Sample records for luminescent conductive polymers

  1. Helically assembled π-conjugated polymers with circularly polarized luminescence.

    PubMed

    Watanabe, Kazuyoshi; Akagi, Kazuo

    2014-08-01

    We review the recent progress in the field of helically assembled π -conjugated polymers, focusing on aromatic conjugated polymers with interchain helical π -stacking that exhibit circularly polarized luminescence (CPL). In Part 1, we discuss optically active polymers with white-colored CPL and the amplification of the circular polarization through liquid crystallinity. In Part 2, we focus on the stimuli-responsive CPL that results from changes in the conformation and aggregation state of π -conjugated molecules and polymers. In Part 3, we discuss the self-assembly of achiral cationic π -conjugated polymers into circularly polarized luminescent supramolecular nanostructures with the aid of other chiral molecules.

  2. Luminescent nanocomposites of conducting polymers and in-situ grown CdS quantum dots

    NASA Astrophysics Data System (ADS)

    Borriello, C.; Masala, S.; Bizzarro, V.; Nenna, G.; Re, M.; Pesce, E.; Minarini, C.; Di Luccio, T.

    2010-06-01

    Luminescent PVK:CdS and P3HT:CdS nanocomposites with enhanced electrooptical properties have been synthesized. The nucleation and growth of CdS nanoparticles have been obtained by the thermolysis of a single Cd and S precursor dispersed in the polymers. The size distribution and morphology of the nanoparticles have been studied by TEM analyses. Monodispersive and very small nanoparticles of diameter below 3 nm in PVK and 2 nm in P3HT, have been obtained. The application of such nanocomposites as emitting layers in OLED devices is discussed.

  3. Luminescent nanocomposites of conducting polymers and in-situ grown CdS quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borriello, C.; Masala, S.; Nenna, G.

    2010-06-02

    Luminescent PVK:CdS and P3HT:CdS nanocomposites with enhanced electrooptical properties have been synthesized. The nucleation and growth of CdS nanoparticles have been obtained by the thermolysis of a single Cd and S precursor dispersed in the polymers. The size distribution and morphology of the nanoparticles have been studied by TEM analyses. Monodispersive and very small nanoparticles of diameter below 3 nm in PVK and 2 nm in P3HT, have been obtained. The application of such nanocomposites as emitting layers in OLED devices is discussed.

  4. Luminescent Porous Polymers Based on Aggregation-Induced Mechanism: Design, Synthesis and Functions.

    PubMed

    Dalapati, Sasanka; Gu, Cheng; Jiang, Donglin

    2016-12-01

    Enormous research efforts are focusing on the design and synthesis of advanced luminescent systems, owing to their diverse capability in scientific studies and technological developments. In particular, fluorescence systems based on aggregation-induced emission (AIE) have emerged to show great potential for sensing, bio-imaging, and optoelectronic applications. Among them, integrating AIE mechanisms to design porous polymers is unique because it enables the combination of porosity and luminescence activity in one molecular skeleton for functional design. In recent years rapid progress in exploring AIE-based porous polymers has developed a new class of luminescent materials that exhibit broad structural diversity, outstanding properties and functions and promising applications. By classifying the structural nature of the skeleton, herein the design principle, synthetic development and structural features of different porous luminescent materials are elucidated, including crystalline covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and amorphous porous organic polymers (POPs). The functional exploration of these luminescent porous polymers are highlighted by emphasizing electronic interplay within the confined nanospace, fundamental issues to be addressed are disclosed, and future directions from chemistry, physics and materials science perspectives are proposed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Lanthanide coordination polymers: Synthesis, diverse structure and luminescence properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Xue-Qin, E-mail: songxq@mail.lzjtu.cn; Lei, Yao-Kun; Wang, Xiao-Run

    2014-10-15

    The new semirigid exo-bidentate ligand incorporating furfurysalicylamide terminal groups, namely, 1,4-bis([(2′-furfurylaminoformyl)phenoxyl]methyl)-2,5-bismethylbenzene (L) was synthesized and used as building blocks for constructing lanthanide coordination polymers with luminescent properties. The series of lanthanide nitrate complexes have been characterized by elemental analysis, IR spectroscopy, and X-ray diffraction analysis. The semirigid ligand L, as a bridging ligand, reacts with lanthanide nitrates forming three distinct structure types: chiral noninterpenetrated two-dimensional (2D) honeycomblike (6,3) (hcb, Schläfli symbol 6{sup 3}, vertex symbol 6 6 6) topological network as type I, 1D zigzag chain as type II and 1D trapezoid ladder-like chain as type III. The structural diversitiesmore » indicate that lanthanide contraction effect played significant roles in the structural self-assembled process. The luminescent properties of Eu{sup III}, Tb{sup III} and Dy{sup III} complexes are discussed in detail. Due to the good match between the lowest triplet state of the ligand and the resonant energy level of the lanthanide ion, the lanthanide ions in Eu{sup III}, Tb{sup III} and Dy{sup III} complexes can be efficiently sensitized by the ligand. - Graphical abstract: We present herein six lanthanide coordination polymers of a new semirigid exo-bidentate ligand which not only display diverse structures but also possess strong luminescence properties. - Highlights: • We present lanthanide coordination polymers of a new semirigid exo-bidentate ligand. • The lanthanide coordination polymers exhibit diverse structures. • The luminescent properties of Tb{sup III}, Eu{sup III} and Dy{sup III} complexes are discussed in detail.« less

  6. A General Model of Sensitized Luminescence in Lanthanide-Based Coordination Polymers and Metal-Organic Framework Materials.

    PubMed

    Einkauf, Jeffrey D; Clark, Jessica M; Paulive, Alec; Tanner, Garrett P; de Lill, Daniel T

    2017-05-15

    Luminescent lanthanides containing coordination polymers and metal-organic frameworks hold great potential in many applications due to their distinctive spectroscopic properties. While the ability to design coordination polymers for specific functions is often mentioned as a major benefit bestowed on these compounds, the lack of a meaningful understanding of the luminescence in lanthanide coordination polymers remains a significant challenge toward functional design. Currently, the study of these compounds is based on the antenna effect as derived from molecular systems, where organic antennae are used to facilitate lanthanide-centered luminescence. This molecular-based approach does not take into account the unique features of extended network solids, particularly the formation of band structure. While guidelines for the antenna effect are well established, they require modification before being applied to coordination polymers. A series of nine coordination polymers with varying topologies and organic linkers were studied to investigate the accuracy of the antenna effect in coordination polymer systems. By comparing a molecular-based approach to a band-based one, it was determined that the band structure that occurs in aggregated organic solids needs to be considered when evaluating the luminescence of lanthanide coordination polymers.

  7. Nanoscale coordination polymers exhibiting luminescence properties and NMR relaxivity

    NASA Astrophysics Data System (ADS)

    Chelebaeva, Elena; Larionova, Joulia; Guari, Yannick; Ferreira, Rute A. S.; Carlos, Luis D.; Trifonov, Alexander A.; Kalaivani, Thangavel; Lascialfari, Alessandro; Guérin, Christian; Molvinger, Karine; Datas, Lucien; Maynadier, Marie; Gary-Bobo, Magali; Garcia, Marcel

    2011-03-01

    This article presents the first example of ultra-small (3-4 nm) magneto-luminescent cyano-bridged coordination polymer nanoparticles Ln0.333+Gdx3+/[Mo(CN)8]3- (Ln = Eu (x = 0.34), Tb (x = 0.35)) enwrapped by a natural biocompatible polymer chitosan. The aqueous colloidal solutions of these nanoparticles present a luminescence characteristic of the corresponding lanthanides (5D0 --> 7F0-4 (Eu3+) or the 5D4 --> 7F6-2 (Tb3+)) under UV excitation and a green luminescence of the chitosan shell under excitation in the visible region. Magnetic Resonance Imaging (MRI) efficiency, i.e. the nuclear relaxivity, measurements performed for Ln0.333+Gdx3+/[Mo(CN)8]3- nanoparticles show r1p and r2p relaxivities slightly higher than or comparable to the ones of the commercial paramagnetic compounds Gd-DTPA® or Omniscan® indicating that our samples may potentially be considered as a positive contrast agent for MRI. The in vitro studies performed on these nanoparticles show that they maybe internalized into human cancer and normal cells and well detected by fluorescence at the single cell level. They present high stability even at low pH and lack of cytotoxicity both in human cancer and normal cells.This article presents the first example of ultra-small (3-4 nm) magneto-luminescent cyano-bridged coordination polymer nanoparticles Ln0.333+Gdx3+/[Mo(CN)8]3- (Ln = Eu (x = 0.34), Tb (x = 0.35)) enwrapped by a natural biocompatible polymer chitosan. The aqueous colloidal solutions of these nanoparticles present a luminescence characteristic of the corresponding lanthanides (5D0 --> 7F0-4 (Eu3+) or the 5D4 --> 7F6-2 (Tb3+)) under UV excitation and a green luminescence of the chitosan shell under excitation in the visible region. Magnetic Resonance Imaging (MRI) efficiency, i.e. the nuclear relaxivity, measurements performed for Ln0.333+Gdx3+/[Mo(CN)8]3- nanoparticles show r1p and r2p relaxivities slightly higher than or comparable to the ones of the commercial paramagnetic compounds Gd

  8. Luminescent properties of Europium(III) nitrate with 1,10-phenantroline and cinnamic acid in light - Transforming polymer materials

    NASA Astrophysics Data System (ADS)

    Kalinovskaya, I. V.; Zadorozhnaya, A. N.

    2018-04-01

    Influence of cinnamic acid on the luminescent properties of the europium(III) nitrate with 1,10-phenantroline in a polymer materials was studied. It was shown that combined use of these rare earth complexes leads to intense luminescence in the 400-700 nm region. Samples containing polymer europium nitrate with 1,10-phenantroline and cinnamic acid at a molar ratio of 1:2,0 had the maximum luminescence intensity and photostability.

  9. Supramolecular luminescence from oligofluorenol-based supramolecular polymer semiconductors.

    PubMed

    Zhang, Guang-Wei; Wang, Long; Xie, Ling-Hai; Lin, Jin-Yi; Huang, Wei

    2013-11-13

    Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band) at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics.

  10. Supramolecular Luminescence from Oligofluorenol-Based Supramolecular Polymer Semiconductors

    PubMed Central

    Zhang, Guang-Wei; Wang, Long; Xie, Ling-Hai; Lin, Jin-Yi; Huang, Wei

    2013-01-01

    Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band) at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics. PMID:24232455

  11. Highly sensitive gas-phase explosive detection by luminescent microporous polymer networks.

    PubMed

    Räupke, André; Palma-Cando, Alex; Shkura, Eugen; Teckhausen, Peter; Polywka, Andreas; Görrn, Patrick; Scherf, Ullrich; Riedl, Thomas

    2016-07-04

    We propose microporous networks (MPNs) of a light emitting spiro-carbazole based polymer (PSpCz) as luminescent sensor for nitro-aromatic compounds. The MPNs used in this study can be easily synthesized on arbitrarily sized/shaped substrates by simple and low-cost electrochemical deposition. The resulting MPN afford an extremely high specific surface area of 1300 m(2)/g, more than three orders of magnitude higher than that of the thin films of the respective monomer. We demonstrate, that the luminescence of PSpCz is selectively quenched by nitro-aromatic analytes, e.g. nitrobenzene, 2,4-DNT and TNT. In striking contrast to a control sample based on non-porous spiro-carbazole, which does not show any luminescence quenching upon exposure to TNT at levels of 3 ppm and below, the microporous PSpCz shows a clearly detectable response even at TNT concentrations as low as 5 ppb, clearly demonstrating the advantage of microporous films as luminescent sensors for traces of explosive analytes. This level states the vapor pressure of TNT at room temperature.

  12. Highly sensitive gas-phase explosive detection by luminescent microporous polymer networks

    PubMed Central

    Räupke, André; Palma-Cando, Alex; Shkura, Eugen; Teckhausen, Peter; Polywka, Andreas; Görrn, Patrick; Scherf, Ullrich; Riedl, Thomas

    2016-01-01

    We propose microporous networks (MPNs) of a light emitting spiro-carbazole based polymer (PSpCz) as luminescent sensor for nitro-aromatic compounds. The MPNs used in this study can be easily synthesized on arbitrarily sized/shaped substrates by simple and low-cost electrochemical deposition. The resulting MPN afford an extremely high specific surface area of 1300 m2/g, more than three orders of magnitude higher than that of the thin films of the respective monomer. We demonstrate, that the luminescence of PSpCz is selectively quenched by nitro-aromatic analytes, e.g. nitrobenzene, 2,4-DNT and TNT. In striking contrast to a control sample based on non-porous spiro-carbazole, which does not show any luminescence quenching upon exposure to TNT at levels of 3 ppm and below, the microporous PSpCz shows a clearly detectable response even at TNT concentrations as low as 5 ppb, clearly demonstrating the advantage of microporous films as luminescent sensors for traces of explosive analytes. This level states the vapor pressure of TNT at room temperature. PMID:27373905

  13. Enhanced radiation detectors using luminescent materials

    DOEpatents

    Vardeny, Zeev V.; Jeglinski, Stefan A.; Lane, Paul A.

    2001-01-01

    A radiation detecting device comprising a radiation sensing element, and a layer of luminescent material to expand the range of wavelengths over which the sensing element can efficiently detect radiation. The luminescent material being selected to absorb radiation at selected wavelengths, causing the luminescent material to luminesce, and the luminescent radiation being detected by the sensing element. Radiation sensing elements include photodiodes (singly and in arrays), CCD arrays, IR detectors and photomultiplier tubes. Luminescent materials include polymers, oligomers, copolymers and porphyrines, Luminescent layers include thin films, thicker layers, and liquid polymers.

  14. Luminescent detection of hydrazine and hydrazine derivatives

    DOEpatents

    Swager, Timothy M [Newton, MA; Thomas, III, Samuel W.

    2012-04-17

    The present invention generally relates to methods for modulating the optical properties of a luminescent polymer via interaction with a species (e.g., an analyte). In some cases, the present invention provides methods for determination of an analyte by monitoring a change in an optical signal of a luminescent polymer upon exposure to an analyte. Methods of the present invention may be useful for the vapor phase detection of analytes such as explosives and toxins. The present invention also provides methods for increasing the luminescence intensity of a polymer, such as a polymer that has been photobleached, by exposing the luminescent polymer to a species such as a reducing agent.

  15. A luminescent zinc(ii) coordination polymer with unusual (3,4,4)-coordinated self-catenated 3D network for selective detection of nitroaromatics and ferric and chromate ions: a versatile luminescent sensor.

    PubMed

    Zhang, Ya-Qian; Blatov, Vladislav A; Zheng, Tian-Rui; Yang, Chang-Hao; Qian, Lin-Lu; Li, Ke; Li, Bao-Long; Wu, Bing

    2018-05-01

    A zinc(ii) coordination polymer {[Zn3(mtrb)3(btc)2]·3H2O}n (1) was synthesized and characterized (mtrb = 1,3-bis(1,2,4-triazole-4-ylmethyl)benzene, btc = 1,3,5-benzenetricarboxylate). The polymer 1 shows an unusual (3,4,4)-coordinated self-catenated 3D network with the point symbol of {63}2{62·82·102}{64·82}2. The polymer 1 is the first luminescent sensor for the detection of 2-amino-4-nitrophenol (ANP). The polymer 1 is also a good luminescence sensor for detection of TNP, 2,4-DNP, 4-NP, ANP and 2-NP in MeOH, particularly for TNP. The order of detection efficiency is TNP > 2,4-DNP > 4-NP > ANP > 2-NP. The polymer 1 also exhibits high sensitivity and selectivity as a luminescence sensor for the detection of Fe3+, Cr2O72- and CrO42- in aqueous solution. Our experiments showed that the presence of interfering ions had no significant effect on the sensing of Fe3+, Cr2O72- or CrO42- ions. The detection limits for TNP, ANP, Fe3+, Cr2O72- and CrO42- are 0.22 μM, 4.12 μM, 1.78 μM, 2.83 μM, and 4.52 μM, respectively. The luminescence sensor is stable and can be recycled for detection at least five times. The possible quenching mechanisms are discussed. The polymer 1 is also an effective photocatalyst for degradation of methylene blue (MB) under visible or UV light irradiation.

  16. Conductive polymer-based material

    DOEpatents

    McDonald, William F [Utica, OH; Koren, Amy B [Lansing, MI; Dourado, Sunil K [Ann Arbor, MI; Dulebohn, Joel I [Lansing, MI; Hanchar, Robert J [Charlotte, MI

    2007-04-17

    Disclosed are polymer-based coatings and materials comprising (i) a polymeric composition including a polymer having side chains along a backbone forming the polymer, at least two of the side chains being substituted with a heteroatom selected from oxygen, nitrogen, sulfur, and phosphorus and combinations thereof; and (ii) a plurality of metal species distributed within the polymer. At least a portion of the heteroatoms may form part of a chelation complex with some or all of the metal species. In many embodiments, the metal species are present in a sufficient concentration to provide a conductive material, e.g., as a conductive coating on a substrate. The conductive materials may be useful as the thin film conducting or semi-conducting layers in organic electronic devices such as organic electroluminescent devices and organic thin film transistors.

  17. Electronic and Ionic Transport in Processable Conducting Polymers

    DTIC Science & Technology

    1991-05-28

    doping with nitrosonium fluoborate. 6. Polypyrrole containing luminescent ions has been shown to be useful as in-situ probes of ion transport during...blends, ion transport, fibers, theoretical calculations ABSTRACT (Continue on reverse if necessary and identify by block number) A summary of the research...polymer/dopant ion interactions, symmereically and asymmetrically substituted poly(di-2-heterocycle-2,5-disubstitutedphenylenes), poly(5

  18. Thermally conductive polymers

    NASA Technical Reports Server (NTRS)

    Byrd, N. R.; Jenkins, R. K.; Lister, J. L. (Inventor)

    1971-01-01

    A thermally conductive polymer is provided having physical and chemical properties suited to use as a medium for potting electrical components. The polymer is prepared from hydroquinone, phenol, and formaldehyde, by conventional procedures employed for the preparation of phenol-formaldehyde resins. While the proportions of the monomers can be varied, a preferred polymer is formed from the monomers in a 1:1:2.4 molar or ratio of hydroquinone:phenol:formaldehyde.

  19. Polymers that Conduct Electricity.

    ERIC Educational Resources Information Center

    Edelson, Edward

    1983-01-01

    Although polymers are regarded as electrical insulators, it was discovered that they can be made to conduct electricity. This discovery has opened vast new practical and theoretical areas for exploration by physicists and chemists. Research studies with these conducting polymers and charge-transfer salts as well as possible applications are…

  20. Influence of ZnO nanorod on the luminescent and electrical properties of fluorescent dye-doped polymer nanocomposite

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Xu, Z.; Qian, L.; Tao, D. L.; Teng, F.; Xu, X. R.

    2006-11-01

    The luminescent properties of fluorescent dye-doped polymer dispersed with ZnO nanorods were investigated. Embedding ZnO nanorods in blend film results in a blue-shifted emission of fluorescent dye. It is accounted for in terms of the difference in permittivity between inorganic oxide nano-material and dye-doped polymer. Moreover, polymer light-emitting diodes with the addition of ZnO nanorods showed the lower threshold voltage and the higher charge current and electroluminescence efficiency.

  1. Luminescence from Zinc Oxide Nanostructures and Polymers and their Hybrid Devices

    PubMed Central

    Willander, Magnus; Nur, Omer; Sadaf, Jamil Rana; Qadir, Muhammad Israr; Zaman, Saima; Zainelabdin, Ahmed; Bano, Nargis; Hussain, Ijaz

    2010-01-01

    Zinc oxide (ZnO) is a strong luminescent material, as are several polymers. These two materials have distinct drawbacks and advantages, and they can be combined to form nanostructures with many important applications, e.g., large-area white lighting. This paper discusses the origin of visible emission centers in ZnO nanorods grown with different approaches. White light emitting diodes (LEDs) were fabricated by combining n-ZnO nanorods and hollow nanotubes with different p-type materials to form heterojunctions. The p-type component of the hybrids includes p-SiC, p-GaN, and polymers. We conclude by analyzing the electroluminescence of the different light emitting diodes we fabricated. The observed optical, electrical, and electro-optical characteristics of these LEDs are discussed with an emphasis on the deep level centers that cause the emission.

  2. Electrically conducting polymers for aerospace applications

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Gaier, James R.; Good, Brian S.; Sharp, G. R.; Meador, Michael A.

    1991-01-01

    Current research on electrically conducting polymers from 1974 to the present is reviewed focusing on the development of materials for aeronautic and space applications. Problems discussed include extended pi-systems, pyrolytic polymers, charge-transfer systems, conductive matrix resins for composite materials, and prospects for the use of conducting polymers in space photovoltaics.

  3. The Workshop on Conductive Polymers: Final Report

    DOE R&D Accomplishments Database

    1985-10-01

    Reports are made by groups on: polyacetylene, polyphenylene, polyaniline, and related systems; molecular, crystallographic, and defect structures in conducting polymers; heterocyclic polymers; synthesis of new and improved conducting polymers; future applications possibilities for conducting polymers; and challenges for improved understanding of properties. (DLC)

  4. Rethinking Sensitized Luminescence in Lanthanide Coordination Polymers and MOFs: Band Sensitization and Water Enhanced Eu Luminescence in [Ln(C15H9O5)3(H2O)3]n (Ln = Eu, Tb).

    PubMed

    Einkauf, Jeffrey D; Kelley, Tanya T; Chan, Benny C; de Lill, Daniel T

    2016-08-15

    A coordination polymer [Ln(C15H9O9)3(H2O)3]n (1-Ln = Eu(III), Tb(III)) assembled from benzophenonedicarboxylate was synthesized and characterized. The organic component is shown to sensitize lanthanide-based emission in both compounds, with quantum yields of 36% (Eu) and 6% (Tb). Luminescence of lanthanide coordination polymers is currently described from a molecular approach. This methodology fails to explain the luminescence of this system. It was found that the band structure of the organic component rather than the molecular triplet state was able to explain the observed luminescence. Deuterated (Ln(C15H9O9)3(D2O)3) and dehydrated (Ln(C15H9O9)3) analogues were also studied. When bound H2O was replaced by D2O, lifetime and emission increased as expected. Upon dehydration, lifetimes increased again, but emission of 1-Eu unexpectedly decreased. This reduction is reasoned through an unprecedented enhancement effect of the compound's luminescence by the OH/OD oscillators in the organic-to-Eu(III) energy transfer process.

  5. Composites incorporated a conductive polymer nanofiber network

    DOEpatents

    Pozzo, Lilo Danielle; Newbloom, Gregory

    2017-04-11

    Methods of forming composites that incorporate networks of conductive polymer nanofibers are provided. Networks of less-than conductive polymers are first formed and then doped with a chemical dopant to provide networks of conductive polymers. The networks of conductive polymers are then incorporated into a matrix in order to improve the conductivity of the matrix. The formed composites are useful as conductive coatings for applications including electromagnetic energy management on exterior surfaces of vehicles.

  6. Synthesis, structure, luminescence and photocatalytic properties of an uranyl-2,5-pyridinedicarboxylate coordination polymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Si, Zhen-Xiu; Xu, Wei, E-mail: xuwei@nbu.edu.cn; Zheng, Yue-Qing, E-mail: yqzhengmc@163.com

    2016-07-15

    An uranium coordination polymer, namely [(UO{sub 2}(pydc)(H{sub 2}O)]·H{sub 2}O (1) (H{sub 2}pydc=2,5-pyridinedicarboxylic acid), has been obtained by hydrothermal method and characterized by X-ray single crystal structure determination. Structural analysis reveals that complex 1 exhibits 1D chain coordination polymer, in which UO{sub 2}{sup 2+} ions are bridged by 2,5-pyridinedicarboxylate ligands and the chains are connected into a 3D supramolecular network by O–H···O hydrogen bond interactions and π–π stacking interactions. The photocatalytic properties of 1 for degradation of methylene blue (MB), Rhodamine B (RhB) and methyl orange (MO) under Hg-lamp irradiation have been performed, and the amount of the catalyst as wellmore » as Hg-lamp irradiation with different power on the photodegradation efficiency of MB have been investigated. Elemental analyses, infrared spectroscopy, TG-DTA analyses and luminescence properties were also discussed. - Graphical abstract: Complex 1 exhibits 1D chain coordination polymer in which UO{sub 2}{sup 2+} ions are bridged by 2,5-pyridinedicarboxylate ligand. Photoluminescence studies reveal that complex 1 exhibits characteristic emissions of uranyl centers. The compound is selective to degraded dye and displays good photocatalytic activities for the degradation of MB under Hg-lamp. Display Omitted - Highlights: • Complex 1 exhibits 1D chain coordination polymer. • Complex 1 could degrade methylene blue and Rhodamine B under Hg-lamp irradiation. • Luminescent property of 1 has been studied.« less

  7. Electrical conduction in polymer dielectrics

    NASA Technical Reports Server (NTRS)

    Cotts, D. B.

    1985-01-01

    The use of polymer dielectrics with moderate resistivities could reduce or eliminate problems associated with spacecraft charging. The processes responsible for conduction and the properties of electroactive polymers are reviewed, and correlations drawn between molecular structure and electrical conductivity. These structure-property relationships led to the development of several new electroactive polymer compositions and the identification of several systems that have the requisite thermal, mechanical, environmental and electrical properties for use in spacecraft.

  8. Conducting Polymer 3D Microelectrodes

    PubMed Central

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi; Castillo-León, Jaime; Emnéus, Jenny; Svendsen, Winnie E.

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements. PMID:22163508

  9. Unusually conductive carbon-inherently conducting polymer (ICP) composites: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Bourdo, Shawn Edward

    Two groups of materials that have recently come to the forefront of research initiatives are carbon allotropes, especially nanotubes, and conducting polymers-more specifically inherently conducting polymers. The terms conducting polymers and inherently conducting polymers sometimes are used interchangeably without fully acknowledging a major difference in these terms. Conducting polymers (CPs) and inherently conducting polymers (ICPs) are both polymeric materials that conduct electricity, but the difference lies in how each of these materials conducts electricity. For CPs of the past, an electrically conductive filler such as metal particles, carbon black, or graphite would be blended into a polymer (insulator) allowing for the CP to carry an electric current. An ICP conducts electricity due to the intrinsic nature of its chemical structure. The two materials at the center of this research are graphite and polyaniline. For the first time, a composite between carbon allotropes (graphite) and an inherently conducting polymer (PANI) has exhibited an electrical conductivity greater than either of the two components. Both components have a plethora of potential applications and therefore the further investigation could lead to use of these composites in any number of technologies. Touted applications that use either conductive carbons or ICPs exist in a wide range of fields, including electromagnetic interference (EMI) shielding, radar evasion, low power rechargeable batteries, electrostatic dissipation (ESD) for anti-static textiles, electronic devices, light emitting diodes (LEDs), corrosion prevention, gas sensors, super capacitors, photovoltaic cells, and resistive heating. The main motivation for this research has been to investigate the connection between an observed increase in conductivity and structure of composites. Two main findings have resulted from the research as related to the observed increase in conductivity. The first was the structural evidence from

  10. Structure and luminescence of nanocrystalline gallium nitride synthesized by a novel polymer pyrolysis route

    NASA Astrophysics Data System (ADS)

    Garcia, Rafael; Hirata, Gustavo A.; Thomas, Alan C.; Ponce, Fernando A.

    2006-10-01

    Thermal decomposition in a horizontal quartz tube reactor of a polymer [-(CH 6N 4O) 3Ga(NO 3) 3-] in a nitrogen atmosphere, yield directly nano-structured gallium nitride (GaN) powder. The polymer was obtained by the reaction between high purity gallium nitrate (Ga(NO 3) 3) dissolved in toluene and carbohydrazide as an azotic ligand. The powder synthesized by this method showed a yellow color and elemental analysis suggested that the color is due to some carbon and oxygen impurities in the as-synthesized powder. Electron microscopy showed that the as-synthesized powders consist of a mixture of various porous particles containing nanowires and nano-sized platelets. The size of the crystallites can be controlled by annealing processes under ammonia. Photoluminescence analysis at 10 K on as-synthesized powders showed a broad red luminescence around 668 nm under UV laser excitation (He-Cd laser, 325 nm). However after annealing process the red luminescence disappears and the typical band edge emission of GaN around 357 nm (3.47 eV) and the UV band were the dominant emissions in the PL spectra.

  11. The Polyanilines: A Novel Class of Conducting Polymers

    DTIC Science & Technology

    1992-06-19

    yield pos~ive and negative solitons. Other conducting polymers are briefly discussed. The polyanilines , a large class of versatile conducting polymers...Speia TEC-9NTlCAL REPORT NO.: 1992-35 - "THE POLYANILINES : A NOVEL CLASS OF CONDUCTING POLYMERS" by A.G. MacDiarmid Accepted for Publication in...34The Polyanilines : A Novel Class of Conducting Polymers," Proceed. Nobel Symposium 81, in Cpniuaated Polymers and Related Materials: The Interconnection

  12. Functionalization of silicon nanowires by conductive and non-conductive polymers

    NASA Astrophysics Data System (ADS)

    Belhousse, S.; Tighilt, F.-Z.; Sam, S.; Lasmi, K.; Hamdani, K.; Tahanout, L.; Megherbi, F.; Gabouze, N.

    2017-11-01

    The work reports on the development of hybrid devices based on silicon nanowires (SiNW) with polymers and the difference obtained when using conductive and non-conductive polymers. SiNW have attracted much attention due to their importance in understanding the fundamental properties at low dimensionality as well as their potential application in nanoscale devices as in field effect transistors, chemical or biological sensors, battery electrodes and photovoltaics. SiNW arrays were formed using metal assisted chemical etching method. This process is simple, fast and allows obtaining a wide range of silicon nanostructures. Hydrogen-passivated SiNW surfaces show relatively poor stability. Surface modification with organic species confers the desired stability and enhances the surface properties. For this reason, this work proposes a covalent grafting of organic material onto SiNW surface. We have chosen a non-conductive polymer polyvinylpyrrolidone (PVP) and conductive polymers polythiophene (PTh) and polypyrrole (PPy), in order to evaluate the electric effect of the polymers on the obtained materials. The hybrid structures were elaborated by the polymerization of the corresponding conjugated monomers by electrochemical route; this electropolymerization offers several advantages such as simplicity and rapidity. SiNW functionalization by conductive polymers has shown to have a huge effect on the electrical mobility. Hybrid surface morphologies were characterized by scanning electron microscopy (SEM), infrared spectroscopy (FTIR-ATR) and contact angle measurements.

  13. Water-soluble conductive polymers

    DOEpatents

    Aldissi, Mahmoud

    1989-01-01

    Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  14. Water-soluble conductive polymers

    DOEpatents

    Aldissi, Mahmoud

    1990-01-01

    Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  15. Water-soluble conductive polymers

    DOEpatents

    Aldissi, M.

    1988-02-12

    Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  16. Research Trends of Soft Actuators based on Electroactive Polymers and Conducting Polymers

    NASA Astrophysics Data System (ADS)

    Kaneto, K.

    2016-04-01

    Artificial muscles (or soft actuators) based on electroactive polymers (EAPs) are attractive power sources to drive human-like robots in place of electrical motor, because they are quiet, powerful, light weight and compact. Among EAPs for soft actuators, conducting polymers are superior in strain, stress, deformation form and driving voltage compared with the other EAPs. In this paper, the research trends of EAPs and conducting polymers are reviewed by retrieval of the papers and patents. The research activity of EAP actuators showed the maximum around 2010 and somehow declining now days. The reasons for the reducing activity are found to be partly due to problems of conducting polymer actuators for the practical application. The unique characteristics of conducting polymer actuators are mentioned in terms of the basic mechanisms of actuation, creeping, training effect and shape retention under high tensile loads. The issues and limitation of conducting polymer soft actuators are discussed.

  17. Electronically conducting polymers with silver grains

    NASA Technical Reports Server (NTRS)

    Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor); Hodko, Dolibor (Inventor)

    1999-01-01

    The present invention provides electronically conducting polymer films formed from photosensitive formulations of pyrrole and an electron acceptor that have been selectively exposed to UV light, laser light, or electron beams. The formulations may include photoinitiators, flexibilizers, solvents and the like. These solutions can be used in applications including printed circuit boards and through-hole plating and enable direct metallization processes on non-conducting substrates. After forming the conductive polymer patterns, a printed wiring board can be formed by sensitizing the polymer with palladium and electrolytically depositing copper.

  18. Biochemical synthesis of water soluble conducting polymers

    NASA Astrophysics Data System (ADS)

    Bruno, Ferdinando F.; Bernabei, Manuele

    2016-05-01

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  19. Biochemical synthesis of water soluble conducting polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruno, Ferdinando F., E-mail: Ferdinando-Bruno@uml.edu; Bernabei, Manuele

    2016-05-18

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadaysmore » tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.« less

  20. Synthesis and luminescence properties of polymer-rare earth complexes containing salicylaldehyde-type bidentate Schiff base ligand.

    PubMed

    Zhang, Dandan; Gao, Baojiao; Li, Yanbin

    2017-08-01

    Using molecular design and polymer reactions, two types of bidentate Schiff base ligands, salicylaldehyde-aniline (SAN) and salicylaldehyde-cyclohexylamine (SCA), were synchronously synthesized and bonded onto the side chain of polysulfone (PSF), giving two bidentate Schiff base ligand-functionalized PSFs, PSF-SAN and PSF-SCA, referred to as macromolecular ligands. Following coordination reactions between the macromolecular ligands and Eu(III) and Tb(III) ions (the reaction occurred between the bonded ligands SAN or SCA and the lanthanide ion), two series of luminescent polymer-rare earth complexes, PSF-SAN-Eu(III) and PSF-SCA-Tb(III), were obtained. The two macromolecular ligands were fully characterized by Fourier transform infrared (FTIR), 1 H NMR and UV absorption spectroscopy, and the prepared complexes were also characterized by FTIR, UV absorption spectroscopy and thermo-gravity analysis. On this basis, the photoluminescence properties of these complexes and the relationships between their structure and luminescence were investigated in depth. The results show that the bonded bidentate Schiff base ligands, SAN and SCA, can effectively sensitize the fluorescence emission of Eu(III) and Tb(III) ions, respectively. PSF-SAN-Eu(III) series complexes, namely the binary complex PSF-(SAN) 3 -Eu(III) and the ternary complex PSF-(SAN) 3 -Eu(III)-(Phen) 1 (Phen is the small-molecule ligand 1,10-phenanthroline), produce strong red luminescence, suggesting that the triplet state energy level of SAN is lower and well matched with the resonant energy level of the Eu(III) ion. By contrast, PSF-SAN-Eu(III) series complexes, namely the binary complex PSF-(SCA) 3 -Tb(III) and the ternary complex PSF-(SCA) 3 -Tb(III)-(Phen) 1 , display strong green luminescence, suggesting that the triplet state energy level of SCA is higher and is well matched with the resonant energy level of Tb(III). Copyright © 2017 John Wiley & Sons, Ltd.

  1. Method of forming electronically conducting polymers on conducting and nonconducting substrates

    NASA Technical Reports Server (NTRS)

    Hodko, Dalibor (Inventor); Clarke, Eric T. (Inventor); Miller, David L. (Inventor); Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor); Parker, Donald L. (Inventor)

    2001-01-01

    The present invention provides electronically conducting polymer films formed from photosensitive formulations of pyrrole and an electron acceptor that have been selectively exposed to UV light, laser light, or electron beams. The formulations may include photoinitiators, flexibilizers, solvents and the like. These solutions can be used in applications including printed circuit boards and through-hole plating and enable direct metallization processes on non-conducting substrates. After forming the conductive polymer patterns, a printed wiring board can be formed by sensitizing the polymer with palladium and electrolytically depositing copper.

  2. High thermal conductivity in electrostatically engineered amorphous polymers

    PubMed Central

    Shanker, Apoorv; Li, Chen; Kim, Gun-Ho; Gidley, David; Pipe, Kevin P.; Kim, Jinsang

    2017-01-01

    High thermal conductivity is critical for many applications of polymers (for example, packaging of light-emitting diodes), in which heat must be dissipated efficiently to maintain the functionality and reliability of a system. Whereas uniaxially extended chain morphology has been shown to significantly enhance thermal conductivity in individual polymer chains and fibers, bulk polymers with coiled and entangled chains have low thermal conductivities (0.1 to 0.4 W m−1 K−1). We demonstrate that systematic ionization of a weak anionic polyelectrolyte, polyacrylic acid (PAA), resulting in extended and stiffened polymer chains with superior packing, can significantly enhance its thermal conductivity. Cross-plane thermal conductivity in spin-cast amorphous films steadily grows with PAA degree of ionization, reaching up to ~1.2 W m−1 K−1, which is on par with that of glass and about six times higher than that of most amorphous polymers, suggesting a new unexplored molecular engineering strategy to achieve high thermal conductivities in amorphous bulk polymers. PMID:28782022

  3. Morphology in electrochemically grown conducting polymer films

    DOEpatents

    Rubinstein, Israel; Gottesfeld, Shimshon; Sabatani, Eyal

    1992-01-01

    A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventioonally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol.

  4. Morphology in electrochemically grown conducting polymer films

    DOEpatents

    Rubinstein, I.; Gottesfeld, S.; Sabatani, E.

    1992-04-28

    A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventionally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol. 2 figs.

  5. Molecular engineered conjugated polymer with high thermal conductivity

    PubMed Central

    Song, Bai; Lee, Elizabeth M. Y.; Gleason, Karen K.

    2018-01-01

    Traditional polymers are both electrically and thermally insulating. The development of electrically conductive polymers has led to novel applications such as flexible displays, solar cells, and wearable biosensors. As in the case of electrically conductive polymers, the development of polymers with high thermal conductivity would open up a range of applications in next-generation electronic, optoelectronic, and energy devices. Current research has so far been limited to engineering polymers either by strong intramolecular interactions, which enable efficient phonon transport along the polymer chains, or by strong intermolecular interactions, which enable efficient phonon transport between the polymer chains. However, it has not been possible until now to engineer both interactions simultaneously. We report the first realization of high thermal conductivity in the thin film of a conjugated polymer, poly(3-hexylthiophene), via bottom-up oxidative chemical vapor deposition (oCVD), taking advantage of both strong C=C covalent bonding along the extended polymer chain and strong π-π stacking noncovalent interactions between chains. We confirm the presence of both types of interactions by systematic structural characterization, achieving a near–room temperature thermal conductivity of 2.2 W/m·K, which is 10 times higher than that of conventional polymers. With the solvent-free oCVD technique, it is now possible to grow polymer films conformally on a variety of substrates as lightweight, flexible heat conductors that are also electrically insulating and resistant to corrosion. PMID:29670943

  6. Ion-Conducting Organic/Inorganic Polymers

    NASA Technical Reports Server (NTRS)

    Kinder, James D.; Meador, Mary Ann B.

    2007-01-01

    Ion-conducting polymers that are hybrids of organic and inorganic moieties and that are suitable for forming into solid-electrolyte membranes have been invented in an effort to improve upon the polymeric materials that have been used previously for such membranes. Examples of the prior materials include perfluorosulfonic acid-based formulations, polybenzimidazoles, sulfonated polyetherketone, sulfonated naphthalenic polyimides, and polyethylene oxide (PEO)-based formulations. Relative to the prior materials, the polymers of the present invention offer greater dimensional stability, greater ease of formation into mechanically resilient films, and acceptably high ionic conductivities over wider temperature ranges. Devices in which films made of these ion-conducting organic/inorganic polymers could be used include fuel cells, lithium batteries, chemical sensors, electrochemical capacitors, electrochromic windows and display devices, and analog memory devices. The synthesis of a polymer of this type (see Figure 1) starts with a reaction between an epoxide-functionalized alkoxysilane and a diamine. The product of this reaction is polymerized by hydrolysis and condensation of the alkoxysilane group, producing a molecular network that contains both organic and inorganic (silica) links. The silica in the network contributes to the ionic conductivity and to the desired thermal and mechanical properties. Examples of other diamines that have been used in the reaction sequence of Figure 1 are shown in Figure 2. One can use any of these diamines or any combination of them in proportions chosen to impart desired properties to the finished product. Alternatively or in addition, one could similarly vary the functionality of the alkoxysilane to obtain desired properties. The variety of available alkoxysilanes and diamines thus affords flexibility to optimize the organic/inorganic polymer for a given application.

  7. Temperature dependence of conductivity measurement for conducting polymer

    NASA Astrophysics Data System (ADS)

    Gutierrez, Leandro; Duran, Jesus; Isah, Anne; Albers, Patrick; McDougall, Michael; Wang, Weining

    2014-03-01

    Conducting polymer-based solar cells are the newest generation solar cells. While research on this area has been progressing, the efficiency is still low because certain important parameters of the solar cell are still not well understood. It is of interest to study the temperature dependence of the solar cell parameters, such as conductivity of the polymer, open circuit voltage, and reverse saturation current to gain a better understanding on the solar cells. In this work, we report our temperature dependence of conductivity measurement using our in-house temperature-varying apparatus. In this project, we designed and built a temperature varying apparatus using a thermoelectric cooler module which gives enough temperature range as we need and costs much less than a cryostat. The set-up of the apparatus will be discussed. Temperature dependence of conductivity measurements for PEDOT:PSS films with different room-temperature conductivity will be compared and discussed. NJSGC-NASA Fellowship grant

  8. Conducting polymers: Synthesis and industrial applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottesfeld, S.

    1997-04-01

    The Conducting Polymer project funded by the AIM Program has developed new methods for the synthesis of conducting polymers and evaluated new industrial applications for these materials which will result in significant reductions in energy usage or industrial waste. The applications specifically addressed during FY 1996 included two ongoing efforts on membranes for gas separation and on electrochemical capacitors and a third new application: electrochemical reactors (ECRs) based on polymeric electrolytes. As a gas separation membrane, conducting polymers offer high selectivity and the potential to chemically or electrically adapt the membrane for specific gas combinations. Potential energy savings in themore » US for this application are estimated at 1 to 3 quads/yr. As an active material in electrochemical capacitors, electronically conducting polymers have the potential of storing large amounts of electric energy in low cost materials. Potential energy savings estimated at 1 quad/yr would result from introduction of electrochemical capacitors as energy storage devices in power trains of electric and hybrid vehicles, once such vehicles reach 20% of the total transportation market in the US. In the chlor-alkali industry, electrochemical reactors based on polymer electrolyte membranes consume around 1 % of the total electric power in the US. A new activity, started in FY 1996, is devoted to energy efficient ECRs. In the case of the chlor-alkali industry, energy savings as high as 50% seem possible with the novel ECR technology demonstrated by the author in 1996.« less

  9. Syntheses, structures and luminescent properties of lanthanide coordination polymers assembled from imidazophenanthroline derivative and oxalate ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Hui; Sun, Xiao-Xia; Hu, Huai-Ming, E-mail: ChemHu1@NWU.EDU.CN

    2017-01-15

    Nine new lanthanide coordination polymers, namely, [Ln(Hsfpip)(ox){sub 0.5}(H{sub 2}O)]{sub n}·2n(H{sub 2}O) ((Ln=Eu (1), Tb (2), Dy (3), Ho (4), Er (5), Yb (6), Y(7)), [Ln(H{sub 2}sfpip)(ox)(H{sub 2}O){sub 4}]{sub n}·2n(H{sub 2}O) (Ln=Nd (8) Sm (9)), [H{sub 2}ox=oxalic acid, H{sub 3}sfpip=2-(2,4-disulfophenyl)imidazo(4,5-f)(1,10)-phenanthroline] have been synthesized under hydrothermal conditions and characterized by IR spectra, elemental analysis, powder X-ray diffraction and single crystal X-ray diffraction. When sodium oxalate is added, the reactions of lanthanide ions with H{sub 3}sfpip resulted in two types of structures. Compounds 1–7 are obtained at pH 5.0 and exhibit 3D tfz-d networks with ox{sup 2−} anions as linkers to bridge themore » adjacent layers. Compounds 8–9 are obtained at pH 2.0, and display a 1D chain which is further extended to a 3D supramolecular framework through intermolecular hydrogen bonds and π-π interactions. The structural variation from compounds 1–7 to 8–9 can attribute to the pH effect on construction of lanthanide coordination polymers. Moreover, the thermal stabilities and luminescence properties of 1–9 were also investigated. - Graphical abstract: Nine new lanthanide coordination polymers have been synthesized under hydrothermal conditions. Compounds 1–7 exhibit a 3D tfz-d network. Compounds 8–9 display a 1D chain structure. The structural variation from compounds 1–7 to 8–9 can attribute to the pH effect on construction of lanthanide coordination polymers. - Highlights: • Nine lanthanide coordination polymers were prepared under hydrothermal conditions. • Their crystal structures have been determined. • The luminescence and thermal stabilities were studied in the solid state.« less

  10. Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage

    PubMed Central

    Pan, Lijia; Qiu, Hao; Dou, Chunmeng; Li, Yun; Pu, Lin; Xu, Jianbin; Shi, Yi

    2010-01-01

    Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed. PMID:20717527

  11. Conducting polymer nanostructures: template synthesis and applications in energy storage.

    PubMed

    Pan, Lijia; Qiu, Hao; Dou, Chunmeng; Li, Yun; Pu, Lin; Xu, Jianbin; Shi, Yi

    2010-07-02

    Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed.

  12. Role of succinonitrile in improving ionic conductivity of sodium-ion conductive polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Nair, Manjula G.; Mohapatra, Saumya R.

    2018-05-01

    Sodium ion conducting solid polymer electrolytes were prepared using poly (ethylene oxide) (PEO) as polymer matrix, sodium perchlorate (NaClO4) as salt and succinonitrile (SN) as a plasticizer by solution casting technique. By blending a plastic crystal such as succinonitrile (SN) with PEO-NaClO4 electrolyte system, we aimed at improving the ionic conductivity by weakening the ether oxygen-Na+ interactions. The XRD and FTIR studies revealed structural and micro-structural changes in the blended electrolytes which aids in improving ionic conductivity. Also, DSC measurements showed improved segmental motion in the blended polymer electrolytes due to plasticizing effect of SN. The maximum ionic conductivity observed at room temperature is 1.13×10-5 S cm-1 merely for 7 wt. % of SN, which is one order higher than pure polymer-salt complex. The thermo-gravimetric analysis (TGA) suggests that blending of SN with polymer electrolyte had no detrimental effect on its thermal stability.

  13. Nanostructured polymer membranes for proton conduction

    DOEpatents

    Balsara, Nitash Pervez; Park, Moon Jeong

    2013-06-18

    Polymers having an improved ability to entrain water are characterized, in some embodiments, by unusual humidity-induced phase transitions. The described polymers (e.g., hydrophilically functionalized block copolymers) have a disordered state and one or more ordered states (e.g., a lamellar state, a gyroid state, etc.). In one aspect, the polymers are capable of undergoing a disorder-to-order transition while the polymer is exposed to an increasing temperature at a constant relative humidity. In some aspects the polymer includes a plurality of portions, wherein a first portion forms proton-conductive channels within the membrane and wherein the channels have a width of less than about 6 nm. The described polymers are capable of entraining and preserving water at high temperature and low humidity. Surprisingly, in some embodiments, the polymers are capable of entraining greater amounts of water with the increase of temperature. The polymers can be used in Polymer Electrolyte Membranes in fuel cells.

  14. Conductive inks for metalization in integrated polymer microsystems

    DOEpatents

    Davidson, James Courtney [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA; Maghribi, Mariam N [Livermore, CA; Benett, William J [Livermore, CA; Hamilton, Julie K [Tracy, CA; Tovar, Armando R [San Antonio, TX

    2006-02-28

    A system of metalization in an integrated polymer microsystem. A flexible polymer substrate is provided and conductive ink is applied to the substrate. In one embodiment the flexible polymer substrate is silicone. In another embodiment the flexible polymer substrate comprises poly(dimethylsiloxane).

  15. Chemical anchoring of organic conducting polymers to semiconducting surfaces

    DOEpatents

    Frank, A.J.; Honda, K.

    1984-01-01

    According to the present invention, an improved method of coating electrodes with conductive polymer films and/or preselected catalysts is provided. The charge conductive polymer is covalently or coordinatively attached to the electrode surface to strengthen the adhesion characteristics of the polymer to the electrode surface or to improve charge conductive properties between the conductive polymer and the electrode surface. Covalent or coordinative attachment is achieved by a number of alternative methods including covalently or coordinatively attaching the desired monomer to the electrode by means of a suitable coupling reagent and, thereafter, electrochemically polymerizing the monomer in situ.

  16. Chemical anchoring of organic conducting polymers to semiconducting surfaces

    DOEpatents

    Frank, Arthur J.; Honda, Kenji

    1984-01-01

    According to the present invention, an improved method of coating electrodes with conductive polymer films and/or preselected catalysts is provided. The charge-conductive polymer is covalently or coordinatively attached to the electrode surface to strengthen the adhesion characteristics of the polymer to the electrode surface or to improve charge-conductive properties between the conductive polymer and the electrode surface. Covalent or coordinative attachment is achieved by a number of alternative methods including covalently or coordinatively attaching the desired monomer to the electrode by means of a suitable coupling reagent and, thereafter, electrochemically polymerizing the monomer in situ.

  17. Refractive Index Tuning of Hybrid Materials for Highly Transmissive Luminescent Lanthanide Particle-Polymer Composites.

    PubMed

    Kim, Paul; Li, Cheng; Riman, Richard E; Watkins, James

    2018-03-14

    High-refractive-index ZrO 2 nanoparticles were used to tailor the refractive index of a polymer matrix to match that of luminescent lanthanide-ion-doped (La 0.92 Yb 0.075 Er 0.005 F 3 ) light-emitting particles, thereby reducing scattering losses to yield highly transparent emissive composites. Photopolymerization of blends of an amine-modified poly(ether acrylate) oligomer and tailored quantities of ZrO 2 nanoparticles yielded optically transparent composites with tailored refractive indices between 1.49 and 1.69. By matching the refractive index of the matrix to that of La 0.92 Yb 0.075 Er 0.005 F 3 , composites with high transmittance (>85%) and low haze from the visible to infrared regions, bright 1530 nm optical emissions were achieved at solids loadings of La 0.92 Yb 0.075 Er 0.005 F 3 , ranging from 5 to 30 vol %. These optical results suggest that a hybrid matrix approach is a versatile strategy for the fabrication of functional luminescent optical composites of high transparency.

  18. Flexible Polymer/Metal/Polymer and Polymer/Metal/Inorganic Trilayer Transparent Conducting Thin Film Heaters with Highly Hydrophobic Surface.

    PubMed

    Kang, Tae-Woon; Kim, Sung Hyun; Kim, Cheol Hwan; Lee, Sang-Mok; Kim, Han-Ki; Park, Jae Seong; Lee, Jae Heung; Yang, Yong Suk; Lee, Sang-Jin

    2017-09-27

    Polymer/metal/polymer and polymer/metal/inorganic trilayer-structured transparent electrodes with fluorocarbon plasma polymer thin film heaters have been proposed. The polymer/metal/polymer and polymer/metal/inorganic transparent conducting thin films fabricated on a large-area flexible polymer substrate using a continuous roll-to-roll sputtering process show excellent electrical properties and visible-light transmittance. They also exhibit water-repelling surfaces to prevent wetting and to remove contamination. In addition, the adoption of a fluorocarbon/metal/fluorocarbon film permits an outer bending radius as small as 3 mm. These films have a sheet resistance of less than 5 Ω sq -1 , sufficient to drive light-emitting diode circuits. The thin film heater with the fluorocarbon/Ag/SiN x structure exhibits excellent heating characteristics, with a temperature reaching 180 °C under the driving voltage of 13 V. Therefore, the proposed polymer/metal/polymer and polymer/metal/inorganic transparent conducting electrodes using polymer thin films can be applied in flexible and rollable displays as well as automobile window heaters and other devices.

  19. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    DOEpatents

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2015-07-21

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  20. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    DOEpatents

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2017-10-17

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  1. Conducting polymer coated neural recording electrodes.

    PubMed

    Harris, Alexander R; Morgan, Simeon J; Chen, Jun; Kapsa, Robert M I; Wallace, Gordon G; Paolini, Antonio G

    2013-02-01

    Neural recording electrodes suffer from poor signal to noise ratio, charge density, biostability and biocompatibility. This paper investigates the ability of conducting polymer coated electrodes to record acute neural response in a systematic manner, allowing in depth comparison of electrochemical and electrophysiological response. Polypyrrole (Ppy) and poly-3,4-ethylenedioxythiophene (PEDOT) doped with sulphate (SO4) or para-toluene sulfonate (pTS) were used to coat iridium neural recording electrodes. Detailed electrochemical and electrophysiological investigations were undertaken to compare the effect of these materials on acute in vivo recording. A range of charge density and impedance responses were seen with each respectively doped conducting polymer. All coatings produced greater charge density than uncoated electrodes, while PEDOT-pTS, PEDOT-SO4 and Ppy-SO4 possessed lower impedance values at 1 kHz than uncoated electrodes. Charge density increased with PEDOT-pTS thickness and impedance at 1 kHz was reduced with deposition times up to 45 s. Stable electrochemical response after acute implantation inferred biostability of PEDOT-pTS coated electrodes while other electrode materials had variable impedance and/or charge density after implantation indicative of a protein fouling layer forming on the electrode surface. Recording of neural response to white noise bursts after implantation of conducting polymer-coated electrodes into a rat model inferior colliculus showed a general decrease in background noise and increase in signal to noise ratio and spike count with reduced impedance at 1 kHz, regardless of the specific electrode coating, compared to uncoated electrodes. A 45 s PEDOT-pTS deposition time yielded the highest signal to noise ratio and spike count. A method for comparing recording electrode materials has been demonstrated with doped conducting polymers. PEDOT-pTS showed remarkable low fouling during acute implantation, inferring good biostability

  2. Current Trends in Sensors Based on Conducting Polymer Nanomaterials

    PubMed Central

    Yoon, Hyeonseok

    2013-01-01

    Conducting polymers represent an important class of functional organic materials for next-generation electronic and optical devices. Advances in nanotechnology allow for the fabrication of various conducting polymer nanomaterials through synthesis methods such as solid-phase template synthesis, molecular template synthesis, and template-free synthesis. Nanostructured conducting polymers featuring high surface area, small dimensions, and unique physical properties have been widely used to build various sensor devices. Many remarkable examples have been reported over the past decade. The enhanced sensitivity of conducting polymer nanomaterials toward various chemical/biological species and external stimuli has made them ideal candidates for incorporation into the design of sensors. However, the selectivity and stability still leave room for improvement. PMID:28348348

  3. Formation of conductive polymers using nitrosyl ion as an oxidizing agent

    DOEpatents

    Choi, Kyoung-Shin; Jung, Yongju; Singh, Nikhilendra

    2016-06-07

    A method of forming a conductive polymer deposit on a substrate is disclosed. The method may include the steps of preparing a composition comprising monomers of the conductive polymer and a nitrosyl precursor, contacting the substrate with the composition so as to allow formation of nitrosyl ion on the exterior surface of the substrate, and allowing the monomer to polymerize into the conductive polymer, wherein the polymerization is initiated by the nitrosyl ion and the conductive polymer is deposited on the exterior surface of the substrate. The conductive polymer may be polypyrrole.

  4. Conducting polymer for high power ultracapacitor

    DOEpatents

    Shi, Steven Z.; Gottesfeld, Shimshon

    2002-01-01

    In accordance with the purposes of the present invention, as embodied and broadly described herein, the present invention is directed to an electrode having a conducting polymer active material for use in an ultracapacitor. The conducting polymer active material is electropolymerized onto a carbon paper substrate from a mixed solution of a dimer of (3,3' bithiophene) (BT) and a monomer that is selected from the group of thiophenes derived in the 3-position, having an aryl group attached to thiophene in the 3-position or having aryl and alkly groups independently attached to thiophene in the 3 and 4 positions.

  5. Conducting Polymers and Their Applications in Diabetes Management.

    PubMed

    Zhao, Yu; Cao, Luyao; Li, Lanlan; Cheng, Wen; Xu, Liangliang; Ping, Xinyu; Pan, Lijia; Shi, Yi

    2016-10-26

    Advances in conducting polymers (CPs) have promoted the development of diabetic monitoring and treatment, which is of great significance in human healthcare and modern medicine. CPs are special polymers with physical and electrochemical features resembling metals, inorganic semiconductors and non-conducting polymers. To improve and extend their properties, the fabrication of CPs and CP composites has attracted intensive attention in recent decades. Some CPs are biocompatible and suitable for biomedical use. Thus, the intriguing properties of CPs make wearable, noninvasive, continuous diabetes managing devices and other potential applications in diabetes possible in the near future. To highlight the recent advances of CPs and their derived materials (especially in conducting polymer hydrogels), here we discuss their fabrication and characterization, review the current state-of-the-art research in diabetes management based on these materials and describe current challenges as well as future potential research directions.

  6. Conducting Polymers and Their Applications in Diabetes Management

    PubMed Central

    Zhao, Yu; Cao, Luyao; Li, Lanlan; Cheng, Wen; Xu, Liangliang; Ping, Xinyu; Pan, Lijia; Shi, Yi

    2016-01-01

    Advances in conducting polymers (CPs) have promoted the development of diabetic monitoring and treatment, which is of great significance in human healthcare and modern medicine. CPs are special polymers with physical and electrochemical features resembling metals, inorganic semiconductors and non-conducting polymers. To improve and extend their properties, the fabrication of CPs and CP composites has attracted intensive attention in recent decades. Some CPs are biocompatible and suitable for biomedical use. Thus, the intriguing properties of CPs make wearable, noninvasive, continuous diabetes managing devices and other potential applications in diabetes possible in the near future. To highlight the recent advances of CPs and their derived materials (especially in conducting polymer hydrogels), here we discuss their fabrication and characterization, review the current state-of-the-art research in diabetes management based on these materials and describe current challenges as well as future potential research directions. PMID:27792179

  7. Conducting polymer coated neural recording electrodes

    NASA Astrophysics Data System (ADS)

    Harris, Alexander R.; Morgan, Simeon J.; Chen, Jun; Kapsa, Robert M. I.; Wallace, Gordon G.; Paolini, Antonio G.

    2013-02-01

    Objective. Neural recording electrodes suffer from poor signal to noise ratio, charge density, biostability and biocompatibility. This paper investigates the ability of conducting polymer coated electrodes to record acute neural response in a systematic manner, allowing in depth comparison of electrochemical and electrophysiological response. Approach. Polypyrrole (Ppy) and poly-3,4-ethylenedioxythiophene (PEDOT) doped with sulphate (SO4) or para-toluene sulfonate (pTS) were used to coat iridium neural recording electrodes. Detailed electrochemical and electrophysiological investigations were undertaken to compare the effect of these materials on acute in vivo recording. Main results. A range of charge density and impedance responses were seen with each respectively doped conducting polymer. All coatings produced greater charge density than uncoated electrodes, while PEDOT-pTS, PEDOT-SO4 and Ppy-SO4 possessed lower impedance values at 1 kHz than uncoated electrodes. Charge density increased with PEDOT-pTS thickness and impedance at 1 kHz was reduced with deposition times up to 45 s. Stable electrochemical response after acute implantation inferred biostability of PEDOT-pTS coated electrodes while other electrode materials had variable impedance and/or charge density after implantation indicative of a protein fouling layer forming on the electrode surface. Recording of neural response to white noise bursts after implantation of conducting polymer-coated electrodes into a rat model inferior colliculus showed a general decrease in background noise and increase in signal to noise ratio and spike count with reduced impedance at 1 kHz, regardless of the specific electrode coating, compared to uncoated electrodes. A 45 s PEDOT-pTS deposition time yielded the highest signal to noise ratio and spike count. Significance. A method for comparing recording electrode materials has been demonstrated with doped conducting polymers. PEDOT-pTS showed remarkable low fouling during

  8. Syntheses, structures and luminescent properties of two novel Zn (II) coordination polymers

    NASA Astrophysics Data System (ADS)

    Huang, Ya-Ru; Gao, Ling-Ling; Wang, Xiao-Qing; Fan, Li-Ming; Hu, Tuo-Ping

    2018-02-01

    Two new coordination polymers, namely [Zn(TZMB)]n (1) and {[Zn(TZMB)](H2TZMB)]·(C2H5OH)0.5(H2O)2.5}n (2), (H2TZMB = 4,4‧-(1H-1,2,4-triazol-1-yl)methylene-bis(benzonic acid), have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction analysis, elemental analysis (EA), IR spectrum analysis (IR), powder X-ray diffraction (PXRD), and thermogravimetric (TG) analysis. Single X-ray diffraction analysis reveals that complex 1 is a 3D 3,6-connected net with the point symbol of (6110.84)(63)2 and complex 2 is a 2D 3-connected net with the point symbol of (63). Furthermore, luminescent properties of complexes 1 and 2 were also investigated in detail.

  9. Orienting semi-conducting π-conjugated polymers.

    PubMed

    Brinkmann, Martin; Hartmann, Lucia; Biniek, Laure; Tremel, Kim; Kayunkid, Navaphun

    2014-01-01

    The present review focuses on the recent progress made in thin film orientation of semi-conducting polymers with particular emphasis on methods using epitaxy and shear forces. The main results reported in this review deal with regioregular poly(3-alkylthiophene)s and poly(dialkylfluorenes). Correlations existing between processing conditions, macromolecular parameters and the resulting structures formed in thin films are underlined. It is shown that epitaxial orientation of semi-conducting polymers can generate a large palette of semi-crystalline and nanostructured morphologies by a subtle choice of the orienting substrates and growth conditions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Nuclear alkylated pyridine aldehyde polymers and conductive compositions thereof

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Singer, S. (Inventor)

    1970-01-01

    A thermally stable, relatively conductive polymer was disclosed. The polymer was synthesized by condensing in the presence of catalyst a 2, 4, or 6 nuclear alklylated 2, 3, or 4 pyridine aldehyde or quaternary derivatives thereof to form a polymer. The pyridine groups were liked by olefinic groups between 2-4, 2-6, 2-3, 3-4, 3-6 or 4-6 positions. Conductive compositions were prepared by dissolving the quaternary polymer and an organic charge transfer complexing agent such as TCNQ in a mutual solvent such as methanol.

  11. Actuator device utilizing a conductive polymer gel

    DOEpatents

    Chinn, Douglas A.; Irvin, David J.

    2004-02-03

    A valve actuator based on a conductive polymer gel is disclosed. A nonconductive housing is provided having two separate chambers separated by a porous frit. The conductive polymer is held in one chamber and an electrolyte solution, used as a source of charged ions, is held in the second chamber. The ends of the housing a sealed with a flexible elastomer. The polymer gel is further provide with electrodes with which to apply an electrical potential across the gel in order to initiate an oxidation reaction which in turn drives anions across the porous frit and into the polymer gel, swelling the volume of the gel and simultaneously contracting the volume of the electrolyte solution. Because the two end chambers are sealed the flexible elastomer expands or contracts with the chamber volume change. By manipulating the potential across the gel the motion of the elastomer can be controlled to act as a "gate" to open or close a fluid channel and thereby control flow through that channel.

  12. An electroactive conducting polymer actuator based on NBR/RTIL solid polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.

    2007-04-01

    This paper reports the fabrication of a dry-type conducting polymer actuator using nitrile rubber (NBR) as the base material in a solid polymer electrolyte. The conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique. Room-temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X (where X = BF4-, PF6-, (CF3SO2)2N-), were absorbed into the composite film. The compatibility between the ionic liquids and the NBR polymer was confirmed by DMA. The effect of the anion size of the ionic liquids on the displacement of the actuator was examined. The displacement increased with increasing anion size of the ionic liquids. The cyclic voltammetry responses and the redox switching dynamics of the actuators were examined in different ionic liquids.

  13. Luminescence properties and molecular mechanics calculation of bis-β-diketonate Eu3+ complex/polymer hybrid fibers

    NASA Astrophysics Data System (ADS)

    Bai, Jinyuan; Gu, Huiquan; Hou, Yanjun; Wang, Shuhong

    2018-05-01

    Two series of bis-β-diketonate Eu3+ complex/polymer hybrid fibers, namely, Eu2(BTP)3(H2O)4/PMMA (Eu/PMMA) and Eu2(BTP)3(H2O)4/PVP (Eu/PVP) have been prepared by electrospinning technology (BTP = 1,3-bis(4,4,4-trifluoro-1,3-dioxobutyl)phenyl, PVP = poly (vinyl pyrrolidone) and PMMA = poly (methyl methacrylate)). The effect of complex Eu2(BTP)3(H2O)4 on the luminescence, thermal stability and morphology of composite fibers were studied by characterization techniques. The Judd-Ofelt theory was applied to this study for explaining the effect of the distribution of Eu2(BTP)3(H2O)4 and the mutual effect of the Eu2(BTP)3(H2O)4 coordination compound and neighboring chain segments of PMMA and PVP polymer matrix.

  14. Measurement of in-plane thermal conductivity in polymer films

    NASA Astrophysics Data System (ADS)

    Wei, Qingshuo; Uehara, Chinatsu; Mukaida, Masakazu; Kirihara, Kazuhiro; Ishida, Takao

    2016-04-01

    Measuring the in-plane thermal conductivity of organic thermoelectric materials is challenging but is critically important. Here, a method to study the in-plane thermal conductivity of free-standing films (via the use of commercial equipment) based on temperature wave analysis is explored in depth. This subject method required a free-standing thin film with a thickness larger than 10 μm and an area larger than 1 cm2, which are not difficult to obtain for most solution-processable organic thermoelectric materials. We evaluated thermal conductivities and anisotropic ratios for various types of samples including insulating polymers, undoped semiconducting polymers, doped conducting polymers, and one-dimensional carbon fiber bulky papers. This approach facilitated a rapid screening of in-plane thermal conductivities for various organic thermoelectric materials.

  15. Two-photon absorption spectra of luminescent conducting polymers measured over wide spectral range

    NASA Astrophysics Data System (ADS)

    Meyer, Ron K.; Liess, Martin; Benner, Robert E.; Gellermann, Werner; Vardeny, Z. Valy; Ozaki, Masanori; Yoshino, Katsumi; Ding, Yi W.; Barton, Thomas J.

    1997-12-01

    We report the two-photon absorption (TPA) spectra of poly(2,5-dibutoxy-p-phenylene acetylene) (PPA-DBO), poly(2,5-dioctyloxy-p-phenylene vinylene) (PPV-DOO), and poly(3-hexylthiophene) in the spectral range extending from 576 nm to 846 nm. Using the Z-scan technique on the polymers in solution, we measured a strong two-photon allowed transition in all three materials which we attribute to the mAg essential state. In the case of PPA-DBO and PPV-DOO, TPA peaks were coincident with dispersion in the nonlinear refractive indices as detected by reduced aperture Z scan. In all three polymers this peak occurs at approximately 1.3 the bandgap energy. The excitonic nature of the excited electronic states in PPA-DBO is indicated by the lack of a TPA band at or near the 1Bu exciton position. Saturation was observed in the nonlinear index of refraction near spectral peaks, as well as an apparent reverse Kramers- Kronig effect.

  16. Ion conducting organic/inorganic hybrid polymers

    NASA Technical Reports Server (NTRS)

    Meador, Maryann B. (Inventor); Kinder, James D. (Inventor)

    2010-01-01

    This invention relates to a series of organic/inorganic hybrid polymers that are easy to fabricate into dimensionally stable films with good ion-conductivity over a wide range of temperatures for use in a variety of applications. The polymers are prepared by the reaction of amines, preferably diamines and mixtures thereof with monoamines with epoxy-functionalized alkoxysilanes. The products of the reaction are polymerized by hydrolysis of the alkoxysilane groups to produce an organic-containing silica network. Suitable functionality introduced into the amine and alkoxysilane groups produce solid polymeric membranes which conduct ions for use in fuel cells, high-performance solid state batteries, chemical sensors, electrochemical capacitors, electro-chromic windows or displays, analog memory devices and the like.

  17. Corrosion-protective coatings from electrically conducting polymers

    NASA Technical Reports Server (NTRS)

    Thompson, Karen Gebert; Bryan, Coleman J.; Benicewicz, Brian C.; Wrobleski, Debra A.

    1991-01-01

    In a joint effort between NASA Kennedy and LANL, electrically conductive polymer coatings were developed as corrosion protective coatings for metal surfaces. At NASA Kennedy, the launch environment consist of marine, severe solar, and intermittent high acid and/or elevated temperature conditions. Electrically conductive polymer coatings were developed which impart corrosion resistance to mild steel when exposed to saline and acidic environments. Such coatings also seem to promote corrosion resistance in areas of mild steel where scratches exist in the protective coating. Such coatings appear promising for many commercial applications.

  18. Highly luminescent and triboluminescent coordination polymers assembled from lanthanide β-diketonates and aromatic bidentate O-donor ligands.

    PubMed

    Eliseeva, Svetlana V; Pleshkov, Dmitry N; Lyssenko, Konstantin A; Lepnev, Leonid S; Bünzli, Jean-Claude G; Kuzmina, Natalia P

    2010-10-18

    The reaction of hydrated lanthanide hexafluoroacetylacetonates, [Ln(hfa)(3)(H(2)O)(2)], with 1,4-disubstituted benzenes afforded a new series of one-dimensional coordination polymers [Ln(hfa)(3)(Q)](∞), where Ln = Eu, Gd, Tb, and Lu and Q = 1,4-diacetylbenzene (acbz), 1,4-diacetoxybenzene (acetbz), or 1,4-dimethyltherephtalate (dmtph). X-ray single crystal analyses reveal [Ln(hfa)(3)(acbz)](∞) (Ln = Eu, Gd, Tb) consisting of zigzag polymeric chains with Ln-Ln-Ln angles equal to 128°, while the arrays are more linear in [Eu(hfa)(3)(acetbz)](∞) and [Eu(hfa)(3)(dmtph)](∞), with Ln-Ln-Ln angles of 165° and 180°, respectively. In all structures, Ln(III) ions are 8-coordinate and lie in distorted square-antiprismatic environments. The coordination polymers are thermally stable up to 180-210 °C under a nitrogen atmosphere. Their volatility has been tested in vacuum sublimation experiments at 200-250 °C and 10(-2) Torr: the metal-organic frameworks with acetbz and dmtph can be quantitatively sublimed, while [Ln(hfa)(3)(acbz)](∞) undergoes thermal decomposition. The triplet state energies of the ancillary ligands, 21,600 (acetbz), 22,840 (acbz), and 24,500 (dmtph) cm(-1), lie in an ideal range for sensitizing the luminescence of Eu(III) and/or Tb(III). As a result, all of the [Ln(hfa)(3)(Q)](∞) polymers display bright red or green luminescence due to the characteristic (5)D(0) → (7)F(J) (J = 0-4) or (5)D(4) → (7)F(J) (J = 6-0) transitions, respectively. Absolute quantum yields reach 51(Eu) and 56(Tb) % for the frameworks built from dmtph. Thin films of [Eu(hfa)(3)(Q)](∞) with 100-170 nm thickness can be obtained by thermal evaporation (P < 3 × 10(-5) Torr, 200-250 °C). They are stable over a long period of time, and their photophysical parameters are similar to those of the bulk samples so that their use as active materials in luminescent devices can be envisaged. Mixtures of [Ln(hfa)(3)(dmpth)](∞) with Ln = Eu and Tb yield color

  19. Thermophysical Properties of Polymer Materials with High Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Lebedev, S. M.; Gefle, O. S.; Dneprovskii, S. N.; Amitov, E. T.

    2015-06-01

    Results of studies on the main thermophysical properties of new thermally conductive polymer materials are presented. It is shown that modification of polymer dielectrics by micron-sized fillers allows thermally conductive materials with thermal conductivity not less than 2 W/(m K) to be produced, which makes it possible to use such materials as cooling elements of various electrical engineering and semiconductor equipment and devices.

  20. Luminescent spectroscopy and structural properties of Ce3+-doped low-temperature X1-Y2SiO5 material prepared by polymer-assisted sol-gel method

    NASA Astrophysics Data System (ADS)

    Hamroun, M. S. E.; Guerbous, L.; Bensafi, A.

    2016-04-01

    Cerium (Ce3+)-doped monoclinic X1-Y2SiO5 (YSO)-type oxyorthosilicates powders were prepared by monomer and polymer-assisted sol-gel method. The present work aims to study the influence of ethylene glycol (EG) monomer, polyethylene glycol (PEG) polymer and polyvinyl alcohol (PVA) polymer, as fuels and nucleating agents for the crystallization, on structural and luminescence properties of the Ce3+ (xCe = 0.01)-doped Y2SiO5. The X-ray diffraction technique, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and steady photoluminescence have been used to characterize the samples. It is found that the types of fuels affect the phase purity and luminescent characteristics of phosphors. All samples exhibit intense violet-blue asymmetric emission band in the range of 370-540 nm with a maximum intensity centered at around 420 nm assigned to the 5d → 4f (2F5/2, 2F7/2) interconfigurational transitions of Ce3+ ion in YSO nanomaterial. Finally, the vibronic coupling parameters are estimated and discussed.

  1. Vertically Aligned and Continuous Nanoscale Ceramic-Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity.

    PubMed

    Zhang, Xiaokun; Xie, Jin; Shi, Feifei; Lin, Dingchang; Liu, Yayuan; Liu, Wei; Pei, Allen; Gong, Yongji; Wang, Hongxia; Liu, Kai; Xiang, Yong; Cui, Yi

    2018-06-13

    Among all solid electrolytes, composite solid polymer electrolytes, comprised of polymer matrix and ceramic fillers, garner great interest due to the enhancement of ionic conductivity and mechanical properties derived from ceramic-polymer interactions. Here, we report a composite electrolyte with densely packed, vertically aligned, and continuous nanoscale ceramic-polymer interfaces, using surface-modified anodized aluminum oxide as the ceramic scaffold and poly(ethylene oxide) as the polymer matrix. The fast Li + transport along the ceramic-polymer interfaces was proven experimentally for the first time, and an interfacial ionic conductivity higher than 10 -3 S/cm at 0 °C was predicted. The presented composite solid electrolyte achieved an ionic conductivity as high as 5.82 × 10 -4 S/cm at the electrode level. The vertically aligned interfacial structure in the composite electrolytes enables the viable application of the composite solid electrolyte with superior ionic conductivity and high hardness, allowing Li-Li cells to be cycled at a small polarization without Li dendrite penetration.

  2. Electrical degradation of triarylamine-based light-emitting polymer diodes monitored by micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Seon; Ho, Peter K. H.; Murphy, Craig E.; Seeley, Alex J. A. B.; Grizzi, Ilaria; Burroughes, Jeremy H.; Friend, Richard H.

    2004-03-01

    Although much progress has been made in improving polymer light-emitting diode performance, there has been little work to address device intrinsic degradation mechanisms due to the challenge of tracking minute chemical reactions in the 100-nm-thick buried active layers during operation. Here we have elucidated a hole-mediated electrical degradation of triarylamine-based blue polymer diodes using in situ Raman microspectroscopy. A slow irreversible hole-doping of polymer adjacent to the hole-injecting conducting-polymer leads to formation of oxidised triarylamine species counterbalanced by anions from the conducting-polymer. These charged species act as luminescence quenchers and hinder further hole injection across the interface leading to significant decreases in current density at low voltages.

  3. Preparation of Conductive Polymer Graphite (PG) Composites

    NASA Astrophysics Data System (ADS)

    Munirah Abdullah, Nur; Saddam Kamarudin, M.; Rus, Anika Zafiah M.; Abdullah, M. F. L.

    2017-08-01

    The preparation of conductive polymer graphite (PG) composites thin film is described. The thickness of the PG composites due to slip casting method was set approximately ~0.1 mm. The optical microscope (OM) and fourier transform infra-red spectroscopy (FTIR) has been operated to distinguish the structure-property relationships scheme of PG composites. It shows that the graphite is homogenously dispersed in polymer matrix composites. The electrical characteristics of the PG composite were measured at room temperature and the electrical conductivity (σ) was discovered with respect of its resistivity (Ω). By achieving conductivity of 103 S/m, it is proven that at certain graphite weight loading (PG20, PG25 and PG30) attributes to electron pathway in PG composites.

  4. Potential of thermally conductive polymers for the cooling of mechatronic parts

    NASA Astrophysics Data System (ADS)

    Heinle, C.; Drummer, D.

    Adding thermally conductive fillers to polymers the thermal conductivity can be raised significantly. Thermal conductive polymers (TC-plastics) open up a vast range of options to set up novel concepts of polymer technological system solutions in the area of mechatronics. Heating experiment of cooling ribs show the potential in thermal management of mechatronic parts with TC-polymers in comparison with widely used reference materials copper and aluminum. The results demonstrate that especially for certain thermal boundary conditions comparable performance between these two material grades can be measured.

  5. Preparation of Conducting Polymers by Electrochemical Methods and Demonstration of a Polymer Battery

    ERIC Educational Resources Information Center

    Goto, Hiromasa; Yoneyama, Hiroyuki; Togashi, Fumihiro; Ohta, Reina; Tsujimoto, Akitsu; Kita, Eiji; Ohshima, Ken-ichi

    2008-01-01

    The electrochemical polymerization of aniline and pyrrole, and demonstrations of electrochromism and the polymer battery effect, are presented as demonstrations suitable for high school and introductory chemistry at the university level. These demonstrations promote student interest in the electrochemical preparation of conducting polymers, where…

  6. Recent progress in nanocomposites based on conducting polymer: application as electrochemical sensors

    NASA Astrophysics Data System (ADS)

    El Rhazi, Mama; Majid, Sanaa; Elbasri, Miloud; Salih, Fatima Ezzahra; Oularbi, Larbi; Lafdi, Khalid

    2018-06-01

    Over the years, intensive research works have been devoted to conducting polymers due to their potential application in many fields such as fuel cell, sensors, and capacitors. To improve the properties of these compounds, several new approaches have been developed which consist in combining conducting polymers and nanoparticles. Then, this review intends to give a clear overview on nanocomposites based on conducting polymers, synthesis, characterization, and their application as electrochemical sensors. For this, the paper is divided into two parts: the first part will highlight the nanocomposites synthesized by combination of carbon nanomaterials (CNMs) and conducting polymers. The preparation of polymer/CNMs such as graphene and carbon nanotube modified electrode is presented coupled with relevant applications. The second part consists of a review of nanocomposites synthesized by combination of metal nanoparticles and conducting polymers.

  7. Water-Stable Nanoporous Polymer Films with Excellent Proton Conductivity.

    PubMed

    Wang, Zhengbang; Liang, Cong; Tang, Haolin; Grosjean, Sylvain; Shahnas, Artak; Lahann, Joerg; Bräse, Stefan; Wöll, Christof

    2018-03-01

    Achieving high values for proton conductivity in a material critically depends on providing hopping sites arranged in a regular fashion. Record values reported for regular, molecular crystals cannot yet be reached by technologically relevant systems, and the best values measured for polymer membranes suited for integration into devices are almost two orders of magnitude lower. Here, an alternative polymer membrane synthesis strategy based on the chemical modification of surface-mounted, monolithic, crystalline metal-organic framework thin films is demonstrated. Due to chemical crosslinking and subsequent removal of metal ions, these surface-mounted gels (SURGELs) are found to exhibit high proton conductivity (0.1 S cm -1 at 30 °C and 100% RH (relative humidity). These record values are attributed to the highly ordered polymer network structure containing regularly spaced carboxylic acid side groups. These covalently bound organic frameworks outperform conventional, ion-conductive polymers with regard to ion conductivity and water stability. Pronounced water-induced swelling, which causes severe mechanical instabilities in commercial membranes, is not observed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Recent Development of Nanomaterial-Doped Conductive Polymers

    NASA Astrophysics Data System (ADS)

    Asyraf, Mohammad; Anwar, Mahmood; Sheng, Law Ming; Danquah, Michael K.

    2017-12-01

    Conductive polymers (CPs) have received significant research attention in material engineering for applications in microelectronics, micro-scale sensors, electromagnetic shielding, and micro actuators. Numerous research efforts have been focused on enhancing the conductivity of CPs by doping. Various conductive materials, such as metal nanoparticles and carbon-based nanoparticles, and structures, such as silver nanoparticles and graphene nanosheets, have been converted into polypyrrole and polypyrrole compounds as the precursors to developing hybrids, conjugates, or crystal nodes within the matrix to enhance the various structural properties, particularly the electrical conductivity. This article reviews nanomaterial doping of conductive polymers alongside technological advancements in the development and application of nanomaterial-doped polymeric systems. Emphasis is given to conductive nanomaterials such as nano-silver particles and carbon-based nanoparticles, graphene nano-sheets, fullerene, and carbon nanotubes (CNT) as dopants for polypyrrole-based CPs. The nature of induced electrical properties including electromagnetic absorption, electrical capacitance, and conductivities of polypyrrole systems is also discussed. The prospects and challenges associated with the development and application of CPs are also presented.

  9. Conducting polymer electrodes for visual prostheses.

    PubMed

    Green, R A; Devillaine, F; Dodds, C; Matteucci, P; Chen, S; Byrnes-Preston, P; Poole-Warren, L A; Lovell, N H; Suaning, G J

    2010-01-01

    Conducting polymers (CPs) have the potential to provide superior neural interfaces to conventional metal electrodes by introducing more efficient charge transfer across the same geometric area. In this study the conducting polymer poly(ethylene dioxythiophene) (PEDOT) was coated on platinum (Pt) microelectrode arrays. The in vitro electrical characteristics were assessed during biphasic stimulation regimes applied between electrode pairs. It was demonstrated that PEDOT could reduce the potential excursion at a Pt electrode interface by an order of magnitude. The charge injection limit of PEDOT was found to be 15 x larger than Pt. Additionally, PEDOT coated electrodes were acutely implanted in the suprachoroidal space of a cat retina. It was demonstrated that PEDOT coated electrodes also had lower potential excursions in vivo and electrically evoked potentials (EEPs) could be detected within the vision cortex.

  10. Nanoscaled surface patterning of conducting polymers.

    PubMed

    Jiang, Lin; Wang, Xing; Chi, Lifeng

    2011-05-23

    In continuing the steady development of integrated-circuit-related fabrication, the ability to pattern conducting polymers into smaller and smaller sizes in order to realize devices with enhanced performance or even wholly new properties begins to take a more prominent role in their advanced applications. This review summarizes the recent advances in top-down and bottom-up patterning of conducting polymers on surfaces with different approaches including direct writing, in-situ synthesis or assembly, etching, and nanoscratching. All of the latest emerging strategies have the potential to go beyond the current state of the art towards real progress in terms of high-precision positioning, high resolution, high throughout, higher stability, facile processing, and lower-cost production. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Methods of enhancing conductivity of a polymer-ceramic composite electrolyte

    DOEpatents

    Kumar, Binod

    2003-12-02

    Methods for enhancing conductivity of polymer-ceramic composite electrolytes are provided which include forming a polymer-ceramic composite electrolyte film by a melt casting technique and uniaxially stretching the film from about 5 to 15% in length. The polymer-ceramic composite electrolyte is also preferably annealed after stretching such that it has a room temperature conductivity of from 10.sup.-4 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1. The polymer-ceramic composite electrolyte formed by the methods of the present invention may be used in lithium rechargeable batteries.

  12. Advanced Proton Conducting Polymer Electrolytes for Electrochemical Capacitors

    NASA Astrophysics Data System (ADS)

    Gao, Han

    Research on solid electrochemical energy storage devices aims to provide high performance, low cost, and safe operation solutions for emerging applications from flexible consumer electronics to microelectronics. Polymer electrolytes, minimizing device sealing and liquid electrolyte leakage, are key enablers for these next-generation technologies. In this thesis, a novel proton-conducing polymer electrolyte system has been developed using heteropolyacids (HPAs) and polyvinyl alcohol for electrochemical capacitors. A thorough understanding of proton conduction mechanisms of HPAs together with the interactions among HPAs, additives, and polymer framework has been developed. Structure and chemical bonding of the electrolytes have been studied extensively to identify and elucidate key attributes affecting the electrolyte properties. Numerical models describing the proton conduction mechanism have been applied to differentiate those attributes. The performance optimization of the polymer electrolytes through additives, polymer structural modifications, and synthesis of alternative HPAs has achieved several important milestones, including: (a) high proton mobility and proton density; (b) good ion accessibility at electrode/electrolyte interface; (c) wide electrochemical stability window; and (d) good environmental stability. Specifically, high proton mobility has been addressed by cross-linking the polymer framework to improve the water storage capability at normal-to-high humidity conditions (e.g. 50-80% RH) as well as by incorporating nano-fillers to enhance the water retention at normal humidity levels (e.g. 30-60% RH). High proton density has been reached by utilizing additional proton donors (i.e. acidic plasticizers) and by developing different HPAs. Good ion accessibility has been achieved through addition of plasticizers. Electrochemical stability window of the electrolyte system has also been investigated and expanded by utilizing HPAs with different heteroatoms

  13. Poly-beta-pinene, a Novel Nonconjugated Conductive Polymer

    NASA Astrophysics Data System (ADS)

    Thakur, Mrinal; Vippa, Prakash; Rajagopalan, Harish

    2004-03-01

    Electrical conductivity in a novel nonconjugated conductive polymer, poly-beta-pinene, has been measured as a function of iodine doping. The conductivity increases about ten orders of magnitude to a maximum value ˜ 0.01 S/cm. The molar concentration of iodine corresponding to saturation is ˜ 0.8. The optical absorption measurements after light doping have shown two peaks: one at 4.1 eV and the other at 3.1 eV. The first peak is due to the radical cation and the second due the charge-transfer between the double bond and the dopant. As observed in other nonconjugated conductive polymers, the second peak becomes broader and undergoes a red-shift upon higher doping [1,2]. The FTIR spectroscopic studies have shown that the C=C stretching vibration at 1610 cm-1 and the =C-H bending vibration band at 728 cm-1 decrease upon doping as observed in other nonconjugated conductive polymers. Preliminary measurements have shown large quadratic electro-optic effects in this material. 1. M. Thakur, J. Macromol. Sci.-PAC,2001,A38(12),1337. 2. M. Thakur, S. Khatavkar and E.J. Parish, J. Macromol. Sci.-PAC,2003,A40(12),1397.

  14. A nonconjugated radical polymer glass with high electrical conductivity

    NASA Astrophysics Data System (ADS)

    Joo, Yongho; Agarkar, Varad; Sung, Seung Hyun; Savoie, Brett M.; Boudouris, Bryan W.

    2018-03-01

    Solid-state conducting polymers usually have highly conjugated macromolecular backbones and require intentional doping in order to achieve high electrical conductivities. Conversely, single-component, charge-neutral macromolecules could be synthetically simpler and have improved processibility and ambient stability. We show that poly(4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl), a nonconjugated radical polymer with a subambient glass transition temperature, underwent rapid solid-state charge transfer reactions and had an electrical conductivity of up to 28 siemens per meter over channel lengths up to 0.6 micrometers. The charge transport through the radical polymer film was enabled with thermal annealing at 80°C, which allowed for the formation of a percolating network of open-shell sites in electronic communication with one another. The electrical conductivity was not enhanced by intentional doping, and thin films of this material showed high optical transparency.

  15. Fabrication of multilayered conductive polymer structures via selective visible light photopolymerization

    NASA Astrophysics Data System (ADS)

    Cullen, Andrew T.; Price, Aaron D.

    2017-04-01

    Electropolymerization of pyrrole is commonly employed to fabricate intrinsically conductive polymer films that exhibit desirable electromechanical properties. Due to their monolithic nature, electroactive polypyrrole films produced via this process are typically limited to simple linear or bending actuation modes, which has hindered their application in complex actuation tasks. This initiative aims to develop the specialized fabrication methods and polymer formulations required to realize three-dimensional conductive polymer structures capable of more elaborate actuation modes. Our group has previously reported the application of the digital light processing additive manufacturing process for the fabrication of three-dimensional conductive polymer structures using ultraviolet radiation. In this investigation, we further expand upon this initial work and present an improved polymer formulation designed for digital light processing additive manufacturing using visible light. This technology enables the design of novel electroactive polymer sensors and actuators with enhanced capabilities and brings us one step closer to realizing more advanced electroactive polymer enabled devices.

  16. Surface pressure field mapping using luminescent coatings

    NASA Technical Reports Server (NTRS)

    Mclachlan, B. G.; Kavandi, J. L.; Callis, J. B.; Gouterman, M.; Green, E.; Khalil, G.; Burns, D.

    1993-01-01

    In recent experiments we demonstrated the feasibility of using the oxygen dependence of luminescent molecules for surface pressure measurement in aerodynamic testing. This technique is based on the observation that for many luminescent molecules the light emitted increases as the oxygen partial pressure, and thus the air pressure, the molecules see decreases. In practice the surface to be observed is coated with an oxygen permeable polymer containing a luminescent molecule and illuminated with ultraviolet radiation. The airflow induced surface pressure field is seen as a luminescence intensity distribution which can be measured using quantitative video techniques. Computer processing converts the video data into a map of the surface pressure field. The experiments consisted of evaluating a trial luminescent coating in measuring the static surface pressure field over a two-dimensional NACA-0012 section model airfoil for Mach numbers ranging from 0.3 and 0.66. Comparison of the luminescent coating derived pressures were made to those obtained from conventional pressure taps. The method along with the experiment and its results will be described.

  17. Multi-component lanthanide hybrids based on zeolite A/L and zeolite A/L-polymers for tunable luminescence.

    PubMed

    Chen, Lei; Yan, Bing

    2015-02-01

    Some multi-component hybrids based on zeolite L/A are prepared. Firstly, zeolite A/L is loaded with lanthanide complexes (Eu-DBM or Tb-AA (acetylacetone = AA, dibenzoylmethane = DBM)) into its channels. Secondly, 3-methacryloyloxypropyltrimethoxysilane (γ-MPS) is used to covalently graft onto the surface of functionalized zeolite A/L (Si-[ZA/L⊃Eu-DBM(Tb-AA)]). Thirdly, lanthanide ions (Eu(3+)/Tb(3+)) are coordinated to the functionalized zeolite A/L and ligands (phen(1,10-phenanthroline) or bipy (2,2'-bipyridyl)) are introduced by a ship-in-bottle method. The inside-outside double modifications of ZA/L with lanthanide complexes afford the final hybrids and these are characterized by means of XRD, FT-IR, UV-vis DRS, SEM and luminescence spectroscopy, some of which display white or near-white light emission. Furthermore, selected above-mentioned hybrids are incorporated into PEMA/PMMA (poly ethyl methylacryate/poly methyl methacrylate) hosts to prepare luminescent polymer films. These results provide abundant data that these hybrid materials can be expected to have potential application in various practical fields.

  18. Conducting polymer ultracapacitor

    DOEpatents

    Shi, Steven Z.; Davey, John R.; Gottesfeld, Shimshon; Ren, Xiaoming

    2002-01-01

    A sealed ultracapacitor assembly is formed with first and second electrodes of first and second conducting polymers electrodeposited on porous carbon paper substrates, where the first and second electrodes each define first and second exterior surfaces and first and second opposing surfaces. First and second current collector plates are bonded to the first and second exterior surfaces, respectively. A porous membrane separates the first and second opposing surfaces, with a liquid electrolyte impregnating the insulating membrane. A gasket formed of a thermoplastic material surrounds the first and second electrodes and seals between the first and second current collector plates for containing the liquid electrolyte.

  19. Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications

    DOE PAGES

    Zhao, Fei; Shi, Ye; Pan, Lijia; ...

    2017-06-26

    Conductive polymers have attracted significant interest over the past few decades because they synergize the advantageous features of conventional polymeric materials and organic conductors. With rationally designed nanostructures, conductive polymers can further exhibit exceptional mechanical, electrical, and optical properties because of their confined dimensions at the nanoscale level. Among various nanostructured conductive polymers, conductive polymer gels (CPGs) with synthetically tunable hierarchical 3D network structures show great potential for a wide range of applications, such as bioelectronics, and energy storage/conversion devices owing to their structural features. CPGs retain the properties of nanosized conductive polymers during the assembly of the nanobuilding blocksmore » into a monolithic macroscopic structure while generating structure-derived features from the highly cross-linked network. In this Account, we review our recent progress on the synthesis, properties, and novel applications of dopant cross-linked CPGs. We first describe the synthetic strategies, in which molecules with multiple functional groups are adopted as cross-linkers to cross-link conductive polymer chains into a 3D molecular network. These cross-linking molecules also act as dopants to improve the electrical conductivity of the gel network. The microstructure and physical/chemical properties of CPGs can be tuned by controlling the synthetic conditions such as species of monomers and cross-linkers, reaction temperature, and solvents. By incorporating other functional polymers or particles into the CPG matrix, hybrid gels have been synthesized with tailored structures. These hybrid gel materials retain the functionalities from each component, as well as enable synergic effects to improve mechanical and electrical properties of CPGs. We then introduce the unique structure-derived properties of the CPGs. The network facilitates both electronic and ionic transport owing to the

  20. Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Fei; Shi, Ye; Pan, Lijia

    Conductive polymers have attracted significant interest over the past few decades because they synergize the advantageous features of conventional polymeric materials and organic conductors. With rationally designed nanostructures, conductive polymers can further exhibit exceptional mechanical, electrical, and optical properties because of their confined dimensions at the nanoscale level. Among various nanostructured conductive polymers, conductive polymer gels (CPGs) with synthetically tunable hierarchical 3D network structures show great potential for a wide range of applications, such as bioelectronics, and energy storage/conversion devices owing to their structural features. CPGs retain the properties of nanosized conductive polymers during the assembly of the nanobuilding blocksmore » into a monolithic macroscopic structure while generating structure-derived features from the highly cross-linked network. In this Account, we review our recent progress on the synthesis, properties, and novel applications of dopant cross-linked CPGs. We first describe the synthetic strategies, in which molecules with multiple functional groups are adopted as cross-linkers to cross-link conductive polymer chains into a 3D molecular network. These cross-linking molecules also act as dopants to improve the electrical conductivity of the gel network. The microstructure and physical/chemical properties of CPGs can be tuned by controlling the synthetic conditions such as species of monomers and cross-linkers, reaction temperature, and solvents. By incorporating other functional polymers or particles into the CPG matrix, hybrid gels have been synthesized with tailored structures. These hybrid gel materials retain the functionalities from each component, as well as enable synergic effects to improve mechanical and electrical properties of CPGs. We then introduce the unique structure-derived properties of the CPGs. The network facilitates both electronic and ionic transport owing to the

  1. Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications.

    PubMed

    Zhao, Fei; Shi, Ye; Pan, Lijia; Yu, Guihua

    2017-07-18

    Conductive polymers have attracted significant interest over the past few decades because they synergize the advantageous features of conventional polymeric materials and organic conductors. With rationally designed nanostructures, conductive polymers can further exhibit exceptional mechanical, electrical, and optical properties because of their confined dimensions at the nanoscale level. Among various nanostructured conductive polymers, conductive polymer gels (CPGs) with synthetically tunable hierarchical 3D network structures show great potential for a wide range of applications, such as bioelectronics, and energy storage/conversion devices owing to their structural features. CPGs retain the properties of nanosized conductive polymers during the assembly of the nanobuilding blocks into a monolithic macroscopic structure while generating structure-derived features from the highly cross-linked network. In this Account, we review our recent progress on the synthesis, properties, and novel applications of dopant cross-linked CPGs. We first describe the synthetic strategies, in which molecules with multiple functional groups are adopted as cross-linkers to cross-link conductive polymer chains into a 3D molecular network. These cross-linking molecules also act as dopants to improve the electrical conductivity of the gel network. The microstructure and physical/chemical properties of CPGs can be tuned by controlling the synthetic conditions such as species of monomers and cross-linkers, reaction temperature, and solvents. By incorporating other functional polymers or particles into the CPG matrix, hybrid gels have been synthesized with tailored structures. These hybrid gel materials retain the functionalities from each component, as well as enable synergic effects to improve mechanical and electrical properties of CPGs. We then introduce the unique structure-derived properties of the CPGs. The network facilitates both electronic and ionic transport owing to the

  2. Perturbing Tandem Energy Transfer in Luminescent Heterobinuclear Lanthanide Coordination Polymer Nanoparticles Enables Real-Time Monitoring of Release of the Anthrax Biomarker from Bacterial Spores.

    PubMed

    Gao, Nan; Zhang, Yunfang; Huang, Pengcheng; Xiang, Zhehao; Wu, Fang-Ying; Mao, Lanqun

    2018-06-05

    Lanthanide-based luminescent sensors have been widely used for the detection of the anthrax biomarker dipicolinic acid (DPA). However, mainly based on DPA sensitization to the lanthanide core, most of them failed to realize robust detection of DPA in bacterial spores. We proposed a new strategy for reliable detection of DPA by perturbing a tandem energy transfer in heterobinuclear lanthanide coordination polymer nanoparticles simply constructed by two kinds of lanthanide ions, Tb 3+ and Eu 3+ , and guanosine 5'-monophosphate. This smart luminescent probe was demonstrated to exhibit highly sensitive and selective visual luminescence color change upon exposure to DPA, enabling accurate detection of DPA in complex biosystems such as bacterial spores. DPA release from bacterial spores on physiological germination was also successfully monitored in real time by confocal imaging. This probe is thus expected to be a powerful tool for efficient detection of bacterial spores in responding to anthrax threats.

  3. Dip-pen nanopatterning of photosensitive conducting polymer using a monomer ink

    NASA Astrophysics Data System (ADS)

    Su, Ming; Aslam, Mohammed; Fu, Lei; Wu, Nianqiang; Dravid, Vinayak P.

    2004-05-01

    Controlled patterning of conducting polymers at a micro- or nanoscale is the first step towards the fabrication of miniaturized functional devices. Here, we introduce an approach for the nanopatterning of conducting polymers using an improved monomer "ink" in dip-pen nanolithography (DPN). The nominal monomer "ink" is converted, in situ, to its conducting solid-state polymeric form after patterned. Proof-of-concept experiments have been performed with acid-promoted polymerization of pyrrole in a less reactive environment (tetrahydrofuran). The ratios of reactants are optimized to give an appropriate rate to match the operation of DPN. A similar synthesis process for the same polymer in its bulk form shows a high conductance and crystalline structure. The miniaturized conducting polymer sensors with light detection ability are fabricated by DPN using the improved ink formula, and exhibit excellent response, recovery, and sensitivity parameters.

  4. Conducting polymer nanowire arrays for high performance supercapacitors.

    PubMed

    Wang, Kai; Wu, Haiping; Meng, Yuena; Wei, Zhixiang

    2014-01-15

    This Review provides a brief summary of the most recent research developments in the fabrication and application of one-dimensional ordered conducting polymers nanostructure (especially nanowire arrays) and their composites as electrodes for supercapacitors. By controlling the nucleation and growth process of polymerization, aligned conducting polymer nanowire arrays and their composites with nano-carbon materials can be prepared by employing in situ chemical polymerization or electrochemical polymerization without a template. This kind of nanostructure (such as polypyrrole and polyaniline nanowire arrays) possesses high capacitance, superior rate capability ascribed to large electrochemical surface, and an optimal ion diffusion path in the ordered nanowire structure, which is proved to be an ideal electrode material for high performance supercapacitors. Furthermore, flexible, micro-scale, threadlike, and multifunctional supercapacitors are introduced based on conducting polyaniline nanowire arrays and their composites. These prototypes of supercapacitors utilize the high flexibility, good processability, and large capacitance of conducting polymers, which efficiently extend the usage of supercapacitors in various situations, and even for a complicated integration system of different electronic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Enhancement in ionic conductivity on solid polymer electrolytes containing large conducting species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Praveen, D.; Damle, Ramakrishna

    2016-05-23

    Solid Polymer Electrolytes (SPEs) lack better conducting properties at ambient temperatures. Various methods to enhance their ionic conductivity like irradiation with swift heavy ions, γ-rays, swift electrons and quenching at low temperature etc., have been explored in the literature. Among these, one of the oldest methods is incorporation of different conducting species into the polymer matrix and/or addition of nano-sized inert particles into SPEs. Various new salts like LiBr, Mg(ClO{sub 4}){sub 2}, NH{sub 4}I etc., have already been tried in the past with some success. Also various nanoparticles like Al{sub 2}O{sub 3}, TiO{sub 2} etc., have been tried in themore » past. In this article, we have investigated an SPE containing Rubidium as a conducting species. Rubidium has a larger ionic size compared to lithium and sodium ions which have been investigated in the recent past. In the present article, we have investigated the conductivity of large sized conducting species and shown the enhancement in the ionic conductivity by addition of nano-sized inert particles.« less

  6. Tuning the thermal conductivity of solar cell polymers through side chain engineering.

    PubMed

    Guo, Zhi; Lee, Doyun; Liu, Yi; Sun, Fangyuan; Sliwinski, Anna; Gao, Haifeng; Burns, Peter C; Huang, Libai; Luo, Tengfei

    2014-05-07

    Thermal transport is critical to the performance and reliability of polymer-based energy devices, ranging from solar cells to thermoelectrics. This work shows that the thermal conductivity of a low band gap conjugated polymer, poly(4,8-bis-alkyloxybenzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-(alkylthieno[3,4-b]thiophene-2-carboxylate)-2,6-diyl) (PBDTTT), for photovoltaic applications can be actively tuned through side chain engineering. Compared to the original polymer modified with short branched side chains, the engineered polymer using all linear and long side chains shows a 160% increase in thermal conductivity. The thermal conductivity of the polymer exhibits a good correlation with the side chain lengths as well as the crystallinity of the polymer characterized using small-angle X-ray scattering (SAXS) experiments. Molecular dynamics simulations and atomic force microscopy are used to further probe the molecular level local order of different polymers. It is found that the linear side chain modified polymer can facilitate the formation of more ordered structures, as compared to the branched side chain modified ones. The effective medium theory modelling also reveals that the long linear side chain enables a larger heat carrier propagation length and the crystalline phase in the bulk polymer increases the overall thermal conductivity. It is concluded that both the length of the side chains and the induced polymer crystallization are important for thermal transport. These results offer important guidance for actively tuning the thermal conductivity of conjugated polymers through molecular level design.

  7. Applicability of samarium(III) complexes for the role of luminescent molecular sensors for monitoring progress of photopolymerization processes and control of the thickness of polymer coatings

    NASA Astrophysics Data System (ADS)

    Topa, Monika; Ortyl, Joanna; Chachaj-Brekiesz, Anna; Kamińska-Borek, Iwona; Pilch, Maciej; Popielarz, Roman

    2018-06-01

    Applicability of 15 trivalent samarium complexes as novel luminescent probes for monitoring progress of photopolymerization processes or thickness of polymer coatings by the Fluorescence Probe Technique (FPT) was studied. Three groups of samarium(III) complexes were evaluated in cationic photopolymerization of triethylene glycol divinyl ether monomer (TEGDVE) and free-radical photopolymerization of trimethylolpropane triacrylate (TMPTA). The complexes were the derivatives of tris(4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionate)samarium(III), tris(4,4,4-trifluoro-1-phenyl-1,3-butanedionate)samarium(III) and tris(4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedionate)samarium(III), which were further coordinated with auxiliary ligands, such as 1,10-phenanthroline, triphenylphosphine oxide, tributylphosphine oxide and trioctylphosphine oxide. It has been found that most of the complexes studied are sensitive enough to be used as luminescent probes for monitoring progress of cationic photopolymerization of vinyl ether monomers over entire range of monomer conversions. In the case of free-radical polymerization processes, the samarium(III) complexes are not sensitive enough to changes of microviscosity and/or micropolarity of the medium, so they cannot be used to monitor progress of the polymerization. However, high stability of luminescence intensity of some of these complexes under free-radical polymerization conditions makes them good candidates for application as thickness sensors for polymer coatings prepared by free-radical photopolymerization. A quantitative relationship between a coating thickness and the luminescence intensity of the samarium(III) probes has been derived and verified experimentally within a broad range of the thicknesses.

  8. Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade

    PubMed Central

    Faridbod, Farnoush; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Norouzi, Parviz

    2008-01-01

    Many research studies have been conducted on the use of conjugated polymers in the construction of chemical sensors including potentiometric, conductometric and amperometric sensors or biosensors over the last decade. The induction of conductivity on conjugated polymers by treating them with suitable oxidizing agents won Heeger, MacDiarmid and Shirakawa the 2000 Nobel Prize in Chemistry. Common conjugated polymers are poly(acetylene)s, poly(pyrrole)s, poly(thiophene)s, poly(terthiophene)s, poly(aniline)s, poly(fluorine)s, poly(3-alkylthiophene)s, polytetrathiafulvalenes, poly-napthalenes, poly(p-phenylene sulfide), poly(p-phenylenevinylene)s, poly(3,4-ethylene-dioxythiophene), polyparaphenylene, polyazulene, polyparaphenylene sulfide, poly-carbazole and polydiaminonaphthalene. More than 60 sensors for inorganic cations and anions with different characteristics based on conducting polymers have been reported. There have also been reports on the application of non-conducting polymers (nCPs), i.e. PVC, in the construction of potentiometric membrane sensors for determination of more than 60 inorganic cations and anions. However, the leakage of ionophores from the membranes based on these polymers leads to relatively lower life times. In this article, we try to give an overview of Solid-Contact ISE (SCISE), Single-Piece ISE (SPISE), Conducting Polymer (CP)-Based, and also non-conducting polymer PVC-based ISEs for various ions which their difference is in the way of the polymer used with selective\\ membrane. In SCISEs and SPISEs, the plasticized PVC containing the ionophore and ionic additives govern the selectivity behavior of the electrode and the conducting polymer is responsible of ion-to-electron transducer. However, in CPISEs, the conducting polymer layer is doped with a suitable ionophore which enhances the ion selectivity of the CP while its redox response has to be suppressed. PMID:27879825

  9. Single conducting polymer nanowire based conductometric sensors

    NASA Astrophysics Data System (ADS)

    Bangar, Mangesh Ashok

    The detection of toxic chemicals, gases or biological agents at very low concentrations with high sensitivity and selectivity has been subject of immense interest. Sensors employing electrical signal readout as transduction mechanism offer easy, label-free detection of target analyte in real-time. Traditional thin film sensors inherently suffered through loss of sensitivity due to current shunting across the charge depleted/added region upon analyte binding to the sensor surface, due to their large cross sectional area. This limitation was overcome by use of nanostructure such as nanowire/tube as transducer where current shunting during sensing was almost eliminated. Due to their benign chemical/electrochemical fabrication route along with excellent electrical properties and biocompatibility, conducting polymers offer cost-effective alternative over other nanostructures. Biggest obstacle in using these nanostructures is lack of easy, scalable and cost-effective way of assembling these nanostructures on prefabricated micropatterns for device fabrication. In this dissertation, three different approaches have been taken to fabricate individual or array of single conducting polymer (and metal) nanowire based devices and using polymer by itself or after functionalization with appropriate recognition molecule they have been applied for gas and biochemical detection. In the first approach electrochemical fabrication of multisegmented nanowires with middle functional Ppy segment along with ferromagnetic nickel (Ni) and end gold segments for better electrical contact was studied. This multi-layered nanowires were used along with ferromagnetic contact electrode for controlled magnetic assembly of nanowires into devices and were used for ammonia gas sensing. The second approach uses conducting polymer, polypyrrole (Ppy) nanowires using simple electrophoretic alignment and maskless electrodeposition to anchor nanowire which were further functionalized with antibodies against

  10. Investigation of ionic conduction in PEO-PVDF based blend polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Patla, Subir Kumar; Ray, Ruma; Asokan, K.; Karmakar, Sanat

    2018-03-01

    We investigate the effect of blend host polymer on solid polymer electrolyte (SPE) films doped with ammonium iodide (NH4I) salt using a variety of experimental techniques. Structural studies on the composite SPEs show that the blending of Poly(ethylene oxide) (PEO)-Poly(vinylidene fluoride) (PVDF) polymers in a suitable ratio enhances the amorphous fraction of the polymer matrix and facilitates fast ion conduction through it. We observe that the addition of a small amount of PVDF in the PEO host polymer enhances the ion - polymer interaction leading to more ion dissociation. As a result, the effective number of mobile charge carriers within the polymer matrix increases. Systematic investigation in these blend SPEs shows that the maximum conductivity (1.01 × 10-3 S/cm) is obtained for PEO - rich (80 wt. % PEO, 20 wt. % PVDF) composites at 35 wt. % NH4I concentration at room temperature. Interestingly, at higher salt concentrations (above 35 wt. %), the conductivity is found to decrease in this system. The reduction of conductivity at higher salt concentrations is the consequence of decrease in the carrier concentration due to the formation of an ion pair and ion aggregates. PVDF-rich compositions (20 wt. % PEO and 80 wt. % PVDF), on the other hand, show a very complex porous microstructure. We also observe a much lower ionic conductivity (maximum ˜ 10-6 S/cm at 15 wt. % salt) in these composite systems relative to PEO-rich composites.

  11. Conducting polymers with immobilised fibrillar collagen for enhanced neural interfacing.

    PubMed

    Liu, Xiao; Yue, Zhilian; Higgins, Michael J; Wallace, Gordon G

    2011-10-01

    Conducting polymers with pendant functionality are advantageous in various bionic and organic bioelectronic applications, as they allow facile incorporation of bio-regulative cues to provide bio-mimicry and conductive environments for cell growth, differentiation and function. In this work, polypyrrole substrates doped with chondroitin sulfate (CS), an extracellular matrix molecule bearing carboxylic acid moieties, were electrochemically synthesized and conjugated with type I collagen. During the coupling process, the conjugated collagen formed a 3-dimensional fibrillar matrix in situ at the conducting polymer interface, as evidenced by atomic force microscopy (AFM) and fluorescence microscopy under aqueous physiological conditions. Cyclic voltammetry (CV) and impedance measurement confirmed no significant reduction in the electroactivity of the fibrillar collagen-modified conducting polymer substrates. Rat pheochromocytoma (nerve) cells showed increased differentiation and neurite outgrowth on the fibrillar collagen, which was further enhanced through electrical stimulation of the underlying conducting polymer substrate. Our study demonstrates that the direct coupling of ECM components such as collagen, followed by their further self-assembly into 3-dimensional matrices, has the potential to improve the neural-electrode interface of implant electrodes by encouraging nerve cell attachment and differentiation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Water-Enabled Healing of Conducting Polymer Films.

    PubMed

    Zhang, Shiming; Cicoira, Fabio

    2017-10-01

    The conducting polymer polyethylenedioxythiophene doped with polystyrene sulfonate (PEDOT:PSS) has become one of the most successful organic conductive materials due to its high air stability, high electrical conductivity, and biocompatibility. In recent years, a great deal of attention has been paid to its fundamental physicochemical properties, but its healability has not been explored in depth. This communication reports the first observation of mechanical and electrical healability of PEDOT:PSS thin films. Upon reaching a certain thickness (about 1 µm), PEDOT:PSS thin films damaged with a sharp blade can be electrically healed by simply wetting the damaged area with water. The process is rapid, with a response time on the order of 150 ms. Significantly, after being wetted the films are transformed into autonomic self-healing materials without the need of external stimulation. This work reveals a new property of PEDOT:PSS and enables its immediate use in flexible and biocompatible electronics, such as electronic skin and bioimplanted electronics, placing conducting polymers on the front line for healing applications in electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Reciprocated suppression of polymer crystallization toward improved solid polymer electrolytes: Higher ion conductivity and tunable mechanical properties

    DOE PAGES

    Bi, Sheng; Sun, Che-Nan; Zawodzinski, Thomas A.; ...

    2015-08-06

    Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl) imide and polymer matrix were extensively studied in the past due to their excellent potential in a broad range of energy related applications. Poly(vinylidene fluoride) (PVDF) and polyethylene oxide (PEO) are among the most examined polymer candidates as solid polymer electrolyte matrix. In this paper, we study the effect of reciprocated suppression of polymer crystallization in PVDF/PEO binary matrix on ion transport and mechanical properties of the resultant solid polymer electrolytes. With electron and X-ray diffractions as well as energy filtered transmission electron microscopy, we identify and examine the appropriate blending composition thatmore » is responsible for the diminishment of both PVDF and PEO crystallites. Laslty, a three-fold conductivity enhancement is achieved along with a highly tunable elastic modulus ranging from 20 to 200 MPa, which is expected to contribute toward future designs of solid polymer electrolytes with high room-temperature ion conductivities and mechanical flexibility.« less

  14. Synthesis and characterization thin films of conductive polymer (PANI) for optoelectronic device application

    NASA Astrophysics Data System (ADS)

    Jarad, Amer N.; Ibrahim, Kamarulazizi; Ahmed, Nasser M.

    2016-07-01

    In this work we report preparation and investigation of structural and optical properties of polyaniline conducting polymer. By using sol-gel in spin coating technique to synthesize thin films of conducting polymer polyaniline (PANI). Conducting polymer polyaniline was synthesized by the chemical oxidative polymerization of aniline monomers. The thin films were characterized by technique: Hall effect, High Resolution X-ray diffraction (HR-XRD), Fourier transform infrared (FTIR) spectroscopy, Field emission scanning electron microscopy (FE-SEM), and UV-vis spectroscopy. Polyaniline conductive polymer exhibit amorphous nature as confirmed by HR-XRD. The presence of characteristic bonds of polyaniline was observed from FTIR spectroscopy technique. Electrical and optical properties revealed that (p-type) conductivity PANI with room temperature, the conductivity was 6.289×10-5 (Ω.cm)-1, with tow of absorption peak at 426,805 nm has been attributed due to quantized size of polyaniline conducting polymer.

  15. Luminescent Thermochromism of 2D Coordination Polymers Based on Copper(I) Halides with 4-Hydroxythiophenol

    PubMed Central

    Troyano, Javier; Perles, Josefina; Amo-Ochoa, Pilar; Martínez, Jose Ignacio; Concepción Gimeno, Maria; Fernández-Moreira, Vanesa; Zamora, Félix; Delgado, Salomé

    2016-01-01

    Solvothermal reactions between copper(I) halides and 4-mercaptophenol give rise to the formation of three coordination polymers with general formula [Cu3X(HT)2]n (X= Cl, 1; Br, 2; and I, 3). The structures of these coordination polymers have been determined by X-ray diffraction at both room temperature and low temperature (110 K), showing a general shortening in Cu-S, Cu-X and Cu···Cu bond distances at low temperatures. 1 and 2 are isostructural consisting of layers in which the halogen ligands act as μ3-bridges joining two Cu1 and one Cu2 atoms whereas in 3 the iodine ligands is as μ4-mode but the layers are quasi-isostructural with 1 or 2. These compounds show a reversible thermochromic luminescence, with strong orange emission for 1 and 2, but weaker for 3 at room temperature, while upon cooling at 77 K 1 and 2 show stronger yellow as well as 3 displays stronger green emission. DFT calculations have been used to rationalise these observations. These results suggest a high potential for this novel and promising stimuli-responsive materials. PMID:27809369

  16. Luminescent Thermochromism of 2D Coordination Polymers Based on Copper(I) Halides with 4-Hydroxythiophenol.

    PubMed

    Troyano, Javier; Perles, Josefina; Amo-Ochoa, Pilar; Martínez, Jose Ignacio; Concepción Gimeno, Maria; Fernández-Moreira, Vanesa; Zamora, Félix; Delgado, Salomé

    2016-12-12

    Solvothermal reactions between copper(I) halides and 4-mercaptophenol give rise to the formation of three coordination polymers with general formula [Cu 3 X(HT) 2 ] n (X=Cl, 1; Br, 2; and I, 3). The structures of these coordination polymers have been determined by X-ray diffraction at both room- and low temperature (110 K), showing a general shortening in Cu-S, Cu-X and Cu-Cu bond lengths at low temperatures. 1 and 2 are isostructural, consisting of layers in which the halogen ligands act as μ 3 -bridges joining two Cu1 and one Cu2 atoms whereas in 3 the iodine ligands is as μ 4 -mode but the layers are quasi-isostructural with 1 or 2. These compounds show a reversible thermochromic luminescence, with strong orange emission for 1 and 2, but weaker for 3 at room temperature, whereas upon cooling at 77 K 1 and 2 show stronger yellow emission, and 3 displays stronger green emission. DFT calculations have been used to rationalize these observations. These results suggest a high potential for this novel and promising stimuli-responsive materials. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Conductivity fluctuations in polymer's networks

    NASA Astrophysics Data System (ADS)

    Samukhin, A. N.; Prigodin, V. N.; Jastrabík, L.

    1998-01-01

    A Polymer network is treated as an anisotropic fractal with fractional dimensionality D = 1 + ε close to one. Percolation model on such a fractal is studied. Using real space renormalization group approach of Migdal and Kadanoff, we find the threshold value and all the critical exponents in the percolation model to be strongly nonanalytic functions of ε, e.g. the critical exponent of the conductivity was obtained to be ε-2 exp (-1 - 1/ε). The main part of the finite-size conductivities distribution function at the threshold was found to be universal if expressed in terms of the fluctuating variable which is proportional to a large power of the conductivity, but with ε-dependent low-conductivity cut-off. Its reduced central momenta are of the order of e -1/ε up to a very high order.

  18. Electrical conductivity in a nonconjugated polymer intermediate between polyisoprene and polyacetylene

    NASA Astrophysics Data System (ADS)

    Titus, Jitto; Thakur, Mrinal

    2002-03-01

    Conjugation is not a prerequisite for electrical conductivity in polymers. Nonconjugated polymers having at least one double bond in the repeat can become conductive upon doping. Polyisoprene having one double bond repeating after three single bonds in the backbone becomes conductive upon doping with electron acceptors such as iodine.^1 The conductivity of doped polyisoprene is about 10-2 - 10-1 ohm-1cm-1. Poly(allocimene) has on the average one double bond repeating after two single bonds in the polymer backbone. The conductivity of poly(allocimene) is about 1 ohm-1cm-1 upon iodine doping. For polyacetylene, the conductivity upon iodine doping is about 100 ohm-1cm-1. There seems to be a power law dependence of conductivity on the fraction of double bonds in the repeat: σ ~ 10^5(f)^10, where σ is the conductivity in ohm-1cm-1, f is the number fraction of double bonds (e.g. 0.25 in polyisoprene, 0.33 in poly(allocimene) and 0.5 in polyacetylene). The conductivity depends partly on substituents and the morphology of the polymer as well. 1. M. Thakur, Macromolecules, 21 661 (1988); J. Macromol. Sci.-PAC, A38.12, Dec., (2001).

  19. Excited-State Complexes of Conjugated Polymers: Novel Photophysical Processes and Optoelectronic Materials.

    DTIC Science & Technology

    1995-03-20

    corresponding excited-state complexes were only recently discovered. The results of our extensive studies of intermolecular excimers and exciplexes of many...the luminescence of conjugated polymers. The luminescence and charge photogeneration in exciplexes of conjugated polymers with donor triarylamines will also be presented. jg

  20. Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection

    PubMed Central

    Li, Xiaoming; Zhang, Shengli; Kulinich, Sergei A.; Liu, Yanli; Zeng, Haibo

    2014-01-01

    Luminescent carbon dots (L-CDs) with high quantum yield value (44.7%) and controllable emission wavelengths were prepared via a facile hydrothermal method. Importantly, the surface states of the materials could be engineered so that their photoluminescence was either excitation-dependent or distinctly independent. This was achieved by changing the density of amino-groups on the L-CD surface. The above materials were successfully used to prepare multicolor L-CDs/polymer composites, which exhibited blue, green, and even white luminescence. In addition, the excellent excitation-independent luminescence of L-CDs prepared at low temperature was tested for detecting various metal ions. As an example, the detection limit of toxic Be2+ ions, tested for the first time, was as low as 23 μM.

  1. Robust solid polymer electrolyte for conducting IPN actuators

    NASA Astrophysics Data System (ADS)

    Festin, Nicolas; Maziz, Ali; Plesse, Cédric; Teyssié, Dominique; Chevrot, Claude; Vidal, Frédéric

    2013-10-01

    Interpenetrating polymer networks (IPNs) based on nitrile butadiene rubber (NBR) as first component and poly(ethylene oxide) (PEO) as second component were synthesized and used as a solid polymer electrolyte film in the design of a mechanically robust conducting IPN actuator. IPN mechanical properties and morphologies were mainly investigated by dynamic mechanical analysis and transmission electron microscopy. For 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)-imide (EMITFSI) swollen IPNs, conductivity values are close to 1 × 10-3 S cm-1 at 25 ° C. Conducting IPN actuators have been synthesized by chemical polymerization of 3,4-ethylenedioxythiophene (EDOT) within the PEO/NBR IPN. A pseudo-trilayer configuration has been obtained with PEO/NBR IPN sandwiched between two interpenetrated PEDOT electrodes. The robust conducting IPN actuators showed a free strain of 2.4% and a blocking force of 30 mN for a low applied potential of ±2 V.

  2. Preparation and luminescent properties of the novel polymer-rare earth complexes composed of Poly(ethylene-co-acrylic acid) and Europium ions

    NASA Astrophysics Data System (ADS)

    Wu, Yuewen; Hao, Haixia; Wu, Qingyao; Gao, Zihan; Xie, Hongde

    2018-06-01

    A series of novel polymer-rare earth complexes with Eu3+ ions have been synthesized and investigated successfully, including the binary complexes containing the single ligand poly(ethylene-co-acrylic acid) (EAA) and the ternary complexes using 1,10-phenanthroline (phen), dibenzoylmethane (DBM) or thenoyltrifluoroacetone (TTA) as the second ligand. Their structures have been characterized by Fourier transform infrared spectroscopy (FT-IR), elemental analysis and X-ray diffraction (XRD), which confirm that both EAA and small molecules participate in the coordination reaction with rare earth ions, and they can disperse homogeneously in the polymer matrixes. Both ultraviolet-visible (UV-vis) absorption and photoluminescence tests for the complexes have been recorded. The relationship between fluorescence intensity of polymer-rare earth complexes and the quantity of ligand EAA has been studied and discussed. The films casted from the complexes solution can emit strong characteristic red light under UV light excitation. All these results suggest that the complexes possess potential application as luminescent materials.

  3. Liquid scintillators with near infrared emission based on organoboron conjugated polymers.

    PubMed

    Tanaka, Kazuo; Yanagida, Takayuki; Yamane, Honami; Hirose, Amane; Yoshii, Ryousuke; Chujo, Yoshiki

    2015-11-15

    The organic liquid scintillators based on the emissive polymers are reported. A series of conjugated polymers containing organoboron complexes which show the luminescence in the near infrared (NIR) region were synthesized. The polymers showed good solubility in common organic solvents. From the comparison of the luminescent properties of the synthesized polymers between optical and radiation excitation, similar emission bands were detected. In addition, less significant degradation was observed. These data propose that the organoboron conjugated polymers are attractive platforms to work as an organic liquid scintillator with the emission in the NIR region. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Ethylene sensing by silver(I) salt-impregnated luminescent films

    USDA-ARS?s Scientific Manuscript database

    Luminescent oligomer /polymer films impregnated with Ag(I) salts are effective sensors for small gas molecules such as ethylene. Films composed of various Ag(I) salts (i.e. AgBF4, AgSbF6, AgB(C6F5)4, AgClO4 and AgOTf) and polymers (i.e. poly(vinylphenylketone) (PVPK), polystyrene (PS) or oligomers (...

  5. A highly stretchable, transparent, and conductive polymer

    DOE PAGES

    Wang, Yue; Zhu, Chenxin; Pfattner, Raphael; ...

    2017-03-10

    Previous breakthroughs in stretchable electronics stem from strain engineering and nanocomposite approaches. Routes toward intrinsically stretchable molecular materials remain scarce but, if successful, will enable simpler fabrication processes, such as direct printing and coating, mechanically robust devices, and more intimate contact with objects. We report a highly stretchable conducting polymer, realized with a range of enhancers that serve a dual function: (i) they change morphology and (ii) they act as conductivity-enhancing dopants in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The polymer films exhibit conductivities comparable to the best reported values for PEDOT:PSS, with over 3100 S/cm under 0% strain and over 4100 S/cm undermore » 100% strain—among the highest for reported stretchable conductors. It is highly durable under cyclic loading, with the conductivity maintained at 3600 S/cm even after 1000 cycles to 100% strain. The conductivity remained above 100 S/cm under 600% strain, with a fracture strain of 800%, which is superior to even the best silver nanowire– or carbon nanotube–based stretchable conductor films. As a result, the combination of excellent electrical and mechanical properties allowed it to serve as interconnects for field-effect transistor arrays with a device density that is five times higher than typical lithographically patterned wavy interconnects.« less

  6. A highly stretchable, transparent, and conductive polymer

    PubMed Central

    Wang, Yue; Zhu, Chenxin; Pfattner, Raphael; Yan, Hongping; Jin, Lihua; Chen, Shucheng; Molina-Lopez, Francisco; Lissel, Franziska; Liu, Jia; Rabiah, Noelle I.; Chen, Zheng; Chung, Jong Won; Linder, Christian; Toney, Michael F.; Murmann, Boris; Bao, Zhenan

    2017-01-01

    Previous breakthroughs in stretchable electronics stem from strain engineering and nanocomposite approaches. Routes toward intrinsically stretchable molecular materials remain scarce but, if successful, will enable simpler fabrication processes, such as direct printing and coating, mechanically robust devices, and more intimate contact with objects. We report a highly stretchable conducting polymer, realized with a range of enhancers that serve a dual function: (i) they change morphology and (ii) they act as conductivity-enhancing dopants in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The polymer films exhibit conductivities comparable to the best reported values for PEDOT:PSS, with over 3100 S/cm under 0% strain and over 4100 S/cm under 100% strain—among the highest for reported stretchable conductors. It is highly durable under cyclic loading, with the conductivity maintained at 3600 S/cm even after 1000 cycles to 100% strain. The conductivity remained above 100 S/cm under 600% strain, with a fracture strain of 800%, which is superior to even the best silver nanowire– or carbon nanotube–based stretchable conductor films. The combination of excellent electrical and mechanical properties allowed it to serve as interconnects for field-effect transistor arrays with a device density that is five times higher than typical lithographically patterned wavy interconnects. PMID:28345040

  7. A highly stretchable, transparent, and conductive polymer.

    PubMed

    Wang, Yue; Zhu, Chenxin; Pfattner, Raphael; Yan, Hongping; Jin, Lihua; Chen, Shucheng; Molina-Lopez, Francisco; Lissel, Franziska; Liu, Jia; Rabiah, Noelle I; Chen, Zheng; Chung, Jong Won; Linder, Christian; Toney, Michael F; Murmann, Boris; Bao, Zhenan

    2017-03-01

    Previous breakthroughs in stretchable electronics stem from strain engineering and nanocomposite approaches. Routes toward intrinsically stretchable molecular materials remain scarce but, if successful, will enable simpler fabrication processes, such as direct printing and coating, mechanically robust devices, and more intimate contact with objects. We report a highly stretchable conducting polymer, realized with a range of enhancers that serve a dual function: (i) they change morphology and (ii) they act as conductivity-enhancing dopants in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The polymer films exhibit conductivities comparable to the best reported values for PEDOT:PSS, with over 3100 S/cm under 0% strain and over 4100 S/cm under 100% strain-among the highest for reported stretchable conductors. It is highly durable under cyclic loading, with the conductivity maintained at 3600 S/cm even after 1000 cycles to 100% strain. The conductivity remained above 100 S/cm under 600% strain, with a fracture strain of 800%, which is superior to even the best silver nanowire- or carbon nanotube-based stretchable conductor films. The combination of excellent electrical and mechanical properties allowed it to serve as interconnects for field-effect transistor arrays with a device density that is five times higher than typical lithographically patterned wavy interconnects.

  8. Electrolyte-gated transistors based on conducting polymer nanowire junction arrays.

    PubMed

    Alam, Maksudul M; Wang, Jun; Guo, Yaoyao; Lee, Stephanie P; Tseng, Hsian-Rong

    2005-07-07

    In this study, we describe the electrolyte gating and doping effects of transistors based on conducting polymer nanowire electrode junction arrays in buffered aqueous media. Conducting polymer nanowires including polyaniline, polypyrrole, and poly(ethylenedioxythiophene) were investigated. In the presence of a positive gate bias, the device exhibits a large on/off current ratio of 978 for polyaniline nanowire-based transistors; these values vary according to the acidity of the gate medium. We attribute these efficient electrolyte gating and doping effects to the electrochemically fabricated nanostructures of conducting polymer nanowires. This study demonstrates that two-terminal devices can be easily converted into three-terminal transistors by simply immersing the device into an electrolyte solution along with a gate electrode. Here, the field-induced modulation can be applied for signal amplification to enhance the device performance.

  9. Thermal conductivity of a single polymer chain

    NASA Astrophysics Data System (ADS)

    Freeman, J. J.; Morgan, G. J.; Cullen, C. A.

    1987-05-01

    Numerical experiments have been performed with use of a fairly realistic model for polyethylene which has enabled the effects of anharmonicity, temperature, and positional disorder on the thermal conductivity to be investigated. It has been shown that the classical conductivity may be substantially increased by both increasing the strength of the anharmonic forces and by decreasing the chain temperature. Although the conductivity of individual chains is found to be high, realistic values for the conductivity of a bulk material may be understood provided that due account is taken of the polymer conformation and interchain coupling.

  10. Conductivity study and fourier transform infrared (FTIR) characterization of methyl cellulose solid polymer electrolyte with sodium iodide conducting ion

    NASA Astrophysics Data System (ADS)

    Abiddin, Jamal Farghali Bin Zainal; Ahmad, Azizah Hanom

    2015-08-01

    Sodium ion (Na+) based solid polymer electrolyte (SPE) has been prepared using solution cast technique with distilled water as solvent and Methylcellulose (MC) as a polymer host. Methylcellulose polymer was chosen as the polymer host due to the abundance of lone pair electrons in the carbonyl and C-O-C constituents, which in turn provide multiple hopping sites for the Na+ conducting ions. Variable compositions of sodium iodide (NaI) salt were prepared to investigate the optimum MC-NaI weight ratio. Results from Electrical Impedance Spectroscopy (EIS) technique show that pure methylcellulose has a low conductivity of 3.61 × 10-11 S/cm.The conductivity increases as NaI content increases up to optimum NaIcomposition of 40 wt%, which yields an average conductivity of 2.70 × 10-5 S/cm.

  11. Electrochromic conductive polymer fuses for hybrid organic/inorganic semiconductor memories

    NASA Astrophysics Data System (ADS)

    Möller, Sven; Forrest, Stephen R.; Perlov, Craig; Jackson, Warren; Taussig, Carl

    2003-12-01

    We demonstrate a nonvolatile, write-once-read-many-times (WORM) memory device employing a hybrid organic/inorganic semiconductor architecture consisting of thin film p-i-n silicon diode on a stainless steel substrate integrated in series with a conductive polymer fuse. The nonlinearity of the silicon diodes enables a passive matrix memory architecture, while the conductive polyethylenedioxythiophene:polystyrene sulfonic acid polymer serves as a reliable switch with fuse-like behavior for data storage. The polymer can be switched at ˜2 μs, resulting in a permanent decrease of conductivity of the memory pixel by up to a factor of 103. The switching mechanism is primarily due to a current and thermally dependent redox reaction in the polymer, limited by the double injection of both holes and electrons. The switched device performance does not degrade after many thousand read cycles in ambient at room temperature. Our results suggest that low cost, organic/inorganic WORM memories are feasible for light weight, high density, robust, and fast archival storage applications.

  12. Bismuth as a versatile cation for luminescence in coordination polymers from BiX3/4,4'-bipy: understanding of photophysics by quantum chemical calculations and structural parallels to lanthanides.

    PubMed

    Sorg, Jens R; Wehner, Tobias; Matthes, Philipp R; Sure, Rebecca; Grimme, Stefan; Heine, Johanna; Müller-Buschbaum, Klaus

    2018-05-16

    Coordination polymers (CPs) with bismuth(iii) as a connectivity centre have been prepared from BiX3 (X = Cl-I) and 4,4'-bipyridine (bipy) in order to implement Bi-based luminescence. The products were obtained via different synthetic routes such as solution chemistry, melt syntheses or mechanochemical reactions. Five neutral and anionic 1D-CPs are presented that show a chemical parallel to trivalent lanthanides forming isostructural or closely related 1D-CPs, of which five additional compounds are described. Bi3+ proves to be a versatile cation for luminescence resulting from energy transfer processes between a metal and a ligand in the presented CPs. Quantum chemical calculations were carried out to investigate Bi3+-participation in the luminescence processes. The calculated results allow an assignment of the bright transitions composed of mainly metal-to-ligand-charge transfer (MLCT) character. These results show that Bi3+ can form strongly luminescent coordination compounds with N-donor ligands.

  13. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, J.J.; Elling, D.; Reams, W.

    1988-05-26

    A sprayable electrically conductive polymer concrete coating for vertical and overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt% calcined coke breeze, 40 wt% vinyl ester resin with 3.5 wt% modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag. 4 tabs.

  14. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, J.J.; Elling, D.; Reams, W.

    1990-03-13

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  15. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, Jack J.; Elling, David; Reams, Walter

    1990-01-01

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  16. A Route for Polymer Nanocomposites with Engineered Electrical Conductivity and Percolation Threshold

    PubMed Central

    Kalaitzidou, Kyriaki; Fukushima, Hiroyuki; Drzal, Lawrence T.

    2010-01-01

    Polymer nanocomposites with engineered electrical properties can be made by tuning the fabrication method, processing conditions and filler’s geometric and physical properties. This work focuses on investigating the effect of filler’s geometry (aspect ratio and shape), intrinsic electrical conductivity, alignment and dispersion within the polymer, and polymer crystallinity, on the percolation threshold and electrical conductivity of polypropylene based nanocomposites. The conductive reinforcements used are exfoliated graphite nanoplatelets, carbon black, vapor grown carbon fibers and polyacrylonitrile carbon fibers. The composites are made using melt mixing followed by injection molding. A coating method is also employed to improve the nanofiller’s dispersion within the polymer and compression molding is used to alter the nanofiller’s alignment.

  17. Better Proton-Conducting Polymers for Fuel-Cell Membranes

    NASA Technical Reports Server (NTRS)

    Narayan, Sri; Reddy, Prakash

    2012-01-01

    Polyoxyphenylene triazole sulfonic acid has been proposed as a basis for development of improved proton-conducting polymeric materials for solid-electrolyte membranes in hydrogen/air fuel cells. Heretofore, the proton-conducting membrane materials of choice have been exemplified by a family of perfluorosulfonic acid-based polymers (Nafion7 or equivalent). These materials are suitable for operation in the temperature of 75 to 85 C, but in order to reduce the sizes and/or increase the energy-conversion efficiencies of fuel-cell systems, it would be desirable to increase temperatures to as high as 120 C for transportation applications, and to as high as 180 C for stationary applications. However, at 120 C and at relative humidity values below 50 percent, the loss of water from perfluorosulfonic acid-based polymer membranes results in fuel-cell power densities too low to be of practical value. Therefore, membrane electrolyte materials that have usefully high proton conductivity in the temperature range of 180 C at low relative humidity and that do not rely on water for proton conduction at 180 C would be desirable. The proposed polyoxyphenylene triazole sulfonic acid-based materials have been conjectured to have these desirable properties. These materials would be free of volatile or mobile acid constituents. The generic molecular structure of these materials is intended to exploit the fact, demonstrated in previous research, that materials that contain ionizable acid and base groups covalently attached to thermally stable polymer backbones exhibit proton conduction even in the anhydrous state.

  18. Review paper: progress in the field of conducting polymers for tissue engineering applications.

    PubMed

    Bendrea, Anca-Dana; Cianga, Luminita; Cianga, Ioan

    2011-07-01

    This review focuses on one of the most exciting applications area of conjugated conducting polymers, which is tissue engineering. Strategies used for the biocompatibility improvement of this class of polymers (including biomolecules' entrapment or covalent grafting) and also the integrated novel technologies for smart scaffolds generation such as micropatterning, electrospinning, self-assembling are emphasized. These processing alternatives afford the electroconducting polymers nanostructures, the most appropriate forms of the materials that closely mimic the critical features of the natural extracellular matrix. Due to their capability to electronically control a range of physical and chemical properties, conducting polymers such as polyaniline, polypyrrole, and polythiophene and/or their derivatives and composites provide compatible substrates which promote cell growth, adhesion, and proliferation at the polymer-tissue interface through electrical stimulation. The activities of different types of cells on these materials are also presented in detail. Specific cell responses depend on polymers surface characteristics like roughness, surface free energy, topography, chemistry, charge, and other properties as electrical conductivity or mechanical actuation, which depend on the employed synthesis conditions. The biological functions of cells can be dramatically enhanced by biomaterials with controlled organizations at the nanometer scale and in the case of conducting polymers, by the electrical stimulation. The advantages of using biocompatible nanostructures of conducting polymers (nanofibers, nanotubes, nanoparticles, and nanofilaments) in tissue engineering are also highlighted.

  19. Ferroelectric polarization induces electronic nonlinearity in ion-doped conducting polymers

    PubMed Central

    Fabiano, Simone; Sani, Negar; Kawahara, Jun; Kergoat, Loïg; Nissa, Josefin; Engquist, Isak; Crispin, Xavier; Berggren, Magnus

    2017-01-01

    Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is an organic mixed ion-electron conducting polymer. The PEDOT phase transports holes and is redox-active, whereas the PSS phase transports ions. When PEDOT is redox-switched between its semiconducting and conducting state, the electronic and optical properties of its bulk are controlled. Therefore, it is appealing to use this transition in electrochemical devices and to integrate those into large-scale circuits, such as display or memory matrices. Addressability and memory functionality of individual devices, within these matrices, are typically achieved by nonlinear current-voltage characteristics and bistability—functions that can potentially be offered by the semiconductor-conductor transition of redox polymers. However, low conductivity of the semiconducting state and poor bistability, due to self-discharge, make fast operation and memory retention impossible. We report that a ferroelectric polymer layer, coated along the counter electrode, can control the redox state of PEDOT. The polarization switching characteristics of the ferroelectric polymer, which take place as the coercive field is overcome, introduce desired nonlinearity and bistability in devices that maintain PEDOT in its highly conducting and fast-operating regime. Memory functionality and addressability are demonstrated in ferro-electrochromic display pixels and ferro-electrochemical transistors. PMID:28695197

  20. Influence of dehydrated nanotubed titanic acid on charge transport and luminescent properties of polymer light-emitting diodes with fluorescent dye

    NASA Astrophysics Data System (ADS)

    Qian, Lei; Bera, Debasis; Jin, Zhen-Sheng; Du, Zu-Liang; Xu, Zheng; Teng, Feng; Liu, Wei

    2007-09-01

    In this paper, we discuss the influence of dehydrated nanotubed titanic acid (DNTA) on charge transport and luminescent properties of polymer light-emitting diodes (PLEDs) doped with fluorescent dye. Photoluminescence results confirm the efficient energy transfer from PVK to 4-(dicyanom-ethylene)-2- t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) and tris-(8-hydroxtquinoline) aluminum (Alq 3) in a DNTA-doped device. The device showed lower turn-on voltages and higher charge current by doping with DNTA, which also caused a shift in the exciton's recombination region.

  1. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance.

    PubMed

    Li, Weiyang; Zhang, Qianfan; Zheng, Guangyuan; Seh, Zhi Wei; Yao, Hongbin; Cui, Yi

    2013-01-01

    Lithium sulfur batteries have brought significant advancement to the current state-of-art battery technologies because of their high theoretical specific energy, but their wide-scale implementation has been impeded by a series of challenges, especially the dissolution of intermediate polysulfides species into the electrolyte. Conductive polymers in combination with nanostructured sulfur have attracted great interest as promising matrices for the confinement of lithium polysulfides. However, the roles of different conductive polymers on the electrochemical performances of sulfur electrode remain elusive and poorly understood due to the vastly different structural configurations of conductive polymer-sulfur composites employed in previous studies. In this work, we systematically investigate the influence of different conductive polymers on the sulfur cathode based on conductive polymer-coated hollow sulfur nanospheres with high uniformity. Three of the most well-known conductive polymers, polyaniline (PANI), polypyrrole (PPY), and poly(3,4-ethylenedioxythiophene) (PEDOT), were coated, respectively, onto monodisperse hollow sulfur nanopsheres through a facile, versatile, and scalable polymerization process. The sulfur cathodes made from these well-defined sulfur nanoparticles act as ideal platforms to study and compare how coating thickness, chemical bonding, and the conductivity of the polymers affected the sulfur cathode performances from both experimental observations and theoretical simulations. We found that the capability of these three polymers in improving long-term cycling stability and high-rate performance of the sulfur cathode decreased in the order of PEDOT > PPY > PANI. High specific capacities and excellent cycle life were demonstrated for sulfur cathodes made from these conductive polymer-coated hollow sulfur nanospheres.

  2. Microcontact printing for patterning carbon nanotube/polymer composite films with electrical conductivity.

    PubMed

    Ogihara, Hitoshi; Kibayashi, Hiro; Saji, Tetsuo

    2012-09-26

    Patterned carbon nanotube (CNT)/acrylic resin composite films were prepared using microcontact printing (μCP). To prepare ink for μCP, CNTs were dispersed into propylene glycol monomethyl ether acetate (PGMEA) solution in which acrylic resin and a commercially available dispersant (Disperbyk-2001) dissolved. The resulting ink were spin-coated onto poly(dimethylsiloxane) (PDMS) stamps. By drying solvent components from the ink, CNT/polymer composite films were prepared over PDMS stamps. Contact between the stamps and glass substrates provided CNT/polymer composite patternings on the substrates. The transfer behavior of the CNT/polymer composite films depended on the thermal-treatment temperature during μCP; thermal treatment at temperatures near the glass-transition temperature (T(g)) of the acrylic resin was effective to form uniform patternings on substrates. Moreover, contact area between polymer and substrates also affect the transfer behavior. The CNT/polymer composite films showed high electrical conductivity, despite the nonconductivity of polymer components, because CNTs in the films were interconnected. The electrical conductivity of the composite films increased as CNT content in the film became higher; as a result, the composite patternings showed almost as high electrical conductivity as previously reported CNT/polymer bulk composites.

  3. Conductive polymers for controlled release and treatment of central nervous system injury

    NASA Astrophysics Data System (ADS)

    Saigal, Rajiv

    As one of the most devastating forms of neurotrauma, spinal cord injury remains a challenging clinical problem. The difficulties in treatment could potentially be resolved by better technologies for therapeutic delivery. In order to develop new approaches to treating central nervous system injury, this dissertation focused on using electrically-conductive polymers, controlled drug release, and stem cell transplantation. We first sought to enhance the therapeutic potential of neural stem cells by electrically increasing their production of neurotrophic factors (NTFs), important molecules for neuronal cell survival, differentiation, synaptic development, plasticity, and growth. We fabricated a new cell culture device for growing neural stem cells on a biocompatible, conductive polymer. Electrical stimulation via the polymer led to upregulation of NTF production by neural stem cells. This approach has the potential to enhance stem cell function while avoiding the pitfalls of genetic manipulation, possibly making stem cells more viable as a clinical therapy. Seeing the therapeutic potential of conductive polymers, we extended our studies to an in vivo model of spinal cord injury (SCI). Using a novel fabrication and extraction technique, a conductive polymer was fabricated to fit to the characteristic pathology that follows contusive SCI. Assessed via quantitative analysis of MR images, the conductive polymer significantly reduced compression of the injured spinal cord. Further characterizing astroglial and neuronal response of injured host tissue, we found significant neuronal sparing as a result of this treatment. The in vivo studies also demonstrated improved locomotor recovery mediated by a conductive polymer scaffold over a non-conductive control. We next sought to take advantage of conductive polymers for local, electronically-controlled release of drugs. Seeking to overcome reported limitations in drug delivery via polypyrrole, we first embedded drugs in poly

  4. Conductivity study and fourier transform infrared (FTIR) characterization of methyl cellulose solid polymer electrolyte with sodium iodide conducting ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abiddin, Jamal Farghali Bin Zainal; Ahmad, Azizah Hanom; Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor D.E.

    2015-08-28

    Sodium ion (Na{sup +}) based solid polymer electrolyte (SPE) has been prepared using solution cast technique with distilled water as solvent and Methylcellulose (MC) as a polymer host. Methylcellulose polymer was chosen as the polymer host due to the abundance of lone pair electrons in the carbonyl and C-O-C constituents, which in turn provide multiple hopping sites for the Na{sup +} conducting ions. Variable compositions of sodium iodide (NaI) salt were prepared to investigate the optimum MC-NaI weight ratio. Results from Electrical Impedance Spectroscopy (EIS) technique show that pure methylcellulose has a low conductivity of 3.61 × 10{sup −11} S/cm.Themore » conductivity increases as NaI content increases up to optimum NaIcomposition of 40 wt%, which yields an average conductivity of 2.70 × 10{sup −5} S/cm.« less

  5. Enhanced thermal conductance of polymer composites through embedding aligned carbon nanofibers

    DOE PAGES

    Nicholas, Roberts; Hensley, Dale K.; Wood, David

    2016-07-08

    The focus of this work is to find a more efficient method of enhancing the thermal conductance of polymer thin films. This work compares polymer thin films embedded with randomly oriented carbon nanotubes to those with vertically aligned carbon nanofibers. Thin films embedded with carbon nanofibers demonstrated a similar thermal conductance between 40–60 μm and a higher thermal conductance between 25–40 μm than films embedded with carbon nanotubes with similar volume fractions even though carbon nanotubes have a higher thermal conductivity than carbon nanofibers

  6. Enhanced thermal conductance of polymer composites through embedding aligned carbon nanofibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholas, Roberts; Hensley, Dale K.; Wood, David

    The focus of this work is to find a more efficient method of enhancing the thermal conductance of polymer thin films. This work compares polymer thin films embedded with randomly oriented carbon nanotubes to those with vertically aligned carbon nanofibers. Thin films embedded with carbon nanofibers demonstrated a similar thermal conductance between 40–60 μm and a higher thermal conductance between 25–40 μm than films embedded with carbon nanotubes with similar volume fractions even though carbon nanotubes have a higher thermal conductivity than carbon nanofibers

  7. Redox-active charge carriers of conducting polymers as a tuner of conductivity and its potential window

    PubMed Central

    Park, Han-Saem; Ko, Seo-Jin; Park, Jeong-Seok; Kim, Jin Young; Song, Hyun-Kon

    2013-01-01

    Electric conductivity of conducting polymers has been steadily enhanced towards a level worthy of being called its alias, “synthetic metal”. PEDOT:PSS (poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate)), as a representative conducting polymer, recently reached around 3,000 S cm−1, the value to open the possibility to replace transparent conductive oxides. The leading strategy to drive the conductivity increase is solvent annealing in which aqueous solution of PEDOT:PSS is treated with an assistant solvent such as DMSO (dimethyl sulfoxide). In addition to the conductivity enhancement, we found that the potential range in which PEDOT:PSS is conductive is tuned wider into a negative potential direction by the DMSO-annealing. Also, the increase in a redox-active fraction of charge carriers is proposed to be responsible for the enhancement of conductivity in the solvent annealing process. PMID:23949091

  8. Structure and Conductivity of Semiconducting Polymer Hydrogels.

    PubMed

    Huber, Rachel C; Ferreira, Amy S; Aguirre, Jordan C; Kilbride, Daniel; Toso, Daniel B; Mayoral, Kenny; Zhou, Z Hong; Kopidakis, Nikos; Rubin, Yves; Schwartz, Benjamin J; Mason, Thomas G; Tolbert, Sarah H

    2016-07-07

    Poly(fluorene-alt-thiophene) (PFT) is a conjugated polyelectrolyte that self-assembles into rod-like micelles in water, with the conjugated polymer backbone running along the length of the micelle. At modest concentrations (∼10 mg/mL in aqueous solutions), PFT forms hydrogels, and this work focuses on understanding the structure and intermolecular interactions in those gel networks. The network structure can be directly visualized using cryo electron microscopy. Oscillatory rheology studies further tell us about connectivity within the gel network, and the data are consistent with a picture where polymer chains bridge between micelles to hold the network together. Addition of tetrahydrofuran (THF) to the gels breaks those connections, but once the THF is removed, the gel becomes stronger than it was before, presumably due to the creation of a more interconnected nanoscale architecture. Small polymer oligomers can also passivate the bridging polymer chains, breaking connections between micelles and dramatically weakening the hydrogel network. Fits to solution-phase small-angle X-ray scattering data using a Dammin bead model support the hypothesis of a bridging connection between PFT micelles, even in dilute aqueous solutions. Finally, time-resolved microwave conductivity measurements on dried samples show an increase in carrier mobility after THF annealing of the PFT gel, likely due to increased connectivity within the polymer network.

  9. Electrochemical Deposition of Nanostructured Conducting Polymer Coatings on Neural Prosthetic Devices

    NASA Astrophysics Data System (ADS)

    Yang, Junyan; Martin, David

    2003-03-01

    Micromachined neural prosthetic devices facilitate the functional stimulation of and recording from the central nervous system (CNS). These devices have been fabricated to consist of silicon shanks that have gold or iridium sites along their surface. Our goal is to improve the biocompatibility and long-term performance of the neural prosthetic probes when they are implanted chronically in the brain. In our most recent efforts we have established that electrochemical polymerization can be used to deposit fuzzy coatings of conducting polymers specifically on the electrode sites. For neural prosthetic devices that are intended for long term implantation, we need to develop surfaces that provide intimate contact and promote efficient signal transport at the interface of the microelectrode array and brain tissue. We have developed methods to rapidly and reliably fabricate nanostructured conducting polymer coatings on the electrode probes using templated and surfactant-mediated techniques. Conducting polymer nanomushrooms and nanohairs of polypyrrole (PPy) were electrochemically polymerized onto the functional sites of neural probes by using either nanoporous block copolymers thin films, "track-etched" polycarbonate films or anodic aluminium oxide membranes as templates. Nanofibers of conducting polymers have also been successfully obtained by polymerizations in the presence of surfactants. The influence of current density, monomer concentration, surfactant concentration, and deposition charge on the thickness and morphology of the nanostructured conducting polymer coatings has been studied by optical, scanned probe, scanning electron and transmission electron microscopy. As compared with the normal nodular morphology of polypyrrole, the nanostructured morphologies grown from the neural electrode result in fuzzy coatings with extremely high surface area. The electrical properties of the polymer coatings were studied by Impedance Spectroscopy (IS) and Cyclic Voltammetry

  10. Mussel-Inspired Conductive Polymer Binder for Si-Alloy Anode in Lithium-Ion Batteries

    DOE PAGES

    Zhao, Hui; Wei, Yang; Wang, Cheng; ...

    2018-01-15

    The excessive volume changes during cell cycling of Si-based anode in lithium ion batteries impeded its application. One major reason for the cell failure is particle isolation during volume shrinkage in delithiation process, which makes strong adhesion between polymer binder and anode active material particles a highly desirable property. Here, a biomimetic side-chain conductive polymer incorporating catechol, a key adhesive component of the mussel holdfast protein, was synthesized. Atomic force microscopy-based single-molecule force measurements of mussel-inspired conductive polymer binder contacting a silica surface revealed a similar adhesion toward substrate when compared with an effective Si anode binder, homo-poly(acrylic acid), withmore » the added benefit of being electronically conductive. Electrochemical experiments showed a very stable cycling of Si-alloy anodes realized via this biomimetic conducting polymer binder, leading to a high loading Si anode with a good rate performance. We attribute the ability of the Si-based anode to tolerate the volume changes during cycling to the excellent mechanical integrity afforded by the strong interfacial adhesion of the biomimetic conducting polymer.« less

  11. Hierarchical multifunctional composites by conformally coating aligned carbon nanotube arrays with conducting polymer.

    PubMed

    Vaddiraju, Sreeram; Cebeci, Hülya; Gleason, Karen K; Wardle, Brian L

    2009-11-01

    A novel method for the fabrication of carbon nanotube (CNT)-conducting polymer composites is demonstrated by conformally coating extremely high aspect ratio vertically aligned-CNT (A-CNT) arrays with conducting polymer via oxidative chemical vapor deposition (oCVD). A mechanical densification technique is employed that allows the spacing of the A-CNTs to be controlled, yielding a range of inter-CNT distances between 20 and 70 nm. Using this morphology control, oCVD is shown to conformally coat 8-nm-diameter CNTs having array heights up to 1 mm (an aspect ratio of 10(5)) at all inter-CNT spacings. Three phase CNT-conducting polymer nanocomposites are then fabricated by introducing an insulating epoxy via capillary-driven wetting. CNT morphology is maintained during processing, allowing quantification of direction-dependent (nonisotropic) composite properties. Electrical conductivity occurs primarily along the CNT axial direction, such that the conformal conducting polymer has little effect on the activation energy required for charge conduction. In contrast, the conducting polymer coating enhanced the conductivity in the radial direction by lowering the activation energy required for the creation of mobile charge carriers, in agreement with variable-range-hopping models. The fabrication strategy introduced here can be used to create many multifunctional materials and devices (e.g., direction-tailorable hydrophobic and highly conducting materials), including a new four-phase advanced fiber composite architecture.

  12. Synthesis and applications of electrically conducting polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Ku, Bon-Cheol

    This research focuses on the synthesis and applications of electrically conducting polymer nanocomposites through molecular self-assembly. Two different classes of polymers, polyaniline (PANI) and polyacetylenes have been synthesized by biomimetic catalysis and spontaneous polymerization method. For gas barrier materials, commercially available polymers, poly(allylamine hydrochloride) (PAH) and poly (acrylic acid) (PAA), have also been used and thermally cross-linked. The morphological, optical and electrical properties of amphiphilic polyacetylenes have been studied. Furthermore, barrier properties, permselectivity, pervaporation properties of polyacetylenes/aluminosilicate nanocomposites have been investigated. For processability and electrical properties of carbon nanotube and conducting polymers, substituted ionic polyacetylenes (SIPA) have been covalently incorporated onto single-walled carbon nanotubes (SWNT) using the "grafting-from" technique. In the first study, a nanocomposite film catalyst has been prepared by electrostatic layer-by-layer (ELBL) self-assembly of a polyelectrolyte and a biomimetic catalyst for synthesis of polyaniline. Poly(dimethyl diallylammonium chloride) (PDAC) and hematin have been used as polycation and counter anions, respectively. The absorption spectra by UV-vis-NIR spectroscopy showed that conductive form polyaniline was formed not only as a coating on the surface of the ELBL composites but was also formed in solution. Furthermore, it was found that the reaction rate was affected by pH and concentration of hematin in the multilayers. The feasibility of controlled desorption of hematin molecules from the LBL assembly was explored and demonstrated by changing the pH and hematin concentration. The polymerization rate of aniline in solution was enhanced with decreasing pH of the solutions due to increased desorption of hematin nanoparticles from the multilayers. These ELBL hematin assemblies demonstrated both a way to functionalize

  13. Four one-dimensional lanthanide-phenylacetate polymers exhibiting luminescence and magnetic cooling/spin-glass behavior.

    PubMed

    Li, Zhong-Yi; Xu, Ya-Lan; Zhang, Xiang-Fei; Zhai, Bin; Zhang, Fu-Li; Zhang, Jian-Jun; Zhang, Chi; Li, Su-Zhi; Cao, Guang-Xiu

    2017-12-21

    Four isostructural lanthanide coordination polymers with a phenylacetate (PAA - ) ligand, [Ln(PAA) 3 (H 2 O)] n (Ln = Eu (1); Gd (2); Tb (3); Dy (4)), were synthesized under hydrothermal conditions. Complexes 1-4 display a one-dimensional (1D) wave chain structure bridged by the carboxylate of the PAA - ligand, which was generated via the in situ decarboxylation of phenylmalonic acid. Magnetic studies suggest the presence of ferromagnetic LnLn coupling in the 1D chain of 1-4. Meanwhile, 2 has a significant cryogenic magnetocaloric effect with the maximum -ΔS m of 26.73 at 3 K and 7 T, and 3 and 4 show interesting spin-glass behavior, which is rarely reported for Ln-containing complexes. Additionally, the solid-state photophysical properties of 1 and 3 display strong characteristic Eu 3+ and Tb 3+ photoluminescence emission in the visible region, indicating that Eu- and Tb-based luminescence are sensitized by the effective energy transfer from the ligand to the metal centers.

  14. Electropolymerized Conducting Polymer as Actuator and Sensor Device

    ERIC Educational Resources Information Center

    Cortes, Maria T.; Moreno, Juan C.

    2005-01-01

    A study demonstrates the potential application of conducting polymers to convert electrical energy into mechanical energy at low voltage or current. The performance of the device is explained using electrochemistry and solid-state chemistry.

  15. Tailoring Thermal Conductivity of Single-stranded Carbon-chain Polymers through Atomic Mass Modification

    PubMed Central

    Liao, Quanwen; Zeng, Lingping; Liu, Zhichun; Liu, Wei

    2016-01-01

    Tailoring the thermal conductivity of polymers is central to enlarge their applications in the thermal management of flexible integrated circuits. Progress has been made over the past decade by fabricating materials with various nanostructures, but a clear relationship between various functional groups and thermal properties of polymers remains to be established. Here, we numerically study the thermal conductivity of single-stranded carbon-chain polymers with multiple substituents of hydrogen atoms through atomic mass modification. We find that their thermal conductivity can be tuned by atomic mass modifications as revealed through molecular dynamics simulations. The simulation results suggest that heavy homogeneous substituents do not assist heat transport and trace amounts of heavy substituents can in fact hinder heat transport substantially. Our analysis indicates that carbon chain has the biggest contribution (over 80%) to the thermal conduction in single-stranded carbon-chain polymers. We further demonstrate that atomic mass modifications influence the phonon bands of bonding carbon atoms, and the discrepancies of phonon bands between carbon atoms are responsible for the remarkable drops in thermal conductivity and large thermal resistances in carbon chains. Our study provides fundamental insight into how to tailor the thermal conductivity of polymers through variable substituents. PMID:27713563

  16. Correlating Transport with Nanostructure and Chemical Identity in Radical Polymer Conducting Glasses

    NASA Astrophysics Data System (ADS)

    Boudouris, Bryan; Rostro, Lizbeth; Baradwaj, Aditya; Hay, Martha

    2015-03-01

    Radical polymers are an emerging class of macromolecules that are composed of non-conjugated backbones which bear stable radical groups at the pendant positions. Because of these stable radical sites, these glassy materials are able to conduct charge in the solid state through a series of oxidation-reduction (redox) reactions. Importantly, the redox-active behavior is controlled by both the local chemical environment of the radical polymer groups and by the nanoscale structure of the materials. Here, we demonstrate that proper control of the pendant group chemical functionality allows for the fabrication of transparent and conducting amorphous thin films which have solid-state hole mobility and electrical conductivity values on the same order as those seen in common conjugated, semicrystalline polymer systems [e.g., poly(3-hexylthiophene) (P3HT)]. Furthermore, we show that control of the nanostructure of the materials aids in facilitating transport in these radical polymer thin films. In turn, we implement simultaneous spectroscopic and electrical characterization measurements in order to elucidate the exact mechanism of charge transport in radical polymers. Finally, we demonstrate that, because there is ready control over the molecular properties of these materials, developing bendable and stretchable transparent conducting thin films is relatively straightforward with this unique class of organic electronic materials.

  17. Polyethylene oxide-polytetrahydrofurane-PEDOT conducting interpenetrating polymer networks for high speed actuators

    NASA Astrophysics Data System (ADS)

    Plesse, C.; Khaldi, A.; Wang, Q.; Cattan, E.; Teyssié, D.; Chevrot, C.; Vidal, F.

    2011-12-01

    In recent years, numerous studies on electro-active polymer (EAP) actuators have been reported. One promising technology is the elaboration of electronic conducting polymer-based actuators with interpenetrating polymer network (IPNs) architecture. In this study, the synthesis and characterisation of conducting IPNs for actuator applications is described. The IPNs are synthesised from polyethylene oxide (PEO) and polytetrahydrofurane (PTHF) networks in which the conducting polymer (poly(3,4-ethylenedioxythiophene)) is incorporated. In a first step, PEO/PTHF IPNs were prepared via an 'in situ' process using poly(ethylene glycol) methacrylate and dimethacrylate and hydroxytelechelic PTHF as starting materials. The IPN mechanical properties were examined by DMA and tensile strength tests. N-ethylmethylimidazolium bis(trifluoromethanesulfonyl)imide (EMITFSI) swollen PEO/PTHF IPNs show ionic conductivities up to 10-3 S cm-1 at 30 °C. In a second step, the conducting IPN actuators were prepared by oxidative polymerisation of 3,4-ethylenedioxithiophene (EDOT) using FeCl3 as an oxidising agent within the PEO/PTHF IPN host matrix. The frequency response performance of the bending conducting IPN actuator was then evaluated. The resulting actuator exhibits a mechanical resonance frequency of up to 125 Hz with 0.75% strain for an applied potential of ± 5 V.

  18. Gas Sensors Based on Conducting Polymers

    PubMed Central

    Bai, Hua; Shi, Gaoquan

    2007-01-01

    The gas sensors fabricated by using conducting polymers such as polyaniline (PAni), polypyrrole (PPy) and poly (3,4-ethylenedioxythiophene) (PEDOT) as the active layers have been reviewed. This review discusses the sensing mechanism and configurations of the sensors. The factors that affect the performances of the gas sensors are also addressed. The disadvantages of the sensors and a brief prospect in this research field are discussed at the end of the review.

  19. Conducting polymer actuators: From basic concepts to proprioceptive systems

    NASA Astrophysics Data System (ADS)

    Martinez Gil, Jose Gabriel

    Designers and engineers have been dreaming for decades of motors sensing, by themselves, working and surrounding conditions, as biological muscles do originating proprioception. Here bilayer full polymeric artificial muscles were checked up to very high cathodic potential limits (-2.5 V) in aqueous solution by cyclic voltammetry. The electrochemical driven exchange of ions from the conducting polymer film, and the concomitant Faradaic bending movement of the muscle, takes place in the full studied potential range. The presence of trapped counterion after deep reduction was corroborated by EDX determinations giving quite high electronic conductivity to the device. The large bending movement was used as a tool to quantify the amount of water exchanged per reaction unit (exchanged electron or ion). The potential evolutions of self-supported films of conducting polymers or conducting polymers (polypyrrole, polyaniline) coating different microfibers, during its oxidation/reduction senses working mechanical, thermal, chemical or electrical variables. The evolution of the muscle potential from electrochemical artificial muscles based on electroactive materials such as intrinsically conducting polymers and driven by constant currents senses, while working, any variation of the mechanical (trailed mass, obstacles, pressure, strain or stress), thermal or chemical conditions of work. One physically uniform artificial muscle includes one electrochemical motor and several sensors working simultaneously under the same driving reaction. Actuating (current and charge) and sensing (potential and energy) magnitudes are present, simultaneously, in the only two connecting wires and can be read by the computer at any time. From basic polymeric, mechanical and electrochemical principles a physicochemical equation describing artificial proprioception has been developed. It includes and describes, simultaneously, the evolution of the muscle potential during actuation as a function of the

  20. TiO2 as conductivity enhancer in PVdF-HFP polymer electrolyte system

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Shreya; Manojkumar Ubarhande, Radha; Usha Rani, M.; Shanker Babu, Ravi; Arunkumar, R.

    2017-11-01

    Composite polymer electrolytes were prepared by incorporating inorganic filler TiO2 into PVdF-HFP-PMMA-EC-LiClO4 system. The electrolyte films were prepared by solvent casting technique. The effect of inorganic filler on the conductivity of the blended polymer electrolyte was studied and it is found that there is a considerable increase in ionic conductivity 1.296 × 10-3 S/cm-1 on the addition of TiO2. X-ray diffraction (XRD) study elucidate the increase in amorphous nature of the polymer electrolyte. This tendency of the polymer electrolyte could be the reason behind the increase in ionic conductivity. Fourier transform infrared spectroscopy (FTIR) spectra show the occurrence of complexation and interaction among the components.

  1. Syntheses, structures and luminescent properties of a series of 3D lanthanide coordination polymers with tripodal semirigid ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin Junsheng; Department of Applied Chemistry, Jilin Institute of Chemical Technology, Jilin 132022; Du Dongying

    2011-02-15

    Reactions of the tripodal bridging ligand 5-(4-carboxy-phenoxy)-isophthalic acid (abbreviated as H{sub 3}cpia) with lanthanide salts lead to the formation of a family of different coordination polymers, that is, [Ln(cpia)(H{sub 2}O){sub 2}]{sub n}.nH{sub 2}O (Ln=Ce (1), Pr (2), Nd (3), Sm (4), Eu (5), Gd (6), Dy (7), Er (8), Tm (9) and Y (10)) in the presence of formic acid or diethylamine, which are characterized by elemental analysis, IR spectrum, thermogravimetric analysis (TGA), XRPD spectrum and single-crystal X-ray diffraction. Compounds 1-10 are isostructural and exhibit three-dimensional microporous frameworks. Furthermore, the photoluminescent properties of 4, 5 and 7 have been studiedmore » in detail. -- Graphical abstract: Reactions of the tripodal bridging ligand (H{sub 3}cpia) with lanthanide ions lead to the formation of a series of coordination polymers in the presence of formic acid or diethylamine. Display Omitted Research Highlights: {yields} Ten new lanthanides-based coordination polymers (1-10) have been synthesized. {yields} 1-10 exhibit 3D (4,8)-connected fluorite topology networks with 1D channel parallel to the b-axis. {yields} Compounds 4, 5 and 7 exhibit characteristic luminescence of Sm{sup 3+}, Eu{sup 3+} and Dy{sup 3+} ions, respectively.« less

  2. Jeffamine® based polymers as highly conductive polymer electrolytes and cathode binder materials for battery application

    NASA Astrophysics Data System (ADS)

    Aldalur, Itziar; Zhang, Heng; Piszcz, Michał; Oteo, Uxue; Rodriguez-Martinez, Lide M.; Shanmukaraj, Devaraj; Rojo, Teofilo; Armand, Michel

    2017-04-01

    We report a simple synthesis route towards a new type of comb polymer material based on polyether amines oligomer side chains (i.e., Jeffamine® compounds) and a poly(ethylene-alt-maleic anhydride) backbone. Reaction proceeds by imide ring formation through the NH2 group allowing for attachment of side chains. By taking advantage of the high configurational freedoms and flexibility of propylene oxide/ethylene oxide units (PO/EO) in Jeffamine® compounds, novel polymer matrices were obtained with good elastomeric properties. Fully amorphous solid polymer electrolytes (SPEs) based on lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and Jeffamine®-based polymer matrices show low glass transition temperatures around -40 °C, high ionic conductivities and good electrochemical stabilities. The ionic conductivities of Jeffamine-based SPEs (5.3 × 10-4 S cm-1 at 70 °C and 4.5 × 10-5 S cm-1 at room temperature) are higher than those of the conventional SPEs comprising of LiTFSI and linear poly(ethylene oxide) (PEO), due to the amorphous nature and the high concentration of mobile end-groups of the Jeffamine-based polymer matrices rather than the semi-crystalline PEO The feasibility of Jeffamine-based compounds in lithium metal batteries is further demonstrated by the implementation of Jeffamine®-based polymer as a binder for cathode materials, and the stable cycling of Li|SPE|LiFePO4 and Li|SPE|S cells using Jeffamine-based SPEs.

  3. Electrically conductive, optically transparent polymer/carbon nanotube composites

    NASA Technical Reports Server (NTRS)

    Smith, Jr., Joseph G. (Inventor); Connell, John W. (Inventor); Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Watson, Kent A. (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  4. Extending the lanthanide-terephthalate system: Isolation of an unprecedented Tb(III)-based coordination polymer with high potential porosity and luminescence properties

    NASA Astrophysics Data System (ADS)

    Le Natur, François; Calvez, Guillaume; Freslon, Stéphane; Daiguebonne, Carole; Bernot, Kevin; Guillou, Olivier

    2015-04-01

    A novel coordination polymer with chemical formula {[Tb(bdc)1.5(H2O)]ṡ(DMF)(H2O)}∞ (1) has been synthesized by reaction between 1,4-benzene-dicarboxylic acid (H2bdc) and di-cationic hexanuclear entity [Tb6O(OH)8(NO3)6(H2O)12]2+ in an ethylene glycol (EG)/N,N-dimethylformamide (DMF) mixture. This compound has been obtained as single crystals by slow evaporation in air at room temperature. If the hexanuclear entity is destroyed during the reaction, the coordination polymer that is obtained is original and presents promising potential micro-porosity and luminescent properties. It crystallizes in the monoclinic system, space group C12/c1 (No. 15) with the cell parameters a = 23.7540(1) Å, b = 10.5390(4) Å, c = 19.7580(3) Å, β = 125.8100(1)° and Z = 8.

  5. Recent Progress in the Development of Conducting Polymer-Based Nanocomposites for Electrochemical Biosensors Applications: A Mini-Review.

    PubMed

    Naseri, Maryam; Fotouhi, Lida; Ehsani, Ali

    2018-06-01

    Among various immobilizing materials, conductive polymer-based nanocomposites have been widely applied to fabricate the biosensors, because of their outstanding properties such as excellent electrocatalytic activity, high conductivity, and strong adsorptive ability compared to conventional conductive polymers. Electrochemical biosensors have played a significant role in delivering the diagnostic information and therapy monitoring in a rapid, simple, and low cost portable device. This paper reviews the recent developments in conductive polymer-based nanocomposites and their applications in electrochemical biosensors. The article starts with a general and concise comparison between the properties of conducting polymers and conducting polymer nanocomposites. Next, the current applications of conductive polymer-based nanocomposites of some important conducting polymers such as PANI, PPy, and PEDOT in enzymatic and nonenzymatic electrochemical biosensors are overviewed. This review article covers an 8-year period beginning in 2010. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Conductivity studies of PEG based polymer electrolyte for applications as electrolyte in ion batteries

    NASA Astrophysics Data System (ADS)

    Patil, Ravikumar V.; Praveen, D.; Damle, R.

    2018-05-01

    Development of lithium ion batteries employing solid polymer electrolytes as electrolyte material has led to efficient energy storage and usage in many portable devices. However, due to a few drawbacks like lower ionic conductivity of solid polymer electrolytes (SPEs), studies on SPEs for improvement in conductivity still have a good scope. In the present paper, we report the conductivity studies of a new SPE with low molecular weight poly ethylene glycol (PEG) as host polymer in which a salt with larger anion Lithium trifluro methane sulphonate (LTMS). XRD studies have revealed that the salt completely dissociates in the polymer giving a good stable electrolyte at lower salt concentration. Conductivity of the SPEs has been studied as a function of temperature and we reiterate that the conductivity is a thermally activated process and follows Arrhenius type behavior.

  7. Hybrid materials based on novel 2D lanthanide coordination polymers covalently bonded to amine-modified SBA-15 and MCM-41: assembly, characterization, structural features, thermal and luminescence properties.

    PubMed

    Wang, Jun; Dou, Wei; Kirillov, Alexander M; Liu, Weisheng; Xu, Cailing; Fang, Ran; Yang, Lizi

    2016-11-22

    Three novel 2D coordination polymers [Tb 2 (μ 4 -L) 2 (μ-HL)(μ-HCOO)(DEF)] n (Tb-L), [Eu(μ 4 -L)(L)(H 2 O) 2 ] n (Eu-L), and [Nd(μ 4 -L)(L)(H 2 O) 2 ] n (Nd-L) were assembled from the corresponding lanthanide(iii) nitrates and 5 methoxy-(4-benzaldehyde)-1,3-benzenedicarboxylic acid (H 2 L) as a main multifunctional building block bearing carboxylate and aldehyde functional groups, using H 2 O/DEF {DEF = N,N-diethylformamide} as a reaction medium. The obtained coordination polymers were isolated as stable microcrystalline solids and fully characterized by elemental analysis, FT-IR spectroscopy, TGA, BET, PXRD, and single-crystal X-ray diffraction methods. Their structures feature intricate 2D metal-organic networks, which were topologically classified as underlying layers with the 4,6L26 (for Tb-L) or sql (for Eu-L and Nd-L) topologies. Besides, a novel series of mesoporous hybrid materials wherein the Tb-L, Eu-L, or Nd-L coordination polymers are covalently grafted into the amine-functionalized SBA-15-NH 2 or MCM-41-NH 2 matrices (via the formation of Schiff-base groups) was also synthesized and fully characterized. These hybrid materials show high thermal and photoluminescence stability, as well as remarkable chemical resistance to boiling water, and acidic or alkaline medium. Luminescent properties of the parent coordination polymers and derived hybrid materials are investigated in detail, showing that the latter combine the luminescent characteristics (intense green or red emissions and excellent stability) of lanthanide coordination polymers and structural features of ordered mesoporous silica molecular sieves. Moreover, light emitting devices were assembled, by coating the hybrid materials onto the surface of UV-LED bulbs, and showed excellent light emitting properties.

  8. Effect of blending and nanoparticles on the ionic conductivity of solid polymer electrolyte systems

    NASA Astrophysics Data System (ADS)

    Manjunatha, H.; Damle, R.; Kumaraswamy, G. N.

    2018-05-01

    In the present work, a polymer electrolyte blend containing polymers Poly ethylene oxide (PEO) and Poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) was prepared. The polymer blend was complexed with potassium trifluoromethanesulfonate (KCF3SO3), and titanium oxide nanoparticles (TiO2) (10nm size) were dispersed in to the complex at different weight percentages. The conductivity due to ions in the blend is determined by Ac impedance measurements in the frequency range of 10Hz-1MHz. The nano composite polymer blend containing 5wt% of TiO2 shows a conductivity of 7.95×10-5Scm-1, which is almost 1.5 orders more than polymer electrolyte with PEO as a polymer. XRD studies show a decrease in the coherence length of XRD peaks on addition of nanoparticles, which is due to increase the amorphous phase in the systems. Temperature dependence conductivity studies of the systems shows that, activation energy decreases with increase in the percentage of nanoparticles in the blend.

  9. Synthesis of polymer nanostructures with conductance switching properties

    DOEpatents

    Su, Kai; Nuraje, Nurxat; Zhang, Lingzhi; Matsui, Hiroshi; Yang, Nan Loh

    2015-03-03

    The present invention is directed to crystalline organic polymer nanoparticles comprising a conductive organic polymer; wherein the crystalline organic polymer nanoparticles have a size of from 10 nm to 200 nm and exhibits two current-voltage states: (1) a high resistance current-voltage state, and (2) a low resistance current-voltage state, wherein when a first positive threshold voltage (V.sub.th1) or higher positive voltage, or a second negative threshold voltage (V.sub.th2) or higher negative voltage is applied to the nanoparticle, the nanoparticle exhibits the low-resistance current-voltage state, and when a voltage less positive than the first positive threshold voltage or a voltage less negative than the second negative threshold voltage is applied to the nanoparticle, the nanoparticle exhibits the high-resistance current-voltage state. The present invention is also directed methods of manufacturing the nanoparticles using novel interfacial oxidative polymerization techniques.

  10. New secondary batteries utilizing electronically conductive polymer cathodes

    NASA Technical Reports Server (NTRS)

    Martin, Charles R.; White, Ralph E.

    1989-01-01

    The objectives of this project are to characterize the transport properties in electronically conductive polymers and to assess the utility of these films as cathodes in lithium/polymer secondary batteries. During this research period, progress has been made in a literature survey of the historical background, methods of preparation, the physical and chemical properties, and potential technological applications of polythiophene. Progress has also been made in the characterization of polypyrrole flat films and fibrillar films. Cyclic voltammetry and potential step chronocoulometry were used to gain information on peak currents and potentials switching reaction rates, charge capacity, and charge retention. Battery charge/discharge studies were also performed.

  11. A review study of (bio)sensor systems based on conducting polymers.

    PubMed

    Ates, Murat

    2013-05-01

    This review article concentrates on the electrochemical biosensor systems with conducting polymers. The area of electro-active polymers confined to different electrode surfaces has attracted great attention. Polymer modified carbon substrate electrodes can be designed through polymer screening to provide tremendous improvements in sensitivity, selectivity, stability and reproducibility of the electrode response to detect a variety of analytes. The electro-active films have been used to entrap different enzymes and/or proteins at the electrode surface, but without obvious loss of their bioactivity for the development of biosensors. Electropolymerization is a well-known technique used to immobilize biomaterials to the modified electrode surface. Polymers might be covalently bonding to enzymes or proteins; therefore, thickness, permeation and charge transport characteristics of the polymeric films can be easily and precisely controlled by modulating the electrochemical parameters for various electrochemical techniques, such as chronoamperometry, chronopotentiometry, cyclic voltammetry, and differential pulse voltammetry. This review article is divided into three main parts as given in the table of contents related to the immobilization process of some important conducting polymers, polypyrrole, polythiophene, poly(3,4-ethylenedioxythiophene), polycarbazole, polyaniline, polyphenol, poly(o-phenylenediamine), polyacetylene, polyfuran and their derivatives. A total of 216 references are cited in this review article. The literature reviewed covers a 7 year period beginning from 2005. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Optimization of mechanical performance of oxidative nano-particle electrode nitrile butadiene rubber conducting polymer actuator.

    PubMed

    Kim, Baek-Chul; Park, S J; Cho, M S; Lee, Y; Nam, J D; Choi, H R; Koo, J C

    2009-12-01

    Present work delivers a systematical evaluation of actuation efficiency of a nano-particle electrode conducting polymer actuator fabricated based on Nitrile Butadiene Rubber (NBR). Attempts are made for maximizing mechanical functionality of the nano-particle electrode conducting polymer actuator that can be driven in the air. As the conducting polymer polypyrrole of the actuator is to be fabricated through a chemical oxidation polymerization process that may impose certain limitations on both electrical and mechanical functionality of the actuator, a coordinated study for optimization process of the actuator is necessary for maximizing its performance. In this article actuation behaviors of the nano-particle electrode polypyrrole conducting polymer is studied and an optimization process for the mechanical performance maximization is performed.

  13. Counter-ion and dopant effects on charge carriers in intrinsically conductive polymer

    NASA Astrophysics Data System (ADS)

    Ogle, Jonathan; Yehulie, Mandefro; Boehme, Christoph; Whittaker-Brooks, Luisa

    Recently, a significant amount of attention has been devoted to the optimization and applications of organic electronics. In particular, intrinsically conductive polymers have seen a strong continued interest for their use in thermoelectric and photovoltaic devices. With conductivities ranging from 10-8 to 103 S cm-1, the conductive polymer poly(3,4-ethylenedioxythiophene) -PEDOT is one of the most studied solution-processable polymer material due to its unique optical and electronic properties. While charge carriers at lower conductivities have been identified as polarons, an understanding of the electronic structure of PEDOT as its conductivity increases is not well understood. We have investigated the effect that counter-ion exchange and doping has on the polaron concentration of PEDOT via electron paramagnetic resonance, ultraviolet photoelectron spectroscopy, and X-ray absorption fine structure spectroscopy studies. Such studies have allowed us to correlate charge carriers concentrations and the real and virtual electronic states in PEDOT as a function of various dopants. As discussed in our talk, we believe our findings could be extended to the understanding of other polymeric materials.

  14. Defining space around conducting polymers: reversible protonic doping of a canopied polypyrrole.

    PubMed

    Lee, Dongwhan; Swager, Timothy M

    2003-06-11

    A canopy-shaped pyrrole derivative 2 was prepared, in which a sterically demanding pendant group is juxtaposed to the pyrrole fragment to minimize interstrand pi-pi stacking interactions in the resulting polymer. Anodic polymerization of 2 afforded highly conductive poly(2), the electronic structure of which was probed by various spectroelectrochemical techniques. A limited charge delocalization within poly(2) translates into a well-defined conductivity profile, properties important for resistivity-based sensing. Notably, the bulk conductivity was precisely modulated by a rapid and reversible deprotonation and reprotonation of the polymer backbone.

  15. Toward lanthanide containing coordination polymers and nanomaterials

    NASA Astrophysics Data System (ADS)

    Greig, Natalie E.

    The focus of this thesis is to develop lanthanide (Ln) luminescent materials through the exploration of coordination polymers and nanomaterials. Herein, dimethyl-3,4-furanedicarboxylate acid undergoes hydrolysis under hydrothermal conditions to form coordination polymers with lanthanide ions. The resulting coordination polymers exhibited luminescent properties, with quantum yields and lifetimes for the Eu- and Tb-CP of 1.14±0.31% and 0.387±0.0001 ms, and 3.33±0.82% and 0.769±0.006 ms, respectively. While the incorporation of lanthanides was not achieved in this work, progress toward the production of pure phase InP in the nanoregime has been made, using a low-cost, hydrothermal method. Though SEM and PXRD conflict, it is believed that pure InP particles with a size range of 58-81 nm were successfully synthesized.

  16. Syntheses, structures and luminescent properties of lanthanide coordination polymers assembled from imidazophenanthroline derivative and oxalate ligands

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Sun, Xiao-Xia; Hu, Huai-Ming; An, Ran; Yang, Meng-Lin; Xue, Ganglin

    2017-01-01

    Nine new lanthanide coordination polymers, namely, [Ln(Hsfpip)(ox)0.5(H2O)]n·2n(H2O) ((Ln=Eu (1), Tb (2), Dy (3), Ho (4), Er (5), Yb (6), Y(7)), [Ln(H2sfpip)(ox)(H2O)4]n·2n(H2O) (Ln=Nd (8) Sm (9)), [H2ox=oxalic acid, H3sfpip=2-(2,4-disulfophenyl)imidazo(4,5-f)(1,10)-phenanthroline] have been synthesized under hydrothermal conditions and characterized by IR spectra, elemental analysis, powder X-ray diffraction and single crystal X-ray diffraction. When sodium oxalate is added, the reactions of lanthanide ions with H3sfpip resulted in two types of structures. Compounds 1-7 are obtained at pH 5.0 and exhibit 3D tfz-d networks with ox2- anions as linkers to bridge the adjacent layers. Compounds 8-9 are obtained at pH 2.0, and display a 1D chain which is further extended to a 3D supramolecular framework through intermolecular hydrogen bonds and π-π interactions. The structural variation from compounds 1-7 to 8-9 can attribute to the pH effect on construction of lanthanide coordination polymers. Moreover, the thermal stabilities and luminescence properties of 1-9 were also investigated.

  17. Characterization and dynamic charge dependent modeling of conducting polymer trilayer bending

    NASA Astrophysics Data System (ADS)

    Farajollahi, Meisam; Sassani, Farrokh; Naserifar, Naser; Fannir, Adelyne; Plesse, Cédric; Nguyen, Giao T. M.; Vidal, Frédéric; Madden, John D. W.

    2016-11-01

    Trilayer bending actuators are charge driven devices that have the ability to function in air and provide large mechanical amplification. The electronic and mechanical properties of these actuators are known to be functions of their charge state making prediction of their responses more difficult when they operate over their full range of deformation. In this work, a combination of state space representation and a two-dimensional RC transmission line model are used to implement a nonlinear time variant model for conducting polymer-based trilayer actuators. Electrical conductivity and Young’s modulus of electromechanically active PEDOT conducting polymer containing films as a function of applied voltage were measured and incorporated into the model. A 16% drop in Young’s modulus and 24 times increase in conductivity are observed by oxidizing the PEDOT. A closed form formulation for radius of curvature of trilayer actuators considering asymmetric and location dependent Young’s modulus and conductivity in the conducting polymer layers is derived and implemented in the model. The nonlinear model shows the capability to predict the radius of curvature as a function of time and position with reasonable consistency (within 4%). The formulation is useful for general trilayer configurations to calculate the radius of curvature as a function of time. The proposed electrochemical modeling approach may also be useful for modeling energy storage devices.

  18. Conductivity-Relaxation Relations in Nanocomposite Polymer Electrolytes Containing Ionic Liquid.

    PubMed

    Shojaatalhosseini, Mansoureh; Elamin, Khalid; Swenson, Jan

    2017-10-19

    In this study, we have used nanocomposite polymer electrolytes, consisting of poly(ethylene oxide) (PEO), δ-Al 2 O 3 nanoparticles, and lithium bis(trifluoromethanesolfonyl)imide (LiTFSI) salt (with 4 wt % δ-Al 2 O 3 and PEO:Li ratios of 16:1 and 8:1), and added different amounts of the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesolfonyl)imide (BMITFSI). The aim was to elucidate whether the ionic liquid is able to dissociate the Li-ions from the ether oxygens and thereby decouple the ionic conductivity from the segmental polymer dynamics. The results from DSC and dielectric spectroscopy show that the ionic liquid speeds up both the segmental polymer dynamics and the motion of the Li + ions. However, a close comparison between the structural (α) relaxation process, given by the segmental polymer dynamics, and the ionic conductivity shows that the motion of the Li + ions decouples from the segmental polymer dynamics at higher concentrations of the ionic liquid (≥20 wt %) and instead becomes more related to the viscosity of the ionic liquid. This decoupling increases with decreasing temperature. In addition to the structural α-relaxation, two more local relaxation processes, denoted β and γ, are observed. The β-relaxation becomes slightly faster at the highest concentration of the ionic liquid (at least for the lower salt concentration), whereas the γ-relaxation is unaffected by the ionic liquid, over the whole concentration range 0-40 wt %.

  19. Luminescent solar concentrators and all-inorganic nanoparticle solar cells for solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Sholin, Veronica

    efficiency of LSCs based on small molecule laser dyes and on quantum dots. Factors affecting the optical efficiency of the system such as the luminescing properties of the fluorophors were examined. The experimental results were compared to Monte-Carlo simulations. Our results suggest that commercially available quantum dots cannot serve as viable LSC dyes because of large absorption/emission band overlap and relatively low quantum yield. Materials such as Red F demonstrate that semi-conducting polymers with high quantum yield and small absorption/emission band overlap are good candidates for LSCs. Recently, a solar cell system based purely on CdSe and Cite nanoparticles as the absorbing materials was proposed ans it was suggested that its operational mechanism was that of polymer donor/acceptor systems. Here we present solar cells consisting of a sintered active bilayer of CdSe and PbSe nanoparticles in the structure ITO/CdSe/interlayer/PbSe/Al, where an interlayer of LiF or Al2O3 was found necessary to prevent low shunt resistance from suppressing the photovoltaic behavior. We fabricated unoptimized solar cells with a short-circuit current of 6 mA/cm2, an open-circuit voltage of 0.18 V, and a fill factor of 41%. External quantum efficiency spectra revealed that photons from the infrared portion of the spectrum were not collected, suggesting that the low bandgap PbSe film did not contribute to the photocurrent of the structure despite exhibiting photoconductivity. Other measurements, however, showed that the PbSe film was indeed necessary to produce a photovoltage and transport electrons. Through sintering, the nanoparticle films acquired bandgaps similar to those of the corresponding bulk materials and became more conductive. Because the PbSe films were found to be considerably more conductive than the CdSe ones, we suggest that the PbSe layer is effectively behaving like a low conductivity electrical contact. Therefore, in contrast to the photovoltaics presented in the

  20. The use of diamond-filled polymers as thermally conductive composites

    NASA Astrophysics Data System (ADS)

    Morlidge, Christopher Patrick

    A need for a material that combines excellent thermal conductivity with high electrical resistivity has been identified in the electrical industry. As many materials currently exist that conduct both materials the investigation was carried out into a ceramic filled polymer. Diamond was chosen as the filling material due to its exceptionally high thermal conductivity. Three polymer materials were investigated as matrices for this material. The materials used were silicone rubber, polyester and a paint based on poly vinyl chloride. A study of method of production and mixing was first carried out to find the best route to produce the composite by ensuring even dispersion and ease of application. Various examination techniques were employed to find the success of the different processes. These methods were calibrated and optimised. The best methods of mixing and choice of filling material was established. Thermal conductivity tests carried out on the composite materials showed that there was a marked increase in the thermal conductivity of the materials. The strength and thermal expansion of the silicone rubber based material were also increased.

  1. A practical multilayered conducting polymer actuator with scalable work output

    NASA Astrophysics Data System (ADS)

    Ikushima, Kimiya; John, Stephen; Yokoyama, Kazuo; Nagamitsu, Sachio

    2009-09-01

    Household assistance robots are expected to become more prominent in the future and will require inherently safe design. Conducting polymer-based artificial muscle actuators are one potential option for achieving this safety, as they are flexible, lightweight and can be driven using low input voltages, unlike electromagnetic motors; however, practical implementation also requires a scalable structure and stability in air. In this paper we propose and practically implement a multilayer conducting polymer actuator which could achieve these targets using polypyrrole film and ionic liquid-soaked separators. The practical work density of a nine-layer multilayer actuator was 1.4 kJ m-3 at 0.5 Hz, when the volumes of the electrolyte and counter electrodes were included, which approaches the performance of mammalian muscle. To achieve air stability, we analyzed the effect of air-stable ionic liquid gels on actuator displacement using finite element simulation and it was found that the majority of strain could be retained when the elastic modulus of the gel was kept below 3 kPa. As a result of this work, we have shown that multilayered conducting polymer actuators are a feasible idea for household robotics, as they provide a substantial practical work density in a compact structure and can be easily scaled as required.

  2. Applications of oligomers for nanostructured conducting polymers.

    PubMed

    Wang, Yue; Tran, Henry D; Kaner, Richard B

    2011-01-03

    This Feature Article provides an overview of the distinctive nanostructures that aniline oligomers form and the applications of these oligomers for shaping the nanoscale morphologies and chirality of conducting polymers. We focus on the synthetic methods for achieving such goals and highlight the underlying mechanisms. The clear advantages of each method and their possible drawbacks are discussed. Assembly and applications of these novel organic (semi)conducting nanomaterials are also outlined. We conclude this article with our perspective on the main challenges, new opportunities, and future directions for this nascent yet vibrant field of research. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity

    PubMed Central

    Pan, Lijia; Yu, Guihua; Zhai, Dongyuan; Lee, Hye Ryoung; Zhao, Wenting; Liu, Nian; Wang, Huiliang; Tee, Benjamin C.-K.; Shi, Yi; Cui, Yi; Bao, Zhenan

    2012-01-01

    Conducting polymer hydrogels represent a unique class of materials that synergizes the advantageous features of hydrogels and organic conductors and have been used in many applications such as bioelectronics and energy storage devices. They are often synthesized by polymerizing conductive polymer monomer within a nonconducting hydrogel matrix, resulting in deterioration of their electrical properties. Here, we report a scalable and versatile synthesis of multifunctional polyaniline (PAni) hydrogel with excellent electronic conductivity and electrochemical properties. With high surface area and three-dimensional porous nanostructures, the PAni hydrogels demonstrated potential as high-performance supercapacitor electrodes with high specific capacitance (∼480 F·g-1), unprecedented rate capability, and cycling stability (∼83% capacitance retention after 10,000 cycles). The PAni hydrogels can also function as the active component of glucose oxidase sensors with fast response time (∼0.3 s) and superior sensitivity (∼16.7 μA·mM-1). The scalable synthesis and excellent electrode performance of the PAni hydrogel make it an attractive candidate for bioelectronics and future-generation energy storage electrodes. PMID:22645374

  4. Conductive polymer and Si nanoparticles composite secondary particles and structured current collectors for high loading lithium ion negative electrode application

    DOEpatents

    Liu, Gao

    2017-07-11

    Embodiments of the present invention disclose a composition of matter comprising a silicon (Si) nanoparticle coated with a conductive polymer. Another embodiment discloses a method for preparing a composition of matter comprising a plurality of silicon (Si) nanoparticles coated with a conductive polymer comprising providing Si nanoparticles, providing a conductive polymer, preparing a Si nanoparticle, conductive polymer, and solvent slurry, spraying the slurry into a liquid medium that is a non-solvent of the conductive polymer, and precipitating the silicon (Si) nanoparticles coated with the conductive polymer. Another embodiment discloses an anode comprising a current collector, and a composition of matter comprising a silicon (Si) nanoparticle coated with a conductive polymer.

  5. Printed organic conductive polymers thermocouples in textile and smart clothing applications.

    PubMed

    Seeberg, Trine M; Røyset, Arne; Jahren, Susannah; Strisland, Frode

    2011-01-01

    This work reports on an experimental investigation of the potential of using selected commercially available organic conductive polymers as active ingredients in thermocouples printed on textiles. Poly(3, 4-ethylenedioxythiophene): poly(4 styrenesulfonate) (PEDOT:PSS) and polyaniline (PANI) were screen printed onto woven cotton textile. The influence of multiple thermocycles between 235 K (-38 °C) and 350 K (+77 °C) on resistivity and thermoelectric properties was examined. The Seebeck coefficients of PEDOT:PSS and PANI were found to be about +18 μV/K and +15 uV/K, respectively, when "metal-polymer" thermocouples were realized by combining the polymer with copper. When "polymer-polymer" thermocouples were formed by combining PEDOT:PSS and PANI, a thermoelectric voltage of about +10 μV/K was observed. A challenge recognized in the experiments is that the generated voltage exhibited drift and fluctuations.

  6. Kinetic factors determining conducting filament formation in solid polymer electrolyte based planar devices

    NASA Astrophysics Data System (ADS)

    Krishnan, Karthik; Aono, Masakazu; Tsuruoka, Tohru

    2016-07-01

    Resistive switching characteristics and conducting filament formation dynamics in solid polymer electrolyte (SPE) based planar-type atomic switches, with opposing active Ag and inert Pt electrodes, have been investigated by optimizing the device configuration and experimental parameters such as the gap distance between the electrodes, the salt inclusion in the polymer matrix, and the compliance current applied in current-voltage measurements. The high ionic conductivities of SPE enabled us to make scanning electron microscopy observations of the filament formation processes in the sub-micrometer to micrometer ranges. It was found that switching behaviour and filament growth morphology depend strongly on several kinetic factors, such as the redox reaction rate at the electrode-polymer interfaces, ion mobility in the polymer matrix, electric field strength, and the reduction sites for precipitation. Different filament formations, resulting from unidirectional and dendritic growth behaviours, can be controlled by tuning specified parameters, which in turn improves the stability and performance of SPE-based devices.Resistive switching characteristics and conducting filament formation dynamics in solid polymer electrolyte (SPE) based planar-type atomic switches, with opposing active Ag and inert Pt electrodes, have been investigated by optimizing the device configuration and experimental parameters such as the gap distance between the electrodes, the salt inclusion in the polymer matrix, and the compliance current applied in current-voltage measurements. The high ionic conductivities of SPE enabled us to make scanning electron microscopy observations of the filament formation processes in the sub-micrometer to micrometer ranges. It was found that switching behaviour and filament growth morphology depend strongly on several kinetic factors, such as the redox reaction rate at the electrode-polymer interfaces, ion mobility in the polymer matrix, electric field strength

  7. Dynamics of polydots: Soft luminescent polymeric nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maskey, Sabina; Osti, Naresh C.; Grest, Gary S.

    The conformation and dynamics of luminescent polymers collapsed into nanoparticles or polydots were studied using fully atomistic molecular dynamics (MD) simulations, providing a first insight into their internal dynamics. Controlling the conformation and dynamics of confined polymers is essential for realization of the full potential of polydots in nanomedicine and biotechnology. Specifically, the shape and internal dynamics of polydots that consist of highly rigid dialkyl p-phenylene ethynylene (PPE) are probed as a function of temperature. At room temperature, the polydots are spherical without any correlations between the aromatic rings on the PPE backbone. With increasing temperature, they expand and becomemore » slightly aspherical; however, the polymers remain confined. The coherent dynamic structure factor reveals that the internal motion of the polymer backbone is arrested, and the side chains dominate the internal dynamics of the polydots. Lastly, these new soft nanoparticles retain their overall shape and dynamics over an extended temperature range, and their conformation is tunable via their degree of expansion.« less

  8. Dynamics of polydots: Soft luminescent polymeric nanoparticles

    DOE PAGES

    Maskey, Sabina; Osti, Naresh C.; Grest, Gary S.; ...

    2016-03-04

    The conformation and dynamics of luminescent polymers collapsed into nanoparticles or polydots were studied using fully atomistic molecular dynamics (MD) simulations, providing a first insight into their internal dynamics. Controlling the conformation and dynamics of confined polymers is essential for realization of the full potential of polydots in nanomedicine and biotechnology. Specifically, the shape and internal dynamics of polydots that consist of highly rigid dialkyl p-phenylene ethynylene (PPE) are probed as a function of temperature. At room temperature, the polydots are spherical without any correlations between the aromatic rings on the PPE backbone. With increasing temperature, they expand and becomemore » slightly aspherical; however, the polymers remain confined. The coherent dynamic structure factor reveals that the internal motion of the polymer backbone is arrested, and the side chains dominate the internal dynamics of the polydots. Lastly, these new soft nanoparticles retain their overall shape and dynamics over an extended temperature range, and their conformation is tunable via their degree of expansion.« less

  9. Preparation of metallic cation conducting polymers based on sterically hindered phenols containing polymeric systems

    DOEpatents

    Skotheim, Terje A.; Okamoto, Yoshiyuki; Lee, Hung S.

    1989-01-01

    The present invention relates to ion-conducting solvent-free polymeric systems characterized as being cationic single ion conductors. The solvent-free polymer electrolytes comprise a flexible polymer backbone to which is attached a metal salt, such as a lithium, sodium or potassium salt, of a sterically hindered phenol. The solid polymer electrolyte may be prepared either by (1) attaching the hindered phenol directly to a flexible polymeric backbone, followed by neutralization of the phenolic OH's or (2) reacting the hindered phenol with a polymer precursor which is then polymerized to form a flexible polymer having phenolic OH's which are subsequently neutralized. Preferably the hindered phenol-modified polymeric backbone contains a polyether segment. The ionic conductivity of these solvent-free polymer electrolytes has been measured to be in the range of 10.sup.-4 to 10.sup.-7 S cm.sup.-1 at room temperature.

  10. Preparation of metallic cation conducting polymers based on sterically hindered phenols containing polymeric systems

    DOEpatents

    Skotheim, T.A.; Okamoto, Yoshiyuki; Lee, H.S.

    1989-11-21

    The present invention relates to ion-conducting solvent-free polymeric systems characterized as being cationic single ion conductors. The solvent-free polymer electrolytes comprise a flexible polymer backbone to which is attached a metal salt, such as a lithium, sodium or potassium salt, of a sterically hindered phenol. The solid polymer electrolyte may be prepared either by (1) attaching the hindered phenol directly to a flexible polymeric backbone, followed by neutralization of the phenolic OH's or (2) reacting the hindered phenol with a polymer precursor which is then polymerized to form a flexible polymer having phenolic OH's which are subsequently neutralized. Preferably the hindered phenol-modified polymeric backbone contains a polyether segment. The ionic conductivity of these solvent-free polymer electrolytes has been measured to be in the range of 10[sup [minus]4] to 10[sup [minus]7] S cm[sup [minus]1] at room temperature.

  11. Tetraarylborate polymer networks as single-ion conducting solid electrolytes

    DOE PAGES

    Van Humbeck, Jeffrey F.; Aubrey, Michael L.; Alsbaiee, Alaaeddin; ...

    2015-06-23

    A new family of solid polymer electrolytes based upon anionic tetrakis(phenyl)borate tetrahedral nodes and linear bis-alkyne linkers is reported. Sonogashira polymerizations using tetrakis(4-iodophenyl)borate, tetrakis(4-iodo-2,3,5,6-tetrafluorophenyl)borate and tetrakis(4-bromo-2,3,5,6-tetrafluorophenyl)borate delivered highly cross-linked polymer networks with both 1,4-diethynylbeznene and a tri(ethylene glycol) substituted derivative. Promising initial conductivity metrics have been observed, including high room temperature conductivities (up to 2.7 × 10 -4 S cm -1), moderate activation energies (0.25–0.28 eV), and high lithium ion transport numbers (up to t Li+ = 0.93). Initial investigations into the effects of important materials parameters such as bulk morphology, porosity, fluorination, and other chemical modification, provide starting designmore » parameters for further development of this new class of solid electrolytes.« less

  12. Nanometrization of Lanthanide-Based Coordination Polymers.

    PubMed

    Neaime, Chrystelle; Daiguebonne, Carole; Calvez, Guillaume; Freslon, Stéphane; Bernot, Kevin; Grasset, Fabien; Cordier, Stéphane; Guillou, Olivier

    2015-11-23

    Heteronuclear lanthanide-based coordination polymers are microcrystalline powders, the luminescence properties of which can be precisely tuned by judicious choice of the rare-earth ions. In this study, we demonstrate that such materials can also be obtained as stable solutions of nanoparticles in non-toxic polyols. Bulk powders of the formula [Ln2-2x Ln'2x (bdc)3 ⋅4 H2 O]∞ (where H2 bdc denotes 1,4-benzene-dicarboxylic acid, 0≤x≤1, and Ln and Ln' denote lanthanide ions of the series La to Tm plus Y) afford nanoparticles that have been characterized by dynamic light-scattering (DLS) and transmission electron microscopy (TEM) measurements. Their luminescence properties are similar to those of the bulk materials. Stabilities versus time and versus dilution with another solvent have been studied. This study has revealed that it is possible to tune the size of the nanoparticles. This process offers a reliable means of synthesizing suspensions of nanoparticles with tunable luminescence properties and tunable size distributions in a green solvent (glycerol). The process is also extendable to other coordination polymers and other solvents (ethylene glycol, for example). It constitutes a new route for the facile solubilization of lanthanide-based coordination polymers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Single lithium-ion conducting solid polymer electrolytes: advances and perspectives.

    PubMed

    Zhang, Heng; Li, Chunmei; Piszcz, Michal; Coya, Estibaliz; Rojo, Teofilo; Rodriguez-Martinez, Lide M; Armand, Michel; Zhou, Zhibin

    2017-02-06

    Electrochemical energy storage is one of the main societal challenges to humankind in this century. The performances of classical Li-ion batteries (LIBs) with non-aqueous liquid electrolytes have made great advances in the past two decades, but the intrinsic instability of liquid electrolytes results in safety issues, and the energy density of the state-of-the-art LIBs cannot satisfy the practical requirement. Therefore, rechargeable lithium metal batteries (LMBs) have been intensively investigated considering the high theoretical capacity of lithium metal and its low negative potential. However, the progress in the field of non-aqueous liquid electrolytes for LMBs has been sluggish, with several seemingly insurmountable barriers, including dendritic Li growth and rapid capacity fading. Solid polymer electrolytes (SPEs) offer a perfect solution to these safety concerns and to the enhancement of energy density. Traditional SPEs are dual-ion conductors, in which both cations and anions are mobile and will cause a concentration polarization thus leading to poor performances of both LIBs and LMBs. Single lithium-ion (Li-ion) conducting solid polymer electrolytes (SLIC-SPEs), which have anions covalently bonded to the polymer, inorganic backbone, or immobilized by anion acceptors, are generally accepted to have advantages over conventional dual-ion conducting SPEs for application in LMBs. A high Li-ion transference number (LTN), the absence of the detrimental effect of anion polarization, and the low rate of Li dendrite growth are examples of benefits of SLIC-SPEs. To date, many types of SLIC-SPEs have been reported, including those based on organic polymers, organic-inorganic hybrid polymers and anion acceptors. In this review, a brief overview of synthetic strategies on how to realize SLIC-SPEs is given. The fundamental physical and electrochemical properties of SLIC-SPEs prepared by different methods are discussed in detail. In particular, special attention is paid

  14. Chemical synthesis of chiral conducting polymers

    DOEpatents

    Wang, Hsing-Lin [Los Alamos, NM; Li, Wenguang [Los Alamos, NM

    2009-01-13

    An process of forming a chiral conducting polymer, e.g., polyaniline, is provided including reacting a monomer, e.g., an aniline monomer, in the presence of a chiral dopant acid to produce a first reaction mixture by addition of a solution including a first portion of an oxidizing agent, the first portion of oxidizing agent characterized as insufficient to allow complete reaction of the monomer, and further reacting the first reaction mixture in the presence of the chiral dopant acid by addition of a solution including a second portion of the oxidizing agent, the second portion of oxidizing agent characterized as insufficient to allow complete reaction of the monomer, and repeating the reaction by addition of further portions of the oxidizing agent until the monomer reaction is complete to produce a chiral conducting polymer, e.g., polyaniline. A preferred process includes addition of a catalyst during the reaction, the catalyst selected from among the group consisting of phenylene diamine, aniline oligomers and amino-capped aniline oligomers and metal salts.The processes of the present invention further provide a resultant polyaniline product having a chirality level defined by a molar ellipticity of from about 40.times.10.sup.3 degree-cm.sup.2/decimole to about 700.times.10.sup.3 degree-cm.sup.2/decimole. The processes of the present invention further provide a resultant polyaniline product having a nanofiber structure with a diameter of from about 30 nanometers to about 120 nanometers and from about 1 micron to about 5 microns in length.

  15. Chemical synthesis of chiral conducting polymers

    DOEpatents

    Wang, Hsing-Lin; Li, Wenguang

    2006-07-11

    An process of forming a chiral conducting polymer, e.g., polyaniline, is provided including reacting a monomer, e.g., an aniline monomer, in the presence of a chiral dopant acid to produce a first reaction mixture by addition of a solution including a first portion of an oxidizing agent, the first portion of oxidizing agent characterized as insufficient to allow complete reaction of the monomer, and further reacting the first reaction mixture in the presence of the chiral dopant acid by addition of a solution including a second portion of the oxidizing agent, the second portion of oxidizing agent characterized as insufficient to allow complete reaction of the monomer, and repeating the reaction by addition of further portions of the oxidizing agent until the monomer reaction is complete to produce a chiral conducting polymer, e.g., polyaniline. A preferred process includes addition of a catalyst during the reaction, the catalyst selected from among the group consisting of phenylene diamine, aniline oligomers and amino-capped aniline oligomers and metal salts. The processes of the present invention further provide a resultant polyaniline product having a chirality level defined by a molar ellipticity of from about 40.times.103 degree-cm2/decimole to about 700.times.103 degree-cm2/decimole. The processes of the present invention further provide a resultant polyaniline product having a nanofiber structure with a diameter of from about 30 nanometers to about 120 nanometers and from about 1 micron to about 5 microns in length.

  16. A new (4, 6)-connected Cu(I) coordination polymer based on rare tetranuclear [Cu4I2] clusters: Synthesis, crystal structure, luminescent and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Cui, Li-Jing; Liu, Chun-Yan; Bian, Ming; Yu, Li-Jun

    2018-03-01

    A new Cu(I) coordination polymer, namely [Cu5I3(L)2]n (1 HL = 3-(4-pyridyl)-5-(3-pyridyl)-1,2,4-triazolyl), was solvothermally synthesized using CuI, HL and NaI as the starting materials. Single crystal X-ray structural analysis shows that compound 1 features a (4, 6)-connected 3D framework employing rare tetranuclear [Cu4I2] clusters as building subunits. It exhibits intense metal-to-ligand luminescence and excellent photocatalytic activity on degradation of methylene blue (MB).

  17. Regiochemistry of Poly(3-Hexylthiophene): Synthesis and Investigation of a Conducting Polymer

    ERIC Educational Resources Information Center

    Pappenfus, Ted M.; Hermanson, David L.; Kohl, Stuart G.; Melby, Jacob H.; Thoma, Laura M.; Carpenter, Nancy E.; Filho, Demetrio A. da Silva; Bredas, Jean-Luc

    2010-01-01

    A series of experiments for undergraduate laboratory courses (e.g., organic, polymer, inorganic) have been developed. These experiments focus on understanding the regiochemistry of the conducting polymer poly(3-hexylthiophene) (P3HT). The substitution patterns in P3HTs control their conformational features, which, in turn, dictates the [pi]…

  18. Luminescence enhancement in nanocomposite consisting of polyvinyl alcohol incorporated gold nanoparticles and Nile blue 690 perchlorate.

    PubMed

    Chubinidze, Ketevan; Partsvania, Besarion; Sulaberidze, Tamaz; Khuskivadze, Aleksandre; Davitashvili, Elene; Koshoridze, Nana

    2014-11-01

    We have experimentally demonstrated that the emission of visible light from the polymer matrix doped with luminescent dye and gold nanoparticles (GNPs) can be enhanced with the use of surface plasmon coupling. GNPs can enhance the luminescence intensity of nearby luminescent dye because of the interactions between the dipole moments of the dye and the surface plasmon field of the GNPs. The electric charge on the GNPs and the distance between GNPs and luminescent dye molecules have a significant effect on the luminescence intensity, and this enhancement depends strongly upon the excitation wavelength of the pumping laser source. In particular, by matching the plasmon frequency of GNPs to the frequency of the laser light source we have observed a strong luminescence enhancement of the nanocomposite consisting of GNPs coupled with luminescent dye Nile blue 690 perchlorate. This ability of controlling luminescence can be beneficially used in developing contrast agents for highly sensitive and specific optical sensing and imaging. This opens new possibilities for plasmonic applications in the solar energy field.

  19. Electrical Conductivity in Polymer Blends/ Multiwall Carbon Nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Ajit R.; Bose, Suryasarathi; Bhattacharyya, Arup R.

    2008-10-23

    Carbon nanotubes (CNT) based polymer composites have emerged as the future multifunctional materials in view of its exceptional mechanical, thermal and electrical properties. One of the major interests is to develop conductive polymer composites preferably at low concentration of CNT utilizing their high aspect ratio (L/D) for numerous applications, which include antistatic devices, capacitors and materials for EMI shielding. In this context, polymer blends have emerged as a potential candidate in lowering the percolation thresholds further by the utilization of 'double-percolation' which arises from the synergistic improvements in blend properties associated with the co-continuous morphology. Due to strong inter-tube vanmore » der Waals' forces, they often tend to aggregate and uniform dispersion remains a challenge. To overcome this challenge, we exploited sodium salt of 6-aminohexanoic acid (Na-AHA) which was able to assist in debundlling the multiwall carbon nanotubes (MWNT) through 'cation-{pi}' interactions during melt-mixing leading to percolative 'network-like' structure of MWNT within polyamide6 (PA6) phase in co-continuous PA6/acrylonitrile butadiene styrene (ABS) blends. The composite exhibited low electrical percolation thresholds of 0.25 wt% of MWNT, the lowest reported value in this system so far. Retention of 'network-like structure' in the solid state with significant refinement was observed even at lower MWNT concentration in presence Na-AHA, which was assessed through AC electrical conductivity measurements. Reactive coupling was found to be a dominant factor besides 'cation-{pi}' interactions in achieving low electrical percolation in PA6/ABS+MWNT composites.« less

  20. Electrical Conductivity in Polymer Blends/ Multiwall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Kulkarni, Ajit R.; Bose, Suryasarathi; Bhattacharyya, Arup R.

    2008-10-01

    Carbon nanotubes (CNT) based polymer composites have emerged as the future multifunctional materials in view of its exceptional mechanical, thermal and electrical properties. One of the major interests is to develop conductive polymer composites preferably at low concentration of CNT utilizing their high aspect ratio (L/D) for numerous applications, which include antistatic devices, capacitors and materials for EMI shielding. In this context, polymer blends have emerged as a potential candidate in lowering the percolation thresholds further by the utilization of `double-percolation' which arises from the synergistic improvements in blend properties associated with the co-continuous morphology. Due to strong inter-tube van der Waals' forces, they often tend to aggregate and uniform dispersion remains a challenge. To overcome this challenge, we exploited sodium salt of 6-aminohexanoic acid (Na-AHA) which was able to assist in debundlling the multiwall carbon nanotubes (MWNT) through `cation-π' interactions during melt-mixing leading to percolative `network-like' structure of MWNT within polyamide6 (PA6) phase in co-continuous PA6/acrylonitrile butadiene styrene (ABS) blends. The composite exhibited low electrical percolation thresholds of 0.25 wt% of MWNT, the lowest reported value in this system so far. Retention of `network-like structure' in the solid state with significant refinement was observed even at lower MWNT concentration in presence Na-AHA, which was assessed through AC electrical conductivity measurements. Reactive coupling was found to be a dominant factor besides `cation-π' interactions in achieving low electrical percolation in PA6/ABS+MWNT composites.

  1. Characterization of proton conducting blend polymer electrolyte using PVA-PAN doped with NH{sub 4}SCN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Premalatha, M.; Materials Research Center, Coimbatore-641 045; Mathavan, T., E-mail: tjmathavan@gmail.com, E-mail: kingslin.genova20@gmail.com

    2016-05-23

    Polymer electrolytes with proton conductivity based on blend polymer using polyvinyl alcohol (PVA) and poly acrylo nitrile (PAN) doped with ammonium thiocyanate have been prepared by solution casting method using DMF as solvent. The complex formation between the blend polymer and the salt has been confirmed by FTIR Spectroscopy. The amorphous nature of the blend polymer electrolytes have been confirmed by XRD analysis. The highest conductivity at 303 K has been found to be 3.25 × 10{sup −3} S cm{sup −1} for 20 mol % NH{sub 4}SCN doped 92.5PVA:7.5PAN system. The increase in conductivity of the doped blend polymer electrolytes with increasingmore » temperature suggests the Arrhenius type thermally activated process. The activation energy is found to be low (0.066 eV) for the highest conductivity sample.« less

  2. Electrochemical Analysis of Conducting Polymer Thin Films

    PubMed Central

    Vyas, Ritesh N.; Wang, Bin

    2010-01-01

    Polyelectrolyte multilayers built via the layer-by-layer (LbL) method has been one of the most promising systems in the field of materials science. Layered structures can be constructed by the adsorption of various polyelectrolyte species onto the surface of a solid or liquid material by means of electrostatic interaction. The thickness of the adsorbed layers can be tuned precisely in the nanometer range. Stable, semiconducting thin films are interesting research subjects. We use a conducting polymer, poly(p-phenylene vinylene) (PPV), in the preparation of a stable thin film via the LbL method. Cyclic voltammetry and electrochemical impedance spectroscopy have been used to characterize the ionic conductivity of the PPV multilayer films. The ionic conductivity of the films has been found to be dependent on the polymerization temperature. The film conductivity can be fitted to a modified Randle’s circuit. The circuit equivalent calculations are performed to provide the diffusion coefficient values. PMID:20480052

  3. Fabrication of conductive polymer-based nanofiber scaffolds for tissue engineering applications.

    PubMed

    Gu, Bon Kang; Kim, Min Sup; Kang, Chang Mo; Kim, Jong-Ll; Park, Sang Jun; Kim, Chun-Ho

    2014-10-01

    Natural and synthetic polymers, in particular those that are conductive, are of great interest in the field of tissue engineering and the pursuit of biomimetic extracellular matrix (ECM) structures for adhesion, proliferation, and differentiation of cells. In the present study, natural chitin and conductive polyaniline (PANi) blended solutions were electrospun to produce biodegradable and conductive biomimetic nanostructured scaffolds. The chitin/PANi (Chi-PANi) nanofibrous materials were characterized using field emission scanning electron microscopy, Fourier transform-infrared spectroscopy, wettability analysis, mechanical testing, and electrical conductivity measurements using a 4-point probe method. The calculated electrical conductivities of the PANi-containing nanofiber scaffolds significantly increased as the amount of PANi increased, reaching 5.21 ± 0.28 x 10(-3) S/cm for 0.3 wt% content of the conducting polymer. In addition, the viability of human mesenchymal stem cells (hMSCs) cultured on the Chi-PANi nanofiber scaffolds in vitro was found to be excellent. These results suggest that the Chi-PANi nanofiber scaffolds have great potential for use in tissue engineering applications that involve electrical stimulation.

  4. Synthesis, characterization and DC conductivity studies of conducting polyaniline/PVA/Fly ash polymer composites

    NASA Astrophysics Data System (ADS)

    Revanasiddappa, M.; Swamy, D. Siddalinga; Vinay, K.; Ravikiran, Y. T.; Raghavendra, S. C.

    2018-05-01

    The present work is an investigation of dc conduction behaviour of conducting polyaniline/fly ash nano particles blended in polyvinyl Alcohol (PANI/PVA/FA) synthesized via in-situ polymerization technique using (NH4)2S2O8 as an oxidising agent with varying fly ash cenosphere by 10, 20, 30, 40 and 50 wt%. The structural characterization of the synthesised polymer composites was examined using FT-IR, XRD and SEM techniques. Dc conductivity as a function of temperature has been measured in the temperature range from 302K - 443K. The increase of conductivity with increasing temperature reveals semiconducting behaviour of the composites and shows an evidence for the transport properties of the composites.

  5. Using in-situ polymerization of conductive polymers to enhance the electrical properties of solution-processed carbon nanotube films and fibers.

    PubMed

    Allen, Ranulfo; Pan, Lijia; Fuller, Gerald G; Bao, Zhenan

    2014-07-09

    Single-walled carbon nanotubes/polymer composites typically have limited conductivity due to a low concentration of nanotubes and the insulating nature of the polymers used. Here we combined a method to align carbon nanotubes with in-situ polymerization of conductive polymer to form composite films and fibers. Use of the conducting polymer raised the conductivity of the films by 2 orders of magnitude. On the other hand, CNT fiber formation was made possible with in-situ polymerization to provide more mechanical support to the CNTs from the formed conducting polymer. The carbon nanotube/conductive polymer composite films and fibers had conductivities of 3300 and 170 S/cm, respectively. The relatively high conductivities were attributed to the polymerization process, which doped both the SWNTs and the polymer. In-situ polymerization can be a promising solution-processable method to enhance the conductivity of carbon nanotube films and fibers.

  6. Reduced bleaching in organic nanofibers by bilayer polymer/oxide coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavares, L.; Kjelstrup-Hansen, J.; Rubahn, H.-G.

    2010-05-15

    Para-hexaphenylene (p-6P) molecules exhibit a characteristic photoinduced reaction (bleaching) resulting in a decrease in luminescence intensity upon UV light exposure, which could render the technological use of the nanofibers problematic. In order to investigate the photoinduced reaction in nanofibers, optical bleaching experiments have been performed by irradiating both pristine and coated nanofibers with UV light. Oxide coating materials (SiO{sub x} and Al{sub 2}O{sub 3}) were applied onto p-6P nanofibers. These treatments caused a reduction in the bleaching reaction but in addition, the nanofiber luminescence spectrum was significantly altered. It was observed that some polymer coatings [a statistical copolymer of tetrafluoroethylenemore » and 2,2-bis-trifluoromethyl-4,5-difluoro-1,3-dioxole, P(TFE-PDD), and poly(methyl methacrylate), PMMA] do not interfere with the luminescence spectrum from the p-6P but are not effective in stopping the bleaching. Bilayer coatings with first a polymer material, which should work as a protection layer to avoid modifications of the p-6P luminescence spectrum, and second an oxide layer used as oxygen blocker were tested and it was found that a particular bilayer polymer/oxide combination results in a significant reduction in bleaching without affecting significantly the emission spectrum from the nanofibers.« less

  7. Fabrication and Characterization of Conductive Conjugated Polymer-Coated Antheraea mylitta Silk Fibroin Fibers for Biomedical Applications.

    PubMed

    Gh, Darshan; Kong, Dexu; Gautrot, Julien; Vootla, Shyam Kumar

    2017-07-01

    Conductive polymers are interesting materials for a number of biological and medical applications requiring electrical stimulation of cells or tissues. Highly conductive polymers (polypyrrole and polyaniline)/Antheraea mylitta silk fibroin coated fibers are fabricated successfully by in situ polymerization without any modification of the native silk fibroin. Coated fibers characterized by scanning electron microscopy confirm the silk fiber surface is covered by conductive polymers. Thermogravimetric analysis reveals preserved thermal stability of silk fiber after coating process. X-ray diffraction of degummed fiber diffraction peaks at around 2θ = 20.4 and 16.5 confirms the preservation of the β-sheet structure typical of degummed silk II fibers. This phenomenon implies that both polypyrrole and polyaniline chains form interactions with peptide linkages in degummed fiber macromolecules, without significantly disrupting protein assembly. Fourier transform infrared spectroscopy of coated fibers indicates hydrogen bonding and electrostatic interactions exist between silk fibroin macromolecules and conductive polymers. Resulting fibers display good conductive properties compared to corresponding conjugated polymers. In vitro analysis (live/dead assay) of the behavior of human immortalized keratinocytes (HaCaTs) on coated fibers demonstrates improved cell-adhesive properties and viability after polymers coating. Hence, polypyrrole- and polyaniline-coated A. mylitta silk fibers are suitable for application in cell culture and for tissue engineering, where electrical conduction properties are required. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Bioelectrochemical control of neural cell development on conducting polymers.

    PubMed

    Collazos-Castro, Jorge E; Polo, José L; Hernández-Labrado, Gabriel R; Padial-Cañete, Vanesa; García-Rama, Concepción

    2010-12-01

    Electrically conducting polymers hold promise for developing advanced neuroprostheses, bionic systems and neural repair devices. Among them, poly(3, 4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) exhibits superior physicochemical properties but biocompatibility issues have limited its use. We describe combinations of electrochemical and molecule self-assembling methods to consistently control neural cell development on PEDOT:PSS while maintaining very low interfacial impedance. Electro-adsorbed polylysine enabled long-term neuronal survival and growth on the nanostructured polymer. Neurite extension was strongly inhibited by an additional layer of PSS or heparin, which in turn could be either removed electrically or further coated with spermine to activate cell growth. Binding basic fibroblast growth factor (bFGF) to the heparin layer inhibited neurons but promoted proliferation and migration of precursor cells. This methodology may orchestrate neural cell behavior on electroactive polymers, thus improving cell/electrode communication in prosthetic devices and providing a platform for tissue repair strategies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Underlying Physics of Conductive Polymer Composites and Force Sensing Resistors (FSRs) under Static Loading Conditions

    PubMed Central

    2017-01-01

    Conductive polymer composites are manufactured by randomly dispersing conductive particles along an insulating polymer matrix. Several authors have attempted to model the piezoresistive response of conductive polymer composites. However, all the proposed models rely upon experimental measurements of the electrical resistance at rest state. Similarly, the models available in literature assume a voltage-independent resistance and a stress-independent area for tunneling conduction. With the aim of developing and validating a more comprehensive model, a test bench capable of exerting controlled forces has been developed. Commercially available sensors—which are manufactured from conductive polymer composites—have been tested at different voltages and stresses, and a model has been derived on the basis of equations for the quantum tunneling conduction through thin insulating film layers. The resistance contribution from the contact resistance has been included in the model together with the resistance contribution from the conductive particles. The proposed model embraces a voltage-dependent behavior for the composite resistance, and a stress-dependent behavior for the tunneling conduction area. The proposed model is capable of predicting sensor current based upon information from the sourcing voltage and the applied stress. This study uses a physical (non-phenomenological) approach for all the phenomena discussed here. PMID:28906467

  10. Relaxation model of radiation-induced conductivity in polymers

    NASA Astrophysics Data System (ADS)

    Zhutayeva, Yu. R.; Khatipov, S. A.

    1999-05-01

    The paper suggests a relaxation model of radiation-induced conductivity (RIC) in polymers. According to the model, the transfer of charges generated in the polymer volume by ionizing radiation takes place with the participation of molecular relaxation processes. The mechanism of electron transport consists in the transfer of the charge directly between traps when they draw close to one another due to the rotation of macromolecule segments. The numerical solutions of the corresponding kinetic equations for different distribution functions Q( τ) of the times of molecular relaxation and for different functions of the probability P( τ, τ') of charge transfer in the `overlapping' regions of the diffusion spheres of the segments are analyzed. The relaxation model provides an explanation of the non-Arrhenius behavior of the RIC temperature dependence, the power dependence of RIC on the dose rate with a power index in the interval 0.5-1.0, the appearance of maxima in the curves of the RIC temporal dependence and their irreversible character in the region of large dose rates (more than 1 Gy/s). The model can be used for interpreting polymer RIC in conditions of kinetic mobility of macromolecules.

  11. Conducting-polymer-driven actively shaped propellers and screws

    NASA Astrophysics Data System (ADS)

    Madden, John D.; Schmid, Bryan; Lafontaine, Serge R.; Madden, Peter G. A.; Hover, Franz S.; McLetchie, Karl; Hunter, Ian W.

    2003-07-01

    Conducting polymer actuators are employed to create actively shaped hydrodynamic foils. The active foils are designed to allow control over camber, much like the ailerons of an airplane wing. Control of camber promises to enable variable thrust in propellers and screws, increased maneuverability, and improved stealth. The design and fabrication of the active foils are presented, the forces are measured and operation is demonstrated both in still air and water. The foils have a "wing" span of 240 mm, and an average chord length (width) of 70 mm. The trailing 30 mm of the foil is composed of a thin polypyrrole actuator that curls chordwise to achieve variable camber. The actuator consists of two 30 μm thick sheets of hexafluorophosphate doped polypyrrole separated from each other by a gel electrolyte. A polymer layer encapsulates the entire structure. Potentials are applied between the polymer layers to induce reversible bending by approximately 35 degrees, and generating forces of 0.15 N. These forces and displacements are expected to enable operation in water at flow rates of > 1 m/s and ~ 30 m/s in air.

  12. Conducting Polymer Coated Graphene Oxide Electrode for Rechargeable Lithium-Sulfur Batteries.

    PubMed

    Lee, Hee-Yoon; Jung, Yongju; Kim, Seok

    2016-03-01

    Poly(diallyldimethylammonium chloride) (PDDA)/graphene oxide-sulfur composites were prepared by a chemical oxidation method. For the PDDA-GO composites, conducting polymers (PDDA) were coated on the surface of GO sheets. PDDA-GO composites could be expected to increase electrical conductivity and protect restacking of graphene sheets. And then, sulfur particles were dispersed into the PDDA-GO composites by mixing in the CS2 solvent. It is expected the PDDA-GO/S composites show the limited release of polysulfides due to the fact that it can provide high surface area, because conducting polymer can be used as spacer between graphene sheets. Electrochemical performances of prepared composites were characterized by cyclic voltammetry (CV). The PDDA-GO/S composites showed a high discharge capacity of 1102 mAh g(-1) at the first cycle and a good cycle retention of 60% after 100 cycles.

  13. Luminescence properties of femtosecond-laser-activated silver oxide nanoparticles embedded in a biopolymer matrix

    NASA Astrophysics Data System (ADS)

    Gleitsmann, T.; Bernhardt, T. M.; Wöste, L.

    2006-01-01

    Strong visible luminescence is observed from silver clusters generated by femtosecond-laser-induced reduction of silver oxide nanoparticles embedded in a polymeric gelatin matrix. Light emission from the femtosecond-laser-activated matrix areas considerably exceeds the luminescence intensity of similarly activated bare silver oxide nanoparticle films. Optical spectroscopy of the activated polymer films supports the assignment of the emissive properties to the formation of small silver clusters under focused femtosecond-laser irradiation. The size of the photogenerated clusters is found to sensitively depend on the laser exposure time, eventually leading to the formation of areas of metallic silver in the biopolymer matrix. In this case, luminescence can still be observed in the periphery of the metallic silver structures, emphasizing the importance of the organic matrix for the stabilization of the luminescent nanocluster structures at the metal matrix interface.

  14. An Integrated Laboratory Approach toward the Preparation of Conductive Poly(phenylene vinylene) Polymers

    ERIC Educational Resources Information Center

    Knoerzer, Timm A.; Balaich, Gary J.; Miller, Hannah A.; Iacono, Scott T.

    2014-01-01

    Poly(phenylene vinylene) (PPV) represents an important class of conjugated, conducting polymers that have been readily exploited in the preparation of organic electronic materials. In this experiment, students prepare a PPV polymer via a facile multistep synthetic sequence with robust spectroscopic evaluation of synthetic intermediates and the…

  15. Enhanced persistent red luminescence in Mn2+-doped (Mg,Zn)GeO3 by electron trap and conduction band engineering

    NASA Astrophysics Data System (ADS)

    Katayama, Yumiko; Kayumi, Tomohiro; Ueda, Jumpei; Tanabe, Setsuhisa

    2018-05-01

    The effect of Zn substitution on the persistent luminescence properties of MgGeO3:Mn2+-Ln3+ (Ln = Eu and Yb) red phosphors was investigated. The intensity of the persistent luminescence of the Eu3+ co-doped phosphors increased with increasing Zn content, whereas that of the Yb3+ co-doped samples decreased. For both series of lanthanide co-doped samples, the thermoluminescence (TL) glow peak shifted to the lower temperature side with increasing Zn content. These persistent luminescence properties were well explained in terms of lowering of the bottom of the conduction band relative to the ground state of the divalent lanthanide ions. Especially, in Eu3+ co-doped system, TL peak shifted from 520 K to 318 K by 50% Zn substitution. The persistent radiance of the (Mg0.5 Zn0.5)GeO3: Mn2+-Eu3+ sample at 1 h after ceasing UV light was 46 times stronger than that of MgGeO3:Mn2+-Eu3+, and 11 times stronger than that of ZnGa2O4: Cr3+ standard deep red persistent phosphor.

  16. Conductivity and power factor enhancement of n-type semiconducting polymers using sodium silica gel dopant

    NASA Astrophysics Data System (ADS)

    Madan, Deepa; Zhao, Xingang; Ireland, Robert M.; Xiao, Derek; Katz, Howard E.

    2017-08-01

    This work demonstrates the use of sodium silica gel (Na-SG) particles as a reducing agent for n-type conjugated polymers to improve the conductivity and thermoelectric properties. Substantial increase in the electrical conductivity (σ, from 10-7 to 10-3 S/cm in air) was observed in two naphthalenetetracarboxylic diimide solution-processable n-type polymers, one of which was designed and synthesized in our lab. Systematic investigations of electrical conductivity were done by varying the weight percentage of Na-SG in the polymers. Additional evidence for the reduction process was obtained from electron spin resonance spectroscopy and control experiments involving nonreducing silica particles and non-electron-accepting polystyrene. The Seebeck coefficient S of the highest conductivity sample was measured and found to be in agreement with an empirical model. All the electrical conductivity and Seebeck coefficients measurements were performed in ambient atmosphere.

  17. Luminescence nanothermometry

    NASA Astrophysics Data System (ADS)

    Jaque, Daniel; Vetrone, Fiorenzo

    2012-07-01

    The current status of luminescence nanothermometry is reviewed in detail. Based on the main parameters of luminescence including intensity, bandwidth, bandshape, polarization, spectral shift and lifetime, we initially describe and compare the different classes of luminescence nanothermometry. Subsequently, the various luminescent materials used in each case are discussed and the mechanisms at the root of the luminescence thermal sensitivity are described. The most important results obtained in each case are summarized and the advantages and disadvantages of these approaches are discussed.The current status of luminescence nanothermometry is reviewed in detail. Based on the main parameters of luminescence including intensity, bandwidth, bandshape, polarization, spectral shift and lifetime, we initially describe and compare the different classes of luminescence nanothermometry. Subsequently, the various luminescent materials used in each case are discussed and the mechanisms at the root of the luminescence thermal sensitivity are described. The most important results obtained in each case are summarized and the advantages and disadvantages of these approaches are discussed. This work was supported by the Universidad Autónoma de Madrid and Comunidad Autónoma de Madrid (Project S2009/MAT-1756), by the Spanish Ministerio de Educacion y Ciencia (MAT2010-16161) and by Caja Madrid Foundation.

  18. Rechargeable aluminum batteries with conducting polymers as positive electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudak, Nicholas S.

    2013-12-01

    This report is a summary of research results from an Early Career LDRD project con-ducted from January 2012 to December 2013 at Sandia National Laboratories. Demonstrated here is the use of conducting polymers as active materials in the posi-tive electrodes of rechargeable aluminum-based batteries operating at room tempera-ture. The battery chemistry is based on chloroaluminate ionic liquid electrolytes, which allow reversible stripping and plating of aluminum metal at the negative elec-trode. Characterization of electrochemically synthesized polypyrrole films revealed doping of the polymers with chloroaluminate anions, which is a quasi-reversible reac-tion that facilitates battery cycling. Stable galvanostatic cycling of polypyrrole andmore » polythiophene cells was demonstrated, with capacities at near-theoretical levels (30-100 mAh g -1) and coulombic efficiencies approaching 100%. The energy density of a sealed sandwich-type cell with polythiophene at the positive electrode was estimated as 44 Wh kg -1, which is competitive with state-of-the-art battery chemistries for grid-scale energy storage.« less

  19. Impact of co-incorporating laminin peptide dopants and neurotrophic growth factors on conducting polymer properties.

    PubMed

    Green, Rylie A; Lovell, Nigel H; Poole-Warren, Laura A

    2010-01-01

    Conductive neural interfaces tailored for cell interaction by incorporation of bioactive factors are hypothesized to produce superior neuroprostheses with improved charge transfer capabilities. This study examined the effect of entrapping nerve growth factor (NGF) within the conducting polymer poly(ethylene dioxythiophene) (PEDOT) during electrodeposition to create a polymer capable of stimulating neurite outgrowth from proximal neural tissue. NGF entrapment was performed on polymers doped with laminin peptides DEDEDYFQRYLI and DCDPGYIGSR and, additionally, a conventional dopant, paratoluene sulphonate (pTS). All polymer coatings were analysed for a range of physical, electrical and mechanical properties, with the biological activity of ligands examined using a PC12 neurite outgrowth assay. NGF was successfully entrapped in PEDOT during electrodeposition and was shown to produce a softer interface than conventional conducting polymers and films without the NGF modification. However, it was found that the use of a peptide dopant combined with NGF entrapment resulted in polymers with diminished electrical and mechanical stability. Entrapped NGF was determined to be biologically active, with PEDOT/pTS/NGF producing neurite outgrowth comparable with control films where NGF was supplied via the medium. Future studies will determine the effect of typical neural prosthetic stimulation regimes on the release of neurotrophins and subsequent cell response.

  20. Synthesis and ion transport characterization of hot-pressed Ag+ ion conducting glass-polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Chandra, A.

    2013-07-01

    Synthesis and ion transport characterization of a new Ag+ ion conducting glass-polymer electrolyte (GPE) films: (1- x) PEO: x [0.8(0.75AgI:0.25AgCl):0.2(Ag2O:V2O5)], where 0 < x < 50 wt%, are reported. The composition: 70PEO: 30[0.8(0.75AgI:0.25AgCl):0.2(Ag2O:V2O5)] with conductivity ( σ) 7.7 × 10-7 Ω-1 cm-1 is identified as highest conducting composition referred to as the optimum conducting composition (OCC). Approximately two and half orders of conductivity enhancement have been achieved in OCC from that of the pure polymer poly(ethylene oxide). The glass-polymer complexation is confirmed by the XRD, FTIR, DSC and TGA techniques. The ion transport behavior has been reported on the basis of experimental measurements on some basic ionic parameters. A solid state polymeric battery has been fabricated by using GPE OCC as an electrolyte and their important cell parameters have been also calculated from the discharge profiles.

  1. Doped luminescent materials and particle discrimination using same

    DOEpatents

    Doty, F. Patrick; Allendorf, Mark D; Feng, Patrick L

    2014-10-07

    Doped luminescent materials are provided for converting excited triplet states to radiative hybrid states. The doped materials may be used to conduct pulse shape discrimination (PSD) using luminescence generated by harvested excited triplet states. The doped materials may also be used to detect particles using spectral shape discrimination (SSD).

  2. Training and shape retention in conducting polymer artificial muscles

    NASA Astrophysics Data System (ADS)

    Tominaga, Kazuo; Hashimoto, Hikaru; Takashima, Wataru; Kaneto, Keiichi

    2011-12-01

    Electrochemomechanical deformation (ECMD) of the conducting polymer polyaniline film is studied to investigate the behaviour of actuation under tensile loads. The ECMD was induced by the strains due to the insertion of ionic species (cyclic strain) and a creep due to applied loads during the redox cycle. The cyclic strain was enhanced by the experience of high tensile loads, indicating a training effect. The training effect was explained by the enhanced electrochemical activity of the film. The creep was recovered by removal of the tensile load and several electrochemical cycles. This fact indicates that the creep results from the one-dimensional anisotropic deformation, and is retained (shape retention) by the ionic crosslink. The recovery of creep results from the elastic relaxation of the polymer conformation.

  3. Morphological control of conductive polymers utilized electrolysis polymerization technique: trial of fabricating biocircuit.

    PubMed

    Onoda, Mitsuyoshi

    2014-10-01

    Conductive polymers are a strong contender for making electronic circuits. The growth pattern in conductive polymer synthesis by the electrolysis polymerization method was examined. The growth pattern is deeply related to the coupling reaction of the radical cation and the deprotonation reaction following it and changes suddenly depending on the kind and concentration of the supporting electrolyte and the solvent used. That is, when the electrophilic substitution coupling reaction becomes predominant, the three-dimensional growth form is observed, and when the radical coupling reaction becomes predominant, the two-dimensional growth morphology is observed. In addition, the growth pattern can be comparatively easily controlled by changing the value of the polymerization constant current, and it is considered that the indicator and development for biocircuit research with neuron-type devices made of conjugated polymers was obtained.

  4. THE ELECTROCHEMISTRY OF ANTIBODY-MODIFIED CONDUCTING POLYMER ELECTRODES. (R825323)

    EPA Science Inventory

    Abstract

    The modification of conducting polymer electrodes with antibodies (i.e. proteins) by means of electrochemical polymerization is a simple step that can be used to develop an immunological sensor. However, the electrochemical processes involved leading to the ge...

  5. Synthesis, crystal structures and luminescent properties of two 4 d-4 f Ln-Ag heterometallic coordination polymers based on anion template

    NASA Astrophysics Data System (ADS)

    Fan, Le-Qing; Chen, Yuan; Wu, Ji-Huai; Huang, Yun-Fang

    2011-04-01

    Two new 4 d-4 f Ln-Ag heterometallic coordination polymers, {[ Ln3Ag 5(IN) 10(H 2O) 7]·4(ClO 4)·4(H 2O)} n ( Ln=Eu ( 1) and Sm ( 2), HIN=isonicotinic acid), have been synthesized under hydrothermal conditions by reactions of Ln2O 3, AgNO 3, HIN and HClO 4, and characterized by elemental analysis, IR, thermal analysis and single-crystal X-ray diffraction. It is proved that HClO 4 not only adjusts the pH value of the reaction mixture, but also acts as anion template. The structure determination reveals that 1 and 2 are isostructural and feature a novel two-dimensional (2D) layered hetrometallic structure constructed from one-dimensional Ln-carboxylate chains and pillared Ag(IN) 2 units. The 2D layers are further interlinked through Ag⋯Ag and Ag⋯O(ClO 4-) multiple weak interactions, which form a rare Ag-ClO 4 ribbon in lanthanide-transition metal coordination polymers, to give rise to a three-dimensional supramolecular architecture. Moreover, the luminescent properties of these two compounds have also been investigated at room temperature.

  6. Ultralight Graphene Foam/Conductive Polymer Composites for Exceptional Electromagnetic Interference Shielding.

    PubMed

    Wu, Ying; Wang, Zhenyu; Liu, Xu; Shen, Xi; Zheng, Qingbin; Xue, Quan; Kim, Jang-Kyo

    2017-03-15

    Ultralight, high-performance electromagnetic interference (EMI) shielding graphene foam (GF)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) composites are developed by drop coating of PEDOT:PSS on cellular-structured, freestanding GFs. To enhance the wettability and the interfacial bonds with PEDOT:PSS, GFs are functionalized with 4-dodecylbenzenesulfonic acid. The GF/PEDOT:PSS composites possess an ultralow density of 18.2 × 10 -3 g/cm 3 and a high porosity of 98.8%, as well as an enhanced electrical conductivity by almost 4 folds from 11.8 to 43.2 S/cm after the incorporation of the conductive PEDOT:PSS. Benefiting from the excellent electrical conductivity, ultralight porous structure, and effective charge delocalization, the composites deliver remarkable EMI shielding performance with a shielding effectiveness (SE) of 91.9 dB and a specific SE (SSE) of 3124 dB·cm 3 /g, both of which are the highest among those reported in the literature for carbon-based polymer composites. The excellent electrical conductivities of composites arising from both the GFs with three-dimensionally interconnected conductive networks and the conductive polymer coating, as well as the left-handed composites with absolute permittivity and/or permeability larger than one give rise to significant microwave attenuation by absorption.

  7. A series of Zn/Cd coordination polymers constructed from 1,4-naphthalenedicarboxylate and N-donor ligands: Syntheses, structures and luminescence sensing of Cr{sup 3+} in aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Dong-Cheng; Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063; Fan, Yan

    A novel series of Zn/Cd coordination polymers based on H{sub 3}L, namely, [Zn{sub 2}(HL){sub 2}(bipy){sub 2}(H{sub 2}O){sub 6}]{sub n} (1), [Zn(HL)(phen)]{sub n} (2), [Cd{sub 3}L{sub 2}(bbi){sub 3}]{sub n} (3), [Zn{sub 3}L{sub 2}(bbi){sub 3}]{sub n} (4) [(H{sub 3}L =4-[(1-carboxynaphthalen-2-yl)oxy]phthalic acid, bipy =4,4′-bipyridine, phen =1,10-phenanthroline, bbi =1,1′-(1,4-butanediyl)bis(imidazole] have been successfully synthesized by solvothermal reaction. Compound 1 possesses two diverse 1D chains constructed by different bipy coligands, which were further connected to form a 3D supramolecular architecture by hydrogen bonding interactions. Compound 2 possesses a complicated 1D chain based on secondary building unit (SBU) with binuclear Zn cluster. Compounds 3 and 4 exhibitmore » similar 2D→3D framework, which can be rationalized as (3,4,4)-connected 3D net with a Schläfli symbol of (6{sup 3}.8.10{sup 2}){sub 2}(6{sup 3}){sub 2}(6{sup 4}.8.10). In particular, compound 3 exhibited a high sensitivity for Cr{sup 3+} in aqueous solutions, which suggest that compound 3 is a promising luminescent probe for selectively sensing Cr{sup 3+}. - Graphical abstract: A series of novel Zn/Cd coordination polymers have been successfully synthesized by solvothermal reaction. The unique 3D Cd{sup 2+} polymer containing bbi as second ligand demonstrates high sensitivity for detection of toxic Cr{sup 3+} in aqueous solutions. Display Omitted - Highlights: • π-conjugated semirigid tricarboxylate ligands with naphthalene rings(H{sub 3}L) were rationally designed. • Four Zn/Cd coordination polymers based on H{sub 3}L have been successfully synthesized by solvothermal reaction. • Compound 3 is a promising luminescent probe for selectively sensing Cr{sup 3+} with high sensitivity in aqueous solutions.« less

  8. Virulence of luminescent and non-luminescent isogenic vibrios towards gnotobiotic Artemia franciscana larvae and specific pathogen-free Litopenaeus vannamei shrimp.

    PubMed

    Phuoc, L H; Defoirdt, T; Sorgeloos, P; Bossier, P

    2009-04-01

    This study was conducted to test the virulence of luminescent (L) and non-luminescent (NL) isogenic strains of Vibrio campbellii LMG21363, Vibrio harveyi BB120 (wild type) and quorum-sensing mutant strains derived from the wild type such as Vibrio harveyi BB152, BB170, MM30 and BB886. The NL strains could be obtained by culturing rifampicin-resistant luminescent strains in the dark under static condition. The virulence of the L and NL strains was tested in gnotobiotic Artemia franciscana larvae challenged with 10(4) CFU ml(-1) of bacteria. All luminescent isogenic tested strains showed higher virulence compared to the NL strains. The virulence of L and NL V. campbellii and V. harveyi BB120 was also tested in specific pathogen-free juvenile shrimp upon intramuscular injection with 10(6) CFU of bacteria. In contrast with Artemia, there was no significant difference in mortality between the groups challenged with L and NL strains (P > 0.05). The non-luminescent strains were not able to revert back to the luminescent state and quorum sensing did not influence this phenotypic shift. Luminescent Vibrio strains can switch to a non-luminescent state by culturing them in static conditions. The NL strains become less virulent as verified in Artemia. The luminescent state of Vibrio cells in a culture needs to be verified in order to assure maintenance of virulence.

  9. Surface grafting of zwitterionic polymers onto dye doped AIE-active luminescent silica nanoparticles through surface-initiated ATRP for biological imaging applications

    NASA Astrophysics Data System (ADS)

    Mao, Liucheng; Liu, Xinhua; Liu, Meiying; Huang, Long; Xu, Dazhuang; Jiang, Ruming; Huang, Qiang; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-10-01

    Aggregation-induced emission (AIE) dyes have recently been intensively explored for biological imaging applications owing to their outstanding optical feature as compared with conventional organic dyes. The AIE-active luminescent silica nanoparticles (LSNPs) are expected to combine the advantages both of silica nanoparticles and AIE-active dyes. Although the AIE-active LSNPs have been prepared previously, surface modification of these AIE-active LSNPs with functional polymers has not been reported thus far. In this work, we reported a rather facile and general strategy for preparation of polymers functionalized AIE-active LSNPs through the surface-initiated atom transfer radical polymerization (ATRP). The AIE-active LSNPs were fabricated via direct encapsulation of AIE-active dye into silica nanoparticles through a non-covalent modified Stöber method. The ATRP initiator was subsequently immobilized onto these AIE-active LSNPs through amidation reaction between 3-aminopropyl-triethoxy-silane and 2-bromoisobutyryl bromide. Finally, the zwitterionic 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) was selected as model monomer and grafted onto MSNs through ATRP. The characterization results suggested that LSNPs can be successfully modified with poly(MPC) through surface-initiated ATRP. The biological evaluation results demonstrated that the final SNPs-AIE-pMPC composites possess low cytotoxicity, desirable optical properties and great potential for biological imaging. Taken together, we demonstrated that AIE-active LSNPs can be fabricated and surface modified with functional polymers to endow novel functions and better performance for biomedical applications. More importantly, this strategy developed in this work could also be extended for fabrication of many other LSNPs polymer composites owing to the good monomer adoptability of ATRP.

  10. Sodium ion conducting polymer electrolyte membrane prepared by phase inversion technique

    NASA Astrophysics Data System (ADS)

    Harshlata, Mishra, Kuldeep; Rai, D. K.

    2018-04-01

    A mechanically stable porous polymer membrane of Poly(vinylidene fluoride-hexafluoropropylene) has been prepared by phase inversion technique using steam as a non-solvent. The membrane possesses semicrystalline network with enhanced amorphicity as observed by X-ray diffraction. The membrane has been soaked in an electrolyte solution of 0.5M NaPF6 in Ethylene Carbonate/Propylene Carbonate (1:1) to obtain the gel polymer electrolyte. The porosity and electrolyte uptake of the membrane have been found to be 67% and 220% respectively. The room temperature ionic conductivity of the membrane has been obtained as ˜ 0.3 mS cm-1. The conductivity follows Arrhenius behavior with temperature and gives activation energy as 0.8 eV. The membrane has been found to possess significantly large electrochemical stability window of 5.0 V.

  11. Video luminescent barometry - The induction period

    NASA Technical Reports Server (NTRS)

    Uibel, Rory H.; Khalil, Gamal; Gouterman, Martin; Gallery, Jean; Callis, James B.

    1993-01-01

    Video monitoring of oxygen quenching of the photoluminescence of platinum octaethylporphyrin (PtOEP) in silicone polymer resin may be used to measure pressure distribution over an airfoil. A continuous increase of the luminescence intensity of PtOEP on exposure to the exciting light is known as the induction effect. The effect of several factors on PtOEP photoluminescence and the induction effect was investigated. The experimental apparatus is described and results are presented. It was observed that the relative induction amplitude and induction time increase at higher oxygen pressure and with thicker films. These observations may be explained if the singlet oxygen produced by oxygen quenching is consumed by the polymer and is therefore unavailable for further quenching. Researchers using this method for measuring pressure distribution on airfoil surfaces should be aware of the induction effect and its implications.

  12. Free-Standing Conducting Polymer Films for High-Performance Energy Devices.

    PubMed

    Li, Zaifang; Ma, Guoqiang; Ge, Ru; Qin, Fei; Dong, Xinyun; Meng, Wei; Liu, Tiefeng; Tong, Jinhui; Jiang, Fangyuan; Zhou, Yifeng; Li, Ke; Min, Xue; Huo, Kaifu; Zhou, Yinhua

    2016-01-18

    Thick, uniform, easily processed, highly conductive polymer films are desirable as electrodes for solar cells as well as polymer capacitors. Here, a novel scalable strategy is developed to prepare highly conductive thick poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (HCT-PEDOT:PSS) films with layered structure that display a conductivity of 1400 S cm(-1) and a low sheet resistance of 0.59 ohm sq(-1). Organic solar cells with laminated HCT-PEDOT:PSS exhibit a performance comparable to the reference devices with vacuum-deposited Ag top electrodes. More importantly, the HCT-PEDOT:PSS film delivers a specific capacitance of 120 F g(-1) at a current density of 0.4 A g(-1). All-solid-state flexible symmetric supercapacitors with the HCT-PEDOT:PSS films display a high volumetric energy density of 6.80 mWh cm(-3) at a power density of 100 mW cm(-3) and 3.15 mWh cm(-3) at a very high power density of 16160 mW cm(-3) that outperforms previous reported solid-state supercapacitors based on PEDOT materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Salt-Doped Polymer Light-Emitting Devices

    NASA Astrophysics Data System (ADS)

    Gautier, Bathilde

    Polymer Light-Emitting Electrochemical Cells (PLECs) are solid state devices based on the in situ electrochemical doping of the luminescent polymer and the formation of a p-n junction where light is emitted upon the application of a bias current or voltage. PLECs answer the drawbacks of polymer light-emitting diodes as they do not require an ultra-thin active layer nor are they reliant on low work function cathode materials that are air unstable. However, because of the dynamic nature of the doping, they suffer from slow response times and poor stability over time. Frozen-junction PLECs offer a solution to these drawbacks, yet they are impractical due to their sub-ambient operation temperature requirement. Our work presented henceforth aims to achieve room temperature frozen-junction PLECS. In order to do that we removed the ion solvating/transporting polymer from the active layer, resulting in a luminescent polymer combined solely with a salt sandwiched between an ITO electrode and an aluminum electrode. The resulting device was not expected to operate like a PLEC due to the absence of an ion-solvating and ion-transporting medium. However, we discovered that the polymer/salt devices could be activated by applying a large voltage bias, resulting in much higher current and luminance. More important, the activated state is quasi static. Devices based on the well-known orange-emitting polymer MEH-PPV displayed a luminance storage half-life of 150 hours when activated by forward bias (ITO biased positively with respect to the aluminum) and 200 hours when activated by reverse bias. More remarkable yet, devices based on a green co-polymer displayed no notable decay in current density or luminance even after being stored for 1200 hours at room temperature! PL imaging under UV excitation demonstrates the presence of doping. These devices are described herein along with an explanation of their operating mechanisms.

  14. Conducting polymer nanocomposites loaded with nanotubes and fibers for electrical and thermal applications

    NASA Astrophysics Data System (ADS)

    Chiguma, Jasper

    The design, fabrication and measurement of electrical and thermal properties of polymers loaded with nanotubes and fibers are the foci of the work presented in this dissertation. The resulting products of blending polymers with nanomaterials are called nanocomposites and are already finding applications in many areas of human endeavour. Among some of the most recent envisioned applications of nanocomposites is in electronic devices as thermal interface materials (TIMs). This potential application as TIMs, has been made more real by the realization that carbon nanotubes, could potentially transfer their high electrical, thermal and mechanical properties to polymers in the nanocomposites. In Chapter 1, the events leading to the discovery of carbon nanotubes are reviewed followed by an elaborate discussion of their structure and properties. The discussion of the structure and properties of carbon nanotubes help in understanding the envisaged applications. Chapter 2 focuses on the fabrication of insulating polymer nanocomposites, their electrical and mechanical properties. Poly (methyl methacrylate) (PMMA) and a polyimide formed by reacting pyromellitic dianhydride (PMDA) and 4, 4'-oxydianiline (ODA) (PMDA-ODA) nanocomposites with carbon nanotubes were prepared by in-situ polymerization. Poly (1-methyl-4-pentene) (TPX), Polycarbonate (PC), Poly (vinyl chloride) (PVC), Poly (acrylonitrile-butadiene-styrene) (ABS), the alloys ABS-PC, ABS-PVC, and ABS-PC-PVC nanocomposites were prepared from the respective polymers and carbon nanotubes and their mechanical and electrical properties measured. Chapter 3 covers the nanocomposites that were prepared by the in-situ polymerization of the conducting polymers Polyaniline (PANi), Polypyrrole (PPy) and Poly (3, 4-ethylenedioxythiophene) (PEDOT) by in-situ polymerization. These are evaluated for electrical conductivity. The use of surfactants in facilitating carbon nanotube dispersion is discussed and applied in the preparation of

  15. Lanthanide coordination polymers based on multi-donor ligand containing pyridine and phthalate moieties: Structures, luminescence and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Xun; Liu, Lang; College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022

    2013-10-15

    A new family of five lanthanide-organic coordination polymers incorporating multi-functional N-hetrocyclic dicarboxylate ligand, namely, [Ln{sub 2}(Hdpp){sub 2}(dpp){sub 2}]{sub n}Ln=Pr(1), Eu(2), Gd(3), Dy(4), Er(5) (H{sub 2}dpp=1-(3, 4-dicarboxyphenyl) pyridin-4-ol) have been fabricated successfully through solvothermal reaction of 1-(3,4-dicarboxyphenyl)-4-hydroxypyridin-1-ium chloride with trivalent lanthanide salts, and have been characterized systematically. The complexes 1–5 are isomorphous and isostructural. They all feature three dimensional (3D) frameworks based on the interconnection of 1D double chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 4+} basic carboxylate as secondary building unit (SBU). The results of magnetic analysis shows the same bridging fashion of carboxylic group in this casemore » results in the different magnetic properties occurring within lanthanide polymers. Moreover, the Eu(III) and Dy(III) complexes display characteristic luminescence emission in the visible regions. - Graphical abstract: A new family of lanthanide-organic frameworks incorporating multi-donor twisted ligand has been fabricated successfully, and has been characterized systematically. The complexes 1–5 are isostructural, and all feather three dimensional (3D) frameworks based on the interconnection of 1D double stride chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 2+} basic carboxylate as secondary building unit (SBU). Display Omitted - Highlights: • New family of lanthanide–organic coordination polymers incorporating multifunctional N-hetrocyclic dicarboxylate ligand has been fabricated. • They have been characterized systematically. • They all feather three dimensional frameworks based on the binuclear moiety of [Ln{sub 2}(Hdpp){sub 2}]{sup 2+}. • The Eu(III) and Dy(III) analogues exhibit intense photoluminescence.« less

  16. Chemical synthesis of water-soluble, chiral conducting-polymer complexes

    DOEpatents

    Wang, Hsing-Lin; McCarthy, Patrick A.; Yang, Sze Cheng

    2003-01-01

    The template-guided synthesis of water-soluble, chiral conducting polymer complexes is described. Synthesis of water-soluble polyaniline complexes is achieved by carefully controlling the experimental parameters such as; acid concentration, ionic strength, monomer/template ratio, total reagent concentration, and order of reagent addition. Chiral (helical) polyaniline complexes can be synthesized by addition of a chiral inducing agent (chiral acid) prior to polymerization, and the polyaniline helix can be controlled by the addition of the (+) or (-) form of the chiral acid. Moreover the quantity of chiral acid and the salt content has a significant impact on the degree of chirality in the final polymer complexes. The polyaniline and the template have been found to be mixed at the molecular level which results in chiral complexes that are robust through repeated doping and dedoping cycles.

  17. Flight testing of a luminescent surface pressure sensor

    NASA Technical Reports Server (NTRS)

    Mclachlan, B. G.; Bell, J. H.; Espina, J.; Gallery, J.; Gouterman, M.; Demandante, C. G. N.; Bjarke, L.

    1992-01-01

    NASA ARC has conducted flight tests of a new type of aerodynamic pressure sensor based on a luminescent surface coating. Flights were conducted at the NASA ARC-Dryden Flight Research Facility. The luminescent pressure sensor is based on a surface coating which, when illuminated with ultraviolet light, emits visible light with an intensity dependent on the local air pressure on the surface. This technique makes it possible to obtain pressure data over the entire surface of an aircraft, as opposed to conventional instrumentation, which can only make measurements at pre-selected points. The objective of the flight tests was to evaluate the effectiveness and practicality of a luminescent pressure sensor in the actual flight environment. A luminescent pressure sensor was installed on a fin, the Flight Test Fixture (FTF), that is attached to the underside of an F-104 aircraft. The response of one particular surface coating was evaluated at low supersonic Mach numbers (M = 1.0-1.6) in order to provide an initial estimate of the sensor's capabilities. This memo describes the test approach, the techniques used, and the pressure sensor's behavior under flight conditions. A direct comparison between data provided by the luminescent pressure sensor and that produced by conventional pressure instrumentation shows that the luminescent sensor can provide quantitative data under flight conditions. However, the test results also show that the sensor has a number of limitations which must be addressed if this technique is to prove useful in the flight environment.

  18. Evaluation of one-step luminescent cyanoacrylate fuming.

    PubMed

    Khuu, Alicia; Chadwick, Scott; Spindler, Xanthe; Lam, Rolanda; Moret, Sébastien; Roux, Claude

    2016-06-01

    One-step luminescent cyanoacrylates have recently been introduced as an alternative to the conventional cyanoacrylate fuming methods. These new techniques do not require the application of a luminescent post-treatment in order to enhance cyanoacrylate-developed fingermarks. In this study, three one-step polymer cyanoacrylates: CN Yellow Crystals (Aneval Inc.), PolyCyano UV (Foster+Freeman Ltd.) and PECA Multiband (BVDA), and one monomer cyanoacrylate: Lumikit™ (Crime Scene Technology), were evaluated against a conventional two-step cyanoacrylate fuming method (Cyanobloom (Foster+Freeman Ltd.) with rhodamine 6G stain). The manufacturers' recommended conditions or conditions compatible with the MVC™ 1000/D (Foster+Freeman Ltd.) were assessed with fingermarks aged for up to 8 weeks on non-porous and semi-porous substrates. Under white light, Cyanobloom generally gave better development than the one-step treatments across the substrates. Similarly when viewed under the respective luminescent conditions, Cyanobloom with rhodamine 6G stain resulted in improved contrast against the one-step treatments except on polystyrene, where PolyCyano UV and PECA Multiband gave better visualisation. Rhodamine 6G post-treatment of one-step samples did not significantly enhance the contrast of any of the one-step treatments against Cyanobloom/rhodamine 6G-treated samples. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Rare-earth doped polymer waveguides and light emitting diodes

    NASA Astrophysics Data System (ADS)

    Slooff, L. H.

    2000-11-01

    Polymer-based optical waveguide amplifiers offer a low-cost alternative for inorganic waveguide amplifiers. Due to the fact that their refractive index is almost similar to that of standard optical fibers, they can be easily coupled with existing fibers at low coupling losses. Doping the polymer with rare-earth ions that can yield optical gain is not straightforward, as the rare-earth salts are poorly soluble in the polymer matrix. This thesis studies two different approaches to dope a polymer waveguide with rare-earth ions. The first one is based on organic cage-like complexes that encapsulate the rare-earth ion and are designed to provide enough coordination sites to bind the rare-earth ion and to shield it from the surrounding matrix. Chapter 2 describes the optical properties of Er-doped organic polydentate cage complexes. The complexes show clear photoluminescence at 1.54 mm with a bandwidth of 70 nm, the highest reported for an erbium-doped material so far. The luminescence lifetime is very short (~1 ms) due to coupling to vibrational overtones of O-H and C-H bonds. Due to this short luminescence lifetime, high pump powers (~1 W) are needed for optical gain in a waveguide amplifier based on these complexes. The pump power can be reduced if the Er is excited via the aromatic part of the complex, which has a higher absorption cross section. In Chapter 3 a lissamine-functionalised neodymium complex is studied in which the highly absorbing lissamine acts as a sensitiser. The lissamine is first excited into the singlet state from which intersystem crossing to the triplet state can take place. From there it can transfer its energy to the Nd ion by a Dexter transfer mechanism. Room-temperature photoluminescence at 890, 1060, and 1340 nm from Nd is observed, together with luminescence from the lissamine sensitiser at 600 nm. Photodegradation of the lissamine sensitiser is observed, which is studied in more detail in Chapter 4. The observed change in time of the

  20. A family of entangled coordination polymers constructed from a flexible V-shaped long bicarboxylic acid and auxiliary N-donor ligands: Luminescent sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jun; College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000; Bai, Chao

    Eight Zn(II)-based coordination polymers, namely, [Zn{sub 2}L{sub 2}(2,2’-bipy)]{sub n}·nH{sub 2}O (1), [Zn{sub 2}L{sub 2}(phen)]{sub n}·nH{sub 2}O (2), [ZnL(phen)(H{sub 2}O)]{sub n} (3), [Zn{sub 3}L{sub 3}(4,4’-bipy)]{sub n} (4), [Zn{sub 2}L{sub 2}(4,4’-bipy){sub 2}]{sub n} [Zn{sub 2}L{sub 2}(H{sub 2}O){sub 2}]{sub n}·2nH{sub 2}O (5), [Zn{sub 4}L{sub 4}(bpp){sub 2}]{sub n} (6), [ZnL(bbi){sub 0.5}]{sub n} (7), [ZnL(bpz)]{sub n} (8) (H{sub 2}L=4,4’-([1,2-phenylenebis-(methylene)]bis(oxy))dibenzoic acid, 2,2’-bipy =2,2’-bipyridine, phen =1,10-phenanthroline, 4,4’-bpy=4,4’-bipyridine, bpp =1,3-bis(4-pyridyl)propane, bbi=1,4-bis(imidazol-1-yl)butane, bpz=3,3′,5,5′-tetramethyl-4,4′-bipyrazole), have been hydrothermally synthesized and structurally characterized. 1–8 display various coordination motifs with different entangled forms and conformations due to the effect of the assistant N-donor ligands. The photoluminescent properties of compounds 1–8 in solid statemore » were studied. Interestingly, 3 exhibits highly efficient luminescent sensing for Cu{sup 2+} cations and CrO{sub 4}{sup 2-} anions, as well as detection ability for the different organic solvents and nitro explosives. These results indicated that it could be utilized as a multi-responsive luminescent sensor. Furthermore, compound 3 also shows good chemical resistance to both acidity and alkalinity solutions with pH ranging from 2 to 13. Thus, multi-photofunctionality and fluorescent response to pH have been combined in the 3, which is the first example in the Zn-based hybrid materials. - Graphical abstract: Eight new Zn(II)-based coordination polymers constructed from a flexible V-shaped long bicarboxylic acid and different N-donor ligands have been hydrothermally synthesized through fixing the metal salts and the solvent systems. The photoluminescent properties of complexes 1−8 in solid state were studied. Interestingly, 3 exhibits highly efficient luminescent sensing for

  1. Nano silver diffusion behaviour on conductive polymer during doping process for high voltage application

    NASA Astrophysics Data System (ADS)

    Mohammad, A.; Mahmood, A.; Chin, K. T.; Danquah, M. K.; van Stratan, S.

    2017-06-01

    Conductive polymer had opened a new era of engineering for microelectronics and semiconductor applications. However, it is still a challenge for high voltage applications due to lower electrical conductivity compare to metals. This results tremendous energy losses during transmission and restricts its usage. In order to address such problem a novel method was investigated using nano silver particle doped iodothiophene since silver is the highest electrical conductive material. The experiments were carried out to study the organometallic diffusion behaviour of nanosilver doped iodothiophene with different concentration of iodothiophene. Five different mixing ratio between nanosilver and the solution of iodothiophene dissolved in diethyl ether were used which are 1:1.25, 1:1.5, 1:2.5, 1:3 and l:5. It was revealed that there is an effective threshold concentration of which the nano silver evenly distributed and there was no coagulation observed. These parameters laid the foundation of better doping process between the nano silver and the polymer significantly which would contribute developing conductive polymer towards high voltage application for industries that are vulnerable to corrosive environment.

  2. BIOAFFINITY SENSORS BASED ON CONDUCTING POLYMERS: A SHORT REVIEW. (R825323)

    EPA Science Inventory

    The development of new electrode materials has expanded the range and classes of detectable compounds using electroanalytical methods. Conducting electroactive polymers (CEPs) have been demonstrated to have remarkable sensing applications through their ability to be reversibly ox...

  3. Development of a dry actuation conducting polymer actuator for micro-optical zoom lenses

    NASA Astrophysics Data System (ADS)

    Kim, Baek-Chul; Kim, Hyunseok; Nguyen, H. C.; Cho, M. S.; Lee, Y.; Nam, Jae-Do; Choi, Hyouk Ryeol; Koo, J. C.; Jeong, H.-S.

    2008-03-01

    The objective of the present work is to demonstrate the efficiency and feasibility of NBR (Nitrile Butadiene Rubber) based conducting polymer actuator that is fabricated into a micro zoon lens driver. Unlike the traditional conducting polymer that normally operates in a liquid, the proposed actuator successfully provides fairly effective driving performance for the zoom lens system in a dry environment. And this paper is including the experiment results for an efficiency improvement. The result suggested by an experiment was efficient in micro optical zoom lens system. In addition, the developed design method of actuator was given consideration to design the system.

  4. Electronically conductive polymer binder for lithium-ion battery electrode

    DOEpatents

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe

    2017-05-16

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  5. Electronically conductive polymer binder for lithium-ion battery electrode

    DOEpatents

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S; Zheng, Honghe

    2014-10-07

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  6. Aromatic carboxylate effect on dimensionality of three bis(benzimidazole)-based cobalt(II) coordination polymers: Syntheses, structures and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ju-Wen; Gong, Chun-Hua; Hou, Li-Li

    2013-09-15

    Three new metal-organic coordination polymers [Co(4-bbc){sub 2}(bbbm)] (1), [Co(3,5-pdc)(bbbm)]·2H{sub 2}O (2) and [Co(1,4-ndc)(bbbm)] (3) (4-Hbbc=4-bromobenzoic acid, 3,5-H{sub 2}pdc=3,5-pyridinedicarboxylic acid, 1,4-H{sub 2}ndc=1,4-naphthalenedicarboxylic acid and bbbm=1,1-(1,4-butanediyl)bis-1H-benzimidazole) were hydrothermally synthesized and structurally characterized. Polymer 1 is a 1D chain formed by the bbbm ligands and Co{sup II} ions. Polymer 2 exhibits a 2D network with a (3·4·5)(3{sup 2}·4·5·6{sup 2}·7{sup 4}) topology. Polymer 3 possesses a 3D three-fold interpenetrating framework. The versatile structures of title polymers indicate that the aromatic carboxylates have an important influence on the dimensionality of 1–3. Moreover, the thermal stability, electrochemical and luminescent properties of 1–3 were investigated. - graphicalmore » abstract: Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were hydrothermally synthesized and structurally characterized. The aromatic carboxylates play a key role in the dimensionality of three polymers. The electrochemical and luminescent properties of three polymers were investigated. Display Omitted - Highlights: • Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were obtained. • The aromatic carboxylates have an important influence on the dimensionality of three polymers. • The electrochemical and luminescent properties of three polymers were investigated.« less

  7. Synthesis and application of nanohybrids based on upconverting nanoparticles and polymers.

    PubMed

    Cheng, Ziyong; Lin, Jun

    2015-05-01

    Lanthanide-doped upconversion nanoparticles (UCNPs) have been an emerging and exciting research field in recent years due to their unique luminescent properties of converting near-infrared light to shorter wavelength radiation. UCNPs offer excellent prospects in luminescent labeling, displays, bioimaging, bioassays, drug delivery, sensors, and anticounterfeiting applications. Along with the abundant studies and rapid progress in this area, UCNPs are promising to be a new class of luminescent probe owing to their special advantages over the conventional organic dyes and quantum dots. Among them, polymers play an important role to improve properties or endow new function of UCNPs such as for matrix materials, water solubility, linking active targeting molecules, biocompatibility, and stimuli-responsive behavior. This article briefly reviews the compositions, optical mechanisms, architectures of upconversion nanocrystals and highlights the works on various functional UCNPs/polymer nanohybrids as well as many new interesting fruits in applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Anion-conducting polymer, composition, and membrane

    DOEpatents

    Pivovar, Bryan S [Los Alamos, NM; Thorn, David L [Los Alamos, NM

    2011-11-22

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  9. Anion-conducting polymer, composition, and membrane

    DOEpatents

    Pivovar, Bryan S [Los Alamos, NM; Thorn, David L [Los Alamos, NM

    2009-09-01

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  10. Anion-conducting polymer, composition, and membrane

    DOEpatents

    Pivovar, Bryan S.; Thorn, David L.

    2010-12-07

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  11. Anion-Conducting Polymer, Composition, and Membrane

    DOEpatents

    Pivovar, Bryan S.; Thorn, David L.

    2008-10-21

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  12. Employing linear tetranuclear [Zn4(COO)4(OH)2] clusters as building subunits to construct a new Zn(II) coordination polymer with tunable luminescent properties

    NASA Astrophysics Data System (ADS)

    Li, Wu-Wu; Zhang, Zun-Ting

    2016-02-01

    A new Zn(II) coordination polymer, [Zn2(btc) (biimpy) (OH)]n (1 H3btc = 1,3,5-benzenetricarboxylic acid, biimpy = 2,6-bis(1-imdazoly)pyridine) has been successfully synthesized and characterized by elemental analysis, powder single crystal X-ray diffraction analyses. Compound 1 features a 3D framework employing linear tetranuclear [Zn4(COO)4(OH)2] cluster as building subunits. Topological analysis reveals it represents a (3,10)-connected structural topology by viewing btc3-, linear tetranuclear clusters and biimpy as 3-connected nodes, 10-connected nodes, linear linkers, respectively. Moreover, the thermal stability and luminescent property of compound 1 have been well investigated.

  13. Luminescence imaging of water during alpha particle irradiation

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Komori, Masataka; Koyama, Shuji; Toshito, Toshiyuki

    2016-05-01

    The luminescence imaging of water using the alpha particle irradiation of several MeV energy range is thought to be impossible because this alpha particle energy is far below the Cerenkov-light threshold and the secondary electrons produced in this energy range do not emit Cerenkov-light. Contrary to this consensus, we found that the luminescence imaging of water was possible with 5.5 MeV alpha particle irradiation. We placed a 2 MBq of 241Am alpha source in water, and luminescence images of the source were conducted with a high-sensitivity, cooled charge-coupled device (CCD) camera. We also carried out such imaging of the alpha source in three different conditions to compare the photon productions with that of water, in air, with a plastic scintillator, and an acrylic plate. The luminescence imaging of water was observed from 10 to 20 s acquisition, and the intensity was linearly increased with time. The intensity of the luminescence with the alpha irradiation of water was 0.05% of that with the plastic scintillator, 4% with air, and 15% with the acrylic plate. The resolution of the luminescence image of water was better than 0.25 mm FWHM. Alpha particles of 5.5 MeV energy emit luminescence in water. Although the intensity of the luminescence was smaller than that in air, it was clearly observable. The luminescence of water with alpha particles would be a new method for alpha particle detection and distribution measurements in water.

  14. Mesoscale Origin of the Enhanced Cycling-Stability of the Si-Conductive Polymer Anode for Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    Gu, Meng; Xiao, Xing-Cheng; Liu, Gao; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Ji-Guang; Liu, Jun; Browning, Nigel D.; Wang, Chong-Min

    2014-01-01

    Electrode used in lithium-ion battery is invariably a composite of multifunctional components. The performance of the electrode is controlled by the interactive function of all components at mesoscale. Fundamental understanding of mesoscale phenomenon sets the basis for innovative designing of new materials. Here we report the achievement and origin of a significant performance enhancement of electrode for lithium ion batteries based on Si nanoparticles wrapped with conductive polymer. This new material is in marked contrast with conventional material, which exhibit fast capacity fade. In-situ TEM unveils that the enhanced cycling stability of the conductive polymer-Si composite is associated with mesoscale concordant function of Si nanoparticles and the conductive polymer. Reversible accommodation of the volume changes of Si by the conductive polymer allows good electrical contact between all the particles during the cycling process. In contrast, the failure of the conventional Si-electrode is probed to be the inadequate electrical contact.

  15. Effect of oxidation agent on wood biomass in ethylene vinyl acetate conductive polymer: tensile properties, tensile fracture surface and electrical properties

    NASA Astrophysics Data System (ADS)

    Hanif, M. P. M.; Supri, A. G.; Rozyanty, A. R.; Tan, S. J.

    2017-10-01

    The wood fiber (WF) type of Pulverised Wood Filler obtained by combustion process at temperature under 700 °C for 3 hours was characterized and coated with ferric chloride (FeCl3) by ethanol solution. Both carbonized wood fiber (CWF) and carbonized wood fiber-ferric chloride (CWF-FeCl3) were used as filler in ethylene vinyl acetate (EVA) conductive polymer. The filler was coated with FeCl3 to enhance the properties of the CWF to achieve progressive mechanical and electrical properties. The CWF and CWF-FeCl3 loading were varied from 2.5 to 10.0 wt%. EVA/CWF and EVA/CWF-FeCl3 conductive polymer were processed by using Brabender Plasticoder at 160 °C with 50 rpm rotor speed for 10 min. The mechanical properties were investigated by tensile testing and the tensile fractured surface of conductive polymers was analyzed by scanning electron microscopy (SEM) analysis. Then, the electrical conductivity of conductive polymer was determined by four-point probe I-V measurement system. The EVA/CWF-FeCl3 conductive polymer showed greater electrical conductivity and tensile strength but lower elongation at break than EVA/CWF conductive polymer. SEM morphology displayed rougher surface between CWF-FeCl3 and EVA phases compared to EVA/CWF conductive polymer.

  16. Optimization of neural network for ionic conductivity of nanocomposite solid polymer electrolyte system (PEO-LiPF 6-EC-CNT)

    NASA Astrophysics Data System (ADS)

    Johan, Mohd Rafie; Ibrahim, Suriani

    2012-01-01

    In this study, the ionic conductivity of a nanocomposite polymer electrolyte system (PEO-LiPF 6-EC-CNT), which has been produced using solution cast technique, is obtained using artificial neural networks approach. Several results have been recorded from experiments in preparation for the training and testing of the network. In the experiments, polyethylene oxide (PEO), lithium hexafluorophosphate (LiPF 6), ethylene carbonate (EC) and carbon nanotubes (CNT) are mixed at various ratios to obtain the highest ionic conductivity. The effects of chemical composition and temperature on the ionic conductivity of the polymer electrolyte system are investigated. Electrical tests reveal that the ionic conductivity of the polymer electrolyte system varies with different chemical compositions and temperatures. In neural networks training, different chemical compositions and temperatures are used as inputs and the ionic conductivities of the resultant polymer electrolytes are used as outputs. The experimental data is used to check the system's accuracy following the training process. The neural network is found to be successful for the prediction of ionic conductivity of nanocomposite polymer electrolyte system.

  17. Design and synthesis of two luminescent Zn(II)-based coordination polymers with different structures regulated by different solvent system

    NASA Astrophysics Data System (ADS)

    Wu, Wei-Ping; Wen, Gui-Lin; Liao, Yi; Wang, Jun; Lu, Lu; Wu, Yu; Xie, Bin

    2016-08-01

    Two new coordination polymers (CPs) [Zn(HL)(H2O)]n (1) and [Zn3(L)2(H2O)2]n·(H2O)n (2), based on a multifunctional ligand combined carboxylate groups and a nitrogen donor group 5-(6-carboxypyridin-2-yl)isophthalic acid (H3L), have been synthesized under different solvent media and fully characterized by powder X-ray diffraction (PXRD), infrared (IR) spectra, elemental analyses (EA) and thermogravimetric analyses (TGA). Single-crystal X-ray diffraction analysis reveals that 1 shows 1D dimeric chain structure, while 2 gives a 3D dense packing framework. Topology analysis illustrates that 2 can be simplified as a 3-nodal net (4, 5, 6-connected net) with the point symbol of {44·62}{46·64}2{48·66·8}. In addition, solid state luminescent properties of two complexes have also been studied in detail, which may act as the potential optical materials.

  18. Low power, lightweight vapor sensing using arrays of conducting polymer composite chemically-sensitive resistors

    NASA Technical Reports Server (NTRS)

    Ryan, M. A.; Lewis, N. S.

    2001-01-01

    Arrays of broadly responsive vapor detectors can be used to detect, identify, and quantify vapors and vapor mixtures. One implementation of this strategy involves the use of arrays of chemically-sensitive resistors made from conducting polymer composites. Sorption of an analyte into the polymer composite detector leads to swelling of the film material. The swelling is in turn transduced into a change in electrical resistance because the detector films consist of polymers filled with conducting particles such as carbon black. The differential sorption, and thus differential swelling, of an analyte into each polymer composite in the array produces a unique pattern for each different analyte of interest, Pattern recognition algorithms are then used to analyze the multivariate data arising from the responses of such a detector array. Chiral detector films can provide differential detection of the presence of certain chiral organic vapor analytes. Aspects of the spaceflight qualification and deployment of such a detector array, along with its performance for certain analytes of interest in manned life support applications, are reviewed and summarized in this article.

  19. Thermo-reversible morphology and conductivity of a conjugated polymer network embedded in polymeric self-assembly

    NASA Astrophysics Data System (ADS)

    Han, Youngkyu; Carrillo, Jan-Michael Y.; Zhang, Zhe; Li, Yunchao; Hong, Kunlun; Sumpter, Bobby G.; Ohl, Michael; Paranthaman, Mariappan Parans; Smith, Gregory S.; Do, Changwoo

    Self-assembly of block copolymers provides opportunities to create nano hybrid materials, utilizing self-assembled micro-domains with a variety of morphology and periodic architectures as templates for functional nano-fillers. Here we report new progress towards the fabrication of a thermally responsive conducting polymer self-assembly made from a water-soluble poly(thiophene) derivative with short PEO side chains and Pluronic L62 solution in water. The structural and electrical properties of conjugated polymer-embedded nanostructures were investigated by combining SANS, SAXS, CGMD simulations, and impedance spectroscopy. The L62 solution template organizes the conjugated polymers by stably incorporating them into the hydrophilic domains thus inhibiting aggregation. The changing morphology of L62 during the micellar-to-lamellar phase transition defines the embedded conjugated polymer network. The conductivity is strongly coupled to the structural change of the templating L62 phase and exhibits thermally reversible behavior with no signs of quenching of the conductivity at high temperature. The research was sponsored by the Scientific User Facilities Division, Office of BES, U.S. DOE and Laboratory Directed Research and Development Program of ORNL, managed by UT-Battelle, LLC.

  20. Luminescent microporous metal–organic framework with functional Lewis basic sites on the pore surface: Quantifiable evaluation of luminescent sensing mechanisms towards Fe{sup 3+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Jun-Cheng; Technology Promotion Center of Nano Composite Material of Biomimetic Sensor and Detecting Technology, Preparation and Application, Anhui Provincial Laboratory West Anhui University, Anhui 237012; Guo, Rui-Li

    2016-11-15

    A systematic study has been conducted on a novel luminescent metal-organic framework, ([Zn(bpyp)(L-OH)]·DMF·2H{sub 2}O){sub n} (1), to explore its sensing mechanisms to Fe{sup 3+}. Structure analyses show that compound 1 exist pyridine N atoms and -OH groups on the pore surface for specific sensing of metal ions via Lewis acid-base interactions. On this consideration, the quenching mechanisms are studied and the processes are controlled by multiple mechanisms in which dynamic and static mechanisms are calculated, achieving the quantification evaluation of the quenching process. This work not only achieves the quantitative evaluation of the luminescence quenching but also provides certain insightsmore » into the quenching process, and the possible mechanisms explored in this work may inspire future research and design of target luminescent metal-organic frameworks (LMOFs) with specific functions. - Graphical abstract: A systematic study has been conducted on a novel luminescent metal-organic framework to explore its sensing mechanisms to Fe{sup 3+}. The quenching mechanisms are studied and the processes are controlled by multiple mechanisms in which dynamic and static mechanisms are calculated, achieving the quantification evaluation of the quenching process. - Highlights: • A novel porous luminescent MOF containing uncoordinated groups in interlayer channels was successfully synthesized. • The compound 1 can exhibit significant luminescent sensitivity to Fe{sup 3+}, which make its good candidate as luminescent sensor. • The corresponding dynamic and static quenching constants are calculated, achieving the quantification evaluation of the quenching process.« less

  1. Protic Salt Polymer Membranes: High-Temperature Water-Free Proton-Conducting Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gervasio, Dominic Francis

    2010-09-30

    This research on proton-containing (protic) salts directly addresses proton conduction at high and low temperatures. This research is unique, because no water is used for proton ionization nor conduction, so the properties of water do not limit proton fuel cells. A protic salt is all that is needed to give rise to ionized proton and to support proton mobility. A protic salt forms when proton transfers from an acid to a base. Protic salts were found to have proton conductivities that are as high as or higher than the best aqueous electrolytes at ambient pressures and comparable temperatures without ormore » with water present. Proton conductivity of the protic salts occurs providing two conditions exist: i) the energy difference is about 0.8 eV between the protic-salt state versus the state in which the acid and base are separated and 2) the chemical constituents rotate freely. The physical state of these proton-conducting salts can be liquid, plastic crystal as well as solid organic and inorganic polymer membranes and their mixtures. Many acids and bases can be used to make a protic salt which allows tailoring of proton conductivity, as well as other properties that affect their use as electrolytes in fuel cells, such as, stability, adsorption on catalysts, environmental impact, etc. During this project, highly proton conducting (~ 0.1S/cm) protic salts were made that are stable under fuel-cell operating conditions and that gave highly efficient fuel cells. The high efficiency is attributed to an improved oxygen electroreduction process on Pt which was found to be virtually reversible in a number of liquid protic salts with low water activity (< 1% water). Solid flexible non-porous composite membranes, made from inorganic polymer (e.g., 10%indium 90%tin pyrophosphate, ITP) and organic polymer (e.g., polyvinyl pyridinium phosphate, PVPP), were found that give conductivity and fuel cell performances similar to phosphoric acid electrolyte with no need for hydration

  2. Synthesis and surface characterization of electroactive conducting polymers and polyurethane coatings

    NASA Astrophysics Data System (ADS)

    Vang, Chur Kalec

    The direct electrodeposition of electroactive conducting polymers (ECPs) on active metals such as iron, steel, and aluminum is complicated by the concomitant metal oxidation that occurs at the positive potentials required for polymer formation. In the case of aluminum and its alloys, the oxide layer that forms is an insulator that blocks electron transfer and impedes polymer formation and deposition. As a result, only patchy, nonuniform polymer films are obtained. Electron transfer mediation is a well-known technique for overcoming kinetic limitations of electron transfer at metal electrodes. In this dissertation, we report the use of electron transfer mediation for the direct electrodeposition of polypyrrole onto aluminum and onto Al 2024-T3 alloy. The first few chapters focus on the electrochemistry and use of Tiron RTM (4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt) as the mediator. Electroactive conductive polymers (ECPs) were also being investigated for corrosion protection of Al alloys, with a view toward replacement of chromate-based coating systems. The use of electrochemical methods clearly indicated that the electrodeposited Ppy coatings had altered the corrosion behavior of the Al alloy. Degradation mechanisms for self-priming (unicoat), high-gloss, and fluorinated polyurethane aircraft coatings exposed to QUV/H2O radiation were carried out using linear and step-scan photoacoustic (S2-PA) FTIR spectroscopy (Chapters 7--9). FTIR spectroscopic analysis indicated that, as the depth of sampling increased from film-air to film-substrate, an increase of free carbonyl components was observed. These free carbonyl groups are indicative of polyurethane components. Exposure of the polyurethane coating to prolonged periods of extreme weathering conditions indicated a loss of both polyurethane/polyurea components at the air interface, which has lead to an increase of disordered hydrogen-bonding formations. Contact angle measurement further indicated that as

  3. AC/DC electrical conduction and dielectric properties of PMMA/PVAc/C60 down-shifting nanocomposite films

    NASA Astrophysics Data System (ADS)

    El-Bashir, S. M.; Alwadai, N. M.; AlZayed, N.

    2018-02-01

    Polymer nanocomposite films were prepared by doping fullerene C60 in polymer blend composed of polymethacrylate/polyvinyl acetate blends (PMMA/PVAc) using solution cast technique. The films were characterized by differential scanning calorimeter (DSC), Transmission electron microscope (TEM), DC/AC electrical conductivity and dielectric measurements in the frequency range (100 Hz- 1 MHz). The glass transition temperature, Tg, was increased by increasing the concentration of fullerene C60; this property reflects the increase of thermal stability by increasing the nanofiller content. The DC and AC electrical conductivities were enhanced by increasing C60 concentration due to the electron hopping or tunneling between filled and empty localized states above Tg. The relaxation time was determined from the αβ -relaxations and found to be attenuated by increasing the temperature as a typical behavior of amorphous polymers. The calculated values of thermodynamic parameters revealed the increase of molecular stability by increasing the doping concentration; this feature supports the application of PMMA/PVAc/C60 nanocomposite films in a wide scale of solar energy conversion applications such as luminescent down-shifting (LDS) coatings for photovoltaic cells.

  4. Metal-conductive polymer hybrid nanostructures: preparation and electrical properties of palladium-polyimidazole nanowires

    NASA Astrophysics Data System (ADS)

    Al-Hinai, Mariam; Hassanien, Reda; Watson, Scott M. D.; Wright, Nicholas G.; Houlton, Andrew; Horrocks, Benjamin R.

    2016-03-01

    A simple, convenient method for the formation of hybrid metal/conductive polymer nanostructures is described. Polyimidazole (PIm) has been templated on λ-DNA via oxidative polymerisation of imidazole using FeCl3 to produce conductive PIm/DNA nanowires. The PIm/DNA nanowires were decorated with Pd (Pd/PIm/DNA) by electroless reduction of {{{{PdCl}}}4}2- with NaBH4 in the presence of PIm/DNA; the choice of imidazole was motivated by the potential Pd(II) binding site at the pyridinic N atom. The formation of PIm/DNA and the presence of metallic Pd on Pd/PIm/DNA nanowires were verified by FTIR, UV-vis and XPS spectroscopy techniques. AFM studies show that the nanowires have diameters in the range 5-45 nm with a slightly greater mean diameter (17.1 ± 0.75 nm) for the Pd-decorated nanowires than the PIm/DNA nanowires (14.5 ± 0.89 nm). After incubation for 24 h in the polymerisation solution, the PIm/DNA nanowires show a smooth, uniform morphology, which is retained after decoration with Pd. Using a combination of scanned conductance microscopy, conductive AFM and two-terminal measurements we show that both types of nanowire are conductive and that it is possible to discriminate different possible mechanisms of transport. The conductivity of the Pd/PIm/DNA nanowires, (0.1-1.4 S cm-1), is comparable to the PIm/DNA nanowires (0.37 ± 0.029 S cm-1). In addition, the conductance of Pd/PIm/DNA nanowires exhibits Arrhenius behaviour (E a = 0.43 ± 0.02 eV) as a function of temperature in contrast to simple Pd/DNA nanowires. These results indicate that although the Pd crystallites on Pd/PIm/DNA nanowires decorate the PIm polymer, the major current pathway is through the polymer rather than the Pd.

  5. Electronically conductive polymer binder for lithium-ion battery electrode

    DOEpatents

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2015-07-07

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  6. Electronically conductive polymer binder for lithium-ion battery electrode

    DOEpatents

    Liu, Gao; Battaglia, Vincent S.; Park, Sang -Jae

    2015-10-06

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  7. Electronically conductive polymer binder for lithium-ion battery electrode

    DOEpatents

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2017-08-01

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  8. Self-assemble nanoparticles based on polypeptides containing C-terminal luminescent Pt-cysteine complex

    NASA Astrophysics Data System (ADS)

    Vlakh, E. G.; Grachova, E. V.; Zhukovsky, D. D.; Hubina, A. V.; Mikhailova, A. S.; Shakirova, J. R.; Sharoyko, V. V.; Tunik, S. P.; Tennikova, T. B.

    2017-02-01

    The growing attention to the luminescent nanocarriers is strongly stimulated by their potential application as drug delivery systems and by the necessity to monitor their distribution in cells and tissues. In this communication we report on the synthesis of amphiphilic polypeptides bearing C-terminal phosphorescent label together with preparation of nanoparticles using the polypeptides obtained. The approach suggested is based on a unique and highly technological process where the new phosphorescent Pt-cysteine complex serves as initiator of the ring-opening polymerization of α-amino acid N-carboxyanhydrides to obtain the polypeptides bearing intact the platinum chromophore covalently bound to the polymer chain. It was established that the luminescent label retains unchanged its emission characteristics not only in the polypeptides but also in more complicated nanoaggregates such as the polymer derived amphiphilic block-copolymers and self-assembled nanoparticles. The phosphorescent nanoparticles display no cytotoxicity and hemolytic activity in the tested range of concentrations and easily internalize into living cells that makes possible in vivo cell visualization, including prospective application in time resolved imaging and drug delivery monitoring.

  9. Cooperative loading of multisite receptors with lanthanide containers: an approach for organized luminescent metallopolymers.

    PubMed

    Babel, Lucille; Guénée, Laure; Besnard, Céline; Eliseeva, Svetlana V; Petoud, Stéphane; Piguet, Claude

    2018-01-14

    Metal-containing (bio)organic polymers are materials of continuously increasing importance for applications in energy storage and conversion, drug delivery, shape-memory items, supported catalysts, organic conductors and smart photonic devices. The embodiment of luminescent components provides a revolution in lighting and signaling with the ever-increasing development of polymeric light-emitting devices. Despite the unique properties expected from the introduction of optically and magnetically active lanthanides into organic polymers, the deficient control of the metal loading currently limits their design to empirical and poorly reproducible materials. We show here that the synthetic efforts required for producing soluble multi-site host systems L k are largely overcome by the virtue of reversible thermodynamics for mastering the metal loading with the help of only two parameters: (1) the affinity of the luminescent lanthanide container for a single binding site and (2) the cooperative effect which modulates the successive fixation of metallic units to adjacent sites. When unsymmetrical perfluorobenzene-trifluoroacetylacetonate co-ligands (pbta - ) are selected for balancing the charge of the trivalent lanthanide cations, Ln 3+ , in six-coordinate [Ln(pbta) 3 ] containers, the explored anti-cooperative complexation processes induce nearest-neighbor intermetallic interactions twice as large as thermal energy at room temperature ( RT = 2.5 kJ mol -1 ). These values have no precedent when using standard symmetrical containers and they pave the way for programming metal alternation in luminescent lanthanidopolymers.

  10. Application of conductive polymer analysis for wood and woody plant identifications

    Treesearch

    A. Dan Wilson; D.G. Lester; Charisse S. Oberle

    2005-01-01

    An electronic aroma detection (EAD) technology known as conductive polymer analysis (CPA) was evaluated as a means of identifying and discriminating woody samples of angiosperms and gymnosperms using an analytical instrument (electronic nose) that characterizes the aroma profiles of volatiles released from excised wood into sampled headspace. The instrument measures...

  11. Conductive polymer sensor arrays for smart orthopaedic implants

    NASA Astrophysics Data System (ADS)

    Micolini, Carolina; Holness, F. B.; Johnson, James A.; Price, Aaron D.

    2017-04-01

    This study proposes and demonstrates the design, implementation, and characterization of a 3D-printed smartpolymer sensor array using conductive polyaniline (PANI) structures embedded in a polymeric substrate. The piezoresistive characteristics of PANI were studied to evaluate the efficacy of the manufacturing of an embedded pressure sensor. PANI's stability throughout loading and unloading cycles together with the response to incremental loading cycles was investigated. It is demonstrated that this specially developed multi-material additive manufacturing process for polyaniline is a good candidate for the manufacture of implant components with smart-polymer sensors embedded for the analysis of joint loads in orthopaedic implants.

  12. Layered conductive polymer on nylon membrane templates for high performance, thin-film supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Shi, HaoTian Harvey; Naguib, Hani E.

    2016-04-01

    Flexible Thin-film Electrochemical Capacitors (ECs) are emerging technology that plays an important role as energy supply for various electronics system for both present era and the future. Intrinsically conductive polymers (ICPs) are promising pseudo-capacitive materials as they feature both good electrical conductivity and high specific capacitance. This study focuses on the construction and characterization of ultra-high surface area porous electrodes based on coating of nano-sized conductive polymer materials on nylon membrane templates. Herein, a novel nano-engineered electrode material based on nylon membranes was presented, which allows the creation of super-capacitor devices that is capable of delivering competitive performance, while maintaining desirable mechanical characteristics. With the formation of a highly conductive network with the polyaniline nano-layer, the electrical conductivity was also increased dramatically to facilitate the charge transfer process. Cyclic voltammetry and specific capacitance results showed promising application of this type of composite materials for future smart textile applications.

  13. Thermoreversible Morphology and Conductivity of a Conjugated Polymer Network Embedded in Block Copolymer Self-Assemblies

    DOE PAGES

    Han, Youngkyu; Carrillo, Jan-Michael Y.; Zhang, Zhe; ...

    2016-07-19

    Self-assembly of block copolymers provides numerous opportunities to create functional materials, utilizing self-assembled microdomains with a variety of morphology and periodic architectures as templates for functional nanofillers. Here new progress is reported toward the fabrication of thermally responsive and electrically conductive polymeric self-assemblies made from a water-soluble poly(thiophene) derivative with short poly(ethylene oxide) side chains and Pluronic L62 block copolymer solution in water. The structural and electrical properties of conjugated polymer-embedded self-assembled architectures are investigated by combining small-angle neutron and X-ray scattering, coarse-grained molecular dynamics simulations, and impedance spectroscopy. The L62 solution template organizes the conjugated polymers by stably incorporatingmore » them into the hydrophilic domains thus inhibiting aggregation. The changing morphology of L62 during the micellarto- lamellar phase transition defines the embedded conjugated polymer network. As a result, the conductivity is strongly coupled to the structural change of the templating L62 phase and exhibits thermally reversible behavior with no signs of quenching of the conductivity at high temperature. In conclusion, this study shows promise for enabling more flexibility in processing and utilizing water-soluble conjugated polymers in aqueous solutions for self-assembly based fabrication of stimuli-responsive nanostructures and sensory materials.« less

  14. Thermoreversible Morphology and Conductivity of a Conjugated Polymer Network Embedded in Block Copolymer Self-Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Youngkyu; Carrillo, Jan-Michael Y.; Zhang, Zhe

    Self-assembly of block copolymers provides numerous opportunities to create functional materials, utilizing self-assembled microdomains with a variety of morphology and periodic architectures as templates for functional nanofillers. Here new progress is reported toward the fabrication of thermally responsive and electrically conductive polymeric self-assemblies made from a water-soluble poly(thiophene) derivative with short poly(ethylene oxide) side chains and Pluronic L62 block copolymer solution in water. The structural and electrical properties of conjugated polymer-embedded self-assembled architectures are investigated by combining small-angle neutron and X-ray scattering, coarse-grained molecular dynamics simulations, and impedance spectroscopy. The L62 solution template organizes the conjugated polymers by stably incorporatingmore » them into the hydrophilic domains thus inhibiting aggregation. The changing morphology of L62 during the micellarto- lamellar phase transition defines the embedded conjugated polymer network. As a result, the conductivity is strongly coupled to the structural change of the templating L62 phase and exhibits thermally reversible behavior with no signs of quenching of the conductivity at high temperature. In conclusion, this study shows promise for enabling more flexibility in processing and utilizing water-soluble conjugated polymers in aqueous solutions for self-assembly based fabrication of stimuli-responsive nanostructures and sensory materials.« less

  15. Ion conducting polymers and polymer blends for alkali metal ion batteries

    DOEpatents

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  16. Visible-light active conducting polymer nanostructures with superior photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ghosh, Srabanti; Kouame, Natalie Amoin; Remita, Samy; Ramos, Laurence; Goubard, Fabrice; Aubert, Pierre-Henri; Dazzi, Alexandre; Deniset-Besseau, Ariane; Remita, Hynd

    2015-12-01

    The development of visible-light responsive photocatalysts would permit more efficient use of solar energy, and thus would bring sustainable solutions to many environmental issues. Conductive polymers appear as a new class of very active photocatalysts under visible light. Among them poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the most promising conjugated polymer with a wide range of applications. PEDOT nanostructures synthesized in soft templates via chemical oxidative polymerization demonstrate unprecedented photocatalytic activities for water treatment without the assistance of sacrificial reagents or noble metal co-catalysts and turn out to be better than TiO2 as benchmark catalyst. The PEDOT nanostructures exhibit a narrow band gap (E = 1.69 eV) and are characterized by excellent ability to absorb light in visible and near infrared region. The novel PEDOT-based photocatalysts are very stable with cycling and can be reused without appreciable loss of activity. Interestingly, hollow micrometric vesicular structures of PEDOT are not effective photocatalysts as compared to nanometric spindles suggesting size and shape dependent photocatalytic properties. The visible-light active photocatalytic properties of the polymer nanostructures present promising applications in solar light harvesting and broader fields.

  17. Learning from Natural Nacre: Constructing Layered Polymer Composites with High Thermal Conductivity.

    PubMed

    Pan, Guiran; Yao, Yimin; Zeng, Xiaoliang; Sun, Jiajia; Hu, Jiantao; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping

    2017-09-27

    Inspired by the microstructures of naturally layered and highly oriented materials, such as natural nacre, we report a thermally conductive polymer composite that consists of epoxy resin and Al 2 O 3 platelets deposited with silver nanoparticles (AgNPs). Owing to their unique two-dimensional structure, Al 2 O 3 platelets are stacked together via a hot-pressing technique, resulting in a brick-and-mortar structure, which is similar to the one of natural nacre. Moreover, the AgNPs deposited on the surfaces of the Al 2 O 3 platelets act as bridges that link the adjacent Al 2 O 3 platelets due to the reduced melting point of the AgNPs. As a result, the polymer composite with 50 wt % filler achieves a maximum thermal conductivity of 6.71 W m -1 K -1 . In addition, the small addition of AgNPs (0.6 wt %) minimally affects the electrical insulation of the composites. Our bioinspired approach will find uses in the design and fabrication of thermally conductive materials for thermal management in modern electronics.

  18. Synthesis, crystal structure, and luminescent properties of two coordination polymers based on 1,4-phenylenediacetic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Meili; Ren, Yixia; Ma, Zhenzhen; Qiao, Lei

    2017-06-01

    Two coordination polymers, [Zn(pda)(bib)]n (1) and [Cd(pda)0.5(bib)Cl]n (2)]. (H2pda = 1,4-phenylenediacetic acid, bib = 1,2-bis(imidazol-1-ylmethyl)benzene), have been synthesized by using Zn(II)/Cd(II) salts with two flexible ligands pda and bib under hydrothermal conditions. Their structures have been characterized by elemental analysis, IR spectroscopy, single-crystal X-ray crystallography and powder X-ray diffraction (PXRD) analysis. Due to the coordination geometry around the metal ions and the diverse coordination modes of the flexible ligands, the obtained complex show diverse structures. In the structure of 1, a pair of bib ligands connect two Zn(II) atoms give rise a 22-membered ring, which is further extended by pda ligands in bidentate coordination mode leading a ring-containing 2D layer. In 2, bib ligands join [Cd2Cl2]2+ dimmers generate 1D polymeric ribbon, the pda ligands further extend such ribbon forming a 2D layer network containing rectangular windows, which discovers the effect of the central metal ions on the formation of metal-organic frameworks. In additional, luminescent properties of two complexes have also been studied, they could be potential fluorescence materials.

  19. How the type of input function affects the dynamic response of conducting polymer actuators

    NASA Astrophysics Data System (ADS)

    Xiang, Xingcan; Alici, Gursel; Mutlu, Rahim; Li, Weihua

    2014-10-01

    There has been a growing interest in smart actuators typified by conducting polymer actuators, especially in their (i) fabrication, modeling and control with minimum external data and (ii) applications in bio-inspired devices, robotics and mechatronics. Their control is a challenging research problem due to the complex and nonlinear properties of these actuators, which cannot be predicted accurately. Based on an input-shaping technique, we propose a new method to improve the conducting polymer actuators’ command-following ability, while minimizing their electric power consumption. We applied four input functions with smooth characteristics to a trilayer conducting polymer actuator to experimentally evaluate its command-following ability under an open-loop control strategy and a simulated feedback control strategy, and, more importantly, to quantify how the type of input function affects the dynamic response of this class of actuators. We have found that the four smooth inputs consume less electrical power than sharp inputs such as a step input with discontinuous higher-order derivatives. We also obtained an improved transient response performance from the smooth inputs, especially under the simulated feedback control strategy, which we have proposed previously [X Xiang, R Mutlu, G Alici, and W Li, 2014 “Control of conducting polymer actuators without physical feedback: simulated feedback control approach with particle swarm optimization’, Journal of Smart Materials and Structure, 23]. The idea of using a smooth input command, which results in lower power consumption and better control performance, can be extended to other smart actuators. Consuming less electrical energy or power will have a direct effect on enhancing the operational life of these actuators.

  20. Study of Swift Heavy Ion Modified Conducting Polymer Composites for Application as Gas Sensor

    PubMed Central

    Srivastava, Alok; Singh, Virendra; Dhand, Chetna; Kaur, Manindar; Singh, Tejvir; Witte, Karin; Scherer, Ulrich W.

    2006-01-01

    A polyaniline-based conducting composite was prepared by oxidative polymerisation of aniline in a polyvinylchloride (PVC) matrix. The coherent free standing thin films of the composite were prepared by a solution casting method. The polyvinyl chloride-polyaniline composites exposed to 120 MeV ions of silicon with total ion fluence ranging from 1011 to 1013 ions/cm2, were observed to be more sensitive towards ammonia gas than the unirradiated composite. The response time of the irradiated composites was observed to be comparably shorter. We report for the first time the application of swift heavy ion modified insulating polymer conducting polymer (IPCP) composites for sensing of ammonia gas.

  1. Sulfonated poly(ether ether ketone)/polypyrrole core-shell nanofibers: a novel polymeric adsorbent/conducting polymer nanostructures for ultrasensitive gas sensors.

    PubMed

    Wang, Wei; Li, Zhenyu; Jiang, Tingting; Zhao, Zhiwei; Li, Ye; Wang, Zhaojie; Wang, Ce

    2012-11-01

    Conducting polymers-based gas sensors have attracted increasing research attention these years. The introduction of inorganic sensitizers (noble metals or inorganic semiconductors) within the conducting polymers-based gas sensors has been regarded as the generally effective route for further enhanced sensors. Here we demonstrate a novel route for highly-efficient conducting polymers-based gas sensors by introduction of polymeric sensitizers (polymeric adsorbent) within the conducting polymeric nanostructures to form one-dimensional polymeric adsorbent/conducting polymer core-shell nanocomposites, via electrospinning and solution-phase polymerization. The adsorption effect of the SPEEK toward NH₃ can facilitate the mass diffusion of NH₃ through the PPy layers, resulting in the enhanced sensing signals. On the basis of the SPEEK/PPy nanofibers, the sensors exhibit large gas responses, even when exposed to very low concentration of NH₃ (20 ppb) at room temperature.

  2. Long conducting polymer nanonecklaces with a `beads-on-a-string' morphology: DNA nanotube-template synthesis and electrical properties

    NASA Astrophysics Data System (ADS)

    Chen, Guofang; Mao, Chengde

    2016-05-01

    Complex and functional nanostructures are always desired. Herein, we present the synthesis of novel long conducting polymer nanonecklaces with a `beads-on-a-string' morphology by the DNA nanotube-template approach and in situ oxidative polymerization of the 3-methylthiophene monomer with FeCl3 as the oxidant/catalyst. The length of the nanonecklaces is up to 60 μm, and the polymer beads of around 20-25 nm in diameter are closely packed along the axis of the DNA nanotube template with a density of ca. 45 particles per μm. The formation of porous DNA nanotubes impregnated with FeCl3 was also demonstrated as intermediate nanostructures. The mechanisms for the formation of both the porous DNA nanotubes and the conducting polymer nanonecklaces are discussed in detail. The as-synthesized polymer/DNA nanonecklaces exhibit good electrical properties.Complex and functional nanostructures are always desired. Herein, we present the synthesis of novel long conducting polymer nanonecklaces with a `beads-on-a-string' morphology by the DNA nanotube-template approach and in situ oxidative polymerization of the 3-methylthiophene monomer with FeCl3 as the oxidant/catalyst. The length of the nanonecklaces is up to 60 μm, and the polymer beads of around 20-25 nm in diameter are closely packed along the axis of the DNA nanotube template with a density of ca. 45 particles per μm. The formation of porous DNA nanotubes impregnated with FeCl3 was also demonstrated as intermediate nanostructures. The mechanisms for the formation of both the porous DNA nanotubes and the conducting polymer nanonecklaces are discussed in detail. The as-synthesized polymer/DNA nanonecklaces exhibit good electrical properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01603k

  3. Surface electroluminescence phenomena correlated with trapping parameters of insulating polymers

    NASA Astrophysics Data System (ADS)

    Zhang, Guan-Jun; Yang, Kai; Dong, Ming; Zhao, Wen-Bin; Yan, Zhang

    2007-12-01

    Electroluminescence (EL) phenomena are closely linked to the space charge and degradation in insulating polymers, and dominated by the luminescence and trap centers. EL emission has been promising in defining the onset of electrical aging and in the investigation of dissipation mechanisms. Generally, polymeric degradation reveals the increment of the density of luminescence and trap centers, so a fundamental study is proposed to correlate the EL emission of insulating polymers and their trapping parameters. A sensitive photon counting system is constructed to detect the weak EL. The time- and phase-resolved EL characteristics from different polymers (LDPE, PP and PTFE) are investigated with a planar electrode configuration under stepped ac voltage in vacuum. In succession, each sample is charged with exposing to multi-needle corona discharge, and then its surface potential decay is continuously recorded at a constant temperature. Based on the isothermal relaxation current theory, the energy level and density of both electron and hole trap distribution in the surface layer of each polymer is obtained. It is preliminarily concluded that EL phenomena are strongly affected by the trap properties, and for different polymers, its EL intensity is in direct contrast to its surface trap density, and this can be qualitatively explained by the trapping and detrapping sequence of charge carriers in trap centers with different energy level.

  4. Conductivity and Thermal Studies on Plasticized Nano-Composite Solid Polymer Electrolyte, Peo: Ec: LiTf: Al2O3

    NASA Astrophysics Data System (ADS)

    Pitawala, H. M. J. C.; Dissanayake, M. A. K. L.; Seneviratne, V. A.

    2006-06-01

    Poly (ethylene oxide)-(PEO)-based composite polymer electrolytes are of great interest for solid-state-electrochemical devices. This paper presents the results of a preliminary study on electrical conductivity and thermal behavior (DSC) of composite polymer electrolytes (CPEs) containing PEO: LiCF3SO3 complexed with plasticizer (EC) and incorporating nano-sized particles of the ceramic filler Al2O3. Ionic conductivity enhancement in these electrolytes has been obtained by optimizing the combined effect of the plasticizer and the ceramic filler. Nano-composite, plasticized polymer electrolyte films (400-600μm) were prepared by common solvent casting method. It was revealed that the presence of the Al2O3 filler in PEO: LiTf polymer electrolyte significantly enhanced the ionic conductivity in the temperature range of interest, giving the maximum conductivity for (PEO)9LiTf+15 wt.% Al2O3 CPE [σRT (max)=2×10-5 S cm-1]. It was also observed that the addition of plasticizer (EC) to this electrolyte up to a concentration of 50 wt. % EC, showed a further conductivity enhancement [σRT (max) = 1.5×10-4 S cm-1]. It is suggested that the conductivity is enhanced mainly by two mechanisms. The plasticizer (EC) would directly contribute by reducing the crystallinity and increasing the amorphous phase content of the polymer electrolytes. The ceramic filler (Al2O3) would contribute to conductivity enhancement by creating additional sites to migrating ionic species through transient bonding with O/OH groups in the filler surface. The decrease of Tg values of plasticized CPE systems seen in the DSC thermograms points towards the improved segmental flexibility of polymer chains, increasing the mobility of conducting ions.

  5. Luminescent zinc and cadmium complexes incorporating 1,3,5-benzenetricarboxylate and a protonated kinked organodiimine: From a hydrogen-bonded layer motif to thermally robust two-dimensional coordination polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braverman, Maxwell A.; Supkowski, Ronald M.; LaDuca, Robert L.

    2007-06-15

    Hydrothermal treatment of zinc chloride, 1,3,5-benzenetricarboxylic acid (H{sub 3}BTC), and 4,4'-dipyridylamine (dpa) afforded two different complexes depending on reaction conditions, which were characterized by single-crystal X-ray diffraction, infrared spectroscopy, and elemental analysis. Under acidic conditions, a discrete neutral molecular species with formulation [Zn(HBTC){sub 2}(Hdpa){sub 2}] (1) was isolated, which aggregates into two-dimensional hydrogen-bonded layers. Under more basic conditions, the two-dimensional layered coordination polymer [Zn(BTC)(Hdpa)] (2) is obtained, which manifests covalent linkage of [Zn(BTC)(Hdpa)] serpentine chain motifs into 3-connected undulating 4.8{sup 2} topology 2-D layers. Both 1 and 2 possess tetrahedral coordination at Zn. Use of cadmium nitrate in the synthesismore » resulted in [Cd(BTC)(H{sub 2}O)(Hdpa)] (3), which displays a similar layer topology as 2 but with significant adjustments imparted by octahedral coordination at Cd. In all cases, supramolecular hydrogen bonding promoted by Hdpa ligands provide an important assistive structure-directing role. All materials display blue luminescence upon excitation with ultraviolet light, ascribed to intraligand transitions. Crystallographic data: 1: monoclinic, C2/c, a=25.389(6) A, b=9.811(2) A, c=17.309(4) A, and {beta}=128.957(3){sup o}, 2: monoclinic, P2{sub 1}/c, a=13.212(17)c, b=17.15(2) A, c=7.506(10) A, and {beta}=93.71(2){sup o}, and 3: monoclinic, C2/c, a=14.241(6) A, b=15.218(6) A, c=17.976(7) A, and {beta}=109.330(6){sup o}. - Graphical abstract: Hydrothermal synthesis has afforded a family of luminescent complexes based on divalent d {sup 10} cations with 1,3,5-benzenetricarboxylate (BTC) and 4,4'-dipyridylamine (dpa) ligands. [Zn(HBTC){sub 2}(Hdpa){sub 2}] (1) is a discrete neutral molecular species. [Zn(BTC)(Hdpa)] (2, pictured) and [Cd(BTC)(H{sub 2}O)(Hdpa)] (3) are 2-D coordination polymers with different morphologies depending on coordination

  6. Electrochemical synthesis of Sm2O3 nanoparticles: Application in conductive polymer composite films for supercapacitors.

    PubMed

    Mohammad Shiri, Hamid; Ehsani, Ali; Jalali Khales, Mina

    2017-11-01

    A novel electrosynthetic method was introduced to synthesize of Sm 2 O 3 nanoparticles and furthermore, for improving the electrochemical performance of conductive polymer, hybrid POAP/Sm 2 O 3 films have then been fabricated by POAP electropolymerization in the presence of Sm 2 O 3 nanoparticles as active electrodes for electrochemical supercapacitors. The structure, morphology, chemical composition of Sm 2 O 3 nanoparticles was examined. Surface and electrochemical analyses have been used for characterization of Sm 2 O 3 and POAP/Sm 2 O 3 composite films. Different electrochemical methods including galvanostatic charge discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy have been applied to study the system performance. The supercapacity behavior of the composite film was attributed to the (i) high active surface area of the composite, (ii) charge transfer along the polymer chain due to the conjugation form of the polymer and finally (iii) synergism effect between conductive polymer and Sm 2 O 3 nanoparticles. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Electrical conductivity studies on Ammonium bromide incorporated with Zwitterionic polymer blend electrolyte for battery application

    NASA Astrophysics Data System (ADS)

    Parameswaran, V.; Nallamuthu, N.; Devendran, P.; Nagarajan, E. R.; Manikandan, A.

    2017-06-01

    Solid polymer blend electrolytes are widely studied due to their extensive applications particularly in electrochemical devices. Blending polymer makes the thermal stability, higher mechanical strength and inorganic salt provide ionic charge carrier to enhance the conductivity. In these studies, 50% polyvinyl alcohol (PVA), 50% poly (N-vinyl pyrrolidone) (PVP) and 2.5% L-Asparagine mixed with different ratio of the Ammonium bromide (NH4Br), have been synthesized using solution casting technique. The prepared PVA/PVP/L-Asparagine/doped-NH4Br polymer blend electrolyte films have been characterized by various analytical methods such as FT-IR, XRD, impedance spectroscopy, TG-DSC and scanning electron microscopy. FT-IR, XRD and TG/DSC analysis revealed the structural and thermal behavior of the complex formation between PVA/PVP/L-Asparagine/doped-NH4Br. The ionic conductivity and the dielectric properties of PVA/PVP/L-Asparagine/doped-NH4Br polymer blend electrolyte films were examined using impedance analysis. The highest ionic conductivity was found to be 2.34×10-4 S cm-1 for the m.wt. composition of 50%PVA:50%PVP:2.5%L-Asparagine:doped 0.15 g NH4Br at ambient temperature. Solid state proton battery is fabricated and the observed open circuit voltage is 1.1 V and its performance has been studied.

  8. Highly Luminescent Dual Mode Polymeric Nanofiber-Based Flexible Mat for White Security Paper and Encrypted Nanotaggant Applications.

    PubMed

    Gangwar, Amit Kumar; Gupta, Ashish; Kedawat, Garima; Kumar, Pawan; Singh, Bhanu Pratap; Singh, Nidhi; Srivastava, Avanish K; Dhakate, Sanjay R; Gupta, Bipin Kumar

    2018-05-23

    Increasing counterfeiting of important data, currency, stamp papers, branded products etc., has become a major security threat which could lead to serious damage to the global economy. Consequences of such damage are compelling for researchers to develop new high-end security features to address full-proof solutions. Herein, we report a dual mode flexible highly luminescent white security paper and nanotaggants composed of nanophosphors incorporated in polymer matrix to form a nanofiber-based mat for anti-counterfeiting applications. The dual mode nanofibers are fabricated by electrospinning technique by admixing the composite of NaYF 4 :Eu 3+ @NaYF 4 :Yb 3+ , Er 3+ nanophosphors in the polyvinyl alcohol solution. This flexible polymer mat derived from nanofibers appears white in daylight, while emitting strong red (NaYF 4 :Eu 3+ ) and green (NaYF 4 :Yb 3+ , Er 3+ ) colors at excitation wavelengths of 254 nm and 980 nm, respectively. These luminescent nanofibers can also be encrypted as a new class of nanotaggants to protect confidential documents. These obtained results suggest that highly luminescent dual mode polymeric nanofiber-based flexible white security paper and nanotaggants could offer next-generation high-end unique security features against counterfeiting. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Morphology and conductivity of PEO-based polymers having various end functional groups

    NASA Astrophysics Data System (ADS)

    Jung, Ha Young; Mandal, Prithwiraj; Park, Moon Jeong

    Poly(ethylene oxide) (PEO)-based polymers have been considered most promising candidates of polymer electrolytes for lithium batteries owing to the high ionic conductivity of PEO/lithium salt complexes. This positive aspect prompted researchers to investigate PEO-containing block copolymers prepared by linking mechanically robust block to PEO covalently. Given that the microphase separation of block copolymers can affect both mechanical properties and ion transport properties, various strategies have been reported to tune the morphology of PEO-containing block copolymers. In the present study, we describe a simple means for modulating the morphologies of PEO-based block copolymers with an aim to improve ion transport properties. By varying terminal groups of PEO in block copolymers, the disordered morphology can be readily transformed into ordered lamellae or gyroid phases, depending on the type and number density of end group. In particular, the existence of terminal groups resulted in a large reduction in crystallinity of PEO chains and thereby increasing room temperature ionic conductivity.

  10. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering.

    PubMed

    Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P; Morshed, Mohammad; Nasr-Esfahani, Mohammad Hossein; Baharvand, Hossein; Kiani, Sahar; Al-Deyab, Salem S; Ramakrishna, Seeram

    2011-04-01

    Among the numerous attempts to integrate tissue engineering concepts into strategies to repair nearly all parts of the body, neuronal repair stands out. This is partially due to the complexity of the nervous anatomical system, its functioning and the inefficiency of conventional repair approaches, which are based on single components of either biomaterials or cells alone. Electrical stimulation has been shown to enhance the nerve regeneration process and this consequently makes the use of electrically conductive polymers very attractive for the construction of scaffolds for nerve tissue engineering. In this review, by taking into consideration the electrical properties of nerve cells and the effect of electrical stimulation on nerve cells, we discuss the most commonly utilized conductive polymers, polypyrrole (PPy) and polyaniline (PANI), along with their design and modifications, thus making them suitable scaffolds for nerve tissue engineering. Other electrospun, composite, conductive scaffolds, such as PANI/gelatin and PPy/poly(ε-caprolactone), with or without electrical stimulation, are also discussed. Different procedures of electrical stimulation which have been used in tissue engineering, with examples on their specific applications in tissue engineering, are also discussed. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Multiscale Modeling of Thermal Conductivity of Polymer/Carbon Nanocomposites

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Frankland, Sarah-Jane V.; Hinkley, Jeffrey A.; Gates, Thomas S.

    2010-01-01

    Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between nanoparticles and amorphous and crystalline polymer matrices. Bulk thermal conductivities of the nanocomposites were then estimated using an established effective medium approach. To study functionalization, oligomeric ethylene-vinyl alcohol copolymers were chemically bonded to a single wall carbon nanotube. The results, in a poly(ethylene-vinyl acetate) matrix, are similar to those obtained previously for grafted linear hydrocarbon chains. To study the effect of noncovalent functionalization, two types of polyethylene matrices. -- aligned (extended-chain crystalline) vs. amorphous (random coils) were modeled. Both matrices produced the same interfacial thermal resistance values. Finally, functionalization of edges and faces of plate-like graphite nanoparticles was found to be only modestly effective in reducing the interfacial thermal resistance and improving the composite thermal conductivity

  12. Electron-donor dopant, method of improving conductivity of polymers by doping therewith, and a polymer so treated

    DOEpatents

    Liepins, R.; Aldissi, M.

    1984-07-27

    Polymers with conjugated backbones, both polyacetylene and polyaromatic heterocyclic types, are doped with electron-donor agents to increase their electrical conductivity. The electron-donor agents are either electride dopants made in the presence of lithium or dopants derived from alkalides made in the presence of lithium. The dopants also contain a metal such as cesium and a trapping agent such as a crown ether.

  13. Electron-donor dopant, method of improving conductivity of polymers by doping therewith, and a polymer so treated

    DOEpatents

    Liepins, Raimond; Aldissi, Mahmoud

    1988-01-01

    Polymers with conjugated backbones, both polyacetylene and polyaromatic heterocyclic types, are doped with electron-donor agents to increase their electrical conductivity. The electron-donor agents are either electride dopants made in the presence of lithium or dopants derived from alkalides made in the presence of lithium. The dopants also contain a metal such as cesium and a trapping agent such as a crown ether.

  14. High through-plane thermal conduction of graphene nanoflake filled polymer composites melt-processed in an L-shape kinked tube.

    PubMed

    Jung, Haejong; Yu, Seunggun; Bae, Nam-Seok; Cho, Suk Man; Kim, Richard Hahnkee; Cho, Sung Hwan; Hwang, Ihn; Jeong, Beomjin; Ryu, Ji Su; Hwang, Junyeon; Hong, Soon Man; Koo, Chong Min; Park, Cheolmin

    2015-07-22

    Design of materials to be heat-conductive in a preferred direction is a crucial issue for efficient heat dissipation in systems using stacked devices. Here, we demonstrate a facile route to fabricate polymer composites with directional thermal conduction. Our method is based on control of the orientation of fillers with anisotropic heat conduction. Melt-compression of solution-cast poly(vinylidene fluoride) (PVDF) and graphene nanoflake (GNF) films in an L-shape kinked tube yielded a lightweight polymer composite with the surface normal of GNF preferentially aligned perpendicular to the melt-flow direction, giving rise to a directional thermal conductivity of approximately 10 W/mK at 25 vol % with an anisotropic thermal conduction ratio greater than six. The high directional thermal conduction was attributed to the two-dimensional planar shape of GNFs readily adaptable to the molten polymer flow, compared with highly entangled carbon nanotubes and three-dimensional graphite fillers. Furthermore, our composite with its density of approximately 1.5 g/cm(3) was mechanically stable, and its thermal performance was successfully preserved above 100 °C even after multiple heating and cooling cycles. The results indicate that the methodology using an L-shape kinked tube is a new way to achieve polymer composites with highly anisotropic thermal conduction.

  15. Novel patternable and conducting metal-polymer nanocomposites: a step towards advanced mutlifunctional materials

    NASA Astrophysics Data System (ADS)

    Rodríguez-Cantó, Pedro J.; Martínez-Marco, Mariluz; Abargues, Rafael; Latorre-Garrido, Victor; Martínez-Pastor, Juan P.

    2013-03-01

    In this work, we present a novel patternable conducting nanocomposite containing gold nanoparticles. Here, the in-situ polymerization of 3T is carried out using HAuCl4 as oxidizing agent inside PMMA as host matrix. During the bake step, the gold salt is also reduced from Au(III) to Au(0) generating Au nanoparticles in the interpenetrating polymer network (IPN) system. We found that this novel multifunctional resist shows electrical conductivity and plasmonic properties as well as potential patterning capability provided by the host matrix. The resulting nanocomposite has been investigated by TEM and UV-Vis spectroscopy. Electrical characterization was also conducted for different concentration of 3T and Au(III) following a characteristic percolation behaviour. Conductivities values from 10-5 to 10 S/cm were successfully obtained depending on the IPN formulation. Moreover, The Au nanoparticles generated exhibited a localized surface plasmon resonance at around 520 nm. This synthetic approach is of potential application to modify the conductivity of numerous insulating polymers and synthesize Au nanoparticles preserving to some extent their physical and chemical properties. In addition, combination of optical properties (Plasmonics), electrical, and lithographic capability in the same material allows for the design of materials with novel functionalities and provides the basis for next generation devices.

  16. Construction of 3D Skeleton for Polymer Composites Achieving a High Thermal Conductivity.

    PubMed

    Yao, Yimin; Sun, Jiajia; Zeng, Xiaoliang; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping

    2018-03-01

    Owing to the growing heat removal issue in modern electronic devices, electrically insulating polymer composites with high thermal conductivity have drawn much attention during the past decade. However, the conventional method to improve through-plane thermal conductivity of these polymer composites usually yields an undesired value (below 3.0 Wm -1 K -1 ). Here, construction of a 3D phonon skeleton is reported composed of stacked boron nitride (BN) platelets reinforced with reduced graphene oxide (rGO) for epoxy composites by the combination of ice-templated and infiltrating methods. At a low filler loading of 13.16 vol%, the resulting 3D BN-rGO/epoxy composites exhibit an ultrahigh through-plane thermal conductivity of 5.05 Wm -1 K -1 as the best thermal-conduction performance reported so far for BN sheet-based composites. Theoretical models qualitatively demonstrate that this enhancement results from the formation of phonon-matching 3D BN-rGO networks, leading to high rates of phonon transport. The strong potential application for thermal management has been demonstrated by the surface temperature variations of the composites with time during heating and cooling. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Lowering the operational temperature of all-solid-state lithium polymer cell with highly conductive and interfacially robust solid polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Aldalur, Itziar; Martinez-Ibañez, Maria; Piszcz, Michal; Rodriguez-Martinez, Lide M.; Zhang, Heng; Armand, Michel

    2018-04-01

    Novel solid polymer electrolytes (SPEs), comprising of comb polymer matrix grafted with soft and disordered polyether moieties (Jeffamine®) and lithium bis(fluorosulfonyl)imide (LiFSI) are investigated in all-solid-state lithium metal (Li°) polymer cells. The LiFSI/Jeffamine-based SPEs are fully amorphous at room temperature with glass transitions as low as ca. -55 °C. They show higher ionic conductivities than conventional poly(ethylene oxide) (PEO)-based SPEs at ambient temperature region, and good electrochemical compatibility with Li° electrode. These exceptional properties enable the operational temperature of Li° | LiFePO4 cells to be decreased from an elevated temperature (70 °C) to room temperature. Those results suggest that LiFSI/Jeffamine-based SPEs can be promising electrolyte candidates for developing safe and high performance all-solid-state Li° batteries.

  18. Conducting Polymers in the Fields of Energy, Environmental Remediation, and Chemical-Chiral Sensors.

    PubMed

    Ibanez, Jorge G; Rincón, Marina E; Gutierrez-Granados, Silvia; Chahma, M'hamed; Jaramillo-Quintero, Oscar A; Frontana-Uribe, Bernardo A

    2018-05-09

    Conducting polymers (CPs), thanks to their unique properties, structures made on-demand, new composite mixtures, and possibility of deposit on a surface by chemical, physical, or electrochemical methodologies, have shown in the last years a renaissance and have been widely used in important fields of chemistry and materials science. Due to the extent of the literature on CPs, this review, after a concise introduction about the interrelationship between electrochemistry and conducting polymers, is focused exclusively on the following applications: energy (energy storage devices and solar cells), use in environmental remediation (anion and cation trapping, electrocatalytic reduction/oxidation of pollutants on CP based electrodes, and adsorption of pollutants) and finally electroanalysis as chemical sensors in solution, gas phase, and chiral molecules. This review is expected to be comprehensive, authoritative, and useful to the chemical community interested in CPs and their applications.

  19. Protection of Conductive and Non-conductive Advanced Polymer-based Paints from Highly Aggressive Oxidative Environments

    NASA Technical Reports Server (NTRS)

    Gudimenko, Y.; Ng, R.; Iskanderova, Z.; Kleiman, J.; Grigorevsky, A.; Kiseleva, L.; Finckenor, M.; Edwards, D.

    2005-01-01

    Research has been continued to further improve the space durability of conductive and non-conductive polymer-based paints and of conductive thermal control paints for space applications. Efforts have been made to enhance the space durability and stability of functional Characteristics in ground-based space environment imitating conditions, using specially developed surface modification treatment. The results of surface modification of new conductive paints, including the ground-based testing in aggressive oxidative environments, such as atomic oxygen/UV and oxygen plasma, and performance evaluation are presented. Functional properties and performance characteristics, such as thermal optical properties (differential solar absorptance and thermal emittance representing the thermal optical performance of thermal control paints) and surface resistivity characteristics of pristine, surface modified, and tested materials were verified. Extensive surface analysis studies have been performed using complementary surface analyses including SEM/EDS and XPS. Test results revealed that the successfully treated materials exhibit reduced mass loss and no surface morphology change, thus indicating good protection from the severe oxidative environment. It was demonstrated that the developed surface modification treatment could be applied successfully to charge dissipative and conductive paints.

  20. Polymer and Composite Membranes for Proton-Conducting, High-Temperature Fuel Cells: A Critical Review

    PubMed Central

    Quartarone, Eliana; Angioni, Simone; Mustarelli, Piercarlo

    2017-01-01

    Polymer fuel cells operating above 100 °C (High Temperature Polymer Electrolyte Membrane Fuel Cells, HT-PEMFCs) have gained large interest for their application to automobiles. The HT-PEMFC devices are typically made of membranes with poly(benzimidazoles), although other polymers, such as sulphonated poly(ether ether ketones) and pyridine-based materials have been reported. In this critical review, we address the state-of-the-art of membrane fabrication and their properties. A large number of papers of uneven quality has appeared in the literature during the last few years, so this review is limited to works that are judged as significant. Emphasis is put on proton transport and the physico-chemical mechanisms of proton conductivity. PMID:28773045

  1. Polymer and Composite Membranes for Proton-Conducting, High-Temperature Fuel Cells: A Critical Review.

    PubMed

    Quartarone, Eliana; Angioni, Simone; Mustarelli, Piercarlo

    2017-06-22

    Polymer fuel cells operating above 100 °C (High Temperature Polymer Electrolyte Membrane Fuel Cells, HT-PEMFCs) have gained large interest for their application to automobiles. The HT-PEMFC devices are typically made of membranes with poly(benzimidazoles), although other polymers, such as sulphonated poly(ether ether ketones) and pyridine-based materials have been reported. In this critical review, we address the state-of-the-art of membrane fabrication and their properties. A large number of papers of uneven quality has appeared in the literature during the last few years, so this review is limited to works that are judged as significant. Emphasis is put on proton transport and the physico-chemical mechanisms of proton conductivity.

  2. Simultaneously Enhancing the Cohesion and Electrical Conductivity of PEDOT:PSS Conductive Polymer Films using DMSO Additives.

    PubMed

    Lee, Inhwa; Kim, Gun Woo; Yang, Minyang; Kim, Taek-Soo

    2016-01-13

    Conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) has attracted significant attention as a hole transport and electrode layer that substitutes metal electrodes in flexible organic devices. However, its weak cohesion critically limits the reliable integration of PSS in flexible electronics, which highlights the importance of further investigation of the cohesion of PSS. Furthermore, the electrical conductivity of PSS is insufficient for high current-carrying devices such as organic photovoltaics (OPVs) and organic light emitting diodes (OLEDs). In this study, we improve the cohesion and electrical conductivity through adding dimethyl sulfoxide (DMSO), and we demonstrate the significant changes in the properties that are dependent on the wt % of DMSO. In particular, with the addition of 3 wt % DMSO, the maximum enhancements for cohesion and electrical conductivity are observed where the values increase by 470% and 6050%, respectively, due to the inter-PEDOT bridging mechanism. Furthermore, when OLED devices using the PSS films are fabricated using the 3 wt % DMSO, the display exhibits 18% increased current efficiency.

  3. Evaluation of the morphology of metal particles in intrinsic conductive polymer dispersions

    NASA Astrophysics Data System (ADS)

    Lempa, E.; Graßmann, C.; Rabe, M.; Schwarz-Pfeiffer, A.; van Langenhove, L.

    2017-10-01

    For the production of smart textiles the resistivity of prints and coatings with intrinsic conductive polymers is often too high and the performance properties not sufficient. The addition of metal components enhances many characteristics, however the choice of type of metal, morphology and application method influence results to great extend.

  4. Selenium containing conducting polymer based pyranose oxidase biosensor for glucose detection.

    PubMed

    Gokoglan, Tugba Ceren; Soylemez, Saniye; Kesik, Melis; Toksabay, Sinem; Toppare, Levent

    2015-04-01

    A novel amperometric pyranose oxidase (PyOx) biosensor based on a selenium containing conducting polymer has been developed for the glucose detection. For this purpose, a conducting polymer; poly(4,7-bis(thieno[3,2-b]thiophen-2-yl)benzo[c][1,2,5] selenadiazole) (poly(BSeTT)) was synthesized via electropolymerisation on gold electrode to examine its matrix property for glucose detection. For this purpose, PyOx was used as the model enzyme and immobilised via physical adsorption technique. Amperometric detection of consumed oxygen was monitored at -0.7 V vs Ag reference electrode in a phosphate buffer (50 mM, pH 7.0). K(M)(app), Imax, LOD and sensitivity were calculated as 0.229 mM, 42.37 nA, 3.3 × 10(-4)nM and 6.4 nA/mM cm(2), respectively. Scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS) and cyclic voltammetry (CV) techniques were used to monitor changes in surface morphologies and to run electrochemical characterisations. Finally, the constructed biosensor was applied for the determination of glucose in beverages successfully. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Conducting Polymer-Based Nanohybrid Transducers: A Potential Route to High Sensitivity and Selectivity Sensors

    PubMed Central

    Park, Seon Joo; Kwon, Oh Seok; Lee, Ji Eun; Jang, Jyongsik; Yoon, Hyeonseok

    2014-01-01

    The development of novel sensing materials provides good opportunities to realize previously unachievable sensor performance. In this review, conducting polymer-based nanohybrids are highlighted as innovative transducers for high-performance chemical and biological sensing devices. Synthetic strategies of the nanohybrids are categorized into four groups: (1) impregnation, followed by reduction; (2) concurrent redox reactions; (3) electrochemical deposition; (4) seeding approach. Nanocale hybridization of conducting polymers with inorganic components can lead to improved sorption, catalytic reaction and/or transport behavior of the material systems. The nanohybrids have thus been used to detect nerve agents, toxic gases, volatile organic compounds, glucose, dopamine, and DNA. Given further advances in nanohybrids synthesis, it is expected that sensor technology will also evolve, especially in terms of sensitivity and selectivity. PMID:24561406

  6. Electrically conductive, optically transparent polymer/carbon nanotube composites and process for preparation thereof

    NASA Technical Reports Server (NTRS)

    Watson, Kent A. (Inventor); Connell, John W. (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor); Ounaies, Zoubeida (Inventor); Smith, Joseph G. (Inventor)

    2009-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400 800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  7. Electrically Conductive, Optically Transparent Polymer/Carbon Nanotube Composites and Process for Preparation Thereof

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor); Watson, Kent A. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  8. Electrically Conductive, Optically Transparent Polymer/Carbon Nanotube Composites and Process for Preparation Thereof

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Watson, A. (Inventor); Ounales, Zoubeida (Inventor); Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor)

    2009-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T(sub g)) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted hy selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  9. Synthesis and photoluminescence properties of novel Schiff base type polymer-rare earth complexes containing furfural-based bidentate Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Gao, Baojiao; Zhang, Dandan; Li, Yanbin

    2018-03-01

    Luminescent polymer-rare earth complexes are an important class of photoluminescence and electroluminescence materials. Via molecular design, two furfural-based bidentate Schiff base ligands, furfural-aniline (FA) type ligand and furfural-cyclohexylamine (FC) type ligand, were bonded on the side chains of polysulfone (PSF), respectively, forming two functionalized macromolecules, PSF-FA and PSF-FC. And then through respective coordination reactions of the two functionalized macromolecules with Eu(Ⅲ) ion and Tb(Ⅲ) ion, novel luminescent binary and ternary (with 1,10-phenanthroline as the second ligand) polymer-rare earth complexes were synthesized. For these complexes, on basis of the characterization of their chemical structures, they photoluminescence properties were main researched, and the relationship between their luminescent properties and structures was explored. The experimental results show that the complexes coming from PSF-FA and Eu(Ⅲ) ion including binary and ternary complexes emit strong red luminescence, indicating that the bonded bidentate Schiff base ligand FA can sensitize the fluorescence emission of Eu(III) ion. While the complexes coming from PSF-FC and Tb(Ⅲ) ion produce green luminescence, displaying that the bonded bidentate Schiff base ligand FC can sensitize the fluorescence emission of Tb(Ⅲ) ion. The fluorescence emission intensities of the ternary complexes were stronger than that of binary complexes, reflecting the important effect of the second ligand. The fluorescence emission of the solid film of complexes is much stronger than that of the solutions of complexes. Besides, by comparison, it is found that the furfural (as a heteroaromatic compound)-based Schiff base type polymer-rare earth complexes have stronger fluorescence emission and higher energy transfer efficiency than salicylaldehyde (as a common aromatic compound)-based Schiff base type polymer-rare earth complexes.

  10. Degradation of polyfluorene-type polymers: interface and bulk-related defects

    NASA Astrophysics Data System (ADS)

    Gamerith, Stefan; Gadermaier, Christoph; Nothofer, Heinz G.; Scherf, Ullrich; List, Emil J.

    2004-09-01

    The origin of a broad low-energy photo-luminescence (PL) and electro-luminescence (EL) band emerging upon oxidative degradation of hihgly emissive polyfluorenes (PFs) has recently been identified as the emission from on-chain keto defects acting as exciton and/or charge traps. In this work we compare several polyfluorenes with respect to their stability upon thermal degradation, and their stability upon fabrication and operation of PF-based polymer light emitting devices (PLEDs). We show that in addition to the keto emission a second type of defect emission, which is related to the deposition of the metal electrode, can also affect the color purity of PF-PLEDs. Investigated materials are a poly(9,9 dialkylfluorene) with hexahydrofarnesyl sidechains (PF111/12) a poly(9,9 dialkylfluorene) with ethyl-hexyl sidechains (PF 2/6) and two different slightly branched spiro-PFs with and without triphenylamine endcappers, respetively. We find significant differences in the spectral stability of the polymers which may on the one hand be explained by a difference of the chemical stability of the polymers but to some extent must be explained withiin the picture of excited energy migration. Regarding a comparison of the polymers, the end-capped spiro-type PF shows an overall improved performance compared to the other investigated polymers provided that the evaporation process of the metal cathode of an PLED is well controlled to avoid the formation of emissive defects at the interface.

  11. Conducting polymer scaffolds for electrical control of cellular functions (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Inal, Sahika; Wan, Alwin M.; Williams, Tiffany V.; Giannelis, Emmanuel P.; Fischbach-Teschl, Claudia; Gourdon, Delphine; Owens, Róisín. M.; Malliaras, George G.

    2016-09-01

    Considering the limited physiological relevance of 2D cell culture experiments, significant effort was devoted to the development of materials that could more accurately recreate the in vivo cellular microenvironment, and support 3D cell cultures in vitro. (1) One such class of materials is conducting polymers, which are promising due to their compliant mechanical properties, compatibility with biological systems, mixed electrical and ionic conductivity, and ability to form porous structures. (2) In this work, we report the fabrication of a single component, macroporous scaffold made from poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) via an ice-templating method. (3) PEDOT:PSS scaffolds offer tunable pore size, morphology and shape through facile changes in preparation conditions, and are capable of supporting 3D cell cultures due to their biocompatibility and tissue-like elasticity. Moreover, these materials are functional: they exhibit excellent electrochemical switching behavior and significantly lower impedance compared to films. Their electrochemical activity enables their use in the active channel of a state of the art diagnostic tool in the field of bioelectronics, i.e., the organic electrochemical transistor (OECT). The inclusion of cells within the porous architecture affects the impedance of the electrically-conducting polymer network and, thus, may be used as a method to quantify cell growth. The adhesion and pro-angiogenic secretions of mouse fibroblasts cultured within the scaffolds can be controlled by switching the electrochemical state of the polymer prior to cell-seeding. In summary, these smart materials hold promise not only as extracellular matrix-mimicking structures for cell culture, but also as high-performance bioelectronic tools for diagnostic and signaling applications. References [1] M. Holzwarth, P. X. Ma, Journal of Materials Chemistry, 21, 10243-10251 (2011). [2] L. H. Jimison, J. Rivnay, R. M. Owens, in Organic

  12. Polymer-based lanthanide luminescent sensor for detection of the hydrolysis product of the nerve agent Soman in water.

    PubMed

    Jenkins, A L; Uy, O M; Murray, G M

    1999-01-15

    The techniques of molecular imprinting and sensitized lanthanide luminescence have been combined to create the basis for a sensor that can selectively measure the hydrolysis product of the nerve agent Soman in water. The sensor functions by selectively and reversibly binding the phosphonate hydrolysis product of this agent to a functionality-imprinted copolymer possessing a coordinatively bound luminescent lanthanide ion, Eu3+. Instrumental support for this device is designed to monitor the appearance of a narrow luminescence band in the 610-nm region of the Eu3+ spectrum that results when the analyte is coordinated to the copolymer. The ligand field shifted luminescence was excited using 1 mW of the 465.8-nm line of an argon ion laser and monitored via an optical fiber using a miniature spectrometer. For this configuration, the limit of detection for the hydrolysis product is 7 parts per trillion (ppt) in solution with a linear range from 10 ppt to 10 ppm. Chemical and spectroscopic selectivities have been combined to reduce the likelihood of false positive analyses. Chemically analogous organophosphorus pesticides tested against the sensor have been shown to not interfere with determination.

  13. A Silica-Aerogel-Reinforced Composite Polymer Electrolyte with High Ionic Conductivity and High Modulus.

    PubMed

    Lin, Dingchang; Yuen, Pak Yan; Liu, Yayuan; Liu, Wei; Liu, Nian; Dauskardt, Reinhold H; Cui, Yi

    2018-06-25

    High-energy all-solid-state lithium (Li) batteries have great potential as next-generation energy-storage devices. Among all choices of electrolytes, polymer-based systems have attracted widespread attention due to their low density, low cost, and excellent processability. However, they are generally mechanically too weak to effectively suppress Li dendrites and have lower ionic conductivity for reasonable kinetics at ambient temperature. Herein, an ultrastrong reinforced composite polymer electrolyte (CPE) is successfully designed and fabricated by introducing a stiff mesoporous SiO 2 aerogel as the backbone for a polymer-based electrolyte. The interconnected SiO 2 aerogel not only performs as a strong backbone strengthening the whole composite, but also offers large and continuous surfaces for strong anion adsorption, which produces a highly conductive pathway across the composite. As a consequence, a high modulus of ≈0.43 GPa and high ionic conductivity of ≈0.6 mS cm -1 at 30 °C are simultaneously achieved. Furthermore, LiFePO 4 -Li full cells with good cyclability and rate capability at ambient temperature are obtained. Full cells with cathode capacity up to 2.1 mAh cm -2 are also demonstrated. The aerogel-reinforced CPE represents a new design principle for solid-state electrolytes and offers opportunities for future all-solid-state Li batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Conductive Circuit Containing a Polymer Composition Containing Thermally Exfoliated Graphite Oxide and Method of Making the Same

    NASA Technical Reports Server (NTRS)

    Aksay, Ilhan A. (Inventor); Prud'Homme, Robert K. (Inventor)

    2017-01-01

    A conductive circuit containing a polymer composite, which contains at least one polymer and a modified graphite oxide material, containing thermally exfoliated graphite oxide having a surface area of from about 300 sq m/g to 2600 sq m/g, and a method of making the same.

  15. Elucidation of band structure of charge storage in conducting polymers using a redox reaction.

    PubMed

    Contractor, Asfiya Q; Juvekar, Vinay A

    2014-07-01

    A novel technique to investigate charge storage characteristics of intrinsically conducting polymer films has been developed. A redox reaction is conducted on a polymer film on a rotating disk electrode under potentiostatic condition so that the rate of charging of the film equals the rate of removal of the charge by the reaction. The voltammogram obtained from the experiment on polyaniline film using Fe(2+)/Fe(3+) in HCl as the redox system shows five distinct linear segments (bands) with discontinuity in the slope at specific transition potentials. These bands are the same as those indicated by electron spin resonance (ESR)/Raman spectroscopy with comparable transition potentials. From the dependence of the slopes of the bands on concentration of ferrous and ferric ions, it was possible to estimate the energies of the charge carriers in different bands. The film behaves as a redox capacitor and does not offer resistance to charge transfer and electronic conduction.

  16. Conductive polymer foam surface improves the performance of a capacitive EEG electrode.

    PubMed

    Baek, Hyun Jae; Lee, Hong Ji; Lim, Yong Gyu; Park, Kwang Suk

    2012-12-01

    In this paper, a new conductive polymer foam-surfaced electrode was proposed for use as a capacitive EEG electrode for nonintrusive EEG measurements in out-of-hospital environments. The current capacitive electrode has a rigid surface that produces an undefined contact area due to its stiffness, which renders it unable to conform to head curvature and locally isolates hairs between the electrode surface and scalp skin, making EEG measurement through hair difficult. In order to overcome this issue, a conductive polymer foam was applied to the capacitive electrode surface to provide a cushioning effect. This enabled EEG measurement through hair without any conductive contact with bare scalp skin. Experimental results showed that the new electrode provided lower electrode-skin impedance and higher voltage gains, signal-to-noise ratios, signal-to-error ratios, and correlation coefficients between EEGs measured by capacitive and conventional resistive methods compared to a conventional capacitive electrode. In addition, the new electrode could measure EEG signals, while the conventional capacitive electrode could not. We expect that the new electrode presented here can be easily installed in a hat or helmet to create a nonintrusive wearable EEG apparatus that does not make users look strange for real-world EEG applications.

  17. Effect of nanochitosan and succinonitrile on the AC ionic conductivity of plasticized nanocomposite solid polymer electrolytes (PNCSPE)

    NASA Astrophysics Data System (ADS)

    Karuppasamy, K.; Vani, C. Vijil; Nichelson, A.; Balakumar, S.; Shajan, X. Sahaya

    2013-06-01

    In the present study, the filler chitosan was converted into nanochitosan by ionotropic gelation method. Plasticized nanocomposite solid polymer electrolytes (PNCSPE) composed of poly ethylene oxide as host polymer, LiBOB (lithium bis(oxalatoborate)) as salt, SN as plasticizer and nanochitosan as filler were prepared by membrane hot-press technique. Succinonitrile and nanochitosan incorporation in PEO-LiBOB matrix enhanced the room temperature ionic conductivity. The highest ionic conductivities were found to be in the order of 10-3.2 S/cm.

  18. A novel stable 3D luminescent uranyl complex for highly efficient and sensitive recognition of Ru3+ and biomolecules

    NASA Astrophysics Data System (ADS)

    Tian, Hong-Hong; Chen, Liang-Ting; Zhang, Rong-Lan; Zhao, Jian-She; Liu, Chi-Yang; Weng, Ng Seik

    2018-02-01

    A novel highly stable 3D luminescent uranyl coordination polymer, namely {[UO2(L)]·DMA}n (1), was assembled with uranyl salt and a glycine-derivative ligand [6-(carboxymethyl-amino)-4-oxo-4,5-dihydro-[1,3,5]triazin-2-ylamino]-acetic acid (H2L) under solvothermal reaction. Besides, It was found that complex 1 possesses excellent luminescent properties, particularly the efficient selectivity and sensitivity in the recognition of Ru3+, biomacromolecule bovine serum albumin (BSA), biological small molecules dopamine (DA), ascorbic acid (AA) and uric acid (UA) in the water solution based on a "turn-off" mechanism. Accordingly, the luminescent explorations also demonstrated that complex 1 could be acted as an efficient luminescent probe with high quenching efficiency and low detection limit for selectively detecting Ru3+ and biomolecules (DA, AA, UA and BSA). It was noted that the framework structure of complex 1 still remains highly stable after quenching, which was verified by powder X-ray diffraction (PXRD).

  19. Optical and diffractive properties of polymer: nanoparticles periodic structures obtained by holographic method

    NASA Astrophysics Data System (ADS)

    Smirnova, T. N.; Sakhno, O. V.; Goldberg, L.; Stumpe, J.

    2007-06-01

    The ordering of nanoparticles in polymer matrix using holographic photopolymerization is investigated. The general approach to the selection of the photopolymerizable compounds is proposed. The nonlinear and luminescent properties of obtained gratings are studied.

  20. Ionic conductivity and dielectric permittivity of polymer electrolyte plasticized with polyethylene glycol

    NASA Astrophysics Data System (ADS)

    Das, S.; Ghosh, A.

    2016-05-01

    We have studied ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with polyethylene glycol (PEG). The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. The maximum dielectric constant is observed for 30 wt. % of PEG content. To get further insights into the ion dynamics, the complex dielectric permittivity has been studied with Havriliak-Negami function. The variation of relaxation time with inverse temperature obtained from HN formalism follows VTF nature.

  1. Electron beam irradiated polymer electrolyte film: Morphology, dielectric and AC conductivity studies

    NASA Astrophysics Data System (ADS)

    Yesappa, L.; Niranjana, M.; Ashokkumar, S. P.; Vijeth, H.; Ganesh, S.; Devendrappa, H.

    2018-05-01

    The polymer (PVdF-co-HFP: LiClO4=90:10, PHL10) electrolyte films prepared by solution casting method and studied morphology, dielectric properties and ac conductivity before and after electron beam (EB) irradiation. The polarized optical micrographs reveals size of spherulite reduced with increasing EB dose represents increase in amorphousity. The dielectric measurements were studied at different temperatures and observed increase with frequency at different temperatures upon EB irradiation. The ac conductivity increases with frequency due to effect of EB dose.

  2. Conductive Circuit Containing a Polymer Composition Containing Thermally Exfoliated Graphite Oxide and Method of Making the Same

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2014-01-01

    A conductive circuit containing a polymer composite, which contains at least one polymer and a modified graphite oxide material, containing thermally exfoliated graphite oxide having a surface area of from about 300 m(sup.2)/g to 2600 m(sup.2)/g, and a method of making the same.

  3. High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide).

    PubMed

    Lin, Dingchang; Liu, Wei; Liu, Yayuan; Lee, Hye Ryoung; Hsu, Po-Chun; Liu, Kai; Cui, Yi

    2016-01-13

    High ionic conductivity solid polymer electrolyte (SPE) has long been desired for the next generation high energy and safe rechargeable lithium batteries. Among all of the SPEs, composite polymer electrolyte (CPE) with ceramic fillers has garnered great interest due to the enhancement of ionic conductivity. However, the high degree of polymer crystallinity, agglomeration of ceramic fillers, and weak polymer-ceramic interaction limit the further improvement of ionic conductivity. Different from the existing methods of blending preformed ceramic particles with polymers, here we introduce an in situ synthesis of ceramic filler particles in polymer electrolyte. Much stronger chemical/mechanical interactions between monodispersed 12 nm diameter SiO2 nanospheres and poly(ethylene oxide) (PEO) chains were produced by in situ hydrolysis, which significantly suppresses the crystallization of PEO and thus facilitates polymer segmental motion for ionic conduction. In addition, an improved degree of LiClO4 dissociation can also be achieved. All of these lead to good ionic conductivity (1.2 × 10(-3) S cm(-1) at 60 °C, 4.4 × 10(-5) S cm(-1) at 30 °C). At the same time, largely extended electrochemical stability window up to 5.5 V can be observed. We further demonstrated all-solid-state lithium batteries showing excellent rate capability as well as good cycling performance.

  4. Dual function conducting polymer diodes

    DOEpatents

    Heeger, Alan J.; Yu, Gang

    1996-01-01

    Dual function diodes based on conjugated organic polymer active layers are disclosed. When positively biased the diodes function as light emitters. When negatively biased they are highly efficient photodiodes. Methods of preparation and use of these diodes in displays and input/output devices are also disclosed.

  5. Conducting polymer nanostructures for photocatalysis under visible light

    NASA Astrophysics Data System (ADS)

    Ghosh, Srabanti; Kouamé, Natalie A.; Ramos, Laurence; Remita, Samy; Dazzi, Alexandre; Deniset-Besseau, Ariane; Beaunier, Patricia; Goubard, Fabrice; Aubert, Pierre-Henri; Remita, Hynd

    2015-05-01

    Visible-light-responsive photocatalysts can directly harvest energy from solar light, offering a desirable way to solve energy and environment issues. Here, we show that one-dimensional poly(diphenylbutadiyne) nanostructures synthesized by photopolymerization using a soft templating approach have high photocatalytic activity under visible light without the assistance of sacrificial reagents or precious metal co-catalysts. These polymer nanostructures are very stable even after repeated cycling. Transmission electron microscopy and nanoscale infrared characterizations reveal that the morphology and structure of the polymer nanostructures remain unchanged after many photocatalytic cycles. These stable and cheap polymer nanofibres are easy to process and can be reused without appreciable loss of activity. Our findings may help the development of semiconducting-based polymers for applications in self-cleaning surfaces, hydrogen generation and photovoltaics.

  6. A new three-dimensional bis(benzimidazole)-based cadmium(II) coordination polymer

    NASA Astrophysics Data System (ADS)

    Hao, Shao Yun; Hou, Suo Xia; Hao, Zeng Chuan; Cui, Guang Hua

    2018-01-01

    A new coordination polymer (CP), formulated as [Cd(L)(DCTP)]n (1) (L = 1,1‧-(1,4-butanediyl)bis(2-methylbenzimidazole), H2DCTP = 2,5-dichloroterephthalic acid), was synthesized under hydrothermal conditions and the performance as luminescent probe was also investigated. Single-crystal X-ray diffraction reveals CP 1 is a 3D 3-fold interpenetrated dia network with large well-defined pores. It is found that CP 1 revealed highly sensitive luminescence sensing for Fe3 + ions in acetonitrile solution with a high quenching efficiency of KSV = 2541.238 L·mol- 1 and a low detection limit of 3.2 μM (S/N = 3). Moreover, the photocatalytic efficiency of 1 for degradation of methylene blue could reach 82.8% after 135 min. Therefore, this coordination polymer could be viewed as multifunctional material for selectively sensing Fe3 + ions and effectively degrading dyes.

  7. Luminescent beam stop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryant, Diane; Morton, Simon A.

    This disclosure provides systems, methods, and apparatus related to beam stops. In one aspect, a device comprises a luminescent material, a beam stop plate, and an optical fiber. The luminescent material is a parallelepiped having a first side and a second side that are squares and having a third side that is a rectangle or a square. The first side and the second side are perpendicular to the third side. The beam stop plate is attached to the first side of the luminescent material. The optical fiber has a first end and a second end, with the first end ofmore » the optical fiber attached to the third side of the luminescent material.« less

  8. Heat conduction in chain polymer liquids: molecular dynamics study on the contributions of inter- and intramolecular energy transfer.

    PubMed

    Ohara, Taku; Yuan, Tan Chia; Torii, Daichi; Kikugawa, Gota; Kosugi, Naohiro

    2011-07-21

    In this paper, the molecular mechanisms which determine the thermal conductivity of long chain polymer liquids are discussed, based on the results observed in molecular dynamics simulations. Linear n-alkanes, which are typical polymer molecules, were chosen as the target of our studies. Non-equilibrium molecular dynamics simulations of bulk liquid n-alkanes under a constant temperature gradient were performed. Saturated liquids of n-alkanes with six different chain lengths were examined at the same reduced temperature (0.7T(c)), and the contributions of inter- and intramolecular energy transfer to heat conduction flux, which were identified as components of heat flux by the authors' previous study [J. Chem. Phys. 128, 044504 (2008)], were observed. The present study compared n-alkane liquids with various molecular lengths at the same reduced temperature and corresponding saturated densities, and found that the contribution of intramolecular energy transfer to the total heat flux, relative to that of intermolecular energy transfer, increased with the molecular length. The study revealed that in long chain polymer liquids, thermal energy is mainly transferred in the space along the stiff intramolecular bonds. This finding implies a connection between anisotropic thermal conductivity and the orientation of molecules in various organized structures with long polymer molecules aligned in a certain direction, which includes confined polymer liquids and self-organized structures such as membranes of amphiphilic molecules in water.

  9. Temperature sensing of adipose tissue heating with the luminescent upconversion nanoparticles as nanothermometer: in vitro study

    NASA Astrophysics Data System (ADS)

    Yanina, I. Yu.; Volkova, E. K.; Zaharevich, A. M.; Konyukhova, J. G.; Kochubey, V. I.; Tuchin, V. V.

    2017-03-01

    The luminescence spectra of upconversion nanoparticles (UCNPs) imbedded in fat tissue were measured in a wide temperature range, from room to human body and further to hyperthermic temperatures. The two types of synthesized UCNP [NaYF4:Yb3+, Er3+] specimens, namely, powdered as-is and embedded into polymer film, were used. The results show that the luminescence of UCNPs placed under the adipose tissue layer is reasonably good sensitive to temperature change and reflects phase transitions of lipids in tissue cells. The most likely, multiple phase transitions are associated with the different components of fat cells such as phospholipids of cell membrane and lipids of fat droplets. In the course of fat cell heating, lipids of fat droplet first transit from a crystalline form to a liquid crystal form and then to a liquid form, which is characterized by much less scattering. The phase transitions of lipids were observed as the changes of the slope of the temperature dependence of UCNP luminescence intensity. The obtained results confirm a high sensitivity of the luminescent UCNPs to the temperature variations within tissues and show a strong potential for providing a controllable tissue thermolysis.

  10. Hot-electron luminescence and polarization in GaAs/sub 1-x/P/sub x/ alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charfi, F.F.; Zouaghi, M.; Planel, R.

    1986-04-15

    The weak direct-gap luminescence originating from the GAMMA valley of GaAs/sub 1-x/P/sub x/ indirect-gap alloys is observed. Incident energy dependence and polarization correlation of the luminescence with the exciting light are presented. The luminescence is interpreted as recombination of hot electrons, with strong momentum anisotropy, on acceptors. The dynamics of conduction electrons in the GAMMA valley can be discussed.

  11. Two double and triple interpenetrated Cd(II) and Zn(II) coordination polymers based on mixed O- and N-donor ligands: Syntheses, crystal structures and luminescent properties

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Li, Xiaohui; Zhang, Yan

    2016-01-01

    Two interpenetrated 3D coordination polymers, namely [Cd2(tdc)2(bpp) (DMA)]n (1) and [Zn2(tdc)2(bib)2]n·2n(DMA) (2) (H2tdc = 2,5-thiophenedicarboxylic acid, bpp = 1,3-di(4-pyridyl)propane, bib = 1, 4-bis(imidazolyl)butane, DMA = N,N-dimethylacetamide), have been solvothermally synthesized by the self-assembly of flexible N-donor and dicarboxylate ligands. Single crystal X-ray diffraction analyses revealed that compound 1 features a 2-fold interpenetrated 3D framework based on dinuclear [Cd2(COO)3] subunits and can be simplified into a 6-connected pcu topology, and compound 2 features a 3-fold interpenetrated 3D framework with 4-connected dia topology. Moreover, the thermal stabilities and luminescent properties of these two compounds were also investigated.

  12. Reversible modulation of the redox activity in conducting polymer nanofilms induced by hydrophobic collapse of a surface-grafted polyelectrolyte.

    PubMed

    Fenoy, Gonzalo E; Giussi, Juan M; von Bilderling, Catalina; Maza, Eliana M; Pietrasanta, Lía I; Knoll, Wolfgang; Marmisollé, Waldemar A; Azzaroni, Omar

    2018-05-15

    We present the covalent modification of a Pani-like conducting polymer (polyaminobenzylamine, PABA) by grafting of a polyelectrolyte brush (poly [2-(methacryloyloxy)-ethyl-trimethylammonium chloride], PMETAC). As PABA has extra pendant amino moieties, the grafting procedure does not affect the backbone nitrogen atoms that are implicated in the electronic structure of the conducting polymers. Moreover, perchlorate anions interact very strongly with the quaternary ammonium pendant groups of PMETAC through ion pairing. Therefore, the grafting does not only keep the electroactivity of PABA in aqueous solutions but it adds the ion-actuation properties of the PMETAC brush to the modified electrode as demonstrated by contact angle measurements and electrochemical methods. In this way, the conjugation of the electron transfer properties of the conducting polymer with the anion responsiveness of the integrated brush renders perchlorate actuation of the electrochemical response. These results constitute a rational integration of nanometer-sized polymer building blocks that yields synergism of functionalities and illustrate the potentialities of nanoarchitectonics for pushing the limits of soft material science into the nanoworld. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Photo-Luminescent Targets in Space

    NASA Technical Reports Server (NTRS)

    Maida, James; Kolomenski, Andrei

    2017-01-01

    Photo-luminescent ("glow in the dark") products have seen a dramatic increase in performance is the last 15 years with the use of a strontium aluminate formulation. Because of this, ISS uses photo-luminescent markers for interior emergency egress guidance. The marker is COTS material composed of strontium aluminate doped with europium, imbedded in PVC and achieves a light emission performance rated at 600/90 (600 mcd at 10 minutes and 90 mcd at 1 hour, 2 mcd is minimum required for human visibility). The ICA goal is to determine this material's effectiveness for use externally on ISS and/or on visiting vehicles, when packaged in Lexan for UV protection. A thermal test was conducted by EC to characterize the luminance emission profile of the material at extreme cold and hot temperatures, such as experienced on ISS.

  14. Studies of Luminescence Performance on Carbazole Donor and Quinoline Acceptor Based Conjugated Polymer.

    PubMed

    Upadhyay, Anjali; S, Karpagam

    2016-03-01

    We report on the synthesis of conjugated polymer (CV-QP) containing carbazole (donor) and quinoline (acceptor) using Wittig methodology. The structural, optical and thermal properties of the polymer were investigated by FT-IR, NMR, GPC, UV, PL, cyclic voltammetry, atomic force microscopy (AFM) and thermogravimetric analysis (TGA). The polymer exhibits thermal stability upto 200 °C and shows good solubility in common organic solvents. The polymer has optical absorption band in a thin film at 360 nm and emission band formed at 473 nm. The optical energy band gap was found to be 2.69 eV as calculated from the onset absorption edge. Fluorescence quenching of the polymer CV-QP was found by using DMA (electron donor) and DMTP (electron acceptor). AFM image indicated that triangular shaped particles were observed and the particle size was found as 1.1 μm. The electrochemical studies of CV-QP reveal that, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of the CV-QP are 6.35 and 3.70 eV, which indicated that the polymers are expected to provide charge transporting properties for the development of polymer light-emitting diodes (PLEDs).

  15. Conductivity and properties of polysiloxane-polyether cluster-LiTFSI networks as hybrid polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Boaretto, Nicola; Joost, Christine; Seyfried, Mona; Vezzù, Keti; Di Noto, Vito

    2016-09-01

    This report describes the synthesis and the properties of a series of polymer electrolytes, composed of a hybrid inorganic-organic matrix doped with LiTFSI. The matrix is based on ring-like oligo-siloxane clusters, bearing pendant, partially cross-linked, polyether chains. The dependency of the thermo-mechanic and of the transport properties on several structural parameters, such as polyether chains' length, cross-linkers' concentration, and salt concentration is studied. Altogether, the materials show good thermo-mechanical and electrochemical stabilities, with conductivities reaching, at best, 8·10-5 S cm-1 at 30 °C. In conclusion, the cell performances of one representative sample are shown. The scope of this report is to analyze the correlations between structure and properties in networked and hybrid polymer electrolytes. This could help the design of optimized polymer electrolytes for application in lithium metal batteries.

  16. Surface polyPEGylation of Eu3+ doped luminescent hydroxyapatite nanorods through the combination of ligand exchange and metal free surface initiated atom transfer radical polymerization

    NASA Astrophysics Data System (ADS)

    Zeng, Guangjian; Liu, Meiying; Heng, Chunning; Huang, Qiang; Mao, Liucheng; Huang, Hongye; Hui, Junfeng; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-03-01

    The Eu3+ doped luminescent hydroxyapatite (HAp) nanorods with uniform size and morphology can be synthesized by hydrothermal route. However, these HAp nanorods are coated by hydrophobic oleylamine, which makes them difficult to be dispersed in aqueous solution and impede their biomedical applications. In this work, Eu3+ doped luminescent polymers functionalized HAp nanorods were prepared through the combination of ligand exchange reaction and metal free surface initiated atom transfer radical polymerization (ATRP) method. In this procedure, the amino group functionalized HAp nanorods were first prepared by ligand exchange reaction using adenosine monophosphate (AMP) as ligand. Then the Br-containing initiators (HAp-Br) were introduced onto the surface of HAp-AMP nanorods through the amidation reaction. Finally, polymers functionalized HAp nanorods were prepared by metal free ATRP method using poly(ethylene glycol) methacrylate (PEGMA) as monomer and 10-phenylphenothiazine (PTH) as organic photocatalyst. The properties of these obtained HAp nanocomposites (HAP-polyPEGMA nanorods) were characterized by means of transmission electron microscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis in detail. The cell imaging of these HAP-polyPEGMA nanorods was examined using laser scanning confocal microscope to evaluate their biomedical applications. We demonstrated for the first time that hydrophobic luminescent HAp nanorods can be functionalized with polyPEGMA through the combination of ligand exchange reaction and metal free surface initiated ATRP. As compared with the traditional ATRP, the metal free ATRP can overcome the toxic and fluorescence quenching effects of metal catalysts such as copper ions. More importantly, the strategy described in this work should also be utilized for fabrications of many other luminescent polymer nanocomposites due to its good monomer adoptability.

  17. A new composite consisting of electrosynthesized conducting polymers, graphene sheets and biosynthesized gold nanoparticles for biosensing acute lymphoblastic leukemia.

    PubMed

    Mazloum-Ardakani, Mohammad; Barazesh, Behnaz; Khoshroo, Alireza; Moshtaghiun, Mohammad; Sheikhha, Mohammad Hasan

    2018-06-01

    In this work we report the synthesis of a stable composite with excellent electrical properties, on the surface of a biosensor. Conductive polymers offer both high electrical conductivity and mechanical strength. Many reports have focused on synthesizing conductive polymers with the aid of high-cost enzymes. In the current work we introduce a novel electrochemical, one-step, facile and cost effective procedure for synthesizing poly (catechol), without using expensive enzymes. The poly (catechol) conductivity was enhanced by modification with graphene sheets and biosynthesized gold nanoparticles. Four different robust methods, DPV, EIS, CV and chronoamperometry, were used to monitor the biosensor modifications. The peak currents of the catechol (an electroactive probe) were linearly related to the logarithm of the concentrations of target DNA in the range 100.0 μM to 10.0 pM, with a detection limit of 1.0 pM for the DNA strand. The current work investigates a new, stable composite consisting of conductive polymers and nanoparticles, which was applied to the detection of acute lymphoblastic leukemia. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Flexible transparent displays based on core/shell upconversion nanophosphor-incorporated polymer waveguides

    PubMed Central

    Park, Bong Je; Hong, A-Ra; Park, Suntak; Kyung, Ki-Uk; Lee, Kwangyeol; Seong Jang, Ho

    2017-01-01

    Core/shell (C/S)-structured upconversion nanophosphor (UCNP)-incorporated polymer waveguide-based flexible transparent displays are demonstrated. Bright green- and blue-emitting Li(Gd,Y)F4:Yb,Er and Li(Gd,Y)F4:Yb,Tm UCNPs are synthesized via solution chemical route. Their upconversion luminescence (UCL) intensities are enhanced by the formation of C/S structure with LiYF4 shell. The Li(Gd,Y)F4:Yb,Er/LiYF4 and Li(Gd,Y)F4:Yb,Tm/LiYF4 C/S UCNPs exhibit 3.3 and 2.0 times higher UCL intensities than core counterparts, respectively. In addition, NaGdF4:Yb,Tm/NaGdF4:Eu C/S UCNPs are synthesized and they show red emission via energy transfer and migration of Yb3+ → Tm3+ → Gd3+ → Eu3+. The C/S UCNPs are incorporated into bisphenol A ethoxylate diacrylate which is used as a core material of polymer waveguides. The fabricated stripe-type polymer waveguides are highly flexible and transparent (transmittance > 90% in spectral range of 443–900 nm). The polymer waveguides exhibit bright blue, green, and red luminescence, depending on the incorporated UCNPs into the polymer core, under coupling with a near infrared (NIR) laser. Moreover, patterned polymer waveguide-based display devices are fabricated by reactive ion etching process and they realize bright blue-, green-, and red-colored characters under coupling with an NIR laser. PMID:28368021

  19. Flexible transparent displays based on core/shell upconversion nanophosphor-incorporated polymer waveguides

    NASA Astrophysics Data System (ADS)

    Park, Bong Je; Hong, A.-Ra; Park, Suntak; Kyung, Ki-Uk; Lee, Kwangyeol; Seong Jang, Ho

    2017-04-01

    Core/shell (C/S)-structured upconversion nanophosphor (UCNP)-incorporated polymer waveguide-based flexible transparent displays are demonstrated. Bright green- and blue-emitting Li(Gd,Y)F4:Yb,Er and Li(Gd,Y)F4:Yb,Tm UCNPs are synthesized via solution chemical route. Their upconversion luminescence (UCL) intensities are enhanced by the formation of C/S structure with LiYF4 shell. The Li(Gd,Y)F4:Yb,Er/LiYF4 and Li(Gd,Y)F4:Yb,Tm/LiYF4 C/S UCNPs exhibit 3.3 and 2.0 times higher UCL intensities than core counterparts, respectively. In addition, NaGdF4:Yb,Tm/NaGdF4:Eu C/S UCNPs are synthesized and they show red emission via energy transfer and migration of Yb3+ → Tm3+ → Gd3+ → Eu3+. The C/S UCNPs are incorporated into bisphenol A ethoxylate diacrylate which is used as a core material of polymer waveguides. The fabricated stripe-type polymer waveguides are highly flexible and transparent (transmittance > 90% in spectral range of 443-900 nm). The polymer waveguides exhibit bright blue, green, and red luminescence, depending on the incorporated UCNPs into the polymer core, under coupling with a near infrared (NIR) laser. Moreover, patterned polymer waveguide-based display devices are fabricated by reactive ion etching process and they realize bright blue-, green-, and red-colored characters under coupling with an NIR laser.

  20. Conductive polymer layers to limit transfer of fuel reactants to catalysts of fuel cells to reduce reactant crossover

    DOEpatents

    Stanis, Ronald J.; Lambert, Timothy N.

    2016-12-06

    An apparatus of an aspect includes a fuel cell catalyst layer. The fuel cell catalyst layer is operable to catalyze a reaction involving a fuel reactant. A fuel cell gas diffusion layer is coupled with the fuel cell catalyst layer. The fuel cell gas diffusion layer includes a porous electrically conductive material. The porous electrically conductive material is operable to allow the fuel reactant to transfer through the fuel cell gas diffusion layer to reach the fuel cell catalyst layer. The porous electrically conductive material is also operable to conduct electrons associated with the reaction through the fuel cell gas diffusion layer. An electrically conductive polymer material is coupled with the fuel cell gas diffusion layer. The electrically conductive polymer material is operable to limit transfer of the fuel reactant to the fuel cell catalyst layer.

  1. Transparent Conductive Adhesives for Tandem Solar Cells Using Polymer-Particle Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Talysa; Lee, Benjamin G; Schnabel, Manuel

    2018-02-14

    Transparent conductive adhesives (TCAs) can enable conductivity between two substrates, which is useful for a wide range of electronic devices. Here, we have developed a TCA composed of a polymer-particle blend with ethylene-vinyl acetate as the transparent adhesive and metal-coated flexible poly(methyl methacrylate) microspheres as the conductive particles that can provide conductivity and adhesion regardless of the surface texture. This TCA layer was designed to be nearly transparent, conductive in only the out-of-plane direction, and of practical adhesive strength to hold the substrates together. The series resistance was measured at 0.3 and 0.8 O cm2 for 8 and 0.2% particlemore » coverage, respectively, while remaining over 92% was transparent in both cases. For applications in photovoltaic devices, such as mechanically stacked multijunction III-V/Si cells, a TCA with 1% particle coverage will have less than 0.5% power loss due to the resistance and less than 1% shading loss to the bottom cell.« less

  2. Luminescence imaging of water during uniform-field irradiation by spot scanning proton beams

    NASA Astrophysics Data System (ADS)

    Komori, Masataka; Sekihara, Eri; Yabe, Takuya; Horita, Ryo; Toshito, Toshiyuki; Yamamoto, Seiichi

    2018-06-01

    Luminescence was found during pencil-beam proton irradiation to water phantom and range could be estimated from the luminescence images. However, it is not yet clear whether the luminescence imaging is applied to the uniform fields made of spot-scanning proton-beam irradiations. For this purpose, imaging was conducted for the uniform fields having spread out Bragg peak (SOBP) made by spot scanning proton beams. We designed six types of the uniform fields with different ranges, SOBP widths and irradiation fields. One of the designed fields was irradiated to water phantom and a cooled charge coupled device camera was used to measure the luminescence image during irradiations. We estimated the ranges, field widths, and luminescence intensities from the luminescence images and compared those with the dose distribution calculated by a treatment planning system. For all types of uniform fields, we could obtain clear images of the luminescence showing the SOBPs. The ranges and field widths evaluated from the luminescence were consistent with those of the dose distribution calculated by a treatment planning system within the differences of  ‑4 mm and  ‑11 mm, respectively. Luminescence intensities were almost proportional to the SOBP widths perpendicular to the beam direction. The luminescence imaging could be applied to uniform fields made of spot scanning proton beam irradiations. Ranges and widths of the uniform fields with SOBP could be estimated from the images. The luminescence imaging is promising for the range and field width estimations in proton therapy.

  3. Studies on structural, thermal and AC conductivity scaling of PEO-LiPF6 polymer electrolyte with added ionic liquid [BMIMPF6

    NASA Astrophysics Data System (ADS)

    Chaurasia, S. K.; Saroj, A. L.; Shalu, Singh, V. K.; Tripathi, A. K.; Gupta, A. K.; Verma, Y. L.; Singh, R. K.

    2015-07-01

    Preparation and characterization of polymer electrolyte films of PEO+10wt.% LiPF6 + xwt.% BMIMPF6 (1-butyl-3-methylimidazolium hexafluorophosphate) containing dopant salt lithium hexafluorophosphate (LiPF6) and ionic liquid (BMIMPF6) having common anion PF6 - are reported. The ionic conductivity of the polymer electrolyte films has been found to increase with increasing concentration of BMIMPF6 in PEO+10 wt.% LiPF6 due to the plasticization effect of ionic liquid. DSC and XRD results show that the crystallinity of polymer electrolyte decreases with BMIMPF6 concentration which, in turn, is responsible for the increase in ionic conductivity. FTIR spectroscopic study shows the complexation of salt and/or ionic liquid cations with the polymer backbone. Ion dynamics behavior of PEO+LiPF6 as well as PEO+LiPF6 + BMIMPF6 polymer electrolytes was studied by frequency dependent conductivity, σ(f) measurements. The values σ(f) at various temperatures have been analyzed in terms of Jonscher power law (JPL) and scaled with respect to frequency which shows universal power law characteristics at all temperatures.

  4. Investigations on the Mechanical Properties of Conducting Polymer Coating-Substrate Structures and Their Influencing Factors

    PubMed Central

    Wang, Xi-Shu; Tang, Hua-Ping; Li, Xu-Dong; Hua, Xin

    2009-01-01

    This review covers recent advances and work on the microstructure features, mechanical properties and cracking processes of conducting polymer film/coating- substrate structures under different testing conditions. An attempt is made to characterize and quantify the relationships between mechanical properties and microstructure features. In addition, the film cracking mechanism on the micro scale and some influencing factors that play a significant role in the service of the film-substrate structure are presented. These investigations cover the conducting polymer film/coating nucleation process, microstructure-fracture characterization, translation of brittle-ductile fractures, and cracking processes near the largest inherent macromolecule defects under thermal-mechanical loadings, and were carried out using in situ scanning electron microscopy (SEM) observations, as a novel method for evaluation of interface strength and critical failure stress. PMID:20054470

  5. Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element.

    PubMed

    Lakshmi, Dhana; Bossi, Alessandra; Whitcombe, Michael J; Chianella, Iva; Fowler, Steven A; Subrahmanyam, Sreenath; Piletska, Elena V; Piletsky, Sergey A

    2009-05-01

    One of the difficulties with using molecularly imprinted polymers (MIPs) and other electrically insulating materials as the recognition element in electrochemical sensors is the lack of a direct path for the conduction of electrons from the active sites to the electrode. We have sought to address this problem through the preparation and characterization of novel hybrid materials combining a catalytic MIP, capable of oxidizing the template, catechol, with an electrically conducting polymer. In this way a network of "molecular wires" assists in the conduction of electrons from the active sites within the MIP to the electrode surface. This was made possible by the design of a new monomer that combines orthogonal polymerizable functionality; comprising an aniline group and a methacrylamide. Conducting films were prepared on the surface of electrodes (Au on glass) by electropolymerization of the aniline moiety. A layer of MIP was photochemically grafted over the polyaniline, via N,N'-diethyldithiocarbamic acid benzyl ester (iniferter) activation of the methacrylamide groups. Detection of catechol by the hybrid-MIP sensor was found to be specific, and catechol oxidation was detected by cyclic voltammetry at the optimized operating conditions: potential range -0.6 V to +0.8 V (vs Ag/AgCl), scan rate 50 mV/s, PBS pH 7.4. The calibration curve for catechol was found to be linear to 144 microM, with a limit of detection of 228 nM. Catechol and dopamine were detected by the sensor, whereas analogues and potentially interfering compounds, including phenol, resorcinol, hydroquinone, serotonin, and ascorbic acid, had minimal effect (< or = 3%) on the detection of either analyte. Non-imprinted hybrid electrodes and bare gold electrodes failed to give any response to catechol at concentrations below 0.5 mM. Finally, the catalytic properties of the sensor were characterized by chronoamperometry and were found to be consistent with Michaelis-Menten kinetics.

  6. High ionic conductivity P(VDF-TrFE)/PEO blended polymer electrolytes for solid electrochromic devices.

    PubMed

    Nguyen, Chien A; Xiong, Shanxin; Ma, Jan; Lu, Xuehong; Lee, Pooi See

    2011-08-07

    Solid polymer electrolytes with excellent ionic conductivity (above 10(-4) S cm(-1)), which result in high optical modulation for solid electrochromic (EC) devices are presented. The combination of a polar host matrix poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) and a solid plasticized of a low molecular weight poly(ethylene oxide) (PEO) (M(w)≤ 20,000) blended polymer electrolyte serves to enhance both the dissolution of lithium salt and the ionic transport. Calorimetric measurement shows a reduced crystallization due to a better intermixing of the polymers with small molecular weight PEO. Vibrational spectroscopy identifies the presence of free ions and ion pairs in the electrolytes with PEO of M(w)≤ 8000. The ionic dissolution is improved using PEO as a plasticizer when compared to liquid propylene carbonate, evidently shown in the transference number analysis. Ionic transport follows the Arrhenius equation with a low activation energy (0.16-0.2 eV), leading to high ionic conductivities. Solid electrochromic devices fabricated with the blended P(VDF-TrFE)/PEO electrolytes and polyaniline show good spectroelectrochemical performance in the visible (300-800 nm) and near-infrared (0.9-2.4 μm) regions with a modulation up to 60% and fast switching speed of below 20 seconds. The successful introduction of the solid polymer electrolytes with its best harnessed qualities helps to expedite the application of various electrochemical devices. This journal is © the Owner Societies 2011

  7. Conductive network formation of carbon nanotubes in elastic polymer microfibers and its effect on the electrical conductance: Experiment and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Hyun Woo; Kim, Jeongmin; Sung, Bong June, E-mail: jjpark@chonnam.ac.kr, E-mail: bjsung@sogang.ac.kr

    We investigate how the electrical conductance of microfibers (made of polymers and conductive nanofillers) decreases upon uniaxial deformation by performing both experiments and simulations. Even though various elastic conductors have been developed due to promising applications for deformable electronic devices, the mechanism at a molecular level for electrical conductance change has remained elusive. Previous studies proposed that the decrease in electrical conductance would result from changes in either distances or contact numbers between conductive fillers. In this work, we prepare microfibers of single walled carbon nanotubes (SWCNTs)/polyvinyl alcohol composites and investigate the electrical conductance and the orientation of SWCNTs uponmore » uniaxial deformation. We also perform extensive Monte Carlo simulations, which reproduce experimental results for the relative decrease in conductance and the SWCNTs orientation. We investigate the electrical networks of SWCNTs in microfibers and find that the decrease in the electrical conductance upon uniaxial deformation should be attributed to a subtle change in the topological structure of the electrical network.« less

  8. Detection of off-flavor in catfish using a conducting polymer electronic-nose technology

    Treesearch

    Alphus D Wilson; Charisse Oberle; Daniel F. Oberle

    2013-01-01

    The Aromascan A32S conducting polymer electronic nose was evaluated for the capability of detecting the presence of off-flavor malodorous compounds in catfish meat fillets to assess meat quality for potential merchantability. Sensor array outputs indicated that the aroma profiles of good-flavor (on-flavor) and off-flavor fillets were strongly different as confirmed by...

  9. Conducting polymer actuator based on chemically deposited polypyrrole and polyurethane-based solid polymer electrolyte working in air

    NASA Astrophysics Data System (ADS)

    Choi, Hwa-Jeong; Song, Young-Min; Chung, Ildoo; Ryu, Kwang-Sun; Jo, Nam-Ju

    2009-02-01

    Conducting polymers (CPs), such as polypyrrole, polythiophene, and polyaniline, are unique in that they have switchable properties due to their two or more mechanically stable oxidation states. Thus, their films or coatings can be easily switched by the application of a small voltage and current to change their volume during electrochemical redox processes. In particular, polypyrrole (PPy) has been studied most extensively because of its high electrical conductivity and good environmental stability under ambient conditions. In this work, we have studied a new CP actuator, fully polymeric, assembled with two PPy film electrodes and a solid polymer electrolyte (SPE), polyurethane/Mg(ClO4)2. Polyurethanes (PUs) were synthesized from 4,4'-diphenylmethane diisocyanate (MDI), 1,4-butanediol (1,4-BD) and three types of polyol: poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), and PPG-block-PEG-block-PPG (PPG-co-PEG). The chemical polymerization of PPy by immersion in Py monomer aqueous solution and oxidant aqueous solution is an adequate method to prepare PU/PPy composite film as an actuator. To find the proper thickness of the PPy coating layer for actuation, we measured the displacements of the actuators according to the thickness of the PPy coating layer. The displacement of all actuators is discussed in connection with the properties of the SPE and PPy. All the results obtained in this work show the feasibility of electrochemomechanical devices based on PPy and SPE film being able to work in air.

  10. Photoluminescence of Co: ZnNiO and Zr: ZnNiO nanocomposites capped with biodegradable polymer poly (2-ethyl-2-oxazoline)

    NASA Astrophysics Data System (ADS)

    John, Sam; George, James Baben; Joseph, Abraham

    2018-05-01

    The optical properties of the semiconducting nanomaterials has a wide variety of applications in the biological and industrial fields, which include the synthesis of UV laser, light emitting diodes, solar cells, gas sensors, piezoelectric transducers etc. Among the various types of optical properties, luminescence especially photoluminescence (PL) of metal oxides are more prominently studied. This is because PL spectrum is an effective way to investigate the electronic structure, optical and photochemical properties of semiconductor materials which deciphers information such as surface oxygen vacancies, defects, efficiency of charge carrier trapping, immigration, transfer etc. To overcome the drawbacks in luminescence studies of metal oxide nanomaterials, polymer technology has also been incorporated. The scientists found that the doping of some elements into the polymer capped ZnO nanocomposites enhanced the luminescence properties of the compound. In the current study, we are investigating the photoluminescence properties of ZnO nanocomposites capped with a biodegradable polymer poly (2-ethyl 2-oxazoline) and doped with the elements Cobalt and Zirconium. We obtained many strong fluorescence peaks in the visible and UV regions in the PL spectrum and UV absorption spectroscopy.

  11. Syntheses, structures and properties of four Cd(II) coordination polymers induced by the pH regulator

    NASA Astrophysics Data System (ADS)

    Xu, Yun; Ding, Fang; Liu, Dong; Yang, Pei-Pei; Zhu, Li-Li

    2018-03-01

    Four new coordination polymers [Cd2(CHDC)2(APYZ)(H2O)2](H2O) (1), [Cd(HCHDC)2(APYZ) (H2O)] (2), [Cd2(CHDC)2(PYZ)(H2O)2](H2O) (3), and [Cd(HCHDC)2(PYZ)(H2O)] (4) (H2CHDC = 1,4-cyclohexanedicarboxylic acid, APYZ = 2-aminopyrazine, PYZ = pyrazine) have been synthesized under the hydrothermal conditions by changing the pH regulator and the N-containing ligands. The pH regulator impacted on the degree of deprotonation of the 1,4-cyclohexanedicarboxylic acid ligand and resulted in the formation of the two pairs of different networks. Polymers 1 and 3 crystallize in monoclinic, space group P21/c, exhibit two dimensional 63 net, which further formed three-dimensional supramolecular structure by the Csbnd H⋯O hydrogen bond interactions. While polymers 2 and 4 possess one dimensional chain structures and further link into two dimensional layered supramolecular structures by intermolecular hydrogen bonding interactions. From all three conformers of H2CHDC, e,a-cis is consistently present in the Cd coordination polymers. Furthermore, photoluminescence properties of four polymers are also investigated, the luminescent intensity of polymer 1 (or 2) with amino group in pyrazine is dramatically stronger than that of the similar structure of polymer 3 (or 4) without amino group in pyrazine, the results shown that the presence of the amino group from 2-aminopyrazine play a key role in increasing the luminescence properties.

  12. Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villaluenga, Irune; Wujcik, Kevin H.; Tong, Wei

    2015-12-22

    Despite high ionic conductivities, current inorganic solid electrolytes cannot be used in lithium batteries because of a lack of compliance and adhesion to active particles in battery electrodes as they are discharged and charged. Here, we have successfully developed a compliant, nonflammable, hybrid single ion-conducting electrolyte comprising inorganic sulfide glass particles covalently bonded to a perfluoropolyether polymer. The hybrid with 23 wt% perfluoropolyether exhibits low shear modulus relative to neat glass electrolytes, ionic conductivity of 10 -4 S/cm at room temperature, a cation transference number close to unity, and an electrochemical stability window up to 5 V relative to Limore » +/Li. X-ray absorption spectroscopy indicates that the hybrid electrolyte limits lithium polysulfide dissolution and is, thus, ideally suited for Li-S cells. Our work opens a previously unidentified route for developing compliant solid electrolytes that will address the challenges of lithium batteries.« less

  13. Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries

    PubMed Central

    Villaluenga, Irune; Wujcik, Kevin H.; Tong, Wei; Devaux, Didier; Wong, Dominica H. C.; DeSimone, Joseph M.; Balsara, Nitash P.

    2016-01-01

    Despite high ionic conductivities, current inorganic solid electrolytes cannot be used in lithium batteries because of a lack of compliance and adhesion to active particles in battery electrodes as they are discharged and charged. We have successfully developed a compliant, nonflammable, hybrid single ion-conducting electrolyte comprising inorganic sulfide glass particles covalently bonded to a perfluoropolyether polymer. The hybrid with 23 wt% perfluoropolyether exhibits low shear modulus relative to neat glass electrolytes, ionic conductivity of 10−4 S/cm at room temperature, a cation transference number close to unity, and an electrochemical stability window up to 5 V relative to Li+/Li. X-ray absorption spectroscopy indicates that the hybrid electrolyte limits lithium polysulfide dissolution and is, thus, ideally suited for Li-S cells. Our work opens a previously unidentified route for developing compliant solid electrolytes that will address the challenges of lithium batteries. PMID:26699512

  14. A family of entangled coordination polymers constructed from a flexible V-shaped long bicarboxylic acid and auxiliary N-donor ligands: Luminescent sensing

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Bai, Chao; Hu, Huai-Ming; Yuan, Fei; Xue, Gang-Lin

    2017-05-01

    Eight Zn(II)-based coordination polymers, namely, [Zn2L2(2,2'-bipy)]n·nH2O (1), [Zn2L2(phen)]n·nH2O (2), [ZnL(phen)(H2O)]n (3), [Zn3L3(4,4'-bipy)]n (4), [Zn2L2(4,4'-bipy)2]n [Zn2L2(H2O)2]n·2nH2O (5), [Zn4L4(bpp)2]n (6), [ZnL(bbi)0.5]n (7), [ZnL(bpz)]n (8) (H2L=4,4'-{[1,2-phenylenebis-(methylene)]bis(oxy)}dibenzoic acid, 2,2'-bipy =2,2'-bipyridine, phen =1,10-phenanthroline, 4,4'-bpy=4,4'-bipyridine, bpp =1,3-bis(4-pyridyl)propane, bbi=1,4-bis(imidazol-1-yl)butane, bpz=3,3‧,5,5‧-tetramethyl-4,4‧-bipyrazole), have been hydrothermally synthesized and structurally characterized. 1-8 display various coordination motifs with different entangled forms and conformations due to the effect of the assistant N-donor ligands. The photoluminescent properties of compounds 1-8 in solid state were studied. Interestingly, 3 exhibits highly efficient luminescent sensing for Cu2+ cations and CrO42- anions, as well as detection ability for the different organic solvents and nitro explosives. These results indicated that it could be utilized as a multi-responsive luminescent sensor. Furthermore, compound 3 also shows good chemical resistance to both acidity and alkalinity solutions with pH ranging from 2 to 13. Thus, multi-photofunctionality and fluorescent response to pH have been combined in the 3, which is the first example in the Zn-based hybrid materials.

  15. High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte

    PubMed Central

    Sun, Yubao; Li, Gai; Lai, Yuanchu; Zeng, Danli; Cheng, Hansong

    2016-01-01

    Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known “polysulfide shuttle” effect. Here, we report a novel cell design by sandwiching a sp3 boron based single ion conducting polymer electrolyte film between two carbon films to fabricate a composite separator for lithium-sulfur batteries. The dense negative charges uniformly distributed in the electrolyte membrane inherently prohibit transport of polysulfide anions formed in the cathode inside the polymer matrix and effectively blocks polysulfide shuttling. A battery assembled with the composite separator exhibits a remarkably long cycle life at high charge/discharge rates. PMID:26898772

  16. Arrays of hollow out-of-plane microneedles made by metal electrodeposition onto solvent cast conductive polymer structures

    NASA Astrophysics Data System (ADS)

    Mansoor, I.; Liu, Y.; Häfeli, U. O.; Stoeber, B.

    2013-08-01

    Transdermal drug delivery using microneedles is a technique to potentially replace hypodermic needles for injection of many vaccines and drugs. Fabrication of hollow metallic microneedles so far has been associated with time-consuming steps that restrict batch production of these devices. Here, we are presenting a novel method for making metallic microneedles with any desired height, spacing, and lumen size. In our process, we use solvent casting to coat a mold, which contains an array of pillars, with a conductive polymer composite layer. The conductive layer is then used as a seed layer in a metal electrodeposition process. To characterize the process, the conductivity of the polymer composite with respect to different filler concentrations was investigated. In addition, plasma etching of the polymer was characterized. The electroplating process was also studied further to control the thickness of the microneedle array plate. The strength of the microneedle devices was evaluated through a series of compression tests, while their performance for transdermal drug delivery was tested by injection of 2.28 µm fluorescent microspheres into animal skin. The fabricated metallic microneedles seem appropriate for subcutaneous delivery of drugs and microspheres.

  17. Positron-Induced Luminescence.

    PubMed

    Stenson, E V; Hergenhahn, U; Stoneking, M R; Pedersen, T Sunn

    2018-04-06

    We report on the observation that low-energy positrons incident on a phosphor screen produce significantly more luminescence than electrons do. For two different wide-band-gap semiconductor phosphors (ZnS:Ag and ZnO:Zn), we compare the luminescent response to a positron beam with the response to an electron beam. For both phosphors, the positron response is significantly brighter than the electron response, by a factor that depends strongly on incident energy (0-5 keV). Positrons with just a few tens of electron-volts of energy (for ZnS:Ag) or less (for ZnO:Zn) produce as much luminescence as is produced by electrons with several kilo-electron-volts. We attribute this effect to valence band holes and excited electrons produced by positron annihilation and subsequent Auger processes. These results demonstrate a valuable approach for addressing long-standing questions about luminescent materials.

  18. Positron-Induced Luminescence

    NASA Astrophysics Data System (ADS)

    Stenson, E. V.; Hergenhahn, U.; Stoneking, M. R.; Pedersen, T. Sunn

    2018-04-01

    We report on the observation that low-energy positrons incident on a phosphor screen produce significantly more luminescence than electrons do. For two different wide-band-gap semiconductor phosphors (ZnS:Ag and ZnO:Zn), we compare the luminescent response to a positron beam with the response to an electron beam. For both phosphors, the positron response is significantly brighter than the electron response, by a factor that depends strongly on incident energy (0-5 keV). Positrons with just a few tens of electron-volts of energy (for ZnS:Ag) or less (for ZnO:Zn) produce as much luminescence as is produced by electrons with several kilo-electron-volts. We attribute this effect to valence band holes and excited electrons produced by positron annihilation and subsequent Auger processes. These results demonstrate a valuable approach for addressing long-standing questions about luminescent materials.

  19. Biocompatible silk-conducting polymer composite trilayer actuators

    NASA Astrophysics Data System (ADS)

    Fengel, Carly V.; Bradshaw, Nathan P.; Severt, Sean Y.; Murphy, Amanda R.; Leger, Janelle M.

    2017-05-01

    Biocompatible materials capable of controlled actuation are in high demand for use in biomedical applications such as dynamic tissue scaffolding, valves, and steerable surgical tools. Conducting polymer actuators are of interest because they operate in aqueous electrolytes at low voltages and can generate stresses similar to natural muscle. Recently, our group has demonstrated a composite material of silk and poly(pyrrole) (PPy) that is mechanically robust, made from biocompatible materials, and bends under an applied voltage when incorporated into a simple bilayer device architecture and actuated using a biologically relevant electrolyte. Here we present trilayer devices composed of two silk-PPy composite layers separated by an insulating silk layer. The trilayer architecture allows one side to expand while the other contracts, resulting in improved performance over bilayer devices. Specifically, this configuration shows a larger angle of deflection per volt applied than the analogous bilayer system, while maintaining a consistent current response throughout cycling. In addition, the overall motion of the trilayer devices is more symmetric than that of the bilayer analogs, allowing for fully reversible operation.

  20. Electrochemical Impedance Spectroscopy of Conductive Polymer Coatings

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; MacDowell, Louis G.

    1996-01-01

    Electrochemical impedance spectroscopy (EIS) was used to investigate the corrosion protection performance of twenty nine proprietary conductive polymer coatings for cold rolled steel under immersion in 3.55 percent NaCl. Corrosion potential as well as Bode plots of the data were obtained for each coating after one hour immersion, All coatings, with the exception of one, have a corrosion potential that is higher in the positive direction than the corrosion potential of bare steel under the same conditions. Group A consisted of twenty one coatings with Bode plots indicative of the capacitive behavior characteristic of barrier coatings. An equivalent circuit consisting of a capacitor in series with a resistor simulated the experimental EIS data for these coatings very well. Group B consisted of eight coatings that exhibited EIS spectra showing an inflection point which indicates that two time constants are present. This may be caused by an electrochemical process taking place which could be indicitive of coating failing. These coatings have a lower impedance that those in Group A.

  1. Towards seamlessly-integrated textile electronics: methods to coat fabrics and fibers with conducting polymers for electronic applications.

    PubMed

    Allison, Linden; Hoxie, Steven; Andrew, Trisha L

    2017-06-29

    Traditional textile materials can be transformed into functional electronic components upon being dyed or coated with films of intrinsically conducting polymers, such as poly(aniline), poly(pyrrole) and poly(3,4-ethylenedioxythiophene). A variety of textile electronic devices are built from the conductive fibers and fabrics thus obtained, including: physiochemical sensors, thermoelectric fibers/fabrics, heated garments, artificial muscles and textile supercapacitors. In all these cases, electrical performance and device ruggedness is determined by the morphology of the conducting polymer active layer on the fiber or fabric substrate. Tremendous variation in active layer morphology can be observed with different coating or dyeing conditions. Here, we summarize various methods used to create fiber- and fabric-based devices and highlight the influence of the coating method on active layer morphology and device stability.

  2. Zwitterionic peptide anchored to conducting polymer PEDOT for the development of antifouling and ultrasensitive electrochemical DNA sensor.

    PubMed

    Wang, Guixiang; Han, Rui; Su, Xiaoli; Li, Yinan; Xu, Guiyun; Luo, Xiliang

    2017-06-15

    Zwitterionic peptides were anchored to a conducting polymer of citrate doped poly(3,4-ethylenedioxythiophene) (PEDOT) via the nickel cation coordination, and the obtained peptide modified PEDOT, with excellent antifouling ability and good conductivity, was further used for the immobilization of a DNA probe to construct an electrochemical biosensor for the breast cancer marker BRCA1. The DNA biosensor was highly sensitive (with detection limit of 0.03fM) and selective, and it was able to detect BRCA1 in 5% (v/v) human plasma with satisfying accuracy and low fouling. The marriage of antifouling and biocompatible peptides with conducting polymers opened a new avenue to construct electrochemical biosensors capable of assaying targets in complex biological media with high sensitivity and without biofouling. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Highly Conductive, Stretchable, and Transparent Solid Polymer Electrolyte Membrane

    NASA Astrophysics Data System (ADS)

    He, Ruixuan; Echeverri, Mauricio; Kyu, Thein

    2014-03-01

    With the guidance of ternary phase diagrams, completely amorphous polymer electrolyte membranes (PEM) were successfully prepared by melt processing for lithium-ion battery. The PEM under consideration consisted of poly (ethylene glycol diacrylate) (PEGDA), succinonitrile (SCN) and Lithium bis(trifluoro-methane)sulfonamide (LiTFSI). After UV-crosslinking, the PEM is transparent and light-weight. Addition of SCN plastic crystal affords not only dissociation of the lithium salt, but also plasticization to the crosslinked PEGDA network. Of particular importance is the achievement of room-temperature ionic conductivity of ~10-3 S/cm, which is comparable to that of commercial liquid electrolyte. Higher ionic conductivities were achieved at elevated temperatures or with use of a moderately higher molecular weight of PEGDA. In terms of electrochemical and chemical stability, the PEM exhibited oxidative stability up to 5 V against lithium reference electrode. Stable interface behavior between the PEM and lithium electrode is also seen with ageing time. In the tensile tests, samples containing low molecular weight PEGDA are stiffer, whereas the high molecular weight PEGDA is stretchable up to 80% elongation. Supported by NSF-DMR 1161070.

  4. Tetranuclear cluster-based Pb(II)-MOF: Synthesis, crystal structure and luminescence sensing for CS2

    NASA Astrophysics Data System (ADS)

    Dong, Yanli

    2018-05-01

    A new Pb(II) coordination polymer, namely [Pb2(bptc)(DMA)]n (1, H4bptc = biphenyl-3,3‧,5,5‧-tetracarboxylic acid, DMA = N, N‧- dimethylacetamide), has been synthesized by the combination of H4bptc with Pb(NO3)2 under solvothermal conditions. Single crystal X-ray diffraction analysis revealed that compound 1 features a 3D framework based on tetranuclear [Pb4(COO)6] subunits, and topological analysis revealed that compound represents a binodal (4, 8)-connected scu-type topological network with the point symbol of {416,612}{44,62}2. Luminescence studies indicated that 1 and 1' (1‧ represents the desolvated samples) showed intense yellow emissions. Significantly, 1‧ exhibited sensitive luminescence sensing for CS2 solvent molecules at a low concentration.

  5. Self-Assembled Tb3+ Complex Probe for Quantitative Analysis of ATP during Its Enzymatic Hydrolysis via Time-Resolved Luminescence in Vitro and in Vivo.

    PubMed

    Jung, Sung Ho; Kim, Ka Young; Lee, Ji Ha; Moon, Cheol Joo; Han, Noh Soo; Park, Su-Jin; Kang, Dongmin; Song, Jae Kyu; Lee, Shim Sung; Choi, Myong Yong; Jaworski, Justyn; Jung, Jong Hwa

    2017-01-11

    To more accurately assess the pathways of biological systems, a probe is needed that may respond selectively to adenosine triphosphate (ATP) for both in vitro and in vivo detection modes. We have developed a luminescence probe that can provide real-time information on the extent of ATP, ADP, and AMP by virtue of the luminescence and luminescence lifetime observed from a supramolecular polymer based on a C 3 symmetrical terpyridine complex with Tb 3+ (S1-Tb). The probe shows remarkable selective luminescence enhancement in the presence of ATP compared to other phosphate-displaying nucleotides including adenosine diphosphate (ADP), adenosine monophosphate (AMP), guanosine triphosphate (GTP), thymidine triphosphate (TTP), H 2 PO 4 - (Pi), and pyrophosphate (PPi). In addition, the time-resolved luminescence lifetime and luminescence spectrum of S1-Tb could facilitate the quantitative measurement of the exact amount of ATP and similarly ADP and AMP within living cells. The time-resolved luminescence lifetime of S1-Tb could also be used to quantitatively monitor the amount of ATP, ADP, and AMP in vitro following the enzymatic hydrolysis of ATP. The long luminescence lifetime, which was observed into the millisecond range, makes this S1-Tb-based probe particularly attractive for monitoring biological ATP levels in vivo, because any short lifetime background fluorescence arising from the complex molecular environment may be easily eliminated.

  6. New Secondary Batteries Using Electronically Conductive Polymer Cathodes

    NASA Technical Reports Server (NTRS)

    Martin, Charles R.; White, Ralph E.

    1991-01-01

    A Li/Polypyrrole secondary battery was designed and built, and the effect of controlling the morphology of the polymer on enhancement of counterion diffusion in the polymer phase was explored. The experimental work was done at Colorado State University, while the mathematical modeling of the battery was done at Texas A and M University. Manuscripts and publications resulting from the project are listed.

  7. Conducting Polymers for Neural Prosthetic and Neural Interface Applications

    PubMed Central

    2015-01-01

    Neural interfacing devices are an artificial mechanism for restoring or supplementing the function of the nervous system lost as a result of injury or disease. Conducting polymers (CPs) are gaining significant attention due to their capacity to meet the performance criteria of a number of neuronal therapies including recording and stimulating neural activity, the regeneration of neural tissue and the delivery of bioactive molecules for mediating device-tissue interactions. CPs form a flexible platform technology that enables the development of tailored materials for a range of neuronal diagnostic and treatment therapies. In this review the application of CPs for neural prostheses and other neural interfacing devices are discussed, with a specific focus on neural recording, neural stimulation, neural regeneration, and therapeutic drug delivery. PMID:26414302

  8. Luminescent sensing and imaging of oxygen: fierce competition to the Clark electrode.

    PubMed

    Wolfbeis, Otto S

    2015-08-01

    Luminescence-based sensing schemes for oxygen have experienced a fast growth and are in the process of replacing the Clark electrode in many fields. Unlike electrodes, sensing is not limited to point measurements via fiber optic microsensors, but includes additional features such as planar sensing, imaging, and intracellular assays using nanosized sensor particles. In this essay, I review and discuss the essentials of (i) common solid-state sensor approaches based on the use of luminescent indicator dyes and host polymers; (ii) fiber optic and planar sensing schemes; (iii) nanoparticle-based intracellular sensing; and (iv) common spectroscopies. Optical sensors are also capable of multiple simultaneous sensing (such as O2 and temperature). Sensors for O2 are produced nowadays in large quantities in industry. Fields of application include sensing of O2 in plant and animal physiology, in clinical chemistry, in marine sciences, in the chemical industry and in process biotechnology. © 2015 The Author. Bioessays published by WILEY Periodicals, Inc.

  9. Acid-doped polymer nanofiber framework: Three-dimensional proton conductive network for high-performance fuel cells

    NASA Astrophysics Data System (ADS)

    Tanaka, Manabu; Takeda, Yasushi; Wakiya, Takeru; Wakamoto, Yuta; Harigaya, Kaori; Ito, Tatsunori; Tarao, Takashi; Kawakami, Hiroyoshi

    2017-02-01

    High-performance polymer electrolyte membranes (PEMs) with excellent proton conductivity, gas barrier property, and membrane stability are desired for future fuel cells. Here we report the development of PEMs based on our proposed new concept "Nanofiber Framework (NfF)." The NfF composite membranes composed of phytic acid-doped polybenzimidazole nanofibers (PBINf) and Nafion matrix show higher proton conductivity than the recast-Nafion membrane without nanofibers. A series of analyses reveal the formation of three-dimensional network nanostructures to conduct protons and water effectively through acid-condensed layers at the interface of PBINf and Nafion matrix. In addition, the NfF composite membrane achieves high gas barrier property and distinguished membrane stability. The fuel cell performance by the NfF composite membrane, which enables ultra-thin membranes with their thickness less than 5 μm, is superior to that by the recast-Nafion membrane, especially at low relative humidity. Such NfF-based high-performance PEM will be accomplished not only by the Nafion matrix used in this study but also by other polymer electrolyte matrices for future PEFCs.

  10. Structural symmetry breaking of silicon containing polymers and their relation with electrical conductivity and Raman active vibrations

    NASA Astrophysics Data System (ADS)

    Cabrera, Alejandro; González, Carmen; Tagle, Luis; Terraza, Claudio; Volkmann, Ulrich; Barriga, Andrés; Ramos, Esteban; Pavez, Maximiliano

    2011-03-01

    The incorporation of silicon into the polymeric main chain or side groups can provide an enhancement in chemical, physical and mechanical properties. We report an efficient method for the synthesis of polymers containing silicon in the main chain, from the polycondensation reactions of four optically active carboxylic diacid. The solubility of the polymers, the molecular weight, the glass transition and the thermal stability were studied by standard techniques. Raman spectroscopy was used to probe the conformation of stretching modes as function of the temperature. The conductivity measurements indicated that the alignment of the molecules is a crucial parameter for electrical performance. When the polymers were exposed to iodine, charge transfer increased their mobility and decreased their optical band gaps. These novel properties highlight the possibility to generate alternative active opto-electronics polymers.

  11. Upconversion luminescence nanosensor for TNT selective and label-free quantification in the mixture of nitroaromatic explosives.

    PubMed

    Ma, Yingxin; Wang, Leyu

    2014-03-01

    This paper reports a rapid, sensitive, and selective nanosensor for the detection of 2,4,6-trinitrotoluene (TNT) in the mixture aqueous solution of nitroaromatics independent of immunoassay or molecularly imprinted technology and complicated instruments. Despite many strategies including immunoassay and molecularly imprinted technologies been successfully developed for the detection of TNT, it is not easy to differentiate TNT from 2,4,6-trinitrophenol (TNP) due to their very similar chemical structures and properties. In this work, the amine functionalized NaYF4:Yb(3+)/Er(3+) upconversion luminescence nanoparticles (UCNPs) whose excitation (980 nm) and emission (543 nm) wavelength were far from the absorbance bands of other usual interference nitroaromatics including 2,4-dinitrotoluene (DNT), nitrobenzene (NB), and especially TNP, were utilized as the luminescent nanosensors for TNT luminescence detection. To make these UCNPs highly water stable and render the charge transfer from UCNPs to TNT easier, amino groups were introduced onto the surface of the UCNPs by coating a polymer layer of ethylene glycol dimethacrylate (EGDMA) hybridized with 3-aminopropyltriethoxysilane (APTS). After binding with TNT through amino groups on the UCNPs, the naked eye visible green upconversion luminescence of the UCNPs was dramatically quenched and thus a sensitive UC luminescence nanosensor was developed for TNT detection. However, other nitroaromatics including TNP, DNT, and NB have no influence on the green UC luminescence and thus no influence on the TNT detection. The luminescence intensity is negatively proportional to the concentration of TNT in the range of 0.01-9.0 µg/mL with the 3σ limit of detection (LOD) of 9.7 ng/mL. The present studies provide a novel and facile strategy to fabricate the upconversion luminescence sensors with highly selective recognition ability in aqueous media and are desirable for label free analysis of TNT in mixed solution independent of

  12. Differentiation of black writing ink on paper using luminescence lifetime by time-resolved luminescence spectroscopy.

    PubMed

    Suzuki, Mototsugu; Akiba, Norimitsu; Kurosawa, Kenji; Akao, Yoshinori; Higashikawa, Yoshiyasu

    2017-10-01

    The time-resolved luminescence spectra and the lifetimes of eighteen black writing inks were measured to differentiate pen ink on altered documents. The spectra and lifetimes depended on the samples. About half of the samples only exhibited short-lived luminescence components on the nanosecond time scale. On the other hand, the other samples exhibited short- and long-lived components on the microsecond time scale. The samples could be classified into fifteen groups based on the luminescence spectra and dynamics. Therefore, luminescence lifetime can be used for the differentiation of writing inks, and luminescence lifetime imaging can be applied for the examination of altered documents. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Development of Conductive Polymer Analysis for the Rapid Detection and Identification of Phytopathogenic Microbes

    Treesearch

    A. Dan Wilson; D.G. Lester; C.S. Oberle

    2004-01-01

    Conductive polymer analysis, a type of electronic aroma detection technology, was evaluated for its efficacy in the detection, identification, and discrimination of plant-pathogenic microorganisms on standardized media and in diseased plant tissues. The method is based on the acquisition of a diagnostic electronic fingerprint derived from multisensor responses to...

  14. Simultaneous improvement in ionic conductivity and flexibility of solid polymer electrolytes for thin film lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Ji, Jianying

    Solid polymer electrolytes (SPEs) provide advantages over liquid electrolytes in terms of safety, reliability, less temperature sensitive, and simplicity of design. With the use of a SPE in lithium batteries, high specific energy and specific power, safe operation, flexibility in packaging, and low cost of fabrication can be expected. However, after 30 years, SPEs have rarely found commercial success due to the low ionic conductivity and/or insufficient mechanical properties, both of which are related to the movement of the polymer chains. Many physical/chemical methods have been exploited to simultaneously create enhancement in ionic conductivity and mechanical properties, and some suggested ways have shown promise. However, the complex strategies have always introduced other challenge issues and incurred extra costs for manufacturing. In such a context, the development of dry solid state electrolytes is the central challenge to be faced worldwide. This thesis deals with the approaches to improving ionic conductivity and mechanical properties simultaneously. The method is to apply two kinds of controllable organic fillers: copolymer and protein. Our work revealed that the commercial available copolymer, poly (ethylene oxide)- block-polyethylene (PEO-b-PE), possesses a capability for enhancing the multiple performances of poly(ethylene oxide)(PEO)-based polymer electrolyte. And the effects of composition and molecular weight of the copolymers on performance of the resulting SPEs were examined. It was found that increasing the PE block percentage in the copolymer resulted in a significant increase in both ionic conductivity and mechanical properties, while increasing the molecular weight of the copolymer resulted in better mechanical properties, and an identical ionic conductivity. A rubber-like, soy protein-based SPE (s-SPE)was obtained by employing soy protein isolate (SPI), a soy product usually used as rigid fillers for enhancing mechanical properties of

  15. Origin of green luminescence in hydrothermally grown ZnO single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Čížek, J., E-mail: jakub.cizek@mff.cuni.cz; Hruška, P.; Melikhova, O.

    2015-06-22

    Combining photoluminescence and positron annihilation studies of hydrothermally grown ZnO crystals with stoichiometry varied by controlled annealing enabled us to clarify the origin of green luminescence. It was found that green luminescence in ZnO has multiple origins and consists of a band at 2.3(1) eV due to recombination of electrons of the conduction band by zinc vacancy acceptors coupled with hydrogen and a band at 2.47(2) eV related to oxygen vacancies. The as-grown ZnO crystals contain zinc vacancies associated with hydrogen and exhibit a green luminescence at 2.3(1) eV. Annealing in Zn vapor removed zinc vacancies and introduced oxygen vacancies.more » This led to disappearance of the green luminescence band at 2.3(1) eV and appearance of a green emission at higher energy of 2.47(2) eV. Moreover, the color of the crystal was changed from colorless to dark red. In contrast, annealing of the as-grown crystal in Cd vapor did not remove zinc vacancies and did not cause any significant change of green luminescence nor change in coloration.« less

  16. Origin of green luminescence in hydrothermally grown ZnO single crystals

    NASA Astrophysics Data System (ADS)

    Čížek, J.; Valenta, J.; Hruška, P.; Melikhova, O.; Procházka, I.; Novotný, M.; Bulíř, J.

    2015-06-01

    Combining photoluminescence and positron annihilation studies of hydrothermally grown ZnO crystals with stoichiometry varied by controlled annealing enabled us to clarify the origin of green luminescence. It was found that green luminescence in ZnO has multiple origins and consists of a band at 2.3(1) eV due to recombination of electrons of the conduction band by zinc vacancy acceptors coupled with hydrogen and a band at 2.47(2) eV related to oxygen vacancies. The as-grown ZnO crystals contain zinc vacancies associated with hydrogen and exhibit a green luminescence at 2.3(1) eV. Annealing in Zn vapor removed zinc vacancies and introduced oxygen vacancies. This led to disappearance of the green luminescence band at 2.3(1) eV and appearance of a green emission at higher energy of 2.47(2) eV. Moreover, the color of the crystal was changed from colorless to dark red. In contrast, annealing of the as-grown crystal in Cd vapor did not remove zinc vacancies and did not cause any significant change of green luminescence nor change in coloration.

  17. Electrical conductivity studies on (1-x)[PVA/PVP]: x[MgCl2{6H2O}] blend polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Basha, S. K. Shahenoor; Reddy, K. Veera Bhadra; Rao, M. C.

    2018-05-01

    Blend polymer electrolytes of polyvinyl alcohol and polyvinyl pyrrolidone were prepared with different molecular wt% ratios of MgCl2.6H2O by solution cast technique. Electrical conductivity measurements for the prepared films were performed using Keithley electrometer model 6514 and the maximum ionic conductivity was found to be 1.01x10-3 S/cm at 373 K for the prepared composition of 35PVA/35PVP:30MgCl2.6H2O. The maximum ionic conductivity of polymer electrolyte has been used in fabrication of electrochemical cell with the configuration of Mg+/(PVA/PVP+MgCl2.6H2O)/(I2+C+electrolyte).

  18. Resonance-shifting luminescent solar concentrators

    DOEpatents

    Giebink, Noel Christopher; Wiederrecht, Gary P; Wasielewski, Michael R

    2014-09-23

    An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.

  19. Resonance-shifting luminescent solar concentrators

    DOEpatents

    Giebink, Noel Christopher; Wiederrecht, Gary P.; Wasielewski, Michael R.

    2018-01-23

    An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.

  20. Submicron magnetic core conducting polypyrrole polymer shell: Preparation and characterization.

    PubMed

    Tenório-Neto, Ernandes Taveira; Baraket, Abdoullatif; Kabbaj, Dounia; Zine, Nadia; Errachid, Abdelhamid; Fessi, Hatem; Kunita, Marcos Hiroiuqui; Elaissari, Abdelhamid

    2016-04-01

    Magnetic particles are of great interest in various biomedical applications, such as, sample preparation, in vitro biomedical diagnosis, and both in vivo diagnosis and therapy. For in vitro applications and especially in labs-on-a-chip, microfluidics, microsystems, or biosensors, the needed magnetic dispersion should answer various criteria, for instance, submicron size in order to avoid a rapid sedimentation rate, fast separations under an applied magnetic field, and appreciable colloidal stability (stable dispersion under shearing process). Then, the aim of this work was to prepare highly magnetic particles with a magnetic core and conducting polymer shell particles in order to be used not only as a carrier, but also for the in vitro detection step. The prepared magnetic seed dispersions were functionalized using pyrrole and pyrrole-2-carboxylic acid. The obtained core-shell particles were characterized in terms of particle size, size distribution, magnetization properties, FTIR analysis, surface morphology, chemical composition, and finally, the conducting property of those particles were evaluated by cyclic voltammetry. The obtained functional submicron highly magnetic particles are found to be conducting material bearing function carboxylic group on the surface. These promising conducting magnetic particles can be used for both transport and lab-on-a-chip detection. Copyright © 2015. Published by Elsevier B.V.

  1. Carbon Nanotube/Conductive Additive/Space Durable Polymer Nanocomposite Films for Electrostatic Charge Dissipation

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.; Watson, Kent A.; Delozier, Donavon M.; Connell, John W.

    2003-01-01

    Thin film membranes of space environmentally stable polymeric materials possessing low color/solar absorptivity (alpha) are of interest for potential applications on Gossamer spacecraft. In addition to these properties, sufficient electrical conductivity is required in order to dissipate electrostatic charge (ESC) build-up brought about by the charged orbital environment. One approach to achieve sufficient electrical conductivity for ESC mitigation is the incorporation of single wall carbon nanotubes (SWNTs). However, when the SWNTs are dispersed throughout the polymer matrix, the nanocomposite films tend to be significantly darker than the pristine material resulting in a higher alpha. The incorporation of conductive additives in combination with a decreased loading level of SWNTs is one approach for improving alpha while retaining conductivity. Taken individually, the low loading level of conductive additives and SWNTs is insufficient in achieving the percolation level necessary for electrical conductivity. When added simultaneously to the film, conductivity is achieved through a synergistic effect. The chemistry, physical, and mechanical properties of the nanocomposite films will be presented.

  2. Conductive polymer nanotube patch for fast and controlled ex vivo transdermal drug delivery.

    PubMed

    Nguyen, Thao M; Lee, Sebin; Lee, Sang Bok

    2014-10-01

    To uptake and release hydrophilic model drugs and insulin in a novel conductive polymer (CP) nanotube transdermal patch. The externally controlled transdermal delivery of model drugs and insulin were tested ex vivo and results were compared with CP films. The unique intrinsic properties of CPs provide electrostatic interaction between the model drugs and polymer backbone. When a pulsed potential was applied, the drug delivery release profile mimics that of injection delivery. With a constant potential applied, the release rate constants of the patch system were up to three-times faster than the control (0 V) and released approximately 80% more drug molecules over 24 h. The CP nanotube transdermal patch represents a new and promising drug method, specifically for hydrophilic molecules, which have been a large obstacle for conventional transdermal drug delivery systems.

  3. Self-Assembled Polymeric Ionic Liquid-Functionalized Cellulose Nano-crystals: Constructing 3D Ion-conducting Channels Within Ionic Liquid-based Composite Polymer Electrolytes.

    PubMed

    Shi, Qing Xuan; Xia, Qing; Xiang, Xiao; Ye, Yun Sheng; Peng, Hai Yan; Xue, Zhi Gang; Xie, Xiao Lin; Mai, Yiu-Wing

    2017-09-04

    Composite polymeric and ionic liquid (IL) electrolytes are some of the most promising electrolyte systems for safer battery technology. Although much effort has been directed towards enhancing the transport properties of polymer electrolytes (PEs) through nanoscopic modification by incorporating nano-fillers, it is still difficult to construct ideal ion conducting networks. Here, a novel class of three-dimensional self-assembled polymeric ionic liquid (PIL)-functionalized cellulose nano-crystals (CNC) confining ILs in surface-grafted PIL polymer chains, able to form colloidal crystal polymer electrolytes (CCPE), is reported. The high-strength CNC nano-fibers, decorated with PIL polymer chains, can spontaneously form three-dimensional interpenetrating nano-network scaffolds capable of supporting electrolytes with continuously connected ion conducting networks with IL being concentrated in conducting domains. These new CCPE have exceptional ionic conductivities, low activation energies (close to bulk IL electrolyte with dissolved Li salt), high Li + transport numbers, low interface resistances and improved interface compatibilities. Furthermore, the CCPE displays good electrochemical properties and a good battery performance. This approach offers a route to leak-free, non-flammable and high ionic conductivity solid-state PE in energy conversion devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes.

    PubMed

    Higgins, Thomas M; Park, Sang-Hoon; King, Paul J; Zhang, Chuanfang John; McEvoy, Niall; Berner, Nina C; Daly, Dermot; Shmeliov, Aleksey; Khan, Umar; Duesberg, Georg; Nicolosi, Valeria; Coleman, Jonathan N

    2016-03-22

    This work describes silicon nanoparticle-based lithium-ion battery negative electrodes where multiple nonactive electrode additives (usually carbon black and an inert polymer binder) are replaced with a single conductive binder, in this case, the conducting polymer PSS. While enabling the production of well-mixed slurry-cast electrodes with high silicon content (up to 95 wt %), this combination eliminates the well-known occurrence of capacity losses due to physical separation of the silicon and traditional inorganic conductive additives during repeated lithiation/delithiation processes. Using an in situ secondary doping treatment of the PSS with small quantities of formic acid, electrodes containing 80 wt % SiNPs can be prepared with electrical conductivity as high as 4.2 S/cm. Even at the relatively high areal loading of 1 mg/cm(2), this system demonstrated a first cycle lithiation capacity of 3685 mA·h/g (based on the SiNP mass) and a first cycle efficiency of ∼78%. After 100 repeated cycles at 1 A/g this electrode was still able to store an impressive 1950 mA·h/g normalized to Si mass (∼75% capacity retention), corresponding to 1542 mA·h/g when the capacity is normalized by the total electrode mass. At the maximum electrode thickness studied (∼1.5 mg/cm(2)), a high areal capacity of 3 mA·h/cm(2) was achieved. Importantly, these electrodes are based on commercially available components and are produced by the standard slurry coating methods required for large-scale electrode production. Hence, the results presented here are highly relevant for the realization of commercial LiB negative electrodes that surpass the performance of current graphite-based negative electrode systems.

  5. A conducting polymer with enhanced electronic stability applied in cardiac models

    PubMed Central

    Mawad, Damia; Mansfield, Catherine; Lauto, Antonio; Perbellini, Filippo; Nelson, Geoffrey W.; Tonkin, Joanne; Bello, Sean O.; Carrad, Damon J.; Micolich, Adam P.; Mahat, Mohd M.; Furman, Jennifer; Payne, David; Lyon, Alexander R.; Gooding, J. Justin; Harding, Sian E.; Terracciano, Cesare M.; Stevens, Molly M.

    2016-01-01

    Electrically active constructs can have a beneficial effect on electroresponsive tissues, such as the brain, heart, and nervous system. Conducting polymers (CPs) are being considered as components of these constructs because of their intrinsic electroactive and flexible nature. However, their clinical application has been largely hampered by their short operational time due to a decrease in their electronic properties. We show that, by immobilizing the dopant in the conductive scaffold, we can prevent its electric deterioration. We grew polyaniline (PANI) doped with phytic acid on the surface of a chitosan film. The strong chelation between phytic acid and chitosan led to a conductive patch with retained electroactivity, low surface resistivity (35.85 ± 9.40 kilohms per square), and oxidized form after 2 weeks of incubation in physiological medium. Ex vivo experiments revealed that the conductive nature of the patch has an immediate effect on the electrophysiology of the heart. Preliminary in vivo experiments showed that the conductive patch does not induce proarrhythmogenic activities in the heart. Our findings set the foundation for the design of electronically stable CP-based scaffolds. This provides a robust conductive system that could be used at the interface with electroresponsive tissue to better understand the interaction and effect of these materials on the electrophysiology of these tissues. PMID:28138526

  6. Conductivity in zeolite-polymer composite membranes for PEMFCs

    NASA Astrophysics Data System (ADS)

    Sancho, T.; Soler, J.; Pina, M. P.

    Structured materials, such as zeolites can be candidates to be used as electrolytes in proton exchange membrane fuel cells (PEMFC) to substitute polymeric membranes, taking advantage of their higher chemical and thermal stability and their specific adsorption properties. The possibility to work at temperatures of nearly 150 °C would make easy the selection of the fuel, decreasing the influence of CO in the catalyst poisoning, and it would also improve the kinetics of the electrochemical reactions involved. In this work, four zeolites and related materials have been studied: mordenite, NaA zeolite, umbite and ETS-10. In special, the influence of relative humidity and temperature have been carefully explored. A conductivity cell was designed and built to measure in cross direction, by using the electrochemical impedance spectroscopy. The experimental system was validated using Nafion ® as a reference material by comparing the results with bibliography data. Samples were prepared by pressing the zeolite powders, with size of 1 μm on average, using polymer PVDF (10 wt.%) as a binder. The results here obtained, in spite of not reaching the absolute values of the Nafion ® ones, show a lower effect of the dehydration phenomenon on the conduction performance in the temperature range studied (from room temperature to 150 °C). This increase of the operation temperature range would give important advantages to the PEMFC. ETS-10 sample shows the best behaviour with respect to conductivity exhibiting an activation energy value comparable with reported for Nafion ® membrane.

  7. Two types of fundamental luminescence of ionization-passive electrons and holes in optical dielectrics—Intraband-electron and interband-hole luminescence (theoretical calculation and comparison with experiment)

    NASA Astrophysics Data System (ADS)

    Vaisburd, D. I.; Kharitonova, S. V.

    1997-11-01

    A short high-power pulse of ionizing radiation creates a high concentration of nonequilibrium electrons and holes in a dielectric. They quickly lose their energy, generating a multiplicity of secondary quasiparticles: electron—hole pairs, excitons, plasmons, phonons of all types, and others. When the kinetic energy of an electron becomes less that some value EΔ≈(1.3-2)Eg it loses the ability to perform collisional ionization and electron excitations of the dielectric medium. Such an electron is said to be ionization-passive. It relaxes to the bottom of the lower conduction band by emitting phonons. Similarly a hole becomes ionization-passive when it “floats up” above some level EH and loses the ability for Auger ionization of the dielectric medium. It continues to float upward to the ceiling of the upper valance band only by emitting phonons. The concentrations of ionization-passive electrons and holes are larger by several orders of magnitude than those of the active electrons and holes and consequently make of a far larger contribution to many kinetic processes such as luminescence. Intraband and interband quantum transitions make the greatest contribution to the fundamental (independent of impurities and intrinsic defects) electromagnetic radiation of ionization-passive electrons and holes. Consequently the brightest types of purely fundamental luminescence of strongly nonequilibrium electrons and holes are intraband and interband luminescence. These forms of luminescence, discovered relatively recently, carry valuable information on the high-energy states of the electrons in the conduction band and of the holes in the valence band of a dielectric. Experimental investigations of these types of luminescence were made, mainly on alkali halide crystals which were excited by nanoseconal pulses of high-current-density electrons and by two-photon absorption of the ultraviolet harmonics of pulsed laser radiation beams of nanosecond and picosecond duration. The

  8. Luminescence imaging of water during carbon-ion irradiation for range estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Komori, Masataka; Koyama, Shuji

    Purpose: The authors previously reported successful luminescence imaging of water during proton irradiation and its application to range estimation. However, since the feasibility of this approach for carbon-ion irradiation remained unclear, the authors conducted luminescence imaging during carbon-ion irradiation and estimated the ranges. Methods: The authors placed a pure-water phantom on the patient couch of a carbon-ion therapy system and measured the luminescence images with a high-sensitivity, cooled charge-coupled device camera during carbon-ion irradiation. The authors also carried out imaging of three types of phantoms (tap-water, an acrylic block, and a plastic scintillator) and compared their intensities and distributions withmore » those of a phantom containing pure-water. Results: The luminescence images of pure-water phantoms during carbon-ion irradiation showed clear Bragg peaks, and the measured carbon-ion ranges from the images were almost the same as those obtained by simulation. The image of the tap-water phantom showed almost the same distribution as that of the pure-water phantom. The acrylic block phantom’s luminescence image produced seven times higher luminescence and had a 13% shorter range than that of the water phantoms; the range with the acrylic phantom generally matched the calculated value. The plastic scintillator showed ∼15 000 times higher light than that of water. Conclusions: Luminescence imaging during carbon-ion irradiation of water is not only possible but also a promising method for range estimation in carbon-ion therapy.« less

  9. Synthesis and characterization of thermally stable and/or conductive polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gajiwala, H.M.

    1992-01-01

    Eight new thermally stable polyimides were synthesized from two tricyclic heterocyclic diamines: thionine which has a phenothiazine moiety and proflavine which has an acridine unit. The polymerization reactions were optimized with respect to solvents, reaction time, reaction temperature, solid contents, etc., and their structure property relationships were studied. All these soluble polyimides have nice film forming properties. One of the polyimides containing the acridine moiety, appears to have a tendency to form a liquid crystalline state when its solution is passed through a fine capillary. All of these polyimides were thermally stable in air up to 500-550[degrees]C and up tomore » 600[degrees]C in a nitrogen atmosphere. They have refractive indices in the range of 1.65 to 1.85 and have relatively low value of permittivity. Two other thermally stable polymers, viz., polybenzimidazole and the ladder polymer having the phenazine moiety in the backbone were also synthesized. For these polymerization reactions, tetraamino derivative of phenazine was synthesized from the commercially available diamino, dinitro derivative of benzene. The polybenzimidazole was prepared via the azomethine pathway. This polymer had an intrinsic viscosity of 0.94 in methanesulfonic acid. The nice film forming polybenzimidazole polymer was found to be thermally stable up to 400[degrees]C. The ladder type of a polymer was synthesized by condensation polymerization between tetraaminophenazine and dihydroxybenzophenone in polyphosphoric acid at an elevated temperature. The completely conjugated ladder polymer was found to be semiconducting on doping with iodine. This polymer was highly crystalline as demonstrated by its X-ray diffraction pattern. A morphology study of the polymer indicated that the material has a tendency to form dendritic crystals. The polymer was thermally stable up to about 400[degrees]C in air.« less

  10. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    PubMed Central

    Rahman, Md. Mahbubur; Li, Xiao-Bo; Lopa, Nasrin Siraj; Ahn, Sang Jung; Lee, Jae-Joon

    2015-01-01

    Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective. PMID:25664436

  11. Electrochemical DNA hybridization sensors based on conducting polymers.

    PubMed

    Rahman, Md Mahbubur; Li, Xiao-Bo; Lopa, Nasrin Siraj; Ahn, Sang Jung; Lee, Jae-Joon

    2015-02-05

    Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective.

  12. Conductivity through Polymer Electrolytes and Its Implications in Lithium-Ion Batteries: Real-World Application of Periodic Trends

    ERIC Educational Resources Information Center

    Compton, Owen C.; Egan, Martin; Kanakaraj, Rupa; Higgins, Thomas B.; Nguyen, SonBinh T.

    2012-01-01

    Periodic conductivity trends are placed in the scope of lithium-ion batteries, where increases in the ionic radii of salt components affect the conductivity of a poly(ethyleneoxide)-based polymer electrolyte. Numerous electrolytes containing varying concentrations and types of metal salts are prepared and evaluated in either one or two laboratory…

  13. The extended Beer-Lambert theory for ray tracing modeling of LED chip-scaled packaging application with multiple luminescence materials

    NASA Astrophysics Data System (ADS)

    Yuan, Cadmus C. A.

    2015-12-01

    Optical ray tracing modeling applied Beer-Lambert method in the single luminescence material system to model the white light pattern from blue LED light source. This paper extends such algorithm to a mixed multiple luminescence material system by introducing the equivalent excitation and emission spectrum of individual luminescence materials. The quantum efficiency numbers of individual material and self-absorption of the multiple luminescence material system are considered as well. By this combination, researchers are able to model the luminescence characteristics of LED chip-scaled packaging (CSP), which provides simple process steps and the freedom of the luminescence material geometrical dimension. The method will be first validated by the experimental results. Afterward, a further parametric investigation has been then conducted.

  14. Pulse Responses of the Conducting Polymer Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate)-Based Junctions

    NASA Astrophysics Data System (ADS)

    Zeng, Fei; Li, Xiaojun; Li, Sizhao; Chang, Chiating; Hu, Yuandong

    2017-03-01

    Pulse responses were studied for the heterojunctions within the structure of Ti/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)/Ti. The pulse response was found to resemble that of the action potential after the pulse width was modulated to a time scale of nanoseconds. Using the pulse as a stimulation protocol to simulate synaptic plasticity produced spike rate-dependent plasticity-like phenomena. Thus, the application scope of this conducting polymer-based memristor can be extended from a time scale of milliseconds to one of nanoseconds, depending on the requirement of neuromorphic circuits. Current oscillations were observed with a period within 100 ns. The mechanisms of the behavior response were analyzed according to memristor protocol. An interface barrier is thought to primarily account for the origin of the capacitive feature and the charge q, i.e., one of the basic characteristic of the memristor. The chain structure of this conducting polymer should primarily account for the origin of its inductive feature and the flux φ, i.e., another basic characteristic of the memristor.

  15. Highly water-dispersible, mixed ionic-electronic conducting, polymer acid-doped polyanilines as ionomers for direct methanol fuel cells.

    PubMed

    Murthy, Arun; Manthiram, Arumugam

    2011-06-28

    Highly water-dispersible polymer acid-doped polyanilines have been synthesized and evaluated as an alternative for expensive Nafion ionomers in the anode of direct methanol fuel cells (DMFC). These polymers as ionomers lead to higher performance in single cell DMFC compared to Nafion ionomers due to mixed ionic-electronic conduction, water dispersibility, and co-catalytic activity. This journal is © The Royal Society of Chemistry 2011

  16. Surface-imprinted nanofilaments for europium-amplified luminescent detection of fluoroquinolone antibiotics.

    PubMed

    Zdunek, Jolanta; Benito-Peña, Elena; Linares, Ana; Falcimaigne-Cordin, Aude; Orellana, Guillermo; Haupt, Karsten; Moreno-Bondi, María C

    2013-07-29

    The development and characterization of novel, molecularly imprinted polymer nanofilament-based optical sensors for the analysis of enrofloxacin, an antibiotic widely used for human and veterinary applications, is reported. The polymers were prepared by nanomolding in porous alumina by using enrofloxacin as the template. The antibiotic was covalently immobilized on to the pore walls of the alumina by using different spacers, and the prepolymerization mixture was cast in the pores and the polymer synthesized anchored onto a glass support through UV polymerization. Various parameters affecting polymer selectivity were evaluated to achieve optimal recognition, namely, the spacer arm length and the binding solvent. The results of morphological characterization, binding kinetics, and selectivity of the optimized polymer material for ENR and its derivatives are reported. For sensing purposes, the nanofilaments were incubated in solutions of the target molecule in acetonitrile/HEPES buffer (100 mM, pH 7.5, 50:50, v/v) for 20 min followed by incubation in a 10 mM solution of europium(III) ions to generate a europium(III)-enrofloxacin complex on the polymer surface. The detection event was based on the luminescence of the rare-earth ion (λexc=340 nm; λem=612 nm) that results from energy transfer from the antibiotic excited state to the metal-ion emitting excited state. The limit of detection of the enrofloxacin antibiotic was found to be 0.58 μM. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Preparation of highly thermally stable and conductive Schiff base polymer: Molecular weight monitoring and investigation of antimicrobial properties

    NASA Astrophysics Data System (ADS)

    Yılmaz Baran, Nuray; Saçak, Mehmet

    2018-07-01

    A novel thermally stable polyazomethine with phenol group, Poly(4-[[4-(dimethylamino)benzylidene]amino]phenol) P(4-DBAP), was synthesized from 4-[[4-(dimethylamino)benzylidene]amino]phenol) (4-DBAP) in aqueous alkaline medium via oxidative polycondensation with NaOCl, H2O2, and O2 oxidants. The change of the yield and molecular weight distribution of P(4-DBAP) with oxidant type and concentration, monomer concentration, and polymerization temperature and time were analyzed. The structures of the monomer and polymer were confirmed by UV-Vis, FTIR, 1H-NMR, 13C-NMR and TGA techniques. The conductivity value of the polymer which was doped with iodine vapor for 24 h was reached 3.2 × 10-5 S/cm and 1.1 × 10-4 S/cm values by increasing 107 and 108 folds compared to the initial conductivity value at 20 °C and 60 °C, respectively. This conductivity value which was measured at 20 °C is the highest value reported in the literature for polyazomethines having phenol group in such a short time and at low temperature. Moreover, antimicrobial activity test was performed for 4-DBAP and P(4-DBAP) against Sarcina lutea, Enterobacter aerogenes, Escherichia coli, Enterococcus Feacalis, Klebsiella pneumoniae, Bacillus subtilis bacteria, and Candida albicans and Saccharomyces cerevisiae fungi. Although both monomer and polymer showed antibacterial activity, the polymer was more efficient compared to the monomer.

  18. Construction of conducting polymer/cytochrome C/thylakoid membrane based photo-bioelectrochemical fuel cells generating high photocurrent via photosynthesis.

    PubMed

    Cevik, Emre; Carbas, Buket Bezgin; Senel, Mehmet; Yildiz, Huseyin Bekir

    2018-08-15

    In this study, a photo-bioelectrochemical fuel cell was constructed for photocurrent generation by illuminating the electrodes within an aqueous solution. In this purpose, gold electrode was coated with poly 4-(4H-Dithieno [3,2-b:2',3'-d]pyrol-4-yl) aniline, P(DTP-Ph-NH 2 ) conductive polymer film by using electrochemical polymerization. Then, P(DTP-Ph-NH 2 ) conductive polymer film coated surface was electrochemically modified with cytochrome C which covalently linked onto the surface via bis-aniline functionality of the polymer film and formed crosslinked-structure. The thylakoid membrane was attached on the surface of this electrode by using bissulfosaxinimidyl suberate (BS 3 ) and used as photo-anode in photo-bioelectrochemical fuel cell. The photo-cathode of the photo-bioelectrochemical fuel cell fabrication was followed by the modification of conductive polymer poly[5-(4H-dithieno [3,2-b:2',3'-d]pyrol-4-yl) naphtalene-1-amine] film coating, glutaraldehyde activation, and bilirubin oxidase enzyme immobilization. During the photosynthesis occurring in thylakoid membrane under the light, water was oxidized and separated; while oxygen was released in anode side, the cathode side was reduced the oxygen gas into the water via a bio-electro-catalytic method. The cytochrome C was used for binding of thylakoid membrane to the electrode surface and play an important role for transferring of electrons released as a result of photosynthesis. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Novel Proton Conducting Solid Bio-polymer Electrolytes Based on Carboxymethyl Cellulose Doped with Oleic Acid and Plasticized with Glycerol

    NASA Astrophysics Data System (ADS)

    Chai, M. N.; Isa, M. I. N.

    2016-06-01

    The plasticized solid bio-polymer electrolytes (SBEs) system has been formed by introducing glycerol (Gly) as the plasticizer into the carboxymethyl cellulose (CMC) doped with oleic acid (OA) via solution casting techniques. The ionic conductivity of the plasticized SBEs has been studied using Electrical Impedance Spectroscopy. The highest conductivity achieved is 1.64 × 10-4 S cm-1 for system containing 40 wt. % of glycerol. FTIR deconvolution technique had shown that the conductivity of CMC-OA-Gly SBEs is primarily influenced by the number density of mobile ions. Transference number measurement has shown that the cation diffusion coefficient and ionic mobility is higher than anion which proved the plasticized polymer system is a proton conductor.

  20. Theoretical Relationships between Luminescence and Hillslope Soil Vertical Diffusivity: a Numerical Modeling Approach

    NASA Astrophysics Data System (ADS)

    Gray, H. J.; Tucker, G. E.; Mahan, S.

    2017-12-01

    Luminescence is a property of matter that can be used to obtain depositional ages from fine sand. Luminescence generates due to exposure to background ionizing radiation and is removed by sunlight exposure in a process known as bleaching. There is evidence to suggest that luminescence can also serve as a sediment tracer in fluvial and hillslope environments. For hillslope environments, it has been suggested that the magnitude of luminescence as a function of soil depth is related to the strength of soil mixing. Hillslope soils with a greater extent of mixing will have previously surficial sand grains moved to greater depths in a soil column. These previously surface-exposed grains will contain a lower luminescence than those which have never seen the surface. To attempt to connect luminescence profiles with soil mixing rate, here defined as the soil vertical diffusivity, I conduct numerical modelling of particles in hillslope soils coupled with equations describing the physics of luminescence. I use recently published equations describing the trajectories of particles under both exponential and uniform soil velocity soils profiles and modify them to include soil diffusivity. Results from the model demonstrates a strong connection between soil diffusivity and luminescence. Both the depth profiles of luminescence and the total percent of surface exposed grains will change drastically based on the magnitude of the diffusivity. This suggests that luminescence could potentially be used to infer the magnitude of soil diffusivity. However, I test other variables such as the soil production rate, e-folding length of soil velocity, background dose rate, and soil thickness, and I find these other variables can also affect the relationship between luminescence and diffusivity. This suggests that these other variables may need to be constrained prior to any inferences of soil diffusivity from luminescence measurements. Further field testing of the model in areas where the soil

  1. Preparation of conductive gold nanowires in confined environment of gold-filled polymer nanotubes.

    PubMed

    Mitschang, Fabian; Langner, Markus; Vieker, Henning; Beyer, André; Greiner, Andreas

    2015-02-01

    Continuous conductive gold nanofibers are prepared via the "tubes by fiber templates" process. First, poly(l-lactide) (PLLA)-stabilized gold nanoparticles (AuNP) with over 60 wt% gold are synthesized and characterized, including gel permeation chromatography coupled with a diode array detector. Subsequent electrospinning of these AuNP with template PLLA results in composite nanofibers featuring a high gold content of 57 wt%. Highly homogeneous gold nanowires are obtained after chemical vapor deposition of 345 nm of poly(p-xylylene) (PPX) onto the composite fibers followed by pyrolysis of the polymers at 1050 °C. The corresponding heat-induced transition from continuous gold-loaded polymer tubes to smooth gold nanofibers is studied by transmission electron microscopy and helium ion microscopy using both secondary electrons and Rutherford backscattered ions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A shape tailored gold-conductive polymer nanocomposite as a transparent electrode with extraordinary insensitivity to volatile organic compounds (VOCs)

    PubMed Central

    Khalil, Rania; Homaeigohar, Shahin; Häußler, Dietrich; Elbahri, Mady

    2016-01-01

    In this study, the transparent conducting polymer of poly (3,4-ethylenendioxythiophene): poly(styrene sulphonate) (PEDOT:PSS) was nanohybridized via inclusion of gold nanofillers including nanospheres (NSs) and nanorods (NRs). Such nanocomposite thin films offer not only more optimum conductivity than the pristine polymer but also excellent resistivity against volatile organic compounds (VOCs). Interestingly, such amazing properties are achieved in the diluted regimes of the nanofillers and depend on the characteristics of the interfacial region of the polymer and nanofillers, i.e. the aspect ratio of the latter component. Accordingly, a shape dependent response is made that is more desirable in case of using the Au nanorods with a much larger aspect ratio than their nanosphere counterparts. This transparent nanocomposite thin film with an optimized conductivity and very low sensitivity to organic gases is undoubtedly a promising candidate material for the touch screen panel production industry. Considering PEDOT as a known material for integrated electrodes in energy saving applications, we believe that our strategy might be an important progress in the field. PMID:27654345

  3. Grafting of Conductive Polymers onto the Functionalized Carbon Nanotubes

    DTIC Science & Technology

    2010-08-23

    2,5- benzimidazole )/carbon nanotube composite film” Journal of Polymer Science, Part A: Polymer Chemistry 2010, 48, 1067. 3. Han, S.-W.; Oh, S.-J...34Synthesis and Characterization of poly(2,5- benzimidazole ) (ABPBI) Grafted CArbon Nanotubes." MRS. 2009 fall meeting, Prepr. Boston, MA, November 30

  4. Structural control of mixed ionic and electronic transport in conducting polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivnay, Jonathan; Inal, Sahika; Collins, Brian A.

    Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate), PEDOT:PSS, has been utilized for over two decades as a stable, solution-processable hole conductor. While its hole transport properties have been the subject of intense investigation, recent work has turned to PEDOT:PSS as a mixed ionic/electronic conductor in applications including bioelectronics, energy storage and management, and soft robotics. Conducting polymers can efficiently transport both holes and ions when sufficiently hydrated, however, little is known about the role of morphology on mixed conduction. Here, we show that bulk ionic and electronic mobilities are simultaneously affected by processing-induced changes in nano- and meso-scale structure in PEDOT:PSS films. Wemore » quantify domain composition, and find that domain purification on addition of dispersion co-solvents limits ion mobility, even while electronic conductivity improves. We show that an optimal morphology allows for the balanced ionic and electronic transport that is critical for prototypical mixed conductor devices. As a result, these findings may pave the way for the rational design of polymeric materials and processing routes to enhance devices reliant on mixed conduction.« less

  5. Structural control of mixed ionic and electronic transport in conducting polymers

    DOE PAGES

    Rivnay, Jonathan; Inal, Sahika; Collins, Brian A.; ...

    2016-04-19

    Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate), PEDOT:PSS, has been utilized for over two decades as a stable, solution-processable hole conductor. While its hole transport properties have been the subject of intense investigation, recent work has turned to PEDOT:PSS as a mixed ionic/electronic conductor in applications including bioelectronics, energy storage and management, and soft robotics. Conducting polymers can efficiently transport both holes and ions when sufficiently hydrated, however, little is known about the role of morphology on mixed conduction. Here, we show that bulk ionic and electronic mobilities are simultaneously affected by processing-induced changes in nano- and meso-scale structure in PEDOT:PSS films. Wemore » quantify domain composition, and find that domain purification on addition of dispersion co-solvents limits ion mobility, even while electronic conductivity improves. We show that an optimal morphology allows for the balanced ionic and electronic transport that is critical for prototypical mixed conductor devices. As a result, these findings may pave the way for the rational design of polymeric materials and processing routes to enhance devices reliant on mixed conduction.« less

  6. Development of a novel europium complex-based luminescent probe for time-gated luminescence imaging of hypochlorous acid in living samples

    NASA Astrophysics Data System (ADS)

    Liu, Xiangli; Guo, Lianying; Song, Bo; Tang, Zhixin; Yuan, Jingli

    2017-03-01

    Luminescent lanthanide complexes are key reagents used in the time-gated luminescence bioassay technique, but functional lanthanide complexes that can act as luminescent probes for specifically responding to analytes are very limited. In this work, we designed and synthesized a novel Eu3+ complex-based luminescence probe for hypochlorous acid (HOCl), NPPTTA-Eu3+, by using terpyridine polyacid-Eu3+, dinitrophenyl, and hydrazine as luminophore, quencher and HOCl-recognizer moieties, respectively. In the absence of HOCl, the probe is non-luminescent due to the strong luminescence quenching of the dinitrophenyl group in the complex. However, upon reaction with HOCl, the dinitrophenyl moiety is rapidly cleaved from the probe, which affords a strongly luminescent Eu3+ complex CPTTA-Eu3+, accompanied by a ˜900-fold luminescence enhancement with a long luminescence lifetime of 1.41 ms. This unique luminescence response of NPPTTA-Eu3+ to HOCl allowed NPPTTA-Eu3+ to be conveniently used as a probe for highly selective and sensitive detection of HOCl under the time-gated luminescence mode. In addition, by loading NPPTTA-Eu3+ into RAW 264.7 macrophage cells and Daphnia magna, the generation of endogenous HOCl in RAW 264.7 cells and the uptake of exogenous HOCl by Daphnia magna were successfully imaged on a true-color time-gated luminescence microscope. The results demonstrated the practical applicability of NPPTTA-Eu3+ as an efficient probe for time-gated luminescence imaging of HOCl in living cells and organisms.

  7. Two three-dimensional coordination polymers of lead(II) with iminodiacetate and naphthalene-dicarboxylate anions: Synthesis, characterization and luminescence behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazari, Debdoot; Jana, Swapan Kumar; Fleck, Michel

    2014-11-15

    Two lead(II) compounds [Pb{sub 3}(idiac){sub 3}(phen){sub 2}(H{sub 2}O)]·2(H{sub 2}O) (1) and [Pb(ndc)]{sub n} (2), where H{sub 2}idiac=iminodiacetic acid, phen=1,10-phenanthroline and H{sub 2}ndc=naphthalene-2,6-dicarboxylic acid, have been synthesized and structurally characterized. Single crystal X-ray diffraction analysis showed that compound 1 is a discrete trinuclear complex (of two-fold symmetry) which evolves to a supramolecular 3D network via π–π interactions, while in compound 2 the naphthalene dicarboxylate anion act as a linker to form a three dimensional architecture, where the anion adopts a bis-(bidentate bridging) coordination mode connecting four Pb(II) centers. The photoluminescence property of the two complexes has been studied. - graphical abstract:more » Two new topologically different 1D coordination polymers formed by Pb{sub 4} clusters have been synthesized and characterized by x-ray analysis. The luminescence and thermal properties have been studied. - Highlights: • 1 is a trinuclear complex of Pb(II) growing to 3D network via weak interactions. • In 1, layers of (4,4) rhomboidal topology are identified. • In 2, the ndc anion adopts interesting bis-(bidentate bridging) coordination. • In 2, network is reinforced by C–H…π-ring interactions between the ndc rings.« less

  8. Pressure-induced amorphization of a dense coordination polymer and its impact on proton conductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umeyama, Daiki; Hagi, Keisuke; Ogiwara, Naoki

    2014-12-01

    The proton conductivity of a dense coordination polymer (CP) was investigated under high-pressure conditions. Impedance measurements under high pressures revealed that the proton conductivity of the CP decreased more than 1000-fold at pressures of 3–7 GPa and that the activation energy for proton conduction almost doubled compared with that at ambient pressure. A synchrotron X-ray study under high pressure identified the amorphization process of the CP during compression, which rationally explains the decrease in conductivity and increase in activation energy. This phenomenon is categorized as reversible pressure-induced amorphization of a dense CP and is regarded as a demonstration of themore » coupling of the mechanical and electrical properties of a CP.« less

  9. Polymer Architecture Effects in Confined Geometry: Molecular Dynamics Simulation Study

    NASA Astrophysics Data System (ADS)

    Wijesinghe, Sidath; Perahia, Dvora; Grest, Gary

    Luminescent rigid polymers confined into nanoparticles, or polydots, are emerging as a promising tool for nano medicine. The constrained architecture of a rigid backbone trapped in nano-dimensions results in photophysics that differs from that of spontaneously assembled rigid polymers. Incorporating ionizable functionalities in the polymers, often required for therapeutics, impacts the polymer conformation in solution. Here we report fully atomistic molecular dynamics simulations on the structure of dialkyl p-phenylene ethynylene confined into polydots. We find that the structure and thermal stability of polydots are sensitive to both the molecular weight n and the carboxylation fraction f. At room temperature , polydots remain confined regardless of n and f . However, as temperature is increased, polydots with lower n or f rearrange whereas polydots with higher n or fremain confined, though no direct clustering of the ionic groups was observed. NSF CHE 1308298 is acknowledged.

  10. Multicolor Luminescence from Conjugates of Genetically Encoded Elastin-like Polymers and Terpyridine-Lanthanides

    DOE PAGES

    Ghosh, Koushik; Balog, Eva Rose M.; Kahn, Jennifer L.; ...

    2015-08-20

    Functional hybrid materials with optically active metal-ligand moieties embedded within a polymer matrix have a great potential in (bio)materials science, including applications in light-emitting diode devices. Here, we report a simple strategy to incorporate terpyridine derivatives into the side chains of elastin-like polymers (ELPs). The further binding of trivalent lanthanide ions with the terpyridine ligands generated an array of photoluminescence ranging from the visible to the near-infrared regions. Lastly, as thin films, these ELP-based optical materials also exhibited distinct morphologies that depend upon the temperature of the aqueous solutions from which the hybrid polymers were spin coated or drop cast.

  11. Surface plasmon resonance sensing detection of mercury and lead ions based on conducting polymer composite.

    PubMed

    Abdi, Mahnaz M; Abdullah, Luqman Chuah; Sadrolhosseini, Amir R; Mat Yunus, Wan Mahmood; Moksin, Mohd Maarof; Tahir, Paridah Md

    2011-01-01

    A new sensing area for a sensor based on surface plasmon resonance (SPR) was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI) conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU) were obtained for PPy-CHI film due to a specific binding of chitosan with Pb(2+) and Hg(2+) ions. The Pb(2+) ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb(2+) compared to Hg(2+). The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system.

  12. Nanoscale Fluorescent Metal-Organic Framework@Microporous Organic Polymer Composites for Enhanced Intracellular Uptake and Bioimaging.

    PubMed

    Wang, Lei; Wang, Weiqi; Zheng, Xiaohua; Li, Zhensheng; Xie, Zhigang

    2017-01-26

    Polymer-modified metal-organic frameworks combine the advantages of both soft polymers and crystalline metal-organic frameworks (MOFs). It is a big challenge to develop simple methods for surface modification of MOFs. In this work, MOF@microporous organic polymer (MOP) hybrid nanoparticles (UNP) have been synthesized by epitaxial growth of luminescent boron-dipyrromethene (BODIPYs)-imine MOPs on the surface of UiO-MOF seeds, which exhibit low cytotoxicity, smaller size distribution, well-retained pore integrity, and available functional sites. After folic acid grafting, the enhanced intracellular uptake and bioimaging was validated. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Coffee Grounds to Multifunctional Quantum Dots: Extreme Nanoenhancers of Polymer Biocomposites.

    PubMed

    Xu, Huan; Xie, Lan; Li, Jinlai; Hakkarainen, Minna

    2017-08-23

    Central to the design and execution of nanocomposite strategies is the invention of polymer-affinitive and multifunctional nanoreinforcements amenable to economically viable processing. Here, a microwave-assisted approach enabled gram-scale fabrication of polymer-affinitive luminescent quantum dots (QDs) from spent coffee grounds. The ultrasmall dimensions (approaching 20 nm), coupled with richness of diverse oxygen functional groups, conferred the zero-dimensional QDs with proper exfoliation and uniform dispersion in poly(l-lactic acid) (PLLA) matrix. The unique optical properties of QDs were inherited by PLLA nanocomposites, giving intensive luminescence and high visible transparency, as well as nearly 100% UV-blocking ratio in the full-UV region at only 0.5 wt % QDs. The strong anchoring of PLLA chains at the nanoscale surfaces of QDs facilitated PLLA crystallization, which was accompanied by substantial improvements in thermomechanical and tensile properties. With 1 wt % QDs, for example, the storage modulus at 100 °C and tensile strength increased over 2500 and 69% compared to those of pure PLLA (4 and 57.3 MPa), respectively. The QD-enabled energy-dissipating and flexibility-imparting mechanisms upon tensile deformation, including the generation of numerous shear bands, crazing, and nanofibrillation, gave an unusual combination of elasticity and extensibility for PLLA nanocomposites. This paves the way to biowaste-derived nanodots with high affinity to polymer for elegant implementation of distinct light management and extreme nanoreinforcements in an ecofriendly manner.

  14. Geometrical Effect on Thermal Conductivity of Unidirectional Fiber-Reinforced Polymer Composite along Different In-plane Orientations

    NASA Astrophysics Data System (ADS)

    Fang, Zenong; Li, Min; Wang, Shaokai; Li, Yanxia; Wang, Xiaolei; Gu, Yizhuo; Liu, Qianli; Tian, Jie; Zhang, Zuoguang

    2017-11-01

    This paper focuses on the anisotropic characteristics of the in-plane thermal conductivity of fiber-reinforced polymer composite based on experiment and simulation. Thermal conductivity along different in-plane orientations was measured by laser flash analysis (LFA) and steady-state heat flow method. Their heat transfer processes were simulated to reveal the geometrical effect on thermal conduction. The results show that the in-plane thermal conduction of unidirectional carbon-fiber-reinforced polymer composite is greatly influenced by the sample geometry at an in-plane orientation angle between 0° to 90°. By defining radius-to-thickness as a dimensionless shape factor for the LFA sample, the apparent thermal conductivity shows a dramatic change when the shape factor is close to the tangent of the orientation angle (tanθ). Based on finite element analysis, this phenomenon was revealed to correlate with the change of the heat transfer process. When the shape factor is larger than tanθ, the apparent thermal conductivity is consistent with the estimated value according to the theoretical model. For a sample with a shape factor smaller than tanθ, the apparent thermal conductivity shows a slow growth around a low value, which seriously deviates from the theory estimation. This phenomenon was revealed to correlate with the change of the heat transfer process from a continuous path to a zigzag path. These results will be helpful in optimizing the ply scheme of composite laminates for thermal management applications.

  15. Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Maráková, Nela; Humpolíček, Petr; Kašpárková, Věra; Capáková, Zdenka; Martinková, Lenka; Bober, Patrycja; Trchová, Miroslava; Stejskal, Jaroslav

    2017-02-01

    Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers. Raman and FTIR spectra proved the complete coating of substrates. Polypyrrole content was 19.3 wt.% and that of polyaniline 6.0 wt.%. Silver nanoparticles were deposited from silver nitrate solutions of various concentrations by exploiting the reduction ability of conducting polymers. The content of silver was up to 11 wt.% on polypyrrole and 4 wt.% on polyaniline. The sheet resistivity of fabrics was determined. The conductivity was reduced after deposition of silver. The chemical cleaning reduced the conductivity by less than one order of magnitude for polypyrrole coating, while for polyaniline the decrease was more pronounced. The good antibacterial activity against S. aureus and E. coli and low cytotoxicity of polypyrrole-coated cotton, both with and without deposited silver nanoparticles

  16. Development of multilayer conducting polymer actuator for power application

    NASA Astrophysics Data System (ADS)

    Ikushima, Kimiya; Kudoh, Yuji; Hiraoka, Maki; Yokoyama, Kazuo; Nagamitsu, Sachio

    2009-03-01

    In late years many kinds of home-use robot have been developed to assist elderly care and housework. Most of these robots are designed with conventional electromagnetic motors. For safety it is desirable to replace these electromagnetic motors with artificial muscle. However, an actuator for such a robot is required to have simple structure, low driving voltage, high stress generation, high durability, and operability in the air. No polymer actuator satisfying all these requirements has been realized yet. To meet these we took following two approaches focusing on conducting polymer actuators which can output high power in the air. (Approach 1) We have newly developed an actuator by multiply laminating ionic liquid infiltrated separators and polypyrrole films. Compared with conventional actuator that is driven in a bath of ionic liquid, the new actuator can greatly increase generated stress since the total sectional area is tremendously small. In our experiment, the new actuator consists of minimum unit with thickness of 128um and has work/weight ratio of 0.92J/kg by laminating 9 units in 0.5Hz driving condition. In addition, the driving experiment has shown a stable driving characteristic even for 10,000 cycles durability test. Furthermore, from our design consideration, it has been found that the work/weight ratio can be improved up to 8J/kg (1/8 of mammalian muscle of 64J/kg) in 0.1Hz by reducing the thickness of each unit to 30um. (Approach 2) In order to realize a simplified actuator structure in the air without sealing, we propose the use of ionic liquid gel. The actuation characteristic of suggested multilayered actuator using ionic liquid gel is simulated by computer. The result shows that performance degradation due to the use of ionic liquid gel is negligible small when ionic liquid gel with the elasticity of 3kPa or less is used. From above two results it is concluded that the proposed multilayerd actuator is promising for the future robotic applications

  17. Model for Transport and Luminescence in Porous Silicon

    NASA Astrophysics Data System (ADS)

    John, George C.; Singh, Vijay A.

    1996-03-01

    A unified model for explaining the transport and luminescence properties of porous silicon has remained elusive(G.C.John and V.A.Singh, Phys. Rep. (in press)). The conductivity of porous silicon has been reported to increase exponentially with temperature(J.J.Mares et al.), Appl. Phys. Lett. 63, 180 (1993). We report additional observations of such instances. This Berthelot type behavior is ascribed to tunneling of carriers across a vibrating barrier. We hypothesize that the non-radiative recombination in porous silicon is governed by a similar mechanism. Based on this assumption, we show that the temperature and pressure dependence of luminescence in porous silicon can be convincingly explained. We present a unified phenomenological model which can account for a range of observations in porous silicon.

  18. On the half-life of luminescence signals in dosimetric applications: A unified presentation

    NASA Astrophysics Data System (ADS)

    Pagonis, V.; Kitis, G.; Polymeris, G. S.

    2018-06-01

    Luminescence signals from natural and man-made materials are widely used in dosimetric and dating applications. In general, there are two types of half-lives of luminescence signals which are of importance to experimental and modeling work in this research area. The first type of half-life is the time required for the population of the trapped charge in a single trap to decay to half its initial value. The second type of half-life is the time required for the luminescence intensity to drop to half of its initial value. While there a handful of analytical expressions available in the literature for the first type of half-life, there are no corresponding analytical expressions for the second type. In this work new analytical expressions are derived for the half-life of luminescence signals during continuous wave optical stimulation luminescence (CW-OSL) or isothermal luminescence (ITL) experiments. The analytical expressions are derived for several commonly used luminescence models which are based on delocalized transitions involving the conduction band: first and second order kinetics, empirical general order kinetics (GOK), mixed order kinetics (MOK) and the one-trap one-recombination center (OTOR) model. In addition, half-life expressions are derived for a different type of luminescence model, which is based on localized transitions in a random distribution of charges. The new half-life expressions contain two parts. The first part is inversely proportional to the thermal or optical excitation rate, and depends on the experimental conditions and on the cross section of the relevant luminescence process. The second part is characteristic of the optical and/or thermal properties of the material, as expressed by the parameters in the model. A new simple and quick method for analyzing luminescence signals is developed, and examples are given of applying the new method to a variety of dosimetric materials. The new test allows quick determination of whether a set of

  19. Seismic Moment and Recurrence using Luminescence Dating Techniques: Characterizing brittle fault zone materials suitable for luminescence dating

    NASA Astrophysics Data System (ADS)

    Tsakalos, E.; Lin, A.; Bassiakos, Y.; Kazantzaki, M.; Filippaki, E.

    2017-12-01

    During a seismic-geodynamic process, frictional heating and pressure are generated on sediments fragments resulting in deformation and alteration of minerals contained in them. The luminescence signal enclosed in minerals crystal lattice can be affected and even zeroed during such an event. This has been breakthrough in geochronological studies as it could be utilized as a chronometer for the previous seismic activity of a tectonically active area. Although the employment of luminescence dating has in some cases been successfully described, a comprehensive study outlining and defining protocols for routine luminescence dating applied to neotectonic studies has not been forthcoming. This study is the experimental investigation, recording and parameterization of the effects of tectonic phenomena on minerals luminescence signal and the development of detailed protocols for the standardization of the luminescence methodology for directly dating deformed geological formations, so that the long-term temporal behaviour of seismically active faults could be reasonably understood and modeled. This will be achieved by: a) identifying and proposing brittle fault zone materials suitable for luminescence dating using petrological, mineralogical and chemical analyses and b) investigating the "zeroing" potential of the luminescence signal of minerals contained in fault zone materials by employing experimental simulations of tectonic processes in the laboratory, combined with luminescence measurements on samples collected from real fault zones. For this to be achieved, a number of samples collected from four faults of four different geographical regions will be used. This preliminary-first step of the study presents the microstructural, and mineralogical analyses for the characterization of brittle fault zone materials that contain suitable minerals for luminescence dating (e.g., quartz and feldspar). The results showed that the collected samples are seismically deformed fault

  20. Developments and Control of Biocompatible Conducting Polymer for Intracorporeal Continuum Robots.

    PubMed

    Chikhaoui, Mohamed Taha; Benouhiba, Amine; Rougeot, Patrick; Rabenorosoa, Kanty; Ouisse, Morvan; Andreff, Nicolas

    2018-04-30

    Dexterity of robots is highly required when it comes to integration for medical applications. Major efforts have been conducted to increase the dexterity at the distal parts of medical robots. This paper reports on developments toward integrating biocompatible conducting polymers (CP) into inherently dexterous concentric tube robot paradigm. In the form of tri-layer thin structures, CP micro-actuators produce high strains while requiring less than 1 V for actuation. Fabrication, characterization, and first integrations of such micro-actuators are presented. The integration is validated in a preliminary telescopic soft robot prototype with qualitative and quantitative performance assessment of accurate position control for trajectory tracking scenarios. Further, CP micro-actuators are integrated to a laser steering system in a closed-loop control scheme with displacements up to 5 mm. Our first developments aim toward intracorporeal medical robotics, with miniaturized actuators to be embedded into continuum robots.

  1. Conductivity and dielectric behaviour of PEO-based solid nanocomposite polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Ibrahim, Suriani; Mohd Yasin, Siti Mariah; Nee, Ng Meng; Ahmad, Roslina; Johan, Mohd Rafie

    2012-03-01

    In this research, thin films of poly(ethylene oxide) (PEO) blend with lithium hexafluorophosphate (LiPF) salt and ethylene carbonate (EC) as plasticiser and carbon nanotube (CNT) as filler, are prepared using solution casting method. The conductivity and dielectric response of the nanocomposite polymer electrolyte systems are studied within the broad frequency range of 5 Hz-5 MHz and within a temperature range of 298-373 K. The conductivity-temperature plots are observed to be of Arrhenius nature. The dielectric behaviour is analysed using the dielectric permittivity (ɛr and ɛi), loss tangent (tanδ) and electric modulus (Mi and Mr) of the samples. It is observed that the dielectric permittivity rises sharply towards low frequencies due to electrode polarisation effects. The maxima of the loss tangent (tanδ) shifts towards higher frequencies and the height of the peak increases with increasing temperature.

  2. Observation of room temperature negative differential resistance in multi-layer heterostructures of quantum dots and conducting polymers.

    PubMed

    Kannan, V; Kim, M R; Chae, Y S; Ramana, Ch V V; Rhee, J K

    2011-01-14

    Multi-layer heterostructure negative differential resistance devices based on poly-[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylenevinylene] (MEH-PPV) conducting polymer and CdSe quantum dots is reported. The conducting polymer MEH-PPV acts as a barrier while CdSe quantum dots form the well layer. The devices exhibit negative differential resistance (NDR) at low voltages. For these devices, strong negative differential resistance is observed at room temperature. A maximum value of 51 for the peak-to-valley ratio of current is reported. Tunneling of electrons through the discrete quantum confined states in the CdSe quantum dots is believed to be responsible for the multiple peaks observed in the I-V measurement. Depending on the observed NDR signature, operating mechanisms are explored based on resonant tunneling and Coulomb blockade effects.

  3. Microscopic signature of insulator-to-metal transition in highly doped semicrystalline conducting polymers in ionic-liquid-gated transistors

    NASA Astrophysics Data System (ADS)

    Tanaka, Hisaaki; Nishio, Satoshi; Ito, Hiroshi; Kuroda, Shin-ichi

    2015-12-01

    Electronic state of charge carriers, in particular, in highly doped regions, in thin-film transistors of a semicrystalline conducting polymer poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene), has been studied by using field-induced electron spin resonance (ESR) spectroscopy. By adopting an ionic-liquid gate insulator, a gate-controlled reversible electrochemical hole-doping of the polymer backbone is achieved, as confirmed from the change of the optical absorption spectra. The edge-on molecular orientation in the pristine film is maintained even after the electrochemical doping, which is clarified from the angular dependence of the g value. As the doping level increases, spin 1/2 polarons transform into spinless bipolarons, which is demonstrated from the spin-charge relation showing a spin concentration peak around 1%, contrasting to the monotonic increase in the charge concentration. At high doping levels, a drastic change in the linewidth anisotropy due to the generation of conduction electrons is observed, indicating the onset of metallic state, which is also supported by the temperature dependence of the spin susceptibility and the ESR linewidth. Our results suggest that semicrystalline conducting polymers become metallic with retaining their molecular orientational order, when appropriate doping methods are chosen.

  4. Method Of Signal Amplification In Multi-Chromophore Luminescence Sensors

    DOEpatents

    Levitsky, Igor A.; Krivoshlykov, Sergei G.

    2004-02-03

    A fluorescence-based method for highly sensitive and selective detection of analyte molecules is proposed. The method employs the energy transfer between two or more fluorescent chromophores in a carefully selected polymer matrix. In one preferred embodiment, signal amplification has been achieved in the fluorescent sensing of dimethyl methylphosphonate (DMMP) using two dyes, 3-aminofluoranthene (AM) and Nile Red (NR), in a hydrogen bond acidic polymer matrix. The selected polymer matrix quenches the fluorescence of both dyes and shifts dye emission and absorption spectra relative to more inert matrices. Upon DMMP sorption, the AM fluorescence shifts to the red at the same time the NR absorption shifts to the blue, resulting in better band overlap and increased energy transfer between chromophores. In another preferred embodiment, the sensitive material is incorporated into an optical fiber system enabling efficient excitation of the dye and collecting the fluorescent signal form the sensitive material on the remote end of the system. The proposed method can be applied to multichromophore luminescence sensor systems incorporating N-chromophores leading to N-fold signal amplification and improved selectivity. The method can be used in all applications where highly sensitive detection of basic gases, such as dimethyl methylphosphonate (DMMP), Sarin, Soman and other chemical warfare agents having basic properties, is required, including environmental monitoring, chemical industry and medicine.

  5. Applications of conducting polymers and their issues in biomedical engineering

    PubMed Central

    Ravichandran, Rajeswari; Sundarrajan, Subramanian; Venugopal, Jayarama Reddy; Mukherjee, Shayanti; Ramakrishna, Seeram

    2010-01-01

    Conducting polymers (CPs) have attracted much interest as suitable matrices of biomolecules and have been used to enhance the stability, speed and sensitivity of various biomedical devices. Moreover, CPs are inexpensive, easy to synthesize and versatile because their properties can be readily modulated by (i) surface functionalization techniques and (ii) the use of a wide range of molecules that can be entrapped or used as dopants. This paper discusses the various surface modifications of the CP that can be employed in order to impart physico-chemical and biological guidance cues that promote cell adhesion/proliferation at the polymer–tissue interface. This ability of the CP to induce various cellular mechanisms widens its applications in medical fields and bioengineering. PMID:20610422

  6. Silicone Membranes to Inhibit Water Uptake into Thermoset Polyurethane Shape-Memory Polymer Conductive Composites

    PubMed Central

    Yu, Ya-Jen; Infanger, Stephen; Grunlan, Melissa A.; Maitland, Duncan J.

    2014-01-01

    Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature (Tg) resulting in shape recovery in vivo. While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo. In this study, a silicone membrane was used to inhibit water uptake into a thermoset SMP composite containing conductive filler. Thermoset polyurethane (PU) SMPs were loaded with either 5 wt% carbon black (CB) or 5 wt% carbon nanotubes (CNT) and subsequently coated with either an Al2O3- or silica-filled silicone membrane. It was observed that the silicone membranes, particularly the silica-filled membrane, reduced the rate of water absorption (37 °C) and subsequent Tg depression versus uncoated composites. In turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37 °C. PMID:25663711

  7. Silicone Membranes to Inhibit Water Uptake into Thermoset Polyurethane Shape-Memory Polymer Conductive Composites.

    PubMed

    Yu, Ya-Jen; Infanger, Stephen; Grunlan, Melissa A; Maitland, Duncan J

    2015-01-05

    Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature ( T g ) resulting in shape recovery in vivo . While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo . In this study, a silicone membrane was used to inhibit water uptake into a thermoset SMP composite containing conductive filler. Thermoset polyurethane (PU) SMPs were loaded with either 5 wt% carbon black (CB) or 5 wt% carbon nanotubes (CNT) and subsequently coated with either an Al 2 O 3 - or silica-filled silicone membrane. It was observed that the silicone membranes, particularly the silica-filled membrane, reduced the rate of water absorption (37 °C) and subsequent T g depression versus uncoated composites. In turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37 °C.

  8. Silicone membranes to inhibit water uptake into thermoset polyurethane shape-memory polymer conductive composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Ya-Jen; Infanger, Stephen; Grunlan, Melissa A.

    Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature (T g) resulting in shape recovery in vivo. While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo. In this paper, a silicone membrane was used to inhibit water uptake into a thermoset SMPmore » composite containing conductive filler. Thermoset polyurethane SMPs were loaded with either 5 wt % carbon black or 5 wt % carbon nanotubes, and subsequently coated with either an Al 2O 3- or silica-filled silicone membrane. It was observed that the silicone membranes, particularly the silica-filled membrane, reduced the rate of water absorption (37°C) and subsequent T g depression versus uncoated composites. Finally, in turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37°C.« less

  9. Silicone membranes to inhibit water uptake into thermoset polyurethane shape-memory polymer conductive composites

    DOE PAGES

    Yu, Ya-Jen; Infanger, Stephen; Grunlan, Melissa A.; ...

    2014-07-24

    Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature (T g) resulting in shape recovery in vivo. While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo. In this paper, a silicone membrane was used to inhibit water uptake into a thermoset SMPmore » composite containing conductive filler. Thermoset polyurethane SMPs were loaded with either 5 wt % carbon black or 5 wt % carbon nanotubes, and subsequently coated with either an Al 2O 3- or silica-filled silicone membrane. It was observed that the silicone membranes, particularly the silica-filled membrane, reduced the rate of water absorption (37°C) and subsequent T g depression versus uncoated composites. Finally, in turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37°C.« less

  10. Novel proton conducting polymer electrolytes based on polyparabanic acid doped with H 3PO 4 for high temperature fuel cell

    NASA Astrophysics Data System (ADS)

    Aihara, Yuichi; Sonai, Atsuo

    Three novel proton conducting polymer electrolytes based on polyparabanic acid doped with H 3PO 4 were synthesized and their use in high temperature fuel cells characterized. The precursor polymers, PMD-Im, POD-Im and PDMDP-Im, were synthesized by cyclization polymerization of diisocynanates. After doping with H 3PO 4, the ionic conductivity and the thermal degradation were studied by using the AC impedance method and thermal gravimetric analysis, respectively. These membranes showed high ionic conductivity of the order of 10 -2 S cm -1 at 423 K with good thermal stability. Their application to fuel cells was demonstrated and polarization curves were obtained at 423 K were obtained without humidification.

  11. Self-assembly of coordination polymers of Pr(III), Nd(III), Tb(III), Dy(III) and Ho(III) with 5-hydroxyisophthalic acid and adipic acid: Syntheses, structures, porosity, luminescence and magnetic properties

    NASA Astrophysics Data System (ADS)

    Kariem, Mukaddus; Yawer, Mohd; Kumar, Manesh; Nawaz Sheikh, Haq; Sood, Puneet; Kolekar, Sanjay S.

    2017-11-01

    Five novel coordination polymers (CPs) with the formula [Ln (hip) (adip)0.5(H2O)2]n. nH2O [Ln = Pr (1), Nd (2), Tb (3), Dy (4) and Ho (5)] were synthesized by self-organization of lanthanide salts with rigid [5-hydroxyisophthalic acid (H2hip)] and flexible [adipic acid (H2adip)] linkers under solvothermal condition. X-ray diffraction revealed data that all five CPs 1-5 are isostructural and crystallizes in monoclinic C2/c space group. Coordination polymers 1-5 exhibit 1D linear ladder shaped extension with the linkage of lanthanide carboxylate chains having the backbone of H2hip and H2adip ligands. The 1D linear ladder chains get transformed into three dimensional (3D) supramolecular network via non-covalent interactions (π-π and H - bonding). The porosity study showed that 20.34 mL of N2 gets adsorbed per 1.0 g of sample at 1 atm pressure. The CP 3 (Tb) and 4 (Dy) emit strong ligand sensitized characteristic f-f luminescence emission. The CPs 3 and 4 exhibit weak ferromagnetic interactions at lower temperatures.

  12. Optical modulation from an electro-optic polymer based hybrid Fabry-Perot etalon using transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Gan, Haiyong; Zhang, Hongxi; DeRose, Christopher T.; Norwood, Robert A.; Fallahi, Mahmoud; Luo, Jingdong; Jen, Alex K.-Y.; Liu, Boyang; Ho, Seng-Tiong; Peyghambarian, Nasser

    2007-02-01

    Fabry-Perot etalons using electro-optic (EO) organic materials can be used for devices such as tunable filters and spatial light modulators (SLM's) for wavelength division multiplexing (WDM) communication systems 1-5 and ultrafast imaging systems. For these applications the SLM's need to have: (i) low insertion loss, (ii) high speed operation, and (iii) large modulation depth with low drive voltage. Recently, there have been three developments which together can enhance the SLM performance to a higher level. First, low loss distributed Bragg reflector (DBR) mirrors are now used in SLM's to replace thin metal mirrors, resulting in reduced transmission loss, high reflectivity (>99%) and high finesse. Second, EO polymer materials have shown excellent properties for wide bandwidth optical modulation for information technology due to their fabrication flexibility, compatibility with high speed operation, and large EO coefficients at telecommunication wavelengths. For instance, the EO polymer AJL8/APC (AJL8: nonlinear optical chromophore, and APC: amorphous polycarbonate has recently been incorporated into waveguide modulators and achieved good performance for optical modulation. Finally, very low loss transparent conducting oxide (TCO) electrodes have drawn increasing attention for applications in optoelectronic devices. Here we will address how the low loss indium oxide (In IIO 3) electrodes with an absorption coefficient ~1000/cm and conductivity ~204 S/cm can help improve the modulation performance of EO polymer Fabry-Pérot étalons using the advanced electro-optic (EO) polymer material (AJL8/APC). A hybrid etalon structure with one highly conductive indium tin oxide (ITO) electrode outside the etalon cavity and one low-absorption In IIO 3 electrode inside etalon cavity has been demonstrated. High finesse (~234), improved effective applied voltage ratio (~0.25), and low insertion loss (~4 dB) have been obtained. A 10 dB isolation ratio and ~10% modulation depth at

  13. Tailorable drug capacity of dexamethasone-loaded conducting polymer matrix

    NASA Astrophysics Data System (ADS)

    Krukiewicz, K.

    2018-05-01

    The unique properties of conducting polymers, which are in the same time biocompatible and electrically responsive materials, make them perfect candidates for controlled drug release systems. In this study, the electrically-triggered controlled release system based on dexamethasone-loaded poly (3, 4-ethylenedioxypyrrole) (PEDOP) matrix is described. It is shown that the electropolymerization conditions can facilitate or suppress the formation of PEDOP/Dex matrix, as well as they can have the effect on its electrochemical performance. The release experiments performed in three different modes show that the drug capacity of PEDOP matrix increases with the increase in Dex concentration in the step of matrix synthesis, and higher Dex concentrations make it easier to control the amount of Dex released in an electrically-triggered mode. These results confirm the importance of the careful optimization of immobilization conditions to maximize drug capacity of matrix and maintain its electrochemical properties.

  14. Enhanced Flexible Tubular Microelectrode with Conducting Polymer for Multi-Functional Implantable Tissue-Machine Interface

    NASA Astrophysics Data System (ADS)

    Tian, Hong-Chang; Liu, Jing-Quan; Kang, Xiao-Yang; Tang, Long-Jun; Wang, Ming-Hao; Ji, Bo-Wen; Yang, Bin; Wang, Xiao-Lin; Chen, Xiang; Yang, Chun-Sheng

    2016-05-01

    Implantable biomedical microdevices enable the restoration of body function and improvement of health condition. As the interface between artificial machines and natural tissue, various kinds of microelectrodes with high density and tiny size were developed to undertake precise and complex medical tasks through electrical stimulation and electrophysiological recording. However, if only the electrical interaction existed between electrodes and muscle or nerve tissue without nutrition factor delivery, it would eventually lead to a significant symptom of denervation-induced skeletal muscle atrophy. In this paper, we developed a novel flexible tubular microelectrode integrated with fluidic drug delivery channel for dynamic tissue implant. First, the whole microelectrode was made of biocompatible polymers, which could avoid the drawbacks of the stiff microelectrodes that are easy to be broken and damage tissue. Moreover, the microelectrode sites were circumferentially distributed on the surface of polymer microtube in three dimensions, which would be beneficial to the spatial selectivity. Finally, the in vivo results confirmed that our implantable tubular microelectrodes were suitable for dynamic electrophysiological recording and simultaneous fluidic drug delivery, and the electrode performance was further enhanced by the conducting polymer modification.

  15. Enhanced Flexible Tubular Microelectrode with Conducting Polymer for Multi-Functional Implantable Tissue-Machine Interface.

    PubMed

    Tian, Hong-Chang; Liu, Jing-Quan; Kang, Xiao-Yang; Tang, Long-Jun; Wang, Ming-Hao; Ji, Bo-Wen; Yang, Bin; Wang, Xiao-Lin; Chen, Xiang; Yang, Chun-Sheng

    2016-05-27

    Implantable biomedical microdevices enable the restoration of body function and improvement of health condition. As the interface between artificial machines and natural tissue, various kinds of microelectrodes with high density and tiny size were developed to undertake precise and complex medical tasks through electrical stimulation and electrophysiological recording. However, if only the electrical interaction existed between electrodes and muscle or nerve tissue without nutrition factor delivery, it would eventually lead to a significant symptom of denervation-induced skeletal muscle atrophy. In this paper, we developed a novel flexible tubular microelectrode integrated with fluidic drug delivery channel for dynamic tissue implant. First, the whole microelectrode was made of biocompatible polymers, which could avoid the drawbacks of the stiff microelectrodes that are easy to be broken and damage tissue. Moreover, the microelectrode sites were circumferentially distributed on the surface of polymer microtube in three dimensions, which would be beneficial to the spatial selectivity. Finally, the in vivo results confirmed that our implantable tubular microelectrodes were suitable for dynamic electrophysiological recording and simultaneous fluidic drug delivery, and the electrode performance was further enhanced by the conducting polymer modification.

  16. Mesoporous silicon oxide films and their uses as templates in obtaining nanostructured conductive polymers

    NASA Astrophysics Data System (ADS)

    Salgado, R.; Arteaga, G. C.; Arias, J. M.

    2018-04-01

    Obtaining conductive polymers (CPs) for the manufacture of OLEDs, solar cells, electrochromic devices, sensors, etc., has been possible through the use of electrochemical techniques that allow obtaining films of controlled thickness with positive results in different applications. Current trends point towards the manufacture of nanomaterials, and therefore it is necessary to develop methods that allow obtaining CPs with nanostructured morphology. This is possible by using a porous template to allow the growth of the polymeric materials. However, prior and subsequent treatments are required to separate the material from the template so that it can be evaluated in the applications mentioned above. This is why mesoporous silicon oxide films (template) are essential for the synthesis of nanostructured polymers since both the template and the polymer are obtained on the electrode surface, and therefore it is not necessary to separate the material from the template. Thus, the material can be evaluated directly in the applications mentioned above. The dimensions of the resulting nanostructures will depend on the power, time and technique used for electropolymerization as well as the monomer and the surfactant of the mesoporous film.

  17. Enhanced Flexible Tubular Microelectrode with Conducting Polymer for Multi-Functional Implantable Tissue-Machine Interface

    PubMed Central

    Tian, Hong-Chang; Liu, Jing-Quan; Kang, Xiao-Yang; Tang, Long-Jun; Wang, Ming-Hao; Ji, Bo-Wen; Yang, Bin; Wang, Xiao-Lin; Chen, Xiang; Yang, Chun-Sheng

    2016-01-01

    Implantable biomedical microdevices enable the restoration of body function and improvement of health condition. As the interface between artificial machines and natural tissue, various kinds of microelectrodes with high density and tiny size were developed to undertake precise and complex medical tasks through electrical stimulation and electrophysiological recording. However, if only the electrical interaction existed between electrodes and muscle or nerve tissue without nutrition factor delivery, it would eventually lead to a significant symptom of denervation-induced skeletal muscle atrophy. In this paper, we developed a novel flexible tubular microelectrode integrated with fluidic drug delivery channel for dynamic tissue implant. First, the whole microelectrode was made of biocompatible polymers, which could avoid the drawbacks of the stiff microelectrodes that are easy to be broken and damage tissue. Moreover, the microelectrode sites were circumferentially distributed on the surface of polymer microtube in three dimensions, which would be beneficial to the spatial selectivity. Finally, the in vivo results confirmed that our implantable tubular microelectrodes were suitable for dynamic electrophysiological recording and simultaneous fluidic drug delivery, and the electrode performance was further enhanced by the conducting polymer modification. PMID:27229174

  18. Design of ultra-thin high frequency trilayer conducting polymer micro-actuators for tactile feedback interfaces

    NASA Astrophysics Data System (ADS)

    Ebrahimi Takalloo, Saeedeh; Seifi, Hasti; Madden, John D. W.

    2017-04-01

    Fast actuation of conducting polymer trilayers has been achieved by reducing the thickness of the device to as little as 6 μm. Reducing size also reduces force and displacement. Here the tradeoffs between speed of response, force and deformation angle are explored, and related to an example application - a tactile feedback interface that aims to make use of the very high sensitivity of our fingertip skin to vibrations of about 150 Hz. In general, the actuation rate in these devices is limited by the speed of charging, and by inertia. Here we use an established transmission line model to simulate charging speed. By making use of the empirical relationship between strain and charge, and using beam bending theory, the extent of charging enables estimation of the degree of actuator deformation and the forces that can be generated. In seeking to achieve non-resonant actuation at frequencies of 150 Hz or more, while also generating the forces and displacements needed for tactile stimulation, it is found that electronic and ionic conductivities of the conducting polymer electrodes needs to be on the order of 24,000 S/m and 0.04 S/m, respectively. These values along with the required dimensions appear to be feasible.

  19. Electrocatalytic Transformation of Carbon Dioxide into Low Carbon Compounds on Conducting Polymers Derived from Multimetallic Porphyrins.

    PubMed

    Dreyse, Paulina; Honores, Jessica; Quezada, Diego; Isaacs, Mauricio

    2015-11-01

    The electrochemical reduction of carbon dioxide is studied herein by using conducting polymers based on metallotetraruthenated porphyrins (MTRPs). The polymers on glassy carbon electrodes were obtained by electropolymerization processes of the monomeric MTRP. The linear sweep voltammetry technique resulted in polymeric films that showed electrocatalytic activity toward carbon dioxide reduction with an onset potential of -0.70 V. The reduction products obtained were hydrogen, formic acid, formaldehyde, and methanol, with a tendency for a high production of methanol with a maximum value of turnover frequency equal to 15.07 when using a zinc(II) polymeric surface. Studies of the morphology (AFM) and electrochemical impedance spectroscopy results provide an adequate background to explain that the electrochemical reduction is governed by the roughness of the polymer, for which the possible mechanism involves a series of one-electron reduction reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Dielectric relaxations and conduction mechanisms in polyether-clay composite polymer electrolytes under high carbon dioxide pressure.

    PubMed

    Kitajima, Shunsuke; Bertasi, Federico; Vezzù, Keti; Negro, Enrico; Tominaga, Yoichi; Di Noto, Vito

    2013-10-21

    The composite material P(EO/EM)-Sa consisting of synthetic saponite (Sa) dispersed in poly[ethylene oxide-co-2-(2-methoxyethoxy)ethyl glycidyl ether] (P(EO/EM)) is studied by "in situ" measurements using broadband electrical spectroscopy (BES) under pressurized CO2 to characterize the dynamic behavior of conductivity and the dielectric relaxations of the ion host polymer matrix. It is revealed that there are three dielectric relaxation processes associated with: (I) the dipolar motions in the short oxyethylene side chains of P(EO/EM) (β); and (II) the segmental motion of the main chains comprising the polyether components (αfast, αslow). αslow is attributed to the slow α-relaxation of P(EO/EM) macromolecules, which is hindered by the strong coordination interactions with the ions. Two conduction processes are observed, σDC and σID, which are attributed, respectively, to the bulk conductivity and the interdomain conductivity. The temperature dependence of conductivity and relaxation processes reveals that αfast and αslow are strongly correlated with σDC and σID. The "in situ" BES measurements under pressurized CO2 indicate a fast decrease in σDC at the initial CO2 treatment time resulting from the decrease in the concentration of polyether-M(n+) complexes, which is driven by the CO2 permeation. The relaxation frequency (fR) of αslow at the initial CO2 treatment time increases and shows a steep rise with time with the same behavior of the αfast mode. It is demonstrated that the interactions between polyether chains of P(EO/EM) and cations in the polymer electrolyte layers embedded in Sa are probably weakened by the low permittivity of CO2 (ε = 1.08). Thus, the formation of ion pairs in the polymer electrolyte domains of P(EO/EM)-Sa occurs, with a corresponding reduction in the concentration of ion carriers.

  1. Polymeric Luminescent Compositions Doped with Beta-Diketonates Boron Difluoride as Material for Luminescent Solar Concentrator

    NASA Astrophysics Data System (ADS)

    Khrebtov, A. A.; Fedorenko, E. V.; Reutov, V. A.

    2017-11-01

    In this paper we investigated polymeric luminescent compositions based on polystyrene doped with beta diketonates boron difluoride. Transparent films with effective absorption in the ultraviolet and blue regions of the spectrum were obtained. Polymeric luminescent compositions based on the mixture of dyes allow expanding the absorption region and increase the radiation shift. A luminescent solar concentrator consisting of a glass plate coated with such film can be used for photovoltaic window application.

  2. Laboratory analysis and airborne detection of materials stimulated to luminesce by the sun

    USGS Publications Warehouse

    Hemphill, W.R.; Theisen, A.F.; Tyson, R.M.

    1984-01-01

    The Fraunhofer line discriminator (FLD) is an airborne electro-optical device used to image materials which have been stimulated to luminesce by the Sun. Such materials include uranium-bearing sandstone, sedimentary phosphate rock, marine oil seeps, and stressed vegetation. Prior to conducting an airborne survey, a fluorescence spectrometer may be used in the laboratory to determine the spectral region where samples of the target material exhibit maximum luminescence, and to select the optimum Fraunhofer line. ?? 1984.

  3. Praseodymium - A Competent Dopant for Luminescent Downshifting and Photocatalysis in ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Narayanan, Nripasree; Deepak, N. K.

    2018-05-01

    Highly transparent and conducting Zinc oxide (ZnO) thin films doped with Praseodymium (Pr) were deposited on glass substrates by using the spray pyrolysis method. The X-ray diffraction (XRD) analysis revealed the polycrystallinity of the deposited films with a hexagonal wurtzite structure, whereas the energy-dispersive X-ray spectroscopy (EDX) analysis confirmed the incorporation of Pr in the films. The optical energy gap decreased by Pr doping due to the merging of the conduction band with the impurity bands formed within the forbidden gap. The room temperature photoluminescence spectra of the Pr-doped film showed enhancement of visible emission, suggesting efficient luminescent downshifting. The photocatalytic activity of the Pr-doped films is higher than that of undoped films due to the effective suppression of the rapid recombination of the photo-generated electron-hole pairs. The impurity levels formed within the forbidden gap act as efficient luminescent centers and electron traps, which lead to luminescent downshifting and enhanced photocatalytic activity.

  4. Conductive ink containing thermally exfoliated graphite oxide and method a conductive circuit using the same

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A conductive ink containing a conductive polymer, wherein the conductive polymer contains at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, and it use in a method for making a conductive circuit.

  5. Synthesis and characterization of poly-3-((2,5-hydroquinone)vinyl)-1H-pyrrole: investigation on backbone/pendant interactions in a conducting redox polymer.

    PubMed

    Huang, Hao; Karlsson, Christoffer; Strømme, Maria; Gogoll, Adolf; Sjödin, Martin

    2017-04-19

    We herein report the synthesis and electrochemical characterization of poly-3-((2,5-hydroquinone)vinyl)-1H-pyrrole, consisting of a polypyrrole backbone derivatized at the beta position by a vinyl-hydroquinone pendant group. The structure of the polymer was characterized by solid state NMR spectroscopy. The interactions between the polypyrrole backbone and the oxidized quinone or reduced hydroquinone pendant groups are probed by several in situ methods. In situ attenuated total reflectance-Fourier transform infrared spectroscopy shows a spectroscopic response from both the doping of the polymer backbone and the redox activity of the pendant groups. Using an in situ Electrochemical Quartz Crystal Microbalance we reveal that the polymer doping is unaffected by the pendant group redox chemistry, as opposed to previous reports. Despite the continuous doping the electrochemical conversion from the hydroquinone state to the quinone state results in a significant conductance drop, as observed by in situ conductivity measurements using an Interdigitated Array electrode set-up. Twisting of the conducting polymer backbone as a result of a decreased separation between pendant groups due to π-π stacking in the oxidized state is suggested as the cause of this conductance drop.

  6. Phytoluminographic Detection of Dynamic Variations in Leaf Gaseous Conductivity 1

    PubMed Central

    Ellenson, James L.

    1985-01-01

    Gas exchange and plant luminescence (delayed light emission) of a single red kidney bean leaf undergoing synchronous oscillations in gas exchange were recorded and analyzed. Introduction of 1.1 microliter per liter SO2 during these oscillations produced increases in plant luminescence that, when averaged over a portion of the leaf, oscillated in phase with the gas exchange oscillations. However, examination of a video record of the plant luminescence showed not only that luminescence intensities tended to be localized within discrete areas of the leaf, but that the time-dependence of luminescence intensities within these regions varied considerably from the period, amplitude, and often phase of the overall gas exchange oscillations. The video recording also showed that changes in luminescence intensities appeared to migrate across the leaf in wave-like patterns. These data are interpreted in terms of localized fluctuations in gaseous conductances of the leaf. Images Fig. 3 PMID:16664350

  7. Cyanide-Assembled d10 Coordination Polymers and Cycles: Excited State Metallophilic Modulation of Solid-State Luminescence.

    PubMed

    Belyaev, Andrey; Eskelinen, Toni; Dau, Thuy Minh; Ershova, Yana Yu; Tunik, Sergey P; Melnikov, Alexei S; Hirva, Pipsa; Koshevoy, Igor O

    2018-01-26

    The series of cyanide-bridged coordination polymers [(P 2 )CuCN] n (1), [(P 2 )Cu{M(CN) 2 }] n (M=Cu 3, Ag 4, Au 5) and molecular tetrametallic clusters [{(P 4 )MM'(CN)} 2 ] 2+ (MM'=Cu 2 6, Ag 2 7, AgCu 8, AuCu 9, AuAg 10) were obtained using the bidentate P 2 and tetradentate P 4 phosphane ligands (P 2 =1,2-bis(diphenylphosphino)benzene; P 4 =tris(2-diphenylphosphinophenyl)phosphane). All title complexes were crystallographically characterized to reveal a zig-zag chain arrangement for 1 and 3-5, whereas 6-10 possess metallocyclic frameworks with different degree of metal-metal bonding. The d 10 -d 10 interactions were evaluated by the quantum theory of atoms in molecules (QTAIM) computational approach. The photophysical properties of 1-10 were investigated in the solid state and supported by theoretical analysis. The emission of compounds 1 and 3-5, dominated by metal-to-ligand charge transfer (MLCT) transitions located within {CuP 2 } motifs, is compatible with thermally activated delayed fluorescence (TADF) behaviour and a small energy gap between the T 1 and S 1 excited states. The luminescence characteristics of 6-10 are strongly dependent on the composition of the metal core; the emission band maxima vary in the range 484-650 nm with quantum efficiency reaching 0.56 (6). The origin of the emission for 6-8 and 10 at room temperature is assigned to delayed fluorescence. AuCu cluster 9, however, exhibits only phosphorescence that corresponds to theoretically predicted large value ΔE(S 1 -T 1 ). DFT simulation highlights a crucial impact of metallophilic bonding on the nature and energy of the observed emission, the effect being greatly enhanced in the excited state. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Glue-Free Stacked Luminescent Nanosheets Enable High-Resolution Ratiometric Temperature Mapping in Living Small Animals.

    PubMed

    Miyagawa, Takuya; Fujie, Toshinori; Ferdinandus; Vo Doan, Tat Thang; Sato, Hirotaka; Takeoka, Shinji

    2016-12-14

    In this paper, a microthermograph, temperature mapping with high spatial resolution, was established using luminescent molecules embedded ultrathin polymeric films (nanosheets), and demonstrated in a living small animal to map out and visualize temperature shift due to animal's muscular activity. Herein, we report super flexible and self-adhesive (no need of glue) nanothermosensor consisting of stacked two different polymeric nanosheets with thermosensitive (Eu-tris (dinaphthoylmethane)-bis-trioctylphosphine oxide: EuDT) and insensitive (Rhodamine 800) dyes being embedded. Such stacked nanosheets allow for the ratiometric thermometry, with which the undesired luminescence intensity shift due to focal drift or animal's z-axis displacement is eliminated and the desired intensity shift solely due to the temperature shift of the sample (living muscle) can be acquired. With the stacked luminescent nanosheets, we achieved the first-ever demonstration of video filming of chronologically changing temperature-shift distribution from the rest state to the active state of the muscles in the living animal. The polymer nanosheet engineering and in vivo microthermography presented in the paper are promising technologies to microscopically explore the heat production and heat transfer in living cells, tissues, and organisms with high spatial resolution beyond what existing thermometric technologies such as infrared thermography have ever achieved.

  9. Immobilization of Anions on Polymer Matrices for Gel Electrolytes with High Conductivity and Stability in Lithium Ion Batteries.

    PubMed

    Wang, Shih-Hong; Lin, Yong-Yi; Teng, Chiao-Yi; Chen, Yen-Ming; Kuo, Ping-Lin; Lee, Yuh-Lang; Hsieh, Chien-Te; Teng, Hsisheng

    2016-06-15

    This study reports on a high ionic-conductivity gel polymer electrolyte (GPE), which is supported by a TiO2 nanoparticle-decorated polymer framework comprising poly(acrylonitrile-co-vinyl acetate) blended with poly(methyl methacrylate), i.e. , PAVM: TiO2. High conductivity TiO2 is achieved by causing the PAVM:TiO2 polymer framework to swell in 1 M LiPF6 in carbonate solvent. Raman analysis results demonstrate that the poly(acrylonitrile) (PAN) segments and TiO2 nanoparticles strongly adsorb PF6(-) anions, thereby generating 3D percolative space-charge pathways surrounding the polymer framework for Li(+)-ion transport. The ionic conductivity of TiO2 is nearly 1 order of magnitude higher than that of commercial separator-supported liquid electrolyte (SLE). TiO2 has a high Li(+) transference number (0.7), indicating that most of the PF6(-) anions are stationary, which suppresses PF6(-) decomposition and substantially enlarges the voltage that can be applied to TiO2 (to 6.5 V vs Li/Li(+)). Immobilization of PF6(-) anions also leads to the formation of stable solid-electrolyte interface (SEI) layers in a full-cell graphite|electrolyte|LiFePO4 battery, which exhibits low SEI and overall resistances. The graphite|electrolyte|LiFePO4 battery delivers high capacity of 84 mAh g(-1) even at 20 C and presents 90% and 71% capacity retention after 100 and 1000 charge-discharge cycles, respectively. This study demonstrates a GPE architecture comprising 3D space charge pathways for Li(+) ions and suppresses anion decomposition to improve the stability and lifespan of the resulting LIBs.

  10. Porous palladium coated conducting polymer nanoparticles for ultrasensitive hydrogen sensors

    NASA Astrophysics Data System (ADS)

    Lee, Jun Seop; Kim, Sung Gun; Cho, Sunghun; Jang, Jyongsik

    2015-12-01

    Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm) and stability toward hydrogen gas at room temperature due to the palladium sensing layer.Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm

  11. Effect of Eutectic Concentration on Conductivity in PEO:LiX Based Solid Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Zhan, Pengfei; Ganapatibhotla, Lalitha; Maranas, Janna

    Polyethylene oxide (PEO) and lithium salt based solid polymer electrolytes (SPEs) have been widely proposed as a substitution for the liquid electrolyte in Li-ion batteries. As salt concentration varies, these systems demonstrate rich phase behavior. Conductivity as a function of salt concentration has been measured for decades and various concentration dependences have been observed. A PEO:LiX mixture can have one or two conductivity maximums, while some mixtures with salt of high ionic strength will have higher conductivity as the salt concentration decrease. The factors that affect the conductivity are specific for each sample. The universal factor that affects conductivity is still not clear. In this work, we measured the conductivity of a series of PEO:LiX mixtures and statistical analysis shows conductivity is affected by the concentration difference from the eutectic concentration (Δc). The correlation with Δc is stronger than the correlation with glass transition temperature. We believe that at the eutectic concentration, during the solidification process, unique structures can form which aid conduction. Currently at Dow Chemical.

  12. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion

    NASA Astrophysics Data System (ADS)

    Kang, Keehoon; Watanabe, Shun; Broch, Katharina; Sepe, Alessandro; Brown, Adam; Nasrallah, Iyad; Nikolka, Mark; Fei, Zhuping; Heeney, Martin; Matsumoto, Daisuke; Marumoto, Kazuhiro; Tanaka, Hisaaki; Kuroda, Shin-Ichi; Sirringhaus, Henning

    2016-08-01

    Doping is one of the most important methods to control charge carrier concentration in semiconductors. Ideally, the introduction of dopants should not perturb the ordered microstructure of the semiconducting host. In some systems, such as modulation-doped inorganic semiconductors or molecular charge transfer crystals, this can be achieved by spatially separating the dopants from the charge transport pathways. However, in conducting polymers, dopants tend to be randomly distributed within the conjugated polymer, and as a result the transport properties are strongly affected by the resulting structural and electronic disorder. Here, we show that in the highly ordered lamellar microstructure of a regioregular thiophene-based conjugated polymer, a small-molecule p-type dopant can be incorporated by solid state diffusion into the layers of solubilizing side chains without disrupting the conjugated layers. In contrast to more disordered systems, this allows us to observe coherent, free-electron-like charge transport properties, including a nearly ideal Hall effect in a wide temperature range, a positive magnetoconductance due to weak localization and the Pauli paramagnetic spin susceptibility.

  13. Luminescence from defects in GaN

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Morkoç, H.

    2006-04-01

    We briefly review the luminescence properties of defects in GaN and focus on the most interesting defects. In particular, the blue luminescence band peaking at about 3 eV is assigned to different defects and even different types of transitions in undoped, Zn-, C-, and Mg-doped GaN. Another omnipresent luminescence band, the yellow luminescence band may have different origin in nearly dislocation-free freestanding GaN templates, undoped thin layers, and carbon-doped GaN. The Y4 and Y7 lines are caused by recombination at unidentified point defects captured by threading edge dislocations.

  14. Gel polymer electrolytes for batteries

    DOEpatents

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  15. Effect of epoxidation level on thermal properties and ionic conductivity of epoxidized natural rubber solid polymer nanocomposite electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harun, Fatin; Chan, Chin Han; Winie, Tan

    Effect of epoxide content on the thermal and conductivity properties of epoxidized natural rubber (ENR) solid polymer nanocomposite electrolytes was investigated. Commercial available epoxidized natural rubber having 25 (ENR25) and 50 mole% (ENR50) epoxide, respectively were incorporated with lithium perchlorate (LiClO{sub 4}) salt and titanium dioxide (TiO{sub 2}) nanofiller via solution casting method. The solid polymer nanocomposite electrolytes were characterized by differential scanning calorimetry (DSC) and impedance spectroscopy (IS) for their thermal properties and conductivity, respectively. It was evident that introduction of LiClO{sub 4} causes a greater increase in glass transition temperature (T{sub g}) and ionic conductivity of ENR50 asmore » compared to ENR25. Upon addition of TiO{sub 2} in ENR/LiClO{sub 4} system, a remarkable T{sub g} elevation was observed for both ENRs where ENR50 reveals a more pronounced changes. It is interesting to note that they exhibit different phenomenon in ionic conductivity with TiO{sub 2} loading where ENR25 shows enhancement of conductivity while ENR50 shows declination.« less

  16. Semitransparent conductive carbon films synthesized by sintering spin-coated sp3-based network polymer

    NASA Astrophysics Data System (ADS)

    Yanase, Takashi; Uwabe, Hiroaki; Hasegawa, Koki; Nagahama, Taro; Yamaguchi, Makoto; Shimada, Toshihiro

    2018-03-01

    We synthesized semitransparent conducting thin films of amorphous carbon from sp3-rich network polymer. The films showed a reasonable optical transparency (58-73% transmission in the wavelength range of 380-2200 nm), a low electric resistivity (6.7 × 10-3 Ω cm), and durability against corrosive chemical reagents. The sintering of the amorphous films results in the formation of a carbon honeycomb lattice in the films.

  17. Microgravity Polymers

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A one-day, interactive workshop considering the effects of gravity on polymer materials science was held in Cleveland, Ohio, on May 9, 1985. Selected programmatic and technical issues were reviewed to introduce the field to workshop participants. Parallel discussions were conducted in three disciplinary working groups: polymer chemistry, polymer physics, and polymer engineering. This proceedings presents summaries of the workshop discussions and conclusions.

  18. Program for Research on Conducting Polymers

    DTIC Science & Technology

    1991-07-17

    Excitations in Polyaniline (Synthetic Metals). 29. Transient Photoconductivity in Oriented Irans-Polyacetylene Prepared by the Naarmann-Theophilou Method...State Physics). 33. X-Ray Scattering from Crystalline Polyaniline (Polymer Commun.). 34. Photogenerated Carriers in La2CuO4,YBa2Cu3O7-8 and TI2Ba2Ca...1- x)GdxCu208: Polarizability-Induced Pairing of Polarons (Synthetic Metals). 35. Spectroscopic Studies of Polyaniline in Solution and in Spin-Cast

  19. Conductive polymer nanotube patch for fast and controlled in vivo transdermal drug delivery

    NASA Astrophysics Data System (ADS)

    Nguyen, Thao M.

    Transdermal drug delivery has created new applications for existing therapies and offered an alternative to the traditional oral route where drugs can prematurely metabolize in the liver causing adverse side effects. Opening the transdermal delivery route to large hydrophilic drugs is one of the greatest challenges due to the hydrophobicity of the skin. However, the ability to deliver hydrophilic drugs using a transdermal patch would provide a solution to problems of other delivery methods for hydrophilic drugs. The switching of conductive polymers (CP) between redox states cause simultaneous changes in the polymer charge, conductivity, and volume—properties that can all be exploited in the biomedical field of controlled drug delivery. Using the template synthesis method, poly(3,4-ethylenedioxythiophene (PEDOT) nanotubes were synthesized electrochemically and a transdermal drug delivery patch was successfully designed and developed. In vitro and in vivo uptake and release of hydrophilic drugs were investigated. The relationship between the strength of the applied potential and rate of drug release were also investigated. Results revealed that the strength of the applied potential is proportional to the rate of drug release; therefore one can control the rate of drug release by controlling the applied potential. The in vitro studies focused on the kinetics of the drug delivery system. It was determined that the drug released mainly followed zero-order kinetics. In addition, it was determined that applying a releasing potential to the transdermal drug delivery system lead to a higher release rate constant (up to 7 times greater) over an extended period of time (˜24h). In addition, over 24 hours, an average of 80% more model drug molecules were released with an applied potential than without. The in vivo study showed that the drug delivery system was capable of delivering model hydrophilic drugs molecules through the dermis layer of the skin within 30 minutes

  20. Luminescence Properties of RDX and HMX

    DTIC Science & Technology

    1975-08-01

    AD-AO15 538 LUMINESCENCE PROPERTIES OF RDX AND HMX Paul L. Marinkas Picatinny Arsenal Dover, New Jersey August 1975 DISTRIBUTED BY: National...Technical Information Service U. S. DEPARTMENT OF COMMERCE • i 289106. TECHNICAL REPORT 4840 LUMINESCENCE PROPERTIES, OF RDX AND HMX PAULL. MARINKAS -’-I...yields Charge transfer HMX Phosphorescence Reflectance spectra Circular dichroism Lifetimes Photodecomposition RDX Doping Luminescence Polynitramines

  1. One-pot green synthesis of luminescent gold nanoparticles using imidazole derivative of chitosan.

    PubMed

    Nazirov, Alexander; Pestov, Alexander; Privar, Yuliya; Ustinov, Alexander; Modin, Evgeny; Bratskaya, Svetlana

    2016-10-20

    Water soluble luminescent gold nanoparticles with average size 2.3nm were for the first time synthesized by completely green method of Au(III) reduction using chitosan derivative-biocompatible nontoxic N-(4-imidazolyl)methylchitosan (IMC) as both reducing and stabilizing agent. Reduction of Au(III) to gold nanoparticles in IMC solution is a slow process, in which coordination power of biopolymer controls both reducing species concentration and gold crystal growth rate. Gold nanoparticles formed in IMC solution do not manifest surface plasmon resonance, but exhibit luminescence at 375nm under UV light excitation at 230nm. Due to biological activity of imidazolyl-containing polymers and their ability to bind proteins and drugs, the obtained ultra-small gold nanoparticles can find an application for biomolecules detection, bio-imaging, drug delivery, and catalysis. Very high catalytic activity (as compared to gold nanoparticles obtained by other green methods) was found for Au/IMC nanoparticles in the model reaction of p-nitrophenol reduction providing complete conversion of p-nitrophenol to p-aminophenol within 180-190s under mild conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Water-Soluble Polymers with Strong Photoluminescence through an Eco-Friendly and Low-Cost Route.

    PubMed

    Guo, Zhaoyan; Ru, Yue; Song, Wenbo; Liu, Zhenjie; Zhang, Xiaohong; Qiao, Jinliang

    2017-07-01

    Photoluminescence (PL) of nonconjugated polymers brings a favorable opportunity for low-cost and nontoxic luminescent materials, while most of them still exhibit relatively weak emission. Strong PL from poly[(maleic anhydride)-alt-(vinyl acetate)] (PMV) from low-cost monomer has been found in organic solvents, yet the necessity of noxious solvents would hinder its practical applications. Herein, through a novel, eco-friendly, and one-step route, PMV-derived PL polymers can be fabricated with the highest quantum yield of 87% among water-soluble nonconjugated PL polymers ever reported. These PMV-derived polymers emit strong blue emission in both solutions and solids, and can be transformed into red-emission agents easily. These PL polymers exhibit application potentials in light-conversion agricultural films. It is assumed that this work not only puts forward a convenient preparation routine for nonconjugated polymers with high PL, but also provides an industrial application possibility for them. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A robust, highly stretchable supramolecular polymer conductive hydrogel with self-healability and thermo-processability

    NASA Astrophysics Data System (ADS)

    Wu, Qian; Wei, Junjie; Xu, Bing; Liu, Xinhua; Wang, Hongbo; Wang, Wei; Wang, Qigang; Liu, Wenguang

    2017-01-01

    Dual amide hydrogen bond crosslinked and strengthened high strength supramolecular polymer conductive hydrogels were fabricated by simply in situ doping poly (N-acryloyl glycinamide-co-2-acrylamide-2-methylpropanesulfonic) (PNAGA-PAMPS) hydrogels with PEDOT/PSS. The nonswellable conductive hydrogels in PBS demonstrated high mechanical performances—0.22-0.58 MPa tensile strength, 1.02-7.62 MPa compressive strength, and 817-1709% breaking strain. The doping of PEDOT/PSS could significantly improve the specific conductivities of the hydrogels. Cyclic heating and cooling could lead to reversible sol-gel transition and self-healability due to the dynamic breakup and reconstruction of hydrogen bonds. The mending hydrogels recovered not only the mechanical properties, but also conductivities very well. These supramolecular conductive hydrogels could be designed into arbitrary shapes with 3D printing technique, and further, printable electrode can be obtained by blending activated charcoal powder with PNAGA-PAMPS/PEDOT/PSS hydrogel under melting state. The fabricated supercapacitor via the conducting hydrogel electrodes possessed high capacitive performances. These cytocompatible conductive hydrogels have a great potential to be used as electro-active and electrical biomaterials.

  4. Theoretical studies of optics and charge transport in organic conducting oligomers and polymers: Rational design of improved transparent and conducting polymers

    NASA Astrophysics Data System (ADS)

    Hutchison, Geoffrey Rogers

    Theoretical studies on a variety of oligo- and polyheterocycles elucidate their optical and charge transport properties, suggesting new, improved transparent conductive polymers. First-principles calculations provide accurate methodologies for predicting both optical band gaps of neutral and cationic oligomers and intrinsic charge transfer rates. Multidimensional analysis reveals important motifs in chemical tailorability of oligoheterocycle optical and charge transport properties. The results suggest new directions for design of novel materials. Using both finite oligomer and infinite polymer calculations, the optical band gaps in polyheterocycles follow a modified particle-in-a-box formalism, scaling approximately as 1/N (where N is the number of monomer units) in short chains, saturating for long chains. Calculations demonstrate that band structure changes upon heteroatom substitution, (e.g., from polythiophene to polypyrrole) derive from heteroatom electron affinity. Further investigation of chemical variability in substituted oligoheterocycles using multidimensional statistics reveals the interplay between heteroatom and substituent in correlations between structure and redox/optical properties of neutral and cationic species. A linear correlation between band gaps of neutral and cationic species upon oxidation of conjugated oligomers, shows redshifts of optical absorption for most species and blueshifts for small band gap species. Interstrand charge-transport studies focus on two contributors to hopping-style charge transfer rates: internal reorganization energy and the electronic coupling matrix element. Statistical analysis of chemical variability of reorganization energies in oligoheterocycles proves the importance of reorganization energy in determining intrinsic charge transfer rates (e.g., charge mobility in unsubstituted oligothiophenes). Computed bandwidths across several oligothiophene crystal packing motifs show similar electron and hole bandwidths

  5. Computational Modeling of Electrochemical-Poroelastic Bending Behaviors of Conducting Polymer (PPy) Membranes

    NASA Astrophysics Data System (ADS)

    Toi, Yutaka; Jung, Woosang

    The electrochemical-poroelastic bending behavior of conducting polymer actuators has an attractive feature, considering their potential applications such as artificial muscles or MEMS. In the present study, a computational modeling is presented for the bending behavior of polypyrrole-based actuators. The one-dimensional governing equation for the ionic transportation in electrolytes given by Tadokoro et al. is combined with the finite element modeling for the poroelastic behavior of polypyrroles considering the effect of finite deformation. The validity of the proposed model has been illustrated by comparing the computed results with the experimental results in the literatures.

  6. MISSE PEACE Polymers: An International Space Station Environmental Exposure Experiment Being Conducted

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Hammerstrom, Anne; Youngstrom, Erica; Kaminski, Carolyn; Marx, Laura; Fine, Elizabeth; Gummow, Jonathan D.; Wright, Douglas

    2002-01-01

    As part of the Materials International Space Station Experiment (MISSE), 41 different polymers are being exposed for approximately 1 1/2 years to the low-Earth-orbit (LEO) environment on the exterior of the International Space Station. MISSE is a materials flight experiment sponsored by the Air Force Research Lab/Materials Lab and NASA, and is the first external experiment on the space station. A similar set of 41 polymers will be flown as part of the Polymer Erosion and Contamination Experiment (PEACE) a shuttle flight experiment that is being developed at the NASA Glenn Research Center collaboratively with the Hathaway Brown School for girls. Therefore, these 41 polymers are collectively called the MISSE PEACE Polymers. The purpose of the MISSE PEACE Polymers experiment is to determine how durable polymers are in the LEO space environment where spacecraft, such as the space station, orbit. Polymers are commonly used as spacecraft materials because of their desirable properties such as good flexibility, low density, and certain electrical properties or optical properties (such as a low solar absorptance and high thermal emittance). Two examples of the use of polymers on the exterior of spacecraft exposed to the space environment include metalized Teflon FEP (fluorinated ethylene propylene, DuPont) thermal control materials on the Hubble Space Telescope, and polyimide Kapton (DuPont) solar array blankets.

  7. Material for a luminescent solar concentrator

    DOEpatents

    Andrews, L.J.

    1984-01-01

    A material for use in a luminescent solar concentrator, formed by ceramitizing the luminescent ion Cr/sup 3 +/ with a transparent ceramic glass containing mullite. The resultant material has tiny Cr/sup 3 +/-bearing crystallites dispersed uniformly through an amorphous glass. The invention combines the high luminescent efficiency of Cr/sup 3 +/ in the crystalline phase with the practical and economical advantages of glass technology.

  8. Conducting polymer networks synthesized by photopolymerization-induced phase separation

    NASA Astrophysics Data System (ADS)

    Yamashita, Yuki; Komori, Kana; Murata, Tasuku; Nakanishi, Hideyuki; Norisuye, Tomohisa; Yamao, Takeshi; Tran-Cong-Miyata, Qui

    2018-03-01

    Polymer mixtures composed of double networks of a polystyrene derivative (PSAF) and poly(methyl methacrylate) (PMMA) were alternatively synthesized by using ultraviolet (UV) and visible (Vis) light. The PSAF networks were generated by UV irradiation to photodimerize the anthracene (A) moieties labeled on the PSAF chains, whereas PMMA networks were produced by photopolymerization of methyl methacrylate (MMA) monomer and the cross-link reaction using ethylene glycol dimethacrylate (EGDMA) under Vis light irradiation. It was found that phase separation process of these networks can be independently induced and promptly controlled by using UV and Vis light. The characteristic length scale distribution of the resulting co-continuous morphology can be well regulated by the UV and Vis light intensity. In order to confirm and utilize the connectivity of the bicontinuous morphology observed by confocal microscopy, a very small amount, 0.1 wt%, of multi-walled carbon nanotubes (MWCNTs) was introduced into the mixture and the current-voltage (I-V) relationship was subsequently examined. Preliminary data show that MWCNTs are preferentially dispersed in the PSAF-rich continuous domains and the whole mixture became electrically conducting, confirming the connectivity of the observed bi-continuous morphology. The experimental data obtained in this study reveal a promising method to design various scaffolds for conducting soft matter taking advantages of photopolymerization-induced phase separation.

  9. Synthesis and characterization of ion transport behavior in Cu2+-conducting nano composite polymer electrolyte membranes

    NASA Astrophysics Data System (ADS)

    Bala Sahu, Tripti; Sahu, Manju; Karan, Shrabani; Mahipal, Y. K.; Sahu, D. K.; Agrawal, R. C.

    2017-07-01

    Synthesis and characterization of ion transport behavior in Cu2+-conducting nano composite polymer electrolyte (NCPE) films: [90PEO: 10Cu(CF3SO3)2]  +  x CuO have been reported. NCPE films have been formed by hot-press casting technique using solid polymer electrolyte (SPE) film composition: [90PEO: 10Cu(CF3SO3)2] as 1st-phase host and nanoparticles of CuO in varying wt.(%) as 2nd-phase active filler. SPE: [90PEO: 10Cu(CF3SO3)2] was identified earlier as highest conducting film with room temperature conductivity (σ rt) ~ 3.0 x 10-6 S cm-1, which is three orders of magnitude higher than that of pure polymer host PEO with σ rt ~ 3.2  ×  10-9 S cm-1. Filler particle concentration dependent conductivity study revealed NCPE film: [90PEO: 10Cu(CF3SO3)2]  +  3%CuO as optimum conducting composition (OCC) exhibiting σ rt ~ 1.14  ×  10-5 S cm-1. Hence, by the fractional dispersal of 2nd-phase active filler into 1st-phase SPE host, σ-enhancement of approximately an order of magnitude has further been obtained. Ion transport behavior in NCPE OCC film has been characterized in terms of basic ionic parameters viz. ionic conductivity (σ), total ionic transference (t ion)/cationic (t +) numbers. Temperature dependent conductivity measurement has also been done to explain the mechanism of ion transport and to compute activation energy (E a). Materials characterization and hence, confirmation of complexation of salt in polymeric host and/or dispersal of filler particles in SPE host have been done by scanning electron microscopy (SEM), energy dispersive x-ray spectrometer (EDS), x-ray diffraction (XRD), Fourier transform infra-red (FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). All-solid-state battery in the cell configuration: Cu (Anode) || SPE host/NCPE OCC film || C  +  I2  +  Electrolyte) (Cathode) has been fabricated and cell performance has been studied under two load resistances viz

  10. Development of PVA based micro-porous polymer electrolyte by a novel preferential polymer dissolution process

    NASA Astrophysics Data System (ADS)

    Subramania, A.; Kalyana Sundaram, N. T.; Sukumar, N.

    A micro-porous polymer electrolyte based on PVA was obtained from PVA-PVC based polymer blend film by a novel preferential polymer dissolution technique. The ionic conductivity of micro-porous polymer electrolyte increases with increase in the removal of PVC content. Finally, the effect of variation of lithium salt concentration is studied for micro-porous polymer electrolyte of high ionic conductivity composition. The ionic conductivity of the micro-porous polymer electrolyte is measured in the temperature range of 301-351 K. It is observed that a 2 M LiClO 4 solution of micro-porous polymer electrolyte has high ionic conductivity of 1.5055 × 10 -3 S cm -1 at ambient temperature. Complexation and surface morphology of the micro-porous polymer electrolytes are studied by X-ray diffraction and SEM analysis. TG/DTA analysis informs that the micro-porous polymer electrolyte is thermally stable upto 277.9 °C. Chronoamperommetry and linear sweep voltammetry studies were made to find out lithium transference number and stability of micro-porous polymer electrolyte membrane, respectively. Cyclic voltammetry study was performed for carbon/micro-porous polymer electrolyte/LiMn 2O 4 cell to reveal the compatibility and electrochemical stability between electrode materials.

  11. Manufacturing polymer light emitting diode with high luminance efficiency by solution process

    NASA Astrophysics Data System (ADS)

    Kim, Miyoung; Jo, SongJin; Yang, Ho Chang; Yoon, Dang Mo; Kwon, Jae-Taek; Lee, Seung-Hyun; Choi, Ju Hwan; Lee, Bum-Joo; Shin, Jin-Koog

    2012-06-01

    While investigating polymer light emitting diodes (polymer-LEDs) fabricated by solution process, surface roughness influences electro-optical (E-O) characteristics. We expect that E-O characteristics such as luminance and power efficiency related to surface roughness and layer thickness of emitting layer with poly-9-Vinylcarbazole. In this study, we fabricated polymer organic light emitting diodes by solution process which guarantees easy, eco-friendly and low cost manufacturing for flexible display applications. In order to obtain high luminescence efficiency, E-O characteristics of these devices by varying parameters for printing process have been investigated. Therefore, we optimized process condition for polymer-LEDs by adjusting annealing temperatures of emission, thickness of emission layer showing efficiency (10.8 cd/A) at 10 mA/cm2. We also checked wavelength dependent electroluminescence spectrum in order to find the correlation between the variation of efficiency and the thickness of the layer.

  12. Comparative VOCs sensing performance for conducting polymer and porphyrin functionalized carbon nanotubes based sensors

    NASA Astrophysics Data System (ADS)

    Datta, Kunal; Rushi, Arti; Ghosh, Prasanta; Shirsat, Mahendra

    2018-05-01

    We report sensors for detection of ethyl alcohol, a prominent volatile organic compound (VOC). Single walled carbon nanotubes were selected as main sensing backbone. As efficiency of sensor is dependent upon the choice of sensing materials, the performances of conducting polymer and porphyrin based sensors were compared. Chemiresistive sensing modality was adopted to observe the performance of sensors. It has been found that porphyrin based sensor shows higher affinity towards ethyl alcohol.

  13. Assimilation of NH₄Br in Polyvinyl Alcohol/Poly(N-vinyl pyrrolidone) Polymer Blend-Based Electrolyte and Its Effect on Ionic Conductivity.

    PubMed

    Parameswaran, V; Nallamuthu, N; Devendran, P; Manikandan, A; Nagarajan, E R

    2018-06-01

    Biodegradable polymer blend electrolyte based on ammonium based salt in variation composition consisting of PVA:PVP were prepared by using solution casting technique. The obtained films have been analyzed by various technical methods like as XRD, FT-IR, TG-DSC, SEM analysis and impedance spectroscopy. The XRD and FT-IR analysis exposed the amorphous nature and structural properties of the complex formation between PVA/PVP/NH4Br. Impedance spectroscopy analysis revealed the ionic conductivity and the dielectric properties of PVA/PVP/NH4Br polymer blend electrolyte films. The maximum ionic conductivity was determined to be 6.14 × 10-5 Scm-1 for the composition of 50%PVA: 50%PVP: 10% NH4Br with low activation energy 0.3457 eV at room temperature. Solid state battery is fabricated using highest ionic conducting polymer blend as electrolyte with the configuration Zn/ZnSO4 · 7H2O (anode) ∥ 50%PVA: 50%PVP: 10% NH4Br ∥ Mn2O3 (cathode). The observed open circuit voltage is 1.2 V and its performance has been studied.

  14. Two-dimensional singlet oxygen imaging with its near-infrared luminescence during photosensitization

    PubMed Central

    Hu, Bolin; Zeng, Nan; Liu, Zhiyi; Ji, Yanhong; Xie, Weidong; Peng, Qing; Zhou, Yong; He, Yonghong; Ma, Hui

    2011-01-01

    Photodynamic therapy is a promising cancer treatment that involves activation of photosensitizer by visible light to create singlet oxygen. This highly reactive oxygen species is believed to induce cell death and tissue destruction in PDT. Our approach used a near-infrared area CCD with high quantum efficiency to detect singlet oxygen by its 1270-nm luminescence. Two-dimensional singlet oxygen images with its near-infrared luminescence during photosensitization could be obtained with a CCD integration time of 1 s, without scanning. Thus this system can produce singlet oxygen luminescence images faster and achieve more accurate measurements in comparison to raster-scanning methods. The experimental data show a linear relationship between the singlet oxygen luminescence intensity and sample concentration. This method provides a detection sensitivity of 0.0181 μg/ml (benzoporphyrin derivative monoacid ring A dissolved in ethanol) and a spatial resolution better than 50 μm. A pilot study was conducted on a total of six female Kunming mice. The results from this study demonstrate the system's potential for in vivo measurements. Further experiments were carried out on two tumor-bearing nude mice. Singlet oxygen luminescence images were acquired from the tumor-bearing nude mouse with intravenous injection of BPD-MA, and the experimental results showed real-time singlet oxygen signal depletion as a function of the light exposure. PMID:21280909

  15. Can glacial shearing of sediment reset the signal used for luminescence dating?

    NASA Astrophysics Data System (ADS)

    Bateman, Mark D.; Swift, Darrel A.; Piotrowski, Jan A.; Rhodes, Edward J.; Damsgaard, Anders

    2018-04-01

    Understanding the geomorphology left by waxing and waning of former glaciers and ice sheets during the late Quaternary has been the focus of much research. This has been hampered by the difficulty in dating such features. Luminescence has the potential to be applied to glacial sediments but requires signal resetting prior to burial in order to provide accurate ages. This paper explores the possibility that, rather than relying on light to reset the luminescence signal, glacial processes underneath ice might cause resetting. Experiments were conducted on a ring-shear machine set up to replicate subglacial conditions and simulate the shearing that can occur within subglacial sediments. Luminescence measurement at the single grain level indicates that a number (albeit small) of zero-dosed grains were produced and that these increased in abundance with distance travelled within the shearing zone. Observed changes in grain shape characteristics with increasing shear distance indicate the presence of localised high pressure grain-to-grain stresses caused by grain bridges. This appears to explain why some grains became zeroed whilst others retained their palaeodose. Based on the observed experimental trend, it is thought that localised grain stress is a viable luminescence resetting mechanism. As such relatively short shearing distances might be sufficient to reset a small proportion of the luminescence signal within subglacial sediments. Dating of previously avoided subglacial sediments may therefore be possible.

  16. Vertically Aligned and Interconnected SiC Nanowire Networks Leading to Significantly Enhanced Thermal Conductivity of Polymer Composites.

    PubMed

    Yao, Yimin; Zhu, Xiaodong; Zeng, Xiaoliang; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping

    2018-03-21

    Efficient heat removal via thermal management materials has become one of the most critical challenges in the development of modern microelectronic devices. However, previously reported polymer composites exhibit limited enhancement of thermal conductivity, even when highly loaded with thermally conductive fillers, because of the lack of efficient heat transfer pathways. Herein, we report vertically aligned and interconnected SiC nanowire (SiCNW) networks as efficient fillers for polymer composites, achieving significantly enhanced thermal conductivity. The SiCNW networks are produced by freeze-casting nanowire aqueous suspensions followed by thermal sintering to consolidate the nanowire junctions, exhibiting a hierarchical architecture in which honeycomb-like SiCNW layers are aligned. The composite obtained by infiltrating SiCNW networks with epoxy resin, at a relatively low SiCNW loading of 2.17 vol %, represents a high through-plane thermal conductivity (1.67 W m -1 K -1 ) compared to the pure matrix, which is equivalent to a significant enhancement of 406.6% per 1 vol % loading. The orderly SiCNW network which can act as a macroscopic expressway for phonon transport is believed to be the main contributor for the excellent thermal performance. This strategy provides insights for the design of high-performance composites with potential to be used in advanced thermal management materials.

  17. Electrically conductive composite material

    DOEpatents

    Clough, R.L.; Sylwester, A.P.

    1989-05-23

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  18. Electrically conductive composite material

    DOEpatents

    Clough, R.L.; Sylwester, A.P.

    1988-06-20

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  19. Electrically conductive composite material

    DOEpatents

    Clough, Roger L.; Sylwester, Alan P.

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  20. Organic conductive films for semiconductor electrodes

    DOEpatents

    Frank, Arthur J.

    1984-01-01

    According to the present invention, improved electrodes overcoated with conductive polymer films and preselected catalysts are provided. The electrodes typically comprise an inorganic semiconductor overcoated with a charge conductive polymer film comprising a charge conductive polymer in or on which is a catalyst or charge-relaying agent.

  1. Reflection measurements for luminescent powders

    NASA Astrophysics Data System (ADS)

    Kroon, R. E.

    2018-04-01

    Luminescent materials are useful in applications varying from lighting and display technologies to document security features and medical research, amongst many others. Measurement of the excitation range is an important consideration, and absorption bands are often determined from a decrease in the measured diffuse reflectance of the material using a ultraviolet-visible (UV-vis) spectrophotometer with an integrating sphere. Such a system may provide questionable results when used to measure the reflectance of a luminescence material, which is demonstrated for a Tb doped silica phosphor, because the system cannot differentiate between the reflected light and luminescence. It is shown that more reliable results are achieved for this phosphor by measuring the reflectance using a synchronous zero-offset scan in a fluorescence spectrometer equipped with an integrating sphere. This method is therefore recommended instead of traditional reflectance measurements using a UV-vis spectrophotometer for luminescent powders.

  2. Quantum yield and rate constant of the singlet 1Δ g oxygen luminescence in an aqueous medium in the presence of nanoscale inhomogeneities

    NASA Astrophysics Data System (ADS)

    Jarnikova, E. S.; Parkhats, M. V.; Stasheuski, A. S.; Lepeshkevich, S. V.; Dzhagarov, B. M.

    2017-04-01

    The quantum yields and lifetimes of photosensitized luminescence of the 1Δ g state of singlet oxygen in an aquatic media with a controlled concentration of dielectric anisotropy centers (polyethylene glycol) have been measured using the methods of laser fluorometry. It is established that the quantum yield and the rate constant ( k r ) of the a 1Δ g → X 3Σ g - luminescence of 1O2 increase as the polymer concentration increases. The effect is analyzed within a general approach involving a relationship between kr and dielectric properties of the medium and is explained by the increased density of photon states and the local field factor in the space around O2( a 1Δ g ).

  3. Anisotropic thermal conductive MWCNT/polymer composites prepared with an immiscible PS/LDPE blend.

    PubMed

    Kwon, Younghwan

    2014-08-01

    This study focuses on MWCNT/polymer composites with flexible, anisotropic heat transporting properties. For this study, an immiscible polymer blend of MWCNT/PS and LDPE (13.5:86.5 v:v) were used as a template. MWCNT/PS composites were first prepared by a solution process, and then melt-blended with LDPE using a brabender mixer. For achieving an alignment of MWCNT/PS in LDPE matrix, the blends of MWCNT/PS and LDPE were continuously treated under a fixed shear rate of 10 s(-1) at 210 °C. With partial extraction of PS in the aligned blends, FE-SEM images of the aligned blends revealed morphology of MWCNT in the PS/LDPE matrix, indicating local distribution of MWCNT selectively inside PS, where PS was elongated parallel to shear direction in LDPE matrix. The prepared MWCNT/PS and LDPE blends showed an anisotropic heat transporting behavior with anisotropic ratio of thermal conductivity (AR = λx/λz) up to 1.330 at 10 wt% of MWCNT in PS (equivalent to 1.50 wt% of MWCNT in PS/LDPE).

  4. Biomaterials functionalization using a novel peptide that selectively binds to a conducting polymer

    NASA Astrophysics Data System (ADS)

    Sanghvi, Archit B.; Miller, Kiley P.-H.; Belcher, Angela M.; Schmidt, Christine E.

    2005-06-01

    The goal in biomaterial surface modification is to retain a material's bulk properties while modifying only its surface to possess desired recognition and specificity. Here we develop a unique strategy for surface functionalization of an electrically conductive polymer, chlorine-doped polypyrrole (PPyCl), which has been widely researched for various electronic and biomedical applications. An M13 bacteriophage library was used to screen 109 different 12-mer peptide inserts against PPyCl. A binding phage (ϕT59) was isolated, and its binding stability and specificity to PPyCl was assessed using fluorescence microscopy and titer count analysis. The relative binding strength and mechanism of the corresponding 12-mer peptide and its variants was studied using atomic force microscopy and fluorescamine assays. Further, the T59 peptide was joined to a cell adhesive sequence and used to promote cell attachment on PPyCl. This strategy can be extended to immobilize a variety of molecules to PPyCl for numerous applications. In addition, phage display can be applied to other polymers to develop bioactive materials without altering their bulk properties.

  5. Anhydrous state proton and lithium ion conducting solid polymer electrolytes based on sulfonated bisphenol-A-poly(arylene ethers)

    NASA Astrophysics Data System (ADS)

    Guha Thakurta, Soma

    Sulfonated polymer based solid polymer electrolytes (SPEs) have received considerable interest in recent years because of their wide variety of applications particularly in fuel cells, batteries, supercapacitors, and electrochromic devices. The present research was focused on three interrelated subtopics. First, two different bisphenol-A-poly(arylene ethers), polyetherimide (PEI) and polysulfone (PSU) were sulfonated by a post sulfonation method to various degrees of sulfonation, and their thermal and mechanical properties were examined. The effects of poly(arylene ether) chemical structure, reaction time, concentration, and types of sulfonating agents on sulfonation reaction were investigated. It was found that deactivation of bisphenol A unit caused by the electron withdrawing imide, retarded the sulfonation of PEI compared to PSU. Sulfonation conducted with a high concentration of sulfonating agent and/or prolonged reaction time exhibited evidence of degradation at the isopropylidene unit. The degradation occurred through the same mechanistic pathway with the two different sulfonating agents, chlorosulfonic acid (CSA) and trimethylsilyl chlorosulfonate (TMSCS). The degradation was faster with CSA than its silyl ester, TMSCS, and was evident even at low acid concentration. Second, novel anhydrous proton conducting solid polymer electrolytes (SPEs) were prepared by the incorporation of 1H-1,2,4-triazole (Taz) as a proton solvent in sulfonated polyetherimide (SPEI) matrix. The size, shape, and state of dispersion (crystal morphology) of triazole crystals in SPEI were examined as a function of degree of sulfonation and triazole concentration. Increasing sulfonic acid content caused reduction of triazole crystallite size, hence the depression of melting temperature and their uniform distribution throughout the sulfonated polymer matrix. The increased rate of structure diffusion within the smaller size crystals due to the improved molecular mobility contributed

  6. Organic conductive films for semiconductor electrodes

    DOEpatents

    Frank, A.J.

    1984-01-01

    According to the present invention, improved electrodes overcoated with conductive polymer films and preselected catalysts are provided. The electrodes typically comprise an inorganic semiconductor over-coated with a charge conductive polymer film comprising a charge conductive polymer in or on which is a catalyst or charge-relaying agent.

  7. Electrical conductivity, dielectric response and space charge dynamics of an electroactive polymer with and without nanofiller reinforcement

    NASA Astrophysics Data System (ADS)

    Kochetov, R.; Tsekmes, I. A.; Morshuis, P. H. F.

    2015-07-01

    Electroactive polymers have gained considerable attention over the last 20 years for exhibiting a large displacement in response to electrical stimulation. The promising fields of application include wave energy converters, muscle-like actuators, sensors, robotics, and biomimetics. For an electrical engineer, electroactive polymers can be seen as a dielectric elastomer film or a compliant capacitor with a highly deformable elastomeric medium. If the elastomer is pre-stretched and pre-charged, a reduction of the tensile force lets the elastomer revert to its original form and increases the electrical potential. The light weight of electroactive polymers, low cost, high intrinsic breakdown strength, cyclical way of operation, reliable performance, and high efficiency can be exploited to utilize the elastomeric material as a transducer. The energy storage for a linear dielectric polymer is determined by its relative permittivity and the applied electric field. The latter is limited by the dielectric breakdown strength of the material. Therefore, to generate a high energy density of a flexible capacitor, the film must be used at the voltage level close to the material’s breakdown or inorganic particles with high dielectric permittivity which can be introduced into the polymer matrix. In the present study, silicone-titania elastomer nanocomposites were produced and the influence of nanoparticles on the macroscopic dielectric properties of the neat elastomer including space charge dynamics, complex permittivity, and electrical conductivity, were investigated.

  8. The critical particle size for enhancing thermal conductivity in metal nanoparticle-polymer composites

    NASA Astrophysics Data System (ADS)

    Lu, Zexi; Wang, Yan; Ruan, Xiulin

    2018-02-01

    Polymers used as thermal interface materials are often filled with high-thermal conductivity particles to enhance the thermal performance. Here, we have combined molecular dynamics and the two-temperature model in 1D to investigate the impact of the metal filler size on the overall thermal conductivity. A critical particle size has been identified above which thermal conductivity enhancement can be achieved, caused by the interplay between high particle thermal conductivity and the added electron-phonon and phonon-phonon thermal boundary resistance brought by the particle fillers. Calculations on the SAM/Au/SAM (self-assembly-monolayer) system show a critical thickness Lc of around 10.8 nm. Based on the results, we define an effective thermal conductivity and propose a new thermal circuit analysis approach for the sandwiched metal layer that can intuitively explain simulation and experimental data. The results show that when the metal layer thickness decreases to be much smaller than the electron-phonon cooling length (or as the "thin limit"), the effective thermal conductivity is just the phonon portion, and electrons do not participate in thermal transport. As the thickness increases to the "thick limit," the effective thermal conductivity recovers the metal bulk value. Several factors that could affect Lc are discussed, and it is discovered that the thermal conductivity, thermal boundary resistance, and the electron-phonon coupling factor are all important in controlling Lc.

  9. Structured luminescence conversion layer

    DOEpatents

    Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin

    2012-12-11

    An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.

  10. Carbide-derived carbon (CDC) linear actuator properties in combination with conducting polymers

    NASA Astrophysics Data System (ADS)

    Kiefer, Rudolf; Aydemir, Nihan; Torop, Janno; Kilmartin, Paul A.; Tamm, Tarmo; Kaasik, Friedrich; Kesküla, Arko; Travas-Sejdic, Jadranka; Aabloo, Alvo

    2014-03-01

    Carbide-derived Carbon (CDC) material is applied for super capacitors due to their nanoporous structure and their high charging/discharging capability. In this work we report for the first time CDC linear actuators and CDC combined with polypyrrole (CDC-PPy) in ECMD (Electrochemomechanical deformation) under isotonic (constant force) and isometric (constant length) measurements in aqueous electrolyte. CDC-PPy actuators showing nearly double strain under cyclic voltammetric and square wave potential measurements in comparison to CDC linear actuators. The new material is investigated by SEM (scanning electron microscopy) and EDX (energy dispersive X-ray analysis) to reveal how the conducting polymer layer and the CDC layer interfere together.

  11. High proton conductivity in the molecular interlayer of a polymer nanosheet multilayer film.

    PubMed

    Sato, Takuma; Hayasaka, Yuta; Mitsuishi, Masaya; Miyashita, Tokuji; Nagano, Shusaku; Matsui, Jun

    2015-05-12

    High proton conductivity was achieved in a polymer multilayer film with a well-defined two-dimensional lamella structure. The multilayer film was prepared by deposition of poly(N-dodecylacryamide-co-acrylic acid) (p(DDA/AA)) monolayers onto a solid substrate using the Langmuir-Blodgett technique. Grazing-angle incidence X-ray diffraction measurement of a 30-layer film of p(DDA/AA) showed strong diffraction peaks in the out-of-plane direction at 2θ = 2.26° and 4.50°, revealing that the multilayer film had a highly uniform layered structure with a monolayer thickness of 2.0 nm. The proton conductivity of the p(DDA/AA) multilayer film parallel to the layer plane direction was 0.051 S/cm at 60 °C and 98% relative humidity with a low activation energy of 0.35 eV, which is comparable to perfluorosulfonic acid membranes. The high conductivity and low activation energy resulted from the formation of uniform two-dimensional proton-conductive nanochannels in the hydrophilic regions of the multilayer film. The proton conductivity of the multilayer film perpendicular to the layer plane was determined to be 2.1 × 10(-13) S/cm. Therefore, the multilayer film showed large anisotropic conductivity with an anisotropic ratio of 2.4 × 10(11).

  12. Efficient active waveguiding properties of Mo6 nano-cluster-doped polymer nanotubes

    NASA Astrophysics Data System (ADS)

    Bigeon, J.; Huby, N.; Amela-Cortes, M.; Molard, Y.; Garreau, A.; Cordier, S.; Bêche, B.; Duvail, J.-L.

    2016-06-01

    We investigate 1D nanostructures based on a Mo6@SU8 hybrid nanocomposite in which photoluminescent Mo6 clusters are embedded in the photosensitive SU8 resist. Tens of micrometers long Mo6@SU8-based tubular nanostructures were fabricated by the wetting template method, enabling the control of the inner and outer diameter to about 190 nm and 240 nm respectively, as supported by structural and optical characterizations. The image plane optical study of these nanotubes under optical pumping highlights the efficient waveguiding phenomenon of the red luminescence emitted by the clusters. Moreover, the wave vector distribution in the Fourier plane determined by leakage radiation microscopy gives additional features of the emission and waveguiding. First, the anisotropic red luminescence of the whole system can be attributed to the guided mode along the nanotube. Then, a low-loss propagation behavior is evidenced in the Mo6@SU8-based nanotubes. This result contrasts with the weaker waveguiding signature in the case of UV210-based nanotubes embedding PFO (poly(9,9-di-n-octylfluorenyl-2,7-diyl)). It is attributed to the strong reabsorption phenomenon, owing to overlapping between absorption and emission bands in the semi-conducting conjugated polymer PFO. These results make this Mo6@SU8 original class of nanocomposite a promising candidate as nanosources for submicronic photonic integration.

  13. Efficient active waveguiding properties of Mo6 nano-cluster-doped polymer nanotubes.

    PubMed

    Bigeon, J; Huby, N; Amela-Cortes, M; Molard, Y; Garreau, A; Cordier, S; Bêche, B; Duvail, J-L

    2016-06-24

    We investigate 1D nanostructures based on a Mo6@SU8 hybrid nanocomposite in which photoluminescent Mo6 clusters are embedded in the photosensitive SU8 resist. Tens of micrometers long Mo6@SU8-based tubular nanostructures were fabricated by the wetting template method, enabling the control of the inner and outer diameter to about 190 nm and 240 nm respectively, as supported by structural and optical characterizations. The image plane optical study of these nanotubes under optical pumping highlights the efficient waveguiding phenomenon of the red luminescence emitted by the clusters. Moreover, the wave vector distribution in the Fourier plane determined by leakage radiation microscopy gives additional features of the emission and waveguiding. First, the anisotropic red luminescence of the whole system can be attributed to the guided mode along the nanotube. Then, a low-loss propagation behavior is evidenced in the Mo6@SU8-based nanotubes. This result contrasts with the weaker waveguiding signature in the case of UV210-based nanotubes embedding PFO (poly(9,9-di-n-octylfluorenyl-2,7-diyl)). It is attributed to the strong reabsorption phenomenon, owing to overlapping between absorption and emission bands in the semi-conducting conjugated polymer PFO. These results make this Mo6@SU8 original class of nanocomposite a promising candidate as nanosources for submicronic photonic integration.

  14. One-pot in situ redox synthesis of hexacyanoferrate/conductive polymer hybrids as lithium-ion battery cathodes.

    PubMed

    Wong, Min Hao; Zhang, Zixuan; Yang, Xianfeng; Chen, Xiaojun; Ying, Jackie Y

    2015-09-14

    An efficient and adaptable method is demonstrated for the synthesis of lithium hexacyanoferrate/conductive polymer hybrids for Li-ion battery cathodes. The hybrids were synthesized via a one-pot method, involving a redox-coupled reaction between pyrrole monomers and the Li3Fe(CN)6 precursor. The hybrids showed much better cyclability relative to reported Prussian Blue (PB) analogs.

  15. A robust, highly stretchable supramolecular polymer conductive hydrogel with self-healability and thermo-processability

    PubMed Central

    Wu, Qian; Wei, Junjie; Xu, Bing; Liu, Xinhua; Wang, Hongbo; Wang, Wei; Wang, Qigang; Liu, Wenguang

    2017-01-01

    Dual amide hydrogen bond crosslinked and strengthened high strength supramolecular polymer conductive hydrogels were fabricated by simply in situ doping poly (N-acryloyl glycinamide-co-2-acrylamide-2-methylpropanesulfonic) (PNAGA-PAMPS) hydrogels with PEDOT/PSS. The nonswellable conductive hydrogels in PBS demonstrated high mechanical performances—0.22–0.58 MPa tensile strength, 1.02–7.62 MPa compressive strength, and 817–1709% breaking strain. The doping of PEDOT/PSS could significantly improve the specific conductivities of the hydrogels. Cyclic heating and cooling could lead to reversible sol-gel transition and self-healability due to the dynamic breakup and reconstruction of hydrogen bonds. The mending hydrogels recovered not only the mechanical properties, but also conductivities very well. These supramolecular conductive hydrogels could be designed into arbitrary shapes with 3D printing technique, and further, printable electrode can be obtained by blending activated charcoal powder with PNAGA-PAMPS/PEDOT/PSS hydrogel under melting state. The fabricated supercapacitor via the conducting hydrogel electrodes possessed high capacitive performances. These cytocompatible conductive hydrogels have a great potential to be used as electro-active and electrical biomaterials. PMID:28134283

  16. Recent developments in luminescent solar concentrators

    NASA Astrophysics Data System (ADS)

    van Sark, W. G. J. H. M.

    2014-10-01

    High efficiency photovoltaic devices combine full solar spectrum absorption and effective generation and collection of charge carriers, while commercial success depends on cost effectiveness in manufacturing. Spectrum modification using down shifting has been demonstrated in luminescent solar concentrators (LSCs) since the 1970s, as a cheap alternative for standard c-Si technology. LSCs consist of a highly transparent plastic plate, in which luminescent species are dispersed, which absorb incident light and emit light at a red-shifted wavelength, with high quantum efficiency. Material issues have hampered efficiency improvements, in particular re-absorption of light emitted by luminescent species and stability of these species. In this contribution, approaches are reviewed on minimizing re-absorption, which should allow surpassing the 10% luminescent solar concentrator efficiency barrier.

  17. Response surface method (RSM) for optimization of ionic conductivity of membranes polymer electrolyte poly (vinylidene fluoride) (PVDF) with polyvinyl pyrrolidone (PVP) as pore forming agent

    NASA Astrophysics Data System (ADS)

    Dyartanti, E. R.; Susanto, H.; Widiasa, I. N.; Purwanto, A.

    2017-06-01

    The Membranes Polymer Gel Electrolyte (MPGEs) based poly (vinylidene fluoride) (PVDF) was prepared by a phase inversion method using polyvinyl pyrrolidone (PVP) as a pore-forming agent and N, N-dimethyl acetamide (DMAc) as a solvent and water as non solvet. The membranes were then soaked in 1 M lithium hexafluorophosphate (LiPF6) in ethylene carbonate (EC) / dimethyl carbonate (DMC) / Diethyl carbonate (DEC) (4:2:4 %vol) solution in order to prepare polymer electrolyte membranes. The MPEGs PVDF/PVP/Nanoclay was applied using central composite design (CCD) experimental design to obtain a quantitative relationship between selected membranes prepared parameters namely (PVDF, PVP as pore forming agent and nanoclay filler concentration) and Ionic conductivity MPEGs. The model was used to find the optimum ionic conductivity from polymer electrolyte membranes. The polymer electrolyte membranes show good ionic conductivity on the order of 6.3 - 8.7 x 10-3 S cm-1 at the ambient temperatures. The ionic conductivity tended to increase with PVP and nanoclay concentration and decrease with PVDF composition. The model predicted the maximum ionic conductivity of 8.47 x 10-3 S cm-1 when the PVDF, PVP and nanoclay concentration were set at 8.01 %, 8.04 % and 10.12%, respectively. The first section in your paper.

  18. Optical studies of the charge localization and delocalization in conducting polymers

    NASA Astrophysics Data System (ADS)

    Kim, Youngmin

    A systematic charge transport study on the thermochromism of polyaniline (PAN) doped with a plasticizing dopant, and on a field effect device using conducting poly (3,4-ethylenedioxythiophene) (PEDOT) as its active material, was made at optical (20--45,000 cm-1) frequencies to probe the charge localization and delocalization phenomena and the insulator to metal transition (IMT) in the inhomogeneous conducting polymer system. Temperature dependent reflectance [20--8000 cm -1 (2.5 meV--1eV)] of the PAN sample, together with absorbance and do transport study done by Dr. Pron at the Laboratoire de Physique des Metaux Synthetiques in Grenoble, France, shows spectral weight loss in the infrared region but the reflectance in the very low frequency (below 100 cm-1) remains unaffected. There are two localization transitions. The origin of the 200 K localization transition that affect >˜15% of the electrons is the glass transition emanating from the dopants. The transition principally affects the IR response in the range of 200--8000 cm -1. The low temperature (<75K) localization transition affects the few electrons that provide the high conductivity. It is suggested that these electrons are localized by disorder at the lowest temperature and become delocalized through phonon induced delocalization as the temperature increases to 75K. It is noted that this temperature is typical of a Debye temperature in many organic materials. The thermocromism is attributed to the weak localization to strong localization transition through the glass transition temperature. Below the glass transition temperature (Tg), the lattice is "frozen" in configuration that reduces the charge delocalization and lead to cause increase of strongly localized polarons. Time variation of source-drain current, real-time IR reflectance [20--8000 cm-1 (2.5 meV--1eV)] modulation, and real-time UV/VIS/NIR absorbance [380--2400 nm (0.5--3.3 eV)] modulation were measured to investigate the field induced charge

  19. A rapidly self-healing supramolecular polymer hydrogel with photostimulated room-temperature phosphorescence responsiveness.

    PubMed

    Chen, Hui; Ma, Xiang; Wu, Shuaifan; Tian, He

    2014-12-15

    Development of self-healing and photostimulated luminescent supramolecular polymeric materials is important for artificial soft materials. A supramolecular polymeric hydrogel is reported based on the host-guest recognition between a β-cyclodextrin (β-CD) host polymer (poly-β-CD) and an α-bromonaphthalene (α-BrNp) polymer (poly-BrNp) without any additional gelator, which can self-heal within only about one minute under ambient atmosphere without any additive. This supramolecular polymer system can be excited to engender room-temperature phosphorescence (RTP) signals based on the fact that the inclusion of β-CD macrocycle with α-BrNp moiety is able to induce RTP emission (CD-RTP). The RTP signal can be adjusted reversibly by competitive complexation of β-CD with azobenzene moiety under specific irradiation by introducing another azobenzene guest polymer (poly-Azo). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Characterization of polymer, DNA-based, and silk thin film resistivities and of DNA-based films prepared for enhanced electrical conductivity

    NASA Astrophysics Data System (ADS)

    Yaney, Perry P.; Ouchen, Fahima; Grote, James G.

    2009-08-01

    DC resistivity studies were carried out on biopolymer films of DNA-CTMA and silk fibroin, and on selected traditional polymer films, including PMMA and APC. Films of DNA-CTMA versus molecular weight and with conductive dopants PCBM, BAYTRON P and ammonium tetrachloroplatinate are reported. The films were spin coated on glass slides configured for measurements of volume dc resistance. The measurements used the alternating polarity method to record the applied voltage-dependent current independent of charging and background currents. The Arrhenius equation plus a constant was fitted to the conductivity versus temperature data of the polymers and the non-doped DNA-based biopolymers with activation energies ranging from 0.8 to 1.4 eV.