitive (0.84) than the SLR (0.52) in the patients with lumbar disc herniations. However, the SLR was found to be a slightly more specific test (0.89) than the Slump test (0.83). The Slump test might be used more frequently as a sensitive physical examination tool in patients with symptoms of lumbar disc herniations. In contrast, owing to its higher specificity, the SLR test may especially help identify patients who have herniations with root compression requiring surgery.
Manchikanti, Laxmaiah; Cash, Kim A; Pampati, Vidyasagar; Damron, Kim S; McManus, Carla D
2004-04-01
Transforaminal epidural steroid injection is one of the commonly employed modalities of treatment in managing nerve root pain. However, there have been no controlled prospective evaluations of epidural and nerve root contrast distribution patterns and other aspects of fluoroscopically directed lumbosacral transforaminal epidural steroid injections. To evaluate contrast flow patterns and intravascular needle placement of fluoroscopically guided lumbosacral transforaminal epidural injections. A prospective, observational study. A total of 100 consecutive patients undergoing fluoroscopically guided transforaminal epidural steroid injections were evaluated. The contrast flow patterns, ventral or dorsal epidural filling, nerve root filling, C-arm time, and intravascular needle placement were evaluated. Ventral epidural filling was seen in 88% of the procedures, in contrast to dorsal filling noted in 9% of the procedures. Nerve root filling was seen in 97% of the procedures. Total intravenous placement of the needle was noted in 22% of the procedures, whereas negative flashback and aspiration was noted in 5% of the procedures. Lumbosacral transforaminal epidural injections, performed under fluoroscopic visualization, provide excellent nerve root filling and ventral epidural filling patterns. However, unrecognized intravascular needle placement with negative flashback or aspiration was noted in 5% of the procedures.
Jensen, Ole Kudsk; Nielsen, Claus Vinther; Sørensen, Joan Solgaard; Stengaard-Pedersen, Kristian
2015-12-03
Cross-sectional studies have shown associations between lumbar degenerative manifestations on magnetic resonance imaging (MRI) and low back pain (LBP). Disc herniations and other degenerative manifestations, however, frequently occur in asymptomatic individuals. The purpose of this cross-sectional study was to analyze for associations between pain intensity and degenerative manifestations and other pain variables in patients for whom prognostic factors have been published previously. Included were 141 consecutive patients with and without radiculopathy, all sick-listed 1-4 months due to low back pain and subsequently examined by MRI of the lumbar spine. Using different methods of grouping the degenerative manifestations, linear regression analyses were performed with the intensity of back + leg pain, back pain and leg pain as dependent variables covering actual pain and pain the preceding 2 weeks. The clinical classification into +/- radiculopathy was established before and independently of the standardised description of MRI findings. Radiculopathy was present in 43 % of the patients. Pain was best explained using rank-ordered degenerative manifestations on MRI. Back pain and leg pain were differently associated, and back pain was less explained than leg pain in the multivariate analyses (15 % vs. 31 % of the variation). Back pain intensity was higher in patients with type 1 Modic changes and in some patients with nerve root touch, but was not associated with disc herniations. Leg pain intensity was well explained by disc herniations causing MRI nerve root compromise and radiculopathy. In patients with radiculopathy, nerve root touch caused as much leg pain as nerve root displacement or compression. High intensity zones and osteophytes were not associated with back pain, but only associated with leg pain in patients with radiculopathy. Tender points explained some of the back pain, and widespread pain explained leg pain in some of the patients without radiculopathy. Back pain was associated with type 1 Modic changes, nerve root touch and tender points, whereas leg pain was associated with osteophytes, HIZ, disc herniation, all sorts of MRI nerve root compromise, radiculopathy and widespread pain.
Nagda, Jyotsna V; Davis, Craig W; Bajwa, Zahid H; Simopoulos, Thomas T
2011-01-01
Chronic lumbosacral radicular pain is a common source of radiating leg pain seen in pain management patients. These patients are frequently managed conservatively with multiple modalities including medications, physical therapy, and epidural steroid injections. Radiofrequency has been used to treat chronic radicular pain for over 30 years; however, there is a paucity of literature about the safety and efficacy of repeat radiofrequency lesioning. To determine the safety, success rate, and duration of pain relief of repeat pulsed radiofrequency (PRF) and continuous radiofrequency (CRF) lesioning of the dorsal root ganglion (DRG)/ sacral segmental nerves (SN) in patients with chronic lumbosacral radicular pain. Retrospective chart review Outpatient multidisciplinary pain center Medical record review of patients who were treated with pulsed and continuous radiofrequency lesioning of the lumbar dorsal root ganglia and segmental nerves and who reported initial success were evaluated for recurrence of pain and repeat radiofrequency treatment. Responses to subsequent treatments were compared to initial treatments for success rates, average duration of relief, and adverse neurologic side-effects. Retrospective chart review without a control group. Twenty-six women and 24 men were identified who received 50% pain relief or better after PRF and CRF of the lumbar DRG/ sacral SN for lumbosacral radicular pain. The mean age was 62 years (range, 25-86). The mean duration of relief for the 40 patients who had 2 treatments was 4.7 months (range 0-24; Se [standard error] 0.74). Twenty-eight patients had 3 treatments with an average duration of relief of 4.5 months (range 0-19 months; Se 0.74). Twenty patients had 4 treatments with a mean duration of relief of 4.4 months (range 0.5-18; Se 0.95) and 18 patients who had 5 or more treatments received an average duration of relief of 4.3 months (range 0.5-18; Se 1.03). The average duration of relief and success frequency remained constant after each subsequent radiofrequency treatment. Of the 50 total patients, there was only 1 reported complication, specifically, transient thigh numbness which resolved after one week. Repeated pulsed and continuous radiofrequency ablation of the lumbar dorsal root ganglion/segmental nerve shows promise to be a safe and effective long-term palliative management for lumbosacral radicular pain in some patients.
Fazal, Akil; Yoo, Andrew; Bendo, John A
2013-08-01
Recent research describes the use of a nerve root sedimentation sign to diagnose lumbar spinal stenosis (LSS). The lack of sedimentation of the nerve roots (positive sedimentation sign) to the dorsal part of the dural sac is the characteristic feature of this new radiological parameter. To demonstrate how the nerve root sedimentation sign compares with other more traditional radiological parameters in patients who have been operated for LSS. A retrospective chart and image review. Preoperative magnetic resonance images (MRIs) were reviewed from 71 consecutive operative patients who presented with LSS and received spinal decompression surgery from 2006 to 2010. Preoperative T2-weighted MRIs were reviewed for each patient. One hundred thirty-four vertebral levels from L1 to L5 were measured for: sedimentation sign, cross-sectional area (CSA) and anterior/posterior (A/P) diameter of the dural sac, thickness of the ligamentum flavum, and Fujiwara grade of facet hypertrophy. Radiological measurements were made using Surgimap 1.1.2.169 software (Nemaris, Inc., New York, NY, USA). Statistical analyses were performed using the SPSS 17.0 statistical software (SPSS Inc., Chicago, IL, USA). Significance was demonstrated using unpaired t tests and chi-squared tests. Study funding was departmental. There were no study-specific conflicts of interest-associated biases. A positive sedimentation sign was determined in 120 operated levels (89.5%), whereas 14 levels (10.5%) had no sign (negative sedimentation sign). The mean CSA and A/P diameter were 140.62 mm(2) (standard deviation [SD]=53) and 11.76 mm (SD=3), respectively, for the no-sign group; the mean CSA and A/P diameter were 81.87 mm(2) (SD=35) and 8.76 mm (SD=2.2), respectively, for the sedimentation sign group (p<.001). We found that 60% of levels with Fujiwara Grade A facet hypertrophy did not have a sedimentation sign, whereas 86.3% of levels with Grade B, 93.2% of levels with Grade C, and 100.0% of levels with Grade D did have a sedimentation sign (p<.001). The sedimentation sign is a new measurement tool that can enable physicians to objectively assess and quantify spinal stenosis. The sign is most often present in patients who have clinically significant lumbar stenosis and require surgery. Copyright © 2013 Elsevier Inc. All rights reserved.
2010-01-01
Background Detection of nerve involvement originating in the spine is a primary concern in the assessment of spine symptoms. Magnetic resonance imaging (MRI) has become the diagnostic method of choice for this detection. However, the agreement between MRI and other diagnostic methods for detecting nerve involvement has not been fully evaluated. The aim of this diagnostic study was to evaluate the agreement between nerve involvement visible in MRI and findings of nerve involvement detected in a structured physical examination and a simplified pain drawing. Methods Sixty-one consecutive patients referred for MRI of the lumbar spine were - without knowledge of MRI findings - assessed for nerve involvement with a simplified pain drawing and a structured physical examination. Agreement between findings was calculated as overall agreement, the p value for McNemar's exact test, specificity, sensitivity, and positive and negative predictive values. Results MRI-visible nerve involvement was significantly less common than, and showed weak agreement with, physical examination and pain drawing findings of nerve involvement in corresponding body segments. In spine segment L4-5, where most findings of nerve involvement were detected, the mean sensitivity of MRI-visible nerve involvement to a positive neurological test in the physical examination ranged from 16-37%. The mean specificity of MRI-visible nerve involvement in the same segment ranged from 61-77%. Positive and negative predictive values of MRI-visible nerve involvement in segment L4-5 ranged from 22-78% and 28-56% respectively. Conclusion In patients with long-standing nerve root symptoms referred for lumbar MRI, MRI-visible nerve involvement significantly underestimates the presence of nerve involvement detected by a physical examination and a pain drawing. A structured physical examination and a simplified pain drawing may reveal that many patients with "MRI-invisible" lumbar symptoms need treatment aimed at nerve involvement. Factors other than present MRI-visible nerve involvement may be responsible for findings of nerve involvement in the physical examination and the pain drawing. PMID:20831785
Reina, M A; López, A; Villanueva, M C; De Andrés, J A; Martín, S
2005-05-01
To assess the possibility of puncturing nerve roots in the cauda equina with spinal needles with different point designs and to quantify the number of axons affected. We performed in vitro punctures of human nerve roots taken from 3 fresh cadavers. Twenty punctures were performed with 25-gauge Whitacre needles and 40 with 25-gauge Quincke needles; half the Quincke needle punctures were carried out with the point perpendicular to the root and the other half with the point parallel to it. The samples were studied by optical and scanning electron microscopy. The possibility of finding the needle orifece inserted inside the nerve was assessed. On a photographic montage, we counted the number of axons during a hypothetical nerve puncture. Nerve roots used in this study were between 1 and 2.3 mm thick, allowing the needle to penetrate the root in the 52 samples studied. The needle orifice was never fully located inside the nerve in any of the samples. The numbers of myelinized axons affected during nerve punctures 0.2 mm deep were 95, 154, and 81 for Whitacre needles, Quincke needles with the point held perpendicular, or the same needle type held parallel, respectively. During punctures 0.5 mm deep, 472, 602, and 279 were affected for each puncture group, respectively. The differences in all cases were statistically significant. It is possible to achieve intraneural puncture with 25-gauge needles. However, full intraneural placement of the orifice of the needle is unlikely. In case of nerve trauma, the damage could be greater if puncture is carried out with a Quincke needle with the point inserted perpendicular to the nerve root.
Persistent L5 lumbosacral radiculopathy caused by lumbosacral trunk schwannoma
Sharifi, Guive; Jahanbakhshi, Amin
2017-01-01
Schwannomais, usually, benign tumor of nerve sheath that occurs evenly along the spinal cord. Intra-pelvic schwannoma is very rare entity that may arise from lumbosacral nerve roots or from sciatic nerve. Radicular pain of the lower limb as a presenting symptom of pelvic schwannoma is extremely rare. In the current report, the patient is presented with a right sided L5 radicular pain typical of lumbar discopathy. Interestingly, a herniated lumbar disc was noted on lumbosacral magnetic resonance imaging (MRI). In pre-operative studies a large pelvic mass was detected in the right pre-sacral area with solid and cystic components consistent with schwannoma. The patient underwent a low midline laparotomy to evacuate the retroperitoneal mass. Uniquely, we found the tumor to be arisen from lumbosacral trunk not from a root or peripheral nerve. Most cases with intra-pelvic schwannoma present so late with vague abdominal and pelvic discomfort or pain, low back pain, urinary and bowel symptoms because of compressive effect of the tumor, or incidentally following gynecologic work-ups; So, these patients are mostly referred to gynecologists and urologists. A neurosurgeon should have a high degree of suspicion to diagnose such an entity among his or her patients presented with pains typical for discopathy. PMID:28413533
Syrimpeis, Vasileios; Vitsas, Vasileios; Korovessis, Panagiotis
2014-03-01
Context Hemangiomas are the commonest benign tumors of the spine. Most occur in the thoracolumbar spine and the majority are asymptomatic. Rarely, hemangiomas cause symptoms through epidural expansion of the involved vertebra, resulting in spinal canal stenosis, spontaneous epidural hemorrhage, and pathological burst fracture. Findings We report a rare case of a 73-year-old woman, who had been treated for two months for degenerative neurogenic claudication. On admission, magnetic resonance imaging and computed tomographic scans revealed a hemangioma of the third lumbar vertebra protruding to the epidural space producing lateral spinal stenosis and ipsilateral nerve root compression. The patient underwent successful right hemilaminectomy for decompression of the nerve root, balloon kyphoplasty with poly-methyl methacrylate (PMMA) and pedicle screw segmental stabilization. Postoperative course was uneventful. Conclusion In the elderly, this rare presentation of spinal stenosis due to hemangiomas may be encountered. Decompression and vertebral augmentation by means balloon kyphoplasty with PMMA plus segmental pedicle screw fixation is recommended.
Syrimpeis, Vasileios; Vitsas, Vasileios; Korovessis, Panagiotis
2014-01-01
Context Hemangiomas are the commonest benign tumors of the spine. Most occur in the thoracolumbar spine and the majority are asymptomatic. Rarely, hemangiomas cause symptoms through epidural expansion of the involved vertebra, resulting in spinal canal stenosis, spontaneous epidural hemorrhage, and pathological burst fracture. Findings We report a rare case of a 73-year-old woman, who had been treated for two months for degenerative neurogenic claudication. On admission, magnetic resonance imaging and computed tomographic scans revealed a hemangioma of the third lumbar vertebra protruding to the epidural space producing lateral spinal stenosis and ipsilateral nerve root compression. The patient underwent successful right hemilaminectomy for decompression of the nerve root, balloon kyphoplasty with poly-methyl methacrylate (PMMA) and pedicle screw segmental stabilization. Postoperative course was uneventful. Conclusion In the elderly, this rare presentation of spinal stenosis due to hemangiomas may be encountered. Decompression and vertebral augmentation by means balloon kyphoplasty with PMMA plus segmental pedicle screw fixation is recommended. PMID:24090267
Partata, W A; Krepsky, A M; Marques, M; Achaval, M
1999-04-01
Seven days after transection of the sciatic nerve NADPH-diaphorase activity increased in the small and medium neurons of the dorsal root ganglia of the turtle. However, this increase was observed only in medium neurons for up to 90 days. At this time a bilateral increase of NADPH-diaphorase staining was observed in all areas and neuronal types of the dorsal horn, and in positive motoneurons in the lumbar spinal cord, ipsilateral to the lesion. A similar increase was also demonstrable in spinal glial and endothelial cells. These findings are discussed in relation to the role of nitric oxide in hyperalgesia and neuronal regeneration or degeneration.
Destructive discovertebral degenerative disease of the lumbar spine.
Charran, A K; Tony, G; Lalam, R; Tyrrell, P N M; Tins, B; Singh, J; Eisenstein, S M; Balain, B; Trivedi, J M; Cassar-Pullicino, V N
2012-09-01
The uncommon variant of degenerative hip joint disease, termed rapidly progressive osteoarthritis, and highlighted by severe joint space loss and osteochondral disintegration, is well established. We present a similar unusual subset in the lumbar spine termed destructive discovertebral degenerative disease (DDDD) with radiological features of vertebral malalignment, severe disc resorption, and "bone sand" formation secondary to vertebral fragmentation. Co-existing metabolic bone disease is likely to promote the development of DDDD of the lumbar spine, which presents with back pain and sciatica due to nerve root compression by the "bone sand" in the epidural space. MRI and CT play a complimentary role in making the diagnosis.
Wang, Hong-Sheng; Yu, Gang; Wang, Zhi-Tong; Yi, Shou-Pu; Su, Rui-Bin; Gong, Ze-Hui
2016-10-01
Disturbance of glutamate homeostasis is a well-characterized mechanism of neuropathic pain. Vesicular glutamate transporters (VGLUTs) determine glutamate accumulation in synaptic vesicles and their roles in neuropathic pain have been suggested by gene-knockout studies. Here, we investigated the spatio-temporal changes in VGLUT expression during the development of neuropathic pain in wild-type rats. Spared nerve injury (SNI) induced mechanical allodynia from postoperative day 1 to at least day 14. Expression of VGLUT1 and VGLUT2 in dorsal root ganglia and spinal cord was examined by western blot analyses on different postoperative days. We observed that VGLUT2 were selectively upregulated in crude vesicle fractions from the ipsilateral lumbar enlargement on postoperative days 7 and 14, while VGLUT1 was transiently downregulated in ipsilateral DRG (day 4) and contralateral lumbar enlargement (day 1). Upregulation of VGLUT2 was not accompanied by alterations in vesicular expression of synaptotagmin or glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Thus, VGLUTs expression, especially VGLUT2, is regulated following peripheral nerve injury. Temporal regulation of VGLUT2 expression in spinal cord may represent a novel presynaptic mechanism contributing to injury-induced glutamate imbalance and associated neuropathic pain. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pitarokoili, Kalliopi; Kronlage, Moritz; Bäumer, Philip; Schwarz, Daniel; Gold, Ralf; Bendszus, Martin; Yoon, Min-Suk
2018-01-01
Background: We present a clinical, electrophysiological, sonographical and magnetic resonance neurography (MRN) study examining the complementary role of two neuroimaging methods of the peripheral nervous system for patients with chronic inflammatory demyelinating polyneuropathy (CIDP). Furthermore, we explore the significance of cross-sectional area (CSA) increase through correlations with MRN markers of nerve integrity. Methods: A total of 108 nerve segments on the median, ulnar, radial, tibial and fibular nerve, as well as the lumbar and cervical plexus of 18 CIDP patients were examined with high-resonance nerve ultrasound (HRUS) and MRN additionally to the nerve conduction studies. Results: We observed a fair degree of correlation of the CSA values for all nerves/nerve segments between the two methods, with a low random error in Bland–Altman analysis (bias = HRUS-CSA − MRN-CSA, −0.61 to −3.26 mm). CSA in HRUS correlated with the nerve T2-weighted (nT2) signal increase as well as with diffusion tensor imaging parameters such as fractional anisotropy, a marker of microstructural integrity. HRUS-CSA of the interscalene brachial plexus correlated significantly with the MRN-CSA and nT2 signal of the L5 and S1 roots of the lumbar plexus. Conclusions: HRUS allows for reliable CSA imaging of all peripheral nerves and the cervical plexus, and CSA correlates with markers of nerve integrity. Imaging of proximal segments as well as the estimation of nerve integrity require MRN as a complementary method. PMID:29552093
Khan, Nemat; Muralidharan, Arjun; Smith, Maree T.
2017-01-01
Recent preclinical and proof-of-concept clinical studies have shown promising analgesic efficacy of selective small molecule angiotensin II type 2 (AT2) receptor antagonists in the alleviation of peripheral neuropathic pain. However, their cellular and molecular mechanism of action requires further investigation. To address this issue, groups of adult male Sprague–Dawley rats with fully developed unilateral hindpaw hypersensitivity, following chronic constriction injury (CCI) of the sciatic nerve, received a single intraperitoneal bolus dose of the small molecule AT2 receptor antagonist, EMA300 (10 mg kg-1), or vehicle. At the time of peak EMA300-mediated analgesia (∼1 h post-dosing), groups of CCI-rats administered either EMA300 or vehicle were euthanized. A separate group of rats that underwent sham surgery were also included. The lumbar (L4–L6) dorsal root ganglia (DRGs) were obtained from all experimental cohorts and processed for immunohistochemistry and western blot studies. In vehicle treated CCI-rats, there was a significant increase in the expression levels of angiotensin II (Ang II), but not the AT2 receptor, in the ipsilateral lumbar DRGs. The elevated levels of Ang II in the ipsilateral lumbar DRGs of CCI-rats were at least in part contributed by CD3+ T-cells, satellite glial cells (SGCs) and subsets of neurons. Our findings suggest that the analgesic effect of EMA300 in CCI-rats involves multimodal actions that appear to be mediated at least in part by a significant reduction in the otherwise increased expression levels of Ang II as well as the number of Ang II-expressing CD3+ T-cells in the ipsilateral lumbar DRGs of CCI-rats. Additionally, the acute anti-allodynic effects of EMA300 in CCI-rats were accompanied by rescue of the otherwise decreased expression of mature nerve growth factor (NGF) in the ipsilateral lumbar DRGs of CCI-rats. In contrast, the increased expression levels of TrkA and glial fibrillary acidic protein in the ipsilateral lumbar DRGs of vehicle-treated CCI-rats were not attenuated by a single bolus dose of EMA300. Consistent with our previous findings, there was also a significant decrease in the augmented levels of the downstream mediators of Ang II/AT2 receptor signaling, i.e., phosphorylated-p38 mitogen-activated protein kinase (MAPK) and phosphorylated-p44/p42 MAPK, in the ipsilateral lumbar DRGs. PMID:29200998
Anatomic Assessment of Variations in Kambin's Triangle: A Surgical and Cadaver Study.
Ozer, Ali Fahir; Suzer, Tuncer; Can, Halil; Falsafi, Mani; Aydin, Murat; Sasani, Mehdi; Oktenoglu, Tunc
2017-04-01
The relationship of exiting root and Kambin's triangle is discussed in this article. Transforaminal endoscopic surgery as the gold standard of less invasive lumbar disc surgeries is performed through Kambin's triangle. Existing root damage is one of the most important complication for this type of surgery. Anatomic variations in Kambin's triangle may be the main reason for nerve root damage during endoscopic lumbar disc surgery. Kambin's triangle was investigated with surgical views and cadaver studies. Thirty-four patients with far lateral disc herniation were treated with an extraforaminal approach under the microscope. On the other hand, 48 Kambin's triangles were dissected on 8 cadavers. Three main types of triangle were identified, and patients were grouped according to these 3 types of the triangle. Only 6 of the 34 patients had type 3 triangles, which is the wide classical triangle described by Kambin; however, 17 patients had type 2, with a narrow space in the triangle, and 11 patients had type 1, with no space inside the triangle. Cadaver results were similar; only 10 of the 48 specimens had the type 3 classical triangle, whereas 23 specimens had type 2, and 15 specimens had type 1 triangles. Our results disclosed narrowed or no space in 82.4% of the patients and 79.2% of the cadavers. We observed that a wide and safe room of the triangle may not be exist in some patients. Therefore, more care must be taken during endoscopic lumbar disc surgery to avoid nerve damage. Copyright © 2017 Elsevier Inc. All rights reserved.
Manoliu, Andrei; Ho, Michael; Nanz, Daniel; Piccirelli, Marco; Dappa, Evelyn; Klarhöfer, Markus; Del Grande, Filippo; Kuhn, Felix Pierre
2016-08-01
The aim of this study was to compare the quality of recently emerged advanced diffusion tensor imaging (DTI) techniques with conventional single-shot echo-planar imaging (EPI) in a functional assessment of lumbar nerve roots. The institutional review board approved the study including 12 healthy volunteers. Diffusion tensor imaging was performed at 3 T (MAGNETOM Skyra; Siemens Healthcare) with b-values of 0 and 700 s/mm and an isotropic spatial resolution for subsequent multiplanar reformatting. The nerve roots L2 to S1 were imaged in coronal orientation with readout-segmented EPI (rs-DTI) and selective-excitation EPI (sTX-DTI) with an acquisition time of 5 minutes each, and in axial orientation with single-shot EPI (ss-DTI) with an acquisition time of 12 minutes (scan parameters as in recent literature). Two independent readers qualitatively and quantitatively assessed image quality. The interobserver reliability ranged from "substantial" to "almost perfect" for all examined parameter and all 3 sequences (κ = 0.70-0.94). Overall image quality was rated higher, and artifact levels were scored lower for rs-DTI and sTX-DTI than for ss-DTI (P = 0.007-0.027), while fractional anisotropy and signal-to-noise ratio values were similar for all sequences (P ≥ 0.306 and P ≥ 0.100, respectively). Contrast-to-noise ratios were significantly higher for rs-DTI and ss-DTI than for sTX-DTI (P = 0.004-0.013). Despite shorter acquisition times, rs-DTI and sTX-DTI produced images of higher quality with smaller geometrical distortions than the current standard of reference, ss-DTI. Thus, DTI acquisitions in the coronal plane, requiring fewer slices for full coverage of exiting nerve roots, may allow for functional neurography in scan times suitable for routine clinical practice.
Prevalence of extraforaminal nerve root compression below lumbosacral transitional vertebrae.
Porter, Neil A; Lalam, Radhesh K; Tins, Bernhard J; Tyrrell, Prudencia N M; Singh, Jaspreet; Cassar-Pullicino, Victor N
2014-01-01
Although pathology at the first mobile segment above a lumbosacral transitional vertebra (LSTV) is a known source of spinal symptoms, nerve root compression below an LSTV, has only sporadically been reported. Our objective was to assess the prevalence of nerve root entrapment below an LSTV, review the causes of entrapment, and correlate with presenting symptoms. A retrospective review of MR and CT examinations of the lumbar spine was performed over a 5.5-year period in which the words "transitional vertebra" were mentioned in the report. Nerve root compression below an LSTV was assessed as well as the subtype of transitional vertebra. Correlation with clinical symptoms at referral was made. MR and CT examinations were also reviewed to exclude any other cause of symptoms above the LSTV. One hundred seventy-four patients were included in the study. Neural compression by new bone formation below an LSTV was demonstrated in 23 patients (13%). In all of these patients, there was a pseudarthrosis present on the side of compression due to partial sacralization with incomplete fusion. In three of these patients (13%), there was symptomatic correlation with no other cause of radiculopathy demonstrated. A further 13 patients (57%) had correlating symptoms that may in part be attributable to compression below an LSTV. Nerve root compression below an LSTV occurs with a prevalence of 13% and can be symptomatic in up to 70% of these patients. This region should therefore be carefully assessed in all symptomatic patients with an LSTV.
Manchikanti, Laxmaiah; Malla, Yogesh; Wargo, Bradley W; Cash, Kimberly A; Pampati, Vidyasagar; Fellows, Bert
2012-01-01
Chronic spinal pain is common along with numerous modalities of diagnostic and therapeutic interventions utilized, creating a health care crisis. Facet joint injections and epidural injections are the 2 most commonly utilized interventions in managing chronic spinal pain. While the literature addressing the effectiveness of facet joint nerve blocks is variable and emerging, there is paucity of literature on adverse effects of facet joint nerve blocks. A prospective, non-randomized study of patients undergoing interventional techniques from May 2008 to December 2009. A private interventional pain management practice, a specialty referral center in the United States. Investigation of the incidence in characteristics of adverse effects and complications of facet joint nerve blocks. The study was carried out over a period of 20 months including almost 7,500 episodes of 43,000 facet joint nerve blocks with 3,370 episodes in the cervical region, 3,162 in the lumbar region, and 950 in the thoracic region. All facet joint nerve blocks were performed under fluoroscopic guidance in an ambulatory surgery center by 3 physicians. The complications encountered during the procedure and postoperatively were evaluated prospectively. This study was carried out over a period of 20 months and included over 7,500 episodes or 43,000 facet joint nerve blocks. All of the interventions were performed under fluoroscopic guidance in an ambulatory surgery center by one of 3 physicians. The complications encountered during the procedure and postoperatively were prospectively evaluated. Measurable outcomes employed were intravascular entry of the needle, profuse bleeding, local hematoma, dural puncture and headache, nerve root or spinal cord irritation with resultant injury, and infectious complications. There were no major complications. Multiple side effects and complications observed included overall intravascular penetration in 11.4% of episodes with 20% in cervical region, 4% in lumbar region, and 6% in thoracic region; local bleeding in 76.3% of episodes with highest in thoracic region and lowest in cervical region; oozing with 19.6% encounters with highest in cervical region and lowest in lumbar region; with local hematoma seen only in 1.2% of the patients with profuse bleeding, bruising, soreness, nerve root irritation, and all other effects such as vasovagal reactions observed in 1% or less of the episodes. Limitations of this study include lack of contrast injection, use of intermittent fluoroscopy and also an observational nature of the study. This study illustrate that major complications are extremely rare and minor side effects are common.
Morio, Yasuo; Meshitsuka, Shunsuke; Yamane, Koji; Nanjo, Yoshiro; Teshima, Ryota
2010-01-01
There have been few reports describing substances related to oxidative and intermediary metabolism in the cerebrospinal fluid (CSF) in patients with spinal degenerative disorders. This study investigated whether the concentrations of metabolites in the CSF differed between patients with spinal degenerative disorders and controls, and whether the concentrations of these metabolites correlated with the severity of symptoms. CSF samples were obtained from 30 patients with cervical myelopathy (Group M), 30 patients with lumbar radiculopathy (Group R), and 10 volunteers (control). Metabolites in these CSF samples were measured by nuclear magnetic resonance spectroscopy. There were no differences in the concentrations of lactate, alanine, acetate, glutamate, pyruvate, or citrate between Groups M and R, between Group M and the control, or between Group R and the control. In Group M, neither symptom duration nor the Japanese Orthopaedic Association score correlated with the concentration of any metabolite. In Group R, the symptom duration positively correlated with the concentration of lactate, glutamate, and citrate in CSF. The duration of nerve root block showed a negative correlation with the concentrations of acetate in CSF of the patients in Group R. In patients with lumbar radiculopathy, there is a possibility of increased aerobic metabolic activity or decreased gluconeogenic activity in patients with shorter symptom duration, and increased aerobic metabolic activity in patients with severe inflammation around a nerve root. PMID:20490871
Bogduk, N
1980-11-15
Low back pain, referred pain in the lower limbs, and spasm of the back, gluteal, and hamstring muscles are clinical features which can be induced in normal volunteers by stimulating structures which are innervated by the lumbar dorsal rami. Conversely, they can be relieved in certain patients by selective interruption of conduction along dorsal rami. These facts permit the definition of a lumbar dorsal ramus syndrome, which can be distinguished from the intervertebral disc syndrome and other forms of low back pain. The distinguishing feature is that, in lumbar dorsal ramus syndrome, all the clinical features are exclusively mediated by dorsal rami and do not arise from nerve-root compression. The pathophysiology, pathology, and treatment of this syndrome are described. Recognition of this syndrome, and its treatment with relatively minor procedures, can obviate the need for major surgery which might otherwise be undertaken.
Percutaneous endoscopic lumbar discectomy via contralateral approach: a technical case report.
Kim, Jin-Sung; Choi, Gun; Lee, Sang-Ho
2011-08-01
Technical case report. The authors report a new percutaneous endoscopic lumbar discectomy (PELD) technique for the treatment of lumbar disc herniation via a contralateral approach. When there are highly down-migrated lumbar disc herniation along just medial to pedicle and narrow ipsilateral intervertebral foramen, the conventional PELD is not easily accessible via ipsilateral transforaminal route. Five patients manifested gluteal and leg pain because of a soft disc herniation at the L4-L5 level. Transforaminal PELD via a contralateral approach was performed to remove the herniated fragment, achieving complete decompression of the nerve root. The symptom was relieved and the patient was discharged the next day. When a conventional transforaminal PELD is difficult because of some anatomical reasons, PELD via a contralateral route could be a good alternative option in selected cases.
Shacklock, Michael; Yee, Brian; Van Hoof, Tom; Foley, Russ; Boddie, Keith; Lacey, Erin; Poley, J Bryan; Rade, Marinko; Kankaanpää, Markku; Kröger, Heikki; Airaksinen, Olavi
2016-02-01
Part 1: A randomized, single-blind study on the effect of contralateral knee extension on sensations produced by the slump test (ST) in asymptomatic subjects. Part 2: A cadaver study simulating the nerve root behavior of part 1. Part 1: Test if contralateral knee extension consistently reduces normal stretch sensations with the ST.Part 2: Ascertain in cadavers an explanation for the results. In asymptomatic subjects, contralateral knee extension reduces stretch sensations with the ST. In sciatica patients, contralateral SLR also can temporarily reduce sciatica. We studied this methodically in asymptomatic subjects before considering a clinical population. Part 1: Sixty-one asymptomatic subjects were tested in control (ST), sham, or intervention (contralateral ST) groups and their sensation response intensity compared.Part 2: Caudal tension was applied to the L5 nerve root of 3 cadavers and tension behavior of the contralateral neural tissue recorded visually. Part 1: Reduction of stretch sensations occurred in the intervention group but not in control and sham groups (P ≤ 0.001).Part 2: Tension in the contralateral lumbar nerve roots and dura reduced in a manner consistent with the responses in the intervention (contralateral ST) group. Part 1: In asymptomatic subjects, normal thigh stretch sensations with the ST reduced consistently with the contralateral ST, showing that this is normal and may now be compared with patients with sciatica.Part 2: Contralateral reduction in lumbar neural tension with unilateral application of tension-producing movements also occurred in cadavers, supporting the proposed explanatory hypothesis.
Shaw, P J; Allcutt, D A; Bates, D; Crawford, P J
1990-01-01
A case of cauda equina syndrome with multiple lumbar arachnoid cysts complicating ankylosing spondylitis (AS) is described. The value of computerised tomography (CT) and magnetic resonance imaging (MRI) as a non-invasive means of establishing the diagnosis is emphasised. In contrast to previously reported cases the patient showed neurological improvement following surgical therapy. Surgery may be indicated in some patients, particularly when there is nerve root compression by the arachnoid cysts and when the patient is seen early before irreversible damage to the cauda equina has occurred. Images PMID:2292702
Distinct degree of radiculopathy at different levels of peripheral nerve injury
2012-01-01
Background Lumbar radiculopathy is a common clinical problem, characterized by dorsal root ganglion (DRG) injury and neural hyperactivity causing intense pain. However, the mechanisms involved in DRG injury have not been fully elucidated. Furthermore, little is known about the degree of radiculopathy at the various levels of nerve injury. The purpose of this study is to compare the degree of radiculopathy injury at the DRG and radiculopathy injury proximal or distal to the DRG. Results The lumbar radiculopathy rat model was created by ligating the L5 nerve root 2 mm proximal to the DRG or 2 mm distal to the DRG with 6.0 silk. We examined the degree of the radiculopathy using different points of mechanical sensitivity, immunohistochemistry and in vivo patch-clamp recordings, 7 days after surgery. The rats injured distal to the DRG were more sensitive than those rats injured proximal to the DRG in the behavioral study. The number of activated microglia in laminas I–II of the L5 segmental level was significantly increased in rats injured distal to the DRG when compared with rats injured proximal to the DRG. The amplitudes and frequencies of EPSC in the rats injured distal to the DRG were higher than those injured proximal to the DRG. The results indicated that there is a different degree of radiculopathy at the distal level of nerve injury. Conclusions Our study examined the degree of radiculopathy at different levels of nerve injury. Severe radiculopathy occurred in rats injured distal to the DRG when compared with rats injured proximal to the DRG. This finding helps to correctly diagnose a radiculopathy. PMID:22537715
Orita, Sumihisa; Yamagata, Masatsune; Ikeda, Yoshikazu; Nakajima, Fumitake; Aoki, Yasuchika; Nakamura, Junichi; Takahashi, Kazuhisa; Suzuki, Takane; Ohtori, Seiji
2015-10-17
Lumbar floating fusion occasionally causes postoperative adjacent segment disorder (ASD) at lumbosacral level, causing L5 spinal nerve disorder by L5-S1 foraminal stenosis. The disorder is considered to be one of the major outcomes of L5-S1 ASD, which has not been evaluated yet. The present study aimed to evaluate the incidence and risk factors of postoperative L5 spinal nerve disorder after lumbar interbody fusion extending to the L5 vertebra. We evaluated 125 patients with a diagnosis of spondylolisthesis who underwent floating fusion surgery with transforaminal lumbar interbody fusion with average postoperative period of 25.2 months. The patients were regarded as symptomatic with postoperative L5 spinal nerve disorder such as radicular pain/numbness in the lower limbs and/or motor dysfunction. We estimated and compared the wedging angle (frontal view) and height (lateral view) of the lumbosacral junction in pre- and postoperative plain X-ray images and the foraminal ratio (ratio of the narrower foraminal diameter to the wider diameter in the craniocaudal direction) in the preoperative magnetic resonance image. Risk factors for the incidence of L5 spinal nerve disorder were explored using multivariate logistic regression. Eight of the 125 patients (6.4%) were categorized as symptomatic, an average of 13.3 months after surgery. The wedging angle was significantly higher, and the foraminal ratio was significantly decreased in the symptomatic group (both P < 0.05) compared to the asymptomatic group. Multivariate logistic regression analysis of possible risk factors revealed that the wedging angle, foraminal ratio, and multileveled fusion were statistically significant. Higher wedging angle and lower foraminal ratio in the lumbosacral junction were significantly predictive for the incidence of L5 nerve root disorder as well as multiple-leveled fusion. These findings indicate that lumbosacral fixation should be considered for patients with these risk factors even if they have few symptoms from the L5-S1 junction.
Iwanaga, Joe; Simonds, Emily; Patel, Mayank; Oskouian, Rod J; Tubbs, R Shane
2018-05-19
The aim of this study was to investigate the anatomy of the superior cluneal nerves more proximal to the posterior layer of the thoracolumbar fascia. Twelve sides of six fresh-frozen cadavers were used. The age at death ranged from 54 to 88 years. After a transverse skin incision 10 mm above the iliac crest, the superior cluneal nerves were detected by blunt dissection and traced back to the dorsal root ganglia. The diameter of the nerves from L1 to L3 was measured. Also, the relationship to the erector spinae muscle and dorsal ramus was recorded. The mean diameters of the origin of the L1, L2 and L3 were 1.71±0.29 mm, 1.73±0.40 mm and 1.52±0.55 mm, respectively. On seven sides (58.3%) for L1, seven sides (58.3%) for L2, and ten sides (83.3%) for L3, the nerves pierced the iliocostalis muscle. One side (8.3%) for L2 and one (8.3%) for L3 had no cutaneous branch. The results of this study could help to elucidate the anatomy of the superior cluneal nerves and help avoid complications during surgical approaches to the lumbar spine. Copyright © 2018. Published by Elsevier Inc.
Cho, J Y; Lee, S-H; Lee, H-Y
2011-10-01
Transforaminal percutaneous endoscopic lumbar discectomy (PELD) has become a routine surgical procedure because it is minimally invasive. Perioperative complications such as dural injury, infection, nerve root irritation and recurrence can occur not only with PELD, but also with conventional open microsurgery. In contrast, post-operative dysesthesia (POD) due to existing dorsal root ganglion (DRG) injury is a unique complication of PELD. When POD occurs, even if the traversing root has been successfully decompressed, it hinders swift recovery and delays the return to daily routines. Thus, prevention of POD is the key to successful and widespread use of PELD. From January 2006 to December 2008, 154 patients underwent percutaneous endoscopic discectomy by floating retraction technique at 160 disc levels under local anesthesia. This approach towards the superomedial border of the lower pedicle and the cannula can be placed by gentle retraction of the root with perineural fat instead of direct compression of dorsal root ganglion. The clinical outcomes were assessed using the Visual Analogue Scale (VAS, 0-10 point) for radicular pain and low back pain, and using the Oswestry Disability Index (ODI) for functional status. Perioperative complications and recurrence were reviewed. The mean age was 45 years, the mean operative time was 36 min and the mean follow-up period was 3.4 years. The mean hospital stay for endoscopic discectomy was 1.8 days. No patient underwent repeated PELD or convert microsurgery by incomplete removal of the ruptured particle. All patients experienced early relief of symptoms, as determined by VAS and ODI. No patient developed POD. 1 patient experienced dural injury. There was 1 case of discitis. The recurrence rate was 1.95% (3 patients). Transforaminal percutaneous endoscopic lumbar discectomy for intracanalicular lumbar disc herniation is a safe and effective procedure. The floating retraction technique is recommended to avoid development of POD. © Georg Thieme Verlag KG Stuttgart · New York.
Wood, Martin; Mannion, Richard
2011-02-01
A comparison of 2 surgical techniques. To determine the relative accuracy of minimally invasive lumbar pedicle screw placement using 2 different CT-based image-guided techniques. Three-dimensional intraoperative fluoroscopy systems have recently become available that provide the ability to use CT-quality images for navigation during image-guided minimally invasive spinal surgery. However, the cost of this equipment may negate any potential benefit in navigational accuracy. We therefore assess the accuracy of pedicle screw placement using an intraoperative 3-dimensional fluoroscope for guidance compared with a technique using preoperative CT images merged to intraoperative 2-dimensional fluoroscopy. Sixty-seven patients undergoing minimally invasive placement of lumbar pedicle screws (296 screws) using a navigated, image-guided technique were studied and the accuracy of pedicle screw placement assessed. Electromyography (EMG) monitoring of lumbar nerve roots was used in all. Group 1: 24 patients in whom a preoperative CT scan was merged with intraoperative 2-dimensional fluoroscopy images on the image-guidance system. Group 2: 43 patients using intraoperative 3-dimensional fluoroscopy images as the source for the image guidance system. The frequencies of pedicle breach and EMG warnings (indicating potentially unsafe screw placement) in each group were recorded. The rate of pedicle screw misplacement was 6.4% in group 1 vs 1.6% in group 2 (P=0.03). There were no cases of neurologic injury from suboptimal placement of screws. Additionally, the incidence of EMG warnings was significantly lower in group 2 (3.7% vs. 10% (P=0.03). The use of an intraoperative 3-dimensional fluoroscopy system with an image-guidance system results in greater accuracy of pedicle screw placement than the use of preoperative CT scans, although potentially dangerous placement of pedicle screws can be prevented by the use of EMG monitoring of lumbar nerve roots.
Yamane, Kentaro; Kai, Nobuo; Mazaki, Tetsuro; Miyamoto, Tadashi; Matsushita, Tomohiro
2018-06-13
Long-term exposure to radiation can lead to gene mutations and increase the risk of cancer. Low rate fluoroscopy has the potential to reduce the radiation exposure for both the examiner and the patient during various fluoroscopic procedures. The purpose of this study was to evaluate the impact of low rate fluoroscopy on reducing an examiner's radiation dose during nerve root block. A total of 101 lumbar nerve root block examinations were performed at our institute during a 6-month period. During the first 3 months, low rate fluoroscopy was performed at 7.5 frames/s (FPS) in 54 examinations, while 47 were performed at 15 FPS during the last 3 months. The examiner wore a torso protector, a neck protector, radiation protection gloves, and radiation protection glasses. Optically stimulated luminescence (OSL) dosimeter badges were placed on both the inside and the outside of each protector. The dosimeters were exchanged every month. Radiation doses (mSv) were measured as the integrated radiation quantity every month from the OSL dosimeters. The effective and equivalent doses for the hands, skin, and eyes were investigated. The mean monthly equivalent doses were significantly lower both inside and outside the hand protector for the 7.5 FPS versus 15 FPS (inside; P = 0.021, outside; P = 0.024). There were no significant differences between the two groups for the mean monthly calculated effective dose for each protector's condition. Radiation exposure was significantly reduced for the skin on the examiner's hand when using low rate fluoroscopy at 7.5 FPS, with no noticeable decrease in image quality or prolonged fluoroscopy time. Copyright © 2018. Published by Elsevier B.V.
Farshad, Mazda; Sutter, Reto; Hoch, Armando
2018-02-01
Nerve root compression causing symptomatic radiculopathy can occur within the intervertebral foramen. Sagittal magnetic resonance imaging (MRI) sequences are reliable in detection of nerve root contact to intraforaminal disc material, but a clinically relevant classification of degree of contact is lacking. This study aimed to investigate a potential relation of amount of contact between intraforaminal disc material and nerve root to clinical findings and response after periradicular corticosteroid infiltration. A post hoc analysis of a prospective cohort was carried out. Patients who underwent computed tomography (CT)-guided periradicular corticosteroid infiltration (L1-L5) at our institution (January 2014 to May 2016) were included. The medical records and radiographic imaging were reviewed. T2-weighted MRI of the lumbar spine of patients with single-level symptomatic radiculopathy with (responders, n=28) or without (non-responders, n=14) pain relief after periradicular infiltration with corticosteroids were measured and compared by two independent readers to determine the amount of intraforaminal nerve root contact with the intervertebral disc ("melting" of the T2-hypointense signal). Pain relief was defined with a pain level decrease of >50% on a visual analogue scale and lack of pain relief with a pain level decrease of <25%, respectively. The amount of T2-hypointensity melting of disc and nerve root was categorized to 0%, 1%-25%, and over 25%. Reader one identified 0% T2-melting in none of the responders, 1%-25% melting in 13 patients (46.4%), 26%-50% in 15 of the 28 patients (53.6%) with pain relief after periradicular corticosteroid infiltration (responders), with a mean amount of T2-melting of 5.9±2.1 mm, whereas the non-responder group had 0% T2-melting in 2 patients (14.3%), 1%-25% T2-melting in 11 patients (78.6%), and 26%-50% in 1 patient (7.1%), with a mean amount of T2-melting of 2.6±1.9 mm (p<.05). Reader two identified 0% T2-melting in none, 1%-25% T2-melting in 15 (53.6%) patients, and 26%-50% in 13 of the 28 responders (46.4%), with mean amount of 6.3±1.9 mm. In the non-responder group 0% T2-melting was seen in 3 patients (21.4%), 1%-25% T2-melting in 10 patients (71.4%), and 26%-50% in 1 patient (7.1%), with a mean amount of T2-melting of 2.7±1.9 mm (p<.05). None of the MRI showed T2-melting in over 50% of the circumference of the intraforaminal nerve root. A T2-melting of >25% had a high specificity of 93% but a sensitivity of 50%, thus a positive likelihood ratio of 7.5, to identify those with a pain relief of more than 50% after infiltration. The amount of T2-melting of disc material and nerve root on sagittal MRI (>25%) predicts the amount of pain relief by periradicular infiltration in patients with intraforaminal nerve root irritation. Copyright © 2017 Elsevier Inc. All rights reserved.
Gibson, S J; Polak, J M; Allen, J M; Adrian, T E; Kelly, J S; Bloom, S R
1984-07-20
The distribution of neuropeptide Y [NPY]-immunoreactive material was examined in the spinal cord and dorsal root ganglia of rat, guinea-pig, cat, marmoset, and horse. Considerable concentrations of NPY and similar distribution patterns of immunoreactive nerve fibres were found in the spinal cord of all species investigated. The dorsal root ganglia of the cat and the horse contained numerous immunoreactive nerve fibres, but in these species, as in the other three studied [rat, guinea-pig, marmoset], no positively stained cell bodies were found. Neuropeptide Y-immunoreactive nerves were observed at all levels of the spinal cord, being most concentrated in the dorsal horn. In the rat, guinea-pig, and marmoset, there was a marked increase of NPY-immunoreactive fibres in the lumbosacral regions of the spinal cord, and this was reflected by a considerable increase of extractable NPY. Estimations of NPY-immunoreactive material in the various regions of the rat spinal cord were as follows: cervical, 13.8 +/- 1.0; thoracic, 21.1 +/- 2.5; lumbar, 16.3 +/- 2.9; sacral, 92.4 +/- 8.5 pmol/gm wet weight of tissue +/- SEM. In the ventral portion of the guinea-pig spinal cord they were as follows: cervical, 7.1 +/- 1.2; thoracic, 8.2 +/- 3.6; lumbar, 22.6 +/- 7.0; sacral, 36.7 +/- 9.5 pmol/gm wet weight of tissue +/- SEM. Analysis of spinal cord extracts by reverse phase high performance liquid chromatography [HPLC] demonstrated that NPY-immunoreactive material elutes in the position of pure NPY standard. No changes in the concentration and distribution of the NPY-like material in the rat spinal cord were observed following a variety of surgical and pharmacological manipulations, including cervical rhizotomy, sciatic nerve section and ligation, and local application of capsaicin [50 mM] to one sciatic nerve. It is therefore suggested that most of the NPY-immunoreactive material in the spinal cord is derived either from intrinsic nerve cell bodies or from supraspinal tracts.
Identification of the visceral pain pathway activated by noxious colorectal distension in mice.
Kyloh, Melinda; Nicholas, Sarah; Zagorodnyuk, Vladimir P; Brookes, Simon J; Spencer, Nick J
2011-01-01
In patients with irritable bowel syndrome, visceral pain is evoked more readily following distension of the colorectum. However, the identity of extrinsic afferent nerve pathway that detects and transmits visceral pain from the colorectum to the spinal cord is unclear. In this study, we identified which extrinsic nerve pathway(s) underlies nociception from the colorectum to the spinal cord of rodents. Electromyogram recordings were made from the transverse oblique abdominal muscles in anesthetized wild type (C57BL/6) mice and acute noxious intraluminal distension stimuli (100-120 mmHg) were applied to the terminal 15 mm of colorectum to activate visceromotor responses (VMRs). Lesioning the lumbar colonic nerves in vivo had no detectable effect on the VMRs evoked by colorectal distension. Also, lesions applied to the right or left hypogastric nerves failed to reduce VMRs. However, lesions applied to both left and right branches of the rectal nerves abolished VMRs, regardless of whether the lumbar colonic or hypogastric nerves were severed. Electrical stimulation applied to either the lumbar colonic or hypogastric nerves in vivo, failed to elicit a VMR. In contrast, electrical stimulation (2-5 Hz, 0.4 ms, 60 V) applied to the rectum reliably elicited VMRs, which were abolished by selective lesioning of the rectal nerves. DiI retrograde labeling from the colorectum (injection sites 9-15 mm from the anus, measured in unstretched preparations) labeled sensory neurons primarily in dorsal root ganglia (DRG) of the lumbosacral region of the spinal cord (L6-S1). In contrast, injection of DiI into the mid to proximal colon (injection sites 30-75 mm from the anus, measured in unstretched preparations) labeled sensory neurons in DRG primarily of the lower thoracic level (T6-L2) of the spinal cord. The visceral pain pathway activated by acute noxious distension of the terminal 15 mm of mouse colorectum is transmitted predominantly, if not solely, through rectal/pelvic afferent nerve fibers to the spinal cord. The sensory neurons of this spinal afferent pathway lie primarily in the lumbosacral region of the spinal cord, between L6 and S1.
Du, Bin; Ding, You-Quan; Xiao, Xia; Ren, Hong-Yi; Su, Bing-Yin; Qi, Jian-Guo
2018-03-15
Antigen-specific and MHCII-restricted CD4+ αβ T cells have been shown or suggested to play an important role in the transition from acute to chronic mechanical allodynia after peripheral nerve injuries. However, it is still largely unknown where these T cells infiltrate along the somatosensory pathways transmitting mechanical allodynia to initiate the development of chronic mechanical allodynia after nerve injuries. Therefore, the purpose of this study was to ascertain the definite neuroimmune interface for these T cells to initiate the development of chronic mechanical allodynia after peripheral nerve injuries. First, we utilized both chromogenic and fluorescent immunohistochemistry (IHC) to map αβ T cells along the somatosensory pathways for the transmission of mechanical allodynia after modified spared nerve injuries (mSNIs), i.e., tibial nerve injuries, in adult male Sprague-Dawley rats. We further characterized the molecular identity of these αβ T cells selectively infiltrating into the leptomeninges of L4 dorsal roots (DRs). Second, we identified the specific origins in lumbar lymph nodes (LLNs) for CD4+ αβ T cells selectively present in the leptomeninges of L4 DRs by two experiments: (1) chromogenic IHC in these lymph nodes for CD4+ αβ T cell responses after mSNIs and (2) fluorescent IHC for temporal dynamics of CD4+ αβ T cell infiltration into the L4 DR leptomeninges after mSNIs in prior lymphadenectomized or sham-operated animals to LLNs. Finally, following mSNIs, we evaluated the effects of region-specific targeting of these T cells through prior lymphadenectomy to LLNs and chronic intrathecal application of the suppressive anti-αβTCR antibodies on the development of mechanical allodynia by von Frey hair test and spinal glial or neuronal activation by fluorescent IHC. Our results showed that during the sub-acute phase after mSNIs, αβ T cells selectively infiltrate into the leptomeninges of the lumbar DRs along the somatosensory pathways responsible for transmitting mechanical allodynia. Almost all these αβ T cells are CD4 positive. Moreover, the temporal dynamics of CD4+ αβ T cell infiltration into the lumbar DR leptomeninges are specifically determined by LLNs after mSNIs. Prior lymphadenectomy to LLNs specifically reduces the development of mSNI-induced chronic mechanical allodynia. More importantly, intrathecal application of the suppressive anti-αβTCR antibodies reduces the development of mSNI-induced chronic mechanical allodynia. In addition, prior lymphadenectomy to LLNs attenuates mSNI-induced spinal activation of glial cells and PKCγ + excitatory interneurons. The noteworthy results here provide the first evidence that CD4+ αβ T cells selectively infiltrate into the DR leptomeninges of the somatosensory pathways transmitting mechanical allodynia and contribute to the transition from acute to chronic mechanical allodynia after peripheral nerve injuries.
Sakai, Yoshihito
2012-04-01
Lumbar canal stenosis most commonly affects the elderly population by entrapment of the cauda equine roots surrounding the spinal canal often associated with pain in the back and lower extremities, difficulty ambulating. The locomotive syndrome refers to high-risk conditions under requiring care services, and lumbar canal stenosis is an important underlying disease. As one of the key capacities of frailty identified muscluloskeletal function, the locomotive syndrome is considered to musculoskeletal frail syndrome. Surgical treatment should be recommended to take the pressure off the nerves in the lumbar spine when the conservative treatments failed, and several studies revealed that the surgery generally resulted in a preferable outcome in the lumbar canal stenosis patients. Among lumbar canal stenosis patients treated with surgery, locomotive syndrome was contained 44% and many of which were seen in thin females. The patients with locomotive syndrome had lower muscle volume both in the extremities and the trunk than those without locomotive syndrome, and surgical results were poorer in the activity of daily life whereas the pain relief was adequately obtained. Treatment of the lumbar canal stenosis should be attended to locomotive frailty, and muscle strengthening training should be incorporated into pre and postoperative therapy.
Satoskar, Savni R.; Goel, Aimee A.; Mehta, Pooja H.; Goel, Atul
2014-01-01
Objective: The authors evaluate the anatomic subtleties of lumbar facets and assess the feasibility and effectiveness of use of ‘Goel facet spacer’ in the treatment of degenerative spinal canal stenosis. Materials and Methods: Twenty-five lumbar vertebral cadaveric dried bones were used for the purpose. A number of morphometric parameters were evaluated both before and after the introduction of Goel facet spacers within the confines of the facet joint. Results: The spacers achieved distraction of facets that was more pronounced in the vertical perspective. Introduction of spacers on both sides resulted in an increase in the intervertebral foraminal height and a circumferential increase in the spinal canal dimensions. Additionally, there was an increase in the disc space or intervertebral body height. The lumbar facets are more vertically and anteroposteriorly oriented when compared to cervical facets that are obliquely and transversely oriented. Conclusions: Understanding the anatomical peculiarities of the lumbar and cervical facets can lead to an optimum utilization of the potential of Goel facet distraction arthrodesis technique in the treatment of spinal degenerative canal stenosis. PMID:25558146
Cost Effectiveness of OMT for Chronic Low Back Pain
2018-06-14
Lumbar Radiculopathy; Lesion of Sciatic Nerve, Left Lower Limb; Lesion of Sciatic Nerve, Right Lower Limb; Lumbar Spinal Stenosis; Lumbar Spondylosis; Lumbago With Sciatica, Left Side; Lumbago With Sciatica, Right Side
Liu, Cui-Cui; Zhang, Xin-Sheng; Ruan, Yu-Ting; Huang, Zhu-Xi; Zhang, Su-Bo; Liu, Meng; Luo, Hai-Jie; Wu, Shao-Ling; Ma, Chao
2017-08-01
Lumbar disk herniation (LDH) with discogenic low back pain and sciatica is a common and complicated musculoskeletal disorder. The underlying mechanisms are poorly understood, and there are no effective therapies for LDH-induced pain. In the present study, we found that the patients who suffered from LDH-induced pain had elevated plasma methylglyoxal (MG) levels. In rats, implantation of autologous nucleus pulposus (NP) to the left lumbar 5 spinal nerve root, which mimicked LDH, induced mechanical allodynia, increased MG level in plasma and dorsal root ganglion (DRG), and enhanced the excitability of small DRG neurons (<30 μm in diameter). Intrathecal injection of MG also induced mechanical allodynia, and its application to DRG neurons ex vivo increased the number of action potentials evoked by depolarizing current pulses. Furthermore, inhibition of MG accumulation by aminoguanidine attenuated the enhanced excitability of small DRG neurons and the mechanical allodynia induced by NP implantation. In addition, NP implantation increased levels of advanced glycation end products (AGEs) in DRG, and intrathecal injection of MG-derived AGEs induced the mechanical allodynia and DRG neuronal hyperactivity. Intrathecal injection of MG also significantly increased the expression of AGEs in DRG. Importantly, scavenging of MG by aminoguanidine also attenuated the increase in AGEs induced by NP implantation. These results suggested that LDH-induced MG accumulation contributed to persistent pain by increasing AGE levels. Thus generation of AGEs from MG may represent a target for treatment of LDH-induced pain. NEW & NOTEWORTHY Our study demonstrates that methylglyoxal accumulation via increasing advanced glycation end-product levels in dorsal root ganglion contributes to the persistent pain induced by lumbar disk herniation, which proposed potential targets for the treatment of lumbar disk herniation-induced persistent pain. Copyright © 2017 the American Physiological Society.
Zaitouna, Mazen; Alsaid, Bayan; Diallo, Djibril; Benoit, Gérard; Bessede, Thomas
2013-01-01
Nerve fibers contributing to the superior hypogastric plexus (SHP) and the hypogastric nerves (HN) are currently considered to comprise an adrenergic part of the autonomic nervous system located between vertebrae (T1 and L2), with cholinergic aspects originating from the second to fourth sacral spinal segments (S2, S3 and S4). The aim of this study was to identify the origin and the nature of the nerve fibers within the SHP and the HN, especially the cholinergic fibers, using computer-assisted anatomic dissection (CAAD). Serial histological sections were performed at the level of the lumbar spine and pelvis in five human fetuses between 14 and 30 weeks of gestation. Sections were treated with histological staining [hematoxylin-eosin (HE) and Masson's trichrome (TriM)] and with immunohistochemical methods to detect nerve fibers (anti-S100), adrenergic fibers (anti-TH), cholinergic fibers (anti-VAChT) and nitrergic fibers (anti-nNOS). The sections were then digitalized using a high-resolution scanner and the 3D images were reconstructed using winsurf software. These experiments revealed the coexistence of adrenergic and cholinergic fibers within the SHP and the HNs. One-third of these cholinergic fibers were nitrergic fibers [anti-VACHT (+)/anti-NOS (+)] and potentially pro-erectile, while the others were non-nitrergic [anti-VACHT (+)/anti-NOS (−)]. We found these cholinergic fibers arose from the lumbar nerve roots. This study described the nature of the SHP nerve fibers which gives a better understanding of the urinary and sexual dysfunctions after surgical injuries. PMID:23668336
Tubbs, Richard Isaiah; Gabel, Brandon; Jeyamohan, Shiveindra; Moisi, Marc; Chapman, Jens R; Hanscom, R David; Loukas, Marios; Oskouian, Rod J; Tubbs, Richard Shane
2017-07-01
Injuries to the lumbar plexus during lateral approaches to the spine are not uncommon and may result in permanent deficits. However, the literature contains few studies that provide landmarks for avoiding the branches of the lumbar plexus. The present anatomical study was performed to elucidate the course of these nerves in relation to lateral approaches to the lumbar spine. This is a quantitative anatomical cadaveric study. The lumbar plexus and its branches were dissected on 12 cadaveric sides. Metal wires were laid on the nerves along their paths on the posterior abdominal wall. Fluoroscopy was performed in the anteroposterior and lateral positions. The relationships between regional bony landmarks and the branches of the lumbar plexus were observed. When viewed laterally, the greatest concentration of nerves occurred from the posteroinferior aspect of L4, inferior along the posterior one-third of the body of L5, then at the level of the sacral promontory. On the basis of our study, approaches to the anterior two-thirds of the L4 vertebra and anterior third of L5 will result in the lowest chance of lumbar plexus nerve injury. In addition, lateral muscle dissection through the psoas major should be in a superior to inferior direction in order to minimize nerve injury. Laterally, the widest corridor between branches in the abdominal wall was between the subcostal and iliohypogastric nerves. The findings of our cadaveric study provide surgeons who approach the lateral lumbar spine with data that could decrease injuries to the branches of the lumbar plexus, thus lessening patient morbidity. Copyright © 2017 Elsevier Inc. All rights reserved.
Minimally invasive palliative resection of lumbar epidural metastasis.
Yew, Andrew; Kimball, Jon; Pezeshkian, Patrick; Lu, Daniel C
2013-07-01
Spinal metastatic lesions are the most common tumors encountered by spinal surgeons. As with procedures for degenerative disease, minimally invsive surgery techniques have been applied to minimize muscle and soft tissue destruction in procedures for tumor resection. Here, we present a 23-year-old female with radiculopathy and foot drop secondary to nerve root compression by epidural metastases from Ewing's sarcoma. This patient had a history of previous resection and instrumentation as well as multiple rounds of chemotherapy and radiation that failed to control her disease. The patient presented with three weeks of radicular pain and foot drop that was continuing to worsen at the time of her operation. The decision was therefore made to perform a palliative resection and decompression for relief of her progressive symptoms. In this video, we demonstrate a palliative tumor debulking and nerve root decompression utilizing an MIS approach. The video can be found here: http://youtu.be/tq4kbvKTebI.
DeGregoris, Gerard; Diwan, Sudhir
2010-01-01
Lower back and extremity pain in the amputee patient can be challenging to classify and treat. Radicular compression in a patient with lower limb amputation may present as or be superimposed upon phantom limb pain, creating diagnostic difficulties. Both patients and physicians classically find it difficult to discern phantom sensation from phantom limb pain and stump pain; radicular compression is often not considered. Many studies have shown back pain to be a significant cause of pain in lower limb amputees, but sciatica has been rarely reported in amputees. We present a case of L4/5 radiculitis in an above-knee amputee presenting as phantom radiculitis. Our patient is a 67 year old gentleman with new onset 10/10 pain in a phantom extremity superimposed upon a 40 year history of previously stable phantom limb pain. MRI showed a central disc herniation at L4/5 with compression of the traversing left L4 nerve root. Two fluoroscopically guided left transforaminal epidural steroid injections at the level of the L4 and L5 spinal nerve roots totally alleviated his new onset pain. At one year post injection, his phantom radiculitis pain was completely gone, though his underlying phantom limb pain remained. Lumbar radiculitis in lower extremity amputee patients may be difficult to differentiate from baseline phantom limb pain. When conservative techniques fail, fluoroscopically guided spinal nerve injection may be valuable in determining the etiology of lower extremity pain. Our experience supports the notion that epidural steroid injections can effectively treat phantom lumbar radiculitis in lower extremity amputees.
Shum, Gary L K; Crosbie, Jack; Lee, Raymond Y W
2005-12-01
This experimental study analyzed the movements of the lumbar spine and hip while putting on a sock. To examine differences in kinematics and coordination of the lumbar and hip movements in subjects with and without subacute low back pain. There is no information on the coordination of movements of lumbar spine and hips during activities of daily living such as putting on a sock. The effect of low back pain, with or without nerve root signs, is unknown. A real-time three-dimensional electromagnetic tracking device was used to measure movements of the lumbar spine and hips in 60 subacute low back pain subjects with or without straight leg raise (SLR) signs and 20 asymptomatic subjects. Movement coordination between the two regions was examined by cross-correlation. Mobility was significantly reduced in back pain subjects. Symptomatic subjects compensated for limited motion through various strategies, but in all cases the contribution of the lumbar spine relative to that of the hip was significantly reduced. The lumbar spine-hip joint coordination was substantially altered in back pain subjects, in particular, when putting on a sock on the side with positive SLR sign. Changes in the lumbar and hip kinematics when putting on a sock were related to back pain and limitation in SLR. Low back pain will affect lumbar-hip coordination.
Lumbar disc herniation with contralateral radiculopathy: do we neglect the epidural fat?
Yang, Jun-Song; Zhang, Dong-Jie; Hao, Ding-Jun
2015-01-01
Lumbar disc herniation (LDH) is the most common cause of radiculopathy, whose pathological entity underlying nerve root compression is usually on the same side as the symptoms. However, LDH causing contralateral radiculopathy are sometimes encountered by pain physicians. There have been tremendous developments in the treatment options for LDH; the situation of LDH causing contralateral radiculopathy is indeed a dilemma for some pain physicians. We will report a case of a patient with a L4-5 disc herniation whose left herniated disc caused radiculopathy on the right side. After a percutaneous lumbar endoscopic discectomy via the side ipsilateral to the symptomatic side, this case obtained a significant symptom remission. The migrated epidural fat is discussed as a cause of associated contralateral neurological deficit. Only via a surgical approach ipsilateral to the herniated side, could there be a clinical improvement postoperatively.
Sun, Rui-Di; Fu, Bing; Jiang, Jun
2017-05-01
To investigate the role of short-latency somatosensory evoked potential (SSEP) in the diagnosis of chronic inflammatory demyelinating polyneuropathy (CIDP). A total of 48 children with a confirmed or suspected CIDP and 40 healthy children were enrolled. Nerve electrophysiological examination and/or SSEP examination was performed (the children in the healthy control group only underwent SSEP examination). Four-lead electromyography was used for nerve electrophysiological examination, including at least 4 motor nerves and 2 sensory nerves. N6 (elbow potential), N13 (cervical cord potential), and N20 (cortex potential) of the median nerve and N8 (popliteal fossa potential), N22 (lumbar cord potential), and P39 (cortex potential) of the tibial nerve were observed by SSEP examination. Among the 48 children with CIDP, 35 had demyelination in both motor and sensory nerves, 8 had demyelination in sensory nerves, and 5 had axonal degeneration. SSEP examination showed that 7 had conduction abnormality in the trunk of the brachial plexus and/or the posterior root and 33 had damage in the lumbosacral plexus and/or the posterior root. The 40 children with abnormal findings of SSEP examination included 8 children with affected sensory nerves and 5 children with secondary axonal degeneration who did not meet the electrophysiological diagnostic criteria for CIDP. Compared with the healthy control group, the CIDP group had significantly prolonged latency periods of N13 and N22 (P<0.05). SSEP can be used for the auxiliary diagnosis of CIDP, especially in CIDP children with affected sensory nerves or secondary axonal degeneration.
Morphology and Nanomechanics of Sensory Neurons Growth Cones following Peripheral Nerve Injury
Szabo, Vivien; Végh, Attila-Gergely; Lucas, Olivier; Cloitre, Thierry; Scamps, Frédérique; Gergely, Csilla
2013-01-01
A prior peripheral nerve injury in vivo, promotes a rapid elongated mode of sensory neurons neurite regrowth in vitro. This in vitro model of conditioned axotomy allows analysis of the cellular and molecular mechanisms leading to an improved neurite re-growth. Our differential interference contrast microscopy and immunocytochemistry results show that conditioned axotomy, induced by sciatic nerve injury, did not increase somatic size of adult lumbar sensory neurons from mice dorsal root ganglia sensory neurons but promoted the appearance of larger neurites and growth cones. Using atomic force microscopy on live neurons, we investigated whether membrane mechanical properties of growth cones of axotomized neurons were modified following sciatic nerve injury. Our data revealed that neurons having a regenerative growth were characterized by softer growth cones, compared to control neurons. The increase of the growth cone membrane elasticity suggests a modification in the ratio and the inner framework of the main structural proteins. PMID:23418549
Huang, Peng; Sengupta, Dilip K
2014-04-15
A single-center retrospective study. To compare the speed of recovery of different sensory symptoms, pain, numbness, and paresthesia, after lumbar nerve root decompression. Lumbar radiculopathy is characterized by different sensory symptoms like pain, numbness, and paresthesia, which may resolve at different rates after surgical decompression. Eighty-five cases with predominant lumbar radiculopathy treated surgically were reviewed. Oswestry Disability Index score, 36-Item Short Form Health Survey scores (Physical Component Summary and Mental Component Summary), and pain drawing at preoperative and at 6 weeks, 3 months, 6 months, and 1-year follow-up were reviewed. Recovery rate between different sensory symptoms were compared in all patients, and between the short-term compression (<6 mo) and long-term compression groups. At baseline, 73 (85.8%) patients had pain, 63 (74.1%) had numbness, and 38 (44.7%) had paresthesia; 28 (32.9%) had all these 3 component of sensory symptoms. Mean pain score improved fastest (55.3% at 6 wk); further resolution until 1 year was slow and not significant compared with each previous visit. Both numbness and paresthesia scores showed a trend of faster recovery during the initial 6-week period (20.5% and 24%, respectively); paresthesia recovery reached a plateau at 3 months postoperatively, but numbness continued a slow recovery until 1-year follow-up. Both Oswestry Disability Index score and Physical Component Summary scores (54.02 ± 1.87 and 26.29 ± 0.93, respectively, at baseline) improved significantly compared with each previous visits at 6 weeks and 3 months postoperatively, but further improvement was insignificant. Mental Component Summary showed a similar trend but smaller improvement. The short-term compression group had faster recovery of pain than the long-term compression group. In lumbar radiculopathy patients after surgical decompression, pain recovers fastest, in the first 6 weeks postoperatively, followed by paresthesia recovery that plateaus at 3 months postoperatively. Numbness recovers at a slower pace but continues until 1 year. 4.
Naguszewski, W K; Naguszewski, R K; Gose, E E
2001-10-01
Reductions in low back pain and referred leg pain associated with a diagnosis of herniated disc, degenerative disc disease or facet syndrome have previously been reported after treatment with a VAX-D table, which intermittently distracts the spine. The object of this study was to use dermatomal somatosensory evoked potentials (DSSEPs) to demonstrate lumbar root decompression following VAX-D therapy. Seven consecutive patients with a diagnosis of low back pain and unilateral or bilateral L5 or S1 radiculopathy were studied at our center. Disc herniation at the L5-S1 level was documented by MRI or CT in all patients. All patients were studied bilaterally by DSSEPs at L5 and S1 before and after VAX-D therapy. All patients had at least 50% improvement in radicular symptoms and low back pain and three of them experienced complete resolution of all symptoms. The average pain reduction was 77%. The number of treatment sessions varied from 12 to 35. DSSEPs were considered to show improvement if triphasic characteristics returned or a 50% or greater increase in the P1-P2 amplitude was seen. All patients showed improvement in DSSEPs after VAX-D therapy either ipsilateral or contralateral to the symptomatic leg. Two patients showed deterioration in DSSEPs in the symptomatic leg despite clinically significant improvement in pain and radicular symptoms. Overall, 28 nerve roots were studied before and after VAX-D therapy. Seventeen nerve root responses were improved, eight remained unchanged and three deteriorated. The significance of DSSEP improvement contralateral to the symptomatic leg is emphasized. Direct compression of a nerve root by a disc herniation is probably not the sole explanation for referred leg pain.
Finite Element Analysis of the Effect of Epidural Adhesions.
Lee, Nam; Ji, Gyu Yeul; Yi, Seong; Yoon, Do Heum; Shin, Dong Ah; Kim, Keung Nyun; Ha, Yoon; Oh, Chang Hyun
2016-07-01
It is well documented that epidural adhesion is associated with spinal pain. However, the underlying mechanism of spinal pain generation by epidural adhesion has not yet been elucidated. To elucidate the underlying mechanism of spinal pain generation by epidural adhesion using a two-dimensional (2D) non-linear finite element (FE) analysis. A finite element analysis. A two-dimensional nonlinear FE model of the herniated lumbar disc on L4/5 with epidural adhesion. A two-dimensional nonlinear FE model of the lumbar spine was developed, consisting of intervertebral discs, dura, spinal nerve, and lamina. The annulus fibrosus and nucleus pulpous were modeled as hyperelastic using the Mooney-Rivlin equation. The FE mesh was generated and analyzed using Abaqus (ABAQUS 6.13.; Hibbitt, Karlsson & Sorenson, Inc., Providence, RI, USA). Epidural adhesion was simulated as rough contact, in which no slip occurred once two surfaces were in contact, between the dura mater and posterior annulus fibrosus. The FE model of adhesion showed significant stress concentration in the spinal nerves, especially on the dorsal root ganglion (DRG). The stress concentration was caused by the lack of adaptive displacement between the dura mater and posterior annulus fibrosus. The peak von Mises stress was higher in the epidural adhesion model (Adhesion, 0.67 vs. Control, 0.46). In the control model, adaptive displacement was observed with decreased stress in the spinal nerve and DRG (with adhesion, 2.59 vs. without adhesion, 3.58, P < 0.00). This study used a 2D non-linear FE model, which simplifies the 3D nature of the human intervertebral disc. In addition, this 2D non-linear FE model has not yet been validated. The current study clearly demonstrated that epidural adhesion causes significantly increased stress in the spinal nerves, especially at the DRG. We believe that the increased stress on the spinal nerve might elicit more pain under similar magnitudes of lumbar disc protrusion.
Jankovic, Zorica B; du Feu, Frances M; McConnell, Patricia
2009-09-01
The transversus abdominis plane (TAP) block is a new technique for providing analgesia to the anterior abdominal wall. Most previous studies have used the lumbar triangle of Petit as a landmark for the block. In this cadaveric study, we determined the exact position and size of the lumbar triangle of Petit and identified the nerves affected by the TAP block. The position of the lumbar triangle of Petit was assessed unilaterally in 26 cadaveric specimens relative to reliably palpable surface landmarks. In addition, a series of dissections were performed to explore the course of the nerves blocked by the TAP. The mean distance from the midaxillary line along the iliac crest to the center of the base of the lumbar triangle of Petit at the level of the subcutaneous tissue and over the skin surface was 6.9 cm (range, 4.5-9.2 cm) and 9.3 cm (range, 4-15.1 cm), respectively. The center of the lumbar triangle of Petit was 1.4 cm above the iliac crest. The depth of the TAP at the lumbar triangle of Petit position was 0.5-4 cm and at the midaxillary line it was 0.5-2 cm. The average size of the lumbar triangle of Petit was 2.3 cm x 3.3 cm x 2.2 cm, with an average area of 3.63 +/- 1.93 cm2. The three cadaveric specimens we explored showed the nerves blocked by TAP passed lateral to the triangle. An incidental finding was that in 66% of specimens the lumbar triangle of Petit contained small branches of the subcostal artery. The lumbar triangles of Petit found in the specimens in this study were more posterior than the literature suggests. The position of the lumbar triangle of Petit varies largely and the size is relatively small. The relevant nerves to be blocked had not entered the TAP in the specimens in this study at the point of the lumbar triangle of Petit. At the midaxillary line, however, all the nerves were in the TAP.
Thapa, S S; Lakhey, R B; Sharma, P; Pokhrel, R K
2016-05-01
Magnetic resonance imaging is routinely done for diagnosis of lumbar disc prolapse. Many abnormalities of disc are observed even in asymptomatic patient.This study was conducted tocorrelate these abnormalities observed on Magnetic resonance imaging and clinical features of lumbar disc prolapse. A This prospective analytical study includes 57 cases of lumbar disc prolapse presenting to Department of Orthopedics, Tribhuvan University Teaching Hospital from March 2011 to August 2012. All patientshad Magnetic resonance imaging of lumbar spine and the findings regarding type, level and position of lumbar disc prolapse, any neural canal or foraminal compromise was recorded. These imaging findings were then correlated with clinical signs and symptoms. Chi-square test was used to find out p-value for correlation between clinical features and Magnetic resonance imaging findings using SPSS 17.0. This study included 57 patients, with mean age 36.8 years. Of them 41(71.9%) patients had radicular leg pain along specific dermatome. Magnetic resonance imaging showed 104 lumbar disc prolapselevel. Disc prolapse at L4-L5 and L5-S1 level constituted 85.5%.Magnetic resonance imaging findings of neural foramina compromise and nerve root compression were fairly correlated withclinical findings of radicular pain and neurological deficit. Clinical features and Magnetic resonance imaging findings of lumbar discprolasehad faircorrelation, but all imaging abnormalities do not have a clinical significance.
Awwad, Waleed; Bourget-Murray, Jonathan; Zeiadin, Nadil; Mejia, Juan P; Steffen, Thomas; Algarni, Abdulrahman D; Alsaleh, Khalid; Ouellet, Jean; Weber, Michael; Jarzem, Peter F
2017-01-01
This study aims to improve the understanding of the anatomic variations along the thoracic and lumbar spine encountered during an all-posterior vertebrectomy, and reconstruction procedure. This information will help improve our understanding of human spine anatomy and will allow better planning for a vertebral body replacement (VBR) through either a transpedicular or costotransversectomy approach. The major challenge to a total posterior approach vertebrectomy and VBR in the thoracolumbar spine lies in the preservation of important neural structures. This was a retrospective analysis. Hundred normal magnetic resonance imaging (MRI) spinal studies (T1-L5) on sagittal T2-weighted MRI images were studied to quantify: (1) mid-sagittal vertebral body (VB) dimensions (anterior, midline, and posterior VB height), (2) midline VB and associated intervertebral discs height, (3) mean distance between adjacent spinal nerve roots (DNN) and mean distance between the inferior endplate of the superior vertebrae to its respective spinal nerve root (DNE), and (4) posterior approach expansion ratio (PAER). (1) The mean anterior VB height gradually increased craniocaudally from T1 to L5. The mean midline and posterior VB height showed a similar pattern up to L2. Mean posterior VB height was larger than the mean anterior VB height from T1 to L2, consistent with anterior wedging, and then measured less than the mean anterior VB height, indicating posterior wedging. (2) Midline VB and intervertebral disc height gradually increased from T1 to L4. (3) DNN and DNE were similar, whereby they gradually increased from T1 to L3. (5) Mean PAER varied between 1.69 (T12) and 2.27 (L5) depending on anatomic level. The dimensions of the thoracic and lumbar vertebrae and discs vary greatly. Thus, any attempt at carrying out a VBR from a posterior approach should take into account the specifications at each spinal level.
Wang, Honggang; Zhou, Yue; Zhang, Zhengfeng
2016-05-01
Minimally invasive transforaminal lumbar interbody fusion (misTLIF) can potentially lead to dorsal root ganglion (DRG) injury which may cause postoperative dysesthesia (POD). The purpose of retrospective study was to describe the uncommon complication of POD in misTLIF. Between January 2010 and December 2014, 539 patients were treated with misTLIF in investigator group. POD was defined as dysesthetic pain or burning dysesthesia at a proper DRG innervated region, whether spontaneous or evoked. Non-steroidal antiinflammatory drugs, central non-opioid analgesic agent, neuropathic pain drugs and/or intervertebral foramen block were selectively used to treat POD. There were five cases of POD (5/539, 0.9 %), which consisted of one patient in recurrent lumbar disc herniation (1/36, 3 %), one patient in far lateral lumbar disc herniation (1/34, 3 %), and 3 patients in lumbar spondylolisthesis (3/201, 1 %). Two DRG injury cases were confirmed by revision surgery. After the treatment by drugs administration plus DRG block, all patients presented pain relief with duration from 22 to 50 days. A gradual pain moving to distal end of a proper DRG innervated region was found as the beginning of end. Although POD is a unique and rare complication and maybe misdiagnosed as nerve root injury in misTLIF, combination drug therapy and DRG block have an effective result of pain relief. The appearance of a gradual pain moving to distal end of a proper DRG innervated region during recovery may be used as a sign for the good prognosis.
Liu, Chao; Wang, Lei; Tian, Ji-wei
2014-01-01
Background This study investigated early clinical effects of Dynesys system plus transfacet decompression through the Wiltse approach in treating lumbar degenerative diseases. Material/Methods 37 patients with lumbar degenerative disease were treated with the Dynesys system plus transfacet decompression through the Wiltse approach. Results Results showed that all patients healed from surgery without severe complications. The average follow-up time was 20 months (9–36 months). Visual Analogue Scale and Oswestry Disability Index scores decreased significantly after surgery and at the final follow-up. There was a significant difference in the height of the intervertebral space and intervertebral range of motion (ROM) at the stabilized segment, but no significant changes were seen at the adjacent segments. X-ray scans showed no instability, internal fixation loosening, breakage, or distortion in the follow-up. Conclusions The Dynesys system plus transfacet decompression through the Wiltse approach is a therapeutic option for mild lumbar degenerative disease. This method can retain the structure of the lumbar posterior complex and the motion of the fixed segment, reduce the incidence of low back pain, and decompress the nerve root. PMID:24859831
Shum, Gary L K; Crosbie, Jack; Lee, Raymond Y W
2007-06-01
The effect of low back pain, with or without nerve root signs, on the joint coordination and kinematics of the lumbar spine and hips during everyday activities, such as picking up an object from the floor, are largely unknown. An experimental study was designed to compare lumbar spine and hip joint kinematics and coordination in subjects with and without sub-acute low back pain, while picking up an object in a sitting position. A three-dimensional real-time electromagnetic tracking device was used to measure movements of the lumbar spine and hips. Sixty participants with subacute low back pain, with or without straight leg raise signs, and twenty healthy asymptomatic participants were recruited. The ranges of motions of lumbar spine and hips were determined. Movement coordination between the two regions was examined by cross-correlation. Results showed that mobility was significantly reduced in subjects with back pain, who compensated for limited motion through various strategies. The contribution of the lumbar spine relative to that of the hip was, however, found to be similar in all groups. The lumbar spine-hip joint coordination was substantially altered in subjects with back pain, in particular, those with a positive straight leg raise sign. We conclude that changes in the lumbar and hip kinematics were related to back pain and limitation in straight leg raise. Lumbar-hip coordination was mainly affected by the presence of positive straight leg raise sign when picking up an object in a sitting position.
Localization of beta and gamma subunits of ENaC in sensory nerve endings in the rat foot pad.
Drummond, H A; Abboud, F M; Welsh, M J
2000-11-24
The molecular mechanisms underlying mechanoelectrical transduction and the receptors that detect light touch remain uncertain. Studies in Caenorhabditis elegans suggest that members of the DEG/ENaC cation channel family may be mechanoreceptors. Therefore, we tested the hypothesis that subunits of the mammalian epithelial Na(+) channel (ENaC) family are expressed in touch receptors in rat hairless skin. We detected betaENaC and gammaENaC, but not alphaENaC transcripts in cervical and lumbar dorsal root ganglia (DRG). Using immunofluorescence, we found betaENaC and gammaENaC expressed in medium to large lumbar DRG neurons. Moreover, we detected these two subunits in Merkel cell-neurite complexes, Meissner-like corpuscles, and small lamellated corpuscles, specialized mechanosensory structures of the skin. Within these structures, betaENaC and gammaENaC were localized in the nerve fibers believed to contain the sensors responsive to mechanical stress. Thus beta and gammaENaC subunits are good candidates as components of the molecular sensor that detects touch.
Tang, Yuan-Zhang; Shannon, Moore-Langston; Lai, Guang-Hui; Li, Xuan-Ying; Li, Na; Ni, Jia-Xiang
2013-01-01
Visceral pain is a common cause for seeking medical attention. Afferent fibers innervating viscera project to the central nervous system via sympathetic nerves. The lumbar sympathetic nerve trunk lies in front of the lumbar spine. Thus, it is possible for patients to suffer visceral pain originating from sympathetic nerve irritation induced by anterior herniation of the lumbar disc. This study aimed to evaluate lumbar discogenic visceral pain and its treatment. Twelve consecutive patients with a median age of 56.4 years were enrolled for investigation between June 2012 and December 2012. These patients suffered from long-term abdominal pain unresponsive to current treatment options. Apart from obvious anterior herniation of the lumbar discs and high signal intensity anterior to the herniated disc on magnetic resonance imaging, no significant pathology was noted on gastroscopy, vascular ultrasound, or abdominal computed tomography (CT). To prove that their visceral pain originated from the anteriorly protruding disc, we evaluated whether pain was relieved by sympathetic block at the level of the anteriorly protruding disc. If the block was effective, CT-guided continuous lumbar sympathetic nerve block was finally performed. All patients were positive for pain relief by sympathetic block. Furthermore, the average Visual Analog Scale of visceral pain significantly improved after treatment in all patients (P < 0.05). Up to 11/12 patients had satisfactory pain relief at 1 week after discharge, 8/12 at 4 weeks, 7/12 at 8 weeks, 6/12 at 12 weeks, and 5/12 at 24 weeks. It is important to consider the possibility of discogenic visceral pain secondary to anterior herniation of the lumbar disc when forming a differential diagnosis for seemingly idiopathic abdominal pain. Continuous lumbar sympathetic nerve block is an effective and safe therapy for patients with discogenic visceral pain.
Anatomical evidence for the anterior plate fixation of sacroiliac joint.
Bai, Zhibiao; Gao, Shichang; Liu, Jia; Liang, Anlin; Yu, Weihua
2018-01-01
The iatrogenic injuries to the lumbar nerves during the fixation the sacroiliac (SI) joint fractures with anterior plates were often reported. No specific method had been reported to avoid it. This study was done to find a safer way of placing the anterior plates and screws for treating the sacroiliac (SI) joint fracture and/or dislocation. The research was performed using 8 male and 7 female normal corpse pelvic specimens preserved by 10% formalin solution. Try by measuring the horizontal distance from L4, L5 nerve roots to the sacroiliac joint and perpendicular distance from L4, L5 nerve roots to the ala sacralis, the length of L4, L5 nerve roots from intervertebral foramen to the edge of true pelvis, the diameter of L4, L5 nerve roots. The angles between the sacroiliac joint and sagittal plane were measured on the CT images. The horizontal distance between the lateral side of the anterior branches of L4, L5 nerve roots and the sacroiliac joint decreased gradually from the top to the bottom. The widest distances for L4,5 were 2.1 cm (range, 1.74-2.40) and 2.7 cm (range, 2.34-3.02 cm), respectively. The smallest distances for L4, 5 were 1.2 cm (range, 0.82-1.48 cm) and 1.5 cm (range, 1.08-1.74 cm), respectively. On CT images, the angle between the sacroiliac joint and sagittal plane was about 30°. If we use two anterior plates to fix the sacroiliac joint, It is recommended to place one plate on the superior one third part of the joint, with exposing medially no more than 2.5 cm and the other in the middle one third part of the joint, with elevating periosteum medially no more than 1.5 cm. The screws in the sacrum are advised to incline medially about 30° directing to the true pelvis. Copyright © 2017. Published by Elsevier B.V.
The Macroanatomy of the Sacral Plexus and Its Nerves in Eurasian Eagle Owls (Bubo bubo).
Akbulut, Y; Demiraslan, Y; Aslan, K; Coban, A
2016-10-01
This study was carried out to reveal the formation of the sacral plexus in the Eurasian Eagle Owls (Bubo bubo) and the nerves originating from this plexus. Five EEOs, three of them were male and two were female, were provided from Wildlife Rescue and Rehabilitation Center of Kafkas University and used as materials. Following the euthanizing of the animals, abdominal cavity was opened. The nerves of plexus sacrales were dissected and photographed. It was detected that the sacral plexus was formed by the ventral ramus of five synsacral nerves. Moreover, it was determined that the roots of the sacral plexus formed three trunks: the truncus cranialis, the truncus medius and the truncus caudalis in fossa renalis. The availability of the n. ischiofemoralis and the availability of n. parafibularis were detected in the EEOs. Five branches were specified as having segregated from the sacral plexus: the n. cutaneus femoralis caudalis, the mutual root of n. fibularis with n. tibialis (n. ischiadicus), the rami musculares, the n. coxalis caudalis and the ramus muscularis. It was observed that the sacral plexus was linked to the lumbar plexus by the n. furcalis, to the pudendus plexus via the n. bigeminus. Consequently, the anatomic structure of the EEO's sacral plexus, the participating synsacral nerves to plexus and the innervation areas of these nerves were revealed. © 2015 Blackwell Verlag GmbH.
Rebain, Richard; Baxter, G David; McDonough, Suzanne
2002-09-01
A systematic review. This systematic review sought papers (January 1989-January 2000) on the passive straight leg raising test (PSLR) as a diagnostic component for low back pain (LBP) to identify, summarize, and assess developments in the test procedure, the factors influencing PSLR outcome, and the clinical significance of that outcome. Previous studies suggested that the PSLR tractioned the sciatic nerve and that diminished leg elevation with reproduced pain indicated low lumbar intervertebral disc pathology. Searches on six computerized bibliographic databases identified publications written about the PSLR. Papers were excluded if they were published before January 1989, were non-English language papers, or employed either an active SLR or a PSLR for purposes other than LBP diagnosis. The references of qualifying papers (and the references of references) were searched. Contact with primary authors, and others known to be active in this field, was attempted. The PSLR procedure remains unchanged. The influence of hip rotation during the PSLR was discussed without consensus. Biomechanical devices improved intra- and interobserver reliability and so increased test reproducibility. Hamstrings were found to have a defensive role in protecting nerve roots by limiting PSLR range in cases of nerve root inflammation. A small diurnal variation in the PSLR may imply a poorer prognosis. A positive PSLR at 4 months after lumbar intervertebral disc surgery predicted poor reoperative outcome, and a negative 4-month PSLR predicted excellent outcome. The influence of psychosocial factors was not discussed, neither was the diagnostic significance of a negative PSLR outcome. There remains no standard PSLR procedure, no consensus on interpretation of results, and little recognition that a negative PSLR test outcome may be of greater diagnostic value than a positive one. The causal link between LBP pathology and hamstring action remains unclear. There is a need for research into the clinical use of the PSLR; its intra- and interobserver reliability; the influences of age, gender, diurnal variation, and psychosocial factors; and its predictive value in lumbar intervertebral disc surgery.
Dakwar, Elias; Vale, Fernando L; Uribe, Juan S
2011-02-01
The minimally invasive lateral retroperitoneal transpsoas approach is increasingly used to treat various spinal disorders. Accessing the retroperitoneal space and traversing the abdominal wall poses a risk of injury to the major nervous structures and adds significant morbidity to the procedure. Most of the current literature focuses on the anatomy of the lumbar plexus within the substance of the psoas muscle. However, there is sparse knowledge regarding the trajectory of the lumbar plexus nerves that travel along the retroperitoneum and abdominal wall muscles in relation to the lateral approach to the spine. The objective of this study is to define the anatomical trajectories of the major motor and sensory branches of the lumbar plexus that are located outside the psoas muscle. Six adult fresh frozen cadaveric specimens were dissected and studied (12 sides). The relationship between the retroperitoneum, abdominal wall muscles, and the lumbar plexus nerves was analyzed in reference to the minimally invasive lateral retroperitoneal approach. Special attention was given to the lumbar plexus nerves that run outside of psoas muscle in the retroperitoneal cavity and within the abdominal muscle wall. The skin and muscles of the abdominal wall and the retroperitoneal cavity were dissected and analyzed with respect to the major motor and sensory branches of the lumbar plexus. The authors identified 4 nerves at risk during the lateral approach to the spine: subcostal, iliohypogastric, ilioinguinal, and lateral femoral cutaneous nerves. The anatomical trajectory of each of these nerves is described starting from the spinal column until their termination or exit from the pelvic cavity. There is risk of direct injury to the main motor/sensory nerves that supply the anterior abdominal muscles during the early stages of the lateral retroperitoneal transpsoas approach while obtaining access to the retroperitoneum. There is also a risk of injury to the ilioinguinal, iliohypogastric, and lateral femoral cutaneous nerves in the retroperitoneal space where they travel obliquely during the blunt retroperitoneal dissection. Moreover, there is a latent possibility of lesioning these nerves with the retractor blades against the anterior iliac crest.
Hiwatashi, Akio; Togao, Osamu; Yamashita, Koji; Kikuchi, Kazufumi; Kamei, Ryotato; Momosaka, Daichi; Ogata, Hidenori; Yamasaki, Ryo; Yoneyama, Masami; Kira, Jun-Ichi; Honda, Hiroshi
2017-08-01
To evaluate whether 3D SHINKEI in the lumbar plexus could identify patients with chronic inflammatory demyelinating polyneuropathy (CIDP). Twenty-one patients with CIDP and 15 non-CIDP patients were studied in this retrospective study. The SNR, contrast-to-noise ratio (CNR), contrast ratio (CR) and the size of the lumbar ganglions and roots were measured. Statistical analyses were performed with Mann-Whitney U test and receiver operating characteristics (ROC) analysis. The SNRs of the ganglions and roots were larger in patients with CIDP (8.30±4.87 and 8.24±4.92) than in non-CIDP patients (4.95±2.05 and 5.08±1.97, P<0.0001, respectively). The CNRs of the ganglions and roots were larger in patients with CIDP (40.79±43.19 and 37.16±48.31) than in non-CIDP patients (25.90±10.41 and 18.37±32.83, P<0.0001, respectively). The CRs of the ganglions and roots were larger in patients with CIDP (0.74±0.13 and 0.66±0.17) than in non-CIDP patients (0.72±0.12 and 0.50±0.17, P=0.004 and P<0.0001, respectively). The sizes of the ganglions and the roots were larger in patients with CIDP (6.62±1.81mm and 5.76±3.24mm) than in non-CIDP patients (5.23±1.17mm and 4.24±1.11mm, P<0.0001, respectively). ROC analysis showed the best diagnostic performance with the CNR of the roots. Patients with CIDP could be distinguished from controls on 3D SHINKEI. Copyright © 2017. Published by Elsevier B.V.
Lumbosacral Radiculoplexopathy as the Initial Presentation of Lymphoma: A Report of 4 Cases.
Marquardt, Robert J; Li, Yuebing
2018-06-01
To evaluate the clinical, laboratory, and radiological features of 4 cases of biopsy-proven lymphomatous lumbosacral radiculoplexopathy. Retrospective chart review. All patients suffered from diffuse large B-cell lymphoma. A mean diagnostic delay of 10 months was encountered. Presenting symptoms in all 4 patients included back pain, radicular leg pain, and leg weakness, similar to spondylotic radiculopathy. Electrodiagnostic study showed axon loss radiculoplexopathy and magnetic resonance imaging of the lumbar spine or pelvis demonstrated nerve or nerve root enhancement. Increased uptake by lumbosacral roots/plexus on fluorodeoxyglucose-positron emission tomography aided diagnosis in 3 cases. Cytology was positive in 1 of 10 cerebrospinal fluid samples. Combined chemotherapy and radiation treatment led to clinicoradiological improvement, with residual neurological symptoms in all patients. Lymphomatous lumbosacral radiculoplexopathy should be considered in patients with progressive lumbosacral radicular symptoms. Magnetic resonance imaging and fluorodeoxyglucose-positron emission tomography, but not cerebrospinal fluid, are helpful in achieving early diagnosis. Treatment responses seem favorable.
Postoperative dysesthesia in lumbar three-column resection osteotomies.
Zhang, Zhengfeng; Wang, Honggang; Zheng, Wenjie
2016-08-01
Three-column lumbar spinal resection osteotomies including pedicle subtraction osteotomy (PSO), vertebral column resection (VCR), and total en bloc spondylectomy (TES) can potentially lead to dorsal root ganglion (DRG) injury which may cause postoperative dysesthesia (POD). The purpose of retrospective study was to describe the uncommon complication of POD in lumbar spinal resection osteotomies. Between January 2009 and December 2013, 64 patients were treated with lumbar three-column spinal resection osteotomies (PSO, n = 31; VCR, n = 29; TES, n = 4) in investigator group. POD was defined as dysesthetic pain or burning dysesthesia at a proper DRG innervated region, whether spontaneous or evoked. Non-steroidal antiinflammatory drugs, central none-opioid analgesic agent, neuropathic pain drugs and/or intervertebral foramen block were selectively used to treat POD. There were 5 cases of POD (5/64, 7.8 %), which consisted of 1 patient in PSO (1/31, 3.2 %), 3 patients in PVCR (3/29, 10.3 %), and 1 patient in TES (1/4, 25 %). After the treatment by drugs administration plus DRG block, all patients presented pain relief with duration from 8 to 38 days. A gradual pain moving to distal end of a proper DRG innervated region was found as the beginning of end. Although POD is a unique and rare complication and maybe misdiagnosed as nerve root injury in lumbar spinal resection osteotomies, combination drug therapy and DRG block have an effective result of pain relief. The appearance of a gradual pain moving to distal end of a proper DRG innervated region during recovering may be used as a sign for the good prognosis.
Wu, Jian-Jun; Chen, Hui-Zhen; Zheng, Changkun
2017-07-01
The most common causes of pain following lumbar spinal fusions are residual herniation, or foraminal fibrosis and foraminal stenosis that is ignored, untreated, or undertreated. The original surgeon may advise his patient that nothing more can be done in his opinion that the nerve was visually decompressed by the original surgery. Post-operative imaging or electrophysiological assessment may be inadequate to explain all the reasons for residual or recurrent symptoms. Treatment of failed lumbar spinal fusions by repeat traditional open revision surgery usually incorporates more extensive decompression causing increased instability and back pain. The authors, having limited their practice to endoscopic surgery over the last 10 years, report on their experience gained during that period to relieve pain by transforaminal percutaneous endoscopic revision of lumbar spinal fusions. To assess the effectiveness of transforaminal percutaneous endoscopic discectomy and foraminoplasty in patients with pain after lumbar spinal fusion. Retrospective study. Inpatient surgery center. Sixteen consecutive patients with pain after lumbar spinal fusions presenting with back and leg pain that had supporting imaging diagnosis of foraminal stenosis and/or residual/recurrent disc herniation, or whose pain complaint was supported by relief from diagnostic and therapeutic injections, were offered percutaneous transforaminal endoscopic discectomy and foraminoplasty over a repeat open procedure. Each patient sought consultation following a transient successful, partially successful or unsuccessful open lumbar spinal fusions treatment for disc herniation or spinal stenosis. Endoscopic foraminoplasty was also performed to either decompress the bony foramen in the case of foraminal stenosis, or to allow for endoscopic visual examination of the affected traversing and exiting nerve roots in the axilla. The average follow-up time was 30.3 months, minimum 12 months. Outcome data at each visit included MacNab criteria, visual analog scale (VAS), and Oswestry Disability Index (ODI). The average leg VAS improved from 9.1 ± 2.0 to 2.0 ± 0.8 (P < 0.005). Ten patients had excellent outcomes, 5 had good outcomes, one had a fair outcome, and none had poor outcomes, according to the MacNab criteria. Fifteen of 16 patients had excellent or good outcomes, for an overall success rate of 93.7%. No patients required reoperation. There were no incidental durotomies, infections, vascular, or visceral injuries. There was one complication, a case of leg numbness caused by dorsal root ganglion injury. The numbness improved after 2 weeks. After 3 months, physical exam showed that the total area of numbness in the legs had decreased. At last follow-up, the patient had no pain, and only a few areas with numbness remained that did not affect the patient's activities of daily living. The patient was relieved to be able to avoid open decompression. This is a retrospective study. The transforaminal endoscopic approach is effective for patients with back or leg pain after lumbar spinal fusions due to residual/recurrent nucleus pulposus and foraminal stenosis. Failed initial index surgery may involve failure to recognize patho-anatomy in the axilla of the foramen housing the traversing and the exiting nerve. The transforaminal endoscopic approach effectively decompresses the foramen and does not further destabilize the spine needing stabilization. It also avoids going through the previous surgical site. Full-endoscopic, foraminal stenosis, recurrent herniation, surgical treatment, fusion.
Attenuation of TRPV1 by AMG-517 after nerve injury promotes peripheral axonal regeneration in rats.
Bai, Juan; Liu, Fu; Wu, Li-Fei; Wang, Ya-Fang; Li, Xia-Qing
2018-01-01
Aims The main objective was to investigate the effects of the transient receptor potential cation channel subfamily V member 1 (TRPV1) on nerve regeneration following sciatic transection injury by functional blockage of TRPV1 using AMG-517, a specific blocker of TRPV1. Methods AMG-517 was injected into the area surrounding ipsilateral lumbar dorsal root ganglia 30 min after unilateral sciatic nerve transection. The number of sciatic axons and the expression of growth-associated protein-43 (GAP-43) and glial fibrillary acidic protein was examined using semithin sections, Western blot, and immunofluorescence analyses. Results Blockage of TRPV1 with AMG-517 markedly promoted axonal regeneration, especially at two weeks after sciatic injury; the number of axons was similar to the uninjured control group. After sciatic nerve transection, expression of glial fibrillary acidic protein was decreased and GAP-43 was increased at the proximal stump. However, the expression of both glial fibrillary acidic protein and GAP-43 increased significantly in AMG-517-treated groups. Conclusions TRPV1 may be an important therapeutic target to promote peripheral nerve regeneration after injury.
Youn, Myung Soo; Shin, Jong Ki; Goh, Tae Sik; Lee, Jung Sub
2017-06-01
Several different techniques exist to treat degenerative lumbar foraminal stenosis. Failure to adequately decompress the lumbar foramen may lead to failed back surgery syndrome. However, wide decompression often causes spinal instabilities or may require an additional fusion surgery. The aim of this study was to report the outcomes of endoscopic partial facetectomy (EPF) performed on patients with degenerative lumbar foraminal stenosis. Between 2012 and 2014, 25 consecutive patients (12 women and 13 men) who underwent EPF were included in the study. The patients were assessed before surgery and followed-up regularly during outpatient visits (preoperatively and 1, 3, 6, 12, and 24 months postoperatively). The clinical outcomes were evaluated using the visual analog scale (VAS), Oswestry Disability Index (ODI), and Short Form-36 (SF-36) outcome questionnaire. The radiological outcome was measured using the lumbar Cobb angle, disc wedging angle, lumbar lordosis (LL), slip percentage, and disc height index (DHI) in plain standing radiographs. The VAS, ODI, and SF-36 scores significantly improved at 1 month of follow-up compared with the baseline mean values and were maintained within the 2-year follow-up period. There was no radiologic progression in the lumbar Cobb's angle, disc wedging angle, LL, slip percentage, and DHI between preoperatively and 2 years postoperatively. In addition, the EPF with discectomy group and the EPF group were not significantly different in terms of clinical and radiological outcomes. EPF is an effective option in decompressing the lumbar exiting nerve root without causing spinal instabilities for the treatment of patients with lumbar foraminal stenosis.
Li, Xiaochuan; Bai, Xuedong; Wu, Yaohong; Ruan, Dike
2016-03-15
To construct and validate a model to predict responsible nerve roots in lumbar degenerative disease with diagnostic doubt (DD). From January 2009-January 2013, 163 patients with DD were assigned to the construction (n = 106) or validation sample (n = 57) according to different admission times to hospital. Outcome was assessed according to the Japanese Orthopedic Association (JOA) recovery rate as excellent, good, fair, and poor. The first two results were considered as effective clinical outcome (ECO). Baseline patient and clinical characteristics were considered as secondary variables. A multivariate logistic regression model was used to construct a model with the ECO as a dependent variable and other factors as explanatory variables. The odds ratios (ORs) of each risk factor were adjusted and transformed into a scoring system. Area under the curve (AUC) was calculated and validated in both internal and external samples. Moreover, calibration plot and predictive ability of this scoring system were also tested for further validation. Patients with DD with ECOs in both construction and validation models were around 76 % (76.4 and 75.5 % respectively). more preoperative visual analog pain scale (VAS) score (OR = 1.56, p < 0.01), stenosis levels of L4/5 or L5/S1 (OR = 1.44, p = 0.04), stenosis locations with neuroforamen (OR = 1.95, p = 0.01), neurological deficit (OR = 1.62, p = 0.01), and more VAS improvement of selective nerve route block (SNRB) (OR = 3.42, p = 0.02). the internal area under the curve (AUC) was 0.85, and the external AUC was 0.72, with a good calibration plot of prediction accuracy. Besides, the predictive ability of ECOs was not different from the actual results (p = 0.532). We have constructed and validated a predictive model for confirming responsible nerve roots in patients with DD. The associated risk factors were preoperative VAS score, stenosis levels of L4/5 or L5/S1, stenosis locations with neuroforamen, neurological deficit, and VAS improvement of SNRB. A tool such as this is beneficial in the preoperative counseling of patients, shared surgical decision making, and ultimately improving safety in spine surgery.
Brumovsky, P; Watanabe, M; Hökfelt, T
2007-06-29
The expression of two vesicular glutamate transporters (VGLUTs), VGLUT1 and VGLUT2, was studied with immunohistochemistry in lumbar dorsal root ganglia (DRGs), the lumbar spinal cord and the skin of the adult mouse. About 12% and 65% of the total number of DRG neuron profiles (NPs) expressed VGLUT1 and VGLUT2, respectively. VGLUT1-immunoreactive (IR) NPs were usually medium- to large-sized, in contrast to a majority of small- or medium-sized VGLUT2-IR NPs. Most VGLUT1-IR NPs did not coexpress calcitonin gene-related peptide (CGRP) or bound isolectin B4 (IB4). In contrast, approximately 31% and approximately 42% of the VGLUT2-IR DRG NPs were also CGRP-IR or bound IB4, respectively. Conversely, virtually all CGRP-IR and IB4-binding NPs coexpressed VGLUT2. Moderate colocalization between VGLUT1 and VGLUT2 was also observed. Sciatic nerve transection induced a decrease in the overall number of VGLUT1- and VGLUT2-IR NPs (both ipsi- and contralaterally) and, in addition, a parallel, unilateral increase of VGLUT2-like immunoreactivity (LI) in a subpopulation of mostly small NPs. In the dorsal horn of the spinal cord, strong VGLUT1-LI was detected, particularly in deep dorsal horn layers and in the ventral horns. VGLUT2-LI was abundant throughout the gray spinal matter, 'radiating' into/from the white matter. A unilateral dorsal rhizotomy reduced VGLUT1-LI, while apparently leaving unaffected the VGLUT2-LI. Transport through axons for both VGLUTs was confirmed by their accumulation after compression of the sciatic nerve or dorsal roots. In the hind paw skin, abundant VGLUT2-IR nerve fibers were observed, sometimes associated with Merkel cells. Lower numbers of VGLUT1-IR fibers were also detected in the skin. Some VGLUT1-IR and VGLUT2-IR fibers were associated with hair follicles. Based on these data and those by Morris et al. [Morris JL, Konig P, Shimizu T, Jobling P, Gibbins IL (2005) Most peptide-containing sensory neurons lack proteins for exocytotic release and vesicular transport of glutamate. J Comp Neurol 483:1-16], we speculate that virtually all DRG neurons in adult mouse express VGLUTs and use glutamate as transmitter.
Iwasaki, Motoyuki; Akiyama, Masahiko; Koyanagi, Izumi; Niiya, Yoshimasa; Ihara, Tatsuo; Houkin, Kiyohiro
2017-01-01
We present a case of double-crushed L5 nerve root symptoms caused by inside and outside of the spinal canal with spur formation of the lumbosacral transitional vertebra (LSTV). A 78-year-old man presented with 7-year history of moderate paresis of his toe and left leg pain when walking. Magnetic resonance imaging (MRI) revealed spinal stenosis at the L3/4 and 4/5 spinal levels and he underwent wide fenestration of both levels. Leg pain disappeared and 6-min walk distance (6MWD) improved after surgery, however, the numbness in his toes increased and 6MWD decreased 9 months after surgery. Repeated MR and 3D multiplanar reconstructed computed tomography (CT) images showed extraforaminal impingement of the L5 root by bony spur of the left LSTV. He underwent second decompression surgery of the L5/S via the left sided Wiltse approach, resulting in the improvement of his symptoms. The impingement of L5 spinal nerve root between the transverse process of the fifth lumbar vertebra and the sacral ala is a rare entity of the pathology called “far-out syndrome (FOS)”. Especially, the bony spur formation secondary to the anomalous articulation of the LSTV (LSPA) has not been reported. These articulations could be due to severe disc degeneration, following closer distance and contact between the transverse process and the sacral ala. To our knowledge, this is the first report describing a case with this pathology and may be considered in cases of failed back surgery syndromes (FBSS) of the L5 root symptoms. PMID:29018654
Lyu, Chuang; Lyu, Gong-Wei; Martinez, Aurora; Shi, Tie-Jun Sten
2017-01-01
The proapoptotic molecule BAX, plays an important role in mitochondrial apoptotic pathway. Dorsal root ganglion (DRG) neurons depend on neurotrophic factors for survival at early developmental stages. Withdrawal of neurotrophic factors will induce apoptosis in DRG neurons, but this type of cell death can be delayed or prevented in neonatal Bax knockout (KO) mice. In adult animals, evidence also shows that DRG neurons are less dependent upon neurotrophic factors for survival. However, little is known about the effect of Bax deletion on the survival of normal and denervated DRG neurons in adult mice. A unilateral sciatic nerve transection was performed in adult Bax KO mice and wild-type (WT) littermates. Stereological method was employed to quantify the number of lumbar-5 DRG neurons 1 month post-surgery. Nerve injury-induced autotomy behavior was also examined on days 1, 3, and 7 post-surgery. There were significantly more neurons in contralateral DRGs of KO mice as compared with WT mice. The number of neurons was reduced in ipsilateral DRGs in both KO and WT mice. No changes in size distributions of DRG neuron profiles were detected before or after nerve injury. Injury-induced autotomy behavior developed much earlier and was more serious in KO mice. Although postnatal death or loss of DRG neurons is partially prevented by Bax deletion, this effect cannot interfere with long-term nerve injury-induced neuronal loss. The exaggerated self-amputation behavior observed in the mutant mice indicates that Bax deficiency may enhance the development of spontaneous pain following nerve injury.
Shum, Gary L K; Crosbie, Jack; Lee, Raymond Y W
2005-09-01
Experimental study to describe lumbar spine and hip joint movements during sit-to-stand and stand-to-sit. To examine differences in the kinematics and joint coordination of the lumbar spine and hips during sit-to-stand and stand-to-sit between healthy subjects and patients with subacute low back pain (LBP). There is a paucity of information on the coordination of movements of lumbar spine and hips during sit-to-stand and stand-to-sit. The effect of LBP, with or without nerve root signs, is largely unknown. A three-dimensional real-time electromagnetic tracking device was used to measure movements of the lumbar spine and hips during sit-to-stand and stand-to-sit. Sixty subacute LBP participants with or without straight leg raise signs and 20 healthy asymptomatic participants were recruited. The kinematic patterns of lumbar spine and hips were analyzed. Coordination between the two joints was studied by relative phase angle analysis. The mobility of the spine and hips was significantly limited in back pain subjects. It was observed that LBP subjects employed various strategies to compensate for the limited motions at the hips and lumbar spine. The contribution of the lumbar spine relative to that of the hip was found to be reduced for subjects with LBP. The lumbar spine-hip joint coordination was significantly altered in back pain subjects, in particular, those with positive straight leg raise sign. Back pain was related to changes in the kinematics and coordination of the lumbar spine and hips during sit-to-stand and stand-to-sit. Assessment of back pain patients should include kinematic analysis of the hips as well as the spine.
Prospective medium-term results of multimodal pain management in patients with lumbar radiculopathy
Benditz, A.; Madl, M.; Loher, M.; Grifka, J.; Boluki, D.; Linhardt, O.
2016-01-01
Lumbar radiculopathy is one of the most common diseases of modern civilisation. Multimodal pain management (MPM) represents a central approach to avoiding surgery. Only few medium-term results have been published in the literature so far. This study compared subjective and objective as well as anamnestic and clinical parameters of 60 patients who had undergone inpatient MPM because of lumbar radiculopathy before and 1 year ±2 weeks after treatment. The majority of patients were very satisfied (35%) or satisfied (52%) with the treatment outcome. Merely 8 patients commented neutrally and none negatively. The finger-floor distance had decreased significantly (p < 0.01), and 30 patients (50%) had shown improved mobility of the spine after therapy. The need for painkillers had also been significantly reduced after 1 year. The arithmetical average of pain on a visual analogue scale was 7.21 before treatment, which had significantly decreased to 3.58 at follow-up (p < 0.01). MPM is an effective approach for treating lumbar radiculopathy by mechanical nerve root irritation. Therefore, in the absence of an absolute indication for surgery or an absolute contradiction for MPM, patients should first be treated with this minimally invasive therapy. PMID:27305956
2012-01-01
Background Low-back related leg pain with or without nerve root involvement is associated with a poor prognosis compared to low back pain (LBP) alone. Compared to the literature investigating prognostic indicators of outcome for LBP, there is limited evidence on prognostic factors for low back-related leg pain including the group with nerve root pain. This 1 year prospective consultation-based observational cohort study will describe the clinical, imaging, demographic characteristics and health economic outcomes for the whole cohort, will investigate differences and identify prognostic indicators of outcome (i.e. change in disability at 12 months), for the whole cohort and, separately, for those classified with and without nerve root pain. In addition, nested qualitative studies will provide insights on the clinical consultation and the impact of diagnosis and treatment on patients' symptom management and illness trajectory. Methods Adults aged 18 years and over consulting their General Practitioner (GP) with LBP and radiating leg pain of any duration at (n = 500) GP practices in North Staffordshire and Stoke-on-Trent, UK will be invited to participate. All participants will receive a standardised assessment at the clinic by a study physiotherapist and will be classified according to the clinically determined presence or absence of nerve root pain/involvement. All will undergo a lumbar spine MRI scan. All participants will be managed according to their clinical need. The study outcomes will be measured at 4 and 12 months using postal self-complete questionnaires. Data will also be collected each month using brief postal questionnaires to enable detailed description of the course of low back and leg pain over time. Clinical observations and patient interviews will be used for the qualitative aspects of the study. Discussion This prospective clinical observational cohort will combine self-reported data, comprehensive clinical and MRI assessment, together with qualitative enquiries, to describe the course, health care usage, patients' experiences and prognostic indicators in an adult population presenting in primary care with LBP and leg pain with or without nerve root involvement. PMID:22264273
Role of dorsal root ganglion K2P1.1 in peripheral nerve injury-induced neuropathic pain
Mao, Qingxiang; Yuan, Jingjing; Xiong, Ming; Wu, Shaogen; Chen, Liyong; Bekker, Alex; Yang, Tiande
2017-01-01
Peripheral nerve injury-caused hyperexcitability and abnormal ectopic discharges in the primary sensory neurons of dorsal root ganglion (DRG) play a key role in neuropathic pain development and maintenance. The two-pore domain background potassium (K2P) channels have been identified as key determinants of the resting membrane potential and neuronal excitability. However, whether K2P channels contribute to neuropathic pain is still elusive. We reported here that K2P1.1, the first identified mammalian K2P channel, was highly expressed in mouse DRG and distributed in small-, medium-, and large-sized DRG neurons. Unilateral lumbar (L) 4 spinal nerve ligation led to a significant and time-dependent reduction of K2P1.1 mRNA and protein in the ipsilateral L4 DRG, but not in the contralateral L4 or ipsilateral L3 DRG. Rescuing this reduction through microinjection of adeno-associated virus-DJ expressing full-length K2P1.1 mRNA into the ipsilateral L4 DRG blocked spinal nerve ligation-induced mechanical, thermal, and cold pain hypersensitivities during the development and maintenance periods. This DRG viral microinjection did not affect acute pain and locomotor function. Our findings suggest that K2P1.1 participates in neuropathic pain development and maintenance and may be a potential target in the management of this disorder. PMID:28326939
Patterns of innervation of neurones in the inferior mesenteric ganglion of the cat.
Julé, Y; Krier, J; Szurszewski, J H
1983-01-01
The patterns of peripheral and central synaptic input to non-spontaneous, irregular discharging and regular discharging neurones in the inferior mesenteric ganglion of the cat were studied in vitro using intracellular recording techniques. All three types of neurones in rostral and caudal lobes received central synaptic input primarily from L3 and L4 spinal cord segments. Since irregular discharging neurones received synaptic input from intraganglionic regular discharging neurones, some of the central input to irregular discharging neurones may have been relayed through the regular discharging neurones. In the rostral lobes of the ganglion, more than 70% of the non-spontaneous and irregular discharging neurones tested received peripheral synaptic input from the lumbar colonic, intermesenteric and left and right hypogastric nerves. Most of the regular discharging neurones tested received synaptic input from the intermesenteric and lumbar colonic nerves; none of the regular discharging neurones received synaptic input from the hypogastric nerves. Some of the peripheral synaptic input from the lumbar colonic and intermesenteric nerves to irregular discharging neurones may have been relayed through the regular discharging neurones. Axons of non-spontaneous and irregular discharging neurones located in the rostral lobes travelled to the periphery exclusively in the lumbar colonic nerves. Antidromic responses were not observed in regular discharging neurones during stimulation of any of the major peripheral nerve trunks. This suggests these neurones were intraganglionic. In the caudal lobes, irregular discharging neurones received a similar pattern of peripheral synaptic input as did irregular discharging neurones located in the rostral lobes. The majority of irregular discharging neurones in the caudal lobes projected their axons to the periphery through the lumbar colonic nerves. Non-spontaneous neurones in the caudal lobes, in contrast to those located in the rostral lobes, received peripheral synaptic input primarily from the hypogastric nerves. Axons of the majority of non-spontaneous neurones located in the caudal lobes travelled to the periphery through hypogastric nerves. The results suggest that non-spontaneous neurones and irregular discharging neurones in the rostral lobes and the majority of irregular discharging neurones in the caudal lobes transact and integrate neural commands destined for abdominal viscera supplied by the lumbar colonic nerves. Non-spontaneous neurones in the caudal lobes transact and integrate neural commands destined for pelvic viscera supplied by the hypogastric nerves. PMID:6655582
Patterns of innervation of neurones in the inferior mesenteric ganglion of the cat.
Julé, Y; Krier, J; Szurszewski, J H
1983-11-01
The patterns of peripheral and central synaptic input to non-spontaneous, irregular discharging and regular discharging neurones in the inferior mesenteric ganglion of the cat were studied in vitro using intracellular recording techniques. All three types of neurones in rostral and caudal lobes received central synaptic input primarily from L3 and L4 spinal cord segments. Since irregular discharging neurones received synaptic input from intraganglionic regular discharging neurones, some of the central input to irregular discharging neurones may have been relayed through the regular discharging neurones. In the rostral lobes of the ganglion, more than 70% of the non-spontaneous and irregular discharging neurones tested received peripheral synaptic input from the lumbar colonic, intermesenteric and left and right hypogastric nerves. Most of the regular discharging neurones tested received synaptic input from the intermesenteric and lumbar colonic nerves; none of the regular discharging neurones received synaptic input from the hypogastric nerves. Some of the peripheral synaptic input from the lumbar colonic and intermesenteric nerves to irregular discharging neurones may have been relayed through the regular discharging neurones. Axons of non-spontaneous and irregular discharging neurones located in the rostral lobes travelled to the periphery exclusively in the lumbar colonic nerves. Antidromic responses were not observed in regular discharging neurones during stimulation of any of the major peripheral nerve trunks. This suggests these neurones were intraganglionic. In the caudal lobes, irregular discharging neurones received a similar pattern of peripheral synaptic input as did irregular discharging neurones located in the rostral lobes. The majority of irregular discharging neurones in the caudal lobes projected their axons to the periphery through the lumbar colonic nerves. Non-spontaneous neurones in the caudal lobes, in contrast to those located in the rostral lobes, received peripheral synaptic input primarily from the hypogastric nerves. Axons of the majority of non-spontaneous neurones located in the caudal lobes travelled to the periphery through hypogastric nerves. The results suggest that non-spontaneous neurones and irregular discharging neurones in the rostral lobes and the majority of irregular discharging neurones in the caudal lobes transact and integrate neural commands destined for abdominal viscera supplied by the lumbar colonic nerves. Non-spontaneous neurones in the caudal lobes transact and integrate neural commands destined for pelvic viscera supplied by the hypogastric nerves.
Yanagisawa, M; Yoshioka, K; Kurihara, T; Saito, K; Seno, N; Suzuki, H; Hosoki, R; Otsuka, M
1992-12-01
A mixture of peptidase inhibitors increased the magnitude of the saphenous nerve-evoked slow depolarization of a lumbar ventral root and prolonged the similarly evoked inhibition of monosynaptic reflex (MSR) in the isolated spinal cord of the newborn rat in the presence of naloxone. The saphenous nerve-evoked MSR inhibition was curtailed by a tachykinin antagonist, GR71251, and after the treatment with GR71251, the peptidase inhibitor mixture no more prolonged the MSR inhibition. The present results suggest that enzymatic degradation plays a role in the termination of action of tachykinins released from primary afferents in the newborn rat spinal cord. The results provide a further support for the notion that tachykinins serve as neurotransmitters in the spinal cord of the newborn rat.
Li, Jing-Yi; Xie, Wenrui; Strong, Judith A; Guo, Qu-Lian; Zhang, Jun-Ming
2011-01-01
Inflammatory responses in the lumbar dorsal root ganglion (DRG) play a key role in pathologic pain states. Systemic administration of a common anti-inflammatory corticosteroid, triamcinolone acetonide (TA), reduces sympathetic sprouting, mechanical pain behavior, spontaneous bursting activity, and cytokine and nerve growth factor production in the DRG. We hypothesized that systemic TA effects are primarily due to local effects on the DRG. Male Sprague-Dawley rats were divided into 4 groups: SNL (tight ligation and transection of spinal nerves) and normal with and without a single dose of TA injectable suspension slowly injected onto the surface of DRG and surrounding region at the time of SNL or sham surgery. Mechanical threshold was tested on postoperative days 1, 3, 5, and 7. Immunohistochemical staining examined tyrosine hydroxylase and glial fibrillary acidic protein in DRG and CD11B antibody (OX-42) in spinal cord. Local TA treatment attenuated mechanical sensitivity, reduced sympathetic sprouting in the DRG, and decreased satellite glia activation in the DRG and microglia activation in the spinal cord after SNL. A single injection of corticosteroid in the vicinity of the axotomized DRG can mimic many effects of systemic TA, mitigating behavioral and cellular abnormalities induced by spinal nerve ligation. This provides a further rationale for the use of localized steroid injections clinically and provides further support for the idea that localized inflammation at the level of the DRG is an important component of the spinal nerve ligation model, commonly classified as neuropathic pain model.
Jaffe, J Douglas; Morgan, Theodore Ross; Russell, Gregory B
2017-06-01
Hip arthroscopy is a minimally invasive alternative to open hip surgery. Despite its minimally invasive nature, there can still be significant reported pain following these procedures. The impact of combined sciatic and lumbar plexus nerve blocks on postoperative pain scores and opioid consumption in patients undergoing hip arthroscopy was investigated. A retrospective analysis of 176 patients revealed that compared with patients with no preoperative peripheral nerve block, significant reductions in pain scores to 24 hours were reported and decreased opioid consumption during the post anesthesia care unit (PACU) stay was recorded; no significant differences in opioid consumption out to 24 hours were discovered. A subgroup analysis comparing two approaches to the sciatic nerve block in patients receiving the additional lumbar plexus nerve block failed to reveal a significant difference for this patient population. We conclude that peripheral nerve blockade can be a useful analgesic modality for patients undergoing hip arthroscopy.
... sciatic nerve; Sciatic nerve dysfunction; Low back pain - sciatica; LBP - sciatica; Lumbar radiculopathy - sciatica ... Sciatica occurs when there is pressure or damage to the sciatic nerve. This nerve starts in the ...
[Paresthesia and spinal anesthesia for cesarean section: comparison of patient positioning].
Palacio Abizanda, F J; Reina, M A; Fornet, I; López, A; López López, M A; Morillas Sendín, P
2009-01-01
To determine the incidence of paresthesia during lumbar puncture performed with the patient in different positions. A single-blind prospective study of patients scheduled for elective cesarean section, randomized to 3 groups. In group 1 patients were seated in the direction of the long axis of the table, with heels resting on the table. In group 2 they were seated perpendicular to the long axis of the table, with legs hanging from the table. In group 3 they were in left lateral decubitus position. Lumbar punctures were performed with a 27-gauge Whitacre needle. One hundred sixty-eight patients (56 per group) were enrolled. Paresthesia occurred most often in group 3 (P = .009). We observed no differences in blood pressure after patients moved from decubitus position to the assigned position. Nor did we observe between-group differences in blood pressure according to position taken during puncture. Puncture undertaken with the patient seated, heels on the table and knees slightly bent, is associated with a lower incidence of paresthesia than puncture performed with the patient seated, legs hanging from the table. Placing the patient's heels on the table requires hip flexion and leads to anterior displacement of nerve roots in the dural sac. Such displacement would increase the nerve-free zone on the posterior side of the sac, thereby decreasing the likelihood of paresthesia during lumbar puncture. A left lateral decubitus position would increase the likelihood of paresthesia, possibly because the anesthetist may inadvertently not follow the medial line when inserting the needle.
Randomized trial of radiofrequency lumbar facet denervation for chronic low back pain.
van Kleef, M; Barendse, G A; Kessels, A; Voets, H M; Weber, W E; de Lange, S
1999-09-15
A prospective double-blind randomized trial in 31 patients. To assess the clinical efficacy of percutaneous radiofrequency denervation of the lumbar zygapophysial joints in reducing pain, functional disability, and physical impairment in patients with back pain originating from the lumbar zygapophysial joints. Chronic low back pain is a major health problem in the industrialized world. A treatment option is percutaneous radiofrequency denervation of the lumbar zygapophysial joints. Its clinical efficacy has never been formally tested in a controlled trial. Thirty-one patients with a history of at least 1 year of chronic low back pain were selected on the basis of a positive response to a diagnostic nerve blockade and subsequently randomly assigned to one of two treatment groups. Each patient in the radiofrequency treatment group (15 patients) received an 80 C radiofrequency lesion of the dorsal ramus of the segmental nerve roots L3, L4, and L5. Patients in the control group (n = 16) underwent an the same procedure but without use of a radiofrequency current. Both the treating physician and the patients were blinded to the group assignment. Before treatment, physical impairment, rating of pain, the degree of disability, and quality of life were assessed by a blinded investigator. Eight weeks after treatment, there were 10 success patients in the radiofrequency group (n = 15) and 6 in the sham group (n = 16). The unadjusted odds ratio was 3.3 (P = 0.05, not significant), and the adjusted odds ratio was 4.8 (P < 0.05, significant). The differences in effect on the visual analog scale scores, global perceived effect, and the Oswestry disability scale were statistically significant. Three, 6, and 12 months after treatment, there were significantly more success patients in the radiofrequency group compared with the sham group. Radiofrequency lumbar zygapophysial joint denervation results in a significant alleviation of pain and functional disability in a select group of patients with chronic low back pain, both on a short-term and a long-term basis.
Re-exploration of the lumbar spine following simple discectomy: a review of 23 cases.
Shiraishi, T; Crock, H V
1995-01-01
A retrospective study of 23 patients is presented, all of whom complained of recurrent symptoms of back and leg pain following simple discectomy. Five patients (22%) had been refused further surgery by the original surgeon on the grounds that they were psychologically disturbed. On examining the clinical records, 18 patients were reported to have had frank disc prolapses found at operation. In 5 cases, disc tissues were removed even though disc prolapses had not been demonstrated. Among the 18 patients in whom disc prolapses had been removed at their first operations, we found recurrent prolapses at reoperation in only 2 of them (11%). We treated 19 of these patients by nerve root canal and foraminal decompressions and 4 by anterior lumbar interbody fusion operations. The mean follow-up period was 34 months. Satisfactory relief of symptoms was achieved in 21 cases. In the published literature, even after the advent of CT and MRI, the incidence of recurrent disc prolapse at reoperation varies markedly from author to author. The reasons for these differences are discussed. They appear to relate to three factors: 1. failure to differentiate acute disc prolapse from annular bulging which develops and is inevitably associated with disc space narrowing; 2. difficulty in distinguishing between MRI findings of scar tissue enhancement and local perineural oedema due to persisting foraminal and nerve root canal stenosis; 3. failure to identify the existence of foraminal stenosis, which is sometimes demonstrated only in oblique plain X-rays showing facet hypertrophy and subluxations of zygapophyseal joints.(ABSTRACT TRUNCATED AT 250 WORDS)
Painful Lumbosacral Plexopathy
Ehler, Edvard; Vyšata, Oldřich; Včelák, Radek; Pazdera, Ladislav
2015-01-01
Abstract Patients frequently suffer from lumbosacral plexus disorder. When conducting a neurological examination, it is essential to assess the extent of muscle paresis, sensory disorder distribution, pain occurrence, and blocked spine. An electromyography (EMG) can confirm axonal lesions and their severity and extent, root affliction (including dorsal branches), and disorders of motor and sensory fiber conduction. Imaging examination, particularly gadolinium magnetic resonance imaging (MRI) examination, ensues. Cerebrospinal fluid examination is of diagnostic importance with radiculopathy, neuroinfections, and for evidence of immunoglobulin synthesis. Differential diagnostics of lumbosacral plexopathy (LSP) include metabolic, oncological, inflammatory, ischemic, and autoimmune disorders. In the presented case study, a 64-year-old man developed an acute onset of painful LSP with a specific EMG finding, MRI showing evidence of plexus affliction but not in the proximal part of the roots. Painful plexopathy presented itself with severe muscle paresis in the femoral nerve and the obturator nerve innervation areas, and gradual remission occurred after 3 months. Autoimmune origin of painful LSP is presumed. We describe a rare case of patient with painful lumbar plexopathy, with EMG findings of axonal type, we suppose of autoimmune etiology. PMID:25929915
Petersen, Tom; Laslett, Mark; Juhl, Carsten
2017-05-12
Clinical examination findings are used in primary care to give an initial diagnosis to patients with low back pain and related leg symptoms. The purpose of this study was to develop best evidence Clinical Diagnostic Rules (CDR] for the identification of the most common patho-anatomical disorders in the lumbar spine; i.e. intervertebral discs, sacroiliac joints, facet joints, bone, muscles, nerve roots, muscles, peripheral nerve tissue, and central nervous system sensitization. A sensitive electronic search strategy using MEDLINE, EMBASE and CINAHL databases was combined with hand searching and citation tracking to identify eligible studies. Criteria for inclusion were: persons with low back pain with or without related leg symptoms, history or physical examination findings suitable for use in primary care, comparison with acceptable reference standards, and statistical reporting permitting calculation of diagnostic value. Quality assessments were made independently by two reviewers using the Quality Assessment of Diagnostic Accuracy Studies tool. Clinical examination findings that were investigated by at least two studies were included and results that met our predefined threshold of positive likelihood ratio ≥ 2 or negative likelihood ratio ≤ 0.5 were considered for the CDR. Sixty-four studies satisfied our eligible criteria. We were able to construct promising CDRs for symptomatic intervertebral disc, sacroiliac joint, spondylolisthesis, disc herniation with nerve root involvement, and spinal stenosis. Single clinical test appear not to be as useful as clusters of tests that are more closely in line with clinical decision making. This is the first comprehensive systematic review of diagnostic accuracy studies that evaluate clinical examination findings for their ability to identify the most common patho-anatomical disorders in the lumbar spine. In some diagnostic categories we have sufficient evidence to recommend a CDR. In others, we have only preliminary evidence that needs testing in future studies. Most findings were tested in secondary or tertiary care. Thus, the accuracy of the findings in a primary care setting has yet to be confirmed.
Bokov, Andrey; Isrelov, Alexey; Skorodumov, Alexander; Aleynik, Alexander; Simonov, Alexander; Mlyavykh, Sergey
2011-01-01
Despite the evident progress in treating vertebral column degenerative diseases, the rate of a so-called "failed back surgery syndrome" associated with pain and disability remains relatively high. However, this term has an imprecise definition and includes several different morbid conditions following spinal surgery, not all of which directly illustrate the efficacy of the applied technology; furthermore, some of them could even be irrelevant. To evaluate and systematize the reasons for persistent pain syndromes following surgical nerve root decompression. Prospective, nonrandomized, cohort study of 138 consecutive patients with radicular pain syndromes, associated with nerve root compression caused by lumbar disc herniation, and resistant to conservative therapy for at least one month. The minimal period of follow-up was 18 months. Hospital outpatient department, Russian Federation Pre-operatively, patients were examined clinically, applying the visual analog scale (VAS), Oswestry Disability Index (ODI), magnetic resonance imaging (MRI), discography and computed tomography (CT). According to the disc herniation morphology and applied type of surgery, all participants were divided into the following groups: for those with disc extrusion or sequester, microdiscectomy was applied (n = 65); for those with disc protrusion, nucleoplasty was applied (n = 46); for those with disc extrusion, nucleoplasty was applied (n = 27). After surgery, participants were examined clinically and the VAS and ODI were applied. All those with permanent or temporary pain syndromes were examined applying MRI imaging, functional roentgenograms, and, to validate the cause of pain syndromes, different types of blocks were applied (facet joint blocks, paravertebral muscular blocks, transforaminal and caudal epidural blocks). Group 1 showed a considerable rate of pain syndromes related to tissue damage during the intervention; the rates of radicular pain caused by epidural scar and myofascial pain were 12.3% and 26.1% respectively. Facet joint pain was found in 23.1% of the cases. Group 2 showed a significant rate of facet joint pain (16.9%) despite the minimally invasive intervention. The specificity of Group 3 was the very high rate of unresolved or recurred nerve root compression (63.0%); in other words, in the majority of cases, the aim of the intervention was not achieved. The results of the applied intervention were considered clinically significant if 50% pain relief on the VAS and a 40% decrease in the ODI were achieved. This study is limited because of the loss of participants to follow-up and because it is nonrandomized; also it could be criticized because the dynamics of numeric scores were not provided. The results of our study show that an analysis of the reasons for failures and partial effects of applied interventions for nerve root decompression may help to understand better the efficacy of the interventions and could be helpful in improving surgical strategies, otherwise the validity of the conclusion could be limited because not all sources of residual pain illustrate the applied technology efficacy. In the majority of cases, the cause of the residual or recurrent pain can be identified, and this may open new possibilities to improve the condition of patients presenting with failed back surgery syndrome.
Ulinastatin attenuates neuropathic pain induced by L5-VRT via the calcineurin/IL-10 pathway.
Ouyang, Handong; Nie, Bilin; Wang, Peizong; Li, Qiang; Huang, Wan; Xin, Wenjun; Zeng, Weian; Liu, Xianguo
2016-01-01
Previous studies have shown that ulinastatin, an effective inhibitor of the inflammatory response in clinical applications, can attenuate hyperalgesia in rodents. However, the underlying mechanism remains unclear. In the present study, we first examined the change in the calcineurin level, which plays an important role in regulating cytokine release in the nervous system, following lumbar 5 ventral root transection in the rat. Furthermore, we determined whether intraperitoneal (i.p.) injection of ulinastatin attenuated pain behavior via inhibition of the calcineurin-mediated inflammatory response induced by lumbar 5 ventral root transection. The results showed that the paw withdrawal threshold and paw withdrawal latency were significantly decreased following lumbar 5 ventral root transection compared to the sham group. Neuropathic pain induced by lumbar 5 ventral root transection significantly decreased the expression of calcineurin in the DRG, and calcineurin was mostly located with NF-200-positive cells, IB4-positive cells, and CGRP-positive cells and less with GFAP-positive satellite cells. Furthermore, intrathecal (i.t.) injection of exogenous calcineurin attenuated the pain behavior induced by lumbar 5 ventral root transection. Importantly, intraperitoneal injection of ulinastatin alleviated the pain behavior and calcineurin downregulation induced by lumbar 5 ventral root transection. Lastly, the cytokine IL-10 was significantly decreased following lumbar 5 ventral root transection, and application of calcineurin (intrathecal) or ulinastatin (intraperitoneal) inhibited the IL-10 downregulation induced by lumbar 5 ventral root transection. These results suggested that ulinastatin, by acting on the CN/IL-10 pathway, might be a novel and effective drug for the treatment of neuropathic pain. © The Author(s) 2016.
Ulinastatin attenuates neuropathic pain induced by L5-VRT via the calcineurin/IL-10 pathway
Ouyang, Handong; Nie, Bilin; Wang, Peizong; Li, Qiang; Huang, Wan; Xin, Wenjun; Liu, Xianguo
2016-01-01
Previous studies have shown that ulinastatin, an effective inhibitor of the inflammatory response in clinical applications, can attenuate hyperalgesia in rodents. However, the underlying mechanism remains unclear. In the present study, we first examined the change in the calcineurin level, which plays an important role in regulating cytokine release in the nervous system, following lumbar 5 ventral root transection in the rat. Furthermore, we determined whether intraperitoneal (i.p.) injection of ulinastatin attenuated pain behavior via inhibition of the calcineurin-mediated inflammatory response induced by lumbar 5 ventral root transection. The results showed that the paw withdrawal threshold and paw withdrawal latency were significantly decreased following lumbar 5 ventral root transection compared to the sham group. Neuropathic pain induced by lumbar 5 ventral root transection significantly decreased the expression of calcineurin in the DRG, and calcineurin was mostly located with NF-200-positive cells, IB4-positive cells, and CGRP-positive cells and less with GFAP-positive satellite cells. Furthermore, intrathecal (i.t.) injection of exogenous calcineurin attenuated the pain behavior induced by lumbar 5 ventral root transection. Importantly, intraperitoneal injection of ulinastatin alleviated the pain behavior and calcineurin downregulation induced by lumbar 5 ventral root transection. Lastly, the cytokine IL-10 was significantly decreased following lumbar 5 ventral root transection, and application of calcineurin (intrathecal) or ulinastatin (intraperitoneal) inhibited the IL-10 downregulation induced by lumbar 5 ventral root transection. These results suggested that ulinastatin, by acting on the CN/IL-10 pathway, might be a novel and effective drug for the treatment of neuropathic pain. PMID:27175013
Parkinson, Bonny; Goodall, Stephen; Thavaneswaran, Prema
2013-09-01
Lower back pain is a common and costly condition in Australia. This paper aims to conduct an economic evaluation of lumbar artificial intervertebral disc replacement (AIDR) compared with lumbar fusion for the treatment of patients suffering from significant axial back pain and/or radicular (nerve root) pain, secondary to disc degeneration or prolapse, who have failed conservative treatment. A cost-effectiveness approach was used to compare costs and benefits of AIDR to five fusion approaches. Resource use was based on Medicare Benefits Schedule claims data and expert opinion. Effectiveness and re-operation rates were based on published randomized controlled trials. The key clinical outcomes considered were narcotic medication discontinuation, achievement of overall clinical success, achievement of Oswestry Disability Index success and quality-adjusted life-years gained. AIDR was estimated to be cost-saving compared with fusion overall ($1600/patient); however, anterior lumbar interbody fusion and posterolateral fusion were less costly by $2155 and $807, respectively. The incremental cost-effectiveness depends on the outcome considered and the comparator. AIDR is potentially a cost-saving treatment for lumbar disc degeneration, although longer-term follow-up data are required to substantiate this claim. The incremental cost-effectiveness depends on the outcome considered and the comparator, and further research is required before any firm conclusions can be drawn. © 2012 The Authors. ANZ Journal of Surgery © 2012 Royal Australasian College of Surgeons.
CT and MRI in the evaluation of extraspinal sciatica
Ergun, T; Lakadamyali, H
2010-01-01
Sciatica is the most frequently encountered symptom in neurosurgical practice and is observed in 40% of adults at some point in their lives. It is described as pain of the hip and the lower extremity secondary to pathologies affecting the sciatic nerve within its intraspinal or extraspinal course. The most frequent cause is a herniating lumbar disc pressing on the neural roots. Extraspinal causes of sciatic pain are usually overlooked because they are extremely rare and due to intraspinal causes (lumbar spinal stenosis, facet joint osteoarthritis, fracture, and tumors of the spinal cord and spinal column) being the main consideration. Early diagnosis of sciatica significantly improves the likelihood of relieving symptoms, as well as avoiding any additional neurologic injury and unnecessary surgery. We evaluate histolopathologically confirmed extraspinal causes of sciatica cases, accompanied by their presented computed tomography and/or magnetic resonance imaging findings. PMID:20647515
Itabashi, Tetsuya; Arima, Yasunobu; Kamimura, Daisuke; Higuchi, Kotaro; Bando, Yoshio; Takahashi-Iwanaga, Hiromi; Murakami, Masaaki; Watanabe, Masahiko; Iwanaga, Toshihiko; Nio-Kobayashi, Junko
2018-06-16
Multiple sclerosis (MS) is an autoimmune disease in which pathogenic T cells play an important role, and an experimental autoimmune encephalomyelitis (EAE) is used as an animal model of MS. Galectins are β-galactoside-binding lectins and involved in various physiological and pathological events. Among fifteen members of galectins, galectin-1, -8, and -9 play immunosuppressive roles in MS and EAE; however, the role of galectin-3 (gal-3) is complex and controversial. We examined expression of gal-3 in the spinal cord and nerve roots of EAE mice. No immunohistochemical signals were detected in naïve mice, whereas gal-3 appeared at lower lumbar levels of the spinal cord and nerve roots in EAE mice. In the spinal cord, gal-3-positive cells were activated microglia and/or infiltrating macrophages, which were round in shape and intensified for the lysosomal enzyme, cathepsin D, indicating elevated phagocytic activity. Gal-3-positive cells in the spinal cord were most abundant during the peak symptomatic period. In the recovery period, they disappeared from the spinal parenchyma but remained at moderate levels in the pia mater. Interestingly, gal-3-positive cells selectively appeared in ventral, but not dorsal, nerve roots running through the spinal canal, with expression peaking during the recovery period. In ventral nerve roots, the major cell type expressing gal-3 was a specific population of Schwann cells that surround unmyelinated axons and express the biosynthetic enzyme for l-serine, a potent neurotrophic amino acid. Gal-3 was also induced in Iba1/F4/80-positive macrophages, which engulf damaged myelin and axon debris. Thus, gal-3 is induced in distinct cell types that are engaged in removal of damaged axons and cell debris and axon regeneration and remyelination, suggesting a potential neuroprotective role of gal-3 in EAE mice. Copyright © 2018. Published by Elsevier Ltd.
Singh, Rahul Raman; Livingston, John; Lim, Ming; Berry, Ian R; Siddiqui, Ata
2017-03-01
We present an unusual neuroimaging finding in a young girl with genetically confirmed vanishing white matter disease and a possible response to immunotherapy. 2.5 yr old girl, presented with acute onset unsteadiness and encephalopathy following a viral illness. MRI showed global symmetric white matter abnormality, with symmetric enhancement of cranial nerves (III and V) and of cervical and lumbar roots. She received immunotherapy for her encephalopathic illness with white matter changes. Follow up neuroimaging showed resolution of white matter edema and resolution of the change in the brainstem. Genetic testing confirmed a diagnosis of vanishing white matter disease (VWMD). Craniospinal nerve enhancement and possible response to immunotherapy has not been described in vanishing white matter disease. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Axonal degeneration and regeneration in sensory roots in a genital herpes model.
Soffer, D; Martin, J R
1989-01-01
In a mouse model of genital herpes simplex virus type 2 (HSV-2) infection, roots of the lower spinal cord were examined 5 days to 6 months after inoculation. Using immunoperoxidase methods on paraffin sections, viral antigen was found in sensory ganglia, their proximal roots and distal nerves on days 5 and 6 after infection. In Epon sections, most mice had focal sensory root abnormalities in lower thoracic, lumbar or sacral levels. At days 7 and 10, lesions showed chiefly nerve fiber degeneration, particularly of large myelinated fibers. At 2 weeks, lesions contained relatively large bundles of small unmyelinated fibers with immature axon-Schwann cell relationships. From 3 to 6 weeks, lesions again contained many more small unmyelinated fibers than normal but, in increasing proportions, axons in bundles were isolated from their neighbors by Schwann cell cytoplasm, and Schwann cells having 1:1 relationships with axons showed mesaxon or thin myelin sheath formation. At later times, the proportion of small unmyelinated axons decreased in parallel with increased numbers of small myelinated axons. By 6 months, affected roots showed a relative reduction in large myelinated fibers, increased proportions of small myelinated fibers and Schwann cell nuclei. Numbers of unmyelinated fibers were reduced relative to 3- to 6-week lesions. Axonal degeneration and regeneration appears to be the chief pathological change in sensory roots in this model. If regenerated fibers arise from latently infected neurons, then establishment of latency is not a relatively silent event, but is associated with major long-lasting, morphologically detectable effects.
Rectal ulcer in a patient with VZV sacral meningoradiculitis (Elsberg syndrome).
Matsumoto, Hideyuki; Shimizu, Takahiro; Tokushige, Shin-ichi; Mizuno, Hideo; Igeta, Yukifusa; Hashida, Hideji
2012-01-01
This report describes the case of a 55-year-old woman with varicella-zoster virus (VZV) sacral meningoradiculitis (Elsberg syndrome) who presented with herpes zoster in the left S2 dermatome area, urinary retention, and constipation. Lumbar magnetic resonance imaging showed the left sacral nerve root swelling with enhancement. Thereafter, she suddenly showed massive hematochezia and hemorrhagic shock because of a rectal ulcer. To elucidate the relation between Elsberg syndrome and rectal ulcer, accumulation of similar cases is necessary. To avoid severe complications, attention must be devoted to the possibility of rectal bleeding in the early stage of Elsberg syndrome.
Morris, Judy L; Gibbins, Ian L; Jobling, Phillip
2005-01-01
Vasodilatation produced by stimulation of preganglionic neurones in lumbar and sacral pathways to pelvic ganglia was studied using an in vitro preparation of guinea-pig uterine artery and associated nerves in a partitioned bath allowing selective drug application to the ganglia or artery. Arterial diameter was monitored using real time video imaging. Vasodilatations produced by hypogastric nerve stimulation (HN; 300 pulses, 10 Hz) were significantly larger and longer in duration than with pelvic nerve stimulation (N = 18). Stimulation of ipsilateral lumbar splanchnic nerves or ipsilateral third lumbar ventral roots also produced prolonged vasodilatations. Blockade of ganglionic nicotinic receptors (0.1–1 mm hexamethonium) delayed the onset and sometimes reduced the peak amplitude of dilatations, but slow dilatations persisted in 16 of 18 preparations. These dilatations were not reduced further by 3 μm capsaicin applied to the artery and ganglia, or ganglionic application of 1 μm hyoscine, 30–100 μm suramin or 10 μm CNQX. Dilatations were reduced slightly by ganglionic application of NK1 and NK3 receptor antagonists (SR140333, SR142801; 1 μm), but were reduced significantly by bathing the ganglia in 0.5 mm Ca2+ and 10 mm Mg2+. Intracellular recordings of paracervical ganglion neurones revealed fast excitatory postsynaptic potentials (EPSPs) in all neurones on HN stimulation (300 pulses, 10 Hz), and slow EPSPs (3–12 mV amplitude) in 25 of 37 neurones. Post-stimulus action potential discharge associated with slow EPSPs occurred in 16 of 37 neurones (firing rate 9.4 ± 1.5 Hz). Hexamethonium (0.1–1 mm) abolished fast EPSPs. Hexamethonium and hyoscine (1 μm) did not reduce slow EPSPs and associated post-stimulus firing in identified vasodilator neurones (with VIP immunoreactivity) or non-vasodilator paracervical neurones. These results demonstrate a predominantly sympathetic origin of autonomic pathways producing pelvic vasodilatation in females. Non-cholinergic mediators of slow transmission in pelvic ganglia produce prolonged firing of postganglionic neurones and long-lasting dilatations of the uterine artery. This mechanism would facilitate maintenance of pelvic vasodilatation on stimulation of preganglionic neurones during sexual activity. PMID:15802294
Groin pain associated with sacroiliac joint dysfunction and lumbar disorders.
Kurosawa, Daisuke; Murakami, Eiichi; Aizawa, Toshimi
2017-10-01
We investigated the prevalence of groin pain in patients with sacroiliac joint (SIJ) dysfunction, lumbar spinal canal stenosis (LSS), and lumbar disc herniation (LDH) who did not have hip disorders, and evaluated the clinical features that distinguished SIJ dysfunction from LSS and LDH. We evaluated 127 patients (57 men, 70 women, average age 55 years) with SIJ dysfunction, 146 (98 men, 48 women, average age 71 years) with LSS, and 124 (83 men, 41 women, average age 50 years) with LDH. The following data were retrospectively collected from the patients' medical charts: (1) the prevalence of groin pain for each pathology; (2) corresponding spinal level of LSS and LDH in the patients with groin pain; (3) the pain areas in the buttocks and back; pain increase while in positions such as sitting, lying supine, and side-lying; an SIJ shear test; and four tender points composed of the posterior superior iliac spine (PSIS), long posterior sacroiliac ligament (LPSL), sacrotuberous ligament (STL), and iliac muscle. Fifty-nine (46.5%) patients with SIJ dysfunction, 10 (6.8%) with LSS, and 10 (8.1%) with LDH reported groin pain. Of the 10 patients with LSS, five presented with cauda equina symptoms, two had stenosis of L2-L3, and three had stenosis below L3-L4. The other five presented with radiculopathy: the corresponding nerve root was L2, L3, and L4 in one patient each, and L5 in two. Of the 10 patients with LDH, eight presented with radiculopathy: the corresponding nerve root was L2 and L4 in three patients each, and L5 in two. Two patients presented with L4-L5 discogenic pain without radiculopathy. In patients with groin pain, pain provoked by the SIJ shear test and the tenderness of the PSIS and LPSL were significant physical signs that differentiated SIJ dysfunction from LSS and LDH. (Fisher's exact test, P<0.05) CONCLUSION: The prevalence of groin pain in patients with SIJ dysfunction was higher than in those with LSS or LDH. When patients who do not have hip disorders complain of groin and lumbogluteal pain, not only lumbar disorders but also SIJ dysfunction should be considered. Copyright © 2017. Published by Elsevier B.V.
Qin, De-An; Song, Jie-Fu; Song, Li-Ping; Feng, Gui-Sheng
2018-05-01
Background Pain management for multiple bone metastases is complex and often requires multidisciplinary treatment. We herein describe patient-centered multidisciplinary pain management for metastatic cancer. A 61-year-old woman with multiple bone metastases of uterine cervical cancer developed intractable low back pain. After external beam radiotherapy failed, we performed lumbar spinal intralesional curettage, pedicle screw fixation, and nerve decompression. However, the neuralgia persisted. We then percutaneously injected epirubicin into the intervertebral foramina under computed tomography guidance for L5 dorsal root ganglion destruction. Osteoplasty was performed under C-arm X-ray guidance; however, the sacrum was mistaken for the ilium, and treatment was ineffective. We administered zoledronic acid and strontium-89. The last resort was outpatient implantation of an epidural bupivacaine-morphine infusion system. A visual analog scale (VAS) was used for pain evaluation. Lumbar spinal intralesional curettage and fixation, epirubicin-induced ganglion destruction, and administration of zoledronic acid and strontium-89 decreased her VAS pain score from 7-8 to 3-4. Radiotherapy and nerve decompression and release were ineffective, as was osteoplasty because of the location error. The epidural infusion system decreased the VAS score from 7-8 to 2-3 and was highly efficient. Conclusions Multidisciplinary integrated treatment for metastatic cancer can be effective.
Savage, R A; Whitehouse, G H; Roberts, N
1997-01-01
The purpose of this study was to undertake a critical review of the potential role of magnetic resonance imaging (MRI) in the evaluation of low back pain (LBP) and to determine if there were differences in the MRI appearances between various occupational groups. The study group, 149 working men (78 aged 20-30 years and 71 aged 31-58 years) from five different occupations (car production workers, ambulance men, office staff, hospital porters and brewery draymen), underwent MRI of the lumbar spine. Thirty-four percent of the subjects had never experienced LBP. Twelve months later, the examination was repeated on 89 men. Age-related differences were seen in the MRI appearances of the lumbar spine. Disc degeneration was most common at L5/S1 and was significantly more prevalent (P < 0.01) in the older age group (52%) than in the younger age group (27%). Although LBP was more prevalent in the older subjects there was no relationship between LBP and disc degeneration. No differences in the MRI appearance of the lumbar spine were observed between the five occupational groups. Overall, 45% had 'abnormal' lumbar spines (evidence of disc degeneration, disc bulging or protrusion, facet hypertrophy, or nerve root compression). There was not a clear relationship between the MRI appearance of the lumbar spine and LBP. Thirty-two percent of asymptomatic subjects had 'abnormal' lumbar spines and 47% of all the subjects who had experienced LBP had 'normal' lumbar spines. During the 12-month follow-up period, 13 subjects experienced LBP for the first time. However, there was no change in the MRI appearances of their lumbar spines that could account for the onset of LBP. Although MRI is an excellent technique for evaluating the lumbar spine, this study shows that it does not provide a suitable pre-employment screening technique capable of identifying those at risk of LBP.
Kim, Hyunchul; W Caspar, Tyler; Shah, Sameer B; Hsieh, Adam H
2015-08-01
Degeneration of the intervertebral disc is often associated with low back pain and increased infiltration of nerve fibers originating from dorsal root ganglia (DRG). The degenerated disc is also characterized by the presence of proinflammatory cytokines, which may influence axonal outgrowth. Toward an improved understanding of the growth of DRG neurons into compliant extracellular matrices, we developed a novel experimental system to measure axonal outgrowth of adult rat lumbar DRG neurons within three-dimensional (3D) collagen hydrogels and used this system to examine the effects of interleukin 1β (IL-1β) and tumor necrosis factor (TNF)-α treatment. The aim was to investigate the effects of proinflammatory cytokines on 3D neuronal growth into collagen matrices. This was an in vitro study of neurite outgrowth from adult rat lumbar DRG into collagen gels in response to IL-1β and TNF-α. Lumbar DRG were obtained from adult Sprague Dawley rats, bisected to expose cell bodies and placed onto collagen gel constructs prepared in 24-well Transwell inserts. Dorsal root ganglia were then treated with nerve growth factor (NGF)-free Neurobasal media (negative control) or NGF-supplemented media containing 0, 1, and 10 ng/mL of IL-1β and TNF-α. After 7 days, collagen gel-DRG constructs were immunostained for phosphorylated neurofilament, an axonal marker. Simple Neurite Tracer (Fiji/ImageJ) was used to quantify 3D axonal outgrowth from confocal image stacks. Data were analyzed using one-way analysis of variance, with Tukey HSD post hoc correction at a level of p<.05. Immunostaining showed robust axonal outgrowth into collagen gels from all NGF-treated DRG. The negative control demonstrated very few and short neurites. Tumor necrosis factor-α (1 and 10 ng/mL) significantly inhibited axonal outgrowth compared with NGF-only media (p<.026 and p<.02, respectively). After IL-1β treatment, average axon length was 10% lower at 1 ng/mL and 7.5% higher at 10 ng/mL, but these differences were not statistically significant. Among cytokine treatments, however, average axon length in the IL-1β (10 ng/mL) group was significantly higher than that in the other groups (p<.05). A novel 3D collagen gel culture system was used to investigate factors modulating neuronal ingrowth. Our results showed that NGF was necessary to promote neurite growth into collagen gels. In the presence of proinflammatory cytokines, high concentrations of IL-1β induced significantly higher axonal outgrowth than TNF-α and low levels of IL-1β. Copyright © 2015 Elsevier Inc. All rights reserved.
Epidemiology of injuries in English professional rugby union: part 2 training Injuries
Brooks, J; Fuller, C; Kemp, S; Reddin, D
2005-01-01
Objectives: To undertake a detailed epidemiological study of training injuries sustained by professional rugby union players in order to define their incidence, nature, severity, and causes. Methods: A two season prospective design was used to study training injuries associated with 502 rugby union players at 11 English Premiership clubs. Team clinicians reported all training injuries on a weekly basis and provided details of the location, diagnosis, severity, and mechanism of each injury. Training exposures for individual players were recorded on a weekly basis. Loss of time from training and match play was used as the definition of an injury. Results: The overall incidence of injury was 2.0 per 1000 player-hours, and each injury resulted on average in 24 days lost time. Recurrences, which accounted for 19% of injuries, were more severe (35 days) than new injuries (21 days). Twenty two per cent of all training occurred during the preseason but 34% of all injuries were sustained in this period. Hamstring, calf, hip flexor/quadriceps, and adductor muscle injuries were the most common for backs, whereas hamstring, lateral ankle ligament, and lumbar disc/nerve root injuries predominated for forwards. Lumbar disc/nerve root, shoulder dislocation/instability, and hamstring muscle injuries for forwards and hamstring muscle and anterior cruciate ligament injuries for backs caused the greatest number of days absence. Running was the predominant cause of injury for both forwards and backs, although the overall incidence and severity of injuries sustained during skills training were significantly greater than those sustained during conditioning training. Conclusions: On average, a club will have 5% of their players unavailable for selection as a consequence of training injuries. PMID:16183775
Wu, Weifei; Liang, Jie; Chen, Ying; Chen, Aihua; Wu, Yongde; Yang, Zong
2017-01-01
Diffusion tensor imaging (DTI) has been widely used to visualize peripheral nerves, but the microstructure of compressed nerve roots can be assessed using DTI. However, there are no data regarding the association among microstructural changes evaluated using DTI, the symptoms assessed using the Oswestry Disability Index (ODI) and the duration of symptoms after surgery in patients with lumbar disc herniation (LDH). Thirty patients with unilateral radiculopathy were investigated using DTI. The changes in the mean fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) values as well as the correlation between these changes and the severity and duration of the clinical symptoms were investigated before and at least one month after surgery. The FA values were significantly increased after surgical treatment (p < 0.0001). Both the ADC and ODI values were noticeably decreased (p < 0.0001). A strong positive correlation between the preoperative and postoperative DTI parameters (p < 0.0001) as well as between the preoperative ODI and postoperative ODI/ODI changes (p < 0.0001) were found. In addition, there was a significant positive correlation between the changes in the DTI parameters and changes in the ODI (p < 0.0001). This preliminary study suggests it may be possible to use DTI to diagnose, quantitatively evaluate and follow-up patients with LDH. PMID:28294192
Amoretti, Nicolas; Huwart, Laurent; Foti, Pauline; Boileau, Pascal; Amoretti, Marie-Eve; Pellegrin, Amelie; Marcy, Pierre-Yves; Hauger, Olivier
2012-12-01
To evaluate percutaneous computed tomography (CT)-guided intracystic and intra-articular steroid injections for the treatment of lumbar facet joint cyst causing radicular pain. A single-centre prospective study involving 120 consecutive patients with symptomatic lumbar facet joint cyst-induced radicular pain was done (72 women, 48 men). The average age was 68.2 years (52-84). Patients were treated by percutaneous CT-guided intracystic and intra-articular steroid injections. The clinical course of nerve root pain was evaluated after 1 day, and 1, 3 and 6 months, with long-term follow-up after 12 months. Patient follow-ups in our series show supportive results: within 120 patients, 54% of patients were satisfied with a long-lasting result from the first intra-cystic and intra-articular steroid injections (n = 65), while 20.8% were satisfied with a long-lasting result from a second intervention. Combining these two results shows that 75% of patients were satisfied with a long-lasting result. Our results showed that percutaneous treatment of vertebral lumbar facet joint cysts by double injections is an effective and economic therapeutic technical management among 75% of our patients. Thus we recommend that it should be considered as a first choice of treatment. Lumbar facet joint cysts are a common feature of back and radicular pain. They may be treated effectively by interventional radiologists using CT guidance. Percutaneous treatment using double injections can save surgery in 75% of patients.
Degenerative disease of the lumbar spine.
Kovacs, F M; Arana, E
2016-04-01
In the last 25 years, scientific research has brought about drastic changes in the concept of low back pain and its management. Most imaging findings, including degenerative changes, reflect anatomic peculiarities or the normal aging process and turn out to be clinically irrelevant; imaging tests have proven useful only when systemic disease is suspected or when surgery is indicated for persistent spinal cord or nerve root compression. The radiologic report should indicate the key points of nerve compression, bypassing inconsequential findings. Many treatments have proven inefficacious, and some have proven counterproductive, but they continue to be prescribed because patients want them and there are financial incentives for doing them. Following the guidelines that have proven effective for clinical management improves clinical outcomes, reduces iatrogenic complications, and decreases unjustified and wasteful healthcare expenditures. Copyright © 2016 SERAM. Published by Elsevier España, S.L.U. All rights reserved.
Peterson, Cynthia K; Leemann, Serafin; Lechmann, Marco; Pfirrmann, Christian W A; Hodler, Juerg; Humphreys, B Kim
2013-05-01
The purpose of this study was to compare self-reported pain and "improvement" of patients with symptomatic, magnetic resonance imaging-confirmed, lumbar disk herniations treated with either high-velocity, low-amplitude spinal manipulative therapy (SMT) or nerve root injections (NRI). This prospective cohort comparative effectiveness study included 102 age- and sex-matched patients treated with either NRI or SMT. Numerical rating scale (NRS) pain data were collected before treatment. One month after treatment, current NRS pain levels and overall improvement assessed using the Patient Global Impression of Change scale were recorded. The proportion of patients, "improved" or "worse," was calculated for each treatment. Comparison of pretreatment and 1-month NRS scores used the paired t test. Numerical rating scale and NRS change scores for the 2 groups were compared using the unpaired t test. The groups were also compared for "improvement" using the χ(2) test. Odds ratios with 95% confidence intervals were calculated. Average direct procedure costs for each treatment were calculated. No significant differences for self-reported pain or improvement were found between the 2 groups. "Improvement" was reported in 76.5% of SMT patients and in 62.7% of the NRI group. Both groups reported significantly reduced NRS scores at 1 month (P = .0001). Average cost for treatment with SMT was Swiss Francs 533.77 (US $558.75) and Swiss Francs 697 (US $729.61) for NRI. Most SMT and NRI patients with radicular low back pain and magnetic resonance imaging-confirmed disk herniation matching symptomatic presentation reported significant and clinically relevant reduction in self-reported pain level and increased global perception of improvement. There were no significant differences in outcomes between NRI and SMT. When considering direct procedure costs, the average cost of SMT was slightly less expensive. Copyright © 2013 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.
Diagnosis of Lumbar Foraminal Stenosis using Diffusion Tensor Imaging.
Eguchi, Yawara; Ohtori, Seiji; Suzuki, Munetaka; Oikawa, Yasuhiro; Yamanaka, Hajime; Tamai, Hiroshi; Kobayashi, Tatsuya; Orita, Sumihisa; Yamauchi, Kazuyo; Suzuki, Miyako; Aoki, Yasuchika; Watanabe, Atsuya; Kanamoto, Hirohito; Takahashi, Kazuhisa
2016-02-01
Diagnosis of lumbar foraminal stenosis remains difficult. Here, we report on a case in which bilateral lumbar foraminal stenosis was difficult to diagnose, and in which diffusion tensor imaging (DTI) was useful. The patient was a 52-year-old woman with low back pain and pain in both legs that was dominant on the right. Right lumbosacral nerve compression due to a massive uterine myoma was apparent, but the leg pain continued after a myomectomy was performed. No abnormalities were observed during nerve conduction studies. Computed tomography and magnetic resonance imaging indicated bilateral L5 lumbar foraminal stenosis. DTI imaging was done. The extraforaminal values were decreased and tractography was interrupted in the foraminal region. Bilateral L5 vertebral foraminal stenosis was treated by transforaminal lumbar interbody fusion and the pain in both legs disappeared. The case indicates the value of DTI for diagnosing vertebral foraminal stenosis.
Manchikanti, Laxmaiah; Singh, Vijay; Falco, Frank J.E.; Cash, Kimberly A.; Pampati, Vidyasagar
2010-01-01
Study Design: A randomized, double-blind, controlled trial. Objective: To determine the clinical effectiveness of therapeutic lumbar facet joint nerve blocks with or without steroids in managing chronic low back pain of facet joint origin. Summary of Background Data: Lumbar facet joints have been shown as the source of chronic pain in 21% to 41% of low back patients with an average prevalence of 31% utilizing controlled comparative local anesthetic blocks. Intraarticular injections, medial branch blocks, and radiofrequency neurotomy of lumbar facet joint nerves have been described in the alleviation of chronic low back pain of facet joint origin. Methods: The study included 120 patients with 60 patients in each group with local anesthetic alone or local anesthetic and steroids. The inclusion criteria was based upon a positive response to diagnostic controlled, comparative local anesthetic lumbar facet joint blocks. Outcome measures included the numeric rating scale (NRS), Oswestry Disability Index (ODI), opioid intake, and work status, at baseline, 3, 6, 12, 18, and 24 months. Results: Significant improvement with significant pain relief of ≥ 50% and functional improvement of ≥ 40% were observed in 85% in Group 1, and 90% in Group II, at 2-year follow-up. The patients in the study experienced significant pain relief for 82 to 84 weeks of 104 weeks, requiring approximately 5 to 6 treatments with an average relief of 19 weeks per episode of treatment. Conclusions: Therapeutic lumbar facet joint nerve blocks, with or without steroids, may provide a management option for chronic function-limiting low back pain of facet joint origin. PMID:20567613
Tawa, Nassib; Rhoda, Anthea; Diener, Ina
2017-02-23
Lumbar radiculopathy remains a clinical challenge among primary care clinicians in both assessment and diagnosis. This often leads to misdiagnosis and inappropriate treatment of patients resulting in poor health outcomes, exacerbating this already debilitating condition. This review evaluated 12 primary diagnostic accuracy studies that specifically assessed the performance of various individual and grouped clinical neurological tests in detecting nerve root impingement, as established in the current literature. Eight electronic data bases were searched for relevant articles from inception until July 2016. All primary diagnostic studies which investigated the accuracy of clinical neurological test (s) in diagnosing lumbar radiculopathy among patients with low back and referred leg symptoms were screened for inclusion. Qualifying studies were retrieved and independently assessed for methodological quality using the 'Quality Assessment of Diagnostic tests Accuracy Studies' criteria. A total of 12 studies which investigated standard components of clinical neurological examination of (sensory, motor, tendon reflex and neuro-dynamics) of the lumbo-sacral spine were included. The mean inter-observer agreement on quality assessment by two independent reviewers was fair (k = 0.3 - 0.7). The diagnostic performance of sensory testing using MR imaging as a reference standard demonstrated a sensitivity (confidence interval 95%) 0.61 (0.47-0.73) and a specificity of 0.63 (0.38-0.84). Motor tests sensitivity was poor to moderate, ranging from 0.13 (0.04-0.31) to 0.61 (0.36-0.83). Generally, the diagnostic performance of reflex testing was notably good with specificity ranging from (confidence interval 95%) 0.60 (0.51-0.69) to 0.93 (0.87-0.97) and sensitivity ranging from 0.14 (0.09-0.21) to 0.67 (0.21-0.94). Femoral nerve stretch test had a high sensitivity of (confidence interval 95%) 1.00 (0.40-1.00) and specificity of 0.83 (0.52-0.98) while SLR test recorded a mean sensitivity of 0.84 (0.72-0.92) and specificity of 0.78 (0.67-0.87). There is a scarcity of studies on the diagnostic accuracy of clinical neurological examination testing. Furthermore there seem to be a disconnect among researchers regarding the diagnostic utility of lower limb neuro-dynamic tests which include the Straight Leg Raise and Femoral Nerve tests for sciatic and femoral nerve respectively. Whether these tests are able to detect the presence of disc herniation and subsequent nerve root compression or hyper-sensitivity of the sacral and femoral plexus due to mechanical irritation still remains debatable.
Sakai, Toshinori; Higashino, Kosaku; Goda, Yuichiro; Mineta, Kazuaki; Sairyo, Koichi
2014-01-01
Bertolotti's syndrome is characterized by anomalous enlargement of the transverse process of the most caudal lumbar segment, causing chronic and persistent low back pain or sciatica. We describe the case of a 45-year-old woman who presented with left sciatic pain and low back pain due to a recurrent lumbar disc herniation at L4-5 with Bertolotti's syndrome. Selective L5 nerve root block and local injection of lidocaine into the articulation between the transverse process and sacral ala temporarily relieved the left sciatic pain and low back pain, respectively. To confirm the effect of local injection on low back pain, we gave a second local injection, which once again relieved the low back pain. Microendoscopic resection of the pseudoarticulation region and discectomy successfully relieved all symptoms. This report illustrates the effectiveness of minimally invasive resection of the transverse process for the treatment of low back pain with Bertolotti's syndrome. PMID:25045566
Takata, Yoichiro; Sakai, Toshinori; Higashino, Kosaku; Goda, Yuichiro; Mineta, Kazuaki; Sugiura, Kosuke; Sairyo, Koichi
2014-01-01
Bertolotti's syndrome is characterized by anomalous enlargement of the transverse process of the most caudal lumbar segment, causing chronic and persistent low back pain or sciatica. We describe the case of a 45-year-old woman who presented with left sciatic pain and low back pain due to a recurrent lumbar disc herniation at L4-5 with Bertolotti's syndrome. Selective L5 nerve root block and local injection of lidocaine into the articulation between the transverse process and sacral ala temporarily relieved the left sciatic pain and low back pain, respectively. To confirm the effect of local injection on low back pain, we gave a second local injection, which once again relieved the low back pain. Microendoscopic resection of the pseudoarticulation region and discectomy successfully relieved all symptoms. This report illustrates the effectiveness of minimally invasive resection of the transverse process for the treatment of low back pain with Bertolotti's syndrome.
The impact of preoperative epidural injections on postoperative infection in lumbar fusion surgery.
Singla, Anuj; Yang, Scott; Werner, Brian C; Cancienne, Jourdan M; Nourbakhsh, Ali; Shimer, Adam L; Hassanzadeh, Hamid; Shen, Francis H
2017-05-01
OBJECTIVE Lumbar epidural steroid injections (LESIs) are performed for both diagnostic and therapeutic purposes for a variety of indications, including low-back pain, the leading cause of disability and expense due to work-related conditions in the US. The steroid agent used in epidural injections is reported to relieve nerve root inflammation, local ischemia, and resultant pain, but the injection may also have an adverse impact on spinal surgery performed thereafter. In particular, the possibility that preoperative epidural injections may increase the risk of surgical site infection after lumbar spinal fusion has been reported but has not been studied in detail. The goal of the present study was to use a large national insurance database to analyze the association of preoperative LESIs with surgical site infection after lumbar spinal fusion. METHODS A nationwide insurance database of patient records was used for this retrospective analysis. Current Procedural Terminology codes were used to query the database for patients who had undergone LESI and 1- or 2-level lumbar posterior spinal fusion procedures. The rate of postoperative infection after 1- or 2-level posterior spinal fusion was analyzed. These study patients were then divided into 3 separate cohorts: 1) lumbar spinal fusion performed within 1 month after LESI, 2) fusion performed between 1 and 3 months after LESI, and 3) fusion performed between 3 and 6 months after LESI. The study patients were compared with a control cohort of patients who underwent lumbar fusion without previous LESI. RESULTS The overall 3-month infection rate after lumbar spinal fusion procedure was 1.6% (1411 of 88,540 patients). The infection risk increased in patients who received LESI within 1 month (OR 2.6, p < 0.0001) or 1-3 months (OR 1.4, p = 0.0002) prior to surgery compared with controls. The infection risk was not significantly different from controls in patients who underwent lumbar fusion more than 3 months after LESI. CONCLUSIONS Lumbar spinal fusion performed within 3 months after LESI may be associated with an increased rate of postoperative infection. This association was not found when lumbar fusion was performed more than 3 months after LESI.
Suzuki, Munetaka; Inoue, Gen; Gemba, Takefumi; Watanabe, Tomoko; Ito, Toshinori; Koshi, Takana; Yamauchi, Kazuyo; Yamashita, Masaomi; Orita, Sumihisa; Eguchi, Yawara; Ochiai, Nobuyasu; Kishida, Shunji; Takaso, Masashi; Aoki, Yasuchika; Takahashi, Kazuhisa; Ohtori, Seiji
2009-07-01
Nuclear factor-kappa B (NF-kappaB) is a gene transcriptional regulator of inflammatory cytokines. We investigated the transduction efficiency of NF-kappaB decoy to dorsal root ganglion (DRG), as well as the decrease in nerve injury, mechanical allodynia, and thermal hyperalgesia in a rat lumbar disc herniation model. Forty rats were used in this study. NF-kappaB decoy-fluorescein isothiocyanate (FITC) was injected intrathecally at the L5 level in five rats, and its transduction efficiency into DRG measured. In another 30 rats, mechanical pressure was placed on the DRG at the L5 level and nucleus pulposus harvested from the rat coccygeal disc was transplanted on the DRG. Rats were classified into three groups of ten animals each: a herniation + decoy group, a herniation + oligo group, and a herniation only group. For behavioral testing, mechanical allodynia and thermal hyperalgesia were evaluated. In 15 of the herniation rats, their left L5 DRGs were resected, and the expression of activating transcription factor 3 (ATF-3) and calcitonin gene-related peptide (CGRP) was evaluated immunohistochemically compared to five controls. The total transduction efficiency of NF-kappaB decoy-FITC in DRG neurons was 10.8% in vivo. The expression of CGRP and ATF-3 was significantly lower in the herniation + decoy group than in the other herniation groups. Mechanical allodynia and thermal hyperalgesia were significantly suppressed in the herniation + decoy group. NF-kappaB decoy was transduced into DRGs in vivo. NF-kappaB decoy may be useful as a target for clarifying the mechanism of sciatica caused by lumbar disc herniation.
el Barzouhi, Abdelilah; Vleggeert-Lankamp, Carmen L A M; Lycklama à Nijeholt, Geert J; Van der Kallen, Bas F; van den Hout, Wilbert B; Koes, Bart W; Peul, Wilco C
2014-11-01
Gadolinium-enhanced magnetic resonance imaging (Gd-MRI) is often performed in the evaluation of patients with persistent sciatica after lumbar disc surgery. However, correlation between enhancement and clinical findings is debated, and limited data are available regarding the reliability of enhancement findings. To evaluate the reliability of Gd-MRI findings and their correlation with clinical findings in patients with sciatica. Prospective observational evaluation of patients who were enrolled in a randomized trial with 1-year follow-up. Patients with 6- to 12-week sciatica, who participated in a multicentre randomized clinical trial comparing an early surgery strategy with prolonged conservative care with surgery if needed. In total 204 patients underwent Gd-MRI at baseline and after 1 year. Patients were assessed by means of the Roland Disability Questionnaire (RDQ) for sciatica, visual analog scale (VAS) for leg pain, and patient-reported perceived recovery at 1 year. Kappa coefficients were used to assess interobserver reliability. In total, 204 patients underwent Gd-MRI at baseline and after 1 year. Magnetic resonance imaging findings were correlated to the outcome measures using the Mann-Whitney U test for continuous data and Fisher exact tests for categorical data. Poor-to-moderate agreement was observed regarding Gd enhancement of the herniated disc and compressed nerve root (kappa<0.41), which was in contrast with excellent interobserver agreement of the disc level of the herniated disc and compressed nerve root (kappa>0.95). Of the 59 patients with an enhancing herniated disc at 1 year, 86% reported recovery compared with 100% of the 12 patients with nonenhancing herniated discs (p=.34). Of the 12 patients with enhancement of the most affected nerve root at 1 year, 83% reported recovery compared with 85% of the 192 patients with no enhancement (p=.69). Patients with and without enhancing herniated discs or nerve roots at 1 year reported comparable outcomes on RDQ and VAS-leg pain. Reliability of Gd-MRI findings was poor-to-moderate and no correlation was observed between enhancement and clinical findings at 1-year follow-up. Copyright © 2014 Elsevier Inc. All rights reserved.
Bias in the physical examination of patients with lumbar radiculopathy
2010-01-01
Background No prior studies have examined systematic bias in the musculoskeletal physical examination. The objective of this study was to assess the effects of bias due to prior knowledge of lumbar spine magnetic resonance imaging findings (MRI) on perceived diagnostic accuracy of the physical examination for lumbar radiculopathy. Methods This was a cross-sectional comparison of the performance characteristics of the physical examination with blinding to MRI results (the 'independent group') with performance in the situation where the physical examination was not blinded to MRI results (the 'non-independent group'). The reference standard was the final diagnostic impression of nerve root impingement by the examining physician. Subjects were recruited from a hospital-based outpatient specialty spine clinic. All adults age 18 and older presenting with lower extremity radiating pain of duration ≤ 12 weeks were evaluated for participation. 154 consecutively recruited subjects with lumbar disk herniation confirmed by lumbar spine MRI were included in this study. Sensitivities and specificities with 95% confidence intervals were calculated in the independent and non-independent groups for the four components of the radiculopathy examination: 1) provocative testing, 2) motor strength testing, 3) pinprick sensory testing, and 4) deep tendon reflex testing. Results The perceived sensitivity of sensory testing was higher with prior knowledge of MRI results (20% vs. 36%; p = 0.05). Sensitivities and specificities for exam components otherwise showed no statistically significant differences between groups. Conclusions Prior knowledge of lumbar MRI results may introduce bias into the pinprick sensory testing component of the physical examination for lumbar radiculopathy. No statistically significant effect of bias was seen for other components of the physical examination. The effect of bias due to prior knowledge of lumbar MRI results should be considered when an isolated sensory deficit on examination is used in medical decision-making. Further studies of bias should include surgical clinic populations and other common diagnoses including shoulder, knee and hip pathology. PMID:21118558
Bias in the physical examination of patients with lumbar radiculopathy.
Suri, Pradeep; Hunter, David J; Katz, Jeffrey N; Li, Ling; Rainville, James
2010-11-30
No prior studies have examined systematic bias in the musculoskeletal physical examination. The objective of this study was to assess the effects of bias due to prior knowledge of lumbar spine magnetic resonance imaging findings (MRI) on perceived diagnostic accuracy of the physical examination for lumbar radiculopathy. This was a cross-sectional comparison of the performance characteristics of the physical examination with blinding to MRI results (the 'independent group') with performance in the situation where the physical examination was not blinded to MRI results (the 'non-independent group'). The reference standard was the final diagnostic impression of nerve root impingement by the examining physician. Subjects were recruited from a hospital-based outpatient specialty spine clinic. All adults age 18 and older presenting with lower extremity radiating pain of duration ≤ 12 weeks were evaluated for participation. 154 consecutively recruited subjects with lumbar disk herniation confirmed by lumbar spine MRI were included in this study. Sensitivities and specificities with 95% confidence intervals were calculated in the independent and non-independent groups for the four components of the radiculopathy examination: 1) provocative testing, 2) motor strength testing, 3) pinprick sensory testing, and 4) deep tendon reflex testing. The perceived sensitivity of sensory testing was higher with prior knowledge of MRI results (20% vs. 36%; p = 0.05). Sensitivities and specificities for exam components otherwise showed no statistically significant differences between groups. Prior knowledge of lumbar MRI results may introduce bias into the pinprick sensory testing component of the physical examination for lumbar radiculopathy. No statistically significant effect of bias was seen for other components of the physical examination. The effect of bias due to prior knowledge of lumbar MRI results should be considered when an isolated sensory deficit on examination is used in medical decision-making. Further studies of bias should include surgical clinic populations and other common diagnoses including shoulder, knee and hip pathology.
Factors that Contribute to Neuron Survival and Neuron Growth after Injury
1993-02-03
and undergo a laminectomy to expose the fourth lumbar (L4) segment. The adjacent dorsal roots are cut near the dorsal root entry zone and reflected...caudally. A hemisection cavity 3-4mm in length is aspirated from the lumbar enlargement, the appropriate transplant is introduced into the cavity, and the...transplanted into the lumbar enlargement of adult Sprague-Dawley rats, and the IA or L5 dorsal root was cut and then juxtaposed to the transplant One
Jandial, Rahul; Kelly, Brandon; Chen, Mike Yue
2013-07-01
The increasing incidence of spinal metastasis, a result of improved systemic therapies for cancer, has spurred a search for an alternative method for the surgical treatment of lumbar metastases. The authors report a single-stage posterior-only approach for resecting any pathological lumbar vertebral segment and reconstructing with a medium to large expandable cage while preserving all neurological structures. The authors conducted a retrospective consecutive case review of 11 patients (5 women, 6 men) with spinal metastases treated at 1 institution with single-stage posterior-only vertebral column resection and reconstruction with an expandable cage and pedicle screw fixation. For all patients, the indications for operative intervention were spinal cord compression, cauda equina compression, and/or spinal instability. Neurological status was classified according to the American Spinal Injury Association impairment scale, and functional outcomes were analyzed by using a visual analog scale for pain. For all patients, a circumferential vertebral column resection was achieved, and full decompression was performed with a posterior-only approach. Each cage was augmented by posterior pedicle screw fixation extending 2 levels above and below the resected level. No patient required a separate anterior procedure. Average estimated blood loss and duration of each surgery were 1618 ml (range 900-4000 ml) and 6.6 hours (range 4.5-9 hours), respectively. The mean follow-up time was 14 months (range 10-24 months). The median survival time after surgery was 17.7 months. Delayed hardware failure occurred for 1 patient. Preoperatively, 2 patients had intractable pain with intact lower-extremity strength and 8 patients had severe intractable pain, lower-extremity paresis, and were unable to walk; 4 of whom regained the ability to walk after surgery. Two patients who were paraplegic before decompression recovered substantial function but remained wheelchair bound, and 2 patients remained paraparetic after the surgery. No patients had lasting intraoperative neuromonitoring changes, and none died. Complications included 2 reoperations, 1 delayed hardware failure (cage subsidence that did not require revision), and 3 incidental durotomies (none of which required reoperation). No postoperative pneumonia, ileus, or deep venous thrombosis developed in any patient. A posterior-only approach for vertebral segment resection with preservation of spinal nerve roots is a viable technique that can be used throughout the entire lumbar spine. Extensive mobilization of the nerve roots is of utmost importance and allows for insertion and expansion of medium-sized, in situ expandable cages in the midline. This approach, although technically challenging, might reduce the morbidity associated with an anterior approach.
Risk factors for acute nerve injury after total knee arthroplasty.
Shetty, Teena; Nguyen, Joseph T; Sasaki, Mayu; Wu, Anita; Bogner, Eric; Burge, Alissa; Cogsil, Taylor; Dalal, Aashka; Halvorsen, Kristin; Cummings, Kelianne; Su, Edwin P; Lyman, Stephen
2018-06-01
In this we study identified potential risk factors for post-total knee arthroplasty (TKA) nerve injury, a catastrophic complication with a reported incidence of 0.3%-1.3%. Patients who developed post-TKA nerve injury from 1998 to 2013 were identified, and each was matched with 2 controls. A multivariable logistic regression model was built to calculate odds ratios (ORs). Sixty-five nerve injury cases were identified in 39,990 TKAs (0.16%). Females (OR 3.28, P = 0.003) and patients with history of lumbar pathology (OR 6.12, P = 0.026) were associated with increased risk of nerve injury. Tourniquet pressure < 300 mm Hg and longer duration of anesthesia may also be risk factors. Surgical planning for females and patients with lumbar pathology should be modified to mitigate their higher risk of neurologic complications after TKA. Our finding that lower tourniquet pressure was associated with higher risk of nerve injury was unexpected and requires further investigation. Muscle Nerve 57: 946-950, 2018. © 2017 Wiley Periodicals, Inc.
Sedighi, Mahsa; Haghnegahdar, Ali
2014-09-25
Vitamin D receptors have been identified in the spinal cord, nerve roots, dorsal root ganglia and glial cells, and its genetic polymorphism association with the development of lumbar disc degeneration and herniation has been documented. Metabolic effects of active vitamin D metabolites in the nucleus pulposus and annulus fibrosus cells have been studied. Lumbar disc herniation is a process that involves immune and inflammatory cells and processes that are targets for immune regulatory actions of vitamin D as a neurosteroid hormone. In addition to vitamin D's immune modulatory properties, its receptors have been identified in skeletal muscles. It also affects sensory neurons to modulate pain. In this study, we aim to study the role of vitamin D3 in discogenic pain and related sensory deficits. Additionally, we will address how post-treatment 25-hydroxy vitamin D3 level influences pain and sensory deficits severity. The cut-off value for serum 25-hydroxy vitamin D3 that would be efficacious in improving pain and sensory deficits in lumbar disc herniation will also be studied. We will conduct a randomized, placebo-controlled, double-blind clinical trial. Our study population will include 380 cases with one-level and unilateral lumbar disc herniation with duration of discogenic pain less than 8 weeks. Individuals who do not have any contraindications, will be divided into three groups based on serum 25-hydroxy vitamin D3 level, and each group will be randomized to receive either a single-dose 300,000-IU intramuscular injection of vitamin D3 or placebo. All patients will be under conservative treatment. Pre-treatment and post-treatment assessments will be performed with the McGill Pain Questionnaire and a visual analogue scale. For the 15-day duration of this study, questionnaires will be filled out during telephone interviews every 3 days (a total of five times). The initial and final interviews will be scheduled at our clinic. After 15 days, serum 25-hydroxy vitamin D3 levels will be measured for those who have received vitamin D3 (190 individuals). Iranian Registry for Clinical Trials ID: IRCT2014050317534N1 (trial registration: 5 June 2014).
Pedicle distraction increases intervertebral and spinal canal area in a cadaver and bone model
Hughes, Matthew; Papadakos, Nikolaos; Bishop, Tim; Bernard, Jason
2018-01-01
Introduction: Lumbar spinal stenosis is degenerative narrowing of the spinal canal and/or intervertebral foramen causing compression of the spinal cord and nerve roots. Traditional decompression techniques can often cause significant trauma and vertebral instability. This paper evaluates a method of increasing pedicle length to decompress the spinal and intervertebral foramen, which could be done minimally invasive. Methods: Three Sawbone (Sawbones Europe, Sweden) and 1 cadaveric lumbar spine underwent bilateral pedicle distraction at L4. A pedicle channel was drilled between the superior articular process and transverse process into the vertebral body. The pedicles underwent osteotomy at the midpoint. Screws were inserted bilaterally and fixated distraction of 0 mm, 2 mm, 4 mm and 6 mm. CT images were taken at each level of distraction. Foramen area was measured in the sagittal plane at L3/4. Spinal canal area was measured at L4 in the axial images. The cadaver was used to evaluate safety of osteotomy and soft tissue interactions preventing distraction. Statistical analysis was by student paired t-test and Pearson rank test. Results: Increasing distraction led to greater Spinal canal area. From 4.27 cm2 to 5.72 cm2 (p = 0.002) with 6 mm distraction. A Maximal increase of 34.1%. Vertebral foramen area also increased with increasing pedicle distraction. From 2.43 cm2 to 3.22 cm2 (p = 0.022) with 6 mm distraction. A maximal increase of 32.3%. The cadaver spinal canal increased in area by 21.7%. The vertebral foramen increased in area by 36.2% (left) and 22.6% (right). Discussion: For each increase in pedicle distraction the area of the spinal and vertebral foramen increases. Pedicle distraction could potentially be used to alleviate spinal stenosis and root impingement. A potential osteotomy plane could be at the midpoint of the pedicle with minimal risk to nerve roots and soft tissue restrictions to prevent distraction. PMID:29727270
Pedicle distraction increases intervertebral and spinal canal area in a cadaver and bone model.
Hughes, Matthew; Papadakos, Nikolaos; Bishop, Tim; Bernard, Jason
2018-01-01
Lumbar spinal stenosis is degenerative narrowing of the spinal canal and/or intervertebral foramen causing compression of the spinal cord and nerve roots. Traditional decompression techniques can often cause significant trauma and vertebral instability. This paper evaluates a method of increasing pedicle length to decompress the spinal and intervertebral foramen, which could be done minimally invasive. Three Sawbone (Sawbones Europe, Sweden) and 1 cadaveric lumbar spine underwent bilateral pedicle distraction at L4. A pedicle channel was drilled between the superior articular process and transverse process into the vertebral body. The pedicles underwent osteotomy at the midpoint. Screws were inserted bilaterally and fixated distraction of 0 mm, 2 mm, 4 mm and 6 mm. CT images were taken at each level of distraction. Foramen area was measured in the sagittal plane at L3/4. Spinal canal area was measured at L4 in the axial images. The cadaver was used to evaluate safety of osteotomy and soft tissue interactions preventing distraction. Statistical analysis was by student paired t-test and Pearson rank test. Increasing distraction led to greater Spinal canal area. From 4.27 cm 2 to 5.72 cm 2 (p = 0.002) with 6 mm distraction. A Maximal increase of 34.1%. Vertebral foramen area also increased with increasing pedicle distraction. From 2.43 cm 2 to 3.22 cm 2 (p = 0.022) with 6 mm distraction. A maximal increase of 32.3%. The cadaver spinal canal increased in area by 21.7%. The vertebral foramen increased in area by 36.2% (left) and 22.6% (right). For each increase in pedicle distraction the area of the spinal and vertebral foramen increases. Pedicle distraction could potentially be used to alleviate spinal stenosis and root impingement. A potential osteotomy plane could be at the midpoint of the pedicle with minimal risk to nerve roots and soft tissue restrictions to prevent distraction. © The Authors, published by EDP Sciences, 2018.
Wang, Fei; Xiang, Hongfei; Fischer, Gregory; Liu, Zhen; Dupont, Matthew J; Hogan, Quinn H; Yu, Hongwei
2016-12-01
In dorsal root ganglia (DRG), satellite glial cells (SGCs) tightly ensheathe the somata of primary sensory neurons to form functional sensory units. SGCs are identified by their flattened and irregular morphology and expression of a variety of specific marker proteins. In this report, we present evidence that the 3-hydroxy-3-methylglutaryl coenzyme A synthase isoenzymes 1 and 2 (HMGCS1 and HMGCS2) are abundantly expressed in SGCs. Immunolabeling with the validated antibodies revealed that both HMGCS1 and HMGCS2 are highly colabeled with a selection of SGC markers, including GS, GFAP, K ir 4.1, GLAST1, GDNF, and S100 but not with microglial cell marker Iba1, myelin sheath marker MBP, and neuronal marker β3-tubulin or phosphorylated CaMKII. HMGCS1 but not HMGCS2 immunoreactivity in SGCs is reduced in the fifth lumbar (L5) DRGs that contain axotomized neurons following L5 spinal nerve ligation (SNL) in rats. Western blot showed that HMGCS1 protein level in axotomized L5 DRGs is reduced after SNL to 66±8% at 3 days (p<0.01, n=4 animals in each group) and 58±13% at 28 days (p<0.001, n=9 animals in each group) of its level in control samples, whereas HMGCS2 protein was comparable between injured and control DRGs. These results identify HMGCSs as the alternative markers for SGCs in DRGs. Downregulated HMGCS1 expression in DRGs after spinal nerve injury may reflect a potential role of abnormal sterol metabolism of SGCs in the nerve injured-induced neuropathic pain. Copyright © 2016 Elsevier B.V. All rights reserved.
Gao, Kai-Ming; Lao, Jie; Guan, Wen-Jie; Hu, Jing-Jing
2018-01-01
If a partial contralateral C 7 nerve is transferred to a recipient injured nerve, results are not satisfactory. However, if an entire contralateral C 7 nerve is used to repair two nerves, both recipient nerves show good recovery. These findings seem contradictory, as the above two methods use the same donor nerve, only the cutting method of the contralateral C 7 nerve is different. To verify whether this can actually result in different repair effects, we divided rats with right total brachial plexus injury into three groups. In the entire root group, the entire contralateral C 7 root was transected and transferred to the median nerve of the affected limb. In the posterior division group, only the posterior division of the contralateral C 7 root was transected and transferred to the median nerve. In the entire root + posterior division group, the entire contralateral C 7 root was transected but only the posterior division was transferred to the median nerve. After neurectomy, the median nerve was repaired on the affected side in the three groups. At 8, 12, and 16 weeks postoperatively, electrophysiological examination showed that maximum amplitude, latency, muscle tetanic contraction force, and muscle fiber cross-sectional area of the flexor digitorum superficialis muscle were significantly better in the entire root and entire root + posterior division groups than in the posterior division group. No significant difference was found between the entire root and entire root + posterior division groups. Counts of myelinated axons in the median nerve were greater in the entire root group than in the entire root + posterior division group, which were greater than the posterior division group. We conclude that for the same recipient nerve, harvesting of the entire contralateral C 7 root achieved significantly better recovery than partial harvesting, even if only part of the entire root was used for transfer. This result indicates that the entire root should be used as a donor when transferring contralateral C 7 nerve.
Gao, Kai-ming; Lao, Jie; Guan, Wen-jie; Hu, Jing-jing
2018-01-01
If a partial contralateral C7 nerve is transferred to a recipient injured nerve, results are not satisfactory. However, if an entire contralateral C7 nerve is used to repair two nerves, both recipient nerves show good recovery. These findings seem contradictory, as the above two methods use the same donor nerve, only the cutting method of the contralateral C7 nerve is different. To verify whether this can actually result in different repair effects, we divided rats with right total brachial plexus injury into three groups. In the entire root group, the entire contralateral C7 root was transected and transferred to the median nerve of the affected limb. In the posterior division group, only the posterior division of the contralateral C7 root was transected and transferred to the median nerve. In the entire root + posterior division group, the entire contralateral C7 root was transected but only the posterior division was transferred to the median nerve. After neurectomy, the median nerve was repaired on the affected side in the three groups. At 8, 12, and 16 weeks postoperatively, electrophysiological examination showed that maximum amplitude, latency, muscle tetanic contraction force, and muscle fiber cross-sectional area of the flexor digitorum superficialis muscle were significantly better in the entire root and entire root + posterior division groups than in the posterior division group. No significant difference was found between the entire root and entire root + posterior division groups. Counts of myelinated axons in the median nerve were greater in the entire root group than in the entire root + posterior division group, which were greater than the posterior division group. We conclude that for the same recipient nerve, harvesting of the entire contralateral C7 root achieved significantly better recovery than partial harvesting, even if only part of the entire root was used for transfer. This result indicates that the entire root should be used as a donor when transferring contralateral C7 nerve. PMID:29451212
Bertolotti's syndrome revisited. Transitional vertebrae of the lumbar spine.
Elster, A D
1989-12-01
Bertolotti's syndrome refers to the association of back pain with lumbosacral transitional vertebrae. Such vertebrae were observed in 140 of 2,000 adults with back pain over a 4-year period of study. Each patient had radiographic evaluation of the lumbar spine by plain films as well as a sectional imaging modality (magnetic resonance [MR] or computed tomography [CT]). The overall incidence of structural pathology (eg, spinal stenosis and disc protrusion) detected by CT or MR was not apparently higher in patients with transitional vertebrae, but the distribution of these lesions was significantly different. Disc bulge or herniation, when it occurred, was nearly nine times more common at the interspace immediately above the transitional vertebra than at any other level. Spinal stenosis and nerve root canal stenosis were more common at or near the interspace above the transitional vertebra than at any other level. Degenerative change at the articulation between the transverse process of the transitional vertebra and the pelvis was an uncommon occurrence; when seen there was no significant correlation with the reported side of pain. It is postulated that hypermobility and altered stresses become concentrated in the spine at the level immediately above a lumbar transitional vertebra. Accelerated disc and facet joint degeneration at this level may then result.
Sciatica-like symptoms and the sacroiliac joint: clinical features and differential diagnosis.
Visser, L H; Nijssen, P G N; Tijssen, C C; van Middendorp, J J; Schieving, J
2013-07-01
To compare the clinical features of patients with sacroiliac joint (SIJ)-related sciatica-like symptoms to those with sciatica from nerve root compression and to investigate the necessity to perform radiological imaging in patients with sciatica-like symptoms derived from the SIJ. Patients with pain radiating below the buttocks with a duration of 4 weeks to 1 year were included. After physical and radiological examinations, a diagnosis of SI joint-related pain, pain due to disk herniation, or a combination of these two causes was made. Patients with SIJ-related leg pain (n = 77/186) were significantly more often female, had shorter statue, a shorter duration of symptoms, and had more often pain radiating to the groin and a history of a fall on the buttocks. Muscle weakness, corkscrew phenomenon, finger-floor distance ≥25 cm, lumbar scoliosis, positive Bragard or Kemp sign, and positive leg raising test were more often present when radiologic nerve root compression was present. Although these investigations may help, MRI of the spine is necessary to discriminate between the groups. Sciatica-like symptoms derived from the SIJ can clinically mimic a radiculopathy. We suggest to perform a thorough physical examination of the spine, SI joints, and hips with additional radiological tests to exclude other causes.
A case of disseminated central nervous system sparganosis.
Noiphithak, Raywat; Doungprasert, Gahn
2016-01-01
Sparganosis is a very rare parasitic infection in various organs caused by the larvae of tapeworms called spargana. The larva usually lodges in the central nervous system (CNS) and the orbit. However, lumbar spinal canal involvement, as noted in the present case, is extremely rare. We report a rare case of disseminated CNS sparganosis involving the brain and spinal canal and review the literature. A 54-year-old man presented with progressive low back pain and neurological deficit at the lumbosacral level for 2 months. Imaging indicated arachnoiditis and an abnormal lesion at the L4-5 vertebral level. The patient underwent laminectomy of the L4-5 with lesionectomy and lysis of adhesions between the nerve roots. Microscopic examination indicated sparganum infection. Further brain imaging revealed evidence of chronic inflammation in the left parieto-occipital area without evidence of live parasites. In addition, an ophthalmologist reported a nonactive lesion in the right conjunctiva. The patient recovered well after surgery, although he had residual back pain and bladder dysfunction probably due to severe adhesion of the lumbosacral nerve roots. CNS sparganosis can cause various neurological symptoms similar to those of other CNS infections. A preoperative enzyme-linked immunosorbent assay is helpful for diagnosis, especially in endemic areas. Surgical removal of the worm remains the treatment of choice.
Clinical value of transforaminal epidural steroid injection in lumbar radiculopathy.
Leung, S M; Chau, W W; Law, S W; Fung, K Y
2015-10-01
To identify the diagnostic, therapeutic, and prognostic values of transforaminal epidural steroid injection as interventional rehabilitation for lumbar radiculopathy. Regional hospital, Hong Kong. A total of 232 Chinese patients with lumbar radiculopathy attributed to disc herniation or spinal stenosis received transforaminal epidural steroid injection between 1 January 2007 and 31 December 2011. Transforaminal epidural steroid injection. Patients' immediate response, response duration, proportion of patients requiring surgery, and risk factors affecting the responses to transforaminal epidural steroid injection for lumbar radiculopathy. Of the 232 patients, 218 (94.0%) had a single level of radiculopathy and 14 (6.0%) had multiple levels. L5 was the most commonly affected level. The immediate response rate to transforaminal epidural steroid injection was 80.2% in 186 patients with clinically diagnosed lumbar radiculopathy and magnetic resonance imaging of the lumbar spine suggesting nerve root compression. Of patients with single-level radiculopathy and multiple-level radiculopathy, 175 (80.3%) and 11 (78.6%) expressed an immediate response to transforaminal epidural steroid injection, respectively. The analgesic effect lasted for 1 to <3 weeks in 35 (15.1%) patients, for 3 to 12 weeks in 37 (15.9%) patients, and for more than 12 weeks in 92 (39.7%) patients. Of the 232 patients, 106 (45.7%) were offered surgery, with 65 (61.3%) undergoing operation, and with 42 (64.6%) requiring spinal fusion in addition to decompression surgery. Symptom chronicity was associated with poor immediate response to transforaminal epidural steroid injection, but not with duration of pain reduction. Poor response to transforaminal epidural steroid injection was not associated with a preceding industrial injury. The immediate response to transforaminal epidural steroid injection was approximately 80%. Transforaminal epidural steroid injection is a useful diagnostic, prognostic, and short-term therapeutic tool for lumbar radiculopathy. Although transforaminal epidural steroid injection cannot alter the need for surgery in the long term, it is a reasonably safe procedure to provide short-term pain relief and as a preoperative assessment tool.
A novel rat model of brachial plexus injury with nerve root stumps.
Fang, Jintao; Yang, Jiantao; Yang, Yi; Li, Liang; Qin, Bengang; He, Wenting; Yan, Liwei; Chen, Gang; Tu, Zhehui; Liu, Xiaolin; Gu, Liqiang
2018-02-01
The C5-C6 nerve roots are usually spared from avulsion after brachial plexus injury (BPI) and thus can be used as donors for nerve grafting. To date, there are no appropriate animal models to evaluate spared nerve root stumps. Hence, the aim of this study was to establish and evaluate a rat model with spared nerve root stumps in BPI. In rupture group, the proximal parts of C5-T1 nerve roots were held with the surrounding muscles and the distal parts were pulled by a sudden force after the brachial plexus was fully exposed, and the results were compared with those of sham group. To validate the model, the lengths of C5-T1 spared nerve root stumps were measured and the histologies of the shortest one and the corresponding spinal cord were evaluated. C5 nerve root stump was found to be the shortest. Histology findings demonstrated that the nerve fibers became more irregular and the continuity decreased; numbers and diameters of myelinated axons and thickness of myelin sheaths significantly decreased over time. The survival of motoneurons was reduced, and the death of motoneurons may be related to the apoptotic process. Our model could successfully create BPI model with nerve root stumps by traction, which could simulate injury mechanisms. While other models involve root avulsion or rupturing by distal nerve transection. This model would be suitable for evaluating nerve root stumps and testing new therapeutic strategies for neuroprotection through nerve root stumps in the future. Copyright © 2017. Published by Elsevier B.V.
N-Acetylcysteine Prevents Retrograde Motor Neuron Death after Neonatal Peripheral Nerve Injury.
Catapano, Joseph; Zhang, Jennifer; Scholl, David; Chiang, Cameron; Gordon, Tessa; Borschel, Gregory H
2017-05-01
Neuronal death may be an overlooked and unaddressed component of disability following neonatal nerve injuries, such as obstetric brachial plexus injury. N-acetylcysteine and acetyl-L-carnitine improve survival of neurons after adult nerve injury, but it is unknown whether they improve survival after neonatal injury, when neurons are most susceptible to retrograde neuronal death. The authors' objective was to examine whether N-acetylcysteine or acetyl-L-carnitine treatment improves survival of neonatal motor or sensory neurons in a rat model of neonatal nerve injury. Rat pups received either a sciatic nerve crush or transection injury at postnatal day 3 and were then randomized to receive either intraperitoneal vehicle (5% dextrose), N-acetylcysteine (750 mg/kg), or acetyl-L-carnitine (300 mg/kg) once or twice daily. Four weeks after injury, surviving neurons were retrograde-labeled with 4% Fluoro-Gold. The lumbar spinal cord and L4/L5 dorsal root ganglia were then harvested and sectioned to count surviving motor and sensory neurons. Transection and crush injuries resulted in significant motor and sensory neuron loss, with transection injury resulting in significantly less neuron survival. High-dose N-acetylcysteine (750 mg/kg twice daily) significantly increased motor neuron survival after neonatal sciatic nerve crush and transection injury. Neither N-acetylcysteine nor acetyl-L-carnitine treatment improved sensory neuron survival. Proximal neonatal nerve injuries, such as obstetric brachial plexus injury, produce significant retrograde neuronal death after injury. High-dose N-acetylcysteine significantly increases motor neuron survival, which may improve functional outcomes after obstetrical brachial plexus injury.
McCarthy, Carly J; Tomasella, Eugenia; Malet, Mariana; Seroogy, Kim B; Hökfelt, Tomas; Villar, Marcelo J; Gebhart, G F; Brumovsky, Pablo R
2016-05-01
Using immunohistochemical techniques, we characterized changes in the expression of several neurochemical markers in lumbar 4-sacral 2 (L4-S2) dorsal root ganglion (DRG) neuron profiles (NPs) and the spinal cord of BALB/c mice after axotomy of the L6 and S1 spinal nerves, major tributaries of the pelvic (targeting pelvic visceral organs) and pudendal (targeting perineum and genitalia) nerves. Sham animals were included. Expression of cyclic AMP-dependent transcription factor 3 (ATF3), calcitonin gene-related peptide (CGRP), transient receptor potential cation channel subfamily V, member 1 (TRPV1), tyrosine hydroxylase (TH) and vesicular glutamate transporters (VGLUT) types 1 and -2 was analysed seven days after injury. L6-S1 axotomy induced dramatic de novo expression of ATF3 in many L6-S1 DRG NPs, and parallel significant downregulations in the percentage of CGRP-, TRPV1-, TH- and VGLUT2-immunoreactive (IR) DRG NPs, as compared to their expression in uninjured DRGs (contralateral L6-S1-AXO; sham mice); VGLUT1 expression remained unaltered. Sham L6-S1 DRGs only showed a small ipsilateral increase in ATF3-IR NPs (other markers were unchanged). L6-S1-AXO induced de novo expression of ATF3 in several lumbosacral spinal cord motoneurons and parasympathetic preganglionic neurons; in sham mice the effect was limited to a few motoneurons. Finally, a moderate decrease in CGRP- and TRPV1-like-immunoreactivities was observed in the ipsilateral superficial dorsal horn neuropil. In conclusion, injury of a mixed visceral/non-visceral nerve leads to considerable neurochemical alterations in DRGs matched, to some extent, in the spinal cord. Changes in these and potentially other nociception-related molecules could contribute to pain due to injury of nerves in the abdominopelvic cavity.
Danner, Simon M.; Hofstoetter, Ursula S.; Ladenbauer, Josef; Rattay, Frank; Minassian, Karen
2014-01-01
Stimulation of different spinal cord segments in humans is a widely developed clinical practice for modification of pain, altered sensation and movement. The human lumbar cord has become a target for modification of motor control by epidural and more recently by transcutaneous spinal cord stimulation. Posterior columns of the lumbar spinal cord represent a vertical system of axons and when activated can add other inputs to the motor control of the spinal cord than stimulated posterior roots. We used a detailed three-dimensional volume conductor model of the torso and the McIntyre-Richard-Grill axon model to calculate the thresholds of axons within the posterior columns in response to transcutaneous lumbar spinal cord stimulation. Superficially located large diameter posterior column fibers with multiple collaterals have a threshold of 45.4 V, three times higher than posterior root fibers (14.1 V). With the stimulation strength needed to activate posterior column axons, posterior root fibers of large and small diameters as well as anterior root fibers are co-activated. The reported results inform on these threshold differences, when stimulation is applied to the posterior structures of the lumbar cord at intensities above the threshold of large-diameter posterior root fibers. PMID:21401670
Watkins, Robert G; Hanna, Robert; Chang, David; Watkins, Robert G
2014-07-01
Retrospective radiographic analysis. To determine which lumbar interbody technique is most effective for restoring lordosis, increasing disk height, and reducing spondylolisthesis. Lumbar interbody fusions are performed in hopes of increasing fusion potential, correcting deformity, and indirectly decompressing nerve roots. No published study has directly compared anterior, lateral, and transforaminal lumber interbody fusions in terms of ability to restore lordosis, increase disk height, and reduce spondylolisthesis. Lumbar interbody fusion techniques were retrospectively compared in terms of improvement of lordosis, disk height, and spondylolisthesis between preoperative and follow-up lateral radiographs. A total of 220 consecutive patients with 309 operative levels were compared by surgery type: anterior (184 levels), lateral (86 levels), and transforaminal (39 levels). Average follow-up was 19.2 months (range, 1-56 mo), with no statistical difference between the groups. Intragroup analysis showed that the anterior (4.5 degrees) and lateral (2.2 degrees) groups significantly improved lordosis from preoperative to follow-up, whereas the transforaminal (0.8 degrees) group did not. Intergroup analysis showed that the anterior group significantly improved lordosis more than both the lateral and transforaminal groups. The anterior (2.2 mm) and lateral (2.0 mm) groups both significantly improved disk height more than the transforaminal (0.5 mm) group. All 3 groups significantly reduced spondylolisthesis, with no difference between the groups. After lumbar interbody fusion, improvement of lordosis was significant for both the anterior and lateral groups, but not the transforaminal group. Intergroup analysis showed the anterior group had significantly improved lordosis compared to both the other groups. The anterior and lateral groups had significantly increased disk height compared to the transforaminal group. All the 3 groups significantly reduced spondylolisthesis, with no difference between the groups.
Dong, Dayong; Xue, Jinbiao; Zheng, Xiaoting
2018-01-01
Lumbar intervertebral disc herniation is a kind of syndrome caused by stimulation or pressure of nerve root and cauda equina due to intervertebral disc disorder, fibrous ring rupture, and pulpiform nucleus protrusion. Application of traditional Chinese medicine (TCM) including acupuncture therapy and cupping therapy is unique and effective treatment for lumbar intervertebral disc herniation in China. Hence, we try to investigate the combined clinical efficacy of modified Taiyi miraculous moxa roll and cupping therapy on patients with lumbar intervertebral disc herniation. Seventy patients were randomly assigned into combined treatment group (n = 35) and control group (n = 35). The treatment group received combined therapy of modified Taiyi miraculous moxa roll and cupping therapy, while control group received acupuncture therapy alone. Diagnostic criteria of TCM syndrome, Japanese Orthopedic Association (JOA) score, and simplified McGill pain questionnaire (MPQ) were used to evaluate the therapy. 11 and 13 out of 35 subjects in the combined treatment group had improvement > 75% and between 50% and 75%, respectively. The corresponding number was 2 and 22 of 35 subjects in the acupuncture group. There was significant difference in the clinical efficacy between the treatment group and control group (P = 0.036). The scores of JOA and MPQ detected in the patients of the two groups (P < 0.05) also showed statistically significant differences. Moreover, no serious adverse events occurred in the patients, who received cupping therapy or acupuncture. The combined or alone therapies can effectively improve the treatment efficacy in the patients with lumbar intervertebral disc herniation, while the combined therapies show more comparative effectiveness. Furthermore, the combined therapies are potentially safe and cost-effective and also benefit the improvement of short-term pain. Therefore, the combined therapies of the two ancient TCM deserve further clinical applications. PMID:29785195
Cai, Chunyue; Gong, Yuefeng; Dong, Dayong; Xue, Jinbiao; Zheng, Xiaoting; Zhong, Zhangfeng; Shao, Jialong; Mi, Daguo
2018-01-01
Lumbar intervertebral disc herniation is a kind of syndrome caused by stimulation or pressure of nerve root and cauda equina due to intervertebral disc disorder, fibrous ring rupture, and pulpiform nucleus protrusion. Application of traditional Chinese medicine (TCM) including acupuncture therapy and cupping therapy is unique and effective treatment for lumbar intervertebral disc herniation in China. Hence, we try to investigate the combined clinical efficacy of modified Taiyi miraculous moxa roll and cupping therapy on patients with lumbar intervertebral disc herniation. Seventy patients were randomly assigned into combined treatment group ( n = 35) and control group ( n = 35). The treatment group received combined therapy of modified Taiyi miraculous moxa roll and cupping therapy, while control group received acupuncture therapy alone. Diagnostic criteria of TCM syndrome, Japanese Orthopedic Association (JOA) score, and simplified McGill pain questionnaire (MPQ) were used to evaluate the therapy. 11 and 13 out of 35 subjects in the combined treatment group had improvement > 75% and between 50% and 75%, respectively. The corresponding number was 2 and 22 of 35 subjects in the acupuncture group. There was significant difference in the clinical efficacy between the treatment group and control group ( P = 0.036). The scores of JOA and MPQ detected in the patients of the two groups ( P < 0.05) also showed statistically significant differences. Moreover, no serious adverse events occurred in the patients, who received cupping therapy or acupuncture. The combined or alone therapies can effectively improve the treatment efficacy in the patients with lumbar intervertebral disc herniation, while the combined therapies show more comparative effectiveness. Furthermore, the combined therapies are potentially safe and cost-effective and also benefit the improvement of short-term pain. Therefore, the combined therapies of the two ancient TCM deserve further clinical applications.
Intrathecal bone marrow stromal cells inhibit neuropathic pain via TGF-β secretion
Chen, Gang; Park, Chul-Kyu; Xie, Rou-Gang; Ji, Ru-Rong
2015-01-01
Neuropathic pain remains a pressing clinical problem. Here, we demonstrate that a local, intrathecal (i.t.) injection of bone marrow stromal cells (BMSCs) following lumbar puncture alleviates early- and late-phase neuropathic pain symptoms, such as allodynia and hyperalgesia, for several weeks in murine chronic constriction injury (CCI) and spared nerve injury models. Moreover, i.t. BMSCs reduced CCI-induced spontaneous pain and axonal injury of dorsal root ganglion (DRG) neurons and inhibited CCI-evoked neuroinflammation in DRGs and spinal cord tissues. BMSCs secreted TGF-β1 into the cerebrospinal fluid, and neutralization of TGF-β1, but not IL-10, reversed the analgesic effect of BMSCs. Conversely, i.t. administration of TGF-β1 potently inhibited neuropathic pain. TGF-β1 acted as a powerful neuromodulator and rapidly (within minutes) suppressed CCI-evoked spinal synaptic plasticity and DRG neuronal hyperexcitability via TGF-β receptor 1–mediated noncanonical signaling. Finally, nerve injury upregulated CXCL12 in lumbar L4–L6 DRGs, and this upregulation caused migration of i.t.-injected BMSCs to DRGs through the CXCL12 receptor CXCR4, which was expressed on BMSCs. BMSCs that migrated from the injection site survived at the border of DRGs for more than 2 months. Our findings support a paracrine mechanism by which i.t. BMSCs target CXCL12-producing DRGs to elicit neuroprotection and sustained neuropathic pain relief via TGF-β1 secretion. PMID:26168219
Eleraky, Mohammed A; Setzer, Matthias; Papanastassiou, Ioannis D; Baaj, Ali A; Tran, Nam D; Katsares, Kiesha M; Vrionis, Frank D
2010-05-01
The vascular supply of the thoracic spinal cord depends on the thoracolumbar segmental arteries. Because of the small size and ventral course of these arteries in relation to the dorsal root ganglion and ventral root, they cannot be reliably identified during surgery by anatomic or morphologic criteria. Sacrificing them will most likely result in paraplegia. The goal of this study was to evaluate a novel method of intraoperative testing of a nerve root's contribution to the blood supply of the thoracic spinal cord. This is a clinical retrospective study of 49 patients diagnosed with thoracic spine tumors. Temporary nerve root clipping combined with motor-evoked potential (MEP) and somatosensory-evoked potential (SSEP) monitoring was performed; additionally, postoperative clinical evaluation was done and reported in all cases. All cases were monitored by SSEP and MEPs. The nerve root to be sacrificed was temporarily clipped using standard aneurysm clips, and SSEP/MEP were assessed before and after clipping. Four nerve roots were sacrificed in four cases, three nerve roots in eight cases, and two nerve roots in 22 cases. Nerve roots were sacrificed bilaterally in 12 cases. Most patients (47/49) had no changes in MEP/SSEP and had no neurological deficit postoperatively. One case of a spinal sarcoma demonstrated changes in MEP after temporary clipping of the left T11 nerve root. The nerve was not sacrificed, and the patient was neurologically intact after surgery. In another case of a sarcoma, MEPs changed in the lower limbs after ligation of left T9 nerve root. It was felt that it was a global event because of anesthesia. Postoperatively, the patient had complete paraplegia but recovered almost completely after 6 months. Temporary nerve root clipping combined with MEP and SSEP monitoring may enhance the impact of neuromonitoring in the intraoperative management of patients with thoracic spine tumors and favorably influence neurological outcome. Copyright 2010 Elsevier Inc. All rights reserved.
Ruven, Carolin; Li, Wen; Li, Heng; Wong, Wai-Man; Wu, Wutian
2017-01-01
Injuries to peripheral nerves are frequent in serious traumas and spinal cord injuries. In addition to surgical approaches, other interventions, such as cell transplantation, should be considered to keep the muscles in good condition until the axons regenerate. In this study, E14.5 rat embryonic spinal cord fetal cells and cultured neural progenitor cells from different spinal cord segments were injected into transected musculocutaneous nerve of 200–300 g female Sprague Dawley (SD) rats, and atrophy in biceps brachii was assessed. Both kinds of cells were able to survive, extend their axons towards the muscle and form neuromuscular junctions that were functional in electromyographic studies. As a result, muscle endplates were preserved and atrophy was reduced. Furthermore, we observed that the fetal cells had a better effect in reducing the muscle atrophy compared to the pure neural progenitor cells, whereas lumbar cells were more beneficial compared to thoracic and cervical cells. In addition, fetal lumbar cells were used to supplement six weeks delayed surgical repair after the nerve transection. Cell transplantation helped to preserve the muscle endplates, which in turn lead to earlier functional recovery seen in behavioral test and electromyography. In conclusion, we were able to show that embryonic spinal cord derived cells, especially the lumbar fetal cells, are beneficial in the treatment of peripheral nerve injuries due to their ability to prevent the muscle atrophy. PMID:28264437
Isner-Horobeti, Marie-Eve; Dufour, Stéphane Pascal; Schaeffer, Michael; Sauleau, Erik; Vautravers, Philippe; Lecocq, Jehan; Dupeyron, Arnaud
This study compared the effects of high-force versus low-force lumbar traction in the treatment of acute lumbar sciatica secondary to disc herniation. A randomized double blind trial was performed, and 17 subjects with acute lumbar sciatica secondary to disc herniation were assigned to high-force traction at 50% body weight (BW; LT50, n = 8) or low force traction at 10% BW (LT10, n = 9) for 10 sessions in 2 weeks. Radicular pain (visual analogue scale [VAS]), lumbo-pelvic-hip complex motion (finger-to-toe test), lumbar-spine mobility (Schöber-Macrae test), nerve root compression (straight-leg-raising test), disability (EIFEL score), drug consumption, and overall evaluation of each patient were measured at days 0, 7, 1, 4, and 28. Significant (P < .05) improvements were observed in the LT50 and LT10 groups, respectively, between day 0 and day 14 (end of treatment) for VAS (-44% and -36%), EIFEL score (-43% and -28%) and overall patient evaluation (+3.1 and +2.0 points). At that time, LT50 specifically improved in the finger-to-toe test (-42%), the straight-leg-raising test (+58), and drug consumption (-50%). No significant interaction effect (group-by-time) was revealed, and the effect of traction treatment was independent of the level of medication. During the 2-week follow-up at day 28, only the LT10 group improved (P < .05) in VAS (-52%) and EIFEL scores (-46%). During this period, no interaction effect (group-by-time) was identified, and the observed responses were independent of the level of medication. For this preliminary study, patients with acute lumbar sciatica secondary to disc herniation who received 2 weeks of lumbar traction reported reduced radicular pain and functional impairment and improved well-being regardless of the traction force group to which they were assigned. The effects of the traction treatment were independent of the initial level of medication and appeared to be maintained at the 2-week follow-up. Copyright © 2016. Published by Elsevier Inc.
Irazuzta, Jose E; Brown, Martha E; Akhtar, Javed
2016-01-01
We determined whether the bedside assessment of the optic nerve sheath diameter could identify elevated intracranial pressure in individuals with suspected idiopathic intracranial hypertension. This was a single-center, prospective, rater-blinded study performed in a freestanding pediatric teaching hospital. Patients aged 12 to 18 years scheduled for an elective lumbar puncture with the suspicion of idiopathic intracranial hypertension were eligible to participate. Optic nerve sheath diameter was measured via ultrasonography before performing a sedated lumbar puncture for measuring cerebrospinal fluid opening pressure. Abnormal measurements were predefined as optic nerve sheath diameter ≥4.5 mm and a cerebrospinal fluid opening pressure greater than 20 cmH2O. Thirteen patients participated in the study, 10 of whom had elevated intracranial pressure. Optic nerve sheath diameter was able to predict or rule out elevated intracranial pressure in all patients. Noninvasive assessment of the optic nerve sheath diameter could help to identify patients with elevated intracranial pressure when idiopathic intracranial hypertension is suspected. Copyright © 2016 Elsevier Inc. All rights reserved.
Stienen, Martin N; Joswig, Holger; Chau, Ivan; Neidert, Marian C; Bellut, David; Wälchli, Thomas; Schaller, Karl; Gautschi, Oliver P
2018-03-01
OBJECTIVE The purpose of this study was to investigate whether the intraoperative application of an epidural steroid (ES) on the decompressed nerve root improves short- and midterm subjective and objective clinical outcomes after lumbar microdiscectomy. METHODS This study was a retrospective analysis of a 2-center database including consecutive cases in which patients underwent lumbar microdiscectomy. All patients who received ES application (40 mg triamcinolone, ES group) were matched by age and sex to patients who had not received ES application (control group). Objective functional impairment (OFI) was determined using age- and sex-adjusted T-scores of the Timed Up and Go (TUG) test. Back and leg pain (visual analog scale), functional impairment (Oswestry Disability Index [ODI], Roland-Morris Disability Index [RMDI], and health-related quality of life (hrQoL; 12-Item Short Form Health Survey [SF-12] physical component summary [PSC] score and EuroQol [EQ-5D index]) were measured at baseline, on postoperative day 3, and at postoperative week 6. RESULTS Fifty-three patients who received ES application were matched with 101 controls. There were no baseline demographic or disease-specific differences between the study groups, and preoperative pain, functional impairment, and hrQoL were similar. On postoperative day 3, the ES group had less disability on the RMDI (mean 7.4 vs 10.3, p = 0.003) and higher hrQoL as determined by the SF-12 PCS (36.5 vs 32.7, p = 0.004). At week 6, the ES group had less disability on the RMDI (3.6 vs 5.7, p = 0.050) and on the ODI by trend (17.0 vs 24.4, p = 0.056); better hrQoL, determined by the SF-12 PCS (44.3 vs 39.9, p = 0.018); and lower OFI (TUG test T-score 100.5 vs 110.2, p = 0.005). The week 6 responder status based on the minimum clinically important difference (MCID) was similar in the ES and control groups for each metric. The rates and severity of complications were similar, with a 3.8% and 4.0% reoperation rate in the ES group and control group, respectively (p = 0.272). There was a tendency for shorter hospitalization in the ES group (5.0 vs 5.8 days, p = 0.066). CONCLUSIONS Intraoperative ES application on the decompressed nerve root is an effective adjunct treatment that may lower subjective and objective functional impairment and increase hrQoL in the short and intermediate term after lumbar microdiscectomy. However, group differences were lower than the commonly accepted MCIDs for each metric, indicating that the effect size of the benefit is limited. ■ CLASSIFICATION OF EVIDENCE Type of question: therapeutic; study design: retrospective cohort trial; evidence: Class II.
Wilmshurst, J M; Thomas, N H; Robinson, R O; Bingham, J B; Pohl, K R
2001-06-01
This study assesses the frequency of lower limb and back pain in children with Guillain-Barré syndrome and reviews the magnetic resonance imaging results of those undergoing spinal imaging. Over an 8-y period, nine children presented with various combinations of severe back pain, leg pains, impairment of gait and bladder dysfunction. Guillain-Barré syndrome was confirmed on clinical examination and peripheral electrophysiology (n = 8). Magnetic resonance imaging in four patients, following contrast injection, showed enhancement of the cauda equine and, additionally, of the cervical nerve roots in one of the patients. A further patient, who was not scanned with contrast, had abnormal thickening of the lumbar roots. Carbamazepine and steroids were effectively used for analgesia in three cases. All the patients recovered. Guillain-Barré syndrome should be considered in the differential diagnosis of children presenting with back and/or leg pain. Early diagnosis ensures prompt monitoring for autonomic dysfunction and respiratory compromise.
Deml, Moritz C; Buhr, Michael; Wimmer, Matthias D; Pflugmacher, Robert; Riedel, Rainer; Rommelspacher, Yorck; Kabir, Koroush
2015-07-01
Infiltration procedures are a common treatment of lumbar radiculopathy. There is a wide variety of infiltration techniques without an established gold standard. Therefore, we compared the effectiveness of CT-guided transforaminal infiltrations versus anatomical landmark-guided transforaminal infiltrations at the lower lumbar spine in case of acute sciatica at L3-L5. A retrospective chart review was conducted of 107 outpatients treated between 2009 and 2011. All patients were diagnosed with lumbar radiculopathic pain secondary to disc herniation in L3-L5. A total of 52 patients received CT-guided transforaminal infiltrations; 55 patients received non-imaging-guided nerve root infiltrations. The therapeutic success was evaluated regarding number of physician contacts, duration of treatment, type of analgesics used and loss of work days. Defined endpoint was surgery at the lower lumbar spine. In the CT group, patients needed significantly less oral analgesics (p < 0.001). Overall treatment duration and physician contacts were significantly lower in the CT group (p < 0.001 and 0.002) either. In the CT group, patients lost significant fewer work days due to incapacity (p < 0.001). Surgery had to be performed in 18.2 % of the non-imaging group patients (CT group: 1.9 %; p = 0.008). This study shows that CT-guided periradicular infiltration in lumbosciatica caused by intervertebral disc herniation is significantly superior to non-imaging, anatomical landmark-guided infiltration, regarding the parameters investigated. The high number of treatment failures in the non-imaging group underlines the inferiority of this treatment concept.
Loriaux, Daniel B; Adogwa, Owoicho; Gottfried, Oren N
2015-07-01
A true adult spinal lipoma is an exceedingly rare cause of lumbar compression neuropathy. Only 5 cases of true extradural intraforaminal lipomas have been documented in the medical literature. The diagnostic criteria and treatment guidelines for this specific lipoma have yet to be established. This report features 3 histologically confirmed cases of extradural intraforaminal spinal lipomas that recently presented to the authors' practice. In addition, the literature was surveyed to include the 5 previously reported cases of true adult extradural intraforaminal spinal lipomas. The consistency in presentation, response to surgical intervention, and postoperative recovery in these 8 cases supports surgical intervention at the time of diagnosis. The authors' findings support elevated clinical suspicion, efficient diagnosis based on MRI, and early surgical intervention for this rare pathological entity. All cases presented in this report were symptomatic and occurred in the absence of other significant pathologies such as general spinal epidural lipomatosis, intradural lesions, tethering, or severe degenerative stenosis or herniated discs. The clinical, neuroradiological, and histological findings characteristic of a true adult extradural intraforaminal lipoma are emphasized to differentiate this lesion from the more common etiologies for lumbar compression neuropathy. Heightened awareness and clinical suspicion for the focal, foraminal spinal lipoma as a cause of radiculopathy symptoms will enable more efficient diagnosis and treatment.
Driving Safety after Spinal Surgery: A Systematic Review
Alkhalili, Kenan; Hannallah, Jack; Ibeche, Bashar; Bajammal, Sohail; Baco, Abdul Moeen
2017-01-01
This study aimed to assess driving reaction times (DRTs) after spinal surgery to establish a timeframe for safe resumption of driving by the patient postoperatively. The MEDLINE and Google Scholar databases were analyzed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) Statement for clinical studies that investigated changes in DRTs following cervical and lumbar spinal surgery. Changes in DRTs and patients' clinical presentation, pathology, anatomical level affected, number of spinal levels involved, type of intervention, pain level, and driving skills were assessed. The literature search identified 12 studies that investigated postoperative DRTs. Six studies met the inclusion criteria; five studies assessed changes in DRT after lumbar spine surgery and two studies after cervical spina surgery. The spinal procedures were selective nerve root block, anterior cervical discectomy and fusion, and lumbar fusion and/ordecompression. DRTs exhibited variable responses to spinal surgery and depended on the patients' clinical presentation, spinal level involved, and type of procedure performed. The evidence regarding the patients' ability to resume safe driving after spinal surgery is scarce. Normalization of DRT or a return of DRT to pre-spinal intervention level is a widely accepted indicator for safe driving, with variable levels of statistical significance owing to multiple confounding factors. Considerations of the type of spinal intervention, pain level, opioid consumption, and cognitive function should be factored in the assessment of a patient's ability to safely resume driving. PMID:28443178
Driving Safety after Spinal Surgery: A Systematic Review.
Alhammoud, Abduljabbar; Alkhalili, Kenan; Hannallah, Jack; Ibeche, Bashar; Bajammal, Sohail; Baco, Abdul Moeen
2017-04-01
This study aimed to assess driving reaction times (DRTs) after spinal surgery to establish a timeframe for safe resumption of driving by the patient postoperatively. The MEDLINE and Google Scholar databases were analyzed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) Statement for clinical studies that investigated changes in DRTs following cervical and lumbar spinal surgery. Changes in DRTs and patients' clinical presentation, pathology, anatomical level affected, number of spinal levels involved, type of intervention, pain level, and driving skills were assessed. The literature search identified 12 studies that investigated postoperative DRTs. Six studies met the inclusion criteria; five studies assessed changes in DRT after lumbar spine surgery and two studies after cervical spina surgery. The spinal procedures were selective nerve root block, anterior cervical discectomy and fusion, and lumbar fusion and/ordecompression. DRTs exhibited variable responses to spinal surgery and depended on the patients' clinical presentation, spinal level involved, and type of procedure performed. The evidence regarding the patients' ability to resume safe driving after spinal surgery is scarce. Normalization of DRT or a return of DRT to pre-spinal intervention level is a widely accepted indicator for safe driving, with variable levels of statistical significance owing to multiple confounding factors. Considerations of the type of spinal intervention, pain level, opioid consumption, and cognitive function should be factored in the assessment of a patient's ability to safely resume driving.
Intradural disc herniation: radiographic findings and surgical results with a literature review.
Kobayashi, Kazuyoshi; Imagama, Shiro; Matsubara, Yuji; Yoshihara, Hisatake; Hirano, Kenichi; Ito, Zenya; Ando, Kei; Ukai, Junichi; Muramoto, Akio; Shinjo, Ryuichi; Matsumoto, Tomohiro; Nakashima, Hiroaki; Ishiguro, Naoki
2014-10-01
To report a series of four cases of intradural disc herniation (IDH) with a review of the literature. IDH is a rare type of disc herniation. Preoperative diagnosis is difficult and IDH is only confirmed during surgery in most cases. Here, we describe four cases of IDH, including three with lumbar hernia and one with thoracic hernia. A retrospective chart review, surgical database query, and review of radiology reports are presented for each case, along with a literature review of IDH. Two of the four patients had a history of surgery at the same spinal level. Ring enhancement in gadolinium-enhanced MRI, an air image in computed tomography, and complete block in myelography were observed in the series. Surgery was performed with a transdural approach in all patients. One patient underwent transforaminal lumbar interbody fusion after postoperative recurrence. Three patients with lumbar involvement had nerve root symptoms preoperatively, but showed symptomatic improvement in the early postoperative period. In contrast, the patient with thoracic involvement had preoperative muscle weakness due to myelopathy symptoms, and had residual symptoms after surgery. IDH is a rare disease and characteristic imaging findings can be useful for diagnosis. Intraoperative findings lead to a definitive diagnosis in many cases and recognition of the pathological characteristics of IDH is important. Copyright © 2014 Elsevier B.V. All rights reserved.
Kelekis, Alexios; Filippiadis, Dimitrios K; Velonakis, Georgios; Martin, Jean-Baptist; Oikonomopoulos, Nikolaos; Brountzos, Elias; Kelekis, Nikolaos
2014-01-01
Transforaminal infiltrations in the cervical spine are governed by a higher rate of vascular puncture than in the lumbar spine. The purpose of our study is to assess the safety and efficacy of percutaneous, fluoroscopically guided nerve root infiltrations in cases of cervical radiculopathy. An indirect postero-lateral approach was performed through the ipsilateral facet joint. During the last 2 years, 25 patients experiencing cervical radiculopathy underwent percutaneous, fluoroscopically guided nerve root infiltrations by means of an indirect postero-lateral approach through the ipsilateral facet joint. The intra-articular position of the needle (22-gauge spinal needle) was fluoroscopically verified after injection of a small amount of contrast medium which also verified dispersion of the contrast medium periradicularly and in the epidural space. Then a mixture of long-acting glucocorticosteroid diluted in normal saline (1.5/1 mL) was injected intra-articularly. A questionnaire with a Numeric Visual Scale (NVS) scale helped assess pain relief, life quality, and mobility improvement. A mean of 2.3 sessions was performed in the patients of our study. In the vast majority of our patients 19/25 (76%), the second infiltration was performed within 7-10 days of the first one. Comparing the pain scores prior (mean value 8.80 ± 1.080 NVS units) and after (mean value 1.84 ± 1.405 NVS units), there was a mean decrease of 6.96 ± 1.695 NVS units [median value 7 NVS units (P < 0.001) in terms of pain reduction, effect upon mobility, and life quality. There were no clinically significant complications noted in our study. Fluoroscopically guided transforaminal infiltrations through the ipsilateral facet joint seem to be a feasible, efficacious, and safe approach for the treatment of patients with cervical radiculopathy. This approach facilitates needle placement and minimizes risk of complications.
Ma, Cheng; Yu, Li; Yan, Li-ping
2010-12-01
To observe the effect of electroacupuncture (EA) on the expression of ionotropic glutamate receptor (iGluR) subunits and their mRNAs in the lumbar segments of spinal cord in rats with neuropathic pain, so as to explore its underlying mechanism in relieving spinal hyperalgesia. Thirty SD rats were randomly divided into control, model, and EA groups, with 10 rats in each. The spared nerve injury (SNI) model was established by ligature of the sural nerve after cutting off the common peroneal nerve and anterior tibial nerve. EA (2 Hz, 1 mA) was applied to "Huantiao" (GB 30) and "Weizhong" (BL 40) for 30 min, once daily for 7 days. Mechanical pain threshold was detected before and after modeling and before and after EA treatment. The expression levels of N-methyl-d-aspartic acid (NMDA) receptor subunits NR1 and NR 2 B,and AMPA receptor subunit GluR 1 of iGluR and their genes were assayed by Western blot and reverse transcription polymerase chain reaction (RT-PCR) separately. In comparison with control group, the mechanical pain thresholds were decreased significantly on day 2, 7 and day 14 following modeling in the model group (P < 0.05, P < 0.01). While compared with the model group, the pain threshold was increased considerably on day 14 in the EA group (P < 0.01). Compared with the control group, the expression levels of lumbar spinal cord NR 2 B and NR 2 B mRNA in the model group were increased significantly (P < 0.05), and those of lumbar spinal cord NR 1 and NR 1 mRNA, GluR 1 and GluR 1 mRNA in the model group increased slightly (P > 0.05). In comparison with the model group, the expression levels of lumbar spinal cord NR 2 B and NR 2 B mRNA in the EA group were downregulated remarkably (P < 0.05), and those of lumbar spinal cord NR 1 and NR 1 mRNA, GluR 1 and GluR 1 mRNA in the EA group down-regulated slightly (P > 0.05). EA can significantly suppress pain reaction in rats with neuropathic pain probably through down-regulating the expression of lumbar spinal cord NR 2 B protein and NR 2 B mRNA.
Changes in lumbosacral spinal nerve roots on diffusion tensor imaging in spinal stenosis.
Hou, Zhong-Jun; Huang, Yong; Fan, Zi-Wen; Li, Xin-Chun; Cao, Bing-Yi
2015-11-01
Lumbosacral degenerative disc disease is a common cause of lower back and leg pain. Conventional T1-weighted imaging (T1WI) and T2-weighted imaging (T2WI) scans are commonly used to image spinal cord degeneration. However, these modalities are unable to image the entire lumbosacral spinal nerve roots. Thus, in the present study, we assessed the potential of diffusion tensor imaging (DTI) for quantitative assessment of compressed lumbosacral spinal nerve roots. Subjects were 20 young healthy volunteers and 31 patients with lumbosacral stenosis. T2WI showed that the residual dural sac area was less than two-thirds that of the corresponding normal area in patients from L3 to S1 stenosis. On T1WI and T2WI, 74 lumbosacral spinal nerve roots from 31 patients showed compression changes. DTI showed thinning and distortion in 36 lumbosacral spinal nerve roots (49%) and abruption in 17 lumbosacral spinal nerve roots (23%). Moreover, fractional anisotropy values were reduced in the lumbosacral spinal nerve roots of patients with lumbosacral stenosis. These findings suggest that DTI can objectively and quantitatively evaluate the severity of lumbosacral spinal nerve root compression.
The Characterization of AT1 Expression in the Dorsal Root Ganglia After Chronic Constriction Injury.
Oroszova, Zuzana; Hricova, Ludmila; Stropkovska, Andrea; Lukacova, Nadezda; Pavel, Jaroslav
2017-04-01
To clarify the role of Angiotensin II in the regulation of sensory signaling, we characterized the AT 1 expression in neuronal subpopulation of lower lumbar dorsal root ganglia under normal conditions and its alteration in neuropathic pain model. The characterization of AT 1 expression was done under control and after the chronic constriction injury induced by four loose ligatures of the sciatic nerve representing the model of posttraumatic painful peripheral neuropathy. Major Angiotensin II receptor type was expressed in approximately 43 % of small-sized and 62 % of large-sized neurons in control. The AT 1 overexpression after sciatic nerve ligation lasting 7 days was detected predominantly in small-sized AT 1 immunoreactive neurons (about 38 % increase). Chronic constriction injury caused a statistically marked increase in number of the small-sized peptidergic (CGRP immunoreactive) neuronal subpopulation expressing AT 1 (about 64 %). The subpopulations of AT 1 -immunoreactive and nonpeptide-containing primary sensory neurons revealed by IB4 binding, tyrosine hydroxylase- and parvalbumin-immunoreactive neurons were not markedly changed. Our results indicate that: (1) the AT 1 overexpression after the chronic constriction injury is an important factor in Angiotensin II-potentiated pain perception; (2) Angiotensin II is involved in pathological mechanisms of neuropathic pain and this effect can be mediated perhaps in combination with other neuropeptides synthesized in the primary sensory neurons.
Manchikanti, Laxmaiah; Boswell, Mark V; Singh, Vijay; Derby, Richard; Fellows, Bert; Falco, Frank J E; Datta, Sukdeb; Smith, Howard S; Hirsch, Joshua A
2009-01-01
Understanding the neurophysiological basis of chronic spinal pain and diagnostic interventional techniques is crucial in the proper diagnosis and management of chronic spinal pain. Central to the understanding of the structural basis of chronic spinal pain is the provision of physical diagnosis and validation of patient symptomatology. It has been shown that history, physical examination, imaging, and nerve conduction studies in non-radicular or discogenic pain are unable to diagnose the precise cause in 85% of the patients. In contrast, controlled diagnostic blocks have been shown to determine the cause of pain in as many as 85% of the patients. To provide evidence-based clinical practice guidelines for diagnostic interventional techniques. Best evidence synthesis. Strength of evidence was assessed by the U.S. Preventive Services Task Force (USPSTF) criteria utilizing 5 levels of evidence ranging from Level I to III with 3 subcategories in Level II. Diagnostic criteria established by systematic reviews were utilized with controlled diagnostic blocks. Diagnostic criteria included at least 80% pain relief with controlled local anesthetic blocks with the ability to perform multiple maneuvers which were painful prior to the diagnostic blocks for facet joint and sacroiliac joint blocks, whereas for provocation discography, the criteria included concordant pain upon stimulation of the target disc with 2 adjacent discs producing no pain at all. The indicated level of evidence for diagnostic lumbar, cervical, and thoracic facet joint nerve blocks is Level I or II-1. The indicated evidence is Level II-2 for lumbar and cervical discography, whereas it is Level II-3 for thoracic provocation discography. The evidence for diagnostic sacroiliac joint nerve blocks is Level II-2. Level of evidence for selective nerve root blocks for diagnostic purposes is Level II-3. Limitations of this guideline preparation include a continued paucity of literature and conflicts in preparation of systematic reviews and guidelines. These guidelines include the evaluation of evidence for diagnostic interventional procedures in managing chronic spinal pain and recommendations. However, these guidelines do not constitute inflexible treatment recommendations. These guidelines also do not represent a "standard of care."
Zhao, Yongfei; Liang, Yan; Mao, Keya
2018-04-19
Patients suffering from adult lumbar degenerative scoliosis (ALDS) are commonly complicated with advanced age, osteoporosis, cardiopulmonary insufficiency, and some other medical comorbidity. Therefore, the traditional open surgery can lead to high rate of postoperative complications. The purposes of this study were to introduce our experiences and explore the efficacy and feasibility of minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) in the treatment of patients with ALDS. From January 2008 to January 2014, a retrospective study of 22 patients with ALDS treated with MIS-TLIF was followed up at least 2 years. All patients suffered from one-level lumbar stenosis, and the nerve root block was performed to make sure the exact level. The clinical and radiographic outcomes were evaluated preoperatively and at the time of 2-year follow-up. The mean visual analog scale (VAS) back pain scores decreased from 6.2 ± 1.8 preoperatively to 2.2 ± 0.7 at 2-year follow-up (P < 0.05), and the mean VAS leg pain scores decreased from 8.2 ± 0.7 preoperatively to 1.4 ± 1.4 at 2-year follow-up (P < 0.05). The Oswestry Disability Index score improved from 62.4 ± 16.1% preoperatively to 24.2 ± 9.3% at 2-year follow-up (P < 0.05). The average lumbar curve was 20.7° ± 7.0° preoperatively and 12.7° ± 7.1° at 2-year follow-up (P < 0.05). The lumbar lordosis changed from - 39.5° ± 13.6° to - 43.6° ± 10.6° at 2-year follow-up (P < 0.05). Solid fusion was achieved in all patients. The technique of MIS-TLIF can be used to treat the patients with ALDS whose symptom is mainly from one-level lumbar stenosis, achieving favorable clinical outcomes and good fusion, with less blood loss and complications.
Degenerative lumbar spinal stenosis: correlation with Oswestry Disability Index and MR imaging.
Sirvanci, Mustafa; Bhatia, Mona; Ganiyusufoglu, Kursat Ali; Duran, Cihan; Tezer, Mehmet; Ozturk, Cagatay; Aydogan, Mehmet; Hamzaoglu, Azmi
2008-05-01
Because neither the degree of constriction of the spinal canal considered to be symptomatic for lumbar spinal stenosis nor the relationship between the clinical appearance and the degree of a radiologically verified constriction is clear, a correlation of patient's disability level and radiographic constriction of the lumbar spinal canal is of interest. The aim of this study was to establish a relationship between the degree of radiologically established anatomical stenosis and the severity of self-assessed Oswestry Disability Index in patients undergoing surgery for degenerative lumbar spinal stenosis. Sixty-three consecutive patients with degenerative lumbar spinal stenosis who were scheduled for elective surgery were enrolled in the study. All patients underwent preoperative magnetic resonance imaging and completed a self-assessment Oswestry Disability Index questionnaire. Quantitative image evaluation for lumbar spinal stenosis included the dural sac cross-sectional area, and qualitative evaluation of the lateral recess and foraminal stenosis were also performed. Every patient subsequently answered the national translation of the Oswestry Disability Index questionnaire and the percentage disability was calculated. Statistical analysis of the data was performed to seek a relationship between radiological stenosis and percentage disability recorded by the Oswestry Disability Index. Upon radiological assessment, 27 of the 63 patients evaluated had severe and 33 patients had moderate central dural sac stenosis; 11 had grade 3 and 27 had grade 2 nerve root compromise in the lateral recess; 22 had grade 3 and 37 had grade 2 foraminal stenosis. On the basis of the percentage disability score, of the 63 patients, 10 patients demonstrated mild disability, 13 patients moderate disability, 25 patients severe disability, 12 patients were crippled and three patients were bedridden. Radiologically, eight patients with severe central stenosis and nine patients with moderate lateral stenosis demonstrated only minimal disability on percentage Oswestry Disability Index scores. Statistical evaluation of central and lateral radiological stenosis versus Oswestry Disability Index percentage scores showed no significant correlation. In conclusion, lumbar spinal stenosis remains a clinico-radiological syndrome, and both the clinical picture and the magnetic resonance imaging findings are important when evaluating and discussing surgery with patients having this diagnosis. MR imaging has to be used to determine the levels to be decompressed.
Posterior Branches of Lumbar Spinal Nerves - Part I: Anatomy and Functional Importance.
Kozera, Katarzyna; Ciszek, Bogdan
2016-01-01
The aim of this paper is to compare anatomic descriptions of posterior branches of the lumbar spinal nerves and, on this basis, present the location of these structures. The majority of anatomy textbooks do not describe these nerves in detail, which may be attributable to the fact that for many years they were regarded as structures of minor clinical importance. The state of knowledge on these nerves has changed within the last 30 years. Attention has been turned to their function and importance for both diagnostic practice and therapy of lower back pain. Summarising the available literature, we may conclude that the medial and lateral branches separate at the junction of the facet joint and the distal upper edge of the transverse process; that the size, course and area supplied differ between the lateral and the medial branch; and that facet joints receive multisegmental innervation. It has been demonstrated that medial branches are smaller than the respective lateral branches and they have a more constant course. Medial branches supply the area from the midline to the facet joint line, while lateral branches innervate tissues lateral to the facet joint. The literature indicates difficulties with determining specific anatomic landmarks relative to which the lateral branch and the distal medial branch can be precisely located. Irritation of sensory fibres within posterior branches of the lumbar spinal nerves may be caused by pathology of facet joints, deformity of the spine or abnormalities due to overloading or injury. The anatomic location and course of posterior branches of spinal nerves should be borne in mind to prevent damaging them during low-invasive analgesic procedures.
Lee, Frank; Jamison, David E.; Hurley, Robert W.
2014-01-01
As our population ages and the rate of spine surgery continues to rise, the use epidural lysis of adhesions (LOA) has emerged as a popular treatment to treat spinal stenosis and failed back surgery syndrome. There is moderate evidence that percutaneous LOA is more effective than conventional ESI for both failed back surgery syndrome, spinal stenosis, and lumbar radiculopathy. For cervical HNP, cervical stenosis and mechanical pain not associated with nerve root involvement, the evidence is anecdotal. The benefits of LOA stem from a combination of factors to include the high volumes administered and the use of hypertonic saline. Hyaluronidase has been shown in most, but not all studies to improve treatment outcomes. Although infrequent, complications are more likely to occur after epidural LOA than after conventional epidural steroid injections. PMID:24478895
Ayers, Christopher A; Fisher, Lee E; Gaunt, Robert A; Weber, Douglas J
2016-07-01
Patterned microstimulation of the dorsal root ganglion (DRG) has been proposed as a method for delivering tactile and proprioceptive feedback to amputees. Previous studies demonstrated that large- and medium-diameter afferent neurons could be recruited separately, even several months after implantation. However, those studies did not examine the anatomical localization of sensory fibers recruited by microstimulation in the DRG. Achieving precise recruitment with respect to both modality and receptive field locations will likely be crucial to create a viable sensory neuroprosthesis. In this study, penetrating microelectrode arrays were implanted in the L5, L6, and L7 DRG of four isoflurane-anesthetized cats instrumented with nerve cuff electrodes around the proximal and distal branches of the sciatic and femoral nerves. A binary search was used to find the recruitment threshold for evoking a response in each nerve cuff. The selectivity of DRG stimulation was characterized by the ability to recruit individual distal branches to the exclusion of all others at threshold; 84.7% (n = 201) of the stimulation electrodes recruited a single nerve branch, with 9 of the 15 instrumented nerves recruited selectively. The median stimulation threshold was 0.68 nC/phase, and the median dynamic range (increase in charge while stimulation remained selective) was 0.36 nC/phase. These results demonstrate the ability of DRG microstimulation to achieve selective recruitment of the major nerve branches of the hindlimb, suggesting that this approach could be used to drive sensory input from localized regions of the limb. This sensory input might be useful for restoring tactile and proprioceptive feedback to a lower-limb amputee. Copyright © 2016 the American Physiological Society.
... the opening in your back where nerve roots leave your spinal canal. You may have a narrowing ... A bundle of nerves (nerve root) leaves your spinal cord through ... are called the neural foramens. When the openings for the nerve ...
Dimitrijevic, I M; Kocic, M N; Lazovic, M P; Mancic, D D; Marinkovic, O K; Zlatanovic, D S
2016-08-01
Lumbosacral radiculopathy is a pathological process that refers to the dysfunction of one or more spinal nerve roots in the lumbosacral region of the spine. Some studies have shown that infrared thermography can estimate the severity of the clinical manifestation of unilateral lumbosacral radiculopathy. This study aimed to examine the correlation of the regional thermal deficit of the affected lower extremity with pain intensity, mobility of the lumbar spine, and functional status in patients with unilateral lumbosacral radiculopathy. This cross-sectional study was conducted at the Clinic for Physical Medicine and Rehabilitation of the Clinical Center Niš, Serbia. A total of 69 patients with unilateral lumbosacral radiculopathy of discogenic origin were recruited, with the following clinical parameters evaluated: (1) pain intensity by using a visual analogue scale, separately at rest and during active movement; (2) mobility of the lumbar spine by Schober test and the fingertip-to-floor test; and (3) functional status by the Oswestry Disability Index. Temperature differences between the symmetrical regions of the lower extremities were detected by infrared thermography. A quantitative analysis of thermograms determined the regions of interest with maximum thermal deficit. Correlation of maximum thermal deficit with each tested parameter was then determined. A significant and strong positive correlation was found between the regional thermal deficit and pain intensity at rest, as well as pain during active movements (rVAS - rest=0.887, rVAS - activity=0.890; P<0.001). The regional thermal deficit significantly and strongly correlated with the Oswestry Disability Index score and limited mobility of the lumbar spine (P<0.001). In patients with unilateral lumbosacral radiculopathy, the values of regional thermal deficit of the affected lower extremity are correlated with pain intensity, mobility of the lumbar spine, and functional status of the patient.
Spinal injuries in professional rugby union: a prospective cohort study.
Fuller, Colin W; Brooks, John H M; Kemp, Simon P T
2007-01-01
To determine the incidence, severity, nature, and causes of cervical, thoracic, and lumbar spine injuries sustained during competition and training in professional rugby union. A 2 season prospective cohort design. Twelve English Premiership rugby union clubs. Five hundred and forty-six male rugby union players of whom 296 were involved in both seasons. Location, diagnosis, severity (number of days unavailable for training and matches), and cause of injury: incidence of match and training injuries (injuries/1000 player-hours). Player age, body mass, stature, playing position, use of headgear, and activity and period of season. The incidences of spinal injuries were 10.90 (9.43 to 12.60) per 1000 player match-hours and 0.37 (0.29 to 0.47) per 1000 player training-hours. No player sustained a catastrophic spinal injury, but 3 players sustained career-ending injuries. Overall, players were more likely to sustain a cervical injury during matches and a lumbar injury during training. Forwards were significantly more likely to sustain a spinal injury than backs during both matches (P < 0.01) and training (P = 0.02). During matches, injuries to the cervical (average: 13 days; P < 0.01) and lumbar (13 days; P < 0.01) spine were more severe than injuries to the thoracic (5 days) spine; during training, injuries to the lumbar spine (26 days) were more severe than injuries to the cervical (13 days; P = 0.10) or thoracic (12 days; P = 0.06) spine. A total of 4037 days were lost to competition and training through spinal injuries with lumbar disc injuries sustained during training accounting for 926 days (23%) and cervical nerve root injuries sustained during matches for 621 days (15%). During matches, more injuries were caused by tackles (37%), and during training more injuries were caused by weight-training (33%). The results showed that rugby union players were exposed to a high risk of noncatastrophic spinal injury during tackling, scrummaging, and weight-training activities; injury prevention strategies, therefore, should be focused on these activities.
Synframe: a preliminary report.
Aebi, M; Steffen, T
2000-02-01
Both endoscopic lumbar spinal surgery and the non-standardized and unstable retractor systems for the lumbar spine presently on the market have disadvantages and limitations in relation to the minimally invasive surgical concept, which have been gradually recognized in the last few years. In an attempt to resolve some of these issues, we have developed a highly versatile retractor system, which allows access to and surgery at the lumbar, thoracic and even cervical spine. This retractor system - Synframe - is based on a ring concept allowing 360 degrees access to a surgical opening in anterior as well as posterior surgery. The ring is concentrically laid over the surgical opening for the approach and is used as a carrier for retractor arms, which are instrumented with either different sizes or types of blades and/or different sizes of Hohmann hooks. In posterior surgery, nerve root retractors can also be installed. This ring also functions as a carrier for fiberoptic illumination devices and different sizes of endoscopes, used to transmit the surgical procedure out of the depth of the surgical exposure for both teaching purposes and for the surgical team when it has no longer direct visual access to the procedure. The ring is stable, being fixed onto the operating table, allowing precise minimally open approaches and surgical procedures under direct vision with optimal illumination. This ring system also opens perspectives for an integrated minimally open surgical concept, where the ring may be used as a reference platform in computer-navigated surgery.
Barbizan, Roberta; Castro, Mateus V.; Ferreira Jr., Rui Seabra; Barraviera, Benedito; Oliveira, Alexandre L. R.
2014-01-01
We recently proposed a new surgical approach to treat ventral root avulsion, resulting in motoneuron protection. The present work combined such a surgical approach with bone marrow mononuclear cells (MC) therapy. Therefore, MC were added to the site of reimplantation. Female Lewis rats (seven weeks old) were subjected to unilateral ventral root avulsion (VRA) at L4, L5 and L6 levels and divided into the following groups (n = 5 for each group): Avulsion, sealant reimplanted roots and sealant reimplanted roots plus MC. After four weeks and 12 weeks post-surgery, the lumbar intumescences were processed by transmission electron microscopy, to analyze synaptic inputs to the repaired α motoneurons. Also, the ipsi and contralateral sciatic nerves were processed for axon counting and morphometry. The ultrastructural results indicated a significant preservation of inhibitory pre-synaptic boutons in the groups repaired with sealant alone and associated with MC therapy. Moreover, the average number of axons was higher in treated groups when compared to avulsion only. Complementary to the fiber counting, the morphometric analysis of axonal diameter and “g” ratio demonstrated that root reimplantation improved the motor component recovery. In conclusion, the data herein demonstrate that root reimplantation at the lesion site may be considered a therapeutic approach, following proximal lesions in the interface of central nervous system (CNS) and peripheral nervous system (PNS), and that MC therapy does not further improve the regenerative recovery, up to 12 weeks post lesion. PMID:25353176
Magnetic resonance imaging of the sacral plexus and piriformis muscles.
Russell, J Matthew; Kransdorf, Mark J; Bancroft, Laura W; Peterson, Jeffrey J; Berquist, Thomas H; Bridges, Mellena D
2008-08-01
The objective was to evaluate the piriformis muscles and their relationship to the sacral nerve roots on T1-weighted MRI in patients with no history or clinical suspicion of piriformis syndrome. Axial oblique and sagittal T1-weighted images of the sacrum were obtained in 100 sequential patients (200 pairs of sacral roots) undergoing routine MRI examinations. The relationship of the sacral nerve roots to the piriformis muscles and piriformis muscle size were evaluated, as were clinical symptoms via a questionnaire. The S1 nerve roots were located above the piriformis muscle in 99.5% of cases (n=199). The S2 nerve roots were located above the piriformis muscle in 25% of cases (n=50), and traversed the muscle in 75% (n=150). The S3 nerve roots were located above the piriformis muscle in 0.5% of cases (n=1), below the muscle in 2.5% (n=5), and traversed the muscle in 97% (n=194). The S4 nerve roots were located below the muscle in 95% (n=190). The piriformis muscles ranged in size from 0.8-3.2 cm, with an average size of 1.9 cm. Nineteen percent of patients had greater than 3 mm of asymmetry in the size of the piriformis muscle, with a maximum asymmetry of 8 mm noted. The S1 nerve roots course above the piriformis muscle in more than 99% of patients. The S2 roots traverse the piriformis muscle in 75% of patients. The S3 nerve roots traverse the piriformis muscle in 97% of patients. Piriformis muscle size asymmetry is common, with muscle asymmetry of up to 8 mm identified.
Bareka, Metaxia; Hantes, Michael; Arnaoutoglou, Eleni; Vretzakis, George
2018-02-01
The purpose of this randomized controlled study is to compare and evaluate the intraoperative and post-operative outcome of PLPS nerve block and that of femoral, obturator and sciatic (FOS) nerve block as a method of anaesthesia, in performing ACL reconstruction. Patients referred for elective arthroscopic ACL reconstruction using hamstring autograft were divided in two groups. The first group received combined femoral-obturator-sciatic nerve block (FOS Group) under dual guidance, whereas the second group received posterior lumbar plexus block under neurostimulation and sciatic nerve block (PLPS Group) under dual guidance. The two groups were comparable in terms of age, sex, BMI and athletic activity. The time needed to perform the nerve blocks was significantly shorter for the FOS group (p < 0.005). Similarly, VAS scores during tourniquet inflation and autograft harvesting were significantly higher (p < 0.005) in the PLPS group and this is also reflected in the intraoperative fentanyl consumption and conversion to general anaesthesia. Finally, patients in this group also reported higher post-operative VAS scores and consumed more morphine. Peripheral nerve blockade of FOS nerve block under dual guidance for arthroscopic ACL reconstructive surgery is a safe and tempting anaesthetic choice. The success rate of this technique is higher in comparison with PLPS and results in less peri- and post-operative pain with less opioid consumption. This study provides support for the use of peripheral nerve blocks as an exclusive method for ACL reconstructive surgery in an ambulatory setting with almost no complications. I.
Salvage of cervical motor radiculopathy using peripheral nerve transfer reconstruction.
Afshari, Fardad T; Hossain, Taushaba; Miller, Caroline; Power, Dominic M
2018-05-10
Motor nerve transfer surgery involves re-innervation of important distal muscles using either an expendable motor branch or a fascicle from an adjacent functioning nerve. This technique is established as part of the reconstructive algorithm for traumatic brachial plexus injuries. The reproducible outcomes of motor nerve transfer surgery have resulted in exploration of the application of this technique to other paralysing conditions. The objective of this study is to report feasibility and increase awareness about nerve transfer as a method of improving upper limb function in patients with cervical motor radiculopathy of different aetiology. In this case series we report 3 cases with different modes of injury to the spinal nerve roots with significant and residual motor radiculopathy that have been successfully treated with nerve transfer surgery with good functional outcomes. The cases involved iatrogenic nerve root injury, tumour related root compression and degenerative root compression. Nerve transfer surgery may offer reliable reconstruction for paralysis when there has been no recovery following a period of conservative management. However the optimum timing of nerve transfer intervention is not yet identified for patients with motor radiculopathy.
Takasu, Kumiko; Sakai, Atsushi; Hanawa, Hideki; Shimada, Takashi; Suzuki, Hidenori
2011-11-01
Glial cell line-derived neurotrophic factor (GDNF), a survival-promoting factor for a subset of nociceptive small-diameter neurons, has been shown to exert analgesic effects on neuropathic pain. However, its detailed mechanisms of action are still unknown. In the present study, we investigated the site-specific analgesic effects of GDNF in the neuropathic pain state using lentiviral vector-mediated GDNF overexpression in mice with left fifth lumbar (L5) spinal nerve ligation (SNL) as a neuropathic pain model. A lentiviral vector expressing both GDNF and enhanced green fluorescent protein (EGFP) was constructed and injected into the left dorsal spinal cord, uninjured fourth lumbar (L4) dorsal root ganglion (DRG), injured L5 DRG, or plantar skin of mice. In SNL mice, injection of the GDNF-EGFP-expressing lentivirus into the dorsal spinal cord or uninjured L4 DRG partially but significantly reduced the mechanical allodynia in association with an increase in GDNF protein expression in each virus injection site, whereas injection into the injured L5 DRG or plantar skin had no effects. These results suggest that GDNF exerts its analgesic effects in the neuropathic pain state by acting on the central terminals of uninjured DRG neurons and/or on the spinal cells targeted by the uninjured DRG neurons. This article shows that GDNF exerts its analgesic effects on neuropathic pain by acting on the central terminals of uninjured DRG neurons and/or on the spinal cells targeted by these neurons. Therefore, research focusing on these GDNF-dependent neurons in the uninjured DRG would provide a new strategy for treating neuropathic pain. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.
Back pain in space and post-flight spine injury: Mechanisms and countermeasure development
NASA Astrophysics Data System (ADS)
Sayson, Jojo V.; Lotz, Jeffrey; Parazynski, Scott; Hargens, Alan R.
2013-05-01
During spaceflight many astronauts experience moderate to severe lumbar pain and deconditioning of paraspinal muscles. There is also a significant incidence of herniated nucleus pulposus (HNP) in astronauts post-flight being most prevalent in cervical discs. Relief of in-flight lumbar back pain is facilitated by assuming a knee-to-chest position. The pathogenesis of lumbar back pain during spaceflight is most likely discogenic and somatic referred (from the sinuvertebral nerves) due to supra-physiologic swelling of the lumbar intervertebral discs (IVDs) due to removal of gravitational compressive loads in microgravity. The knee-to-chest position may reduce lumbar back pain by redistributing stresses through compressive loading to the IVDs, possibly reducing disc volume by fluid outflow across IVD endplates. IVD stress redistribution may reduce Type IV mechanoreceptor nerve impulse propagation in the annulus fibrosus and vertebral endplate resulting in centrally mediated pain inhibition during spinal flexion. Countermeasures for lumbar back pain may include in-flight use of: (1) an axial compression harness to prevent excessive IVD expansion and spinal column elongation; (2) the use of an adjustable pulley exercise developed to prevent atrophy of spine muscle stabilisers; and (3) other exercises that provide Earth-like annular stress with low-load repetitive active spine rotation movements. The overall objective of these countermeasures is to promote IVD health and to prevent degenerative changes that may lead to HNPs post-flight. In response to "NASA's Critical Path Roadmap Risks and Questions" regarding disc injury and higher incidence of HNPs after space flight (Integrated Research Plan Gap-B4), future studies will incorporate pre- and post-flight imaging of International Space Station long-duration crew members to investigate mechanisms of lumbar back pain as well as degeneration and damage to spinal structures. Quantitative results on morphological, biochemical, metabolic, and kinematic spinal changes in the lumbar spine may aid further development of countermeasures to prevent lumbar back pain in microgravity and reduce the incidence of HNPs post-flight.
Liu, Zhen; Wang, Fei; Fischer, Gregory; Hogan, Quinn H.
2016-01-01
Background Gαi-interacting protein (GINIP) is expressed specifically in dorsal root ganglion (DRG) neurons and functions in modulation of peripheral gamma-aminobutyric acid B receptor (GBR). Genetic deletion of GINIP leads to impaired responsiveness to GBR agonist-mediated analgesia in rodent. It is, however, not defined whether nerve injury changes GINIP expression. Results Immunolabeling with validated antibody revealed GINIP expression in ∼40% of total lumbar DRG neurons in normal adult rats. GINIP immunoreactivity was detected in ∼80% of IB4-positive (nonpeptidergic) and ∼30% of CGRP-positive (peptidergic) neurons. GINIP immunoreactivity in the spinal cord dorsal horn was colabeled with IB4 and partially with CGRP. In addition, GINIP was expressed in DRG neurons immunopositive for GBR1, GBR2, Gαi(s), and Gαo and was also extensively colabeled with multiple nociceptive neuronal markers, including Trpv1, NaV1.7, CaV2.2α1b, CaV3.2α1b, TrkA, and Trek2. Peripheral nerve injury by L5 spinal nerve ligation significantly decreased the proportion of GINIP immunoreactivity-positive neurons from 40 ± 8.4% to 0.8 ± 0.1% (p < 0.01, mean ± SD, four weeks after spinal nerve ligation) and the total GINIP protein to 1.3% ± 0.04% of its basal level (p < 0.01, n = 6 animals in each group, two weeks after spinal nerve ligation) in the ipsilateral L5 DRGs. Conclusion Our results show that GINIP is predominantly expressed by small nonpeptidergic nociceptive neurons and that nerve injury triggers loss of GINIP expression. Signal transduction roles of GINIP may be diverse as it colabeled with various subgroups of nociceptive neurons. Future studies may investigate details of the signaling mechanism engaged by GINIP, as well as the pathophysiological significance of lost expression of GINIP in neuropathic pain. PMID:27145804
Liu, Zhen; Wang, Fei; Fischer, Gregory; Hogan, Quinn H; Yu, Hongwei
2016-01-01
Gαi-interacting protein (GINIP) is expressed specifically in dorsal root ganglion (DRG) neurons and functions in modulation of peripheral gamma-aminobutyric acid B receptor (GBR). Genetic deletion of GINIP leads to impaired responsiveness to GBR agonist-mediated analgesia in rodent. It is, however, not defined whether nerve injury changes GINIP expression. Immunolabeling with validated antibody revealed GINIP expression in ~40% of total lumbar DRG neurons in normal adult rats. GINIP immunoreactivity was detected in ~80% of IB4-positive (nonpeptidergic) and ~30% of CGRP-positive (peptidergic) neurons. GINIP immunoreactivity in the spinal cord dorsal horn was colabeled with IB4 and partially with CGRP. In addition, GINIP was expressed in DRG neurons immunopositive for GBR1, GBR2, Gαi(s), and Gαo and was also extensively colabeled with multiple nociceptive neuronal markers, including Trpv1, NaV1.7, CaV2.2α1b, CaV3.2α1b, TrkA, and Trek2. Peripheral nerve injury by L5 spinal nerve ligation significantly decreased the proportion of GINIP immunoreactivity-positive neurons from 40 ± 8.4% to 0.8 ± 0.1% (p < 0.01, mean ± SD, four weeks after spinal nerve ligation) and the total GINIP protein to 1.3% ± 0.04% of its basal level (p < 0.01, n = 6 animals in each group, two weeks after spinal nerve ligation) in the ipsilateral L5 DRGs. Our results show that GINIP is predominantly expressed by small nonpeptidergic nociceptive neurons and that nerve injury triggers loss of GINIP expression. Signal transduction roles of GINIP may be diverse as it colabeled with various subgroups of nociceptive neurons. Future studies may investigate details of the signaling mechanism engaged by GINIP, as well as the pathophysiological significance of lost expression of GINIP in neuropathic pain. © The Author(s) 2016.
Gazzeri, Roberto; Faiola, Andrea; Neroni, Massimiliano; Fiore, Claudio; Callovini, Giorgio; Pischedda, Mauro; Galarza, Marcelo
2013-09-01
Intraoperative motor evoked potentials (MEP) and electromyography (EMG) monitoring in patients with spinal and cranial lesions is a valuable tool for prevention of postoperative motor deficits. The purpose of this study was to determine whether electrophysiological monitoring during skull base, spinal cord, and spinal surgery might be useful for predicting postoperative motor deterioration. From January 2012 to March 2013, thirty-three consecutive patients were studied using intraoperative monitoring (Nuvasive NV-M5 System) to check the integrity of brainstem, spinal cord, and nerve roots, recording transcranial motor evoked potentials (TcMEPs) and electromyography. Changes in MEPs and EMGs were related to postoperative deficits. Preoperative diagnosis included skull base and brainstem lesions (6 patients), spinal tumors (11 patients), spinal deformity (16 cases). Using TcMEPs and EMG is a practicable and safe method. MEPs are useful in any surgery in which the brainstem and spinal cord are at risk. EMG stimulation helps to identify an optimal trans-psoas entry point for an extreme lateral lumbar interbody fusion (XLIF) approach to protect against potential nerve injury. This neural navigation technique via a surgeon-interpreted interface assists the surgical team in safely removing lesions and accessing the intervertebral disc space for minimally invasive spinal procedures.
Phantom Radiculopathy: Case Report and Review of the Literature.
Croci, Davide; Fandino, Javier; Marbacher, Serge
2016-06-01
Phantom radicular pain is very uncommon. To the best of our knowledge, only 14 cases have been described in the literature. A review of the literature revealed the most common cause of phantom radicular pain to be lumbar disc herniation and, furthermore, that treatment with epidural steroid injection or surgical decompression relieves pain in almost all cases. A significant number of patients with superimposed phantom radiculopathy may be missed because of the high incidence of degenerative lumbar spine diseases in the adult population, as well as the fact that amputee patients very often present with mixed stump and phantom pain. We report a case of a patient presenting with new-onset phantom radicular pain (S1 left) 4 years after an above-the-knee amputation (left). Computed tomography myelography showed compression of the left S1 nerve root caused by recurrent disc herniation and scar tissue formation after previous discectomy at L5-S1. The patient experienced temporarily relief of the sciatic pain after a fluoroscopically-guided epidural transforaminal steroid injection. Subsequent microsurgical decompression led to complete remission of the phantom radicular pain. Amputees experiencing recurrent phantom radicular pain or new-onset superimposed pain deserve further radiologic evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.
Denyer, Gareth S.; Keay, Kevin A.
2015-01-01
Allodynia, hyperalgesia and spontaneous pain are cardinal sensory signs of neuropathic pain. Clinically, many neuropathic pain patients experience affective-motivational state changes, including reduced familial and social interactions, decreased motivation, anhedonia and depression which are severely debilitating. In earlier studies we have shown that sciatic nerve chronic constriction injury (CCI) disrupts social interactions, sleep-wake-cycle and endocrine function in one third of rats, a subgroup reliably identified six days after injury. CCI consistently produces allodynia and hyperalgesia, the intensity of which was unrelated either to the altered social interactions, sleep-wake-cycle or endocrine changes. This decoupling of the sensory consequences of nerve injury from the affective-motivational changes is reported in both animal experiments and human clinical data. The sensory changes triggered by CCI are mediated primarily by functional changes in the lumbar dorsal horn, however, whether lumbar spinal changes may drive different affective-motivational states has never been considered. In these studies, we used microarrays to identify the unique transcriptomes of rats with altered social behaviours following sciatic CCI to determine whether specific patterns of lumbar spinal adaptations characterised this subgroup. Rats underwent CCI and on the basis of reductions in dominance behaviour in resident-intruder social interactions were categorised as having Pain & Disability, Pain & Transient Disability or Pain alone. We examined the lumbar spinal transcriptomes two and six days after CCI. Fifty-four ‘disability-specific’ genes were identified. Sixty-five percent were unique to Pain & Disability rats, two-thirds of which were associated with neurotransmission, inflammation and/or cellular stress. In contrast, 40% of genes differentially regulated in rats without disabilities were involved with more general homeostatic processes (cellular structure, transcription or translation). We suggest that these patterns of gene expression lead to either the expression of disability, or to resilience and recovery, by modifying local spinal circuitry at the origin of ascending supraspinal pathways. PMID:25905723
Austin, Paul J; Bembrick, Alison L; Denyer, Gareth S; Keay, Kevin A
2015-01-01
Allodynia, hyperalgesia and spontaneous pain are cardinal sensory signs of neuropathic pain. Clinically, many neuropathic pain patients experience affective-motivational state changes, including reduced familial and social interactions, decreased motivation, anhedonia and depression which are severely debilitating. In earlier studies we have shown that sciatic nerve chronic constriction injury (CCI) disrupts social interactions, sleep-wake-cycle and endocrine function in one third of rats, a subgroup reliably identified six days after injury. CCI consistently produces allodynia and hyperalgesia, the intensity of which was unrelated either to the altered social interactions, sleep-wake-cycle or endocrine changes. This decoupling of the sensory consequences of nerve injury from the affective-motivational changes is reported in both animal experiments and human clinical data. The sensory changes triggered by CCI are mediated primarily by functional changes in the lumbar dorsal horn, however, whether lumbar spinal changes may drive different affective-motivational states has never been considered. In these studies, we used microarrays to identify the unique transcriptomes of rats with altered social behaviours following sciatic CCI to determine whether specific patterns of lumbar spinal adaptations characterised this subgroup. Rats underwent CCI and on the basis of reductions in dominance behaviour in resident-intruder social interactions were categorised as having Pain & Disability, Pain & Transient Disability or Pain alone. We examined the lumbar spinal transcriptomes two and six days after CCI. Fifty-four 'disability-specific' genes were identified. Sixty-five percent were unique to Pain & Disability rats, two-thirds of which were associated with neurotransmission, inflammation and/or cellular stress. In contrast, 40% of genes differentially regulated in rats without disabilities were involved with more general homeostatic processes (cellular structure, transcription or translation). We suggest that these patterns of gene expression lead to either the expression of disability, or to resilience and recovery, by modifying local spinal circuitry at the origin of ascending supraspinal pathways.
Microsurgical resection of cauda equina schwannoma with nerve root preservation.
McCormick, Paul C
2014-09-01
The occurrence of motor deficit following resection of an intradural spinal schwannoma is an uncommon but potentially serious complication. This video illustrates the technique of microsurgical resection of an L-4 sensory nerve root schwannoma with preservation of the corresponding functional L-4 motor nerve root. The video can be found here: http://youtu.be/HrZkGj1JKd4.
Song, Zhi-Xiu; Qian, Wei; Wu, Yu-Quan; Sun, Fang-Jie; Fei, Jun; Huang, Run-Sheng; Fang, Jing-Yu; Wu, Cai-Zhen; An, You-Ming; Wang, Daxin; Yang, Jun
2014-01-01
To understand the mechanism of the gamma knife treating the trigeminal neuralgia. Using the MASEP-SRRS type gamma knife treatment system, 140 Chinese patients with trigeminal neuralgia (NT) were treated in our hospital from 2002 to 2010, in which the pain relief rate reached 95% and recurrence rate was 3% only. We investigated the effect of the gamma knife treatment on the trigeminal nerve root in 20 Chinese patients with primary trigeminal neuralgia by the magnetic resonance imager (MRI) observation. 1) The cross-sectional area of trigeminal nerve root became smaller and MRI signals were lower in the treatment side than those in the non-treatment side after the gamma knife treatment of primary trigeminal neuralgia; 2) in the treatment side, the cross-sectional area of the trigeminal nerve root decreased significantly after the gamma knife treatment; 3) there was good correlation between the clinical improvement and the MRI findings; and 4) the straight distance between the trigeminal nerve root and the brainstem did not change after the gamma knife treatment. The pain relief induced the gamma knife radiosurgery might be related with the atrophy of the trigeminal nerve root in Chinese patients with primary trigeminal neuralgia.
Sciatica: Detection and Confirmation by New Method
Nadkarni, Sunil
2014-01-01
We need to overcome limitations of present assessment and also integrate newer research in our work about sciatica. Inflammation induces changes in the DRG and nerve root. It sensitizes the axons. Nociceptor is a unique axon. It is pseudo unipolar: both its ends, central and peripheral, behave in similar fashion. The nerve in periphery which carries these axons may selectively become sensitive to mechanical pressure--“mechanosensitized,” as we coin the phrase. Many pain questionnaires are used and are effective in identifying neuropathic pain solely on basis of descriptors but they do not directly physically correlate nerve root and pain. A thorough neurological evaluation is always needed. Physical examination is not direct pain assessment but testing mobility of nerve root and its effect on pain generation. There is a dogmatic dominance of dermatomes in assessment of leg pain. They are unreliable. Images may not correlate with symptoms and pathology in about 28% of cases. Electrophysiology may be normal in purely inflamed nerve root. Palpation may help in such inflammatory setting to refine our assessment further. Confirmation of sciatica is done by selective nerve root block (SNRB) today but it is fraught with several complications and needs elaborate inpatient and operating room set up. We have used the unique property of the pseudo unipolar axon that both its ends have similar functional properties and so inject along its peripheral end sodium channel blockers to block the basic cause of the mechanosensitization namely upregulated sodium channels in the root or DRG. Thus using palpation we may be able to detect symptomatic nerve in stage of inflammation and with distal end injection, along same inflamed nerve we may be able to abolish and so confirm sciatica. Discussions of sciatica pain diagnosis tend to immediately shift and centre on the affected disc rather than the nerve. Theoretically it may be possible to detect the affected nerve by palpating the nerve and relieve pain moment we desensitize the nerve. PMID:25694916
Examining the Role of Perioperative Nerve Blocks in Hip Arthroscopy: A Systematic Review.
Kay, Jeffrey; de Sa, Darren; Memon, Muzammil; Simunovic, Nicole; Paul, James; Ayeni, Olufemi R
2016-04-01
This systematic review examined the efficacy of perioperative nerve blocks for pain control after hip arthroscopy. The databases Embase, PubMed, and Medline were searched on June 2, 2015, for English-language studies that reported on the use of perioperative nerve blocks for hip arthroscopy. The studies were systematically screened and data abstracted in duplicate. Nine eligible studies were included in this review (2 case reports, 2 case series, 3 non-randomized comparative studies, and 2 randomized controlled trials). In total, 534 patients (534 hips), with a mean age of 37.2 years, who underwent hip arthroscopy procedures were administered nerve blocks for pain management. Specifically, femoral (2 studies), fascia iliaca (2 studies), lumbar plexus (3 studies), and L1 and L2 paravertebral (2 studies) nerve blocks were used. All studies reported acceptable pain scores after the use of nerve blocks, and 4 studies showed significantly lower postoperative pain scores acutely with the use of nerve blocks over general anesthesia alone. The use of nerve blocks also resulted in a decrease in opioid consumption in 4 studies and provided a higher level of patient satisfaction in 2 studies. No serious acute complications were reported in any study, and long-term complications from lumbar plexus blocks, such as local anesthetic system toxicity (0.9%) and long-term neuropathy (2.8%), were low in incidence. The use of perioperative nerve blocks provides effective pain management after hip arthroscopy and may be more effective in decreasing acute postoperative pain and supplemental opioid consumption than other analgesic techniques. Level IV, systematic review of Level I to Level IV studies. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Kang, Xue-Jing; Chi, Ye-Nan; Chen, Wen; Liu, Feng-Yu; Cui, Shuang; Liao, Fei-Fei; Cai, Jie; Wan, You
2018-01-01
Ion channels are very important in the peripheral sensitization in neuropathic pain. Our present study aims to investigate the possible contribution of Ca V 3.2 T-type calcium channels in damaged dorsal root ganglion neurons in neuropathic pain. We established a neuropathic pain model of rats with spared nerve injury. In these model rats, it was easy to distinguish damaged dorsal root ganglion neurons (of tibial nerve and common peroneal nerve) from intact dorsal root ganglion neurons (of sural nerves). Our results showed that Ca V 3.2 protein expression increased in medium-sized neurons from the damaged dorsal root ganglions but not in the intact ones. With whole cell patch clamp recording technique, it was found that after-depolarizing amplitudes of the damaged medium-sized dorsal root ganglion neurons increased significantly at membrane potentials of -85 mV and -95 mV. These results indicate a functional up-regulation of Ca V 3.2 T-type calcium channels in the damaged medium-sized neurons after spared nerve injury. Behaviorally, blockade of Ca V 3.2 with antisense oligodeoxynucleotides could significantly reverse mechanical allodynia. These results suggest that Ca V 3.2 T-type calcium channels in damaged medium-sized dorsal root ganglion neurons might contribute to neuropathic pain after peripheral nerve injury.
Zhang, Yu-Ting; Jin, Hui; Wang, Jun-Hua; Wen, Lan-Yu; Yang, Yang; Ruan, Jing-Wen; Zhang, Shu-Xin; Ling, Eng-Ang
2017-01-01
Spinal cord injury (SCI) often results in death of spinal neurons and atrophy of muscles which they govern. Thus, following SCI, reorganizing the lumbar spinal sensorimotor pathways is crucial to alleviate muscle atrophy. Tail nerve electrical stimulation (TANES) has been shown to activate the central pattern generator (CPG) and improve the locomotion recovery of spinal contused rats. Electroacupuncture (EA) is a traditional Chinese medical practice which has been proven to have a neural protective effect. Here, we examined the effects of TANES and EA on lumbar motor neurons and hindlimb muscle in spinal transected rats, respectively. From the third day postsurgery, rats in the TANES group were treated 5 times a week and those in the EA group were treated once every other day. Four weeks later, both TANES and EA showed a significant impact in promoting survival of lumbar motor neurons and expression of choline acetyltransferase (ChAT) and ameliorating atrophy of hindlimb muscle after SCI. Meanwhile, the expression of neurotrophin-3 (NT-3) in the same spinal cord segment was significantly increased. These findings suggest that TANES and EA can augment the expression of NT-3 in the lumbar spinal cord that appears to protect the motor neurons as well as alleviate muscle atrophy. PMID:28744378
Iwamoto, Naotaka; Isu, Toyohiko; Kim, Kyongsong; Morimoto, Daijiro; Matsumoto, Juntaro; Yamazaki, Kazuyoshi; Chiba, Yasuhiro; Isobe, Masanori
2018-06-01
Here we report our treatment results of low back and leg pain(LBLP)considering para-lumbar spine disease(PLSD)and peripheral nerve neuropathy(PNN). We enrolled 103 patients who were admitted to our institute for LBLP treatment between January and December in 2014. For the treatment, we preferentially performed intensive block therapy for PLSD. Among 103 patients, 89 patients had PLSD. In 85 patients, we performed intensive block therapy and 82 patients experienced short-term improvement of symptoms. In 35 of these 82 patients, lumbar spine and/or PNN surgical treatment was required as the effect of block therapy was transient. Intensive block therapy was effective in 47 of 103 patients(45.6%), and the remaining patients required surgical treatment(PLSD and/or PNN:31 cases, lumbar spine:13 cases, both:8 cases). Among 103 patients with LBLP, intensive block therapy for PLSD and PNN was useful for short-term symptom improvement in 82 patients(79.6%), and for long-term symptom improvement in 47 patients(45.6%)as evaluated at the final follow-up. Surgical treatment of PLSD and/or PNN was required in 39 patients(37.9%). These results suggested that treatment of PLSD and PNN might yield good results for patients with LBLP.
Lindquist, Jan; Bäckryd, Emmanuel
2016-07-01
Pulsed radiofrequency is a non-neurodestructive invasive pain treatment which, in contrast to conventional continuous radiofrequency treatment, does not entail nerve tissue destruction. The aim of this study was to retrospectively analyse the short-term benefits of a broad use of pulsed radiofrequency in clinical practice. The medical records of all patients treated with pulsed radiofrequency, or who received a diagnostic test block with a local anaesthetic in view of such a treatment, were retrospectively analysed. The patients had been referred to a tertiary pain centre in Sweden. The treatment effect one month after pulsed radiofrequency was retrospectively graded as follows, based on the wordings of the medical records: major improvement; minor improvement; no change; or worsened. A total of 238 patients received 587 interventions from 2009 to 2014. Chronic low back pain (CLBP) was by far the most common treatment indication (57% of patients), followed by CLBP with sciatica (9%). The age at first pulsed radiofrequency was 55 (15-94) years (mean, range), and 65% were female. Thirty-six patients (15%) underwent only a diagnostic test block using a local anaesthetic, i.e., the test block did not lead to treatment with pulsed radiofrequency. A total of 445 pulsed radiofrequency interventions were performed on 202 patients. Dichotomizing data into responders (i.e., minor or major improvement) and non-responders (i.e., worsened or no change), we found that, out of 63 responders to a median branch diagnostic test block (either at the cervical or lumbar level), 33 were responders to the first following median branch pulsed radiofrequency. Hence the positive predictive value of a median branch test block was 52%. In 127 patients, the lumbar level was targeted for median branch pulsed radiofrequency because of clinically suspected lumbar facetogenic pain. Looking at the first treatment, 30% experienced major improvement after 1 month, 16% minor improvement, 36% no change, 5% a worsened situation, and the effect was not assessable in 13% of patients. Lone dorsal root ganglion L2-treatment for suspected discogenic lumbar pain was done on 39 patients and, after one month, the effect was not assessable in 17% of patients, 14% had major improvement, 14% minor improvement, and 55% had no change. In 40 patients, a dorsal root ganglion or a peripheral nerve was targeted because of a non-axial chronic pain condition. There was a plethora of indications, but the most common was by far related to some form of neuropathic pain (52% of interventions, mainly because of neuralgia), followed by chronic nociceptive shoulder pain (8% of interventions). This study shows that, after one month, the effect size of a broad and indiscriminate clinical use of pulsed radiofrequency is rather small. The clinical effectiveness of pulsed radiofrequency has to be investigated further in carefully selected and more homogenous patient groups, in order to define effective treatment niches for this nondestructive invasive treatment method. Copyright © 2016 Scandinavian Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Degenerative lumbosacral stenosis in dogs.
Meij, Björn P; Bergknut, Niklas
2010-09-01
Degenerative lumbosacral stenosis (DLSS) is the most common disorder of the caudal lumbar spine in dogs. This article reviews the management of this disorder and highlights the most important new findings of the last decade. Dogs with DLSS are typically neuro-orthopedic patients and can be presented with varying clinical signs, of which the most consistent is lumbosacral pain. Due to the availability of advanced imaging techniques such as computed tomography and magnetic resonance imaging that allow visualization of intervertebral disc degeneration, cauda equina compression, and nerve root entrapment, tailor-made treatments can be adopted for the individual patient. Current therapies include conservative treatment, decompressive surgery, and fixation-fusion of the L7-S1 junction. New insight into the biomechanics and pathobiology of DLSS and developments in minimally invasive surgical techniques will influence treatment options in the near future. Copyright 2010 Elsevier Inc. All rights reserved.
Perlick, L; Möller, G; Wallny, T; Schmitt, O
1999-01-01
Diagnosis of Guillian-Barré Syndrome usually is not difficult, but diagnostic failure occurs for the variable initial presentation. Diagnosis is based on physical examination showing loss of motor strength in more than one limb and loss of deep tendon reflexes. Ventilatory assistance, pharmacologic maintenance of cardiovascular homeostasis, corticosteroids, IgG and plasma exchange are the dominant therapeutic measures. This article reports on a case of a 59-year old surgeon suffering from degenerative disc disease in the lumbar spine. The patient developed a severe course of the Guillian-Barré Syndrome with persisting motor weakness of the legs. If the primary problem at presentation is limb and back pain the pathology appears to be in the musculoskeletal rather than in neurological system. The awareness of this presentation of Guillian-Barré-Syndrome will eliminate delay in diagnosis.
Nichols, J L
1899-03-01
(1) The application of the Nissl method to the study of the motor cells of the spinal cord, and the nerve cells of the dorsal root ganglia in typhoid fever, shows that these cells regularly suffer pathological changes in the course of the infection. (2) The alterations in the motor cells are more constant and of a severer grade than are those in the cells of the sensory ganglia. The more characteristic changes consist of disintegration, solution and destruction of the chromatic substance of the cell starting from the axone hillock and proceeding toward the nucleus. Coincidently the nuclei of the affected cells seek the periphery. Alterations are also suffered by the nucleus and nucleolus. (3) While this central form of ehromatolysis is the prevailing type of pathological change, disintegration, etc., of the Nissl bodies situated in the periphery of the cell and in the dendrites is also observed (peripheral chromatolysis). (4) In experimental infection with typhoid bacilli in rabbits a similar series of lesions in the corresponding nerve cells in the spinal cord and ganglia is encountered. (5) The main or central type of lesions discovered is identical with that found in man and animals after section, destruction, or even slight injury of the peripheral nerves. (6) The examination of the peripheral nerves arising from the lumbar segment of the cord (the site in man and rabbit of the most profound changes) in rabbits inoculated with typhoid bacilli showed well-marked evidences of parenchymatous degeneration. (7> It is probable that lesions of the peripheral nerves in typhoid fever in human beings are common and that the post-typhoid hyper sthesias and paralyses are due to this cause. (8) Restitution of the chromatic granules may take place in the affected nerve cells, the new formation beginning about the nucleus and extending through the protoplasm.
Nichols, Joseph Longworth
1899-01-01
(1) The application of the Nissl method to the study of the motor cells of the spinal cord, and the nerve cells of the dorsal root ganglia in typhoid fever, shows that these cells regularly suffer pathological changes in the course of the infection. (2) The alterations in the motor cells are more constant and of a severer grade than are those in the cells of the sensory ganglia. The more characteristic changes consist of disintegration, solution and destruction of the chromatic substance of the cell starting from the axone hillock and proceeding toward the nucleus. Coincidently the nuclei of the affected cells seek the periphery. Alterations are also suffered by the nucleus and nucleolus. (3) While this central form of ehromatolysis is the prevailing type of pathological change, disintegration, etc., of the Nissl bodies situated in the periphery of the cell and in the dendrites is also observed (peripheral chromatolysis). (4) In experimental infection with typhoid bacilli in rabbits a similar series of lesions in the corresponding nerve cells in the spinal cord and ganglia is encountered. (5) The main or central type of lesions discovered is identical with that found in man and animals after section, destruction, or even slight injury of the peripheral nerves. (6) The examination of the peripheral nerves arising from the lumbar segment of the cord (the site in man and rabbit of the most profound changes) in rabbits inoculated with typhoid bacilli showed well-marked evidences of parenchymatous degeneration. (7> It is probable that lesions of the peripheral nerves in typhoid fever in human beings are common and that the post-typhoid hyper sthesias and paralyses are due to this cause. (8) Restitution of the chromatic granules may take place in the affected nerve cells, the new formation beginning about the nucleus and extending through the protoplasm. PMID:19866906
Spontaneous cerebrospinal fluid leak from an anomalous thoracic nerve root: case report.
Lopez, Alejandro J; Campbell, Robert K; Arnaout, Omar; Curran, Yvonne M; Shaibani, Ali; Dahdaleh, Nader S
2016-12-01
The authors report the case of a 28-year-old woman with a spontaneous cerebrospinal fluid leak from the sleeve of a redundant thoracic nerve root. She presented with postural headaches and orthostatic symptoms indicative of intracranial hypotension. CT myelography revealed that the lesion was located at the T-11 nerve root. After failure of conservative management, including blood patches and thrombin glue injections, the patient was successfully treated with surgical decompression and ligation of the duplicate nerve, resulting in full resolution of her orthostatic symptoms.
T1 Radiculopathy: Electrodiagnostic Evaluation
Radecki, Jeffrey; Zimmer, Zachary R.
2008-01-01
Electromyography (EMG) studies are useful in the anatomical localization of nerve injuries and, in most cases, isolating lesions to a single nerve root level. Their utility is important in identifying specific nerve-root-level injuries where surgical or interventional procedures may be warranted. In this case report, an individual presented with right upper extremity radicular symptoms consistent with a clinical diagnosis of cervical radiculopathy. EMG studies revealed that the lesion could be more specifically isolated to the T1 nerve root and, furthermore, provided evidence that the abductor pollicis brevis receives predominantly T1 innervation. PMID:19083061
Population pharmacokinetics of bupivacaine in combined lumbar and sciatic nerve block
Eljebari, Hanene; Jebabli, Nadia; Salouage, Issam; Gaies, Emna; Lakhal, Mohamed; Boussofara, Mehdi; Klouz, Anis
2014-01-01
Objectives: The primary aim of this study was to establish the population pharmacokinetic (PPK) model of bupivacaine after combined lumbar plexus and sciatic nerve blocks and secondary aim is to assess the effect of patient's characteristics including age, body weight and sex on pharmacokinetic parameters. Materials and Methods: A total of 31 patients scheduled for elective lower extremity surgery with combined lumbar and sciatic nerve block using plain bupivacaine 0.5% were included. The total bupivacaine plasma concentrations were measured before injection and after two blocks placement and at selected time points. Monitoring of bupivacaine was made by high performance liquid chromatography (HPLC) with ultraviolet detection. Non-linear mixed effects modeling was used to analyze the PPK of bupivacaine. Results: One compartment model with first order absorption, two input compartments and a central elimination was selected. The Shapiro-Wilks test of normality for normalized prediction distribution errors for this model (P = 0.156) showed this as a valid model. The selected model predicts a population clearance of 930 ml/min (residual standard error [RSE] = 15.48%, IC 95% = 930 ± 282.24) with inter individual variability of 75.29%. The central volume of distribution was 134 l (RSE = 12.76%, IC = 134 ± 33.51 L) with inter individual variability of 63.40%. The absorption of bupivacaine in two sites Ka1 and Ka2 were 0.00462/min for the lumbar site and 0.292/min for the sciatic site. Age, body weight and sex have no effect on the bupivacaine pharmacokinetics in this studied population. Conclusion: The developed model helps us to assess the systemic absorption of bupivacaine at two injections sites. PMID:24741194
Morphological changes in neurons of the hind limb reflex arc during long term immobilization
NASA Technical Reports Server (NTRS)
Tkachenko, Z. Y.
1980-01-01
Twelve adult rabbits were immobilized for 9 to 31 days, followed by histological study of the nerve processes of lumbar vertebra 7 and sacral vertebra 1, the sciatic nerve and the motor endings of the thigh muscles. In the spinal ganglia, dystrophic changes of increasing severity with immobilization time were found, including pericellular edema, vacuolized neuroplasm, pycnotic changes, cytolysis and destruction. Chromatophilic matter decreased and was partly bleached, and amitotic division occurred. A portion of the sciatic nerve fibers were argentophilic, and some fragmentary decomposition occurred. Considerable dystrophic changes occurred in the motor nerve endings.
NASA Astrophysics Data System (ADS)
Bergeron, Jeffrey A.; Eskey, Cliff J.; Attawia, Mohammed; Patel, Samit J.; Ryan, Thomas P.; Pellegrino, Richard; Sutton, Jeffrey; Crombie, John; Paul, B. T.; Hoopes, P. J.
2005-04-01
Pathologic involvement of the basivertebral nerve, an intraosseous vertebral nerve found in humans and most mammalian species, may play a role in some forms of back pain. This study was designed to assess the feasibility and effects of the percutaneous delivery of radiofrequency (RF) energy to thermally ablate the basivertebral nerve in the lumbar vertebrae of mature sheep. Using fluoroscopic guidance, a RF bipolar device was placed and a thermal dose delivered to lumbar vertebral bodies in sheep. Post-treatment assessment included multiple magnetic resonance imaging (MRI) techniques and computed tomography (CT). These data were analyzed and correlated to histopathology and morphometry findings to describe the cellular and boney structural changes resulting from the treatment. Imaging modalities MRI and CT can be implemented to non-invasively describe treatment region and volume, marrow cellular effects, and bone density alterations immediately following RF treatment and during convalescence. Such imaging can be utilized to assess treatment effects and refine the thermal dose to vertebral body volume ratio used in treatment planning. This information will be used to improve the therapeutic ratio and develop a treatment protocol for human applications.
Reinnervation of Urethral and Anal Sphincters With Femoral Motor Nerve to Pudendal Nerve Transfer
Ruggieri, Michael R.; Braverman, Alan S.; Bernal, Raymond M.; Lamarre, Neil S.; Brown, Justin M.; Barbe, Mary F.
2012-01-01
Aims Lower motor neuron damage to sacral roots or nerves can result in incontinence and a flaccid urinary bladder. We showed bladder reinnervation after transfer of coccygeal to sacral ventral roots, and genitofemoral nerves (L1, 2 origin) to pelvic nerves. This study assesses the feasibility of urethral and anal sphincter reinnervation using transfer of motor branches of the femoral nerve (L2–4 origin) to pudendal nerves (S1, 2 origin) that innervate the urethral and anal sphincters in a canine model. Methods Sacral ventral roots were selected by their ability to stimulate bladder, urethral sphincter, and anal sphincter contraction and transected. Bilaterally, branches of the femoral nerve, specifically, nervus saphenous pars muscularis [Evans HE. Miller’s anatomy of the dog. Philadelphia: W.B. Saunders; 1993], were transferred and end-to-end anastomosed to transected pudendal nerve branches in the perineum, then enclosed in unipolar nerve cuff electrodes with leads to implanted RF micro-stimulators. Results Nerve stimulation induced increased anal and urethral sphincter pressures in five of six transferred nerves. Retrograde neurotracing from the bladder, urethral sphincter, and anal sphincter using fluorogold, fast blue, and fluororuby, demonstrated urethral and anal sphincter labeled neurons in L2–4 cord segments (but not S1–3) in nerve transfer canines, consistent with rein-nervation by the transferred femoral nerve motor branches. Controls had labeled neurons only in S1–3 segments. Postmortem DiI and DiO labeling confirmed axonal regrowth across the nerve repair site. Conclusions These results show spinal cord reinnervation of urethral and anal sphincter targets after sacral ventral root transection and femoral nerve transfer (NT) to the denervated pudendal nerve. These surgical procedures may allow patients to regain continence. PMID:21953679
Chen, Hua-Biao; Wan, Qi; Xu, Qi-Feng; Chen, Yi; Bai, Bo
2016-04-25
Correlating symptoms and physical examination findings with surgical levels based on common imaging results is not reliable. In patients who have no concordance between radiological and clinical symptoms, the surgical levels determined by conventional magnetic resonance imaging (MRI) and neurogenic examination (NE) may lead to a more extensive surgery and significant complications. We aimed to confirm that whether the use of diffusion tensor imaging (DTI) and paraspinal mapping (PM) techniques can further prevent the occurrence of false positives with conventional MRI, distinguish which are clinically relevant from levels of cauda equina and/or nerve root lesions based on MRI, and determine and reduce the decompression levels of lumbar spinal stenosis than MRI + NE, while ensuring or improving surgical outcomes. We compared the data between patients who underwent MRI + (PM or DTI) and patients who underwent conventional MRI + NE to determine levels of decompression for the treatment of lumbar spinal stenosis. Outcome measures were assessed at 2 weeks, 3 months, 6 months, and 12 months postoperatively. One hundred fourteen patients (59 in the control group, 54 in the experimental group) underwent decompression. The levels of decompression determined by MRI + (PM or DTI) in the experimental group were significantly less than that determined by MRI + NE in the control group (p = 0.000). The surgical time, blood loss, and surgical transfusion were significantly less in the experimental group (p = 0.001, p = 0.011, p = 0.001, respectively). There were no differences in improvement of the visual analog scale back and leg pain (VAS-BP, VAS-LP) scores and Oswestry Disability Index (ODI) scores at 2 weeks, 3 months, 6 months, and 12 months after operation between the experimental and control groups. MRI + (PM or DTI) showed clear benefits in determining decompression levels of lumbar spinal stenosis than MRI + NE. In patients with lumbar spinal stenosis, the use of PM and DTI techniques reduces decompression levels and increases safety and benefits of surgery.
Aichmair, Alexander; Lykissas, Marios G; Girardi, Federico P; Sama, Andrew A; Lebl, Darren R; Taher, Fadi; Cammisa, Frank P; Hughes, Alexander P
2013-11-01
Retrospective case series. To evaluate the proportional trend over time of neurological deficits after lateral lumbar interbody fusion (LLIF) at a single institution. Because lumbar nerve roots converge to run as the lumbar plexus within or less frequently underneath the posterior part of the psoas muscle, they are prone to iatrogenic damage during the transpsoas approach in LLIF, and adverse postoperative neurological sequelae remain a major concern. The electronic medical records and office notes of 451 patients who had consecutively undergone LLIF between March 2006 and April 2012 at a single institution were retrospectively reviewed for reports on postoperative neurological deficits. A total of 293 patients (173 females and 120 males) met the study inclusion criteria and were followed postoperatively for a mean period of 15.4 ± 9.2 months (range: 6-53 mo). The number of included patients who underwent LLIF at our institution was 47 in the years 2006 to 2008 (group A), 155 in 2009 to 2010 (group B), and 91 in 2011 to 2012 (group C). Our data indicate a decreasing proportional trend during the past 6 years for postoperative sensory deficits (SDs), motor deficits (MDs), and anterior thigh pain (TP). The decreasing trends were statistically significant for the proportion of SDs in the immediate postoperative setting (P = 0.018) and close to statistically significant for SDs at last follow-up (P = 0.126), TP immediately after surgery (P = 0.098), and TP at last follow-up (P = 0.136). To the authors' best knowledge, this study constitutes the largest series of this sort to date, with regard to both sample size and study period. The present data indicate a decreasing proportional trend over time for SDs, MDs, and anterior TP, which can be considered a representation of an institutional learning curve during a 6-year time period of performing LLIF.
Somers, D L; Somers, M F
1999-08-01
Diabetic neuropathy can produce severe pain. The purpose of this case report is to describe the alteration of pain in a patient with severe, painful diabetic neuropathy following application of transcutaneous electrical nerve stimulation (TENS) to the low back. The patient was a 73-year-old woman with pain in the left lower extremity over the lateral aspect of the hip and the entire leg below the knee. The pain prevented sound sleep. The intensity of pain was assessed with a visual analog scale. The TENS (80 Hz) was delivered 1 to 2 hours a day and during the entire night through electrodes placed on the lumbar area of the back. Following 20 minutes of TENS on the first day of treatment, the patient reported a 38% reduction in intensity of pain. After 17 days, the patient reported no pain following 20 minutes of TENS and that she could sleep through the night. Application of TENS to the skin of the lumbar area may be an effective treatment for the pain of diabetic neuropathy.
Anatomy of the nerves and ganglia of the aortic plexus in males
Beveridge, Tyler S; Johnson, Marjorie; Power, Adam; Power, Nicholas E; Allman, Brian L
2015-01-01
It is well accepted that the aortic plexus is a network of pre- and post-ganglionic nerves overlying the abdominal aorta, which is primarily involved with the sympathetic innervation to the mesenteric, pelvic and urogenital organs. Because a comprehensive anatomical description of the aortic plexus and its connections with adjacent plexuses are lacking, these delicate structures are prone to unintended damage during abdominal surgeries. Through dissection of fresh, frozen human cadavers (n = 7), the present study aimed to provide the first complete mapping of the nerves and ganglia of the aortic plexus in males. Using standard histochemical procedures, ganglia of the aortic plexus were verified through microscopic analysis using haematoxylin & eosin (H&E) and anti-tyrosine hydroxylase stains. All specimens exhibited four distinct sympathetic ganglia within the aortic plexus: the right and left spermatic ganglia, the inferior mesenteric ganglion and one previously unidentified ganglion, which has been named the prehypogastric ganglion by the authors. The spermatic ganglia were consistently supplied by the L1 lumbar splanchnic nerves and the inferior mesenteric ganglion and the newly characterized prehypogastric ganglion were supplied by the left and right L2 lumbar splanchnic nerves, respectively. Additionally, our examination revealed the aortic plexus does have potential for variation, primarily in the possibility of exhibiting accessory splanchnic nerves. Clinically, our results could have significant implications for preserving fertility in men as well as sympathetic function to the hindgut and pelvis during retroperitoneal surgeries. PMID:25382240
Georgetown Institute for Cognitive and Computational Sciences
2004-04-01
lumbar DRG after formalin injection into the hindpaw. Dilute formalin (1.8%) was injected into the rat hindpaw and DRG were harvested 30 minutes later...staining (Figure 140, arrows) on the ipsilateral side to nerve crush. In the lumbar spinal cord, the site of sciatic innervation, there was a dramatic...Proteases in traumatic brain injury. Proieases in Biology and Disease, Volume 3.: Proteases in the Brain, Edited by Nigel Hooper and Uwe Lendeckel, in
Lumbar (Open) Microscopic Discectomy
Toggle navigation CONDITIONS Low Back Pain Acute Low Back Pain Chronic Low Back Pain SI Joint Pain Other Scoliosis Back Pain and Emotional Distress Muscle Spasms Pinched Nerve Discitis Degenerative Conditions Bulge vs ...
Shin, Ho-Jin; Choi, Yun-Mi; Kim, Hye-Jin; Lee, Sun-Jae; Yoon, Seok-Hyun; Kim, Kyung-Hoon
2014-12-01
Lumbar chemical sympathectomy has been performed using fluoroscopic guidance for needle positioning. An 84 year old woman with atherosclerosis obliterans was referred to the pain clinic for intractable cold allodynia of her right foot. A thermogram showed decreased temperature of both feet compared with temperatures above both ankles. The patient agreed to undergo lumbar chemical sympathectomy using fluoroscopy after being informed of the associated risks of nerve injury, hemorrhage, infection, transient back pain, and transient hypotension. During the procedure and three hours afterward, no abnormal signs or symptoms were found except an increase in right leg temperature. The patient was ambulatory after the procedure. However, one day after undergoing lumbar chemical sympathectomy, she visited our emergency department for abdominal discomfort and postural dizziness. Her blood pressure was 80/50 mmHg, and flank tenderness was noted. Retroperitoneal hemorrhage from the second right lumbar segmental artery was shown on computed tomography and angiography. Vital signs were stabilized immediately after embolization into the right lumbar segmental artery. Copyright © 2014 Elsevier Inc. All rights reserved.
Fujii, Hiromi; Kosogabe, Yoshinori; Kajiki, Hideki
2012-08-01
Although pulsed radiofrequency (PRF) method for lumbosacral radicular pain (LSRP) is reportedly effective, there are no prospective controlled trials. We assessed the long-term efficacy of PRF of the dorsal root ganglion and nerve roots for LSRP as compared with nerve root block (RB). The study included 27 patients suffering from LSRP. The design of this study was randomized with a RB control. In the PRF group, the PRF current was applied for 120 seconds after RB. In the RB group, the patients received RB only. Visual analogue scale (VAS) was assessed immediately before, and immediately, 2 hours, 1 day, 1 week, 1 month, 3 months, 6 months, and 1 year after the procedure. P<0.05 was regarded as denoting statistical significance. In both groups, the VAS not only of short-term but also of long-term (6 months and 1 year after procedure) significantly decreased as compared with that before treatment (P<0.05). There were no significant differences of VAS between the two groups at the same time points. This study indicates that PRF adjacent to the dorsal root ganglion and nerve roots for LSRP has long-term effects. There were no significant differences of long-term effects between the two groups.
Measuring of the compensation of a nerve root in a cervical schwannoma: a case report.
Saiki, Masahiko; Taguchi, Toshihiko; Kaneko, Kazuo; Toyota, Kouichiro; Kato, Yoshihiko; Li, Zhenglin; Kawai, Shinya
2003-01-01
A 64-year-old woman experienced numbness and hypesthesia of the right C6 dermatome a year ago. Enhanced magnetic resonance imaging of the cervical spine revealed an enhanced tumor continuing into the foramen from the spinal cord at the C5/6 intervertebral level. It was thought to be an Eden type 2 schwannoma. Right unilateral laminectomy was performed on C5. The tumor was present in the intradural area and arose from the right C6 anterior root. Compound muscle action potentials (CMAPs) from the deltoid, biceps, and extensor carpi radial (ECR) muscles were recorded following electric cervical nerve root stimulation (0.2 ms duration, and 7 mA intensity). CMAPs of large amplitude were obtained from the deltoid, biceps, and ECR muscles following C5 root stimulation, but those following C6 root stimulation were small. As a result it was determined that the right C6 root was not associated with the nerve distribution for these muscles, so it was resected en bloc with the tumor. No apparent loss of motor function was observed. Standard needle electromyography showed no denervation potentials or decrease in motor unit potentials in either the deltoid or biceps muscles. Intraoperative investigation for compensation of nerve root is clinically useful for determining whether resection of a nerve root results in muscle weakness after surgery for a cervical schwannoma.
Dezawa, A; Sairyo, K
2011-05-01
The serial dilating technique used to access herniated discs at the L5-S1 space using percutaneous endoscopic discectomy (PED) via an 8 mm skin incision can possibly injure the S1 nerve root. In this paper, we describe in detail a new surgical procedure to safely access the disc and to avoid the nerve root damage. This small-incision endoscopic technique, small-incision microendoscopic discectomy (sMED), mimics microendoscopic discectomy and applies PED. The sMED approach is similar to the well-established microendoscopic discectomy technique. To secure the surgical field, a duckbill-type PED cannula is used. Following laminotomy of L5 using a high-speed drill, the ligamentum flavum is partially removed using the Kerrison rongeur. Using the curved nerve root retractor, the S1 nerve root is gradually and gently moved caudally. Following the compete retraction of the S1 nerve root to the caudal side of the herniated nucleus pulposus (HNP), the nerve root is retracted safely medially and caudally using the bill side of the duckbill PED cannula. Next, using the HNP rongeur for PED, the HNP is removed piece by piece until the nerve root is decompressed. A total of 30 patients with HNP at the L5-S1 level underwent sMED. In all cases, HNP was successfully removed and patients showed improvement following surgery. Only one patient complained of moderate radiculopathy at the final visit. No complications were encountered. We introduced a minimally invasive technique to safely remove HNP at the L5-S1 level. sMED is possibly the least invasive technique for HNP removal at the L5-S1 level. © 2011 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Blackwell Publishing Asia Pty Ltd.
Ulvi, Hızır; Demir, Recep; Aygül, Recep; Kotan, Dilcan; Calik, Muhammet; Aydin, Mehmet Dumlu
2013-12-30
Phrenic nerves have important roles on the management of respiration rhythm. Diaphragm paralysis is possible in phrenic nerve roots ischemia in subarachnoid hemorrhage (SAH). We examined whether there is a relationship between phrenic nerve root ischemia and respiratory disturbances in SAH. This study was conducted on 5 healthy control and 14 rabbits with experimentally induced SAH by injecting autologous blood into their cisterna magna. Animals were followed up via monitors for detecting the heart and respiration rhythms for 20 days and then decapitaed by humanely. Normal and degenerated neuron densities of phrenic nerve root at the level of C4 dorsal root ganglia (C4DRG) were estimated by Stereological methods. Between the mean numerical density of degenerated neurons of C4DRG and respiratory rate/minute of groups were compared statistically. Phrenic nerve roots, artery and diaphragm muscles degeneration was detected in respiratory arrest developed animals. The mean neuronal density of C4DRG was 13272 ±1201/mm3 with a mean respiration rate of 23 ±4/min in the control group. The mean degenerated neuron density was 2.240 ±450/mm(3) and respiration rhythm was 31 ±6/min in survivors. But, the mean degenerated neuron density was 5850 ±650/mm(3) and mean respiration rhythm was 34 ±7/min in respiratory arrest developed animals (n = 7). A linear relationship was noticed between the degenerated neuron density of C4DRG and respiraton rate (r = -0.758; p < 0.001). Phrenic nerve root ischemia may be an important factor in respiration rhythms deteriorations in SAH which has not been mentioned in the literature.
Vroomen, P; de Krom, M C T F M; Wilmink, J; Kester, A; Knottnerus, J
2002-01-01
Objective: To evaluate patient characteristics, symptoms, and examination findings in the clinical diagnosis of lumbosacral nerve root compression causing sciatica. Methods: The study involved 274 patients with pain radiating into the leg. All had a standardised clinical assessment and magnetic resonance (MR) imaging. The associations between patient characteristics, clinical findings, and lumbosacral nerve root compression on MR imaging were analysed. Results: Nerve root compression was associated with three patient characteristics, three symptoms, and four physical examination findings (paresis, absence of tendon reflexes, a positive straight leg raising test, and increased finger-floor distance). Multivariate analysis, analysing the independent diagnostic value of the tests, showed that nerve root compression was predicted by two patient characteristics, four symptoms, and two signs (increased finger-floor distance and paresis). The straight leg raise test was not predictive. The area under the curve of the receiver-operating characteristic was 0.80 for the history items. It increased to 0.83 when the physical examination items were added. Conclusions: Various clinical findings were found to be associated with nerve root compression on MR imaging. While this set of findings agrees well with those commonly used in daily practice, the tests tended to have lower sensitivity and specificity than previously reported. Stepwise multivariate analysis showed that most of the diagnostic information revealed by physical examination findings had already been revealed by the history items. PMID:11971050
Dual Nerve Transfers for Restoration of Shoulder Function After Brachial Plexus Avulsion Injury.
Chu, Bin; Wang, Huan; Chen, Liang; Gu, Yudong; Hu, Shaonan
2016-06-01
The purpose of this study was to investigate the effectiveness of shoulder function restoration by dual nerve transfers, spinal accessory nerve to the suprascapular nerve and 2 intercostal nerves to the anterior branch of the axillary nerve, in patients with shoulder paralysis that resulted from brachial plexus avulsion injury. It was a retrospective analysis to assess the impact of a variety of factors on reanimation of shoulder functions with dual nerve transfers. A total of 19 patients were included in this study. Most of these patients sustained avulsions of C5, C6, and C7 nerve roots (16 patients). Three of them had avulsions of C5 and C6 roots only. Through a posterior approach, direct coaptation of the intercostal nerves and the anterior branch of the axillary nerve was performed, along with accessory nerve transfer to the suprascapular nerve. Satisfactory shoulder function recovery (93.83° of shoulder abduction and 54.00° of external rotation on average) was achieved after a 62-month follow-up. This dual nerve transfer procedure provided us with a reliable and effective method for shoulder function reconstruction after brachial plexus root avulsion, especially C5/C6/C7 avulsion. The level of evidence is therapeutic IV.
Ghaly, Ramsis F.; Lissounov, Alexei; Tverdohleb, Tatiana; Kohanchi, David; Candido, Kenneth D.; Knezevic, Nebojsa Nick
2016-01-01
Background: Bone morphogenic protein (BMP) for instrumented lumbar fusion was approved in 2002, and since then has led to an increasing incidence of BMP-related neuropathic pain. These patients are usually resistant to conventional medical therapy and frequently undergo multiple surgical revisions without any pain relief. Case Description: A 58-year-old male was referred to the author's outpatient clinic after four lumbar surgeries did not provide satisfactory pain relief. During his 10 years of suffering from low back pain after an injury, the patient was resistant to conventional and interventional treatment options. He was experiencing severe back pain rated 10/10, as well as right lower extremity pain, numbness, tingling, and motor deficits. Outside spine specialists had performed revision surgeries for BMP-related exuberant bone formation at L5–S1, which included the removal of the ipsilateral hardware and debridement of intradiscal and intraforamina heterotrophic exuberant bony formation. The author implanted the patient with a permanent continuous spinal cord stimulator, after which he achieved complete pain relief (0/10) and restoration of motor, sensory, autonomic, and sphincter functions. Conclusion: This is the first reported case of restorative function with neuromodulation therapy in a BMP-induced postoperative complication, which is considered as a primarily inflammatory process, rather than nerve root compression due to exuberant bony formation. We hypothesize that neuromodulation may enhance blood flow and interfere with inflammatory processes, in addition to functioning by the accepted gate control theory mechanism. The neuromodulation therapy should be strongly considered as a therapeutic approach, even with confirmed BMP-induced postoperative radiculitis, rather than proposing multiple surgical revisions. PMID:27843683
Intraoperative conjoined lumbosacral nerve roots associated with spondylolisthesis.
Popa, Iulian; Poenaru, Dan V; Oprea, Manuel D; Andrei, Diana
2013-07-01
Lumbosacral nerve roots anomalies may produce low back pain. These anomalies are reported to be a cause for failed back surgery. They are usually left undiagnosed, especially in endoscopic discectomy techniques. Any surgery for entrapment disorders, performed on a patient with undiagnosed lumbosacral nerve roots anomaly, may lead to serious neural injuries because of an improper surgical technique or decompression. In this report, we describe our experience with a case of L5-S1 spondylolisthesis and associated congenital lumbosacral nerve root anomalies discovered during the surgical intervention, and the difficulties raised by such a discovery. Careful examination of coronal and axial views obtained through high-quality Magnetic Resonance Imaging may lead to a proper diagnosis of this condition leading to an adequate surgical planning, minimizing the intraoperatory complications.
Kamogawa, Junji; Kato, Osamu; Morizane, Tatsunori; Hato, Taizo
2015-01-01
There have been several imaging studies of cervical radiculopathy, but no three-dimensional (3D) images have shown the path, position, and pathological changes of the cervical nerve roots and spinal root ganglion relative to the cervical bony structure. The objective of this study was to introduce a technique that enables the virtual pathology of the nerve root to be assessed using 3D magnetic resonance (MR)/computed tomography (CT) fusion images that show the compression of the proximal portion of the cervical nerve root by both the herniated disc and the preforaminal or foraminal bony spur in patients with cervical radiculopathy. MR and CT images were obtained from three patients with cervical radiculopathy. 3D MR images were placed onto 3D CT images using a computer workstation. The entire nerve root could be visualized in 3D with or without the vertebrae. The most important characteristic evident on the images was flattening of the nerve root by a bony spur. The affected root was constricted at a pre-ganglion site. In cases of severe deformity, the flattened portion of the root seemed to change the angle of its path, resulting in twisted condition. The 3D MR/CT fusion imaging technique enhances visualization of pathoanatomy in cervical hidden area that is composed of the root and intervertebral foramen. This technique provides two distinct advantages for diagnosis of cervical radiculopathy. First, the isolation of individual vertebra clarifies the deformities of the whole root groove, including both the uncinate process and superior articular process in the cervical spine. Second, the tortuous or twisted condition of a compressed root can be visualized. The surgeon can identify the narrowest face of the root if they view the MR/CT fusion image from the posterolateral-inferior direction. Surgeons use MR/CT fusion images as a pre-operative map and for intraoperative navigation. The MR/CT fusion images can also be used as educational materials for all hospital staff and for patients and patients' families who provide informed consent for treatments.
The spectrum of neurological disorders presenting at a neurology clinic in Yaoundé, Cameroon.
Tegueu, Callixte Kuate; Nguefack, Séraphin; Doumbe, Jacques; Fogang, Yannick Fogoum; Mbonda, Paul Chimi; Mbonda, Elie
2013-01-01
The burden of these neurological diseases is higher in developing countries. However, there is a paucity and scarcity of literature on neurological diseases in sub-Saharan Africa. This study was therefore undertaken to determine the pattern of neurological diseases in this setting and then, compare to those elsewhere in the African continent and also serve as a baseline for planning and care for neurological disorders in Cameroon. The study was conducted at the Clinique Bastos, in Yaoundé, city capital of Cameroon, centre region. Over a period of six years, all medical records were reviewed by a neurologist and neurological diagnoses classified according to ICD-10. Out of 4526 admissions 912 patients (20.15%) were given a neurological diagnosis. The most frequent neurological disorders were headache (31.9%), epilepsy (9.86%), intervertebral disc disorder (7.67%), followed by lumbar and cervical arthrosis, polyneuropathy, stroke, Parkinson disease and dementia. According to ICD-10 classification, Episodic and paroxysmal disorders (headaches, epilepsy, cerebrovascular, sleep disorders) were observed on 424 (46.48%) patients; followed by nerve, nerve root and plexus disorders in 115 (12.6%) patients. The above data emphasizes that neurological disease contributes substantially to morbidity in an urban African hospital. Headaches, epilepsy and intervertebral disc disorders are major causes of morbidity.
Nociceptive DRG neurons express muscle lim protein upon axonal injury.
Levin, Evgeny; Andreadaki, Anastasia; Gobrecht, Philipp; Bosse, Frank; Fischer, Dietmar
2017-04-04
Muscle lim protein (MLP) has long been regarded as a cytosolic and nuclear muscular protein. Here, we show that MLP is also expressed in a subpopulation of adult rat dorsal root ganglia (DRG) neurons in response to axonal injury, while the protein was not detectable in naïve cells. Detailed immunohistochemical analysis of L4/L5 DRG revealed ~3% of MLP-positive neurons 2 days after complete sciatic nerve crush and maximum ~10% after 4-14 days. Similarly, in mixed cultures from cervical, thoracic, lumbar and sacral DRG ~6% of neurons were MLP-positive after 2 days and maximal 17% after 3 days. In both, histological sections and cell cultures, the protein was detected in the cytosol and axons of small diameter cells, while the nucleus remained devoid. Moreover, the vast majority could not be assigned to any of the well characterized canonical DRG subpopulations at 7 days after nerve injury. However, further analysis in cell culture revealed that the largest population of MLP expressing cells originated from non-peptidergic IB4-positive nociceptive neurons, which lose their ability to bind the lectin upon axotomy. Thus, MLP is mostly expressed in a subset of axotomized nociceptive neurons and can be used as a novel marker for this population of cells.
Julé, Y
1987-01-01
We analyzed the effects of trimebutine on the synaptic activity of neurons of the rabbit inferior mesenteric ganglion, using intracellular recording techniques. The synaptic activity was produced by subthreshold stimuli (0.5 Hz) applied individually, on lumbar splanchnic and lumbar colonic nerves. These stimuli triggered cholinergic responses corresponding to fast excitatory postsynaptic potentials. In 8 of 20 neurones tested trimebutine (10(-6) g/ml) produced an inhibition of excitatory postsynaptic potentials, without any change in the resting membrane potential. In 6 of 20 neurons tested, trimebutine produced, successively, an early facilitation followed by a late inhibition of excitatory postsynaptic potentials. Both effects occurred without change in the resting membrane potential. The inhibitory and facilitatory effects of trimebutine were accompanied, by an increase and a decrease in the number of failures of nerve stimulation respectively. These results indicate that inhibitory and facilitatory effects of trimebutine correspond respectively to a decrease and an increase in the amount of acetylcholine released from presynaptic nerve terminals originating from the spinal cord and the distal colon.
Characterization of a chondroitin sulfate hydrogel for nerve root regeneration
NASA Astrophysics Data System (ADS)
Conovaloff, Aaron; Panitch, Alyssa
2011-10-01
Brachial plexus injury is a serious medical problem that affects many patients annually, with most cases involving damage to the nerve roots. Therefore, a chondroitin sulfate hydrogel was designed to both serve as a scaffold for regenerating root neurons and deliver neurotrophic signals. Capillary electrophoresis showed that chondroitin sulfate has a dissociation constant in the micromolar range with several common neurotrophins, and this was determined to be approximately tenfold stronger than with heparin. It was also revealed that nerve growth factor exhibits a slightly stronger affinity for hyaluronic acid than for chondroitin sulfate. However, E8 chick dorsal root ganglia cultured in the presence of nerve growth factor revealed that ganglia cultured in chondroitin sulfate scaffolds showed more robust growth than those cultured in control gels of hyaluronic acid. It is hypothesized that, despite the stronger affinity of nerve growth factor for hyaluronic acid, chondroitin sulfate serves as a better scaffold for neurite outgrowth, possibly due to inhibition of growth by hyaluronic acid chains.
Bolzoni, F; Jankowska, E
2015-01-01
The present study aimed to compare presynaptic and postsynaptic actions of direct current polarization in the spinal cord, focusing on DC effects on primary afferents and motoneurons. To reduce the directly affected spinal cord region, a weak polarizing direct current (0.1–0.3 μA) was applied locally in deeply anaesthetized cats and rats; within the hindlimb motor nuclei in the caudal lumbar segments, or in the dorsal horn within the terminal projection area of low threshold skin afferents. Changes in the excitability of primary afferents activated by intraspinal stimuli (20–50 μA) were estimated using increases or decreases in compound action potentials recorded from the dorsal roots or peripheral nerves as their measure. Changes in the postsynaptic actions of the afferents were assessed from intracellularly recorded monosynaptic EPSPs in hindlimb motoneurons and monosynaptic extracellular field potentials (evoked by group Ia afferents in motor nuclei, or by low threshold cutaneous afferents in the dorsal horn). The excitability of motoneurons activated by intraspinal stimuli was assessed using intracellular records or motoneuronal discharges recorded from a ventral root or a muscle nerve. Cathodal polarization was found to affect motoneurons and afferents providing input to them to a different extent. The excitability of both was markedly increased during DC application, although post-polarization facilitation was found to involve presynaptic afferents and some of their postsynaptic actions, but only negligibly motoneurons themselves. Taken together, these results indicate that long-lasting post-polarization facilitation of spinal activity induced by locally applied cathodal current primarily reflects the facilitation of synaptic transmission. PMID:25416625
Suzuki, H; Yoshioka, K; Yanagisawa, M; Urayama, O; Kurihara, T; Hosoki, R; Saito, K; Otsuka, M
1994-01-01
1. The possible involvement of enzymatic degradation in the inactivation of tachykinin neurotransmitters was examined in the spinal cord of the neonatal rat. 2. The magnitude of substance P (SP)- or neurokinin A (NKA)-evoked depolarization of a lumbar ventral root in the isolated spinal cord preparation was increased by a mixture of peptidase inhibitors, consisting of actinonin (6 microM), arphamenine B (6 microM), bestatin (10 microM), captopril (10 microM) and thiorphan (0.3 microM). The mixture augmented the response to NKA more markedly than that to SP. 3. In the isolated spinal cord-cutaneous nerve preparation, the saphenous nerve-evoked slow depolarization of the L3 ventral root was augmented by the mixture of peptidase inhibitors in the presence of naloxone (0.5 microM) but not in the presence of both naloxone and a tachykinin receptor antagonist, GR71251 (5 microM). 4. Application of capsaicin (0.5 microM) for 6 min to the spinal cord evoked an increase in the release of SP from the spinal cord. The amount of SP released was significantly augmented by the mixture of peptidase inhibitors. 5. Synaptic membrane fractions were prepared from neonatal rat spinal cords. These fractions showed degrading activities for SP and NKA and the activities were inhibited by the mixture of peptidase inhibitors. The degrading activity for NKA was higher than that for SP and the inhibitory effect of the mixture for NKA was more marked than that for SP. Although some other fractions obtained from homogenates of spinal cords showed higher degrading activities for SP, these activities were insensitive to the mixture of peptidase inhibitors.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7529113
Barigye, R; Davis, S; Hunt, R; Hunt, N; Walsh, S; Elliott, N; Burnup, C; Aumann, S; Day, C; Dyrting, K; Weir, R; Melville, L F
2016-10-01
This study assessed the neurotropism of bovine ephemeral fever (BEF) virus (BEFV) and described histomorphological abnormalities of the brain, spinal cord and peripheral nerves that may causally contribute to paresis or paralysis in BEF. Four paralysed and six asymptomatic but virus-infected cattle were monitored, and blood and serum samples screened by qRT-PCR, virus isolation and neutralisation tests. Fresh brain, spinal cord, peripheral nerve and other tissues were qRT-PCR-tested for viral RNA, while formalin-fixed specimens were processed routinely and immunohistochemically evaluated for histomorphological abnormalities and viral antigen distribution, respectively. The neurotropism of BEFV was immunohistochemically confirmed in the brain and peripheral nerves and peripheral neuropathy was demonstrated in three paralysed but not the six aneurological but virus-infected animals. Wallerian degeneration (WD) was present in the ventral funicular white matter of the lumbar spinal cord of a paralysed steer and in cervical and thoracic spinal cord segments of three paralysed animals. Although no spinal cord lesions were seen in the steer euthanased within 7 days of illness, peripheral neuropathy was present and more severe in nerves of the brachial plexuses than in the gluteal or fibular nerves. The only steer with WD in the lumbar spinal cord also showed intrahistiocytic cell viral antigen that was spatially distributed within areas of moderate brain stem encephalitis. The data confirmed neurotropism of BEFV in cattle and documented histomorphological abnormalities in peripheral nerves and brain which, together with spinal cord lesions, may contribute to chronic paralysis in BEFV-infected downer cattle. © 2016 Australian Veterinary Association.
[The phrenic nerve in the guinea pig (Cavia porcellus L. 1756)].
Salgado, M C; Orsi, A M; Vicentini, C A; Mello Dias, S
1983-01-01
The aim of the present study was the ascertain in the mode of origin of the phrenic nerve and to provide a morphological basis for experimental studies of this nerve in the guinea pig. In sketches made of the dissections, in 10 male and 10 female guinea pigs adults, the modes of origin of the phrenic roots were demonstrated to arise from the fourth to the seventh cervical nerves. Four types of origin could be distinguished. The phrenic nerve of guinea pig has three or four roots.
... stenosis; LBP - stenosis Patient Instructions Spine surgery - discharge Images Sciatic nerve Spinal stenosis Spinal stenosis References Försth P, Ólafsson G, Carlsson T, et al. A randomized, controlled trial of fusion surgery for lumbar spinal stenosis. N Engl J ...
1984-12-01
the study were also analyzed for nitrate, nitrite and mercury content by TEl. 200 Fischer 344 rats, obtained from Harlan Sprague-Dawley, Madison , WI...Iles Pancreas Pituitary gland Prostate Rectum Salivary gland Sciatic nerve Seminal vesicles Skin, abdominal Spinal cord (cervical, thoracic, lumbar ...Skin, abdominal Spinal cord (cervical, thoracic and lumbar ) Sp I een Sternum Including bone marrow Stomach TIssue masses Thyroids (parathyrolds
Aragao, M F V V; Brainer-Lima, A M; Holanda, A C; van der Linden, V; Vasco Aragão, L; Silva Júnior, M L M; Sarteschi, C; Petribu, N C L; Valença, M M
2017-05-01
Arthrogryposis is among the malformations of congenital Zika syndrome. Similar to the brain, there might exist a spectrum of spinal cord abnormalities. The purpose of this study was to explore and describe in detail the MR imaging features found in the spinal cords, nerve roots, and brains of children with congenital Zika syndrome with and without arthrogryposis. Twelve infants with congenital Zika syndrome (4 with arthrogryposis and 8 without) who had undergone brain and spinal cord MR imaging were retrospectively selected. Qualitative and quantitative analyses were performed and compared between groups. At visual inspection, both groups showed reduced thoracic spinal cord thickness: 75% (6/8) of the group without arthrogryposis and 100% (4/4) of the arthrogryposis group. However, the latter had the entire spinal cord reduced and more severely reduced conus medullaris anterior roots (respectively, P = .002 and .007). Quantitative differences were found for conus medullaris base and cervical and lumbar intumescences diameters (respectively, P = .008, .048, .008), with more prominent reduction in arthrogryposis. Periventricular calcifications were more frequent in infants with arthrogryposis ( P = .018). Most infants had some degree of spinal cord thickness reduction, predominant in the thoracic segment (without arthrogryposis) or in the entire spinal cord (with arthrogryposis). The conus medullaris anterior roots were reduced in both groups (thinner in arthrogryposis). A prominent anterior median fissure of the spinal cord was absent in infants without arthrogryposis. Brain stem hypoplasia was present in all infants with arthrogryposis, periventricular calcifications, in the majority, and polymicrogyria was absent. © 2017 by American Journal of Neuroradiology.
Outcome of Percutaneous Lumbar Synovial Cyst Rupture in Patients with Lumbar Radiculopathy.
Eshraghi, Yashar; Desai, Vimal; Cajigal Cajigal, Calvin; Tabbaa, Kutaiba
2016-01-01
Lumbar synovial cysts can result from spondylosis of facet joints. These cysts can encroach on adjacent nerve roots, causing symptoms of radiculopathy. Currently the only definitive treatment for these symptoms is surgery, which may involve laminectomy or laminotomy, with or without spinal fusion. Surgery has been reported to successfully relieve radicular pain in 83.5% of patients by Zhenbo et al. Little information is available concerning the efficacy and outcome of percutaneous fluoroscopic synovial cyst rupture for treatment of facet joint synovial cysts. The goal of this investigation was to assess the efficacy of fluoroscopically guided lumbar synovial cyst rupture, in particular for its relief of radicular symptoms and its potential to reduce the need for surgical intervention. Retrospective evaluation of a case series. University hospital and urban public health care system. With approval from the Institutional Review Board of Case Western Reserve University/ MetroHealth Medical Center, we reviewed the medical charts of patients with lumbar radiculopathy who underwent percutaneous lumbar synovial cyst rupture. The 30 patients in the cohort were treated by one pain specialist between 2006 and 2013. These patients were diagnosed with moderate to severe lower back pain, radiculopathy, and ranged in age from 42 to 80 years. Patients were followed up for a minimum of 6 months and up to 24 months. Pre- and post-procedure pain assessments were reviewed by clinical chart review. In addition post-procedure pain assessments and duration of pain relief were obtained with telephone interviews. Pain had been reported by the patients using a numeric rating scale of 0 - 10 (0 = no pain; 10 = worst possible pain). Charts were reviewed to determine if surgery was eventually performed to correct radicular symptoms. More than 6 months of pain relief was achieved in 14/30 patients (46%) and between one and 6 months of pain relief was achieved in 7/30 patients (23.3%). Nine patients (30.0%) had recurrence of the synovial cyst requiring repeat rupture and 6 patients (20.0%) required surgical intervention for cyst removal. A Wilcoxon signed-rank test demonstrated that the difference in numeric pain rating scale scores before and after the procedure was statistically significant (P < 0.0001). The average pain reduction was 71.2%. No complications were reported. The results are limited by the retrospective nature of the data collection and the lack of detailed information regarding patients' functional improvement. Rupture of percutaneous lumbar synovial cysts in patients with lumbar radiculopathy was associated with immediate relief of radicular symptoms. In 80% of the patients, synovial cyst rupture eliminated the need for surgical interventions over the measured term. This minimally invasive procedure helps relieve pain in a subset of a patient population associated with these characteristics and is useful for management of this condition. Cyst expansion and failure to rupture with possible neuronal compression are the potential complications of this procedure. This complication did not occur in the study population. Fluoroscopically guided lumbar synovial cyst rupture, lumbar synovial cyst, lumbar zygapophyseal joint cyst, nonsurgical intervention, radiculopathy, spondylosis.
Chong, B S; Quinn, A; Pawar, R R; Makdissi, J; Sidhu, S K
2015-06-01
To evaluate the anatomical relationship between the roots of mandibular second molars and the inferior alveolar nerve (IAN) in relation to the risk of potential nerve injury during root canal treatment. Cone-beam computed tomography (CBCT) images from the patient record database at a dental hospital were selected. The anonymized CBCT images were reconstructed and examined in three planes (coronal, axial and sagittal) using 3D viewing software. The relationship between each root apex of mandibular second molars and the IAN was evaluated by measuring the horizontal and vertical distances from coronal CBCT sections, and the actual distance was then calculated mathematically using Pythagoras' theorem. In 55% of the 272 mandibular second molar roots evaluated, from a total of 134 scans, the distance between the anatomical root apex and the IAN was ≤3 mm. In over 50% of the cases evaluated, there was an intimate relationship between the roots of mandibular second molars and the inferior alveolar nerve (IAN). Therefore, root canal treatment of mandibular second molars may pose a more significant potential risk of IAN injury; necessary precautions should be exercised, and the prudent use of CBCT should be considered if an intimate relationship is suspected. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
A novel chondroitin sulfate hydrogel for nerve repair
NASA Astrophysics Data System (ADS)
Conovaloff, Aaron William
Brachial plexus injuries affect numerous patients every year, with very debilitating results. The majority of these cases are very severe, and involve damage to the nerve roots. To date, repair strategies for these injuries address only gross tissue damage, but do not supply cells with adequate regeneration signals. As a result, functional recovery is often severely lacking. Therefore, a chondroitin sulfate hydrogel that delivers neurotrophic signals to damaged neurons is proposed as a scaffold to support nerve root regeneration. Capillary electrophoresis studies revealed that chondroitin sulfate can physically bind with a variety of neurotrophic factors, and cultures of chick dorsal root ganglia demonstrated robust neurite outgrowth in chondroitin sulfate hydrogels. Outgrowth in chondroitin sulfate gels was greater than that observed in control gels of hyaluronic acid. Furthermore, the chondroitin sulfate hydrogel's binding activity with nerve growth factor could be enhanced by incorporation of a synthetic bioactive peptide, as revealed by fluorescence recovery after photobleaching. This enhanced binding was observed only in chondroitin sulfate gels, and not in hyaluronic acid control gels. This enhanced binding activity resulted in enhanced dorsal root ganglion neurite outgrowth in chondroitin sulfate gels. Finally, the growth of regenerating dorsal root ganglia in these gels was imaged using label-free coherent anti-Stokes scattering microscopy. This technique generated detailed, high-quality images of live dorsal root ganglion neurites, which were comparable to fixed, F-actin-stained samples. Taken together, these results demonstrate the viability of this chondroitin sulfate hydrogel to serve as an effective implantable scaffold to aid in nerve root regeneration.
Coronectomy of third molar: a reduced risk technique for inferior alveolar nerve damage.
Ahmed, Chkoura; Wafae, El Wady; Bouchra, Taleb
2011-05-01
Causing damage to the inferior alveolar nerve (IAN) when extracting lower third molars is due to the intimate relationship between the nerve and the roots of the teeth. When the proximity radiologic markers between the IAN and the root of the third molars are present, the technique of coronectomy can be proposed as an alternative to extraction to minimize the risk of nerve injury, with minimal complications. Nerve injury after the extraction of the mandibular third molar is a serious complication. The technique of coronectomy can be proposed to minimize the risk.
Muntzel, Martin S.; Al-Naimi, Omar Ali S.; Barclay, Alicia; Ajasin, David
2012-01-01
Obesity causes sympathetic activation that promotes atherosclerosis, end-organ damage, and hypertension. Because high-fat induced weight gain in rats elevates plasma leptin at 1–3 days following onset of calorie dense diets, we hypothesized that diet-induced overfeeding will increase sympathetic activity within one week following onset of the regimen. To test this, we continuously measured sympathetic activity and blood pressure before and during the onset of diet-induced obesity using a high calorie cafeteria-style diet. Female Wistar rats, in which radiotelemeters had been implanted for continuous monitoring of lumbar sympathetic activity, mean arterial pressure, and heart rate, were randomly assigned to groups that received regular chow (control) or a cafeteria diet for a period of 15 days. This short-term cafeteria-feeding regimen caused modest but non-significant increases in body weight (P = 0.07) and a doubling of brown and white adipose tissue (P < 0.01). The increases in fat mass were accompanied by elevations in plasma leptin (P < 0.001) but no change in glucose. Overall heart rates and blood pressure were higher in cafeteria rats compared with controls (P < 0.05). Cafeteria diet-induced weight gain caused increases in lumbar sympathetic nerve activity that became significant by the 12th day of the diet (p < 0.001). These data show, for the first time, that the high-fat cafeteria-style diet stimulates sustained increases in lumbar sympathetic neural drive in rats. PMID:23090774
Chen, Shao-Xia; Wang, Shao-Kun; Yao, Pei-Wen; Liao, Guang-Jie; Na, Xiao-Dong; Li, Yong-Yong; Zeng, Wei-An; Liu, Xian-Guo; Zang, Ying
2018-04-01
Previous work from our laboratory showed that motor nerve injury by lumbar 5 ventral root transection (L5-VRT) led to interleukin-6 (IL-6) over-expression in bilateral spinal cord, and that intrathecal administration of IL-6 neutralizing antibody delayed the induction of mechanical allodynia in bilateral hind paws. However, early events and upstream mechanisms underlying spinal IL-6 expression following L5-VRT require elucidation. The model of L5-VRT was used to induce neuropathic pain, which was assessed with von Frey hairs and the plantar tester in adult male Sprague-Dawley rats. Calpain-2 (CALP2, a calcium-dependent protease) knockdown or over-expression and microglia depletion were conducted intrathecally. Western blots and immunohistochemistry were performed to explore the possible mechanisms. Here, we provide the first evidence that both IL-6 and CALP2 levels are increased in lumbar spinal cord within 30 min following L5-VRT. IL-6 and CALP2 co-localized in both spinal dorsal horn (SDH) and spinal ventral horn. Post-operative (PO) increase in CALP2 in ipsilateral SDH was evident at 10 min PO, preceding increased IL-6 at 20 min PO. Knockdown of spinal CALP2 by intrathecal CALP2-shRNA administration prevented VRT-induced IL-6 overproduction in ipsilateral spinal cord and alleviated bilateral mechanical allodynia. Spinal microglia activation also played a role in early IL-6 up-regulation. Macrophage/microglia markers ED1/Iba1 were increased at 30 min PO, while glial fibrillary acidic protein (astrocyte) and CNPase (oligodendrocyte) markers were not. Increased Iba1 was detected as early as 20 min PO and peaked at 3 days. Morphology changed from a small soma with fine processes in resting cells to an activated ameboid shape. Depletion of microglia using Mac-1-saporin partially prevented IL-6 up-regulation and attenuated VRT-induced bilateral mechanical allodynia. Taken together, our findings provide evidence that increased spinal cord CALP2 and microglia cell activation may have early causative roles in IL-6 over-expression following motor nerve injury. Agents that inhibit CALP2 and/or microglia activation may therefore prove valuable for treating neuropathic pain. © 2018 International Society for Neurochemistry.
Dobie, Katherine H; Shi, Yaping; Shotwell, Matthew S; Sandberg, Warren S
2016-11-01
Regional anesthesia and analgesia for shoulder surgery is most commonly performed via interscalene nerve block. We developed an ultrasound-guided technique that specifically targets the C5 nerve root proximal to the traditional interscalene block and assessed its efficacy for shoulder analgesia. Prospective case series. Vanderbilt Bone and Joint Surgery Center. Patients undergoing shoulder arthroscopy at an ambulatory surgery center. Thirty-five outpatient shoulder arthroscopy patients underwent an analgesic nerve block using a new technique where ultrasound visualization of the C5 nerve root served as the primary target at a level proximal to the traditional interscalene approach. The block was performed with 15mL of 0.5% plain ropivicaine. Post anesthesia care unit pain scores, opioid consumption, hand strength, and duration of block were recorded. Cadaver dissection after injection with methylene blue confirmed that the primary target under ultrasound visualization was the C5 nerve root. Pain scores revealed 97% patients had 0/10 pain at arrival to PACU, with 91% having a pain score of 3/10 or less at discharge from PACU. Medical Research Council (MRC) hand strength mean (SD) score was 4.17 (0.92) on a scale of 1-5. The mean (SD) duration of the block was 13.9 (3.5) hours. A new technique for ultrasound-guided blockade at the level of the C5 nerve root proximal to the level of the traditional interscalene block is efficacious for shoulder post-operative pain control. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bruns, Tim M.; Wagenaar, Joost B.; Bauman, Matthew J.; Gaunt, Robert A.; Weber, Douglas J.
2013-04-01
Objective. Functional electrical stimulation (FES) approaches often utilize an open-loop controller to drive state transitions. The addition of sensory feedback may allow for closed-loop control that can respond effectively to perturbations and muscle fatigue. Approach. We evaluated the use of natural sensory nerve signals obtained with penetrating microelectrode arrays in lumbar dorsal root ganglia (DRG) as real-time feedback for closed-loop control of FES-generated hind limb stepping in anesthetized cats. Main results. Leg position feedback was obtained in near real-time at 50 ms intervals by decoding the firing rates of more than 120 DRG neurons recorded simultaneously. Over 5 m of effective linear distance was traversed during closed-loop stepping trials in each of two cats. The controller compensated effectively for perturbations in the stepping path when DRG sensory feedback was provided. The presence of stimulation artifacts and the quality of DRG unit sorting did not significantly affect the accuracy of leg position feedback obtained from the linear decoding model as long as at least 20 DRG units were included in the model. Significance. This work demonstrates the feasibility and utility of closed-loop FES control based on natural neural sensors. Further work is needed to improve the controller and electrode technologies and to evaluate long-term viability.
Bruns, Tim M; Wagenaar, Joost B; Bauman, Matthew J; Gaunt, Robert A; Weber, Douglas J
2013-01-01
Objective Functional electrical stimulation (FES) approaches often utilize an open-loop controller to drive state transitions. The addition of sensory feedback may allow for closed-loop control that can respond effectively to perturbations and muscle fatigue. Approach We evaluated the use of natural sensory nerve signals obtained with penetrating microelectrode arrays in lumbar dorsal root ganglia (DRG) as real-time feedback for closed-loop control of FES-generated hind limb stepping in anesthetized cats. Main results Leg position feedback was obtained in near real-time at 50 ms intervals by decoding the firing rates of more than 120 DRG neurons recorded simultaneously. Over 5 m of effective linear distance was traversed during closed-loop stepping trials in each of two cats. The controller compensated effectively for perturbations in the stepping path when DRG sensory feedback was provided. The presence of stimulation artifacts and the quality of DRG unit sorting did not significantly affect the accuracy of leg position feedback obtained from the linear decoding model as long as at least 20 DRG units were included in the model. Significance This work demonstrates the feasibility and utility of closed-loop FES control based on natural neural sensors. Further work is needed to improve the controller and electrode technologies and to evaluate long-term viability. PMID:23503062
Patterns of motor activity in the isolated nerve cord of the octopus arm.
Gutfreund, Yoram; Matzner, Henry; Flash, Tamar; Hochner, Binyamin
2006-12-01
The extremely flexible octopus arm provides a unique opportunity for studying movement control in a highly redundant motor system. We describe a novel preparation that allows analysis of the peripheral nervous system of the octopus arm and its interaction with the muscular and mechanosensory elements of the arm's intrinsic muscular system. First we examined the synaptic responses in muscle fibers to identify the motor pathways from the axial nerve cord of the arm to the surrounding musculature. We show that the motor axons project to the muscles via nerve roots originating laterally from the arm nerve cord. The motor field of each nerve is limited to the region where the nerve enters the arm musculature. The same roots also carry afferent mechanosensory information from the intrinsic muscle to the axial nerve cord. Next, we characterized the pattern of activity generated in the dorsal roots by electrically stimulating the axial nerve cord. The evoked activity, although far reaching and long lasting, cannot alone account for the arm extension movements generated by similar electrical stimulation. The mismatch between patterns of activity in the isolated cord and in an intact arm may stem from the involvement of mechanosensory feedback in natural arm extension.
NASA Astrophysics Data System (ADS)
Hoopes, P. J.; Eskey, Cliff J.; Attawia, Mohammed; Patel, Samit J.; Ryan, T. P.; Pellegrino, Richard; Bergeron, Jeffrey A.
2005-04-01
Pathological involvement of the basivertebral nerve (BVN), an intraosseous vertebral nerve, may play a significant role in some forms of back pain. This study was designed to assess the feasibility and effects of thermal ablation of the lumbar basivertebral nerve in mature sheep. Sixteen adult female sheep weighing 65-80 kg were anesthetized and positioned for ventral recumbent surgery. Under fluoroscopic guidance, two bilarterally oposed 5mm active length rediofrequency (RF) electrodes (1.65mm diameter were perfutaneously placed in select lumbar vertebrae at a relative angle of 70 degrees with a 5 mm tip separation. The elctrodes were advanced to the region of the vertebral bodies which contained the BVN. A thermal dose of 95° C/720 seconds was administered. Animals were survived for 2, 14, 90, or 180 days post-treatment. Clinical, radiologic and pathologic investigations were performed to determine the effect of the heat on the BVN and associated tissues. Thermal damage to the basivertebral neurovascular bundle was characterized by early hemorrhage and necrosis, followed by inflammation and fibrosis. Although there wasa significant revascularization of the treated bone marow regions, there was no evidence of basivertebral nerve survival or regeneration regeneration. In addition to ablation of teh basivertebral nerovascular bundle, the areas receiving the greatest treatment demonstrated initial mild local osteolysis and demineralization of the vertebral body bone and regional depopulation of the vertebral bone marrow cellular elements. Significant bone remodeling in the affected areas had begun by 14 days post-treatment. Bone remodeling was characterized by conventional osteoblast proliferation, osteoid deposition, and mineralization. This study demonstrated the ability to accurately, reproducibly, and safely ablate the basivertebral nerve and neurovascular bundle in mature sheep using a fluoroscopically guided percutaneously delivered radiofrequency technique.
Tibial nerve somatosensory evoked potentials in dogs with degenerative lumbosacral stenosis.
Meij, Björn P; Suwankong, Niyada; van den Brom, Walter E; Venker-van Haagen, Anjop J; Hazewinkel, Herman A W
2006-02-01
To determine somatosensory evoked potentials (SEPs) in dogs with degenerative lumbosacral stenosis (DLS) and in healthy dogs. Clinical and experimental study. Dogs with DLS (n = 21) and 11 clinically normal dogs, age, and weight matched. Under anesthesia, the tibial nerve was stimulated at the caudolateral aspect of the stifle, and lumbar SEP (LSEP) were recorded percutaneously from S1 to T13 at each interspinous space. Cortical SEP (CSEP) were recorded from the scalp. LSEP were identified as the N1-P1 (latency 3-6 ms) and N2-P2 (latency 7-13 ms) wave complexes in the recordings of dogs with DLS and control dogs. Latency of N1-P1 increased and that of N2-P2 decreased as the active recording electrode was moved cranially from S1 to T13. Compared with controls, latencies were significantly delayed in DLS dogs: .8 ms for N1-P1 and 1.7 ms for the N2-P2 complex. CSEP were not different between groups. Surface needle recording of tibial nerve SEP can be used to monitor somatosensory nerve function of pelvic limbs in dogs. In dogs with DLS, the latency of LSEP, but not of CSEP, is prolonged compared with normal dogs. In dogs with lumbosacral pain from DLS, the cauda equina compression is sufficient to affect LSEP at the lumbar level.
Méndez-Sánchez, Roberto; Alburquerque-Sendín, Francisco; Fernández-de-las-Peñas, Cesar; Barbero-Iglesias, Fausto J; Sánchez-Sánchez, Carmen; Calvo-Arenillas, José I; Huijbregts, Peter
2010-06-01
The objective of this study was to assess the immediate effect of a sciatic nerve slider technique added to sustained hamstring stretching on lumbar and lower quadrant flexibility. This was a randomized controlled pilot study. Eight (8) healthy male soccer players (21 +/- 3 years) were randomly assigned to 2 groups. Group A received 5 minutes of bilateral sustained hamstring stretching. Group B additionally received 60 seconds of a sciatic nerve slider technique for each leg. Pre- and postintervention outcomes taken by an assessor blinded to the treatment allocation of the participants included metric distance on finger-to-floor, sit and reach, and the modified Schöber tests and goniometric range of each hip for the straight-leg raise and each knee for seated slump test. Baseline between-group differences were examined with an independent t test and a two-way repeated-measures analysis of variance with p < 0.05 and p < 0.025 analyzed effects of the interventions. There were no significant between-group baseline differences (p > 0.2). There was a significant effect for time on all outcomes (p < 0.01) other than the sit and reach test (p = 0.8). A significant interaction between group . time with greater improvements in group B was found for the modified Schöber test (F = 5.5; p < 0.05), left straight-leg raise (F = 6.1; p < 0.05) and slump test in either leg (left F = 28.7; p = 0.002; right F = 4.9; p < 0.05). Adding a sciatic nerve slider technique to sustained hamstring stretching led to greater immediate increases in both lumbar and lower quadrant flexibility in young healthy soccer players as measured by four of the seven outcomes used. Study limitations and suggestions for future studies are discussed.
Qiu, Ling; Hu, Xiao-Li; Zhao, Xue-Yu; Zheng, Xu; Zhang, Ji; Zhang, Min; He, Liu
2016-10-25
To observe the efficacy of acupuncture stimulation of the sciatic nerve trunk in the treatment of patients suffering from sciatica induced by lumbar disc herniation (LDH). A total of 60 LDH sciatica patients met the inclusion criteria were randomly divided into treatment group and control group, with 30 cases in each. Patients of the treatment group were treated by directly needling the sciatic nerve and routine acupuncture of Ashi -points, Lumbar Jiaji (EX-B 2), Dachangshu (BL 28), etc., and those of the control group treated by simple routine acupuncture. The treatment was conducted once a day, 5 times a week, 4 weeks altogether. The clinical effect was evaluated according to the "Standards for Diagnosis and Therapeutic Effect Evaluation of Syndromes of Chinese Medicine" and the pain intensity was assessed by using simplified Short-Form McGill Pain Questionnaire (SF-MPQ) containing pain rating index (PRI), visual analogue scale (VAS) and present pain intensity (PPI). After the treatment, of the two 30 cases of LDH sciatica patients in the control and treatment groups, 11 and 18 were cured, 7 and 7 experienced marked improvement, 10 and 4 were effective, 2 and 1 was invalid, with the effective rate being 93.3% and 96.7%, respectively. The cured+markedly effective rate of the treatment group was significantly higher than that of the control group ( P <0.05, 83.3% vs 60.0%). Compared with pre-treatment, the scores of PRI, VAS and PPI were evidently lowered in both groups ( P <0.01), and the effect of the treatment group was notably better than that of the control group ( P <0.01). Acupuncture stimulation of the sciatic nerve trunk is effective in relieving sciatica in LDH patients, and is superior to simple routine acupuncture in the clinical efficacy.
Atraumatic versus traumatic lumbar puncture needles: a systematic review and meta-analysis protocol
Nath, Siddharth; Badhiwala, Jetan H; Alhazzani, Waleed; Nassiri, Farshad; Belley-Cote, Emilie; Koziarz, Alex; Shoamanesh, Ashkan; Banfield, Laura; Oczkowski, Wieslaw; Sharma, Mike; Sahlas, Demetrios; Reddy, Kesava; Farrokhyar, Forough; Singh, Sheila; Sharma, Sunjay; Zytaruk, Nicole; Selim, Magdy; Almenawer, Saleh A
2017-01-01
Introduction Lumbar puncture is one of the oldest and most commonly performed procedures in medicine, used to diagnose and treat disease. Headache following lumbar puncture remains a frequent complication, causing significant patient discomfort and often requiring narcotic analgesia or invasive therapy. Needle tip design has been proposed to affect the incidence of headache postlumbar puncture, with pencil-point ‘atraumatic’ needles thought to reduce its incidence in comparison to bevelled ‘traumatic’ needles. Despite this, the use of atraumatic needles and knowledge of their existence remains significantly limited among clinicians. This study will systematically review the evidence on atraumatic lumbar puncture needles and compare them with traumatic needles across a variety of clinical outcomes. Methods and analyses We will include published randomised controlled trials (RCTs), observational studies and abstracts, with no publication type or language restrictions. Search strategies will be designed to peruse the MEDLINE, EMBASE, Web of Science, ClinicalTrials.gov, CINAHL, WHO Clinical Trials Database and Cochrane Library databases. We will also implement strategies to search the grey literature. 3 reviewers will thoroughly and independently examine the search results, complete data abstraction and conduct quality assessment. Included RCTs will be assessed using the Cochrane risk of bias assessment tool and eligible observational studies will be examined using the Newcastle-Ottawa Scale. We will examine the outcomes of: headache and its type, intensity, duration and treatment; backache; success rate; hearing disturbance and nerve root irritation. The primary outcome will be the incidence of postdural puncture headache. We will calculate pooled estimates, relative risks for dichotomous outcomes and weighted mean differences for continuous outcomes, with corresponding 95% CIs. Statistical heterogeneity will be measured using Cochran's Q test and quantified using the I2 statistic. We will also conduct prespecified subgroup and sensitivity analyses to examine if covariates exist and to explore potential heterogeneity. Ethics and dissemination Research ethics board approval is not required for this study as it draws from published data and raises no concerns related to patient privacy. This review will provide a comprehensive assessment of the evidence on atraumatic needles for lumbar puncture and is directed to a wide audience. Results from the review will be disseminated extensively through conferences and submitted to a peer-reviewed journal for publication. Trial registration number CRD42016047546. PMID:28363928
Yeom, Jin S; Buchowski, Jacob M; Kim, Ho-Joong; Chang, Bong-Soon; Lee, Choon-Ki; Riew, K Daniel
2013-07-01
Although routine transection of the C2 nerve root during atlantoaxial segmental screw fixation has been recommended by some surgeons, it remains controversial and to our knowledge no comparative studies have been performed to determine whether transection or preservation of the C2 nerve root affects patient-derived sensory outcomes. The purpose of this study is to specifically analyze patient-derived sensory outcomes over time in patients with intentional C2 nerve root transection during atlantoaxial segmental screw fixation compared with those without transection. This is a post-hoc comparative analysis of prospectively collected patient-derived outcome data. The sample consists of 24 consecutive patients who underwent intentional bilateral transection of the C2 nerve root during posterior atlantoaxial segmental screw fixation (transection group) and subsequent 41 consecutive patients without transection (preservation group). A visual analog scale (VAS) score was used for occipital neuralgia as the primary outcome measure and VAS score for neck pain, neck disability index score and Japanese Orthopedic Association score for cervical myelopathy and recovery rate, with bone union rate as the secondary outcome measure. Patient-derived outcomes including change in VAS score for occipital neuralgia over time were statistically compared between the two groups. This study was not supported by any financial sources and there is no topic-specific conflict of interest related to the authors of this study. Seven (29%) of the 24 patients in the transection group experienced increased neuralgic pain at 1 month after surgery either because of newly developed occipital neuralgia or aggravation of preexisting occipital neuralgia. Four of the seven patients required almost daily medication even at the final follow-up (44 and 80 months). On the other hand, only four (10%) of 41 patients in the preservation group had increased neuralgic pain at 1 month after surgery, and at ≥ 1 year, no patients had increased neuralgic pain. The difference in the prevalence of increased neuralgic pain between the two groups was statistically significant at all time points (3, 6, 12, and 24 months postoperatively) except at 1 month postoperatively. The intensity of neuralgic pain, which preoperatively had not been significantly different between the two groups, was significantly higher in the transection group at the final follow-up. C2 nerve root transection is not a benign procedure and, in our experience, more than a quarter of the patients experience increased neuralgic pain following C2 nerve root transection. Because the prevalence and intensity of postoperative neuralgia was significantly higher with C2 nerve root transection than with its preservation, we recommend against routine C2 nerve root transection when performing atlantoaxial segmental screw fixation. Copyright © 2013 Elsevier Inc. All rights reserved.
Patterning of somatosympathetic reflexes
NASA Technical Reports Server (NTRS)
Kerman, I. A.; Yates, B. J.
1999-01-01
In a previous study, we reported that vestibular nerve stimulation in the cat elicits a specific pattern of sympathetic nerve activation, such that responses are particularly large in the renal nerve. This patterning of vestibulosympathetic reflexes was the same in anesthetized and decerebrate preparations. In the present study, we report that inputs from skin and muscle also elicit a specific patterning of sympathetic outflow, which is distinct from that produced by vestibular stimulation. Renal, superior mesenteric, and lumbar colonic nerves respond most strongly to forelimb and hindlimb nerve stimulation (approximately 60% of maximal nerve activation), whereas external carotid and hypogastric nerves were least sensitive to these inputs (approximately 20% of maximal nerve activation). In contrast to vestibulosympathetic reflexes, the expression of responses to skin and muscle afferent activation differs in decerebrate and anesthetized animals. In baroreceptor-intact animals, somatosympathetic responses were strongly attenuated (to <20% of control in every nerve) by increasing blood pressure levels to >150 mmHg. These findings demonstrate that different types of somatic inputs elicit specific patterns of sympathetic nerve activation, presumably generated through distinct neural circuits.
[Regeneration and repair of peripheral nerves: clinical implications in facial paralysis surgery].
Hontanilla, B; Vidal, A
2000-01-01
Peripheral nerve lesions are one of the most frequent causes of chronic incapacity. Upper or lower limb palsies due to brachial or lumbar plexus injuries, facial paralysis and nerve lesions caused by systemic diseases are one of the major goals of plastic and reconstructive surgery. However, the poor results obtained in repaired peripheral nerves during the Second World War lead to a pessimist vision of peripheral nerve repair. Nevertheless, a well understanding of microsurgical principles in reconstruction and molecular biology of nerve regeneration have improved the clinical results. Thus, although the results obtained are quite far from perfect, these procedures give to patients a hope in the recuperation of their lesions and then on function. Technical aspects in nerve repair are well established; the next step is to manipulate the biology. In this article we will comment the biological processes which appear in peripheral nerve regeneration, we will establish the main concepts on peripheral nerve repair applied in facial paralysis cases and, finally, we will proportionate some ideas about how clinical practice could be affected by manipulation of the peripheral nerve biology.
Rectal sphincter pressure monitoring device.
Hellbusch, L C; Nihsen, B J
1989-05-01
A silicone, dual cuffed catheter designed for the control of nasal hemorrhage was used for rectal sphincter pressure monitoring. Patients with lipomyelomeningocele and tethered spinal cord were monitored during their operative procedures to aid in distinguishing sacral nerve roots from other tissues. Stimulation of sacral nerve roots was done with a disposable nerve stimulator. The use of a catheter with two balloons helps to keep the outer balloon placed against the rectal sphincter.
MALET, M.; VIEYTES, C. A.; LUNDGREN, K. H.; SEAL, R. P.; TOMASELLA, E.; SEROOGY, K. B.; HÖKFELT, T.; GEBHART, G.F.; BRUMOVSKY, P. R.
2013-01-01
Using specific riboprobes, we characterized the expression of VGLUT1-VGLUT3 transcripts in lumbar 4-5 (L4-5) DRGs and the thoracolumbar to lumbosacral spinal cord in male BALB/C mice after a 1- or 3-day hindpaw inflammation, or a 7-day sciatic nerve axotomy. Sham animals were also included. In sham and contralateral L4-5 DRGs of injured mice, VGLUT1-, VGLUT2- and VGLUT3 mRNAs were expressed in ~45%, ~69% or ~17% of neuron profiles (NPs), respectively. VGLUT1 was expressed in large and medium-sized NPs, VGLUT2 in NPs of all sizes, and VGLUT3 in small and medium-sized NPs. In the spinal cord, VGLUT1 was restricted to a number of NPs at thoracolumbar and lumbar segments, in what appears to be the dorsal nucleus of Clarke, and in mid laminae III-IV. In contrast, VGLUT2 was present in numerous NPs at all analyzed spinal segments, except the lateral aspects of the ventral horns, especially at the lumbar enlargement, where it was virtually absent. VGLUT3 was detected in a discrete number of NPs in laminae III-IV of the dorsal horn. Axotomy resulted in a moderate decrease in the number of DRG NPs expressing VGLUT3, whereas VGLUT1 and VGLUT2 were unaffected. Likewise, the percentage of NPs expressing VGLUT transcripts remained unaltered after hindpaw inflammation, both in DRGs and the spinal cord. Altogether, these results confirm previous descriptions on VGLUTs expression in adult mice DRGs, with the exception of VGLUT1, whose protein expression was detected in a lower percentage of mouse DRG NPs. A detailed account on the location of neurons expressing VGLUTs transcripts in the adult mouse spinal cord is also presented. Finally, the lack of change in the number of neurons expressing VGLUT1 and VGLUT2 transcripts after axotomy, as compared to data on protein expression, suggests translational rather than transcriptional regulation of VGLUTs after injury. PMID:23727452
Kim, Jae Woon; Lee, Jae Kyo
2012-01-01
Objective To investigate the role of lumbosacral radiculography using 3-dimentional (3D) magnetic resonance (MR) rendering for diagnostic information of symptomatic extraforaminal stenosis in lumbosacral transitional vertebra. Materials and Methods The study population consisted of 18 patients with symptomatic (n = 10) and asymptomatic extraforaminal stenosis (n = 8) in lumbosacral transitional vertebra. Each patient underwent 3D coronal fast-field echo sequences with selective water excitation using the principles of the selective excitation technique (Proset imaging). Morphologic changes of the L5 nerve roots at the symptomatic and asymptomatic extraforaminal stenosis were evaluated on 3D MR rendered images of the lumbosacral spine. Results Ten cases with symptomatic extraforaminal stenosis showed hyperplasia and degenerative osteophytes of the sacral ala and/or osteophytes at the lateral margin of the L5 body. On 3D MR lumbosacral radiculography, indentation of the L5 nerve roots was found in two cases, while swelling of the nerve roots was seen in eight cases at the exiting nerve root. Eight cases with asymptomatic extraforaminal stenosis showed hyperplasia and degenerative osteophytes of the sacral ala and/or osteophytes at the lateral margin of the L5 body. Based on 3D MR lumbosacral radiculography, indentation or swelling of the L5 nerve roots was not found in any cases with asymptomatic extraforaminal stenosis. Conclusion Results from 3D MR lumbosacral radiculography Indicate the indentation or swelling of the L5 nerve root in symptomatic extraforaminal stenosis. Based on these findings, 3D MR radiculography may be helpful in the diagnosis of the symptomatic extraforaminal stenosis with lumbosacral transitional vertebra. PMID:22778561
Campoy, Luis; Bezuidenhout, Abraham J; Gleed, Robin D; Martin-Flores, Manuel; Raw, Robert M; Santare, Carrie L; Jay, Ariane R; Wang, Annie L
2010-03-01
To describe an ultrasound-guided technique and the anatomical basis for three clinically useful nerve blocks in dogs. Prospective experimental trial. Four hound-cross dogs aged 2 +/- 0 years (mean +/- SD) weighing 30 +/- 5 kg and four Beagles aged 2 +/- 0 years and weighing 8.5 +/- 0.5 kg. Axillary brachial plexus, femoral, and sciatic combined ultrasound/electrolocation-guided nerve blocks were performed sequentially and bilaterally using a lidocaine solution mixed with methylene blue. Sciatic nerve blocks were not performed in the hounds. After the blocks, the dogs were euthanatized and each relevant site dissected. Axillary brachial plexus block Landmark blood vessels and the roots of the brachial plexus were identified by ultrasound in all eight dogs. Anatomical examination confirmed the relationship between the four ventral nerve roots (C6, C7, C8, and T1) and the axillary vessels. Three roots (C7, C8, and T1) were adequately stained bilaterally in all dogs. Femoral nerve block Landmark blood vessels (femoral artery and femoral vein), the femoral and saphenous nerves and the medial portion of the rectus femoris muscle were identified by ultrasound in all dogs. Anatomical examination confirmed the relationship between the femoral vessels, femoral nerve, and the rectus femoris muscle. The femoral nerves were adequately stained bilaterally in all dogs. Sciatic nerve block. Ultrasound landmarks (semimembranosus muscle, the fascia of the biceps femoris muscle and the sciatic nerve) could be identified in all of the dogs. In the four Beagles, anatomical examination confirmed the relationship between the biceps femoris muscle, the semimembranosus muscle, and the sciatic nerve. In the Beagles, all but one of the sciatic nerves were stained adequately. Ultrasound-guided needle insertion is an accurate method for depositing local anesthetic for axillary brachial plexus, femoral, and sciatic nerve blocks.
Extradural en-plaque spinal meningioma with intraneural invasion.
Tuli, Jayshree; Drzymalski, Dan Michael; Lidov, Hart; Tuli, Sagun
2012-01-01
Extradural spinal meningiomas are rare. Our understanding of purely extradural spinal meningiomas is incomplete because most reports rarely differentiate purely extradural meningiomas from extradural meningiomas with an intradural component. Occasionally, reports have described involvement of the adjacent nerve root, but there has never been a description of an extradural meningioma that actually infiltrates the nerve root. A 42-year-old woman presented with progressive lower extremity weakness and numbness below T3 during the span of 4 months with imaging evidence of an extradural lesion compressing the cord from T4 through T6. Surgical resection revealed an extradural mass extending through the foramen at T5-6 and encompassing the cord and T5 root on the left. Pathologically, the lesion was a World Health Organization grade I meningioma with nerve root invasion and a concerning elevated mindbomb homolog 1 (MIB-1) of 9.4%. Purely extradural meningiomas are rare, and our case is one of the first to describe a patient with an extradural meningioma that actually infiltrates the nerve root. Extradural spinal meningiomas are usually not adherent to the dura, but only appear to be adherent or invade (as in our patient) the adjacent nerve root. They are easily mistaken preoperatively and grossly intraoperatively for malignant metastatic tumors and can change the proposed surgical treatment. The long-term prognosis remains uncertain, but our patient's last follow-up suggests a favorable prognosis. Copyright © 2012 Elsevier Inc. All rights reserved.
Pathak, Sachin; Mishra, Nitin; Rastogi, Madhur Kant; Sharma, Shalini
2014-05-01
Removal of impacted third molar is a procedure that is often associated with post-operative complications. The rate of complications is somewhat high because of its proximity to the vital structures. Inferior alveolar nerve paresthesia is one of the common complications of impacted their molar surgery. This is due to intimate relationship between roots of mandibular third molar and inferior alveolar canal. To access the proximity of inferior alveolar canal to third molar many diagnostic methods are suggested but in conventional radiography orthopantamogram is considered as the best. There are many findings onorthopantamogram that are suggestive of close proximity of nerve to the canal. In this study authors reviewed seven radiographic findings related to proximity of roots to the inferior alveolar nerve as seen on orthopantamogram and try to find a relationship between these radiographic variables and presence of post-operative paresthesia. The study containd 100 impacted third molars need to be removed. Presence of radiographic findings on orthopantamogram were noted and analyzed, to find a relationship with occurrence of post-operative inferior alveolar nerve paresthesia. This study comprises of 100 impacted third molar teeth indicated for extraction. Cases were randomly selected from the patients, needs to undergo extraction of impacted mandibular third molar. After extraction cases were evaluated for occurrence of inferior alveolar nerve paresthesia. Stastical Analyisis: Data was transferred to SPss 21 software for frequency calculation, and two tailed p-values were obtained betweens these variables and post-operative paresthesia, by applying Fischer's exact test (GRAPH PAD SOFTWARE). Out of seven, four radiological findings that are grooving of roots, hooked roots, bifid roots and obliteration of white line are significantly related to post-operative paresthesia while bending of canal, narrow canal and darkening of tooth roots over the canal are not significantly associated with post-operative morbidity of facial nerve.
Comparison of three aids for teaching lumbar surgical anatomy.
Das, S; Mitchell, P
2013-08-01
Reduced surgeons' training time has resulted in a need to increase the speed of learning. Currently, anatomy education involves traditional (textbooks, physical models, cadaveric dissection/prosection) and recent (electronic) techniques. As yet there are no available data comparing their performance. The performance of three anatomical training aids at teaching the surgical anatomy of the lumbar spinal was compared. The aids used were paper-based images, a three-dimensional plastic model and a semitransparent computer model. Fifty one study subjects were recruited from a population of junior doctors, nurses, medical and nursing students. Three study groups were created which differed in the order of presenting the aids. For each subject, spinal anatomy was revised by the investigator, teaching them the anatomy using each aid. They were specifically taught the locations of the intervertebral disc, pedicles and nerve roots in the lateral recesses. They then drew these structures on a response sheet (three response sheets per subject). The computer model was the best at allowing subjects accurately to determine structure location followed by the paper-based images, the plastic model was the worst. Accuracy improved with successive models used but this trend was not significant. Subjects were not versed in spinal anatomy beforehand, so meaningful baseline measures were not available. The educational performance of surgical anatomical training aids can be measured and compared. A computer generated 3 dimensional model gave the best results with paper-based images second and the plastic model third.
Comparison of Morphine and Tramadol in Transforaminal Epidural Injections for Lumbar Radicular Pain
2013-01-01
Background Transforaminal epidural steroid injections are known to reduce inflammation by inhibiting synthesis of various proinflammatory mediators and have been used increasingly. The anti-inflammatory properties of opioids are not as fully understood but apparently involve antagonism sensory neuron excitability and pro-inflammatory neuropeptide release. To date, no studies have addressed the efficacy of transforaminal epidural morphine in patients with radicular pain, and none have directly compared morphine with a tramadol for this indication. The aim of this study was to compare morphine and tramadol analgesia when administered via epidural injection to patients with lumbar radicular pain. Methods A total of 59 patients were randomly allocated to 1 of 2 treatment groups and followed for 3 months after procedure. Each patient was subjected to C-arm guided transforaminal epidural injection (TFEI) of an affected nerve root. As assigned, patients received either morphine sulfate (2.5 mg/2.5 ml) or tramadol (25 mg/0.5 ml) in combination with 0.2% ropivacaine (1 ml). Using numeric rating scale was subsequently rates at 2 weeks and 3 months following injection for comparison with baseline. Results Both groups had significantly lower mean pain scores at 2 weeks and at 3 months after treatment, but outcomes did not differ significantly between groups. Conclusions TFEI of an opioid plus local anesthetic proved effective in treating radicular pain. Although morphine surpassed tramadol in pain relief scores, the difference was not statistically significant. PMID:23862000
Development and validation of an artificial wetlab training system for the lumbar discectomy.
Adermann, Jens; Geissler, Norman; Bernal, Luis E; Kotzsch, Susanne; Korb, Werner
2014-09-01
An initial research indicated that realistic haptic simulators with an adapted training concept are needed to enhance the training for spinal surgery. A cognitive task analysis (CTA) was performed to define a realistic and helpful scenario-based simulation. Based on the results a simulator for lumbar discectomy was developed. Additionally, a realistic training operating room was built for a pilot. The results were validated. The CTA showed a need for realistic scenario-based training in spine surgery. The developed simulator consists of synthetic bone structures, synthetic soft tissue and an advanced bleeding system. Due to the close interdisciplinary cooperation of surgeons between engineers and psychologists, the iterative multicentre validation showed that the simulator is visually and haptically realistic. The simulator offers integrated sensors for the evaluation of the traction being used and the compression during surgery. The participating surgeons in the pilot workshop rated the simulator and the training concept as very useful for the improvement of their surgical skills. In the context of the present work a precise definition for the simulator and training concept was developed. The additional implementation of sensors allows the objective evaluation of the surgical training by the trainer. Compared to other training simulators and concepts, the high degree of objectivity strengthens the acceptance of the feedback. The measured data of the nerve root tension and the compression of the dura can be used for intraoperative control and a detailed postoperative evaluation.
MOON, Hee-Sup; HWANG, Yong-Hyun; LEE, Hee-Chun; LEE, Jae-Hoon
2017-01-01
The present study aimed to investigate the technical feasibility of percutaneous endoscopic mini-hemilaminectomy via a uniportal approach, and to evaluate the possibility of decompression and endoscopic examination of the thoracic and lumbar spinal canals in small dogs during such procedures. Fresh canine cadavers of mixed-breed dogs (n=7) were used in this study. Following injection of a barium and agarose mixture (BA-gel) to stimulate intervertebral disc herniation, percutaneous endoscopic mini-hemilaminectomy was performed using a lateral approach to the thoracic and lumbar vertebrae. BA-gel was removed to decompress the spinal cord using an elevator and rongeurs after mini-hemilaminectomy. Pre and post-operative computed tomography (CT) scans were obtained to evaluate surgical outcomes. Intra-operative complications, incision length, and procedure time were recorded. All procedures were completed with clear visualization of the spinal cord and floor of the spinal canal. The mean total operating time was 58.00 ± 18.06 min. Lengths of incision were under 1 cm in all dogs. Intra-operative complications included iatrogenic nerve root injuries caused by the micro-rongeur in two dogs. CT imaging revealed that removal of BA-gel resulted in sufficient spinal cord decompression. Our findings indicated that percutaneous endoscopic thoracolumbar mini-hemilaminectomy is feasible for spinal cord decompression and allows for adequate observation of the spinal canal. Thus, this technique may be an alternative surgical option for treatment of thoracolumbar disk disease in dogs. PMID:28757523
Analysis and evaluation of relative positions of mandibular third molar and mandibular canal impacts
Kim, Hang-Gul
2014-01-01
Objectives This study used cone-beam computed tomography (CBCT) images to categorize the relationships between the mandibular canal and the roots and investigated the prevalence of nerve damage. Materials and Methods Through CBCT images, contact and three-dimensional positional relationships between the roots of the mandibular third molar and the mandibular canal were investigated. With this data, prevalence of nerve damage according to the presence of contact and three-dimensional positional relationships was studied. Other factors that affected the prevalence of nerve damage were also investigated. Results When the mandibular third molar and the mandibular canal were shown to have direct contact in CBCT images, the prevalence of nerve damage was higher than in other cases. Also, in cases where the mandibular canal was horizontally lingual to the mandibular third molar and the mandibular canal was vertically at the cervical level of the mandibular third molar, the prevalence of nerve damage was higher than in opposite cases. The percentage of mandibular canal contact with the roots of the mandibular third molar was higher when the mandibular canal was horizontally lingual to the mandibular third molar. Finally, the prevalence of nerve damage was higher when the diameter of the mandibular canal lumen suddenly decreased at the contact area between the mandibular canal and the roots, as shown in CBCT images. Conclusion The three-dimensional relationship of the mandibular third molar and the mandibular canal can help predict nerve damage and can guide patient expectations of the possibility and extent of nerve damage. PMID:25551092
Ke, Xijian; Li, Ji; Liu, Yong; Wu, Xi; Mei, Wei
2017-06-26
Anesthesia management for patients with severe ankylosing spondylitis scheduled for total hip arthroplasty is challenging due to a potential difficult airway and difficult neuraxial block. We report 4 cases with ankylosing spondylitis successfully managed with a combination of lumbar plexus, sacral plexus and T12 paravertebral block. Four patients were scheduled for total hip arthroplasty. All of them were diagnosed as severe ankylosing spondylitis with rigidity and immobilization of cervical and lumbar spine and hip joints. A combination of T12 paravertebral block, lumbar plexus and sacral plexus block was successfully used for the surgery without any additional intravenous anesthetic or local anesthetics infiltration to the incision, and none of the patients complained of discomfort during the operations. The combination of T12 paravertebral block, lumbar plexus and sacral plexus block, which may block all nerves innervating the articular capsule, surrounding muscles and the skin involved in total hip arthroplasty, might be a promising alternative for total hip arthroplasty in ankylosing spondylitis.
Speculum lumbar extraforaminal microdiscectomy.
Obenchain, T G
2001-01-01
Public interest, monetary pressures and improving diagnostic techniques have placed an increasing emphasis on minimalism in lumbar disc excision. Current techniques include microlumbar discectomy and minimally invasive spinal surgery. Both are good techniques but may be painful, require a hospital stay and/or are not widely used because of difficulty acquiring the necessary skills. The author therefore developed a less invasive microscopic technique that may be performed on a consistent outpatient basis with easily acquired skills. The purpose of this study was to describe a variant of minimally invasive lumbar disc excision, while assessing the effects on a small group of patients. The treatment protocol was a prospective community hospital-based case study designed to evaluate a less invasive method of excising herniated lumbar discs residing in the canal, foraminal or far lateral space. This study is comprised of 50 patients with all anatomic forms of lumbar disc herniations, inside or outside the canal, at all levels except the lumbosacral joint. Clinical results were measured by return to work time, the criteria of MacNab and by Prolo et al.'s economic and functional criteria. Selection criteria included adult patients with intractable low back and leg pain, plus an imaging study revealing a lumbar disc herniation consistent with the patient's clinical presentation. Mean patient age was 48 years. The male:female ratio was approximately 2:1. All patients failed at least 3 weeks of conservative therapy. Herniations occurred from the L2-3 space through L4-5, with 30 herniations being within and 20 outside the spinal canal. Both contained and extruded/sequestered herniations were treated. Excluded from the study were patients with herniations inside the spinal canal at the L5-S1 level. Surgical approach was by microscopic speculum transforaminal route for discs residing both within and outside the lumbar canal. The initial 50 consecutive patients had successful technical operations performed on an outpatient basis by this less invasive technique. By the criteria of MacNab (Table 3), 84% (42 of 50) had an excellent or good result, returning to work at a mean time of 3.5 weeks. Per Prolo et al.'s economic scale, 72% were disabled at levels I and II before surgery. Postoperatively, 92% had improved to levels IV and V. Similarly, on his functional scale, 94% functioned at levels I and II before surgery, whereas 88% achieved levels IV and V after surgery. Eighty percent required no pain medications 1 week after surgery. The only complication was an L3 minor nerve root injury as it exited the L3-4 foramen. The author has described a minimally invasive technique for excising herniated discs that is applicable to all types of lumbar herniations, except for those residing in the canal at L5-S1. Clinical outcomes are comparable to those of other forms of discectomy.
Nerve transfer to relieve pain in upper brachial plexus injuries: Does it work?
Emamhadi, Mohammadreza; Andalib, Sasan
2017-12-01
Patients with C5 and C6 nerve root avulsion may complain from pain. For these patients, end-to-side nerve transfer of the superficial radial nerve into the median nerve is suggested to relieve pain. Eleven patients (with a primary brachial plexus reconstruction) undergoing end-to-side nerve transfer of the superficial radial nerve into the ulnovolar part of the median nerve were assessed. Pain before surgery was compared to that at 6-month follow-up using visual analog scale (VAS) scores. A significant difference was seen between the mean VAS before (8.5) and after surgery (0.7) (P=0.0). After the six-month follow-up, 6 patients felt no pain according to VAS, notwithstanding 5 patients with a mild pain. The evidence from the present study suggests that end-to-side nerve transfer of the superficial radial nerve into the ulnovolar part of the median nerve is an effective technique in reducing pain in patients with C5 and C6 nerve root avulsion. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhao, Lei; Lv, Guangming; Jiang, Shengyang; Yan, Zhiqiang; Sun, Junming; Wang, Ling; Jiang, Donglin
2012-01-01
Skeletal muscle atrophy occurs after denervation. The present study dissected the rat left ventral root and dorsal root at L4-6 or the sciatic nerve to establish a model of simple motor nerve injury, sensory nerve injury or mixed nerve injury. Results showed that with prolonged denervation time, rats with simple motor nerve injury, sensory nerve injury or mixed nerve injury exhibited abnormal behavior, reduced wet weight of the left gastrocnemius muscle, decreased diameter and cross-sectional area and altered ultrastructure of muscle cells, as well as decreased cross-sectional area and increased gray scale of the gastrocnemius muscle motor end plate. Moreover, at the same time point, the pathological changes were most severe in mixed nerve injury, followed by simple motor nerve injury, and the changes in simple sensory nerve injury were the mildest. These findings indicate that normal skeletal muscle morphology is maintained by intact innervation. Motor nerve injury resulted in larger damage to skeletal muscle and more severe atrophy than sensory nerve injury. Thus, reconstruction of motor nerves should be considered first in the clinical treatment of skeletal muscle atrophy caused by denervation. PMID:25337102
Apiliogullari, Seza; Aydin, Bahattin Kerem; Onal, Ozkan; Kirac, Yunus; Celik, Jale Bengi
2015-07-01
Complex regional pain syndrome (CRPS) is a painful and disabling syndrome in which the patient presents with neuropathic pain, edema, or vasomotor or pseudomotor abnormalities that are often refractory to treatment. Polio paralysis is caused by the damage or destruction of motor neurons in the spine, which lead to corresponding muscle paralysis. This report is a case report on the application of a pulsed radiofrequency (PRF) current to dorsal root ganglia (DRG) for the treatment of CRPS type 1 in an adolescent patient. Single case report. Selcuk University Hospital. A 16-year-old girl who suffered from CRPS type 1 secondary to surgeries for the sequelae of poliomyelitis. PRF current application to the lumbar 4 and lumbar 5 DRG. Pain reduction. The patient had complete resolution of her symptoms, which was maintained at a 6-month follow-up. This case illustrates that PRF applied to lumbar 4 and lumbar 5 DRG may play a significant role in CRPS type 1 management after the surgical treatment of poliomyelitis sequelae in adolescent patients. Further randomized, controlled studies are needed to support this argument. Wiley Periodicals, Inc.
Spontaneous Regression of Inflammatory Pseudotumor in the Cauda Equina: A Case Report.
Yoshimura, Kazuhiro; Sasaki, Manabu; Kojima, Masaru; Tsuruzono, Kouichirou; Matsumoto, Katsumi; Wakayama, Akatsuki; Yoshimine, Toshiki
2016-10-01
Spinal intradural extramedullary inflammatory pseudotumor (IPT) is an extremely rare entity. Spontaneous shrinking of a spinal IPT has never been reported. A case of an IPT of the cauda equina that regressed spontaneously is presented. A 78-year-old woman presented with hypoesthesia of both lower legs in the L4 nerve root distribution and motor weakness of the right leg. Preoperative CT myelography and MRI showed two tumor-like lesions located at T12-L1 and L2-3. The lesion at the T12-L1 level appeared to encase several nerve roots. The preoperative diagnosis was ependymoma, schwannoma, or malignant lymphoma. The tumors were biopsied. In the operation, the lesion turned out to consist of swollen and adherent nerve roots. On histopathological examination of the biopsied nerve roots, they were diagnosed as IPT. The patient's symptoms improved gradually without any treatment after the operation. The IPTs regressed on the postoperative MR images and disappeared at one year. This is the first report of spontaneous regression of an IPT in the spinal region. IPT should be considered in the differential diagnosis of a tumor that appears to involve several nerve roots on preoperative imaging, but surgery is necessary for diagnosis. Complete resection is not absolutely required if an intraoperative pathological diagnosis of the frozen section reveals IPT.
Intra-operative monitoring of the common peroneal nerve during total knee replacement.
Unwin, A J; Thomas, M
1994-01-01
We present a method allowing intra-operative monitoring of the common peroneal nerve during total knee arthroplasty using a magnetic stimulator. Previous reports have shown no pre-operative method successful in selecting those patients prone to develop a post-operative palsy. The device, placed beneath the lumbar spine, stimulates the cauda equina; common peroneal nerve function is assessed via the response in extensor digitorum brevis. There is a loss of signal from the nerve with the use of a tourniquet 25 min following its application. The protocol therefore requires that a tourniquet is used at least only for fixation of the prosthetic components. The method is quick, safe, non-invasive and reproducible, and is of use both in at-risk patients and in research work. Images Figure 6. PMID:7837197
Nagy, J I; Lynn, B D; Senecal, J M M; Stecina, K
2018-05-07
Electrical coupling mediated by connexin36-containing gap junctions that form electrical synapses is known to be prevalent in the central nervous system, but such coupling was long ago reported also to occur between cutaneous sensory fibers. Here, we provide evidence supporting the capability of primary afferent fibers to engage in electrical coupling. In transgenic mice with enhanced green fluorescent protein (eGFP) serving as a reporter for connexin36 expression, immunofluorescence labeling of eGFP was found in subpopulations of neurons in lumbar dorsal root and trigeminal sensory ganglia, and in fibers within peripheral nerves and tissues. Immunolabeling of connexin36 was robust in the sciatic nerve, weaker in sensory ganglia than in peripheral nerve, and absent in these tissues from Cx36 null mice. Connexin36 mRNA was detected in ganglia from wild-type mice, but not in those from Cx36 null mice. Labeling of eGFP was localized within a subpopulation of ganglion cells containing substance P and calcitonin gene-releasing peptide, and in peripheral fibers containing these peptides. Expression of eGFP was also found in various proportions of sensory ganglion neurons containing transient receptor potential (TRP) channels, including TRPV1 and TRPM8. Ganglion cells labeled for isolectin B4 and tyrosine hydroxylase displayed very little co-localization with eGFP. Our results suggest that previously observed electrical coupling between peripheral sensory fibers occurs via electrical synapses formed by Cx36-containing gap junctions, and that some degree of selectivity in the extent of electrical coupling may occur between fibers belonging to subpopulations of sensory neurons identified according to their sensory modality responsiveness. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Sievert, Karl-Dietrich; Amend, Bastian; Roser, Florian; Badke, Andreas; Toomey, Patricia; Baron, Christopher; Kaminsky, Jan; Stenzl, Arnulf; Tatagiba, Marcos
2016-05-01
Xiao and colleagues in China reported successful restoration of bladder control in patients with spinal cord injury (SCI) by establishing a somatic-autonomic reflex pathway through lumbar-to-sacral ventral root nerve rerouting. We evaluated long-term results in eight patients who underwent this procedure at a German university clinic between 2005 and 2007. The primary outcome was the occurrence of voiding upon stimulation of the skin, with normalization of bladder pressure when filling, as assessed with videourodynamics at each visit. Videourodynamic variables, urinary tract infections, and bladder/stool events recorded in a patient diary were stored in a prospective database and reviewed retrospectively. Intraoperative testing indicated successful nerve rerouting in all eight patients. Duration of follow-up was 71 mo (range: 56-86). No patient reached the primary goal of voluntary voiding with normalization of detrusor pressure at any point during follow-up. No improvements in videourodynamic or diary variables regarding bladder function were observed. In view of the lack of short (12-18 mo) and long-term (71 mo) success in our patients and others, the risks of any surgical procedure using general anesthesia, and potential for unmet expectations to wreak havoc on patient emotional well-being, we cannot recommend this procedure for patients with SCI. Although the hope was to improve long-term outcomes of spinal cord injury patients, intraspinal nerve rerouting did not improve or normalize bladder function. In view of the lack of success, we cannot recommend this procedure until proven in clinical studies. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Burke, Christopher J; Walter, William R; Adler, Ronald S
2018-05-01
Piriformis syndrome is a common cause of lumbar, gluteal, and thigh pain, frequently associated with sciatic nerve symptoms. Potential etiologies include muscle injury or chronic muscle stretching associated with gait disturbances. There is a common pathological end pathway involving hypertrophy, spasm, contracture, inflammation, and scarring of the piriformis muscle, leading to impingement of the sciatic nerve. Ultrasound-guided piriformis injections are frequently used in the treatment of these pain syndromes, with most of the published literature describing injection of the muscle. We describe a safe, effective ultrasound-guided injection technique for the treatment of piriformis syndrome using targeted sciatic perineural hydrodissection followed by therapeutic corticosteroid injection.
Muta, Kenjiro; Morgan, Donald A.
2015-01-01
Insulin action in the brain particularly the hypothalamus is critically involved in the regulation of several physiological processes, including energy homeostasis and sympathetic nerve activity, but the underlying mechanisms are poorly understood. The mechanistic target of rapamycin complex 1 (mTORC1) is implicated in the control of diverse cellular functions, including sensing nutrients and energy status. Here, we examined the role of hypothalamic mTORC1 in mediating the anorectic, weight-reducing, and sympathetic effects of central insulin action. In a mouse hypothalamic cell line (GT1–7), insulin treatment increased mTORC1 activity in a time-dependent manner. In addition, intracerebroventricular (ICV) administration of insulin to mice activated mTORC1 pathway in the hypothalamic arcuate nucleus, a key site of central action of insulin. Interestingly, inhibition of hypothalamic mTORC1 with rapamycin reversed the food intake- and body weight-lowering effects of ICV insulin. Rapamycin also abolished the ability of ICV insulin to cause lumbar sympathetic nerve activation. In GT1–7 cells, we found that insulin activation of mTORC1 pathway requires phosphatidylinositol 3-kinase (PI3K). Consistent with this, genetic disruption of PI3K in mice abolished insulin stimulation of hypothalamic mTORC1 signaling as well as the lumbar sympathetic nerve activation evoked by insulin. These results demonstrate the importance of mTORC1 pathway in the hypothalamus in mediating the action of insulin to regulate energy homeostasis and sympathetic nerve traffic. Our data also highlight the key role of PI3K as a link between insulin receptor and mTORC1 signaling in the hypothalamus. PMID:25574706
Lee, Sungwon; Jee, Won-Hee; Jung, Joon-Yong; Lee, So-Yeon; Ryu, Kyeung-Sik; Ha, Kee-Yong
2015-02-01
Three-dimensional (3D) fast spin-echo sequence with variable flip-angle refocusing pulse allows retrospective alignments of magnetic resonance imaging (MRI) in any desired plane. To compare isotropic 3D T2-weighted (T2W) turbo spin-echo sequence (TSE-SPACE) with standard two-dimensional (2D) T2W TSE imaging for evaluating lumbar spine pathology at 3.0 T MRI. Forty-two patients who had spine surgery for disk herniation and had 3.0 T spine MRI were included in this study. In addition to standard 2D T2W TSE imaging, sagittal 3D T2W TSE-SPACE was obtained to produce multiplanar (MPR) images. Each set of MR images from 3D T2W TSE and 2D TSE-SPACE were independently scored for the degree of lumbar neural foraminal stenosis, central spinal stenosis, and nerve compression by two reviewers. These scores were compared with operative findings and the sensitivities were evaluated by McNemar test. Inter-observer agreements and the correlation with symptoms laterality were assessed with kappa statistics. The 3D T2W TSE and 2D TSE-SPACE had similar sensitivity in detecting foraminal stenosis (78.9% versus 78.9% in 32 foramen levels), spinal stenosis (100% versus 100% in 42 spinal levels), and nerve compression (92.9% versus 81.8% in 59 spinal nerves). The inter-observer agreements (κ = 0.849 vs. 0.451 for foraminal stenosis, κ = 0.809 vs. 0.503 for spinal stenosis, and κ = 0.681 vs. 0.429 for nerve compression) and symptoms correlation (κ = 0.449 vs. κ = 0.242) were better in 3D TSE-SPACE compared to 2D TSE. 3D TSE-SPACE with oblique coronal MPR images demonstrated better inter-observer agreements compared to 3D TSE-SPACE without oblique coronal MPR images (κ = 0.930 vs. κ = 0.681). Isotropic 3D T2W TSE-SPACE at 3.0 T was comparable to 2D T2W TSE for detecting foraminal stenosis, central spinal stenosis, and nerve compression with better inter-observer agreements and symptom correlation. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Sousa, Fausto Fernandes de Almeida; Ribeiro, Thaís Lopes; Fazan, Valéria Paula Sassoli; Barbieri, Claudio Henrique
2013-01-01
OBJECTIVE: To investigate the influence of low intensity laser irradiation on the regeneration of the fibular nerve of rats after crush injury. METHODS: Twenty-five rats were used, divided into three groups: 1) intact nerve, no treatment; 2) crushed nerve, no treatment; 3) crush injury, laser irradiation applied on the medullary region corresponding to the roots of the sciatic nerve and subsequently on the course of the damaged nerve. Laser irradiation was carried out for 14 consecutive days. RESULTS: Animals were evaluated by functional gait analysis with the peroneal functional index and by histomorphometric analysis using the total number of myelinated nerve fibers and their density, total number of Schwann cells, total number of blood vessels and the occupied area, minimum diameter of the fiber diameter and G-quotient. CONCLUSION: According to the statistical analysis there was no significant difference among groups and the authors conclude that low intensity laser irradiation has little or no influence on nerve regeneration and functional recovery. Laboratory investigation. PMID:24453650
Falyar, Christian R; Abercrombie, Caroline; Becker, Robert; Biddle, Chuck
2016-04-01
Ultrasound-guided selective C5 nerve root blocks have been described in several case reports as a safe and effective means to anesthetize the distal clavicle while maintaining innervation of the upper extremity and preserving diaphragmatic function. In this study, cadavers were injected with 5 mL of 0.5% methylene blue dye under ultrasound guidance to investigate possible proximal and distal spread of injectate along the brachial plexus, if any. Following the injections, the specimens were dissected and examined to determine the distribution of dye and the structures affected. One injection revealed dye extended proximally into the epidural space, which penetrated the dura mater and was present on the spinal cord and brainstem. Dye was noted distally to the divisions in 3 injections. The anterior scalene muscle and phrenic nerve were stained in all 4 injections. It appears unlikely that local anesthetic spread is limited to the nerve root following an ultrasound-guided selective C5 nerve root injection. Under certain conditions, intrathecal spread also appears possible, which has major patient safety implications. Additional safety measures, such as injection pressure monitoring, should be incorporated into this block, or approaches that are more distal should be considered for the acute pain management of distal clavicle fractures.
... are visible just under the surface of the skin Spinal stenosis —narrowing in the spine, causing pressure on the nerves and spine, with resulting numbness and pain Lumbar disease Osteoarthritis QUESTIONS TO ASK YOUR HEALTH CARE PROVIDER Does my medical history raise my risk for P.A.D.? Do ...
Coronectomy of the mandibular third molar: Respect for the inferior alveolar nerve.
Kouwenberg, A J; Stroy, L P P; Rijt, E D Vree-V D; Mensink, G; Gooris, P J J
2016-05-01
The aim of this study was to evaluate the outcomes of coronectomy as an alternative surgical procedure to complete removal of the impacted mandibular third molar in patients with a suspected close relationship between the tooth root(s) and the mandibular canal. A total of 151 patients underwent coronectomy and were followed up with clinical examinations and panoramic radiographs for a minimum of 6 months after surgery. None of the patients exhibited inferior alveolar nerve injury. Eruption of the retained root(s) was more frequent in younger patients (18-35 years). Thirty-six patients (23.8%) exhibited insufficient growth of new bone in the alveolar defect, and 11.3% required a second surgical procedure to remove the root remnant(s). Our results indicate that coronectomy can be a reliable alternative to complete removal of the impacted mandibular third molar in patients exhibiting an increased risk of damage to the inferior alveolar nerve on panoramic radiographs. Copyright © 2016. Published by Elsevier Ltd.
MRI-guided and CT-guided cervical nerve root infiltration therapy: a cost comparison.
Maurer, M H; Froeling, V; Röttgen, R; Bretschneider, T; Hartwig, T; Disch, A C; de Bucourt, M; Hamm, B; Streitparth, F
2014-06-01
To evaluate and compare the costs of MRI-guided and CT-guided cervical nerve root infiltration for the minimally invasive treatment of radicular neck pain. Between September 2009 and April 2012, 22 patients (9 men, 13 women; mean age: 48.2 years) underwent MRI-guided (1.0 Tesla, Panorama HFO, Philips) single-site periradicular cervical nerve root infiltration with 40 mg triamcinolone acetonide. A further 64 patients (34 men, 30 women; mean age: 50.3 years) were treated under CT fluoroscopic guidance (Somatom Definition 64, Siemens). The mean overall costs were calculated as the sum of the prorated costs of equipment use (purchase, depreciation, maintenance, and energy costs), personnel costs and expenditure for disposables that were identified for MRI- and CT-guided procedures. Additionally, the cost of ultrasound guidance was calculated. The mean intervention time was 24.9 min. (range: 12 - 36 min.) for MRI-guided infiltration and 19.7 min. (range: 5 - 54 min.) for CT-guided infiltration. The average total costs per patient were EUR 240 for MRI-guided interventions and EUR 124 for CT-guided interventions. These were (MRI/CT guidance) EUR 150/60 for equipment use, EUR 46/40 for personnel, and EUR 44/25 for disposables. The mean overall cost of ultrasound guidance was EUR 76. Cervical nerve root infiltration using MRI guidance is still about twice as expensive as infiltration using CT guidance. However, since it does not involve radiation exposure for patients and personnel, MRI-guided nerve root infiltration may become a promising alternative to the CT-guided procedure, especially since a further price decrease is expected for MRI devices and MR-compatible disposables. In contrast, ultrasound remains the less expensive method for nerve root infiltration guidance. © Georg Thieme Verlag KG Stuttgart · New York.
C2 root nerve sheath tumors management.
El-Sissy, Mohamed H; Mahmoud, Mostafa
2013-05-01
Upper cervical nerve sheath tumors (NST) arising mainly from C2 root and to lesser extent from C1 root are not uncommon, they constitute approximately 5-12% of spinal nerve sheath tumors and 18-30% of all cervical nerve sheath tumors, unique in presentation and their relationship to neighbouring structures owing to the discrete anatomy at the upper cervical-craniovertebral region, and have atendency for growth reaching large-sized tumors before manifesting clinically due to the capacious spinal canal at this region; accordingly the surgical approaches to such tumors are modified. The aim of this paper is to discuss the surgical strategies for upper cervical nerve sheath tumors. Eleven patients (8 male and 3 females), age range 28-63 years, with C2 root nerve sheath tumors were operated upon based on their anatomical relations to the spinal cord. The magnetic resonance imaging findings were utilized to determine the surgical approach. The tumors had extra- and intradural components in 10 patients, while in one the tumor was purely intradural. The operative approaches included varied from extreme lateral transcondylar approach(n = 1) to laminectomy, whether complete(n = 3) a or hemilaminectomy(n = 7), with partial facetectomy(n = 7), and with suboccipital craniectomy(n = 2). The clinical picture ranged from spasticity (n = 8, 72,72 %), tingling and numbness below neck (n = 6, 54,54 %), weakness (n = 6, 54,54 %), posterior column involvement (n = 4, 26,36 %), and neck pain (n = 4, 36,36 %). The duration of symptoms ranged from 1 to 54 months, total excision was performed in 7 patients; while in 3 patients an extraspinal component, and in 1 patient a small intradural component, were left in situ. Eight patients showed improvement of myelopathy; 2 patients maintained their grades. One poor-grade patient was deteriorated. The surgical approaches for the C2 root nerve sheath tumors should be tailored according to the relationship to the spinal cord, determined by magnetic resonance imaging.
Palea, Ovidiu; Andar, Haroon M; Lugo, Ramon; Granville, Michelle; Jacobson, Robert E
2018-03-14
Radiofrequency cervical rhizotomy has been shown to be effective for the relief of chronic neck pain, whether it be due to soft tissue injury, cervical spondylosis, or post-cervical spine surgery. The target and technique have traditionally been taught using an oblique approach to the anterior lateral capsule of the cervical facet joint. The goal is to position the electrode at the proximal location of the recurrent branch after it leaves the exiting nerve root and loops back to the cervical facet joint. The standard oblique approach to the recurrent nerve requires the testing of both motor and sensory components to verify the correct position and ensure safety so as to not damage the slightly more anterior nerve root. Bilateral lesions require the repositioning of the patient's neck. Poorly positioned electrodes can also pass anteriorly and contact the nerve root or vertebral artery. The direct posterior approach presented allows electrode positioning over a broader expanse of the facet joint without risk to the nerve root or vertebral artery. Over a four-year period, direct posterior radiofrequency ablation was performed under fluoroscopic guidance at multiple levels without neuro-stimulation testing with zero procedural neurologic events even as high as the C2 spinal segment. The direct posterior approach allows either unipolar or bipolar lesioning at multiple levels. Making a radiofrequency lesion along the larger posterior area of the facet capsule is as effective as the traditional target point closer to the nerve root but technically easier, allowing bilateral access and safety. The article will review the anatomy and innervation of the cervical facet joint and capsule, showing the diffuse nerve supply extending into the capsule of the facet joint that is more extensive than the recurrent medial sensory branches that have been the focus of radiofrequency lesioning.
Palea, Ovidiu; Andar, Haroon M; Lugo, Ramon; Jacobson, Robert E
2018-01-01
Radiofrequency cervical rhizotomy has been shown to be effective for the relief of chronic neck pain, whether it be due to soft tissue injury, cervical spondylosis, or post-cervical spine surgery. The target and technique have traditionally been taught using an oblique approach to the anterior lateral capsule of the cervical facet joint. The goal is to position the electrode at the proximal location of the recurrent branch after it leaves the exiting nerve root and loops back to the cervical facet joint. The standard oblique approach to the recurrent nerve requires the testing of both motor and sensory components to verify the correct position and ensure safety so as to not damage the slightly more anterior nerve root. Bilateral lesions require the repositioning of the patient's neck. Poorly positioned electrodes can also pass anteriorly and contact the nerve root or vertebral artery. The direct posterior approach presented allows electrode positioning over a broader expanse of the facet joint without risk to the nerve root or vertebral artery. Over a four-year period, direct posterior radiofrequency ablation was performed under fluoroscopic guidance at multiple levels without neuro-stimulation testing with zero procedural neurologic events even as high as the C2 spinal segment. The direct posterior approach allows either unipolar or bipolar lesioning at multiple levels. Making a radiofrequency lesion along the larger posterior area of the facet capsule is as effective as the traditional target point closer to the nerve root but technically easier, allowing bilateral access and safety. The article will review the anatomy and innervation of the cervical facet joint and capsule, showing the diffuse nerve supply extending into the capsule of the facet joint that is more extensive than the recurrent medial sensory branches that have been the focus of radiofrequency lesioning. PMID:29765790
Infrared neural stimulation of human spinal nerve roots in vivo.
Cayce, Jonathan M; Wells, Jonathon D; Malphrus, Jonathan D; Kao, Chris; Thomsen, Sharon; Tulipan, Noel B; Konrad, Peter E; Jansen, E Duco; Mahadevan-Jansen, Anita
2015-01-01
Infrared neural stimulation (INS) is a neurostimulation modality that uses pulsed infrared light to evoke artifact-free, spatially precise neural activity with a noncontact interface; however, the technique has not been demonstrated in humans. The objective of this study is to demonstrate the safety and efficacy of INS in humans in vivo. The feasibility of INS in humans was assessed in patients ([Formula: see text]) undergoing selective dorsal root rhizotomy, where hyperactive dorsal roots, identified for transection, were stimulated in vivo with INS on two to three sites per nerve with electromyogram recordings acquired throughout the stimulation. The stimulated dorsal root was removed and histology was performed to determine thermal damage thresholds of INS. Threshold activation of human dorsal rootlets occurred in 63% of nerves for radiant exposures between 0.53 and [Formula: see text]. In all cases, only one or two monitored muscle groups were activated from INS stimulation of a hyperactive spinal root identified by electrical stimulation. Thermal damage was first noted at [Formula: see text] and a [Formula: see text] safety ratio was identified. These findings demonstrate the success of INS as a fresh approach for activating human nerves in vivo and providing the necessary safety data needed to pursue clinically driven therapeutic and diagnostic applications of INS in humans.
Panagopoulos, John; Hush, Julia; Steffens, Daniel; Hancock, Mark J
2017-04-01
Systematic review OBJECTIVE.: The aim of the study was to investigate whether magnetic resonance imaging (MRI) findings change over a relatively short period of time (<1 yr) in people with low back pain (LBP) or sciatica. We also investigated whether there was an association between any change in MRI findings and change in clinical outcomes. MRI offers the potential to identify possible pathoanatomic sources of LBP and/or sciatica; however, the clinical importance of MRI findings remains unclear. Little is known about whether lumbar MRI findings change over the short term and if so whether these changes are associated with changes in clinical outcomes. Medline, EMBASE, and CINAHL databases were searched. Included were cohort studies that performed repeat MRI scans within 12 months in patients with LBP and/or sciatica. Data on study characteristics and change in MRI findings were extracted from included studies. Any data describing associations between change in MRI findings and change in clinical outcomes were also extracted. A total of 12 studies met the inclusion criteria and were included in the review. Pooling was not possible due to heterogeneity of studies and findings. Seven studies reported on changes in disc herniation and reported 15% to 93% of herniations reduced or disappeared in size. Two studies reported on changes in nerve root compression and reported 17% to 91% reduced or disappeared. Only one study reported on the association between change in MRI findings and change in clinical outcomes within 1 year, and found no association. This review found moderate evidence that the natural course of herniations and nerve root compression is favorable over a 1-year period in people with sciatica or LBP. There is a lack of evidence on whether other MRI findings change, and whether changes in MRI findings are associated with changes in clinical outcomes. 1.
Byun, Woo Mok; Ahn, Sang Ho; Ahn, Myun-Whan
2008-10-15
Retrospective analysis of magnetic resonance imaging (MRI) and clinical findings about chemical radiculitis-associated anular tear in patients with radiculopathy. To investigate MRI findings of the chemical radiculitis caused by anular tears and to determine whether chemical radiculitis detected by MRI is the cause of radiculopathy. Many studies document that irritation of adjacent nerve roots by a chemical mediator of inflammation from the nucleus pulposus may result in radiculopathy. Computed tomography (CT) discography may be the best examination for diagnosing discogenic chemical radiculitis but is too invasive. A reliable imaging method for replacing invasive provocative CT discography and diagnosing chemical radiculitis is required. The study population consisted of 12 patients with pain referred to leg(s) with or without low back pain who underwent lumbar spine MRI. All cases of our study demonstrated perianular enhancement caused by chemical radiculitis associated with anular tears. Patterns and locations of perianular enhancement adjacent to anular tears on MRI were assessed. MRI findings were compared with clinical symptoms and/or provocative transforaminal epidural injection (n = 6). For documentation of the relationship between perianular enhancement and radiculopathy, provocative CT discography was performed in 2 cases. Perianular enhancement associated with anular tears revealed thick linear patterns (2.5-7 mm thickness) along margins of anular tears on contrast enhanced axial T1-weighted images with fat suppression. Locations of perianular enhancement adjacent to anular tears were at foraminal (n = 6) and extraforaminal portions (n = 6). CT discography showed a leak of contrast from anular tear to the perianular regions. Pain reproduction at contrast leak level during discography showed concordant pain. There was an apparent correlation between perianular enhancement on MRI and clinical symptoms or provocative epidural nerve root injection in all cases. The perianular enhancement adjacent to anular tears on MRI may be relevant in the diagnosis of symptomatic chemical radiculitis.
Ferreira, Manuel; Walcott, Brian P; Nahed, Brian V; Sekhar, Laligam N
2011-06-01
Hemifacial spasm (HFS) is caused by arterial or venous compression of cranial nerve VII at its root exit zone. Traditionally, microvascular decompression of the facial nerve has been an effective treatment for posterior inferior and anterior inferior cerebellar artery as well as venous compression. The traditional technique involves Teflon felt or another construct to cushion the offending vessel from the facial nerve, or cautery and division of the offending vein. However, using this technique for severe vertebral artery (VA) compression can be ineffective and fraught with complications. The authors report the use of a new technique of VA pexy to the petrous or clival dura mater in patients with HFS attributed to a severely ectatic and tortuous VA, and detail the results in a series of patients. Six patients with HFS due to VA compression underwent a retrosigmoid craniotomy, combined with a far-lateral approach in some patients. On identification of the site of VA compression, the vessel was mobilized adequately for the decompression. Great care was taken to avoid kinking the perforating vessels arising from the VA. Two 8-0 nylon sutures were passed through to the wall of the VA and then through the clival or petrous dura, and then tied to alleviate compression on cranial nerve VII. Patients were followed for at least 1 year postoperatively (mean 2.7 years, range 1-4 years). All 6 patients had complete resolution of their HFS. Facial function was tested postoperatively, and was stable when compared with the preoperative baseline. Two of the 3 patients with preoperative tinnitus had resolution of this symptom after the procedure. Postoperative imaging demonstrated VA decompression of the facial nerve and no evidence of stroke in all patients. One patient suffered from hearing loss, another developed a postoperative transient unilateral vocal cord paralysis, and a third patient developed a pseudomeningocele that resolved with the placement of a lumbar drain. Hemifacial spasm and other neurovascular syndromes are effectively treated by repositioning the compressing artery. Careful study of the preoperative MR images may identify a select group of patients with HFS due to an ectatic VA. Rather than traditional decompression with only pledget placement, these patients may benefit from a VA pexy to provide an effective, safe, and durable resolution of their symptoms while minimizing surgical complications.
Studies on the cellular localization of spinal cord substance P receptors.
Helke, C J; Charlton, C G; Wiley, R G
1986-10-01
Substance P-immunoreactivity and specific substance P binding sites are present in the spinal cord. Receptor autoradiography showed the discrete localization of substance P binding sites in both sensory and motor regions of the spinal cord and functional studies suggested an important role for substance P receptor activation in autonomic outflow, nociception, respiration and somatic motor function. In the current studies, we investigated the cellular localization of substance P binding sites in rat spinal cord using light microscopic autoradiography combined with several lesioning techniques. Unilateral injections of the suicide transport agent, ricin, into the superior cervical ganglion reduced substance P binding and cholinesterase-stained preganglionic sympathetic neurons in the intermediolateral cell column. However, unilateral electrolytic lesions of ventral medullary substance P neurons which project to the intermediolateral cell column did not alter the density of substance P binding in the intermediolateral cell column. Likewise, 6-hydroxydopamine and 5,7-dihydroxytryptamine, which destroy noradrenergic and serotonergic nerve terminals, did not reduce the substance P binding in the intermediolateral cell column. It appears, therefore, that the substance P binding sites are located postsynaptically on preganglionic sympathetic neurons rather than presynaptically on substance P-immunoreactive processes (i.e. as autoreceptors) or on monoamine nerve terminals. Unilateral injections of ricin into the phrenic nerve resulted in the unilateral destruction of phrenic motor neurons in the cervical spinal cord and caused a marked reduction in the substance P binding in the nucleus. Likewise, sciatic nerve injections of ricin caused a loss of associated motor neurons in the lateral portion of the ventral horn of the lumbar spinal cord and a reduction in the substance P binding. Sciatic nerve injections of ricin also destroyed afferent nerves of the associated dorsal root ganglia and increased the density of substance P binding in the dorsal horn. Capsaicin, which destroys small diameter primary sensory neurons, similarly increased the substance P binding in the dorsal horn. These studies show that the cellular localization of substance P binding sites can be determined by analysis of changes in substance P binding to discrete regions of spinal cord after selective lesions of specific groups of neurons. The data show the presence of substance P binding sites on preganglionic sympathetic neurons in the intermediolateral cell column and on somatic motor neurons in the ventral horn, including the phrenic motor nucleus.(ABSTRACT TRUNCATED AT 400 WORDS)
Sköld, Mattias K; Svensson, Mikael; Tsao, Jack; Hultgren, Thomas; Landegren, Thomas; Carlstedt, Thomas; Cullheim, Staffan
2011-01-01
The Karolinska Institutet 200-year anniversary symposium on injuries to the spinal cord and peripheral nervous system gathered expertise in the spinal cord, spinal nerve, and peripheral nerve injury field spanning from molecular prerequisites for nerve regeneration to clinical methods in nerve repair and rehabilitation. The topics presented at the meeting covered findings on adult neural stem cells that when transplanted to the hypoglossal nucleus in the rat could integrate with its host and promote neuron survival. Studies on vascularization after intraspinal replantation of ventral nerve roots and microarray studies in ventral root replantation as a tool for mapping of biological patterns typical for neuronal regeneration were discussed. Different immune molecules in neurons and glia and their very specific roles in synapse plasticity after injury were presented. Novel strategies in repair of injured peripheral nerves with ethyl-cyanoacrylate adhesive showed functional recovery comparable to that of conventional epineural sutures. Various aspects on surgical techniques which are available to improve function of the limb, once the nerve regeneration after brachial plexus lesions and repair has reached its limit were presented. Moreover, neurogenic pain after amputation and its treatment with mirror therapy were shown to be followed by dramatic decrease in phantom limb pain. Finally clinical experiences on surgical techniques to repair avulsed spinal nerve root and the motoric as well as sensoric regain of function were presented.
Sköld, Mattias K.; Svensson, Mikael; Tsao, Jack; Hultgren, Thomas; Landegren, Thomas; Carlstedt, Thomas; Cullheim, Staffan
2011-01-01
The Karolinska Institutet 200-year anniversary symposium on injuries to the spinal cord and peripheral nervous system gathered expertise in the spinal cord, spinal nerve, and peripheral nerve injury field spanning from molecular prerequisites for nerve regeneration to clinical methods in nerve repair and rehabilitation. The topics presented at the meeting covered findings on adult neural stem cells that when transplanted to the hypoglossal nucleus in the rat could integrate with its host and promote neuron survival. Studies on vascularization after intraspinal replantation of ventral nerve roots and microarray studies in ventral root replantation as a tool for mapping of biological patterns typical for neuronal regeneration were discussed. Different immune molecules in neurons and glia and their very specific roles in synapse plasticity after injury were presented. Novel strategies in repair of injured peripheral nerves with ethyl-cyanoacrylate adhesive showed functional recovery comparable to that of conventional epineural sutures. Various aspects on surgical techniques which are available to improve function of the limb, once the nerve regeneration after brachial plexus lesions and repair has reached its limit were presented. Moreover, neurogenic pain after amputation and its treatment with mirror therapy were shown to be followed by dramatic decrease in phantom limb pain. Finally clinical experiences on surgical techniques to repair avulsed spinal nerve root and the motoric as well as sensoric regain of function were presented. PMID:21629875
Carbone, K M; Duchala, C S; Griffin, J W; Kincaid, A L; Narayan, O
1987-11-01
Borna disease virus is an uncharacterized agent that causes sporadic but fatal neurological disease in horses and sheep in Europe. Studies of the infection in rats have shown that the agent has a strict tropism for neural tissues, in which it persists indefinitely. Inoculated rats developed encephalitis after an incubation period of 17 to 90 days. This report shows that the incubation period is the time required for transport of the agent in dendritic-axonal processes from the site of inoculation to the hippocampus. The immune responses to the agent had no effect on replication or transport of the virus. The neural conduit to the brain was proven by intranasal inoculation of virus that resulted in rapid transport of the agent via olfactory nerves to the hippocampus and in development of disease in 20 days. Virus inoculation into the feet resulted in spread along nerve fibers from neuron to neuron. There was sequential replication in neurons of the dorsal root ganglia adjacent to the lumbar spinal cord, the gracilis nucleus in the medulla, and pyramidal cells in the cerebral cortex, followed by infection of the hippocampal neurons and onset of disease. This progression required 50 to 60 days. The exclusiveness of the neural conduit was proven by failure to cause infection after injection of the virus intravenously or into the feet of neurectomized rats.
Management of lumbar zygapophysial (facet) joint pain
Manchikanti, Laxmaiah; Hirsch, Joshua A; Falco, Frank JE; Boswell, Mark V
2016-01-01
AIM: To investigate the diagnostic validity and therapeutic value of lumbar facet joint interventions in managing chronic low back pain. METHODS: The review process applied systematic evidence-based assessment methodology of controlled trials of diagnostic validity and randomized controlled trials of therapeutic efficacy. Inclusion criteria encompassed all facet joint interventions performed in a controlled fashion. The pain relief of greater than 50% was the outcome measure for diagnostic accuracy assessment of the controlled studies with ability to perform previously painful movements, whereas, for randomized controlled therapeutic efficacy studies, the primary outcome was significant pain relief and the secondary outcome was a positive change in functional status. For the inclusion of the diagnostic controlled studies, all studies must have utilized either placebo controlled facet joint blocks or comparative local anesthetic blocks. In assessing therapeutic interventions, short-term and long-term reliefs were defined as either up to 6 mo or greater than 6 mo of relief. The literature search was extensive utilizing various types of electronic search media including PubMed from 1966 onwards, Cochrane library, National Guideline Clearinghouse, clinicaltrials.gov, along with other sources including previous systematic reviews, non-indexed journals, and abstracts until March 2015. Each manuscript included in the assessment was assessed for methodologic quality or risk of bias assessment utilizing the Quality Appraisal of Reliability Studies checklist for diagnostic interventions, and Cochrane review criteria and the Interventional Pain Management Techniques - Quality Appraisal of Reliability and Risk of Bias Assessment tool for therapeutic interventions. Evidence based on the review of the systematic assessment of controlled studies was graded utilizing a modified schema of qualitative evidence with best evidence synthesis, variable from level I to level V. RESULTS: Across all databases, 16 high quality diagnostic accuracy studies were identified. In addition, multiple studies assessed the influence of multiple factors on diagnostic validity. In contrast to diagnostic validity studies, therapeutic efficacy trials were limited to a total of 14 randomized controlled trials, assessing the efficacy of intraarticular injections, facet or zygapophysial joint nerve blocks, and radiofrequency neurotomy of the innervation of the facet joints. The evidence for the diagnostic validity of lumbar facet joint nerve blocks with at least 75% pain relief with ability to perform previously painful movements was level I, based on a range of level I to V derived from a best evidence synthesis. For therapeutic interventions, the evidence was variable from level II to III, with level II evidence for lumbar facet joint nerve blocks and radiofrequency neurotomy for long-term improvement (greater than 6 mo), and level III evidence for lumbosacral zygapophysial joint injections for short-term improvement only. CONCLUSION: This review provides significant evidence for the diagnostic validity of facet joint nerve blocks, and moderate evidence for therapeutic radiofrequency neurotomy and therapeutic facet joint nerve blocks in managing chronic low back pain. PMID:27190760
Modified fenestration with restorative spinoplasty for lumbar spinal stenosis.
Matsudaira, Ko; Yamazaki, Takashi; Seichi, Atsushi; Hoshi, Kazuto; Hara, Nobuhiro; Ogiwara, Satoshi; Terayama, Sei; Chikuda, Hirotaka; Takeshita, Katsushi; Nakamura, Kozo
2009-06-01
The authors developed an original procedure, modified fenestration with restorative spinoplasty (MFRS) for the treatment of lumbar spinal stenosis. The first step is to cut the spinous process in an L-shape, which is caudally reflected. This procedure allows easy access to the spinal canal, including lateral recesses, and makes it easy to perform a trumpet-style decompression of the nerve roots without violating the facet joints. After the decompression of neural tissues, the spinous process is anatomically restored (spinoplasty). The clinical outcomes at 2 years were evaluated using the Japanese Orthopaedic Association (JOA) scale and patients' satisfaction. Radiological follow-up included radiographs and CT. Between January 2000 and December 2002, 109 patients with neurogenic intermittent claudication with or without mild spondylolisthesis underwent MFRS. Of these, 101 were followed up for at least 2 years (follow-up rate 93%). The average score on the self-administered JOA scale in 89 patients without comorbidity causing gait disturbance improved from 13.3 preoperatively to 22.9 at 2 years' follow-up. Neurogenic intermittent claudication disappeared in all cases. The patients' assessment of treatment satisfaction was "satisfied" in 74 cases, "slightly satisfied" in 12, "slightly dissatisfied" in 2, and "dissatisfied" in 1 case. In 16 cases (18%), a minimum progression of slippage occurred, but no symptomatic instability or recurrent stenosis was observed. Computed tomography showed that the lateral part of the facet joints was well preserved, and the mean residual ratio was 80%. The MFRS technique produces an adequate and safe decompression of the spinal canal, even in patients with narrow and steep facet joints in whom conventional fenestration is technically demanding.
Freundl, Brigitta; Binder, Heinrich; Minassian, Karen
2018-01-01
Epidural electrical stimulation of the lumbar spinal cord is currently regaining momentum as a neuromodulation intervention in spinal cord injury (SCI) to modify dysregulated sensorimotor functions and augment residual motor capacity. There is ample evidence that it engages spinal circuits through the electrical stimulation of large-to-medium diameter afferent fibers within lumbar and upper sacral posterior roots. Recent pilot studies suggested that the surface electrode-based method of transcutaneous spinal cord stimulation (SCS) may produce similar neuromodulatory effects as caused by epidural SCS. Neurophysiological and computer modeling studies proposed that this noninvasive technique stimulates posterior-root fibers as well, likely activating similar input structures to the spinal cord as epidural stimulation. Here, we add a yet missing piece of evidence substantiating this assumption. We conducted in-depth analyses and direct comparisons of the electromyographic (EMG) characteristics of short-latency responses in multiple leg muscles to both stimulation techniques derived from ten individuals with SCI each. Post-activation depression of responses evoked by paired pulses applied either epidurally or transcutaneously confirmed the reflex nature of the responses. The muscle responses to both techniques had the same latencies, EMG peak-to-peak amplitudes, and waveforms, except for smaller responses with shorter onset latencies in the triceps surae muscle group and shorter offsets of the responses in the biceps femoris muscle during epidural stimulation. Responses obtained in three subjects tested with both methods at different time points had near-identical waveforms per muscle group as well as same onset latencies. The present results strongly corroborate the activation of common neural input structures to the lumbar spinal cord—predominantly primary afferent fibers within multiple posterior roots—by both techniques and add to unraveling the basic mechanisms underlying electrical SCS. PMID:29381748
Optic nerve head drusen and idiopathic intracranial hypertension in a 14-year-old girl.
Granger, Robert H; Bonnelame, Thomas; Daubenton, John; Dreyer, Michael; McCartney, Paul
2009-01-01
A 14-year-old girl had a 3-month history of headache and blurred vision. Funduscopy showed bilateral optic disc edema. Findings on brain imaging were normal, and a diagnosis of idiopathic intracranial hypertension was confirmed after lumbar puncture showed an elevated opening pressure of 32 cm H(2)O. Optic nerve head drusen were noted on computed tomography scan and confirmed with B-scan ultrasound. After 2 years, resolution of symptoms coincided with variable compliance to treatment with acetazolamide and concomitant papilledema. In general, optic disc edema poses a clinical conundrum due to the more common occurrence of optic nerve head drusen, potentially resulting in delayed diagnosis and treatment of idiopathic intracranial hypertension. Copyright 2009, SLACK Incorporated.
Verwoerd, Annemieke J H; Mens, Jan; El Barzouhi, Abdelilah; Peul, Wilco C; Koes, Bart W; Verhagen, Arianne P
2016-05-01
To test whether the localization of worsening of pain during coughing, sneezing and straining matters in the assessment of lumbosacral nerve root compression or disc herniation on MRI. Recently the diagnostic accuracy of history items to assess disc herniation or nerve root compression on magnetic resonance imaging (MRI) was investigated. A total of 395 adult patients with severe sciatica of 6-12 weeks duration were included in this study. The question regarding the influence of coughing, sneezing and straining on the intensity of pain could be answered on a 4 point scale: no worsening of pain, worsening of back pain, worsening of leg pain, worsening of back and leg pain. Diagnostic odds ratio's (DORs) were calculated for the various dichotomization options. The DOR changed into significant values when the answer option was more narrowed to worsening of leg pain. The highest DOR was observed for the answer option 'worsening of leg pain' with a DOR of 2.28 (95 % CI 1.28-4.04) for the presence of nerve root compression and a DOR of 2.50 (95 % CI 1.27-4.90) for the presence of a herniated disc on MRI. Worsening of leg pain during coughing, sneezing or straining has a significant diagnostic value for the presence of nerve root compression and disc herniation on MRI in patients with sciatica. This study also highlights the importance of the formulation of answer options in history taking.
Unsuspected reason for sciatica in Bertolotti's syndrome.
Shibayama, M; Ito, F; Miura, Y; Nakamura, S; Ikeda, S; Fujiwara, K
2011-05-01
Patients with Bertolotti's syndrome have characteristic lumbosacral anomalies and often have severe sciatica. We describe a patient with this syndrome in whom standard decompression of the affected nerve root failed, but endoscopic lumbosacral extraforaminal decompression relieved the symptoms. We suggest that the intractable sciatica in this syndrome could arise from impingement of the nerve root extraforaminally by compression caused by the enlarged transverse process.
Hasan, S T; Shanahan, D A; Pridie, A K; Neal, D E
1996-01-01
A method is described for percutaneous localization of the sacral foramina, for neuromodulation of bladder function. We carried out an anatomical study of 5 male and 5 female human cadaver pelves. Using the described surface markings, needles were placed percutaneously into all sacral foramina from nine different angles. Paths of needle entry were studied by subsequent dissection. We observed that although it was possible to enter any sacral foramen at a wide range of insertion angles, the incidence of nerve root/vascular penetration increased with increasing angle of needle entry. Also, the incidence of nerve root penetration was higher with the medial approach compared with lateral entry. The insertion of a needle into the S1 foramen was associated with a higher incidence of nerve root penetration and presents a potential for arterial haemorrhage. On the other hand the smaller S3 and S4 nerve roots were surrounded by venous plexuses, presenting a potential source of venous haemorrhage during procedures. Our study suggests a new method for identifying the surface markings of sacral foramina and it describes the paths of inserted needles into the respective foramina. In addition, it has highlighted some potential risk factors secondary to needle insertion.
Yamashita, Kazuta; Higashino, Kosaku; Sakai, Toshinori; Takata, Yoichiro; Hayashi, Fumio; Tezuka, Fumitake; Morimoto, Masatoshi; Chikawa, Takashi; Nagamachi, Akihiro; Sairyo, Koichi
2017-01-01
Percutaneous endoscopic surgery for the lumbar spine has become established in the last decade. It requires only an 8 mm skin incision, causes minimal damage to the paravertebral muscles, and can be performed under local anesthesia. With the advent of improved equipment, in particular the high-speed surgical drill, the indications for percutaneous endoscopic surgery have expanded to include lumbar spinal canal stenosis. Transforaminal percutaneous endoscopic discectomy has been used to treat intervertebral stenosis. However, it has been reported that adjacent level disc degeneration and foraminal stenosis can occur following intervertebral segmental fusion. When this adjacent level pathology becomes symptomatic, additional fusion surgery is often needed. We performed minimally invasive percutaneous full endoscopic lumbar foraminoplasty in an awake and aware 50-year-old woman under local anesthesia. The procedure was successful with no complications. Her radiculopathy, including muscle weakness and leg pain due to impingement of the exiting nerve, improved after the surgery. J. Med. Invest. 64: 291-295, August, 2017.
Studies on the pathogenesis of fixed rabies virus in rats*
Baer, G. M.; Shanthaveerappa, T. R.; Bourne, G. H.
1965-01-01
Investigations were made on the spread of fixed rabies virus after its inoculation into the rear foot-pads of rats. The presence of rabies virus in the central nervous system was first detected in the lumbar segment of the spinal cord. Removal of the sciatic nerve or of its fasciculus, either before or soon after challenge, drastically lowered mortality, thus giving evidence of a rapid neural spread of the infection. Neither the perineural structures nor the axons appeared to be involved. Although the presence of virus in the sciatic nerves was first demonstrated by the development of neutralizing antibodies in the serum of rats ”immunized” by multiple injections of nerve material from rats killed 48 hours after challenge, resection of nerves had to be carried out long before that time to be effective in preventing viral progression. ImagesFIG. 1FIG. 2-5 PMID:5295402
Delayed appearance of hypaesthesia and paralysis after femoral nerve block
Landgraeber, Stefan; Albrecht, Thomas; Reischuck, Ulrich; von Knoch, Marius
2012-01-01
We report on a female patient who underwent an arthroscopy of the right knee and was given a continuous femoral nerve block catheter. The postoperative course was initially unremarkable, but when postoperative mobilisation was commenced, 18 hours after removal of the catheter, the patient noticed paralysis and hypaesthesia. Examination confirmed the diagnosis of femoral nerve dysfunction. Colour duplex sonography of the femoral artery and computed tomography of the lumbar spine and pelvis yielded no pathological findings. Overnight the neurological deficits decreased without therapy and were finally no longer detectable. We speculate that during the administration of the local anaesthetic a depot formed, localised in the medial femoral intermuscular septa, which was leaked after first mobilisation. To our knowledge no similar case has been published up to now. We conclude that patients who are treated with a nerve block should be informed and physician should be aware that delayed neurological deficits are possible. PMID:22577509
Unilateral Loss of Spontaneous Venous Pulsations in an Astronaut
NASA Technical Reports Server (NTRS)
Mader, Thomas H.; Gibson, C. Robert; Lee, Andrew G.; Patel, Nimesh; Hart, Steven; Pettit, Donald R.
2014-01-01
Spontaneous venous pulsations seen on the optic nerve head (optic disc) are presumed to be caused by fluctuations in the pressure gradient between the intraocular and retrolaminar venous systems. The disappearance of previously documented spontaneous venous pulsations is a well-recognized clinical sign usually associated with a rise in intracranial pressure and a concomitant bilateral elevation of pressure in the subarachnoid space surrounding the optic nerves. In this correspondence we report the unilateral loss of spontaneous venous pulsations in an astronaut 5 months into a long duration space flight. We documented a normal lumbar puncture opening pressure 8 days post mission. The spontaneous venous pulsations were also documented to be absent 21 months following return to Earth.. We hypothesize that these changes may have resulted from a chronic unilateral rise in optic nerve sheath pressure caused by a microgravity-induced optic nerve sheath compartment syndrome.
Infrared neural stimulation of human spinal nerve roots in vivo
Cayce, Jonathan M.; Wells, Jonathon D.; Malphrus, Jonathan D.; Kao, Chris; Thomsen, Sharon; Tulipan, Noel B.; Konrad, Peter E.; Jansen, E. Duco; Mahadevan-Jansen, Anita
2015-01-01
Abstract. Infrared neural stimulation (INS) is a neurostimulation modality that uses pulsed infrared light to evoke artifact-free, spatially precise neural activity with a noncontact interface; however, the technique has not been demonstrated in humans. The objective of this study is to demonstrate the safety and efficacy of INS in humans in vivo. The feasibility of INS in humans was assessed in patients (n=7) undergoing selective dorsal root rhizotomy, where hyperactive dorsal roots, identified for transection, were stimulated in vivo with INS on two to three sites per nerve with electromyogram recordings acquired throughout the stimulation. The stimulated dorsal root was removed and histology was performed to determine thermal damage thresholds of INS. Threshold activation of human dorsal rootlets occurred in 63% of nerves for radiant exposures between 0.53 and 1.23 J/cm2. In all cases, only one or two monitored muscle groups were activated from INS stimulation of a hyperactive spinal root identified by electrical stimulation. Thermal damage was first noted at 1.09 J/cm2 and a 2∶1 safety ratio was identified. These findings demonstrate the success of INS as a fresh approach for activating human nerves in vivo and providing the necessary safety data needed to pursue clinically driven therapeutic and diagnostic applications of INS in humans. PMID:26157986
McAfee, Paul C.; Shucosky, Erin; Chotikul, Liana; Salari, Ben; Chen, Lun; Jerrems, Dan
2013-01-01
Background This is a retrospective review of 25 patients with severe lumbar nerve root compression undergoing multilevel anterior retroperitoneal lumbar interbody fusion and posterior instrumentation for deformity. The objective is to analyze the outcomes and clinical results from anterior interbody fusions performed through a lateral approach and compare these with traditional surgical procedures. Methods A consecutive series of 25 patients (78 extreme lateral interbody fusion [XLIF] levels) was identified to illustrate the primary advantages of XLIF in correcting the most extreme of the 3-dimensional deformities that fulfilled the following criteria: (1) a minimum of 40° of scoliosis; (2) 2 or more levels of translation, anterior spondylolisthesis, and lateral subluxation (subluxation in 2 planes), causing symptomatic neurogenic claudication and severe spinal stenosis; and (3) lumbar hypokyphosis or flat-back syndrome. In addition, the majority had trunks that were out of balance (central sacral vertical line ≥2 cm from vertical plumb line) or had sagittal imbalance, defined by a distance between the sagittal vertical line and S1 of greater than 3 cm. There were 25 patients who had severe enough deformities fulfilling these criteria that required supplementation of the lateral XLIF with posterior osteotomies and pedicle screw instrumentation. Results In our database, with a mean follow-up of 24 months, 85% of patients showed evidence of solid arthrodesis and no subsidence on computed tomography and flexion/extension radiographs. The complication rate remained low, with a perioperative rate of 2.4% and postoperative rate of 12.2%. The lateral listhesis and anterior spondylolisthetic subluxation were anatomically reduced with minimally invasive XLIF. The main finding in these 25 cases was our isolation of the major indication for supplemental posterior surgery: truncal decompensation in patients who are out of balance by 2 cm or more, in whom posterior spinal osteotomies and segmental pedicle screw instrumentation were required at follow up. No patients were out of sagittal balance (sagittal vertical line <3 cm from S1) postoperatively. Segmental instrumentation with osteotomies was also more effective for restoration of physiologic lumbar lordosis compared with anterior stand-alone procedures. Conclusions This retrospective study supports the finding that clinical outcomes (coronal/sagittal alignment) improve postoperatively after minimally invasive surgery with multilevel XLIF procedures and are improved compared with larger extensile thoracoabdominal anterior scoliosis procedures. PMID:25694908
Tegos, Stergios; Charitidis, Charalampos; Korovessis, Panagiotis G
2014-04-01
Retrospective study on circumferential hybrid instrumentation with posterior lumbar interbody fusion (PLIF) and the novel posterior Universal Clamp (UC) instrumentation. This study evaluated the roentgenographic and clinical outcome after PLIF with PEEK cage augmented with UC posterior sublaminar fixation without posterior fusion. Although UC has been successfully used in scoliosis surgery, to our knowledge, this is the first report on its use in degenerative lumbosacral disease. Rigid pedicle screw lumbosacral fixation is associated with several intraoperative screw-related complications. The use of sublaminar bands and rods combined with PEEK PLIF should increase fusion rate and avoid screw-related complications. From a total of 295 consecutive patients who experienced degenerative lumbosacral disease and received posterior decompression, implantation of PLIF with PEEK cages and semirigid posterior fixation with sublaminar UC bands-rods without posterolateral fusion, 150 patients were eligible for this study with a follow-up of more than 2 years. Interbody fusion rate and global plus segmental sagittal spinal lordosis restoration were recorded pre- and postoperatively. Visual analogue scale and Oswestry Disability Index were used to assess functional outcome. Hybrid instrumentation expanded over 1 to 5 levels. Surgical time ranged from 45 to 225 minutes. Only 12.6% of the patients were transfused. There was no nerve root lesion or deep wound infection. Laminar fracture occurred intraoperatively in one case during band insertion. Interbody fusion was achieved in 94% of the operated segments. Lumbar lordosis improved from -36 ± 9° preoperatively to -53 ± 6° postoperatively. Segmental lordosis improved in L4-L5 segment from -5 ± 3° preoperatively to -12 ± 2° postoperatively and in L5-S1 from -9 ± 4° to -14 ± 2° postoperation. Oswestry Disability Index score improved from 44.9 preoperatively to 2.2 postoperatively (P < 0.001). No patient required further spinal surgery until the final evaluation. UC, a novel semirigid sublaminar posterior instrumentation, combined with wedge-shaped PEEK PLIF corrected both global and segmental sagittal lumbar alignment and achieved fusion rate similar to that historically reported with pedicle screw-PLIF techniques, however, avoiding intraoperative complications associated with the use of pedicle screws.
Partata, W A; Krepsky, A M R; Xavier, L L; Marques, M; Achaval, M
2003-04-01
Immunoreactive substance P was investigated in turtle lumbar spinal cord after sciatic nerve transection. In control animals immunoreactive fibers were densest in synaptic field Ia, where the longest axons invaded synaptic field III. Positive neuronal bodies were identified in the lateral column of the dorsal horn and substance P immunoreactive varicosities were observed in the ventral horn, in close relationship with presumed motoneurons. Other varicosities appeared in the lateral and anterior funiculi. After axotomy, substance P immunoreactive fibers were reduced slightly on the side of the lesion, which was located in long fibers that invaded synaptic field III and in the varicosities of the lateral and anterior funiculus. The changes were observed at 7 days after axonal injury and persisted at 15, 30, 60 and 90 days after the lesion. These findings show that turtles should be considered as a model to study the role of substance P in peripheral axonal injury, since the distribution and temporal changes of substance P were similar to those found in mammals.
Decompressive L5 Transverse Processectomy for Bertolotti's Syndrome: A Preliminary Study.
Ju, Chang Il; Kim, Seok Won; Kim, Jong Gyue; Lee, Seung Myung; Shin, Ho; Lee, Hyeun Young
2017-09-01
Bertolotti's syndrome is a spinal disorder characterized by abnormal enlargement of the transverse process of the most caudal lumbar vertebra. The L5 transverse process may be enlarged either unilaterally or bilaterally and may articulate or fuse with the sacrum or ilium. Pseudoarticulation between the transverse process of the L5 and the alar of the sacrum can cause buttock pain and leg pain. In addition, the L4 exiting nerve root could be compressed by an enlarged L5 transverse process. The authors could have obtained satisfactory results from the selected cases of Bertolotti's syndrome by applying a selective transverse processectomy of the L5. The objective of this study is to determine the effectiveness of L5 transverse processectomy for symptomatic Bertolotti's syndrome. A retrospective study. A total of 256 patients with Bertolotti's syndrome who had severe buttock pain and unilateral or bilateral radiating leg pain were selected. The correct diagnosis was made based on imaging studies which included computed tomography (CT), plain x-rays, and magnetic resonance imaging (MRI). The final diagnosis was made by confirming pain relief from anesthetic block. A total of 87 patients were classified into 2 groups: group A included 50 patients whose pain was relieved by block into the pseudoarticulation and group B included 37 patients whose pain was relieved by block into the L4 exiting nerve root. A total of 61 cases (group A: 39 cases, group B: 22 cases) were selected as pure L5 transverse processectomy. The primary outcome measures were reduction in pain scores and improvement in quality of life. Among 61 patients, there were 19 men and 42 women. The mean age of the patients was 53.2 ± 12 years (group A: 57.8 ± 14 years [16 - 86 years], group B: 53.4 ± 14 years [27 - 77 years]). The mean follow-up period was 6.5 months. The patients' mean visual analog scale (VAS) prior to surgery was 7.54 ± 0.81 (group A: 7.59 ± 0.93, group B: 7.50 ± 0.86), and the mean postoperative VAS was 2.86 ± 1.67 (group A: 3.82 ± 1.59, group B: 2.05 ± 1.00). According to Macnab's criteria, 12 patients showed excellent results (group A: 3, group B: 9), 41 patients showed good results (group A: 11, group B: 30), 6 patients showed fair results (group A: 5, group B: 1), and 2 patients showed poor results (group A: 2, group B: 0). Thus, satisfactory results were achieved in 86.89% of the cases. In patients with Bertolotti's syndrome, pseudoarticulation as well as L4 nerve root compression can be the source of buttock pain and lower extremity pain. Bisectional cutting of the L5 transverse process and decompression of the L4 nerve root could be an optimal treatment for Bertolotti's syndrome, and it may be easily approached by the paraspinal approach. This is a retrospective study and only offers one-year follow-up data for patients with Bertolotti's syndrome who have undergone L5 transverse process resection.Key words: Bertolotti's syndrome, pseudoarticulation, L5 transverse processectomy, paraspinal approach.
Bernhoff, Gabriella; Landén Ludvigsson, Maria; Peterson, Gunnel; Bertilson, Bo Christer; Elf, Madeleine; Peolsson, Anneli
2016-01-01
The aim of the study was to investigate the psychometric properties of a standardized assessment of pain drawing with regard to clinical signs of cervical spine nerve root involvement. This cross-sectional study included data collected in a randomized controlled study. Two hundred and sixteen patients with chronic (≥6 months) whiplash-associated disorders, grade 2 or 3, were included in this study. The validity, sensitivity, and specificity of a standardized pain drawing assessment for determining nerve root involvement were analyzed, compared to the clinical assessment. In addition, we analyzed the interrater reliability with 50 pain drawings. Agreement was poor between the standardized pain drawing assessment and the clinical assessment (kappa =0.11, 95% CI: -0.03 to 0.20). Sensitivity was high (93%), but specificity was low (19%). Interrater reliability was good (kappa =0.64, 95% CI: 0.53 to 0.76). The standardized pain drawing assessment of nerve root involvement in chronic whiplash-associated disorders was not in agreement with the clinical assessment. Further research is warranted to optimize the utilization of a pain/discomfort drawing as a supportive instrument for identifying nerve involvement in cervical spinal injuries.
Franciosi, L F; Modestti, C; Mueller, S F
1998-01-01
Three patients with avulsed C5, C6, and C7 roots and two patients with avulsed C5 and C6 roots after trauma of the brachial plexus, were treated by neurotization of the biceps using nerve fibers derived from the ulnar nerve and obtained by end-to-side neurorraphy between the ulnar and musculocutaneous nerves. The age of patients ranged from 19 to 45. The interval between the accident and surgery was 2 to 13 months. Return of biceps contraction was observed 4 to 6 months after surgery. Four patients recovered grade 4 elbow flexion. One 45-year-old patient did not obtain any biceps contraction after 9 months.
Neuropeptide Y in human spinal cord.
Allen, J M; Gibson, S J; Adrian, T E; Polak, J M; Bloom, S R
1984-08-06
The distribution of a newly described peptide, neuropeptide Y (NPY) within the human spinal cord has been determined using radioimmunoassay and immunocytochemistry. Higher concentrations were found in the lumbar (49.9 +/- 6.8 pmol/g) and sacral (47.0 +/- 10.6 pmol/g) regions than in the cervical (27.6 +/- 2.7 pmol/g) and thoracic spinal cord (33.8 +/- 5.3 pmol/g). Immunocytochemistry revealed numerous nerve fibers containing NPY in the spinal cord; these were particularly concentrated in the substantia gelatinosa of the dorsal horn. In the ventral spinal cord NPY-containing nerves were sparse becoming more abundant in lumbosacral segments.
Electrical stimulation and motor recovery.
Young, Wise
2015-01-01
In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as "neurons that fire together, wire together." This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical stimulation (FES) has long been used to activate sacral nerves to treat bladder and pelvic dysfunction and to augment motor function. In theory, FES should facilitate synaptic formation and motor recovery after regenerative therapies. Upcoming clinical trials provide unique opportunities to test the theory.
Kobayashi, S; Uchida, K; Takeno, K; Baba, H; Suzuki, Y; Hayakawa, K; Yoshizawa, H
2006-02-01
It has been reported that disturbance of blood flow arising from circumferential compression of the cauda equina by surrounding tissue plays a major role in the appearance of neurogenic intermittent claudication (NIC) associated with lumbar spinal canal stenosis (LSCS). We created a model of LSCS to clarify the mechanism of enhancement within the cauda equina on gadolinium-enhanced MR images from patients with LSCS. In 20 dogs, a lumbar laminectomy was performed by applying circumferential constriction to the cauda equina by using a silicon tube, to produce 30% stenosis of the circumferential diameter of the dural tube. After 1 and 3 weeks, gadolinium and Evans blue albumin were injected intravenously at the same time. The sections were used to investigate the status of the blood-nerve barrier function under a fluorescence microscope and we compared gadolinium-enhanced MR images with Evans blue albumin distribution in the nerve. The other sections were used for light and transmission electron microscopic study. In this model, histologic examination showed congestion and dilation in many of the intraradicular veins, as well as inflammatory cell infiltration. The intraradicular edema caused by venous congestion and Wallerian degeneration can also occur at sites that are not subject to mechanical compression. Enhanced MR imaging showed enhancement of the cauda equina at the stenosed region, demonstrating the presence of edema. Gadolinium-enhanced MR imaging may be a useful tool for the diagnosis of microcirculatory disorders of the cauda equina associated with LSCS.
New Theoretical Model of Nerve Conduction in Unmyelinated Nerves
Akaishi, Tetsuya
2017-01-01
Nerve conduction in unmyelinated fibers has long been described based on the equivalent circuit model and cable theory. However, without the change in ionic concentration gradient across the membrane, there would be no generation or propagation of the action potential. Based on this concept, we employ a new conductive model focusing on the distribution of voltage-gated sodium ion channels and Coulomb force between electrolytes. Based on this new model, the propagation of the nerve conduction was suggested to take place far before the generation of action potential at each channel. We theoretically showed that propagation of action potential, which is enabled by the increasing Coulomb force produced by inflowing sodium ions, from one sodium ion channel to the next sodium channel would be inversely proportionate to the density of sodium channels on the axon membrane. Because the longitudinal number of sodium ion channel would be proportionate to the square root of channel density, the conduction velocity of unmyelinated nerves is theoretically shown to be proportionate to the square root of channel density. Also, from a viewpoint of equilibrium state of channel importation and degeneration, channel density was suggested to be proportionate to axonal diameter. Based on these simple basis, conduction velocity in unmyelinated nerves was theoretically shown to be proportionate to the square root of axonal diameter. This new model would also enable us to acquire more accurate and understandable vision on the phenomena in unmyelinated nerves in addition to the conventional electric circuit model and cable theory. PMID:29081751
Fujiwara, Yasushi; Izumi, Bunichiro; Fujiwara, Masami; Nakanishi, Kazuyoshi; Tanaka, Nobuhiro; Adachi, Nobuo; Manabe, Hideki
2017-04-01
C2 radiculopathy is known to cause occipito-cervical pain, but their pathology is unclear because of its rarity and unique anatomy. In this paper, we investigated the mechanism of C2 radiculopathy that underwent microscopic cervical foraminotomies (MCF). Three cases with C2 radiculopathy treated by MCF were investigated retrospectively. The mean follow-up period was 24 months. Pre-operative symptoms, imaging studies including para-sagittal CT and MRI, rotational dynamic CT, and intraoperative findings were investigated. There were 1 male and 2 females. The age of patients were ranged from 50 to 79 years. All cases had intractable occipito-cervical pain elicited by the cervical rotation. C2 nerve root block was temporally effective. There was unilateral spondylosis in symptomatic side without obvious atlatoaxial instability. Para-sagittal MRI and CT showed severe foraminal stenosis at C1-C2 due to the bony spur derived from the lateral atlanto-axial joints. In one case, dynamic rotational CT showed that the symptomatic foramen became narrower on rotational position. MCF was performed in all cases, and the C2 nerve root was impinged between the inferior edge of the C1 posterior arch and bony spur from the C1-C2 joint. After surgery, occipito-cervical pain disappeared. This study demonstrated that mechanical impingement of the C2 nerve root is one of the causes of occipito-cervical pain and it was successfully treated by microscopic resection of the inferior edge of the C1 posterior arch. Para-sagittal CT and MRI, rotational dynamic CT, and nerve root block were effective for diagnosis.
Hammond, Sharon L.; Rao, Neal M.
2007-01-01
Purpose Seprafilm® was initially used successfully as a membrane to reduce abdominal adhesions. Subsequently it was tried in a number of other areas to reduce postoperative scarring. Seprafilm® was employed in this study to see if it would reduce postoperative scarring after supraclavicular thoracic outlet decompression for neurogenic thoracic outlet syndrome (NTOS). Material and methods There were 249 operations for primary NTOS (185) and recurrent NTOS (64). Seprafilm® was applied to the nerve roots at the end of each procedure. Diagnosis was established by careful history and extensive physical exam consisting of several provocative maneuvers. Scalene muscle block confirmed the diagnosis. Results Success rates for primary operations, 1–2 years postoperation were 74% for scalenectomy without first rib resection and 70% for scalenectomy with first rib resection. For reoperations, success rate for scalenectomy and neurolysis after transaxillary rib resection was 78% whereas success rate for neurolysis after supraclavicular scalenectomy was 68%. Seprafilm® did not significantly improve overall results compared to our results 15 years ago, although in reoperations there was a trend toward improvement with Seprafilm®. Observations in 10 reoperations after use of Seprafilm® revealed that there were fewer adhesions between fat pad and nerve roots, making it much easier to find the nerve roots. Recurrence was because of scar formation around individual nerve roots. Conclusion Seprafilm® made reoperations easier by reducing scarring between scalene fat pad and brachial plexus. However, it did not prevent scar tissue forming around the individual nerve roots nor did it significantly lower the failure rate for primary operations. The trend supported the use of Seprafilm® in reoperations. PMID:18780049
The afferent pathways of discogenic low-back pain. Evaluation of L2 spinal nerve infiltration.
Nakamura, S I; Takahashi, K; Takahashi, Y; Yamagata, M; Moriya, H
1996-07-01
The afferent pathways of discogenic low-back pain have not been fully investigated. We hypothesised that this pain was transmitted mainly by sympathetic afferent fibres in the L2 nerve root, and in 33 patients we used selective local anaesthesia of this nerve. Low-back pain disappeared or significantly decreased in all patients after the injection. Needle insertion provoked pain which radiated to the low back in 23 patients and the area of skin hypoalgesia produced included the area of pre-existing pain in all but one. None of the nine patients with related sciatica had relief of that component of their symptoms. Our findings show that the main afferent pathways of pain from the lower intervertebral discs are through the L2 spinal nerve root, presumably via sympathetic afferents from the sinuvertebral nerves. Discogenic low-back pain should be regarded as a visceral pain in respect of its neural pathways. Infiltration of the L2 nerve is a useful diagnostic test and also has some therapeutic value.
Sun, Yapeng; Zhang, Wei; Qie, Suhui; Zhang, Nan; Ding, Wenyuan; Shen, Yong
2017-07-01
The study was to comprehensively compare the postoperative outcome and imaging parameter characters in a short/middle period between the percutaneous endoscopic lumbar discectomy (PELD) and the internal fixation of bone graft fusion (the most common form is posterior lumbar interbody fusion [PLIF]) for the treatment of adjacent segment lumbar disc prolapse with stable retrolisthesis after a previous lumbar internal fixation surgery.In this retrospective case-control study, we collected the medical records from 11 patients who received PELD operation (defined as PELD group) for and from 13 patients who received the internal fixation of bone graft fusion of lumbar posterior vertebral lamina decompression (defined as control group) for the treatment of the lumbar disc prolapse combined with stable retrolisthesis at Department of Spine Surgery, the Third Hospital of Hebei Medical University (Shijiazhuang, China) from May 2010 to December 2015. The operation time, the bleeding volume of perioperation, and the rehabilitation days of postoperation were compared between 2 groups. Before and after surgery at different time points, ODI, VAS index, and imaging parameters (including Taillard index, inter-vertebral height, sagittal dislocation, and forward bending angle of lumbar vertebrae) were compared.The average operation time, the blooding volume, and the rehabilitation days of postoperation were significantly less in PELD than in control group. The ODI and VAS index in PELD group showed a significantly immediate improving on the same day after the surgery. However, Taillard index, intervertebral height, sagittal dislocation in control group showed an immediate improving after surgery, but no changes in PELD group till 12-month after surgery. The forward bending angle of lumbar vertebrae was significantly increased and decreased in PELD and in control group, respectively.PELD operation was superior in terms of operation time, bleeding volume, recovery period, and financial support, if compared with lumbar internal fixation operation. Radiographic parameters reflect lumber structure changes, which could be observed immediately after surgery in both methods; however, the recoveries on nerve function and pain relief required a longer time, especially after PLIF operation.
Li, Huan; Shang, Xiao-Jun; Dong, Qi-Rong
2015-10-01
To investigate the analgesic and anti-inflammatory effects of transcutaneous electrical nerve stimulation (TENS) at local or distant acupuncture points in a rat model of the third lumbar vertebrae transverse process syndrome. Forty Sprague-Dawley rats were randomly divided into control, model, model plus local acupuncture point stimulation at BL23 (model+LAS) and model plus distant acupuncture point stimulation at ST36 (model+DAS) groups. All rats except controls underwent surgical third lumbar vertebrae transverse process syndrome modelling on day 2. Thereafter, rats in the model+LAS and model+DAS groups were treated daily with TENS for a total of six treatments (2/100 Hz, 30 min/day) from day 16 to day 29. Thermal pain thresholds were measured once a week during treatment and were continued until day 57, when local muscle tissue was sampled for RT-PCR and histopathological examination after haematoxylin and eosin staining. mRNA expression of interleukin-1 β (IL-1β), tumour necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) was determined. Thermal pain thresholds of all model rats decreased relative to the control group. Both LAS and DAS significantly increased the thermal pain threshold at all but one point during the treatment period. Histopathological assessment revealed that the local muscle tissues around the third lumbar vertebrae transverse process recovered to some degree in both the model+LAS and model+DAS groups; however, LAS appeared to have a greater effect. mRNA expression of IL-1β, TNF-α and iNOS in the local muscle tissues was increased after modelling and attenuated in both model+LAS and model+DAS groups. The beneficial effect was greater after LAS than after DAS. TENS at both local (BL23) and distant (ST36) acupuncture points had a pain-relieving effect in rats with the third lumbar vertebrae transverse process syndrome, and LAS appeared to have greater anti-inflammatory and analgesic effects than DAS. 09073. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Karmakar, M K; Li, X; Kwok, W H; Ho, A M-H; Ngan Kee, W D
2012-01-01
Objectives The use of ultrasound to guide peripheral nerve blocks is now a well-established technique in regional anaesthesia. However, despite reports of ultrasound guided epidural access via the paramedian approach, there are limited data on the use of ultrasound for central neuraxial blocks, which may be due to a poor understanding of spinal sonoanatomy. The aim of this study was to define the sonoanatomy of the lumbar spine relevant for central neuraxial blocks via the paramedian approach. Methods The sonoanatomy of the lumbar spine relevant for central neuraxial blocks via the paramedian approach was defined using a “water-based spine phantom”, young volunteers and anatomical slices rendered from the Visible Human Project data set. Results The water-based spine phantom was a simple model to study the sonoanatomy of the osseous elements of the lumbar spine. Each osseous element of the lumbar spine, in the spine phantom, produced a “signature pattern” on the paramedian sagittal scans, which was comparable to its sonographic appearance in vivo. In the volunteers, despite the narrow acoustic window, the ultrasound visibility of the neuraxial structures at the L3/L4 and L4/L5 lumbar intervertebral spaces was good, and we were able to delineate the sonoanatomy relevant for ultrasound-guided central neuraxial blocks via the paramedian approach. Conclusion Using a simple water-based spine phantom, volunteer scans and anatomical slices from the Visible Human Project (cadaver) we have described the sonoanatomy relevant for ultrasound-guided central neuraxial blocks via the paramedian approach in the lumbar region. PMID:22010025
Herpes zoster sciatica mimicking lumbar canal stenosis: a case report.
Koda, Masao; Mannoji, Chikato; Oikawa, Makiko; Murakami, Masazumi; Okamoto, Yuzuru; Kon, Tamiyo; Okawa, Akihiko; Ikeda, Osamu; Yamazaki, Masashi; Furuya, Takeo
2015-07-29
Symptom of herpes zoster is sometimes difficult to distinguish from sciatica induced by spinal diseases, including lumbar disc herniation and spinal canal stenosis. Here we report a case of sciatica mimicking lumbar canal stenosis. A 74-year-old Chinese male patient visited our hospital for left-sided sciatic pain upon standing or walking for 5 min of approximately 1 month's duration. At the first visit to our hospital, there were no skin lesions. A magnetic resonance imaging showed spinal canal stenosis between the 4th and 5th lumbar spine. Thus, we diagnosed the patient with sciatica induced by spinal canal stenosis. We considered decompression surgery for the stenosis of 4th and 5th lumbar spine because conservative therapy failed to relieve the patient's symptom. At that time, the patient complained of a skin rash involving his left foot for several days. A vesicular rash and erythema were observed on the dorsal and plantar surfaces of the great toe and lateral malleolus. The patient was diagnosed with herpes zoster in the left 5th lumbar spinal nerve area based on clinical findings, including the characteristics of the pain and vesicular rash and erythema in the 5th lumbar spinal dermatome. The patient was treated with famciclovir (1,500 mg/day) and non-steroidal anti-inflammatory drugs. After 1 week of medication, the skin rash resolved and pain relief was obtained. In conclusion, spinal surgeons should keep in mind herpes zoster infection as one of the possible differential diagnoses of sciatica, even if there is no typical skin rash.
Moszkowski, Tomasz; Kauff, Daniel W; Wegner, Celine; Ruff, Roman; Somerlik-Fuchs, Karin H; Kruger, Thilo B; Augustyniak, Piotr; Hoffmann, Klaus-Peter; Kneist, Werner
2018-03-01
Neurophysiologic monitoring can improve autonomic nerve sparing during critical phases of rectal cancer surgery. To develop a system for extracorporeal stimulation of sacral nerve roots. Dedicated software controlled a ten-electrode stimulation array by switching between different electrode configurations and current levels. A built-in impedance and current level measurement assessed the effectiveness of current injection. Intra-anal surface electromyography (sEMG) informed on targeting the sacral nerve roots. All tests were performed on five pig specimens. During switching between electrode configurations, the system delivered 100% of the set current (25 mA, 30 Hz, 200 μs cathodic pulses) in 93% of 250 stimulation trains across all specimens. The impedance measured between single stimulation array contacts and corresponding anodes across all electrode configurations and specimens equaled 3.7 ± 2.5 kΩ. The intra-anal sEMG recorded a signal amplitude increase as previously observed in the literature. When the stimulation amplitude was tested in the range from 1 to 21 mA using the interconnected contacts of the stimulation array and the intra-anal anode, the impedance remained below 250 Ω and the system delivered 100% of the set current in all cases. Intra-anal sEMG showed an amplitude increase for current levels exceeding 6 mA. The system delivered stable electric current, which was proved by built-in impedance and current level measurements. Intra-anal sEMG confirmed the ability to target the branches of the autonomous nervous system originating from the sacral nerve roots. Stimulation outside of the operative field during rectal cancer surgery is feasible and may improve the practicality of pelvic intraoperative neuromonitoring.
He, Qiu-Lan; Chen, Yuling; Qin, Jian; Mo, Sui-Lin; Wei, Ming; Zhang, Jin-Jun; Li, Mei-Na; Zou, Xue-Nong; Zhou, Shu-Feng; Chen, Xiao-Wu; Sun, Lai-Bao
2012-01-01
Summary Background Osthole (Ost), a natural coumarin derivative, has been shown to inhibit many pro-inflammatory mediators and block voltage-gated Na+ channels. During inflammation, acidosis is an important pain inducer which activates nociceptors by gating depolarizing cationic channels, such as acid-sensing ion channel 3 (ASIC3). The aim of this study was to examine the effects of Ost on nucleus pulposus-evoked nociceptive responses and ASIC3 over-expression in the rat dorsal root ganglion, and to investigate the possible mechanism. Material/Methods Radicular pain was generated with application of nucleus pulposus (NP) to nerve root. Mechanical allodynia was evaluated using von Frey filaments with logarithmically incremental rigidity to calculate the 50% probability thresholds for mechanical paw withdrawal. ASIC3 protein expression in dorsal root ganglions (DRGs) was assessed with Western blot and immunohistochemistry. Membrane potential (MP) shift of DRG neurons induced by ASIC3-sensitive acid (pH6.5) was determined by DiBAC4 (3) fluorescence intensity (F.I.). Results The NP-evoked mechanical hyperalgesia model showed allodynia for 3 weeks, and ASIC3 expression was up-regulated in DRG neurons, reaching peak on Day 7. Epidural administration of Ost induced a remarkable and prolonged antinociceptive effect, accompanied by an inhibition of over-expressed ASIC3 protein and of abnormal shift of MP. Amiloride (Ami), an antagonist of ASIC3, strengthened the antinociceptive effect of Ost. Conclusions Up-regulation of ASIC3 expression may be associated with NP-evoked mechanical hyperalgesia. A single epidural injection of Ost decreased ASIC3 expression in DGR neurons and the pain in the NP-evoked mechanical hyperalgesia model. Osthole may be of great benefit for preventing chronic pain status often seen in lumbar disc herniation (LDH). PMID:22648244
Bertrand, S; Cazalets, Jean-René
2002-11-01
Various studies on isolated neonatal rat spinal cord have pointed to the predominant role played by the rostral lumbar area in the generation of locomotor activity. In the present study, the role of the various regions of the lumbar spinal cord in locomotor genesis was further examined using compartmentalization and transections of the cord. We report that the synaptic drive received by caudal motoneurons following N-methyl-d-l-aspartate (NMA)/5-HT superfusion on the entire lumbar cord is different from that triggered by the same compounds specifically applied on the rostral segments. These differences appear to be due to the direct action of NMA/5-HT on motoneuron membrane potential, rather than on premotoneuronal input activation. In order to assess the possible participation of the caudal lumbar segments in locomotor rhythm generation, the segments were over-stimulated with high concentrations of NMA or K+. We find that significant variations in motor cycle period occurred during the over-activation of the rostral segments. Over-activation of caudal segments only si+gnificantly increased the caudal ventral roots burst amplitude. We find that low 5-HT concentrations were unable to induce fictive locomotion under our experimental conditions. When a hemi-transection of the cord was performed between the L2-L3 segments, rhythmic bursting in the ipsilateral L5 disappeared while rhythmicity persisted on the contralateral side. Sectioning of the remaining L2-L3 side totally suppressed rhythmic activity in both L5 ventral roots. These results show that the thoracolumbar part of the cord constitutes the key area for locomotor pattern generation.
Enríquez-Denton, M; Nielsen, J; Perreault, M-C; Morita, H; Petersen, N; Hultborn, H
2000-01-01
In cat lumbar motoneurones, disynaptic inhibitory postsynaptic potentials (IPSPs) evoked by stimulation of antagonist motor nerves were depressed for at least 150 ms following conditioning stimulation of flexor (1.7-2 times threshold (T)) and ankle extensor (5T) nerves. The aim of the present study was to investigate the possibility that this depression is caused by presynaptic inhibitory mechanisms acting at the terminals of group I afferent fibres projecting to the Ia inhibitory interneurones and/or the terminals of these interneurones to the target motoneurones. Conditioning stimulation of flexor, but not ankle extensor, nerves evoked a depression of the monosynaptic Ia excitatory postsynaptic potentials (EPSPs) recorded intracellularly in Ia inhibitory interneurones. This depression lasted between 200 and 700 ms and was not accompanied by a depression of the monosynaptic EPSPs evoked by stimulation of descending pathways. These results suggest that flexor, but not ankle extensor, group I afferent fibres can modulate sensory transmission at the synapse between Ia afferent fibres and Ia inhibitory interneurones. Conditioning stimulation of flexor muscle nerves, extensor muscle nerves and cutaneous nerves produced a long-lasting increase in excitability of the terminals of the Ia inhibitory interneurones. The increase in the excitability of the terminals was not secondary to an electrotonic spread of synaptic excitation at the soma. Indeed, concomitant with the excitability increase of the terminals there were signs of synaptic inhibition in the soma. The unitary IPSPs induced in target motoneurones following the spike activity of single Ia inhibitory interneurones were depressed by conditioning stimulation of muscle and cutaneous nerves. Since the conditioning stimulation also evoked compound IPSPs in those motoneurones, a firm conclusion as to whether unitary IPSP depression involved presynaptic inhibitory mechanism of the terminals of the interneurones could not be reached. The possibility that the changes in excitability of the Ia interneuronal terminals reflect the presence of a presynaptic inhibitory mechanism similar to that operating at the terminals of the afferent fibres (presynaptic inhibition) is discussed.1. In cat lumbar motoneurones, disynaptic inhibitory postsynaptic potentials (IPSPs) evoked by stimulation of antagonist motor nerves were depressed for at least 150 ms following conditioning stimulation of flexor (1.7-2 times threshold (T)) and ankle extensor (5T) nerves. The aim of the present study was to investigate the possibility that this depression is caused by presynaptic inhibitory mechanisms acting at the terminals of group I afferent fibres projecting to the Ia inhibitory interneurones and/or the terminals of these interneurones to the target motoneurones. PMID:10922013
Imai, S; Konttinen, Y T; Tokunaga, Y; Maeda, T; Hukuda, S; Santavirta, S
1997-09-01
The present study investigated ultrastructural characteristics of calcitonin gene-related peptide-immunoreactive nerve fibers in the posterior longitudinal ligament of the rat lumbar spine. To provide a morphologic basis for assessment of the afferent and, in particular, efferent functions of calcitonin gene-related peptide immunoreactive nerves in the posterior longitudinal ligament and their eventual role in degenerative spondylarthropathies and low back pain. Previous studies using light-microscopic localization of sensory neuronal markers such as calcitonin gene-related peptide have reported the presence of sensory fibers in the supporting structures of the vertebral column. Meanwhile, accumulating research data have suggested efferent properties for calcitonin gene-related peptide, i.e., a trophic action that alters the intrinsic properties of target cells not through transient action of synaptic transmission, but through long-lasting signal transmission by the secreted neuropeptides. To verify such trophic, paracrine actions of the calcitonin gene-related peptide-containing fibers in the posterior longitudinal ligament, however, ultrastructural details of the terminals and their spatial relationship to their eventual target structures have to be elucidated. Rat posterior longitudinal ligaments were stained immunohistochemically for calcitonin gene-related peptide. Light-microscopic analysis of the semithin sections facilitated subsequent electron microscopy of specific sites of the posterior longitudinal ligament to determine ultrastructural details and nerve fiber-target relationships. The rat lumbar posterior longitudinal ligament was found to be innervated by two distinctive calcitonin gene-related peptide immunoreactive nerve networks. In immunoelectronmicroscopy, the fibers of the deep network had numerous free nerve endings, whereas those of the superficial network showed spatial associations with other non-calcitonin gene-related peptide immunoreactive components of the network. In both systems, naked axons not covered by the Schwann cells made close spatial contact with smooth muscle cells: of blood vessels and resident posterior longitudinal ligament fibroblasts. The ultrastructural characteristics of the innervation of the rat posterior longitudinal ligament would be compatible not only with a nociceptive function, but also with neuromodulatory, vasoregulatory, and trophic functions, as has already been established in some visceral organs.
Laedermann, Cédric J; Pertin, Marie; Suter, Marc R; Decosterd, Isabelle
2014-03-11
Dysregulation of voltage-gated sodium channels (Na(v)s) is believed to play a major role in nerve fiber hyperexcitability associated with neuropathic pain. A complete transcriptional characterization of the different isoforms of Na(v)s under normal and pathological conditions had never been performed on mice, despite their widespread use in pain research. Na(v)s mRNA levels in mouse dorsal root ganglia (DRG) were studied in the spared nerve injury (SNI) and spinal nerve ligation (SNL) models of neuropathic pain. In the SNI model, injured and non-injured neurons were intermingled in lumbar DRG, which were pooled to increase the tissue available for experiments. A strong downregulation was observed for every Na(v)s isoform expressed except for Na(v)1.2; even Na(v)1.3, known to be upregulated in rat neuropathic pain models, was lower in the SNI mouse model. This suggests differences between these two species. In the SNL model, where the cell bodies of injured and non-injured fibers are anatomically separated between different DRG, most Na(v)s were observed to be downregulated in the L5 DRG receiving axotomized fibers. Transcription was then investigated independently in the L3, L4 and L5 DRG in the SNI model, and an important downregulation of many Na(v)s isoforms was observed in the L3 DRG, suggesting the presence of numerous injured neurons there after SNI. Consequently, the proportion of axotomized neurons in the L3, L4 and L5 DRG after SNI was characterized by studying the expression of activating transcription factor 3 (ATF3). Using this marker of nerve injury confirmed that most injured fibers find their cell bodies in the L3 and L4 DRG after SNI in C57BL/6 J mice; this contrasts with their L4 and L5 DRG localization in rats. The spared sural nerve, through which pain hypersensitivity is measured in behavioral studies, mostly projects into the L4 and L5 DRG. The complex regulation of Na(v)s, together with the anatomical rostral shift of the DRG harboring injured fibers in C57BL/6 J mice, emphasize that caution is necessary and preliminary anatomical experiments should be carried out for gene and protein expression studies after SNI in mouse strains.
2014-01-01
Background Dysregulation of voltage-gated sodium channels (Navs) is believed to play a major role in nerve fiber hyperexcitability associated with neuropathic pain. A complete transcriptional characterization of the different isoforms of Navs under normal and pathological conditions had never been performed on mice, despite their widespread use in pain research. Navs mRNA levels in mouse dorsal root ganglia (DRG) were studied in the spared nerve injury (SNI) and spinal nerve ligation (SNL) models of neuropathic pain. In the SNI model, injured and non-injured neurons were intermingled in lumbar DRG, which were pooled to increase the tissue available for experiments. Results A strong downregulation was observed for every Navs isoform expressed except for Nav1.2; even Nav1.3, known to be upregulated in rat neuropathic pain models, was lower in the SNI mouse model. This suggests differences between these two species. In the SNL model, where the cell bodies of injured and non-injured fibers are anatomically separated between different DRG, most Navs were observed to be downregulated in the L5 DRG receiving axotomized fibers. Transcription was then investigated independently in the L3, L4 and L5 DRG in the SNI model, and an important downregulation of many Navs isoforms was observed in the L3 DRG, suggesting the presence of numerous injured neurons there after SNI. Consequently, the proportion of axotomized neurons in the L3, L4 and L5 DRG after SNI was characterized by studying the expression of activating transcription factor 3 (ATF3). Using this marker of nerve injury confirmed that most injured fibers find their cell bodies in the L3 and L4 DRG after SNI in C57BL/6 J mice; this contrasts with their L4 and L5 DRG localization in rats. The spared sural nerve, through which pain hypersensitivity is measured in behavioral studies, mostly projects into the L4 and L5 DRG. Conclusions The complex regulation of Navs, together with the anatomical rostral shift of the DRG harboring injured fibers in C57BL/6 J mice, emphasize that caution is necessary and preliminary anatomical experiments should be carried out for gene and protein expression studies after SNI in mouse strains. PMID:24618114
[Herpes zoster of the trigeminal nerve: a case report and review of the literature].
Carbone, V; Leonardi, A; Pavese, M; Raviola, E; Giordano, M
2004-01-01
Herpes zoster (shingles) is caused when the varicella zoster virus that has remained latent since an earlier varicella infection (chicken-pox) is reactivated. Herpes Zoster is a less common and endemic disease than varicella: factors causing reactivation are still not well known, but it occurs in older and/or immunocompromised individuals. Following reactivation, centrifugal migration of herpes zoster virus (HZV) occurs along sensory nerves to produce a characteristic painful cutaneous or mucocutaneous vesicular eruption that is generally limited to the single affected dermatome. Herpes zoster may affect any sensory ganglia and its cutaneous nerve: the most common sites affected are thoracic dermatomes (56%), followed by cranial nerves (13%) and lumbar (13%), cervical (11%) and sacral nerves (4%). Among cranial nerves, the trigeminal and facial nerves are the most affected due to reactivation of HZV latent in gasserian and geniculated ganglia. The 1st division of the trigeminal nerve is commonly affected, whereas the 2nd and the 3rd are rarely involved. During the prodromal stage, the only presenting symptom may be odontalgia, which may prove to be a diagnostic challenge for the dentist, since many diseases can cause orofacial pain, and the diagnosis must be established before final treatment. A literature review of herpes zoster of the trigeminal nerve is presented and the clinical presentation, differential diagnosis and treatment modalities are underlined. A case report is presented.
Management of major vascular injury during pedicle screw instrumentation of thoracolumbar spine.
Mirza, Aleem K; Alvi, Mohammed Ali; Naylor, Ryan M; Kerezoudis, Panagiotis; Krauss, William E; Clarke, Michelle J; Shepherd, Daniel L; Nassr, Ahmad; DeMartino, Randall R; Bydon, Mohamad
2017-12-01
Vascular injury is a rare complication of spinal instrumentation. Presentation can vary from immediate hemorrhage to pseudoaneurysm formation. In the literature, surgical approach to repair has varied based on anatomy, acuity of diagnosis, infection, and available technology. In this manuscript, we aim to describe our institutional experience with vascular injuries in thoraco-lumbar spine surgery. We report our institutional experience of three cases of vascular injury secondary to pedicle screw misplacement and their management, as well as a review of the literature. The first case had a history of previous instrumentation and presented with back pain and fever. The patient was taken for instrumentation exploration via a posterior approach. Aortic violation was discovered at T6 intraoperatively during instrumentation removal and the patient underwent emergent endovascular repair. The second case presented with chronic back pain after multiple prior posterior fusions and CT angiogram showing screw perforation on the aorta at T10. The patient underwent elective endovascular repair with synchronous removal of the instrumentation. The third case presented with radicular leg pain 6 months after L4-S1 posterior lumbar interbody fusion, with CT scan demonstrating the left S1 screw abutting the L5 nerve root and common iliac vein. The patient underwent elective instrumentation revision with intraoperative venography. Major vascular injury is a known complication of spinal surgery, especially if it involves instrumentation with pedicle screws. Treatment approach has evolved with the advancement of endovascular technology; however, open surgery remains an option when anatomy or infection is prohibitive. In the elective setting, preoperative planning with attention to surgical approach, positioning, and contingencies, should occur in a multidisciplinary fashion. Repair with an aortic stent-graft cuff may minimize unnecessary coverage of the descending thoracic aorta and intercostal arteries. Copyright © 2017 Elsevier B.V. All rights reserved.
Experimental Mouse Model of Lumbar Ligamentum Flavum Hypertrophy.
Saito, Takeyuki; Yokota, Kazuya; Kobayakawa, Kazu; Hara, Masamitsu; Kubota, Kensuke; Harimaya, Katsumi; Kawaguchi, Kenichi; Hayashida, Mitsumasa; Matsumoto, Yoshihiro; Doi, Toshio; Shiba, Keiichiro; Nakashima, Yasuharu; Okada, Seiji
2017-01-01
Lumbar spinal canal stenosis (LSCS) is one of the most common spinal disorders in elderly people, with the number of LSCS patients increasing due to the aging of the population. The ligamentum flavum (LF) is a spinal ligament located in the interior of the vertebral canal, and hypertrophy of the LF, which causes the direct compression of the nerve roots and/or cauda equine, is a major cause of LSCS. Although there have been previous studies on LF hypertrophy, its pathomechanism remains unclear. The purpose of this study is to establish a relevant mouse model of LF hypertrophy and to examine disease-related factors. First, we focused on mechanical stress and developed a loading device for applying consecutive mechanical flexion-extension stress to the mouse LF. After 12 weeks of mechanical stress loading, we found that the LF thickness in the stress group was significantly increased in comparison to the control group. In addition, there were significant increases in the area of collagen fibers, the number of LF cells, and the gene expression of several fibrosis-related factors. However, in this mecnanical stress model, there was no macrophage infiltration, angiogenesis, or increase in the expression of transforming growth factor-β1 (TGF-β1), which are characteristic features of LF hypertrophy in LSCS patients. We therefore examined the influence of infiltrating macrophages on LF hypertrophy. After inducing macrophage infiltration by micro-injury to the mouse LF, we found excessive collagen synthesis in the injured site with the increased TGF-β1 expression at 2 weeks after injury, and further confirmed LF hypertrophy at 6 weeks after injury. Our findings demonstrate that mechanical stress is a causative factor for LF hypertrophy and strongly suggest the importance of macrophage infiltration in the progression of LF hypertrophy via the stimulation of collagen production.
Case presentation and short perspective on management of foraminal/far lateral discs and stenosis.
Epstein, Nancy E
2018-01-01
The management of lumbar foraminal/far lateral discs (FOR/FLD) with stenosis remains controversial. Operative choices should be based on each patient's preoperative dynamic X-ray findings, magnetic resonance (MR), and computed tomography (CT) studies. Here we reviewed several options for decompression alone vs. decompression with fusion. Safe excision of FOR/FLD with stenosis should begin at the level above the disc herniation, as identification of the superior, foraminally, and far laterally exiting nerve root is critical. Performing an undercutting laminectomy and utilizing an operating microscope usually preserves the facet joints, and in many cases, avoids the need for fusion. Other decompressive techniques include; the intertransverse (ITT), and Wiltse approaches. Fusions following complete unilateral full facetectomy may be; noninstrumented (e.g., older, osteoporotic patients) vs. instrumented (e.g., posterolateral fusion or occasionally transforaminal lumbar interbody fusion). Here we present a patient with L2-L5 stenosis, and a left L3-L4 FOR/FLD, and multiple synovial cysts who was successfully managed with an l2-L5 laminecotmy, left L34 FOR/FLD diksectomy without fusion. Postoperatively, the patient was neurologically intact, and stability was maintained. Adjunctive measures for FOR/FLD diksectomy should include; intraoperative monitoring, use of the operating microscope, and an intraoperative film with a radiopaque marker in the correct disc space to confirm the correct level of diskectomy. There are multiple approaches to the excision of FOR/FLD with stenosis. These include; decompression alone vs. decompression with non-instrumented vs. instrumented fusion. Surgical choices must be based on individual patient's X-ray, MR, and CT findings. The aim should be to maximize the safety of disc excision with decompression of stenosis, and to preserve stability, reducing the need for fusion, while minimizing morbidity.
Meléndez-Gallardo, J; Eblen-Zajjur, A
2016-09-01
Most of the endogenous pain modulation (EPM) involves the spinal dorsal horn (SDH). EPM including diffuse noxious inhibitory controls have been extensively described in oligoneuronal electrophysiological recordings but less attention had been paid to responses of the SDH neuronal population to heterotopic noxious stimulation (HNS). Spinal somatosensory-evoked potentials (SEP) offer the possibility to evaluate the neuronal network behavior, reflecting the incoming afferent volleys along the entry root, SDH interneuron activities and the primary afferent depolarization. SEP from de lumbar cord dorsum were evaluated during mechanical heterotopic noxious stimuli. Sprague-Dawley rats (n = 12) were Laminectomized (T10-L3). The sural nerve of the left hind paw was electrically stimulated (5 mA, 0.5 ms, 0.05 Hz) to induce lumbar SEP. The HNS (mechanic clamp) was applied sequentially to the tail, right hind paw, right forepaw, muzzle and left forepaw during sural stimulation. N wave amplitude decreases (-16.6 %) compared to control conditions when HNS was applied to all areas of stimulation. This effect was more intense for muzzle stimulation (-23.5 %). N wave duration also decreased by -23.6 %. HNS did not change neither the amplitude nor the duration of the P wave but dramatically increases the dispersion of these two parameters. The results of the present study strongly suggest that a HNS applied to different parts of the body is able to reduce the integrated electrical response of the SDH, suggesting that not only wide dynamic range neurons but many others in the SDH are modulated by the EPM.
Muscle spindle alterations precede onset of sensorimotor deficits in Charcot-Marie-Tooth type 2E.
Villalón, E; Jones, M R; Sibigtroth, C; Zino, S J; Dale, J M; Landayan, D S; Shen, H; Cornelison, D D W; Garcia, M L
2017-02-01
Charcot-Marie-Tooth (CMT) is the most common inherited peripheral neuropathy, affecting approximately 2.8 million people. The CMT leads to distal neuropathy that is characterized by reduced motor nerve conduction velocity, ataxia, muscle atrophy and sensory loss. We generated a mouse model of CMT type 2E (CMT2E) expressing human neurofilament light E396K (hNF-L E396K ), which develops decreased motor nerve conduction velocity, ataxia and muscle atrophy by 4 months of age. Symptomatic hNF-L E396K mice developed phenotypes that were consistent with proprioceptive sensory defects as well as reduced sensitivity to mechanical stimulation, while thermal sensitivity and auditory brainstem responses were unaltered. Progression from presymptomatic to symptomatic included a 50% loss of large diameter sensory axons within the fifth lumbar dorsal root of hNF-L E396K mice. Owing to proprioceptive deficits and loss of large diameter sensory axons, we analyzed muscle spindle morphology in presymptomatic and symptomatic hNF-L E396K and hNF-L control mice. Muscle spindle cross-sectional area and volume were reduced in all hNF-L E396K mice analyzed, suggesting that alterations in muscle spindle morphology occurred prior to the onset of typical CMT pathology. These data suggested that CMT2E pathology initiated in the muscle spindles altering the proprioceptive sensory system. Early sensory pathology in CMT2E could provide a unifying hypothesis for the convergence of pathology observed in CMT. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Brumovsky, Pablo R.; Robinson, David R.; La, Jun-Ho; Seroogy, Kim B.; Lundgren, Kerstin H.; Albers, Kathryn M.; Kiyatkin, Michael E.; Seal, Rebecca P.; Edwards, Robert H.; Watanabe, Masahiko; Hökfelt, Tomas; Gebhart, G.F.
2013-01-01
Vesicular glutamate transporters (VGLUTs) have been extensively studied in various neuronal systems, but their expression in visceral sensory and autonomic neurons remains to be analyzed in detail. Here we studied VGLUTs type 1 and 2 (VGLUT1 and VGLUT2, respectively) in neurons innervating the mouse colorectum. Lumbosacral and thoracolumbar dorsal root ganglion (DRG), lumbar sympathetic chain (LSC), and major pelvic ganglion (MPG) neurons innervating the colorectum of BALB/C mice were retrogradely traced with Fast Blue, dissected, and processed for immunohistochemistry. Tissue from additional naïve mice was included. Previously characterized antibodies against VGLUT1, VGLUT2, and calcitonin gene-related peptide (CGRP) were used. Riboprobe in situ hybridization, using probes against VGLUT1 and VGLUT2, was also performed. Most colorectal DRG neurons expressed VGLUT2 and often colocalized with CGRP. A smaller percentage of neurons expressed VGLUT1. VGLUT2-immunoreactive (IR) neurons in the MPG were rare. Abundant VGLUT2-IR nerves were detected in all layers of the colorectum; VGLUT1-IR nerves were sparse. A subpopulation of myenteric plexus neurons expressed VGLUT2 protein and mRNA, but VGLUT1 mRNA was undetectable. In conclusion, we show 1) that most colorectal DRG neurons express VGLUT2, and to a lesser extent, VGLUT1; 2) abundance of VGLUT2-IR fibers innervating colorectum; and 3) a subpopulation of myenteric plexus neurons expressing VGLUT2. Altogether, our data suggests a role for VGLUT2 in colorectal glutamatergic neurotransmission, potentially influencing colorectal sensitivity and motility. PMID:21800314
Right-sided vagus nerve stimulation inhibits induced spinal cord seizures.
Tubbs, R Shane; Salter, E George; Killingsworth, Cheryl; Rollins, Dennis L; Smith, William M; Ideker, Raymond E; Wellons, John C; Blount, Jeffrey P; Oakes, W Jerry
2007-01-01
We have previously shown that left-sided vagus nerve stimulation results in cessation of induced spinal cord seizures. To test our hypothesis that right-sided vagus nerve stimulation will also abort seizure activity, we have initiated seizures in the spinal cord and then performed right-sided vagus nerve stimulation in an animal model. Four pigs were anesthetized and placed in the lateral position and a small laminectomy performed in the lumbar region. Topical penicillin, a known epileptogenic drug to the cerebral cortex and spinal cord, was next applied to the dorsal surface of the exposed cord. With the exception of the control animal, once seizure activity was discernible via motor convulsion or increased electrical activity, the right vagus nerve previously isolated in the neck was stimulated. Following multiple stimulations of the vagus nerve and with seizure activity confirmed, the cord was transected in the midthoracic region and vagus nerve stimulation performed. Right-sided vagus nerve stimulation resulted in cessation of spinal cord seizure activity in all animals. Transection of the spinal cord superior to the site of seizure induction resulted in the ineffectiveness of vagus nerve stimulation in causing cessation of seizure activity in all study animals. As with left-sided vagus nerve stimulation, right-sided vagus nerve stimulation results in cessation of induced spinal cord seizures. Additionally, the effects of right-sided vagus nerve stimulation on induced spinal cord seizures involve descending spinal pathways. These data may aid in the development of alternative mechanisms for electrical stimulation for patients with medically intractable seizures and add to our knowledge regarding the mechanism for seizure cessation following peripheral nerve stimulation.
Dragovich, Anthony; Trainer, Robert J
2011-04-01
To provide the advanced interventional procedure of zygapophysial joint neurotomy to soldiers meeting the diagnostic criteria in a combat environment and thus reduce medical evacuations of soldiers from a theater of war. Retrospective chart review was performed on three consecutive soldiers who received neuroablation of the lumbar ZP joint. Patients received single MBB with 1 cc of 1% lidocaine at the b/l L3-L5 levels considered diagnostic if >50% analgesia was achieved concordant with duration of anesthetic. All procedures were co-performed by the two authors at the Ibn Sina hospital in Baghdad, Iraq over a 3-month period. Three consecutive patients with >50% pain relief from diagnostic medial branch blocks were treated with radiofrequency ablation of the bilateral L3-L4 medial branch nerves and L5 posterior primary ramus. Sensory test stimulation at 50 Hz and motor stimulation at 2 Hz were performed at each level. The nerves were then lesioned at 80° Centigrade for 90 seconds after injection of lidocaine and methylprednisolone. Procedure was considered successful if patients were able to wear body armour without significant discomfort (at least 1 hour/day). Medical evacuation from Iraq was prevented and all soldiers returned to rigorous combat duties including the wearing of body armour daily. We believe to be the first to report on the use of RF nerve ablation in a war time setting and with this functional outcome. Wiley Periodicals, Inc.
Patterning of sympathetic nerve activity in response to vestibular stimulation
NASA Technical Reports Server (NTRS)
Kerman, I. A.; McAllen, R. M.; Yates, B. J.
2000-01-01
Growing evidence suggests a role for the vestibular system in regulation of autonomic outflow during postural adjustments. In the present paper we review evidence for the patterning of sympathetic nerve activity elicited by vestibular stimulation. In response to electrical activation of vestibular afferents, firing of sympathetic nerves located throughout the body is altered. However, activity of the renal nerve is most sensitive to vestibular inputs. In contrast, high-intensity simultaneous activation of cutaneous and muscle inputs elicits equivalent changes in firing of the renal, superior mesenteric and lumbar colonic nerves. Responses of muscle vasoconstrictor (MVC) efferents to vestibular stimulation are either inhibitory (Type I) or are comprised of a combination of excitation and inhibition (Type II). Interestingly, single MVC units located in the hindlimb exhibited predominantly Type I responses while those located in the forelimb and face exhibited Type II responses. Furthermore, brachial and femoral arterial blood flows were dissociated in response to vestibular stimulation, such that brachial vascular resistance increased while femoral resistance decreased. These studies demonstrate that vestibulosympathetic reflexes are patterned according to both the anatomical location and innervation target of a particular sympathetic nerve, and can lead to distinct changes in local blood flow.
Mechanisms of spinal motoneurons survival in rats under simulated hypogravity on earth
NASA Astrophysics Data System (ADS)
Islamov, R. R.; Mishagina, E. A.; Tyapkina, O. V.; Shajmardanova, G. F.; Eremeev, A. A.; Kozlovskaya, I. B.; Nikolskij, E. E.; Grigorjev, A. I.
2011-05-01
It was previously shown that different cell types in vivo and in vitro may die via apoptosis under weightlessness conditions in space as well as in simulated hypogravity on the Earth. We assessed survivability of spinal motoneurons of rats after 35-day antiorthostatic hind limb suspension. Following weight bearing, unloading the total protein content in lumbar spinal cord is dropped by 21%. The electrophysiological studies of m. gastrocnemius revealed an elevated motoneurons' reflex excitability and conduction disturbances in the sciatic nerve axons. The number of myelinated fibers in the ventral root of experimental animals was insignificantly increased by 35-day of antiorthostatic hind limb suspension, although the retrograde axonal transport was significantly decreased during the first week of simulated hypogravity. The results of the immunohistochemical assay with antibodies against proapoptotic protein caspase 9 and cytotoxicity marker neuron specific nitric oxide synthase (nNOS) and the TUNEL staining did not reveal any signs of apoptosis in motoneurons of suspended and control animals. To examine the possible adaptation mechanisms activated in motoneurons in response to simulated hypogravity we investigated immunoexpression of Hsp25 and Hsp70 in lumbar spinal cord of the rats after 35-day antiorthostatic hind limb suspension. Comparative analysis of the immunohistochemical reaction with anti-Hsp25 antibodies revealed differential staining of motoneurons in intact and experimental animals. The density of immunoprecipitate with anti-Hsp25 antibodies was substantially higher in motoneurons of the 35-day suspended than control rats and the more intensive precipitate in this reaction was observed in motoneuron neuritis. Quantitative analysis of Hsp25 expression demonstrated an increase in the Hsp25 level by 95% in experimental rats compared to the control. The immunoexpression of Hsp70 found no qualitative and quantitative differences in control and experimental lumbar spinal cords. Taken together our results show that (1) rat motoneurons survived after 35-day antiorthostatic hind limb suspension and the changes in neurons had a mostly functional character, and (2) the increased immunoexpression of Hsp25 can be considered as the anti-apoptotic factor.
Manni, E; Bortolami, R; Pettorossi, V E; Lucchi, M L; Callegari, E
1978-01-01
The main aim of the present study was to localize with electrophysiological techniques the central projections and terminations of the aberrant trigeminal fibres contained in the oculomotor nerve of the lamb. After severing a trigeminal root, single-shock electrical stimulation of the trigeminal axons present in the central stump of the ipsilateral oculomotor nerve evoked field potentials in the area of, i) the subnucleus gelatinosus of the nucleus caudalis trigemini at the level of C1-C2; ii) the main sensory trigeminal nucleus; iii) the descending trigeminal nucleus and tract; iv) the adjacent reticular formation. Units whose discharge rate was influenced by such a stimulation were also found in the same territories. These regions actually exhibited degenerations after cutting an oculomotor nerve. We conclude, therefore, that the trigeminal fibres which leave the Vth nerve at the level of the cavernous sinus and enter the brain stem through the IIIrd nerve, end in the same structures which receive the terminations of the afferent fibres entering the brain stem through the sensory trigeminal root.
Sonographic evaluation of peripheral nerves in subtypes of Guillain-Barré syndrome.
Mori, Atsuko; Nodera, Hiroyuki; Takamatsu, Naoko; Maruyama-Saladini, Keiko; Osaki, Yusuke; Shimatani, Yoshimitsu; Kaji, Ryuji
2016-05-15
Sonography of peripheral nerves can depict alteration of nerve sizes that could reflect inflammation and edema in inflammatory and demyelinating neuropathies. Guillain-Barré syndrome (GBS). Information on sonographic comparison of an axonal subtype (acute motor [and sensory] axonal neuropathy [AMAN and AMSAN]) and a demyelinating subtype (acute inflammatory demyelinating polyneuropathy [AIDP]) has been sparse. Sonography of peripheral nerves and cervical nerve roots were prospectively recorded in patients with GBS who were within three weeks of disease onset. Five patients with AIDP and nine with AMAN (n=6)/AMSAN (n=3) were enrolled. The patients with AIDP showed evidence of greater degrees of demyelination (e.g., slower conduction velocities and increased distal latencies) than those with AMAN/AMSAN. The patients with AIDP tended to show enlarged nerves in the proximal segments and in the cervical roots, whereas the patients with AMAN/AMSAN had greater enlargement in the distal neve segment, especially in the median nerve (P = 0.03; Wrist-axilla cross-sectional ratio). In this small study, two subtypes of GBS showed different patterns of involvement that might reflect different pathomechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.
Suga, Kazuyoshi; Yasuhiko, Kawakami; Matsunaga, Naofumi; Yujiri, Toshiaki; Nakazora, Tatsuki; Ariyoshi, Kouichi
2011-01-01
Neurolymphomatosis (NL) is a rare, unique subtype of lymphomatous infiltration of peripheral nerves. Clinical/radiologic diagnosis of NL is challenging. We report F-18 FDG PET/CT findings of a case of breast diffuse large B-cell lymphoma, in which NL developed regardless of regression of systemic lesions during induction chemotherapy. FDG PET/CT showed characteristic findings of well-demarcated, linear abnormal FDG uptake along a sacral vertebral foramen, leading to diagnosis of NL, with the finding of thickened nerve roots on magnetic resonance imaging. Altered chemotherapeutic regimen resulted in disappearance of these abnormal FDG uptake, with recovery of neurologic symptoms. Peripheral nerve NL may occur during chemotherapy, and FDG PET/CT can be a useful imaging modality in diagnosis and monitoring of therapeutic response of this disease.
Sugimoto, Takamichi; Ochi, Kazuhide; Hosomi, Naohisa; Takahashi, Tetsuya; Ueno, Hiroki; Nakamura, Takeshi; Nagano, Yoshito; Maruyama, Hirofumi; Kohriyama, Tatsuo; Matsumoto, Masayasu
2013-10-01
Demyelinating Charcot-Marie-Tooth disease (CMT) and chronic inflammatory demyelinating polyneuropathy (CIDP) are both demyelinating polyneuropathies. The differences in nerve enlargement degree and pattern at multiple evaluation sites/levels are not well known. We investigated the differences in nerve enlargement degree and the distribution pattern of nerve enlargement in patients with demyelinating CMT and CIDP, and verified the appropriate combination of sites/levels to differentiate between these diseases. Ten patients (aged 23-84 years, three females) with demyelinating CMT and 16 patients (aged 30-85 years, five females) with CIDP were evaluated in this study. The nerve sizes were measured at 24 predetermined sites/levels from the median and ulnar nerves and the cervical nerve roots (CNR) using ultrasonography. The evaluation sites/levels were classified into three regions: distal, intermediate and cervical. The number of sites/levels that exhibited nerve enlargement (enlargement site number, ESN) in each region was determined from the 24 sites/levels and from the selected eight screening sites/levels, respectively. The cross-sectional areas of the peripheral nerves were markedly larger at all evaluation sites in patients with demyelinating CMT than in patients with CIDP (p < 0.01). However, the nerve sizes of CNR were not significantly different between patients with either disease. When we evaluated ESN of four selected sites for screening from the intermediate region, the sensitivity and specificity to distinguish between demyelinating CMT and CIDP were 0.90 and 0.94, respectively, with the cut-off value set at four. Nerve ultrasonography is useful to detect nerve enlargement and can clarify morphological differences in nerves between patients with demyelinating CMT and CIDP.
Effects of anodal tDCS on lumbar propriospinal system in healthy subjects.
Roche, N; Lackmy, A; Achache, V; Bussel, B; Katz, R
2012-05-01
It has recently been shown that transcranial direct current stimulation (tDCS) (1) can modify lumbar spinal network excitability and (2) decreases cervical propriospinal system excitability. Thus the purpose of this series of experiments was to determine if anodal tDCS applied over the leg motor cortex area induces changes in lumbar propriospinal system excitability. To that end, the effects of anodal tDCS and sham tDCS on group I and group II propriospinal facilitation of quadriceps motoneurones were studied in healthy subjects. Common peroneal nerve group I and group II quadriceps H-reflex facilitation was assessed in 15 healthy subjects in two randomised conditions: anodal tDCS condition and sham tDCS condition. Recordings were performed before, during and after the end of the cortical stimulation. Compared to sham, anodal tDCS decreases significantly CPN-induced group I and II quadriceps H-reflex facilitation during and also after the end of the cortical stimulation. Anodal tDCS induces (1) modulation of lumbar propriospinal system excitability (2) post-effects on spinal network. These results open a new vista to regulate propriospinal lumbar system excitability in patients and suggest that anodal tDCS would be interesting for neuro-rehabilitation of patients with central nervous system lesions. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Why do some intervertebral discs degenerate, when others (in the same spine) do not?
Adams, Michael A; Lama, Polly; Zehra, Uruj; Dolan, Patricia
2015-03-01
This review suggests why some discs degenerate rather than age normally. Intervertebral discs are avascular pads of fibrocartilage that allow movement between vertebral bodies. Human discs have a low cell density and a limited ability to adapt to mechanical demands. With increasing age, the matrix becomes yellowed, fibrous, and brittle, but if disc structure remains intact, there is little impairment in function, and minimal ingrowth of blood vessels or nerves. Approximately half of old lumbar discs degenerate in the sense of becoming physically disrupted. The posterior annulus and lower lumbar discs are most affected, presumably because they are most heavily loaded. Age and genetic inheritance can weaken discs to such an extent that they are physically disrupted during everyday activities. Damage to the endplate or annulus typically decompresses the nucleus, concentrates stress within the annulus, and allows ingrowth of nerves and blood vessels. Matrix disruption progresses by mechanical and biological means. The site of initial damage leads to two disc degeneration "phenotypes": endplate-driven degeneration is common in the upper lumbar and thoracic spine, and annulus-driven degeneration is common at L4-S1. Discogenic back pain can be initiated by tissue disruption, and amplified by inflammation and infection. Healing is possible in the outer annulus only, where cell density is highest. We conclude that some discs degenerate because they are disrupted by excessive mechanical loading. This can occur without trauma if tissues are weakened by age and genetic inheritance. Moderate mechanical loading, in contrast, strengthens all spinal tissues, including discs. © 2014 Wiley Periodicals, Inc.
Bilateral spinal anterior horn lesions in acute motor axonal neuropathy.
Sawada, Daisuke; Fujii, Katsunori; Misawa, Sonoko; Shiohama, Tadashi; Fukuhara, Tomoyuki; Fujita, Mayuko; Kuwabara, Satoshi; Shimojo, Naoki
2018-05-28
Guillain-Barré syndrome is an acute immune-mediated peripheral polyneuropathy. Neuroimaging findings from patients with this syndrome have revealed gadolinium enhancement in the cauda equina and in the anterior and posterior nerve roots, but intra-spinal lesions have never been described. Herein, we report, for the first time, bilateral spinal anterior horn lesions in a patient with an acute motor axonal neuropathy form of Guillain-Barré syndrome. The patient was a previously healthy 13-year-old Japanese girl, who exhibited acute-onset flaccid tetraplegia and loss of tendon reflexes. Nerve conduction studies revealed motor axonal damage, leading to the diagnosis of acute motor axonal neuropathy. Notably, spinal magnetic resonance imaging revealed bilateral anterior horn lesions on T2-weighted imaging at the Th11-12 levels, as well as gadolinium enhancement of the cauda equina and anterior and posterior nerve roots. The anterior horn lesions were most prominent on day 18, and their signal intensity declined thereafter. Although intravenous treatment with immunoglobulins was immediately administered, the motor function was not completely regained. We propose that anterior spinal lesions might be responsible for the prolonged neurological disability of patients with Guillain-Barré syndrome, possibly produced by retrograde progression from the affected anterior nerve roots to the intramedullary roots, and the anterior horn motor neurons. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Ngo, Trung; Decina, Philip; Hsu, William
2013-01-01
Background: Facet cysts are implicated in neural compression in the lumbar spine. Surgery is the definitive treatment for symptomatic facet cysts since the failure rate for conservative treatment is quite high; however, the role of physical/manual medicine practitioners in the management of symptomatic facet cysts has not been well explored. This case report will add to the body of evidence of spontaneous resolution of symptoms associated with facet cysts in the chiropractic literature. Case: A 58 year old female presented with acute low back and right leg pain which she attributed to a series of exercise classes that involved frequent foot stomping. Physical examination did not elicit any objective evidence of radiculopathy but MRI and CT scans revealed a facet cyst impinging on the right L5 nerve root. Injections and surgery were recommended; however, the patient’s radicular symptoms completely resolved after three months without surgical intervention. Summary: There is currently a paucity of data in the literature regarding the chiropractor’s role in the management of symptomatic facet cysts. The case presented here has added to this literature and possible areas for future research have been explored. PMID:23483069
Elserty, Noha; Kattabei, Omaima; Elhafez, Hytham
2016-07-01
This study aimed to investigate the effect of adjusting pulse amplitude of transcutaneous electrical nerve stimulation versus fixed pulse amplitude in treatment of chronic mechanical low back pain. Randomized clinical trial. El-sahel Teaching Hospital, Egypt. Forty-five patients with chronic low back pain assigned to three equal groups. Their ages ranged from 20 to 50 years. The three groups received the same exercise program. Group A received transcutaneous electrical nerve stimulation with fixed pulse amplitude for 40 minutes. Group B received transcutaneous electrical nerve stimulation with adjusted pulse amplitude for 40 minutes, with the pulse amplitude adjusted every 5 minutes. Group C received exercises only. Treatment sessions were applied three times per week for 4 weeks for the three groups. A visual analogue scale was used to assess pain severity, the Oswestry Disability Index was used to assess functional level, and a dual inclinometer was used to measure lumbar range of motion. Evaluations were performed before and after treatment. Visual analogue scale, Oswestry Disability Index, and back range of motion significantly differed between the two groups that received transcutaneous electrical nerve stimulation and the control group and did not significantly differ between fixed and adjusted pulse amplitude of transcutaneous electrical nerve stimulation. Adjusting pulse amplitude of transcutaneous electrical nerve stimulation does not produce a difference in the effect of transcutaneous electrical nerve stimulation used to treat chronic low back pain.
Posterior epidural disc fragment masquerading as spinal tumor: Review of the literature.
Park, Taejune; Lee, Ho Jun; Kim, Jae Seong; Nam, Kiyeun
2018-03-09
Posterior epidural lumbar disc fragment is infrequent because of anatomical barriers, and it is difficult to diagnose posterior epidural lumbar disc fragment because of its rare incidence and the ambiguity of radiologic evaluations. And it is difficult to differentiate it from other diseases such as spinal tumors. Differential diagnosis of posterior epidural lumbar disc fragment is clinically important because its diagnosis can affect treatment and prognosis. To investigate the incidence, anatomical concern, etiology, symptom, diagnostic tool, management and prognosis of posterior epidural lumbar disc fragment, we reviewed articles including case report. We performed a search of all clinical studies of posterior epidural lumbar disc fragment published to date. The following keywords were searched: Posterior epidural lumbar disc fragment, disc migration, posterior epidural disc, extradural migration, dorsal epidural migration, sequestrated disc, and disc fragment. We identified 40 patients of posterior epidural lumbar disc fragment from 28 studies. The most common presentation of posterior epidural lumbar disc fragment was sudden onset radiculopathy (70.0%), followed by cauda equina syndrome (27.5%). The most frequently used diagnostic modality was magnetic resonance imaging (MRI), conducted in 36 cases (90.0%), and followed by computed tomography in 14 cases (35.0%). After the imaging studies, the preoperative diagnoses were 45.0% masses, 20.0% lesions, and 12.5% tumors. Characteristic MRI findings in posterior epidural lumbar disc fragment are helpful for diagnosis; it typically displays low signals on T1-weighted images and high signals on T2-weighted images with respect to the parent disc. In addition, most of the disc fragments show peripheral rim enhancement on MRI with gadolinium administration. Electrodiagnostic testing is useful for verifying nerve damage. Surgical treatment was performed in all cases, and neurologic complications were observed in 12.5%. As posterior epidural lumbar disc fragment could be masqueraded as spinal tumor, if rim enhancement is observed in MRI scans with sudden symptoms of radiculopathy or cauda equina syndrome, it should be taken into consideration. Early diagnosis can lead to early surgery, which can reduce complications.
Geisler, Fred H; Blumenthal, Scott L; Guyer, Richard D; McAfee, Paul C; Regan, John J; Johnson, J Patrick; Mullin, Bradford
2004-09-01
Arthrodesis is the gold standard for surgical treatment of lumbar degenerative disc disease (DDD). Solid fusion, however, can cause stress and increased motion in the segments adjacent to the fused level. This may initiate and/or accelerate the adjacent-segment disease process. Artificial discs are designed to restore and maintain normal motion of the lumbar intervertebral segment. Restoring and maintaining normal motion of the segment reduces stresses and loads on adjacent level segments. A US Food and Drug Administration Investigational Device Exemptions multicentered study of the Charité artificial disc was completed. The control group consisted of individuals who underwent anterior lumbar interbody fusion involving BAK cages and iliac crest bone graft. This is the first report of Class I data in which a lumbar artificial disc is compared with lumbar fusion. Of 304 individuals enrolled in the study, 205 were randomized to the Charité disc-treated group and 99 to the BAK fusion-treated (control) group. Neurological status was equivalent between the two groups at 6, 12, and 24 months postoperatively. The number of patients with major, minor, or other neurological complications was equivalent. There was a greater incidence of both major and minor complications in the BAK fusion group at 0 to 42 days postoperatively. Compared with data reported in the lumbar fusion literature, the Charité disc-treated patients had equivalent or better mean changes in visual analog scale and Oswestry Disability Index scores. The Charité artificial disc is safe and effective for the treatment of single-level lumbar DDD, resulting in no higher incidence of neurological complications compared with BAK-assisted fusion and leading to equivalent or better outcomes compared with those obtained in the control group and those reported in the lumbar fusion literature.
Madan, S S; Boeree, N R
2003-12-01
Posterior lumbar interbody fusion (PLIF) restores disc height, the load bearing ability of anterior ligaments and muscles, root canal dimensions, and spinal balance. It immobilizes the painful degenerate spinal segment and decompresses the nerve roots. Anterior lumbar interbody fusion (ALIF) does the same, but could have complications of graft extrusion, compression and instability contributing to pseudarthrosis in the absence of instrumentation. The purpose of this study was to assess and compare the outcome of instrumented circumferential fusion through a posterior approach [PLIF and posterolateral fusion (PLF)] with instrumented ALIF using the Hartshill horseshoe cage, for comparable degrees of internal disc disruption and clinical disability. It was designed as a prospective study, comparing the outcome of two methods of instrumented interbody fusion for internal disc disruption. Between April 1994 and June 1998, the senior author (N.R.B.) performed 39 instrumented ALIF procedures and 35 instrumented circumferential fusion with PLIF procedures. The second author, an independent assessor (S.M.), performed the entire review. Preoperative radiographic assessment included plain radiographs, magnetic resonance imaging (MRI) and provocative discography in all the patients. The outcome in the two groups was compared in terms of radiological improvement and clinical improvement, measured on the basis of improvement of back pain and work capacity. Preoperatively, patients were asked to fill out a questionnaire giving their demographic details, maximum walking distance and current employment status in order to establish the comparability of the two groups. Patient assessment was with the Oswestry Disability Index, quality of life questionnaire (subjective), pain drawing, visual analogue scale, disability benefit, compensation status, and psychological profile. The results of the study showed a satisfactory outcome (score< or =30) on the subjective (quality of life questionnaire) score of 71.8% (28 patients) in the ALIF group and 74.3% (26 patients) in the PLIF group (P>0.05). On categorising Oswestry Index scores into "excellent", "better", "same", and "worse", we found no difference in outcome between the two groups: 79.5% (n=31) had satisfactory outcome with ALIF and 80% (n=28) had satisfactory outcome with PLIF. The rate of return to work was no different in the two groups. On radiological assessment, we found two nonunions in the circumferential fusion (PLIF) group (94.3% fusion rate) and indirect evidence of no nonunions in the ALIF group. There was no significant difference between the compensation rate and disability benefit rate between the two groups. There were three complications in ALIF group and four in the PLIF (circumferential) group. On the basis of these results, we conclude that it is possible to treat discogenic back pain by anterior interbody fusion with Hartshill horseshoe cage or with circumferential fusion using instrumented PLIF.
Recognizing schwannomatosis and distinguishing it from neurofibromatosis type 1 or 2.
Westhout, Franklin D; Mathews, Marlon; Paré, Laura S; Armstrong, William B; Tully, Patricia; Linskey, Mark E
2007-06-01
Schwannomatosis has become a newly recognized classification of neurofibromatosis. Although the genetic loci are on chromosome 22, it lacks the classic bilateral vestibular schwannomas as seen in NF-2. We present the surgical treatment of 4 patients with schwannomatosis, including a brother and sister. Case 1 presented with multiple progressively enlarging peripheral nerve sheath tumors. Case 4 presented with a trigeminal schwannoma and a vagal nerve schwannoma. Three of 4 patients had spinal intradural, extramedullary nerve sheath tumors. Surgery in all was multistaged and consisted of spinal laminectomies, site-specific explorations, and microsurgical tumor dissection and resection, with intraoperative neurophysiologic monitoring (including somatosensory-evoked and motor-evoked potentials, upper extremity electromyography and intraoperative nerve action potential monitoring, as appropriate). Intraoperatively the schwannomas had cystic and solid features and in all surgical cases the tumors arose from discrete fascicles of sensory nerve roots or sensory peripheral nerve branches. None of the patients experienced neurologic worsening as a result of their resections. Pathologic analysis of specimens from all cases demonstrated schwannoma. Not all patients with multiple schwannomas of cranial nerve, spinal nerve root, or peripheral nerve origin have NF-1 or NF-2. In schwannomatosis, these lesions are present in the absence of cutaneous stigmata, neurofibromas, vestibular schwannomas, or parenchymal brain tumors. Schwannomas in schwannomatosis can be large, cystic, and multiple. However, the predominant nerve involvement seems to be sensory and discrete fascicular in origin, facilitating microsurgical resection with minimal deficit.
Zoccali, Carmine; Skoch, Jesse; Patel, Apar S; Walter, Christina M; Maykowski, Philip; Baaj, Ali A
2016-12-01
Sacrectomy is a highly demanding surgery representing the main treatment for primary tumors arising in the sacrum and pelvis. Unfortunately, it is correlated with loss of important function depending on the resection level and nerve roots sacrificed. The current literature regarding residual function after sacral resection comes from several small case series. The goal of this review is to appraise residual motor function and gait, sensitivity, bladder, bowel, and sexual function after sacrectomies, with consideration to the specific roots sacrificed. An exhaustive literature search was conducted. All manuscripts published before May 2015 regarding residual function after sacrectomy were considered; if a clear correlation between root level and functioning was not present, the paper was excluded. The review identified 15 retrospective case series, totaling 244 patients; 42 patients underwent sacrectomies sparing L4/L4, L4/L5 and L5/L5; 45 sparing both L5 and one or both S1 roots; 8 sparing both S1 and one S2; 48 sparing both S2; 11 sparing both S2 and one S3, 54 sparing both S3, 9 sparing both S3 and one or both S4, and 27 underwent unilateral variable resection. Patients who underwent a sacrectomy maintained functionally normal ambulation in 56.2 % of cases when both S2 roots were spared, 94.1 % when both S3 were spared, and in 100 % of more distal resections. Normal bladder and bowel function were not present when both S2 were cut. When one S2 root was spared, normal bladder function was present in 25 % of cases; when both S2 were spared, 39.9 %; when one S3 was spared, 72.7 %; and when both S3 were spared, 83.3 %. Abnormal bowel function was present in 12.5 % of cases when both S1 and one S2 were spared; in 50.0 % of cases when both S2 were spared; and in 70 % of cases when one S3 was spared; if both S3 were spared, bowel function was normal in 94 % of cases. When even one S4 root was spared, normal bladder and bowel function were present in 100 % of cases. Unilateral sacral nerve root resection preserved normal bladder function in 75 % of cases and normal bowel function in 82.6 % of cases. Motor function depended on S1 root involvement. Total sacrectomy is associated with compromising important motor, bladder, bowel, sensitivity, and sexual function. Residual motor function is dependent on sparing L5 and S1 nerve roots. Bladder and bowel function is consistently compromised in higher sacrectomies; nevertheless, the probability of maintaining sufficient function increases progressively with the roots spared, especially when S3 nerve roots are spared. Unilateral resection is usually associated with more normal function. To the best of our knowledge, this is the first comprehensive literature review to analyze published reports of residual sacral nerve root function after sacrectomy.
NASA Technical Reports Server (NTRS)
Riley, Danny A.; Sanger, James R.; Matloub, Hani S.; Yousif, N. John; Bain, James L. W.
1988-01-01
Carbonic anhydrase (CA) and cholinesterase (CE) histochemical staining of rabbit spinal nerve roots and dorsal root ganglia demonstrated that among the reactive myeliated axons, with minor exceptions, sensory axons were CA positive and CE negative whereas motor axons were CA negative and CE positive. The high specificity was achieved by adjusting reaction conditions to stain subpopulations of myelinated axons selectively while leaving 50 percent or so unstained. Fixation with glutaraldehyde appeared necessary for achieving selectivity. Following sciatic nerve transection, the reciprocal staining pattern persisted in damaged axons and their regenerating processes which formed neuromas within the proximal nerve stump. Within the neuromas, CA-stained sensory processes were elaborated earlier and in greater numbers than CE-stained regenerating motor processes. The present results indicate that histochemical axon typing can be exploited to reveal heterogeneous responses of motor and sensory axons to injury.
Rhalmi, Souad; Charette, Sylvie; Assad, Michel; Coillard, Christine
2007-01-01
This investigation was undertaken to simulate in an animal model the particles released from a porous nitinol interbody fusion device and to evaluate its consequences on the dura mater, spinal cord and nerve roots, lymph nodes (abdominal para-aortic), and organs (kidneys, spleen, pancreas, liver, and lungs). Our objective was to evaluate the compatibility of the nitinol particles with the dura mater in comparison with titanium alloy. In spite of the great use of metallic devices in spine surgery, the proximity of the spinal cord to the devices raised concerns about the effect of the metal debris that might be released onto the neural tissue. Forty-five New Zealand white female rabbits were divided into three groups: nitinol (treated: N = 4 per implantation period), titanium (treated: N = 4 per implantation period), and sham rabbits (control: N = 1 per observation period). The nitinol and titanium alloy particles were implanted in the spinal canal on the dura mater at the lumbar level L2–L3. The rabbits were sacrificed at 1, 4, 12, 26, and 52 weeks. Histologic sections from the regional lymph nodes, organs, from remote and implantation sites, were analyzed for any abnormalities and inflammation. Regardless of the implantation time, both nitinol and titanium particles remained at the implantation site and clung to the spinal cord lining soft tissue of the dura mater. The inflammation was limited to the epidural space around the particles and then reduced from acute to mild chronic during the follow-up. The dura mater, sub-dural space, nerve roots, and the spinal cord were free of reaction. No particles or abnormalities were found either in the lymph nodes or in the organs. In contact with the dura, the nitinol elicits an inflammatory response similar to that of titanium. The tolerance of nitinol by a sensitive tissue such as the dura mater during the span of 1 year of implantation demonstrated the safety of nitinol and its potential use as an intervertebral fusion device. PMID:17334794
Suzuki, H; Yoshioka, K; Yanagisawa, M; Urayama, O; Kurihara, T; Hosoki, R; Saito, K; Otsuka, M
1994-09-01
1. The possible involvement of enzymatic degradation in the inactivation of tachykinin neurotransmitters was examined in the spinal cord of the neonatal rat. 2. The magnitude of substance P (SP)- or neurokinin A (NKA)-evoked depolarization of a lumbar ventral root in the isolated spinal cord preparation was increased by a mixture of peptidase inhibitors, consisting of actinonin (6 microM), arphamenine B (6 microM), bestatin (10 microM), captopril (10 microM) and thiorphan (0.3 microM). The mixture augmented the response to NKA more markedly than that to SP. 3. In the isolated spinal cord-cutaneous nerve preparation, the saphenous nerve-evoked slow depolarization of the L3 ventral root was augmented by the mixture of peptidase inhibitors in the presence of naloxone (0.5 microM) but not in the presence of both naloxone and a tachykinin receptor antagonist, GR71251 (5 microM). 4. Application of capsaicin (0.5 microM) for 6 min to the spinal cord evoked an increase in the release of SP from the spinal cord. The amount of SP released was significantly augmented by the mixture of peptidase inhibitors. 5. Synaptic membrane fractions were prepared from neonatal rat spinal cords. These fractions showed degrading activities for SP and NKA and the activities were inhibited by the mixture of peptidase inhibitors. The degrading activity for NKA was higher than that for SP and the inhibitory effect of the mixture for NKA was more marked than that for SP. Although some other fractions obtained from homogenates of spinal cords showed higher degrading activities for SP, these activities were insensitive to the mixture of peptidase inhibitors. 6. Effects of individual peptidase inhibitors on the enzymatic degradation of SP and NKA by synaptic membrane fractions were examined. Thiorphan, actinonin and captopril inhibited SP degradation, while thiorphan and actinonin, but not captopril, inhibited NKA degradation. The potency of the inhibition of each peptidase inhibitor was lower than that of the mixture.7. The present results suggest that enzymatic degradation is involved in the inactivation of tachykinin neurotransmitters in the spinal cord of the neonatal rat.
NASA Astrophysics Data System (ADS)
Fisher, Lee E.; Ayers, Christopher A.; Ciollaro, Mattia; Ventura, Valérie; Weber, Douglas J.; Gaunt, Robert A.
2014-06-01
Objective. This study describes results of primary afferent neural microstimulation experiments using microelectrode arrays implanted chronically in the lumbar dorsal root ganglia (DRG) of four cats. The goal was to test the stability and selectivity of these microelectrode arrays as a potential interface for restoration of somatosensory feedback after damage to the nervous system such as amputation. Approach. A five-contact nerve-cuff electrode implanted on the sciatic nerve was used to record the antidromic compound action potential response to DRG microstimulation (2-15 µA biphasic pulses, 200 µs cathodal pulse width), and the threshold for eliciting a response was tracked over time. Recorded responses were segregated based on conduction velocity to determine thresholds for recruiting Group I and Group II/Aβ primary afferent fibers. Main results. Thresholds were initially low (5.1 ± 2.3 µA for Group I and 6.3 ± 2.0 µA for Group II/Aβ) and increased over time. Additionally the number of electrodes with thresholds less than or equal to 15 µA decreased over time. Approximately 12% of tested electrodes continued to elicit responses at 15 µA up to 26 weeks after implantation. Higher stimulation intensities (up to 30 µA) were tested in one cat at 23 weeks post-implantation yielding responses on over 20 additional electrodes. Within the first six weeks after implantation, approximately equal numbers of electrodes elicited only Group I or Group II/Aβ responses at threshold, but the relative proportion of Group II/Aβ responses decreased over time. Significance. These results suggest that it is possible to activate Group I or Group II/Aβ primary afferent fibers in isolation with penetrating microelectrode arrays implanted in the DRG, and that those responses can be elicited up to 26 weeks after implantation, although it may be difficult to achieve a consistent response day-to-day with currently available electrode technology. The DRG are compelling targets for sensory neuroprostheses with potential to achieve recruitment of a range of sensory fiber types over multiple months after implantation.
Bush, M S; Reid, A R; Allt, G
1991-09-01
Previous investigations of the blood-nerve barrier have correlated the greater permeability of ganglionic endoneurial vessels, compared to those of nerve trunks, with the presence of fenestrations and open intercellular junctions. Recent studies have demonstrated reduced endothelial cell surface charge in blood vessels showing greater permeability. To determine the distribution of anionic sites on the plasma membranes and basal laminae of endothelial cells in dorsal root ganglia, cationic colloidal gold and cationic ferritin were used. Electron microscopy revealed the existence of endothelial microdomains with differing labelling densities. Labelling indicated that caveolar and fenestral diaphragms and basal laminae are highly anionic at physiological pH, luminal plasma membranes and endothelial processes are moderately charged and abluminal plasma membranes are weakly anionic. Tracers did not occur in caveolae or cytoplasmic vesicles. In vitro tracer experiments at pH values of 7.3, 5.0, 3.5 and 2.0 indicated that the anionic charge on the various endothelial domains was contributed by chemical groups with differing pKa values. In summary, the labelling of ganglionic and sciatic nerve vessels was similar except for the heavy labelling of diaphragms in a minority of endoneurial vessels in ganglia. This difference is likely to account in part for the greater permeability of ganglionic endoneurial vessels. The results are discussed with regard to the blood-nerve and -brain barriers and vascular permeability in other tissues and a comparison made between the ultrastructure and anionic microdomains of epi-, peri- and endoneurial vessels of dorsal root ganglia and sciatic nerves.
Moreno-Vicente, Javier; Schiavone-Mussano, Rocío; Clemente-Salas, Enrique; Marí-Roig, Antoni; Jané-Salas, Enric
2015-01-01
Background Coronectomy is the surgical removal of the crown of the tooth deliberately leaving part of its roots. This is done with the hope of eliminating the pathology caused, and since the roots are still intact, the integrity of the inferior alveolar nerve is preserved. Objectives The aim is to carry out a systematic review in order to be able to provide results and conclusions with the greatest scientific evidence possible. Material and Methods A literature review is carried out through the following search engines: Pubmed MEDLINE, Scielo, Cochrane library and EMI. The level of evidence criteria from the Agency for Healthcare Research and Quality was applied, and the clinical trials’ level of quality was analyzed by means of the JADAD criteria. Results The following articles were obtained which represents a total of 17: 1 systematic review, 2 randomized clinical trials and 2 non-randomized clinical trials, 3 cohort studies, 2 retrospective studies, 3 case studies and 4 literature reviews. Conclusions Coronectomy is an adequate preventative technique in protecting the inferior alveolar nerve, which is an alternative to the conventional extraction of third molars, which unlike the former technique, presents a high risk of injury to the inferior alveolar nerve. However, there is a need for new clinical studies, with a greater number of samples and with a longer follow-up period in order to detect potential adverse effects of the retained roots. Key words: Coronectomy, inferior alveolar nerve, nerve injury, wisdom tooth removal, paresthesia, and systematic review. PMID:25858081
Heijsters, Guido; Salem, Ahmed Sobhy; Van Slycke, Sarah; Schepers, Serge; Politis, Constantinus; Vrielinck, Luc
2015-01-01
ABSTRACT Objectives The purpose of present study was to assess the surgical management of impacted third molar with proximity to the inferior alveolar nerve and complications associated with coronectomy in a series of patients undergoing third molar surgery. Material and Methods The position of the mandibular canal in relation to the mandibular third molar region and mandibular foramen in the front part of the mandible (i.e., third molar in close proximity to the inferior alveolar nerve [IAN] or not) was identified on panoramic radiographs of patients scheduled for third molar extraction. Results Close proximity to the IAN was observed in 64 patients (35 females, 29 males) with an impacted mandibular third molar. Coronectomy was performed in these patients. The most common complication was tooth migration away from the mandibular canal (n = 14), followed by root exposure (n = 5). Re-operation to remove the root was performed in cases with periapical infection and root exposure. Conclusions The results indicate that coronectomy can be considered a reasonable and safe treatment alternative for patients who demonstrate elevated risk for injury to the inferior alveolar nerve with removal of the third molars. Coronectomy did not increase the incidence of damage to the inferior alveolar nerve and would be safer than complete extraction in situations in which the root of the mandibular third molar overlaps or is in close proximity to the mandibular canal. PMID:26229580
Hamer, John F; Purath, Traci A
2014-03-01
This article investigates the degree and duration of pain relief from cervicogenic headaches or occipital neuralgia following treatment with radiofrequency ablation of the C2 dorsal root ganglion and/or third occipital nerves. It also addresses the procedure's complication rate and patient's willingness to repeat the procedure if severe symptoms recur. This is a single-center retrospective observational study of 40 patients with refractory cervicogenic headaches and or occipital neuralgia. Patients were all referred by a headache specialty clinic for evaluation for radiofrequency ablation of the C2 dorsal root ganglion and/or third occipital nerves. After treatment, patients were followed for a minimum of 6 months to a year. Patient demographics and the results of radiofrequency ablation were recorded on the same day, after 3-4 days, and at 6 months to 1 year following treatment. Thirty-five percent of patients reported 100% pain relief and 70% reported 80% or greater pain relief. The mean duration of improvement is 22.35 weeks. Complication rate was 12-13%. 92.5% of patients reported they would undergo the procedure again if severe symptoms returned. Radiofrequency ablation of the C2 dorsal root ganglion and/or third occipital nerve can provide many months of greater than 50% pain relief in the vast majority of recipients with an expected length of symptom improvement of 5-6 months. © 2014 American Headache Society.
Anterior lumbar fusion with titanium threaded and mesh interbody cages.
Rauzzino, M J; Shaffrey, C I; Nockels, R P; Wiggins, G C; Rock, J; Wagner, J
1999-12-15
The authors report their experience with 42 patients in whom anterior lumbar fusion was performed using titanium cages as a versatile adjunct to treat a wide variety of spinal deformity and pathological conditions. These conditions included congenital, degenerative, iatrogenic, infectious, traumatic, and malignant disorders of the thoracolumbar spine. Fusion rates and complications are compared with data previously reported in the literature. Between July 1996 and July 1999 the senior authors (C.I.S., R.P.N., and M.J.R.) treated 42 patients by means of a transabdominal extraperitoneal (13 cases) or an anterolateral extraperitoneal approach (29 cases), 51 vertebral levels were fused using titanium cages packed with autologous bone. All vertebrectomies (27 cases) were reconstructed using a Miami Moss titanium mesh cage and Kaneda instrumentation. Interbody fusion (15 cases) was performed with either the BAK titanium threaded interbody cage (in 13 patients) or a Miami Moss titanium mesh cage (in two patients). The average follow-up period was 14.3 months. Seventeen patients had sustained a thoracolumbar burst fracture, 12 patients presented with degenerative spinal disorders, six with metastatic tumor, four with spinal deformity (one congenital and three iatrogenic), and three patients presented with spinal infections. In five patients anterior lumbar interbody fusion (ALIF) was supplemented with posterior segmental fixation at the time of the initial procedure. Of the 51 vertebral levels treated, solid arthrodesis was achieved in 49, a 96% fusion rate. One case of pseudarthrosis occurred in the group treated with BAK cages; the diagnosis was made based on the patient's continued mechanical back pain after undergoing L4-5 ALIF. The patient was treated with supplemental posterior fixation, and successful fusion occurred uneventfully with resolution of her back pain. In the group in which vertebrectomy was performed there was one case of fusion failure in a patient with metastatic breast cancer who had undergone an L-3 corpectomy with placement of a mesh cage. Although her back pain was immediately resolved, she died of systemic disease 3 months after surgery and before fusion could occur. Complications related to the anterior approach included two vascular injuries (two left common iliac vein lacerations); one injury to the sympathetic plexus; one case of superficial phlebitis; two cases of prolonged ileus (greater than 48 hours postoperatively); one anterior femoral cutaneous nerve palsy; and one superficial wound infection. No deaths were directly related to the surgical procedure. There were no cases of dural laceration and no nerve root injury. There were no cases of deep venous thrombosis, pulmonary embolus, retrograde ejaculation, abdominal hernia, bowel or ureteral injury, or deep wound infection. Fusion-related complications included an iliac crest hematoma and prolonged donor-site pain in one patient. There were no complications related to placement or migration of the cages, but there was one case of screw fracture of the Kaneda device that did not require revision. The authors conclude that anterior lumbar fusion performed using titanium interbody or mesh cages, packed with autologous bone, is an effective, safe method to achieve fusion in a wide variety of pathological conditions of the thoracolumbar spine. The fusion rate of 96% compares favorably with results reported in the literature. The complication rate mirrors the low morbidity rate associated with the anterior approach. A detailed study of clinical outcomes is in progress. Patient selection and strategies for avoiding complication are discussed.
Vettorato, Enzo; Corletto, Federico
2016-10-01
The aim of this study was to assess retrospectively the efficacy and complication rate of hindlimb peripheral nerve blocks (PNBs) in cats. Clinical records of cats that received PNBs and underwent hindlimb orthopaedic surgery from February 2010 to October 2014 were examined. Type of PNB, type and dose of local anaesthetic used, end-expiratory fraction of isoflurane (FE'Iso) administered, additional intraoperative analgesia, incidence of hypotension, postoperative opioid requirement, postoperative contralateral limb paralysis and neurological complications at the 6 week re-examination were investigated. Eighty-nine records were retrieved but only 69 were analysed. Four combinations of PNBs were used: 34 lateral preiliac (LPI) approach to lumbar plexus (LP) associated with lumbar paravertebral approach to sciatic nerve (SN); 20 LPI-LP associated with the lateral approach to SN; three LPI-LP associated with gluteal approach to SN; 12 dorsal-paravertebral (DPV) approach to LP associated with lateral SN. Levobupivacaine was used for the majority of PNBs. The mean intraoperative FE'Iso was 1.15%; hypotension was documented in 55.1% of anaesthetics, while 31.8% of cats received fentanyl and/or ketamine intraoperatively. Postoperatively, 72.7% of cats received at least one dose of opioid, while five cats required further postoperative analgesia (ketamine constant rate infusion and/or gabapentin). No cats showed contralateral limb paralysis and neurological complications at the 6 week re-examination. No differences were found when comparing the different PNBs used. PNBs contributed to perioperative anaesthesia/analgesia in cats undergoing hindlimb orthopaedic surgery. However, the clinical relevance of intraoperative hypotension needs further investigation. © The Author(s) 2015.
Bernhardt, G; Awiszus, F; Meister, U; Heyde, C E; Böhm, H
2016-06-01
Transpedicular screw fixation of spinal segments has been described for a variety of surgical indications and is a key element in spinal surgery. The aim of transpedicular screw fixation is to achieve maximal stability. Screw malposition should be obviated to avoid neurological complications. There are published methods of applying evoked EMG to control screw position in relation to neural structures. These studies demonstrated that an intact bony pedicle wall acts as an electrical isolator between the screw and spinal nerve root. The aim of our study was to evaluate the impact of intraoperative pedicle screw monitoring on screw positioning. We enrolled 22 patients in this prospective randomised study, who underwent spinal instrumentation after being split into two equal groups. In the first group, dorsal instrumentation was supplemented with intraoperative nerve root monitoring using the INS-1-System (NuVasive, San Diego USA). In the second group, screws were inserted without additional pedicle monitoring. All patients underwent monosegmental instrumentation with "free hand implanted" pedicle screws. 44 screws were inserted in each group. The screw position was evaluated postoperatively using CT scans. The position of the screws in relation to the pedicle was measured in three different planes: sagittal, axial and coronal. The accuracy of the screw position was described using the Berlemann classification system. Screw position is classified in three groups: type 1 correct screw position, type 2 encroachment on the inner cortical wall, type 3 pedicle cortical perforation. Screw angulation and secondary operative criteria were also evaluated. The use of neuromonitoring did not influence the distance between the centre of the screws and the pedicle wall. Distances only depended on the implantation side (right and left) and the height of implantation (caudal or cranial screw). Because of the low number of cases, no conclusion could be reached about the influence of root monitoring on the correct positioning of the screws. There was at least a non-significant trend towards more frequent perforation of the pedicle in the monitor group. In the present study, we showed that root monitoring had a significant effect on the scattering of transversal angles. These were increased compared to the control group. Otherwise, the implantation angle was not shown to depend on the use of neuromonitoring. Neuromonitoring did not influence blood loss or operative time. The data did not permit any conclusion as to whether this technique can minimise the frequency of pedicle screw malposition. The four coronal plane distances did not depend on the use of neuromonitoring. The inclination angle was also unaffected by neuromonitoring. The only parameter for which we found any effect was the transverse angle. The mean values were similar in both groups, but the variances were not equal. The effect of monitoring on the only parameter which could not be evaluated by fluoroscopy is thus rather unfavourable. Georg Thieme Verlag KG Stuttgart · New York.
Korovessis, Panagiotis; Papazisis, Zisis; Lambiris, Elias
2002-01-01
This is a prospective comparative randomised study to compare the immediately postoperative effects of a rigid versus dynamic instrumentation for degenerative spine disease and stenosis on the standing sagittal lumbar spine alignment and to investigate if a dynamic spine system can replace the commonly used rigid systems in order to avoid the above mentioned disadvantages of rigid fixation. 15 randomly selected patients received the rigid instrumentation SCS and an equal number of randomly selected patients the dynamic TWINFLEX device for spinal stenosis associated degenerative lumbar disease. The age of the patients, who received rigid and dynamic instrumentation was 65 +/- 9 years and 62 +/- 10 years respectively. All patients had standing spine radiographs preoperatively and three months postoperatively. The parameters that were measured and compared pre- to postoperatively were: lumbar lordosis (L1-S1), total lumbar lordosis (T12-S1), sacral tilt, distal lordosis (L4-S1), intervertebral angulation, vertebral inclination and disc index. The instrumented levels in the spines that received rigid and dynamic instrumentation were 3.5 +/- 0.53 and 3 +/- 0.7 respectively. The instrumented levels from L3 to L5 were 23, the lumbosacral junction was instrumented in 3 patients of group A and in 4 patients of group B. Lumbar lordosis did not significantly change postoperatively, while total lordosis was significantly (P=0.04) increased in the patients who received the rigid instrumentation, while it was significantly (P=0.012) decreased in the group B. Intervertebral angulation of the non-instrumented level L1-L2 was increased in the group A (P=0.01), while the dynamic instrumentation increased (P=0.02) the intervertebral inclination of the adjacent level L2-L3, immediately above the uppermost instrumented level. Distal lordosis and sacral tilt did not change in any patient in both groups. Both instrumentations did not change the lateral vertebral inclination of L1 to L5 vertebrae. Rigid instrumentation increased the lordotic inclination of L5 (P=0.03) and of S1 (P=0.03). Rigid instrumentation increased (P=0.04) the intervertebral angulation at the uppermost instrumented level L3-L4 The most significant change in vertebral angulation was achieved at the instrumented level L4-L5 by the dynamic (P=0.007) and rigid (0.05). The disc index at the level L2-L3 was increased by both instrumentation [dynamic P=0.007 and rigid (P=0.02)]. The index L3-L4 was increased following dynamic fixation (P=0.0007). The disc index L4-L5 was postoperatively increased by both types of instrumentation (rigid P=0.006, dynamic P=0.02). The disc index L5-S1 did not significantly change postoperatively by either system. Both rigid and dynamic instrumentations restored lumbar lordosis, sacral tilt, distal lordosis and increased the foraminal diameter at the level L4-L5 resulting in an indirect decompression of the nerve roots at this level . Both rigid and dynamic instrumentations applied in the lumbosacral spine to treat degenerative disease secured L3 to S1 sagittal spine profile close to preoperative levels, that should theoretically guarantee a pain-free postoperative course. This study supports the belief that the dynamic system can be used with the same indications with the rigid in degenerative lumbar spine because it can offer equally good short-term results regarding sagittal spine alignment while simultaneously it has the previously mentioned advantages (avoidance stress shielding etc).
Trigeminal nerve anatomy in neuropathic and non-neuropathic orofacial pain patients.
Wilcox, Sophie L; Gustin, Sylvia M; Eykman, Elizabeth N; Fowler, Gordon; Peck, Christopher C; Murray, Greg M; Henderson, Luke A
2013-08-01
Trigeminal neuralgia, painful trigeminal neuropathy, and painful temporomandibular disorders (TMDs) are chronic orofacial pain conditions that are thought to have fundamentally different etiologies. Trigeminal neuralgia and neuropathy are thought to arise from damage to or pressure on the trigeminal nerve, whereas TMD results primarily from peripheral nociceptor activation. This study sought to assess the volume and microstructure of the trigeminal nerve in these 3 conditions. In 9 neuralgia, 18 neuropathy, 20 TMD, and 26 healthy controls, the trigeminal root entry zone was selected on high-resolution T1-weighted magnetic resonance images and the volume (mm(3)) calculated. Additionally, using diffusion-tensor images (DTIs), the mean diffusivity and fractional anisotropy values of the trigeminal nerve root were calculated. Trigeminal neuralgia patients displayed a significant (47%) decrease in nerve volume but no change in DTI values. Conversely, trigeminal neuropathy subjects displayed a significant (40%) increase in nerve volume but again no change in DTI values. In contrast, TMD subjects displayed no change in volume or DTI values. The data suggest that the changes occurring within the trigeminal nerve are not uniform in all orofacial pain conditions. These structural and volume changes may have implications in diagnosis and management of different forms of chronic orofacial pain. This study reveals that neuropathic orofacial pain conditions are associated with changes in trigeminal nerve volume, whereas non-neuropathic orofacial pain is not associated with any change in nerve volume. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Villafañe, Jorge Hugo; Pillastrini, Paolo; Borboni, Alberto
2013-09-01
The purpose of this case report is to describe a therapeutic intervention for peroneal nerve paralysis involving the sciatic nerve. A 24-year-old man presented with peroneal nerve paralysis with decreased sensation, severe pain in the popliteal fossa, and steppage gait, which occurred 3 days prior to the consultation. Magnetic resonance imaging and electromyography confirmed lumbar disk herniation with sciatic common peroneal nerve entrapment in the popliteal fossa. A combined treatment protocol of spinal and fibular head manipulation and neurodynamic mobilization including soft tissue work of the psoas and hamstring muscles was performed. Outcome measures were assessed at pretreatment, 1 week posttreatment, and 3-month follow-up and included numeric pain rating scale, range of motion, pressure pain threshold, and manual muscle testing. Treatment interventions were applied for 3 sessions over a period of 1 week. Results showed reduction of the patient's subjective pain and considerable improvement in range of motion, strength, and sensation in his left foot, which was restored to full function. A combined program of spinal and fibular head manipulation and neurodynamic mobilization reduced pain, increased range of motion and strength, and restored full function to the left leg in this patient who had severe functional impairment related to a compressed left common peroneal nerve.
Mechanisms of insulin action on sympathetic nerve activity
NASA Technical Reports Server (NTRS)
Muntzel, Martin S.; Anderson, Erling A.; Johnson, Alan Kim; Mark, Allyn L.
1996-01-01
Insulin resistance and hyperinsulinemia may contribute to the development of arterial hypertension. Although insulin may elevate arterial pressure, in part, through activation of the sympathetic nervous system, the sites and mechanisms of insulin-induced sympathetic excitation remain uncertain. While sympathoexcitation during insulin may be mediated by the baroreflex, or by modulation of norepinephrine release from sympathetic nerve endings, it has been shown repeatedly that insulin increases sympathetic outflow by actions on the central nervous system. Previous studies employing norepinephrine turnover have suggested that insulin causes sympathoexcitation by acting in the hypothalamus. Recent experiments from our laboratory involving direct measurements of regional sympathetic nerve activity have provided further evidence that insulin acts in the central nervous system. For example, administration of insulin into the third cerebralventricle increased lumbar but not renal or adrenal sympathetic nerve activity in normotensive rats. Interestingly, this pattern of regional sympathetic nerve responses to central neural administration of insulin is similar to that seen with systemic administration of insulin. Further, lesions of the anteroventral third ventricle hypothalamic (AV3V) region abolished increases in sympathetic activity to systemic administration of insulin with euglycemic clamp, suggesting that AV3V-related structures are critical for insulin-induced elevations in sympathetic outflow.
Joo, Young; Kim, Yong Chul; Lee, Sang Chul; Kim, Hye Young; Park, Keun Suk; Choi, Eun Joo; Moon, Jee Youn
2016-01-01
Intravascular (IV) injection of local anesthetics is a potential cause of false-negative results after lumbar medial branch nerve blockade (L-MBB) performed to diagnose facetogenic back pain. The aim of the present study was to identify the relationship between the needle type and the incidence of IV injection in patients undergoing L-MBB using fluoroscopy with digital subtraction imaging (DSI). In this prospective randomized study, we compared the incidence of IV uptake of contrast medium using the Quincke needle and Whitacre needle under real-time DSI during L-MBB. Clinical and demographic factors associated with the occurrence of IV uptake were also investigated. In total, 126 patients were randomized into the Quincke needle group (n = 62) and Whitacre needle group (n = 64). Intravascular uptake of contrast medium was observed in 66 (9.8%) of 671 L-MBB procedures under DSI. The incidence of IV uptake was 13.9% (47/338) using the Quincke needle and 5.7% (19/333) using the Whitacre needle. In the multivariate generalized estimating equations analysis, use of a Quincke needle was related to positive IV injection at a 1.898-fold higher rate than was use of a Whitacre needle (95% confidence interval, 1.025-3.516) and a positive aspiration test predicted IV injection at a 21.735-fold higher rate (95% confidence interval, 11.996-52.258). Lumbar medial branch nerve blockade using the Quincke needle was associated with a 1.9-fold higher rate of IV injection than was L-MBB using the Whitacre needle under DSI. Although further study is needed to confirm the clinical efficacy, Whitacre needles can be considered to reduce the risk of IV injection during L-MBB.
Ebraheim, Nabil A; Liu, Jiayong; Ramineni, Satheesh K; Liu, Xiaochen; Xie, Joe; Hartman, Ryan G; Goel, Vijay K
2009-11-01
Many investigators have conducted studies to determine the biomechanics, causes, complications and treatment of unilateral facet joint dislocation in the cervical spine. However, there is no quantitative data available on morphological changes in the intervertebral foramen of the cervical spine following unilateral facet joint dislocation. These data are important to understand the cause of neurological compromise following unilateral facet joint dislocation. Eight embalmed human cadaver cervical spine specimens ranging from level C1-T1 were used. The nerve roots of these specimens at C5-C6 level were marked by wrapping a 0.12mm diameter wire around them. Unilateral facet dislocation at C5-C6 level was simulated by serially sectioning the corresponding ligamentous structures. A CT scan of the specimens was obtained before and after the dislocation was simulated. A sagittal plane through the centre of the pedicle and facet joint was constructed and used for measurement. The height and area of the intervertebral foramen, the facet joint space, nerve root diameter and area, and vertebral alignment both before and after dislocation were evaluated. The intervertebral foramen area changed from 50.72+/-0.88mm(2) to 67.82+/-4.77mm(2) on the non-dislocated side and from 41.39+/-1.11mm(2) to 113.77+/-5.65mm(2) on the dislocated side. The foraminal heights changed from 9.02+/-0.30mm to 10.52+/-0.50mm on the non-dislocated side and 10.43+/-0.50mm to 17.04+/-0.96mm on the dislocated side. The facet space area in the sagittal plane changed from 6.80+/-0.80mm(2) to 40.02+/-1.40mm(2) on the non-dislocated side. The C-5 anterior displacement showed a great change from 0mm to 5.40+/-0.24mm on the non-dislocated side and from 0mm to 3.42+/-0.20mm on the dislocated side. Neither of the nerve roots on either side showed a significant change in size. The lack of change in nerve root area indicates that the associated nerve injury with unilateral facet joint dislocation is probably due to distraction rather than due to direct nerve root compression.
MrgC agonism at central terminals of primary sensory neurons inhibits neuropathic pain
He, Shao-Qiu; Li, Zhe; Chu, Yu-Xia; Han, Liang; Xu, Qian; Li, Man; Yang, Fei; Liu, Qin; Tang, Zongxiang; Wang, Yun; Hin, Niyada; Tsukamoto, Takashi; Slusher, Barbara; Tiwari, Vinod; Shechter, Ronen; Wei, Feng; Raja, Srinivasa N; Dong, Xinzhong; Guan, Yun
2014-01-01
Chronic neuropathic pain is often refractory to current pharmacotherapies. The rodent Mas-related G-protein-coupled receptor subtype C (MrgC) shares substantial homogeneity with its human homolog, MrgX1, and is located specifically in small-diameter dorsal root ganglion (DRG) neurons. However, evidence regarding the role of MrgC in chronic pain conditions has been disparate and inconsistent. Accordingly, the therapeutic value of MrgX1 as a target for pain treatment in humans remains uncertain. Here, we found that intrathecal injection of BAM8-22 (a 15-amino acid peptide MrgC agonist) and JHU58 (a novel dipeptide MrgC agonist) inhibited both mechanical and heat hypersensitivity in rats after an L5 spinal nerve ligation (SNL). Intrathecal JHU58-induced pain inhibition was dose-dependent in SNL rats. Importantly, drug efficacy was lost in Mrg-cluster gene knockout (Mrg KO) mice and was blocked by gene silencing with intrathecal MrgC siRNA and by a selective MrgC receptor antagonist in SNL rats, suggesting that the drug action is MrgC-dependent. Further, in a mouse model of trigeminal neuropathic pain, microinjection of JHU58 into ipsilateral subnucleus caudalis inhibited mechanical hypersensitivity in wild-type but not Mrg KO mice. Finally, JHU58 attenuated the mEPSC frequency both in medullary dorsal horn neurons of mice after trigeminal nerve injury and in lumbar spinal dorsal horn of mice after SNL. We provide multiple lines of evidence that MrgC agonism at spinal but not peripheral sites may constitute a novel pain inhibitory mechanism that involves inhibition of peripheral excitatory inputs onto postsynaptic dorsal horn neurons in different rodent models of neuropathic pain. PMID:24333779
Ray, Biswabina; D'Souza, A S; Kumar, Brijesh; Marx, Chakravarthy; Ghosh, Buddhadeb; Gupta, Nanda Kishore; Marx, Anitha
2010-11-01
The lateral femoral cutaneous nerve (LFCN), a branch from the lumbar plexus, may come to the clinician's or surgeon's attention. We studied this nerve to determine its location and its relationship with neighboring structures around the anterior superior iliac spine (ASIS) and the inguinal ligament (IL). Additionally, cross-sectional microanatomy of the LFCN at the IL was studied. The LFCN was dissected in 47 lower limbs from formalin-fixed cadavers. The distances from the ASIS to the point where the LFCN crossed the IL and the lateral border of the sartorius were measured. The distance between the ASIS and the point it pierced the deep fascia was also measured. Twelve nerve specimens at the IL were collected for histological sectioning and were stained with hematoxylin and eosin. On examination of the cross-sectional area, the nonfascicular area was wider than the fascicular area because of an increased amount of thick collagen fibers. This study may be of help to clinicians managing meralgia paresthetica and may also assist in defining a safe area for surgical intervention on the anterolateral aspect of the thigh.
Benitez, Percio Ramón Becker; Nogueira, Celso Schmalfuss; Holanda, Ana Cristina Carvalho de; Santos, Jose Caio
2016-01-01
The manufacture of minimally traumatic needles and synthesis of pharmacological adjuncts with safe and effective action on inhibitory and neuromodulatory synapses distributed along the nociceptive pathways were crucial for a new expansion phase of spinal anesthesia. The objectives of this paper are present our clinical experience with 1,330 lumbar spinal anesthesia performed with purposeful nociceptive blockade of the thoracic and cervical spinal nerves corresponding to dermatomes C4 or C3; warn about the method pathophysiological risks, and emphasize preventive standards for the safe application of the technique. Review of the historical background and anatomical spinal anesthesia with cervical levels of analgesia. Description of the technique used in our institution; population anesthetized; and surgery performed with the described method. Critical exposition of the physiological, pathophysiological, and clinical effects occurred and registered during anesthesia-surgery and postoperative period. Spinal anesthesia with nociceptive blockade to dermatome C4, or C3, is an effective option for surgery on somatic structures distal to the metamer of the third cervical spinal nerve, lasting no more than four or five hours. The method safety depends on the unrestricted respect for the essential rules of proper anesthesia. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
Benitez, Percio Ramón Becker; Nogueira, Celso Schmalfuss; de Holanda, Ana Cristina Carvalho; Santos, José Caio
2016-01-01
The manufacture of minimally traumatic needles and synthesis of pharmacological adjuncts with safe and effective action on inhibitory and neuromodulatory synapses distributed along the nociceptive pathways were crucial for a new expansion phase of spinal anesthesia. The objectives of this paper are present our clinical experience with 1330 lumbar spinal anesthesia performed with purposeful nociceptive blockade of the thoracic and cervical spinal nerves corresponding to dermatomes C4 or C3; warn about the method pathophysiological risks, and emphasize preventive standards for the safe application of the technique. Review of the historical background and anatomical spinal anesthesia with cervical levels of analgesia. Description of the technique used in our institution; population anesthetized; and surgery performed with the described method. Critical exposition of the physiological, pathophysiological, and clinical effects occurred and registered during anesthesia-surgery and postoperative period. Spinal anesthesia with nociceptive blockade to dermatome C4, or C3, is an effective option for surgery on somatic structures distal to the metamer of the third cervical spinal nerve, lasting no more than four or five hours. The method safety depends on the unrestricted respect for the essential rules of proper anesthesia. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.
Functional anatomy of the spine.
Bogduk, Nikolai
2016-01-01
Among other important features of the functional anatomy of the spine, described in this chapter, is the remarkable difference between the design and function of the cervical spine and that of the lumbar spine. In the cervical spine, the atlas serves to transmit the load of the head to the typical cervical vertebrae. The axis adapts the suboccipital region to the typical cervical spine. In cervical intervertebrtal discs the anulus fibrosus is not circumferential but is crescentic, and serves as an interosseous ligament in the saddle joint between vertebral bodies. Cervical vertebrae rotate and translate in the sagittal plane, and rotate in the manner of an inverted cone, across an oblique coronal plane. The cervical zygapophysial joints are the most common source of chronic neck pain. By contrast, lumbar discs are well designed to sustain compression loads, but rely on posterior elements to limit axial rotation. Internal disc disruption is the most common basis for chronic low-back pain. Spinal muscles are arranged systematically in prevertebral and postvertebral groups. The intrinsic elements of the spine are innervated by the dorsal rami of the spinal nerves, and by the sinuvertebral nerves. Little modern research has been conducted into the structure of the thoracic spine, or the causes of thoracic spinal pain. © 2016 Elsevier B.V. All rights reserved.
Jung, Sharon Jiyoon; Kook, Myung Geun; Kim, Sungchul; Kang, Kyung-Sun; Soh, Kwang-Sup
2018-06-04
Homing of stem cells (SCs) to desired targets such as injured tissues remains a lingering problem in cell-based therapeutics. Studies on the biodistribution of intravenously administered SCs have shown the inefficacy of blood vessels as the homing path because most of the injected SCs are captured in the capillary beds of the lungs. We considered an alternative administration method utilizing the acupuncture meridians or the primo vascular system (PVS). We injected SCs at the acupoint Zusanli (ST-36) below the knee of a nude mouse with a spinal cord injured at the thoracic T9-10 vertebrae. The SCs migrated from the ST-36, along the sciatic nerve, the lumbar 4-5, and then the spinal cord to the injury point T9-10. The SCs were not randomly scattered but were rather well aligned like marathon race runners, along the PVS route toward the injury point. We observed the SCs at 1, 3, 6, 9, 12, and 15 hours after injection. The fast runners among the injected SCs took about 6 hours to reach the sciatic nerve, about 9 hours to reach the lumbar 4-5 and about 15 hours to reach the injury point T9-10. Copyright © 2018. Published by Elsevier B.V.
Jung, Jae-Wook; Kim, Yong Han; Kim, Hyojoong; Kang, Eunsu; Jo, Hyunji; Ko, Myoung Jin
2018-05-01
CRPS after a lumbar surgery has symptoms that are similar to PSSS. However, standard criteria for distinguishing CRPS from PSSS do not exist. We present a case report of a 31-year-old female with CRPS symptoms after lumbar spinal surgery treated by performing SELD. This patient was referred to our pain clinic for left ankle pain. She received a lumbar discectomy for a herniated lumbar disc (L5/S1) but the pain was aggravated after surgery. The characteristics of the pain were burning, tingling, and cold, and were accompanied by other symptoms such as swelling, color change and mail dystrophy. The patient was diagnosed with CRPS. Medications and interventional therapies were not effective in reducing pain. SELD was performed and severe adhesive inflammation was observed in the L4-S1 epidural space. We performed mechanical adhesiolysis and injected hyalurodinase and dexamethasone near the L5 and S1 root. One month after, a second SELD was performed as same manner. After second SELD, the patient's pain markedly decreased. On the second visit in the outpatient clinic, the patient was absent of pain without any other medications. CRPS like symptoms can appear after lumbar spinal surgery due to adhesion and inflammation in the epidural space. In such cases, SELD can be considered as diagnostic and therapeutic option.
Wu, Xia; Cong, Xiao-Bing; Huang, Qi-Shun; Ai, Fang-Xin; Liu, Yu-Tian; Lu, Xiao-Cheng; Li, Jin; Weng, Yu-Xiong; Chen, Zhen-Bing
2017-12-01
This study aimed to investigate the reconstruction of the thumb and finger extension function in patients with middle and lower trunk root avulsion injuries of the brachial plexus. From April 2010 to January 2015, we enrolled in this study 4 patients diagnosed with middle and lower trunk root avulsion injuries of the brachial plexus via imaging tests, electrophysiological examinations, and clinical confirmation. Muscular branches of the radial nerve, which innervate the supinator in the forearm, were transposed to the posterior interosseous nerve to reconstruct the thumb and finger extension function. Electrophysiological findings and muscle strength of the extensor pollicis longus and extensor digitorum communis, as well as the distance between the thumb tip and index finger tip, were monitored. All patients were followed up for 24 to 30 months, with an average of 27.5 months. Motor unit potentials (MUP) of the extensor digitorum communis appeared at an average of 3.8 months, while MUP of the extensor pollicis longus appeared at an average of 7 months. Compound muscle action potential (CMAP) appeared at an average of 9 months in the extensor digitorum communis, and 12 months in the extensor pollicis longus. Furthermore, the muscle strength of the extensor pollicis longus and extensor digitorum communis both reached grade III at 21 months. Lastly, the average distance between the thumb tip and index finger tip was 8.8 cm at 21 months. In conclusion, for patients with middle and lower trunk injuries of the brachial plexus, transposition of the muscular branches of the radial nerve innervating the supinator to the posterior interosseous nerve for the reconstruction of thumb and finger extension function is practicable and feasible.
Bhalodia, Vidya M; Schwartz, Daniel M; Sestokas, Anthony K; Bloomgarden, Gary; Arkins, Thomas; Tomak, Patrick; Gorelick, Judith; Wijesekera, Shirvinda; Beiner, John; Goodrich, Isaac
2013-10-01
Deltoid muscle weakness due to C-5 nerve root injury following cervical spine surgery is an uncommon but potentially debilitating complication. Symptoms can manifest upon emergence from anesthesia or days to weeks following surgery. There is conflicting evidence regarding the efficacy of spontaneous electromyography (spEMG) monitoring in detecting evolving C-5 nerve root compromise. By contrast, transcranial electrical stimulation-induced motor evoked potential (tceMEP) monitoring has been shown to be highly sensitive and specific in identifying impending C-5 injury. In this study the authors sought to 1) determine the frequency of immediate versus delayed-onset C-5 nerve root injury following cervical spine surgery, 2) identify risk factors associated with the development of C-5 palsies, and 3) determine whether tceMEP and spEMG neuromonitoring can help to identify acutely evolving C-5 injury as well as predict delayed-onset deltoid muscle paresis. The authors retrospectively reviewed the neuromonitoring and surgical records of all patients who had undergone cervical spine surgery involving the C-4 and/or C-5 level in the period from 2006 to 2008. Real-time tceMEP and spEMG monitoring from the deltoid muscle was performed as part of a multimodal neuromonitoring protocol during all surgeries. Charts were reviewed to identify patients who had experienced significant changes in tceMEPs and/or episodes of neurotonic spEMG activity during surgery, as well as those who had shown new-onset deltoid weakness either immediately upon emergence from the anesthesia or in a delayed fashion. Two hundred twenty-nine patients undergoing 235 cervical spine surgeries involving the C4-5 level served as the study cohort. The overall incidence of perioperative C-5 nerve root injury was 5.1%. The incidence was greatest (50%) in cases with dual corpectomies at the C-4 and C-5 spinal levels. All patients who emerged from anesthesia with deltoid weakness had significant and unresolved changes in tceMEPs during surgery, whereas only 1 had remarkable spEMG activity. Sensitivity and specificity of tceMEP monitoring for identifying acute-onset deltoid weakness were 100% and 99%, respectively. By contrast, sensitivity and specificity for spEMG were only 20% and 92%, respectively. Neither modality was effective in identifying patients who demonstrated delayed-onset deltoid weakness. The risk of new-onset deltoid muscle weakness following cervical spine surgery is greatest for patients undergoing 2-level corpectomies involving C-4 and C-5. Transcranial electrical stimulation-induced MEP monitoring is a highly sensitive and specific technique for detecting C-5 radiculopathy that manifests immediately upon waking from anesthesia. While the absence of sustained spEMG activity does not rule out nerve root irritation, the presence of excessive neurotonic discharges serves both to alert the surgeon of such potentially injurious events and to prompt neuromonitoring personnel about the need for additional tceMEP testing. Delayed-onset C-5 nerve root injury cannot be predicted by intraoperative neuromonitoring via either modality.
Zheng, Chaojun; Zhu, Yu; Lv, Feizhou; Ma, Xiaosheng; Xia, Xinlei; Wang, Lixun; Jin, Xiang; Weber, Robert; Jiang, Jianyuan; Anuvat, Kevin
2014-12-01
The H-reflex of the flexor carpi radialis (FCR H-reflex) has not been commonly used for the diagnosis of cervical radiculopathy when compared with the routinely tested soleus H-reflex. Although both S1 and S2 roots innervate the soleus, the H-reflex is selectively related to S1 nerve root function clinically. Flexor carpi radialis is also innervated by two nerve roots which are C6 and C7. Although they are among the most common roots involved in cervical radiculopathy, few studies reported if the attenuation of the FCR H-reflex is caused by lesions affecting C7 or C6 nerve roots, or both. We aimed to identify whether an abnormal FCR H-reflex was attributed to the C7 or C6 nerve root lesion, or both. The sensitivities of needle electromyography, FCR H-reflex, and provocative tests in unilateral C7 or C6 radiculopathy were also compared in this study. A concentric needle electrode recorded bilateral FCR H-reflexes in 41 normal subjects (control group), 51 patients with C7 radiculopathy, and 54 patients with C6 radiculopathy. Clinical, radiological, and surgical approaches identified the precise single cervical nerve root involved in all patient groups. The H-reflex and M-wave latencies were measured and compared bilaterally. Abnormal FCR H-reflex was defined as the absence of the H-reflex or a side-to-side difference over 1.5 milliseconds which was based on the normal side-to-side difference of the H-reflex latency of 16.9 milliseconds (SD = 1.7 milliseconds) from the control group. We also determined standard median and ulnar conduction and needle electromyography. The provocative tests included bilateral determination of the Shoulder Abduction and Spurling's tests in all radiculopathy group patients. Abnormal FCR H-reflexes were recorded in 45 (88.2%) of C7 radiculopathy group patients, and 2 (3.7%) of C6 radiculopathy group patients (P < 0.05). Needle electromyography was abnormal in 41 (80.4%) of C7 radiculopathy patients and 43 (79.6%) of C6 radiculopathy patients. Provocative tests were positive in 15 (29.4%) of C7 radiculopathy patients and 25 (46.3%) of C6 radiculopathy patients. Flexor carpi radialis H-Reflex provides a sensitive assessment of evaluating the C7 spinal reflex pathway. Clinically, a combination of the FCR H-reflex with needle electromyography may yield the highest level of diagnostic information for evaluating clinical cases of C7 radiculopathy.
Yagura, Saki; Onimaru, Hiroshi; Kanzaki, Koji; Izumizaki, Masahiko
2018-06-01
Eugenol is contained in several plants including clove and is thought to exert an analgesic effect. It has been suggested that the slow ventral root potential induced by ipsilateral dorsal root stimulation in the isolated (typically lumbar) spinal cord of newborn rats reflects the nociceptive response, and this in vitro experimental model is useful to assess the actions of analgesics. To further elucidate neuronal mechanisms of eugenol-induced analgesia, we examined the effects of extracellularly applied eugenol on the nociceptive spinal reflex response. To evaluate the effects of eugenol on putative nociceptive responses, the ipsilateral fifth lumbar (L5) dorsal root was stimulated using a glass suction electrode, and the induced reflex responses were recorded from the L5 and twelfth thoracic (Th12) ventral roots in spinal cord preparations (Th10-L5) from newborn rats (postnatal day 0-3). We found that eugenol (0.25-1.0 mM) caused dose-dependent attenuation of the reflex response and also depressed spontaneous ventral root activity. We also found that the slow ventral root potential was further divided into two components: initial and late components. A lower concentration of eugenol selectively depressed the late component. The inhibitory effects by 1.0 mM eugenol were not reversed by 10 µM capsazepine (TRPV1 antagonist) or 40 µM HC-030031 (TRPA1 antagonist). The depressive effect of eugenol on the reflex response was also confirmed by optical recordings using voltage-sensitive dye. Our report provides additional evidence on the basic neuronal mechanisms of eugenol to support its clinical use as a potential analgesic treatment.
[Sciatica. From stretch rack to microdiscectomy].
Gruber, P; Böni, T
2015-12-01
In ancient times as well as in the Middle Ages treatment options for discogenic nerve compression syndrome were limited and usually not very specific because of low anatomical and pathophysiological knowledge. The stretch rack (scamnum Hippocratis) was particularly prominent but was widely used as a therapeutic device for very different spinal disorders. Since the beginning of the nineteenth century anatomical knowledge increased and the advances in the fields of asepsis, anesthesia and surgery resulted in an increase in surgical interventions on the spine. In 1908 the first successful lumbar discectomy was initiated and performed by the German neurologist Heinrich O. Oppenheim (1858-1919) and the surgeon Fedor Krause (1857-1937); however, neither recognized the true pathological condition of discogenic nerve compression syndrome. With the landmark report in the New England Journal of Medicine in 1934, the two American surgeons William Jason Mixter (1880-1958) and Joseph Seaton Barr (1901-1963) finally clarified the pathomechanism of lumbar disc herniation and furthermore, propagated discectomy as the standard therapy. Since then interventions on intervertebral discs rapidly increased and the treatment options for lumbar disc surgery quickly evolved. The surgical procedures changed over time and were continuously being refined. In the late 1960s the surgical microscope was introduced for spinal surgery by the work of the famous neurosurgeon Mahmut Gazi Yasargil and his colleague Wolfhard Caspar and so-called microdiscectomy was introduced. Besides open discectomy other interventional techniques were developed to overcome the side effects of surgical procedures. In 1964 the American orthopedic surgeon Lyman Smith (1912-1991) introduced chemonucleolysis, a minimally invasive technique consisting only of a cannula and the proteolytic enzyme chymopapain, which is injected into the disc compartment to dissolve the displaced disc material. In 1975 the Japanese orthopedic surgeon Sadahisa Hijikata described percutaneous discectomy for the first time, which was a further minimally invasive surgical technique. Further variants of minimally invasive surgical procedures, such as percutaneous laser discectomy in 1986 and percutaneous endoscopic microdiscectomy in 1997, were also introduced; however, open discectomy, especially microdiscectomy remains the therapeutic gold standard for lumbar disc herniation.
Gundanna, Mukund I.; Miller, Larry E.; Block, Jon E.
2011-01-01
Background Open and minimally invasive lumbar fusion procedures have inherent procedural risks, with posterior and transforaminal approaches resulting in significant soft-tissue injury and the anterior approach endangering organs and major blood vessels. An alternative lumbar fusion technique uses a small paracoccygeal incision and a presacral approach to the L5-S1 intervertebral space, which avoids critical structures and may result in a favorable safety profile versus open and other minimally invasive fusion techniques. The purpose of this study was to evaluate complications associated with axial interbody lumbar fusion procedures using the Axial Lumbar Interbody Fusion (AxiaLIF) System (TranS1, Wilmington, North Carolina) in the postmarketing period. Methods Between March 2005 and March 2010, 9,152 patients underwent interbody fusion with the AxiaLIF System through an axial presacral approach. A single-level L5-S1 fusion was performed in 8,034 patients (88%), and a 2-level (L4-S1) fusion was used in 1,118 (12%). A predefined database was designed to record device- or procedure-related complaints via spontaneous reporting. The complications that were recorded included bowel injury, superficial wound and systemic infections, transient intraoperative hypotension, migration, subsidence, presacral hematoma, sacral fracture, vascular injury, nerve injury, and ureter injury. Results Complications were reported in 120 of 9,152 patients (1.3%). The most commonly reported complications were bowel injury (n = 59, 0.6%) and transient intraoperative hypotension (n = 20, 0.2%). The overall complication rate was similar between single-level (n = 102, 1.3%) and 2-level (n = 18, 1.6%) fusion procedures, with no significant differences noted for any single complication. Conclusions The 5-year postmarketing surveillance experience with the AxiaLIF System suggests that axial interbody lumbar fusion through the presacral approach is associated with a low incidence of complications. The overall complication rates observed in our evaluation compare favorably with those reported in trials of open and minimally invasive lumbar fusion surgery. PMID:25802673
Palea, Ovidiu; Granville, Michelle
2017-01-01
Radiofrequency facet ablation (RFA) has been performed using the same technique for over 50 years. Except for variations in electrode size, tip shape, and change in radiofrequency (RF) stimulation parameters, using standard, pulsed, and cooled RF wavelengths, the target points have remained absolutely unchanged from the original work describing RFA for lumbar pain control. Degenerative changes in the facet joint and capsule are the primary location for the majority of lumbar segmental pathology and pain. Multiple studies show that the degenerated facet joint is richly innervated as a result of the inflammatory overgrowth of the synovium. The primary provocative clinical test to justify an RFA is to perform an injection with local anesthetic into the facet joint and the posterior capsule and confirm pain relief. However, after a positive response, the radiofrequency lesion is made not to the facet joint but to the more proximal fine nerve branches that innervate the joint. The accepted target points for the recurrent sensory branch ignore the characteristic rich innervation of the pathologic lumbar facet capsule and assume that lesioning of these recurrent branches is sufficient to denervate the painful pathologic facet joint. This report describes the additional targets and technical steps for further coagulation points along the posterior capsule of the lumbar facet joint and the physiologic studies of the advantage of the bipolar radiofrequency current in this location. Bipolar RF to the facet capsule is a simple, extra step that easily creates a large thermo-coagulated lesion in this capsule region of the pathologic facet joint. Early studies demonstrate bipolar RF to the facet capsule can provide long-term pain relief when used alone for specific localized facet joint pain, to coagulate lumbar facet cysts to prevent recurrence, and to get more extensive pain control by combining it with traditional lumbar RFA, especially when RFA is repeated. PMID:29119066
Jacobson, Robert E; Palea, Ovidiu; Granville, Michelle
2017-09-01
Radiofrequency facet ablation (RFA) has been performed using the same technique for over 50 years. Except for variations in electrode size, tip shape, and change in radiofrequency (RF) stimulation parameters, using standard, pulsed, and cooled RF wavelengths, the target points have remained absolutely unchanged from the original work describing RFA for lumbar pain control. Degenerative changes in the facet joint and capsule are the primary location for the majority of lumbar segmental pathology and pain. Multiple studies show that the degenerated facet joint is richly innervated as a result of the inflammatory overgrowth of the synovium. The primary provocative clinical test to justify an RFA is to perform an injection with local anesthetic into the facet joint and the posterior capsule and confirm pain relief. However, after a positive response, the radiofrequency lesion is made not to the facet joint but to the more proximal fine nerve branches that innervate the joint. The accepted target points for the recurrent sensory branch ignore the characteristic rich innervation of the pathologic lumbar facet capsule and assume that lesioning of these recurrent branches is sufficient to denervate the painful pathologic facet joint. This report describes the additional targets and technical steps for further coagulation points along the posterior capsule of the lumbar facet joint and the physiologic studies of the advantage of the bipolar radiofrequency current in this location. Bipolar RF to the facet capsule is a simple, extra step that easily creates a large thermo-coagulated lesion in this capsule region of the pathologic facet joint. Early studies demonstrate bipolar RF to the facet capsule can provide long-term pain relief when used alone for specific localized facet joint pain, to coagulate lumbar facet cysts to prevent recurrence, and to get more extensive pain control by combining it with traditional lumbar RFA, especially when RFA is repeated.
Zdrodowska, Beata; Leszczyńska-Filus, Magdalena; Leszczyński, Ryszard; Błaszczyk, Jan
2015-01-01
Increased expression of degenerative disease of the lumbar spine is an onerous task, which reduces the efficiency of the activity and life of many populations. It is the most common cause of medical visits. In 95% of cases the cause of complaints is a destructive process in the course of degenerative intervertebral disc called a lumbar disc herniation. Protrusion of the nucleus pulposus causes severe pain and impaired muscle tone, often more chronic and difficult to master. Successful treatment of lumbar disc herniation constitutes a serious interdisciplinary problem. It is important to properly planned and carried out physiotherapy. Based on the number of non-invasive methods, to reduce muscle tension, mute pain and alleviation of inflammation. It is the treatment safe, effective, and at the same time, which is their big advantage, readily available and cheap. It is worth noting that not every method has the same efficiency. The question that the methods are effective in relieving pain and helping to effectively increase the range of motion led to a comparison of two methods - Low Level Laser Therapy (LLLT) and pulsating magnetic field therapy. The aim of the study was to compare the efficacy of LLLT and pulsating magnetic field therapy in combating pain and increase range of motion of the spine of people with degenerative spine disease of the lower back. 120 patients with diagnose lumbar disc herniation whit no nerve roots symptoms. Patients were divided into two Groups: A and B. Group A of 60 patients were subjected to laser therapy (λ=820nm, P=400mW, Ed=6-12 J/cm²) and the second Group B of 60 patients too, to pulsating magnetic fields procedures (5mT, 30 Hz, 15 minutes). Every patient before rehabilitation started and right after it has finished has undergone examination. Subjective pain assessment was carried out using a modified Laitinen questionnaire and Visual Analogue Scale of Pain intensity. Spine mobility was evaluated whit the Schober test and the Fingertip-to-floor-test. The obtained results were subjects to statistical analysis. Research shows that both low energy laser and pulsating magnetic field physical attributes are effective methods for the treatment of pain and restricted mobility of the spine caused by disc herniation. Careful analysis emphasizes greater efficiency laser for pain. In contrast, a statistically greater improvement in global mobility of the spine, as well as flexion and extension of the lumbar recorded in group B, where the applied pulsating magnetic field. Both laser and magnet therapy reduces pain and improves mobility of the spine of people with degenerative spine disease of the lower back. Comparison of the effectiveness of both methods showed a greater analgesic effect of laser treatment, and greater mobility of the spine was observed under the influence of pulsating magnetic field therapy. © 2015 MEDPRESS.
Chong, Bun San; Gohil, Kajal; Pawar, Ravikiran; Makdissi, Jimmy
2017-01-01
The objective of the present study was to evaluate the anatomical relationship between mental foramen (MF), including the incidence of the anterior loop of the inferior alveolar nerve (AL), and roots of mandibular teeth in relation to risk of nerve injury with endodontic treatment. Cone-beam computed tomography (CBCT) images, which included teeth either side of the MF, were randomly selected. The anonymised CBCT images were reconstructed and examined in coronal, axial and sagittal planes, using three-dimensional viewing software, to determine the relationship and distance between MF and adjacent mandibular teeth. The actual distance between the root apex and MF was calculated mathematically using Pythagoras' theorem. If present, the incidence of an AL in the axial plane was also recorded. The root apex of the mandibular second premolar (70 %), followed by the first premolar (18 %) and then the first molar (12 %), was the closest to the MF. Ninety-six percent of root apices evaluated were >3 mm from the MF. An AL was present in 88 % of the cases. With regards to endodontic treatment, the risk of nerve injury in the vicinity of the MF would appear to be low. However, the high incidence of the AL highlights the need for clinicians to be aware and careful of this important anatomical feature. The risk of injury to the MN with endodontic treatment would appear to be low, but given the high incidence, it is important to be aware and be careful of the AL.
Axon-Sorting Multifunctional Nerve Guides: Accelerating Restoration of Nerve Function
2014-10-01
factor (singly & in selected combinations) in the organotypic model system for preferential sensory or motor axon extension. Use confocal microscopy to...track axon extension of labeled sensory or motor neurons from spinal cord slices (motor) or dorsal root ganglia ( DRG ) (sensory). 20 Thy1-YFP mice...RESEARCH ACCOMPLISHMENTS: • Established a system of color-coded mixed nerve tracking using GFP and RFP expressing motor and sensory neurons (Figure 1
von Bartheld, C S; Claas, B; Münz, H; Meyer, D L
1988-08-01
Primary olfactory and central projections of the nervus terminalis were investigated by injections of horseradish peroxidase into the olfactory epithelium in the African lungfish. In addition, gonadotropin-releasing hormone (GnRH) immunoreactivity of the nervus terminalis system was investigated. The primary olfactory projections are restricted to the olfactory bulb located at the rostral pole of the telencephalon; they do not extend into caudal parts of the telencephalon. A vomeronasal nerve and an accessory olfactory bulb could not be identified. The nervus terminalis courses through the dorsomedial telencephalon. Major targets include the nucleus of the anterior commissure and the nucleus praeopticus pars superior. some fibers cross to the contralateral side. A few fibers reach the diencephalon and mesencephalon. No label is present in the "posterior root of the nervus terminalis" (= "Pinkus's nerve" or "nervus praeopticus"). GnRH immunoreactivity is lacking in the "anterior root of the nervus terminalis," whereas it is abundant in nervus praeopticus (Pinkus's nerve). These findings may suggest that the nervus terminalis system originally consisted of two distinct cranial nerves, which have fused-in evolution-in most vertebrates. Theories of cranial nerve phylogeny are discussed in the light of the assumed "binerval origin" of the nervus terminalis system.
Progranulin contributes to endogenous mechanisms of pain defense after nerve injury in mice.
Lim, Hee-Young; Albuquerque, Boris; Häussler, Annett; Myrczek, Thekla; Ding, Aihao; Tegeder, Irmgard
2012-04-01
Progranulin haploinsufficiency is associated with frontotemporal dementia in humans. Deficiency of progranulin led to exaggerated inflammation and premature aging in mice. The role of progranulin in adaptations to nerve injury and neuropathic pain are still unknown. Here we found that progranulin is up-regulated after injury of the sciatic nerve in the mouse ipsilateral dorsal root ganglia and spinal cord, most prominently in the microglia surrounding injured motor neurons. Progranulin knockdown by continuous intrathecal spinal delivery of small interfering RNA after sciatic nerve injury intensified neuropathic pain-like behaviour and delayed the recovery of motor functions. Compared to wild-type mice, progranulin-deficient mice developed more intense nociceptive hypersensitivity after nerve injury. The differences escalated with aging. Knockdown of progranulin reduced the survival of dissociated primary neurons and neurite outgrowth, whereas addition of recombinant progranulin rescued primary dorsal root ganglia neurons from cell death induced by nerve growth factor withdrawal. Thus, up-regulation of progranulin after neuronal injury may reduce neuropathic pain and help motor function recovery, at least in part, by promoting survival of injured neurons and supporting regrowth. A deficiency in this mechanism may increase the risk for injury-associated chronic pain. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
Kinsman, Brian J; Browning, Kirsteen N; Stocker, Sean D
2017-09-15
Changes in extracellular osmolarity stimulate thirst and vasopressin secretion through a central osmoreceptor; however, central infusion of hypertonic NaCl produces a greater sympathoexcitatory and pressor response than infusion of hypertonic mannitol/sorbitol. Neurons in the organum vasculosum of the lamina terminalis (OVLT) sense changes in extracellular osmolarity and NaCl. In this study, we discovered that intracerebroventricular infusion or local OVLT injection of hypertonic NaCl increases lumbar sympathetic nerve activity, adrenal sympathetic nerve activity and arterial blood pressure whereas equi-osmotic mannitol/sorbitol did not alter any variable. In vitro whole-cell recordings demonstrate the majority of OVLT neurons are responsive to hypertonic NaCl or mannitol. However, hypertonic NaCl stimulates a greater increase in discharge frequency than equi-osmotic mannitol. Intracarotid or intracerebroventricular infusion of hypertonic NaCl evokes a greater increase in OVLT neuronal discharge frequency than equi-osmotic sorbitol. Collectively, these novel data suggest that subsets of OVLT neurons respond differently to hypertonic NaCl versus osmolarity and subsequently regulate body fluid homeostasis. These responses probably reflect distinct cellular mechanisms underlying NaCl- versus osmo-sensing. Systemic or central infusion of hypertonic NaCl and other osmolytes readily stimulate thirst and vasopressin secretion. In contrast, central infusion of hypertonic NaCl produces a greater increase in arterial blood pressure (ABP) than equi-osmotic mannitol/sorbitol. Although these responses depend on neurons in the organum vasculosum of the lamina terminalis (OVLT), these observations suggest OVLT neurons may sense or respond differently to hypertonic NaCl versus osmolarity. The purpose of this study was to test this hypothesis in Sprague-Dawley rats. First, intracerebroventricular (icv) infusion (5 μl/10 min) of 1.0 m NaCl produced a significantly greater increase in lumbar sympathetic nerve activity (SNA), adrenal SNA and ABP than equi-osmotic sorbitol (2.0 osmol l -1 ). Second, OVLT microinjection (20 nl) of 1.0 m NaCl significantly raised lumbar SNA, adrenal SNA and ABP. Equi-osmotic sorbitol did not alter any variable. Third, in vitro whole-cell recordings demonstrate that 50% (18/36) of OVLT neurons display an increased discharge to both hypertonic NaCl (+7.5 mm) and mannitol (+15 mm). Of these neurons, 56% (10/18) displayed a greater discharge response to hypertonic NaCl vs mannitol. Fourth, in vivo single-unit recordings revealed that intracarotid injection of hypertonic NaCl produced a concentration-dependent increase in OVLT cell discharge, lumbar SNA and ABP. The responses to equi-osmotic infusions of hypertonic sorbitol were significantly smaller. Lastly, icv infusion of 0.5 m NaCl produced significantly greater increases in OVLT discharge and ABP than icv infusion of equi-osmotic sorbitol. Collectively, these findings indicate NaCl and osmotic stimuli produce different responses across OVLT neurons and may represent distinct cellular processes to regulate thirst, vasopressin secretion and autonomic function. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Bertelli, Jayme Augusto; Ghizoni, Marcos Flavio
2010-07-01
In C7-T1 palsies of the brachial plexus, shoulder and elbow function are preserved, but finger motion is absent. Finger flexion has been reconstructed by tendon or nerve transfers. Finger extension has been restored ineffectively by attaching the extensor tendons to the distal aspect of the dorsal radius (termed tenodesis) or by tendon transfers. In these palsies, supinator muscle function is preserved, because innervation stems from the C-6 root. The feasibility of transferring supinator branches to the posterior interosseous nerve has been documented in a previous anatomical study. In this paper, the authors report the clinical results of supinator motor nerve transfer to the posterior interosseous nerve in 4 patients with a C7-T1 root lesion. Four adult patients with C7-T1 root lesions underwent surgery between 5 and 7 months postinjury. The patients had preserved motion of the shoulder, elbow, and wrist, but they had complete palsy of finger motion. They underwent finger flexion reconstruction via transfer of the brachialis muscle, and finger and thumb extension were restored by transferring the supinator motor branches to the posterior interosseous nerve. This nerve transfer was performed through an incision over the proximal third of the radius. Dissection was carried out between the extensor carpi radialis brevis and the extensor digitorum communis. The patients were followed up as per regular protocol and underwent a final evaluation 12 months after surgery. To document the extent of recovery, the authors assessed the degree of active metacarpophalangeal joint extension of the long fingers. The thumb span was evaluated by measuring the distance between the thumb pulp and the lateral aspect of the index finger. Surgery to transfer the supinator motor branches to the posterior interosseous nerve was straightforward. Twelve months after surgery, all patients were capable of opening their hand and could fully extend their metacarpophalangeal joints. The distance of thumb abduction improved from 0 to 5 cm from the lateral aspect of the index finger. Transferring supinator motor nerves directly to the posterior interosseous nerve is effective in at least partially restoring thumb and finger extension in patients with lower-type injuries of the brachial plexus.
Hossain-Ibrahim, Mohammed K; Rezajooi, Kia; Stallcup, William B; Lieberman, Alexander R; Anderson, Patrick N
2007-01-01
Background The chondroitin sulphate proteoglycan NG2 blocks neurite outgrowth in vitro and has been proposed as a major inhibitor of axonal regeneration in the CNS. Although a substantial body of evidence underpins this hypothesis, it is challenged by recent findings including strong expression of NG2 in regenerating peripheral nerve. Results We studied axonal regeneration in the PNS and CNS of genetically engineered mice that do not express NG2, and in sex and age matched wild-type controls. In the CNS, we used anterograde tracing with BDA to study corticospinal tract (CST) axons after spinal cord injury and transganglionic labelling with CT-HRP to trace ascending sensory dorsal column (DC) axons after DC lesions and a conditioning lesion of the sciatic nerve. Injury to these fibre tracts resulted in no difference between knockout and wild-type mice in the ability of CST axons or DC axons to enter or cross the lesion site. Similarly, after dorsal root injury (with conditioning lesion), most regenerating dorsal root axons failed to grow across the dorsal root entry zone in both transgenic and wild-type mice. Following sciatic nerve injuries, functional recovery was assessed by analysis of the toe-spreading reflex and cutaneous sensitivity to Von Frey hairs. Anatomical correlates of regeneration were assessed by: retrograde labelling of regenerating dorsal root ganglion (DRG) cells with DiAsp; immunostaining with PGP 9.5 to visualise sensory reinnervation of plantar hindpaws; electron microscopic analysis of regenerating axons in tibial and digital nerves; and by silver-cholinesterase histochemical study of motor end plate reinnervation. We also examined functional and anatomical correlates of regeneration after injury of the facial nerve by assessing the time taken for whisker movements and corneal reflexes to recover and by retrograde labelling of regenerated axons with Fluorogold and DiAsp. None of the anatomical or functional analyses revealed significant differences between wild-type and knockout mice. Conclusion These findings show that NG2 is unlikely to be a major inhibitor of axonal regeneration after injury to the CNS, and, further, that NG2 is unlikely to be necessary for regeneration or functional recovery following peripheral nerve injury. PMID:17900358
Extradural cold block for selective neurostimulation of the bladder: development of a new technique.
Schumacher, S; Bross, S; Scheepe, J R; Seif, C; Jünemann, K P; Alken, P
1999-03-01
Cryotechnique for selective block of the urethral sphincter and simultaneous activation of the bladder was developed to achieve physiological micturition during sacral anterior root stimulation (SARS). In ten foxhounds SARS of S2 was carried out while extradurally both spinal nerves S2 were cooled down from positive 25C in a stepwise fashion until a sphincter block was observed. Subsequently, SARS of S2 was performed while the pudendal nerves were cooled down from + 15C. The effects of spinal and pudendal nerve cold block on the urethral sphincter and bladder during SARS and the recovery time were monitored by urodynamic investigation. A complete cold block of the urethral sphincter during spinal nerve cooling was achieved in all cases. During pudendal nerve cooling, the sphincter was completely blocked in two, and incompletely blocked in four dogs. Cold block temperature of the spinal nerves averaged +11.7C and of the pudendal nerves +6.2C. During SARS and spinal nerve cooling, an increase in intravesical pressure up to 13 cm. water was recognized, and recovery time was on average 6.6 minutes. Intravesical pressure remained unchanged during pudendal nerve cooling, with recovery time being less than 1 minute. The cold block was always reversible. Cryotechnique is an excellent method for selective and reversible block of the urethral sphincter during SARS to avoid detrusor-sphincter-dyssynergia. The application of cryotechnique in functional electrical stimulation leads to an improvement of quality of life in para- or tetraplegic patients because of selective nerve stimulation with optimization of micturition, standing, walking and grasping and does so without the necessity of surgical dorsal root rhizotomy.
Saburkina, Inga; Gukauskiene, Ligita; Rysevaite, Kristina; Brack, Kieran E; Pauza, Audrys G; Pauziene, Neringa; Pauza, Dainius H
2014-01-01
Although the rabbit is routinely used as the animal model of choice to investigate cardiac electrophysiology, the neuroanatomy of the rabbit heart is not well documented. The aim of this study was to examine the topography of the intrinsic nerve plexus located on the rabbit heart surface and interatrial septum stained histochemically for acetylcholinesterase using pressure-distended whole hearts and whole-mount preparations from 33 Californian rabbits. Mediastinal cardiac nerves entered the venous part of the heart along the root of the right cranial vein (superior caval vein) and at the bifurcation of the pulmonary trunk. The accessing nerves of the venous part of the heart passed into the nerve plexus of heart hilum at the heart base. Nerves approaching the heart extended epicardially and innervated the atria, interatrial septum and ventricles by five nerve subplexuses, i.e. left and middle dorsal, dorsal right atrial, ventral right and left atrial subplexuses. Numerous nerves accessed the arterial part of the arterial part of the heart hilum between the aorta and pulmonary trunk, and distributed onto ventricles by the left and right coronary subplexuses. Clusters of intrinsic cardiac neurons were concentrated at the heart base at the roots of pulmonary veins with some positioned on the infundibulum. The mean number of intrinsic neurons in the rabbit heart is not significantly affected by aging: 2200 ± 262 (range 1517–2788; aged) vs. 2118 ± 108 (range 1513–2822; juvenile). In conclusion, despite anatomic differences in the distribution of intrinsic cardiac neurons and the presence of well-developed nerve plexus within the heart hilum, the topography of all seven subplexuses of the intrinsic nerve plexus in rabbit heart corresponds rather well to other mammalian species, including humans. PMID:24527844
Reflex regulation of airway sympathetic nerves in guinea-pigs
Oh, Eun Joo; Mazzone, Stuart B; Canning, Brendan J; Weinreich, Daniel
2006-01-01
Sympathetic nerves innervate the airways of most species but their reflex regulation has been essentially unstudied. Here we demonstrate sympathetic nerve-mediated reflex relaxation of airway smooth muscle measured in situ in the guinea-pig trachea. Retrograde tracing, immunohistochemistry and electrophysiological analysis identified a population of substance P-containing capsaicin-sensitive spinal afferent neurones in the upper thoracic (T1–T4) dorsal root ganglia (DRG) that innervate the airways and lung. After bilateral vagotomy, atropine pretreatment and precontraction of the trachealis with histamine, nebulized capsaicin (10–60 μm) evoked a 63 ± 7% reversal of the histamine-induced contraction of the trachealis. Either the β-adrenoceptor antagonist propranolol (2 μm, administered directly to the trachea) or bilateral sympathetic nerve denervation of the trachea essentially abolished these reflexes (10 ± 9% and 6 ± 4% relaxations, respectively), suggesting that they were mediated primarily, if not exclusively, by sympathetic adrenergic nerve activation. Cutting the upper thoracic dorsal roots carrying the central processes of airway spinal afferents also markedly blocked the relaxations (9 ± 5% relaxation). Comparable inhibitory effects were observed following intravenous pretreatment with neurokinin receptor antagonists (3 ± 7% relaxations). These reflexes were not accompanied by consistent changes in heart rate or blood pressure. By contrast, stimulating the rostral cut ends of the cervical vagus nerves also evoked a sympathetic adrenergic nerve-mediated relaxation that were accompanied by marked alterations in blood pressure. The results indicate that the capsaicin-induced reflex-mediated relaxation of airway smooth muscle following vagotomy is mediated by sequential activation of tachykinin-containing spinal afferent and sympathetic efferent nerves innervating airways. This sympathetic nerve-mediated response may serve to oppose airway contraction induced by parasympathetic nerve activation in the airways. PMID:16581869
Minimally Invasive Treatment for a Sacral Tarlov Cyst Through Tubular Retractors.
Del Castillo-Calcáneo, Juan D; Navarro-Ramírez, Rodrigo; Nakhla, Jonathan; Kim, Eliana; Härtl, Roger
2017-12-01
Tarlov cysts (TC) are focal dilations of arachnoid and dura mater of the spinal posterior nerve root sheath that appear as cystic lesions of the nerve roots typically in the lower spine, especially in the sacrum, which can cause radicular symptoms when they increase in size and compress the nerve roots. Different open procedures have been described to treat TCs, but no minimally invasive procedures have been described to effectively address this pathology. A 29-year-old woman presented with right lower extremity pain and weakness. A magnetic resonance imaging scan demonstrated a lumbosacral TC that protruded through the right L5-S1 foramina. Through a small laminotomy, cyst drainage followed by neck ligation using a Scanlan modified technique through tubular retractors was performed. The patient recovered full motor function within the first days postoperatively and showed no signs of relapse at 6-month follow-up. Minimally invasive spine surgery through tubular retractors can be safely performed for successful excision and ligation of TC using a Scanlan modified technique. Copyright © 2017 Elsevier Inc. All rights reserved.
Innervation of the rabbit cardiac ventricles.
Pauziene, Neringa; Alaburda, Paulius; Rysevaite-Kyguoliene, Kristina; Pauza, Audrys G; Inokaitis, Hermanas; Masaityte, Aiste; Rudokaite, Gabriele; Saburkina, Inga; Plisiene, Jurgita; Pauza, Dainius H
2016-01-01
The rabbit is widely used in experimental cardiac physiology, but the neuroanatomy of the rabbit heart remains insufficiently examined. This study aimed to ascertain the architecture of the intrinsic nerve plexus in the walls and septum of rabbit cardiac ventricles. In 51 rabbit hearts, a combined approach involving: (i) histochemical acetylcholinesterase staining of intrinsic neural structures in total cardiac ventricles; (ii) immunofluorescent labelling of intrinsic nerves, nerve fibres (NFs) and neuronal somata (NS); and (iii) transmission electron microscopy of intrinsic ventricular nerves and NFs was used. Mediastinal nerves access the ventral and lateral surfaces of both ventricles at a restricted site between the root of the ascending aorta and the pulmonary trunk. The dorsal surface of both ventricles is supplied by several epicardial nerves extending from the left dorsal ganglionated nerve subplexus on the dorsal left atrium. Ventral accessing nerves are thicker and more numerous than dorsal nerves. Intrinsic ventricular NS are rare on the conus arteriosus and the root of the pulmonary trunk. The number of ventricular NS ranged from 11 to 220 per heart. Four chemical phenotypes of NS within ventricular ganglia were identified, i.e. ganglionic cells positive for choline acetyltransferase (ChAT), neuronal nitric oxide synthase (nNOS), and biphenotypic, i.e. positive for both ChAT/nNOS and for ChAT/tyrosine hydroxylase. Clusters of small intensely fluorescent cells are distributed within or close to ganglia on the root of the pulmonary trunk, but not on the conus arteriosus. The largest and most numerous intrinsic nerves proceed within the epicardium. Scarce nerves were found near myocardial blood vessels, but the myocardium contained only a scarce meshwork of NFs. In the endocardium, large numbers of thin nerves and NFs proceed along the bundle of His and both its branches up to the apex of the ventricles. The endocardial meshwork of fine NFs was approximately eight times denser than the myocardial meshwork. Adrenergic NFs predominate considerably in all layers of the ventricular walls and septum, whereas NFs of other neurochemical phenotypes were in the minority and their amount differed between the epicardium, myocardium and endocardium. The densities of NFs positive for nNOS and ChAT were similar in the epicardium and endocardium, but NFs positive for nNOS in the myocardium were eight times more abundant than NFs positive for ChAT. Potentially sensory NFs positive for both calcitonin gene-related peptide and substance P were sparse in the myocardial layer, but numerous in epicardial nerves and particularly abundant within the endocardium. Electron microscopic observations demonstrate that intrinsic ventricular nerves have a distinctive morphology, which may be attributed to remodelling of the peripheral nerves after their access into the ventricular wall. In conclusion, the rabbit ventricles display complex structural organization of intrinsic ventricular nerves, NFs and ganglionic cells. The results provide a basic anatomical background for further functional analysis of the intrinsic nervous system in the cardiac ventricles. © 2015 Anatomical Society.
Fosså, S D; Ous, S; Stenwig, A E; Lien, H H; Aass, N; Kaalhus, O
1990-01-01
118 Patients with non-seminomatous testicular cancer (NSTC) in clinical stage I (CSI = no metastases by clinical, radiological and biochemical evaluation) underwent retroperitoneal lymph node dissection (RLND). The operation was done unilaterally (95 patients) in peroperatively tumor-free patients or in those with limited metastatic growth. In 23 patients with more extensive metastases, bilateral RLND was performed. Metastatic lymph nodes were found in 36 patients, and these patients received 3-4 cycles of a cisplatin-based combination chemotherapy. If no metastases were detected the patients had no further treatment. The 5-year disease-free survival rate was 100%. 8 of 82 patients without detected metastases in the operation specimen relapsed (all outside the retroperitoneal space), but were cured by salvage chemotherapy. Solitary metastases were found in 11 patients, whereas 25 patients had more than 1 metastatic lymph node. The size of the largest metastasis ranged from 0.3 to 40 mm. Metastases from right-sided tumors were detected at all levels of the lumbar region, predominantly to the right of the inferior vena cava and/or within the interaortocaval space. Left-sided tumors metastasized to the upper two thirds of the lumbar space, only rarely crossing the midline. This anatomical distribution of metastatic lymph nodes indicates that the presacral sympathetic nerve plexus and the sympathetic nerve fibers around the aortic bifurcation can be spared from extensive resection in the majority of patients with NSTC in CSI. Unilateral RLND or other nerve-sparing techniques are thus possible, preserving antegrade ejaculation in greater than 80% of the patients. This RLND represents a reasonable alternative to the 'surveillance' policy in NSTC.
Avila-Martin, G; Galan-Arriero, I; Ferrer-Donato, A; Busquets, X; Gomez-Soriano, J; Escribá, P V; Taylor, J
2015-01-01
Recently, fatty acids have been shown to modulate sensory function in animal models of neuropathic pain. In this study, the antinociceptive effect of 2-hydroxyoleic acid (2-OHOA) was assessed following spared nerve injury (SNI) with reflex and cerebrally mediated behavioural responses. Initial antinociceptive behavioural screening of daily administration of 2-OHOA (400 mg/kg, p.o.) was assessed in Wistar rats by measuring hindlimb reflex hypersensitivity to von Frey and thermal plate stimulation up to 7 days after SNI, while its modulatory effect on lumbar spinal dorsal horn microglia reactivity was assessed with OX-42 immunohistochemistry. In vitro the effect of 2-OHOA (120 μM) on cyclooxygenase protein expression (COX-2/COX-1 ratio) in lipopolysaccharide-activated macrophage cells was tested with Western blot analysis. Finally, the effects of 2-OHOA treatment on the place escape aversion paradigm (PEAP) and the open-field-induced anxiety test were tested at 21 days following nerve injury compared with vehicle-treated sham and pregabalin-SNI (30 mg/kg, p.o.) control groups. Oral 2-OHOA significantly reduced ipsilateral mechanical and thermal hypersensitivity up to 7 days after SNI. Additionally 2-OHOA decreased the COX-2/COX-1 ratio in lipopolysaccharide-activated macrophage cells and OX-42 expression within the ipsilateral lumbar spinal dorsal horn 7 days after SNI. 2-OHOA significantly restored inner-zone exploration in the open-field test compared with the vehicle-treated sham group at 21 days after SNI. Oral administration of the modified omega 9 fatty acid, 2-OHOA, mediates antinociception and prevents open-field-induced anxiety in the SNI model in Wistar rats, which is mediated by an inhibition of spinal dorsal horn microglia activation. © 2014 European Pain Federation - EFIC®
Hemifacial Spasm and Neurovascular Compression
Lu, Alex Y.; Yeung, Jacky T.; Gerrard, Jason L.; Michaelides, Elias M.; Sekula, Raymond F.; Bulsara, Ketan R.
2014-01-01
Hemifacial spasm (HFS) is characterized by involuntary unilateral contractions of the muscles innervated by the ipsilateral facial nerve, usually starting around the eyes before progressing inferiorly to the cheek, mouth, and neck. Its prevalence is 9.8 per 100,000 persons with an average age of onset of 44 years. The accepted pathophysiology of HFS suggests that it is a disease process of the nerve root entry zone of the facial nerve. HFS can be divided into two types: primary and secondary. Primary HFS is triggered by vascular compression whereas secondary HFS comprises all other causes of facial nerve damage. Clinical examination and imaging modalities such as electromyography (EMG) and magnetic resonance imaging (MRI) are useful to differentiate HFS from other facial movement disorders and for intraoperative planning. The standard medical management for HFS is botulinum neurotoxin (BoNT) injections, which provides low-risk but limited symptomatic relief. The only curative treatment for HFS is microvascular decompression (MVD), a surgical intervention that provides lasting symptomatic relief by reducing compression of the facial nerve root. With a low rate of complications such as hearing loss, MVD remains the treatment of choice for HFS patients as intraoperative technique and monitoring continue to improve. PMID:25405219
U.S. Army Deployment Injury Surveillance Summary, CY 2007 1 January 2007 - 31 December 2007
2007-12-31
8217lim C>o ::::IJ:j Total Vertebral Column (VCI) Upper Lower Other, Unspecified InflammatIon and PaIn (Overuse) Joint IJoint Derangement...inflammation and pain (overuse) (51 percent), joint derangement (22 percent), and joint derangement with nerve pain (13 percent). • The spine/back (49 percent...13 percent). • The leading specific injury-related musculoskeletal conditions were inflammation and pain (overuse) involving the lumbar spine (16
[Retroperitoneal lymphadenectomy and disorders of ejaculation].
Deiana, G; Ranieri, A; Micheli, E; Peracchia, G; Canclini, L P; Sironi, D; Levorato, C A; Lembo, A
1999-09-01
Retrograde ejaculation is a frequent and permanent complication after bilateral retroperitoneal lymphadenectomy (RPLND). Seminal emission and ejaculation are primarily under sympathetic control. Several studies after RPLND in patients with nonseminomatous testis cancer proved the role of preservation of the efferent fibers originating from the lumbar sympathetic ganglia. Based on the results of anatomical studies, a modified unilateral operative technique and nerve-sparing approach permit to preserve normal anterograde ejaculation without reduction of long-term survival.
Lumbar plexus block using high-pressure injection leads to contralateral and epidural spread.
Gadsden, Jeff C; Lindenmuth, Danielle M; Hadzic, Admir; Xu, Daquan; Somasundarum, Lakshmanasamy; Flisinski, Kamil A
2008-10-01
The main advantage of lumbar plexus block over neuraxial anesthesia is unilateral blockade; however, the relatively common occurrence of bilateral spread (up to 27%) makes this advantage unpredictable. The authors hypothesized that high injection pressures during lumbar plexus block carry a higher risk of bilateral or neuraxial anesthesia. Eighty patients undergoing knee arthroscopy (age 18-65 yr; American Society of Anesthesiologists physical status I or II) during a standard, nerve stimulator-guided lumbar plexus block using 35 ml mepivacaine, 1.5%, were scheduled to be studied. Patients were randomly assigned to receive either a low-pressure (< 15 psi) or a high-pressure (> 20 psi) injection, as assessed by an inline injection pressure monitor (BSmart; Concert Medical LLC, Norwell, MA). The block success rate and the presence of bilateral sensory and/or motor blockade were assessed. An interim analysis was performed at n = 20 after an unexpectedly high number of patients had neuraxial spread, necessitating early termination of the study. Five of 10 patients (50%) in the high-pressure group had a neuraxial block with a dermatomal sensory level T10 or higher. In contrast, no patient in the low-pressure group (n = 10) had evidence of neuraxial spread. Moreover, 6 patients (60%) in the high-pressure group demonstrated bilateral sensory blockade in the femoral distribution, whereas no patient in the low-pressure group had evidence of a bilateral femoral block. Injection of local anesthetic with high injection pressure (> 20 psi) during lumbar plexus block commonly results in unwanted bilateral blockade and is associated with high risk of neuraxial blockade.
Clinical Evaluation of Targeting Accuracy of Gamma Knife Radiosurgery in Trigeminal Neuralgia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massager, Nicolas; Abeloos, Laurence; Devriendt, Daniel
2007-12-01
Purpose: The efficiency of radiosurgery is related to its highly precise targeting. We assessed clinically the targeting accuracy of radiosurgical treatment with the Leksell Gamma Knife for trigeminal neuralgia. We also studied the applied radiation dose within the area of focal contrast enhancement on the trigeminal nerve root following radiosurgery. Methods and Materials: From an initial group of 78 patients with trigeminal neuralgia treated with gamma knife radiosurgery using a 90-Gy dose, we analyzed a subgroup of 65 patients for whom 6-month follow-up MRI showed focal contrast enhancement of the trigeminal nerve. Follow-up MRI was spatially coregistered to the radiosurgicalmore » planning MRI. Target accuracy was assessed from deviation of the coordinates of the intended target compared with the center of enhancement on postoperative MRI. Radiation dose delivered at the borders of contrast enhancement was evaluated. Results: The median deviation of the coordinates between the intended target and the center of contrast enhancement was 0.91 mm in Euclidean space. The radiation doses fitting within the borders of the contrast enhancement of the trigeminal nerve root ranged from 49 to 85 Gy (median value, 77 {+-} 8.7 Gy). Conclusions: The median deviation found in clinical assessment of gamma knife treatment for trigeminal neuralgia is low and compatible with its high rate of efficiency. Focal enhancement of the trigeminal nerve after radiosurgery occurred in 83% of our patients and was not associated with clinical outcome. Focal enhancement borders along the nerve root fit with a median dose of 77 {+-} 8.7 Gy.« less
Gemelli-obturator complex in the deep gluteal space: an anatomic and dynamic study.
Balius, Ramon; Susín, Antonio; Morros, Carles; Pujol, Montse; Pérez-Cuenca, Dolores; Sala-Blanch, Xavier
2018-06-01
To investigate the behavior of the sciatic nerve during hip rotation at subgluteal space. Sonographic examination (high-resolution ultrasound machine at 5.0-14 MHZ) of the gemelli-obturator internus complex following two approaches: (1) a study on cadavers and (2) a study on healthy volunteers. The cadavers were examined in pronation, pelvis-fixed position by forcing internal and external rotations of the hip with the knee in 90° flexion. Healthy volunteers were examined during passive internal and external hip rotation (prone position; lumbar and pelvic regions fixed). Subjects with a history of major trauma, surgery or pathologies affecting the examined regions were excluded. The analysis included eight hemipelvis from six fresh cadavers and 31 healthy volunteers. The anatomical study revealed the presence of connective tissue attaching the sciatic nerve to the structures of the gemellus-obturator system at deep subgluteal space. The amplitude of the nerve curvature during rotating position was significantly greater than during resting position. During passive internal rotation, the sciatic nerve of both cadavers and healthy volunteers transformed from a straight structure to a curved structure tethered at two points as the tendon of the obturator internus contracted downwards. Conversely, external hip rotation caused the nerve to relax. Anatomically, the sciatic nerve is closely related to the gemelli-obturator internus complex. This relationship results in a reproducible dynamic behavior of the sciatic nerve during passive hip rotation, which may contribute to explain the pathological mechanisms of the obturator internal gemellus syndrome.
Shurtleff, David B.; Hayden, Patricia W.; Chapman, Warren H.; Broy, Arline B.; Hill, Margaret L.
1975-01-01
Problems of ninety-eight patients with myelodysplasia, ages 13 to 72, were reviewed. They were grouped as follows: Those having thoracic and high lumbar level (L2↑) lesions and confined to wheel chairs, those with intermediate paralysis (L3-5 nerve roots) as walking with aids and those with less paralysis (S1↓) as fully ambulatory. Fifty-two percent of the L2↑ and only 15 percent of of the less severely paralyzed patients were retarded below an IQ level 70 (P<0.01). Thirty-six patients (62 percent) were fully and 26 partially, but appropriately, self-sufficient. Thirty-six patients were found in some form of dependent care. Two of the 71 more paralyzed patients (L3-5 and L2↑) and five of the 28 S1↓ patients were “naturally continent” but reported stress incontinence of urine. Thirteen of 23 female and five of 28 male patients between ages 16 and 72 years reported sexual activity and accounted for 17 normal offspring. All 23 retarded patients were in some form of custodial care. Dependency among the normal intellect patients could be attributed to neglect of physically deforming complications and emotional disorders, primarily low self-esteem centering around social and sexual identity problems associated with excrement soiling. PMID:807042
Finding sacral: Developmental evolution of the axial skeleton of odontocetes (Cetacea).
Buchholtz, Emily A; Gee, Jessica K
2017-07-01
Axial morphology was dramatically transformed during the transition from terrestrial to aquatic environments by archaeocete cetaceans, and again during the subsequent odontocete radiation. Here, we reconstruct the sequence of developmental events that underlie these phenotypic transitions. Archaeocete innovations include the loss of primaxial/abaxial interaction at the sacral/pelvic articulation and the modular dissociation of the fluke from the remainder of the tail. Odontocetes subsequently integrated lumbar, sacral, and anterior caudal vertebrae into a single torso module, and underwent multiple series-specific changes in vertebral count. The conservation of regional proportions despite regional fluctuations in count strongly argues that rates of somitogenesis can vary along the column and that segmentation was dissociated from regionalization during odontocete evolution. Conserved regional proportions also allow the prediction of the location and count of sacral homologs within the torso module. These predictions are tested with the analysis of comparative pudendal nerve root location and geometric morphometrics. We conclude that the proportion of the column represented by the sacral series has been conserved, and that its vertebrae have changed in count and relative centrum length in parallel with other torso vertebrae. Although the sacral series of odontocetes is de-differentiated, it is not de-regionalized. © 2017 Wiley Periodicals, Inc.
Corenman, Donald S; Gillard, Douglas M; Dornan, Grant J; Strauch, Eric L
2013-09-15
A retrospective observational study. To assess clinical outcomes, perioperative complications, revision surgery rates, and recombinant human bone morphogenetic protein-2 (BMP-2)-related osteolysis, heterotopic bone, and unexplained postoperative radiculitis (BMPP) in a group of patients treated with BMP-2-augmented transforaminal lumbar interbody fusion (bTLIF) for the homogeneous diagnosis of discogenic pain syndrome (DPS) and to put forth the algorithm used to make the diagnosis. There is a paucity of literature describing outcomes of TLIF for the homogeneous diagnosis of DPS, an old but controversial member of the lumbar degenerative disease family. The registry from a single surgeon was queried for patients who had undergone bTLIF for the homogeneous diagnosis of DPS, which was made via specific diagnostic algorithm. Clinical outcomes were determined by analyzing point improvement from typical outcome questionnaires and the data from Patient Satisfaction and Return to Work questionnaires. Independent record review was used to assess all outcomes. Eighty percent of the cohort (36/45) completed preoperative and postoperative outcome questionnaires at an average follow-up of 41.9 ± 11.9 months, which demonstrated significant clinical improvement: Oswestry Disability Index = 16.4 (P < 0.0001), 12-Item Short Form Health Survey physical component summary score = 10.0 (P < 0.0001), and a Numeric Rating Scale for back pain = 2.3 (P < 0.0001). The median patient satisfaction score was 9.0 (10 = complete satisfaction), and 84.4% (27/32) of the cohort were able to return to their preoperative job, with or without modification. There were 3 perioperative complications, 4 revision surgical procedures, and 11 cases of benign BMPP. There were no incidents of the intraoperative dural tears or nerve root injury, and litigation involvement (11/36, P > 0.17), preoperative depression (15/36, P > 0.19) or prior discectomy/decompression (14/36, P < 0.37) was not a predictor of outcomes. Although limited by retrospective design and small cohort, the results of this investigation suggest that bTLIF is a reasonable treatment option for patients who experience DPS and affords high patient satisfaction. A larger study is needed to confirm these findings. 4.
Barousse, Rafael; Socolovsky, Mariano; Luna, Antonio
2017-01-01
Traumatic conditions of peripheral nerves and plexus have been classically evaluated by morphological imaging techniques and electrophysiological tests. New magnetic resonance imaging (MRI) studies based on 3D fat-suppressed techniques are providing high accuracy for peripheral nerve injury evaluation from a qualitative point of view. However, these techniques do not provide quantitative information. Diffusion weighted imaging (DWI) and diffusion tensor imaging (DTI) are functional MRI techniques that are able to evaluate and quantify the movement of water molecules within different biological structures. These techniques have been successfully applied in other anatomical areas, especially in the assessment of central nervous system, and now are being imported, with promising results for peripheral nerve and plexus evaluation. DWI and DTI allow performing a qualitative and quantitative peripheral nerve analysis, providing valuable pathophysiological information about functional integrity of these structures. In the field of trauma and peripheral nerve or plexus injury, several derived parameters from DWI and DTI studies such as apparent diffusion coefficient (ADC) or fractional anisotropy (FA) among others, can be used as potential biomarkers of neural damage providing information about fiber organization, axonal flow or myelin integrity. A proper knowledge of physical basis of these techniques and their limitations is important for an optimal interpretation of the imaging findings and derived data. In this paper, a comprehensive review of the potential applications of DWI and DTI neurographic studies is performed with a focus on traumatic conditions, including main nerve entrapment syndromes in both peripheral nerves and brachial or lumbar plexus. PMID:28932698
Frahm, Ken Steffen; Hennings, Kristian; Vera-Portocarrero, Louis; Wacnik, Paul W; Mørch, Carsten Dahl
2016-08-01
Peripheral nerve field stimulation (PNFS) is a potential treatment for chronic low-back pain. Pain relief using PNFS is dependent on activation of non-nociceptive Aβ-fibers. However, PNFS may also activate muscles, causing twitches and discomfort. In this study, we developed a mathematical model, to investigate the activation of sensory and motor nerves, as well as direct muscle fiber activation. The extracellular field was estimated using a finite element model based on the geometry of CT scanned lumbar vertebrae. The electrode was modeled as being implanted to a depth of 10-15 mm. Three implant directions were modeled; horizontally, vertically, and diagonally. Both single electrode and "between-lead" stimulation between contralateral electrodes were modeled. The extracellular field was combined with models of sensory Aβ-nerves, motor neurons and muscle fibers to estimate their activation thresholds. The model showed that sensory Aβ fibers could be activated with thresholds down to 0.563 V, and the lowest threshold for motor nerve activation was 7.19 V using between-lead stimulation with the cathode located closest to the nerves. All thresholds for direct muscle activation were above 500 V. The results suggest that direct muscle activation does not occur during PNFS, and concomitant motor and sensory nerve fiber activation are only likely to occur when using between-lead configuration. Thus, it may be relevant to investigate the location of the innervation zone of the low-back muscles prior to electrode implantation to avoid muscle activation. © 2016 International Neuromodulation Society.
Otsuka, M; Yoshioka, K; Yanagisawa, M; Suzuki, H; Zhao, F Y; Guo, J Z; Hosoki, R; Kurihara, T
1995-07-01
Tachykinin NK1 receptor antagonists were used to explore the physiological functions of substance P (SP) and neurokinin A (NKA). Pharmacological profiles of three NK1 receptor antagonists, GR71251, GR82334, and RP 67580, were examined in the isolated spinal cord preparation of the neonatal rat. These tachykinin receptor antagonists exhibited considerable specificities and antagonized the actions of both SP and NKA to induce the depolarization of ventral roots. Electrical stimulation of the saphenous nerve with C-fiber strength evoked a depolarization lasting about 30 s of the ipsilateral L3 ventral root. This response, which is referred to as saphenous-nerve-evoked slow ventral root potential (VRP), was depressed by these NK1 receptor antagonists. In contrast, the saphenous-nerve-evoked slow VRP was potentiated by application of a mixture of peptidase inhibitors, including thiorphan, actinonin, and captopril in the presence of naloxone, but not after further addition of GR71251. Likewise, in the isolated coeliac ganglion of the guinea pig, electrical stimulation of the mesenteric nerves evoked in some ganglionic cells slow excitatory postsynaptic potentials (EPSPs), which were depressed by GR71251 and potentiated by peptidase inhibitors. These results further support the notion that SP and NKA serve as neurotransmitters producing slow EPSPs in the neonatal rat spinal cord and guinea pig prevertebral ganglia.
Liu, Yuzhou; Lao, Jie; Gao, Kaiming; Gu, Yudong; Zhao, Xin
2014-01-01
Nerve transfer is a valuable surgical technique in peripheral nerve reconstruction, especially in brachial plexus injuries. Phrenic nerve transfer for elbow flexion was proved to be one of the optimal procedures in the treatment of brachial plexus injuries in the study of Gu et al. The aim of this study was to compare phrenic nerve transfers with and without nerve graft for elbow flexion after brachial plexus injury. A retrospective review of 33 patients treated with phrenic nerve transfer for elbow flexion in posttraumatic global root avulsion brachial plexus injury was carried out. All the 33 patients were confirmed to have global root avulsion brachial plexus injury by preoperative and intraoperative electromyography (EMG), physical examination and especially by intraoperative exploration. There were two types of phrenic nerve transfers: type1 - the phrenic nerve to anterolateral bundle of anterior division of upper trunk (14 patients); type 2 - the phrenic nerve via nerve graft to anterolateral bundle of musculocutaneous nerve (19 patients). Motor function and EMG evaluation were performed at least 3 years after surgery. The efficiency of motor function in type 1 was 86%, while it was 84% in type 2. The two groups were not statistically different in terms of Medical Research Council (MRC) grade (p=1.000) and EMG results (p=1.000). There were seven patients with more than 4 month's delay of surgery, among whom only three patients regained biceps power to M3 strength or above (43%). A total of 26 patients had reconstruction done within 4 months, among whom 25 patients recovered to M3 strength or above (96%). There was a statistically significant difference of motor function between the delay of surgery within 4 months and more than 4 months (p=0.008). Phrenic nerve transfers with and without nerve graft for elbow flexion after brachial plexus injury had no significant difference for biceps reinnervation according to MRC grading and EMG. A delay of the surgery after the 4 months might imply a bad prognosis for the recovery of the function. Copyright © 2012 Elsevier Ltd. All rights reserved.
Upregulation of Ryk expression in rat dorsal root ganglia after peripheral nerve injury.
Li, Xin; Li, Yao-hua; Yu, Shun; Liu, Yaobo
2008-10-22
To study changes of Ryk expression in dorsal root ganglia (DRG) after peripheral nerve injury, we set up an animal model of unilateral sciatic nerve lesioned rats. Changes of Ryk protein expression in DRG neurons after unilateral sciatic nerve injury were investigated by immunostaining. Changes of Ryk mRNA were also tested by semi-quantitative PCR concurrently. We found, both at the level of protein and mRNA, that Ryk could be induced in cells of ipsilateral DRG after unilateral sciatic nerve lesion. Further investigation by co-immunostaining confirmed that the Ryk-immunoreactive (Ryk-IR) cells were NeuN-immunoreactive (NeuN-IR) neurons of DRG. We also showed the pattern of Ryk induction in DRG neurons after sciatic nerve injury: the number of Ryk IR neurons peaked at 2 weeks post-lesion and decreased gradually by 3 weeks post-lesion. The proportions of different sized Ryk IR neurons were also observed and counted at various stages after nerve lesion. Analysis of Ryk mRNA by RT-PCR showed the same induction pattern as by immunostaining. Ryk mRNA was not expressed in normal or contralateral DRG, but was expressed 1, 2 and 3 weeks post-lesion in the ipsilateral DRG. Ryk mRNA levels increased slightly from 1 to 2 weeks, decreased then by 3 weeks post-lesion. These results indicate that Ryk might be involved in peripheral nerve plasticity after injury. This is a novel function apart from its well-known fundamental activity as a receptor mediating axon guidance and outgrowth.
el Barzouhi, Abdelilah; Vleggeert-Lankamp, Carmen L A M; Lycklama à Nijeholt, Geert J; Van der Kallen, Bas F; van den Hout, Wilbert B; Koes, Bart W; Peul, Wilco C
2014-01-01
Patients with sciatica frequently complain about associated back pain. It is not known whether there are prognostic relevant differences in Magnetic Resonance Imaging (MRI) findings between sciatica patients with and without disabling back pain. The study population contained patients with sciatica who underwent a baseline MRI to assess eligibility for a randomized trial designed to compare the efficacy of early surgery with prolonged conservative care for sciatica. Two neuroradiologists and one neurosurgeon independently evaluated all MR images. The MRI readers were blinded to symptom status. The MRI findings were compared between sciatica patients with and without disabling back pain. The presence of disabling back pain at baseline was correlated with perceived recovery at one year. Of 379 included sciatica patients, 158 (42%) had disabling back pain. Of the patients with both sciatica and disabling back pain 68% did reveal a herniated disc with nerve root compression on MRI, compared to 88% of patients with predominantly sciatica (P<0.001). The existence of disabling back pain in sciatica at baseline was negatively associated with perceived recovery at one year (Odds ratio [OR] 0.32, 95% Confidence Interval 0.18-0.56, P<0.001). Sciatica patients with disabling back pain in absence of nerve root compression on MRI at baseline reported less perceived recovery at one year compared to those with predominantly sciatica and nerve root compression on MRI (50% vs 91%, P<0.001). Sciatica patients with disabling low back pain reported an unfavorable outcome at one-year follow-up compared to those with predominantly sciatica. If additionally a clear herniated disc with nerve root compression on MRI was absent, the results were even worse.
Influence of Low Back Pain and Prognostic Value of MRI in Sciatica Patients in Relation to Back Pain
el Barzouhi, Abdelilah; Vleggeert-Lankamp, Carmen L. A. M.; Lycklama à Nijeholt, Geert J.; Van der Kallen, Bas F.; van den Hout, Wilbert B.; Koes, Bart W.; Peul, Wilco C.
2014-01-01
Background Patients with sciatica frequently complain about associated back pain. It is not known whether there are prognostic relevant differences in Magnetic Resonance Imaging (MRI) findings between sciatica patients with and without disabling back pain. Methods The study population contained patients with sciatica who underwent a baseline MRI to assess eligibility for a randomized trial designed to compare the efficacy of early surgery with prolonged conservative care for sciatica. Two neuroradiologists and one neurosurgeon independently evaluated all MR images. The MRI readers were blinded to symptom status. The MRI findings were compared between sciatica patients with and without disabling back pain. The presence of disabling back pain at baseline was correlated with perceived recovery at one year. Results Of 379 included sciatica patients, 158 (42%) had disabling back pain. Of the patients with both sciatica and disabling back pain 68% did reveal a herniated disc with nerve root compression on MRI, compared to 88% of patients with predominantly sciatica (P<0.001). The existence of disabling back pain in sciatica at baseline was negatively associated with perceived recovery at one year (Odds ratio [OR] 0.32, 95% Confidence Interval 0.18–0.56, P<0.001). Sciatica patients with disabling back pain in absence of nerve root compression on MRI at baseline reported less perceived recovery at one year compared to those with predominantly sciatica and nerve root compression on MRI (50% vs 91%, P<0.001). Conclusion Sciatica patients with disabling low back pain reported an unfavorable outcome at one-year follow-up compared to those with predominantly sciatica. If additionally a clear herniated disc with nerve root compression on MRI was absent, the results were even worse. PMID:24637890
Atlantoaxial Fusion Using C1 Sublaminar Cables and C2 Translaminar Screws.
Larsen, Alexandra M Giantini; Grannan, Benjamin L; Koffie, Robert M; Coumans, Jean-Valéry
2018-06-01
Atlantoaxial instability, which can arise in the setting of trauma, degenerative diseases, and neoplasm, is often managed surgically with C1-C2 arthrodesis. Classical C1-C2 fusion techniques require placement of instrumentation in close proximity to the vertebral artery and C2 nerve root. To report a novel C1-C2 fusion technique that utilizes C2 translaminar screws and C1 sublaminar cables to decrease the risk of injury to the vertebral artery and C2 nerve root. To facilitate fixation to the atlas, while minimizing the risk of injury to the vertebral artery and to the C2 nerve root, we sought to determine the feasibility of using a soft cable around the C1 arch and affixing it to a rod connected to C2 laminar screws. We reviewed our experience in 3 patients. We used this technique in patients in whom we anticipated difficult C1 screw placement. Three patients were identified through a review of the senior author's cases. Atlantoaxial instability was associated with trauma in 2 patients and chronic degenerative changes in 1 patient. Common symptoms on presentation included pain and limited range of motion. All patients underwent C1-C2 fusion with C2 translaminar screws with sublaminar cable harnessing of the posterior arch of C1. There were no reports of postoperative complications or hardware failure. We demonstrate a novel, technically straightforward approach for C1-C2 fusion that minimizes risk to the vertebral artery and to the C2 nerve root, while still allowing for semirigid fixation in instances of both traumatic and chronic degenerative atlantoaxial instability.
[Usefulness of curved coronal MPR imaging for the diagnosis of cervical radiculopathy].
Inukai, Chikage; Inukai, Takashi; Matsuo, Naoki; Shimizu, Ikuo; Goto, Hisaharu; Takagi, Teruhide; Takayasu, Masakazu
2010-03-01
In surgical treatment of cervical radiculopathy, localization of the responsible lesions by various imaging modalities is essential. Among them, MRI is non-invasive and plays a primary role in the assessment of spinal radicular symptoms. However, demonstration of nerve root compression is sometimes difficult by the conventional methods of MRI, such as T1 weighted (T1W) and T2 weighted (T2W) sagittal or axial images. We have applied a new technique of curved coronal multiplanar reconstruction (MPR) imaging for the diagnosis of cervical radiculopathy. Ten patients (4 male, 6 female) with ages between 31 and 79 year-old, who had clinical diagnosis of cervical radiculopathy, were included in this study. Seven patients underwent anterior key-hole foraminotomy to decompress the nerve root with successful results. All the patients had 3D MRI studies, such as true fast imaging with steady-state precession (FISP), 3DT2W sampling perfection with application optimized contrasts using different fillip angle evolution (SPACE), and 3D multi-echo data image combination (MEDIC) imagings in addition to the routine MRI (1.5 T Avanto, Siemens, Germany) with a phased array coil. The curved coronal MPR images were produced from these MRI data using a workstation. The nerve root compression was diagnosed by curved coronal MPR images in all the patients. The compression sites were compatible with those of the operative findings in 7 patients, who underwent surgical treatment. The MEDIC imagings were the most demonstrable to visualize the nerve root, while the 3D-space imagings were the next. The curved coronal MPR imaging is useful for the diagnosis of accurate localization of the compressing lesions in patients with cervical radiculopathy.
Xiao, Lizu; Li, Jie; Li, Disen; Yan, Dong; Yang, Jun; Wang, Daniel; Cheng, Jianguo
2015-09-01
Catastrophic complications have been reported for selective cervical nerve root block (SCNRB) or pulsed radiofrequency (PRF) via an anterolateral transforaminal approach. A posterior approach to these procedures under computed tomography guidance has been reported. Here, we report the clinical outcomes of 42 patients with chronic cervical radicular pain (CCRP) treated with a combination of SCNRB and PRF through a posterior approach under fluoroscopy guidance. We retrospectively reviewed the clinical outcomes of 42 consecutive patients with CCRP who received a combination of SCNRB and PRF through a posterior approach under fluoroscopy guidance. The thresholds of electrical stimulation and imaging of the nerve roots after contrast injection were used to evaluate the accuracy of needle placement. The numeric rating scale was used to measure the pain and numbness levels as primary clinical outcomes, which were evaluate in scheduled follow-up visits of up to 3 months. A total of 53 procedures were performed on 42 patients at the levels of C5-C8. All patients reported concordant paresthesia in response to electrical stimulation. The average sensory and motor thresholds of stimulation were 0.28 ± 0.14 and 0.36 ± 0.14 V, respectively. Injection of nonionic contrast resulted in excellent spread along the target nerve root in large majority of the procedures. The numeric rating scale scores for both pain and numbness improved significantly at 1 day, 1 week, and 1 and 3 months after the treatment. No serious adverse effects were observed in any of the patients. The posterior approach to combined SCNRB and PRF under fluoroscopy guidance appears to be safe and efficacious in the management of CCRP. Copyright © 2015 Elsevier Inc. All rights reserved.
Ablation of the basivertebral nerve for treatment of back pain: a clinical study.
Becker, Stephan; Hadjipavlou, Alexander; Heggeness, Michael H
2017-02-01
Lumbar axial back pain arising from degenerative disc disease continues to be a challenging clinical problem whether treated with nonsurgical management, local injection, or motion segment stabilization and fusion. The purpose of this study was to determine the efficacy of intraosseous basivertebral nerve (BVN) ablation for the treatment of chronic lumbar back pain in a clinical setting. Patients meeting predefined inclusion or exclusion criteria were enrolled in a study using radiofrequency energy to ablate the BVN within the vertebral bodies adjacent to the diagnosed level. Patients were evaluated at 6 weeks, and 3, 6, and 12 months postoperatively. Seventeen patients with chronic, greater than 6 months, low back pain unresponsive to at least 3 months of conservative care were enrolled. Sixteen patients were treated successfully following screening using magnetic resonance imaging finding of Modic type I or II changes and positive confirmatory discography to determine the affected levels. The treated population consisted of eight male and eight female patients; the mean age was 48 years (34-66 years). Self-reported outcome measures were collected prospectively at each follow-up interval. Measures included the Oswestry Disability Index (ODI), visual analogue scale score, and Medical Outcomes Trust 36-Item Short-Form Health Survey (SF-36). This is an industry-sponsored study to evaluate the effectiveness of intraosseous nerves in the treatment of chronic back pain. Consented and enrolled patients underwent ablation of the BVN using radiofrequency energy (INTRACEPT System, Relievant Medsystems, Inc, Redwood City, CA, USA) guided in a transpedicular or extrapedicular approach. Preoperative planning determined targeted ablation zone and safety zones. Mean baseline ODI of the treated cohort was 52±13, decreasing to a mean of 23±21 at 3 months follow-up (p<.001). The statistically significant improvement in ODI observed at 3 months was maintained through the 12-month follow-up. The mean baseline visual analogue scale score decreased from 61±22 to 45±35 at 3 months follow-up (p<.05), and the mean baseline physical component summary increased from 34.5±6.5 to 41.7±12.4 at 3 months follow-up (p=.03). Ablation of the BVN for the treatment of chronic lumbar back pain significantly improves patients' self-reported outcome early in the follow-up period; the improvement persisted throughout the 1-year study period. Published by Elsevier Inc.
Proschek, Dirk; Kafchitsas, K.; Rauschmann, M. A.; Kurth, A. A.; Vogl, T. J.
2008-01-01
Interventional procedures are associated with high radiation doses for both patients and surgeons. To reduce the risk from ionizing radiation, it is essential to minimize radiation dose. This prospective study was performed to evaluate the effectiveness in reducing radiation dose during facet joint injection in the lumbar spine and to evaluate the feasibility and possibilities of the new real time image guidance system SabreSource™. A total of 60 patients, treated with a standardized injection therapy of the facet joints L4–L5 or L5–S1, were included in this study. A total of 30 patients were treated by fluoroscopy guidance alone, the following 30 patients were treated using the new SabreSource™ system. Thus a total of 120 injections to the facet joints were performed. Pain, according to the visual analogue scale (VAS), was documented before and 6 h after the intervention. Radiation dose, time of radiation and the number of exposures needed to place the needle were recorded. No significant differences concerning age (mean age 60.5 years, range 51–69), body mass index (mean BMI 26.2, range 22.2–29.9) and preoperative pain (VAS 7.9, range 6–10) were found between the two groups. There was no difference in pain reduction between the two groups (60 vs. 61.5%; P = 0.001) but the radiation dose was significantly smaller with the new SabreSource™ system (reduction of radiation dose 32.7%, P = 0.01; reduction of mean entrance surface dose 32.3%, P = 0.01). The SabreSource™ System significantly reduced the radiation dose received during the injection therapy of the lumbar facet joints. With minimal effort for the setup at the beginning of a session, the system is easy to handle and can be helpful for other injection therapies (e.g. nerve root block therapies). PMID:19082641
Spinal deformity in patients with Sotos syndrome (cerebral gigantism).
Tsirikos, Athanasios I; Demosthenous, Nestor; McMaster, Michael J
2009-04-01
Retrospective review of a case series. To present the clinical characteristics and progression of spinal deformity in patients with Sotos syndrome. There is limited information on the development of spinal deformity and the need for treatment in this condition. The medical records and spinal radiographs of 5 consecutive patients were reviewed. All patients were followed to skeletal maturity (mean follow-up: 6.6 y). The mean age at diagnosis of spinal deformity was 11.9 years (range: 5.8 to 14.5) with 4 patients presenting in adolescence. The type of deformity was not uniform. Two patients presented in adolescence with relatively small and nonprogressive thoracolumbar and lumbar scoliosis, which required observation but no treatment until the end of spinal growth. Three patients underwent spinal deformity correction at a mean age of 11.7 years (range: 6 to 15.4). The first patient developed a double structural thoracic and lumbar scoliosis and underwent a posterior spinal arthrodesis extending from T3 to L4. Five years later, she developed marked degenerative changes at the L4/L5 level causing symptomatic bilateral lateral recess stenosis and affecting the L5 nerve roots. She underwent spinal decompression at L4/L5 and L5/S1 levels followed by extension of the fusion to the sacrum. The second patient developed a severe thoracic kyphosis and underwent a posterior spinal arthrodesis. The remaining patient presented at the age of 5.9 years with a severe thoracic kyphoscoliosis and underwent a 2-stage antero-posterior spinal arthrodesis. The development of spinal deformity is a common finding in children with Sotos syndrome and in our series it occurred in adolescence in 4 out of 5 patients. There is significant variability on the pattern of spine deformity, ranging from a scoliosis through kyphoscoliosis to a pure kyphosis, and also the age at presentation and need for treatment.
Jaumard, N V; Udupa, J K; Siegler, S; Schuster, J M; Hilibrand, A S; Hirsch, B E; Borthakur, A; Winkelstein, B A
2013-10-01
For some patients with radiculopathy a source of nerve root compression cannot be identified despite positive electromyography (EMG) evidence. This discrepancy hampers the effective clinical management for these individuals. Although it has been well-established that tissues in the cervical spine move in a three-dimensional (3D) manner, the 3D motions of the neural elements and their relationship to the bones surrounding them are largely unknown even for asymptomatic normal subjects. We hypothesize that abnormal mechanical loading of cervical nerve roots during pain-provoking head positioning may be responsible for radicular pain in those cases in which there is no evidence of nerve root compression on conventional cervical magnetic resonance imaging (MRI) with the neck in the neutral position. This biomechanical imaging proof-of-concept study focused on quantitatively defining the architectural relationships between the neural and bony structures in the cervical spine using measurements derived from 3D MR images acquired in neutral and pain-provoking neck positions for subjects: (1) with radicular symptoms and evidence of root compression by conventional MRI and positive EMG, (2) with radicular symptoms and no evidence of root compression by MRI but positive EMG, and (3) asymptomatic age-matched controls. Function and pain scores were measured, along with neck range of motion, for all subjects. MR imaging was performed in both a neutral position and a pain-provoking position. Anatomical architectural data derived from analysis of the 3D MR images were compared between symptomatic and asymptomatic groups, and the symptomatic groups with and without imaging evidence of root compression. Several differences in the architectural relationships between the bone and neural tissues were identified between the asymptomatic and symptomatic groups. In addition, changes in architectural relationships were also detected between the symptomatic groups with and without imaging evidence of nerve root compression. As demonstrated in the data and a case study the 3D stress MR imaging approach provides utility to identify biomechanical relationships between hard and soft tissues that are otherwise undetected by standard clinical imaging methods. This technique offers a promising approach to detect the source of radiculopathy to inform clinical management for this pathology. Copyright © 2013 Elsevier Ltd. All rights reserved.
Influence of oculomotor nerve afferents on central endings of primary trigeminal fibers.
Manni, E; Bortolami, R; Pettorossi, V E; Lucchi, M L; Callegari, E; Draicchio, F
1987-12-01
Painful fibers running in the third nerve and originating from the ophthalmic trigeminal area send their central projections at level of substantia gelatinosa of nucleus caudalis trigemini. The central endings of these fibers form axoaxonic synapses with trigeminal fibers entering the brain stem through the trigeminal root. The effect of electrical stimulation of the third nerve central stump on the central endings of trigeminal afferent fibers consists in an increased excitability, possibly resulting in a presynaptic inhibition. This inhibitory influence is due to both direct and indirect connections of the third nerve afferent fibers with the trigeminal ones.
[Symptom analysis of 537 patients with neurogenic intrapelvic syndrome].
Masahiro, Takano; Shunji, Ogata; Ryoichi, Nozaki; Saburo, Hisano; Yasumitsu, Saiki; Mitsuko, Fukunaga; Shota, Takano; Masafumi, Tanaka; Shinichiro, Magata; Yasushi, Nakamura; Gentaro, Sakata; Kazutaka, Yamada
2010-12-01
To characterize the symptoms of neurogenic intrapelvic syndrome and the pathogenic mechanisms. A total of 537 patients with neurogenic intrapelvic syndrome were treated in the Takano Hospital between 2001 and 2005. Clinical data were analyzed retrospectively. The mean age was 58.5 years old. There were 205 males and 332 females. There were 80 patients(14.9%) who presented with only one symptom with anorectal pain being the most common one (43.8%, 35/80). One hundred and fifty-six(29.1%) patients had two symptoms with anorectal pain and difficult evacuation being the most common combination (26.3%, 41/156). There were 144 patients (26.8%) complained of 3 symptoms and the most common combination was anorectal pain, difficult evacuation, and abdominal discomfort (30.0%, 43/144). A combination of 4 symptoms was reported in 105 patients(19.6%) with the combination of anorectal pain, incontinence, abdominal discomfort, and lumbar discomfort being the most often(65.7%, 69/105). In addition, there were 52 patients(9.7%) who had above 5 symptoms simultaneously. The frequencies of the 5 symptoms were 73.6% for anorectal pain, 27.9% for incontinence, 69.6% for difficult evacuation, 55.3% for abdominal discomfort, and 53.6% for lumbar discomfort. Symptomatology of neurogenic intrapelvic syndrome is complicated. The pathogenic mechanism may be related to concurrent dysfunction of sacral nerve and pelvic splanchnic nerve.
Hayashi, Kazuko
2016-12-01
Recently, NuVasive NV-M5 nerve monitoring system, a new transcranial motor-evoked potential (TcMEP) monitor, has been introduced with the spread of flank-approach spinal operations such as extreme lateral interbody fusion, to prevent nerve damage. Conventional TcMEP monitors use changes in MEP wave patterns, such as amplitude and/or latency, whereas the NV-M5 nerve monitor system first measures the MEP baseline waveform from the transcranial-evoked potential then measures the electric current necessary to obtain the standard of the previous baseline wave pattern at subsequent monitoring times. The NV-M5 monitor determines nerve damage according to the increase in necessary electric current threshold. The NV-M5 monitor also uses a local electrical stimulation mode to monitor the safety of setting screws into the lumbar vertebrae. In this way, various electrical stimulations with various durations and frequencies are used, and electrical noise may result in unpredictable interference with cardiac pacemakers. We performed anesthetic management of extreme lateral interbody fusion surgery using the NV-M5 in a patient with an implanted pacemaker, during which TcMEP stimulation caused interference with the implanted pacemaker. Copyright © 2016 Elsevier Inc. All rights reserved.
González-Martín, Maribel; Torres-Lagares, Daniel; Gutiérrez-Pérez, José Luis; Segura-Egea, Juan José
2010-08-01
The present study describes a case of endodontic sealer (AH Plus) penetration within and along the mandibular canal from the periapical zone of a lower second molar after endodontic treatment. The clinical manifestations comprised anesthesia of the left side of the lower lip, paresthesia and anesthesia of the gums in the third quadrant, and paresthesia and anesthesia of the left mental nerve, appearing immediately after endodontic treatment. The paresthesia and anesthesia of the lip and gums were seen to decrease, but the mental nerve paresthesia and anesthesia persisted after 3.5 years. This case illustrates the need to expend great care with all endodontic techniques when performing nonsurgical root canal therapy, especially when the root apices are in close proximity to vital anatomic structures such as the inferior alveolar canal. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Nakajima, Noritsuna; Tani, Toshikazu; Kiyasu, Katsuhito; Kumon, Masashi; Taniguchi, Shinichirou; Takemasa, Ryuichi; Tadokoro, Nobuaki; Nishida, Kazuya; Ikeuchi, Masahiko
2018-03-01
Repetitive electrical nerve stimulation of the lower limb may improve neurogenic claudication in patients with lumbar spinal stenosis (LSS) as originally described by Tamaki et al. We tested if this neuromodulation technique affects the F-wave conduction on both sides to explore the underlying physiologic mechanisms. We studied a total of 26 LSS patients, assigning 16 to a study group receiving repetitive tibial nerve stimulation at the ankle (RTNS) on one leg, and 10 to a group without RTNS. RTNS conditioning consisted of a 0.3-ms duration square-wave pulse with an intensity 20% above the motor threshold, delivered at a rate of 5 Hz for 5 min. All patients underwent the walking test and the F-wave and M-wave studies for the tibial nerve on both sides twice; once as the baseline, and once after either the 5-min RTNS or 5-min rest. Compared to the baselines, a 5-min RTNS increased claudication distance (176 ± 96 m vs 329 ± 133 m; p = 0.0004) and slightly but significantly shortened F-wave minimal onset latency (i.e., increased F-wave conduction velocity) not only on the side receiving RTNS (50.7 ± 4.0 ms vs 49.2 ± 4.2 ms; p = 0.00081) but also on the contralateral side (50.1 ± 4.6 ms vs 47.9 ± 4.2 ms; p = 0.011). A 5-min rest in the group not receiving RTNS neither had a significant change on claudication distance nor on any F-wave measurements. The M response remained unchanged in both groups. The present study verified a beneficial effect of unilaterally applied RTNS of a mild intensity on neurogenic claudication and bilateral F-wave conduction. Our F-wave data suggest that this type of neuromodulation could be best explained by an RTNS-induced widespread sympathetic tone reduction with vasodilation, which partially counters a walking-induced further decline in nerve blood flow in LSS patients who already have ischemic cauda equina. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
2010-01-01
Background Patients with signs of nerve root irritation represent a sub-group of those with low back pain who are at increased risk of persistent symptoms and progression to costly and invasive management strategies including surgery. A period of non-surgical management is recommended for most patients, but there is little evidence to guide non-surgical decision-making. We conducted a preliminary study examining the effectiveness of a treatment protocol of mechanical traction with extension-oriented activities for patients with low back pain and signs of nerve root irritation. The results suggested this approach may be effective, particularly in a more specific sub-group of patients. The aim of this study will be to examine the effectiveness of treatment that includes traction for patients with low back pain and signs of nerve root irritation, and within the pre-defined sub-group. Methods/Design The study will recruit 120 patients with low back pain and signs of nerve root irritation. Patients will be randomized to receive an extension-oriented treatment approach, with or without the addition of mechanical traction. Randomization will be stratified based on the presence of the pre-defined sub-grouping criteria. All patients will receive 12 physical therapy treatment sessions over 6 weeks. Follow-up assessments will occur after 6 weeks, 6 months, and 1 year. The primary outcome will be disability measured with a modified Oswestry questionnaire. Secondary outcomes will include self-reports of low back and leg pain intensity, quality of life, global rating of improvement, additional healthcare utilization, and work absence. Statistical analysis will be based on intention to treat principles and will use linear mixed model analysis to compare treatment groups, and examine the interaction between treatment and sub-grouping status. Discussion This trial will provide a methodologically rigorous evaluation of the effectiveness of using traction for patients with low back pain and signs of nerve root irritation, and will examine the validity of a pre-defined sub-grouping hypothesis. The results will provide evidence to inform non-surgical decision-making for these patients. Trial Registration This trial has been registered with http://ClinicalTrials.gov: NCT00942227 PMID:20433733
Antoniadis, Alexander; Dietrich, Tobias J; Farshad, Mazda
2016-10-01
The relationship of pain relief from a recently presented CT-guided indirect cervical nerve root injection with local anesthetics and steroids to surgical decompression as a treatment for single-level cervical radiculopathy is not clear. This retrospective study aimed to compare the immediate and 6-week post-injection effects to the short- and long-term outcomes after surgical decompression, specifically in regard to pain relief. Patients (n = 39, age 47 ± 10 years) who had undergone CT-guided indirect injection with local anesthetics and steroids as an initial treatment for single cervical nerve root radiculopathy and who subsequently needed surgical decompression were included retrospectively. Pain levels (VAS scores) were monitored before, immediately after, and 6 weeks after injection (n = 34), as well as 6 weeks (n = 38) and a mean of 25 months (SD ± 12) after surgical decompression (n = 36). Correlation analysis was performed to find potential associations of pain relief after injection and after surgery to investigate the predictive value of post-injection pain relief. There was no correlation between immediate pain relief after injection (-32 ± 27 %) and 6 weeks later (-7 ± 19 %), (r = -0.023, p = 0.900). There was an association by tendency between immediate pain relief after injection and post-surgical pain relief at 6 weeks (-82 ± 27 %), (r = 0.28, p = 0.08). Pain relief at follow-up remained high at -70 ± 21 % and was correlated with the immediate pain amelioration effect of the injection (r = 0.37, p = 0.032). Five out of seven patients who reported no pain relief from injection had a pain relief from surgery in excess of 50 %. The amount of immediate radiculopathic pain relief after indirect cervical nerve root injection is associated with the amount of pain relief achieved at long-term follow-up after surgical decompression of single-level cervical radiculopathy. Patients can still expect sufficient pain relief from surgery even if they did not respond to the cervical infiltration.
Control of abdominal muscles by brain stem respiratory neurons in the cat
NASA Technical Reports Server (NTRS)
Miller, Alan D.; Ezure, Kazuhisa; Suzuki, Ichiro
1985-01-01
The nature of the control of abdominal muscles by the brain stem respiratory neurons was investigated in decerebrate unanesthetized cats. First, it was determined which of the brain stem respiratory neurons project to the lumbar cord (from which the abdominal muscles receive part of their innervation), by stimulating the neurons monopolarly. In a second part of the study, it was determined if lumbar-projecting respiratory neurons make monosynaptic connections with abdominal motoneurons; in these experiments, discriminate spontaneous spikes of antidromically acivated expiratory (E) neurons were used to trigger activity from both L1 and L2 nerves. A large projection was observed from E neurons in the caudal ventral respiratory group to the contralateral upper lumber cord. However, cross-correlation experiments found only two (out of 47 neuron pairs tested) strong monosynaptic connections between brain stem neurons and abdominal motoneurons.
Sorbie, Graeme G; Grace, Fergal M; Gu, Yaodong; Baker, Julien S; Ugbolue, Ukadike C
2017-08-01
Lower back pain is commonly associated with golfers. The study aimed: to determine whether thoracic- and lumbar-erector-spinae muscle display signs of muscular fatigue after completing a golf practice session, and to examine the effect of the completed practice session on club head speed, ball speed and absolute carry distance performance variables. Fourteen right-handed male golfers participated in the laboratory-based-study. Surface electromyography (EMG) data was collected from the lead and trail sides of the thoracic- and lumbar-erector-spinae muscle. Normalized root mean squared (RMS) EMG activation levels and performance variables for the golf swings were compared before and after the session. Fatigue was assessed using median frequency (MDF) and RMS during the maximum voluntary contraction (MVC) performed before and after the session. No significant differences were observed in RMS thoracic- and lumbar-erector-spinae muscle activation levels during the five phases of the golf swing and performance variables before and after the session (p > .05). Significant changes were displayed in MDF and RMS when comparing the MVC performed before and after the session (p < .05). Fatigue was evident in the trail side of the erector-spinae muscle after the session.
Furuta, Sadayoshi; Watanabe, Lisa; Doi, Seira; Horiuchi, Hiroshi; Matsumoto, Kenjiro; Kuzumaki, Naoko; Suzuki, Tsutomu; Narita, Minoru
2012-02-01
Subdiaphragmatic vagal dysfunction causes chronic pain. To verify whether this chronic pain is accompanied by enhanced peripheral nociceptive sensitivity, we evaluated primary afferent neuronal excitability in subdiaphragmatic vagotomized (SDV) rats. SDV rats showed a decrease in the electrical stimuli-induced hind limb-flexion threshold at 250 Hz, but showed no similar effect at 5 or 2000 Hz, which indicated that lumbar primary afferent Aδ sensitivity was enhanced in SDV rats. The whole-cell patch-clamp technique also revealed the hyper-excitability of acutely dissociated medium-sized lumbar dorsal root ganglion (DRG) neurons isolated from SDV rats. The contribution of changes in voltage-dependent potassium (Kv) channels was assessed, and transient A-type K(+) (I(A) ) current density was apparently decreased. Moreover, Kv4.3 immunoreactivity in medium-sized DRG neurons was significantly reduced in SDV rats compared to sham. These results indicate that SDV causes hyper-excitability of lumbar primary Aδ afferent neurons, which may be induced along with suppressing I(A) currents via the decreased expression of Kv4.3. Thus, peripheral Aδ neuroplasticity may contribute to the chronic lower limb pain caused by SDV. Copyright © 2011 Wiley Periodicals, Inc.
Wang, Sicong; Wang, Lizhen; Wang, Yawei; Du, Chengfei; Zhang, Ming; Fan, Yubo
2017-01-01
In recent years, a combination of traction and vibration therapy is usually used to alleviate low back pain (LBP) in clinical settings. Combining head-down tilt (HDT) traction with vibration was demonstrated to be efficacious for LBP patients in our previous study. However, the biomechanics of the lumbar spine during this combined treatment is not well known and need quantitative analysis. In addition, LBP patients have different grades of degeneration of the lumbar spinal structure, which are often age related. Selecting a suitable rehabilitation therapy for different age groups of patients has been challenging. Therefore, a finite element (FE) model of the L1-L5 lumbar spine and a vibration dynamic model are developed in this study in order to investigate the biomechanical effects of the combination of HDT traction and vibration therapy on the age-related degeneration of the lumbar spine. The decrease of intradiscal pressure is more effective when vibration is combined with traction therapy. Moreover, the stresses on the discs are lower in the "traction+vibration" mode than the "traction-only" mode. The stress concentration at the posterior part of nucleus is mitigated after the vibration is combined. The disc deformations especially posterior disc radial retraction is improved in the "traction+vibration" mode. These beneficial effects of this therapy could help decompress the discs and spinal nerves and therefore relieve LBP. Simultaneously, patients with grade 1 degeneration (approximately 41-50 years old) are able to achieve better results compared with other age groups. This study could be used to provide a more effective LBP rehabilitation therapy. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Goldstein, Irwin; Komisaruk, Barry R; Rubin, Rachel S; Goldstein, Sue W; Elliott, Stacy; Kissee, Jennifer; Kim, Choll W
2017-09-01
Since 14 years of age, the patient had experienced extreme penile pain within seconds of initial sexual arousal through masturbation. Penile pain was so severe that he rarely proceeded to orgasm or ejaculation. After 7 years of undergoing multiple unsuccessful treatments, he was concerned for his long-term mental health and for his future ability to have relationships. To describe a novel collaboration among specialists in sexual medicine, neurophysiology, and spine surgery that led to successful management. Collaborating health care providers conferred with the referring physician, patient, and parents and included a review of all medical records. Elimination of postpubertal intense penile pain during sexual arousal. The patient presented to our sexual medicine facility at 21 years of age. The sexual medicine physician identifying the sexual health complaint noted a pelvic magnetic resonance imaging report of an incidental sacral Tarlov cyst. A subsequent sacral magnetic resonance image showed four sacral Tarlov cysts, with the largest measuring 18 mm. Neuro-genital testing result were abnormal. The neurophysiologist hypothesized the patient's pain at erection was produced by Tarlov cyst-induced neuropathic irritation of sensory fibers that course within the pelvic nerve. The spine surgeon directed a diagnostic injection of bupivacaine to the sacral nerve roots and subsequently morphine to the conus medullaris of the spinal cord. The bupivacaine produced general penile numbness; the morphine selectively decreased penile pain symptoms during sexual arousal without blocking penile skin sensation. The collaboration among specialties led to the conclusion that the Tarlov cysts were pathophysiologically mediating the penile pain symptoms during arousal. Long-term follow-up after surgical repair showed complete symptom elimination at 18 months after treatment. This case provides evidence that (i) Tarlov cysts can cause sacral spinal nerve root radiculitis through sensory pelvic nerve and (ii) there are management benefits from collaboration among sexual medicine, neurophysiology, and spine surgery subspecialties. Goldstein I, Komisaruk BR, Rubin RS, et al. A Novel Collaborative Protocol for Successful Management of Penile Pain Mediated by Radiculitis of Sacral Spinal Nerve Roots From Tarlov Cysts. Sex Med 2017;5:e203-e211. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Marchetti, Bárbara V; Candotti, Cláudia T; Raupp, Eduardo G; Oliveira, Eduardo B C; Furlanetto, Tássia S; Loss, Jefferson F
The purpose of this study was to assess a radiographic method for spinal curvature evaluation in children, based on spinous processes, and identify its normality limits. The sample consisted of 90 radiographic examinations of the spines of children in the sagittal plane. Thoracic and lumbar curvatures were evaluated using angular (apex angle [AA]) and linear (sagittal arrow [SA]) measurements based on the spinous processes. The same curvatures were also evaluated using the Cobb angle (CA) method, which is considered the gold standard. For concurrent validity (AA vs CA), Pearson's product-moment correlation coefficient, root-mean-square error, Pitman- Morgan test, and Bland-Altman analysis were used. For reproducibility (AA, SA, and CA), the intraclass correlation coefficient, standard error of measurement, and minimal detectable change measurements were used. A significant correlation was found between CA and AA measurements, as was a low root-mean-square error. The mean difference between the measurements was 0° for thoracic and lumbar curvatures, and the mean standard deviations of the differences were ±5.9° and 6.9°, respectively. The intraclass correlation coefficients of AA and SA were similar to or higher than the gold standard (CA). The standard error of measurement and minimal detectable change of the AA were always lower than the CA. This study determined the concurrent validity, as well as intra- and interrater reproducibility, of the radiographic measurements of kyphosis and lordosis in children. Copyright © 2017. Published by Elsevier Inc.
Pan, Feng; Wei, Hai-feng; Chen, Liang; Gu, Yu-dong
2012-12-07
Clinically, contralateral C7 transfer is used for nerve reconstruction in brachial plexus injuries. Postoperatively, synchronous motions at the donor limb are noteworthy. This study studied if different recipient nerves influenced transhemispheric functional reorganization of motor cortex after this procedure. 90 young rats with total root avulsion of the brachial plexus were divided into groups 1-3 of contralateral C7 transfer to anterior division of the upper trunk, to both the musculocutaneous and median nerves, and to the median nerve, respectively. After reinnervation of target muscles, number of sites for forelimb representations in bilateral motor cortices was determined by intracortical microstimulation at 1.5, 3, 6, 9, and 12 months postoperatively. At nine months, transhemispheric reorganization of nerves neurotized by contralateral C7 was fulfilled in four of six rats in group 1, one of six in group 2 and none in group 3, respectively; at 12 months, that was fulfilled in five of six in group 1, four of six in groups 2 and 3, respectively. Logistic regression analysis showed that rate of fulfilled transhemispheric reorganization in group 1 was 12.19 times that in group 3 (95% CI 0.006-0.651, p=0.032). At 12 months, number of sites for hindlimb representations which had encroached upon original forelimb representations on the uninjured side was statistically more in group 3 than in group 2 (t=9.5, p<0.0001). It is concluded that contralateral C7 transfer to upper trunk or to both the musculocutaneous and median nerves induces faster transhemispheric functional reorganization of motor cortex than that to median nerve alone in rats. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Moscovici, Samuel; Ramirez-DeNoriega, Fernando; Fellig, Yakov; Rosenthal, Guy; Cohen, José E; Itshayek, Eyal
2011-11-01
Review the presentation and diagnosis of an intradural extramedullary hemangiopericytoma of the thoracic spine. To present a rare case of intradural, subpial hemangiopericytoma in the thoracic spine, with a brief overview of the literature. Spinal intradural extramedullary hemangiopericytoma is rare entity that radiographically mimics nerve-sheath tumors. These lesions are typically diagnosed at surgery performed due to suspicion of tumor. A 20-year-old man who presented with back pain, leg weakness, and sphincter incontinence. MR imaging demonstrated an intradural extramedullary lesion at the T9-T10 level that was isointense on T1- and T2-weighted images and homogeneously enhancing after administration of gadolinium, with cystic components seen on T2-weighted images. The preoperative diagnosis was meningioma or schwannoma. At surgery, the lesion was bluish and completely subpial, with apparent nerve root invasion. Pathological examination revealed a neoplasm adjacent to a nerve root with possible focal infiltration. Abundant reticulin fibers and widened, branching vascular channels imparting a staghorn appearance were seen. Up to five mitotic figures were counted in one high-power field. On immunostaining, the neoplastic cells were diffusely immunoreactive for CD99 and immunonegative for EMA, CD34, and S-100 protein. The pathological diagnosis was consistent with anaplastic hemangiopericytoma, WHO grade III. This is the ninth report of spinal intradural hemangiopericytoma. The location of the neoplasm supports the hypothesis that hemangiopericytoma may arise from the spinal pial capillaries.
Georgoulis, George; Papagrigoriou, Eirini; Sindou, Marc
2015-12-01
A crucial aspect of surgery on the supraclavicular region, lateral neck, and mid-cervical vertebral region is the identification and sparing of the phrenic nerve and cervical (C4) root that are responsible for diaphragmatic innervation. Therefore intraoperative mapping of these nerve structures can be useful for difficult cases. Electrical stimulation with simultaneous observation of the ventilator waveforms of the anesthesia machine provides an effective method for the precise intraoperative mapping of these structures. In the literature, there is only one publication reporting the use of one of the waveforms (capnography) for this purpose. Capnography and pressure-time waveforms, two mandatory curves in anesthesiological monitoring, were studied under electrical stimulation of the phrenic nerve (one patient) and the C4 root (eight patients). The aim was to detect changes that would verify diaphragmatic contraction. No modifications in anesthesia or surgery and no additional maneuvers were required. In all patients, stimulation was followed by identifiable changes in the two waveforms, compatible with diaphragmatic contraction: acute reduction in amplitude on capnography and repetitive saw-like elevations on pressure-time curve. Frequency of patterns on pressure-time curve coincided with the frequency of stimulation; therefore the two recordings were complementary. This simple method proved effective in identifying the neural structures responsible for diaphragmatic function. We therefore suggest that it should be employed in the various types of surgery where these structures are at risk.
Stein, Benjamin E; Srikumaran, Umasuthan; Tan, Eric W; Freehill, Michael T; Wilckens, John H
2012-11-21
The utilization of peripheral nerve blocks in orthopaedic surgery has paralleled the rise in the number of ambulatory surgical procedures performed. Optimization of pain control in the perioperative orthopaedic patient contributes to improved patient satisfaction, early mobilization, decreased length of hospitalization, and decreased associated hospital and patient costs. Our purpose was to provide a concise, pertinent review of the use of peripheral nerve blocks in various orthopaedic procedures of the lower extremity, with specific focus on procedural anatomy, indications, patient outcome measures, and complications. We reviewed the literature and reference textbooks on commonly performed lower-extremity peripheral nerve block procedures in orthopaedic surgery, focusing on those most commonly used. The use of lower-extremity peripheral nerve blocks is a safe and effective approach to perioperative pain management. Different techniques and timing can have an important impact on patient satisfaction, and each technique has specific indications and complications. For major hip surgery, one of the most commonly used is the lumbar plexus block, which can result in early mobilization, reduced postoperative pain, and decreased opioid-associated adverse events. Associated complications include epidural spread of anesthesia, retroperitoneal hematoma formation, and postoperative falls. For arthroscopic and open knee procedures, the femoral nerve block is frequently used adjunctively. It provides improved early postoperative pain control, early mobilization with therapy, and increased patient satisfaction compared with intra-articular or intravenous opioids alone; it also provides cost savings. However, some studies have shown no significant difference in outcome measures compared with intra-articular opioids alone for arthroscopic anterior cruciate ligament reconstruction. Associated complications include nerve injury, intravascular injection, and postoperative falls. The use of peripheral nerve blocks in lower-extremity surgery is becoming a mainstay of perioperative pain management strategy.
Evaluation of electrical nerve stimulation for epidural catheter positioning in the dog.
Garcia-Pereira, Fernando L; Sanders, Robert; Shih, Andre C; Sonea, Ioana M; Hauptman, Joseph G
2013-09-01
To evaluate the accuracy of epidural catheter placement at different levels of the spinal cord guided solely by electrical nerve stimulation and resultant segmental muscle contraction. Prospective, experiment. Six male and two female Beagles, age (1 ± 0.17 years) and weight (12.9 ± 1.1 kg). Animals were anesthetized with propofol and maintained with isoflurane. An insulated epidural needle was used to reach the lumbosacral epidural space. A Tsui epidural catheter was inserted and connected to a nerve stimulator (1.0 mA, 0.1 ms, 2 Hz) to assess positioning of the tip at specific spinal cord segments. The catheter was advanced to three different levels of the spinal cord: lumbar (L2-L5), thoracic (T5-T10) and cervical (C4-C6). Subcutaneous needles were previously placed at these spinal levels and the catheter was advanced to match the needle location, guided only by corresponding muscle contractions. Catheter position was verified by fluoroscopy. If catheter tip and needle were at the same vertebral body a score of zero was assigned. When catheter tip was cranial or caudal to the needle, positive or negative numbers, respectively, corresponding to the number of vertebrae between them, were assigned. The mean and standard deviation of the number of vertebrae between catheter tip and needle were calculated to assess accuracy. Results are given as mean ± SD. The catheter position in relation to the needle was within 0.3 ± 2.0 vertebral bodies. Positive predictive values (PPV) were 57%, 83% and 71% for lumbar, thoracic and cervical regions respectively. Overall PPV was 70%. No significant difference in PPV among regions was found. Placement of an epidural catheter at specific spinal levels using electrical nerve stimulation was feasible without radiographic assistance in dogs. Two vertebral bodies difference from the target site may be clinically acceptable when performing segmental epidural regional anesthesia. © 2013 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.
Vascular entrapment of the sciatic plexus causing catamenial sciatica and urinary symptoms.
Lemos, Nucelio; Marques, Renato Moretti; Kamergorodsky, Gil; Ploger, Christine; Schor, Eduardo; Girão, Manoel J B C
2016-02-01
Pelvic congestion syndrome is a well-known cause of cyclic pelvic pain (Ganeshan et al., Cardiovasc Intervent Radiol 30(6):1105-11, 2007). What is much less well known is that dilated or malformed branches of the internal or external iliac vessels can entrap the nerves of the sacral plexus against the pelvic sidewalls, producing symptoms that are not commonly seen in gynecological practice, such as sciatica, or refractory urinary and anorectal dysfunction (Possover et al., Fertil Steril 95(2):756-8. 2011). The objective of this video is to explain and describe the symptoms suggestive of vascular entrapment of the sacral plexus, as well as the technique for the laparoscopic decompression of these nerves. Two anecdotal cases of intrapelvic vascular entrapment are used to review the anatomy of the lumbosacral plexus and demonstrate the laparoscopic surgical technique for decompression at two different sites, one on the sciatic nerve and one on the sacral nerve roots. After surgery, the patient with the sciatic entrapment showed full recovery of the sciatica and partial recovery of the myofascial pain. The patient with sacral nerve root entrapment showed full recovery with resolution of symptoms. The symptoms suggestive of intrapelvic nerve entrapment are: perineal pain or pain irradiating to the lower limbs in the absence of a spinal disorder, and lower urinary tract symptoms in the absence of prolapse of a bladder lesion. In the presence of such symptoms, the radiologist should provide specific MRI sequences of the intrapelvic portion of the sacral plexus and a team and equipment to expose and decompress the sacral nerves should be prepared.
Novel Model of Somatosensory Nerve Transfer in the Rat.
Paskal, Adriana M; Paskal, Wiktor; Pelka, Kacper; Podobinska, Martyna; Andrychowski, Jaroslaw; Wlodarski, Pawel K
2018-05-09
Nerve transfer (neurotization) is a reconstructive procedure in which the distal denervated nerve is joined with a proximal healthy nerve of a less significant function. Neurotization models described to date are limited to avulsed roots or pure motor nerve transfers, neglecting the clinically significant mixed nerve transfer. Our aim was to determine whether femoral-to-sciatic nerve transfer could be a feasible model of mixed nerve transfer. Three Sprague Dawley rats were subjected to unilateral femoral-to-sciatic nerve transfer. After 50 days, functional recovery was evaluated with a prick test. At the same time, axonal tracers were injected into each sciatic nerve distally to the lesion site, to determine nerve fibers' regeneration. In the prick test, the rats retracted their hind limbs after stimulation, although the reaction was moderately weaker on the operated side. Seven days after injection of axonal tracers, dyes were visualized by confocal microscopy in the spinal cord. Innervation of the recipient nerve originated from higher segments of the spinal cord than that on the untreated side. The results imply that the femoral nerve axons, ingrown into the damaged sciatic nerve, reinnervate distal targets with a functional outcome.
Cummock, Matthew D; Vanni, Steven; Levi, Allan D; Yu, Yong; Wang, Michael Y
2011-07-01
The minimally invasive transpsoas interbody fusion technique requires dissection through the psoas muscle, which contains the nerves of the lumbosacral plexus posteriorly and genitofemoral nerve anteriorly. Retraction of the psoas is becoming recognized as a cause of transient postoperative thigh pain, numbness, paresthesias, and weakness. However, few reports have described the nature of thigh symptoms after this procedure. The authors performed a review of patients who underwent the transpsoas technique for lumbar spondylotic disease, disc degeneration, and spondylolisthesis treated at a single academic medical center. A review of patient charts, including the use of detailed patient-driven pain diagrams performed at equal preoperative and follow-up intervals, investigated the survival of postoperative thigh pain, numbness, paresthesias, and weakness of the iliopsoas and quadriceps muscles in the follow-up period on the ipsilateral side of the surgical approach. Over a 3.2-year period, 59 patients underwent transpsoas interbody fusion surgery. Of these, 62.7% had thigh symptoms postoperatively. New thigh symptoms at first follow-up visit included the following: burning, aching, stabbing, or other pain (39.0%); numbness (42.4%); paresthesias (11.9%); and weakness (23.7%). At 3 months postoperatively, these percentages decreased to 15.5%, 24.1%, 5.6%, and 11.3%, respectively. Within the patient sample, 44% underwent a 1-level, 41% a 2-level, and 15% a 3-level transpsoas operation. While not statistically significant, thigh pain, numbness, and weakness were most prevalent after L4-5 transpsoas interbody fusion at the first postoperative follow-up. The number of lumbar levels that were surgically treated had no clear association with thigh symptoms but did correlate directly with surgical time, intraoperative blood loss, and length of hospital stay. Transpsoas interbody fusion is associated with high rates of immediate postoperative thigh symptoms. While larger, prospective studies are necessary to validate these findings, the authors found that half of the patients had symptom resolution at approximately 3 months postoperatively and more than 90% by 1 year.
Jin, Jie; Ryu, Kyeong-Sik; Hur, Jung-Woo; Seong, Ji-Hoon; Kim, Jin-Sung; Cho, Hyun-Jin
2018-02-01
Retrospective observatory analysis. The purpose of this study was to compare the incidence of perioperative complication, difference of cage location, and sagittal alignment between minimally invasive oblique lateral lumbar interbody fusion (MIS-OLIF) and MIS-direct lateral lumbar interbody fusion (DLIF) in the cases of single-level surgery at L4-L5. MIS-DLIF using tubular retractor has been used for the treatment of lumbar degenerative diseases; however, blunt transpsoas dissection poses a risk of injury to the lumbar plexus. As an alternative, MIS-OLIF uses a window between the prevertebral venous structures and psoas muscle. A total of 43 consecutive patients who underwent MIS-DLIF or MIS-OLIF for various L4/L5 level pathologies between November 2011 and April 2014 by a single surgeon were retrospectively reviewed. A complication classification based on the relation to surgical procedure and effect duration was used. Perioperative complications until 3-month postoperatively were reviewed for the patients. Radiologic results including the cage location and sagittal alignment were also assessed with plain radiography. There were no significant statistical differences in perioperative parameters and early clinical outcome between 2 groups. Overall, there were 13 (59.1%) approach-related complications in the DLIF group and 3 (14.3%) in the OLIF group. In the DLIF group, 3 (45.6%) were classified as persistent, however, there was no persistent complication in the OLIF group. In the OLIF group, cage is located mostly in the middle 1/3 of vertebral body, significantly increasing posterior disk space height and foraminal height compared with the DLIF group. Global and segmental lumbar lordosis was greater in the DLIF group due to anterior cage position without statistical significance. In our report of L4/L5 level diseases, the OLIF technique may decrease approach-related perioperative morbidities by eliminating the risk of unwanted muscle and nerve manipulations. Using orthogonal maneuver, cage could be safely placed more posteriorly, resulting in better disk and foraminal height restoration.
Ball, Richard D
2014-01-01
Radiofrequency ablation (RFA) is a safe and effective pain therapy used to create sensory dysfunction in appropriate nerves via thermal damage. While commonly viewed as a simple process, RF heating is actually quite complex from an electrical engineering standpoint, and it is difficult for the non-electrical engineer to achieve a thorough understanding of the events that occur. RFA is highly influenced by the configuration and properties of the peri-electrode tissues. To rationally discuss the science of RFA requires that examples be procedure-specific, and lumbar RFA is the procedure selected for this review. Adequate heating of the lumbar medial branch has many potential failure points, and the underlying science is discussed with recommendations to reduce the frequency of failure in heating target tissues. Important technical details of the procedure that are not generally appreciated are discussed, and the status quo is challenged on several aspects of accepted technique. The rationale underlying electrode placement and the limitations of RF heating are, for the most part, commonly misunderstood, and there may even need to be significant changes in how lumbar radiofrequency rhizotomy (RFR) is performed. A new paradigm for heating target tissue may be of value. Foremost in developing best practices for this procedure is avoiding pitfalls. Good RF heating and medial branch lesioning are the rewards for understanding how the process functions, attention to detail, and meticulous attention to electrode positioning.
Spinal cord potentials in traumatic paraplegia and quadriplegia.
Sedgwick, E M; el-Negamy, E; Frankel, H
1980-01-01
Cortical, cervical and lumbar somatosensory evoked potentials were recorded following median and tibial nerve stimulation in patients with traumatic paraplegia and quadriplegia. The isolated cord was able to produce normal potentials even during spinal shock if the vertical extent of the lesion did not involve the generator mechanisms. The cervical potentials showed subtle changes in paraplegia at Th5 levels and below. In high cervical lesions the early cervical potentials may still be present but the later potentials were absent or, in partial lesions, delayed. PMID:7420105
Sacral nerve root neuromodulation: an effective treatment for refractory urge incontinence.
Shaker, H S; Hassouna, M
1998-05-01
Sacral foramina implants have been recognized recently as a method for treatment of refractory urinary urge incontinence. We study the outcome of the procedure with in-depth analysis of the results of 18 implanted cases. Patients with urinary urge incontinence were subjected to percutaneous nerve evaluation of the S3 roots as a temporary screening test to determine response to neuromodulation. Satisfactory responders were implanted with permanent sacral root neuroprosthesis. The study design included comprehensive voiding diaries for 4 consecutive days twice as a baseline, 1 with percutaneous nerve evaluation screening, 1 after the percutaneous nerve evaluation, 1 at the 1, 3 and 6 post-implantation visits, and every 6 months thereafter. Uroflowmetry and quality of life questionnaires were performed at the same intervals. Urodynamic study was done as a baseline and 6 months after implantation of the neuroprosthesis. All 18 patients (16 women and 2 men) with refractory urge incontinence received a sacral foramina neuroprosthesis after demonstrating a good response to the percutaneous nerve evaluation. Average patient age at presentation was 42.3+/-3.3 years (range 22 to 67) and duration of urinary symptoms was 6.6+/-1.3 years (range 1.2 to 18.8). Average followup was 18.8 months (range 3 to 83). Neuromodulation in these patients showed a marked reduction in leakage episodes from 6.49 to 1.98 times per 24 hours and in the leakage severity score. Eight patients became completely dry and 4 had average leakage episodes of 1 or less daily. Patients showed as well a decrease in urinary frequency with an increase in functional bladder capacity. Associated pelvic pain improved substantially. Cystometrograms demonstrated increased volume at first sensation by 50% and increased cystometric capacity by 15% with the disappearance of uninhibited contractions in 1 of the 4 patients who presented with it preoperatively. There was also noticeable improvement in the quality of life. Complication rate was low and none was life threatening. Sacral root neuromodulation is an appealing modality for treatment of urge incontinence refractory to conventional pharmacotherapy. The relative simplicity of the technique, promising results and low complication rate make this therapy a likely alternative.
Differences in individual susceptibility affect the development of trigeminal neuralgia☆
Duransoy, Yusuf Kurtuluş; Mete, Mesut; Akçay, Emrah; Selçuki, Mehmet
2013-01-01
Trigeminal neuralgia is a syndrome due to dysfunctional hyperactivity of the trigeminal nerve, and is characterized by a sudden, usually unilateral, recurrent lancinating pain arising from one or more divisions of the nerve. The most accepted pathogenetic mechanism for trigeminal neuralgia is compression of the nerve at its dorsal root entry zone or in its distal course. In this paper, we report four cases with trigeminal neuralgia due to an unknown mechanism after an intracranial intervention. The onset of trigeminal neuralgia after surgical interventions that are unrelated to the trigeminal nerve suggests that in patients with greater individual susceptibility, nerve contact with the vascular structure due to postoperative pressure and changes in cerebrospinal fluid flow may cause the onset of pain. PMID:25206428
Goel, Atul; Shah, Abhidha; Jadhav, Madan; Nama, Santhosh
2013-12-01
The authors report their experience in treating 21 patients by using a novel form of treatment of lumbar degenerative disease that leads to canal stenosis. The surgery involved distraction of the facets using specially designed Goel intraarticular spacers and was aimed at arthrodesis of the spinal segment in a distracted position. The operation is based on the premise that subtle and longstanding facet instability, joint space reduction, and subsequent facet override had a profound and primary influence in the pathogenesis of degenerative lumbar canal stenosis. The surgical technique and the rationale for treatment are discussed. Between April 2006 and January 2011, 21 cases of lumbar degenerative disease resulting in characteristic lumbar canal stenosis were treated in the authors' department with the proposed technique. The patients were prospectively analyzed. There were 15 men and 6 women who ranged in age from 48 to 71 years (mean 58 years). Nine patients underwent 1-level and 12 patients underwent 2-level treatment. Surgery involved wide opening of the articular joint, denuding of the articular capsule/endplate cartilage, distraction of the facets, and forced impaction of Goel intraarticular spacers. Bone graft pieces obtained by sectioning the spinous processes were placed within and over the joint and in the midline over the adequately prepared host area of laminae. The Oswestry Disability Index and visual analog scale were used to clinically assess the patients before and after surgery and at follow-up. The alterations in the physical architecture of spinal canal and intervertebral foramen dimensions were evaluated before and after placement of the intrafacet implant and after at least 6 months of follow-up. All patients had varying degrees of relief from symptoms of local back pain and radiculopathy. Impaction of spacers within the facet joints resulted in an increase in the spinal canal and intervertebral root canal dimensions (mean 2.33 mm), reduction of buckling of the ligamentum flavum, and reduction of the extent of bulge of the disc into the spinal canal. The procedure resulted in firm stabilization and fixation of the spinal segment and provided a ground for arthrodesis. No patient worsened neurologically after treatment. During the follow-up period, all patients had evidence of segmental bone fusion. No patient underwent reexploration or further surgery of the lumbar spine. Impaction of the spacers within the articular cavity after facet distraction resulted in reversal of several effects of spine degeneration that had caused spinal and root canal stenosis. The safe, firm, and secure stabilization at the fulcrum of lumbar spinal movements provided a ground for segmental spinal arthrodesis. The immediate postoperative and lasting recovery from symptoms suggests the validity of the procedure.
Zhao, He; Duan, Li-Jun; Sun, Qing-Ling; Gao, Yu-Shan; Yang, Yong-Dong; Tang, Xiang-Sheng; Zhao, Ding-Yan; Xiong, Yang; Hu, Zhen-Guo; Li, Chuan-Hong; Chen, Si-Xue; Liu, Tao; Yu, Xing
2018-04-19
Peripheral nerve injury (PNI) has devastating consequences. Dorsal root ganglion as a pivotal locus participates in the process of neuropathic pain and nerve regeneration. In recent years, gene sequencing technology has seen rapid rise in the biomedicine field. So, we attempt to gain insight into in the mechanism of neuropathic pain and nerve regeneration in the transcriptional level and to explore novel genes through bioinformatics analysis. The gene expression profiles of GSE96051 were downloaded from GEO database. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were performed, and protein-protein interaction (PPI) network of the differentially expressed genes (DEGs) was constructed by Cytoscape software. Our results showed that both IL-6 and Jun genes and the signaling pathway of MAPK, apoptosis, P53 present their vital modulatory role in nerve regeneration and neuropathic pain. Noteworthy, 13 hub genes associated with neuropathic pain and nerve regeneration, including Ccl12, Ppp1r15a, Cdkn1a, Atf3, Nts, Dusp1, Ccl7, Csf, Gadd45a, Serpine1, Timp1 were rarely reported in PubMed database, these genes may provide us the new orientation in experimental research and clinical study. Our results may provide more deep insight into the mechanism and a promising therapeutic target. The next step is to put our emphasis on an experiment level and to verify the novel genes from 13 hub genes.
Ní Chróinín, Danielle; Lambert, John
2013-11-01
A 75-year-old lady presented with sudden severe headache and vomiting. Examination was normal, and CT and lumbar puncture not convincing for subarachnoid haemorrhage. Shortly thereafter, she developed painless diplopia. Examination confirmed right third cranial nerve palsy plus homonymous left inferior quadrantanopia. Urgent cerebral MRI with angiography was requested to assess for a possible posterior communicating artery aneurysm, but revealed an unsuspected pituitary mass. Pituitary adenoma with pituitary apoplexy was diagnosed. Pituitary apopolexy is a syndrome comprising sudden headache, meningism, visual and/or oculomotor deficits, with an intrasellar mass. It is commonly due to haemorrhage or infarction within a pituitary adenoma. Treatment includes prompt steroid administration, and potentially surgical decompression. While subarachnoid haemorrhage is an important, well-recognised cause of sudden severe headache, other aetiologies, including pituitary apoplexy, should be considered and sought.
Haemangioblastoma of a cervical sensory nerve root in Von Hippel-Lindau syndrome.
McEvoy, A W; Benjamin, E; Powell, M P
2000-10-01
Spinal haemangioblastomas are rare, accounting for only about 7% of all central nervous system cases. The case of a 40-year-old woman with a haemangioblastoma arising solely from a cervical sensory nerve root is presented. At operation via a cervical laminectomy, it was possible to resect the tumour en masse with the sensory ramus, by extending the laminectomy through the exit foramen for C6. Haemangioblastomas are commonly intramedullary, and have only been reported in this location on one previous occasion. The patient has Von Hippel-Lindau syndrome and a history of multiple solid tumours. The possible role of the Von Hippel-Lindau tumour suppressor gene in the pathogenesis of these neoplasms is discussed.
Pisapia, Jared M; Bhowmick, Deb A; Farber, Roger E; Zager, Eric L
2012-02-01
To determine the effectiveness of C2 nerve root decompression and C2 dorsal root ganglionectomy for intractable occipital neuralgia (ON) and C2 ganglionectomy after pain recurrence following initial decompression. A retrospective review was performed of the medical records of patients undergoing surgery for ON. Pain relief at the time of the most recent follow-up was rated as excellent (headache relieved), good (headache improved), or poor (headache unchanged or worse). Telephone contact supplemented chart review, and patients rated their preoperative and postoperative pain on a 10-point numeric scale. Patient satisfaction and disability were also examined. Of 43 patients, 29 were available for follow-up after C2 nerve root decompression (n = 11), C2 dorsal root ganglionectomy (n = 10), or decompression followed by ganglionectomy (n = 8). Overall, 19 of 29 patients (66%) experienced a good or excellent outcome at most recent follow-up. Among the 19 patients who completed the telephone questionnaire (mean follow-up 5.6 years), patients undergoing decompression, ganglionectomy, or decompression followed by ganglionectomy experienced similar outcomes, with mean pain reduction ratings of 5 ± 4.0, 4.5 ± 4.1, and 5.7 ± 3.5. Of 19 telephone responders, 13 (68%) rated overall operative results as very good or satisfactory. In the third largest series of surgical intervention for ON, most patients experienced favorable postoperative pain relief. For patients with pain recurrence after C2 decompression, salvage C2 ganglionectomy is a viable surgical option and should be offered with the potential for complete pain relief and improved quality of life (QOL). Copyright © 2012. Published by Elsevier Inc.
The spinal cord and its roots according to Galen.
Viale, Giuseppe L
2004-06-01
Galen's methodological approach to medicine anticipated modern rules. His experiments on the spinal cord contributed greatly to our knowledge of this structure by reporting the variegated pattern of neurological impairment after sectioning at different levels. His approach to injuries of the spinal roots and peripheral nerves documents both diagnostic skill and intellectual honesty.
Cao, Hong; Zheng, Jin-Wei; Li, Jia-Jia; Meng, Bo; Li, Jun; Ge, Ren-Shan
2014-11-01
To investigate the effects of curcumin on pain threshold and the expressions of nuclear factor κ B (NF-κ B) and CX3C chemokine receptor 1 (CX3CR1) in spinal cord and dorsal root ganglion (DRG) of the rats with sciatic nerve chronic constrictive injury. One hundred and twenty male Sprague Dawley rats, weighing 220-250 g, were randomly divided into 4 groups. Sham surgery (sham) group: the sciatic nerves of rats were only made apart but not ligated; chronic constrictive injury (CCI) group: the sciatic nerves of rats were only ligated without any drug treatment; curcumin treated injury (Cur) model group: the rats were administrated with curcumin 100 mg/(kg·d) by intraperitoneal injection for 14 days after CCI; solvent control (SC) group: the rats were administrated with the solvent at the same dose for 14 days after CCI. Thermal withdrawal latency (TWL) and mechanical withdrawal threshold (MWT) of rats were respectively measured on pre-operative day 2 and postoperative day 1, 3, 5, 7, 10 and 14. The lumbar segment L4-5 of the spinal cord and the L4, L5 DRG was removed at post-operative day 3, 7 and 14. The change of nuclear factor κ B (NF-κ B) p65 expression was detected by Western blotting while the expression of CX3CR1 was determined by immunohistochemical staining. Compared with the sham group, the TWL and MWT of rats in the CCI group were significantly decreased on each post-operative day (P<0.01), which reached a nadir on the 3rd day after CCI, and the expressions of NF-κ B p65 and CX3CR1 were markedly increased in spinal cord dorsal horn and DRG. In the Cur group, the TWL of rats were significantly increased than those in the CCI group on post-operative day 7, 10 and 14 (P<0.05) and MWT increased than those in the CCI group on post-operative day 10 and 14 (P<0.05). In addition, the administration of curcumin significantly decreased the positive expressions of NF-κ B p65 and CX3CR1 in spinal cord and DRG (P<0.05). Our study suggests that curcumin could ameliorate the CCI-induced neuropathic pain, probably through inhibiting CX3CR1 expression by the activation of NF-κ B p65 in spinal cord and DRG.
Chang, Ming-Fong; Hsieh, Jung-Hsien; Chiang, Hao; Kan, Hung-Wei; Huang, Cho-Min; Chellis, Luke; Lin, Bo-Shiou; Miaw, Shi-Chuen; Pan, Chun-Liang; Chao, Chi-Chao; Hsieh, Sung-Tsang
2016-01-01
Delivering gene constructs into the dorsal root ganglia (DRG) is a powerful but challenging therapeutic strategy for sensory disorders affecting the DRG and their peripheral processes. The current delivery methods of direct intra-DRG injection and intrathecal injection have several disadvantages, including potential injury to DRG neurons and low transfection efficiency, respectively. This study aimed to develop a spinal nerve injection strategy to deliver polyethylenimine mixed with plasmid (PEI/DNA polyplexes) containing green fluorescent protein (GFP). Using this spinal nerve injection approach, PEI/DNA polyplexes were delivered to DRG neurons without nerve injury. Within one week of the delivery, GFP expression was detected in 82.8% ± 1.70% of DRG neurons, comparable to the levels obtained by intra-DRG injection (81.3% ± 5.1%, p = 0.82) but much higher than those obtained by intrathecal injection. The degree of GFP expression by neurofilament(+) and peripherin(+) DRG neurons was similar. The safety of this approach was documented by the absence of injury marker expression, including activation transcription factor 3 and ionized calcium binding adaptor molecule 1 for neurons and glia, respectively, as well as the absence of behavioral changes. These results demonstrated the efficacy and safety of delivering PEI/DNA polyplexes to DRG neurons via spinal nerve injection. PMID:27748450
Wang, Qun; Sun, Yanyuan; Ren, Yingna; Gao, Yandong; Tian, Li; Liu, Yang; Pu, Yanan; Gou, Xingchun; Chen, Yanke; Lu, Yan
2015-01-01
Matrix metalloproteinases (MMPs) are widely implicated in inflammation and tissue remodeling associated with various neurodegenerative diseases and play an important role in nociception and allodynia. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) plays a key regulatory role for MMP activities. However, the role of EMMPRIN in the development of neuropathic pain is not clear. Western blotting, real-time quantitative RT-PCR (qRT-PCR), and immunofluorescence were performed to determine the changes of messenger RNA and protein of EMMPRIN/OX47 and their cellular localization in the rat dorsal root ganglion (DRG) after nerve injury. Paw withdrawal threshold test was examined to evaluate the pain behavior in spinal nerve ligation (SNL) model. The lentivirus containing OX47 shRNA was injected into the DRG one day before SNL. The expression level of both mRNA and protein of OX47 was markedly upregulated in ipsilateral DRG after SNL. OX47 was mainly expressed in the extracellular matrix of DRG. Administration of shRNA targeted against OX47 in vivo remarkably attenuated mechanical allodynia induced by SNL. In conclusion, peripheral nerve injury induced upregulation of OX47 in the extracellular matrix of DRG. RNA interference against OX47 significantly suppressed the expression of OX47 mRNA and the development of mechanical allodynia. The altered expression of OX47 may contribute to the development of neuropathic pain after nerve injury.
Chattopadhyay, M; Krisky, D; Wolfe, D; Glorioso, JC; Mata, M; Fink, DJ
2005-01-01
We examined the utility of herpes simplex virus (HSV) vector-mediated gene transfer of vascular endothelial growth factor (VEGF) in a mouse model of diabetic neuropathy. A replication-incompetent HSV vector with VEGF under the control of the HSV ICP0 promoter (vector T0VEGF) was constructed. T0VEGF expressed and released VEGF from primary dorsal root ganglion (DRG) neurons in vitro, and following subcutaneous inoculation in the foot, expressed VEGF in DRG and nerve in vivo. At 2 weeks after induction of diabetes, subcutaneous inoculation of T0VEGF prevented the reduction in sensory nerve amplitude characteristic of diabetic neuropathy measured 4 weeks later, preserved autonomic function measured by pilocarpine-induced sweating, and prevented the loss of nerve fibers in the skin and reduction of neuropeptide calcitonin gene-related peptide and substance P in DRG neurons of the diabetic mice. HSV-mediated transfer of VEGF to DRG may prove useful in treatment of diabetic neuropathy. PMID:15843809
Kaidoh, T; Inoué, T
2000-05-15
Hair follicles have a longitudinal set of sensory nerve endings called palisade nerve endings (PN). We examined the junctional structures between the PN and outer root sheath (ORS) cells of hair follicles in the rat external ear. Transmission electron microscopy of serial thin sections showed that the processes of the ORS cells penetrated the basal lamina of the hair follicle, forming intercellular junctions with the PN (PN-ORS junctions). Two types of junctions were found: junctions between nerve endings and ORS cells (N-ORS junctions) and those between Schwann cell processes and ORS cells (S-ORS junctions). The N-ORS junctions had two subtypes: 1) a short process or small eminence of the ORS cell was attached to the nerve ending (type I); or 2) a process of the ORS cell was invaginated into the nerve ending (type II). The S-ORS junctions also had two subtypes: 1) a short process or small eminence of the ORS cell was abutted on the Schwann cell process (type I); or 2) a process of the ORS cell was invaginated into the Schwann cell process (type II). Vesicles, coated pits, coated vesicles, and endosomes were sometimes seen in nerve endings, Schwann cells, and ORS cells near the junctions. Computer-aided reconstruction of the serial thin sections displayed the three-dimensional structure of these junctions. These results suggested that the PN-ORS junctions provided direct relationships between the PN and ORS in at least four different patterns. The discovery of these junctions shows the PN-ORS relationship to be closer than previously realized. We speculate that these junctions may have roles in attachment of the PN to the ORS, contributing to increases in the sensitivity of the PN, and in chemical signaling between the PN and ORS.
Kline, Jessica Beckmann; Krauss, John R; Maher, Sara F; Qu, Xianggui
2013-01-01
Estimates of low back pain prevalence in USA ballet dancers range from 8% to 23%. Lumbar stabilization and extensor muscle training has been shown to act as a hypoalgesic for low back pain. Timing and coordination of multifidi and transverse abdominis muscles are recognized as important factors for spinal stabilization. The purpose of this study was to explore the effects of training methods using home exercises and a dynamic sling system on core strength, disability, and low back pain in pre-professional ballet dancers. Five participants were randomly assigned to start a traditional unsupervised lumbar stabilization home exercise program (HEP) or supervised dynamic sling training to strengthen the core and lower extremities. Measurements were taken at baseline and at weeks 3 and 6 for disability using the patient specific functional scale (PSFS), pain using the Numerical Pain Rating System (NPRS), core strength and endurance using timed plank, side-plank, and bridge positions, and sciatic nerve irritability using the straight leg raise (SLR). Data were analyzed using descriptive statistics. From initial to final measurements, all participants demonstrated an improvement in strength and SLR range, and those with initial pain and disability reported relief of symptoms. These results suggest that dynamic sling training and a HEP may help to increase strength, decrease pain, and improve function in dancers without aggravating sciatic nerve irritation.
Effect of peripheral nerve injury on receptive fields of cells in the cat spinal cord.
Devor, M; Wall, P D
1981-06-20
When the sciatic and saphenous nerves are cut and ligated in adult cats, the immediate effect is the production of a completely anesthetic foot and a region in medial lumbar dorsal horn where almost all cells have lost their natural receptive fields (RFs). Beginning at about 1 week and maturing by 4 weeks, some 40% of cells in the medial dorsal horn gain a novel RF on proximal skin, that is, upper and lower leg, thigh, lower back, or perineum. This new RF is supplied by intact proximal nerves and not by sciatic and saphenous nerve fibers that sprouted in the periphery. During the period of switching of RFs from distal to proximal skin there was no gross atrophy of dorsal horn grey matter and no Fink-Heimer stainable degeneration of central arbors and terminals of peripherally axotomized afferents. In intact animals medial dorsal horn cells showed no sign of response to mechanical stimulation of proximal skin. RFs of some of the cells had spontaneous variations in size and sensitivity, but these were not nearly sufficient to explain the large shifts observed after chronic nerve section. Tetanic electrical stimulation of skin or peripheral nerves often caused RFs to shrink, but never to expand. Although natural stimuli of proximal skin would not excite medial dorsal horn cells in intact or acutely deafferented animals, it was found that electrical stimulation of proximal nerves did excite many of these cells, often at short latencies. In the discussion we justify our working hypothesis that the appearance of novel RFs is due to the strengthening or unmasking of normally present but ineffective afferent terminals, rather than to long-distance sprouting of new afferent arbors within the spinal cord.
miRNA Expression Change in Dorsal Root Ganglia After Peripheral Nerve Injury.
Chang, Hsueh-Ling; Wang, Hung-Chen; Chunag, Yi-Ta; Chou, Chao-Wen; Lin, I-Ling; Lai, Chung-Sheng; Chang, Lin-Li; Cheng, Kuang-I
2017-02-01
The role of microRNAs (miRNAs) in the regulation of nerve injury-induced neuropathic pain is unclear. The aims of this study were to assess and compare miRNA expression profiles in dorsal root ganglia (DRG) following three different kinds of peripheral nerve injury, including spinal nerve ligation (SNL), dorsal root transection (DRT), and ventral root transection (VRT), in Sprague-Dawley rats. Responses to thermal and mechanical stimuli were measured preoperatively and on postoperative days (PODs) 1, 4, and 7. A miRNA microarray analysis was used to detect the miRNA expression profiles in injured L5 DRG from SNL, DRT, and VRT on POD 7. Validation of miRNA expression was performed by qPCR and in situ hybridization. Rats receiving SNL displayed significantly higher mechanical hypersensitivity, but those receiving DRT developed higher thermal hypersensitivity. The number of miRNAs that were significantly upregulated in L5 DRG was 49 (7.2%), 25 (3.7%), and 146 (21.5%) following SNL, DRT, and VRT, respectively. On the other hand, 35 (5.1%) miRNAs were significantly downregulated in the SNL group, 21 (3.1%) miRNAs in the DRT group, and 41 (6.0%) miRNAs in the VRT group. Of the four miRNAs that were mutually aberrant in all three models, two were significantly upregulated (twofold), miR-21 and miR-31, and two were significantly downregulated, miR-668 and miR-672. Using in situ hybridization, miRNA-21, miRNA-31, miRNA-668, and miRNA-672 were found to localize to neurons in the DRG. Collectively, the mutual abnormal miRNA expression of miR-21, miR-31, miR-668, and miR-677 implied that these miRNAs may be therapeutic targets for alleviating multiple forms of neuropathic pain.
CT-Guided Transfacet Pedicle Screw Fixation in Facet Joint Syndrome: A Novel Approach
Manfré, Luigi
2014-01-01
Summary Axial microinstability secondary to disc degeneration and consequent chronic facet joint syndrome (CFJS) is a well-known pathological entity, usually responsible for low back pain (LBP). Although posterior lumbar fixation (PIF) has been widely used for lumbar spine instability and LBP, complications related to wrong screw introduction, perineural scars and extensive muscle dissection leading to muscle dysfunction have been described. Radiofrequency ablation (RFA) of facet joints zygapophyseal nerves conventionally used for pain treatment fails in approximately 21% of patients. We investigated a “covert-surgery” minimal invasive technique to treat local spinal instability and LBP, using a novel fully CT-guided approach in patients with axial instability complicated by CFJS resistant to radioablation, by introducing direct fully or partially threaded transfacet screws (transfacet fixation - TFF), to acquire solid arthrodesis, reducing instability and LBP. The CT-guided procedure was well tolerated by all patients in simple analogue sedation, and mean operative time was approximately 45 minutes. All eight patients treated underwent clinical and CT study follow-up at two months, revealing LBP disappearance in six patients, and a significant reduction of lumbar pain in two. In conclusion, CT-guided TFF is a fast and safe technique when facet posterior fixation is needed. PMID:25363265
Brumovsky, Pablo R.; Seroogy, Kim B.; Lundgren, Kerstin H.; Watanabe, Masahiko; Hökfelt, Tomas; Gebhart, G. F.
2011-01-01
Glutamate is the main excitatory neurotransmitter in the nervous system, including in primary afferent neurons. However, to date a glutamatergic phenotype of autonomic neurons has not been described. Therefore, we explored the expression of vesicular glutamate transporters (VGLUTs) type 1, 2 and 3 in lumbar sympathetic chain (LSC) and major pelvic ganglion (MPG) of naïve BALB/C mice, as well as after pelvic nerve axotomy (PNA), using immunohistochemistry and in situ hybridization. Colocalization with activating transcription factor-3 (ATF-3), tyrosine hydroxylase (TH), vesicular acetylcholine transporter (VAChT) and calcitonin generelated peptide was also examined. Sham-PNA, sciatic nerve axotomy (SNA) or naïve mice were included. In naïve mice, VGLUT2-like immunoreactivity (LI) was only detected in fibers and varicosities in LSC and MPG; no ATF-3-immunoreactive (IR) neurons were visible. In contrast, PNA induced upregulation of VGLUT2 protein and transcript, as well as of ATF-3-LI in subpopulations of LSC neurons. Interestingly, VGLUT2-IR LSC neurons coexpressed ATF-3, and often lacked the noradrenergic marker TH. SNA only increased VGLUT2 protein and transcript in scattered LSC neurons. Neither PNA nor SNA upregulated VGLUT2 in MPG neurons. We also found perineuronal baskets immunoreactive either for VGLUT2 or the acetylcholinergic marker VAChT in non-PNA MPGs, usually around TH-IR neurons. VGLUT1-LI was restricted to some varicosities in MPGs, was absent in LSCs, and remained largely unaffected by PNA or SNA. This was confirmed by the lack of expression of VGLUT1 or VGLUT3 mRNAs in LSCs, even after PNA or SNA. Taken together, axotomy of visceral and non-visceral nerves results in a glutamatergic phenotype of some LSC neurons. In addition, we show previously non-described MPG perineuronal glutamatergic baskets. PMID:21596036
Liu, Ying; Xu, Xun-cheng; Zou, Yi; Li, Su-rong; Zhang, Bin; Wang, Yue
2015-01-01
Phrenic nerve transfer is a major dynamic treatment used to repair brachial plexus root avulsion. We analyzed 72 relevant articles on phrenic nerve transfer to repair injured brachial plexus that were indexed by Science Citation Index. The keywords searched were brachial plexus injury, phrenic nerve, repair, surgery, protection, nerve transfer, and nerve graft. In addition, we performed neurophysiological analysis of the preoperative condition and prognosis of 10 patients undergoing ipsilateral phrenic nerve transfer to the musculocutaneous nerve in our hospital from 2008 to 201 3 and observed the electromyograms of the biceps brachii and motor conduction function of the musculocutaneous nerve. Clinically, approximately 28% of patients had brachial plexus injury combined with phrenic nerve injury, and injured phrenic nerve cannot be used as a nerve graft. After phrenic nerve transfer to the musculocutaneous nerve, the regenerated potentials first appeared at 3 months. Recovery of motor unit action potential occurred 6 months later and became more apparent at 12 months. The percent of patients recovering ‘excellent’ and ‘good’ muscle strength in the biceps brachii was 80% after 18 months. At 12 months after surgery, motor nerve conduction potential appeared in the musculocutaneous nerve in seven cases. These data suggest that preoperative evaluation of phrenic nerve function may help identify the most appropriate nerve graft in patients with an injured brachial plexus. The functional recovery of a transplanted nerve can be dynamically observed after the surgery. PMID:25883637
Liu, Ying; Xu, Xun-Cheng; Zou, Yi; Li, Su-Rong; Zhang, Bin; Wang, Yue
2015-02-01
Phrenic nerve transfer is a major dynamic treatment used to repair brachial plexus root avulsion. We analyzed 72 relevant articles on phrenic nerve transfer to repair injured brachial plexus that were indexed by Science Citation Index. The keywords searched were brachial plexus injury, phrenic nerve, repair, surgery, protection, nerve transfer, and nerve graft. In addition, we performed neurophysiological analysis of the preoperative condition and prognosis of 10 patients undergoing ipsilateral phrenic nerve transfer to the musculocutaneous nerve in our hospital from 2008 to 201 3 and observed the electromyograms of the biceps brachii and motor conduction function of the musculocutaneous nerve. Clinically, approximately 28% of patients had brachial plexus injury combined with phrenic nerve injury, and injured phrenic nerve cannot be used as a nerve graft. After phrenic nerve transfer to the musculocutaneous nerve, the regenerated potentials first appeared at 3 months. Recovery of motor unit action potential occurred 6 months later and became more apparent at 12 months. The percent of patients recovering 'excellent' and 'good' muscle strength in the biceps brachii was 80% after 18 months. At 12 months after surgery, motor nerve conduction potential appeared in the musculocutaneous nerve in seven cases. These data suggest that preoperative evaluation of phrenic nerve function may help identify the most appropriate nerve graft in patients with an injured brachial plexus. The functional recovery of a transplanted nerve can be dynamically observed after the surgery.