Sample records for luminosity function qlf

  1. Recalculating the quasar luminosity function of the extended Baryon Oscillation Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Caditz, David M.

    2017-12-01

    Aims: The extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey provides a uniform sample of over 13 000 variability selected quasi-stellar objects (QSOs) in the redshift range 0.68

  2. The Faint End of the Quasar Luminosity Function at z ~ 4: Implications for Ionization of the Intergalactic Medium and Cosmic Downsizing

    NASA Astrophysics Data System (ADS)

    Glikman, Eilat; Djorgovski, S. G.; Stern, Daniel; Dey, Arjun; Jannuzi, Buell T.; Lee, Kyoung-Soo

    2011-02-01

    We present an updated determination of the z ~ 4 QSO luminosity function (QLF), improving the quality of the determination of the faint end of the QLF presented by Glikman et al. (2010). We have observed an additional 43 candidates from our survey sample, yielding one additional QSO at z = 4.23 and increasing the completeness of our spectroscopic follow-up to 48% for candidates brighter than R = 24 over our survey area of 3.76 deg2. We study the effect of using K-corrections to compute the rest-frame absolute magnitude at 1450 Å compared with measuring M 1450 directly from the object spectra. We find a luminosity-dependent bias: template-based K-corrections overestimate the luminosity of low-luminosity QSOs, likely due to their reliance on templates derived from higher luminosity QSOs. Combining our sample with bright quasars from the Sloan Digital Sky Survey and using spectrum-based M 1450 for all the quasars, we fit a double power law to the binned QLF. Our best fit has a bright-end slope, α = 3.3 ± 0.2, and faint-end slope, β = 1.6+0.8 -0.6. Our new data revise the faint-end slope of the QLF down to flatter values similar to those measured at z ~ 3. The break luminosity, though poorly constrained, is at M* = -24.1+0.7 -1.9, approximately 1-1.5 mag fainter than at z ~ 3. This QLF implies that QSOs account for about half the radiation needed to ionize the intergalactic medium at these redshifts. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  3. PROBING THE FAINT END OF THE QUASAR LUMINOSITY FUNCTION AT z{approx} 4 IN THE COSMOS FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeda, H.; Nagao, T.; Matsuoka, K.

    2011-02-20

    We searched for quasars that are {approx}3 mag fainter than the SDSS quasars in the redshift range 3.7 {approx}< z {approx}< 4.7 in the COSMOS field to constrain the faint end of the quasar luminosity function (QLF). Using optical photometric data, we selected 31 quasar candidates with 22 < i' < 24 at z {approx} 4. We obtained optical spectra for most of these candidates using FOCAS on the Subaru telescope and identified eight low-luminosity quasars at z {approx} 4. In order to derive the QLF based on our spectroscopic follow-up campaign, we estimated the photometric completeness of our quasarmore » survey through detailed Monte Carlo simulations. Our QLF at z {approx} 4 has a much shallower faint-end slope ({beta} = -1.67{sup +0.11}{sub -0.17}) than that obtained by other recent surveys in the same redshift. Our result is consistent with the scenario of downsizing evolution of active galactic nuclei inferred by recent optical and X-ray quasar surveys at lower redshifts.« less

  4. Deep CFHT Y-band Imaging of VVDS-F22 Field. II. Quasar Selection and Quasar Luminosity Function

    NASA Astrophysics Data System (ADS)

    Yang, Jinyi; Wu, Xue-Bing; Liu, Dezi; Fan, Xiaohui; Yang, Qian; Wang, Feige; McGreer, Ian D.; Fan, Zuhui; Yuan, Shuo; Shan, Huanyuan

    2018-03-01

    We report the results of a faint quasar survey in a one-square-degree field. The aim is to test the Y-K/g-z and J-K/i-Y color selection criteria for quasars at faint magnitudes to obtain a complete sample of quasars based on deep optical and near-infrared color–color selection and to measure the faint end of the quasar luminosity function (QLF) over a wide redshift range. We carried out a quasar survey based on the Y-K/g-z and J-K/i-Y quasar selection criteria, using the deep Y-band data obtained from our CFHT/WIRCam Y-band images in a two-degree field within the F22 field of the VIMOS VLT deep survey, optical co-added data from Sloan Digital Sky Survey Stripe 82 and deep near-infrared data from the UKIDSS Deep Extragalactic Survey in the same field. We discovered 25 new quasars at 0.5< z< 4.5 and i< 22.5 mag within one-square-degree field. The survey significantly increases the number of faint quasars in this field, especially at z∼ 2{--}3. It confirms that our color selections are highly complete in a wide redshift range (z< 4.5), especially over the quasar number density peak at z∼ 2{--}3, even for faint quasars. Combining all previous known quasars and new discoveries, we construct a sample with 109 quasars and measure the binned QLF and parametric QLF. Although the sample is small, our results agree with a pure luminosity evolution at lower redshift and luminosity evolution and density evolution model at redshift z> 2.5.

  5. The Extremely Luminous Quasar Survey (ELQS) in SDSS and the high-z bright-end Quasar Luminosity Function

    NASA Astrophysics Data System (ADS)

    Schindler, Jan-Torge; Fan, Xiaohui; McGreer, Ian

    2018-01-01

    Studies of the most luminous quasars at high redshift directly probe the evolution of the most massive black holes in the early Universe and their connection to massive galaxy formation. Unfortunately, extremely luminous quasars at high redshift are very rare objects. Only wide area surveys have a chance to constrain their population. The Sloan Digital Sky Survey (SDSS) nd the Baryon Oscillation Spectroscopic Survey (BOSS) have so far provided the most widely adopted measurements of the type I quasar luminosity function (QLF) at z>3. However, a careful re-examination of the SDSS quasar sample revealed that the SDSS quasar selection is in fact missing a significant fraction of $z~3$ quasars at the brightest end.We have identified the purely optical color selection of SDSS, where quasars at these redshifts are strongly contaminated by late-type dwarfs, and the spectroscopic incompleteness of the SDSS footprint as the main reasons. Therefore we have designed the Extremely Luminous Quasar Survey (ELQS), based on a novel near-infrared JKW2 color cut using WISE AllWISE and 2MASS all-sky photometry, to yield high completeness for very bright (i < 18.0) quasars in the redshift range of 2.8<= z<=5.0. It effectively uses Random Forest machine-learning algorithms on SDSS and WISE photometry for quasar-star classification and photometric redshift estimation.The ELQS is spectroscopically following up ~230 new quasar candidates in an area of ~12000 deg2 in the SDSS footprint, to obtain a well-defined and complete quasar sample for an accurate measurement of the bright-end quasar luminosity function (QLF) at 2.8<= z<=5.0. So far the ELQS has identified 75 bright new quasars in this redshift range and observations of the fall sky will continue until the end of the year. At the AAS winter meeting we will present the full spectroscopic results of the survey, including a re-estimation and extension of the high-z QLF toward higher luminosities.

  6. Minor Contribution of Quasars to Ionizing Photon Budget at z ˜ 6: Update on Quasar Luminosity Function at the Faint End with Subaru/Suprime-Cam

    NASA Astrophysics Data System (ADS)

    Onoue, Masafusa; Kashikawa, Nobunari; Willott, Chris J.; Hibon, Pascale; Im, Myungshin; Furusawa, Hisanori; Harikane, Yuichi; Imanishi, Masatoshi; Ishikawa, Shogo; Kikuta, Satoshi; Matsuoka, Yoshiki; Nagao, Tohru; Niino, Yuu; Ono, Yoshiaki; Ouchi, Masami; Tanaka, Masayuki; Tang, Ji-Jia; Toshikawa, Jun; Uchiyama, Hisakazu

    2017-10-01

    We constrain the quasar contribution to the cosmic reionization based on our deep optical survey of z ˜ 6 quasars down to z R = 24.15 using Subaru/Suprime-Cam in three UKIDSS-DXS fields covering 6.5 deg2. In Kashikawa et al. (2015), we select 17 quasar candidates and report our initial discovery of two low-luminosity quasars ({M}1450˜ -23) from seven targets, one of which might be a Lyα-emitting galaxy. From an additional optical spectroscopy, none of the four candidates out of the remaining 10 turn out to be genuine quasars. Moreover, the deeper optical photometry provided by the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) shows that, unlike the two already-known quasars, the I - z and z - y colors of the last six candidates are consistent with M- or L-type brown dwarfs. Therefore, the quasar luminosity function (QLF) measurement in the previous paper is confirmed. Compiling the QLF measurements from the literature over a wide magnitude range, including an extremely faint AGN candidate from Parsa et al. (2017), to fit them with a double power law, we find that the best-fit faint-end slope is α =-{2.04}-0.18+0.33 (-{1.98}-0.21+0.48) and characteristic magnitude is {M}1450* =-{25.8}-1.9+1.1 (-{25.7}-1.8+1.0) in the case of two (one) quasar detection. Our result suggests that, if the QLF is integrated down to {M}1450=-18, quasars produce ˜1%-12% of the ionizing photons required to fully ionize the universe at z ˜ 6 with a 2σ confidence level, assuming that the escape fraction is {f}{esc}=1 and the intergalactic medium clumpy factor is C = 3. Even when the systematic uncertainties are taken into account, our result supports the scenario that quasars are the minor contributors of the reionization.

  7. A Survey of z ~ 6 Quasars in the Sloan Digital Sky Survey Deep Stripe. I. A Flux-Limited Sample at zAB < 21

    NASA Astrophysics Data System (ADS)

    Jiang, Linhua; Fan, Xiaohui; Annis, James; Becker, Robert H.; White, Richard L.; Chiu, Kuenley; Lin, Huan; Lupton, Robert H.; Richards, Gordon T.; Strauss, Michael A.; Jester, Sebastian; Schneider, Donald P.

    2008-03-01

    We present the discovery of five quasars at z ~ 6 selected from 260 deg2 of the Sloan Digital Sky Survey (SDSS) southern survey, a deep imaging survey obtained by repeatedly scanning a stripe along the celestial equator. The five quasars with 20 < zAB < 21 are 1-2 magnitudes fainter than the luminous z ~ 6 quasars discovered in the SDSS main survey. One of them was independently discovered by the UKIRT Infrared Deep Sky Survey. These quasars, combined with another z ~ 6 quasar known in this region, make a complete flux-limited quasar sample at zAB < 21. The sample spans the redshift range 5.85 <= z <= 6.12 and the luminosity range -26.5 <= M 1450 <= -25.4 (H 0 = 70 km s-1 Mpc-1, Ω m = 0.3, and ΩΛ = 0.7). We use the 1/Va method to determine that the comoving quasar spatial density at langzrang = 6.0 and langM 1450rang = -25.8 is (5.0 ± 2.1) × 10-9 Mpc-3 mag-1. We model the bright-end quasar luminosity function (QLF) at z ~ 6 as a power law Φ(L 1450) vprop L β 1450. The slope β calculated from a combination of our sample and the luminous SDSS quasar sample is -3.1 ± 0.4, significantly steeper than the slope of the QLF at z ~ 4. Based on the derived QLF, we find that the quasar/active galactic nucleus (AGN) population cannot provide enough photons to ionize the intergalactic medium (IGM) at z ~ 6 unless the IGM is very homogeneous and the luminosity (L*1450) at which the QLF power law breaks is very low. Based on observations obtained with the Sloan Digital Sky Survey, which is owned and operated by the Astrophysical Research Consortium; the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution; the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile; the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration, and was made possible by the generous financial support of the W.M. Keck Foundation.

  8. The K-Band Quasar Luminosity Function from an SDSS and UKIDSS Matched Catalog

    NASA Astrophysics Data System (ADS)

    Peth, Michael; Ross, N. P.; Schneider, D. P.

    2010-01-01

    We match the 1,015,082 quasars from the Sloan Digital Sky Survey (SDSS) DR6 Photometric Quasar catalog to the UKIRT Infrared Digital Sky Survey (UKIDSS) Large Area Survey (LAS) DR3 to produce a catalog of 130,827 objects with optical (ugriz) and infrared (YJHK) measurements over an area of 1,200 sq. deg. A matching radius of 1'’ is used; the positional standard deviations of SDSS DR6 quasars and UKIDSS LAS is δRA = 0.137'’ and δDec = 0.131''. The catalog contains 74,351 K-band detections and 42,133 objects have coverage in all four NIR bands. In addition to the catalog, we present optical and NIR color-redshift and color-color plots. The photometric vs. spectroscopic redshift plots demonstrate how unreliable high reported photometric redshifts can be. This forces us to focus on z4.6 quasars are compared to our highest redshift objects. The giK color-color plot demonstrates that stellar contamination only affects a small sample of the objects. Distributions for Y,J,H,K and i-bands reveal insights into the flux limits in each magnitude. We investigate the distribution of redshifts from different data sets and investigate the legitimacy of certain measured photometric redshift regions. For in-depth analysis, we focus on the 300 sq. deg area equatorial SDSS region designated as Stripe 82. We measure the observed K-band quasar luminosity function (QLF) for a subset of 9,872, z<2.2 objects. We find the shape of the K-band QLF is very similar to that of the optical QLF, over the considered redshift ranges. Our calculated K-Band QLFs broadly match previous optical QLFs calculated from the SDSS and 2SLAQ QSO surveys and should provide important constraints linking unobscured optical quasars to Mid-Infrared detected, dusty and obscured AGNs at high-redshift.

  9. The Faint End of the Quasar Luminosity Function at z ~ 4

    NASA Astrophysics Data System (ADS)

    Glikman, Eilat; Bogosavljević, Milan; Djorgovski, S. G.; Stern, Daniel; Dey, Arjun; Jannuzi, Buell T.; Mahabal, Ashish

    2010-02-01

    The evolution of the quasar luminosity function (QLF) is one of the basic cosmological measures providing insight into structure formation and mass assembly in the universe. We have conducted a spectroscopic survey to find faint quasars (-26.0 < M 1450 < -22.0) at redshifts z = 3.8-5.2 in order to measure the faint end of the QLF at these early times. Using available optical imaging data from portions of the NOAO Deep Wide-Field Survey and the Deep Lens Survey, we have color-selected quasar candidates in a total area of 3.76 deg2. Thirty candidates have R <= 23 mag. We conducted spectroscopic follow-up for 28 of our candidates and found 23 QSOs, 21 of which are reported here for the first time, in the 3.74 < z < 5.06 redshift range. We estimate our survey completeness through detailed Monte Carlo simulations and derive the first measurement of the density of quasars in this magnitude and redshift interval. We find that the binned luminosity function (LF) is somewhat affected by the K-correction used to compute the rest-frame absolute magnitude at 1450 Å. Considering only our R <= 23 sample, the best-fit single power law (Φ vprop L β) gives a faint-end slope β = -1.6 ± 0.2. If we consider our larger, but highly incomplete sample going 1 mag fainter, we measure a steeper faint-end slope -2 < β < -2.5. In all cases, we consistently find faint-end slopes that are steeper than expected based on measurements at z ~ 3. We combine our sample with bright quasars from the Sloan Digital Sky Survey to derive parameters for a double-power-law LF. Our best fit finds a bright-end slope, α = -2.4 ± 0.2, and faint-end slope, β = -2.3 ± 0.2, without a well-constrained break luminosity. This is effectively a single power law, with β = -2.7 ± 0.1. We use these results to place limits on the amount of ultraviolet radiation produced by quasars and find that quasars are able to ionize the intergalactic medium at these redshifts. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  10. Detection of proximal caries using quantitative light-induced fluorescence-digital and laser fluorescence: a comparative study.

    PubMed

    Yoon, Hyung-In; Yoo, Min-Jeong; Park, Eun-Jin

    2017-12-01

    The purpose of this study was to evaluate the in vitro validity of quantitative light-induced fluorescence-digital (QLF-D) and laser fluorescence (DIAGNOdent) for assessing proximal caries in extracted premolars, using digital radiography as reference method. A total of 102 extracted premolars with similar lengths and shapes were used. A single operator conducted all the examinations using three different detection methods (bitewing radiography, QLF-D, and DIAGNOdent). The bitewing x-ray scale, QLF-D fluorescence loss (ΔF), and DIAGNOdent peak readings were compared and statistically analyzed. Each method showed an excellent reliability. The correlation coefficient between bitewing radiography and QLF-D, DIAGNOdent were -0.644 and 0.448, respectively, while the value between QLF-D and DIAGNOdent was -0.382. The kappa statistics for bitewing radiography and QLF-D had a higher diagnosis consensus than those for bitewing radiography and DIAGNOdent. The QLF-D was moderately to highly accurate (AUC = 0.753 - 0.908), while DIAGNOdent was moderately to less accurate (AUC = 0.622 - 0.784). All detection methods showed statistically significant correlation and high correlation between the bitewing radiography and QLF-D. QLF-D was found to be a valid and reliable alternative diagnostic method to digital bitewing radiography for in vitro detection of proximal caries.

  11. Comparison of light-induced and laser-induced fluorescence methods for the detection and quantification of enamel demineralization

    NASA Astrophysics Data System (ADS)

    Ando, Masatoshi; Analoui, Mostafa; Schemehorn, Bruce R.; Stookey, George K.

    1999-05-01

    The Quantitative Laser-Induced Fluorescence (QLF) technique has been sued for diagnosis of early caries in permanent teeth (PT). The objective of this study was to determine the caries quantification ability of QLF in deciduous teeth (DT). Sixty sound teeth, thirty DT and thirty PT, were used. All teeth were cleaned to remove debris and equally divided into three groups. Lesions were created in small windows (0.8x2.0 mm2) on buccal or labial surface for 48, 72, and 96 hr. Lesion images were made with a 488 nm argon laser (QLF I) and then with a 370 +/- 80 nm violet-blue light (QLF II). Both images were analyzed to determine the mean percent change in fluorescence radiance (ΔF). A center section from the lesions was taken for analysis with microradiography. The lesion depth and loss of mineral content were determined. The correlations between ΔF and lesion depth as well as ΔZ in DT were 0.76 and 0.84 with QLF I, 0.81 and 0.88 with QLF II, respectively. It can be concluded the ability of QLF to quantify white-spots in DT is better than in PT.

  12. Clinical evaluation of demineralization and remineralization of intact root surface lesions in the clinic by a quantitative light-induced fluorescence system.

    PubMed

    Durmusoglu, Oykü; Tağtekin, Dilek Arslantunali; Yanikoğlu, Funda

    2012-03-01

    Detection of demineralization of root surface caries is an important issue since preventive approaches prolong tooth life. Quantitative light-induced fluorescence (QLF) has been shown to be useful for the laboratory assessment of demineralization of root surfaces. The aim of this study was to determine the demineralization and remineralization of root surface intact and cavitated caries lesions using a QLF system as a nondestructive in vivo method. Noncavitated and demineralized root surface lesions were detected and scored using the QLF system. Oral hygiene education was given and periodontal cleaning was completed before the remineralization treatment. After obtaining baseline QLF data, the patients were informed about the remineralization treatment. Fluoride varnish was applied to the carious lesions at the baseline visit, and the patients were then reviewed after 1, 2, 3 and 4 weeks, with QLF assessment and fluoride varnish application repeated at each review. Repeated-measures ANOVA (α = 0.05) showed significant differences between ΔQ values at each visit (p < 0.001); ΔQ showed marked decreases at all the cut-off values (15, 20, 25, 30). The changes in ΔQ were not affected by the cut-off value. The ΔQ values of QLF showed differences at all visits. The QLF system was able to detect early root surface caries lesions in vivo. Bifluoride 12 varnish improved mineral levels as shown by the QLF system. The treatment response to chemicals of intact noncavitated root surface carious lesions could be followed nondestructively in the clinic using QLF to quantify remineralization at recall visits. Teeth with root surface caries can be kept by controlling their remineralization.

  13. Quantitative light-induced fluorescence (QLF): a tool for early occlusal dental caries detection and supporting decision making in vivo.

    PubMed

    Alammari, M R; Smith, P W; de Josselin de Jong, E; Higham, S M

    2013-02-01

    This study reports the development and assessment of a novel method using quantitative light-induced fluorescence (QLF), to determine whether QLF parameters ΔF and ΔQ were appropriate for aiding diagnosis and clinical decision making of early occlusal mineral loss by comparing QLF analysis with actual restorative management. Following ethical approval, 46 subjects attending a dental teaching hospital were enrolled. White light digital (WL) and QLF images/analyses of 46 unrestored posterior teeth with suspected occlusal caries were made after a clinical decision had already been taken to explore fissures operatively. WL and QLF imaging/analysis were repeated after initial cavity preparation. The type of restorative treatment was determined by the supervising clinician independent of any imaging performed. Actual restorative management carried out was recorded as fissure sealant/preventive resin restoration (F/P) or class I occlusal restoration (Rest.) thus reflecting the extent of intervention (=gold standard). All QLF images were analysed independently. The results showed statistically significant differences between the two treatment groups ΔF (p=0.002) (mean 22.60 - F/P and 28.80 - Rest.) and ΔQ (p=0.012) (mean 230.49 - F/P and 348.30 - Rest.). ΔF and ΔQ values may be useful in aiding clinical diagnosis and decision making in relation to the management of early mineral loss and restorative intervention of occlusal caries. QLF has the potential to be a valuable tool for caries diagnosis in clinical practice. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Quantitative Light-induced Fluorescence-Digital as an oral hygiene evaluation tool to assess plaque accumulation and enamel demineralization in orthodontics.

    PubMed

    Miller, Cara C; Burnside, Girvan; Higham, Susan M; Flannigan, Norah L

    2016-11-01

      To assess the use of Quantitative Light-induced Fluorescence-Digital as an oral hygiene evaluation tool during orthodontic treatment.   In this prospective, randomized clinical trial, 33 patients undergoing fixed orthodontic appliance treatment were randomly allocated to receive oral hygiene reinforcement at four consecutive appointments using either white light (WL) or Quantitative Light-induced Fluorescence-Digital (QLF) images, taken with a device, as visual aids. Oral hygiene was recorded assessing the QLF images for demineralization, by fluorescence loss (ΔF), and plaque coverage (ΔR30). A debriefing questionnaire ascertained patient perspectives.   There were no significant differences in demineralization (P  =  .56) or plaque accumulation (P  =  .82) between the WL and QLF groups from T0 to T4. There was no significant reduction in demineralization, ΔF, in the WL, or the QLF group from T0-T4 (P > .05); however, there was a significant reduction in ΔR30 plaque scores (P < .05). All the participants found being shown the images helpful, with 100% of the QLF group reflecting that it would be useful to have oral hygiene reinforcement for the full duration of treatment compared with 81% of the WL group (OR 2.3; P < .05).   Quantitative Light-induced Fluorescence-Digital can be used to detect and monitor demineralization and plaque during orthodontics. Oral hygiene reinforcement at consecutive appointments using WL or QLF images as visual aids is effective in reducing plaque coverage. In terms of clinical benefits, QLF and WL images are of similar effectiveness; however, patients preferred the QLF images.

  15. Evaluation of dental enamel caries assessment using Quantitative Light Induced Fluorescence and Optical Coherence Tomography.

    PubMed

    Maia, Ana Marly Araújo; de Freitas, Anderson Zanardi; de L Campello, Sergio; Gomes, Anderson Stevens Leônidas; Karlsson, Lena

    2016-06-01

    An in vitro study of morphological alterations between sound dental structure and artificially induced white spot lesions in human teeth, was performed through the loss of fluorescence by Quantitative Light-Induced Fluorescence (QLF) and the alterations of the light attenuation coefficient by Optical Coherence Tomography (OCT). To analyze the OCT images using a commercially available system, a special algorithm was applied, whereas the QLF images were analyzed using the software available in the commercial system employed. When analyzing the sound region against white spot lesions region by QLF, a reduction in the fluorescence intensity was observed, whilst an increase of light attenuation by the OCT system occurred. Comparison of the percentage of alteration between optical properties of sound and artificial enamel caries regions showed that OCT processed images through the attenuation of light enhanced the tooth optical alterations more than fluorescence detected by QLF System. QLF versus OCT imaging of enamel caries: a photonics assessment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. QLF monitoring of therapies for early secondary caries arrestment and remineralization

    NASA Astrophysics Data System (ADS)

    Fontana, Margherita; Gonzalez-Cabezas, Carlos; Stookey, George K.

    2000-03-01

    Secondary caries (SC) is the most common reason for restoration failure. The purpose of this study was to evaluate the Quantitative Light-Induced Fluorescence (QLF) method for monitoring therapies to inhibit SC progression. Forty-eight human teeth with resin restorations were demineralized for 4 days in a microbial caries model. Half of each specimen was then covered with an acid-resistant varnish to maintain the baseline lesion, and treated (group 1: non-treated control; group 2: chlorhexidine varnish for 24 h; group 3: fluoride varnish for 24 h; group 4: APF topical fluoride gel for 4 min), prior to being demineralized for 4 more days. Specimens were analyzed by QLF, sectioned, stained with Rhodamine B, and analyzed with a confocal microscope (CLSM) for lesion depth. The QLF results indicated that the control group was significantly (p less than 0.05) different (i.e., lesions progressed) from groups treated with fluoride (groups 3 and 4; lesions remineralized). All other group comparisons were not significantly different. Results obtained from CLSM analysis were similar to the ones obtained with QLF, except that lesions in group 2 were significantly deeper than the ones in the fluoride groups. Results suggest that the QLF method has a clear potential for monitoring remineralizing therapies for SC.

  17. Detection and Analysis of Enamel Cracks by Quantitative Light-induced Fluorescence Technology.

    PubMed

    Jun, Mi-Kyoung; Ku, Hye-Min; Kim, Euiseong; Kim, Hee-Eun; Kwon, Ho-Keun; Kim, Baek-Il

    2016-03-01

    The ability to accurately detect tooth cracks and quantify their depth would allow the prediction of crack progression and treatment success. The aim of this in vitro study was to determine the capabilities of quantitative light-induced fluorescence (QLF) technology in the detection of enamel cracks. Ninety-six extracted human teeth were selected for examining naturally existing or suspected cracked teeth surfaces using a photocuring unit. QLF performed with a digital camera (QLF-D) images were used to assess the ability to detect enamel cracks based on the maximum fluorescence loss value (ΔFmax, %), which was then analyzed using the QLF-D software. A histologic evaluation was then performed in which the samples were sectioned and observed with the aid of a polarized light microscope. The relationship between ΔFmax and the histology findings was assessed based on the Spearman rank correlation. The sensitivity and specificity were calculated to evaluate the validity of using QLF-D to analyze enamel inner-half cracks and cracks extending to the dentin-enamel junction. There was a strong correlation between the results of histologic evaluations of enamel cracks and the ΔFmax value, with a correlation coefficient of 0.84. The diagnostic accuracy of QLF-D had a sensitivity of 0.87 and a specificity of 0.98 for enamel inner-half cracks and a sensitivity of 0.90 and a specificity of 1.0 for cracks extending to the dentin-enamel junction. These results indicate that QLF technology would be a useful clinical tool for diagnosing enamel cracks, especially given that this is a nondestructive method. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Validation of quantitative light-induced fluorescence-digital (QLF-D) for the detection of approximal caries in vitro.

    PubMed

    Ko, Hae-Youn; Kang, Si-Mook; Kim, Hee Eun; Kwon, Ho-Keun; Kim, Baek-Il

    2015-05-01

    Detection of approximal caries lesions can be difficult due to their anatomical position. This study aimed to assess the ability of the quantitative light-induced fluorescence-digital (QLF-D) in detecting approximal caries, and to compare the performance with those of the International Caries Detection and Assessment System II (ICDAS II) and digital radiography (DR). Extracted permanent teeth (n=100) were selected and mounted in pairs. The simulation pairs were assessed by one calibrated dentist using each detection method. After all the examinations, the teeth (n=95) were sectioned and examined histologically as gold standard. The modalities were compared in terms of sensitivity, specificity, areas under receiver operating characteristic curves (AUROC) for enamel (D1) and dentine (D3) levels. The intra-examiner reliability was assessed for all modalities. At D1 threshold, the ICDAS II presented the highest sensitivity (0.80) while the DR showed the highest specificity (0.89); however, the methods with the greatest AUC values at D1 threshold were DR and QLF-D (0.80 and 0.80 respectively). At D3 threshold, the methods with the highest sensitivity were ICDAS II and QLF-D (0.64 and 0.64 respectively) while the method with the lowest sensitivity was DR (0.50). However, with regard to the AUC values at D3 threshold, the QLF-D presented the highest value (0.76). All modalities showed to have excellent intra-examiner reliability. The newly developed QLF-D was not only able to detect proximal caries, but also showed to have comparable performance to the visual inspection and radiography in detecting proximal caries. QLF-D has the potential to be a useful detection method for proximal caries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Quantitative light-induced fluorescence technology for quantitative evaluation of tooth wear

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Kyeom; Lee, Hyung-Suk; Park, Seok-Woo; Lee, Eun-Song; de Josselin de Jong, Elbert; Jung, Hoi-In; Kim, Baek-Il

    2017-12-01

    Various technologies used to objectively determine enamel thickness or dentin exposure have been suggested. However, most methods have clinical limitations. This study was conducted to confirm the potential of quantitative light-induced fluorescence (QLF) using autofluorescence intensity of occlusal surfaces of worn teeth according to enamel grinding depth in vitro. Sixteen permanent premolars were used. Each tooth was gradationally ground down at the occlusal surface in the apical direction. QLF-digital and swept-source optical coherence tomography images were acquired at each grinding depth (in steps of 100 μm). All QLF images were converted to 8-bit grayscale images to calculate the fluorescence intensity. The maximum brightness (MB) values of the same sound regions in grayscale images before (MB) and phased values after (MB) the grinding process were calculated. Finally, 13 samples were evaluated. MB increased over the grinding depth range with a strong correlation (r=0.994, P<0.001). In conclusion, the fluorescence intensity of the teeth and grinding depth was strongly correlated in the QLF images. Therefore, QLF technology may be a useful noninvasive tool used to monitor the progression of tooth wear and to conveniently estimate enamel thickness.

  20. Use of quantitative light-induced fluorescence to monitor tooth whitening

    NASA Astrophysics Data System (ADS)

    Amaechi, Bennett T.; Higham, Susan M.

    2001-04-01

    The changing of tooth shade by whitening agents occurs gradually. Apart from being subjective and affected by the conditions of the surroundings, visual observation cannot detect a very slight change in tooth color. An electronic method, which can communicate the color change quantitatively, would be more reliable. Quantitative Light- induced Fluorescence (QLF) was developed to detect and assess dental caries based on the phenomenon of change of autofluorescence of a tooth by demineralization. However, stains on the tooth surface exhibit the same phenomenon, and therefore QLF can be used to measure the percentage fluorescence change of stained enamel with respect to surrounding unstained enamel. The present study described a technique of assessing the effect of a tooth-whitening agent using QLF. This was demonstrated in two experiments in which either wholly or partially stained teeth were whitened by intermittent immersion in sodium hypochlorite. Following each immersion, the integrated fluorescence change due to the stain was quantified using QLF. In either situation, the value of (Delta) Q decreased linearly as the tooth regained its natural shade. It was concluded that gradual changing of the shade of discolored teeth by a whitening agent could be quantified using QLF.

  1. First Discoveries of z > 6 Quasars with the DECam Legacy Survey and UKIRT Hemisphere Survey

    NASA Astrophysics Data System (ADS)

    Wang, Feige; Fan, Xiaohui; Yang, Jinyi; Wu, Xue-Bing; Yang, Qian; Bian, Fuyan; McGreer, Ian D.; Li, Jiang-Tao; Li, Zefeng; Ding, Jiani; Dey, Arjun; Dye, Simon; Findlay, Joseph R.; Green, Richard; James, David; Jiang, Linhua; Lang, Dustin; Lawrence, Andy; Myers, Adam D.; Ross, Nicholas P.; Schlegel, David J.; Shanks, Tom

    2017-04-01

    We present the first discoveries from a survey of z ≳ 6 quasars using imaging data from the DECam Legacy Survey (DECaLS) in the optical, the UKIRT Deep Infrared Sky Survey (UKIDSS) and a preliminary version of the UKIRT Hemisphere Survey (UHS) in the near-IR, and ALLWISE in the mid-IR. DECaLS will image 9000 deg2 of sky down to z AB ˜ 23.0, and UKIDSS and UHS will map the northern sky at 0 < decl. < +60°, reaching J VEGA ˜ 19.6 (5-σ). The combination of these data sets allows us to discover quasars at redshift z ≳ 7 and to conduct a complete census of the faint quasar population at z ≳ 6. In this paper, we report on the selection method of our search, and on the initial discoveries of two new, faint z ≳ 6 quasars and one new z = 6.63 quasar in our pilot spectroscopic observations. The two new z ˜ 6 quasars are at z = 6.07 and z = 6.17 with absolute magnitudes at rest-frame wavelength 1450 Å being M 1450 = -25.83 and M 1450 = -25.76, respectively. These discoveries suggest that we can find quasars close to or fainter than the break magnitude of the Quasar Luminosity Function (QLF) at z ≳ 6. The new z = 6.63 quasar has an absolute magnitude of M 1450 = -25.95. This demonstrates the potential of using the combined DECaLS and UKIDSS/UHS data sets to find z ≳ 7 quasars. Extrapolating from previous QLF measurements, we predict that these combined data sets will yield ˜200 z ˜ 6 quasars to z AB < 21.5, ˜1000 z ˜ 6 quasars to z AB < 23, and ˜30 quasars at z > 6.5 to J VEGA < 19.5.

  2. First Discoveries of z > 6 Quasars with the DECam Legacy Survey and UKIRT Hemisphere Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Feige; Fan, Xiaohui; Yang, Jinyi

    In this paper, we present the first discoveries from a survey of z ≳ 6 quasars using imaging data from the DECam Legacy Survey (DECaLS) in the optical, the UKIRT Deep Infrared Sky Survey (UKIDSS) and a preliminary version of the UKIRT Hemisphere Survey (UHS) in the near-IR, and ALLWISE in the mid-IR. DECaLS will image 9000 deg 2 of sky down to z AB ~ 23.0, and UKIDSS and UHS will map the northern sky at 0 < decl. < +60°, reaching J VEGA ~ 19.6 (5-σ). The combination of these data sets allows us to discover quasars atmore » redshift z ≳ 7 and to conduct a complete census of the faint quasar population at z ≳ 6. In this paper, we report on the selection method of our search, and on the initial discoveries of two new, faint z ≳ 6 quasars and one new z = 6.63 quasar in our pilot spectroscopic observations. The two new z ~ 6 quasars are at z = 6.07 and z = 6.17 with absolute magnitudes at rest-frame wavelength 1450 Å being M 1450 = -25.83 and M 1450 = -25.76, respectively. These discoveries suggest that we can find quasars close to or fainter than the break magnitude of the Quasar Luminosity Function (QLF) at z ≳ 6. The new z = 6.63 quasar has an absolute magnitude of M 1450 = -25.95. This demonstrates the potential of using the combined DECaLS and UKIDSS/UHS data sets to find z ≳ 7 quasars. Finally, extrapolating from previous QLF measurements, we predict that these combined data sets will yield ~200 z ~ 6 quasars to z AB < 21.5, ~1000 z ~ 6 quasars to z AB < 23, and ~30 quasars at z > 6.5 to J VEGA < 19.5.« less

  3. First Discoveries of z > 6 Quasars with the DECam Legacy Survey and UKIRT Hemisphere Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Feige; Yang, Jinyi; Wu, Xue-Bing

    We present the first discoveries from a survey of z ≳ 6 quasars using imaging data from the DECam Legacy Survey (DECaLS) in the optical, the UKIRT Deep Infrared Sky Survey (UKIDSS) and a preliminary version of the UKIRT Hemisphere Survey (UHS) in the near-IR, and ALLWISE in the mid-IR. DECaLS will image 9000 deg{sup 2} of sky down to z {sub AB} ∼ 23.0, and UKIDSS and UHS will map the northern sky at 0 < decl. < +60°, reaching J {sub VEGA} ∼ 19.6 (5- σ ). The combination of these data sets allows us to discover quasarsmore » at redshift z ≳ 7 and to conduct a complete census of the faint quasar population at z ≳ 6. In this paper, we report on the selection method of our search, and on the initial discoveries of two new, faint z ≳ 6 quasars and one new z = 6.63 quasar in our pilot spectroscopic observations. The two new z ∼ 6 quasars are at z = 6.07 and z = 6.17 with absolute magnitudes at rest-frame wavelength 1450 Å being M {sub 1450} = −25.83 and M {sub 1450} = −25.76, respectively. These discoveries suggest that we can find quasars close to or fainter than the break magnitude of the Quasar Luminosity Function (QLF) at z ≳ 6. The new z = 6.63 quasar has an absolute magnitude of M {sub 1450} = −25.95. This demonstrates the potential of using the combined DECaLS and UKIDSS/UHS data sets to find z ≳ 7 quasars. Extrapolating from previous QLF measurements, we predict that these combined data sets will yield ∼200 z ∼ 6 quasars to z {sub AB} < 21.5, ∼1000 z ∼ 6 quasars to z {sub AB} < 23, and ∼30 quasars at z > 6.5 to J {sub VEGA} < 19.5.« less

  4. First Discoveries of z > 6 Quasars with the DECam Legacy Survey and UKIRT Hemisphere Survey

    DOE PAGES

    Wang, Feige; Fan, Xiaohui; Yang, Jinyi; ...

    2017-04-11

    In this paper, we present the first discoveries from a survey of z ≳ 6 quasars using imaging data from the DECam Legacy Survey (DECaLS) in the optical, the UKIRT Deep Infrared Sky Survey (UKIDSS) and a preliminary version of the UKIRT Hemisphere Survey (UHS) in the near-IR, and ALLWISE in the mid-IR. DECaLS will image 9000 deg 2 of sky down to z AB ~ 23.0, and UKIDSS and UHS will map the northern sky at 0 < decl. < +60°, reaching J VEGA ~ 19.6 (5-σ). The combination of these data sets allows us to discover quasars atmore » redshift z ≳ 7 and to conduct a complete census of the faint quasar population at z ≳ 6. In this paper, we report on the selection method of our search, and on the initial discoveries of two new, faint z ≳ 6 quasars and one new z = 6.63 quasar in our pilot spectroscopic observations. The two new z ~ 6 quasars are at z = 6.07 and z = 6.17 with absolute magnitudes at rest-frame wavelength 1450 Å being M 1450 = -25.83 and M 1450 = -25.76, respectively. These discoveries suggest that we can find quasars close to or fainter than the break magnitude of the Quasar Luminosity Function (QLF) at z ≳ 6. The new z = 6.63 quasar has an absolute magnitude of M 1450 = -25.95. This demonstrates the potential of using the combined DECaLS and UKIDSS/UHS data sets to find z ≳ 7 quasars. Finally, extrapolating from previous QLF measurements, we predict that these combined data sets will yield ~200 z ~ 6 quasars to z AB < 21.5, ~1000 z ~ 6 quasars to z AB < 23, and ~30 quasars at z > 6.5 to J VEGA < 19.5.« less

  5. Evaluation of resin infiltration using quantitative light-induced fluorescence technology.

    PubMed

    Min, Ji-Hyun; Inaba, Daisuke; Kim, Baek-Il

    2016-09-01

    To determine whether quantitative light-induced fluorescence (QLF) technology can be used to classify the colour of teeth specimens before and after resin infiltration (RI) treatment, and calculate the correlation between the ΔF value and colour difference (ΔE) in fluorescence images of the specimens obtained using a QLF-digital (QLF-D) device. Sixty sound bovine permanent teeth specimens were immersed in demineralized solution. Two exposed windows were formed in each specimen, and RI treatment was applied to one of them. The ΔE values were obtained for the differences between a sound tooth surface (SS), an early dental caries surface (ECS) and an ECS treated with RI (RS) in white-light and fluorescence images obtained using QLF-D, respectively. The ΔF value was obtained from fluorescence images using dedicated software for QLF-D. The mean differences between the ΔE values obtained from the white-light and fluorescence images were analyzed by paired t-test. Pearson correlation analysis and Bland-Altman plots were applied to the differences between the ΔF value for ECS (ΔFSS-ECS) and the ΔE value between SS and ECS (ΔESS-ECS), and between the ΔF value for RS (ΔFSS-RS) and the ΔE value between SS and RS (ΔESS-RS) in fluorescence images. The ΔE values obtained from fluorescence images were three times higher than the ΔE values obtained from white-light images (p<0.001). Significant correlations were confirmed between ΔESS-ECS and ΔFSS-ECS (r=-0.492, p<0.001) and between ΔESS-RS and ΔFSS-RS (r=-0.661, p<0.001). QLF technology can be used to confirm the presence of RI in teeth. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Genetic linkage map construction and QTL mapping of salt tolerance traits in Zoysiagrass (Zoysia japonica).

    PubMed

    Guo, Hailin; Ding, Wanwen; Chen, Jingbo; Chen, Xuan; Zheng, Yiqi; Wang, Zhiyong; Liu, Jianxiu

    2014-01-01

    Zoysiagrass (Zoysia Willd.) is an important warm season turfgrass that is grown in many parts of the world. Salt tolerance is an important trait in zoysiagrass breeding programs. In this study, a genetic linkage map was constructed using sequence-related amplified polymorphism markers and random amplified polymorphic DNA markers based on an F1 population comprising 120 progeny derived from a cross between Zoysia japonica Z105 (salt-tolerant accession) and Z061 (salt-sensitive accession). The linkage map covered 1211 cM with an average marker distance of 5.0 cM and contained 24 linkage groups with 242 marker loci (217 sequence-related amplified polymorphism markers and 25 random amplified polymorphic DNA markers). Quantitative trait loci affecting the salt tolerance of zoysiagrass were identified using the constructed genetic linkage map. Two significant quantitative trait loci (qLF-1 and qLF-2) for leaf firing percentage were detected; qLF-1 at 36.3 cM on linkage group LG4 with a logarithm of odds value of 3.27, which explained 13.1% of the total variation of leaf firing and qLF-2 at 42.3 cM on LG5 with a logarithm of odds value of 2.88, which explained 29.7% of the total variation of leaf firing. A significant quantitative trait locus (qSCW-1) for reduced percentage of dry shoot clipping weight was detected at 44.1 cM on LG5 with a logarithm of odds value of 4.0, which explained 65.6% of the total variation. This study provides important information for further functional analysis of salt-tolerance genes in zoysiagrass. Molecular markers linked with quantitative trait loci for salt tolerance will be useful in zoysiagrass breeding programs using marker-assisted selection.

  7. Pilot clinical study to assess caries lesion activity using quantitative light-induced fluorescence during dehydration

    NASA Astrophysics Data System (ADS)

    Ando, Masatoshi; Ferreira-Zandoná, Andrea G.; Eckert, George J.; Zero, Domenick T.; Stookey, George K.

    2017-03-01

    This study aimed to evaluate the ability of quantitative light-induced fluorescence (QLF) to assess caries lesion activity using visual examination (VE) as the gold standard. Twenty-four visible white spot lesions on buccal surfaces were examined from 23 children, ages 9 to 14 years. At baseline, the surface was hydrated with water, and thereafter, it was dehydrated with continuous compressed air during image acquisition. QLF images were acquired at 0 (baseline), 5, and 15 s. QLF variables [QLFV: fluorescence loss (ΔF), lesion size (S), ΔQ: ΔF×S] was recorded. Changes-in-QLFV per second (ΔQLFV) were determined: ΔQLFV=(QLFVN-QLF/N), where N indicates dehydration time. One experienced dentist conducted VE independently using a dental unit's light, compressed air, and explorer. QLFV and ΔQLFV of the active group (n=11) were compared with those of the inactive group (n=13) using two-sample t-tests. As the surface was dehydrated, S and ΔQ values of the active group increased, whereas QLFV of the inactive group showed only a small change. ΔQLFV of the active group were larger than those of the inactive group; however, the difference did not reach statistical significance (p>0.11). Within the limitations of this study, QLF data indicated increments for lesions designated as active and minimal change for lesions defined as inactive.

  8. The use of QLF to quantify in vitro whitening in a product testing model.

    PubMed

    Pretty, I A; Edgar, W M; Higham, S M

    2001-11-24

    Professional and consumer interest in whitening products continues to increase against a background of both increased oral health awareness and demand for cosmetic procedures. In the current legal climate, few dentists are providing 'in-office' whitening treatments, and thus many patients turn to home-use products. The most common of these are the whitening toothpastes. Researchers are keen to quantify the effectiveness of such products through clinically relevant trials. Previous studies examining whitening products have employed a variety of stained substrates to monitor stain removal. This study aimed to quantify the removal of stain from human enamel using a new device, quantitative light-induced fluorescence (QLF). The experimental design follows that of a product-testing model. A total of 11 previously extracted molar teeth were coated with transparent nail varnish leaving an exposed window of enamel. The sound, exposed enamel was subject to a staining regime of human saliva, chlorhexidine and tea. Each of the eleven teeth was subjected to serial exposures of a positive control (Bocasan), a negative control (water) and a test product (Yotuel toothpaste). Following each two-minute exposure QLF images of the teeth were taken (a total of 5 applications). Following completion of one test solution, the teeth were cleaned, re-stained and the procedure repeated with the next solution. QLF images were stored on a PC and analysed by a blinded single examiner. The deltaQ value at 5% threshold was reported. ANOVA and paired t-tests were used to analyse the data. The study confirmed the ability of QLF to longitudinally quantify stain reduction from human enamel. The reliability of the technique in relation to positive and negative test controls was proven. The positive control had a significantly (alpha = 0.05) higher stain removal efficacy than water (p = 0.023) and Yotuel (p = 0.046). Yotuel was more effective than water (p = 0.023). The research community, the practicing clinician and the consumer all require sound product evaluation data. The use of human enamel specimens may offer more relevant clinical data. QLF has been designed as an in vivo device. Further development of the technique should permit in vivo clinical whitening trials.

  9. Improving the competency of dental hygiene students in detecting dental restorations using quantitative light-induced fluorescence technology.

    PubMed

    Oh, Hye-Young; Jung, Hoi-In; Lee, Jeong-Woo; de Jong, Elbert de Josselin; Kim, Baek-Il

    2017-03-01

    The purpose of this study was to determine the usefulness of a quantitative light-induced fluorescence (QLF) technology in detecting dental restorations by comparing the detection ability of dental hygiene students between using conventional visual inspection alone and visual inspection combined with QLF technology. The subjects of this study comprised 92 dental hygiene students. The students assigned to the control group only used white-light images to visually assess the mouth environment, while those in the experimental group additionally used fluorescence images. Using the test results of an experienced inspector as a reference value, the agreement between the reference value and the evaluation results of the students in the experimental and control groups was evaluated using Cohen's kappa and the percentage agreement. The subjects were then classified into groups covering three percentage ranges according to the score distribution and agreement values of the three groups were compared. The percentage agreement was calculated according to the type of dental restorations. The mean kappa value was significantly higher in the experimental group than the control group (0.70 vs 0.60, p<0.001), as was the percentage agreement (80.06% vs 72.64%, p<0.001). The agreement rate when using QLF technology increased by 8% more in the middle and bottom percentage groups than in the top percentage group (p<0.001). The agreement rate also varied with the type of restoration, being significantly higher for a sound tooth or tooth-colored restoration in the experimental group (p<0.001). Combining QLF technology with conventional visual inspections could improve the ability to detect dental restorations and distinguish sound teeth from aesthetic restorations. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. An in vitro comparison of quantitative light-induced fluorescence-digital and spectrophotometer on monitoring artificial white spot lesions.

    PubMed

    Kim, Hee Eun; Kim, Baek-Il

    2015-09-01

    The aim of this study was to evaluate the efficacy of quantitative light-induced fluorescence-digital (QLF-D) compared to a spectrophotometer in monitoring progression of enamel lesions. To generate artificial caries with various severities of lesion depths, twenty bovine specimens were immersed in demineralizing solution for 40 days. During the production of the lesions, repeat measurements of fluorescence loss (ΔF) and color change (ΔE) were performed in six distinct stages after the demineralization of the specimens: after 3, 5, 10, 20, 30, and 40 days of exposure to the demineralizing solution. Changes in the ΔF values in the lesions were analyzed using the QLF-D, and changes in the ΔE values in lesions were analyzed using a spectrophotometer. The repeated measures ANOVA of ΔF and ΔE values were used to determine whether there are significant differences at different exposure times in the demineralizing solution. Spearman's rank correlation coefficient was analyzed between ΔF and ΔE. The ΔF values significantly decreased based on the demineralizing period (p<0.001). Relatively large changes in ΔF values were observed during the first 10 days. There were significant changes in L(*), a(*), b(*), and ΔE values in lesions with increasing demineralizing duration (p<0.001). A strong correlation was observed between ΔF and ΔE with p=-0.853 (p<0.001). The results support the efficacy of QLF-D in monitoring color changes. Our findings demonstrate that QLF-D are a more efficient and stable tool for early caries detection. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The Potential of Self-assembling Peptides for Enhancement of In Vitro Remineralisation of White Spot Lesions as Measured by Quantitative Laser Fluorescence.

    PubMed

    Golland, Luca; Schmidlin, Patrick R; Schätzle, Marc

    To test the remineralisation potential of a single application of self-assembling peptides or acidic fluoride solution using quantitative light-induced fluorescence (QLF) in vitro. Bovine enamel disks were prepared, and white spot lesions were created on one half of the disk with an acidic buffer solution. After demineralisation, disks were allocated into three groups of 11 specimens each. Group A served as a control group and received no treatment. Group B had a single application of fluoride, and group C was treated once with self-assembling peptides. All disks were embedded in a plastic mold (diameter 15 mm, height 9 mm) with an a-silicone, and remineralisation was initiated using a pH-cycling protocol for five days. Four experimental regions on each disk were measured prior to the start of the study (T0), after demineralisation (T1) and after the remineralisation process (T2) using QLF. After demineralisation, all areas showed a distinct loss of fluorescence, with no statistically significant difference between the groups (ΔF from -69.3 to -10.2). After remineralisation, samples of group B (treated with fluoride) showed a statistically significant fluorescence increase (ΔF from T1 to T2 15.2 ± 7.3) indicating remineralisation, whereas the samples of control group A and group C (treated with self-assembling peptides) showed no significant changes in ΔF of 1.1 ± 1.9 and 2.5 ± 1.9, respectively. Application of self-assembling peptides on demineralised bovine enamel did not lead to increased fluorescence using QLF, indicating either lack of remineralisation or irregular crystals. Increased fluorescence using QLF indicated mineral gain following a single application of a highly concentrated fluoride.

  12. Plaque autofluorescence as potential diagnostic targets for oral malodor

    NASA Astrophysics Data System (ADS)

    Lee, Eun-Song; Yim, Hyun-Kyung; Lee, Hyung-Suk; Choi, Jong-Hoon; Kwon, Ho-Keun; Kim, Baek-Il

    2016-08-01

    The aim of this study was to determine whether the degree of tongue and interdental plaque can be used to assess oral malodor by quantifying their fluorescence as detected using quantitative light-induced fluorescence (QLF) technology. Ninety-nine subjects who complained of oral malodor were included. The level of oral malodor was quantified using the organoleptic score (OLS) and the concentration of volatile sulfur compounds (VSCs). The fluorescence properties of tongue and interdental plaque were quantified as scores calculated by multiplying the intensity and area of fluorescence in QLF-digital images, and the combined plaque fluorescence (CPF) score was obtained by summing the scores for the two regions. The associations of the scores with malodor levels and the diagnostic accuracy of the CPF score were analyzed. The two plaque fluorescence scores and their combined score differed significantly with the level of oral malodor (p<0.001). The CPF score was moderately correlated with OLS (r=0.64) and VSC levels (r=0.54), and its area under the receiver operating characteristic curve was 0.77 for identifying subjects with definite oral malodor (OLS≥2). In conclusion, plaque fluorescence from tongue and interdental sites as detected using QLF technology can be used to assess the level of oral malodor.

  13. Probabilistic Selection of High-redshift Quasars with Subaru/Hyper Suprime-Cam Survey

    NASA Astrophysics Data System (ADS)

    Onoue, Masafusa

    High-redshift quasars are an important probe of the distant Universe. They enable observational studies of the early growth of supermassive blackholes, cosmic reionization, chemical enrichment of host galaxies, and so on. Through pioneering optical and near-infrared wide-area surveys such as the SDSS and the VIKING Survey, about one hundred quasars have been found at z > 6 (e.g., Fan et al. (2006b), Venemans et al. (2013)). However, its current small sample size and the fact that most of them are the most luminous (M 1450 <~ -24) population in this epoch prevents one from constraining statistics on high-redshift quasars, namely quasar luminosity function (QLF), and redshift evolution of IGM neutral fraction. Thus, discovery of large number of z > 6 quasars, especially low-luminous or z > 7 quasars, is highly desired for further understanding of the early universe. We are now starting a new ground-breaking survey of high-redshift (z > 6) quasars using the exquisite imaging data provided by the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP) Survey. Thanks to its extremely wide coverage and its high sensitivity thorough five optical bands (1,400 deg2 to the depth of r ~ 26 in HSC-Wide layer), it is one of the most powerful contemporary surveys that makes it possible for us to increase the number of z > 6 quasars by almost an order of magnitude, i.e., 300 at z ~ 6 and 50 at z ~ 7, based on the current estimate of the QLF at z > 6 by Willott et al. (2010b). One of the biggest challenges in z > 6 quasar candidate selection is contamination of Galactic brown dwarfs, which have the same point-like appearance as and similarly red colors to the quasars. To overcome this issue and maximize the selection efficiency, we apply a double-layered approach to the HSC survey products, namely combination of two probabilistic selections: SED-fitting and Bayesian selection. In particular, we have developed a template SED fitting method optimized to high-redshift quasars selection. Its application with 27 photometric bands to the COSMOS quasars at 3 < z < 5 have shown that almost all of the known quasars are correctly classified with small dispersion σ|Δz|/(1+z)=0.01 and as low as η=2.5% outlier rate. At present, the HSC survey have successfully covered ~100 deg2 of HSC-Wide area in full colors. From the first-year data products, we have already started z > 6 quasar selection, and it is expected that the first HSC quasar discovery will be in the near future.

  14. Assessment of simulated lesions on primary teeth with near-infrared imaging

    NASA Astrophysics Data System (ADS)

    Tam, Wilson; Lee, Robert C.; Lin, Brent; Simon, Jacob C.; Fried, Daniel

    2016-02-01

    Previous studies have demonstrated that the structural changes on enamel due to demineralization and remineralization can be exploited through optical imaging methods such as QLF, thermal and NIR imaging. The purpose of this study is to investigate whether PS-OCT and NIR reflectance imaging can be utilized to assess lesion structure in artificial enamel lesions on the smooth surfaces of primary teeth exposed to fluoride. The smooth coronal surfaces of primary teeth (n=25) were divided into 4 windows: sound, demineralization, demineralization with remineralization and APF with demineralization. Windows were treated with either acidulated phosphate fluoride (APF) for 1 minute, a demineralization solution for 4 days, and/or an acidic remineralization solution for 12 days. The samples were imaged using PS-OCT, QLF and NIR reflectance at 1400-1700 nm wavelengths. This study demonstrated that both PS-OCT and NIR reflectance imaging were suitable for assessing lesion structure in the smooth surfaces of primary dentition.

  15. Assessment of simulated lesions on primary teeth with near-infrared imaging.

    PubMed

    Tam, Wilson; Lee, Robert C; Lin, Brent; Simon, Jacob C; Fried, Daniel

    2016-02-13

    Previous studies have demonstrated that the structural changes on enamel due to demineralization and remineralization can be exploited through optical imaging methods such as QLF, thermal and NIR imaging. The purpose of this study is to investigate whether PS-OCT and NIR reflectance imaging can be utilized to assess lesion structure in artificial enamel lesions on the smooth surfaces of primary teeth exposed to fluoride. The smooth coronal surfaces of primary teeth (n=25) were divided into 4 windows: sound, demineralization, demineralization with remineralization and APF with demineralization. Windows were treated with either acidulated phosphate fluoride (APF) for 1 minute, a demineralization solution for 4 days, and/or an acidic remineralization solution for 12 days. The samples were imaged using PS-OCT, QLF and NIR reflectance at 1400-1700 nm wavelengths. This study demonstrated that both PS-OCT and NIR reflectance imaging were suitable for assessing lesion structure in the smooth surfaces of primary dentition.

  16. Caries assessment: establishing mathematical link of clinical and benchtop method

    NASA Astrophysics Data System (ADS)

    Amaechi, Bennett T.

    2009-02-01

    It is well established that the development of new technologies for early detection and quantitative monitoring of dental caries at its early stage could provide health and economic benefits ranging from timely preventive interventions to reduction of the time required for clinical trials of anti-caries agents. However, the new technologies currently used in clinical setting cannot assess and monitor caries using the actual mineral concentration within the lesion, while a laboratory-based microcomputed tomography (MCT) has been shown to possess this capability. Thus we envision the establishment of mathematical equations relating the measurements of each of the clinical technologies to that of MCT will enable the mineral concentration of lesions detected and assessed in clinical practice to be extrapolated from the equation, and this will facilitate preventitive care in dentistry to lower treatment cost. We utilize MCT and the two prominent clinical caries assessment devices (Quantitative Light-induced Fluorescence [QLF] and Diagnodent) to longitudinally monitor the development of caries in a continuous flow mixed-organisms biofilm model (artificial mouth), and then used the collected data to establish mathematical equation relating the measurements of each of the clinical technologies to that of MCT. A linear correlation was observed between the measurements of MicroCT and that of QLF and Diagnodent. Thus mineral density in a carious lesion detected and measured using QLF or Diagnodent can be extrapolated using the developed equation. This highlights the usefulness of MCT for monitoring the progress of an early caries being treated with therapeutic agents in clinical practice or trials.

  17. Assessing the use of Quantitative Light-induced Fluorescence-Digital as a clinical plaque assessment.

    PubMed

    Han, Sun-Young; Kim, Bo-Ra; Ko, Hae-Youn; Kwon, Ho-Keun; Kim, Baek-Il

    2016-03-01

    The aims of this study were to compare the relationship between red fluorescent plaque (RF plaque) area by Quantitative Light-induced Fluorescence-Digital (QLF-D) and disclosed plaque area by two-tone disclosure, and to assess the bacterial composition of the RF plaque by real time-PCR. Fifty healthy subjects were included and 600 facial surfaces of their anterior teeth were examined. QLF-D was taken on two separate occasions (before and after disclosing), and the RF plaque area was calculated based on Plaque Percent Index (PPI). After disclosing, the stained plaque area was analyzed to investigate the relationship with the RF plaque area. The relationship was evaluated using Pearson correlation and paired t-test. Then, the RF and non-red fluorescent (non-RF) plaque samples were obtained from the same subject for real-time PCR test. Total 10 plaque samples were compared the ratio of the 6 of bacteria using Wilcoxon signed rank test. Regarding the paired t-test, the blue-staining plaque area (9.3±9.2) showed significantly similarity with the RF plaque area (9.1±14.9, p=0.80) at ΔR20, however, the red-staining plaque area (31.6±20.9) presented difference from the RF plaque area (p<0.0001). In addition, bacterial composition of Prevotella intermedia and Streptococcus anginosus was associated with substantially more the RF plaque than the non-RF plaque (p<0.05). The plaque assessment method using QLF-D has potential to detect mature plaque, and the plaque area was associated with the blue-staining area using two-tone disclosure. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Red fluorescence of dental biofilm as an indicator for assessing the efficacy of antimicrobials

    NASA Astrophysics Data System (ADS)

    Lee, Eun-Song; de Josselin de Jong, Elbert; Jung, Hoi-In; Kim, Baek-Il

    2018-01-01

    The study aimed to determine whether the red fluorescence (RF) of a dental microcosm biofilm as measured with quantitative light-induced fluorescence (QLF) technology is useful for assessing the efficacy of antimicrobials. Dental microcosm biofilms were formed on bovine enamel discs and grown under 0.3% sucrose challenge and treated with chlorhexidine (CHX) solutions at different concentrations (0.05%, 0.1%, and 0.5%) plus a negative control [sterile distilled water (DW)] twice daily for 7 days. The biofilms were photographed using a QLF-digital system to evaluate the RF by calculating the red/green ratio, and pH values of the medium were measured daily. After 7 days, the bacterial viability of the biofilm was assessed by measuring the counts of viable total bacteria and aciduric bacteria, and the percentage surface microhardness changes (%SHC) was evaluated. The RF and cariogenic properties were compared for the different concentrations of CHX, and their correlations were examined. The RF and its increase rate were much lower for CHX-treated biofilms than for DW-treated biofilms. The RF after 7 days of maturation decreased significantly with increasing CHX concentrations (p<0.001) and was from 31% (for 0.05% CHX) to 46% (for 0.5% CHX) lower than that of the DW group. Strong correlations were reported between the RF of the 7-day-maturation biofilms and cariogenic properties, such as the number of total bacteria (r=0.93), number of aciduric bacteria (r=0.97), supernatant pH (r=0.43), and %SHC (r=0.98). In conclusion, the RF of dental biofilms as measured with QLF technology can be used to nondestructively assess and monitor the effect of antimicrobials against biofilm.

  19. Promotion of enamel caries remineralization by an amelogenin-derived peptide in a rat model.

    PubMed

    Han, Sili; Fan, Yingying; Zhou, Zhengli; Tu, Huanxin; Li, Danxue; Lv, Xueping; Ding, Longjiang; Zhang, Linglin

    2017-01-01

    An amelogenin-derived peptide has been shown to promote remineralization of demineralized enamel in an in vitro model of initial caries induced by pH cycling. The present study examines whether the peptide exerts similar effects within the complex oral environment in vivo. Specific pathogen-free Sprague-Dawley rats (n=36) were infected with Streptococcus mutans, given ad libitum access to Diet 2000 and drinking water supplemented with sucrose (10%, w/v), and then randomly divided into three groups treated with 25μM peptide solution, 1g/L NaF or deionized water. Molar teeth were swabbed twice daily with the respective solutions for 24days. Then animals were killed, their jaws were removed and caries lesions were analyzed using the quantitative light-induced fluorescence-digital (QLF-D) technique to measure changes in mineral content. To verify QLF-D results, caries were scored for lesion depth and size using the Keyes method, and analyzed using polarized light microscopy (PLM). Mineral gain was significantly higher in teeth treated with peptide or NaF than in teeth treated with water (p<0.05), based on the QLF-D results (ΔF and ΔQ). Incidence of smooth-surface and sulcal caries based on Keyes scores was similar in rats treated with peptide or NaF, and significantly lower in these groups than in rats treated with water (p<0.05). Lesions on teeth treated with peptide or NaF were shallower, based on PLM. No significant differences were observed between molar enamel caries treated with peptide or NaF. This amelogenin-derived peptide can promote remineralization in a rat caries model, indicating strong potential for clinical use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Differences in the intensity of light-induced fluorescence emitted by resin composites.

    PubMed

    Kim, Bo-Ra; Kang, Si-Mook; Kim, Gyung-Min; Kim, Baek-Il

    2016-03-01

    The aims of this study were to compare the intensities of fluorescence emitted by different resin composites as detected using quantitative light-induced fluorescence (QLF) technology, and to compare the fluorescence intensity contrast with the color contrast between a restored composite and the adjacent region of the tooth. Six brands of light-cured resin composites (shade A2) were investigated. The composites were used to prepare composite discs, and fill holes that had been prepared in extracted human teeth. White-light and fluorescence images of all specimens were obtained using a fluorescence camera based on QLF technology (QLF-D) and converted into 8-bit grayscale images. The fluorescence intensity of the discs as well as the fluorescence intensity contrast and the color contrast between the composite restoration and adjacent tooth region were calculated as grayscale levels. The grayscale levels for the composite discs differed significantly with the brand (p<0.001): DenFil (10.84±0.35, mean±SD), Filtek Z350 (58.28±1.37), Premisa (156.94±1.58), Grandio (177.20±0.81), Charisma (207.05±0.77), and Gradia direct posterior (211.52±1.66). The difference in grayscale levels between a resin restoration and the adjacent tooth was significantly greater in fluorescence images for each brand than in white-light images, except for the Filtek Z350 (p<0.05). However, the Filtek Z350 restoration was distinguishable from the adjacent tooth in a fluorescence image. The intensities of fluorescence detected from the resin composites varied. The differences between the composite and adjacent tooth were greater for the fluorescence intensity contrast than for the colors observed in the white-light images. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Qubit-loss-free fusion of atomic W states via photonic detection

    NASA Astrophysics Data System (ADS)

    Ding, Cheng-Yun; Kong, Fan-Zhen; Yang, Qing; Yang, Ming; Cao, Zhuo-Liang

    2018-06-01

    In this paper, we propose two new qubit-loss-free (QLF) fusion schemes for W states in cavity QED system. Resonant interactions between atoms and single cavity mode constitute the main fusion mechanism, with which atomic |W_{n+m}> and |W_{n+m+q}> states can be generated, respectively, from a |Wn> and a |Wm>; and from a |Wn>, a |Wm> and a |Wq>, by detecting the cavity mode. The QLF property of the schemes makes them more efficient and simpler than the currently existing ones, and fewer intermediate steps and memory resources are required for generating a target large-scale W state. Furthermore, the fusion of atomic states can be realized via the detection on cavity mode rather than the much complicated atomic detection, which makes our schemes feasible. In addition, the analyses of the optimal resource cost and the experimental feasibility indicate that the present schemes are simple and efficient, and maybe implementable within the current experimental techniques.

  2. THE LOCAL [C ii] 158 μ m EMISSION LINE LUMINOSITY FUNCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemmati, Shoubaneh; Yan, Lin; Capak, Peter

    We present, for the first time, the local [C ii] 158 μ m emission line luminosity function measured using a sample of more than 500 galaxies from the Revised Bright Galaxy Sample. [C ii] luminosities are measured from the Herschel PACS observations of the Luminous Infrared Galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey and estimated for the rest of the sample based on the far-infrared (far-IR) luminosity and color. The sample covers 91.3% of the sky and is complete at S{sub 60μm} > 5.24 Jy. We calculate the completeness as a function of [C ii] line luminosity and distance, basedmore » on the far-IR color and flux densities. The [C ii] luminosity function is constrained in the range ∼10{sup 7–9} L{sub ⊙} from both the 1/ V{sub max} and a maximum likelihood methods. The shape of our derived [C ii] emission line luminosity function agrees well with the IR luminosity function. For the CO(1-0) and [C ii] luminosity functions to agree, we propose a varying ratio of [C ii]/CO(1-0) as a function of CO luminosity, with larger ratios for fainter CO luminosities. Limited [C ii] high-redshift observations as well as estimates based on the IR and UV luminosity functions are suggestive of an evolution in the [C ii] luminosity function similar to the evolution trend of the cosmic star formation rate density. Deep surveys using the Atacama Large Millimeter Array with full capability will be able to confirm this prediction.« less

  3. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kryukova, E.; Megeath, S. T.; Allen, T. S.

    2012-08-15

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 {mu}m spectral energy distributions (SEDs). Usingmore » protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 {mu}m), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L{sub Sun} and show a tail extending toward luminosities above 100 L{sub Sun }. The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L{sub Sun }. Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity functions to those predicted by models and find that our observed luminosity functions are best matched by models that invoke competitive accretion, although we do not find strong agreement between the high-mass SF clouds and any of the models.« less

  4. Effect of Fluoride Varnish on Enamel Remineralization in Anterior Teeth with Molar Incisor Hypomineralization.

    PubMed

    Restrepo, Manuel; Jeremias, Fabiano; Santos-Pinto, Lourdes; Cordeiro, Rita Cl; Zuanon, Angela Cc

    The objective of this study was to investigate the effect of fluoride varnish on remineralization of anterior teeth affected by Molar-Incisor Hypomineralization (MIH) by means of Quantitative Light-Induced Fluorescence- QLF. Fifty-one healthy 9 - 12- year-old children were selected according to different clinically diagnosed levels of MIH, proposed by the European Academy of Pediatric Dentistry (2003) (considering the most severe lesion per patient, n= 51 lesions), and randomly divided into two groups: (1) four applications of 5% NaF varnish, with one-week interval, and (2) usual home care- control. At each visit, the mean change in fluorescence and area of lesion were measured by QLF. The data were analyzed by repeated measures ANOVA and Tukey's test. All patients showed enamel alterations in first permanent molars and incisors, frequently with two molars affected by MIH (41.1%). There was no statically significant difference in the mean of fluorescence and area of lesion between groups over the studied time. We observed no favorable effect on the remineralization of MIH lesions in anterior teeth after four applications of fluoride varnish.

  5. Measuring the remineralization potential of different agents with quantitative light-induced fluorescence digital Biluminator.

    PubMed

    Kucukyilmaz, Ebru; Savas, Selcuk

    2017-01-26

    The aim of this study was to investigate the effectiveness of different remineralization agents by quantitative light-induced fluorescence digital BiluminatorTM (QLF-D). Artificial caries lesions were created, and the teeth were divided according to the tested materials: (i) distilled water, (ii) acidulated phosphate fluoride (APF), (iii) Curodont Repair (CR), (iv) ammonium hexafluorosilicate (SiF) and (v) ammonium hexafluorosilicate plus cetylpyridinium chloride (SiF + CPC). After treatment procedures, each of the samples was placed in artificial saliva. After demineralization and 1 and 4 weeks of remineralization procedures, fluorescence loss and lesion areas were measured with QLF-D. Data were statistically analyzed (α = 0.05). The fluorescence values of the demineralized enamel specimens treated with the various agents differed significantly compared with pretreatment values for both 1 and 4 weeks (p<0.05). At 4 weeks, the highest fluorescence gain was calculated in the CR, APF and SiF groups compared with the control (p<0.05). APF, SiF and CR groups yielded greater remineralization ability than SiF + CPC and control groups.

  6. Tooth quality in dental fluorosis genetic and environmental factors.

    PubMed

    Vieira, A P G F; Hanocock, R; Eggertsson, H; Everett, E T; Grynpas, M D

    2005-01-01

    Dental fluorosis (DF) affects the appearance and structure of tooth enamel and can occur following ingestion of excess fluoride during critical periods of amelogenesis. This tooth malformation may, depending on its severity, influence enamel and dentin microhardness and dentin mineralization. Poor correlation between tooth fluoride (F) concentration and DF severity was shown in some studies, but even when a correlation was present, tooth fluoride concentration explained very little of DF severity. This fact calls into question the generally accepted hypothesis that the main factor responsible for DF severity is tooth fluoride concentration. It has been shown previously that genetic factors (susceptibility to DF) play an important role in DF severity although DF severity relates to individual susceptibility to fluoride exposure (genetics), tooth fluoride concentration relates to fluoride ingestion (environmental). The objective of this study was to investigate the correlation between tooth fluoride concentration, DF severity, and tooth mechanical and materials properties. Three strains of mice (previously shown to have different susceptibility to DF) at weaning were treated with four different levels of F in their water (0, 25, 50, and 100 ppm) for 6 weeks. Mice teeth were tested for fluoride by instrumental neutron activation analysis (INAA), DF severity determined by quantitative light-induced fluorescence [QLF], and tooth quality (enamel and dentin microhardness and dentin mineralization). Tooth fluoride concentration (environment factor) correlated positively with DF severity (QLF) (rs=0.608), fluoride treatment group (rs=0.952). However, tooth fluoride concentration correlated negatively with enamel microhardness (rs=-0.587), dentin microhardness (rs=-0.268) and dentin mineralization (rs=-0.245). Dental fluorosis (genetic factor) severity (QLF) correlated positively with fluoride treatment (rs=0.608) and tooth fluoride concentration (rs=0.583). DF severity correlated negatively with enamel microhardness (rs=-0.564) and dentin microhardness (rs=-0.356). Genetic factors (DF severity) and the environmental factor (fluoride concentration in tooth structure) have similar influence on tooth biomechanical properties, whereas only the environmental factor has an influence on tooth material property (mineralization).

  7. The X-ray luminosity functions of Abell clusters from the Einstein Cluster Survey

    NASA Technical Reports Server (NTRS)

    Burg, R.; Giacconi, R.; Forman, W.; Jones, C.

    1994-01-01

    We have derived the present epoch X-ray luminosity function of northern Abell clusters using luminosities from the Einstein Cluster Survey. The sample is sufficiently large that we can determine the luminosity function for each richness class separately with sufficient precision to study and compare the different luminosity functions. We find that, within each richness class, the range of X-ray luminosity is quite large and spans nearly a factor of 25. Characterizing the luminosity function for each richness class with a Schechter function, we find that the characteristic X-ray luminosity, L(sub *), scales with richness class as (L(sub *) varies as N(sub*)(exp gamma), where N(sub *) is the corrected, mean number of galaxies in a richness class, and the best-fitting exponent is gamma = 1.3 +/- 0.4. Finally, our analysis suggests that there is a lower limit to the X-ray luminosity of clusters which is determined by the integrated emission of the cluster member galaxies, and this also scales with richness class. The present sample forms a baseline for testing cosmological evolution of Abell-like clusters when an appropriate high-redshift cluster sample becomes available.

  8. NLC Luminosity as a Function of Beam Parameters

    NASA Astrophysics Data System (ADS)

    Nosochkov, Y.

    2002-06-01

    Realistic calculation of NLC luminosity has been performed using particle tracking in DIMAD and beam-beam simulations in GUINEA-PIG code for various values of beam emittance, energy and beta functions at the Interaction Point (IP). Results of the simulations are compared with analytic luminosity calculations. The optimum range of IP beta functions for high luminosity was identified.

  9. The luminosity function for the CfA redshift survey slices

    NASA Technical Reports Server (NTRS)

    De Lapparent, Valerie; Geller, Margaret J.; Huchra, John P.

    1989-01-01

    The luminosity function for two complete slices of the extension of the CfA redshift survey is calculated. The nonparametric technique of Lynden-Bell (1971) and Turner (1979) is used to determine the shape for the luminosity function of the 12 deg slice of the redshift survey. The amplitude of the luminosity function is determined, taking large-scale inhomogeneities into account. The effects of the Malmquist bias on a magnitude-limited redshift survey are examined, showing that the random errors in the magnitudes for the 12 deg slice affect both the determination of the luminosity function and the spatial density constrast of large scale structures.

  10. Very low luminosity active galaxies and the X-ray background

    NASA Technical Reports Server (NTRS)

    Elvis, M.; Soltan, A.; Keel, W. C.

    1984-01-01

    The properties of very low luminosity active galactic nuclei are not well studied, and, in particular, their possible contribution to the diffuse X-ray background is not known. In the present investigation, an X-ray luminosity function for the range from 10 to the 39th to 10 to the 42.5th ergs/s is constructed. The obtained X-ray luminosity function is integrated to estimate the contribution of these very low luminosity active galaxies to the diffuse X-ray background. The construction of the X-ray luminosity function is based on data obtained by Keel (1983) and some simple assumptions about optical and X-ray properties.

  11. Evolution of the luminosity function of quasar accretion disks

    NASA Technical Reports Server (NTRS)

    Caditz, David M.; Petrosian, Vahe; Wandel, Amri

    1991-01-01

    Using an accretion-disk model, accretion disk luminosities are calculated for a grid of black hole masses and accretion rates. It is shown that, as the black-hole mass increases with time, the monochromatic luminosity at a given frequency first increases and then decreases rapidly as this frequency is crossed by the Wien cutoff. The upper limit on the monochromatic luminosity, which is characteristic for a given epoch, constrains the evolution of quasar luminosities and determines the evolultion of the quasar luminosity function.

  12. The quasar luminosity function at redshift 4 with the Hyper Suprime-Cam Wide Survey

    NASA Astrophysics Data System (ADS)

    Akiyama, Masayuki; He, Wanqiu; Ikeda, Hiroyuki; Niida, Mana; Nagao, Tohru; Bosch, James; Coupon, Jean; Enoki, Motohiro; Imanishi, Masatoshi; Kashikawa, Nobunari; Kawaguchi, Toshihiro; Komiyama, Yutaka; Lee, Chien-Hsiu; Matsuoka, Yoshiki; Miyazaki, Satoshi; Nishizawa, Atsushi J.; Oguri, Masamune; Ono, Yoshiaki; Onoue, Masafusa; Ouchi, Masami; Schulze, Andreas; Silverman, John D.; Tanaka, Manobu M.; Tanaka, Masayuki; Terashima, Yuichi; Toba, Yoshiki; Ueda, Yoshihiro

    2018-01-01

    We present the luminosity function of z ˜ 4 quasars based on the Hyper Suprime-Cam Subaru Strategic Program Wide layer imaging data in the g, r, i, z, and y bands covering 339.8 deg2. From stellar objects, 1666 z ˜ 4 quasar candidates are selected via the g-dropout selection down to i = 24.0 mag. Their photometric redshifts cover the redshift range between 3.6 and 4.3, with an average of 3.9. In combination with the quasar sample from the Sloan Digital Sky Survey in the same redshift range, a quasar luminosity function covering the wide luminosity range of M1450 = -22 to -29 mag is constructed. The quasar luminosity function is well described by a double power-law model with a knee at M1450 = -25.36 ± 0.13 mag and a flat faint-end slope with a power-law index of -1.30 ± 0.05. The knee and faint-end slope show no clear evidence of redshift evolution from those seen at z ˜ 2. The flat slope implies that the UV luminosity density of the quasar population is dominated by the quasars around the knee, and does not support the steeper faint-end slope at higher redshifts reported at z > 5. If we convert the M1450 luminosity function to the hard X-ray 2-10 keV luminosity function using the relation between the UV and X-ray luminosity of quasars and its scatter, the number density of UV-selected quasars matches well with that of the X-ray-selected active galactic nuclei (AGNs) above the knee of the luminosity function. Below the knee, the UV-selected quasars show a deficiency compared to the hard X-ray luminosity function. The deficiency can be explained by the lack of obscured AGNs among the UV-selected quasars.

  13. Luminosity and Stellar Mass Functions from the 6dF Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Colless, M.; Jones, D. H.; Peterson, B. A.; Campbell, L.; Saunders, W.; Lah, P.

    2007-12-01

    The completed 6dF Galaxy Survey includes redshifts for over 124,000 galaxies. We present luminosity functions in optical and near-infrared passbands that span a range of 10^4 in luminosity. These luminosity functions show systematic deviations from the Schechter form. The corresponding luminosity densities in the optical and near-infrared are consistent with an old stellar population and a moderately declining star formation rate. Stellar mass functions, derived from the K band luminosities and simple stellar population models selected by b_J-r_F colour, lead to an estimate of the present-day stellar mass density of ρ_* = (5.00 ± 0.11) × 10^8 h M_⊙ Mpc^{-3}, corresponding to Ω_* h = (1.80 ± 0.04) × 10^{-3}.

  14. Space Density Of Optically-Selected Type II Quasars From The SDSS

    NASA Astrophysics Data System (ADS)

    Reyes, Reinabelle; Zakamska, N. L.; Strauss, M. A.; Green, J.; Krolik, J. H.; Shen, Y.; Richards, G. T.

    2007-12-01

    Type II quasars are luminous Active Galactic Nuclei (AGN) whose central regions are obscured by large amounts of gas and dust. In this poster, we present a catalog of 887 type II quasars with redshifts z<0.83 from the Sloan Digital Sky Survey (SDSS), selected based on their emission lines, and derive the 1/Vmax [OIII] 5007 luminosity function from this sample. Since some objects may not be included in the sample because they lack strong emission lines, the derived luminosity function is only a lower limit. We also derive the [OIII] 5007 luminosity function for a sample of type I (broad-line) quasars in the same redshift range. Taking [OIII] 5007 luminosity as a tracer of intrinsic luminosity in both type I and type II quasars, we obtain lower limits to the type II quasar fraction as a function of [OIII] 5007 luminosity, from L[OIII] = 108.3 to 1010 Lsun, which roughly correspond to bolometric luminosities of 1044 to 1046 erg/s.

  15. Galaxy luminosity function and Tully-Fisher relation: reconciled through rotation-curve studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cattaneo, Andrea; Salucci, Paolo; Papastergis, Emmanouil, E-mail: andrea.cattaneo@oamp.fr, E-mail: salucci@sissa.it, E-mail: papastergis@astro.cornell.edu

    2014-03-10

    The relation between galaxy luminosity L and halo virial velocity v {sub vir} required to fit the galaxy luminosity function differs from the observed Tully-Fisher relation between L and disk speed v {sub rot}. Because of this, the problem of reproducing the galaxy luminosity function and the Tully-Fisher relation simultaneously has plagued semianalytic models since their inception. Here we study the relation between v {sub rot} and v {sub vir} by fitting observational average rotation curves of disk galaxies binned in luminosity. We show that the v {sub rot}-v {sub vir} relation that we obtain in this way can fullymore » account for this seeming inconsistency. Therefore, the reconciliation of the luminosity function with the Tully-Fisher relation rests on the complex dependence of v {sub rot} on v {sub vir}, which arises because the ratio of stellar mass to dark matter mass is a strong function of halo mass.« less

  16. Evolution of the luminosity function of extragalactic objects

    NASA Technical Reports Server (NTRS)

    Petrosian, V.

    1985-01-01

    A nonparametric procedure for determination of the evolution of the luminosity function of extragalactic objects and use of this for prediction of expected redshift and luminosity distribution of objects is described. The relation between this statistical evolution of the population and their physical evolution, such as the variation with cosmological epoch of their luminosity and formation rate is presented. This procedure when applied to a sample of optically selected quasars with redshifts less than two shows that the luminosity function evolves more strongly for higher luminosities, indicating a larger quasar activity at earlier epochs and a more rapid evolution of the objects during their higher luminosity phases. It is also shown that absence of many quasars at redshifts greater than three implies slowing down of this evolution in the conventional cosmological models, perhaps indicating that this is near the epoch of the birth of the quasar (and galaxies).

  17. The Herschel ATLAS: Evolution of the 250 Micrometer Luminosity Function Out to z = 0.5

    NASA Technical Reports Server (NTRS)

    Dye, S.; Dunne, L.; Eales, S.; Smith, D. J. B.; Amblard, A.; Auld, R.; Baes, M.; Baldry, I. K.; Bamford, S.; Blain, A. W.; hide

    2010-01-01

    We have determined the luminosity function of 250 micrometer-selected galaxies detected in the approximately equal to 14 deg(sup 2) science demonstration region of the Herschel-ATLAS project out to a redshift of z = 0.5. Our findings very clearly show that the luminosity function evolves steadily out to this redshift. By selecting a sub-group of sources within a fixed luminosity interval where incompleteness effects are minimal, we have measured a smooth increase in the comoving 250 micrometer luminosity density out to z = 0.2 where it is 3.6(sup +1.4) (sub -0.9) times higher than the local value.

  18. Size–Luminosity Relations and UV Luminosity Functions at z = 6–9 Simultaneously Derived from the Complete Hubble Frontier Fields Data

    NASA Astrophysics Data System (ADS)

    Kawamata, Ryota; Ishigaki, Masafumi; Shimasaku, Kazuhiro; Oguri, Masamune; Ouchi, Masami; Tanigawa, Shingo

    2018-03-01

    We construct z ∼ 6–7, 8, and 9 faint Lyman break galaxy samples (334, 61, and 37 galaxies, respectively) with accurate size measurements with the software glafic from the complete Hubble Frontier Fields (HFF) cluster and parallel fields data. These are the largest samples hitherto and reach down to the faint ends of recently obtained deep luminosity functions. At faint magnitudes, however, these samples are highly incomplete for galaxies with large sizes, implying that derivation of the luminosity function sensitively depends on the intrinsic size–luminosity relation. We thus conduct simultaneous maximum-likelihood estimation of luminosity function and size–luminosity relation parameters from the observed distribution of galaxies on the size–luminosity plane with the help of a completeness map as a function of size and luminosity. At z ∼ 6–7, we find that the intrinsic size–luminosity relation expressed as r e ∝ L β has a notably steeper slope of β ={0.46}-0.09+0.08 than those at lower redshifts, which in turn implies that the luminosity function has a relatively shallow faint-end slope of α =-{1.86}-0.18+0.17. This steep β can be reproduced by a simple analytical model in which smaller galaxies have lower specific angular momenta. The β and α values for the z ∼ 8 and 9 samples are consistent with those for z ∼ 6–7 but with larger errors. For all three samples, there is a large, positive covariance between β and α, implying that the simultaneous determination of these two parameters is important. We also provide new strong lens mass models of Abell S1063 and Abell 370, as well as updated mass models of Abell 2744 and MACS J0416.1‑2403.

  19. Luminosity function and jet structure of Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    Pescalli, A.; Ghirlanda, G.; Salafia, O. S.; Ghisellini, G.; Nappo, F.; Salvaterra, R.

    2015-02-01

    The structure of gamma-ray burst (GRB) jets impacts on their prompt and afterglow emission properties. The jet of GRBs could be uniform, with constant energy per unit solid angle within the jet aperture, or it could be structured, namely with energy and velocity that depend on the angular distance from the axis of the jet. We try to get some insight about the still unknown structure of GRBs by studying their luminosity function. We show that low (1046-48 erg s-1) and high (i.e. with L ≥ 1050 erg s-1) luminosity GRBs can be described by a unique luminosity function, which is also consistent with current lower limits in the intermediate luminosity range (1048-50 erg s-1). We derive analytical expressions for the luminosity function of GRBs in uniform and structured jet models and compare them with the data. Uniform jets can reproduce the entire luminosity function with reasonable values of the free parameters. A structured jet can also fit adequately the current data, provided that the energy within the jet is relatively strongly structured, i.e. E ∝ θ-k with k ≥ 4. The classical E ∝ θ-2 structured jet model is excluded by the current data.

  20. The joint fit of the BHMF and ERDF for the BAT AGN Sample

    NASA Astrophysics Data System (ADS)

    Weigel, Anna K.; Koss, Michael; Ricci, Claudio; Trakhtenbrot, Benny; Oh, Kyuseok; Schawinski, Kevin; Lamperti, Isabella

    2018-01-01

    A natural product of an AGN survey is the AGN luminosity function. This statistical measure describes the distribution of directly measurable AGN luminosities. Intrinsically, the shape of the luminosity function depends on the distribution of black hole masses and Eddington ratios. To constrain these fundamental AGN properties, the luminosity function thus has to be disentangled into the black hole mass and Eddington ratio distribution function. The BASS survey is unique as it allows such a joint fit for a large number of local AGN, is unbiased in terms of obscuration in the X-rays and provides black hole masses for type-1 and type-2 AGN. The black hole mass function at z ~ 0 represents an essential baseline for simulations and black hole growth models. The normalization of the Eddington ratio distribution function directly constrains the AGN fraction. Together, the BASS AGN luminosity, black hole mass and Eddington ratio distribution functions thus provide a complete picture of the local black hole population.

  1. Implications of the Observed Ultraluminous X-Ray Source Luminosity Function

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.; Tennant, Allyn; Soria, Roberto; Yukita, Mihoko

    2012-01-01

    We present the X-ray luminosity function (XLF) of ultraluminous X-ray (ULX) sources with 0.3-10.0 keV luminosities in excess of 10(sup 39) erg/s in a complete sample of nearby galaxies. The XLF shows a break or cut-off at high luminosities that deviates from its pure power law distribution at lower luminosities. The cut-off is at roughly the Eddington luminosity for a 90-140 solar mass accretor. We examine the effects on the observed XLF of sample biases, of small-number statistics (at the high luminosity end) and of measurement uncertainties. We consider the physical implications of the shape and normalization of the XLF. The XLF is also compared and contrasted to results of other recent surveys.

  2. The Evolution of Globular Cluster Systems In Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Grillmair, Carl

    1999-07-01

    We will measure structural parameters {core radii and concentrations} of globular clusters in three early-type galaxies using deep, four-point dithered observations. We have chosen globular cluster systems which have young, medium-age and old cluster populations, as indicated by cluster colors and luminosities. Our primary goal is to test the hypothesis that globular cluster luminosity functions evolve towards a ``universal'' form. Previous observations have shown that young cluster systems have exponential luminosity functions rather than the characteristic log-normal luminosity function of old cluster systems. We will test to see whether such young system exhibits a wider range of structural parameters than an old systems, and whether and at what rate plausible disruption mechanisms will cause the luminosity function to evolve towards a log-normal form. A simple observational comparison of structural parameters between different age cluster populations and between diff er ent sub-populations within the same galaxy will also provide clues concerning both the formation and destruction mechanisms of star clusters, the distinction between open and globular clusters, and the advisability of using globular cluster luminosity functions as distance indicators.

  3. Statistical Process Control Techniques for the Telecommunications Systems Manager

    DTIC Science & Technology

    1992-03-01

    products that are out of 59 tolerance and bad designs. The third type of defect, mistakes, are remedied by Poka - Yoke methods that are 1 introduced later...based on total production costs plus quality costs. Once production is underway, interventions are determined by their impact on the QLF. F. POKA - YOKE ...Mistakes require process improvements called Poka Yoke or mistake proofing. Shiego Shingo developed Poka Yoke methods to incorporate 100% inspection at

  4. Luminosity function and cosmological evolution of X-ray selected quasars

    NASA Technical Reports Server (NTRS)

    Maccacaro, T.; Gioia, I. M.

    1983-01-01

    The preliminary analysis of a complete sample of 55 X-ray sources is presented as part of the Medium Sensitivity Survey of the Einstein Observatory. A pure luminosity evolutionary law is derived in order to determine the uniform distribution of the sources and the rates of evolution for Active Galactic Nuclei (AGNs) observed by X-ray and optical techniques are compared. A nonparametric representation of the luminosity function is fitted to the observational data. On the basis of the reduced data, it is determined that: (1) AGNs evolve cosmologically; (2) less evolution is required to explain the X-ray data than the optical data; (3) the high-luminosity portion of the X-ray luminosity can be described by a power-law with a slope of gamma = 3.6; and (4) the X-ray luminosity function flattens at low luminosities. Some of the implications of the results for conventional theoretical models of the evolution of quasars and Seyfert galaxies are discussed.

  5. What powers Hyperluminous infrared galaxies at z˜1-2?

    NASA Astrophysics Data System (ADS)

    Symeonidis, M.; Page, M. J.

    2018-06-01

    We investigate what powers hyperluminous infrared galaxies (HyLIRGs; LIR, 8-1000μm > 1013 L⊙) at z˜1-2, by examining the behaviour of the infrared AGN luminosity function in relation to the infrared galaxy luminosity function. The former corresponds to emission from AGN-heated dust only, whereas the latter includes emission from dust heated by stars and AGN. Our results show that the two luminosity functions are substantially different below 1013 L⊙ but converge in the HyLIRG regime. We find that the fraction of AGN dominated sources increases with total infrared luminosity and at L_IR>10^{13.5} L_{⊙} AGN can account for the entire infrared emission. We conclude that the bright end of the 1 < z < 2 infrared galaxy luminosity function is shaped by AGN rather than star-forming galaxies.

  6. Axions and the luminosity function of white dwarfs. The thin and thick disks, and the halo

    NASA Astrophysics Data System (ADS)

    Isern, J.; García-Berro, E.; Torres, S.; Cojocaru, R.; Catalán, S.

    2018-05-01

    The evolution of white dwarfs is a simple gravothermal process of cooling. Since the shape of their luminosity function is sensitive to the characteristic cooling time, it is possible to use its slope to test the existence of additional sources or sinks of energy, such as those predicted by alternative physical theories. The aim of this paper is to study if the changes in the slope of the white dwarf luminosity function around bolometric magnitudes ranging from 8 to 10 and previously attributed to axion emission are, effectively, a consequence of the existence of axions and not an artifact introduced by the star formation rate. We compute theoretical luminosity functions of the thin and thick disk, and of the stellar halo including axion emission and we compare them with the existing observed luminosity functions. Since these stellar populations have different star formation histories, the slope change should be present in all of them at the same place if it is due to axions or any other intrinsic cooling mechanism. The signature of an unexpected cooling seems to be present in the luminosity functions of the thin and thick disks, as well as in the halo luminosity function. This additional cooling is compatible with axion emission, thus supporting to the idea that DFSZ axions, with a mass in the range of 4 to 10 meV, could exist. If this were the case, these axions could be detected by the future solar axioscope IAXO.

  7. Luminosity and surface brightness distribution of K-band galaxies from the UKIDSS Large Area Survey

    NASA Astrophysics Data System (ADS)

    Smith, Anthony J.; Loveday, Jon; Cross, Nicholas J. G.

    2009-08-01

    We present luminosity and surface-brightness distributions of 40111 galaxies with K-band photometry from the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS), Data Release 3 and optical photometry from Data Release 5 of the Sloan Digital Sky Survey (SDSS). Various features and limitations of the new UKIDSS data are examined, such as a problem affecting Petrosian magnitudes of extended sources. Selection limits in K- and r-band magnitude, K-band surface brightness and K-band radius are included explicitly in the 1/Vmax estimate of the space density and luminosity function. The bivariate brightness distribution in K-band absolute magnitude and surface brightness is presented and found to display a clear luminosity-surface brightness correlation that flattens at high luminosity and broadens at low luminosity, consistent with similar analyses at optical wavelengths. Best-fitting Schechter function parameters for the K-band luminosity function are found to be M* - 5 logh = -23.19 +/- 0.04,α = -0.81 +/- 0.04 and φ* = (0.0166 +/- 0.0008)h3Mpc-3, although the Schechter function provides a poor fit to the data at high and low luminosity, while the luminosity density in the K band is found to be j = (6.305 +/- 0.067) × 108LsolarhMpc-3. However, we caution that there are various known sources of incompleteness and uncertainty in our results. Using mass-to-light ratios determined from the optical colours, we estimate the stellar mass function, finding good agreement with previous results. Possible improvements are discussed that could be implemented when extending this analysis to the full LAS.

  8. Clustering, Cosmology and a New Era of Black Hole Demographics: The Conditional Luminosity Function of AGNs

    NASA Astrophysics Data System (ADS)

    Ballantyne, David R.

    2016-04-01

    Deep X-ray surveys have provided a comprehensive and largely unbiased view of AGN evolution stretching back to z˜5. However, it has been challenging to use the survey results to connect this evolution to the cosmological environment that AGNs inhabit. Exploring this connection will be crucial to understanding the triggering mechanisms of AGNs and how these processes manifest in observations at all wavelengths. In anticipation of upcoming wide-field X-ray surveys that will allow quantitative analysis of AGN environments, we present a method to observationally constrain the Conditional Luminosity Function (CLF) of AGNs at a specific z. Once measured, the CLF allows the calculation of the AGN bias, mean dark matter halo mass, AGN lifetime, halo occupation number, and AGN correlation function - all as a function of luminosity. The CLF can be constrained using a measurement of the X-ray luminosity function and the correlation length at different luminosities. The method is demonstrated at z ≈0 and 0.9, and clear luminosity dependence in the AGN bias and mean halo mass is predicted at both z. The results support the idea that there are at least two different modes of AGN triggering: one, at high luminosity, that only occurs in high mass, highly biased haloes, and one that can occur over a wide range of halo masses and leads to luminosities that are correlated with halo mass. This latter mode dominates at z<0.9. The CLFs for Type 2 and Type 1 AGNs are also constrained at z ≈0, and we find evidence that unobscured quasars are more likely to be found in higher mass halos than obscured quasars. Thus, the AGN unification model seems to fail at quasar luminosities.

  9. Consistency between the luminosity function of resolved millisecond pulsars and the galactic center excess

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploeg, Harrison; Gordon, Chris; Crocker, Roland

    Fermi Large Area Telescope data reveal an excess of GeV gamma rays from the direction of the Galactic Center and bulge. Several explanations have been proposed for this excess including an unresolved population of millisecond pulsars (MSPs) and self-annihilating dark matter. It has been claimed that a key discriminant for or against the MSP explanation can be extracted from the properties of the luminosity function describing this source population. Specifically, is the luminosity function of the putative MSPs in the Galactic Center consistent with that characterizing the resolved MSPs in the Galactic disk? To investigate this we have used amore » Bayesian Markov Chain Monte Carlo to evaluate the posterior distribution of the parameters of the MSP luminosity function describing both resolved MSPs and the Galactic Center excess. At variance with some other claims, our analysis reveals that, within current uncertainties, both data sets can be well fit with the same luminosity function.« less

  10. Demineralization of resin-sealed enamel by soft drinks in a clinically relevant pH cycling model.

    PubMed

    Bartels, Agata A; Evans, Carla A; Viana, Grace; Bedran-Russo, Ana K

    2016-04-01

    To compare the in vitro protective effect of orthodontic sealants on the enamel demineralization under a soft drink-induced erosive challenge. The facial surfaces of bovine incisors were sectioned into 5 mm x 4 mm x 4 mm enamel blocks. Specimens were randomly assigned to three surface protection measures: control (exposed enamel), coating with Transbond XT (unfilled resin primer), or coating with Opal Seal (filled and fluoride releasing primer). Thermocycling was used to simulate aging. The specimens were pH cycled through an acidic buffer, test beverage and a neutral buffer for a total of 7 days. Test beverages included water, Diet Mountain Dew, and Coke Classic. Quantitative light-induced fluorescence (QLF) images were taken at baseline and after aging. Final QLF images were taken to evaluate the demineralization of enamel. Data were analyzed statistically using a two-way ANOVA to compare the interaction between enamel surface protection and beverages as well as one-way ANOVA to compare surface protection and the test beverage levels. A statistically significant interaction was found between the surface protected groups and the test beverage groups (P < 0.05). Statistically significant differences were found among the test beverage groups (P < 0.05) and among the surface protection groups (P < 0.05). Coke Classic went through the sealant layer resulting in high enamel demineralization. Enamel coating with Opal Seal significantly reduced the erosive attack of beverages.

  11. The 5-10 keV AGN luminosity function at 0.01 < z < 4.0

    NASA Astrophysics Data System (ADS)

    Fotopoulou, S.; Buchner, J.; Georgantopoulos, I.; Hasinger, G.; Salvato, M.; Georgakakis, A.; Cappelluti, N.; Ranalli, P.; Hsu, L. T.; Brusa, M.; Comastri, A.; Miyaji, T.; Nandra, K.; Aird, J.; Paltani, S.

    2016-03-01

    The active galactic nuclei (AGN) X-ray luminosity function traces actively accreting supermassive black holes and is essential for the study of the properties of the AGN population, black hole evolution, and galaxy-black hole coevolution. Up to now, the AGN luminosity function has been estimated several times in soft (0.5-2 keV) and hard X-rays (2-10 keV). AGN selection in these energy ranges often suffers from identification and redshift incompleteness and, at the same time, photoelectric absorption can obscure a significant amount of the X-ray radiation. We estimate the evolution of the luminosity function in the 5-10 keV band, where we effectively avoid the absorbed part of the spectrum, rendering absorption corrections unnecessary up to NH ~ 1023 cm-2. Our dataset is a compilation of six wide, and deep fields: MAXI, HBSS, XMM-COSMOS, Lockman Hole, XMM-CDFS, AEGIS-XD, Chandra-COSMOS, and Chandra-CDFS. This extensive sample of ~1110 AGN (0.01 < z < 4.0, 41 < log Lx < 46) is 98% redshift complete with 68% spectroscopic redshifts. For sources lacking a spectroscopic redshift estimation we use the probability distribution function of photometric redshift estimation specifically tuned for AGN, and a flat probability distribution function for sources with no redshift information. We use Bayesian analysis to select the best parametric model from simple pure luminosity and pure density evolution to more complicated luminosity and density evolution and luminosity-dependent density evolution (LDDE). We estimate the model parameters that describe best our dataset separately for each survey and for the combined sample. We show that, according to Bayesian model selection, the preferred model for our dataset is the LDDE. Our estimation of the AGN luminosity function does not require any assumption on the AGN absorption and is in good agreement with previous works in the 2-10 keV energy band based on X-ray hardness ratios to model the absorption in AGN up to redshift three. Our sample does not show evidence of a rapid decline of the AGN luminosity function up to redshift four.

  12. A volume-limited ROSAT survey of extreme ultraviolet emission from all nondegenerate stars within 10 parsecs

    NASA Technical Reports Server (NTRS)

    Wood, Brian E.; Brown, Alexander; Linsky, Jeffrey L.; Kellett, Barry J.; Bromage, Gordon E.; Hodgkin, Simon T.; Pye, John P.

    1994-01-01

    We report the results of a volume-limited ROSAT Wide Field Camera (WFC) survey of all nondegenerate stars within 10 pc. Of the 220 known star systems within 10 pc, we find that 41 are positive detections in at least one of the two WFC filter bandpasses (S1 and S2), while we consider another 14 to be marginal detections. We compute X-ray luminosities for the WFC detections using Einstein Imaging Proportional Counter (IPC) data, and these IPC luminosities are discussed along with the WFC luminosities throughout the paper for purposes of comparison. Extreme ultraviolet (EUV) luminosity functions are computed for single stars of different spectral types using both S1 and S2 luminosities, and these luminosity functions are compared with X-ray luminosity functions derived by previous authors using IPC data. We also analyze the S1 and S2 luminosity functions of the binary stars within 10 pc. We find that most stars in binary systems do not emit EUV radiation at levels different from those of single stars, but there may be a few EUV-luminous multiple-star systems which emit excess EUV radiation due to some effect of binarity. In general, the ratio of X-ray luminosity to EUV luminosity increases with increasing coronal emission, suggesting that coronally active stars have higher coronal temperatures. We find that our S1, S2, and IPC luminosities are well correlated with rotational velocity, and we compare activity-rotation relations determined using these different luminosities. Late M stars are found to be significantly less luminous in the EUV than other late-type stars. The most natural explanation for this results is the concept of coronal saturation -- the idea that late-type stars can emit only a limited fraction of their total luminosity in X-ray and EUV radiation, which means stars with very low bolometric luminosities must have relatively low X-ray and EUV luminosities as well. The maximum level of coronal emission from stars with earlier spectral types is studied also. To understand the saturation levels for these stars, we have compiled a large number of IPC luminosities for stars with a wide variety of spectral types and luminosity classes. We show quantitatively that if the Sun were completely covered with X-ray-emitting coronal loops, it would be near the saturation limit implied by this compilation, supporting the idea that stars near upper limits in coronal activity are completely covered with active regions.

  13. The red and blue galaxy populations in the GOODS field: evidence for an excess of red dwarfs

    NASA Astrophysics Data System (ADS)

    Salimbeni, S.; Giallongo, E.; Menci, N.; Castellano, M.; Fontana, A.; Grazian, A.; Pentericci, L.; Trevese, D.; Cristiani, S.; Nonino, M.; Vanzella, E.

    2008-01-01

    Aims: We study the evolution of the galaxy population up to z˜ 3 as a function of its colour properties. In particular, luminosity functions and luminosity densities were derived as a function of redshift for the blue/late and red/early populations. Methods: We use data from the GOODS-MUSIC catalogue, which have typical magnitude limits z850≤ 26 and K_s≤ 23.5 for most of the sample. About 8% of the galaxies have spectroscopic redshifts; the remaining have well calibrated photometric redshifts derived from the extremely wide multi-wavelength coverage in 14 bands (from the U band to the Spitzer 8~ μm band). We have derived a catalogue of galaxies complete in the rest-frame B-band, which has been divided into two subsamples according to their rest-frame U-V colour (or derived specific star formation rate) properties. Results: We confirm a bimodality in the U-V colour and specific star formation rate of the galaxy sample up to z˜ 3. This bimodality is used to compute the luminosity functions of the blue/late and red/early subsamples. The luminosity functions of the blue/late and total samples are well represented by steep Schechter functions evolving in luminosity with increasing redshifts. The volume density of the luminosity functions of the red/early populations decreases with increasing redshift. The shape of the red/early luminosity functions shows an excess of faint red dwarfs with respect to the extrapolation of a flat Schechter function and can be represented by the sum of two Schechter functions. Our model for galaxy formation in the hierarchical clustering scenario, which also includes external feedback due to a diffuse UV background, shows a general broad agreement with the luminosity functions of both populations, the larger discrepancies being present at the faint end for the red population. Hints on the nature of the red dwarf population are given on the basis of their stellar mass and spatial distributions.

  14. Effects of variability of X-ray binaries on the X-ray luminosity functions of Milky Way

    NASA Astrophysics Data System (ADS)

    Islam, Nazma; Paul, Biswajit

    2016-08-01

    The X-ray luminosity functions of galaxies have become a useful tool for population studies of X-ray binaries in them. The availability of long term light-curves of X-ray binaries with the All Sky X-ray Monitors opens up the possibility of constructing X-ray luminosity functions, by also including the intensity variation effects of the galactic X-ray binaries. We have constructed multiple realizations of the X-ray luminosity functions (XLFs) of Milky Way, using the long term light-curves of sources obtained in the 2-10 keV energy band with the RXTE-ASM. The observed spread seen in the value of slope of both HMXB and LMXB XLFs are due to inclusion of variable luminosities of X-ray binaries in construction of these XLFs as well as finite sample effects. XLFs constructed for galactic HMXBs in the luminosity range 1036-1039 erg/sec is described by a power-law model with a mean power-law index of -0.48 and a spread due to variability of HMXBs as 0.19. XLFs constructed for galactic LMXBs in the luminosity range 1036-1039 erg/sec has a shape of cut-off power-law with mean power-law index of -0.31 and a spread due to variability of LMXBs as 0.07.

  15. Padé Approximant and Minimax Rational Approximation in Standard Cosmology

    NASA Astrophysics Data System (ADS)

    Zaninetti, Lorenzo

    2016-02-01

    The luminosity distance in the standard cosmology as given by $\\Lambda$CDM and consequently the distance modulus for supernovae can be defined by the Pad\\'e approximant. A comparison with a known analytical solution shows that the Pad\\'e approximant for the luminosity distance has an error of $4\\%$ at redshift $= 10$. A similar procedure for the Taylor expansion of the luminosity distance gives an error of $4\\%$ at redshift $=0.7 $; this means that for the luminosity distance, the Pad\\'e approximation is superior to the Taylor series. The availability of an analytical expression for the distance modulus allows applying the Levenberg--Marquardt method to derive the fundamental parameters from the available compilations for supernovae. A new luminosity function for galaxies derived from the truncated gamma probability density function models the observed luminosity function for galaxies when the observed range in absolute magnitude is modeled by the Pad\\'e approximant. A comparison of $\\Lambda$CDM with other cosmologies is done adopting a statistical point of view.

  16. A Physical Model for the Evolving Ultraviolet Luminosity Function of High Redshift Galaxies and their Contribution to the Cosmic Reionization

    NASA Astrophysics Data System (ADS)

    Cai, Zhen-Yi; Lapi, Andrea; Bressan, Alessandro; De Zotti, Gianfranco; Negrello, Mattia; Danese, Luigi

    2014-04-01

    We present a physical model for the evolution of the ultraviolet (UV) luminosity function of high-redshift galaxies, taking into account in a self-consistent way their chemical evolution and the associated evolution of dust extinction. Dust extinction is found to increase fast with halo mass. A strong correlation between dust attenuation and halo/stellar mass for UV selected high-z galaxies is thus predicted. The model yields good fits of the UV and Lyman-α (Lyα) line luminosity functions at all redshifts at which they have been measured. The weak observed evolution of both luminosity functions between z = 2 and z = 6 is explained as the combined effect of the negative evolution of the halo mass function; of the increase with redshift of the star formation efficiency due to the faster gas cooling; and of dust extinction, differential with halo mass. The slope of the faint end of the UV luminosity function is found to steepen with increasing redshift, implying that low luminosity galaxies increasingly dominate the contribution to the UV background at higher and higher redshifts. The observed range of the UV luminosities at high z implies a minimum halo mass capable of hosting active star formation M crit <~ 109.8 M ⊙, which is consistent with the constraints from hydrodynamical simulations. From fits of Lyα line luminosity functions, plus data on the luminosity dependence of extinction, and from the measured ratios of non-ionizing UV to Lyman-continuum flux density for samples of z ~= 3 Lyman break galaxies and Lyα emitters, we derive a simple relationship between the escape fraction of ionizing photons and the star formation rate. It implies that the escape fraction is larger for low-mass galaxies, which are almost dust-free and have lower gas column densities. Galaxies already represented in the UV luminosity function (M UV <~ -18) can keep the universe fully ionized up to z ~= 6. This is consistent with (uncertain) data pointing to a rapid drop of the ionization degree above z ~= 6, such as indications of a decrease of the comoving emission rate of ionizing photons at z ~= 6, a decrease of sizes of quasar near zones, and a possible decline of the Lyα transmission through the intergalactic medium at z > 6. On the other hand, the electron scattering optical depth, τes, inferred from cosmic microwave background (CMB) experiments favor an ionization degree close to unity up to z ~= 9-10. Consistency with CMB data can be achieved if M crit ~= 108.5 M ⊙, implying that the UV luminosity functions extend to M UV ~= -13, although the corresponding τes is still on the low side of CMB-based estimates.

  17. MUSE deep-fields: the Ly α luminosity function in the Hubble Deep Field-South at 2.91 < z < 6.64

    NASA Astrophysics Data System (ADS)

    Drake, Alyssa B.; Guiderdoni, Bruno; Blaizot, Jérémy; Wisotzki, Lutz; Herenz, Edmund Christian; Garel, Thibault; Richard, Johan; Bacon, Roland; Bina, David; Cantalupo, Sebastiano; Contini, Thierry; den Brok, Mark; Hashimoto, Takuya; Marino, Raffaella Anna; Pelló, Roser; Schaye, Joop; Schmidt, Kasper B.

    2017-10-01

    We present the first estimate of the Ly α luminosity function using blind spectroscopy from the Multi Unit Spectroscopic Explorer, MUSE, in the Hubble Deep Field-South. Using automatic source-detection software, we assemble a homogeneously detected sample of 59 Ly α emitters covering a flux range of -18.0 < log10 (F) < -16.3 (erg s-1 cm-2), corresponding to luminosities of 41.4 < log10 (L) < 42.8 (erg s-1). As recent studies have shown, Ly α fluxes can be underestimated by a factor of 2 or more via traditional methods, and so we undertake a careful assessment of each object's Ly α flux using a curve-of-growth analysis to account for extended emission. We describe our self-consistent method for determining the completeness of the sample, and present an estimate of the global Ly α luminosity function between redshifts 2.91 < z < 6.64 using the 1/Vmax estimator. We find that the luminosity function is higher than many number densities reported in the literature by a factor of 2-3, although our result is consistent at the 1σ level with most of these studies. Our observed luminosity function is also in good agreement with predictions from semi-analytic models, and shows no evidence for strong evolution between the high- and low-redshift halves of the data. We demonstrate that one's approach to Ly α flux estimation does alter the observed luminosity function, and caution that accurate flux assessments will be crucial in measurements of the faint-end slope. This is a pilot study for the Ly α luminosity function in the MUSE deep-fields, to be built on with data from the Hubble Ultra Deep Field that will increase the size of our sample by almost a factor of 10.

  18. Cosmic reionization on computers: The faint end of the galaxy luminosity function

    DOE PAGES

    Gnedin, Nickolay Y.

    2016-07-01

    Using numerical cosmological simulations completed under the “Cosmic Reionization On Computers” project, I explore theoretical predictions for the faint end of the galaxy UV luminosity functions atmore » $$z\\gtrsim 6$$. A commonly used Schechter function approximation with the magnitude cut at $${M}_{{\\rm{cut}}}\\sim -13$$ provides a reasonable fit to the actual luminosity function of simulated galaxies. When the Schechter functional form is forced on the luminosity functions from the simulations, the magnitude cut $${M}_{{\\rm{cut}}}$$ is found to vary between -12 and -14 with a mild redshift dependence. Here, an analytical model of reionization from Madau et al., as used by Robertson et al., provides a good description of the simulated results, which can be improved even further by adding two physically motivated modifications to the original Madau et al. equation.« less

  19. Cosmic reionization on computers: The faint end of the galaxy luminosity function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gnedin, Nickolay Y.

    Using numerical cosmological simulations completed under the “Cosmic Reionization On Computers” project, I explore theoretical predictions for the faint end of the galaxy UV luminosity functions atmore » $$z\\gtrsim 6$$. A commonly used Schechter function approximation with the magnitude cut at $${M}_{{\\rm{cut}}}\\sim -13$$ provides a reasonable fit to the actual luminosity function of simulated galaxies. When the Schechter functional form is forced on the luminosity functions from the simulations, the magnitude cut $${M}_{{\\rm{cut}}}$$ is found to vary between -12 and -14 with a mild redshift dependence. Here, an analytical model of reionization from Madau et al., as used by Robertson et al., provides a good description of the simulated results, which can be improved even further by adding two physically motivated modifications to the original Madau et al. equation.« less

  20. Does the evolution of the radio luminosity function of star-forming galaxies match that of the star formation rate function?

    NASA Astrophysics Data System (ADS)

    Bonato, Matteo; Negrello, Mattia; Mancuso, Claudia; De Zotti, Gianfranco; Ciliegi, Paolo; Cai, Zhen-Yi; Lapi, Andrea; Massardi, Marcella; Bonaldi, Anna; Sajina, Anna; Smolčić, Vernesa; Schinnerer, Eva

    2017-08-01

    The assessment of the relationship between radio continuum luminosity and star formation rate (SFR) is of crucial importance to make reliable predictions for the forthcoming ultra-deep radio surveys and to allow a full exploitation of their results to measure the cosmic star formation history. We have addressed this issue by matching recent accurate determinations of the SFR function up to high redshifts with literature estimates of the 1.4 GHz luminosity functions of star-forming galaxies (SFGs). This was done considering two options, proposed in the literature, for the relationship between the synchrotron emission (Lsynch), that dominates at 1.4 GHz, and the SFR: a linear relation with a decline of the Lsynch/SFR ratio at low luminosities or a mildly non-linear relation at all luminosities. In both cases, we get good agreement with the observed radio luminosity functions but, in the non-linear case, the deviation from linearity must be small. The luminosity function data are consistent with a moderate increase of the Lsynch/SFR ratio with increasing redshift, indicated by other data sets, although a constant ratio cannot be ruled out. A stronger indication of such increase is provided by recent deep 1.4-GHz counts, down to μJy levels. This is in contradiction with models predicting a decrease of that ratio due to inverse Compton cooling of relativistic electrons at high redshifts. Synchrotron losses appear to dominate up to z ≃ 5. We have also updated the Massardi et al. evolutionary model for radio loud AGNs.

  1. Local Luminosity Function at 15 micro m and Galaxy Evolution Seen by ISOCAM 15 micro m Surveys

    NASA Technical Reports Server (NTRS)

    Xu, C.

    2000-01-01

    A local luminosity function at 15 micro m is derived using the bivariate (15 micro m vs. 60 micro m luminosities) method, based on the newly published ISOCAM LW3-band (15 micro m) survey of the very deep IRAS 60 micro m sample in the north ecliptic pole region (NEPR).

  2. The white dwarf luminosity function - A possible probe of the galactic halo

    NASA Technical Reports Server (NTRS)

    Tamanaha, Christopher M.; Silk, Joseph; Wood, M. A.; Winget, D. E.

    1990-01-01

    The dynamically inferred dark halo mass density, amounting to above 0.01 solar masses/cu pc at the sun's Galactocentric radius, can be composed of faint white dwarfs provided that the halo formed in a sufficiently early burst of star formation. The model is constrained by the observed disk white dwarf luminosity function which falls off below log (L/solar L) = -4.4, due to the onset of star formation in the disk. By using a narrow range for the initial mass function and an exponentially decaying halo star formation rate with an e-folding time equal to the free-fall time, all the halo dark matter is allowed to be in cool white dwarfs which lie beyond the falloff in the disk luminosity function. Although it is unlikely that all the dark matter is in these dim white dwarfs, a definite signature in the low-luminosity end of the white dwarf luminosity function is predicted even if they comprise only 1 percent of the dark matter. Current CCD surveys should answer the question of the existence of this population within the next few years.

  3. An order statistics approach to the halo model for galaxies

    NASA Astrophysics Data System (ADS)

    Paul, Niladri; Paranjape, Aseem; Sheth, Ravi K.

    2017-04-01

    We use the halo model to explore the implications of assuming that galaxy luminosities in groups are randomly drawn from an underlying luminosity function. We show that even the simplest of such order statistics models - one in which this luminosity function p(L) is universal - naturally produces a number of features associated with previous analyses based on the 'central plus Poisson satellites' hypothesis. These include the monotonic relation of mean central luminosity with halo mass, the lognormal distribution around this mean and the tight relation between the central and satellite mass scales. In stark contrast to observations of galaxy clustering; however, this model predicts no luminosity dependence of large-scale clustering. We then show that an extended version of this model, based on the order statistics of a halo mass dependent luminosity function p(L|m), is in much better agreement with the clustering data as well as satellite luminosities, but systematically underpredicts central luminosities. This brings into focus the idea that central galaxies constitute a distinct population that is affected by different physical processes than are the satellites. We model this physical difference as a statistical brightening of the central luminosities, over and above the order statistics prediction. The magnitude gap between the brightest and second brightest group galaxy is predicted as a by-product, and is also in good agreement with observations. We propose that this order statistics framework provides a useful language in which to compare the halo model for galaxies with more physically motivated galaxy formation models.

  4. Luminosity Function of Faint Globular Clusters in M87

    NASA Astrophysics Data System (ADS)

    Waters, Christopher Z.; Zepf, Stephen E.; Lauer, Tod R.; Baltz, Edward A.; Silk, Joseph

    2006-10-01

    We present the luminosity function to very faint magnitudes for the globular clusters in M87, based on a 30 orbit Hubble Space Telescope (HST) WFPC2 imaging program. The very deep images and corresponding improved false source rejection allow us to probe the mass function further beyond the turnover than has been done before. We compare our luminosity function to those that have been observed in the past, and confirm the similarity of the turnover luminosity between M87 and the Milky Way. We also find with high statistical significance that the M87 luminosity function is broader than that of the Milky Way. We discuss how determining the mass function of the cluster system to low masses can constrain theoretical models of the dynamical evolution of globular cluster systems. Our mass function is consistent with the dependence of mass loss on the initial cluster mass given by classical evaporation, and somewhat inconsistent with newer proposals that have a shallower mass dependence. In addition, the rate of mass loss is consistent with standard evaporation models, and not with the much higher rates proposed by some recent studies of very young cluster systems. We also find that the mass-size relation has very little slope, indicating that there is almost no increase in the size of a cluster with increasing mass.

  5. Clustering, Cosmology and a New Era of Black Hole Demographics: The Conditional Luminosity Function of AGNs

    NASA Astrophysics Data System (ADS)

    Ballantyne, David R.

    2017-01-01

    Deep X-ray surveys have provided a comprehensive and largely unbiased view of active galactic nuclei (AGN) evolution stretching back to z~5. However, it has been challenging to use the survey results to connect this evolution to the cosmological environment that AGNs inhabit. Exploring this connection will be crucial to understanding the triggering mechanisms of AGNs and how these processes manifest in observations at all wavelengths. In anticipation of upcoming wide-field X-ray surveys that will allow quantitative analysis of AGN environments, we present a method to observationally constrain the Conditional Luminosity Function (CLF) of AGNs at a specific z. Once measured, the CLF allows the calculation of the AGN bias, mean dark matter halo mass, AGN lifetime, halo occupation number, and AGN correlation function -- all as a function of luminosity. The CLF can be constrained using a measurement of the X-ray luminosity function and the correlation length at different luminosities. The method is illustrated at z≈0 and 0.9 using the limited data that is currently available, and a clear luminosity dependence in the AGN bias and mean halo mass is predicted at both, supporting the idea that there are at least two different modes of AGN triggering. In addition, the CLF predicts that z≈0.9 quasars may be commonly hosted by haloes with Mh ~ 1014 M⊙. These `young cluster' environments may provide the necessary interactions between gas-rich galaxies to fuel luminous accretion. The results derived from this method will be useful to populate AGNs of different luminosities in cosmological simulations.

  6. The luminosity function for different morphological types in the CfA Redshift Survey

    NASA Technical Reports Server (NTRS)

    Marzke, Ronald O.; Geller, Margaret J.; Huchra, John P.; Corwin, Harold G., Jr.

    1994-01-01

    We derive the luminosity function for different morphological types in the original CfA Redshift Survey (CfA1) and in the first two slices of the CfA Redshift Survey Extension (CfA2). CfA1 is a complete sample containing 2397 galaxies distributed over 2.7 steradians with m(sub z) less than or equal 14.5. The first two complete slices of CfA2 contain 1862 galaxies distributed over 0.42 steradians with m(sub z)=15.5. The shapes of the E-S0 and spiral luminosity functions (LF) are indistinguishable. We do not confirm the steeply decreasing faint end in the E-S0 luminosity function found by Loveday et al. for an independent sample in the southern hemisphere. We demonstrate that incomplete classification in deep redshift surveys can lead to underestimates of the faint end of the elliptical luminosity function and could be partially responsible for the difference between the CfA survey and other local field surveys. The faint end of the LF for the Magellanic spirals and irregulars is very steep. The Sm-Im luminosity function is well fit by a Schechter function with M*=-18.79, alpha=-1.87, and phi*=0.6x10(exp -3) for M(sub z) less than or equal to -13. These galaxies are largely responsible for the excess at the faint end of the general CfA luminosity function. The abundance of intrinsically faint, blue galaxies nearby affects the interpretation of deep number counts. The dwarf population increases the expected counts at B=25 in a no-evolution, q(sub 0)=0.05 model by a factor of two over standard no-evolution estimates. These dwarfs change the expected median redshift in deep redshift surveys by less than 10 percent . Thus the steep Sm-Im LF may contribute to the reconciliation of deep number counts with deep redshift surveys.

  7. On the luminosity function, lifetimes, and origin of blue stragglers in globular clusters

    NASA Technical Reports Server (NTRS)

    Bailyn, Charles D.; Pinsonneault, Marc H.

    1995-01-01

    We compute theoretical evolutionary tracks of blue stragglers created by mergers. Two formation scenarios are considered: mergers of primordial binaries, and stellar collisions. These two scenarios predict strikingly different luminosity functions, which are potentially distinguishable observationally. Tabulated theoretical luminosity functions and lifetimes are presented for blue stragglers formed under a variety of input conditions. We compare our results with observations of the blue straggler sequences in 47 Tucanae and M3. In the case of 47 Tuc, the luminosity function and the formation rate are compatible with the hypothesis that the blue stragglers formed through the collision of single stars. Mergers of primordial binaries are only marginally cosistent with the data, and a significant enhancement of the collision cross section by binary-single-star encounters appears to be ruled out. In the case of M3, we find that the innermost blue stragglers have a luminosity function significantly different from that of the outer stragglers, thus confirming earlier suggestions that there are two distinct populations of blue stragglers in this cluster. The inner stragglers are preferentially brighter and bluer, as would be expected if they were made by collisions, but there are so many of them that the collision rate would need to be enhanced by interactions involving wide binaries. The luminosity function of the outer stragglers is almost identical to the predictions of mergers from primordial binaries and is inconsistent with the collision hypothesis.

  8. Caries Detection around Restorations Using ICDAS and Optical Devices.

    PubMed

    Diniz, Michele Baffi; Eckert, George Joseph; González-Cabezas, Carlos; Cordeiro, Rita de Cássia Loiola; Ferreira-Zandona, Andrea Gonçalves

    2016-01-01

    Secondary caries is the major reason for replacement of restorations in operative dentistry. New detection methods and technology have the potential to improve the accuracy for diagnosis of secondary carious lesions. This in vitro study evaluated the performance of the ICDAS (International Caries Detection and Assessment System) visual criteria and optical devices for detecting secondary caries around amalgam and composite resin restorations in permanent teeth. A total of 180 extracted teeth with Class I amalgam (N = 90) and resin composite (N = 90) restorations were selected. Two examiners analyzed the teeth twice using the visual criteria (ICDAS), laser fluorescence (LF), light-emitting diode device (MID), quantitative light-induced fluorescence system (QLF), and a prototype system based on the Fluorescence Enamel Imaging technique (Professional Caries Detection System, PCDS). The gold standard was determined by means of confocal laser scanning microscopy. High-reproducibility values were shown for all methods, except for MID in the amalgam group. For both groups the QLF and PCDS were the most sensitive methods, whereas the other methods presented better specificity (p < 0.05). All methods, except the MID device appeared to be potential methods for detecting secondary caries only around resin composite restorations, whereas around amalgam restorations all methods seemed to be questionable. Using Internal Caries Detection and Assessment System (ICDAS), an LF device, quantitative light-induced fluorescence and a novel method based on Fluorescence Enamel Imaging technique may be effective for evaluating secondary caries around composite resin restorations. © 2016 Wiley Periodicals, Inc.

  9. Effect of an oral health education program based on the use of quantitative light-induced fluorescence technology in Uzbekistan adolescents.

    PubMed

    Khudanov, Bakhtinur; Jung, Hoi In; Kahharova, Dono; Lee, Jeong-Woo; Hamidov, Ilhom; Lee, Eun-Song; Kim, Baek-Il

    2018-03-01

    The aim of this study was to determine whether an oral health education program using a Qscan device based on quantitative light-induced fluorescence (QLF) technology could improve the oral hygiene status and oral health literacy of adolescents. One hundred adolescents aged 14-16 years attending a school in Tashkent city were included in this study. The participants were assigned to the following two groups using permuted block randomization technique: (i) control group (traditional learning) and (ii) experimental group (Qscan device-based learning). The participants included in the experimental group received additional education and training on dental plaque removal using the Qscan device. The accumulated levels of plaque were assessed in all participants, who also completed questionnaires about their oral health status, oral health knowledge, attitude, and behavior during an 8-week period. There were statistically significant improvements in the experimental group compared to the control group in the plaque index (0.46 vs 0.07, p < .05), oral health knowledge (19.4 vs 28.8, p < .05), attitude (16.7 vs 20.2, p < .05), and behavior (19.9 vs 30.5, p < .05). This study has demonstrated that an oral health education program based on the use of QLF technology could be useful for improving the oral hygiene status and oral health literacy of adolescents in Uzbekistan. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Evaluation of the remineralization capacity of CPP-ACP containing fluoride varnish by different quantitative methods

    PubMed Central

    SAVAS, Selcuk; KAVRÌK, Fevzi; KUCUKYÌLMAZ, Ebru

    2016-01-01

    ABSTRACT Objective The aim of this study was to evaluate the efficacy of CPP-ACP containing fluoride varnish for remineralizing white spot lesions (WSLs) with four different quantitative methods. Material and Methods Four windows (3x3 mm) were created on the enamel surfaces of bovine incisor teeth. A control window was covered with nail varnish, and WSLs were created on the other windows (after demineralization, first week and fourth week) in acidified gel system. The test material (MI Varnish) was applied on the demineralized areas, and the treated enamel samples were stored in artificial saliva. At the fourth week, the enamel surfaces were tested by surface microhardness (SMH), quantitative light-induced fluorescence-digital (QLF-D), energy-dispersive spectroscopy (EDS) and laser fluorescence (LF pen). The data were statistically analyzed (α=0.05). Results While the LF pen measurements showed significant differences at baseline, after demineralization, and after the one-week remineralization period (p<0.05), the difference between the 1- and 4-week was not significant (p>0.05). With regards to the SMH and QLF-D analyses, statistically significant differences were found among all the phases (p<0.05). After the 1- and 4-week treatment periods, the calcium (Ca) and phosphate (P) concentrations and Ca/P ratio were higher compared to those of the demineralization surfaces (p<0.05). Conclusion CPP-ACP containing fluoride varnish provides remineralization of WSLs after a single application and seems suitable for clinical use. PMID:27383699

  11. CONSTRAINTS ON THE FAINT END OF THE QUASAR LUMINOSITY FUNCTION AT z {approx} 5 IN THE COSMOS FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeda, H.; Matsuoka, K.; Kajisawa, M.

    2012-09-10

    We present the result of our low-luminosity quasar survey in the redshift range of 4.5 {approx}< z {approx}< 5.5 in the COSMOS field. Using the COSMOS photometric catalog, we selected 15 quasar candidates with 22 < i' < 24 at z {approx} 5 that are {approx}3 mag fainter than the Sloan Digital Sky Survey quasars in the same redshift range. We obtained optical spectra for 14 of the 15 candidates using FOCAS on the Subaru Telescope and did not identify any low-luminosity type-1 quasars at z {approx} 5, while a low-luminosity type-2 quasar at z {approx} 5.07 was discovered. Inmore » order to constrain the faint end of the quasar luminosity function at z {approx} 5, we calculated the 1{sigma} confidence upper limits of the space density of type-1 quasars. As a result, the 1{sigma} confidence upper limits on the quasar space density are {Phi} < 1.33 Multiplication-Sign 10{sup -7} Mpc{sup -3} mag{sup -1} for -24.52 < M{sub 1450} < -23.52 and {Phi} < 2.88 Multiplication-Sign 10{sup -7} Mpc{sup -3} mag{sup -1} for -23.52 < M{sub 1450} < -22.52. The inferred 1{sigma} confidence upper limits of the space density are then used to provide constraints on the faint-end slope and the break absolute magnitude of the quasar luminosity function at z {approx} 5. We find that the quasar space density decreases gradually as a function of redshift at low luminosity (M{sub 1450} {approx} -23), being similar to the trend found for quasars with high luminosity (M{sub 1450} < -26). This result is consistent with the so-called downsizing evolution of quasars seen at lower redshifts.« less

  12. Clustering, cosmology and a new era of black hole demographics- I. The conditional luminosity function of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Ballantyne, D. R.

    2017-01-01

    Deep X-ray surveys have provided a comprehensive and largely unbiased view of active galactic nuclei (AGN) evolution stretching back to z ˜ 5. However, it has been challenging to use the survey results to connect this evolution to the cosmological environment that AGN inhabit. Exploring this connection will be crucial to understanding the triggering mechanisms of AGN and how these processes manifest in observations at all wavelengths. In anticipation of upcoming wide-field X-ray surveys that will allow quantitative analysis of AGN environments, this paper presents a method to observationally constrain the conditional luminosity function (CLF) of AGN at a specific z. Once measured, the CLF allows the calculation of the AGN bias, mean dark matter halo mass, AGN lifetime, halo occupation number, and AGN correlation function- all as a function of luminosity. The CLF can be constrained using a measurement of the X-ray luminosity function and the correlation length at different luminosities. The method is illustrated at z ≈ 0 and 0.9 using the limited data that are currently available, and a clear luminosity dependence in the AGN bias and mean halo mass is predicted at both z, supporting the idea that there are at least two different modes of AGN triggering. In addition, the CLF predicts that z ≈ 0.9 quasars may be commonly hosted by haloes with Mh ˜ 1014 M⊙. These `young cluster' environments may provide the necessary interactions between gas-rich galaxies to fuel luminous accretion. The results derived from this method will be useful to populate AGN of different luminosities in cosmological simulations.

  13. Keck Deep Fields. II. The Ultraviolet Galaxy Luminosity Function at z ~ 4, 3, and 2

    NASA Astrophysics Data System (ADS)

    Sawicki, Marcin; Thompson, David

    2006-05-01

    We use very deep UnGRI multifield imaging obtained at the Keck telescope to study the evolution of the rest-frame 1700 Å galaxy luminosity function as the universe doubles its age from z~4 to ~2. We use exactly the same filters and color-color selection as those used by the Steidel team but probe significantly fainter limits, well below L*. The depth of our imaging allows us to constrain the faint end of the luminosity function, reaching M1700~-18.5 at z~3 (equivalent to ~1 Msolar yr-1), accounting for both N1/2 uncertainty in the number of galaxies and cosmic variance. We carefully examine many potential sources of systematic bias in our LF measurements before drawing the following conclusions. We find that the luminosity function of Lyman break galaxies evolves with time and that this evolution is differential with luminosity. The result is best constrained between the epochs at z~4 and ~3, where we find that the number density of sub-L* galaxies increases with time by at least a factor of 2.3 (11 σ statistical confidence); while the faint end of the LF evolves, the bright end appears to remain virtually unchanged, indicating that there may be differential, luminosity-dependent evolution (98.5% statistical probability). Potential systematic biases restrict our ability to draw strong conclusions about continued evolution of the luminosity function to lower redshifts, z~2.2 and ~1.7, but, nevertheless, it appears certain that the number density of z~2.2 galaxies at all luminosities we studied, -22>M1700>-18, is at least as high as that of their counterparts at z~3. While it is not yet clear what mechanism underlies the observed evolution, the fact that this evolution is differential with luminosity opens up new avenues of improving our understanding of how galaxies form and evolve at high redshift. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by the generous financial support of the W. M. Keck Foundation.

  14. Correlation function of the luminosity distances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biern, Sang Gyu; Yoo, Jaiyul, E-mail: sgbiern@physik.uzh.ch, E-mail: jyoo@physik.uzh.ch

    We present the correlation function of the luminosity distances in a flat ΛCDM universe. Decomposing the luminosity distance fluctuation into the velocity, the gravitational potential, and the lensing contributions in linear perturbation theory, we study their individual contributions to the correlation function. The lensing contribution is important at large redshift ( z ∼> 0.5) but only for small angular separation (θ ∼< 3°), while the velocity contribution dominates over the other contributions at low redshift or at larger separation. However, the gravitational potential contribution is always subdominant at all scale, if the correct gauge-invariant expression is used. The correlation functionmore » of the luminosity distances depends significantly on the matter content, especially for the lensing contribution, thus providing a novel tool of estimating cosmological parameters.« less

  15. Evolution of the Blue and Far-Infrared Galaxy Luminosity Functions

    NASA Technical Reports Server (NTRS)

    Lonsdale, Carol J.; Chokshi, Arati

    1993-01-01

    The space density of blue-selected galaxies at moderate redshifts is determined here directly by deriving the luminosity function. Evidence is found for density evolution for moderate luminosity galaxies at a rate of (1+z) exp delta, with a best fit of delta + 4 +/- 2, between the current epoch and Z greater than about 0.1. At M(b) less than -22 evidence is found for about 0.5-1.5 mag of luminosity evolution in addition to the density evolution, corresponding to an evolutionary rate of about (1+z) exp gamma, with gamma = 0.5-2.5, but a redshift of about 0.4. Assuming a steeper faint end slope of alpha = -1.3 similar to that observed in the Virgo cluster, could explain the data with a luminosity evolution rate of gamma = 1-2, without need for any density evolution. Acceptable fits are found by comparing composite density and luminosity evolution models to faint IRAS 60 micron source counts, implying that the blue and far-IR evolutionary rates may be similar.

  16. The luminosity function at the end of the main sequence: Results of a deep, large-area, CCD survey for cool dwarfs

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, J. Davy; Mcgraw, John T.; Hess, Thomas R.; Liebert, James; Mccarthy, Donald W., Jr.

    1994-01-01

    The luminosity function at the end of the main sequence is determined from V, R, and I data taken by the charge coupled devices (CCD)/Transit Instrument, a dedicated telescope surveying an 8.25 min wide strip of sky centered at delta = +28 deg, thus sampling Galactic latitudes of +90 deg down to -35 deg. A selection of 133 objects chosen via R - I and V - I colors has been observed spectroscopically at the 4.5 m Multiple Mirror Telescope to assess contributions by giants and subdwarfs and to verify that the reddest targets are objects of extremely late spectral class. Eighteen dwarfs of type M6 or later have been discovered, with the latest being of type M8.5. Data used for the determination of the luminosity function cover 27.3 sq. deg down to a completeness limit of R = 19.0. This luminosity function, computed at V, I, and bolometric magnitudes, shows an increase at the lowest luminosities, corresponding to spectral types later than M6- an effect suggested in earlier work by Reid & Gilmore and Legget & Hawkins. When the luminosity function is segregated into north Galactic and south Galactic portions, it is found that the upturn at faint magnitudes exists only in the southern sample. In fact, no dwarfs with M(sub I) is greater than or equal to 12.0 are found within the limiting volume of the 19.4 sq deg northern sample, in stark contrast to the smaller 7.9 sq deg area at southerly latitudes where seven such dwarfs are found. This fact, combined with the fact that the Sun is located approximately 10-40 pc north of the midplane, suggests that the latest dwarfs are part of a young population with a scale height much smaller than the 350 pc value generally adopted for other M dwarfs. These objects comprise a young population either because the lower metallicities prevelant at earlier epochs inhibited the formation of late M dwarfs or because the older counterparts of this population have cooled beyond current detection limits. The latter scenario would hold if these late-type M dwarfs are substellar. The luminosity function data together with an empirical derivation of the mass-luminosity relation (from Henry & McCarthy) are used to compute a mass function independent of theory. This mass function increases toward the end of the main sequence, but the observed density of M dwarfs is still insufficient to account for the missing mass. If the increases seen in the luminosity and mass functions are indicative of a large, unseen, substellar population, brown dwarfs may yet add significantly to the mass of the Galaxy.

  17. Galaxy And Mass Assembly: evolution of the Hα luminosity function and star formation rate density up to z < 0.35

    NASA Astrophysics Data System (ADS)

    Gunawardhana, M. L. P.; Hopkins, A. M.; Bland-Hawthorn, J.; Brough, S.; Sharp, R.; Loveday, J.; Taylor, E.; Jones, D. H.; Lara-López, M. A.; Bauer, A. E.; Colless, M.; Owers, M.; Baldry, I. K.; López-Sánchez, A. R.; Foster, C.; Bamford, S.; Brown, M. J. I.; Driver, S. P.; Drinkwater, M. J.; Liske, J.; Meyer, M.; Norberg, P.; Robotham, A. S. G.; Ching, J. H. Y.; Cluver, M. E.; Croom, S.; Kelvin, L.; Prescott, M.; Steele, O.; Thomas, D.; Wang, L.

    2013-08-01

    Measurements of the low-z Hα luminosity function, Φ, have a large dispersion in the local number density of sources (˜0.5-1 Mpc-3 dex-1), and correspondingly in the star formation rate density (SFRD). The possible causes for these discrepancies include limited volume sampling, biases arising from survey sample selection, different methods of correcting for dust obscuration and active galactic nucleus contamination. The Galaxy And Mass Assembly (GAMA) survey and Sloan Digital Sky Survey (SDSS) provide deep spectroscopic observations over a wide sky area enabling detection of a large sample of star-forming galaxies spanning 0.001 < SFRHα (M⊙ yr- 1) < 100 with which to robustly measure the evolution of the SFRD in the low-z Universe. The large number of high-SFR galaxies present in our sample allow an improved measurement of the bright end of the luminosity function, indicating that the decrease in Φ at bright luminosities is best described by a Saunders functional form rather than the traditional Schechter function. This result is consistent with other published luminosity functions in the far-infrared and radio. For GAMA and SDSS, we find the r-band apparent magnitude limit, combined with the subsequent requirement for Hα detection leads to an incompleteness due to missing bright Hα sources with faint r-band magnitudes.

  18. Mass functions for globular cluster main sequences based on CCD photometry and stellar models

    NASA Astrophysics Data System (ADS)

    McClure, Robert D.; Vandenberg, Don A.; Smith, Graeme H.; Fahlman, Gregory G.; Richer, Harvey B.; Hesser, James E.; Harris, William E.; Stetson, Peter B.; Bell, R. A.

    1986-08-01

    Main-sequence luminosity functions constructed from CCD observations of globular clusters reveal a strong trend in slope with metal abundance. Theoretical luminosity functions constructed from VandenBerg and Bell's (1985) isochrones have been fitted to the observations and reveal a trend between x, the power-law index of the mass function, and metal abundance. The most metal-poor clusters require an index of about x = 2.5, whereas the most metal-rich clusters exhibit an index of x of roughly -0.5. The luminosity functions for two sparse clusters, E3 and Pal 5, are distinct from those of the more massive clusters, in that they show a turndown which is possibly a result of mass loss or tidal disruption.

  19. Toward a Unified View of Black-Hole High-Energy States

    NASA Technical Reports Server (NTRS)

    Nowak, Michael A.

    1995-01-01

    We present here a review of high-energy (greater than 1 keV) observations of seven black-hole candidates, six of which have estimated masses. In this review we focus on two parameters of interest: the ratio of 'nonthermal' to total luminosity as a function of the total luminosity divided by the Eddington luminosity, and the root-mean-square (rms) variability as a function of the nonthermal-to-total luminosity ratio. Below approx. 10% Eddington luminosity, the sources tend to be strictly nonthermal (the so called 'off' and 'low' states). Above this luminosity the sources become mostly thermal (the 'high' state). with the nonthermal component increasing with luminosity (the 'very high' and 'flare' states). There are important exceptions to this behavior, however, and no steady - as opposed to transient - source has been observed over a wide range of parameter space. In addition, the rms variability is positively correlated with the ratio of nonthermal to total luminosity, although there may be a minimum level of variability associated with 'thermal' states. We discuss these results in light of theoretical models and find that currently no single model describes the full range of black-hole high-energy behavior. In fact, the observations are exactly opposite from what one expects based upon simple notions of accretion disk instabilities.

  20. Luminosity function of faint galaxies with ultraviolet continuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stepanyan, D.A.

    1985-05-01

    The spatial density of faint galaxies with ultraviolet continuum in the Second Survey of the Byurakan Astrophysical Observatory is determined. The luminosity function of galaxies with ultraviolet continuum can be extended to objects fainter by 1-1.5 magnitudes. The spatial density of such galaxies in the interval of luminosities -16 /sup m/ .5 to -21 /sup m/ .5 is on the average 0.08 of the total density of field galaxies in the same interval of absolute magnitudes. The spatial density of low-luminosity galaxies with ultraviolet continuum is very high. In the interval from -12 /sup m/ .5 to -15 /sup m/more » .5 it is 0.23 Mpc/sup -3/.« less

  1. The quasar luminosity function from a variability-selected sample

    NASA Astrophysics Data System (ADS)

    Hawkins, M. R. S.; Veron, P.

    1993-01-01

    A sample of quasars is selected from a 10-yr sequence of 30 UK Schmidt plates. Luminosity functions are derived in several redshift intervals, which in each case show a featureless power-law rise towards low luminosities. There is no sign of the 'break' found in the recent UVX sample of Boyle et al. It is suggested that reasons for the disagreement are connected with biases in the selection of the UVX sample. The question of the nature of quasar evolution appears to be still unresolved.

  2. Is the Ratio of Observed X-ray Luminosity to Bolometric Luminosity in Early-type Stars Really a Constant?

    NASA Technical Reports Server (NTRS)

    Waldron, W. L.

    1985-01-01

    The observed X-ray emission from early-type stars can be explained by the recombination stellar wind model (or base coronal model). The model predicts that the true X-ray luminosity from the base coronal zone can be 10 to 1000 times greater than the observed X-ray luminosity. From the models, scaling laws were found for the true and observed X-ray luminosities. These scaling laws predict that the ratio of the observed X-ray luminosity to the bolometric luminosity is functionally dependent on several stellar parameters. When applied to several other O and B stars, it is found that the values of the predicted ratio agree very well with the observed values.

  3. THE CANADA-FRANCE HIGH-z QUASAR SURVEY: NINE NEW QUASARS AND THE LUMINOSITY FUNCTION AT REDSHIFT 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willott, Chris J.; Crampton, David; Hutchings, John B.

    2010-03-15

    We present discovery imaging and spectroscopy for nine new z {approx} 6 quasars found in the Canada-France High-z Quasar Survey (CFHQS) bringing the total number of CFHQS quasars to 19. By combining the CFHQS with the more luminous Sloan Digital Sky Survey sample, we are able to derive the quasar luminosity function from a sample of 40 quasars at redshifts 5.74 < z < 6.42. Our binned luminosity function shows a slightly lower normalization and flatter slope than found in previous work. The binned data also suggest a break in the luminosity function at M {sub 1450} {approx} -25. Amore » double power-law maximum likelihood fit to the data is consistent with the binned results. The luminosity function is strongly constrained (1{sigma} uncertainty <0.1 dex) over the range -27.5 < M {sub 1450} < -24.7. The best-fit parameters are {phi}(M*{sub 1450}) = 1.14 x 10{sup -8} Mpc{sup -3} mag{sup -1}, break magnitude M*{sub 1450} = -25.13, and bright end slope {beta} = -2.81. However, the covariance between {beta} and M*{sub 1450} prevents strong constraints being placed on either parameter. For a break magnitude in the range -26 < M*{sub 1450} < -24, we find -3.8 < {beta} < -2.3 at 95% confidence. We calculate the z = 6 quasar intergalactic ionizing flux and show it is between 20 and 100 times lower than that necessary for reionization. Finally, we use the luminosity function to predict how many higher redshift quasars may be discovered in future near-IR imaging surveys.« less

  4. Luminosities of Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Bagchi, Manjari

    2013-08-01

    Luminosity is an intrinsic property of radio pulsars related to the properties of the magnetospheric plasma and the beam geometry, and inversely proportional to the observing frequency. In traditional models, luminosity has been considered as a function of the spin parameters of pulsars. On the other hand, parameter independent models like power law and lognormal have been also used to fit the observed luminosities. Some of the older studies on pulsar luminosities neglected observational biases, but all of the recent studies tried to model observational effects as accurately as possible. Luminosities of pulsars in globular clusters (GCs) and in the Galactic disk have been studied separately. Older studies concluded that these two categories of pulsars have different luminosity distributions, but the most recent study concluded that those are the same. This paper reviews all significant works on pulsar luminosities and discusses open questions.

  5. The Evolution of the Galaxy Rest-Frame Ultraviolet Luminosity Function Over the First Two Billion Years

    NASA Technical Reports Server (NTRS)

    Finkelstein, Steven L.; Ryan, Russell E., Jr.; Papovich, Casey; Dickinson, Mark; Song, Mimi; Somerville, Rachel; Ferguson, Henry C.; Salmon, Brett; Giavalisco, Mauro; Koekomoer, Anton M.; hide

    2014-01-01

    We present a robust measurement and analysis of the rest-frame ultraviolet (UV) luminosity function at z = 4 to 8. We use deep Hubble Space Telescope imaging over the CANDELS/GOODS fields, the Hubble Ultra Deep Field and the Hubble Frontier Field deep parallel observations near the Abell 2744 and MACS J0416.1- 2403 clusters. The combination of these surveys provides an effective volume of 0.6-1.2 ×10(exp 6) Mpc(exp 3) over this epoch, allowing us to perform a robust search for bright (M(sub UV) less than -21) and faint (M(sub UV) = -18) galaxies. We select galaxies using a well-tested photometric redshift technique with careful screening of contaminants, finding a sample of 7446 galaxies at 3.5 less than z less than 8.5, with more than 1000 galaxies at z of approximately 6 - 8. We measure both a stepwise luminosity function for galaxies in our redshift samples, as well as a Schechter function, using a Markov Chain Monte Carlo analysis to measure robust uncertainties. At the faint end our UV luminosity functions agree with previous studies, yet we find a higher abundance of UV-bright galaxies at z of greater than or equal to 6. Our bestfit value of the characteristic magnitude M* is consistent with -21 at z of greater than or equal to 5, different than that inferred based on previous trends at lower redshift. At z = 8, a single power-law provides an equally good fit to the UV luminosity function, while at z = 6 and 7, an exponential cutoff at the bright-end is moderately preferred. We compare our luminosity functions to semi-analytical models, and find that the lack of evolution in M* is consistent with models where the impact of dust attenuation on the bright-end of the luminosity function decreases at higher redshift, though a decreasing impact of feedback may also be possible. We measure the evolution of the cosmic star-formation rate (SFR) density by integrating our observed luminosity functions to M(sub UV) = -17, correcting for dust attenuation, and find that the SFR density declines proportionally to (1 + z)((exp -4.3)(+/-)(0.5)) at z greater than 4, consistent with observations at z greater than or equal to 9. Our observed luminosity functions are consistent with a reionization history that starts at redshift of approximately greater than 10, completes at z greater than 6, and reaches a midpoint (x(sub HII) = 0.5) at 6.7 less than z less than 9.4. Finally, using a constant cumulative number density selection and an empirically derived rising star-formation history, our observations predict that the abundance of bright z = 9 galaxies is likely higher than previous constraints, though consistent with recent estimates of bright z similar to 10 galaxies.

  6. The Luminosity Function of QSO Host Galaxies

    NASA Technical Reports Server (NTRS)

    Hamilton, Timothy S.; Casertano, Stefano; Turnshek, David A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present some results from our HST archival image study of 71 QSO host galaxies. The objects are selected to have z less than or equal to 0.46 and total absolute magnitude M(sub v) less than or equal to -23 in our adopted cosmology (H(sub 0) = 50 kilometers per second Mpc(sup-1), q(sub 0) = 0.5, lambda = 0)). The aim of this initial study is to investigate the composition of the sample with respect to host morphology and radio loudness, as well as derive the QSO host galaxy luminosity function. We have analyzed available WFPC2 images in R or I band (U in one case), using a uniform set of procedures. The host galaxies span a narrow range of luminosities and are exceptionally bright, much more so than normal galaxies, usually L greater than L*(sub v). The QSOs are almost equally divided among three subclasses: radio-loud QSOs with elliptical hosts, radio-quiet QSOs with elliptical hosts, and radio-quiet QSOs with spiral hosts. Radio-loud QSOs with spiral hosts are extremely rare. Using a weighting procedure, we derive the combined luminosity function of QSO host galaxies. We find that the luminosity function of QSO hosts differs in shape from that of normal galaxies but that they coincide at the highest luminosities. The ratio of the number of quasar hosts to the number of normal galaxies at a luminosity L*(sub v) is R = (Lv/11.48L*(sub v))(sup 2.46), where L*(sub v) corresponds to M*(sub v)= -22.35, and a QSO is defined to be an object with total nuclear plus host light M(sub v) less than or equal to -23. This ratio can be interpreted as the probability that a galaxy with luminosity L(sub V) will host a QSO at redshift z approximately equal to 0.26.

  7. X-ray studies of quasars with the Einstein Observatory. IV - X-ray dependence on radio emission

    NASA Technical Reports Server (NTRS)

    Worrall, D. M.; Tananbaum, H.; Giommi, P.; Zamorani, G.

    1987-01-01

    The X-ray properties of a sample of 114 radio-loud quasars observed with the Einstein Observatory are examined, and the results are compared with those obtained from a large sample of radio-quiet quasars. The results of statistical analysis of the dependence of X-ray luminosity on combined functions of optical and radio luminosity show that the dependence on both luminosities is important. However, statistically significant differences are found between subsamples of flat radio spectra quasars and steep radio spectra quasars with regard to dependence of X-ray luminosity on only radio luminosity. The data are consistent with radio-loud quasars having a physical component, not directly related to the optical luminosity, which produces the core radio luminosity plus 'extra' X-ray emission.

  8. The MUSE Hubble Ultra Deep Field Survey. VI. The faint-end of the Lyα luminosity function at 2.91 < z < 6.64 and implications for reionisation

    NASA Astrophysics Data System (ADS)

    Drake, A. B.; Garel, T.; Wisotzki, L.; Leclercq, F.; Hashimoto, T.; Richard, J.; Bacon, R.; Blaizot, J.; Caruana, J.; Conseil, S.; Contini, T.; Guiderdoni, B.; Herenz, E. C.; Inami, H.; Lewis, J.; Mahler, G.; Marino, R. A.; Pello, R.; Schaye, J.; Verhamme, A.; Ventou, E.; Weilbacher, P. M.

    2017-11-01

    We present the deepest study to date of the Lyα luminosity function in a blank field using blind integral field spectroscopy from MUSE. We constructed a sample of 604 Lyα emitters (LAEs) across the redshift range 2.91 < z < 6.64 using automatic detection software in the Hubble Ultra Deep Field. The deep data cubes allowed us to calculate accurate total Lyα fluxes capturing low surface-brightness extended Lyα emission now known to be a generic property of high-redshift star-forming galaxies. We simulated realistic extended LAEs to fully characterise the selection function of our samples, and performed flux-recovery experiments to test and correct for bias in our determination of total Lyα fluxes. We find that an accurate completeness correction accounting for extended emission reveals a very steep faint-end slope of the luminosity function, α, down to luminosities of log10L erg s-1< 41.5, applying both the 1 /Vmax and maximum likelihood estimators. Splitting the sample into three broad redshift bins, we see the faint-end slope increasing from -2.03-0.07+ 1.42 at z ≈ 3.44 to -2.86-∞+0.76 at z ≈ 5.48, however no strong evolution is seen between the 68% confidence regions in L∗-α parameter space. Using the Lyα line flux as a proxy for star formation activity, and integrating the observed luminosity functions, we find that LAEs' contribution to the cosmic star formation rate density rises with redshift until it is comparable to that from continuum-selected samples by z ≈ 6. This implies that LAEs may contribute more to the star-formation activity of the early Universe than previously thought, as any additional intergalactic medium (IGM) correction would act to further boost the Lyα luminosities. Finally, assuming fiducial values for the escape of Lyα and LyC radiation, and the clumpiness of the IGM, we integrated the maximum likelihood luminosity function at 5.00

  9. VizieR Online Data Catalog: Quasar luminosity function (Hawkins+, 1993)

    NASA Astrophysics Data System (ADS)

    Hawkins, M. R. S.; Veron, P.

    1994-11-01

    A sample of quasars is selected from a 10-yr sequence of 30 UK Schmidt plates. Luminosity functions are derived in several redshift intervals, which in each case show a featureless power-law rise towards low luminosities. There is no sigh of the 'break' found in the recent UVX sample of Boyle, Shanks & Peterson. It is suggested that reasons for the disagreement are connected with biases in the selection of the UVX sample. The question of the nature of quasar evolution appears to be still unresolved. (1 data file).

  10. The Luminosity Function and Star Formation Rate Between Redshifts of 0.07 and 1.47 for Narrow-band Emitters in the Subaru Deep Field

    NASA Astrophysics Data System (ADS)

    Ly, Chun; Malkan, M.; Kashikawa, N.; Shimasaku, K.; Doi, M.; Nagao, T.; Iye, M.; Kodama, T.; Morokuma, T.; Motohara, K.

    2006-06-01

    Subaru Deep Field line-emitting galaxies in four narrow-band filters at low and intermediate redshifts are presented. Broad-band colors, follow-up optical spectroscopy, and multiple narrow-band filters are used to distinguish Hα, [OII], and [OIII] emitters between redshifts of 0.07 and 1.47 to construct their averaged rest-frame optical-to-UV SED and luminosity functions. These luminosity functions are derived down to faint magnitudes, which allows for a more accurate determination of the faint end slope. With a large (N 200-900) sample for each redshift interval, a Schechter profile is fitted to each luminosity function. Prior to dust extinction corrections, the [OIII] and [OII] luminosity functions reported in this paper agree reasonably well with those of Hippelein et al (2003). The z=0.066-0.092 Hα LF agrees with those of Jones & Bland-Hawthorn (2001), but for z=0.24 and 0.40, their number density is higher by a factor of two or more. The z=0.08 Hα LF, which reaches two orders of magnitude fainter than Gallego et al. (1995), is steeper by 25%. This indicates that there are more low luminosity star-forming galaxies for z<0.1 than predicted. The faint end slope α and φ* show a strong evolution with redshift while L* show little evolution. The evolution in α indicates that low-luminosity galaxies have a stronger evolution compared to brighter ones. Integrated star formation rate densities are derived via Hα for 0.07

  11. Evidence for a mass-dependent AGN Eddington ratio distribution via the flat relationship between SFR and AGN luminosity

    NASA Astrophysics Data System (ADS)

    Bernhard, E.; Mullaney, J. R.; Aird, J.; Hickox, R. C.; Jones, M. L.; Stanley, F.; Grimmett, L. P.; Daddi, E.

    2018-05-01

    The lack of a strong correlation between AGN X-ray luminosity (LX; a proxy for AGN power) and the star formation rate (SFR) of their host galaxies has recently been attributed to stochastic AGN variability. Studies using population synthesis models have incorporated this by assuming a broad, universal (i.e. does not depend on the host galaxy properties) probability distribution for AGN specific X-ray luminosities (i.e. the ratio of LX to host stellar mass; a common proxy for Eddington ratio). However, recent studies have demonstrated that this universal Eddington ratio distribution fails to reproduce the observed X-ray luminosity functions beyond z ˜ 1.2. Furthermore, empirical studies have recently shown that the Eddington ratio distribution may instead depend upon host galaxy properties, such as SFR and/or stellar mass. To investigate this further, we develop a population synthesis model in which the Eddington ratio distribution is different for star-forming and quiescent host galaxies. We show that, although this model is able to reproduce the observed X-ray luminosity functions out to z ˜ 2, it fails to simultaneously reproduce the observed flat relationship between SFR and X-ray luminosity. We can solve this, however, by incorporating a mass dependency in the AGN Eddington ratio distribution for star-forming host galaxies. Overall, our models indicate that a relative suppression of low Eddington ratios (λEdd ≲ 0.1) in lower mass galaxies (M* ≲ 1010 - 11 M⊙) is required to reproduce both the observed X-ray luminosity functions and the observed flat SFR/X-ray relationship.

  12. Binary Systems and the Initial Mass Function

    NASA Astrophysics Data System (ADS)

    Malkov, O. Yu.

    2017-07-01

    In the present paper we discuss advantages and disadvantages of binary stars, which are important for star formation history determination. We show that to make definite conclusions of the initial mass function shape, it is necessary to study binary population well enough to correct the luminosity function for unresolved binaries; to construct the mass-luminosity relation based on wide binaries data, and to separate observational mass functions of primaries, of secondaries, and of unresolved binaries.

  13. Low-luminosity stellar mass functions in globular clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richer, H.B.; Fahlman, G.G.; Buonanno, R.

    New data are presented on cluster luminosity functions and mass functions for selected fields in the globular clusters M13 and M71, extending down the main sequence to at least 0.2 solar mass. In this experiment, CCD photometry data were obtained at the prime focus of the CFHT on the cluster fields that were far from the cluster center. Luminosity functions were constructed, using the ADDSTAR routine to correct for the background, and mass functions were derived using the available models. The mass functions obtained for M13 and M71 were compared to existing data for NGC 6397. Results show that (1)more » all three globular clusters display a marked change in slope at about 0.4 solar mass, with the slopes becoming considerably steeper toward lower masses; (2) there is no correlation between the slope of the mass function and metallicity; and (3) the low-mass slope of the mass function for M13 is much steeper than for NGC 6397 and M71. 22 refs.« less

  14. Gamma-Ray Burst Host Galaxies Have "Normal" Luminosities.

    PubMed

    Schaefer

    2000-04-10

    The galactic environment of gamma-ray bursts can provide good evidence about the nature of the progenitor system, with two old arguments implying that the burst host galaxies are significantly subluminous. New data and new analysis have now reversed this picture: (1) Even though the first two known host galaxies are indeed greatly subluminous, the next eight hosts have absolute magnitudes typical for a population of field galaxies. A detailed analysis of the 16 known hosts (10 with redshifts) shows them to be consistent with a Schechter luminosity function with R*=-21.8+/-1.0, as expected for normal galaxies. (2) Bright bursts from the Interplanetary Network are typically 18 times brighter than the faint bursts with redshifts; however, the bright bursts do not have galaxies inside their error boxes to limits deeper than expected based on the luminosities for the two samples being identical. A new solution to this dilemma is that a broad burst luminosity function along with a burst number density varying as the star formation rate will require the average luminosity of the bright sample (>6x1058 photons s-1 or>1.7x1052 ergs s-1) to be much greater than the average luminosity of the faint sample ( approximately 1058 photons s-1 or approximately 3x1051 ergs s-1). This places the bright bursts at distances for which host galaxies with a normal luminosity will not violate the observed limits. In conclusion, all current evidence points to gamma-ray burst host galaxies being normal in luminosity.

  15. The galaxy luminosity function around groups

    NASA Astrophysics Data System (ADS)

    González, R. E.; Padilla, N. D.; Galaz, G.; Infante, L.

    2005-11-01

    We present a study on the variations of the luminosity function of galaxies around clusters in a numerical simulation with semi-analytic galaxies, attempting to detect these variations in the 2dF Galaxy Redshift Survey. We subdivide the simulation box into equal-density regions around clusters, which we assume can be achieved by selecting objects at a given normalized distance (r/rrms, where rrms is an estimate of the halo radius) from the group centre. The semi-analytic model predicts important variations in the luminosity function out to r/rrms~= 5. In brief, variations in the mass function of haloes around clusters (large dark matter haloes with M > 1012h-1Msolar) lead to cluster central regions that present a high abundance of bright galaxies (high M* values) as well as low-luminosity galaxies (high α) at r/rrms~= 3 there is a lack of bright galaxies, which shows the depletion of galaxies in the regions surrounding clusters (minimum in M* and α), and a tendency to constant luminosity function parameters at larger cluster-centric distances. We take into account the observational biases present in the real data by reproducing the peculiar velocity effect on the redshifts of galaxies in the simulation box, and also by producing mock catalogues. We find that excluding from the analysis galaxies which in projection are close to the centres of the groups provides results that are qualitatively consistent with the full simulation box results. When we apply this method to mock catalogues of the 2dF Galaxy Redshift Survey (2dFGRS) and the 2PIGG catalogue of groups, we find that the variations in the luminosity function are almost completely erased by the Finger of God effect; only a lack of bright galaxies at r/rrms~= 3 can be marginally detected in the mock catalogues. The results from the real 2dFGRS data show a clearer detection of a dip in M* and α for r/rrms= 3, consistent with the semi-analytic predictions.

  16. Collapsar γ-ray bursts: how the luminosity function dictates the duration distribution

    NASA Astrophysics Data System (ADS)

    Petropoulou, Maria; Barniol Duran, Rodolfo; Giannios, Dimitrios

    2017-12-01

    Jets in long-duration γ-ray bursts (GRBs) have to drill through the collapsing star in order to break out of it and produce the γ-ray signal while the central engine is still active. If the breakout time is shorter for more powerful engines, then the jet-collapsar interaction acts as a filter of less luminous jets. We show that the observed broken power-law GRB luminosity function is a natural outcome of this process. For a theoretically motivated breakout time that scales with jet luminosity as L-χ with χ ∼ 1/3-1/2, we show that the shape of the γ-ray duration distribution can be uniquely determined by the GRB luminosity function and matches the observed one. This analysis has also interesting implications about the supernova-central engine connection. We show that not only successful jets can deposit sufficient energy in the stellar envelope to power the GRB-associated supernovae, but also failed jets may operate in all Type Ib/c supernovae.

  17. Ultra-faint ultraviolet galaxies at z ∼ 2 behind the lensing cluster A1689: The luminosity function, dust extinction, and star formation rate density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alavi, Anahita; Siana, Brian; Freeman, William R.

    We have obtained deep ultraviolet imaging of the lensing cluster A1689 with the WFC3/UVIS camera onboard the Hubble Space Telescope in the F275W (30 orbits) and F336W (4 orbits) filters. These images are used to identify z ∼ 2 star-forming galaxies via their Lyman break, in the same manner that galaxies are typically selected at z ≥ 3. Because of the unprecedented depth of the images and the large magnification provided by the lensing cluster, we detect galaxies 100× fainter than previous surveys at this redshift. After removing all multiple images, we have 58 galaxies in our sample in themore » range –19.5 < M {sub 1500} < –13 AB mag. Because the mass distribution of A1689 is well constrained, we are able to calculate the intrinsic sensitivity of the observations as a function of source plane position, allowing for accurate determinations of effective volume as a function of luminosity. We fit the faint-end slope of the luminosity function to be α = –1.74 ± 0.08, which is consistent with the values obtained for 2.5 < z < 6. Notably, there is no turnover in the luminosity function down to M {sub 1500} = –13 AB mag. We fit the UV spectral slopes with photometry from existing Hubble optical imaging. The observed trend of increasingly redder slopes with luminosity at higher redshifts is observed in our sample, but with redder slopes at all luminosities and average reddening of (E(B – V)) = 0.15 mag. We assume the stars in these galaxies are metal poor (0.2 Z {sub ☉}) compared to their brighter counterparts (Z {sub ☉}), resulting in bluer assumed intrinsic UV slopes and larger derived values for dust extinction. The total UV luminosity density at z ∼ 2 is 4.31{sub −0.60}{sup +0.68}×10{sup 26} erg s{sup –1} Hz{sup –1} Mpc{sup –3}, more than 70% of which is emitted by galaxies in the luminosity range of our sample. Finally, we determine the global star formation rate density from UV-selected galaxies at z ∼ 2 (assuming a constant dust extinction correction of 4.2 over all luminosities and a Kroupa initial mass function) of 0.148{sub −0.020}{sup +0.023} M {sub ☉} yr{sup –1} Mpc{sup –3}, significantly higher than previous determinations because of the additional population of fainter galaxies and the larger dust correction factors.« less

  18. The NGC 7742 star cluster luminosity function: a population analysis revisited

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Ma, Chao

    2018-02-01

    We re-examine the properties of the star cluster population in the circumnuclear starburst ring in the face-on spiral galaxy NGC 7742, whose young cluster mass function has been reported to exhibit significant deviations from the canonical power law. We base our reassessment on the clusters’ luminosities (an observational quantity) rather than their masses (a derived quantity), and confirm conclusively that the galaxy’s starburst-ring clusters—and particularly the youngest subsample, {log}(t {{{yr}}}-1)≤ 7.2—show evidence of a turnover in the cluster luminosity function well above the 90% completeness limit adopted to ensure the reliability of our results. This confirmation emphasizes the unique conundrum posed by this unusual cluster population.

  19. Dark-ages reionization and galaxy formation simulation - IV. UV luminosity functions of high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Liu, Chuanwu; Mutch, Simon J.; Angel, P. W.; Duffy, Alan R.; Geil, Paul M.; Poole, Gregory B.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2016-10-01

    In this paper, we present calculations of the UV luminosity function (LF) from the Dark-ages Reionization And Galaxy-formation Observables from Numerical Simulations project, which combines N-body, semi-analytic and seminumerical modelling designed to study galaxy formation during the Epoch of Reionization. Using galaxy formation physics including supernova feedback, the model naturally reproduces the UV LFs for high-redshift star-forming galaxies from z ˜ 5 through to z ˜ 10. We investigate the luminosity-star formation rate (SFR) relation, finding that variable SFR histories of galaxies result in a scatter around the median relation of 0.1-0.3 dex depending on UV luminosity. We find close agreement between the model and observationally derived SFR functions. We use our calculated luminosities to investigate the LF below current detection limits, and the ionizing photon budget for reionization. We predict that the slope of the UV LF remains steep below current detection limits and becomes flat at MUV ≳ -14. We find that 48 (17) per cent of the total UV flux at z ˜ 6 (10) has been detected above an observational limit of MUV ˜ -17, and that galaxies fainter than MUV ˜ -17 are the main source of ionizing photons for reionization. We investigate the luminosity-stellar mass relation, and find a correlation for galaxies with MUV < -14 that has the form M_{ast } ∝ 10^{-0.47M_UV}, in good agreement with observations, but which flattens for fainter galaxies. We determine the luminosity-halo mass relation to be M_vir ∝ 10^{-0.35M_UV}, finding that galaxies with MUV = -20 reside in host dark matter haloes of 1011.0±0.1 M⊙ at z ˜ 6, and that this mass decreases towards high redshift.

  20. MEASURING THE LUMINOSITY AND VIRIAL BLACK HOLE MASS DEPENDENCE OF QUASAR–GALAXY CLUSTERING AT z ∼ 0.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krolewski, Alex G.; Eisenstein, Daniel J., E-mail: akrolewski@college.harvard.edu

    2015-04-10

    We study the dependence of quasar clustering on quasar luminosity and black hole mass by measuring the angular overdensity of photometrically selected galaxies imaged by the Wide-field Infrared Survey Explorer (WISE) about z ∼ 0.8 quasars from SDSS. By measuring the quasar–galaxy cross-correlation function and using photometrically selected galaxies, we achieve a higher density of tracer objects and a more sensitive detection of clustering than measurements of the quasar autocorrelation function. We test models of quasar formation and evolution by measuring the luminosity dependence of clustering amplitude. We find a significant overdensity of WISE galaxies about z ∼ 0.8 quasarsmore » at 0.2–6.4 h{sup −1} Mpc in projected comoving separation. We find no appreciable increase in clustering amplitude with quasar luminosity across a decade in luminosity, and a power-law fit between luminosity and clustering amplitude gives an exponent of −0.01 ± 0.06 (1 σ error). We also fail to find a significant relationship between clustering amplitude and black hole mass, although our dynamic range in true mass is suppressed due to the large uncertainties in virial black hole mass estimates. Our results indicate that a small range in host dark matter halo mass maps to a large range in quasar luminosity.« less

  1. The 2-10 keV unabsorbed luminosity function of AGN from the LSS, CDFS, and COSMOS surveys

    NASA Astrophysics Data System (ADS)

    Ranalli, P.; Koulouridis, E.; Georgantopoulos, I.; Fotopoulou, S.; Hsu, L.-T.; Salvato, M.; Comastri, A.; Pierre, M.; Cappelluti, N.; Carrera, F. J.; Chiappetti, L.; Clerc, N.; Gilli, R.; Iwasawa, K.; Pacaud, F.; Paltani, S.; Plionis, E.; Vignali, C.

    2016-05-01

    The XMM-Large scale structure (XMM-LSS), XMM-Cosmological evolution survey (XMM-COSMOS), and XMM-Chandra deep field south (XMM-CDFS) surveys are complementary in terms of sky coverage and depth. Together, they form a clean sample with the least possible variance in instrument effective areas and point spread function. Therefore this is one of the best samples available to determine the 2-10 keV luminosity function of active galactic nuclei (AGN) and their evolution. The samples and the relevant corrections for incompleteness are described. A total of 2887 AGN is used to build the LF in the luminosity interval 1042-1046 erg s-1 and in the redshift interval 0.001-4. A new method to correct for absorption by considering the probability distribution for the column density conditioned on the hardness ratio is presented. The binned luminosity function and its evolution is determined with a variant of the Page-Carrera method, which is improved to include corrections for absorption and to account for the full probability distribution of photometric redshifts. Parametric models, namely a double power law with luminosity and density evolution (LADE) or luminosity-dependent density evolution (LDDE), are explored using Bayesian inference. We introduce the Watanabe-Akaike information criterion (WAIC) to compare the models and estimate their predictive power. Our data are best described by the LADE model, as hinted by the WAIC indicator. We also explore the recently proposed 15-parameter extended LDDE model and find that this extension is not supported by our data. The strength of our method is that it provides unabsorbed, non-parametric estimates, credible intervals for luminosity function parameters, and a model choice based on predictive power for future data. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and NASA.Tables with the samples of the posterior probability distributions are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A80

  2. Galaxy and Mass Assembly (GAMA): ugriz galaxy luminosity functions

    NASA Astrophysics Data System (ADS)

    Loveday, J.; Norberg, P.; Baldry, I. K.; Driver, S. P.; Hopkins, A. M.; Peacock, J. A.; Bamford, S. P.; Liske, J.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Frenk, C. S.; Gunawardhana, M.; Hill, D. T.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H. R.; Phillipps, S.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Robotham, A. S. G.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Thomas, D.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.

    2012-02-01

    Galaxy and Mass Assembly (GAMA) is a project to study galaxy formation and evolution, combining imaging data from ultraviolet to radio with spectroscopic data from the AAOmega spectrograph on the Anglo-Australian Telescope. Using data from Phase 1 of GAMA, taken over three observing seasons, and correcting for various minor sources of incompleteness, we calculate galaxy luminosity functions (LFs) and their evolution in the ugriz passbands. At low redshift, z < 0.1, we find that blue galaxies, defined according to a magnitude-dependent but non-evolving colour cut, are reasonably well fitted over a range of more than 10 magnitudes by simple Schechter functions in all bands. Red galaxies, and the combined blue plus red sample, require double power-law Schechter functions to fit a dip in their LF faintwards of the characteristic magnitude M* before a steepening faint end. This upturn is at least partly due to dust-reddened disc galaxies. We measure the evolution of the galaxy LF over the redshift range 0.002 < z < 0.5 both by using a parametric fit and by measuring binned LFs in redshift slices. The characteristic luminosity L* is found to increase with redshift in all bands, with red galaxies showing stronger luminosity evolution than blue galaxies. The comoving number density of blue galaxies increases with redshift, while that of red galaxies decreases, consistent with prevailing movement from blue cloud to red sequence. As well as being more numerous at higher redshift, blue galaxies also dominate the overall luminosity density beyond redshifts z≃ 0.2. At lower redshifts, the luminosity density is dominated by red galaxies in the riz bands, and by blue galaxies in u and g.

  3. LUMINOSITY FUNCTIONS OF LMXBs IN CENTAURUS A: GLOBULAR CLUSTERS VERSUS THE FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voss, Rasmus; Gilfanov, Marat; Sivakoff, Gregory R.

    2009-08-10

    We study the X-ray luminosity function (XLF) of low-mass X-ray binaries (LMXB) in the nearby early-type galaxy Centaurus A, concentrating primarily on two aspects of binary populations: the XLF behavior at the low-luminosity limit and the comparison between globular cluster and field sources. The 800 ksec exposure of the deep Chandra VLP program allows us to reach a limiting luminosity of {approx}8 x 10{sup 35} erg s{sup -1}, about {approx}2-3 times deeper than previous investigations. We confirm the presence of the low-luminosity break of the overall LMXB XLF at log(L{sub X} ) {approx} 37.2-37.6, below which the luminosity distribution followsmore » a dN/d(ln L) {approx} const law. Separating globular cluster and field sources, we find a statistically significant difference between the two luminosity distributions with a relative underabundance of faint sources in the globular cluster population. This demonstrates that the samples are drawn from distinct parent populations and may disprove the hypothesis that the entire LMXB population in early-type galaxies is created dynamically in globular clusters. As a plausible explanation for this difference in the XLFs, we suggest an enhanced fraction of helium-accreting systems in globular clusters, which are created in collisions between red giants and neutron stars. Due to the four times higher ionization temperature of He, such systems are subject to accretion disk instabilities at {approx}20 times higher mass accretion rate and, therefore, are not observed as persistent sources at low luminosities.« less

  4. The Abundance of Low-Luminosity Lyα Emitters at High Redshift

    NASA Astrophysics Data System (ADS)

    Santos, Michael R.; Ellis, Richard S.; Kneib, Jean-Paul; Richard, Johan; Kuijken, Konrad

    2004-05-01

    We derive the luminosity function of high-redshift Lyα-emitting sources from a deep, blind, spectroscopic survey that utilized strong-lensing magnification by intermediate-redshift clusters of galaxies. We observed carefully selected regions near nine clusters, consistent with magnification factors generally greater than 10 for the redshift range 4.5L)~L-1 over 1041-1042.5 ergs s-1. When combined with the results of other surveys, limited at higher luminosities, our results suggest evidence for the suppression of star formation in low-mass halos, as predicted in popular models of galaxy formation. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  5. The mysterious age invariance of the planetary nebula luminosity function bright cut-off

    NASA Astrophysics Data System (ADS)

    Gesicki, K.; Zijlstra, A. A.; Miller Bertolami, M. M.

    2018-05-01

    Planetary nebulae mark the end of the active life of 90% of all stars. They trace the transition from a red giant to a degenerate white dwarf. Stellar models1,2 predicted that only stars above approximately twice the solar mass could form a bright nebula. But the ubiquitous presence of bright planetary nebulae in old stellar populations, such as elliptical galaxies, contradicts this: such high-mass stars are not present in old systems. The planetary nebula luminosity function, and especially its bright cut-off, is almost invariant between young spiral galaxies, with high-mass stars, and old elliptical galaxies, with only low-mass stars. Here, we show that new evolutionary tracks of low-mass stars are capable of explaining in a simple manner this decades-old mystery. The agreement between the observed luminosity function and computed stellar evolution validates the latest theoretical modelling. With these models, the planetary nebula luminosity function provides a powerful diagnostic to derive star formation histories of intermediate-age stars. The new models predict that the Sun at the end of its life will also form a planetary nebula, but it will be faint.

  6. The fraction of AGNs in major merger galaxies and its luminosity dependence

    NASA Astrophysics Data System (ADS)

    Weigel, Anna K.; Schawinski, Kevin; Treister, Ezequiel; Trakhtenbrot, Benny; Sanders, David B.

    2018-05-01

    We use a phenomenological model which connects the galaxy and active galactic nucleus (AGN) populations to investigate the process of AGNs triggering through major galaxy mergers at z ˜ 0. The model uses stellar mass functions as input and allows the prediction of AGN luminosity functions based on assumed Eddington ratio distribution functions (ERDFs). We show that the number of AGNs hosted by merger galaxies relative to the total number of AGNs increases as a function of AGN luminosity. This is due to more massive galaxies being more likely to undergo a merger and does not require the assumption that mergers lead to higher Eddington ratios than secular processes. Our qualitative analysis also shows that to match the observations, the probability of a merger galaxy hosting an AGN and accreting at a given Eddington value has to be increased by a factor ˜10 relative to the general AGN population. An additional significant increase of the fraction of high Eddington ratio AGNs among merger host galaxies leads to inconsistency with the observed X-ray luminosity function. Physically our results imply that, compared to the general galaxy population, the AGN fraction among merger galaxies is ˜10 times higher. On average, merger triggering does however not lead to significantly higher Eddington ratios.

  7. A redshift survey of IRAS galaxies

    NASA Astrophysics Data System (ADS)

    Smith, Beverly J.; Kleinmann, S. G.; Huchra, J. P.; Low, F. J.

    1987-05-01

    Results are presented from a redshift survey of all 72 galaxies detected by IRAS in Band 3 at flux levels equal to or greater then 2 Jy. The luminosity function at the high luminosity end is proportional to L-2, however, a flattening was observed at the low luminosity end indicating that a single power law is not a good description of the entire luminosity function. Only three galaxies in the sample have emission line spectra indicative of AGN's, suggesting that, at least in nearby galaxies, unobscured nuclear activity is not a strong contributor to the far infrared flux. Comparisons between the selected IRAS galaxies and an optically complete sample taken from the CfA redshift survey show that they are more narrowly distributed than those optically selected, in the sence that the IRAS sample includes few galaxies of low absolute blue luminosity. It was also found that the space distributions of the two samples differ: the density enhancement or IRAS galaxies is only approx. 1/3 that of the optically selected galaxies in the core of the Coma cluster.

  8. The massive end of the luminosity and stellar mass functions and clustering from CMASS to SDSS: evidence for and against passive evolution

    NASA Astrophysics Data System (ADS)

    Bernardi, M.; Meert, A.; Sheth, R. K.; Huertas-Company, M.; Maraston, C.; Shankar, F.; Vikram, V.

    2016-02-01

    We describe the luminosity function, based on Sérsic fits to the light profiles, of CMASS galaxies at z ˜ 0.55. Compared to previous estimates, our Sérsic-based reductions imply more luminous, massive galaxies, consistent with the effects of Sérsic- rather than Petrosian or de Vaucouleur-based photometry on the Sloan Digital Sky Survey (SDSS) main galaxy sample at z ˜ 0.1. This implies a significant revision of the high-mass end of the correlation between stellar and halo mass. Inferences about the evolution of the luminosity and stellar mass functions depend strongly on the assumed, and uncertain, k + e corrections. In turn, these depend on the assumed age of the population. Applying k + e corrections taken from fitting the models of Maraston et al. to the colours of both SDSS and CMASS galaxies, the evolution of the luminosity and stellar mass functions appears impressively passive, provided that the fits are required to return old ages. However, when matched in comoving number- or luminosity-density, the SDSS galaxies are less strongly clustered compared to their counterparts in CMASS. This rules out the passive evolution scenario, and, indeed, any minor merger scenarios which preserve the rank ordering in stellar mass of the population. Potential incompletenesses in the CMASS sample would further enhance this mismatch. Our analysis highlights the virtue of combining clustering measurements with number counts.

  9. An expanded set of brown dwarf and very low mass star models

    NASA Technical Reports Server (NTRS)

    Burrows, A.; Hubbard, W. B.; Saumon, D.; Lunine, J. I.

    1993-01-01

    We present in this paper updated and improved theoretical models of brown dwarfs and late M dwarfs. The evolution and characteristics of objects between 0.01 and 0.2 solar mass are exhaustively investigated and special emphasis is placed on their properties at early ages. The dependence on the helium fraction, deuterium fraction, and metallicity of the masses, effective temperature and luminosities at the edge of the hydrogen main sequence are calculated. We derive luminosity functions for representative mass functions and compare our predictions to recent cluster data. We show that there are distinctive features in the theoretical luminosity functions that can serve as diagnostics of brown dwarf physics. A zero-metallicity model is presented as a bound to or approximation of a putative extreme halo population.

  10. A Correlation Between Changes in Solar Luminosity and Differential Radius Measurements

    NASA Technical Reports Server (NTRS)

    Kroll, R. J.; Hill, H. A.; Beardsley, B. J.

    1990-01-01

    Solar luminosity variations occurring during solar cycle 21 can be attributed in large part to the presence of sunspots and faculae. Nevertheless, there remains a residual portion of the luminosity variation distinctly unaccounted for by these phenomena of solar activity. At the Santa Catalina Laboratory for Experimental Relativity by Astrometry (SCLERA), observations of the solar limb are capable of detecting changes in the solar limb darkening function by monitoring a quantity known as the differential radius. These observations are utilized in such a way that the effects of solar activity are minimized in order to reveal the more fundamental structure of the photosphere. The results of observations made during solar cycle 21 at various solar latitudes indicate that a measurable change did occur in the global photospheric limb darkening function. It is proposed that the residual luminosity change is associated in part with this change in limb darkening.

  11. Hard X-ray luminosity function of tidal disruption events: First results from the MAXI extragalactic survey

    NASA Astrophysics Data System (ADS)

    Kawamuro, Taiki; Ueda, Yoshihiro; Shidatsu, Megumi; Hori, Takafumi; Kawai, Nobuyuki; Negoro, Hitoshi; Mihara, Tatehiro

    2016-08-01

    We derive the first hard X-ray luminosity function (XLF) of stellar tidal disruption events (TDEs) by supermassive black holes (SMBHs), which gives an occurrence rate of TDEs per unit volume as a function of peak luminosity and redshift, utilizing an unbiased sample observed by the Monitor of All-sky X-ray Image (MAXI). On the basis of the light curves characterized by a power-law decay with an index of -5/3, a systematic search using the MAXI data detected four TDEs in the first 37 months of observations, all of which have been found in the literature. To formulate the TDE XLF, we consider the mass function of SMBHs, that of disrupted stars, the specific TDE rate as a function of SMBH mass, and the fraction of TDEs with relativistic jets. We perform an unbinned maximum likelihood fit to the MAXI TDE list and check the consistency with the observed TDE rate in the ROSAT all-sky survey. The results suggest that the intrinsic fraction of the jet-accompanying events is 0.0007%-34%. We confirm that at z ≲ 1.5 the contamination of the hard X-ray luminosity functions of active galactic nuclei by TDEs is not significant and hence that their contribution to the growth of SMBHs is negligible at the redshifts.

  12. Quasar evolution and the growth of black holes

    NASA Technical Reports Server (NTRS)

    Small, Todd A.; Blandford, Roger D.

    1992-01-01

    A 'minimalist' model of AGN evolution is analyzed that links the measured luminosity function to an elementary description of black hole accretion. The observed luminosity function of bright AGN is extrapolated and simple prescriptions for the growth and luminosity of black holes are introduced to infer quasar birth rates, mean fueling rates, and relict black hole distribution functions. It is deduced that the mean accretion rate scales as (M exp -1./5)(t exp -6.7) and that, for the most conservative model used, the number of relict black holes per decade declines only as M exp -0.4 for black hole masses between 3 x 10 exp 7 and 3 x 10 exp 9 solar masses. If all sufficiently massive galaxies pass through a quasar phase with asymptotic black hole mass a monotonic function of the galaxy mass, then it is possible to compare the space density of galaxies with estimated central masses to that of distant quasars.

  13. Einstein X-ray survey of the Pleiades - The dependence of X-ray emission on stellar age

    NASA Technical Reports Server (NTRS)

    Micela, G.; Sciortino, S.; Serio, S.; Vaiana, G. S.; Bookbinder, J.; Golub, L.; Harnden, F. R., Jr.; Rosner, R.

    1985-01-01

    The data obtained with two pointed observations of 1 deg by 1 deg fields of the Pleiades region have been analyzed, and the results are presented. The maximum-likelihood X-ray luminosity functions for the Pleiades G and K stars in the cluster are derived, and it is shown that, for the G stars, the Pleiades X-ray luminosity function is significantly brighter than the corresponding function for Hyades G dwarf stars. This finding indicates a dependence of X-ray luminosity on stellar age, which is confirmed by comparison of the same data with median X-ray luminosities of pre-main sequence and local disk population dwarf G stars. It is suggested that the significantly larger number of bright X-ray sources associated with G stars than with K stars, the lack of detection of M stars, and the relatively rapid rotation of the Pleiades K stars can be explained in terms of the onset of internal differential rotation near the convective envelope-radidative core interface after the spin-up phase during evolution to the main sequence.

  14. Einstein Observatory survey of X-ray emission from solar-type stars - The late F and G dwarf stars

    NASA Technical Reports Server (NTRS)

    Maggio, A.; Sciortino, S.; Vaiana, G. S.; Majer, P.; Bookbinder, J.

    1987-01-01

    Results of a volume-limited X-ray survey of stars of luminosity classes IV and V in the spectral range F7-G9 observed with the Einstein Observatory are presented. Using survival analysis techniques, the stellar X-ray luminosity function in the 0.15-4.0 keV energy band for both single and multiple sources. It is shown that the difference in X-ray luminosity between these two classes of sources is consistent with the superposition of individual components in multiple-component systems, whose X-ray properties are similar to those of the single-component sources. The X-ray emission of the stars in our sample is well correlated with their chromospheric CA II H-K line emission and with their projected equatorial rotational velocity. Comparison of the X-ray luminosity function constructed for the sample of the dG stars of the local population with the corresponding functions derived elsewhere for the Hyades, the Pleiades, and the Orion Ic open cluster confirms that the level of X-ray emission decreases with stellar age.

  15. Evolution of Galaxy Luminosity and Stellar-Mass Functions since $z=1$ with the Dark Energy Survey Science Verification Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capozzi, D.; et al.

    We present the first study of the evolution of the galaxy luminosity and stellar-mass functions (GLF and GSMF) carried out by the Dark Energy Survey (DES). We describe the COMMODORE galaxy catalogue selected from Science Verification images. This catalogue is made ofmore » $$\\sim 4\\times 10^{6}$$ galaxies at $$0« less

  16. Luminosity of serendipitous x-ray QSOs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margon, B.; Chanan, G.A.; Downes, R.A.

    1982-02-01

    We have identified the optical counterparts of 47 serendipitously discovered Einstein Observatory X-ray sources with previously unreported quasi-stellar objects. The mean ratio of X-ray to optical luminosity of this sample agrees reasonably well with that derived from X-ray observations of previously known QSOs. However, despite the fact that our limiting magnitude V = 18.5 should permit detection of typical QSOs (i.e., M/sub c/ = -26) to z = 0.9, the mean redshift of our sample is only z = 0.42 Thus the mean luminosity of these objects, M/sub c/ = -24, differs significantly from that of previous QSO surveys withmore » similar optical thresholds. The existence of large numbers of these lower luminosity QSOs which are difficult to discover by previous selection techniques, provides observational confirmation of the steep luminosity function inferred indirectly from optical counts. However, possible explanations for the lack of higher luminosity QSOs in our sample prove even more interesting. If one accepts the global value of the X-ray to optical luminosity ratio proposed by Zamorani et al, and Ku, Helfand, and Lucy, then reconciliation of this ratio with our observations severely constrains the QSO space density and luminosity functions. Alternatively, the ''typical'' QSO-a radio quiet, high redshift (z>1), optically luminous but not superluminous (M/sub c/> or =-27) object-may not be a strong X-ray source. This inference is not in conflict with existing results from Einstein X-ray surveys of preselected QSOs, which also fail to detect such objects. The contribution of QSOs to the diffuse X-ray background radiation is therefore highly uncertain, but may be quite small. Current X-ray data probably do not place significant constraints on the optical number counts of faint QSOs.« less

  17. THE OBSCURED FRACTION OF ACTIVE GALACTIC NUCLEI IN THE XMM-COSMOS SURVEY: A SPECTRAL ENERGY DISTRIBUTION PERSPECTIVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lusso, E.; Hennawi, J. F.; Richards, G. T.

    2013-11-10

    The fraction of active galactic nucleus (AGN) luminosity obscured by dust and re-emitted in the mid-IR is critical for understanding AGN evolution, unification, and parsec-scale AGN physics. For unobscured (Type 1) AGNs, where we have a direct view of the accretion disk, the dust covering factor can be measured by computing the ratio of re-processed mid-IR emission to intrinsic nuclear bolometric luminosity. We use this technique to estimate the obscured AGN fraction as a function of luminosity and redshift for 513 Type 1 AGNs from the XMM-COSMOS survey. The re-processed and intrinsic luminosities are computed by fitting the 18 bandmore » COSMOS photometry with a custom spectral energy distribution fitting code, which jointly models emission from hot dust in the AGN torus, from the accretion disk, and from the host galaxy. We find a relatively shallow decrease of the luminosity ratio as a function of L{sub bol}, which we interpret as a corresponding decrease in the obscured fraction. In the context of the receding torus model, where dust sublimation reduces the covering factor of more luminous AGNs, our measurements require a torus height that increases with luminosity as h ∝ L{sub bol}{sup 0.3-0.4}. Our obscured-fraction-luminosity relation agrees with determinations from Sloan Digital Sky Survey censuses of Type 1 and Type 2 quasars and favors a torus optically thin to mid-IR radiation. We find a much weaker dependence of the obscured fraction on 2-10 keV luminosity than previous determinations from X-ray surveys and argue that X-ray surveys miss a significant population of highly obscured Compton-thick AGNs. Our analysis shows no clear evidence for evolution of the obscured fraction with redshift.« less

  18. LoCuSS: connecting the dominance and shape of brightest cluster galaxies with the assembly history of massive clusters

    NASA Astrophysics Data System (ADS)

    Smith, Graham P.; Khosroshahi, Habib G.; Dariush, A.; Sanderson, A. J. R.; Ponman, T. J.; Stott, J. P.; Haines, C. P.; Egami, E.; Stark, D. P.

    2010-11-01

    We study the luminosity gap, Δm12, between the first- and second-ranked galaxies in a sample of 59 massive (~1015Msolar) galaxy clusters, using data from the Hale Telescope, the Hubble Space Telescope, Chandra and Spitzer. We find that the Δm12 distribution, p(Δm12), is a declining function of Δm12 to which we fitted a straight line: p(Δm12) ~ -(0.13 +/- 0.02)Δm12. The fraction of clusters with `large' luminosity gaps is p(Δm12 >= 1) = 0.37 +/- 0.08, which represents a 3σ excess over that obtained from Monte Carlo simulations of a Schechter function that matches the mean cluster galaxy luminosity function. We also identify four clusters with `extreme' luminosity gaps, Δm12 >= 2, giving a fraction of . More generally, large luminosity gap clusters are relatively homogeneous, with elliptical/discy brightest cluster galaxies (BCGs), cuspy gas density profiles (i.e. strong cool cores), high concentrations and low substructure fractions. In contrast, small luminosity gap clusters are heterogeneous, spanning the full range of boxy/elliptical/discy BCG morphologies, the full range of cool core strengths and dark matter concentrations, and have large substructure fractions. Taken together, these results imply that the amplitude of the luminosity gap is a function of both the formation epoch and the recent infall history of the cluster. `BCG dominance' is therefore a phase that a cluster may evolve through and is not an evolutionary `cul-de-sac'. We also compare our results with semi-analytic model predictions based on the Millennium Simulation. None of the models is able to reproduce all of the observational results on Δm12, underlining the inability of the current generation of models to match the empirical properties of BCGs. We identify the strength of active galactic nucleus feedback and the efficiency with which cluster galaxies are replenished after they merge with the BCG in each model as possible causes of these discrepancies.

  19. Fundamental properties of Fanaroff-Riley type II radio galaxies investigated via Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Kapińska, A. D.; Uttley, P.; Kaiser, C. R.

    2012-08-01

    Radio galaxies and quasars are among the largest and most powerful single objects known and are believed to have had a significant impact on the evolving Universe and its large-scale structure. We explore the intrinsic and extrinsic properties of the population of Fanaroff-Riley type II (FR II) objects, i.e. their kinetic luminosities, lifetimes and the central densities of their environments. In particular, the radio and kinetic luminosity functions of these powerful radio sources are investigated using the complete, flux-limited radio catalogues of the Third Cambridge Revised Revised Catalogue (3CRR) and Best et al. We construct multidimensional Monte Carlo simulations using semi-analytical models of FR II source time evolution to create artificial samples of radio galaxies. Unlike previous studies, we compare radio luminosity functions found with both the observed and simulated data to explore the best-fitting fundamental source parameters. The new Monte Carlo method we present here allows us to (i) set better limits on the predicted fundamental parameters of which confidence intervals estimated over broad ranges are presented and (ii) generate the most plausible underlying parent populations of these radio sources. Moreover, as has not been done before, we allow the source physical properties (kinetic luminosities, lifetimes and central densities) to co-evolve with redshift, and we find that all the investigated parameters most likely undergo cosmological evolution. Strikingly, we find that the break in the kinetic luminosity function must undergo redshift evolution of at least (1 + z)3. The fundamental parameters are strongly degenerate, and independent constraints are necessary to draw more precise conclusions. We use the estimated kinetic luminosity functions to set constraints on the duty cycles of these powerful radio sources. A comparison of the duty cycles of powerful FR IIs with those determined from radiative luminosities of active galactic nuclei of comparable black hole mass suggests a transition in behaviour from high to low redshifts, corresponding to either a drop in the typical black hole mass of powerful FR IIs at low redshifts, or a transition to a kinetically dominated, radiatively inefficient FR II population.

  20. Bias Properties of Extragalactic Distance Indicators. VIII. H0 from Distance-limited Luminosity Class and Morphological Type-Specific Luminosity Functions for SB, SBC, and SC Galaxies Calibrated Using Cepheids

    NASA Astrophysics Data System (ADS)

    Sandage, Allan

    1999-12-01

    Relative, reduced to absolute, magnitude distributions are obtained for Sb, Sbc, and Sc galaxies in the flux-limited Revised Shapley-Ames Catalog (RSA2) for each van den Bergh luminosity class (L), within each Hubble type (T). The method to isolate bias-free subsets of the total sample is via Spaenhauer diagrams, as in previous papers of this series. The distance-limited type and class-specific luminosity functions are normalized to numbers of galaxies per unit volume (105 Mpc3), rather than being left as relative functions, as in Paper V. The functions are calculated using kinematic absolute magnitudes, based on an arbitrary trial value of H0=50. Gaussian fits to the individual normalized functions are listed for each T and L subclass. As in Paper V, the data can be freed from the T and L dependencies by applying a correction of 0.23T+0.5L to the individual absolute magnitudes. Here, T=3 for Sb, 4 for Sbc, and 5 for Sc galaxies, and the L values range from 1 to 6 as the luminosity class changes from I to III-IV. The total luminosity function, obtained by combining the volume-normalized Sb, Sbc, and Sc individual luminosity functions, each corrected for the T and L dependencies, has an rms dispersion of 0.67 mag, similar to much of the Tully-Fisher parameter space. Absolute calibration of the trial kinematic absolute magnitudes is made using 27 galaxies with known T and L that also have Cepheid distances. This permits the systematic correction to the H0=50 kinematic absolute magnitudes of 0.22+/-0.12 mag, givingH0=55+/-3(internal) km s-1 Mpc-1 . The Cepheid distances are based on the Madore/Freedman Cepheid period-luminosity (PL) zero point that requires (m-M)0=18.50 for the LMC. Using the modern LMC modulus of (m-M)0=18.58 requires a 4% decrease in H0, giving a final value of H0=53+/-7 (external) by this method. These values of H0, based here on the method of luminosity functions, are in good agreement with (1) H0=55+/-5 by Theureau and coworkers from their bias-corrected Tully-Fisher method of ``normalized distances'' for field galaxies; (2) H0=56+/-4 from the method through the Virgo Cluster, as corrected to the global kinematic frame (Tammann and coworkers); and (3) H0=58+/-5 from Cepheid-calibrated Type Ia supernovae (Saha and coworkers). Our value here also disagrees with the final value from the NASA ``Key Project'' group value of H0=70+/-7. Analysis of the total flux-limited sample of Sb, Sbc, and Sc galaxies in the RSA2 by the present method, but uncorrected for selection bias, would give an incorrect value of H0=71 using the same Cepheid calibration. The effect of the bias is pernicious at the 30% level; either it must be corrected by the methods in the papers of this series, or the data must be restricted to the distance-limited subset of any sample, as is done here.

  1. A cross-correlation-based estimate of the galaxy luminosity function

    NASA Astrophysics Data System (ADS)

    van Daalen, Marcel P.; White, Martin

    2018-06-01

    We extend existing methods for using cross-correlations to derive redshift distributions for photometric galaxies, without using photometric redshifts. The model presented in this paper simultaneously yields highly accurate and unbiased redshift distributions and, for the first time, redshift-dependent luminosity functions, using only clustering information and the apparent magnitudes of the galaxies as input. In contrast to many existing techniques for recovering unbiased redshift distributions, the output of our method is not degenerate with the galaxy bias b(z), which is achieved by modelling the shape of the luminosity bias. We successfully apply our method to a mock galaxy survey and discuss improvements to be made before applying our model to real data.

  2. Age of Local Galactic Disk from the Wdlf for Cpmbs

    NASA Astrophysics Data System (ADS)

    Smith, J. Allyn; Oswalt, Terry D.; Wood, Matt A.; Silvestri, Nicole M.

    We present the white dwarf luminosity function (WDLF) for common proper motion systems. This WDLF was derived using the 1/Vmax method pioneered by Schmidt (1975) and detailed by Liebert Dahn and Monet (1988). New cooling models were used to determine the luminosities of the white dwarfs and the age of the local Galactic disk. Comparison to WDLFs developed using older colling models (Wood 1995) will be examined for changes in the derived disk age. Kinematic data is available for a subset of the WDs in the sample. Separate luminosity functions will be examined for each of the statistically significant subsets. JAS acknowledges support from NASA GSRP Fellowship NGT-51086.

  3. IRAS observations of the Rho Ophiuchi infrared cluster - Spectral energy distributions and luminosity function

    NASA Technical Reports Server (NTRS)

    Wilking, Bruce A.; Lada, Charles J.; Young, Eric T.

    1989-01-01

    High-sensitivity IRAS coadded survey data, coupled with new high-sensitivity near-IR observations, are used to investigate the nature of embedded objects over an 4.3-sq-pc area comprising the central star-forming cloud of the Ophiuchi molecular complex; the area encompasses the central cloud of the Rho Ophiuchi complex and includes the core region. Seventy-eight members of the embedded cluster were identified; spectral energy distributions were constructed for 53 objects and were compared with theoretical models to gain insight into their evolutionary status. Bolometric luminosities could be estimated for nearly all of the association members, leading to a revised luminosity function for this dust-embedded cluster.

  4. M Dwarfs from Hubble Space Telescope Star Counts. IV.

    NASA Astrophysics Data System (ADS)

    Zheng, Zheng; Flynn, Chris; Gould, Andrew; Bahcall, John N.; Salim, Samir

    2001-07-01

    We study a sample of about 1400 disk M dwarfs that are found in 148 fields observed with the Wide Field Camera 2 (WFC2) on the Hubble Space Telescope and 162 fields observed with pre-repair Planetary Camera 1 (PC1), of which 95 of the WFC2 fields are newly analyzed. The method of maximum likelihood is applied to derive the luminosity function and the Galactic disk parameters. At first, we use a local color-magnitude relation and a locally determined mass-luminosity relation in our analysis. The results are consistent with those of previous work but with considerably reduced statistical errors. These small statistical errors motivate us to investigate the systematic uncertainties. Considering the metallicity gradient above the Galactic plane, we introduce a modified color-magnitude relation that is a function of Galactic height. The resultant M dwarf luminosity function has a shape similar to that derived using the local color-magnitude relation but with a higher peak value. The peak occurs at MV~12, and the luminosity function drops sharply toward MV~14. We then apply a height-dependent mass-luminosity function interpolated from theoretical models with different metallicities to calculate the mass function. Unlike the mass function obtained using local relations, which has a power-law index α=0.47, the one derived from the height-dependent relations tends to be flat (α=-0.10). The resultant local surface density of disk M dwarfs (12.2+/-1.6 Msolar pc-2) is somewhat smaller than the one obtained using local relations (14.3+/-1.3 Msolar pc-2). Our measurement favors a short disk scale length, H=2.75+/-0.16 (statistical)+/-0.25 (systematic) kpc. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  5. The UV Luminosity Function at 6 < z < 10 from the Hubble Frontier Fields

    NASA Astrophysics Data System (ADS)

    Livermore, Rachael C.; Finkelstein, Steven L.; Lotz, Jennifer M.

    2017-01-01

    The Hubble Frontier Fields program has obtained deep optical and near-infrared Hubble Space Telescope imaging of six galaxy clusters and associated parallel fields. The depth of the imaging (m_AB ~ 29) means we can identify faint galaxies at z > 6, and those in the cluster fields also benefit from magnification due to strong gravitational lensing that allows us to reach intrinsic absolute magnitudes of M_UV ~ -12.5 at z ~ 6. Here, we present the UV luminosity functions at 6 < z < 10 from the complete Hubble Frontier Fields data, revealing a steep faint-end slope that extends to the limits of the data. The lack of any apparent turnover in the luminosity functions means that faint galaxies in the early Universe may have provided sufficient ionizing radiation to sustain reionization.

  6. The duration of reionization constrains the ionizing sources

    NASA Astrophysics Data System (ADS)

    Sharma, Mahavir; Theuns, Tom; Frenk, Carlos

    2018-06-01

    We investigate how the nature of the galaxies that reionized the Universe affects the duration of reionization. We contrast two sets of models: one in which galaxies on the faint side of the luminosity function dominate the ionizing emissivity, and a second in which the galaxies on the bright side of the luminosity function dominate. The faint end of the luminosity function evolves slowly, therefore the transition from mostly neutral to mostly ionized state takes a much longer time in the first set of models compared to the second. Existing observational constraints on the duration of this transition are relatively weak, but taken at face value prefer the model in which galaxies on the bright side play a major role. Measurements of the kinetic Sunyaev-Zeldovich effect in the cosmic microwave background from the epoch of reionization also point in the same direction.

  7. Resolving the faint end of the satellite luminosity function for the nearest elliptical Centaurus A

    NASA Astrophysics Data System (ADS)

    Crnojevic, Denija

    2014-10-01

    We request HST/ACS imaging to follow up 15 new faint candidate dwarfs around the nearest elliptical Centaurus A (3.8 Mpc). The dwarfs were found via a systematic ground-based (Magellan/Megacam) survey out to ~150 kpc, designed to directly confront the "missing satellites" problem in a wholly new environment. Current Cold Dark Matter models for structure formation fail to reproduce the shallow slope of the satellite luminosity function in spiral-dominated groups for which dwarfs fainter than M_V<-14 have been surveyed (the Local Group and the nearby, interacting M81 group). Clusters of galaxies show a better agreement with cosmological predictions, suggesting an environmental dependence of the (poorly-understood) physical processes acting on the evolution of low mass galaxies (e.g., reionization). However, the luminosity function completeness for these rich environments quickly drops due to the faintness of the satellites and to the difficult cluster membership determination. We target a yet unexplored "intermediate" environment, a nearby group dominated by an elliptical galaxy, ideal due to its proximity: accurate (10%) distance determinations for its members can be derived from resolved stellar populations. The proposed observations of the candidate dwarfs will confirm their nature, group membership, and constrain their luminosities, metallicities, and star formation histories. We will obtain the first complete census of dwarf satellites of an elliptical down to an unprecedented M_V<-9. Our results will crucially constrain cosmological predictions for the faint end of the satellite luminosity function to achieve a more complete picture of the galaxy formation process.

  8. The Luminosity Function of Star Clusters in 20 Star-Forming Galaxies Based on Hubble Legacy Archive Photometry

    NASA Astrophysics Data System (ADS)

    Bowers, Ariel; Whitmore, B. C.; Chandar, R.; Larsen, S. S.

    2014-01-01

    Luminosity functions have been determined for star cluster populations in 20 nearby (4 - 30 Mpc), star-forming galaxies based on ACS source lists generated by the Hubble Legacy Archive (http://hla.stsci.edu). These cluster catalogs provide one of the largest sets of uniform, automatically-generated cluster candidates available in the literature at present. Comparisons are made with other recently generated cluster catalogs demonstrating that the HLA-generated catalogs are of similar quality, but in general do not go as deep. A typical cluster luminosity function can be approximated by a power-law, dN/dL ∝ Lα, with an average value for α of -2.37 and rms scatter = 0.18. A comparison of fitting results based on methods which use binned and unbinned data shows good agreement, although there may be a systematic tendency for the unbinned (maximum-likelihood) method to give slightly more negative values of α for galaxies with steper luminosity functions. Our uniform database results in a small scatter (0.5 magnitude) in the correlation between the magnitude of the brightest cluster (Mbrightest) and Log of the number of clusters brighter than MI = -9 (Log N). We also examine the magnitude of the brightest cluster vs. Log SFR for a sample including LIRGS and ULIRGS.

  9. Analysis of RGU Photometry in Selected Area 51

    NASA Astrophysics Data System (ADS)

    Bilir, S.; Karaali, S.; Buser, R.

    2004-09-01

    A low-latitude anticenter field (l=189 °, b=+21 °) is investigated by using the full calibration tools of RGU photometry. The observed RGU data are reduced to the standard system and the separation of dwarfs and evolved stars is carried out by an empirical method. Stars are categorized into three metallicity classes, i.e. -0.25<[M/H]≤+0.50, $-1.00<[M/H]≤-0.25, and [M/H]≤-1.00 dex, and their absolute magnitudes are determined by the corresponding color-magnitude diagrams. The unusually large scattering in the two-color diagrams is reduced by excluding 153 extra-galactic objects, identifying them compared with the charts of Basel Astronomical Institute and University of Minnesota, and by the criterion and algorithm of Gaidos et al. [1]. The local logarithmic space density for giants, D*(0)=6.75, lies within the local densities of Gliese and Gliese & Jahreiss. The local luminosity function in our work for the absolute magnitude interval 3

  10. THE DISTRIBUTION OF FAINT SATELLITES AROUND CENTRAL GALAXIES IN THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, C. Y.; Jing, Y. P.; Li, Cheng

    2012-11-20

    We investigate the radial number density profile and the abundance distribution of faint satellites around central galaxies in the low-redshift universe using the Canada-France-Hawaii Telescope (CFHT) Legacy Survey. We consider three samples of central galaxies with magnitudes of M {sub r} = -21, -22, and -23 selected from the Sloan Digital Sky Survey group catalog of Yang et al. The satellite distribution around these central galaxies is obtained by cross-correlating these galaxies with the photometric catalog of the CFHT Legacy Survey. The projected radial number density of the satellites obeys a power-law form with the best-fit logarithmic slope of -1.05,more » independent of both the central galaxy luminosity and the satellite luminosity. The projected cross-correlation function between central and satellite galaxies exhibits a non-monotonic trend with satellite luminosity. It is most pronounced for central galaxies with M {sub r} = -21, where the decreasing trend of clustering amplitude with satellite luminosity is reversed when satellites are fainter than central galaxies by more than 2 mag. A comparison with the satellite luminosity functions in the Milky Way (MW) and M31 shows that the MW/M31 system has about twice as many satellites as around a typical central galaxy of similar luminosity. The implications for theoretical models are briefly discussed.« less

  11. Predicting the Redshift 2 H-Alpha Luminosity Function Using [OIII] Emission Line Galaxies

    NASA Technical Reports Server (NTRS)

    Mehta, Vihang; Scarlata, Claudia; Colbert, James W.; Dai, Y. S.; Dressler, Alan; Henry, Alaina; Malkan, Matt; Rafelski, Marc; Siana, Brian; Teplitz, Harry I.; hide

    2015-01-01

    Upcoming space-based surveys such as Euclid and WFIRST-AFTA plan to measure Baryonic Acoustic Oscillations (BAOs) in order to study dark energy. These surveys will use IR slitless grism spectroscopy to measure redshifts of a large number of galaxies over a significant redshift range. In this paper, we use the WFC3 Infrared Spectroscopic Parallel Survey (WISP) to estimate the expected number of H-alpha emitters observable by these future surveys. WISP is an ongoing Hubble Space Telescope slitless spectroscopic survey, covering the 0.8 - 1.65 micrometers wavelength range and allowing the detection of H-alpha emitters up to z approximately equal to 1.5 and [OIII] emitters to z approximately equal to 2.3. We derive the H-alpha-[OIII] bivariate line luminosity function for WISP galaxies at z approximately equal to 1 using a maximum likelihood estimator that properly accounts for uncertainties in line luminosity measurement, and demonstrate how it can be used to derive the H-alpha luminosity function from exclusively fitting [OIII] data. Using the z approximately equal to 2 [OIII] line luminosity function, and assuming that the relation between H-alpha and [OIII] luminosity does not change significantly over the redshift range, we predict the H-alpha number counts at z approximately equal to 2 - the upper end of the redshift range of interest for the future surveys. For the redshift range 0.7 less than z less than 2, we expect approximately 3000 galaxies per sq deg for a flux limit of 3 x 10(exp -16) ergs per sec per sq cm (the proposed depth of Euclid galaxy redshift survey) and approximately 20,000 galaxies per sq deg for a flux limit of approximately 10(exp -16) ergs per sec per sq cm (the baseline depth of WFIRST galaxy redshift survey).

  12. Full-data Results of Hubble Frontier Fields: UV Luminosity Functions at z ∼ 6–10 and a Consistent Picture of Cosmic Reionization

    NASA Astrophysics Data System (ADS)

    Ishigaki, Masafumi; Kawamata, Ryota; Ouchi, Masami; Oguri, Masamune; Shimasaku, Kazuhiro; Ono, Yoshiaki

    2018-02-01

    We present UV luminosity functions of dropout galaxies at z∼ 6{--}10 with the complete Hubble Frontier Fields data. We obtain a catalog of ∼450 dropout-galaxy candidates (350, 66, and 40 at z∼ 6{--}7, 8, and 9, respectively), with UV absolute magnitudes that reach ∼ -14 mag, ∼2 mag deeper than the Hubble Ultra Deep Field detection limits. We carefully evaluate number densities of the dropout galaxies by Monte Carlo simulations, including all lensing effects such as magnification, distortion, and multiplication of images as well as detection completeness and contamination effects in a self-consistent manner. We find that UV luminosity functions at z∼ 6{--}8 have steep faint-end slopes, α ∼ -2, and likely steeper slopes, α ≲ -2 at z∼ 9{--}10. We also find that the evolution of UV luminosity densities shows a non-accelerated decline beyond z∼ 8 in the case of {M}trunc}=-15, but an accelerated one in the case of {M}trunc}=-17. We examine whether our results are consistent with the Thomson scattering optical depth from the Planck satellite and the ionized hydrogen fraction Q H II at z≲ 7 based on the standard analytic reionization model. We find that reionization scenarios exist that consistently explain all of the observational measurements with the allowed parameters of {f}esc}={0.17}-0.03+0.07 and {M}trunc}> -14.0 for {log}{ξ }ion}/[{erg}}-1 {Hz}]=25.34, where {f}esc} is the escape fraction, M trunc is the faint limit of the UV luminosity function, and {ξ }ion} is the conversion factor of the UV luminosity to the ionizing photon emission rate. The length of the reionization period is estimated to be {{Δ }}z={3.9}-1.6+2.0 (for 0.1< {Q}{{H}{{II}}}< 0.99), consistent with the recent estimate from Planck.

  13. The Radio Luminosity Function and Galaxy Evolution in the Coma Cluster

    NASA Technical Reports Server (NTRS)

    Miller, Neal A.; Hornschemeier, Ann E.; Mabasher, Bahram; Brudgesm Terrry J.; Hudson, Michael J.; Marzke, Ronald O.; Smith, Russell J.

    2008-01-01

    We investigate the radio luminosity function and radio source population for two fields within the Coma cluster of galaxies, with the fields centered on the cluster core and southwest infall region and each covering about half a square degree. Using VLA data with a typical rms sensitivity of 28 (mu)Jy per 4.4" beam, we identify 249 radio sources with optical counterparts brighter than r = 22 (equivalent to M(sub r) = -13 for cluster member galaxies). Comprehensive optical spectroscopy identifies 38 of these as members of the Coma cluster, evenly split between sources powered by an active nucleus and sources powered by active star formation. The radio-detected star-forming galaxies are restricted to radio luminosities between about 10(exp 21) and 10(exp 22) W/Hz, an interesting result given that star formation dominates field radio luminosity functions below about 10(exp 23) W/Hz. The majority of the radio-detected star-forming galaxies have characteristics of starbursts, including high specific star formation rates and optical spectra with strong emission lines. In conjunction with prior studies on post-starburst galaxies within the Coma cluster, this is consistent with a picture in which late-type galaxies entering Coma undergo a starburst prior to a rapid cessation of star formation. Optically bright elliptical galaxies (Mr less than or equals -20.5) make the largest contribution to the radio luminosity function at both the high (> approx. 3x10(exp 22) W/Hz) and low (< approx. 10(exp 21) W/Hz) ends. Through a stacking analysis of these optically-bright ellipticals we find that they continue to harbor radio sources down to luminosities as faint as 3x10(exp 19) W/Hz. However, contrary to published results for the Virgo cluster we find no evidence for the existence of a population of optically faint (M(sub r) approx. equals -14) dwarf ellipticals hosting strong radio AGN.

  14. Clustering, cosmology and a new era of black hole demographics- II. The conditional luminosity functions of Type 2 and Type 1 active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Ballantyne, D. R.

    2017-01-01

    The orientation-based unification model of active galactic nuclei (AGNs) posits that the principle difference between obscured (Type 2) and unobscured (Type 1) AGNs is the line of sight into the central engine. If this model is correct then there should be no difference in many of the properties of AGN host galaxies (e.g. the mass of the surrounding dark matter haloes). However, recent clustering analyses of Type 1 and Type 2 AGNs have provided some evidence for a difference in the halo mass, in conflict with the orientation-based unified model. In this work, a method to compute the conditional luminosity function (CLF) of Type 2 and Type 1 AGNs is presented. The CLF allows many fundamental halo properties to be computed as a function of AGN luminosity, which we apply to the question of the host halo masses of Type 1 and 2 AGNs. By making use of the total AGN CLF, the Type 1 X-ray luminosity function, and the luminosity-dependent Type 2 AGN fraction, the CLFs of Type 1 and 2 AGNs are calculated at z ≈ 0 and 0.9. At both z, there is no statistically significant difference in the mean halo mass of Type 2 and 1 AGNs at any luminosity. There is marginal evidence that Type 1 AGNs may have larger halo masses than Type 2s, which would be consistent with an evolutionary picture where quasars are initially obscured and then subsequently reveal themselves as Type 1s. As the Type 1 lifetime is longer, the host halo will increase somewhat in mass during the Type 1 phase. The CLF technique will be a powerful way to study the properties of many AGNs subsets (e.g. radio-loud, Compton-thick) as future wide-area X-ray and optical surveys substantially increase our ability to place AGNs in their cosmological context.

  15. ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: CO Luminosity Functions and the Evolution of the Cosmic Density of Molecular Gas

    NASA Astrophysics Data System (ADS)

    Decarli, Roberto; Walter, Fabian; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Ivison, R. J.; Popping, Gergö; Riechers, Dominik; Smail, Ian R.; Swinbank, Mark; Weiss, Axel; Anguita, Timo; Assef, Roberto J.; Bauer, Franz E.; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Dickinson, Mark; Elbaz, David; Gónzalez-López, Jorge; Ibar, Edo; Infante, Leopoldo; Hodge, Jacqueline; Karim, Alex; Le Fevre, Olivier; Magnelli, Benjamin; Neri, Roberto; Oesch, Pascal; Ota, Kazuaki; Rix, Hans-Walter; Sargent, Mark; Sheth, Kartik; van der Wel, Arjen; van der Werf, Paul; Wagg, Jeff

    2016-12-01

    In this paper we use ASPECS, the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field in band 3 and band 6, to place blind constraints on the CO luminosity function and the evolution of the cosmic molecular gas density as a function of redshift up to z ˜ 4.5. This study is based on galaxies that have been selected solely through their CO emission and not through any other property. In all of the redshift bins the ASPECS measurements reach the predicted “knee” of the CO luminosity function (around 5 × 109 K km s-1 pc2). We find clear evidence of an evolution in the CO luminosity function with respect to z ˜ 0, with more CO-luminous galaxies present at z ˜ 2. The observed galaxies at z ˜ 2 also appear more gas-rich than predicted by recent semi-analytical models. The comoving cosmic molecular gas density within galaxies as a function of redshift shows a drop by a factor of 3-10 from z ˜ 2 to z ˜ 0 (with significant error bars), and possibly a decline at z > 3. This trend is similar to the observed evolution of the cosmic star formation rate density. The latter therefore appears to be at least partly driven by the increased availability of molecular gas reservoirs at the peak of cosmic star formation (z ˜ 2).

  16. The CALYMHA survey: Lyα luminosity function and global escape fraction of Lyα photons at z = 2.23

    NASA Astrophysics Data System (ADS)

    Sobral, David; Matthee, Jorryt; Best, Philip; Stroe, Andra; Röttgering, Huub; Oteo, Iván; Smail, Ian; Morabito, Leah; Paulino-Afonso, Ana

    2017-04-01

    We present the CAlibrating LYMan-α with Hα (CALYMHA) pilot survey and new results on Lyman α (Lyα) selected galaxies at z ˜ 2. We use a custom-built Lyα narrow-band filter at the Isaac Newton Telescope, designed to provide a matched volume coverage to the z = 2.23 Hα HiZELS survey. Here, we present the first results for the COSMOS and UDS fields. Our survey currently reaches a 3σ line flux limit of ˜4 × 10-17 erg s-1 cm-2, and a Lyα luminosity limit of ˜1042.3 erg s-1. We find 188 Lyα emitters over 7.3 × 105 Mpc3, but also find significant numbers of other line-emitting sources corresponding to He II, C III] and C IV emission lines. These sources are important contaminants, and we carefully remove them, unlike most previous studies. We find that the Lyα luminosity function at z = 2.23 is very well described by a Schechter function up to LLy α ≈ 1043 erg s-1 with L^{ast }=10^{42.59^{+0.16}_{-0.08}} erg s-1, φ ^{ast }=10^{-3.09^{+0.14}_{-0.34}} Mpc-3 and α = -1.75 ± 0.25. Above LLy α ≈ 1043 erg s-1, the Lyα luminosity function becomes power-law like, driven by X-ray AGN. We find that Lyα-selected emitters have a high escape fraction of 37 ± 7 per cent, anticorrelated with Lyα luminosity and correlated with Lyα equivalent width. Lyα emitters have ubiquitous large (≈40 kpc) Lyα haloes, ˜2 times larger than their Hα extents. By directly comparing our Lyα and Hα luminosity functions, we find that the global/overall escape fraction of Lyα photons (within a 13 kpc radius) from the full population of star-forming galaxies is 5.1 ± 0.2 per cent at the peak of the star formation history. An extra 3.3 ± 0.3 per cent of Lyα photons likely still escape, but at larger radii.

  17. The Bivariate Luminosity--HI Mass Distribution Function of Galaxies based on the NIBLES Survey

    NASA Astrophysics Data System (ADS)

    Butcher, Zhon; Schneider, Stephen E.; van Driel, Wim; Lehnert, Matt

    2016-01-01

    We use 21cm HI line observations for 2610 galaxies from the Nançay Interstellar Baryons Legacy Extragalactic Survey (NIBLES) to derive a bivariate luminosity--HI mass distribution function. Our HI survey was selected to randomly probe the local (900 < cz < 12,000 km/s) galaxy population in each 0.5 mag wide bin for the absolute z-band magnitude range of -13.5 < Mz < -24 without regard to morphology or color. This targeted survey allowed more on-source integration time for weak and non-detected sources, enabling us to probe lower HI mass fractions and apply lower upper limits for non-detections than would be possible with the larger blind HI surveys. Additionally, we obtained a factor of four higher sensitivity follow-up observations at Arecibo of 90 galaxies from our non-detected and marginally detected categories to quantify the underlying HI distribution of sources not detected at Nançay. Using the optical luminosity function and our higher sensitivity follow up observations as priors, we use a 2D stepwise maximum likelihood technique to derive the two dimensional volume density distribution of luminosity and HI mass in each SDSS band.

  18. ROSAT all-sky survey on the Einstein EMSS sample

    NASA Technical Reports Server (NTRS)

    Maccacaro, Tomasso

    1992-01-01

    The cosmological evolution and the luminosity function (XLF) of X ray selected Active Galactic Nuclei (AGN's) are discussed. The sample used is extracted from the Einstein Observatory Extended Medium Sensitivity Surveys (EMSS) and consists of more than 420 objects. Preliminary results from the ROSAT All-Sky Survey data confirm the correctness of the optical identification of the EMSS sources, thus giving confidence to the results obtained from the analysis of the AGN's sample. The XLF observed at different redshifts (up to z approx. 2) gives direct evidence of cosmological evolution. Data have been analyzed within the framework of luminosity evolution models and the two most common evolutionary forms, L sub x(Z) = L sub x(0) x e(sup Cr) and L sub x(Z) = L sub x(0) x (1 + z)(exp C), have been considered. Luminosity dependent evolution is required if the evolution function has the exponential form, whereas the simpler pure luminosity evolution model is still acceptable if the evolution function has the power law form. Using the whole sample of objects the number-counts and the de-evolved (z = 0) XLF have been derived. A comparison of the EMSS data with preliminary ROSAT results presented at this meeting indicates an overall agreement.

  19. The Cool White Dwarf Luminosity Function and the Age of the Galactic Disk

    NASA Astrophysics Data System (ADS)

    Leggett, S. K.; Ruiz, Maria Teresa; Bergeron, P.

    1998-04-01

    We present new optical and infrared data for the cool white dwarfs in the proper motion sample of Liebert, Dahn, & Monet. Stellar properties--surface chemical composition, effective temperature, radius, surface gravity, mass, and luminosity--are determined from these data by using the model atmospheres of Bergeron, Saumon, & Wesemael. The space density contribution is calculated for each star and the luminosity function (LF) for cool white dwarfs is determined. Comparing the LF to the most recent cooling sequences by Wood implies that the age of the local region of the Galactic disk is 8 +/- 1.5 Gyr. This result is consistent with the younger ages now being derived for the globular clusters and the universe itself.

  20. Primeval galaxies and cold dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph; Szalay, Alexander S.

    1987-01-01

    In the context of the cold dark matter theory for the large-scale matter distribution, the onset of galaxy formation is a gradual process, with star formation being initiated at z = about 10 and reaching a peak for luminous galaxies at z = about 1. The mass function of galaxy cores matches the observed quasar luminosity function at z = 2-3. Primeval galaxies are envisaged as a collection of many interacting and merging clumps, attaining a peak luminosity that is an order of magnitude below that achieved in models in which galaxy formation is initiated abruptly. Hence, ongoing searches for primeval galaxies would not necessarily have been successful unless they are designed to find moderately low-luminosity, low-surface-brigtness extended objects at low redshift.

  1. LFlGRB: Luminosity function of long gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Paul, Debdutta

    2018-04-01

    LFlGRB models the luminosity function (LF) of long Gamma Ray Bursts (lGRBs) by using a sample of Swift and Fermi lGRBs to re-derive the parameters of the Yonetoku correlation and self-consistently estimate pseudo-redshifts of all the bursts with unknown redshifts. The GRB formation rate is modeled as the product of the cosmic star formation rate and a GRB formation efficiency for a given stellar mass.

  2. Luminosity determination in pp collisions at $$\\sqrt{s} = 7$$ TeV using the ATLAS detector at the LHC

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2011-04-27

    Measurements of luminosity obtained using the ATLAS detector during early running of the Large Hadron Collider (LHC) at √s = 7 TeV are presented. The luminosity is independently determined using several detectors and multiple algorithms, each having different acceptances, systematic uncertainties and sensitivity to background. The ratios of the luminosities obtained from these methods are monitored as a function of time and of μ, the average number of inelastic interactions per bunch crossing. Residual time- and μ-dependence between the methods is less than 2% for 0 < μ < 2.5. Absolute luminosity calibrations, performed using beam separation scans, have amore » common systematic uncertainty of ±11%, dominated by the measurement of the LHC beam currents. After calibration, the luminosities obtained from the different methods differ by at most ±2%. The visible cross sections measured using the beam scans are compared to predictions obtained with the PYTHIA and PHOJET event generators and the ATLAS detector simulation.« less

  3. Precision Luminosity of LHC Proton-Proton Collisions at 13 TeV Using Hit Counting With TPX Pixel Devices

    NASA Astrophysics Data System (ADS)

    Sopczak, André; Ali, Babar; Asawatavonvanich, Thanawat; Begera, Jakub; Bergmann, Benedikt; Billoud, Thomas; Burian, Petr; Caicedo, Ivan; Caforio, Davide; Heijne, Erik; Janeček, Josef; Leroy, Claude; Mánek, Petr; Mochizuki, Kazuya; Mora, Yesid; Pacík, Josef; Papadatos, Costa; Platkevič, Michal; Polanský, Štěpán; Pospíšil, Stanislav; Suk, Michal; Svoboda, Zdeněk

    2017-03-01

    A network of Timepix (TPX) devices installed in the ATLAS cavern measures the LHC luminosity as a function of time as a stand-alone system. The data were recorded from 13-TeV proton-proton collisions in 2015. Using two TPX devices, the number of hits created by particles passing the pixel matrices was counted. A van der Meer scan of the LHC beams was analyzed using bunch-integrated luminosity averages over the different bunch profiles for an approximate absolute luminosity normalization. It is demonstrated that the TPX network has the capability to measure the reduction of LHC luminosity with precision. Comparative studies were performed among four sensors (two sensors in each TPX device) and the relative short-term precision of the luminosity measurement was determined to be 0.1% for 10-s time intervals. The internal long-term time stability of the measurements was below 0.5% for the data-taking period.

  4. A study of the luminosity function for field galaxies. [non-rich-cluster galaxies

    NASA Technical Reports Server (NTRS)

    Felten, J. E.

    1977-01-01

    Nine determinations of the luminosity function (LF) for field galaxies are analyzed and compared. Corrections for differences in Hubble constants, magnitude systems, galactic absorption functions, and definitions of the LF are necessary prior to comparison. Errors in previous comparisons are pointed out. After these corrections, eight of the nine determinations are in fairly good agreement. The discrepancy in the ninth appears to be mainly an incompleteness effect. The LF data suggest that there is little if any distinction between field galaxies and those in small groups.

  5. A study of the discrepant QSO X-ray luminosity function from the HEAO-2 data archive

    NASA Technical Reports Server (NTRS)

    Margon, B.

    1984-01-01

    An in-progress investigation aimed at characterizing the X-ray luminosity of very faint QSOs is described. More than 100 faint, previously uncataloged QSOs which lie in areas imaged in X rays at very high sensitivity were discovered.

  6. X-ray studies of quasars with the Einstein Observatory. II

    NASA Technical Reports Server (NTRS)

    Zamorani, G.; Maccacaro, T.; Henry, J. P.; Tananbaum, H.; Soltan, A.; Liebert, J.; Stocke, J.; Strittmatter, P. A.; Weymann, R. J.; Smith, M. G.

    1981-01-01

    X-ray observations of 107 quasars have been carried out with the Einstein Observatory, and 79 have been detected. A correlation between optical emission and X-ray emission is found; and for radio-loud quasars, the data show a correlation between radio emission and X-ray emission. For a given optical luminosity, the average X-ray emission of radio-loud quasars is about three times higher than that of radio-quiet quasars. The data also suggest that the ratio of X-ray to optical luminosity is decreasing with increasing redshift and/or optical luminosity. The data support the picture in which luminosity evolution, rather than pure density evolution, describes the quasar behavior as a function of redshift.

  7. The Seven Sisters DANCe. I. Empirical isochrones, luminosity, and mass functions of the Pleiades cluster

    NASA Astrophysics Data System (ADS)

    Bouy, H.; Bertin, E.; Sarro, L. M.; Barrado, D.; Moraux, E.; Bouvier, J.; Cuillandre, J.-C.; Berihuete, A.; Olivares, J.; Beletsky, Y.

    2015-05-01

    Context. The DANCe survey provides photometric and astrometric (position and proper motion) measurements for approximately 2 million unique sources in a region encompassing ~80 deg2 centered on the Pleiades cluster. Aims: We aim at deriving a complete census of the Pleiades and measure the mass and luminosity functions of the cluster. Methods: Using the probabilistic selection method previously described, we identified high probability members in the DANCe (i ≥ 14 mag) and Tycho-2 (V ≲ 12 mag) catalogues and studied the properties of the cluster over the corresponding luminosity range. Results: We find a total of 2109 high-probability members, of which 812 are new, making it the most extensive and complete census of the cluster to date. The luminosity and mass functions of the cluster are computed from the most massive members down to ~0.025 M⊙. The size, sensitivity, and quality of the sample result in the most precise luminosity and mass functions observed to date for a cluster. Conclusions: Our census supersedes previous studies of the Pleiades cluster populations, in terms of both sensitivity and accuracy. Based on service observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.Table 1 and Appendices are available in electronic form at http://www.aanda.orgDANCe catalogs (Tables 6 and 7) and full Tables 2-5 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/577/A148

  8. The luminosity function of quasars

    NASA Technical Reports Server (NTRS)

    Pei, Yichuan C.

    1995-01-01

    We propose a new evolutionary model for the optical luminosity function of quasars. Our analytical model is derived from fits to the empirical luminosity function estimated by Hartwick and Schade and Warren, Hewett, and Osmer on the basis of more than 1200 quasars over the range of redshifts 0 approximately less than z approximately less than 4.5. We find that the evolution of quasars over this entire redshift range can be well fitted by a Gaussian distribution, while the shape of the luminosity function can be well fitted by either a double power law or an exponential L(exp 1/4) law. The predicted number counts of quasars, as a function of either apparent magnitude or redshift, are fully consistent with the observed ones. Our model indicates that the evolution of quasars reaches its maximum at z approximately = 2.8 and declines at higher redshifts. An extrapolation of the evolution to z approximately greater than 4.5 implies that quasars may have started their cosmic fireworks at z(sub f) approximately = 5.2-5.5. Forthcoming surveys of quasars at these redshifts will be critical to constrain the epoch of quasar formation. All the results we derived are based on observed quasars and are therefore subject to the bias of obscuration by dust in damped Ly alpha systems. Future surveys of these absorption systems at z approximately greater than 3 will also be important if the formation epoch of quasars is to be known unambiguously.

  9. THE INFLUENCE OF RED SPIRAL GALAXIES ON THE SHAPE OF THE LOCAL K-BAND LUMINOSITY FUNCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonne, Nicolas J.; Brown, Michael J. I.; Jones, Heath

    2015-02-01

    We have determined K-band luminosity functions for 13,325 local universe galaxies as a function of morphology and color (for K {sub tot} ≤ 10.75). Our sample is drawn from the Two Micron All Sky Survey Extended Source Catalog, with all sample galaxies having measured morphologies and distances (including 4219 archival redshift-independent distances). The luminosity function for our total sample is in good agreement with previous works, but is relatively smooth at faint magnitudes (due to bulk flow distance corrections). We investigated the differences due to morphological and color selection using 5417 sample galaxies with NASA Sloan Atlas optical colors and find thatmore » red spirals comprise 20%-50% of all spirals with –25 ≤ M{sub K}  < –20. Fainter than M{sub K} = –24, red spirals are as common as early types, explaining the different faint end slopes (α = –0.87 and –1.00 for red and early-types, respectively). While we find red spirals comprise more than 50% of all M{sub K}  < –25 spiral galaxies, they do not dominate the bright end of the overall red galaxy luminosity function, which is dominated by early-type galaxies. The brightest red spirals have ongoing star formation and those without are frequently misclassified as early-types. The faintest ones have an appearance and Sérsic indices consistent with faded disks, rather than true bulge-dominated galaxies.« less

  10. Short gamma-ray bursts at the dawn of the gravitational wave era

    NASA Astrophysics Data System (ADS)

    Ghirlanda, G.; Salafia, O. S.; Pescalli, A.; Ghisellini, G.; Salvaterra, R.; Chassande-Mottin, E.; Colpi, M.; Nappo, F.; D'Avanzo, P.; Melandri, A.; Bernardini, M. G.; Branchesi, M.; Campana, S.; Ciolfi, R.; Covino, S.; Götz, D.; Vergani, S. D.; Zennaro, M.; Tagliaferri, G.

    2016-10-01

    We derive the luminosity function φ(L) and redshift distribution Ψ(z) of short gamma-ray bursts (SGRBs) using all the available observer-frame constraints (I.e. peak flux, fluence, peak energy and duration distributions) of the large population of Fermi SGRBs and the rest-frame properties of a complete sample of SGRBs detected by Swift. We show that a steep φ(L) ∝ L- α with α ≥ 2.0 is excluded if the full set of constraints is considered. We implement a Markov chain Monte Carlo method to derive the φ(L) and Ψ(z) functions assuming intrinsic Ep-Liso and Ep-Eiso correlations to hold or, alternatively, that the distributions of intrinsic peak energy, luminosity, and duration are independent. To make our results independent from assumptions on the progenitor (NS-NS binary mergers or other channels) and from uncertainties on the star formation history, we assume a parametric form for the redshift distribution of the population of SGRBs. We find that a relatively flat luminosity function with slope ~0.5 below a characteristic break luminosity ~3 × 1052 erg s-1 and a redshift distribution of SGRBs peaking at z ~ 1.5-2 satisfy all our constraints. These results also hold if no Ep-Liso and Ep-Eiso correlations are assumed and they do not depend on the choice of the minimum luminosity of the SGRB population. We estimate, within ~200 Mpc (I.e. the design aLIGO range for the detection of gravitational waves produced by NS-NS merger events), that there should be 0.007-0.03 SGRBs yr-1 detectable as γ-ray events. Assuming current estimates of NS-NS merger rates and that all NS-NS mergers lead to a SGRB event, we derive a conservative estimate of the average opening angle of SGRBs ⟨ θjet ⟩ ~ 3°-6°. The luminosity function implies a prompt emission average luminosity ⟨L⟩ ~ 1.5 × 1052 erg s-1, higher by nearly two orders of magnitude than previous findings in the literature, which greatly enhances the chance of observing SGRB "orphan" afterglows. Effort should go in the direction of finding and identifying such orphan afterglows as counterparts of GW events.

  11. A Model for Protostellar Cluster Luminosities and the Impact on the CO–H2 Conversion Factor

    NASA Astrophysics Data System (ADS)

    Gaches, Brandt A. L.; Offner, Stella S. R.

    2018-02-01

    We construct a semianalytic model to study the effect of far-ultraviolet (FUV) radiation on gas chemistry from embedded protostars. We use the protostellar luminosity function (PLF) formalism of Offner & McKee to calculate the total, FUV, and ionizing cluster luminosity for various protostellar accretion histories and cluster sizes. We2 compare the model predictions with surveys of Gould Belt star-forming regions and find that the tapered turbulent core model matches best the mean luminosities and the spread in the data. We combine the cluster model with the photodissociation region astrochemistry code, 3D-PDR, to compute the impact of the FUV luminosity from embedded protostars on the CO-to-H2 conversion factor, X CO, as a function of cluster size, gas mass, and star formation efficiency. We find that X CO has a weak dependence on the FUV radiation from embedded sources for large clusters owing to high cloud optical depths. In smaller and more efficient clusters the embedded FUV increases X CO to levels consistent with the average Milky Way values. The internal physical and chemical structures of the cloud are significantly altered, and X CO depends strongly on the protostellar cluster mass for small efficient clouds.

  12. Planetary nebulae as standard candles. IV - A test in the Leo I group

    NASA Technical Reports Server (NTRS)

    Ciardullo, Robin; Jacoby, George H.; Ford, Holland C.

    1989-01-01

    In this paper, PN are used to determine accurate distances to three galaxies in the Leo I group - The E0 giant elliptical NGC 3379, its optical companion, the SB0 spiral NGC 3384, and the smaller E6 elliptical NGC 3377. In all three galaxies, the luminosity-specific PN number densities are roughly the same, and the derived stellar death rates are in remarkable agreement with the predictions of stellar evolution theory. It is shown that the shape of the forbidden O III 5007 A PN luminosity function is the same in each galaxy and indistinguishable from that observed in M31 and M81. It is concluded that the PN luminosity function is an excellent standard candle for early-type galaxies.

  13. Confirmation of a Steep Luminosity Function for Ly alpha Emitters at z 5.7: a Major Component of Reionization

    NASA Technical Reports Server (NTRS)

    Dressler, Alan; Henry, Alaina L.; Martin, Crystal L.; Sawicki, Marcin; McCarthy, Patrick; Villaneuva, Edward

    2014-01-01

    We report the first direct and robust measurement of the faint-end slope of the Ly-alpha emitter (LAE) luminosity function at z = 5.7. Candidate LAEs from a low-spectral-resolution blind search with IMACS on Magellan- Baade were targeted at higher resolution to distinguish high redshift LAEs from foreground galaxies. All but 2 of our 42 single-emission-line systems are fainter than F = 2.0×10(exp-17) ergs s(exp-1) cm(exp-2), making these the faintest emission-lines observed for a z = 5.7 sample with known completeness, an essential property for determining the faint end slope of the LAE luminosity function. We find 13 LAEs as compared to 29 foreground galaxies, in very good agreement with the modeled foreground counts predicted in Dressler et al. (2011a) that had been used to estimate a faint-end slope of alpha = -2.0 for the LAE luminosity function. A 32% LAE fraction, LAE/(LAE+foreground) within the flux interval F = 2-20 × 10(exp-18) ergs s(exp-1) cm(exp-2) constrains the faint end slope of the luminosity function to -1.95 greater than alpha greater than -2.35 (1 delta). We show how this steep LF should provide, to the limit of our observations, more than 20% of the flux necessary to maintain ionization at z = 5.7, with a factor-of-ten extrapolation in flux reaching more than 55%. We suggest that this bodes well for a comparable contribution by similar, low-mass star forming galaxies at higher-redshift - within the reionization epoch at z greater than approximately 7, only 250 Myr earlier - and that such systems provide a substantial, if not dominant, contribution to the late-stage reionization of the IGM.

  14. A New Determination of the Luminosity Function of the Galactic Halo.

    NASA Astrophysics Data System (ADS)

    Dawson, Peter Charles

    The luminosity function of the galactic halo is determined by subtracting from the observed numbers of proper motion stars in the LHS Catalogue the expected numbers of main-sequence, degenerate, and giant stars of the disk population. Selection effects are accounted for by Monte Carlo simulations based upon realistic colour-luminosity relations and kinematic models. The catalogue is shown to be highly complete, and a calibration of the magnitude estimates therein is presented. It is found that, locally, the ratio of disk to halo material is close to 950, and that the mass density in main sequence and subgiant halo stars with 3 < M(,v) < 14 is about 2 x 10('-5) M(,o) pc('-3). With due allowance for white dwarfs and binaries, and taking into account the possibility of a moderate rate of halo rotation, it is argued that the total density does not much exceed 5 x 10('-5) M(,o) pc('-3), in which case the total mass interior to the sun is of the order of 5 x 10('8) M(,o) for a density distribution which projects to a de Vaucouleurs r(' 1/4) law. It is demonstrated that if the Wielen luminosity function is a faithful representation of the stellar distribution in the solar neighbourhood, then the observed numbers of large proper motion stars are inconsistent with the presence of an intermediate popula- tion at the level, and with the kinematics advocated recently by Gilmore and Reid. The initial mass function (IMF) of the halo is considered, and weak evidence is presented that its slope is at least not shallower than that of the disk population IMF. A crude estimate of the halo's age, based on a comparison of the main sequence turnoff in the reduced proper motion diagram with theoretical models is obtained; a tentative lower limit is 15 Gyr with a best estimate of between 15 and 18 Gyr. Finally, the luminosity function obtained here is compared with those determined in other investigations.

  15. Enhancing caries resistance in occlusal fissures with a short-pulsed CO2 9.6-μm laser: an in vitro pH-cycling study, preliminary results

    NASA Astrophysics Data System (ADS)

    Charland, Daniel; Fulton, Crystal; Rechmann, Beate; Hewko, Mark; Featherstone, John; Choo-Smith, Lin-P'ing; Rechmann, Peter

    2011-03-01

    Treatment of occlusal surfaces with a short-pulsed CO2 9.6 μm wavelength laser has previously been proposed as a method for caries prevention. A sample of 20 extracted human molars were measured before and after demineralizationremineralization pH-cycling with ICDAS II visual inspection, DIAGNOdent, quantitative light-induced fluorescence (QLF), SoproLife in daylight and blue light-induced fluorescence mode, optical coherence tomography (OCT) and polarized Raman spectroscopy (PRS). Per tooth, one fissure was subjected to laser treatment using a short-pulsed CO2 laser at 9.6 μm wavelength with a fluence of 3.5 J/cm2, 20 Hz pulse repetition rate, 20 μs pulse duration, angulated handpiece, and focus diameter of 600 μm, while the other fissure was left untreated as control. The teeth were subjected to a demineralization-remineralization pH-cycling for 9 days. Cross-sectional micro-hardness testing was done as a gold standard to compare results with findings from the other detection methods used. Due to the small sample size reported, the trend observed was that laser treated fissures demonstrated a smaller relative mineral loss ▵Z than the controls. QLF findings followed a similar trend. Using a rotary catheter probe, OCT measurements were acquired from the various fissures to generate circularly mapped OCT depth images. PRS measurements of parallel- and cross-polarized spectra were acquired with a Raman microscope system. Preliminary OCT images showed differences in the initial air-tooth interface, with PRS results indicating a change in the surface property along with biochemical alterations after pH-cycling. Following pH-cycling, an increase in the OCT subsurface light backscattering intensity in the control fissures was observed compared to the laser test fissures. Porphyrin based fluorescence methods like DIAGNOdent and SoproLife, respectively demonstrated only additional light scattering due to the demineralization process.

  16. Enamel demineralization and remineralization under plaque fluid-like conditions: a quantitative light-induced fluorescence study.

    PubMed

    Lippert, F; Butler, A; Lynch, R J M

    2011-01-01

    The present study investigated de- and remineralization in enamel lesions under plaque fluid (PF)-like conditions using quantitative light-induced fluorescence (QLF). Preformed lesions were exposed to partially saturated lactic acid solutions, varying in pH and fluoride concentration ([F]) based on a 5 × 3 factorial study design (0/0.1/0.5/1.5/4 ppm F; pH 4.9/5.2/5.5). Average fluorescence loss (ΔF) was monitored for 11 days. Subsequently, lesions were demineralized in a partially saturated acetic acid solution for two 24-hour periods. Data were analyzed using repeated measures analysis of covariance. Lesions exposed to PF at 4 ppm F and pH 5.5 showed not only the most remineralization (ΔΔF = 28.2 ± 14.0%) for all groups after 11 days, but also the most demineralization (ΔΔF = -19.3 ± 13.5%) after subsequent acetic acid exposure. Increased [F] resulted in more remineralization, regardless of pH. Higher pH values resulted in more remineralization. No remineralization was observed in lesions exposed to F-free solutions, regardless of pH. Remineralization was noticeable under the following conditions: pH 4.9 - [F] = 4 ppm, pH 5.2 - [F] ≥ 1.5 ppm, and pH 5.5 - [F] ≥ 0.5 ppm. Overall, [F] had a stronger effect on remineralization than pH. Subsequent demineralization showed that little protection was offered by PF-like solutions, and further demineralization compared with baseline was observed on lesions not remineralized initially. [F] had a stronger effect on net mineral change than pH. The present study has shown that QLF is a valuable tool in studying lesion de- and remineralization under PF-like conditions, where [F] was shown to be more important than pH. Copyright © 2011 S. Karger AG, Basel.

  17. A Deep Proper Motion Catalog Within the Sloan Digital Sky Survey Footprint. II. The White Dwarf Luminosity Function

    NASA Astrophysics Data System (ADS)

    Munn, Jeffrey A.; Harris, Hugh C.; von Hippel, Ted; Kilic, Mukremin; Liebert, James W.; Williams, Kurtis A.; DeGennaro, Steven; Jeffery, Elizabeth; Dame, Kyra; Gianninas, A.; Brown, Warren R.

    2017-01-01

    A catalog of 8472 white dwarf (WD) candidates is presented, selected using reduced proper motions from the deep proper motion catalog of Munn et al. Candidates are selected in the magnitude range 16< r< 21.5 over 980 square degrees, and 16< r< 21.3 over an additional 1276 square degrees, within the Sloan Digital Sky Survey (SDSS) imaging footprint. Distances, bolometric luminosities, and atmospheric compositions are derived by fitting SDSS ugriz photometry to pure hydrogen and helium model atmospheres (assuming surface gravities {log} {\\text{}}g=8). The disk white dwarf luminosity function (WDLF) is constructed using a sample of 2839 stars with 5.5< {M}{bol}< 17, with statistically significant numbers of stars cooler than the turnover in the luminosity function. The WDLF for the halo is also constructed, using a sample of 135 halo WDs with 5< {M}{bol}< 16. We find space densities of disk and halo WDs in the solar neighborhood of 5.5+/- 0.1× {10}-3 {{pc}}-3 and 3.5+/- 0.7× {10}-5 {{pc}}-3, respectively. We resolve the bump in the disk WDLF due to the onset of fully convective envelopes in WDs, and see indications of it in the halo WDLF as well.

  18. The Faint End of the z = 5 Quasar Luminosity Function from the CFHTLS

    NASA Astrophysics Data System (ADS)

    McGreer, Ian D.; Fan, Xiaohui; Jiang, Linhua; Cai, Zheng

    2018-03-01

    We present results from a spectroscopic survey of z ∼ 5 quasars in the CFHT Legacy Survey. Using both optical color selection and a likelihood method, we select 97 candidates over an area of 105 deg2 to a limit of i AB < 23.2, and 7 candidates in the range 23.2 < i AB < 23.7 over an area of 18.5 deg2. Spectroscopic observations for 43 candidates were obtained with Gemini, MMT, and Large Binocular Telescope, of which 37 are z > 4 quasars. This sample extends measurements of the quasar luminosity function ∼1.5 mag fainter than our previous work in Sloan Digital Sky Survey Stripe 82. The resulting luminosity function is in good agreement with our previous results, and suggests that the faint end slope is not steep. We perform a detailed examination of our survey completeness, particularly the impact of the Lyα emission assumed in our quasar spectral models, and find hints that the observed Lyα emission from faint z ∼ 5 quasars is weaker than for z ∼ 3 quasars at a similar luminosity. Our results strongly disfavor a significant contribution of faint quasars to the hydrogen-ionizing background at z = 5.

  19. Resolved stars in nearby galaxies: Ground-based photometry of M81

    NASA Technical Reports Server (NTRS)

    Madore, Barry F.; Freedman, Wendy L.; Lee, Myung G.

    1993-01-01

    Using the Canada-France-Hawaii Telescope (CFHT) we have obtained three closely spaced epochs of calibrated Blue Violet Red Infrared (BVRI) CCD imaging of two fields in M81, each known to contain a thirty-day Cepheid. Calibrated BVRI photometry of the brightest stars in these fields is presented. The slope of the luminosity function from the brightest 3-4 mag of the main-sequence blue plume is consistent with similar determinations of the apparent luminosity function in other resolved galaxies, thereby removing the one potential deviation from universality noted by Freedman in a photographic study of luminosity functions in nearby resolved galaxies. Under the assumption that the two Cepheids are representative, a reddening-law fit to the multiwavelength BVRI period-luminosity moduli give a true distance modulus of (m-M)sub 0 = 27.79 mag for M81, corresponding to a linear distance of 3.6 Mpc. An error analysis shows that the derived true distance modulus has a random error of +/- 0.28 mag (due to the photometric uncertainties in the BVRI data), with a systematic uncertainty of +/- 0.10 mag (accounting for the combined effects of unknown phasing of the data points, and the unknown positioning of these particular stars within the Cepheid instabiliy strip).

  20. Gamma-Ray Bursts and Cosmology

    NASA Technical Reports Server (NTRS)

    Norris, Jay P.

    2003-01-01

    The unrivalled, extreme luminosities of gamma-ray bursts (GRBs) make them the favored beacons for sampling the high redshift Universe. To employ GRBs to study the cosmic terrain -- e.g., star and galaxy formation history -- GRB luminosities must be calibrated, and the luminosity function versus redshift must be measured or inferred. Several nascent relationships between gamma-ray temporal or spectral indicators and luminosity or total energy have been reported. These measures promise to further our understanding of GRBs once the connections between the luminosity indicators and GRB jets and emission mechanisms are better elucidated. The current distribution of 33 redshifts determined from host galaxies and afterglows peaks near z $\\sim$ 1, whereas for the full BATSE sample of long bursts, the lag-luminosity relation predicts a broad peak z $\\sim$ 1--4 with a tail to z $\\sim$ 20, in rough agreement with theoretical models based on star formation considerations. For some GRB subclasses and apparently related phenomena -- short bursts, long-lag bursts, and X-ray flashes -- the present information on their redshift distributions is sparse or entirely lacking, and progress is expected in Swift era when prompt alerts become numerous.

  1. AGN host galaxy mass function in COSMOS. Is AGN feedback responsible for the mass-quenching of galaxies?

    NASA Astrophysics Data System (ADS)

    Bongiorno, A.; Schulze, A.; Merloni, A.; Zamorani, G.; Ilbert, O.; La Franca, F.; Peng, Y.; Piconcelli, E.; Mainieri, V.; Silverman, J. D.; Brusa, M.; Fiore, F.; Salvato, M.; Scoville, N.

    2016-04-01

    We investigate the role of supermassive black holes in the global context of galaxy evolution by measuring the host galaxy stellar mass function (HGMF) and the specific accretion rate, that is, λSAR, the distribution function (SARDF), up to z ~ 2.5 with ~1000 X-ray selected AGN from XMM-COSMOS. Using a maximum likelihood approach, we jointly fit the stellar mass function and specific accretion rate distribution function, with the X-ray luminosity function as an additional constraint. Our best-fit model characterizes the SARDF as a double power-law with mass-dependent but redshift-independent break, whose low λSAR slope flattens with increasing redshift while the normalization increases. This implies that for a given stellar mass, higher λSAR objects have a peak in their space density at earlier epoch than the lower λSAR objects, following and mimicking the well-known AGN cosmic downsizing as observed in the AGN luminosity function. The mass function of active galaxies is described by a Schechter function with an almost constant M∗⋆ and a low-mass slope α that flattens with redshift. Compared to the stellar mass function, we find that the HGMF has a similar shape and that up to log (M⋆/M⊙) ~ 11.5, the ratio of AGN host galaxies to star-forming galaxies is basically constant (~10%). Finally, the comparison of the AGN HGMF for different luminosity and specific accretion rate subclasses with a previously published phenomenological model prediction for the "transient" population, which are galaxies in the process of being mass-quenched, reveals that low-luminosity AGN do not appear to be able to contribute significantly to the quenching and that at least at high masses, that is, M⋆ > 1010.7 M⊙, feedback from luminous AGN (log Lbol ≳ 46 [erg/s]) may be responsible for the quenching of star formation in the host galaxy.

  2. The 2.4 μm Galaxy Luminosity Function As Measured Using WISE. I. Measurement Techniques

    NASA Astrophysics Data System (ADS)

    Lake, S. E.; Wright, E. L.; Tsai, C.-W.; Lam, A.

    2017-04-01

    The astronomy community has at its disposal a large back catalog of public spectroscopic galaxy redshift surveys that can be used for the measurement of luminosity functions (LFs). Utilizing the back catalog with new photometric surveys to maximum efficiency requires modeling the color selection bias imposed on the selection of target galaxies by flux limits at multiple wavelengths. The likelihood derived herein can address, in principle, all possible color selection biases through the use of a generalization of the LF, {{Φ }}(L), over the space of all spectra: the spectro-luminosity functional, {{\\Psi }}[{L}ν ]. It is, therefore, the first estimator capable of simultaneously analyzing multiple redshift surveys in a consistent way. We also propose a new way of parametrizing the evolution of the classic Schechter function parameters, L ⋆ and ϕ ⋆, that improves both the physical realism and statistical performance of the model. The techniques derived in this paper are used in a companion paper by Lake et al. to measure the LF of galaxies at the rest-frame wavelength of 2.4 μ {{m}} using the Widefield Infrared Survey Explorer (WISE).

  3. The gamma-ray luminosity function of millisecond pulsars and implications for the GeV excess

    DOE PAGES

    Hooper, Dan; Mohlabeng, Gopolang

    2016-03-29

    It has been proposed that a large population of unresolved millisecond pulsars (MSPs) could potentially account for the excess of GeV-scale gamma-rays observed from the region surrounding the Galactic Center. The viability of this scenario depends critically on the gamma-ray luminosity function of this source population, which determines how many MSPs Fermi should have already detected as resolved point sources. In this paper, we revisit the gamma-ray luminosity function of MSPs, without relying on uncertain distance measurements. Our determination, based on a comparison of models with the observed characteristics of the MSP population, suggests that Fermi should have already detectedmore » a significant number of sources associated with such a hypothesized Inner Galaxy population. As a result, we cannot rule out a scenario in which the MSPs residing near the Galactic Center are systematically less luminous than those present in the Galactic Plane or within globular clusters.« less

  4. THE LUMINOSITY FUNCTION OF FERMI-DETECTED FLAT-SPECTRUM RADIO QUASARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajello, M.; Shaw, M. S.; Romani, R. W.

    2012-06-01

    Fermi has provided the largest sample of {gamma}-ray-selected blazars to date. In this work we use a complete sample of flat spectrum radio quasars (FSRQs) detected during the first year of operation to determine the luminosity function (LF) and its evolution with cosmic time. The number density of FSRQs grows dramatically up to redshift {approx}0.5-2.0 and declines thereafter. The redshift of the peak in the density is luminosity dependent, with more luminous sources peaking at earlier times; thus the LF of {gamma}-ray FSRQs follows a luminosity-dependent density evolution similar to that of radio-quiet active galactic nuclei. Also, using data frommore » the Swift Burst Alert Telescope we derive the average spectral energy distribution (SED) of FSRQs in the 10 keV-300 GeV band and show that there is no correlation between the luminosity at the peak of the {gamma}-ray emission component and its peak frequency. Using this luminosity-independent SED with the derived LF allows us to predict that the contribution of FSRQs to the Fermi isotropic {gamma}-ray background is 9.3{sup +1.6}{sub -1.0}% ({+-}3% systematic uncertainty) in the 0.1-100 GeV band. Finally we determine the LF of unbeamed FSRQs, finding that FSRQs have an average Lorentz factor of {gamma} = 11.7{sup +3.3}{sub -2.2}, that most are seen within 5 Degree-Sign of the jet axis, and that they represent only {approx}0.1% of the parent population.« less

  5. The SAGA Survey. I. Satellite Galaxy Populations around Eight Milky Way Analogs

    NASA Astrophysics Data System (ADS)

    Geha, Marla; Wechsler, Risa H.; Mao, Yao-Yuan; Tollerud, Erik J.; Weiner, Benjamin; Bernstein, Rebecca; Hoyle, Ben; Marchi, Sebastian; Marshall, Phil J.; Muñoz, Ricardo; Lu, Yu

    2017-09-01

    We present the survey strategy and early results of the “Satellites Around Galactic Analogs” (SAGA) Survey. The SAGA Survey’s goal is to measure the distribution of satellite galaxies around 100 systems analogous to the Milky Way down to the luminosity of the Leo I dwarf galaxy ({M}r< -12.3). We define a Milky Way analog based on K-band luminosity and local environment. Here, we present satellite luminosity functions for eight Milky-Way-analog galaxies between 20 and 40 Mpc. These systems have nearly complete spectroscopic coverage of candidate satellites within the projected host virial radius down to {r}o< 20.75 using low-redshift gri color criteria. We have discovered a total of 25 new satellite galaxies: 14 new satellite galaxies meet our formal criteria around our complete host systems, plus 11 additional satellites in either incompletely surveyed hosts or below our formal magnitude limit. Combined with 13 previously known satellites, there are a total of 27 satellites around 8 complete Milky-Way-analog hosts. We find a wide distribution in the number of satellites per host, from 1 to 9, in the luminosity range for which there are 5 Milky Way satellites. Standard abundance matching extrapolated from higher luminosities predicts less scatter between hosts and a steeper luminosity function slope than observed. We find that the majority of satellites (26 of 27) are star-forming. These early results indicate that the Milky Way has a different satellite population than typical in our sample, potentially changing the physical interpretation of measurements based only on the Milky Way’s satellite galaxies.

  6. Cosmic Star Formation History and Evolution of the Galaxy UV Luminosity Function for z < 1

    NASA Astrophysics Data System (ADS)

    Zhang, Keming; Schiminovich, David

    2018-01-01

    We present the latest constraints on the evolution of the far-ultraviolet luminosity function of galaxies (1500 Å, UVLF hereafter) for 0 < z < 1 based on GALEX photometry, with redshift measurements from four spectroscopic and photometric-redshift catalogs: NSA, GAMA, VIPERS, and COSMOS photo-z. Our final sample consists of ~170000 galaxies, which represents the largest sample used in such studies. By integrating wide NSA and GAMA data and deep VIPERS and COSMOS photo-z data, we have been able to constrain both the bright end and the faint end of the luminosity function with high accuracy over the entire redshift range. We fit a Schechter function to our measurements of the UVLF, both to parameterize its evolution, and to integrate for SFR densities. From z~1 to z~0, the characteristic absolute magnitude of the UVLF increases linearly by ~1.5 magnitudes, while the faint end slope remains shallow (alpha < 1.5). However, the Schechter function fit exhibits an excess of galaxies at the bright end, which is accounted for by contributions from AGN. We also describe our methodology, which can be applied more generally to any combination of wide-shallow and deep-narrow surveys.

  7. ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: CO LUMINOSITY FUNCTIONS AND THE EVOLUTION OF THE COSMIC DENSITY OF MOLECULAR GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decarli, Roberto; Walter, Fabian; Aravena, Manuel

    2016-12-10

    In this paper we use ASPECS, the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field in band 3 and band 6, to place blind constraints on the CO luminosity function and the evolution of the cosmic molecular gas density as a function of redshift up to z  ∼ 4.5. This study is based on galaxies that have been selected solely through their CO emission and not through any other property. In all of the redshift bins the ASPECS measurements reach the predicted “knee” of the CO luminosity function (around 5 × 10{sup 9} K km s{sup −1} pc{sup 2}). We find clear evidence ofmore » an evolution in the CO luminosity function with respect to z  ∼ 0, with more CO-luminous galaxies present at z  ∼ 2. The observed galaxies at z  ∼ 2 also appear more gas-rich than predicted by recent semi-analytical models. The comoving cosmic molecular gas density within galaxies as a function of redshift shows a drop by a factor of 3–10 from z  ∼ 2 to z  ∼ 0 (with significant error bars), and possibly a decline at z  > 3. This trend is similar to the observed evolution of the cosmic star formation rate density. The latter therefore appears to be at least partly driven by the increased availability of molecular gas reservoirs at the peak of cosmic star formation ( z  ∼ 2).« less

  8. The gamma-ray pulsar population of globular clusters: implications for the GeV excess

    NASA Astrophysics Data System (ADS)

    Hooper, Dan; Linden, Tim

    2016-08-01

    It has been suggested that the GeV excess, observed from the region surrounding the Galactic Center, might originate from a population of millisecond pulsars that formed in globular clusters. With this in mind, we employ the publicly available Fermi data to study the gamma-ray emission from 157 globular clusters, identifying a statistically significant signal from 25 of these sources (ten of which are not found in existing gamma-ray catalogs). We combine these observations with the predicted pulsar formation rate based on the stellar encounter rate of each globular cluster to constrain the gamma-ray luminosity function of millisecond pulsars in the Milky Way's globular cluster system. We find that this pulsar population exhibits a luminosity function that is quite similar to those millisecond pulsars observed in the field of the Milky Way (i.e. the thick disk). After pulsars are expelled from a globular cluster, however, they continue to lose rotational kinetic energy and become less luminous, causing their luminosity function to depart from the steady-state distribution. Using this luminosity function and a model for the globular cluster disruption rate, we show that millisecond pulsars born in globular clusters can account for only a few percent or less of the observed GeV excess. Among other challenges, scenarios in which the entire GeV excess is generated from such pulsars are in conflict with the observed mass of the Milky Way's Central Stellar Cluster.

  9. The gamma-ray pulsar population of globular clusters: implications for the GeV excess

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, Dan; Linden, Tim, E-mail: dhooper@fnal.gov, E-mail: linden.70@osu.edu

    It has been suggested that the GeV excess, observed from the region surrounding the Galactic Center, might originate from a population of millisecond pulsars that formed in globular clusters. With this in mind, we employ the publicly available Fermi data to study the gamma-ray emission from 157 globular clusters, identifying a statistically significant signal from 25 of these sources (ten of which are not found in existing gamma-ray catalogs). We combine these observations with the predicted pulsar formation rate based on the stellar encounter rate of each globular cluster to constrain the gamma-ray luminosity function of millisecond pulsars in themore » Milky Way's globular cluster system. We find that this pulsar population exhibits a luminosity function that is quite similar to those millisecond pulsars observed in the field of the Milky Way (i.e. the thick disk). After pulsars are expelled from a globular cluster, however, they continue to lose rotational kinetic energy and become less luminous, causing their luminosity function to depart from the steady-state distribution. Using this luminosity function and a model for the globular cluster disruption rate, we show that millisecond pulsars born in globular clusters can account for only a few percent or less of the observed GeV excess. Among other challenges, scenarios in which the entire GeV excess is generated from such pulsars are in conflict with the observed mass of the Milky Way's Central Stellar Cluster.« less

  10. The gamma-ray pulsar population of globular clusters: Implications for the GeV excess

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, Dan; Linden, Tim

    In this study, it has been suggested that the GeV excess, observed from the region surrounding the Galactic Center, might originate from a population of millisecond pulsars that formed in globular clusters. With this in mind, we employ the publicly available Fermi data to study the gamma-ray emission from 157 globular clusters, identifying a statistically significant signal from 25 of these sources (ten of which are not found in existing gamma-ray catalogs). We combine these observations with the predicted pulsar formation rate based on the stellar encounter rate of each globular cluster to constrain the gamma-ray luminosity function of millisecondmore » pulsars in the Milky Way's globular cluster system. We find that this pulsar population exhibits a luminosity function that is quite similar to those millisecond pulsars observed in the field of the Milky Way (i.e. the thick disk). After pulsars are expelled from a globular cluster, however, they continue to lose rotational kinetic energy and become less luminous, causing their luminosity function to depart from the steady-state distribution. Using this luminosity function and a model for the globular cluster disruption rate, we show that millisecond pulsars born in globular clusters can account for only a few percent or less of the observed GeV excess. Among other challenges, scenarios in which the entire GeV excess is generated from such pulsars are in conflict with the observed mass of the Milky Way's Central Stellar Cluster.« less

  11. The gamma-ray pulsar population of globular clusters: Implications for the GeV excess

    DOE PAGES

    Hooper, Dan; Linden, Tim

    2016-08-09

    In this study, it has been suggested that the GeV excess, observed from the region surrounding the Galactic Center, might originate from a population of millisecond pulsars that formed in globular clusters. With this in mind, we employ the publicly available Fermi data to study the gamma-ray emission from 157 globular clusters, identifying a statistically significant signal from 25 of these sources (ten of which are not found in existing gamma-ray catalogs). We combine these observations with the predicted pulsar formation rate based on the stellar encounter rate of each globular cluster to constrain the gamma-ray luminosity function of millisecondmore » pulsars in the Milky Way's globular cluster system. We find that this pulsar population exhibits a luminosity function that is quite similar to those millisecond pulsars observed in the field of the Milky Way (i.e. the thick disk). After pulsars are expelled from a globular cluster, however, they continue to lose rotational kinetic energy and become less luminous, causing their luminosity function to depart from the steady-state distribution. Using this luminosity function and a model for the globular cluster disruption rate, we show that millisecond pulsars born in globular clusters can account for only a few percent or less of the observed GeV excess. Among other challenges, scenarios in which the entire GeV excess is generated from such pulsars are in conflict with the observed mass of the Milky Way's Central Stellar Cluster.« less

  12. Compton scattering of the microwave background by quasar-blown bubbles

    NASA Technical Reports Server (NTRS)

    Voit, G. Mark

    1994-01-01

    At least 10% of quasars drive rapid outflows from the central regions of their host galaxies. The mass and energy flow rates in these winds are difficult to measure, but their kinetic luminosities probably exceed 10(exp 45) ergs/s. This kind of outflow easily sunders the interstellar medium of the host and blows a bubble in the intergalactic medium. After the quasar shuts off, the hot bubble continues to shock intergalactic gas until its leading edge merges with the Hubble flow. The interior hot gas Compton scatters microwave background photons, potentially providing a way to detect these bubbles. Assuming that quasar kinetic luminosities scale with their blue luminosities, we integrate over the quasar luminosity function to find the total distortion (y) of the microwave background produced by the entire population of quasar wind bubbles. This calculation of y distortion is remarkably insensitive to the properties of the intergalactic medium (IGM), quasar lifetimes, and cosmological parameters. Current Cosmic Background Explorer (COBE) limits on y constrain the kinetic luminosities of quasars to be less than several times their bolometric radiative luminosities. Within this constraint, quasars can still expel enough kinetic luminosity to shock the entire IGM by z = 0, but cannot heat and ionize the IGM by z = 4 unless omega(sub IGM) much less than 10(exp -2).

  13. Cosmic evolution of AGN with moderate-to-high radiative luminosity in the COSMOS field

    NASA Astrophysics Data System (ADS)

    Ceraj, L.; Smolčić, V.; Delvecchio, I.; Delhaize, J.; Novak, M.

    2018-05-01

    We study the moderate-to-high radiative luminosity active galactic nuclei (HLAGN) within the VLA-COSMOS 3 GHz Large Project. The survey covers 2.6 square degrees centered on the COSMOS field with a 1σ sensitivity of 2.3 μJy/beam across the field. This provides the simultaneously largest and deepest radio continuum survey available to date with exquisite multi-wavelength coverage. The survey yields 10,830 radio sources with signal-to-noise ratios >=5. A subsample of 1,604 HLAGN is analyzed here. These were selected via a combination of X-ray luminosity and mid-infrared colors. We derive luminosity functions for these AGN and constrain their cosmic evolution out to a redshift of z ~ 6, for the first time decomposing the star formation and AGN contributions to the radio continuum emission in the AGN. We study the evolution of number density and luminosity density finding a peak at z ~ 1.5 followed by a decrease out to a redshift z ~ 6.

  14. Modeling the evolution of infrared galaxies: a parametric backward evolution model

    NASA Astrophysics Data System (ADS)

    Béthermin, M.; Dole, H.; Lagache, G.; Le Borgne, D.; Penin, A.

    2011-05-01

    Aims: We attempt to model the infrared galaxy evolution in as simple a way as possible and reproduce statistical properties such as the number counts between 15 μm and 1.1 mm, the luminosity functions, and the redshift distributions. We then use the fitted model to interpret observations from Spitzer, AKARI, BLAST, LABOCA, AzTEC, SPT, and Herschel, and make predictions for Planck and future experiments such as CCAT or SPICA. Methods: This model uses an evolution in density and luminosity of the luminosity function parametrized by broken power-laws with two breaks at redshift ~0.9 and 2, and contains the two populations of the Lagache model: normal and starburst galaxies. We also take into account the effect of the strong lensing of high-redshift sub-millimeter galaxies. This effect is significant in the sub-mm and mm range near 50 mJy. It has 13 free parameters and eight additional calibration parameters. We fit the parameters to the IRAS, Spitzer, Herschel, and AzTEC measurements with a Monte Carlo Markov chain. Results: The model adjusted to deep counts at key wavelengths reproduces the counts from mid-infrared to millimeter wavelengths, as well as the mid-infrared luminosity functions. We discuss the contribution to both the cosmic infrared background (CIB) and the infrared luminosity density of the different populations. We also estimate the effect of the lensing on the number counts, and discuss the discovery by the South Pole Telescope (SPT) of a very bright population lying at high redshift. We predict the contribution of the lensed sources to the Planck number counts, the confusion level for future missions using a P(D) formalism, and the Universe opacity to TeV photons caused by the CIB. Material of the model (software, tables and predictions) is available online.

  15. Modeling the Redshift Evolution of the Normal Galaxy X-Ray Luminosity Function

    NASA Technical Reports Server (NTRS)

    Tremmel, M.; Fragos, T.; Lehmer, B. D.; Tzanavaris, P.; Belczynski, K.; Kalogera, V.; Basu-Zych, A. R.; Farr, W. M.; Hornschemeier, A.; Jenkins, L.; hide

    2013-01-01

    Emission from X-ray binaries (XRBs) is a major component of the total X-ray luminosity of normal galaxies, so X-ray studies of high-redshift galaxies allow us to probe the formation and evolution of XRBs on very long timescales (approximately 10 Gyr). In this paper, we present results from large-scale population synthesis models of binary populations in galaxies from z = 0 to approximately 20. We use as input into our modeling the Millennium II Cosmological Simulation and the updated semi-analytic galaxy catalog by Guo et al. to self-consistently account for the star formation history (SFH) and metallicity evolution of each galaxy. We run a grid of 192 models, varying all the parameters known from previous studies to affect the evolution of XRBs. We use our models and observationally derived prescriptions for hot gas emission to create theoretical galaxy X-ray luminosity functions (XLFs) for several redshift bins. Models with low common envelope efficiencies, a 50% twins mass ratio distribution, a steeper initial mass function exponent, and high stellar wind mass-loss rates best match observational results from Tzanavaris & Georgantopoulos, though they significantly underproduce bright early-type and very bright (L(sub x) greater than 10(exp 41)) late-type galaxies. These discrepancies are likely caused by uncertainties in hot gas emission and SFHs, active galactic nucleus contamination, and a lack of dynamically formed low-mass XRBs. In our highest likelihood models, we find that hot gas emission dominates the emission for most bright galaxies. We also find that the evolution of the normal galaxy X-ray luminosity density out to z = 4 is driven largely by XRBs in galaxies with X-ray luminosities between 10(exp 40) and 10(exp 41) erg s(exp -1).

  16. The number counts and infrared backgrounds from infrared-bright galaxies

    NASA Technical Reports Server (NTRS)

    Hacking, P. B.; Soifer, B. T.

    1991-01-01

    Extragalactic number counts and diffuse backgrounds at 25, 60, and 100 microns are predicted using new luminosity functions and improved spectral-energy distribution density functions derived from IRAS observations of nearby galaxies. Galaxies at redshifts z less than 3 that are like those in the local universe should produce a minimum diffuse background of 0.0085, 0.038, and 0.13 MJy/sr at 25, 60, and 100 microns, respectively. Models with significant luminosity evolution predict backgrounds about a factor of 4 greater than this minimum.

  17. The small numbers of large Kuiper Belt objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwamb, Megan E.; Brown, Michael E.; Fraser, Wesley C., E-mail: mschwamb@asiaa.sinica.edu.tw

    2014-01-01

    We explore the brightness distribution of the largest and brightest (m(R) < 22) Kuiper Belt Objects (KBOs). We construct a luminosity function of the dynamically excited or hot Kuiper Belt (orbits with inclinations >5°) from the very brightest to m(R) = 23. We find for m(R) ≲ 23, a single slope appears to describe the luminosity function. We estimate that ∼12 KBOs brighter than m(R) ∼ 19.5 are present in the Kuiper Belt today. With nine bodies already discovered this suggests that the inventory of bright KBOs is nearly complete.

  18. A Synthesis Of Cosmic X-ray And Infrared Background

    NASA Astrophysics Data System (ADS)

    Shi, Yong; Helou, G.; Armus, L.; Stierwalt, S.

    2012-01-01

    We present a synthesis model of cosmic IR and X-ray background, with the goal to derive a complete census of cosmic evolution of star formation (SF) and black-hole (BH) growth by complementing advantages of X-ray and IR surveys to each other. By assuming that individual galaxies are experiencing both SF and BH accretion, our model decomposes the total IR LF into SF and BH components while taking into account the luminosity-dependent SED and its dispersion of the SF component, and the extinction-dependent SED of the BH component. The best-fit parameters are derived by fitting to the number counts and redshift distributions at X-ray including both hard and soft bands, and mid-IR to submm bands including IRAS, Spitzer, Herschel, SCUBA, Aztec and MAMBO. Based on the fit result, our models provide a series of predictions on galaxy evolution and black-hole growth. For evolution of infrared galaxies, the model predicts that the total infrared luminosity function is best described through evolution in both luminosity and density. For evolution of AGN populations, the model predicts that the evolution of X-ray LF also shows luminosity and density dependent, that the type-1/type-2 AGN fraction is a function of both luminosity and redshift, and that the Compton-thick AGN number density evolves strongly with redshift, contributing about 20% to the total cosmic BH growth. For BH growth in IR galaxies, the model predicts that the majority of BH growth at z>1 occurs in infrared luminous galaxies and the AGN fraction as a function of IR survey is a strong function of the survey depth, ranging from >50% at bright end to below 10% at faint end. We also evaluates various AGN selection techniques at X-ray and IR wavelengths and offer predictions for future missions at X-ray and IR.

  19. Extragalactic High-energy Transients: Event Rate Densities and Luminosity Functions

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Zhang, Bing; Li, Zhuo

    2015-10-01

    Several types of extragalactic high-energy transients have been discovered, which include high-luminosity and low-luminosity long-duration gamma-ray bursts (GRBs), short-duration GRBs, supernova shock breakouts (SBOs), and tidal disruption events (TDEs) without or with an associated relativistic jet. In this paper, we apply a unified method to systematically study the redshift-dependent event rate densities and the global luminosity functions (GLFs; ignoring redshift evolution) of these transients. We introduce some empirical formulae for the redshift-dependent event rate densities for different types of transients and derive the local specific event rate density, which also represents its GLF. Long GRBs (LGRBs) have a large enough sample to reveal features in the GLF, which is best charaterized as a triple power law (PL). All the other transients are consistent with having a single-power-law (SPL) LF. The total event rate density depends on the minimum luminosity, and we obtain the following values in units of Gpc-3 yr-1: {0.8}-0.1+0.1 for high-luminosity LGRBs above 1050 erg s-1 {164}-65+98 for low-luminosity LGRBs above 5 × 1046 erg s-1 {1.3}-0.3+0.4, {1.2}-0.3+0.4, and {3.3}-0.8+1.0 above 1050 erg s-1 for short GRBs with three different merger delay models (Gaussian, lognormal, and PL); {1.9}-1.2+2.4× {10}4 above 1044 erg s-1 for SBOs, {4.8}-2.1+3.2× {10}2 for normal TDEs above 1044 erg s-1 and {0.03}-0.02+0.04 above 1048 erg s-1 for TDE jets as discovered by Swift. Intriguingly, the GLFs of different kinds of transients, which cover over 12 orders of magnitude, are consistent with an SPL with an index of -1.6.

  20. Einstein X-ray observations of Herbig Ae/Be stars

    NASA Technical Reports Server (NTRS)

    Damiani, F.; Micela, G.; Sciortino, S.; Harnden, F. R., Jr.

    1994-01-01

    We have investigated the X-ray emission from Herbig Ae/Be stars, using the full set of Einstein Imaging Proportional Counter (IPC) observations. Of a total of 31 observed Herbig stars, 11 are confidently identified with X-ray sources, with four additonal dubious identifications. We have used maximum likelihood luminosity functions to study the distribution of X-ray luminosity, and we find that Be stars are significantly brighter in X-rays than Ae stars and that their X-ray luminosity is independent of projected rotational velocity v sin i. The X-ray emission is instead correlated with stellar bolometric luminosity and with effective temperature, and also with the kinetic luminosity of the stellar wind. These results seem to exclude a solar-like origin for the X-ray emission, a possibility suggested by the most recent models of Herbig stars' structure, and suggest an analogy with the X-ray emission of O (and early B) stars. We also observe correlations between X-ray luminosity and the emission at 2.2 microns (K band) and 25 microns, which strengthen the case for X-ray emission of Herbig stars originating in their circumstellar envelopes.

  1. Far-infrared emission and star formation in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Trinchieri, G.; Fabbiano, G.; Bandiera, R.

    1989-01-01

    The correlations between the emission in the far-IR, H-alpha, and blue in a sample of normal spiral galaxies are investigated. It is found that the luminosities in these three bands are all tightly correlated, although both the strength of the correlations and their functional dependencies are a function of the galaxies' morphological types. The best-fit power laws to these correlations are different for the comparison of different quantities and deviate significantly from linearity in some cases, implying the presence of additional emission mechanisms not related to the general increase of luminosity with galactic mass. Clear evidence is found of two independent effects in the incidence of warm far-IR emission in late-type spirals. One is a luminosity effect shown by the presence of excess far-IR relative to H-alpha or optical emission in the more luminous galaxies. The other is a dependence on widespread star-formation activity.

  2. LFsGRB: Binary neutron star merger rate via the luminosity function of short gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Paul, Debdutta

    2018-04-01

    LFsGRB models the luminosity function (LF) of short Gamma Ray Bursts (sGRBs) by using the available catalog data of all short GRBs (sGRBs) detected till 2017 October, estimating the luminosities via pseudo-redshifts obtained from the Yonetoku correlation, and then assuming a standard delay distribution between the cosmic star formation rate and the production rate of their progenitors. The data are fit well both by exponential cutoff powerlaw and broken powerlaw models. Using the derived parameters of these models along with conservative values in the jet opening angles seen from afterglow observations, the true rate of short GRBs is derived. Assuming a short GRB is produced from each binary neutron star merger (BNSM), the rate of gravitational wave (GW) detections from these mergers are derived for the past, present and future configurations of the GW detector networks.

  3. On the X-ray spectrum of the volume emissivity arising from Abell clusters

    NASA Technical Reports Server (NTRS)

    Stottlemyer, A. R.; Boldt, E. A.

    1984-01-01

    HEAO 1 A-2 X-ray spectra (2-15 keV) for an optically selected sample of Abell clusters of galaxies with z less than 0.1 have been analyzed to determine the energy dependence of the cosmological X-ray volume emissivity arising from such clusters. This spectrum is well fitted by an isothermal-bremsstrahlung model with kT = 7.4 + or - 1.5 KeV. This result is a test of the isothermal-volume-emissivity spectrum to be inferred from the conjecture that all contributing clusters may be characterized by kT = 7 keV, as assumed by McKee et al. (1980) in estimating the underlying luminosity function for the same sample. Although satisfied at the statistical level indicated, the analysis of a low-luminosity subsample suggests that this assumption of identical isothermal spectra would lead to a systematic error for a more statistically precise determination of the luminosity function's form.

  4. CO luminosity function from Herschel-selected galaxies and the contribution of AGN

    NASA Astrophysics Data System (ADS)

    Vallini, L.; Gruppioni, C.; Pozzi, F.; Vignali, C.; Zamorani, G.

    2016-02-01

    We derive the carbon monoxide (CO) luminosity function (LF) for different rotational transitions [I.e. (1-0), (3-2), (5-4)] starting from the Herschel LF by Gruppioni et al. and using appropriate LCO-LIR conversions for different galaxy classes. Our predicted LFs fit the data so far available at z ≈ 0 and 2. We compare our results with those obtained by semi-analytical models (SAMs): while we find a good agreement over the whole range of luminosities at z ≈ 0, at z ≈ 1 and z ≈ 2, the tension between our LFs and SAMs in the faint and bright ends increases. We finally discuss the contribution of luminous active galactic nucleus (LX > 1044 erg s- 1) to the bright end of the CO LF concluding that they are too rare to reproduce the actual CO LF at z ≈ 2.

  5. The evolving far-IR galaxy luminosity function and dust-obscured star formation rate density out to z≃5.

    NASA Astrophysics Data System (ADS)

    Koprowski, M. P.; Dunlop, J. S.; Michałowski, M. J.; Coppin, K. E. K.; Geach, J. E.; McLure, R. J.; Scott, D.; van der Werf, P. P.

    2017-11-01

    We present a new measurement of the evolving galaxy far-IR luminosity function (LF) extending out to redshifts z ≃ 5, with resulting implications for the level of dust-obscured star formation density in the young Universe. To achieve this, we have exploited recent advances in sub-mm/mm imaging with SCUBA-2 on the James Clerk Maxwell Telescope and the Atacama Large Millimeter/Submillimeter Array, which together provide unconfused imaging with sufficient dynamic range to provide meaningful coverage of the luminosity-redshift plane out to z > 4. Our results support previous indications that the faint-end slope of the far-IR LF is sufficiently flat that comoving luminosity density is dominated by bright objects (≃L*). However, we find that the number density/luminosity of such sources at high redshifts has been severely overestimated by studies that have attempted to push the highly confused Herschel SPIRE surveys beyond z ≃ 2. Consequently, we confirm recent reports that cosmic star formation density is dominated by UV-visible star formation at z > 4. Using both direct (1/Vmax) and maximum likelihood determinations of the LF, we find that its high-redshift evolution is well characterized by continued positive luminosity evolution coupled with negative density evolution (with increasing redshift). This explains why bright sub-mm sources continue to be found at z > 5, even though their integrated contribution to cosmic star formation density at such early times is very small. The evolution of the far-IR galaxy LF thus appears similar in form to that already established for active galactic nuclei, possibly reflecting a similar dependence on the growth of galaxy mass.

  6. DUST EXTINCTION FROM BALMER DECREMENTS OF STAR-FORMING GALAXIES AT 0.75 {<=} z {<=} 1.5 WITH HUBBLE SPACE TELESCOPE/WIDE-FIELD-CAMERA 3 SPECTROSCOPY FROM THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominguez, A.; Siana, B.; Masters, D.

    Spectroscopic observations of H{alpha} and H{beta} emission lines of 128 star-forming galaxies in the redshift range 0.75 {<=} z {<=} 1.5 are presented. These data were taken with slitless spectroscopy using the G102 and G141 grisms of the Wide-Field-Camera 3 (WFC3) on board the Hubble Space Telescope as part of the WFC3 Infrared Spectroscopic Parallel survey. Interstellar dust extinction is measured from stacked spectra that cover the Balmer decrement (H{alpha}/H{beta}). We present dust extinction as a function of H{alpha} luminosity (down to 3 Multiplication-Sign 10{sup 41} erg s{sup -1}), galaxy stellar mass (reaching 4 Multiplication-Sign 10{sup 8} M {sub Sunmore » }), and rest-frame H{alpha} equivalent width. The faintest galaxies are two times fainter in H{alpha} luminosity than galaxies previously studied at z {approx} 1.5. An evolution is observed where galaxies of the same H{alpha} luminosity have lower extinction at higher redshifts, whereas no evolution is found within our error bars with stellar mass. The lower H{alpha} luminosity galaxies in our sample are found to be consistent with no dust extinction. We find an anti-correlation of the [O III] {lambda}5007/H{alpha} flux ratio as a function of luminosity where galaxies with L {sub H{alpha}} < 5 Multiplication-Sign 10{sup 41} erg s{sup -1} are brighter in [O III] {lambda}5007 than H{alpha}. This trend is evident even after extinction correction, suggesting that the increased [O III] {lambda}5007/H{alpha} ratio in low-luminosity galaxies is likely due to lower metallicity and/or higher ionization parameters.« less

  7. Mass-Luminosity Relations for Rapid and Slow Rotators.

    NASA Astrophysics Data System (ADS)

    Malkov, O. Yu.

    2006-08-01

    Comparing the radii of eclipsing binaries components and single stars we have found a noticeable difference between observational parameters of B0V-G0V components of eclipsing binaries and those of single stars of the corresponding spectral type. This difference was confirmed by re-analysing the results of independent investigations published in the literature. Larger radii and higher temperatures of A-F eclipsing binaries can be explained by synchronization of such stars in close systems that prevents them to rotate rapidly. So, we have found that the mass-luminosity relation based on eclipsing binary data cannot be used to derive the initial mass function of single stars. While our current knowledge of the empirical mass-luminosity relation for intermediate-mass (1.5 to 10 m[*]) stars is based exclusively on data from eclipsing binaries, knowledge of the mass-luminosity relation should come from dynamical mass determinations of visual binaries, combined with spatially resolved precise photometry. Then the initial mass function should be revised for m>1.5m[*]. Data were collected on fundamental parameters of stars with masses m > 1.5.m [*]). They are components of binaries with P > 15^d and consequently are not synchronised with the orbital periods and presumably are rapid rotators. These stars are believed to evolve similarly with single stars, so these data allow us to construct mass-luminosity and other relations that can more confidently be used for statistical and astrophysical investigations of single stars than so called standard relations, based on data on detached main-sequence double-lined short-period eclipsing binaries. Mass-luminosity, mass-temperature and mass-radius relations of single stars are presented, as well as their HR diagram.

  8. Stellar Populations in the Central 0.5 pc of the Galaxy. I. A New Method for Constructing Luminosity Functions and Surface-density Profiles

    NASA Astrophysics Data System (ADS)

    Do, T.; Lu, J. R.; Ghez, A. M.; Morris, M. R.; Yelda, S.; Martinez, G. D.; Wright, S. A.; Matthews, K.

    2013-02-01

    We present new high angular resolution near-infrared spectroscopic observations of the nuclear star cluster surrounding the Milky Way's central supermassive black hole. Using the integral-field spectrograph OSIRIS on Keck II behind the laser-guide-star adaptive optics system, this spectroscopic survey enables us to separate early-type (young, 4-6 Myr) and late-type (old, >1 Gyr) stars with a completeness of 50% down to K' = 15.5 mag, which corresponds to ~10 M ⊙ for the early-type stars. This work increases the radial extent of reported OSIRIS/Keck measurements by more than a factor of three from 4'' to 14'' (0.16 to 0.56 pc), along the projected disk of young stars. For our analysis, we implement a new method of completeness correction using a combination of star-planting simulations and Bayesian inference. We assign probabilities for the spectral type of every source detected in deep imaging down to K' = 15.5 mag using information from spectra, simulations, number counts, and the distribution of stars. The inferred radial surface-density profiles, Σ(R)vpropR -Γ, for the young stars and late-type giants are consistent with earlier results (Γearly = 0.93 ± 0.09, Γlate = 0.16 ± 0.07). The late-type surface-density profile is approximately flat out to the edge of the survey. While the late-type stellar luminosity function is consistent with the Galactic bulge, the completeness-corrected luminosity function of the early-type stars has significantly more young stars at faint magnitudes compared with previous surveys with similar depth. This luminosity function indicates that the corresponding mass function of the young stars is likely less top-heavy than that inferred from previous surveys.

  9. Radio Identification of Millimeter-Bright Galaxies Detected in the AzTEC/ASTE Blank Field Survey

    NASA Astrophysics Data System (ADS)

    Hatsukade, Bunyo; Kohno, Kotaro; White, Glenn; Matsuura, Shuji; Hanami, Hitoshi; Shirahata, Mai; Nakanishi, Kouichiro; Hughes, David; Tamura, Yoichi; Iono, Daisuke; Wilson, Grant; Yun, Min

    2008-10-01

    We propose a deep 1.4-GHz imaging of millimeter-bright sources in the AzTEC/ASTE 1.1-mm blank field survey of AKARI Deep Field-South. The AzTEC/ASTE uncovered 37 sources, which are possibly at z > 2. We have obtained multi-wavelength data in this field, but the large beam size of AzTEC/ASTE (30 arcsec) prevents us from identifying counterparts. The aim of this proposal is to identify radio counterparts with higher-angular resolution. This enables us (i) To identifying optical/IR counterparts. It enables optical spectroscopy to determine precise redshifts, allowing us to derive SFRs, luminosity functions, clustering properties, mass of dark matter halos, etc. (ii) To constrain luminosity evolutions of SMGs by comparing of 1.4-GHz number counts (and luminosity functions) with luminosity evolution models. (iii) To estimate photometric redshifts from 1.4-GHz and 1.1-mm data using the radio-FIR flux correlation. In case of non-detection, we can put deep lower limits (3 sigma limit of z > 3). These information lead to the study of evolutionary history of SMGs, their relationship with other galaxy populations, contribution to the cosmic star formation history and the infrared background.

  10. Quasar populations in a cosmological constant-dominated flat universe

    NASA Technical Reports Server (NTRS)

    Malhotra, Sangeeta; Turner, Edwin L.

    1995-01-01

    Most physical properties derived for quasars, as single entities or as a population, depend upon the cosmology assumed. In this paper, we calculate the quasar luminosity function and some related quantities for a flat universe dominated by a cosmological constant Lambda (Lambda = 0.9, Omega = 0.1) and compare them with those deduced for a flat universe with zero cosmological constant (Lambda = 0, Omega = 1). We use the ATT quasar survey data (Boyle et al. 1990) as input in both cases. The data are fitted well by a pure luminosity evolution model for both the cosmologies but with different evolutionary parameters. From the luminosity function, we predict (extrapolate) a greater number of quasars at faint apparent magnitudes (twice the number at B = 24, z is less than 2.2) for the Lambda-dominated universe. This population of faint quasars at high redshift would result in a higher incidence of gravitational lensing. The total luminosity of the quasar population and the total mass tied up in black hole remnants of quasars is not sensitive to the cosmology. However, for a Lambda cosmology, this mass is tied up in fewer but more massive black holes.

  11. Spin properties of supermassive black holes with powerful outflows

    NASA Astrophysics Data System (ADS)

    Daly, Ruth. A.

    2016-05-01

    Relationships between beam power and accretion disc luminosity are studied for a sample of 55 high excitation radio galaxies (HERG), 13 low excitation radio galaxies (LERG), and 29 radio loud quasars (RLQ) with powerful outflows. The ratio of beam power to disc luminosity tends to be high for LERG, low for RLQ, and spans the full range of values for HERG. Writing general expressions for the disc luminosity and beam power and applying the empirically determined relationships allows a function that parametrizes the spins of the holes to be estimated. Interestingly, one of the solutions that is consistent with the data has a functional form that is remarkably similar to that expected in the generalized Blandford-Znajek model with a magnetic field that is similar in form to that expected in magnetically arrested disk (MAD) and advection-dominated accretion flow (ADAF) models. Values of the spin function, obtained independent of specific outflow models, suggest that spin and active galactic nucleus type are not related for these types of sources. The spin function can be used to solve for black hole spin in the context of particular outflow models, and one example is provided.

  12. The Quasar Fraction in Low-Frequency Selected Complete Samples and Implications for Unified Schemes

    NASA Technical Reports Server (NTRS)

    Willott, Chris J.; Rawlings, Steve; Blundell, Katherine M.; Lacy, Mark

    2000-01-01

    Low-frequency radio surveys are ideal for selecting orientation-independent samples of extragalactic sources because the sample members are selected by virtue of their isotropic steep-spectrum extended emission. We use the new 7C Redshift Survey along with the brighter 3CRR and 6C samples to investigate the fraction of objects with observed broad emission lines - the 'quasar fraction' - as a function of redshift and of radio and narrow emission line luminosity. We find that the quasar fraction is more strongly dependent upon luminosity (both narrow line and radio) than it is on redshift. Above a narrow [OII] emission line luminosity of log(base 10) (L(sub [OII])/W) approximately > 35 [or radio luminosity log(base 10) (L(sub 151)/ W/Hz.sr) approximately > 26.5], the quasar fraction is virtually independent of redshift and luminosity; this is consistent with a simple unified scheme with an obscuring torus with a half-opening angle theta(sub trans) approximately equal 53 deg. For objects with less luminous narrow lines, the quasar fraction is lower. We show that this is not due to the difficulty of detecting lower-luminosity broad emission lines in a less luminous, but otherwise similar, quasar population. We discuss evidence which supports at least two probable physical causes for the drop in quasar fraction at low luminosity: (i) a gradual decrease in theta(sub trans) and/or a gradual increase in the fraction of lightly-reddened (0 approximately < A(sub V) approximately < 5) lines-of-sight with decreasing quasar luminosity; and (ii) the emergence of a distinct second population of low luminosity radio sources which, like M8T, lack a well-fed quasar nucleus and may well lack a thick obscuring torus.

  13. Optical and X-ray luminosities of expanding nebulae around ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Siwek, Magdalena; Sądowski, Aleksander; Narayan, Ramesh; Roberts, Timothy P.; Soria, Roberto

    2017-09-01

    We have performed a set of simulations of expanding, spherically symmetric nebulae inflated by winds from accreting black holes in ultraluminous X-ray sources (ULXs). We implemented a realistic cooling function to account for free-free and bound-free cooling. For all model parameters we considered, the forward shock in the interstellar medium becomes radiative at a radius ˜100 pc. The emission is primarily in optical and UV, and the radiative luminosity is about 50 per cent of the total kinetic luminosity of the wind. In contrast, the reverse shock in the wind is adiabatic so long as the terminal outflow velocity of the wind vw ≳ 0.003c. The shocked wind in these models radiates in X-rays, but with a luminosity of only ˜1035 erg s-1. For wind velocities vw ≲ 0.001c, the shocked wind becomes radiative, but it is no longer hot enough to produce X-rays. Instead it emits in optical and UV, and the radiative luminosity is comparable to 100 per cent of the wind kinetic luminosity. We suggest that measuring the optical luminosities and putting limits on the X-ray and radio emission from shock-ionized ULX bubbles may help in estimating the mass outflow rate of the central accretion disc and the velocity of the outflow.

  14. A Faint Flux-limited Ly α Emitter Sample at z ∼ 0.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wold, Isak G. B.; Finkelstein, Steven L.; Barger, Amy J.

    2017-10-20

    We present a flux-limited sample of z ∼ 0.3 Ly α emitters (LAEs) from Galaxy Evolution Explorer ( GALEX ) grism spectroscopic data. The published GALEX z ∼ 0.3 LAE sample is pre-selected from continuum-bright objects and thus is biased against high equivalent width (EW) LAEs. We remove this continuum pre-selection and compute the EW distribution and the luminosity function of the Ly α emission line directly from our sample. We examine the evolution of these quantities from z ∼ 0.3 to 2.2 and find that the EW distribution shows little evidence for evolution over this redshift range. As shownmore » by previous studies, the Ly α luminosity density from star-forming (SF) galaxies declines rapidly with declining redshift. However, we find that the decline in Ly α luminosity density from z = 2.2 to z = 0.3 may simply mirror the decline seen in the H α luminosity density from z = 2.2 to z = 0.4, implying little change in the volumetric Ly α escape fraction. Finally, we show that the observed Ly α luminosity density from AGNs is comparable to the observed Ly α luminosity density from SF galaxies at z = 0.3. We suggest that this significant contribution from AGNs to the total observed Ly α luminosity density persists out to z ∼ 2.2.« less

  15. Modelling the luminosity function of long gamma-ray bursts using Swift and Fermi

    NASA Astrophysics Data System (ADS)

    Paul, Debdutta

    2018-01-01

    I have used a sample of long gamma-ray bursts (GRBs) common to both Swift and Fermi to re-derive the parameters of the Yonetoku correlation. This allowed me to self-consistently estimate pseudo-redshifts of all the bursts with unknown redshifts. This is the first time such a large sample of GRBs from these two instruments is used, both individually and in conjunction, to model the long GRB luminosity function. The GRB formation rate is modelled as the product of the cosmic star formation rate and a GRB formation efficiency for a given stellar mass. An exponential cut-off power-law luminosity function fits the data reasonably well, with ν = 0.6 and Lb = 5.4 × 1052 ergs- 1, and does not require a cosmological evolution. In the case of a broken power law, it is required to incorporate a sharp evolution of the break given by Lb ∼ 0.3 × 1052(1 + z)2.90 erg s- 1, and the GRB formation efficiency (degenerate up to a beaming factor of GRBs) decreases with redshift as ∝ (1 + z)-0.80. However, it is not possible to distinguish between the two models. The derived models are then used as templates to predict the distribution of GRBs detectable by CZT Imager onboard AstroSat as a function of redshift and luminosity. This demonstrates that via a quick localization and redshift measurement of even a few CZT Imager GRBs, AstroSat will help in improving the statistics of GRBs both typical and peculiar.

  16. The Luminosity Function of Fermi-detected Flat-Spectrum Radio Quasars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajello, M.; Shaw, M.S.; Romani, R.W.

    2012-04-16

    Fermi has provided the largest sample of {gamma}-ray selected blazars to date. In this work we use a complete sample of FSRQs detected during the first year of operation to determine the luminosity function (LF) and its evolution with cosmic time. The number density of FSRQs grows dramatically up to redshift {approx}0.5-2.0 and declines thereafter. The redshift of the peak in the density is luminosity dependent, with more luminous sources peaking at earlier times; thus the LF of {gamma}-ray FSRQs follows a luminosity-dependent density evolution similarly to that of radio-quiet AGN. Also using data from the Swift Burst Alert Telescopemore » we derive the average spectral energy distribution of FSRQs in the 10 keV-100GeV band and show that there is no correlation of the peak {gamma}-ray luminosity with {gamma}-ray peak frequency. The coupling of the SED and LF allows us to predict that the contribution of FSRQs to the Fermi isotropic {gamma}-ray background is 9.3{sub -1.0}{sup +1.6}% ({+-}3% systematic uncertainty) in the 0.1-100GeV band. Finally we determine the LF of unbeamed FSRQs, finding that FSRQs have an average Lorentz factor of {gamma} = 11.7{sub -2.2}{sup +3.3}, that most are seen within 5{sup o} of the jet axis, and that they represent only {approx}0.1% of the parent population.« less

  17. New Evidence for a Large Local Void From the UKIDSS LAS + SDSS

    NASA Astrophysics Data System (ADS)

    Keenan, Ryan; Barger, A. J.

    2013-01-01

    Recent cosmological modeling efforts have shown that a local under-density on scales of a few hundred Mpc (out to z ~ 0.1) could produce the apparent acceleration of the expansion of the universe observed via type Ia supernovae. Several studies of galaxy counts in the near-infrared (NIR) have found that the local universe appears underdense by ~25 - 50% compared with regions a few hundred Mpc distant (e.g. Keenan et al., 2010). An accurate characterization of any such under-density will be important for studies seeking to understand the nature of dark energy. If the space density of galaxies is rising as a function of redshift, then the luminosity density, as measured via the NIR galaxy luminosity function (LF), should be rising as well. In Keenan et al. (2012), we presented a study of the NIR LF at z ~ 0.2 and found that the product φ*L* (the peak of the luminosity density distribution) at z ~ 0.2 is roughly ~ 30% higher than that measured at z ~ 0.05. Here we present the results from a study of the NIR LF derived from galaxies selected from the UKIRT Infrared Deep Sky Large Area Survey (UKIDSS LAS) combined with spectroscopy from the Sloan Digital Sky Survey (SDSS). We confirm the apparent rise in luminosity density found in Keenan et al. (2012) from z = 0.05 to z = 0.1 and provide the first self-consistent measurements of the NIR luminosity density out to z ~ 0.15.

  18. Does the obscured AGN fraction really depend on luminosity?

    NASA Astrophysics Data System (ADS)

    Sazonov, S.; Churazov, E.; Krivonos, R.

    2015-12-01

    We use a sample of 151 local non-blazar active galactic nuclei (AGN) selected from the INTEGRAL all-sky hard X-ray survey to investigate if the observed declining trend of the fraction of obscured (i.e. showing X-ray absorption) AGN with increasing luminosity is mostly an intrinsic or selection effect. Using a torus-obscuration model, we demonstrate that in addition to negative bias, due to absorption in the torus, in finding obscured AGN in hard X-ray flux-limited surveys, there is also positive bias in finding unobscured AGN, due to Compton reflection in the torus. These biases can be even stronger taking into account plausible intrinsic collimation of hard X-ray emission along the axis of the obscuring torus. Given the AGN luminosity function, which steepens at high luminosities, these observational biases lead to a decreasing observed fraction of obscured AGN with increasing luminosity even if this fraction has no intrinsic luminosity dependence. We find that if the central hard X-ray source in AGN is isotropic, the intrinsic (i.e. corrected for biases) obscured AGN fraction still shows a declining trend with luminosity, although the intrinsic obscured fraction is significantly larger than the observed one: the actual fraction is larger than ˜85 per cent at L ≲ 1042.5 erg s-1 (17-60 keV), and decreases to ≲60 per cent at L ≳ 1044 erg s-1. In terms of the half-opening angle θ of an obscuring torus, this implies that θ ≲ 30° in lower luminosity AGN, and θ ≳ 45° in higher luminosity ones. If, however, the emission from the central supermassive black hole is collimated as dL/dΩ ∝ cos α, the intrinsic dependence of the obscured AGN fraction is consistent with a luminosity-independent torus half-opening angle θ ˜ 30°.

  19. Comparative evaluation of remineralization potential of casein phosphopeptide-amorphous calcium phosphate and casein phosphopeptide-amorphous calcium phosphate fluoride on artificial enamel white spot lesion: an in vitro light fluorescence study.

    PubMed

    Mehta, R; Nandlal, B; Prashanth, S

    2013-01-01

    World-wide, the contribution of dental caries to the burden of oral diseases is about 10 times higher than that of periodontal disease, the other common oral condition. Owing to its globally high prevalence, dental caries is a "pandemic" disease characterized by a high percentage of untreated carious cavities causing pain, discomfort and functional limitations. Untreated carious cavities; furthermore, have a significant impact on the general health of children and on the social and economic well-being of communities. A surgical approach to the elimination of carious lesion was developed a century ago; this approach was necessary at that time, because there was no valid alternative. The focus in caries has recently shifted to the development of methodologies for the detection of the early stages of caries lesions and the non-invasive treatment of these lesions. The non-invasive treatment of early lesions by remineralization has the potential to be a major advance in the clinical management of the disease. Remineralization of white-spot lesions may be possible with a variety of currently available agents containing fluoride, bioavailable calcium and phosphate and phosphate. This concept bridges the traditional gap between prevention and surgical procedures, which is just what dentistry needs today. The aim of this in vitro study was to evaluate and to compare the remineralization potential of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and casein phosphopeptide-amorphous calcium fluoride phosphate (CPP-ACFP) on artificial white spot enamel lesions using the quantitative light fluorescence (QLF). A total of 45 caries-free extracted maxillary first premolars were embedded in acrylic resin. The samples were randomly divided into three groups namely control group, CPP-ACP group and CPP-ACFP group with 15 samples in each group. The samples of each group were subjected to demineralization process for a period of 96 h. The samples were then mounted in the artificial mouth model and subjected to remineralization and pH cycling for a period of 21 days. QLF readings were recorded at the end of demineralization (1st, 7th, 14th and 21st day) and were statistically analyzed. As compared with artificial saliva both CPP-ACP and CPP-ACFP produced significant amount of remineralization of the artificial enamel white spot lesion (P < 0.001), however when the remineralizing effect of CPP-ACP was compared with the remineralizing effect of CPP-ACFP there was no significant difference. Significant amount of remineralization was produced by CPP-ACP and CPP-ACFP only after the 7th day. After the 14th day, the remineralization produced by both CPP-ACP and CPP-ACFP as compared to artificial saliva was non-significant.

  20. A very deep IRAS survey. III - VLA observations

    NASA Astrophysics Data System (ADS)

    Hacking, Perry; Condon, J. J.; Houck, J. R.; Beichman, C. A.

    1989-04-01

    The 60-micron fluxes and positions of sources (primarily starburst galaxies) found in a deep IRAS survey by Hacking and Houck (1987) are compared with 1.49 HGz maps made by the Very Large Array. The radio results are consistent with radio measurements of brighter IRAS galaxies and provide evidence that infrared cirrus does not contaminate the 60-micron sample. The flux-independent ratio of infrared to radio flux densities implies that the 1.4 GHz luminosity function for spiral galaxies is evolving at less than (1 + z) to the power of 4 relative to the 60-micron luminosity function.

  1. BATSE analysis techniques for probing the GRB spatial and luminosity distributions

    NASA Technical Reports Server (NTRS)

    Hakkila, Jon; Meegan, Charles A.

    1992-01-01

    The Burst And Transient Source Experiment (BATSE) has measured homogeneity and isotropy parameters from an increasingly large sample of observed gamma-ray bursts (GRBs), while also maintaining a summary of the way in which the sky has been sampled. Measurement of both of these are necessary for any study of the BATSE data statistically, as they take into account the most serious observational selection effects known in the study of GRBs: beam-smearing and inhomogeneous, anisotropic sky sampling. Knowledge of these effects is important to analysis of GRB angular and intensity distributions. In addition to determining that the bursts are local, it is hoped that analysis of such distributions will allow boundaries to be placed on the true GRB spatial distribution and luminosity function. The technique for studying GRB spatial and luminosity distributions is direct. Results of BATSE analyses are compared to Monte Carlo models parameterized by a variety of spatial and luminosity characteristics.

  2. A finer view of the conditional galaxy luminosity function and magnitude-gap statistics

    NASA Astrophysics Data System (ADS)

    Trevisan, M.; Mamon, G. A.

    2017-10-01

    The gap between first- and second-ranked galaxy magnitudes in groups is often considered a tracer of their merger histories, which in turn may affect galaxy properties, and also serves to test galaxy luminosity functions (LFs). We remeasure the conditional luminosity function (CLF) of the Main Galaxy Sample of the SDSS in an appropriately cleaned subsample of groups from the Yang catalogue. We find that, at low group masses, our best-fitting CLF has steeper satellite high ends, yet higher ratios of characteristic satellite to central luminosities in comparison with the CLF of Yang et al. The observed fractions of groups with large and small magnitude gaps as well as the Tremaine & Richstone statistics are not compatible with either a single Schechter LF or with a Schechter-like satellite plus lognormal central LF. These gap statistics, which naturally depend on the size of the subsamples, and also on the maximum projected radius, Rmax, for defining the second brightest galaxy, can only be reproduced with two-component CLFs if we allow small gap groups to preferentially have two central galaxies, as expected when groups merge. Finally, we find that the trend of higher gap for higher group velocity dispersion, σv, at a given richness, discovered by Hearin et al., is strongly reduced when we consider σv in bins of richness, and virtually disappears when we use group mass instead of σv. This limits the applicability of gaps in refining cosmographic studies based on cluster counts.

  3. Evolution of the observed Lyα luminosity function from z = 6.5 to z = 7.7: evidence for the epoch of reionization?

    NASA Astrophysics Data System (ADS)

    Clément, B.; Cuby, J.-G.; Courbin, F.; Fontana, A.; Freudling, W.; Fynbo, J.; Gallego, J.; Hibon, P.; Kneib, J.-P.; Le Fèvre, O.; Lidman, C.; McMahon, R.; Milvang-Jensen, B.; Moller, P.; Moorwood, A.; Nilsson, K. K.; Pentericci, L.; Venemans, B.; Villar, V.; Willis, J.

    2012-02-01

    Aims: Lyα emitters (LAEs) can be detected out to very high redshifts during the epoch of reionization. The evolution of the LAE luminosity function with redshift is a direct probe of the Lyα transmission of the intergalactic medium (IGM), and therefore of the IGM neutral-hydrogen fraction. Measuring the Lyα luminosity function (LF) of Lyα emitters at redshift z = 7.7 therefore allows us to constrain the ionizing state of the Universe at this redshift. Methods: We observed three 7'.5 × 7'.5 fields with the HAWK-I instrument at the VLT with a narrow band filter centred at 1.06 μm and targeting Lyα emitters at redshift z ~ 7.7. The fields were chosen for the availability of multiwavelength data. One field is a galaxy cluster, the Bullet Cluster, which allowed us to use gravitational amplification to probe luminosities that are fainter than in the field. The two other fields are subareas of the GOODS Chandra Deep Field South and CFHTLS-D4 deep field. We selected z = 7.7 LAE candidates from a variety of colour criteria, in particular from the absence of detection in the optical bands. Results: We do not find any LAE candidates at z = 7.7 in ~2.4 × 104 Mpc3 down to a narrow band AB magnitude of ~26, which allows us to infer robust constraints on the Lyα LAE luminosity function at this redshift. Conclusions: The predicted mean number of objects at z = 6.5, derived from somewhat different luminosity functions of Hu et al. (2010, ApJ, 725, 394), Ouchi et al. (2010, ApJ, 723, 869), and Kashikawa et al. (2011, ApJ, 734, 119) are 2.5, 13.7, and 11.6, respectively. Depending on which of these luminosity functions we refer to, we exclude a scenario with no evolution from z = 6.5 to z = 7.7 at 85% confidence without requiring a strong change in the IGM Lyα transmission, or at 99% confidence with a significant quenching of the IGM Lyα transmission, possibly from a strong increase in the high neutral-hydrogen fraction between these two redshifts. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere (ESO), Chile, Prog-Id 181.A-0485, 181.A-0717, 60.A-9284, 084.A-0749. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France (CNRS), and the University of Hawaii. This work is based in part on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA and in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  4. Populations of High-Luminosity Density-Bounded HII Regions in Spiral Galaxies? Evidence and Implications

    NASA Technical Reports Server (NTRS)

    Beckman, J. E.; Rozas, M.; Zurita, A.; Watson, R. A.; Knapen, J. H.

    2000-01-01

    In this paper we present evidence that the H II regions of high luminosity in disk galaxies may be density bounded, so that a significant fraction of the ionizing photons emitted by their exciting OB stars escape from the regions. The key piece of evidence is the presence, in the Ha luminosity functions (LFs) of the populations of H iI regions, of glitches, local sharp peaks at an apparently invariant luminosity, defined as the Stromgren luminosity Lstr), LH(sub alpha) = Lstr = 10(sup 38.6) (+/- 10(sup 0.1)) erg/ s (no other peaks are found in any of the LFs) accompanying a steepening of slope for LH(sub alpha) greater than Lstr This behavior is readily explicable via a physical model whose basic premises are: (a) the transition at LH(sub alpha) = Lstr marks a change from essentially ionization bounding at low luminosities to density bounding at higher values, (b) for this to occur the law relating stellar mass in massive star-forming clouds to the mass of the placental cloud must be such that the ionizing photon flux produced within the cloud is a function which rises more steeply than the mass of the cloud. Supporting evidence for the hypothesis of this transition is also presented: measurements of the central surface brightnesses of H II regions for LH(sub alpha) less than Lstr are proportional to L(sup 1/3, sub H(sub alpha)), expected for ionization bounding, but show a sharp trend to a steeper dependence for LH(sub alpha) greater than Lstr, and the observed relation between the internal turbulence velocity parameter, sigma, and the luminosity, L, at high luminosities, can be well explained if these regions are density bounded. If confirmed, the density-bounding hypothesis would have a number of interesting implications. It would imply that the density-bounded regions were the main sources of the photons which ionize the diffuse gas in disk galaxies. Our estimates, based on the hypothesis, indicate that these regions emit sufficient Lyman continuum not only to ionize the diffuse medium, but to cause a typical spiral to emit significant ionizing flux into the intergalactic medium. The low scatter observed in Lstr, less than 0.1 mag rms in the still quite small sample measured to date, is an invitation to widen the data base, and to calibrate against primary standards, with the aim of obtaining a precise, approx. 10(exp 5) solar luminosity widely distributed standard candle.

  5. A Luminosity Function of Ly(alpha)-Emitting Galaxies at Z [Approx. Equal to] 4.5(Sup 1),(Sup 2)

    NASA Technical Reports Server (NTRS)

    Dawson, Steve; Rhoads, James E.; Malhotra, Sangeeta; Stern, Daniel; Wang, JunXian; Dey, Arjun; Spinrad, Hyron; Jannuzi, Buell T.

    2007-01-01

    We present a catalog of 59 z [approx. equal to] 4:5 Ly(alpha)-emitting galaxies spectroscopically confirmed in a campaign of Keck DEIMOS follow-up observations to candidates selected in the Large Are (LALA) narrowband imaging survey.We targeted 97 candidates for spectroscopic follow-up; by accounting for the variety of conditions under which we performed spectroscopy, we estimate a selection reliability of approx.76%. Together with our previous sample of Keck LRIS confirmations, the 59 sources confirmed herein bring the total catalog to 73 spectroscopically confirmed z [approx. equal to] 4:5 Ly(alpha)- emitting galaxies in the [approx. equal to] 0.7 deg(exp 2) covered by the LALA imaging. As with the Keck LRIS sample, we find that a nonnegligible fraction of the co rest-frame equivalent widths (W(sub lambda)(sup rest)) that exceed the maximum predicted for normal stellar populations: 17%-31%(93%confidence) of the detected galaxies show (W(sub lambda)(sup rest)) 12%-27% (90% confidence) show (W(sub lambda)(sup rest)) > 240 A. We construct a luminosity function of z [approx. equal to] 4.5 Ly(alpha) emission lines for comparison to Ly(alpha) luminosity function < 6.6. We find no significant evidence for Ly(alpha) luminosity function evolution from z [approx. equal to] 3 to z [approx. equal to] 6. This result supports the conclusion that the intergalactic me largely reionized from the local universe out to z [approx. equal to] 6.5. It is somewhat at odds with the pronounced drop in the cosmic star formation rate density recently measured between z approx. 3 an z approx. 6 in continuum-selected Lyman-break galaxies, and therefore potentially sheds light on the relationship between the two populations.

  6. Galaxy And Mass Assembly (GAMA): colour- and luminosity-dependent clustering from calibrated photometric redshifts

    NASA Astrophysics Data System (ADS)

    Christodoulou, L.; Eminian, C.; Loveday, J.; Norberg, P.; Baldry, I. K.; Hurley, P. D.; Driver, S. P.; Bamford, S. P.; Hopkins, A. M.; Liske, J.; Peacock, J. A.; Bland-Hawthorn, J.; Brough, S.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Frenk, C. S.; Gunawardhana, M.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Robotham, A. S. G.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Thomas, D.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.

    2012-09-01

    We measure the two-point angular correlation function of a sample of 4289 223 galaxies with r < 19.4 mag from the Sloan Digital Sky Survey (SDSS) as a function of photometric redshift, absolute magnitude and colour down to Mr - 5 log h = -14 mag. Photometric redshifts are estimated from ugriz model magnitudes and two Petrosian radii using the artificial neural network package ANNz, taking advantage of the Galaxy And Mass Assembly (GAMA) spectroscopic sample as our training set. These photometric redshifts are then used to determine absolute magnitudes and colours. For all our samples, we estimate the underlying redshift and absolute magnitude distributions using Monte Carlo resampling. These redshift distributions are used in Limber's equation to obtain spatial correlation function parameters from power-law fits to the angular correlation function. We confirm an increase in clustering strength for sub-L* red galaxies compared with ˜L* red galaxies at small scales in all redshift bins, whereas for the blue population the correlation length is almost independent of luminosity for ˜L* galaxies and fainter. A linear relation between relative bias and log luminosity is found to hold down to luminosities L ˜ 0.03L*. We find that the redshift dependence of the bias of the L* population can be described by the passive evolution model of Tegmark & Peebles. A visual inspection of a random sample from our r < 19.4 sample of SDSS galaxies reveals that about 10 per cent are spurious, with a higher contamination rate towards very faint absolute magnitudes due to over-deblended nearby galaxies. We correct for this contamination in our clustering analysis.

  7. The evolution of X-ray clusters in a cold plus hot dark matter universe

    NASA Technical Reports Server (NTRS)

    Bryan, Greg L.; Klypin, Anatoly; Loken, Chris; Norman, Michael L.; Burns, Jack O.

    1994-01-01

    We present the first self-consistently computed results on the evolution of X-ray properties of galaxy clusters in a cold + hot dark matter (CHDM) model. We have performed a hydrodynamic plus N-body simulation for the COBE-compatible CHDM model with standard mass components: Omega(sub hot) = 0.3, Omega (sub cold) = 0.6 and Omega(sub baryon) = 0.1 (h = 0.5). In contrast with the CDM model, which fails to reproduce the observed temperature distribution function dN/dT (Bryan et al. 1994b), the CHDM model fits the observational dN/dT quite well. Our results on X-ray luminosity are less firm but even more intriguing. We find that the resulting X-ray luminosity functions at redshifts z = 0.0, 0.2, 0.4, 0.7 are well fit by observations, where they overlap. The fact that both temperatures and luminosities provide a reasonable fit to the available observational data indicates that, unless we are missing some essential physics, there is neither room nor need for a large fraction of gas in rich clusters: 10% (or less) in baryons is sufficient to explain their X-ray properties. We also see a tight correlation between X-ray luminosity and gas temperature.

  8. A study of excess H-alpha emission in chromospherically active M dwarf

    NASA Technical Reports Server (NTRS)

    Young, Arthur; Skumanich, Andrew; Stauffer, John R.; Harlan, Eugene; Bopp, Bernard W.

    1989-01-01

    Spectroscopic observations from three observatories are combined to study the properties of the excess H-alpha emission which characterizes the most chromospherically active subset of the M dwarf stars, known as the dMe stars. It is demonstrated that the excess H-alpha luminosity from these stars is a monotonically decreasing function of their (R-I) color, and evidence is presented which suggests that the product of the mean surface brightness and the mean filling factor of the emissive regions is essentially constant with color. Another significant result of the study is a linear correlation between the excess luminosity in H-alpha and the coronal X-ray luminosity.

  9. The evolution of the disc variability along the hard state of the black hole transient GX 339-4

    NASA Astrophysics Data System (ADS)

    De Marco, B.; Ponti, G.; Muñoz-Darias, T.; Nandra, K.

    2015-12-01

    We report on the analysis of hard-state power spectral density function (PSD) of GX 339-4 down to the soft X-ray band, where the disc significantly contributes to the total emission. At any luminosity probed, the disc in the hard state is intrinsically more variable than in the soft state. However, the fast decrease of disc variability as a function of luminosity, combined with the increase of disc intensity, causes a net drop of fractional variability at high luminosities and low energies, which reminds the well-known behaviour of disc-dominated energy bands in the soft state. The peak frequency of the high-frequency Lorentzian (likely corresponding to the high-frequency break seen in active galactic nuclei, AGN) scales with luminosity, but we do not find evidence for a linear scaling. In addition, we observe that this characteristic frequency is energy dependent. We find that the normalization of the PSD at the peak of the high-frequency Lorentzian decreases with luminosity at all energies, though in the soft band this trend is steeper. Together with the frequency shift, this yields quasi-constant high-frequency (5-20 Hz) fractional rms at high energies, with less than 10 per cent scatter. This reinforces previous claims suggesting that the high-frequency PSD solely scales with black hole mass. On the other hand, this constancy breaks down in the soft band (where the scatter increases to ˜30 per cent). This is a consequence of the additional contribution from the disc component, and resembles the behaviour of optical variability in AGN.

  10. Tracing black hole accretion with SED decomposition and IR lines: from local galaxies to the high-z Universe

    NASA Astrophysics Data System (ADS)

    Gruppioni, C.; Berta, S.; Spinoglio, L.; Pereira-Santaella, M.; Pozzi, F.; Andreani, P.; Bonato, M.; De Zotti, G.; Malkan, M.; Negrello, M.; Vallini, L.; Vignali, C.

    2016-06-01

    We present new estimates of AGN accretion and star formation (SF) luminosity in galaxies obtained for the local 12 μm sample of Seyfert galaxies (12MGS), by performing a detailed broad-band spectral energy distribution (SED) decomposition including the emission of stars, dust heated by SF and a possible AGN dusty torus. Thanks to the availability of data from the X-rays to the sub-millimetre, we constrain and test the contribution of the stellar, AGN and SF components to the SEDs. The availability of Spitzer-InfraRed Spectrograph (IRS) low-resolution mid-infrared (mid-IR) spectra is crucial to constrain the dusty torus component at its peak wavelengths. The results of SED fitting are also tested against the available information in other bands: the reconstructed AGN bolometric luminosity is compared to those derived from X-rays and from the high excitation IR lines tracing AGN activity like [Ne V] and [O IV]. The IR luminosity due to SF and the intrinsic AGN bolometric luminosity are shown to be strongly related to the IR line luminosity. Variations of these relations with different AGN fractions are investigated, showing that the relation dispersions are mainly due to different AGN relative contribution within the galaxy. Extrapolating these local relations between line and SF or AGN luminosities to higher redshifts, by means of recent Herschel galaxy evolution results, we then obtain mid- and far-IR line luminosity functions useful to estimate how many star-forming galaxies and AGN we expect to detect in the different lines at different redshifts and luminosities with future IR facilities (e.g. JWST, SPICA).

  11. The Hubble relation for nonstandard candles and the origin of the redshift of quasars

    NASA Technical Reports Server (NTRS)

    Petrosian, V.

    1974-01-01

    It is shown that the magnitude-log (redshift) relation for brightest quasars can have a slope different from the value expected for standard candles. The value of this slope depends on the luminosity function and its evolution. Therefore the difference of this slope from the expected value cannot be used as evidence against the cosmological origin of the redshift of the quasars. It is shown that the observed variation of the luminosity of the brightest objects with redshift is consistent with the cosmological hypothesis and that it agrees with (and perhaps could be used to complement) the luminosity function obtained from V/Vm analysis. It is also shown that the nonzero slope of the magnitude-log (redshift) relation rules out the local quasar hypothesis, where it is assumed that the sources are nearby (less than 500 Mpc), that the bulk of their redshift is intrinsic, and that there is no dependence on distance of the intrinsic properties of the sources.

  12. Erratum: ``The Luminosity Function of IRAS Point Source Catalog Redshift Survey Galaxies'' (ApJ, 587, L89 [2003])

    NASA Astrophysics Data System (ADS)

    Takeuchi, Tsutomu T.; Yoshikawa, Kohji; Ishii, Takako T.

    2004-05-01

    We have mentioned that we normalized the parameters for the luminosity function by the Hubble constant H0=100 km s-1 Mpc-1 however, for the characteristic luminosity L* we erroneously normalized it by H0=70 km s-1 Mpc-1. As a result, we have proposed wrong numerical factors for L*. In addition, there is a typographic error in the exponent of equation (6) of the published manuscript. Correct values are as follows: L*=(4.34+/-0.86)×108 h-2 [Lsolar] for equation (4), and L*=(2.50+/-0.44)×109 h-2 [Lsolar] and L*=(9.55+/-0.20)×108 h-2 [Lsolar] for equations (5) and (6), respectively. All the other parameters are correct. The errors have occurred only in the final conversion, and they do not affect our discussions and conclusions at all. We thank P. Ranalli for pointing out the errors.

  13. New Constraints on Dark Energy from the ObservedGrowth of the Most X-ray Luminous Galaxy Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantz, A.; Allen, S.W.; Ebeling, H.

    We present constraints on the mean matter density, {Omega}{sub m}, normalization of the density fluctuation power spectrum, {sigma}{sub 8}, and dark energy equation of state parameter, w, obtained from the X-ray luminosity function of the Massive Cluster Survey (MACS) in combination with the local BCS and REFLEX galaxy cluster samples. Our analysis incorporates the mass function predictions of Jenkins et al. (2001), a mass-luminosity relation calibrated using the data of Reiprich and Bohringer (2002), and standard priors on the Hubble constant, H{sub 0}, and mean baryon density, {Omega}{sub b} h{sup 2}. We find {Omega}{sub m}=0.27 {sup +0.06} {sub -0.05} andmore » {sigma}{sub 8}=0.77 {sup +0.07} {sub -0.06} for a spatially flat, cosmological constant model, and {Omega}{sub m}=0.28 {sup +0.08} {sub -0.06}, {sigma}{sub 8}=0.75 {+-} 0.08 and w=-0.97 {sup +0.20} {sub -0.19} for a flat, constant-w model. Our findings constitute the first precise determination of the dark energy equation of state from measurements of the growth of cosmic structure in galaxy clusters. The consistency of our result with w=-1 lends strong additional support to the cosmological constant model. The constraints are insensitive to uncertainties at the 10-20 percent level in the mass function and in the redshift evolution o the mass-luminosity relation; the constraint on dark energy is additionally robust against our choice of priors and known X-ray observational biases affecting the mass-luminosity relation. Our results compare favorably with those from recent analyses of type Ia supernovae, cosmic microwave background anisotropies, the X-ray gas mass fraction of relaxed galaxy clusters and cosmic shear. A simplified combination of the luminosity function data with supernova, cosmic microwave background and cluster gas fraction data using importance sampling yields the improved constraints {Omega}{sub m}=0.263 {+-} 0.014, {sigma}{sub 8}=0.79 {+-} 0.02 and w=-1.00 +- 0.05.« less

  14. X-Ray Luminosity Functions of Normal Galaxies in the Great Observatories Origins Deep Survey

    NASA Astrophysics Data System (ADS)

    Ptak, Andrew; Mobasher, Bahram; Hornschemeier, Ann; Bauer, Franz; Norman, Colin

    2007-10-01

    We present soft (0.5-2 keV) X-ray luminosity functions (XLFs) in the Great Observatories Origins Deep Survey (GOODS) fields derived for galaxies at z~0.25 and 0.75. SED fitting was used to estimate photometric redshifts and separate galaxy types, resulting in a sample of 40 early-type galaxies and 46 late-type galaxies. We estimate k-corrections for both the X-ray/optical and X-ray/NIR flux ratios, which facilitates the separation of AGNs from the normal/starburst galaxies. We fit the XLFs with a power-law model using both traditional and Markov-Chain Monte Carlo (MCMC) procedures. A key advantage of the MCMC approach is that it explicitly takes into account upper limits and allows errors on ``derived'' quantities, such as luminosity densities, to be computed directly (i.e., without potentially questionable assumptions concerning the propagation of errors). The slopes of the early-type galaxy XLFs tend to be slightly flatter than the late-type galaxy XLFs, although the effect is significant at only the 90% and 97% levels for z~0.25 and 0.75. The XLFs differ between z<0.5 and z>0.5 at >99% significance levels for early-type, late-type, and all (early- and late-type) galaxies. We also fit Schechter and lognormal models to the XLFs, fitting the low- and high-redshift XLFs for a given sample simultaneously assuming only pure luminosity evolution. In the case of lognormal fits, the results of MCMC fitting of the local FIR luminosity function were used as priors for the faint- and bright-end slopes (similar to ``fixing'' these parameters at the FIR values, except here the FIR uncertainty is included). The best-fit values of the change in logL* with redshift were ΔlogL*=0.23+/-0.16 dex (for early-type galaxies) and 0.34+/-0.12 dex (for late-type galaxies), corresponding to (1+z)1.6 and (1+z)2.3. These results were insensitive to whether the Schechter or lognormal function was adopted.

  15. The luminosity function of the CfA Redshift Survey

    NASA Technical Reports Server (NTRS)

    Marzke, R. O.; Huchra, J. P.; Geller, M. J.

    1994-01-01

    We use the CfA Reshift Survey of galaxies with m(sub z) less than or equal to 15.5 to calculate the galaxy luminosity function over the range -13 less than or equal to M(sub z) less than or equal to -22. The sample includes 9063 galaxies distributed over 2.1 sr. For galaxies with velocities cz greater or equal to 2500 km per sec, where the effects of peculiar velocities are small, the luminosity function is well represented by a Schechter function with parameters phi(sub star) = 0.04 +/- 0.01 per cu Mpc, M(sub star) = -18.8 +/- 0.3, and alpha = -1.0 +/- 0.2. When we include all galaxies with cz greater or equal to 500 km per sec, the number of galaxies in the range -16 less than or equal to M(sub z) less than or equal to -13 exceeds the extrapolation of the Schechter function by a factor of 3.1 +/- 0.5. This faint-end excess is not caused by the local peculiar velocity field but may be partially explained by small scale errors in the Zwicky magnitudes. Even with a scale error as large as 0.2 mag per mag, which is unlikely, the excess is still a factor of 1.8 +/- 0.3. If real, this excess affects the interpretation of deep counts of field galaxies.

  16. PRIMUS: Galaxy clustering as a function of luminosity and color at 0.2 < z < 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skibba, Ramin A.; Smith, M. Stephen M.; Coil, Alison L.

    2014-04-01

    We present measurements of the luminosity and color-dependence of galaxy clustering at 0.2 < z < 1.0 in the Prism Multi-object Survey. We quantify the clustering with the redshift-space and projected two-point correlation functions, ξ(r{sub p} , π) and w{sub p} (r{sub p} ), using volume-limited samples constructed from a parent sample of over ∼130, 000 galaxies with robust redshifts in seven independent fields covering 9 deg{sup 2} of sky. We quantify how the scale-dependent clustering amplitude increases with increasing luminosity and redder color, with relatively small errors over large volumes. We find that red galaxies have stronger small-scale (0.1more » Mpc h {sup –1} < r{sub p} < 1 Mpc h {sup –1}) clustering and steeper correlation functions compared to blue galaxies, as well as a strong color dependent clustering within the red sequence alone. We interpret our measured clustering trends in terms of galaxy bias and obtain values of b {sub gal} ≈ 0.9-2.5, quantifying how galaxies are biased tracers of dark matter depending on their luminosity and color. We also interpret the color dependence with mock catalogs, and find that the clustering of blue galaxies is nearly constant with color, while redder galaxies have stronger clustering in the one-halo term due to a higher satellite galaxy fraction. In addition, we measure the evolution of the clustering strength and bias, and we do not detect statistically significant departures from passive evolution. We argue that the luminosity- and color-environment (or halo mass) relations of galaxies have not significantly evolved since z ∼ 1. Finally, using jackknife subsampling methods, we find that sampling fluctuations are important and that the COSMOS field is generally an outlier, due to having more overdense structures than other fields; we find that 'cosmic variance' can be a significant source of uncertainty for high-redshift clustering measurements.« less

  17. PRIMUS: Galaxy Clustering as a Function of Luminosity and Color at 0.2 < z < 1

    NASA Astrophysics Data System (ADS)

    Skibba, Ramin A.; Smith, M. Stephen M.; Coil, Alison L.; Moustakas, John; Aird, James; Blanton, Michael R.; Bray, Aaron D.; Cool, Richard J.; Eisenstein, Daniel J.; Mendez, Alexander J.; Wong, Kenneth C.; Zhu, Guangtun

    2014-04-01

    We present measurements of the luminosity and color-dependence of galaxy clustering at 0.2 < z < 1.0 in the Prism Multi-object Survey. We quantify the clustering with the redshift-space and projected two-point correlation functions, ξ(rp , π) and wp (rp ), using volume-limited samples constructed from a parent sample of over ~130, 000 galaxies with robust redshifts in seven independent fields covering 9 deg2 of sky. We quantify how the scale-dependent clustering amplitude increases with increasing luminosity and redder color, with relatively small errors over large volumes. We find that red galaxies have stronger small-scale (0.1 Mpc h -1 < rp < 1 Mpc h -1) clustering and steeper correlation functions compared to blue galaxies, as well as a strong color dependent clustering within the red sequence alone. We interpret our measured clustering trends in terms of galaxy bias and obtain values of b gal ≈ 0.9-2.5, quantifying how galaxies are biased tracers of dark matter depending on their luminosity and color. We also interpret the color dependence with mock catalogs, and find that the clustering of blue galaxies is nearly constant with color, while redder galaxies have stronger clustering in the one-halo term due to a higher satellite galaxy fraction. In addition, we measure the evolution of the clustering strength and bias, and we do not detect statistically significant departures from passive evolution. We argue that the luminosity- and color-environment (or halo mass) relations of galaxies have not significantly evolved since z ~ 1. Finally, using jackknife subsampling methods, we find that sampling fluctuations are important and that the COSMOS field is generally an outlier, due to having more overdense structures than other fields; we find that "cosmic variance" can be a significant source of uncertainty for high-redshift clustering measurements.

  18. A WISE Measurement of the 2:4 mum Galaxy Luminosity Function and its Implications for the Extragalactic Background Light at 3:4 mum

    NASA Astrophysics Data System (ADS)

    Lake, Sean Earl

    2017-05-01

    The measurement of the the Extragalactic Background Light (EBL) has seen some controversy in recent works, with direct and indirect measures conflicting. Specifi- cally, upper limits based on analyzing the plausible opacity obscuring TeV spectra of blazars suggests that the density of radiation with wavelengths near 3.4 mum is onethirdtoonehalfasintenseasdirectmeasuresofthesame(forexample: Aharonian et al., 2006; Levenson et al., 2007; Matsumoto et al., 2005). The dominant contributor of the EBL at 3.4mum is expected to be ordinary starlight from relatively local, z < 1, galaxies, so an estimate of the amount of light emitted by galaxies based on the galaxy Luminosity Function (LF) should provide a useful lower limit to the EBL. While analyses of this sort have been done by others (Dominguez et al., 2011; Helgason et al., 2012), the full sky coverage of the AllWISE database has made it possible for us to improve the measurement of both the LF at 2.4 mum and the EBL using the large public spectroscopic redshift surveys. In order to do so, we had to develop a mathematical model for the measurement of a generalization of the LF, which is the density of galaxies per unit comoving volume per unit luminosity, to the Spectro-Luminosity Functional (SLF), which replaces the density per unit single luminosity, dL, with the density per luminosi- ii ties at all frequencies, DL nu. Our best combined analysis of the data yields present day Shechter Function LF parameters of: L⋆ = 6.4+/-[0.1 stat, 0.3sys]x1010 L2.4mum [solar mass](M⋆ = -21.67+/-[0.02 stat, 0.05sys] AB mag), φ⋆ = 5.8+/-[0.3stat, 0.3sys]x10 -3 Mpc-3, and alpha = -1.050 +/- [0.004stat, 0.03sys]; this implies a present day density of galaxies of 0.08 Mpc-3 brighter that 106 L2.4mum [solar mass] (10-3 Mpc-3 brighter than L⋆) and a luminosity density equivalent to 3.8 x 108 L2.4mum [solar mass] Mpc-3. The net EBL at 3.4mum that our synthesis model produces from galaxies closer than z = 5 is Inu = 9.0 +/- 0.5 kJy sr-1 (nuInu = 8.0 +/- 0.4 nW m-2 sr -1), largely in agreement with similar LF based estimates of the EBL.

  19. VizieR Online Data Catalog: Luminosity and redshift of galaxies from WISE/SDSS (Toba+, 2014)

    NASA Astrophysics Data System (ADS)

    Toba, Y.; Oyabu, S.; Matsuhara, H.; Malkan, M. A.; Gandhi, P.; Nakagawa, T.; Isobe, N.; Shirahata, M.; Oi, N.; Ohyama, Y.; Takita, S.; Yamauchi, C.; Yano, K.

    2017-07-01

    We selected 12 and 22 um flux-limited galaxies based on the WISE (Cat. II/311) and SDSS (Cat. II/294) catalogs, and these galaxies were then classified into five types according to their optical spectroscopic information in the SDSS catalog. For spectroscopically classified galaxies, we constructed the luminosity functions using the 1/Vmax method, considering the detection limit of the WISE and SDSS catalogs. (1 data file).

  20. The young star cluster population of M51 with LEGUS - I. A comprehensive study of cluster formation and evolution

    NASA Astrophysics Data System (ADS)

    Messa, M.; Adamo, A.; Östlin, G.; Calzetti, D.; Grasha, K.; Grebel, E. K.; Shabani, F.; Chandar, R.; Dale, D. A.; Dobbs, C. L.; Elmegreen, B. G.; Fumagalli, M.; Gouliermis, D. A.; Kim, H.; Smith, L. J.; Thilker, D. A.; Tosi, M.; Ubeda, L.; Walterbos, R.; Whitmore, B. C.; Fedorenko, K.; Mahadevan, S.; Andrews, J. E.; Bright, S. N.; Cook, D. O.; Kahre, L.; Nair, P.; Pellerin, A.; Ryon, J. E.; Ahmad, S. D.; Beale, L. P.; Brown, K.; Clarkson, D. A.; Guidarelli, G. C.; Parziale, R.; Turner, J.; Weber, M.

    2018-01-01

    Recently acquired WFC3 UV (F275W and F336W) imaging mosaics under the Legacy Extragalactic UV Survey (LEGUS), combined with archival ACS data of M51, are used to study the young star cluster (YSC) population of this interacting system. Our newly extracted source catalogue contains 2834 cluster candidates, morphologically classified to be compact and uniform in colour, for which ages, masses and extinction are derived. In this first work we study the main properties of the YSC population of the whole galaxy, considering a mass-limited sample. Both luminosity and mass functions follow a power-law shape with slope -2, but at high luminosities and masses a dearth of sources is observed. The analysis of the mass function suggests that it is best fitted by a Schechter function with slope -2 and a truncation mass at 1.00 ± 0.12 × 105 M⊙. Through Monte Carlo simulations, we confirm this result and link the shape of the luminosity function to the presence of a truncation in the mass function. A mass limited age function analysis, between 10 and 200 Myr, suggests that the cluster population is undergoing only moderate disruption. We observe little variation in the shape of the mass function at masses above 1 × 104 M⊙ over this age range. The fraction of star formation happening in the form of bound clusters in M51 is ∼ 20 per cent in the age range 10-100 Myr and little variation is observed over the whole range from 1 to 200 Myr.

  1. Gamma-ray luminosity and photon index evolution of FSRQ blazars and contribution to the gamma-ray background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singal, J.; Ko, A.; Petrosian, V., E-mail: jsingal@richmond.edu

    We present the redshift evolutions and distributions of the gamma-ray luminosity and photon spectral index of flat spectrum radio quasar (FSRQ) type blazars, using non-parametric methods to obtain the evolutions and distributions directly from the data. The sample we use for analysis consists of almost all FSRQs observed with a greater than approximately 7σ detection threshold in the first-year catalog of the Fermi Gamma-ray Space Telescope's Large Area Telescope, with redshifts as determined from optical spectroscopy by Shaw et al. We find that FSQRs undergo rapid gamma-ray luminosity evolution, but negligible photon index evolution, with redshift. With these evolutions accountedmore » for we determine the density evolution and luminosity function of FSRQs and calculate their total contribution to the extragalactic gamma-ray background radiation, resolved and unresolved, which is found to be 16(+10/–4)%, in agreement with previous studies.« less

  2. Emission Line Properties of Seyfert Galaxies in the 12 μm Sample

    NASA Astrophysics Data System (ADS)

    Malkan, Matthew A.; Jensen, Lisbeth D.; Rodriguez, David R.; Spinoglio, Luigi; Rush, Brian

    2017-09-01

    We present optical and ultraviolet spectroscopic measurements of the emission lines of 81 Seyfert 1 and 104 Seyfert 2 galaxies that comprise nearly all of the IRAS 12 μm AGN sample. We have analyzed the emission-line luminosity functions, reddening, and other diagnostics. For example, the narrow-line regions (NLR) of Seyfert 1 and 2 galaxies do not significantly differ from each other in most of these diagnostics. Combining the Hα/Hβ ratio with a new reddening indicator—the [S II]6720/[O II]3727 ratio—we find the average E(B-V) is 0.49 ± 0.35 for type 1 and 0.52 ± 0.26 for type 2 Seyferts. The NLR of Sy 1s has an ionization level insignificantly higher than that of Sy 2s. For the broad-line region (BLR), we find that the C IV equivalent width correlates more strongly with [O III]/Hβ than with UV luminosity. Our bright sample of local active galaxies includes 22 Seyfert nuclei with extremely weak broad wings in Hα, known as Seyfert 1.9s and 1.8s, depending on whether or not broad Hβ wings are detected. Aside from these weak broad lines, our low-luminosity Seyferts are more similar to the Sy 2s than to Sy 1s. In a BPT diagram, we find that Sy 1.8s and 1.9s overlap the region occupied by Sy 2s. We compare our results on optical emission lines with those obtained by previous investigators, using AGN subsamples from the Sloan Digital Sky Survey. The luminosity functions of forbidden emission lines [O II]λ3727 Å, [O III]λ5007 Å, and [S II]λ6720 Å in Sy 1s and Sy 2s are indistinguishable. They all show strong downward curvature. Unlike the LFs of Seyfert galaxies measured by the Sloan Digital Sky Survey, ours are nearly flat at low luminosities. The larger number of faint Sloan “AGN” is attributable to their inclusion of weakly emitting LINERs and H II+AGN “composite” nuclei, which do not meet our spectral classification criteria for Seyferts. In an Appendix, we have investigated which emission line luminosities can provide the most reliable measures of the total non-stellar luminosity, estimated from our extensive multi-wavelength database. The hard X-ray or near-ultraviolet continuum luminosity can be crudely predicted from either the [O III]λ5007 Å luminosity or the combinations of [O III]+Hβ or [N II]+Hα lines, with a scatter of +/- 4 times for Sy 1s and +/- 10 times for Sy 2s. Although these uncertainties are large, the latter two hybrid (NLR+BLR) indicators have the advantage of predicting the same HX luminosity independent of Seyfert type.

  3. A normal abundance of faint satellites in the fossil group NGC 6482

    NASA Astrophysics Data System (ADS)

    Lieder, S.; Mieske, S.; Sánchez-Janssen, R.; Hilker, M.; Lisker, T.; Tanaka, M.

    2013-11-01

    A fossil group is considered the end product in a galaxy group's evolution. It is a massive central galaxy that dominates the luminosity budget of the group, and is the outcome of efficient merging between intermediate-luminosity members. Little is known, however, about the faint satellite systems of fossil groups. Here we present a Subaru/Suprime-Cam wide-field, deep imaging study in the B - and R -bands of the nearest fossil group NGC 6482 (Mtot ~ 4 × 1012M⊙), covering the virial radius out to 310 kpc. We performed detailed completeness estimations and selected group member candidates by a combination of automated object detection and visual inspection. A fiducial sample of 48 member candidates down to MR ~ -10.5 mag is detected, making this study the deepest of a fossil group to now. We investigate the photometric scaling relations, the color-magnitude relation, and the luminosity function of our galaxy sample. We find evidence of recent and ongoing merger events among bright group galaxies. The color-magnitude relation is comparable to that of nearby galaxy clusters, and it exhibits significant scatter at the faintest luminosities. The completeness-corrected luminosity function is dominated by early-type dwarfs and is characterized by a faint end slope α = -1.32 ± 0.05. We conclude that the NGC 6482 fossil group shows photometric properties consistent with those of regular galaxy clusters and groups, including a normal abundance of faint satellites. Appendix A is available in electronic form at http://www.aanda.orgThe reduced data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/559/A76

  4. The ALHAMBRA survey: evolution of galaxy clustering since z ˜ 1

    NASA Astrophysics Data System (ADS)

    Arnalte-Mur, P.; Martínez, V. J.; Norberg, P.; Fernández-Soto, A.; Ascaso, B.; Merson, A. I.; Aguerri, J. A. L.; Castander, F. J.; Hurtado-Gil, L.; López-Sanjuan, C.; Molino, A.; Montero-Dorta, A. D.; Stefanon, M.; Alfaro, E.; Aparicio-Villegas, T.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Cepa, J.; Cerviño, M.; Cristóbal-Hornillos, D.; del Olmo, A.; González Delgado, R. M.; Husillos, C.; Infante, L.; Márquez, I.; Masegosa, J.; Moles, M.; Perea, J.; Pović, M.; Prada, F.; Quintana, J. M.

    2014-06-01

    We study the clustering of galaxies as function of luminosity and redshift in the range 0.35 < z < 1.25 using data from the Advanced Large Homogeneous Area Medium-Band Redshift Astronomical (ALHAMBRA) survey. The ALHAMBRA data used in this work cover 2.38 deg2 in seven independent fields, after applying a detailed angular selection mask, with accurate photometric redshifts, σz ≲ 0.014(1 + z), down to IAB < 24. Given the depth of the survey, we select samples in B-band luminosity down to Lth ≃ 0.16L* at z = 0.9. We measure the real-space clustering using the projected correlation function, accounting for photometric redshifts uncertainties. We infer the galaxy bias, and study its evolution with luminosity. We study the effect of sample variance, and confirm earlier results that the Cosmic Evolution Survey (COSMOS) and European Large Area ISO Survey North 1 (ELAIS-N1) fields are dominated by the presence of large structures. For the intermediate and bright samples, Lmed ≳ 0.6L*, we obtain a strong dependence of bias on luminosity, in agreement with previous results at similar redshift. We are able to extend this study to fainter luminosities, where we obtain an almost flat relation, similar to that observed at low redshift. Regarding the evolution of bias with redshift, our results suggest that the different galaxy populations studied reside in haloes covering a range in mass between log10[Mh/( h-1 M⊙)] ≳ 11.5 for samples with Lmed ≃ 0.3L* and log10[Mh/( h-1 M⊙)] ≳ 13.0 for samples with Lmed ≃ 2L*, with typical occupation numbers in the range of ˜1-3 galaxies per halo.

  5. X-ray constraints on the fraction of obscured active galactic nuclei at high accretion luminosities

    NASA Astrophysics Data System (ADS)

    Georgakakis, A.; Salvato, M.; Liu, Z.; Buchner, J.; Brandt, W. N.; Ananna, T. Tasnim; Schulze, A.; Shen, Yue; LaMassa, S.; Nandra, K.; Merloni, A.; McGreer, I. D.

    2017-08-01

    The wide-area XMM-XXL X-ray survey is used to explore the fraction of obscured active galactic nuclei (AGNs) at high accretion luminosities, LX(2-10 keV) ≳ 1044 erg s - 1, and out to redshift z ≈ 1.5. The sample covers an area of about 14 deg2 and provides constraints on the space density of powerful AGNs over a wide range of neutral hydrogen column densities extending beyond the Compton-thick limit, NH ≈ 1024 cm - 2. The fraction of obscured Compton-thin (NH = 1022-1024 cm - 2) AGNs is estimated to be ≈0.35 for luminosities LX(2-10 keV) > 1044 erg s - 1, independent of redshift. For less luminous sources, the fraction of obscured Compton-thin AGNs increases from 0.45 ± 0.10 at z = 0.25 to 0.75 ± 0.05 at z = 1.25. Studies that select AGNs in the infrared via template fits to the observed spectral energy distribution of extragalactic sources estimate space densities at high accretion luminosities consistent with the XMM-XXL constraints. There is no evidence for a large population of AGNs (e.g. heavily obscured) identified in the infrared and missed at X-ray wavelengths. We further explore the mid-infrared colours of XMM-XXL AGNs as a function of accretion luminosity, column density and redshift. The fraction of XMM-XXL sources that lie within the mid-infrared colour wedges defined in the literature to select AGNs is primarily a function of redshift. This fraction increases from about 20-30 per cent at z = 0.25 to about 50-70 per cent at z = 1.5.

  6. A minimalist feedback-regulated model for galaxy formation during the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Furlanetto, Steven R.; Mirocha, Jordan; Mebane, Richard H.; Sun, Guochao

    2017-12-01

    Near-infrared surveys have now determined the luminosity functions of galaxies at 6 ≲ z ≲ 8 to impressive precision and identified a number of candidates at even earlier times. Here, we develop a simple analytic model to describe these populations that allows physically motivated extrapolation to earlier times and fainter luminosities. We assume that galaxies grow through accretion on to dark matter haloes, which we model by matching haloes at fixed number density across redshift, and that stellar feedback limits the star formation rate. We allow for a variety of feedback mechanisms, including regulation through supernova energy and momentum from radiation pressure. We show that reasonable choices for the feedback parameters can fit the available galaxy data, which in turn substantially limits the range of plausible extrapolations of the luminosity function to earlier times and fainter luminosities: for example, the global star formation rate declines rapidly (by a factor of ∼20 from z = 6 to 15 in our fiducial model), but the bright galaxies accessible to observations decline even faster (by a factor ≳ 400 over the same range). Our framework helps us develop intuition for the range of expectations permitted by simple models of high-z galaxies that build on our understanding of 'normal' galaxy evolution. We also provide predictions for galaxy measurements by future facilities, including James Webb Space Telescope and Wide-Field Infrared Survey Telescope.

  7. Evidence for biasing in the CfA survey

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.

    1988-01-01

    Intrinsically bright galaxies appear systematically more correlated than faint galaxies in the Center for Astrophysics redshift survey. The amplification of the two-point correlation function behaves exponentially with luminosity, being essentially flat up to the knee of the luminosity function, then increasing markedly. The amplification reaches a factor of 3.5e + or - 0.4 in the very brightest galaxies. The effect is dominated by spirals rather than ellipticals, so that the correlation function of bright spirals becomes comparable to that of normal ellipticals. Similar results are obtained whether the correlation function is measured in two or three dimensions. The effect persists to separations of a correlation length or more, and is not confined to the cores of the Virgo, Coma, and Abell 1367 clusters, suggesting that the effect is caused by biasing, that is, galaxies kindle preferentially in more clustered regions, rather than by gravitational relaxation.

  8. Hubble Space Telescope Imaging of Brightest Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Laine, Seppo; van der Marel, Roeland P.; Lauer, Tod R.; Postman, Marc; O'Dea, Christopher P.; Owen, Frazer N.

    2003-02-01

    We used the Hubble Space Telescope Wide Field Planetary Camera 2 to obtain I-band images of the centers of 81 brightest cluster galaxies (BCGs), drawn from a volume-limited sample of nearby BCGs. The images show a rich variety of morphological features, including multiple or double nuclei, dust, stellar disks, point-source nuclei, and central surface brightness depressions. High-resolution surface brightness profiles could be inferred for 60 galaxies. Of those, 88% have well-resolved cores. The relationship between core size and galaxy luminosity for BCGs is indistinguishable from that of Faber et al. (published in 1997, hereafter F97) for galaxies within the same luminosity range. However, the core sizes of the most luminous BCGs fall below the extrapolation of the F97 relationship rb~L1.15V. A shallower relationship, rb~L0.72V, fits both the BCGs and the core galaxies presented in F97. Twelve percent of the BCG sample lacks a well-resolved core; all but one of these BCGs have ``power law'' profiles. Some of these galaxies have higher luminosities than any power-law galaxy identified by F97 and have physical upper limits on rb well below the values observed for core galaxies of the same luminosity. These results support the idea that the central structure of early-type galaxies is bimodal in its physical properties but also suggest that there exist high-luminosity galaxies with power-law profiles (or unusually small cores). The BCGs in the latter category tend to fall at the low end of the BCG luminosity function and tend to have low values of the quantity α (the logarithmic slope of the metric luminosity as a function of radius, at 10 kpc). Since theoretical calculations have shown that the luminosities and α-values of BCGs grow with time as a result of accretion, this suggests a scenario in which elliptical galaxies evolve from power-law profiles to core profiles through accretion and merging. This is consistent with theoretical scenarios that invoke the formation of massive black hole binaries during merger events. More generally, the prevalence of large cores in the great majority of BCGs, which are likely to have experienced several generations of galaxy merging, underscores the role of a mechanism that creates and preserves cores in such merging events. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with proposal 8683.

  9. Wavelength Dependent Luminosity Functions for Super Star Clusters

    NASA Astrophysics Data System (ADS)

    Garmany, Catharine

    1997-07-01

    Starburst galaxies, considered to exhibit enhanced star formation on a galaxy-wide scale, have now been found with HST to contain very intense knots of star formation, referred to as ``super star clusters'', or SSCs. A steepening of the luminosity function with increasing wavelength for young burst populations, such as SSCs, has recently been predicted by Hogg & Phinney {1997}. This prediction, not previously addressed in the literature, is straightforward to test with multi- wavelength photometry. Using the colors of the SSCs in a galaxy in combination with the difference in slopes of the luminosity functions derived from different wavelength bands and applying population synthesis models, we can also constrain the high mass stellar initial mass function {IMF}. Recent work has suggested that the slope of the IMF is roughly constant in a variety of local environments, from galactic OB associations to the closest analog of a super star cluster, R136 in the LMC. This investigation will allow us to compare the IMFs in the extreme environments of SSCs in starburst galaxies to IMFs found locally in the Galaxy, LMC, and SMC. Archival imaging data in both the UV and optical bands is available for about 10 young starburst systems. These data will allow us to test the predictions of Hogg & Phinney, as well as constrain the IMF for environments not found in the nearby universe.

  10. The ugrizYJHK luminosity distributions and densities from the combined MGC, SDSS and UKIDSS LAS data sets

    NASA Astrophysics Data System (ADS)

    Hill, David T.; Driver, Simon P.; Cameron, Ewan; Cross, Nicholas; Liske, Jochen; Robotham, Aaron

    2010-05-01

    We combine data from the Millennium Galaxy Catalogue, Sloan Digital Sky Survey and UKIRT Infrared Deep Sky Survey Large Area Survey to produce ugrizYJHK luminosity functions and densities from within a common, low-redshift volume (z < 0.1, ~ 71000h-31 Mpc3 for L* systems) with 100 per cent spectroscopic completeness. In the optical the fitted Schechter functions are comparable in shape to those previously reported values but with higher normalizations (typically 0, 30, 20, 15, 5 per cent higher φ* values in u, g, r, i, z, respectively, over those reported by the SDSS team). We attribute these to differences in the redshift ranges probed, incompleteness and adopted normalization methods. In the near-IR (NIR) we find significantly different Schechter function parameters (mainly in the M* values) to those previously reported and attribute this to the improvement in the quality of the imaging data over previous studies. This is the first homogeneous measurement of the extragalactic luminosity density which fully samples both the optical and NIR regimes. Unlike previous compilations that have noted a discontinuity between the optical and NIR regimes our homogeneous data set shows a smooth cosmic spectral energy distribution (CSED). After correcting for dust attenuation we compare our CSED to the expected values based on recent constraints on the cosmic star formation history and the initial mass function.

  11. The faint-end of galaxy luminosity functions at the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Yue, B.; Castellano, M.; Ferrara, A.; Fontana, A.; Merlin, E.; Amorín, R.; Grazian, A.; Mármol-Queralto, E.; Michałowski, M. J.; Mortlock, A.; Paris, D.; Parsa, S.; Pilo, S.; Santini, P.; Di Criscienzo, M.

    2018-05-01

    During the Epoch of Reionization (EoR), feedback effects reduce the efficiency of star formation process in small halos or even fully quench it. The galaxy luminosity function (LF) may then turn over at the faint-end. We analyze the number counts of z > 5 galaxies observed in the fields of four Frontier Fields (FFs) clusters and obtain constraints on the LF faint-end: for the turn-over magnitude at z ~ 6, MUVT >~-13.3 for the circular velocity threshold of quenching star formation process, vc* <~ 47 km s-1. We have not yet found significant evidence of the presence of feedback effects suppressing the star formation in small galaxies.

  12. The Far-Infrared Luminosity Function and Star Formation Rate Density for Dust Obscured Galaxies in the Bootes Field

    NASA Astrophysics Data System (ADS)

    Calanog, Jae Alyson; Wardlow, J. L.; Fu, H.; Cooray, A. R.; HerMES

    2013-01-01

    We present the far-Infrared (FIR) luminosity function (LF) and the star-formation rate density (SFRD) for dust-obscured galaxies (DOGs) in the Bootes field at redshift 2. These galaxies are selected by having a large rest frame mid-IR to UV flux density ratio ( > 1000) and are expected to be some of the most luminous and heavily obscured galaxies in the Universe at this epoch. Photometric redshifts for DOGs are estimated from optical and mid-IR data using empirically derived low resolution spectral templates for AGN and galaxies. We use HerMES Herschel-SPIRE data to fit a modified blackbody to calculate the FIR luminosity (LFIR) and dust temperature (Td) for all DOGs individually detected in SPIRE maps. A stacking analyses was implemented to measure a median sub-mm flux of undetected DOGs. We find that DOGs have LIR and Td that are similar with the sub-millimeter galaxy (SMG) population, suggesting these two populations are related. The DOG LF and SFRD at 2 are calculated and compared to SMGs.

  13. The X-Ray Background and the AGN Luminosity Function

    NASA Astrophysics Data System (ADS)

    Hasinger, G.

    The deepest X-ray surveys performed with ROSAT were able to resolve as much as 70-80% of the 1-2 keV X-ray background into resolved sources. Optical follow-up observations were able to identify the majority of faint X-ray sources as active galactic nuclei (AGN) out to redshifts of 4.5 as well as a sizeable fraction as groups of galaxies out to redshifts of 0.7. A new population of X-ray luminous, optically innocent narrow emission line galaxies (NELGs) at the faintest X-ray fluxes is still a matter of debate, most likely many of them are also connected to AGN. First deep surveys with the Japanese ASCA satellite give us a glimpse of the harder X-ray background where the bulk of the energy density resides. Future X-ray observatories (XMM and AXAF) will be able to resolve the harder X-ray background. For the first time we are now in a position to study the cosmological evolution of the X-ray luminosity function of AGN, groups of galaxies and galaxies and simultaneously constrain their total luminosity output over cosmic time.

  14. The light up and early evolution of high redshift Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Comastri, Andrea; Brusa, Marcella; Aird, James; Lanzuisi, Giorgio

    2016-07-01

    The known AGN population at z > 6 is made by luminous optical QSO hosting Supermassive Black Holes (M > 10 ^{9}solar masses), likely to represent the tip of the iceberg of the luminosity and mass function. According to theoretical models for structure formation, Massive Black Holes (M _{BH} 10^{4-7} solar masses) are predicted to be abundant in the early Universe (z > 6). The majority of these lower luminosity objects are expected to be obscured and severely underepresented in current optical near-infrared surveys. The detection of such a population would provide unique constraints on the Massive Black Holes formation mechanism and subsequent growth and is within the capabilities of deep and large area ATHENA surveys. After a summary of the state of the art of present deep XMM and Chandra surveys, at z >3-6 also mentioning the expectations for the forthcoming eROSITA all sky survey; I will present the observational strategy of future multi-cone ATHENA Wide Field Imager (WFI) surveys and the expected breakthroughs in the determination of the luminosity function and its evolution at high (> 4) and very high (>6) redshifts.

  15. The Evolution of the Type Ia Supernova Luminosity Function

    NASA Astrophysics Data System (ADS)

    Shen, Ken J.; Toonen, Silvia; Graur, Or

    2017-12-01

    Type Ia supernovae (SNe Ia) exhibit a wide diversity of peak luminosities and light curve shapes: the faintest SNe Ia are 10 times less luminous and evolve more rapidly than the brightest SNe Ia. Their differing characteristics also extend to their stellar age distributions, with fainter SNe Ia preferentially occurring in old stellar populations and vice versa. In this Letter, we quantify this SN Ia luminosity–stellar age connection using data from the Lick Observatory Supernova Search (LOSS). Our binary population synthesis calculations agree qualitatively with the observed trend in the > 1 {Gyr} old populations probed by LOSS if the majority of SNe Ia arise from prompt detonations of sub-Chandrasekhar-mass white dwarfs (WDs) in double WD systems. Under appropriate assumptions, we show that double WD systems with less massive primaries, which yield fainter SNe Ia, interact and explode at older ages than those with more massive primaries. We find that prompt detonations in double WD systems are capable of reproducing the observed evolution of the SN Ia luminosity function, a constraint that any SN Ia progenitor scenario must confront.

  16. A Faint Flux-limited Lyα Emitter Sample at z ˜ 0.3

    NASA Astrophysics Data System (ADS)

    Wold, Isak G. B.; Finkelstein, Steven L.; Barger, Amy J.; Cowie, Lennox L.; Rosenwasser, Benjamin

    2017-10-01

    We present a flux-limited sample of z ˜ 0.3 Lyα emitters (LAEs) from Galaxy Evolution Explorer (GALEX) grism spectroscopic data. The published GALEX z ˜ 0.3 LAE sample is pre-selected from continuum-bright objects and thus is biased against high equivalent width (EW) LAEs. We remove this continuum pre-selection and compute the EW distribution and the luminosity function of the Lyα emission line directly from our sample. We examine the evolution of these quantities from z ˜ 0.3 to 2.2 and find that the EW distribution shows little evidence for evolution over this redshift range. As shown by previous studies, the Lyα luminosity density from star-forming (SF) galaxies declines rapidly with declining redshift. However, we find that the decline in Lyα luminosity density from z = 2.2 to z = 0.3 may simply mirror the decline seen in the Hα luminosity density from z = 2.2 to z = 0.4, implying little change in the volumetric Lyα escape fraction. Finally, we show that the observed Lyα luminosity density from AGNs is comparable to the observed Lyα luminosity density from SF galaxies at z = 0.3. We suggest that this significant contribution from AGNs to the total observed Lyα luminosity density persists out to z ˜ 2.2. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  17. ON THE RADIO AND OPTICAL LUMINOSITY EVOLUTION OF QUASARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singal, J.; Petrosian, V.; Lawrence, A.

    2011-12-20

    We calculate simultaneously the radio and optical luminosity evolutions of quasars, and the distribution in radio loudness R defined as the ratio of radio and optical luminosities, using a flux-limited data set containing 636 quasars with radio and optical fluxes from White et al. We first note that when dealing with multi-variate data it is imperative to first determine the true correlations among the variables, not those introduced by the observational selection effects, before obtaining the individual distributions of the variables. We use the methods developed by Efron and Petrosian which are designed to obtain unbiased correlations, distributions, and evolutionmore » with redshift from a data set truncated due to observational biases. It is found that the population of quasars exhibits strong positive correlation between the radio and optical luminosities. With this correlation, whether intrinsic or observationally induced accounted for, we find that there is a strong luminosity evolution with redshift in both wavebands, with significantly higher radio than optical evolution. We conclude that the luminosity evolution obtained by arbitrarily separating the sources into radio-loud (R > 10) and radio-quiet (R < 10) populations introduces significant biases that skew the result considerably. We also construct the local radio and optical luminosity functions and the density evolution. Finally, we consider the distribution of the radio-loudness parameter R obtained from careful treatment of the selection effects and luminosity evolutions with that obtained from the raw data without such considerations. We find a significant difference between the two distributions and no clear sign of bi-modality in the true distribution for the range of R values considered. Our results indicate therefore, somewhat surprisingly, that there is no critical switch in the efficiency of the production of disk outflows/jets between very radio-quiet and very radio-loud quasars, but rather a smooth transition. Also, this efficiency seems higher for the high-redshift and more luminous sources in the sample considered.« less

  18. First operational experience with DORIS II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesemann, H.; Wille, K.

    1983-08-01

    DORIS II is a completely new designed e/sup +/-e/sup -/ storage ring with a mini-beta scheme. After first runs with a 8 cm optic, the vertical amplitude functions in the interaction points were reduced to 4 cm. This yielded luminosities of L = 1.5 X 10/sup 31/ cm/sup -2/sec/sup -1/ with 2 X 27 mA at E = 5 GeV. Because of the short injection time, an integrated luminosity of more than 600 nb/sup -1/ per day has been obtained.

  19. Constraints on Omega_0 and cluster evolution using the ROSAT log N-log S relation

    NASA Astrophysics Data System (ADS)

    Mathiesen, B.; Evrard, A. E.

    1998-04-01

    We examine the likelihoods of different cosmological models and cluster evolutionary histories by comparing semi-analytical predictions of X-ray cluster number counts with observational data from the ROSAT satellite. We model cluster abundance as a function of mass and redshift using a Press-Schechter distribution, and assume that the temperature T(M,z) and bolometric luminosity L_X(M,z) scale as power laws in mass and epoch, in order to construct expected counts as a function of X-ray flux. The L_X-M scaling is fixed using the local luminosity function, while the degree of evolution in the X-ray luminosity with redshift L_X~(1+z)^s is left open, with s an interesting free parameter which we investigate. We examine open and flat cosmologies with initial, scale-free fluctuation spectra having indices n=0, -1 and -2. An independent constraint arising from the slope of the luminosity-temperature relation strongly favours the n=-2 spectrum. The expected counts demonstrate a strong dependence on Omega_0 and s, with lesser dependence on lambda_0 and n. Comparison with the observed counts reveals a `ridge' of acceptable models in the Omega_0-s plane, roughly following the relation s~6Omega_0 and spanning low-density models with a small degree of evolution to Omega=1 models with strong evolution. Models with moderate evolution are revealed to have a strong lower limit of Omega_0>~0.3, and low-evolution models imply that Omega_0<1 at a very high confidence level. We suggest observational tests for breaking the degeneracy along this ridge, and discuss implications for evolutionary histories of the intracluster medium.

  20. The Dragonfly Nearby Galaxies Survey. III. The Luminosity Function of the M101 Group

    NASA Astrophysics Data System (ADS)

    Danieli, Shany; van Dokkum, Pieter; Merritt, Allison; Abraham, Roberto; Zhang, Jielai; Karachentsev, I. D.; Makarova, L. N.

    2017-03-01

    We obtained follow-up HST observations of the seven low surface brightness galaxies discovered with the Dragonfly Telephoto Array in the field of the massive spiral galaxy M101. Out of the seven galaxies, only three were resolved into stars and are potentially associated with the M101 group at D = 7 Mpc. Based on HST ACS photometry in the broad F606W and F814W filters, we use a maximum likelihood algorithm to locate the Tip of the Red Giant Branch in galaxy color-magnitude diagrams. Distances are {6.38}-0.35+0.35,{6.87}-0.30+0.21 and {6.52}-0.27+0.25 {Mpc} and we confirm that they are members of the M101 group. Combining the three confirmed low-luminosity satellites with previous results for brighter group members, we find the M101 galaxy group to be a sparsely populated galaxy group consisting of seven group members, down to M V = -9.2 mag. We compare the M101 cumulative luminosity function to that of the Milky Way and M31. We find that they are remarkably similar; in fact, the cumulative luminosity function of the M101 group gets even flatter for fainter magnitudes, and we show that the M101 group might exhibit the two known small-scale flaws in the ΛCDM model, namely “the missing satellite” problem and the “too big to fail” problem. Kinematic measurements of M101's satellite galaxies are required to determine whether the “too big to fail” problem does in fact exist in the M101 group.

  1. Galaxy and Mass Assembly (GAMA): galaxies at the faint end of the Hα luminosity function

    NASA Astrophysics Data System (ADS)

    Brough, S.; Hopkins, A. M.; Sharp, R. G.; Gunawardhana, M.; Wijesinghe, D.; Robotham, A. S. G.; Driver, S. P.; Baldry, I. K.; Bamford, S. P.; Liske, J.; Loveday, J.; Norberg, P.; Peacock, J. A.; Bland-Hawthorn, J.; Brown, M. J. I.; Cameron, E.; Croom, S. M.; Frenk, C. S.; Foster, C.; Hill, D. T.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H. R.; Pimbblet, K.; Popescu, C. C.; Prescott, M.; Sutherland, W. J.; Taylor, E.; Thomas, D.; Tuffs, R. J.; van Kampen, E.

    2011-05-01

    We present an analysis of the properties of the lowest Hα-luminosity galaxies (LHα≤ 4 × 1032 W; SFR < 0.02 M⊙ yr-1, with SFR denoting the star formation rate) in the Galaxy And Mass Assembly survey. These galaxies make up the rise above a Schechter function in the number density of systems seen at the faint end of the Hα luminosity function. Above our flux limit, we find that these galaxies are principally composed of intrinsically low stellar mass systems (median stellar mass = 2.5 × 108 M⊙) with only 5/90 having stellar masses M > 1010 M⊙. The low-SFR systems are found to exist predominantly in the lowest-density environments (median density ˜0.02 galaxy Mpc-2) with none in environments more dense than ˜1.5 galaxy Mpc-2. Their current specific SFRs (SSFRs; -8.5 < log [SSFR (yr -1)] < -12) are consistent with their having had a variety of star formation histories. The low-density environments of these galaxies demonstrate that such low-mass, star-forming systems can only remain as low mass and form stars if they reside sufficiently far from other galaxies to avoid being accreted, dispersed through tidal effects or having their gas reservoirs rendered ineffective through external processes.

  2. SIX MORE QUASARS AT REDSHIFT 6 DISCOVERED BY THE CANADA-FRANCE HIGH-z QUASAR SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willott, Chris J.; Crampton, David; Hutchings, John B.

    2009-03-15

    We present imaging and spectroscopic observations for six quasars at z {>=} 5.9 discovered by the Canada-France High-z Quasar Survey (CFHQS). The CFHQS contains subsurveys with a range of flux and area combinations to sample a wide range of quasar luminosities at z {approx} 6. The new quasars have luminosities 10-75 times lower than the most luminous Sloan Digital Sky Survey quasars at this redshift. The least luminous quasar, CFHQS J0216-0455 at z = 6.01, has absolute magnitude M {sub 1450} = -22.21, well below the likely break in the luminosity function. This quasar is not detected in a deepmore » XMM-Newton survey showing that optical selection is still a very efficient tool for finding high-redshift quasars.« less

  3. A 16 deg2 survey of emission-line galaxies at z < 1.5 in HSC-SSP Public Data Release 1

    NASA Astrophysics Data System (ADS)

    Hayashi, Masao; Tanaka, Masayuki; Shimakawa, Rhythm; Furusawa, Hisanori; Momose, Rieko; Koyama, Yusei; Silverman, John D.; Kodama, Tadayuki; Komiyama, Yutaka; Leauthaud, Alexie; Lin, Yen-Ting; Miyazaki, Satoshi; Nagao, Tohru; Nishizawa, Atsushi J.; Ouchi, Masami; Shibuya, Takatoshi; Tadaki, Ken-ichi; Yabe, Kiyoto

    2018-01-01

    We present initial results from the Subaru Strategic Program (SSP) with Hyper Suprime-Cam (HSC) on a comprehensive survey of emission-line galaxies at z < 1.5 based on narrowband imaging. The first Public Data Release provides us with data from two narrowband filters, specifically NB816 and NB921 over 5.7 deg2 and 16.2 deg2 respectively. The 5 σ limiting magnitudes are 25.2 mag (UltraDeep layer, 1.4 deg2) and 24.8 mag (Deep layer, 4.3 deg2) for NB816, and 25.1 mag (UltraDeep, 2.9 deg2) and 24.6-24.8 mag (Deep, 13.3 deg2) for NB921. The wide-field imaging allows us to construct unprecedentedly large samples of 8054 H α emitters at z ≈ 0.25 and 0.40, 8656 [O III] emitters at z ≈ 0.63 and 0.84, and 16877 [O II] emitters at z ≈ 1.19 and 1.47. We map the cosmic web on scales out to about 50 comoving Mpc that includes galaxy clusters, identified by red sequence galaxies, located at the intersection of filamentary structures of star-forming galaxies. The luminosity functions of emission-line galaxies are measured with precision and are consistent with published studies. The wide field coverage of the data enables us to measure the luminosity functions up to brighter luminosities than previous studies. The comparison of the luminosity functions between the different HSC-SSP fields suggests that a survey volume of >5 × 105 Mpc3 is essential to overcome cosmic variance. Since the current data have not reached the full depth expected for the HSC-SSP, the color cut in i - NB816 or z - NB921 induces a bias towards star-forming galaxies with large equivalent widths, primarily seen in the stellar mass functions for the H α emitters at z ≈ 0.25-0.40. Even so, the emission-line galaxies clearly cover a wide range of luminosity, stellar mass, and environment, thus demonstrating the usefulness of the narrowband data from the HSC-SSP for investigating star-forming galaxies at z < 1.5.

  4. Photometry of resolved galaxies. V - NGC 6822

    NASA Technical Reports Server (NTRS)

    Hoessel, J. G.; Anderson, N.

    1986-01-01

    Three-color CCD frames of the local group irregular galaxy NGC 6822 have been reduced to GRI photometry for 3475 stars using RICHFLD point-spread function fitting techniques. The data are compared with earlier work on this galaxy, particularly with Kayser (1966) on a star-by-star basis. Color-magnitude diagrams are constructed from the data and compared with both theoretical stellar model tracks and the expected foreground star contamination. A luminosity function for the blue stars is derived; comparison of this luminosity function with those of 10 other irregular galaxies indicates that NGC 6822 has a typical young star population. The stellar birthrate and initial mass function are estimated for this galaxy. The slope at the bright end of the mass function looks similar to recent results for the Galaxy, the Magellanic Clouds, and the irregular galaxy Sextans A. NGC 6822 appears to be presently forming stars at a slower rate for its mass than Sextans A or the Magellanic Clouds.

  5. Galaxies in ΛCDM with Halo Abundance Matching: Luminosity-Velocity Relation, Baryonic Mass-Velocity Relation, Velocity Function, and Clustering

    NASA Astrophysics Data System (ADS)

    Trujillo-Gomez, Sebastian; Klypin, Anatoly; Primack, Joel; Romanowsky, Aaron J.

    2011-11-01

    It has long been regarded as difficult if not impossible for a cosmological model to account simultaneously for the galaxy luminosity, mass, and velocity distributions. We revisit this issue using a modern compilation of observational data along with the best available large-scale cosmological simulation of dark matter (DM). We find that the standard cosmological model, used in conjunction with halo abundance matching (HAM) and simple dynamical corrections, fits—at least on average—all basic statistics of galaxies with circular velocities V circ > 80 km s-1 calculated at a radius of ~10 kpc. Our primary observational constraint is the luminosity-velocity (LV) relation—which generalizes the Tully-Fisher and Faber-Jackson relations in allowing all types of galaxies to be included, and provides a fundamental benchmark to be reproduced by any theory of galaxy formation. We have compiled data for a variety of galaxies ranging from dwarf irregulars to giant ellipticals. The data present a clear monotonic LV relation from ~50 km s-1 to ~500 km s-1, with a bend below ~80 km s-1 and a systematic offset between late- and early-type galaxies. For comparison to theory, we employ our new ΛCDM "Bolshoi" simulation of DM, which has unprecedented mass and force resolution over a large cosmological volume, while using an up-to-date set of cosmological parameters. We use HAM to assign rank-ordered galaxy luminosities to the DM halos, a procedure that automatically fits the empirical luminosity function and provides a predicted LV relation that can be checked against observations. The adiabatic contraction of DM halos in response to the infall of the baryons is included as an optional model ingredient. The resulting predictions for the LV relation are in excellent agreement with the available data on both early-type and late-type galaxies for the luminosity range from Mr = -14 to Mr = -22. We also compare our predictions for the "cold" baryon mass (i.e., stars and cold gas) of galaxies as a function of circular velocity with the available observations, again finding a very good agreement. The predicted circular velocity function (VF) is also in agreement with the galaxy VF from 80 to 400 km s-1, using the HIPASS survey for late-type galaxies and Sloan Digital Sky Survey (SDSS) for early-type galaxies. However, in accord with other recent results, we find that the DM halos with V circ < 80 km s-1 are much more abundant than observed galaxies with the same V circ. Finally, we find that the two-point correlation function of bright galaxies in our model matches very well the results from the final data release of the SDSS, especially when a small amount of scatter is included in the HAM prescription.

  6. High redshift QSOs and the x ray background

    NASA Technical Reports Server (NTRS)

    Impey, Chris

    1993-01-01

    ROSAT pointed observations were made of 9 QSO's from the Large Bright Quasar Survey (LBQS). The LBQS is based on machine measurement of objective prism plates taken with the UK Schmidt Telescope. Software has been used to select QSO's by both color and by the presence of spectral features and continuum breaks. The probability of detection can be calculated as a function of magnitude, redshift and spectral features, and the completeness of the survey can be accurately estimated. Nine out of 1040 QSO's in the LBQS have z greater than 3. The observations will provide an important data point in the X-ray luminosity function of QSO's at high redshift. The QSO's with z greater than 3 span less than a magnitude in M(sub B), so can be combined as a homogeneous sample. This analysis is only possible with a sample drawn from a large and complete catalog such as the LBQS. Four of the 9 QSO's that were observed with the ROSAT PSPC for this proposal were detected, including one of the most luminous X-ray sources ever observed. The April 1992 version of the PROS DETECT package was used to reduce the data. The results have been used to search for evolution of the X-ray properties of QSO's in redshift. The 9 QSO's lie in the range -28.7 less than M(sub B) less than -27.8. When combined with data for 16 QSO's in a similar luminosity range at lower redshift correlations with luminosity and redshift can be separated out. The LBQS sample also yields a new constraint on the contribution of high redshift QSO's to the X-ray background. An initial requirement is knowledge of the X-ray properties (alpha(sub OX)) as a function of redshift. Integration over the evolving luminosity function of the LBQS then gives the QSO contribution to the source counts.

  7. The Hard X-ray 20-40 keV AGN Luminosity Function

    NASA Technical Reports Server (NTRS)

    Beckmann, V.; Soldi, S.; Shrader, C. R.; Gehrels, N.; Produit, N.

    2006-01-01

    We have compiled a complete, significance limited extragalactic sample based on approximately 25,000 deg(sup 2) to a limiting flux of 3 x 10(exp -11) ergs per square centimeter per second. (approximately 7,000 deg(sup 2)) to a flux limit of 10(exp -11) ergs per square centimeter per second)) in the 20 - 40 keV band with INTEGRAL. We have constructed a detailed exposure map to compensate for effects of non-uniform exposure. The flux-number relation is best described by a power-law with a slope of alpha = 1.66 plus or minus 0.11. The integration of the cumulative flux per unit area leads to f(sub 20-40 keV) = 2.6 x 10(exp -10) ergs per square centimeter per second per sr(sup -1) which is about 1% of the known 20-40 keV X-ray background. We present the first luminosity function of AGN in the 20-40 keV energy range, based on 68 extragalactic objects detected by the imager IBIS/ISGRI on-board INTEGRAL. The luminosity function shows a smoothly connected two power-law form, with an index of gamma (sub 1) = 0.9 below, and gamma (sub 2) = 2.2 above the turn-over luminosity of L(sub *), = 4.6 x 10(sup 43) ergs per second. The emissivity of all INTEGRAL AGNs per unit volume is W(sub 20-40keV)(greater than 10(sup 41) ergs per second) = 2.8 x 10(sup 38) ergs per second h(sup 3)(sub 70) Mpc(sup -3). These results are consistent with those derived in the 2-20keV energy band and do not show a significant contribution by Compton-thick objects. Because the sample used in this study is truly local (z(raised bar) = 0.022)), only limited conclusions can be drawn for the evolution of AGNs in this energy band. But the objects explaining the peak in the cosmic X-ray background are likely to be either low luminosity AGN (L(sub x) less than 10(sup 41) ergs per second) or of other type, such as intermediate mass black holes, clusters, and star forming regions.

  8. The Rest-Frame Optical Luminosity Functions of Galaxies at 2<=z<=3.5

    NASA Astrophysics Data System (ADS)

    Marchesini, D.; van Dokkum, P.; Quadri, R.; Rudnick, G.; Franx, M.; Lira, P.; Wuyts, S.; Gawiser, E.; Christlein, D.; Toft, S.

    2007-02-01

    We present the rest-frame optical (B, V, and R band) luminosity functions (LFs) of galaxies at 2<=z<=3.5, measured from a K-selected sample constructed from the deep NIR MUSYC, the ultradeep FIRES, and the GOODS-CDFS. This sample is unique for its combination of area and range of luminosities. The faint-end slopes of the LFs at z>2 are consistent with those at z~0. The characteristic magnitudes are significantly brighter than the local values (e.g., ~1.2 mag in the R band), while the measured values for Φ* are typically ~5 times smaller. The B-band luminosity density at z~2.3 is similar to the local value, and in the R band it is ~2 times smaller than the local value. We present the LF of distant red galaxies (DRGs), which we compare to that of non-DRGs. While DRGs and non-DRGs are characterized by similar LFs at the bright end, the faint-end slope of the non-DRG LF is much steeper than that of DRGs. The contribution of DRGs to the global densities down to the faintest probed luminosities is 14%-25% in number and 22%-33% in luminosity. From the derived rest-frame U-V colors and stellar population synthesis models, we estimate the mass-to-light ratios (M/L) of the different subsamples. The M/L ratios of DRGs are ~5 times higher (in the R and V bands) than those of non-DRGs. The global stellar mass density at 2<=z<=3.5 appears to be dominated by DRGs, whose contribution is of order ~60%-80% of the global value. Qualitatively similar results are obtained when the population is split by rest-frame U-V color instead of observed J-K color. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555. Also based on observations collected at the European Southern Observatories on Paranal, Chile as part of the ESO program 164.O-0612.

  9. Non-invasive diagnostic methods in dentistry

    NASA Astrophysics Data System (ADS)

    Todea, Carmen

    2016-03-01

    The paper, will present the most important non-invasive methods for diagnostic, in different fields of dentistry. Moreover, the laser-based methods will be emphasis. In orthodontics, 3D laser scanners are increasingly being used to establish database for normative population and cross-sectional growth changes but also to asses clinical outcomes in orthognatic surgical and non-surgical treatments. In prevention the main methods for diagnostic of demineralization and caries detection in early stages are represented by laser fluorescence - Quantitative Light Florescence (QLF); DiagnoDent-system-655nm; FOTI-Fiberoptic transillumination; DIFOTI-Digital Imaging Fiberoptic transillumination; and Optical Coherence Tomography (OCT). In odontology, Laser Doppler Flowmetry (LDF) is a noninvasive real time method used for determining the tooth vitality by monitoring the pulp microcirculation in traumatized teeth, fractured teeth, and teeth undergoing different conservative treatments. In periodontology, recently study shows the ability of LDF to evaluate the health of gingival tissue in periodontal tissue diseases but also after different periodontal treatments.

  10. Improved optical mass tracer for galaxy clusters calibrated using weak lensing measurements

    NASA Astrophysics Data System (ADS)

    Reyes, R.; Mandelbaum, R.; Hirata, C.; Bahcall, N.; Seljak, U.

    2008-11-01

    We develop an improved mass tracer for clusters of galaxies from optically observed parameters, and calibrate the mass relation using weak gravitational lensing measurements. We employ a sample of ~13000 optically selected clusters from the Sloan Digital Sky Survey (SDSS) maxBCG catalogue, with photometric redshifts in the range 0.1-0.3. The optical tracers we consider are cluster richness, cluster luminosity, luminosity of the brightest cluster galaxy (BCG) and combinations of these parameters. We measure the weak lensing signal around stacked clusters as a function of the various tracers, and use it to determine the tracer with the least amount of scatter. We further use the weak lensing data to calibrate the mass normalization. We find that the best mass estimator for massive clusters is a combination of cluster richness, N200, and the luminosity of the BCG, LBCG: , where is the observed mean BCG luminosity at a given richness. This improved mass tracer will enable the use of galaxy clusters as a more powerful tool for constraining cosmological parameters.

  11. Galactic cannibalism. III. The morphological evolution of galaxies and clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hausman, M.A.; Ostriker, J.P.

    1978-09-01

    We present a numerical simulation for the evolution of massive cluster galaxies due to the accretion of other galaxies, finding that after several accretions a bright ''normal'' galaxy begins to resemble a cD giant, with a bright core and large core radius. Observable quantities such as color, scale size, and logarithmic intensity gradient ..cap alpha.. are calculated and are consistent with observations. The multiple nuclei sometimes found in cD galaxies may be understood as the undigested remnants of cannibalized companions. A cluster's bright galaxies are selectively depleted, an effect which can transform the cluster's luminosity function from a power lawmore » to the observed form with a steep high-luminosity falloff and which pushes the turnover point to lower luminosities with time. We suggest that these effects may account for apparent nonstatistical features observed in the luminosity distribution of bright cluster galaxies, and that the sequence of cluster types discovered by Bautz and Morgan and Oemler is essentially one of increasing dynamical evolution, the rate of evolution depending inversely on the cluster's central relaxation time.« less

  12. Galaxy and Mass Assembly (GAMA): small-scale anisotropic galaxy clustering and the pairwise velocity dispersion of galaxies

    NASA Astrophysics Data System (ADS)

    Loveday, J.; Christodoulou, L.; Norberg, P.; Peacock, J. A.; Baldry, I. K.; Bland-Hawthorn, J.; Brown, M. J. I.; Colless, M.; Driver, S. P.; Holwerda, B. W.; Hopkins, A. M.; Kafle, P. R.; Liske, J.; Lopez-Sanchez, A. R.; Taylor, E. N.

    2018-03-01

    The galaxy pairwise velocity dispersion (PVD) can provide important tests of non-standard gravity and galaxy formation models. We describe measurements of the PVD of galaxies in the Galaxy and Mass Assembly (GAMA) survey as a function of projected separation and galaxy luminosity. Due to the faint magnitude limit (r < 19.8) and highly complete spectroscopic sampling of the GAMA survey, we are able to reliably measure the PVD to smaller scales (r⊥ = 0.01 h - 1 Mpc) than previous work. The measured PVD at projected separations r⊥ ≲ 1 h - 1 Mpc increases near monotonically with increasing luminosity from σ12 ≈ 200 km s - 1 at Mr = -17 mag to σ12 ≈ 600 km s - 1 at Mr ≈ -22 mag. Analysis of the Gonzalez-Perez et al. (2014) GALFORM semi-analytic model yields no such trend of PVD with luminosity: the model overpredicts the PVD for faint galaxies. This is most likely a result of the model placing too many low-luminosity galaxies in massive haloes.

  13. VizieR Online Data Catalog: The CLASS BL Lac sample (Marcha+, 2013)

    NASA Astrophysics Data System (ADS)

    Marcha, M. J. M.; Caccianiga, A.

    2014-04-01

    This paper presents a new sample of BL Lac objects selected from a deep (30mJy) radio survey of flat spectrum radio sources (the CLASS blazar survey). The sample is one of the largest well-defined samples in the low-power regime with a total of 130 sources of which 55 satisfy the 'classical' optical BL Lac selection criteria, and the rest have indistinguishable radio properties. The primary goal of this study is to establish the radio luminosity function (RLF) on firm statistical ground at low radio luminosities where previous samples have not been able to investigate. The gain of taking a peek at lower powers is the possibility to search for the flattening of the luminosity function which is a feature predicted by the beaming model but which has remained elusive to observational confirmation. In this study, we extend for the first time the BL Lac RLF down to very low radio powers ~1022W/Hz, i.e. two orders of magnitude below the RLF currently available in the literature. In the process, we confirm the importance of adopting a broader, and more physically meaningful set of classification criteria to avoid the systematic missing of low-luminosity BL Lacs. Thanks to the good statistics we confirm the existence of weak but significant positive cosmological evolution for the BL Lac population, and we detect, for the first time the flattening of the RLF at L~1025W/Hz in agreement with the predictions of the beaming model. (1 data file).

  14. The cosmic evolution of Fermi BL lacertae objects

    DOE PAGES

    Ajello, M.; Romani, R. W.; Gasparrini, D.; ...

    2013-12-13

    Fermi has provided the largest sample of γ-ray-selected blazars to date. We use a uniformly selected set of 211 BL Lacertae (BL Lac) objects detected by Fermi during its first year of operation. We obtained redshift constraints for 206 out of the 211 BL Lac objects in our sample, making it the largest and most complete sample of BL Lac objects available in the literature. We use this sample to determine the luminosity function of BL Lac objects and its evolution with cosmic time. Here, we find that for most BL Lac classes the evolution is positive, with a space density peaking at modest redshift (z ≈ 1.2). Low-luminosity, high-synchrotron-peaked (HSP) BL Lac objects are an exception, showing strong negative evolution, with number density increasing for z lesssim 0.5. Since this rise corresponds to a drop-off in the density of flat-spectrum radio quasars (FSRQs), a possible interpretation is that these HSPs represent an accretion-starved end state of an earlier merger-driven gas-rich phase. Additionally, we find that the known BL Lac correlation between luminosity and photon spectral index persists after correction for the substantial observational selection effects with implications for the so-called "blazar sequence." Finally, by estimating the beaming corrections to the luminosity function, we find that BL Lac objects have an average Lorentz factor ofmore » $$\\gamma =6.1^{+1.1}_{-0.8}$$, and that most are seen within 10° of the jet axis.« less

  15. Clustering of quasars in a wide luminosity range at redshift 4 with Subaru Hyper Suprime-Cam Wide-field imaging

    NASA Astrophysics Data System (ADS)

    He, Wanqiu; Akiyama, Masayuki; Bosch, James; Enoki, Motohiro; Harikane, Yuichi; Ikeda, Hiroyuki; Kashikawa, Nobunari; Kawaguchi, Toshihiro; Komiyama, Yutaka; Lee, Chien-Hsiu; Matsuoka, Yoshiki; Miyazaki, Satoshi; Nagao, Tohru; Nagashima, Masahiro; Niida, Mana; Nishizawa, Atsushi J.; Oguri, Masamune; Onoue, Masafusa; Oogi, Taira; Ouchi, Masami; Schulze, Andreas; Shirasaki, Yuji; Silverman, John D.; Tanaka, Manobu M.; Tanaka, Masayuki; Toba, Yoshiki; Uchiyama, Hisakazu; Yamashita, Takuji

    2018-01-01

    We examine the clustering of quasars over a wide luminosity range, by utilizing 901 quasars at \\overline{z}_phot˜ 3.8 with -24.73 < M1450 < -22.23 photometrically selected from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) S16A Wide2 date release and 342 more luminous quasars at 3.4 < zspec < 4.6 with -28.0 < M1450 < -23.95 from the Sloan Digital Sky Survey that fall in the HSC survey fields. We measure the bias factors of two quasar samples by evaluating the cross-correlation functions (CCFs) between the quasar samples and 25790 bright z ˜ 4 Lyman break galaxies in M1450 < -21.25 photometrically selected from the HSC dataset. Over an angular scale of 10.0" to 1000.0", the bias factors are 5.93+1.34-1.43 and 2.73+2.44-2.55 for the low- and high-luminosity quasars, respectively, indicating no significant luminosity dependence of quasar clustering at z ˜ 4. It is noted that the bias factor of the luminous quasars estimated by the CCF is smaller than that estimated by the auto-correlation function over a similar redshift range, especially on scales below 40.0". Moreover, the bias factor of the less-luminous quasars implies the minimal mass of their host dark matter halos is 0.3-2 × 1012 h-1 M⊙, corresponding to a quasar duty cycle of 0.001-0.06.

  16. Evolution of the dusty infrared luminosity function from z = 0 to z = 2.3 using observations from Spitzer

    NASA Astrophysics Data System (ADS)

    Magnelli, B.; Elbaz, D.; Chary, R. R.; Dickinson, M.; Le Borgne, D.; Frayer, D. T.; Willmer, C. N. A.

    2011-04-01

    Aims: We derive the evolution of the infrared luminosity function (LF) over the last 4/5ths of cosmic time using deep 24 and 70 μm imaging of the GOODS North and South fields. Methods: We use an extraction technique based on prior source positions at shorter wavelengths to build the 24 and 70 μm source catalogs. The majority (93%) of the sources have a spectroscopic (39%) or a photometric redshift (54%) and, in our redshift range of interest (i.e., 1.3 < z < 2.3) s20% of the sources have a spectroscopic redshift. To extend our study to lower 70 μm luminosities we perform a stacking analysis and we characterize the observed L24/(1 + z) vs. L70/(1 + z) correlation. Using spectral energy distribution (SED) templates which best fit this correlation, we derive the infrared luminosity of individual sources from their 24 and 70 μm luminosities. We then compute the infrared LF at zs1.55 ± 0.25 and zs2.05 ± 0.25. Results: We observe the break in the infrared LF up to zs2.3. The redshift evolution of the infrared LF from z = 1.3 to z = 2.3 is consistent with a luminosity evolution proportional to (1 + z)1.0 ± 0.9 combined with a density evolution proportional to (1 + z)-1.1 ± 1.5. At zs2, luminous infrared galaxies (LIRGs: 1011L⊙ < LIR < 1012 L⊙) are still the main contributors to the total comoving infrared luminosity density of the Universe. At zs2, LIRGs and ultra-luminous infrared galaxies (ULIRGs: 1012L⊙ < LIR) account for s49% and s17% respectively of the total comoving infrared luminosity density of the Universe. Combined with previous results using the same strategy for galaxies at z < 1.3 and assuming a constant conversion between the infrared luminosity and star-formation rate (SFR) of a galaxy, we study the evolution of the SFR density of the Universe from z = 0 to z = 2.3. We find that the SFR density of the Universe strongly increased with redshift from z = 0 to z = 1.3, but is nearly constant at higher redshift out to z = 2.3. As part of the online material accompanying this article, we present source catalogs at 24 μm and 70 μm for both the GOODS-North and -South fields. Appendices are only available in electronic form at http://www.aanda.orgFull Tables B1-B4 are only available in electronic form at CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/528/A35

  17. An infrared sky model based on the IRAS point source data

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Walker, Russell; Wainscoat, Richard; Volk, Kevin; Walker, Helen; Schwartz, Deborah

    1990-01-01

    A detailed model for the infrared point source sky is presented that comprises geometrically and physically realistic representations of the galactic disk, bulge, spheroid, spiral arms, molecular ring, and absolute magnitudes. The model was guided by a parallel Monte Carlo simulation of the Galaxy. The content of the galactic source table constitutes an excellent match to the 12 micrometer luminosity function in the simulation, as well as the luminosity functions at V and K. Models are given for predicting the density of asteroids to be observed, and the diffuse background radiance of the Zodiacal cloud. The model can be used to predict the character of the point source sky expected for observations from future infrared space experiments.

  18. Measuring the stellar luminosity function and spatial density profile of the inner 0.5 pc of the Milky Way nuclear star cluster

    NASA Astrophysics Data System (ADS)

    Do, Tuan; Ghez, Andrea; Lu, Jessica R.; Morris, Mark R.; Yelda, Sylvana; Martinez, Gregory D.; Peter, Annika H. G.; Wright, Shelley; Bullock, James; Kaplinghat, Manoj; Matthews, K.

    2012-07-01

    We report on measurements of the luminosity function of early (young) and late-type (old) stars in the central 0.5 pc of the Milky Way nuclear star cluster as well as the density profiles of both components. The young (~ 6 Myr) and old stars (> 1 Gyr) in this region provide different physical probes of the environment around a supermassive black hole; the luminosity function of the young stars offers us a way to measure the initial mass function from star formation in an extreme environment, while the density profile of the old stars offers us a probe of the dynamical interaction of a star cluster with a massive black hole. The two stellar populations are separated through a near-infrared spectroscopic survey using the integral-field spectrograph OSIRIS on Keck II behind the laser guide star adaptive optics system. This spectroscopic survey is able to separate early-type (young) and late-type (old) stars with a completeness of 50% at K' = 15.5. We describe our method of completeness correction using a combination of star planting simulations and Bayesian inference. The completeness corrected luminosity function of the early-type stars contains significantly more young stars at faint magnitudes compared to previous surveys with similar depth. In addition, by using proper motion and radial velocity measurements along with anisotropic spherical Jeans modeling of the cluster, it is possible to measure the spatial density profile of the old stars, which has been difficult to constrain with number counts alone. The most probable model shows that the spatial density profile, n(r) propto r-γ, to be shallow with γ = 0.4 ± 0.2, which is much flatter than the dynamically relaxed case of γ = 3/2 to 7/4, but does rule out a 'hole' in the distribution of old stars. We show, for the first time, that the spatial density profile, the black hole mass, and velocity anisotropy can be fit simultaneously to obtain a black hole mass that is consistent with that derived from individual orbits of stars at distances < 1000 AU from the Galactic center.

  19. Dark-ages reionization and galaxy formation simulation - X. The small contribution of quasars to reionization

    NASA Astrophysics Data System (ADS)

    Qin, Yuxiang; Mutch, Simon J.; Poole, Gregory B.; Liu, Chuanwu; Angel, Paul W.; Duffy, Alan R.; Geil, Paul M.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2017-12-01

    Motivated by recent measurements of the number density of faint AGN at high redshift, we investigate the contribution of quasars to reionization by tracking the growth of central supermassive black holes in an update of the MERAXES semi-analytic model. The model is calibrated against the observed stellar mass function at z ∼ 0.6-7, the black hole mass function at z ≲ 0.5, the global ionizing emissivity at z ∼ 2-5 and the Thomson scattering optical depth. The model reproduces a Magorrian relation in agreement with observations at z < 0.5 and predicts a decreasing black hole mass towards higher redshifts at fixed total stellar mass. With the implementation of an opening angle of 80 deg for quasar radiation, corresponding to an observable fraction of ∼23.4 per cent due to obscuration by dust, the model is able to reproduce the observed quasar luminosity function at z ∼ 0.6-6. The stellar light from galaxies hosting faint active galactic nucleus (AGN) contributes a significant or dominant fraction of the UV flux. At high redshift, the model is consistent with the bright end quasar luminosity function and suggests that the recent faint z ∼ 4 AGN sample compiled by Giallongo et al. (2015) includes a significant fraction of stellar light. Direct application of this luminosity function to the calculation of AGN ionizing emissivity consequently overestimates the number of ionizing photons produced by quasars by a factor of 3 at z ∼ 6. We conclude that quasars are unlikely to make a significant contribution to reionization.

  20. Deep luminosity function of the globular cluster M13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drukier, G.A.; Fahlman, G.G.; Richter, H.B.

    The luminosity function in a field of M13 at 14 core radii has been observed to M(V) = +12.0, and new theoretical, low-mass, stellar models appropriate to M13 are used to convert the function to a mass function which extends to M = 0.18 solar, within a factor of two of brown dwarf masses at this metal abundance. As the number of stars observed in each magnitude bin is still increasing at the limit of the data, the presence of stars with masses lower than 0.18 solar is probable. This result sets an upper limit of 0.18 solar mass formore » low-mass cutoffs in dynamical models of M13. No single power law mass function fits all the observations. The trend of the data supports the idea of a steep increase in the slope of the mass function for M less than 0.4 solar. The results imply that the total mass in low-mass stars in M13, and by implication elsewhere, is higher than was previously thought. 26 references.« less

  1. Great Optically Luminous Dropout Research Using Subaru HSC (GOLDRUSH). I. UV luminosity functions at z ˜ 4-7 derived with the half-million dropouts on the 100 deg2 sky

    NASA Astrophysics Data System (ADS)

    Ono, Yoshiaki; Ouchi, Masami; Harikane, Yuichi; Toshikawa, Jun; Rauch, Michael; Yuma, Suraphong; Sawicki, Marcin; Shibuya, Takatoshi; Shimasaku, Kazuhiro; Oguri, Masamune; Willott, Chris; Akhlaghi, Mohammad; Akiyama, Masayuki; Coupon, Jean; Kashikawa, Nobunari; Komiyama, Yutaka; Konno, Akira; Lin, Lihwai; Matsuoka, Yoshiki; Miyazaki, Satoshi; Nagao, Tohru; Nakajima, Kimihiko; Silverman, John; Tanaka, Masayuki; Taniguchi, Yoshiaki; Wang, Shiang-Yu

    2018-01-01

    We study the UV luminosity functions (LFs) at z ˜ 4, 5, 6, and 7 based on the deep large-area optical images taken by the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP). On the 100 deg2 sky of the HSC SSP data available to date, we take enormous samples consisting of a total of 579565 dropout candidates at z ˜ 4-7 by the standard color selection technique, 358 out of which are spectroscopically confirmed by our follow-up spectroscopy and other studies. We obtain UV LFs at z ˜ 4-7 that span a very wide UV luminosity range of ˜0.002-100 L_UV^\\ast (-26 < MUV < -14 mag) by combining LFs from our program and the ultra-deep Hubble Space Telescope legacy surveys. We derive three parameters of the best-fit Schechter function, ϕ*, M_UV^{ \\ast}, and α, of the UV LFs in the magnitude range where the active galactic nucleus (AGN) contribution is negligible, and find that α and ϕ* decrease from z ˜ 4 to 7 with no significant evolution of M_UV^{ \\ast}. Because our HSC SSP data bridge the LFs of galaxies and AGNs with great statistical accuracy, we carefully investigate the bright end of the galaxy UV LFs that are estimated by the subtraction of the AGN contribution either aided by spectroscopy or the best-fit AGN UV LFs. We find that the bright end of the galaxy UV LFs cannot be explained by the Schechter function fits at >2 σ significance, and require either double power-law functions or modified Schechter functions that consider a magnification bias due to gravitational lensing.

  2. Statistical Issues in Galaxy Cluster Cosmology

    NASA Technical Reports Server (NTRS)

    Mantz, Adam

    2013-01-01

    The number and growth of massive galaxy clusters are sensitive probes of cosmological structure formation. Surveys at various wavelengths can detect clusters to high redshift, but the fact that cluster mass is not directly observable complicates matters, requiring us to simultaneously constrain scaling relations of observable signals with mass. The problem can be cast as one of regression, in which the data set is truncated, the (cosmology-dependent) underlying population must be modeled, and strong, complex correlations between measurements often exist. Simulations of cosmological structure formation provide a robust prediction for the number of clusters in the Universe as a function of mass and redshift (the mass function), but they cannot reliably predict the observables used to detect clusters in sky surveys (e.g. X-ray luminosity). Consequently, observers must constrain observable-mass scaling relations using additional data, and use the scaling relation model in conjunction with the mass function to predict the number of clusters as a function of redshift and luminosity.

  3. New Insights on the White Dwarf Luminosity and Mass Functions from the LSS-GAC Survey

    NASA Astrophysics Data System (ADS)

    Rebassa-Mansergas, Alberto; Liu, Xiaowei; Cojocaru, Ruxandra; Torres, Santiago; García–Berro, Enrique; Yuan, Haibo; Huang, Yang; Xiang, Maosheng

    2015-06-01

    The white dwarf (WD) population observed in magnitude-limited surveys can be used to derive the luminosity function (LF) and mass function (MF), once the corresponding volume corrections are employed. However, the WD samples from which the observational LFs and MFs are built are the result of complicated target selection algorithms. Thus, it is difficult to quantify the effects of the observational biases on the observed functions. The LAMOST (Large sky Area Multi-Object fiber Spectroscopic Telescope) spectroscopic survey of the Galactic anti-center (LSS-GAC) has well-defined selection criteria. This is a noticeable advantage over previous surveys. Here we derive the WD LF and MF of the LSS-GAC, and use a Monte Carlo code to simulate the WD population in the Galactic anti-center. We apply the well-defined LSS-GAC selection criteria to the simulated populations, taking into account all observational biases, and perform the first meaningful comparison between the simulated WD LFs and MFs and the observed ones.

  4. Variation of z-height of the molecular clouds on the Galactic Plane

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Stark, A. A.

    2002-12-01

    Using the Bell Laboratories Galactic plane in the J=1-0 transition of 13CO, (l, b) = (-5o to 117o, -1o to +1o), and cloud identification code, 13CO clouds have been identified and cataloged as a function of threshold temperature. Distance estimates to the identified clouds have been made with several criteria. Minimum and maximum distances to each identified cloud are determined from a set of all the possible distances of a cloud. Several physical parameters can be determined with distances, such as z-height [D sin (b)], CO luminosity, virial mass and so forth. We select the clouds with a ratio of maximum and minimum of CO luminosities less than 3. The number of selected clouds is 281 out of 1400 identified clouds with 1 K threshold temperature. These clouds are mostly located on the tangential positions in the inner Galaxy, and some are in the Outer Galaxy. It is found that the z-height of lower luminosity clouds (less massive clouds) is systimatically larger than that of high-luminosity clouds (more massive clouds). We claim that this is the first observational evidence of the z-height variation depending on the luminosities (or masses) of molecular clouds on the Galactic plane. Our results could be a basis explaining the formation mechanism of massive clouds, such as giant molecular clouds.

  5. X-ray emission at the low-mass end - Results from an extensive Einstein Observatory survey

    NASA Technical Reports Server (NTRS)

    Barbera, M.; Micela, G.; Sciortino, S.; Harnden, F. R., Jr.; Rosner, R.

    1993-01-01

    We have used available IPC data and a critical compilation of cataloged optical data to measure the 0.16-3.5 keV X-ray emission from 88 K and 169 M stars of luminosity classes IV, V, and VI within 25 pc from the Sun. The IPC detected 54 out of the 88 K stars, 70 out of the 138 M stars with M(v) less than 13.4, and 15 out of the 31 fainter M stars. We have identified a subsample of surveyed stars that is statistically representative of the population of K and M stars in the solar neighborhood. On the basis of this subsample (1) we have shown the occurrence of a drop in the level of X-ray emission for M stars later than approximately M5; (2) we have built unbiased maximum likelihood X-ray luminosity functions for the K, early M, and late M stars; (3) we have confirmed, both for K and M stars, the decrease of X-ray luminosity with increasing stellar age in the range of ages of disk population stars: and (4) we have shown that no obvious correlation is present between X-ray and bolometric luminosities in the entire representative samples of K and M stars, but only within flare stars which also seem to mark a saturation in X-ray luminosity level.

  6. Galaxy clustering dependence on the [O II] emission line luminosity in the local Universe

    NASA Astrophysics Data System (ADS)

    Favole, Ginevra; Rodríguez-Torres, Sergio A.; Comparat, Johan; Prada, Francisco; Guo, Hong; Klypin, Anatoly; Montero-Dorta, Antonio D.

    2017-11-01

    We study the galaxy clustering dependence on the [O II] emission line luminosity in the SDSS DR7 Main galaxy sample at mean redshift z ∼ 0.1. We select volume-limited samples of galaxies with different [O II] luminosity thresholds and measure their projected, monopole and quadrupole two-point correlation functions. We model these observations using the 1 h-1 Gpc MultiDark-Planck cosmological simulation and generate light cones with the SUrvey GenerAtoR algorithm. To interpret our results, we adopt a modified (Sub)Halo Abundance Matching scheme, accounting for the stellar mass incompleteness of the emission line galaxies. The satellite fraction constitutes an extra parameter in this model and allows to optimize the clustering fit on both small and intermediate scales (i.e. rp ≲ 30 h-1 Mpc), with no need of any velocity bias correction. We find that, in the local Universe, the [O II] luminosity correlates with all the clustering statistics explored and with the galaxy bias. This latter quantity correlates more strongly with the SDSS r-band magnitude than [O II] luminosity. In conclusion, we propose a straightforward method to produce reliable clustering models, entirely built on the simulation products, which provides robust predictions of the typical ELG host halo masses and satellite fraction values. The SDSS galaxy data, MultiDark mock catalogues and clustering results are made publicly available.

  7. LUMINOSITY EVOLUTION OF GAMMA-RAY PULSARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirotani, Kouichi, E-mail: hirotani@tiara.sinica.edu.tw

    2013-04-01

    We investigate the electrodynamic structure of a pulsar outer-magnetospheric particle accelerator and the resulting gamma-ray emission. By considering the condition for the accelerator to be self-sustained, we derive how the trans-magnetic-field thickness of the accelerator evolves with the pulsar age. It is found that the thickness is small but increases steadily if the neutron-star envelope is contaminated by sufficient light elements. For such a light element envelope, the gamma-ray luminosity of the accelerator is kept approximately constant as a function of age in the initial 10,000 yr, forming the lower bound of the observed distribution of the gamma-ray luminosity ofmore » rotation-powered pulsars. If the envelope consists of only heavy elements, on the other hand, the thickness is greater, but it increases less rapidly than a light element envelope. For such a heavy element envelope, the gamma-ray luminosity decreases relatively rapidly, forming the upper bound of the observed distribution. The gamma-ray luminosity of a general pulsar resides between these two extreme cases, reflecting the envelope composition and the magnetic inclination angle with respect to the rotation axis. The cutoff energy of the primary curvature emission is regulated below several GeV even for young pulsars because the gap thickness, and hence the acceleration electric field, is suppressed by the polarization of the produced pairs.« less

  8. Continuum radiation from active galactic nuclei: A statistical study

    NASA Technical Reports Server (NTRS)

    Isobe, T.; Feigelson, E. D.; Singh, K. P.; Kembhavi, A.

    1986-01-01

    The physics of the continuum spectrum of active galactic nuclei (AGNs) was examined using a large data set and rigorous statistical methods. A data base was constructed for 469 objects which include radio selected quasars, optically selected quasars, X-ray selected AGNs, BL Lac objects, and optically unidentified compact radio sources. Each object has measurements of its radio, optical, X-ray core continuum luminosity, though many of them are upper limits. Since many radio sources have extended components, the core component were carefully selected out from the total radio luminosity. With survival analysis statistical methods, which can treat upper limits correctly, these data can yield better statistical results than those previously obtained. A variety of statistical tests are performed, such as the comparison of the luminosity functions in different subsamples, and linear regressions of luminosities in different bands. Interpretation of the results leads to the following tentative conclusions: the main emission mechanism of optically selected quasars and X-ray selected AGNs is thermal, while that of BL Lac objects is synchrotron; radio selected quasars may have two different emission mechanisms in the X-ray band; BL Lac objects appear to be special cases of the radio selected quasars; some compact radio sources show the possibility of synchrotron self-Compton (SSC) in the optical band; and the spectral index between the optical and the X-ray bands depends on the optical luminosity.

  9. Long term dynamics of the high luminosity Large Hadron Collider with crab cavities

    NASA Astrophysics Data System (ADS)

    Barranco García, J.; De Maria, R.; Grudiev, A.; Tomás García, R.; Appleby, R. B.; Brett, D. R.

    2016-10-01

    The High Luminosity upgrade of the Large Hadron Collider (HL-LHC) aims to achieve an integrated luminosity of 200 - 300 fb-1 per year, including the contribution from the upgrade of the injector chain. For the HL-LHC the larger crossing angle together with a smaller beta function at the collision point would result in more than 70% luminosity loss due to the incomplete geometric overlap of colliding bunches. To recover head-on collisions at the high-luminosity particle-physics detectors ATLAS and CMS and benefit from the very low β* provided by the Achromatic Telescopic Squeezing (ATS) optics, a local crab cavity scheme provides transverse kicks to the proton bunches. The tight space constraints at the location of these cavities leads to designs which are axially non-symmetric, giving rise to high order multipoles components of the main deflecting mode and, since these kicks are harmonic in time, we expand them in a series of multipoles in a similar fashion as is done for static field magnets. In this work we calculate, for the first time, the higher order multipoles and their impact on beam dynamics for three different crab cavity prototypes. Different approaches to calculate the multipoles are presented. Furthermore, we perform the first calculation of their impact on the long term stability of the machine using the concept of dynamic aperture.

  10. NGST: Exploring the Fossil Record of Galaxy Formation

    NASA Technical Reports Server (NTRS)

    Rich, R. Michael

    1998-01-01

    During this grant period the investigator has accomplished the following: developed and researched the science case for high resolution optical imaging with NGST (Next Generation Space Telescope); presented to the ASWG (Ad-Hoc Science Working Group) on the use of NGST to image and measure the proper motions of white dwarf stars that could account for the MACHO events toward the LMC (Large Magellanic Cloud); wrote proposals for the Design Reference Mission. Three proposals have been written on the following topics: Measuring the faint end of the white dwarf luminosity function to get an independent measure of the age of the oldest stars, measurement of the stellar luminosity function over the full range of age, abundance, and population type, and deep imaging of Local Group halos to measure the relative ages of the oldest stars in the Milky Way and other galaxies; he has introduced simulations of crowded field stellar photometry on a hypothetical population in the M31 halo. Using a physically correct luminosity function and a surface brightness of 24.5 mag/sq. arcsec, NGST imaging in 10 hours easily measures the turnoff and reaches 3 mags down the main sequence in the halo of M31; and has delivered talks at the NGST workshop in Liege, and at the meeting in Paris entitled "Connecting the Distant Universe with the Local Fossil Record".

  11. Exploring the Evolution of Star Formation and Dwarf Galaxy Properties with JWST /MIRI Serendipitous Spectroscopic Surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonato, Matteo; Sajina, Anna; McKinney, Jed

    The James Webb Space Telescope ’s Medium Resolution Spectrometer (MRS), will offer nearly two orders of magnitude improvement in sensitivity and >3× improvement in spectral resolution over our previous space-based mid-IR spectrometer, the Spitzer IRS. In this paper, we make predictions for spectroscopic pointed observations and serendipitous detections with the MRS. Specifically, pointed observations of Herschel sources require only a few minutes on source integration for detections of several star-forming and active galactic nucleus lines, out to z = 3 and beyond. But the same data will also include tens of serendipitous 0 ≲ z ≲ 4 galaxies per fieldmore » with infrared luminosities ranging ∼10{sup 6}–10{sup 13} L {sub ☉}. In particular, for the first time and for free we will be able to explore the L {sub IR} < 10{sup 9} L {sub ☉} regime out to z ∼ 3. We estimate that with ∼ 100 such fields, statistics of these detections will be sufficient to constrain the evolution of the low- L end of the infrared luminosity function, and hence the star formation rate function. The above conclusions hold for a wide range in the potential low- L end of the IR luminosity function, and account for the PAH deficit in low- L , low-metallicity galaxies.« less

  12. Observational Evidence for the Effect of Amplification Bias in Gravitational Microlensing Experiments

    NASA Astrophysics Data System (ADS)

    Han, Cheongho; Jeong, Youngjin; Kim, Ho-Il

    1998-11-01

    Recently Alard, Mao, & Guibert and Alard proposed to detect the shift of a star's image centroid, δx, as a method to identify the lensed source among blended stars. Goldberg & Woźniak actually applied this method to the OGLE-1 database and found that seven of 15 events showed significant centroid shifts of δx >~ 0.2". The amount of centroid shift has been estimated theoretically by Goldberg; however, he treated the problem in general and did not apply it to a particular survey or field and therefore based his estimate on simple toy model luminosity functions (i.e., power laws). In this paper, we construct the expected distribution of δx for Galactic bulge events based on the precise stellar luminosity function observed by Holtzman et al. using the Hubble Space Telescope. Their luminosity function is complete up to MI ~ 9.0 (MV ~ 12), which corresponds to faint M-type stars. In our analysis we find that regular blending cannot produce a large fraction of events with measurable centroid shifts. By contrast, a significant fraction of events would have measurable centroid shifts if they are affected by amplification-bias blending. Therefore, the measurements of large centroid shifts for an important fraction of microlensing events of Goldberg & Woźniak confirm the prediction of Han & Alard that a large fraction of Galactic bulge events are affected by amplification-bias blending.

  13. Starburst galaxies

    NASA Technical Reports Server (NTRS)

    Weedman, Daniel W.

    1987-01-01

    The infrared properties of star-forming galaxies, primarily as determined by the Infrared Astronomy Satellite (IRAS), are compared to X-ray, optical, and radio properties. Luminosity functions are reviewed and combined with those derived from optically discovered samples using 487 Markarian galaxies with redshifts and published IRAS 60 micron fluxes, and 1074 such galaxies in the Center for Astrophysics redshift survey. It is found that the majority of infrared galaxies which could be detected are low luminosity sources already known from the optical samples, but non-infrared surveys have found only a very small fraction of the highest luminosity sources. Distributions of infrared to optical fluxes and available spectra indicate that the majority of IRAS-selected galaxies are starburst galaxies. Having a census of starburst galaxies and associated dust allow severl important global calculations. The source counts are predicted as a function of flux limits for both infrared and radio fluxes. These galaxies are found to be important radio sources at faint flux limits. Taking the integrated flux to z = 3 indicates that such galaxies are a significant component of the diffuse X-ray background, and could be the the dominant component depending on the nature of the X-ray spectra and source evolution.

  14. The galaxy UV luminosity function at z ≃ 2-4; new results on faint-end slope and the evolution of luminosity density

    NASA Astrophysics Data System (ADS)

    Parsa, Shaghayegh; Dunlop, James S.; McLure, Ross J.; Mortlock, Alice

    2016-03-01

    We present a new, robust measurement of the evolving rest-frame ultraviolet (UV) galaxy luminosity function (LF) over the key redshift range from z ≃ 2 to z ≃ 4. Our results are based on the high dynamic range provided by combining the Hubble Ultra Deep Field (HUDF), CANDELS/GOODS-South, and UltraVISTA/COSMOS surveys. We utilize the unparalleled multifrequency photometry available in this survey `wedding cake' to compile complete galaxy samples at z ≃ 2, 3, 4 via photometric redshifts (calibrated against the latest spectroscopy) rather than colour-colour selection, and to determine accurate rest-frame UV absolute magnitudes (M1500) from spectral energy distribution (SED) fitting. Our new determinations of the UV LF extend from M1500 ≃ -22 (AB mag) down to M1500 = -14.5, -15.5 and -16 at z ≃ 2, 3 and 4, respectively (thus, reaching ≃ 3-4 mag fainter than previous blank-field studies at z ≃ 2,3). At z ≃ 2, 3, we find a much shallower faint-end slope (α = -1.32 ± 0.03) than reported in some previous studies (α ≃ -1.7), and demonstrate that this new measurement is robust. By z ≃ 4, the faint-end slope has steepened slightly, to α = -1.43 ± 0.04, and we show that these measurements are consistent with the overall evolutionary trend from z = 0 to 8. Finally, we find that while characteristic number density (φ*) drops from z ≃ 2 to z ≃ 4, characteristic luminosity (M*) brightens by ≃ 1 mag. This, combined with the new flatter faint-end slopes, has the consequence that UV luminosity density (and hence unobscured star formation density) peaks at z ≃ 2.5-3, when the Universe was ≃ 2.5 Gyr old.

  15. Heavily reddened type 1 quasars at z > 2 - I. Evidence for significant obscured black hole growth at the highest quasar luminosities

    NASA Astrophysics Data System (ADS)

    Banerji, Manda; Alaghband-Zadeh, S.; Hewett, Paul C.; McMahon, Richard G.

    2015-03-01

    We present a new population of z > 2 dust-reddened, type 1 quasars with 0.5 ≲ E(B - V) ≲ 1.5, selected using near-infrared (NIR) imaging data from the UKIDSS-LAS (Large Area Survey), ESO-VHS (European Southern Obseratory-VISTA Hemisphere Survey) and WISE surveys. NIR spectra obtained using the Very Large Telescope for 24 new objects bring our total sample of spectroscopically confirmed hyperluminous (>1013 L⊙), high-redshift dusty quasars to 38. There is no evidence for reddened quasars having significantly different Hα equivalent widths relative to unobscured quasars. The average black hole masses (˜109-1010 M⊙) and bolometric luminosities (˜1047 erg s-1) are comparable to the most luminous unobscured quasars at the same redshift, but with a tail extending to very high luminosities of ˜1048 erg s-1. 66 per cent of the reddened quasars are detected at >3σ at 22 μm by WISE. The average 6-μm rest-frame luminosity is log10(L6 μm/ erg s-1) = 47.1 ± 0.4, making the objects among the mid-infrared brightest active galactic nuclei (AGN) currently known. The extinction-corrected space density estimate now extends over three magnitudes (-30 < Mi < -27) and demonstrates that the reddened quasar luminosity function is significantly flatter than that of the unobscured quasar population at z = 2-3. At the brightest magnitudes, Mi ≲ -29, the space density of our dust-reddened population exceeds that of unobscured quasars. A model where the probability that a quasar becomes dust reddened increases at high luminosity is consistent with the observations and such a dependence could be explained by an increase in luminosity and extinction during AGN-fuelling phases. The properties of our obscured type 1 quasars are distinct from the heavily obscured, Compton-thick AGN that have been identified at much fainter luminosities and we conclude that they likely correspond to a brief evolutionary phase in massive galaxy formation.

  16. Dwarf Hosts of Low-z Supernovae

    NASA Astrophysics Data System (ADS)

    Pyotr Kolobow, Craig; Perlman, Eric S.; Strolger, Louis

    2018-01-01

    Hostless supernovae (SNe), or SNe in dwarf galaxies, may serve as excellent beacons for probing the spatial density of dwarf galaxies (M < 10^8M⊙), which themselves are scarcely detected beyond only a few Mpc. Depending on the assumed model for the stellar-mass to halo mass relation for these galaxies, LSST might see 1000s of SNe (of all types) from dwarf galaxies alone. Conversely, one can take the measured rates of these SNe and test the model predictions for the density of dwarf galaxies in the local universe. Current “all-sky” surveys, like PanSTARRS and ASAS-SN, are now finding hostless SNe at a number sufficient to measure their rate. What missing is the appropriate weighting of their host luminosities. Here we seek to continue a successful program to recover the luminosities of these hostless SNe, to z = 0.15, to use their rate to constrain the faint-end slope of the low-z galaxy luminosity function.

  17. VLA observations of a complete sample of extragalactic X-ray sources. II

    NASA Technical Reports Server (NTRS)

    Schild, R.; Zamorani, G.; Gioia, I. M.; Feigelson, E. D.; Maccacaro, T.

    1983-01-01

    A complete sample of 35 X-ray selected sources found with the Einstein Observatory has been observed with the Very Large Array at 6 cm to investigate the relationship between radio and X-ray emission in extragalactic objects. Detections include three active galactic nuclei (AGNs), two clusters or groups of galaxies, two individual galaxies, and two BL Lac objects. The frequency of radio emission in X-ray selected AGNs is compared with that of optically selected quasars using the integral radio-optical luminosity function. The result suggests that the probability for X-ray selected quasars to be radio sources is higher than for those optically selected. No obvious correlation is found in the sample between the richness of X-ray luminosity of the cluster and the presence of a galaxy with radio luminosity at 5 GHz larger than 10 to the 30th ergs/s/Hz.

  18. Determining Black Hole Mass of AGN using FWHM of H-beta Emission Line and Luminosity Relations

    NASA Astrophysics Data System (ADS)

    Cameron, Thomas Jacob; Burris, Debra L.

    2017-01-01

    At the center of some active galaxies are super-massive black holes and for some time the accepted method of measuring the mass of such galaxies has been the method used by Vestergaard and Peterson, among others. By using the luminosity function which is related to H-β emission spectra from these black holes, both for cosmic redshift and for Fe-II emissions using IRAF. From there, H-β can accurately measure the full width half max of the H-beta line in these spectrum as well as the luminosity and these paired with the O-III lines give us an estimate on the mass of the black hole. The purpose of this is to compare it to the values obtained from the Mass-Pitch Angle relation being proposed by Kennefick et al. (2016 in preparation)

  19. SWIFT BAT Survey of AGN

    NASA Technical Reports Server (NTRS)

    Tueller, J.; Mushotzky, R. F.; Barthelmy, S.; Cannizzo, J. K.; Gehrels, N.; Markwardt, C. B.; Skinner, G. K.; Winter, L. M.

    2008-01-01

    We present the results1 of the analysis of the first 9 months of data of the Swift BAT survey of AGN in the 14-195 keV band. Using archival X-ray data or follow-up Swift XRT observations, we have identified 129 (103 AGN) of 130 objects detected at [b] > 15deg and with significance > 4.8-delta. One source remains unidentified. These same X-ray data have allowed measurement of the X-ray properties of the objects. We fit a power law to the logN - log S distribution, and find the slope to be 1.42+/-0.14. Characterizing the differential luminosity function data as a broken power law, we find a break luminosity logL*(ergs/s)= 43.85+/-0.26. We obtain a mean photon index 1.98 in the 14-195 keV band, with an rms spread of 0.27. Integration of our luminosity function gives a local volume density of AGN above 10(exp 41) erg/s of 2.4x10(exp -3) Mpc(sup -3), which is about 10% of the total luminous local galaxy density above M* = -19.75. We have obtained X-ray spectra from the literature and from Swift XRT follow-up observations. These show that the distribution of log nH is essentially flat from nH = 10(exp 20)/sq cm to 10(exp 24)/sq cm, with 50% of the objects having column densities of less than 10(exp 22)/sq cm. BAT Seyfert galaxies have a median redshift of 0.03, a maximum log luminosity of 45.1, and approximately half have log nH > 22.

  20. The infrared luminosity function of AKARI 90 μm galaxies in the local Universe

    NASA Astrophysics Data System (ADS)

    Kilerci Eser, Ece; Goto, Tomotsugu

    2018-03-01

    Local infrared (IR) luminosity functions (LFs) are necessary benchmarks for high-redshift IR galaxy evolution studies. Any accurate IR LF evolution studies require accordingly accurate local IR LFs. We present IR galaxy LFs at redshifts of z ≤ 0.3 from AKARI space telescope, which performed an all-sky survey in six IR bands (9, 18, 65, 90, 140, and 160 μm) with 10 times better sensitivity than its precursor Infrared Astronomical Satellite. Availability of 160 μm filter is critically important in accurately measuring total IR luminosity of galaxies, covering across the peak of the dust emission. By combining data from Wide-field Infrared Survey Explorer (WISE), Sloan Digital Sky Survey (SDSS) Data Release 13 (DR 13), six-degree Field Galaxy Survey and the 2MASS Redshift Survey, we created a sample of 15 638 local IR galaxies with spectroscopic redshifts, factor of 7 larger compared to previously studied AKARI-SDSS sample. After carefully correcting for volume effects in both IR and optical, the obtained IR LFs agree well with previous studies, but comes with much smaller errors. Measured local IR luminosity density is ΩIR = 1.19 ± 0.05 × 108L⊙ Mpc-3. The contributions from luminous IR galaxies and ultraluminous IR galaxies to ΩIR are very small, 9.3 per cent and 0.9 per cent, respectively. There exists no future all-sky survey in far-IR wavelengths in the foreseeable future. The IR LFs obtained in this work will therefore remain an important benchmark for high-redshift studies for decades.

  1. The stellar population and luminosity function in M31 bulge and Inner Disk Fields

    NASA Technical Reports Server (NTRS)

    Rich, R. Michael; Mould, J. R.; Graham, James R.

    1993-01-01

    We report infrared photometry and stellar identifications for stars in five fields in the M31 bulge located from 2 to 11 arcmin from the nucleus. These fields have been chosen such that the bulge/disk star ratio predicted from Kent's (1989) small bulge model varies from 7:1 to 1:5, allowing a study of near pure disk and near pure bulge stellar populations. We reject the hypothesis of Davies et al. (1991) that luminous stars found within 500 pc of the nucleus are due to a contaminating disk population. We find that the bulge contains stars in excess of M(sub bol) = -5 mag and that the bulge luminosity function has a distinct shape different from the disk fields. We find many stars redder than (J-K) = 2 mag, and suggest that these stars may be the counterparts of the IRAS-selected Galactic bulge Miras studied by Whitelock et at. (1991). The number of bright stars (M(sub bol) is less than -5 mag) falls off more rapidly than the r band surface brightness. By building model fields out of a bulge luminosity function and artificial stars, we are able to show that the change in the luminosity function toward the center cannot be explained simply by the mismeasurement of overcrowded star images. However, these tests also raise the possibility that the asymptotic giant branch (AGB) tip may be approximately equal to 1 mag fainter than actually measured in our most crowded field, reaching only M(sub bol) = -5. We compare observed counts of AGB stars with those predicted from theoretical lifetimes using a technique of general interest for this problem, the Fuel Consumption Theorem of Renzini & Buzzoni (1986) Spectral Evolution of Galaxies (Reidel, Dordrecht). Our methodology is generally applicable to the study of other resolved extragalactic stellar populations. The number of observed stars per magnitude up to a luminosity of M(bol) = -5.5 mag is consistent with AGB evolution of the whole population of the innermost bulge field with the standard lifetime on the AGB of 1.3 Myr/mag. We advance the possibility that the bulge of M31 may be younger than the oldest Galactic globular clusters. We note that M33 has recently been found to have an r(exp 1/4)-law spheroid consisting of intermediate-age stars; bulges can form later than the old halo population.

  2. The Coma Cluster Luminosity Function from Ultraviolet to Near-Infrared

    NASA Astrophysics Data System (ADS)

    Andreon, S.; Cuillandre, J.-C.; Pello, R.

    The Coma cluster luminosity function (LF) from ultraviolet (2000 AA ) to the near-infrared (H band) is summarized. In the UV the LF is very steep, much steeper than in the optical. The steep Coma UV LF implies that faint and bright galaxies give similar contributions to the total UV flux and to the total metal production rate. The ComaUV LF is dominated in number and luminosity by blue galaxies, which are often faint in the optical. Therefore the Coma UV LF is dominated by star forming galaxies, not by massive and large galaxies. The optical Coma LF is relatively steep (alpha=-1.4) over the 11 magnitudes sampled, but its slope and shape depend on considered filter and magnitude. We found a clear steeping of the FL going from B to R bands, indicative of the presence of a large number of red dwarfs, as faint as three bright globular clusters. Furthermore, using Hubble Space Telescope images, we discover that blends of globular clusters, not resolved in individual components due to seeing, look like dwarf galaxies when observed from the ground and are numerous and bright. The existence of these fake extended sources increases the steepness of the LF at faint magnitudes, if not deal on. This concern affects previous deep probing of the luminosity function, but not the present work. The near-infrared LF wa s computed on a near-infrared selected sample of galaxies which photometry is complete down to the typical dwarf (M* +5) luminosity. The Coma LF can be described by a Schechter function with intermediate slope (alpha sim-1.3), plus a dip at MH~-22 mag. The shape of the Coma LF in H band is quite similar to th e one found in the B band. The similarity of the LF in the optical and H bands implies that in the central region of Coma there is no new population of galaxies which is too faint to be observed in the optical band (because dust enshrouded, for instance), down to the magnitudes of dwarfs. The exponential cut of the LF at the bright end is in good agreement with the one derived from shallower near-infrared samples o f galaxies, both in clusters and in the field. The faint end of the LF, reaching MH~-19 mag (roughly MB~ -15), is steep, but less than previously suggested from shallower near-infrared observations of an adjacent region in the Coma cluster.

  3. H II Regions in the Disks of Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Rozas, M.

    1997-06-01

    The objective of the research presented in the thesis is to use photometrically calibrated high quality images in \\ha\\ of the disks of spiral galaxies to study their global star forming properties. In the first part of the study we catalog and study statistically the \\hii\\ regions in a set of spirals, imaged in \\ha\\ . The observed parameters of each region are its fluxes and diameters, from which we can also derive the mean surface brightness and its internal radial gradient (the latter for the largest most luminous regions). Plotting the luminosity function (LF) for a given galaxy (the number of regions versus \\ha\\ flux) we find a characteristic discontinuity: a peak accompanied by a change in gradient of the function, at a luminosity of 10$^{38.6}$ erg s$^{-1}$ per region. We attribute this to the change from ionization-bounded \\hii\\ regions, at luminosities below the transition, to density-bounded regions above the transition, and explain with a quantitative model based on this assumption why the transition takes place at a well-defined luminosity, and one which varies very little from galaxy to galaxy. In the six galaxies observed and analyzed in this way, the variance is 0.07 mag., making the transition a good prima facie candidate to be a powerful standard candle for accurate extragalactic distance measurements. Confirmation of the nature of the transition is provided by measurements of the internal brightness gradients, which show a jump from a constant value (predicted for ionization bounded regions) below the transition to a larger and increasing value above the transition. The theoretical model which can account for the transition was used to show how the gradients of the LF in the ionization bounded and the density bounded regimes can be used to derive the mass function of the ionizing stars in regions close to the transition luminosity, yielding a mean value for the slope of the MF in the galaxies observed of -2.4; the brightest stars in these regions are characteristically early O-types. Further evidence that the most luminous regions are density-bounded is provided by measuring the internal velocity dispersions of \\hii\\ regions across a galaxy, using the TAURUS Fabry-Perot spectral line imager. A plot of velocity dispersion v. luminosity in \\ha\\ is a scatter diagram in the log-log plane with a linear upper envelope having a slope of +2.6, on which lies the brightest regions: those above the transition. We explain these findings by assuming that a typical region does not show gas in virial equilibrium, since sporadic stellar events: winds and explosions, provide a non-negligible fraction of the \\ha\\ luminosity. However the locus of the upper envelope should correspond to a virial relation; the more massive regions show more rapid damping of impulsive energy input. The slope of the envelope is that predicted for regions whose mass rather than total luminosity is being sampled, i.e. density-bounded regions. The thesis is completed with a different application of our \\ha\\ observations: a technique to test the relation between the presence or absence of twofold symmetries in the star formation patterns of grand design spirals, and the strength of any bar which is present. We find that a strong bar inhibits the second degree of symmetry, implying more mixing in the disk. Finally we apply a dynamical model, using numerical simulations, to the spiral galaxy NGC 157, in order to determine its principal resonance. (SECTION: Dissertation Summaries)

  4. The VIMOS Public Extragalactic Redshift Survey (VIPERS) . Luminosity and stellar mass dependence of galaxy clustering at 0.5 < z < 1.1

    NASA Astrophysics Data System (ADS)

    Marulli, F.; Bolzonella, M.; Branchini, E.; Davidzon, I.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Iovino, A.; Moscardini, L.; Pollo, A.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bottini, D.; Cappi, A.; Coupon, J.; Cucciati, O.; De Lucia, G.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Ilbert, O.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; McCracken, H. J.; Paioro, L.; Polletta, M.; Schlagenhaufer, H.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Phleps, S.; Wolk, M.; Zamorani, G.

    2013-09-01

    Aims: We investigate the dependence of galaxy clustering on luminosity and stellar mass in the redshift range 0.5 < z < 1.1, using the first ~ 55 000 redshifts from the VIMOS Public Extragalactic Redshift Survey (VIPERS). Methods: We measured the redshift-space two-point correlation functions (2PCF), ξ(s) and ξ(rp,π) , and the projected correlation function, wp(rp), in samples covering different ranges of B-band absolute magnitudes and stellar masses. We considered both threshold and binned galaxy samples, with median B-band absolute magnitudes - 21.6 ≲ MB - 5log (h) ≲ - 19.5 and median stellar masses 9.8 ≲ log (M⋆ [h-2 M⊙]) ≲ 10.7. We assessed the real-space clustering in the data from the projected correlation function, which we model as a power law in the range 0.2 < rp [h-1 Mpc ] < 20. Finally, we estimated the galaxy bias as a function of luminosity, stellar mass, and redshift, assuming a flat Λ cold dark matter model to derive the dark matter 2PCF. Results: We provide the best-fit parameters of the power-law model assumed for the real-space 2PCF - the correlation length, r0, and the slope, γ - as well as the linear bias parameter, as a function of the B-band absolute magnitude, stellar mass, and redshift. We confirm and provide the tightest constraints on the dependence of clustering on luminosity at 0.5 < z < 1.1. We prove the complexity of comparing the clustering dependence on stellar mass from samples that are originally flux-limited and discuss the possible origin of the observed discrepancies. Overall, our measurements provide stronger constraints on galaxy formation models, which are now required to match, in addition to local observations, the clustering evolution measured by VIPERS galaxies between z = 0.5 and z = 1.1 for a broad range of luminosities and stellar masses. Based on observations collected at the European Southern Observatory, Paranal, Chile, under programmes 182.A-0886 (LP) at the Very Large Telescope, and also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS web site is http://vipers.inaf.it/

  5. Probing black hole accretion in quasar pairs at high redshift

    NASA Astrophysics Data System (ADS)

    Vignali, C.; Piconcelli, E.; Perna, M.; Hennawi, J.; Gilli, R.; Comastri, A.; Zamorani, G.; Dotti, M.; Mathur, S.

    2018-06-01

    Models and observations suggest that luminous quasar activity is triggered by mergers, so it should preferentially occur in the most massive primordial dark matter haloes, where the frequency of mergers is expected to be the highest. Since the importance of galaxy mergers increases with redshift, we identify the high-redshift Universe as the ideal laboratory for studying dual AGN. Here, we present the X-ray properties of two systems of dual quasars at z = 3.0-3.3 selected from the SDSS DR6 at separations of 6-8 arcsec (43-65 kpc) and observed by Chandra for ≈65 ks each. Both members of each pair are detected with good photon statistics to allow us to constrain the column density, spectral slope and intrinsic X-ray luminosity. We also include a recently discovered dual quasar at z = 5 (separation of 21 arcsec, 136 kpc) for which XMM-Newton archival data allow us to detect the two components separately. Using optical spectra we derived bolometric luminosities, BH masses and Eddington ratios that were compared to those of luminous SDSS quasars in the same redshift ranges. We find that the brighter component of both quasar pairs at z ≈ 3.0-3.3 has high luminosities compared to the distribution of SDSS quasars at similar redshift, with J1622A having an order magnitude higher luminosity than the median. This source lies at the luminous end of the z ≈ 3.3 quasar luminosity function. While we cannot conclusively state that the unusually high luminosities of our sources are related to their having a close companion, for J1622A there is only a 3 per cent probability that it is by chance.

  6. The Sloan Digital Sky Survey Reverberation Mapping Project: Composite Lags at z ≤ 1

    NASA Astrophysics Data System (ADS)

    Li, Jennifer; Shen, Yue; Horne, Keith; Brandt, W. N.; Greene, Jenny E.; Grier, C. J.; Ho, Luis C.; Kochanek, Chris; Schneider, Donald P.; Trump, Jonathan R.; Dawson, Kyle S.; Pan, Kaike; Bizyaev, Dmitry; Oravetz, Daniel; Simmons, Audrey; Malanushenko, Elena

    2017-09-01

    We present composite broad-line region (BLR) reverberation mapping lag measurements for Hα, Hβ, He II λ4686, and Mg II for a sample of 144, z ≲ 1 quasars from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. Using only the 32-epoch spectroscopic light curves in the first six-month season of SDSS-RM observations, we compile correlation function measurements for individual objects and then coadd them to allow the measurement of the average lags for our sample at mean redshifts of 0.4 (for Hα) and ˜0.65 (for the other lines). At similar quasar luminosities and redshifts, the sample-averaged lag decreases in the order of Mg II, Hα, Hβ, and He II. This decrease in lags is accompanied by an increase in the mean line width of the four lines, and is roughly consistent with the virialized motion for BLR gas in photoionization equilibrium. These are among the first RM measurements of stratified BLR structure at z > 0.3. Dividing our sample by luminosity, Hα shows clear evidence of increasing lags with luminosity, consistent with the expectation from the measured BLR size-luminosity relation based on Hβ. The other three lines do not show a clear luminosity trend in their average lags due to the limited dynamic range of luminosity probed and the poor average correlation signals in the divided samples, a situation that will be improved with the incorporation of additional photometric and spectroscopic data from SDSS-RM. We discuss the utility and caveats of composite lag measurements for large statistical quasar samples with reverberation mapping data.

  7. EDDINGTON RATIO DISTRIBUTION OF X-RAY-SELECTED BROAD-LINE AGNs AT 1.0 < z < 2.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, Hyewon; Hasinger, Günther; Steinhardt, Charles

    2015-12-20

    We investigate the Eddington ratio distribution of X-ray-selected broad-line active galactic nuclei (AGNs) in the redshift range 1.0 < z < 2.2, where the number density of AGNs peaks. Combining the optical and Subaru/Fiber Multi Object Spectrograph near-infrared spectroscopy, we estimate black hole masses for broad-line AGNs in the Chandra Deep Field South (CDF-S), Extended Chandra Deep Field South (E-CDF-S), and the XMM-Newton Lockman Hole (XMM-LH) surveys. AGNs with similar black hole masses show a broad range of AGN bolometric luminosities, which are calculated from X-ray luminosities, indicating that the accretion rate of black holes is widely distributed. We find a substantial fraction ofmore » massive black holes accreting significantly below the Eddington limit at z ≲ 2, in contrast to what is generally found for luminous AGNs at high redshift. Our analysis of observational selection biases indicates that the “AGN cosmic downsizing” phenomenon can be simply explained by the strong evolution of the comoving number density at the bright end of the AGN luminosity function, together with the corresponding selection effects. However, one might need to consider a correlation between the AGN luminosity and the accretion rate of black holes, in which luminous AGNs have higher Eddington ratios than low-luminosity AGNs, in order to understand the relatively small fraction of low-luminosity AGNs with high accretion rates in this epoch. Therefore, the observed downsizing trend could be interpreted as massive black holes with low accretion rates, which are relatively fainter than less-massive black holes with efficient accretion.« less

  8. Mini Survey of SDSS [OIII] AGN with Swift: Testing the Hypothesis that L(sub [OIII]) Traces AGN Luminosity

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The number of AGN and their luminosity distribution are crucial parameters for our understanding of the AGN phenomenon. Recent work strongly suggests every massive galaxy has a central black hole. However most of these objects either are not radiating or have been very difficult to detect We are now in the era of large surveys, and the luminosity function (LF] of AGN has been estimated in various ways. In the X-ray band. Chandra and XMM surveys have revealed that the LF of hard X-ray selected AGN shows a strong luminosity-dependent evolution with a dramatic break towards low L(sub x) (at all z). This is seen for all types of AGN, but is stronger for the broad-line objects. In sharp contrast, the local LF of optically-selected samples shows no such break and no differences between narrow and broad-line objects. If as been suggested, hard X ray and optical emission line can both can be fair indicators of AGN activity, it is important to first understand how reliable these characteristics are if we hope to understand the apparent discrepancy in the LFs.

  9. Big Data in the SHELA Field: Investigating Galaxy Quenching at High Redshifts

    NASA Astrophysics Data System (ADS)

    Stevans, Matthew L.; Finkelstein, Steven L.; Wold, Isak; Kawinwanichakij, Lalitwadee; Sherman, Sydney; Gebhardt, Karl; Jogee, Shardha; Papovich, Casey J.; Ciardullo, Robin; Gronwall, Caryl; Gawiser, Eric J.; Acquaviva, Viviana; Casey, Caitlin; Florez, Jonathan; HETDEX Team

    2017-06-01

    We present a measurement of the z ~ 4 Lyman break galaxy (LBG) rest-frame UV luminosity function to investigate the onset of quenching in the early universe. The bright-end of the galaxy luminosity function typically shows an exponential decline far steeper than that of the underlying halo mass function. This is typically attributed to negative feedback from past active galactic nuclei (AGN) activity as well as dust attenuation. Constraining the abundance of bright galaxies at early times (z > 3) can provide a key insight into the mechanisms regulating star formation in galaxies. However, existing studies suffer from low number statistics and/or the inability to robustly remove stellar and AGN contaminants. In this study we take advantage of the unprecedentedly large (24 deg^2) Spitzer/HETDEX Exploratory Large Area (SHELA) field and its deep multi-wavelength photometry, which includes DECam ugriz, NEWFIRM K-band, Spitzer/IRAC, Herschel/SPIRE, and X-ray from XMM-Newton and Chandra. With SHELA’s deep imaging over a large area we are uniquely positioned to study statistically significant samples of massive galaxies at high redshifts (z > 3) when the first massive galaxies began quenching. We select our sample using photometric redshifts from the EAZY software package (Brammer et al. 2008) based on the optical and far-infrared imaging. We directly identify and remove stellar contaminants and AGN with IRAC colors and X-ray detections, respectively. By pinning down the exact shape of the bright-end of the z ~ 4 LBG luminosity function, we provide the deepest probe yet into the baryonic physics dominating star formation and quenching in the early universe.

  10. The detectability of brown dwarfs - Predictions and uncertainties

    NASA Technical Reports Server (NTRS)

    Nelson, L. A.; Rappaport, S.; Joss, P. C.

    1993-01-01

    In order to determine the likelihood for the detection of isolated brown dwarfs in ground-based observations as well as in future spaced-based astronomy missions, and in order to evaluate the significance of any detections that might be made, we must first know the expected surface density of brown dwarfs on the celestial sphere as a function of limiting magnitude, wavelength band, and Galactic latitude. It is the purpose of this paper to provide theoretical estimates of this surface density, as well as the range of uncertainty in these estimates resulting from various theoretical uncertainties. We first present theoretical cooling curves for low-mass stars that we have computed with the latest version of our stellar evolution code. We use our evolutionary results to compute theoretical brown-dwarf luminosity functions for a wide range of assumed initial mass functions and stellar birth rate functions. The luminosity functions, in turn, are utilized to compute theoretical surface density functions for brown dwarfs on the celestial sphere. We find, in particular, that for reasonable theoretical assumptions, the currently available upper bounds on the brown-dwarf surface density are consistent with the possibility that brown dwarfs contribute a substantial fraction of the mass of the Galactic disk.

  11. Upgrade of Tile Calorimeter of the ATLAS Detector for the High Luminosity LHC.

    NASA Astrophysics Data System (ADS)

    Valdes Santurio, Eduardo; Tile Calorimeter System, ATLAS

    2017-11-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS covering the central region of the ATLAS experiment. TileCal is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are read out by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The High Luminosity Large Hadron Collider (HL-LHC) will have a peak luminosity of 5 × 1034 cm -2 s -1, five times higher than the design luminosity of the LHC. TileCal will undergo a major replacement of its on- and off-detector electronics for the high luminosity programme of the LHC in 2026. The calorimeter signals will be digitized and sent directly to the off-detector electronics, where the signals are reconstructed and shipped to the first level of trigger at a rate of 40 MHz. This will provide a better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. Field Programmable Gate Arrays (FPGAs) are extensively used for the logic functions of the off- and on-detector electronics. One hybrid demonstrator prototype module with the new calorimeter module electronics, but still compatible with the present system, may be inserted in ATLAS at the end of 2016.

  12. Luminosity and redshift dependence of the covering factor of active galactic nuclei viewed with WISE and Sloan digital sky survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toba, Y.; Matsuhara, H.; Oyabu, S.

    2014-06-10

    In this work, we investigate the dependence of the covering factor (CF) of active galactic nuclei (AGNs) on the mid-infrared (MIR) luminosity and the redshift. We constructed 12 and 22 μm luminosity functions (LFs) at 0.006 ≤z ≤ 0.3 using Wide-field Infrared Survey Explorer (WISE) data. Combining the WISE catalog with Sloan Digital Sky Survey (SDSS) spectroscopic data, we selected 223,982 galaxies at 12 μm and 25,721 galaxies at 22 μm for spectroscopic classification. We then identified 16,355 AGNs at 12 μm and 4683 AGNs at 22 μm by their optical emission lines and cataloged classifications in the SDSS. Followingmore » that, we estimated the CF as the fraction of Type 2 AGN in all AGNs whose MIR emissions are dominated by the active nucleus (not their host galaxies) based on their MIR colors. We found that the CF decreased with increasing MIR luminosity, regardless of the choice of Type 2 AGN classification criteria, and the CF did not change significantly with redshift for z ≤ 0.2. Furthermore, we carried out various tests to determine the influence of selection bias and confirmed that similar dependences exist, even when taking these uncertainties into account. The luminosity dependence of the CF can be explained by the receding torus model, but the 'modified' receding torus model gives a slightly better fit, as suggested by Simpson.« less

  13. The most powerful astrophysical events: Gravitational-wave peak luminosity of binary black holes as predicted by numerical relativity

    NASA Astrophysics Data System (ADS)

    Keitel, David; Forteza, Xisco Jiménez; Husa, Sascha; London, Lionel; Bernuzzi, Sebastiano; Harms, Enno; Nagar, Alessandro; Hannam, Mark; Khan, Sebastian; Pürrer, Michael; Pratten, Geraint; Chaurasia, Vivek

    2017-07-01

    For a brief moment, a binary black hole (BBH) merger can be the most powerful astrophysical event in the visible Universe. Here we present a model fit for this gravitational-wave peak luminosity of nonprecessing quasicircular BBH systems as a function of the masses and spins of the component black holes, based on numerical relativity (NR) simulations and the hierarchical fitting approach introduced by X. Jiménez-Forteza et al. [Phys. Rev. D 95, 064024 (2017)., 10.1103/PhysRevD.95.064024]. This fit improves over previous results in accuracy and parameter-space coverage and can be used to infer posterior distributions for the peak luminosity of future astrophysical signals like GW150914 and GW151226. The model is calibrated to the ℓ≤6 modes of 378 nonprecessing NR simulations up to mass ratios of 18 and dimensionless spin magnitudes up to 0.995, and includes unequal-spin effects. We also constrain the fit to perturbative numerical results for large mass ratios. Studies of key contributions to the uncertainty in NR peak luminosities, such as (i) mode selection, (ii) finite resolution, (iii) finite extraction radius, and (iv) different methods for converting NR waveforms to luminosity, allow us to use NR simulations from four different codes as a homogeneous calibration set. This study of systematic fits to combined NR and large-mass-ratio data, including higher modes, also paves the way for improved inspiral-merger-ringdown waveform models.

  14. A catalogue of faint local radio AGN and the properties of their host galaxies

    NASA Astrophysics Data System (ADS)

    Lofthouse, E. K.; Kaviraj, S.; Smith, D. JB; Hardcastle, M. J.

    2018-05-01

    We present a catalogue of local (z < 0.1) galaxies that contain faint AGN. We select these objects by identifying galaxies that exhibit a significant excess in their radio luminosities, compared to what is expected from the observed levels of star-formation activity in these systems. This is achieved by comparing the optical (spectroscopic) star formation rate (SFR) to the 1.4 GHz luminosity measured from the FIRST survey. The majority of the AGN identified in this study are fainter than those in previous work, such as in the Best and Heckman (2012) catalogue. We show that these faint AGN make a non-negligible contribution to the radio luminosity function at low luminosities (below 1022.5 W Hz-1), and host ˜13 per cent of the local radio luminosity budget. Their host galaxies are predominantly high stellar-mass systems (with a median stellar mass of 1011M⊙), are found across a range of environments (but typically in denser environments than star-forming galaxies) and have early-type morphologies. This study demonstrates a general technique to identify AGN in galaxy populations where reliable optical SFRs can be extracted using spectro-photometry and where radio data are also available so that a radio excess can be measured. Our results also demonstrate that it is unsafe to infer SFRs from radio emission alone, even if bright AGN have been excluded from a sample, since there is a significant population of faint radio AGN which may contaminate the radio-derived SFRs.

  15. THE NATURE AND NURTURE OF BARS AND DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendez-Abreu, J.; Aguerri, J. A. L.; Zarattini, S.

    The effects that interactions produce on galaxy disks and how they modify the subsequent formation of bars need to be distinguished to fully understand the relationship between bars and environment. To this aim we derive the bar fraction in three different environments ranging from the field to Virgo and Coma Clusters, covering an unprecedentedly large range of galaxy luminosities (or, equivalently, stellar masses). We confirm that the fraction of barred galaxies strongly depends on galaxy luminosity. We also show that the difference between the bar fraction distributions as a function of galaxy luminosity (and mass) in the field and Comamore » Cluster is statistically significant, with Virgo being an intermediate case. The fraction of barred galaxies shows a maximum of about 50% at M{sub r} {approx_equal} - 20.5 in clusters, whereas the peak is shifted to M{sub r} {approx_equal} - 19 in the field. We interpret this result as a variation of the effect of environment on bar formation depending on galaxy luminosity. We speculate that brighter disk galaxies are stable enough against interactions to keep their cold structure, thus, the interactions are able to trigger bar formation. For fainter galaxies, the interactions become strong enough to heat up the disks inhibiting bar formation and even destroying the disks. Finally, we point out that the controversy regarding whether the bar fraction depends on environment could be resolved by taking into account the different luminosity ranges probed by the galaxy samples studied so far.« less

  16. The correlation function for density perturbations in an expanding universe. II - Nonlinear theory

    NASA Technical Reports Server (NTRS)

    Mcclelland, J.; Silk, J.

    1977-01-01

    A formalism is developed to find the two-point and higher-order correlation functions for a given distribution of sizes and shapes of perturbations which are randomly placed in three-dimensional space. The perturbations are described by two parameters such as central density and size, and the two-point correlation function is explicitly related to the luminosity function of groups and clusters of galaxies

  17. A Magnified View of the Epoch of Reionization with the Hubble Frontier Fields

    NASA Astrophysics Data System (ADS)

    Livermore, Rachael C.; Finkelstein, Steven L.; Lotz, Jennifer M.

    2017-06-01

    The Hubble Frontier Fields program has obtained deep optical and near-infrared Hubble Space Telescope imaging of six galaxy clusters and associated parallel fields. The depth of the imaging (m_AB ~ 29) means we can identify faint galaxies at z >6, and those in the cluster fields also benefit from magnification due to strong gravitational lensing. Using wavelet decomposition to subtract the foreground cluster galaxies, we can reach intrinsic absolute magnitudes of M_UV ~ -12.5 at z ~ 6. Here, we present the UV luminosity functions at 6

  18. Supermassive black holes and their feedback effects in the IllustrisTNG simulation

    NASA Astrophysics Data System (ADS)

    Weinberger, Rainer; Springel, Volker; Pakmor, Rüdiger; Nelson, Dylan; Genel, Shy; Pillepich, Annalisa; Vogelsberger, Mark; Marinacci, Federico; Naiman, Jill; Torrey, Paul; Hernquist, Lars

    2018-06-01

    We study the population of supermassive black holes (SMBHs) and their effects on massive central galaxies in the IllustrisTNG cosmological hydrodynamical simulations of galaxy formation. The employed model for SMBH growth and feedback assumes a two-mode scenario in which the feedback from active galactic nuclei occurs through a kinetic, comparatively efficient mode at low accretion rates relative to the Eddington limit, and in the form of a thermal, less efficient mode at high accretion rates. We show that the quenching of massive central galaxies happens coincidently with kinetic-mode feedback, consistent with the notion that active supermassive black cause the low specific star formation rates observed in massive galaxies. However, major galaxy mergers are not responsible for initiating most of the quenching events in our model. Up to black hole masses of about 108.5 M⊙, the dominant growth channel for SMBHs is in the thermal mode. Higher mass black holes stay mainly in the kinetic mode and gas accretion is self-regulated via their feedback, which causes their Eddington ratios to drop, with SMBH mergers becoming the main channel for residual mass growth. As a consequence, the quasar luminosity function is dominated by rapidly accreting, moderately massive black holes in the thermal mode. We show that the associated growth history of SMBHs produces a low-redshift quasar luminosity function and a redshift zero black hole mass - stellar bulge mass relation in good agreement with observations, whereas the simulation tends to over-predict the high-redshift quasar luminosity function.

  19. The role of host galaxy for the environmental dependence of active nuclei in local galaxies

    NASA Astrophysics Data System (ADS)

    Davies, Richard I.; Hicks, E. K. S.; Erwin, P.; Burtscher, L.; Contursi, A.; Genzel, R.; Janssen, A.; Koss, M.; Lin, M.-Y.; Lutz, D.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Ricci, C.; Riffel, R.; Riffel, R. A.; Rosario, D.; Schartmann, M.; Schnorr-Müller, A.; Shimizu, T.; Sternberg, A.; Sturm, E.; Storchi-Bergmann, T.; Tacconi, L.; Veilleux, S.

    2017-04-01

    We discuss the environment of local hard X-ray selected active galaxies, with reference to two independent group catalogues. We find that the fraction of these AGN in S0 host galaxies decreases strongly as a function of galaxy group size (halo mass) - which contrasts with the increasing fraction of galaxies of S0 type in denser environments. However, there is no evidence for an environmental dependence of AGN in spiral galaxies. Because most AGN are found in spiral galaxies, this dilutes the signature of environmental dependence for the population as a whole. We argue that the differing results for AGN in disc-dominated and bulge-dominated galaxies are related to the source of the gas fuelling the AGN, and so may also impact the luminosity function, duty cycle and obscuration. We find that there is a significant difference in the luminosity function for AGN in spiral and S0 galaxies, and tentative evidence for some difference in the fraction of obscured AGN.

  20. Constraints on the age and evolution of the Galaxy from the white dwarf luminosity function

    NASA Technical Reports Server (NTRS)

    Wood, M. A.

    1992-01-01

    The white dwarf disk luminosity function is explored using observational results of Liebert et al. (1988, 1989) as a template for comparison, and the cooling curves of Wood (1990, 1991) as the input basis functions for the integration. The star formation rate over the history of the Galaxy is found to be constant to within an order of magnitude, and the disk age lies in the range 6-13.5 Gyr, where roughly 40 percent of the uncertainty is due to the observational uncertainties. Using the best current estimates as inputs to the integration, the disk ages range from 7.5 to 11 Gyr, i.e., they are substantially younger than most estimates for the halo globular clusters but in reasonable agreement with those for the disk globular clusters and open clusters. The ages of these differing populations, taken together, are consistent with the pressure-supported collapse models of early spiral Galactic evolution.

  1. Kinematical Focus on NGC 7086

    NASA Astrophysics Data System (ADS)

    Tadross, A. L.

    2005-12-01

    The main physical parameters; the cluster center, distance, radius, age, reddening, and visual absorbtion; have been re-estimated and improved for the open cluster NGC 7086. The metal abundance, galactic distances, membership richness, luminosity function, mass function, and the total mass of NGC 7086 have been examined for the first time here using Monet et al. (2003) catalog.

  2. A Deep NuSTAR Survey of M31: Compact object types in our Nearest Neighbor Galaxy

    NASA Astrophysics Data System (ADS)

    Hornschemeier, Ann E.; Wik, Daniel R.; Yukita, Mihoko; Ptak, Andrew; Venters, Tonia M.; Lehmer, Bret; Maccarone, Thomas J.; Zezas, Andreas; Harrison, Fiona; Stern, Daniel; Williams, Benjamin F.; Vulic, Neven

    2017-08-01

    X-ray binaries (XRBs) trace young and old stellar populations in galaxies, and thus star formation rate and star formation history/stellar mass. X-ray emission from XRBs may be responsible for significant amounts of heating of the early Intergalactic Medium at Cosmic Dawn and may also play a significant role in reionization. Until recently, the E>10 keV (hard X-ray) emission from these populations could only be studied for XRBs in our own galaxy, where it is often difficult to measure accurate distances and thus luminosities. We have observed M31 in 4 NuSTAR fields for a total exposure of 1.4 Ms, covering the young stellar population in a swath of the disk (within the footprint of the Panchromatic Hubble Andromeda Treasury (PHAT) Survey) and older populations in the bulge. We detected more than 100 sources in the 4-25 keV band, where hard band (12-25 keV) emission has allowed us to discriminate between black holes and neutron stars in different accretion states. The luminosity function of the hard band detected sources are compared to Swift/BAT and INTEGRAL-derived luminosity functions of the Milky Way population, which reveals an excess of luminous sources in M31 when correcting for star formation rate and stellar mass.

  3. Galaxy Evolution in the Radio Band: The Role of Star-forming Galaxies and Active Galactic Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mancuso, C.; Prandoni, I.; Lapi, A.

    We investigate the astrophysics of radio-emitting star-forming galaxies and active galactic nuclei (AGNs) and elucidate their statistical properties in the radio band, including luminosity functions, redshift distributions, and number counts at sub-mJy flux levels, which will be crucially probed by next-generation radio continuum surveys. Specifically, we exploit the model-independent approach by Mancuso et al. to compute the star formation rate functions, the AGN duty cycles, and the conditional probability of a star-forming galaxy to host an AGN with given bolometric luminosity. Coupling these ingredients with the radio emission properties associated with star formation and nuclear activity, we compute relevant statisticsmore » at different radio frequencies and disentangle the relative contribution of star-forming galaxies and AGNs in different radio luminosity, radio flux, and redshift ranges. Finally, we highlight that radio-emitting star-forming galaxies and AGNs are expected to host supermassive black holes accreting with different Eddington ratio distributions and to occupy different loci in the galaxy main-sequence diagrams. These specific predictions are consistent with current data sets but need to be tested with larger statistics via future radio data with multiband coverage on wide areas, as will become routinely achievable with the advent of the Square Kilometre Array and its precursors.« less

  4. Local Group ultra-faint dwarf galaxies in the reionization era

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Boylan-Kolchin, Michael

    2017-07-01

    Motivated by the stellar fossil record of Local Group (LG) dwarf galaxies, we show that the star-forming ancestors of the faintest ultra-faint dwarf galaxies (UFDs; MV ˜ -2 or M⋆ ˜ 102 at z = 0) had ultraviolet (UV) luminosities of MUV ˜ -3 to -6 during reionization (z ˜ 6-10). The existence of such faint galaxies has substantial implications for early epochs of galaxy formation and reionization. If the faint-end slopes of the UV luminosity functions (UVLFs) during reionization are steep (α ≲ -2) to MUV ˜ -3, then (I) the ancestors of UFDs produced >50 per cent of UV flux from galaxies; (II) galaxies can maintain reionization with escape fractions that are more than two times lower than currently adopted values; (III) direct Hubble Space Telescope and James Webb Space Telescope observations may detect only ˜10-50 per cent of the UV light from galaxies; and (IV) the cosmic star formation history increases by ≳ 4-6 at z ≳ 6. Significant flux from UFDs, and resultant tensions with LG dwarf galaxy counts, is reduced if the high-redshift UVLF turns over. Independent of the UVLF shape, the existence of a large population of UFDs requires a non-zero luminosity function to MUV ˜ -3 during reionization.

  5. Simulations of the Formation and Evolution of X-ray Clusters

    NASA Astrophysics Data System (ADS)

    Bryan, G. L.; Klypin, A.; Norman, M. L.

    1994-05-01

    We describe results from a set of Omega = 1 Cold plus Hot Dark Matter (CHDM) and Cold Dark Matter (CDM) simulations. We examine the formation and evolution of X-ray clusters in a cosmological setting with sufficient numbers to perform statistical analysis. We find that CDM, normalized to COBE, seems to produce too many large clusters, both in terms of the luminosity (dn/dL) and temperature (dn/dT) functions. The CHDM simulation produces fewer clusters and the temperature distribution (our numerically most secure result) matches observations where they overlap. The computed cluster luminosity function drops below observations, but we are almost surely underestimating the X-ray luminosity. Because of the lower fluctuations in CHDM, there are only a small number of bright clusters in our simulation volume; however we can use the simulated clusters to fix the relation between temperature and velocity dispersion, allowing us to use collisionless N-body codes to probe larger length scales with correspondingly brighter clusters. The hydrodynamic simulations have been performed with a hybrid particle-mesh scheme for the dark matter and a high resolution grid-based piecewise parabolic method for the adiabatic gas dynamics. This combination has been implemented for massively parallel computers, allowing us to achive grids as large as 512(3) .

  6. Supernova remnants in M33: X-ray properties as observed by XMM-Newton

    NASA Astrophysics Data System (ADS)

    Garofali, Kristen; Williams, Benjamin F.; Plucinsky, Paul P.; Gaetz, Terrance J.; Wold, Brian; Haberl, Frank; Long, Knox S.; Blair, William P.; Pannuti, Thomas G.; Winkler, P. Frank; Gross, Jacob

    2017-11-01

    We have carried out a study of the X-ray properties of the supernova remnant (SNR) population in M33 with XMM-Newton, comprising deep observations of eight fields in M33 covering all of the area within the D25 contours, and with a typical luminosity of 7.1 × 1034 erg s-1 (0.2-2.0 keV). Here, we report our work to characterize the X-ray properties of the previously identified SNRs in M33, as well as our search for new X-ray detected SNRs. With our deep observations and large field of view we have detected 105 SNRs at the 3σ level, of which 54 SNRs are newly detected in X-rays, and three are newly discovered SNRs. Combining XMM-Newton data with deep Chandra survey data allows detailed spectral fitting of 15 SNRs, for which we have measured temperatures, ionization time-scales and individual abundances. This large sample of SNRs allows us to construct an X-ray luminosity function, and compare its shape to luminosity functions from host galaxies of differing metallicities and star formation rates to look for environmental effects on SNR properties. We conclude that while metallicity may play a role in SNR population characteristics, differing star formation histories on short time-scales, and small-scale environmental effects appear to cause more significant differences between X-ray luminosity distributions. In addition, we analyse the X-ray detectability of SNRs, and find that in M33 SNRs with higher [S II]/H α ratios, as well as those with smaller galactocentric distances, are more detectable in X-rays.

  7. Bright end of the luminosity function of high-mass X-ray binaries: contributions of hard, soft and supersoft sources

    NASA Astrophysics Data System (ADS)

    Sazonov, S.; Khabibullin, I.

    2017-04-01

    Using a spectral analysis of bright Chandra X-ray sources located in 27 nearby galaxies and maps of star-formation rate (SFR) and interstellar medium surface densities for these galaxies, we constructed the intrinsic X-ray luminosity function (XLF) of luminous high-mass X-ray binaries (HMXBs), taking into account absorption effects and the diversity of HMXB spectra. The XLF per unit SFR can be described by a power-law dN/dlog LX,unabs ≈ 2.0(LX,unabs/1039 erg s-1)-0.6 (M⊙ yr-1)-1 from LX,unabs = 1038 to 1040.5 erg s-1, where LX,unabs is the unabsorbed luminosity at 0.25-8 keV. The intrinsic number of luminous HMXBs per unit SFR is a factor of ˜2.3 larger than the observed number reported before. The intrinsic XLF is composed of hard, soft and supersoft sources (defined here as those with the 0.25-2 keV to 0.25-8 keV flux ratio of <0.6, 0.6-0.95 and >0.95, respectively) in ˜ 2:1:1 proportion. We also constructed the intrinsic HMXB XLF in the soft X-ray band (0.25-2 keV). Here, the numbers of hard, soft and supersoft sources prove to be nearly equal. The cumulative present-day 0.25-2 keV emissivity of HMXBs with luminosities between 1038 and 1040.5 erg s-1 is ˜5 × 1039 erg s-1(M⊙ yr-1)-1, which may be relevant for studying the X-ray preheating of the early Universe.

  8. Reaching record-low β* at the CERN Large Hadron Collider using a novel scheme of collimator settings and optics

    NASA Astrophysics Data System (ADS)

    Bruce, R.; Bracco, C.; De Maria, R.; Giovannozzi, M.; Mereghetti, A.; Mirarchi, D.; Redaelli, S.; Quaranta, E.; Salvachua, B.

    2017-03-01

    The Large Hadron Collider (LHC) at CERN is built to collide intense proton beams with an unprecedented energy of 7 TeV. The design stored energy per beam of 362 MJ makes the LHC beams highly destructive, so that any beam losses risk to cause quenches of superconducting magnets or damage to accelerator components. Collimators are installed to protect the machine and they define a minimum normalized aperture, below which no other element is allowed. This imposes a limit on the achievable luminosity, since when squeezing β* (the β-function at the collision point) to smaller values for increased luminosity, the β-function in the final focusing system increases. This leads to a smaller normalized aperture that risks to go below the allowed collimation aperture. In the first run of the LHC, this was the main limitation on β*, which was constrained to values above the design specification. In this article, we show through theoretical and experimental studies how tighter collimator openings and a new optics with specific phase-advance constraints allows a β* as small as 40 cm, a factor 2 smaller than β*=80 cm used in 2015 and significantly below the design value β*=55 cm, in spite of a lower beam energy. The proposed configuration with β*=40 cm has been successfully put into operation and has been used throughout 2016 as the LHC baseline. The decrease in β* compared to 2015 has been an essential contribution to reaching and surpassing, in 2016, the LHC design luminosity for the first time, and to accumulating a record-high integrated luminosity of around 40 fb-1 in one year, in spite of using less bunches than in the design.

  9. Galaxy–Galaxy Weak-lensing Measurements from SDSS. I. Image Processing and Lensing Signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Wentao; Yang, Xiaohu; Zhang, Jun

    We present our image processing pipeline that corrects the systematics introduced by the point-spread function (PSF). Using this pipeline, we processed Sloan Digital Sky Survey (SDSS) DR7 imaging data in r band and generated a galaxy catalog containing the shape information. Based on our shape measurements of the galaxy images from SDSS DR7, we extract the galaxy–galaxy (GG) lensing signals around foreground spectroscopic galaxies binned in different luminosities and stellar masses. We estimated the systematics, e.g., selection bias, PSF reconstruction bias, PSF dilution bias, shear responsivity bias, and noise rectification bias, which in total is between −9.1% and 20.8% atmore » 2 σ levels. The overall GG lensing signals we measured are in good agreement with Mandelbaum et al. The reduced χ {sup 2} between the two measurements in different luminosity bins are from 0.43 to 0.83. Larger reduced χ {sup 2} from 0.60 to 1.87 are seen for different stellar mass bins, which is mainly caused by the different stellar mass estimator. The results in this paper with higher signal-to-noise ratio are due to the larger survey area than SDSS DR4, confirming that more luminous/massive galaxies bear stronger GG lensing signals. We divide the foreground galaxies into red/blue and star-forming/quenched subsamples and measure their GG lensing signals. We find that, at a specific stellar mass/luminosity, the red/quenched galaxies have stronger GG lensing signals than their counterparts, especially at large radii. These GG lensing signals can be used to probe the galaxy–halo mass relations and their environmental dependences in the halo occupation or conditional luminosity function framework.« less

  10. Cosmological evolution of supermassive black holes in the centres of galaxies

    NASA Astrophysics Data System (ADS)

    Kapinska, Anna D.

    2012-06-01

    Radio galaxies and quasars are among the largest and most powerful single objects known and are believed to have had a significant impact on the evolving Universe and its large scale structure. Their jets inject a significant amount of energy into the surrounding medium, hence they can provide useful information in the study of the density and evolution of the intergalactic and intracluster medium. The jet activity is also believed to regulate the growth of massive galaxies via the AGN feedback. In this thesis I explore the intrinsic and extrinsic physical properties of the population of Fanaroff-Riley II (FR II) objects, i.e. their kinetic luminosities, lifetimes, and central densities of their environments. In particular, the radio and kinetic luminosity functions of these powerful radio sources are investigated using the complete, flux limited radio catalogues of 3CRR and BRL. I construct multidimensional Monte Carlo simulations using semi-analytical models of FR II source time evolution to create artificial samples of radio galaxies. Unlike previous studies, I compare radio luminosity functions found with both the observed and simulated data to explore the best-fitting fundamental source parameters. The Monte Carlo method presented here allows one to: (i) set better limits on the predicted fundamental parameters of which confidence intervals estimated over broad ranges are presented, and (ii) generate the most plausible underlying parent populations of these radio sources. Moreover, I allow the source physical properties to co-evolve with redshift, and I find that all the investigated parameters most likely undergo cosmological evolution; however these parameters are strongly degenerate, and independent constraints are necessary to draw more precise conclusions. Furthermore, since it has been suggested that low luminosity FR IIs may be distinct from their powerful equivalents, I attempt to investigate fundamental properties of a sample of low redshift, low radio luminosity density radio galaxies. Based on SDSS-FIRST-NVSS radio sample I construct a low frequency (325 MHz) sample of radio galaxies and attempt to explore the fundamental properties of these low luminosity radio sources. The results are discussed through comparison with the results from the powerful radio sources of the 3CRR and BRL samples. Finally, I investigate the total power injected by populations of these powerful radio sources at various cosmological epochs and discuss the significance of the impact of these sources on the evolving Universe. Remarkably, sets of two degenerate fundamental parameters, the kinetic luminosity and maximum lifetimes of radio sources, despite the degeneracy provide particularly robust estimates of the total power produced by FR IIs during their lifetimes. This can be also used for robust estimations of the quenching of the cooling flows in cluster of galaxies.

  11. The formation of bulges and black holes: lessons from a census of active galaxies in the SDSS.

    PubMed

    Kauffmann, Guinevere; Heckman, Timothy M

    2005-03-15

    We examine the relationship between galaxies, supermassive black holes and AGN using a sample of 23,000 narrow-emission-line ('type 2') active galactic nuclei (AGN) drawn from a sample of 123,000 galaxies from the Sloan Digital Sky Survey. We have studied how AGN host properties compare with those of normal galaxies and how they depend on the luminosity of the active nucleus. We find that AGN reside in massive galaxies and have distributions of sizes and concentrations that are similar to those of the early-type galaxies in our sample. The host galaxies of low-luminosity AGN have stellar populations similar to normal early types. The hosts of high- luminosity AGN have much younger mean stellar ages, and a significant fraction have experienced recent starbursts. High-luminosity AGN are also found in lower-density environments. We then use the stellar velocity dispersions of the AGN hosts to estimate black hole masses and their [OIII]lambda5007 emission-line luminosities to estimate black hole accretion rates. We find that the volume averaged ratio of star formation to black hole accretion is approximately 1000 for the bulge-dominated galaxies in our sample. This is remarkably similar to the observed ratio of stellar mass to black hole mass in nearby bulges. Most of the present-day black hole growth is occurring in black holes with masses less than 3 x 10(7)M(3). Our estimated accretion rates imply that low-mass black holes are growing on a time-scale that is comparable with the age of the Universe. Around 50% this growth takes place in AGN that are radiating within a factor of five of the Eddington luminosity. Such systems are rare, making up only 0.2% of the low-mass black hole population at the present day. The remaining growth occurs in lower luminosity AGN. The growth time-scale increases by more than an order of magnitude for the most massive black holes in our sample. We conclude that the evolution of the AGN luminosity function documented in recent optical and X-ray surveys is driven by a decrease in the characteristic mass scale of actively accreting black holes.

  12. THE EVOLUTION OF POST-STARBURST GALAXIES FROM z  ∼ 1 TO THE PRESENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pattarakijwanich, Petchara; Strauss, Michael A.; Ho, Shirley

    Post-starburst galaxies are in the transitional stage between blue, star-forming galaxies and red, quiescent galaxies and therefore hold important clues for our understanding of galaxy evolution. In this paper, we systematically searched for and identified a large sample of post-starburst galaxies from the spectroscopic data set of the Sloan Digital Sky Survey (SDSS) Data Release 9. In total, we found more than 6000 objects with redshifts between z  ∼ 0.05 and z  ∼ 1.3, making this the largest sample of post-starburst galaxies in the literature. We calculated the luminosity function of the post-starburst galaxies using two uniformly selected subsamples: the SDSS mainmore » galaxy sample and the Baryon Oscillation Spectroscopic Survey CMASS sample. The luminosity functions are reasonably fit by half-Gaussian functions. The peak magnitudes shift as a function of redshift from M  ∼ −23.5 at z  ∼ 0.8 to M  ∼ −20.3 at z  ∼ 0.1. This is consistent with the downsizing trend, whereby more massive galaxies form earlier than low-mass galaxies. We compared the mass of the post-starburst stellar population found in our sample to the decline of the global star formation rate and found that only a small amount (∼1%) of all star formation quenching in the redshift range z  = 0.2–0.7 results in post-starburst galaxies in the luminosity range our sample is sensitive to. Therefore, luminous post-starburst galaxies are not the place where most of the decline in the star formation rate of the universe is happening.« less

  13. A Globular Cluster Luminosity Function Distance to NGC 4993 Hosting a Binary Neutron Star Merger GW170817/GRB 170817A

    NASA Astrophysics Data System (ADS)

    Lee, Myung Gyoon; Kang, Jisu; Im, Myungshin

    2018-05-01

    NGC 4993 hosts a binary neutron star merger, GW170817/GRB 170817A, emitting gravitational waves and electromagnetic waves. The distance to this galaxy is not well established. We select the globular cluster candidates from the Hubble Space Telescope (HST)/ACS F606W images of NGC 4993 in the archive, using the structural parameters of the detected sources. The radial number density distribution of these candidates shows a significant central concentration around the galaxy center at the galactocentric distance r < 50″, showing that they are mostly the members of NGC 4993. Also, the luminosity function of these candidates is fit well by a Gaussian function. Therefore, the selected candidates at r < 50″ are mostly considered to be globular clusters in NGC 4993. We derive an extinction-corrected turnover Vega magnitude in the luminosity function of the globular clusters at 20″ < r < 50″, F606W (max)0 = 25.36 ± 0.08 (V 0 = 25.52 ± 0.11) mag. Adopting the calibration of the turnover magnitudes of the globular clusters, M V (max) = ‑7.58 ± 0.11, we derive a distance to NGC 4993, d = 41.65 ± 3.00 Mpc ({(m-M)}0 = 33.10+/- 0.16). The systematic error of this method can be as large as ±0.3 mag. This value is consistent with the previous distance estimates based on the fundamental plane relation and the gravitational wave method in the literature. The distance in this study can be used to constrain the values of the parameters including the inclination angle of the binary system in the models of gravitational wave analysis.

  14. DA white dwarfs from the LSS-GAC survey DR1: the preliminary luminosity and mass functions and formation rate

    NASA Astrophysics Data System (ADS)

    Rebassa-Mansergas, A.; Liu, X.-W.; Cojocaru, R.; Yuan, H.-B.; Torres, S.; García-Berro, E.; Xiang, M.-X.; Huang, Y.; Koester, D.; Hou, Y.; Li, G.; Zhang, Y.

    2015-06-01

    Modern large-scale surveys have allowed the identification of large numbers of white dwarfs. However, these surveys are subject to complicated target selection algorithms, which make it almost impossible to quantify to what extent the observational biases affect the observed populations. The LAMOST (Large Sky Area Multi-Object Fiber Spectroscopic Telescope) Spectroscopic Survey of the Galactic anticentre (LSS-GAC) follows a well-defined set of criteria for selecting targets for observations. This advantage over previous surveys has been fully exploited here to identify a small yet well-characterized magnitude-limited sample of hydrogen-rich (DA) white dwarfs. We derive preliminary LSS-GAC DA white dwarf luminosity and mass functions. The space density and average formation rate of DA white dwarfs we derive are 0.83 ± 0.16 × 10-3 pc-3 and 5.42 ± 0.08 × 10-13 pc-3 yr-1, respectively. Additionally, using an existing Monte Carlo population synthesis code we simulate the population of single DA white dwarfs in the Galactic anticentre, under various assumptions. The synthetic populations are passed through the LSS-GAC selection criteria, taking into account all possible observational biases. This allows us to perform a meaningful comparison of the observed and simulated distributions. We find that the LSS-GAC set of criteria is highly efficient in selecting white dwarfs for spectroscopic observations (80-85 per cent) and that, overall, our simulations reproduce well the observed luminosity function. However, they fail at reproducing an excess of massive white dwarfs present in the observed mass function. A plausible explanation for this is that a sizable fraction of massive white dwarfs in the Galaxy are the product of white dwarf-white dwarf mergers.

  15. Survey parameters for detecting 21cm - Lyα emitter cross correlations with the Square Kilometre Array

    NASA Astrophysics Data System (ADS)

    Hutter, Anne; Trott, Cathryn M.; Dayal, Pratika

    2018-06-01

    Detections of the cross correlation signal between the 21cm signal during reionization and high-redshift Lyman Alpha emitters (LAEs) are subject to observational uncertainties which mainly include systematics associated with radio interferometers and LAE selection. These uncertainties can be reduced by increasing the survey volume and/or the survey luminosity limit, i.e. the faintest detectable Lyman Alpha (Lyα) luminosity. We use our model of high-redshift LAEs and the underlying reionization state to compute the uncertainties of the 21cm-LAE cross correlation function at z ≃ 6.6 for observations with SKA1-Low and LAE surveys with Δz = 0.1 for three different values of the average IGM ionization state (⟨χHI⟩≃ 0.1, 0.25, 0.5). At z ≃ 6.6, we find SILVERRUSH type surveys, with a field of view of 21 deg2 and survey luminosity limits of Lα ≥ 7.9 × 1042erg s-1, to be optimal to distinguish between an inter-galactic medium (IGM) that is 50%, 25% and 10% neutral, while surveys with smaller fields of view and lower survey luminosity limits, such as the 5 and 10 deg2 surveys with WFIRST, can only discriminate between a 50% and 10% neutral IGM.

  16. HerMES: dust attenuation and star formation activity in ultraviolet-selected samples from z˜ 4 to ˜ 1.5

    NASA Astrophysics Data System (ADS)

    Heinis, S.; Buat, V.; Béthermin, M.; Bock, J.; Burgarella, D.; Conley, A.; Cooray, A.; Farrah, D.; Ilbert, O.; Magdis, G.; Marsden, G.; Oliver, S. J.; Rigopoulou, D.; Roehlly, Y.; Schulz, B.; Symeonidis, M.; Viero, M.; Xu, C. K.; Zemcov, M.

    2014-01-01

    We study the link between observed ultraviolet (UV) luminosity, stellar mass and dust attenuation within rest-frame UV-selected samples at z ˜ 4, ˜ 3 and ˜1.5. We measure by stacking at 250, 350 and 500 μm in the Herschel/Spectral and Photometric Imaging Receiver images from the Herschel Multi-Tiered Extragalactic Survey (HerMES) program the average infrared luminosity as a function of stellar mass and UV luminosity. We find that dust attenuation is mostly correlated with stellar mass. There is also a secondary dependence with UV luminosity: at a given UV luminosity, dust attenuation increases with stellar mass, while at a given stellar mass it decreases with UV luminosity. We provide new empirical recipes to correct for dust attenuation given the observed UV luminosity and the stellar mass. Our results also enable us to put new constraints on the average relation between star formation rate (SFR) and stellar mass at z ˜ 4, ˜3 and ˜1.5. The SFR-stellar mass relations are well described by power laws (SFR∝ M_*^{0.7}), with the amplitudes being similar at z ˜ 4 and ˜3, and decreasing by a factor of 4 at z ˜ 1.5 at a given stellar mass. We further investigate the evolution with redshift of the specific SFR. Our results are in the upper range of previous measurements, in particular at z ˜ 3, and are consistent with a plateau at 3 < z < 4. Current model predictions (either analytic, semi-analytic or hydrodynamic) are inconsistent with these values, as they yield lower predictions than the observations in the redshift range we explore. We use these results to discuss the star formation histories of galaxies in the framework of the main sequence of star-forming galaxies. Our results suggest that galaxies at high redshift (2.5 < z < 4) stay around 1 Gyr on the main sequence. With decreasing redshift, this time increases such that z = 1 main-sequence galaxies with 108

  17. X-ray emission from a complete sample of Abell clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Briel, Ulrich G.; Henry, J. Patrick

    1993-11-01

    The ROSAT All-Sky Survey (RASS) is used to investigate the X-ray properties of a complete sample of Abell clusters with measured redshifts and accurate positions. The sample comprises the 145 clusters within a 561 square degree region at high galactic latitude. The mean redshift is 0.17. This sample is especially well suited to be studied within the RASS since the mean exposure time is higher than average and the mean galactic column density is very low. These together produce a flux limit of about 4.2 x 10-13 erg/sq cm/s in the 0.5 to 2.5 keV energy band. Sixty-six (46%) individual clusters are detected at a significance level higher than 99.7% of which 7 could be chance coincidences of background or foreground sources. At redshifts greater than 0.3 six clusters out of seven (86%) are detected at the same significance level. The detected objects show a clear X-ray luminosity -- galaxy count relation with a dispersion consistent with other external estimates of the error in the counts. By analyzing the excess of positive fluctuations of the X-ray flux at the cluster positions, compared with the fluctuations of randomly drawn background fields, it is possible to extend these results below the nominal flux limit. We find 80% of richness R greater than or = 0 and 86% of R greater than or = 1 clusters are X-ray emitters with fluxes above 1 x 10-13 erg/sq cm/s. Nearly 90% of the clusters meeting the requirements to be in Abell's statistical sample emit above the same level. We therefore conclude that almost all Abell clusters are real clusters and the Abell catalog is not strongly contaminated by projection effects. We use the Kaplan-Meier product limit estimator to calculate the cumulative X-ray luminosity function. We show that the shape of the luminosity functions are similiar for different richness classes, but the characteristic luminosities of richness 2 clusters are about twice those of richness 1 clusters which are in turn about twice those of richness 0 clusters. This result is another manifestation of the luminosity -- richness elation for Abell clusters.

  18. The WISSH quasars project. I. Powerful ionised outflows in hyper-luminous quasars

    NASA Astrophysics Data System (ADS)

    Bischetti, M.; Piconcelli, E.; Vietri, G.; Bongiorno, A.; Fiore, F.; Sani, E.; Marconi, A.; Duras, F.; Zappacosta, L.; Brusa, M.; Comastri, A.; Cresci, G.; Feruglio, C.; Giallongo, E.; La Franca, F.; Mainieri, V.; Mannucci, F.; Martocchia, S.; Ricci, F.; Schneider, R.; Testa, V.; Vignali, C.

    2017-02-01

    Models and observations suggest that both the power and effects of AGN feedback should be maximised in hyper-luminous (LBol > 1047 erg s-1) quasars, I.e. objects at the brightest end of the AGN luminosity function. In this paper, we present the first results of a multiwavelength observing programme, focusing on a sample of WISE/SDSS selected hyper-luminous (WISSH) broad-line quasars at z ≈ 1.5-5. The WISSH quasars project has been designed to reveal the most energetic AGN-driven outflows, estimate their occurrence at the peak of quasar activity, and extend the study of correlations between outflows and nuclear properties up to poorly investigated, extreme AGN luminosities, I.e. LBol 1047 - 1048 erg s-1. We present near-infrared, long-slit LBT/LUCI1 spectroscopy of five WISSH quasars at z ≈ 2.3 - 3.5, showing prominent [OIII] emission lines with broad (FWHM 1200-2200 km s-1) and skewed profiles. The luminosities of these broad [OIII] wings are the highest measured so far, with L[OIII]broad ≳ 5 × 1044 erg s-1, and reveal the presence of powerful ionised outflows with associated mass outflow rates Ṁ ≳ 1700M⊙ yr-1 and kinetic powers Ėkin ≳ 1045 erg s-1. Although these estimates are affected by large uncertainties because of the use of [OIII] as a tracer of ionised outflows and the very basic outflow model adopted here, these results suggest that in our hyper-luminous targets the AGN is highly efficient at pushing large amounts of ionised gas outwards. Furthermore, the mechanical outflow luminosities measured for WISSH quasars correspond to higher percentages ( 1-3%) of LBol than those derived for AGN with lower LBol. Our targets host very massive (MBH ≳ 2 × 109M⊙) black holes that are still accreting at a high rate (I.e. a factor of 0.4-3 of the Eddington limit). These findings clearly demonstrate that WISSH quasars offer the opportunity to probe the extreme end of both luminosity and supermassive black holes (SMBH) mass functions and revealing powerful ionised outflows that are able to affect the evolution of their host galaxies.

  19. X-ray emission at low-mass end of the MS - Results from an extensive Einstein Observatory survey

    NASA Technical Reports Server (NTRS)

    Barbera, M.; Micela, G.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.; Rosner, R.

    1992-01-01

    The 0.16-4.0 keV X-ray emission from K and M stars of luminosity classes IV, V, and VI within 25 parsec of the sun was measured using all available Einstein Observatory IPC data and a critical compilation of catalogued optical data. Fifty four of 88 stars were detected, 70 of 138 M stars with Mv less than 13.4 (corresponding to M6) and 15 or 31 fainter M stars. The surveyed stars were grouped, on the basis of U, V, W space velocity components, into old-disk, young-disk, and halo population stars. Then, a subsample was selected which is statistically representative of the population of K and M stars in the solar neighborhood, on the basis of which unbiased Maximum Likelihood X-ray luminosity functions were constructed for K, early M, and late M stars. The investigation revealed a decrease of X-ray luminosity with increasing stellar age in the range of ages of disk population stars.

  20. The high-energy X-ray spectrum of black hole candidate GX 339-4 during a transition

    NASA Technical Reports Server (NTRS)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Orwig, L. E.

    1987-01-01

    The X-ray emitting system GX 339-4 contains one of the prime candidates for a stellar mass-sized black hole. Determining the observational similarities and differences between the members of this group is of value in specifying which characteristics can be used to identify systems containing a black hole, especially those for which no mass determination can be made. The first observations of the E greater than 20 keV spectrum of GX 339-4 during a transition between luminosity states are reported here. The hard spectral state is the lower luminosity state of the system. GX 339-4 has a power-low spectrum above 20 keV which pivots during transitions between distinct luminosity states. The only other X-ray sources known to exhibit this behavior, Cyg XR-1 and (probably) A0620-00, are leading candidates for systems containing a black hole component based on their measured spectrocopic mass function.

  1. Taylor expansion of luminosity distance in Szekeres cosmological models: effects of local structures evolution on cosmographic parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villani, Mattia, E-mail: villani@fi.infn.it

    2014-06-01

    We consider the Goode-Wainwright representation of the Szekeres cosmological models and calculate the Taylor expansion of the luminosity distance in order to study the effects of the inhomogeneities on cosmographic parameters. Without making a particular choice for the arbitrary functions defining the metric, we Taylor expand up to the second order in redshift for Family I and up to the third order for Family II Szekeres metrics under the hypotesis, based on observation, that local structure formation is over. In a conservative fashion, we also allow for the existence of a non null cosmological constant.

  2. Detector Developments for the High Luminosity LHC Era (2/4)

    ScienceCinema

    Straessner, Arno

    2018-04-16

    Calorimetry and Muon Spectromers - Part II: When upgrading the LHC to higher luminosities, the detector and trigger performance shall be preserved - if not improved - with respect to the nominal performance. The ongoing R&D; for new radiation tolerant front-end electronics for calorimeters with higher read-out bandwidth are summarized and new possibilities for the trigger systems are presented. Similar developments are foreseen for the muon spectrometers, where also radiation tolerance of the muon detectors and functioning at high background rates is important. The corresponding plans and research work for the calorimeter and muon detectors at a LHC with highest luminsity are presented.

  3. ROSAT X-ray luminosity functions of the Hyades dK and dM stars

    NASA Astrophysics Data System (ADS)

    Pye, John P.; Hodgkin, Simon T.; Stern, Robert A.; Stauffer, John R.

    1994-02-01

    Long-duration ROSAT PSPC pointed observations of the Hyades open star cluster are performed. The Hyades dK and XLFs from the present observations are compared with published Einstein dK/dM XLFs. The Hyades dK binaries have significantly higher L(X) than the Hyades dK stars. However, all these binaries have relatively long periods (greater than about 1 yr), and hence the L(X) levels cannot be attributed to the enhanced activity expected in short-period, 'BY Dra-type' systems. It is also shown that the effect cannot be due simply to the summed luminosities of the component stars.

  4. On the unity of activity in galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowan-Robinson, M.

    1977-05-01

    A scheme is presented which unites quasars, radio galaxies, N galaxies, and Seyfert galaxies into a single picture of activity in galaxies. Probability functions are given for optical and radio cores, and extended radio sources (in the case of ellipticals), for both spirals and ellipticals. Activity occurs in galaxies of all luminosities, but the strength of it is made proportional to galaxy luminosity. It is assumed that there is dust surrounding the optical cores, to explain the strong infrared emission in Seyferts.Quasars may, in this picture, occur in both spirals and ellipticals, and in fact most optically selected QSOs aremore » predicted to be in spirals.« less

  5. Studies of the evolution of the x ray emission of clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Henry, J. Patrick

    1990-01-01

    The x ray luminosity function of clusters of galaxies was determined at different cosmic epoches using data from the Einstein Observatory Extended Medium Survey. The sample consisted of 67 x ray selected clusters that were grouped into three redshift shells. Evolution was detected in the x ray properties of clusters. The present volume density of high luminosity clusters was found to be greater than it was in the past. This result is the first convincing evidence for evolution in the x ray properties of clusters. Investigations into the constraints provided by these data on various Cold Dark Matter models are underway.

  6. THE RED SUPERGIANT CONTENT OF M31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massey, Philip; Evans, Kate Anne, E-mail: kevans@caltech.edu, E-mail: phil.massey@lowell.edu

    2016-08-01

    We investigate the red supergiant (RSG) population of M31, obtaining the radial velocities of 255 stars. These data substantiate membership of our photometrically selected sample, demonstrating that Galactic foreground stars and extragalactic RSGs can be distinguished on the basis of B V , V R two-color diagrams. In addition, we use these spectra to measure effective temperatures and assign spectral types, deriving physical properties for 192 RSGs. Comparison with the solar metallicity Geneva evolutionary tracks indicates astonishingly good agreement. The most luminous RSGs in M31 are likely evolved from 25–30 M {sub ⊙} stars, while the vast majority evolved frommore » stars with initial masses of 20 M {sub ⊙} or less. There is an interesting bifurcation in the distribution of RSGs with effective temperatures that increases with higher luminosities, with one sequence consisting of early K-type supergiants, and with the other consisting of M-type supergiants that become later (cooler) with increasing luminosities. This separation is only partially reflected in the evolutionary tracks, although that might be due to the mis-match in metallicities between the solar Geneva models and the higher-than-solar metallicity of M31. As the luminosities increase the median spectral type also increases; i.e., the higher mass RSGs spend more time at cooler temperatures than do those of lower luminosities, a result which is new to this study. Finally we discuss what would be needed observationally to successfully build a luminosity function that could be used to constrain the mass-loss rates of RSGs as our Geneva colleagues have suggested.« less

  7. Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs): New z > 6 Quasar Survey with Subaru/HSC

    NASA Astrophysics Data System (ADS)

    Matsuoka, Yoshiki; SHELLQs Collaboration

    2017-01-01

    Quasars at high redshift are an important and unique probe of the distant Universe, for understanding the origin and progress of cosmic reionization, the early growth of supermassive black holes, and the evolution of quasar host galaxies and their dark matter halos, among other topics. We are currently carrying out a new spectroscopic survey, called SHELLQs (Subaru High-z Exploration of Low-Luminosity Quasars), to search for low-luminosity quasars at z > 6. By exploiting the exquisite imaging data produced by the Subaru Hyper Suprime-Cam (HSC) survey, we aim to probe quasar luminosities down to M1450 ~ -22 mag, i.e., below the classical threshold between quasars and Seyfert galaxies. Candidate selection is performed by combining several photometric approaches including a Bayesian probabilistic algorithm. A large spectroscopic observing program is underway, using Subaru/FOCAS, GTC/OSIRIS, and Gemini/GMOS; in particular, SHELLQs has been approved as a Subaru intensive program to use 20 nights in the coming four semesters. As of August 2016, we have discovered ~40 quasars and bright galaxies at z ~ 6 and beyond, from the first 100 deg2 of the HSC survey (Matsuoka et al. 2016, ApJ, 828, 26). Surprisingly, we are starting to see the steep rise of the luminosity function of high-z galaxies, compared with that of quasars, at magnitudes fainter than M1450 ~ -22 mag or zAB ~ 24 mag. Multi-wavelength follow-up studies of the discovered objects as well as further survey observations are ongoing.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brewer, Brendon J.; Foreman-Mackey, Daniel; Hogg, David W., E-mail: bj.brewer@auckland.ac.nz

    We present and implement a probabilistic (Bayesian) method for producing catalogs from images of stellar fields. The method is capable of inferring the number of sources N in the image and can also handle the challenges introduced by noise, overlapping sources, and an unknown point-spread function. The luminosity function of the stars can also be inferred, even when the precise luminosity of each star is uncertain, via the use of a hierarchical Bayesian model. The computational feasibility of the method is demonstrated on two simulated images with different numbers of stars. We find that our method successfully recovers the inputmore » parameter values along with principled uncertainties even when the field is crowded. We also compare our results with those obtained from the SExtractor software. While the two approaches largely agree about the fluxes of the bright stars, the Bayesian approach provides more accurate inferences about the faint stars and the number of stars, particularly in the crowded case.« less

  9. A complete X-ray sample of the high latitude sky from HEAO-1 A-2: log N lo S and luminosity functions

    NASA Technical Reports Server (NTRS)

    Piccinotti, G.; Mushotzky, R. F.; Boldt, E. A.; Holt, S. S.; Marshall, F. E.; Serlemitsos, P. J.; Shafer, R. A.

    1981-01-01

    An experiment was performed in which a complete X-ray survey of the 8.2 steradians of the sky at galactic latitudes where the absolute value of b is 20 deg down to a limiting sensitivity of 3.1 x ten to the minus 11th power ergs/sq cm sec in the 2-10 keV band. Of the 85 detected sources 17 were identified with galactic objects, 61 were identified with extragalactic objects, and 7 remain unidentified. The log N - log S relation for the non-galactic objects is well fit by the Euclidean relationship. The X-ray spectra of these objects were used to construct log N - log S in physical units. The complete sample of identified sources was used to construct X-ray luminosity functions, using the absolute maximum likelihood method, for clusters galaxies and active galactic nuclei.

  10. Evolution of the Quasar Luminosity Function: Implications for EoR-21cm

    NASA Astrophysics Data System (ADS)

    Kulkarni, Girish; Choudhury, Tirthankar Roy; Puchwein, Ewald; Haehnelt, Martin G.

    2018-05-01

    We present predictions for the spatial distribution of 21 cm brightness temperature fluctuations from high-dynamic-range simulations for AGN-dominated reionization histories that have been tested against available Lyα and CMB data. We model AGN by extrapolating the observed Mbh-σ relation to high redshifts and assign them ionizing emissivities consistent with recent UV luminosity function measurements. AGN-dominated reionization histories increase the variance of the 21 cm emission by a factor of up to ten compared to similar reionization histories dominated by faint galaxies, to values close to 100 mK2 at scales accessible to experiments (k <~ 1 cMpc-1h). This is lower than the sensitivity reached by ongoing experiments by only a factor of about two or less. AGN dominated reionization should be easily detectable by LOFAR (and later HERA and SKA1) at their design sensitivity.

  11. Validation: Codes to compare simulation data to various observations

    NASA Astrophysics Data System (ADS)

    Cohn, J. D.

    2017-02-01

    Validation provides codes to compare several observations to simulated data with stellar mass and star formation rate, simulated data stellar mass function with observed stellar mass function from PRIMUS or SDSS-GALEX in several redshift bins from 0.01-1.0, and simulated data B band luminosity function with observed stellar mass function, and to create plots for various attributes, including stellar mass functions, and stellar mass to halo mass. These codes can model predictions (in some cases alongside observational data) to test other mock catalogs.

  12. GeV Observations of star-forming galaxies with the Fermi large area telescope

    DOE PAGES

    Ackermann, M.; Ajello, M.; Allafort, A.; ...

    2012-08-07

    Some recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. Here,more » we find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values ≲ 0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log (L 0.1-100 GeV/L 1.4 GHz) = 1.7 ± 0.1(statistical) ± 0.2(dispersion) and log (L 0.1-100 GeV/L 8-1000 μm) = –4.3 ± 0.1(statistical) ± 0.2(dispersion) for a galaxy with a star formation rate of 1 M ⊙yr –1, assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 < z < 2.5 above 0.1 GeV is estimated to be 0.4-2.4 × 10 –6 ph cm –2 s –1 sr –1 (4%-23% of the intensity of the isotropic diffuse component measured with the LAT). Furthermore, we anticipate that ~10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission.« less

  13. Hyper-luminous dust-obscured galaxies discovered by the Hyper Suprime-Cam on Subaru and WISE

    NASA Astrophysics Data System (ADS)

    Toba, Yoshiki; Nagao, Tohru; Strauss, Michael A.; Aoki, Kentaro; Goto, Tomotsugu; Imanishi, Masatoshi; Kawaguchi, Toshihiro; Terashima, Yuichi; Ueda, Yoshihiro; Bosch, James; Bundy, Kevin; Doi, Yoshiyuki; Inami, Hanae; Komiyama, Yutaka; Lupton, Robert H.; Matsuhara, Hideo; Matsuoka, Yoshiki; Miyazaki, Satoshi; Morokuma, Tomoki; Nakata, Fumiaki; Oi, Nagisa; Onoue, Masafusa; Oyabu, Shinki; Price, Paul; Tait, Philip J.; Takata, Tadafumi; Tanaka, Manobu M.; Terai, Tsuyoshi; Turner, Edwin L.; Uchida, Tomohisa; Usuda, Tomonori; Utsumi, Yousuke; Yamada, Yoshihiko; Wang, Shiang-Yu

    2015-10-01

    We present the photometric properties of a sample of infrared (IR) bright dust-obscured galaxies (DOGs). Combining wide and deep optical images obtained with the Hyper Suprime-Cam on the Subaru Telescope and all-sky mid-IR (MIR) images taken with Wide-Field Infrared Survey Explorer, we discovered 48 DOGs with i - Ks > 1.2 and i - [22] > 7.0, where i, Ks, and [22] represent AB magnitude in the i-band, Ks-band, and 22 μm, respectively, in the GAMA 14 hr field (˜ 9 deg2). Among these objects, 31 (˜ 65%) show power-law spectral energy distributions (SEDs) in the near-IR (NIR) and MIR regime, while the remainder show an NIR bump in their SEDs. Assuming that the redshift distribution for our DOGs sample is Gaussian, with mean and sigma z = 1.99 ± 0.45, we calculated their total IR luminosity using an empirical relation between 22 μm luminosity and total IR luminosity. The average value of the total IR luminosity is (3.5 ± 1.1) × 1013 L⊙, which classifies them as hyper-luminous infrared galaxies. We also derived the total IR luminosity function (LF) and IR luminosity density (LD) for a flux-limited subsample of 18 DOGs with 22 μm flux greater than 3.0 mJy and with i-band magnitude brighter than 24 AB magnitude. The derived space density for this subsample is log φ = -6.59 ± 0.11 [Mpc-3]. The IR LF for DOGs including data obtained from the literature is fitted well by a double-power law. The derived lower limit for the IR LD for our sample is ρIR ˜ 3.8 × 107 [L⊙ Mpc-3] and its contributions to the total IR LD, IR LD of all ultra-luminous infrared galaxies, and that of all DOGs are > 3%, > 9%, and > 15%, respectively.

  14. GeV Observations of star-forming galaxies with the Fermi large area telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; Allafort, A.

    Some recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. Here,more » we find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values ≲ 0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log (L 0.1-100 GeV/L 1.4 GHz) = 1.7 ± 0.1(statistical) ± 0.2(dispersion) and log (L 0.1-100 GeV/L 8-1000 μm) = –4.3 ± 0.1(statistical) ± 0.2(dispersion) for a galaxy with a star formation rate of 1 M ⊙yr –1, assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 < z < 2.5 above 0.1 GeV is estimated to be 0.4-2.4 × 10 –6 ph cm –2 s –1 sr –1 (4%-23% of the intensity of the isotropic diffuse component measured with the LAT). Furthermore, we anticipate that ~10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission.« less

  15. GeV Observations of star-forming glaxies with the FERMI Large Area Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; Allafort, A.

    Recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. We findmore » further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values lesssim 0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log (L 0.1-100 GeV/L 1.4 GHz) = 1.7 ± 0.1(statistical) ± 0.2(dispersion) and log (L 0.1-100 GeV/L 8-1000 μm) = –4.3 ± 0.1(statistical) ± 0.2(dispersion) for a galaxy with a star formation rate of 1 M ⊙ yr–1, assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 < z < 2.5 above 0.1 GeV is estimated to be 0.4-2.4 × 10–6 ph cm–2 s–1 sr–1 (4%-23% of the intensity of the isotropic diffuse component measured with the LAT). We anticipate that ~10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission.« less

  16. The Luminosity Function of OB Associations in the Galaxy

    NASA Astrophysics Data System (ADS)

    McKee, Christopher F.; Williams, Jonathan P.

    1997-02-01

    OB associations ionize the interstellar medium, producing both localized H II regions and diffuse ionized gas. The supernovae resulting from these associations pressurize and stir the interstellar medium. Using Smith, Biermann, & Mezger's compilation of radio H II regions in the Galaxy, and Kennicutt, Edgar, & Hodge's optical study of H II regions in nearby galaxies, we show that the luminosity distribution of giant OB associations in the Galaxy can be fit by a truncated power law of the form \\Nscra(>S)=\\Nscrau[(Su/S)-1], where S is the ionizing photon luminosity, \\Nscra(>S) is the number of associations with a luminosity of at least S, and Su is the upper limit to the distribution. The coefficient \\Nscrau is the number of the most luminous associations, with a luminosity between 0.5Su and Su. For the Galaxy, \\Nscrau=6.1 the fact that the number of the most luminous associations is significantly larger than unity indicates that there is a physical limit to the maximum size of H II regions in the Galaxy. To extend the luminosity distribution to small H II regions, we assume that the birthrate of associations, \\Nscr\\dota(>\\Nscr*), is also a truncated power law, \\Nscr\\dota(>\\Nscr*)~[(\\Nscr*u/\\Nscr*)-1], where \\Nscr* is the number of stars in the association. For large associations, the ionizing luminosity is proportional to the number of stars, S~\\Nscr* for smaller associations, we use both an analytic and a Monte Carlo approach to find the resulting luminosity distribution \\Nscra(>S). H II regions are generally centrally concentrated, with only the dense central regions being bright enough to appear in radio catalogs. Anantharamaiah postulated that radio H II regions have extended envelopes in order to account for diffuse radio recombination line emission in the Galaxy. Some of these envelopes are visible as the ionized ``worms'' discussed by Heiles and coworkers. We estimate that on the average the envelopes of radio H II regions absorb about twice as many ionizing photons as the radio H II regions themselves. Allowing for the ionizing radiation that is absorbed by dust (about 25% of the total), we find that the maximum ionizing photon luminosity of a Galactic OB association is Su ~= 4.9 × 1051 photons s-1, corresponding to an Hα luminosity of about 5 × 1039 ergs s-1. The total ionizing luminosity of this distribution of OB associations can account for the thermal radio emission and the N II far-infrared emission of the Galaxy. The number of massive stars in the associations is consistent with estimates of the rate of massive star supernovae in the Galaxy. Associations produce several generations of stars over their lifetimes, and the largest associations are predicted to produce about 7000 supernova progenitors. Fitting the surface density of associations to an exponential of the form d\\Nscra(\\Nscr*)/dA~ exp (-R/HR) with a scale length HR = 3.5 kpc gives a number of OB associations in the solar neighborhood that is consistent with observation. The H II envelopes contribute to pulsar dispersion measures and can account for the increased dispersion measure observed in the inner Galaxy.

  17. Differential evolution of the UV luminosity function of Lyman break galaxies from z ~ 5 to 3

    NASA Astrophysics Data System (ADS)

    Iwata, I.; Ohta, K.; Tamura, N.; Akiyama, M.; Aoki, K.; Ando, M.; Kiuchi, G.; Sawicki, M.

    2007-04-01

    We report the ultraviolet luminosity function (UVLF) of Lyman break galaxies at z ~ 5 derived from a deep and wide survey using the prime focus camera of the 8.2 m Subaru telescope (Suprime-Cam). Target fields consist of two blank regions of the sky, namely, the region including the Hubble Deep Field-North and the J0053+1234 region, and the total effective surveyed area is 1290 arcmin2. Applications of carefully determined colour selection criteria in V - Ic and Ic - z' yield a detection of 853 z ~ 5 candidates with z'AB < 26.5 mag. The UVLF at z ~ 5 based on this sample shows no significant change in the number density of bright (L >~ L*z=3) LBGs from that at z ~ 3, while there is a significant decline in the LF's faint end with increasing look-back time. This result means that the evolution of the number densities is differential with UV luminosity: the number density of UV luminous objects remains almost constant from z ~ 5 to 3 (the cosmic age is about 1.2 to 2.1 Gyr) while the number density of fainter objects gradually increases with cosmic time. This trend becomes apparent thanks to the small uncertainties in number densities both in the bright and faint parts of LFs at different epochs that are made possible by the deep and wide surveys we use. We discuss the origins of this differential evolution of the UVLF along the cosmic time and suggest that our observational findings are consistent with the biased galaxy evolution scenario: a galaxy population hosted by massive dark haloes starts active star formation preferentially at early cosmic time, while less massive galaxies increase their number density later. We also calculated the UV luminosity density by integrating the UVLF and at z ~ 5 found it to be 38.8+6.7-4.1 per cent of that at z ~ 3 for the luminosity range L > 0.1L*z=3. By combining our results with those from the literature, we find that the cosmic UV luminosity density marks its peak at and then slowly declines towards higher redshift. Based on data collected at Subaru Telescope and partly obtained from the SMOKA science archive at Astronomical Data Analysis Center, which are operated by the National Astronomical Observatory of Japan. E-mail: iwata@oao.nao.ac.jp (II)

  18. X-ray-selected galaxy groups in Boötes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vajgel, Bruna; Lopes, Paulo A. A.; Jones, Christine

    2014-10-10

    We present the X-ray and optical properties of the galaxy groups selected in the Chandra X-Boötes survey. We used follow-up Chandra observations to better define the group sample and their X-ray properties. Group redshifts were measured from the AGN and Galaxy Evolution Survey spectroscopic data. We used photometric data from the NOAO Deep Wide Field Survey to estimate the group richness (N {sub gals}) and the optical luminosity (L {sub opt}). Our final sample comprises 32 systems at z < 1.75 with 14 below z = 0.35. For these 14 systems, we estimate velocity dispersions (σ {sub gr}) and performmore » a virial analysis to obtain the radii (R {sub 200} and R {sub 500}) and total masses (M {sub 200} and M {sub 500}) for groups with at least 5 galaxy members. We use the Chandra X-ray observations to derive the X-ray luminosity (L{sub X} ). We examine the performance of the group properties σ{sub gr}, L {sub opt}, and L{sub X} , as proxies for the group mass. Understanding how well these observables measure the total mass is important to estimate how precisely the cluster/group mass function is determined. Exploring the scaling relations built with the X-Boötes sample and comparing these with samples from the literature, we find a break in the L{sub X} -M {sub 500} relation at approximately M {sub 500} = 5 × 10{sup 13} M {sub ☉} (for M {sub 500} > 5 × 10{sup 13} M {sub ☉}, M{sub 500}∝L{sub X}{sup 0.61±0.02}, while for M {sub 500} ≤ 5 × 10{sup 13} M {sub ☉}, M{sub 500}∝L{sub X}{sup 0.44±0.05}). Thus, the mass-luminosity relation for galaxy groups cannot be described by the same power law as galaxy clusters. A possible explanation for this break is the dynamical friction, tidal interactions, and projection effects that reduce the velocity dispersion values of the galaxy groups. By extending the cluster luminosity function to the group regime, we predict the number of groups that new X-ray surveys, particularly eROSITA, will detect. Based on our cluster/group luminosity function estimates, eROSITA will identify ∼1800 groups (L{sub X} = 10{sup 41}-10{sup 43} erg s{sup –1}) within a distance of 200 Mpc. Since groups lie in large-scale filaments, this group sample will map the large-scale structure of the local universe.« less

  19. Star Formation in NGC 6531-Evidence From the age Spread and Initial Mass Function

    NASA Astrophysics Data System (ADS)

    Forbes, Douglas

    1996-09-01

    The results of a photometric UBV study of the young open cluster NGC 6531 are presented. The cluster is found to have a mean reddening E(B-V)=0.28±0.04 (s.d.) and distance modulus (V0-Mv)=10.70±0.13 (s.e.), and 105±11 likely cluster members have been identified within the cluster coronal radius of 9 arcmin. A comparison of the high-luminosity end of the cluster color-magnitude diagram to the evolutionary models by Maeder & Meynet [A&AS, 76, 411(1988)] suggests a nuclear age of (8±2) Myr. The very clear gap in the distribution of stars with 0≤(B-V)0≤0.20, corresponding to the "burn-off" of 3He in stars contracting to the main sequence [Ulrich, ApJ, 168, 57 (1971)], implies a contraction age of (8±3) Myr. There would seem to be no evidence of a spread in the ages of cluster stars, as has been observed in several other young open clusters [Herbst & Miller, AJ, 87, 1478 (1982)]. The initial mass function (IMF) constructed from the cluster luminosity function and the mass-luminosity relation given by Scab (1986) shows good agreement with the field star IMF, and with the IMFS of a number of clusters of similar age and richness. The relative deficiency of low-mass stars seen by Herbst and Miller in NGC 3293 (a cluster of quite similar age and reddening) is not evident in NGC 6531.

  20. Density- and luminosity-functions for UBV-photometric discand halo-stars in SA 54, compared with earlier RGU-results in this field

    NASA Astrophysics Data System (ADS)

    Fenkart, R.; Esin-Yilmaz, F.

    1983-12-01

    Space density- and luminosity-functions for the photometric halo- and disc-populations in the test-field SA 54 of the Basle Halo Program have been derived on the basis of UBV observations of the same 1377 stars used already for the corresponding RGU investigation by Fenkart (1968). The statistical method for separating the photometrically defined populations and for attributing absolute magnitudes to their members developed, described and first applied to SA 51 in RGU by Becker (1965) has been adapted for use in the UBV system. The (U-B, B- V) diagrams for consecutive intervals in apparent V-magnitude of figures 2a to f contain, contrary to what was first expected in this system, substantial numbers of stars in the < blanketing-region above and to the right of the late branch of the two-colour diagram main-sequence. The density-functions for different MVintervals within the overall interval < 3m, 7m> covered by this investigation for halo and disc are given in tables IIa and b, and plotted in figures 3 and 4, respectively. The corresponding luminosity-functions within the partial volume up to 1 kpc from the sun over the same overall MVinterval are given together with Glieses (1969) solar values for population I, in table III, and plotted in figure 5. The overall density-functions (3m ≦ MV ≦ 7m) for both populations can be and are compared with the corresponding ones (3m ≦ MG ≦ 8m) in RGU (last column in table II) in figures 6 and 7, for halo and disc, respectively. The coincidence of the density results between UBV and RGU is much better for both populations than the mean misidentification rate per system derived in section 5 would let us expect, suggesting a statistically fairly repartition of the misidentifications with respect to absolute magnitudes and distances.

  1. ETHOS - an effective theory of structure formation: predictions for the high-redshift Universe - abundance of galaxies and reionization

    NASA Astrophysics Data System (ADS)

    Lovell, Mark R.; Zavala, Jesús; Vogelsberger, Mark; Shen, Xuejian; Cyr-Racine, Francis-Yan; Pfrommer, Christoph; Sigurdson, Kris; Boylan-Kolchin, Michael; Pillepich, Annalisa

    2018-07-01

    We contrast predictions for the high-redshift galaxy population and reionization history between cold dark matter (CDM) and an alternative self-interacting dark matter model based on the recently developed ETHOS framework that alleviates the small-scale CDM challenges within the Local Group. We perform the highest resolution hydrodynamical cosmological simulations (a 36 Mpc3 volume with gas cell mass of ˜ 105 M_{⊙} and minimum gas softening of ˜180 pc) within ETHOS to date - plus a CDM counterpart - to quantify the abundance of galaxies at high redshift and their impact on reionization. We find that ETHOS predicts galaxies with higher ultraviolet (UV) luminosities than their CDM counterparts and a faster build-up of the faint end of the UV luminosity function. These effects, however, make the optical depth to reionization less sensitive to the power spectrum cut-off: the ETHOS model differs from the CDM τ value by only 10 per cent and is consistent with Planck limits if the effective escape fraction of UV photons is 0.1-0.5. We conclude that current observations of high-redshift luminosity functions cannot differentiate between ETHOS and CDM models, but deep James Webb Space Telescope surveys of strongly lensed, inherently faint galaxies have the potential to test non-CDM models that offer attractive solutions to CDM's Local Group problems.

  2. Binary neutron star merger rate via the luminosity function of short gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Paul, Debdutta

    2018-04-01

    The luminosity function of short Gamma Ray Bursts (GRBs) is modelled by using the available catalogue data of all short GRBs (sGRBs) detected till October, 2017. The luminosities are estimated via the `pseudo-redshifts' obtained from the `Yonetoku correlation', assuming a standard delay distribution between the cosmic star formation rate and the production rate of their progenitors. While the simple powerlaw is ruled out to high confidence, the data is fit well both by exponential cutoff powerlaw and broken powerlaw models. Using the derived parameters of these models along with conservative values in the jet opening angles seen from afterglow observations, the true rate of short GRBs are derived. Assuming a short GRB is produced from each binary neutron star merger (BNSM), the rate of gravitational wave (GW) detections from these mergers are derived for the past, present and future configurations of the GW detector networks. Stringent lower limits of 1.87yr-1 for the aLIGO-VIRGO, and 3.11yr-1 for the upcoming aLIGO-VIRGO-KAGRA-LIGO/India configurations are thus derived for the BNSM rate at 68% confidence. The BNSM rates calculated from this work and that independently inferred from the observation of the only confirmed BNSM observed till date, are shown to have a mild tension; however the scenario that all BNSMs produce sGRBs cannot be ruled out.

  3. Binary neutron star merger rate via the luminosity function of short gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Paul, Debdutta

    2018-07-01

    The luminosity function of short gamma ray bursts (GRBs) is modelled by using the available catalogue data of all short GRBs (sGRBs) detected till 2017 October. The luminosities are estimated via the `pseudo-redshifts' obtained from the `Yonetoku correlation', assuming a standard delay distribution between the cosmic star formation rate and the production rate of their progenitors. While the simple power law is ruled out to high confidence, the data is fit well both by exponential cutoff power law and broken power law models. Using the derived parameters of these models along with conservative values in the jet opening angles seen from afterglow observations, the true rate of sGRBs is derived. Assuming a sGRB is produced from each binary neutron star merger (BNSM), the rate of gravitational wave (GW) detections from these mergers are derived for the past, present, and future configurations of the GW detector networks. Stringent lower limits of 1.87 { yr^{-1}} for the aLIGO-VIRGO, and 3.11 { yr^{-1}} for the upcoming aLIGO-VIRGO-KAGRA-LIGO/India configurations are thus derived for the BNSM rate at 68 per cent confidence. The BNSM rates calculated from this work and that independently inferred from the observation of the only confirmed BNSM observed till date are shown to have a mild tension; however, the scenario that all BNSMs produce sGRBs cannot be ruled out.

  4. The Halo Occupation Distribution of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Chatterjee, Suchetana; Nagai, D.; Richardson, J.; Zheng, Z.; Degraf, C.; DiMatteo, T.

    2011-05-01

    We investigate the halo occupation distribution of active galactic nuclei (AGN) using a state-of-the-art cosmological hydrodynamic simulation that self-consistently incorporates the growth and feedback of supermassive black holes and the physics of galaxy formation (DiMatteo et al. 2008). We show that the mean occupation function can be modeled as a softened step function for central AGN and a power law for the satellite population. The satellite occupation is consistent with weak redshift evolution and a power law index of unity. The number of satellite black holes at a given halo mass follows a Poisson distribution. We show that at low redshifts (z=1.0) feedback from AGN is responsible for higher suppression of black hole growth in higher mass halos. This effect introduces a bias in the correlation between instantaneous AGN luminosity and the host halo mass, making AGN clustering depend weakly on luminosity at low redshifts. We show that the radial distribution of AGN follows a power law which is fundamentally different from those of galaxies and dark matter. The best-fit power law index is -2.26 ± 0.23. The power law exponent do not show any evolution with redshift, host halo mass and AGN luminosity within statistical limits. Incorporating the environmental dependence of supermassive black hole accretion and feedback, our formalism provides the most complete theoretical tool for interpreting current and future measurements of AGN clustering.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerke, Brian F.; Wechsler, Risa H.; Behroozi, Peter S.

    We develop empirical methods for modeling the galaxy population and populating cosmological N-body simulations with mock galaxies according to the observed properties of galaxies in survey data. We use these techniques to produce a new set of mock catalogs for the DEEP2 Galaxy Redshift Survey based on the output of the high-resolution Bolshoi simulation, as well as two other simulations with different cosmological parameters, all of which we release for public use. The mock-catalog creation technique uses subhalo abundance matching to assign galaxy luminosities to simulated dark-matter halos. It then adds color information to the resulting mock galaxies in amore » manner that depends on the local galaxy density, in order to reproduce the measured color-environment relation in the data. In the course of constructing the catalogs, we test various models for including scatter in the relation between halo mass and galaxy luminosity, within the abundance-matching framework. We find that there is no constant-scatter model that can simultaneously reproduce both the luminosity function and the autocorrelation function of DEEP2. This result has implications for galaxy-formation theory, and it restricts the range of contexts in which the mock catalogs can be usefully applied. Nevertheless, careful comparisons show that our new mock catalogs accurately reproduce a wide range of the other properties of the DEEP2 catalog, suggesting that they can be used to gain a detailed understanding of various selection effects in DEEP2.« less

  6. Exploring SMBH assembly with semi-analytic modelling

    NASA Astrophysics Data System (ADS)

    Ricarte, Angelo; Natarajan, Priyamvada

    2018-02-01

    We develop a semi-analytic model to explore different prescriptions of supermassive black hole (SMBH) fuelling. This model utilizes a merger-triggered burst mode in concert with two possible implementations of a long-lived steady mode for assembling the mass of the black hole in a galactic nucleus. We improve modelling of the galaxy-halo connection in order to more realistically determine the evolution of a halo's velocity dispersion. We use four model variants to explore a suite of observables: the M•-σ relation, mass functions of both the overall and broad-line quasar population, and luminosity functions as a function of redshift. We find that `downsizing' is a natural consequence of our improved velocity dispersion mappings, and that high-mass SMBHs assemble earlier than low-mass SMBHs. The burst mode of fuelling is sufficient to explain the assembly of SMBHs to z = 2, but an additional steady mode is required to both assemble low-mass SMBHs and reproduce the low-redshift luminosity function. We discuss in detail the trade-offs in matching various observables and the interconnected modelling components that govern them. As a result, we demonstrate the utility as well as the limitations of these semi-analytic techniques.

  7. Field Tolerances for the Triplet Quadrupoles of the LHC High Luminosity Lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nosochkov, Yuri; Cai, Y.; Jiao, Y.

    2012-06-25

    It has been proposed to implement the so-called Achromatic Telescopic Squeezing (ATS) scheme in the LHC high luminosity (HL) lattice to reduce beta functions at the Interaction Points (IP) up to a factor of 8. As a result, the nominal 4.5 km peak beta functions reached in the Inner Triplets (IT) at collision will be increased by the same factor. This, therefore, justifies the installation of new, larger aperture, superconducting IT quadrupoles. The higher beta functions will enhance the effects of the triplet quadrupole field errors leading to smaller beam dynamic aperture (DA). To maintain the acceptable DA, the effectsmore » of the triplet field errors must be re-evaluated, thus specifying new tolerances. Such a study has been performed for the so-called '4444' collision option of the HL-LHC layout version SLHCV3.01, where the IP beta functions are reduced by a factor of 4 in both planes with respect to a pre-squeezed value of 60 cm at two collision points. The dynamic aperture calculations were performed using SixTrack. The impact on the triplet field quality is presented.« less

  8. Radio and infrared emission from Markarian starburst galaxies

    NASA Technical Reports Server (NTRS)

    Stine, Peter C.

    1992-01-01

    Radio and infrared emission were compared for a sample of 58 Markarian starburst galaxies, chosen to cover a wide range of 60-micron luminosity density. New radio observations were from the VLA at 6 and 20 cm in the B and A configurations. IRAS data were reanalyzed for 25 of the starbursts that were previously undetected at either 25 or 100 microns. The correlation between the global radio and IR emission for the starbursts in the sample is strongest at 25 and 60 microns, wavelengths in which the warm dust dominates. The radio spectral index steepens away from the center. This indicates that nonthermal emission leaks out of the starburst region. The change in the spectral index implies that while nonthermal sources dominate in the entire region, the bulk of the interior emission at 6 cm is thermal. The radio spectral index does not appear to vary as a function of the infrared luminosity or the infrared colors, which indicates that the slope of the initial mass function does not appear to be a function of either the mass or temperature of the starburst.

  9. The Sloan Digital Sky Survey Reverberation Mapping Project: Composite Lags at z ≤ 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jennifer; Shen, Yue; Horne, Keith

    We present composite broad-line region (BLR) reverberation mapping lag measurements for H α , H β , He ii λ 4686, and Mg ii for a sample of 144, z ≲ 1 quasars from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. Using only the 32-epoch spectroscopic light curves in the first six-month season of SDSS-RM observations, we compile correlation function measurements for individual objects and then coadd them to allow the measurement of the average lags for our sample at mean redshifts of 0.4 (for H α ) and ∼0.65 (for the other lines). At similar quasar luminositiesmore » and redshifts, the sample-averaged lag decreases in the order of Mg ii, H α , H β , and He ii. This decrease in lags is accompanied by an increase in the mean line width of the four lines, and is roughly consistent with the virialized motion for BLR gas in photoionization equilibrium. These are among the first RM measurements of stratified BLR structure at z > 0.3. Dividing our sample by luminosity, H α shows clear evidence of increasing lags with luminosity, consistent with the expectation from the measured BLR size–luminosity relation based on H β . The other three lines do not show a clear luminosity trend in their average lags due to the limited dynamic range of luminosity probed and the poor average correlation signals in the divided samples, a situation that will be improved with the incorporation of additional photometric and spectroscopic data from SDSS-RM. We discuss the utility and caveats of composite lag measurements for large statistical quasar samples with reverberation mapping data.« less

  10. THE YOUNG STELLAR OBJECT POPULATION IN THE VELA-D MOLECULAR CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strafella, F.; Maruccia, Y.; Maiolo, B.

    2015-01-10

    We investigate the young stellar population in the Vela Molecular Ridge, Cloud-D, a star-forming region observed by both the Spitzer/NASA and Herschel/ESA space telescopes. The point-source, band-merged, Spitzer-IRAC catalog complemented with MIPS photometry previously obtained is used to search for candidate young stellar objects (YSOs), also including sources detected in less than four IRAC bands. Bona fide YSOs are selected by using appropriate color-color and color-magnitude criteria aimed at excluding both Galactic and extragalactic contaminants. The derived star formation rate and efficiency are compared with the same quantities characterizing other star-forming clouds. Additional photometric data, spanning from the near-IR tomore » the submillimeter, are used to evaluate both bolometric luminosity and temperature for 33 YSOs located in a region of the cloud observed by both Spitzer and Herschel. The luminosity-temperature diagram suggests that some of these sources are representative of Class 0 objects with bolometric temperatures below 70 K and luminosities of the order of the solar luminosity. Far-IR observations from the Herschel/Hi-GAL key project for a survey of the Galactic plane are also used to obtain a band-merged photometric catalog of Herschel sources intended to independently search for protostars. We find 122 Herschel cores located on the molecular cloud, 30 of which are protostellar and 92 of which are starless. The global protostellar luminosity function is obtained by merging the Spitzer and Herschel protostars. Considering that 10 protostars are found in both the Spitzer and Herschel lists, it follows that in the investigated region we find 53 protostars and that the Spitzer-selected protostars account for approximately two-thirds of the total.« less

  11. Obscuration-dependent Evolution of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Buchner, Johannes; Georgakakis, Antonis; Nandra, Kirpal; Brightman, Murray; Menzel, Marie-Luise; Liu, Zhu; Hsu, Li-Ting; Salvato, Mara; Rangel, Cyprian; Aird, James; Merloni, Andrea; Ross, Nicholas

    2015-04-01

    We aim to constrain the evolution of active galactic nuclei (AGNs) as a function of obscuration using an X-ray-selected sample of ~2000 AGNs from a multi-tiered survey including the CDFS, AEGIS-XD, COSMOS, and XMM-XXL fields. The spectra of individual X-ray sources are analyzed using a Bayesian methodology with a physically realistic model to infer the posterior distribution of the hydrogen column density and intrinsic X-ray luminosity. We develop a novel non-parametric method that allows us to robustly infer the distribution of the AGN population in X-ray luminosity, redshift, and obscuring column density, relying only on minimal smoothness assumptions. Our analysis properly incorporates uncertainties from low count spectra, photometric redshift measurements, association incompleteness, and the limited sample size. We find that obscured AGNs with N H > 1022 cm-2 account for {77}+4-5% of the number density and luminosity density of the accretion supermassive black hole population with L X > 1043 erg s-1, averaged over cosmic time. Compton-thick AGNs account for approximately half the number and luminosity density of the obscured population, and {38}+8-7% of the total. We also find evidence that the evolution is obscuration dependent, with the strongest evolution around N H ≈ 1023 cm-2. We highlight this by measuring the obscured fraction in Compton-thin AGNs, which increases toward z ~ 3, where it is 25% higher than the local value. In contrast, the fraction of Compton-thick AGNs is consistent with being constant at ≈35%, independent of redshift and accretion luminosity. We discuss our findings in the context of existing models and conclude that the observed evolution is, to first order, a side effect of anti-hierarchical growth.

  12. Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). II. Discovery of 32 quasars and luminous galaxies at 5.7 < z ≤ 6.8

    NASA Astrophysics Data System (ADS)

    Matsuoka, Yoshiki; Onoue, Masafusa; Kashikawa, Nobunari; Iwasawa, Kazushi; Strauss, Michael A.; Nagao, Tohru; Imanishi, Masatoshi; Lee, Chien-Hsiu; Akiyama, Masayuki; Asami, Naoko; Bosch, James; Foucaud, Sébastien; Furusawa, Hisanori; Goto, Tomotsugu; Gunn, James E.; Harikane, Yuichi; Ikeda, Hiroyuki; Izumi, Takuma; Kawaguchi, Toshihiro; Kikuta, Satoshi; Kohno, Kotaro; Komiyama, Yutaka; Lupton, Robert H.; Minezaki, Takeo; Miyazaki, Satoshi; Morokuma, Tomoki; Murayama, Hitoshi; Niida, Mana; Nishizawa, Atsushi J.; Oguri, Masamune; Ono, Yoshiaki; Ouchi, Masami; Price, Paul A.; Sameshima, Hiroaki; Schulze, Andreas; Shirakata, Hikari; Silverman, John D.; Sugiyama, Naoshi; Tait, Philip J.; Takada, Masahiro; Takata, Tadafumi; Tanaka, Masayuki; Tang, Ji-Jia; Toba, Yoshiki; Utsumi, Yousuke; Wang, Shiang-Yu

    2018-01-01

    We present spectroscopic identification of 32 new quasars and luminous galaxies discovered at 5.7 < z ≤ 6.8. This is the second in a series of papers presenting the results of the Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs) project, which exploits the deep multi-band imaging data produced by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. The photometric candidates were selected by a Bayesian probabilistic algorithm, and then observed with spectrographs on the Gran Telescopio Canarias and the Subaru Telescope. Combined with the sample presented in the previous paper of this series, we have now identified 64 HSC sources over about 430 deg2, which include 33 high-z quasars, 14 high-z luminous galaxies, two [O III] emitters at z ˜ 0.8, and 15 Galactic brown dwarfs. The new quasars have considerably lower luminosity (M1450 ˜ -25 to -22 mag) than most of the previously known high-z quasars. Several of these quasars have luminous (>1043 erg s-1) and narrow (< 500 km s-1) Lyα lines, and also a possible mini broad-absorption-line system of N V λ1240 in the composite spectrum, which clearly separate them from typical quasars. On the other hand, the high-z galaxies have extremely high luminosities (M1450 ˜ -24 to -22 mag) compared to other galaxies found at similar redshifts. With the discovery of these new classes of objects, we are opening up new parameter spaces in the high-z Universe. Further survey observations and follow-up studies of the identified objects, including the construction of the quasar luminosity function at z ˜ 6, are ongoing.

  13. Efficiency of Synchrotron Radiation from Rotation-powered Pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisaka, Shota; Tanaka, Shuta J., E-mail: kisaka@phys.aoyama.ac.jp, E-mail: sjtanaka@center.konan-u.ac.jp

    2017-03-01

    Synchrotron radiation is widely considered to be the origin of the pulsed non-thermal emissions from rotation-powered pulsars in optical and X-ray bands. In this paper, we study the synchrotron radiation emitted by the created electron and positron pairs in the pulsar magnetosphere to constrain the energy conversion efficiency from the Poynting flux to the particle energy flux. We model two pair creation processes, two-photon collision, which efficiently works in young γ -ray pulsars (≲10{sup 6} year), and magnetic pair creation, which is the dominant process to supply pairs in old pulsars (≳10{sup 6} year). Using the analytical model, we derivemore » the maximum synchrotron luminosity as a function of the energy conversion efficiency. From the comparison with observations, we find that the energy conversion efficiency to the accelerated particles should be an order of unity in the magnetosphere, even though we make a number of the optimistic assumptions to enlarge the synchrotron luminosity. In order to explain the luminosity of the non-thermal X-ray/optical emission from pulsars with low spin-down luminosity L {sub sd} ≲ 10{sup 34} erg s{sup −1}, non-dipole magnetic field components should be dominant at the emission region. For the γ -ray pulsars with L {sub sd} ≲ 10{sup 35} erg s{sup −1}, observed γ -ray to X-ray and optical flux ratios are much higher than the flux ratio between curvature and the synchrotron radiations. We discuss some possibilities such as the coexistence of multiple accelerators in the magnetosphere as suggested from the recent numerical simulation results. The obtained maximum luminosity would be useful to select observational targets in X-ray and optical bands.« less

  14. Clustering Properties of Emission Line Selected Galaxies over the past 12.5 Gyrs

    NASA Astrophysics Data System (ADS)

    Khostovan, Ali Ahmad; Sobral, David; Mobasher, Bahram; Best, Philip N.; Smail, Ian; Matthee, Jorryt; Darvish, Behnam; Nayyeri, Hooshang; Hemmati, Shoubaneh; Stott, John P.

    2018-01-01

    In this talk, I will present my latest results on the clustering and dark matter halo (DMH) mass properties of ~7000 narrowband-selected [OIII] and [OII] emitters. I will briefly describe the past work that has been done with our samples (e.g., luminosity functions, evolution of equivalent widths) as motivation of using [OIII] and [OII] emitters to study clustering/halo properties. My talk will focus on our findings regarding the line luminosity and stellar mass dependencies with DMH mass. We find strongly increasing and redshift-independent trends between line luminosity and DMH mass with evidence for a shallower slope at the bright end consistent with halo masses of ~ 1012.5-13 M⊙. Similar, but weaker, trends between stellar mass and halo mass have also been found. We investigate the inter-dependencies of these trends on halo mass and find that the correlation with line luminosity is stronger than with stellar mass. This suggest that active galaxies may be connected with their host DMHs simply based on their emission line luminosity. If time permits, I will briefly present our most recent results using our sample of ~4000 Lyα emitters, where we find similar trends to that seen with the [OIII] and [OII] samples, as well as previous Hα measurements, which suggests galaxies selected based on emission lines may be tracing the same subpopulation of star forming galaxies. I will conclude my talk with an interpretation of this connection and suggest that the shallower slope seen for the brightest emitters is evidence for a transitional halo mass as suggested in models where quenching mechanisms truncate star formation activity and reduce the fraction of star forming galaxies with increasing halo mass.

  15. VizieR Online Data Catalog: Warm IRAS sources. II. (de Grijp+, 1992)

    NASA Astrophysics Data System (ADS)

    de Grijp, M. H. K.; Keel, W. C.; Miley, G. K.; Goudfrooij, P.; Lub, J.

    2011-01-01

    We present optical spectra for a sample of 563 high-latitude IRAS sources selected from the Point Source Catalog to have relatively warm 25 to 60 micron colours. We have shown this selection criterion to be an efficient indicator for finding Seyfert galaxies. Plots of the optical spectra are shown and the fluxes of the strongest emission lines in these spectra are tabulated. After excluding 128 sources which are clearly galactic foreground objects, we obtained spectroscopic information for 358 extragalactic objects. Emission-line ratios have been used to classify these objects, resulting in 80 Seyfert 1, 141 Seyfert 2 and 133 HII-type objects. In comparison with samples of active nuclei selected in other ways, about 50% of known Seyfert nuclei are included by our colour criteria. This fraction is larger for high luminosities, reaching 80% for quasar luminosities. For lower-luminosity objects, contamination by the host galaxies becomes important and the sample becomes seriously incomplete. It should be moderately complete and representative for core luminosities greater than 1023.5W/Hz at 12m. Finally, the infrared luminosity function for each type of object is derived; the shapes for Seyfert 1 and 2 nuclei are identical, with a type 2/type 1 space-density ratio of 3.0. Our census is consistent with an obscuration scheme for producing both types of object from a single parent population, though the origin of excess cool IR radiation Irom many Seyferts is still unclear. We note the appearance of an apparent type II supernova in IRAS 0225-103 observed in 1985 September. Its spectrum suggests that it was observed between 1 and 2 months after maximum, perhaps in a "plateau" phase. (2 data files).

  16. A Search for Low-Luminosity BL Lacertae Objects

    NASA Astrophysics Data System (ADS)

    Rector, Travis A.; Stocke, John T.; Perlman, Eric S.

    1999-05-01

    Many properties of BL Lacs have become explicable in terms of the ``relativistic beaming'' hypothesis, whereby BL Lacs are FR 1 radio galaxies viewed nearly along the jet axis. However, a possible problem with this model is that a transition population between beamed BL Lacs and unbeamed FR 1 galaxies has not been detected. A transition population of ``low-luminosity BL Lacs'' was predicted to exist in abundance in X-ray-selected samples such as the Einstein Extended Medium Sensitivity Survey (EMSS) by Browne & Marcha. However, these BL Lacs may have been misidentified as clusters of galaxies. We have conducted a search for such objects in the EMSS with the ROSAT High-Resolution Imager (HRI) here we present ROSAT HRI images, optical spectra, and VLA radio maps for a small number of BL Lacs that were previously misidentified in the EMSS catalog as clusters of galaxies. While these objects are slightly lower in luminosity than other EMSS BL Lacs, their properties are too similar to the other BL Lacs in the EMSS sample to ``bridge the gap'' between BL Lacs and FR 1 radio galaxies. Also, the number of new BL Lacs found is too low to alter significantly the X-ray luminosity function or value for the X-ray-selected EMSS BL Lac sample. Thus, these observations do not explain fully the discrepancy between the X-ray- and radio-selected BL Lac samples.

  17. Galaxies in the Illustris simulation as seen by the Sloan Digital Sky Survey - II. Size-luminosity relations and the deficit of bulge-dominated galaxies in Illustris at low mass

    NASA Astrophysics Data System (ADS)

    Bottrell, Connor; Torrey, Paul; Simard, Luc; Ellison, Sara L.

    2017-05-01

    The interpretive power of the newest generation of large-volume hydrodynamical simulations of galaxy formation rests upon their ability to reproduce the observed properties of galaxies. In this second paper in a series, we employ bulge+disc decompositions of realistic dust-free galaxy images from the Illustris simulation in a consistent comparison with galaxies from the Sloan Digital Sky Survey (SDSS). Examining the size-luminosity relations of each sample, we find that galaxies in Illustris are roughly twice as large and 0.7 mag brighter on average than galaxies in the SDSS. The trend of increasing slope and decreasing normalization of size-luminosity as a function of bulge fraction is qualitatively similar to observations. However, the size-luminosity relations of Illustris galaxies are quantitatively distinguished by higher normalizations and smaller slopes than for real galaxies. We show that this result is linked to a significant deficit of bulge-dominated galaxies in Illustris relative to the SDSS at stellar masses log M_{\\star }/M_{⊙}≲ 11. We investigate this deficit by comparing bulge fraction estimates derived from photometry and internal kinematics. We show that photometric bulge fractions are systematically lower than the kinematic fractions at low masses, but with increasingly good agreement as the stellar mass increases.

  18. Do stochastic inhomogeneities affect dark-energy precision measurements?

    PubMed

    Ben-Dayan, I; Gasperini, M; Marozzi, G; Nugier, F; Veneziano, G

    2013-01-11

    The effect of a stochastic background of cosmological perturbations on the luminosity-redshift relation is computed to second order through a recently proposed covariant and gauge-invariant light-cone averaging procedure. The resulting expressions are free from both ultraviolet and infrared divergences, implying that such perturbations cannot mimic a sizable fraction of dark energy. Different averages are estimated and depend on the particular function of the luminosity distance being averaged. The energy flux being minimally affected by perturbations at large z is proposed as the best choice for precision estimates of dark-energy parameters. Nonetheless, its irreducible (stochastic) variance induces statistical errors on Ω(Λ)(z) typically lying in the few-percent range.

  19. Simulating the assembly of galaxies at redshifts z = 6-12

    NASA Astrophysics Data System (ADS)

    Dayal, Pratika; Dunlop, James S.; Maio, Umberto; Ciardi, Benedetta

    2013-09-01

    We use state-of-the-art simulations to explore the physical evolution of galaxies in the first billion years of cosmic time. First, we demonstrate that our model reproduces the basic statistical properties of the observed Lyman-break galaxy (LBG) population at z = 6-8, including the evolving ultraviolet (UV) luminosity function (LF), the stellar mass density (SMD) and the average specific star-formation rates (sSFRs) of LBGs with MUV < -18 (AB mag). Encouraged by this success we present predictions for the behaviour of fainter LBGs extending down to MUV ≃ -15 (as will be probed with the James Webb Space Telescope) and have interrogated our simulations to try to gain insight into the physical drivers of the observed population evolution. We find that mass growth due to star formation in the mass-dominant progenitor builds up about 90 per cent of the total z ˜ 6 LBG stellar mass, dominating over the mass contributed by merging throughout this era. Our simulation suggests that the apparent `luminosity evolution' depends on the luminosity range probed: the steady brightening of the bright end of the LF is driven primarily by genuine physical luminosity evolution and arises due to a fairly steady increase in the UV luminosity (and hence star-formation rates) in the most massive LBGs; for example the progenitors of the z ≃ 6 galaxies with MUV < -18.5 comprised ≃90 per cent of the galaxies with MUV < -18 at z ≃ 7 and ≃75 per cent at z ≃ 8. However, at fainter luminosities the situation is more complex, due in part to the more stochastic star-formation histories of lower mass objects; the progenitors of a significant fraction of z ≃ 6 LBGs with MUV > -18 were in fact brighter at z ≃ 7 (and even at z ≃ 8) despite obviously being less massive at earlier times. At this end, the evolution of the UV LF involves a mix of positive and negative luminosity evolution (as low-mass galaxies temporarily brighten and then fade) coupled with both positive and negative density evolution (as new low-mass galaxies form, and other low-mass galaxies are consumed by merging). We also predict that the average sSFR of LBGs should rise from sSFR ≃ 4.5 Gyr- 1 at z ≃ 6 to sSFR ≃ 11 Gyr- 1 by z ≃ 9.

  20. The Tip of the Red Giant Branch as a Precision Distance Indicator: II. Computer Simulations

    NASA Technical Reports Server (NTRS)

    Madore, B.; Freedman, W.

    1993-01-01

    This paper presents an analysis of synthetic I versus color-magnitude diagrams of Population II systems to investigate the use of the observed discontinuity in the I-band luminosity function as a precicion primary distance indicator.

  1. QSO Narrow [OIII] Line Width and Host Galaxy Luminosity

    NASA Astrophysics Data System (ADS)

    Bonning, E. W.; Shields, G. A.; Salviander, S.

    2004-05-01

    Established correlations between galaxy bulge luminosity L, black hole mass MBH, and stellar velocity dispersion sigma in galaxies suggest a close relationship between the growth of supermassive black holes and their host galaxies. Measurements of the MBH - sigma relationship as a function of cosmic time may shed light on the origin of this relationship. One approach is to derive MBH and sigma from the widths of QSO broad and narrow lines, respectively (Shields et al. 2003, ApJ, 583, 124; Nelson 2000, ApJ, 544, L91). We investigate the utility of using the velocity of the narrow line emitting gas as a surrogate for stellar velocity dispersion in QSOs by examining host magnitudes and [OIII] line widths for low redshift QSOs. For our limited range of L, the increase in sigma with L predicted by the Faber-Jackson relation is substantially obscured by scatter. However, sigma([O III]) is consistent in the mean with host galaxy luminosity. EWB is a NASA GSRP fellow. GAS and SS are supported under Texas Advanced Research Program grant 003658-0177-2001 and NSF grant AST-0098594.

  2. Integral-moment analysis of the BATSE gamma-ray burst intensity distribution

    NASA Technical Reports Server (NTRS)

    Horack, John M.; Emslie, A. Gordon

    1994-01-01

    We have applied the technique of integral-moment analysis to the intensity distribution of the first 260 gamma-ray bursts observed by the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory. This technique provides direct measurement of properties such as the mean, variance, and skewness of the convolved luminosity-number density distribution, as well as associated uncertainties. Using this method, one obtains insight into the nature of the source distributions unavailable through computation of traditional single parameters such as V/V(sub max)). If the luminosity function of the gamma-ray bursts is strongly peaked, giving bursts only a narrow range of luminosities, these results are then direct probes of the radial distribution of sources, regardless of whether the bursts are a local phenomenon, are distributed in a galactic halo, or are at cosmological distances. Accordingly, an integral-moment analysis of the intensity distribution of the gamma-ray bursts provides for the most complete analytic description of the source distribution available from the data, and offers the most comprehensive test of the compatibility of a given hypothesized distribution with observation.

  3. GRB Diversity vs. Utility as Cosmological Probes

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; Scargle, J. D.; Bonnell, J. T.; Nemiroff, R. J.; Young, Richard E. (Technical Monitor)

    1997-01-01

    Recent detections of apparent gamma-ray burst (GRB) counterparts in optical and radio wavebands strongly favor the cosmological distance scale, at least for some GRBs, opening the possibility of GRBs serving as cosmological probes. But GRBs exhibit great diversity: in total duration; in number, width and pulse configuration; and in pulse and overall spectral evolution. However, it is possible that a portion of this behavior reflects a luminosity distribution, and possible that evolution of with cosmic time introduces dispersion into the average GRB characteristics -- issues analogous to those encountered with quasars. The temporal domain offers a rich avenue to investigate this problem. When corrected for assumed spectral redshift, time dilation of event durations, pulse widths, and intervals between pulses must yield the same time-dilation factor as a function of peak flux, or else a luminosity distribution may be the cause of observed time dilation effects. We describe results of burst analysis using an automated, Bayesian-based algorithm to determine burst temporal characteristics for different peak flux groups, and derived constraints on any physical process that would introduce a luminosity distribution.

  4. ATLAS DBM Module Qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soha, Aria; Gorisek, Andrej; Zavrtanik, Marko

    2014-06-18

    This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of Jozef Stefan Institute, CERN, and University of Toronto who have committed to participate in beam tests to be carried out during the 2014 Fermilab Test Beam Facility program. Chemical Vapour Deposition (CVD) diamond has a number of properties that make it attractive for high energy physics detector applications. Its large band-gap (5.5 eV) and large displacement energy (42 eV/atom) make it a material that is inherently radiation tolerant with very low leakage currents and high thermal conductivity. CVD diamond is beingmore » investigated by the RD42 Collaboration for use very close to LHC interaction regions, where the most extreme radiation conditions are found. This document builds on that work and proposes a highly spatially segmented diamond-based luminosity monitor to complement the time-segmented ATLAS Beam Conditions Monitor (BCM) so that, when Minimum Bias Trigger Scintillators (MTBS) and LUCID (LUminosity measurement using a Cherenkov Integrating Detector) have difficulty functioning, the ATLAS luminosity measurement is not compromised.« less

  5. Calibration of Post-AGB Supergiants as Standard Extragalactic Candles for HST

    NASA Technical Reports Server (NTRS)

    Bond, Howard E.

    1998-01-01

    This report summarizes activities carried out with support from the NASA Ultraviolet, Visible, and Gravitational Astrophysics Research and Analysis Program. The aim of the program is to calibrate the absolute magnitudes of post-asymptotic-giant-branch (post-AGB or PAGB) stars, which we believe will be an excellent new "standard candle" for measuring extragalactic distances. The reason for this belief is that in old populations, the stars that are evolving through the PAGB region of the HR (Hertzsprung-Russell) diagram arise from only a single main-sequence turnoff mass. In addition, the theoretical PAGB evolutionary tracks show that they evolve through this region at constant luminosity; hence the PAGB stars should have an extremely narrow luminosity function. Moreover, as the PAGB stars evolve through spectral types F and A (en route from the AGB to hot stellar remnants and white dwarfs), they have the highest luminosities attained by old stars (both bolometrically and in the visual band). Finally, the PAGB stars of these spectral types are very easily identified, due to their large Balmer jumps, which are due to their very low surface gravities.

  6. Exploring the Brighter-fatter Effect with the Hyper Suprime-Cam

    NASA Astrophysics Data System (ADS)

    Coulton, William R.; Armstrong, Robert; Smith, Kendrick M.; Lupton, Robert H.; Spergel, David N.

    2018-06-01

    The brighter-fatter effect has been postulated to arise due to the build up of a transverse electric field, produced as photocharges accumulate in the pixels’ potential wells. We investigate the brighter-fatter effect in the Hyper Suprime-Cam by examining flat fields and moments of stars. We observe deviations from the expected linear relation in the photon transfer curve (PTC), luminosity-dependent correlations between pixels in flat-field images, and a luminosity-dependent point-spread function (PSF) in stellar observations. Under the key assumptions of translation invariance and Maxwell’s equations in the quasi-static limit, we give a first-principles proof that the effect can be parameterized by a translationally invariant scalar kernel. We describe how this kernel can be estimated from flat fields and discuss how this kernel has been used to remove the brighter-fatter distortions in Hyper Suprime-Cam images. We find that our correction restores the expected linear relation in the PTCs and significantly reduces, but does not completely remove, the luminosity dependence of the PSF over a wide range of magnitudes.

  7. On the Mass and Luminosity Functions of Tidal Disruption Flares: Rate Suppression due to Black Hole Event Horizons

    NASA Astrophysics Data System (ADS)

    van Velzen, S.

    2018-01-01

    The tidal disruption of a star by a massive black hole is expected to yield a luminous flare of thermal emission. About two dozen of these stellar tidal disruption flares (TDFs) may have been detected in optical transient surveys. However, explaining the observed properties of these events within the tidal disruption paradigm is not yet possible. This theoretical ambiguity has led some authors to suggest that optical TDFs are due to a different process, such as a nuclear supernova or accretion disk instabilities. Here we present a test of a fundamental prediction of the tidal disruption event scenario: a suppression of the flare rate due to the direct capture of stars by the black hole. Using a recently compiled sample of candidate TDFs with black hole mass measurements, plus a careful treatment of selection effects in this flux-limited sample, we confirm that the dearth of observed TDFs from high-mass black holes is statistically significant. All the TDF impostor models we consider fail to explain the observed mass function; the only scenario that fits the data is a suppression of the rate due to direct captures. We find that this suppression can explain the low volumetric rate of the luminous TDF candidate ASASSN-15lh, thus supporting the hypothesis that this flare belongs to the TDF family. Our work is the first to present the optical TDF luminosity function. A steep power law is required to explain the observed rest-frame g-band luminosity, {dN}/{{dL}}g\\propto {L}g-2.5. The mean event rate of the flares in our sample is ≈ 1× {10}-4 galaxy‑1 yr‑1, consistent with the theoretically expected tidal disruption rate.

  8. Linking Dense Gas from the Milky Way to External Galaxies

    NASA Astrophysics Data System (ADS)

    Stephens, Ian W.; Jackson, James M.; Whitaker, J. Scott; Contreras, Yanett; Guzmán, Andrés E.; Sanhueza, Patricio; Foster, Jonathan B.; Rathborne, Jill M.

    2016-06-01

    In a survey of 65 galaxies, Gao & Solomon found a tight linear relation between the infrared luminosity (L IR, a proxy for the star formation rate) and the HCN(1-0) luminosity ({L}{{HCN}}). Wu et al. found that this relation extends from these galaxies to the much less luminous Galactic molecular high-mass star-forming clumps (˜1 pc scales), and posited that there exists a characteristic ratio L IR/{L}{{HCN}} for high-mass star-forming clumps. The Gao-Solomon relation for galaxies could then be explained as a summation of large numbers of high-mass star-forming clumps, resulting in the same L IR/{L}{{HCN}} ratio for galaxies. We test this explanation and other possible origins of the Gao-Solomon relation using high-density tracers (including HCN(1-0), N2H+(1-0), HCO+(1-0), HNC(1-0), HC3N(10-9), and C2H(1-0)) for ˜300 Galactic clumps from the Millimetre Astronomy Legacy Team 90 GHz (MALT90) survey. The MALT90 data show that the Gao-Solomon relation in galaxies cannot be satisfactorily explained by the blending of large numbers of high-mass clumps in the telescope beam. Not only do the clumps have a large scatter in the L IR/{L}{{HCN}} ratio, but also far too many high-mass clumps are required to account for the Galactic IR and HCN luminosities. We suggest that the scatter in the L IR/{L}{{HCN}} ratio converges to the scatter of the Gao-Solomon relation at some size-scale ≳1 kpc. We suggest that the Gao-Solomon relation could instead result from of a universal large-scale star formation efficiency, initial mass function, core mass function, and clump mass function.

  9. The Ages of the Thin Disk, Thick Disk, and the Halo from Nearby White Dwarfs

    NASA Astrophysics Data System (ADS)

    Kilic, Mukremin; Munn, Jeffrey A.; Harris, Hugh C.; von Hippel, Ted; Liebert, James W.; Williams, Kurtis A.; Jeffery, Elizabeth; DeGennaro, Steven

    2017-03-01

    We present a detailed analysis of the white dwarf luminosity functions derived from the local 40 pc sample and the deep proper motion catalog of Munn et al. Many previous studies have ignored the contribution of thick disk white dwarfs to the Galactic disk luminosity function, which results in an erroneous age measurement. We demonstrate that the ratio of thick/thin disk white dwarfs is roughly 20% in the local sample. Simultaneously fitting for both disk components, we derive ages of 6.8-7.0 Gyr for the thin disk and 8.7 ± 0.1 Gyr for the thick disk from the local 40 pc sample. Similarly, we derive ages of 7.4-8.2 Gyr for the thin disk and 9.5-9.9 Gyr for the thick disk from the deep proper motion catalog, which shows no evidence of a deviation from a constant star formation rate in the past 2.5 Gyr. We constrain the time difference between the onset of star formation in the thin disk and the thick disk to be {1.6}-0.4+0.3 Gyr. The faint end of the luminosity function for the halo white dwarfs is less constrained, resulting in an age estimate of {12.5}-3.4+1.4 Gyr for the Galactic inner halo. This is the first time that ages for all three major components of the Galaxy have been obtained from a sample of field white dwarfs that is large enough to contain significant numbers of disk and halo objects. The resultant ages agree reasonably well with the age estimates for the oldest open and globular clusters.

  10. Investigating the Luminous Environment of SDSS Data Release 4 Mg II Absorption Line Systems

    NASA Astrophysics Data System (ADS)

    Caler, Michelle A.; Ravi, Sheth K.

    2018-01-01

    We investigate the luminous environment within a few hundred kiloparsecs of 3760 Mg II absorption line systems. These systems lie along 3760 lines of sight to Sloan Digital Sky Survey (SDSS) Data Release 4 QSOs, have redshifts that range between 0.37 ≤ z ≤ 0.82, and have rest equivalent widths greater than 0.18 Å. We use the SDSS Catalog Archive Server to identify galaxies projected near 3 arcminutes of the absorbing QSO’s position, and a background subtraction technique to estimate the absolute magnitude distribution and luminosity function of galaxies physically associated with these Mg II absorption line systems. The Mg II absorption system sample is split into two parts, with the split occurring at rest equivalent width 0.8 Å, and the resulting absolute magnitude distributions and luminosity functions compared on scales ranging from 50 h-1 kpc to 880 h-1 kpc. We find that, on scales of 100 h-1 kpc and smaller, the two distributions differ: the absolute magnitude distribution of galaxies associated with systems of rest frame equivalent width ≥ 0.8 Å (2750 lines of sight) seems to be approximated by that of elliptical-Sa type galaxies, whereas the absolute magnitude distribution of galaxies associated with systems of rest frame equivalent width < 0.8 Å (1010 lines of sight) seems to be approximated by that of Sa-Sbc type galaxies. However, on larger scales greater than 200 h-1 kpc, both distributions are broadly consistent with that of elliptical-Sa type galaxies. We note that, in a broader context, these results represent an estimate of the bright end of the galaxy luminosity function at a median redshift of z ˜ 0.65.

  11. How Complete is Mid-Infrared Selection of Active Galactic Nuclei?

    NASA Astrophysics Data System (ADS)

    Grae Short, Miona; Diamond-Stanic, Aleks

    2015-01-01

    Essentially every galaxy hosts a supermassive black hole, and roughly 10% of those black holes are currently growing as active galactic nuclei (AGNs). Given the compelling evidence that galaxies and black holes co-evolve, there is strong motivation to study how black holes assemble their mass through cosmic time. However, this is challenging because a large fraction of black hole growth is enshrouded by gas and dust. Deep and wide surveys at X-ray and infrared wavelengths offer a powerful way to study the obscured AGN population, but an important caveat is that X-ray surveys are not complete for the most highly absorbed sources and infrared surveys are not able to distinguish low-luminosity AGNs from normal galaxies. To help address these outstanding issues and to analyze the completeness of mid-infrared AGN selection, we use Spitzer and WISE photometry to study the mid-infrared colors of a complete sample of local AGNs. The sample is drawn from the revised Shapley-Ames galaxy catalog and includes every galaxy in the sky brighter than B=13 that is known to host Seyfert activity. This sample is unique in its sensitivity to low-luminosity and highly obscured sources. Our main result is that most of these known AGNs would be classified as normal galaxies on the basis of their mid-infrared colors, implying that analogs to local Seyfert galaxies would not be identified as AGNs in existing surveys. We find that this a strong function of AGN luminosity, and we also present trends as a function of AGN obscuration, galaxy luminosity, and stellar mass. These results provide important insights into the AGN population that is missing from our census of black hole growth in the distant universe. This work was supported by the National Science Foundation's REU program through NSF Award AST-1004881. We also acknowledge support from The Grainger Foundation and from gifts made to the Department of Astronomy at UW-Madison.

  12. Quasar Spectral Energy Distributions As A Function Of Physical Property

    NASA Astrophysics Data System (ADS)

    Townsend, Shonda; Ganguly, R.; Stark, M. A.; Derseweh, J. A.; Richmond, J. M.

    2012-05-01

    Galaxy evolution models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). In turn, models of outflows have shown particular sensitivity to the shape of the spectral energy distribution (SED), depending on the UV luminosity to transfer momentum to the gas, the X-ray luminosity to regulate how efficiently that transfer can be, etc. To investigate how SED changes with physical properties, we follow up on Richards et al. (2006), who constructed SEDs with varying luminosity. Here, we construct SEDs as a function of redshift, and physical property (black hole mass, bolometric luminosity, Eddington ratio) for volume limited samples drawn from the Sloan Digital Sky Survey, with photometry supplemented from 2MASS, WISE, GALEX, ROSAT, and Chandra. To estimate black hole masses, we adopt the scaling relations from Greene & Ho (2005) based on the H-alpha emission line FWHM. This requires redshifts less than 0.4. To construct volume-limited subsamples, we begin by adopting g=19.8 as a nominal limiting magnitude over which we are guaranteed to detect z<0.4 quasars. At redshift 0.4, we are complete down to Mg=-21.8, which yields 3300 objects from Data Release 7. At z=0.1, we are complete down to Mg=-18.5. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the Astrophysics Data Analysis Program.

  13. X-rays across the galaxy population - I. Tracing the main sequence of star formation

    NASA Astrophysics Data System (ADS)

    Aird, J.; Coil, A. L.; Georgakakis, A.

    2017-03-01

    We use deep Chandra imaging to measure the distribution of X-ray luminosities (LX) for samples of star-forming galaxies as a function of stellar mass and redshift, using a Bayesian method to push below the nominal X-ray detection limits. Our luminosity distributions all show narrow peaks at LX ≲ 1042 erg s-1 that we associate with star formation, as opposed to AGN that are traced by a broad tail to higher LX. Tracking the luminosity of these peaks as a function of stellar mass reveals an 'X-ray main sequence' with a constant slope ≈0.63 ± 0.03 over 8.5 ≲ log {M}_{ast }/M_{⊙} ≲ 11.5 and 0.1 ≲ z ≲ 4, with a normalization that increases with redshift as (1 + z)3.79 ± 0.12. We also compare the peak X-ray luminosities with UV-to-IR tracers of star formation rates (SFRs) to calibrate the scaling between LX and SFR. We find that LX ∝ SFR0.83 × (1 + z)1.3, where the redshift evolution and non-linearity likely reflect changes in high-mass X-ray binary populations of star-forming galaxies. Using galaxies with a broader range of SFR, we also constrain a stellar-mass-dependent contribution to LX, likely related to low-mass X-ray binaries. Using this calibration, we convert our X-ray main sequence to SFRs and measure a star-forming main sequence with a constant slope ≈0.76 ± 0.06 and a normalization that evolves with redshift as (1 + z)2.95 ± 0.33. Based on the X-ray emission, there is no evidence for a break in the main sequence at high stellar masses, although we cannot rule out a turnover given the uncertainties in the scaling of LX to SFR.

  14. X-ray clusters from a high-resolution hydrodynamic PPM simulation of the cold dark matter universe

    NASA Technical Reports Server (NTRS)

    Bryan, Greg L.; Cen, Renyue; Norman, Michael L.; Ostriker, Jermemiah P.; Stone, James M.

    1994-01-01

    A new three-dimensional hydrodynamic code based on the piecewise parabolic method (PPM) is utilized to compute the distribution of hot gas in the standard Cosmic Background Explorer (COBE)-normalized cold dark matter (CDM) universe. Utilizing periodic boundary conditions, a box with size 85 h(exp-1) Mpc, having cell size 0.31 h(exp-1) Mpc, is followed in a simulation with 270(exp 3)=10(exp 7.3) cells. Adopting standard parameters determined from COBE and light-element nucleosynthesis, Sigma(sub 8)=1.05, Omega(sub b)=0.06, we find the X-ray-emitting clusters, compute the luminosity function at several wavelengths, the temperature distribution, and estimated sizes, as well as the evolution of these quantities with redshift. The results, which are compared with those obtained in the preceding paper (Kang et al. 1994a), may be used in conjuction with ROSAT and other observational data sets. Overall, the results of the two computations are qualitatively very similar with regard to the trends of cluster properties, i.e., how the number density, radius, and temeprature depend on luminosity and redshift. The total luminosity from clusters is approximately a factor of 2 higher using the PPM code (as compared to the 'total variation diminishing' (TVD) code used in the previous paper) with the number of bright clusters higher by a similar factor. The primary conclusions of the prior paper, with regard to the power spectrum of the primeval density perturbations, are strengthened: the standard CDM model, normalized to the COBE microwave detection, predicts too many bright X-ray emitting clusters, by a factor probably in excess of 5. The comparison between observations and theoretical predictions for the evolution of cluster properties, luminosity functions, and size and temperature distributions should provide an important discriminator among competing scenarios for the development of structure in the universe.

  15. Remarks on the maximum luminosity

    NASA Astrophysics Data System (ADS)

    Cardoso, Vitor; Ikeda, Taishi; Moore, Christopher J.; Yoo, Chul-Moon

    2018-04-01

    The quest for fundamental limitations on physical processes is old and venerable. Here, we investigate the maximum possible power, or luminosity, that any event can produce. We show, via full nonlinear simulations of Einstein's equations, that there exist initial conditions which give rise to arbitrarily large luminosities. However, the requirement that there is no past horizon in the spacetime seems to limit the luminosity to below the Planck value, LP=c5/G . Numerical relativity simulations of critical collapse yield the largest luminosities observed to date, ≈ 0.2 LP . We also present an analytic solution to the Einstein equations which seems to give an unboundedly large luminosity; this will guide future numerical efforts to investigate super-Planckian luminosities.

  16. Hard X-Ray Emission and the Ionizing Source in LINERs

    NASA Technical Reports Server (NTRS)

    Terashima, Yuichi; Ho, Luis C.; Ptak, Andrew F.

    2000-01-01

    We report X-ray fluxes in the 2-10 keV band from LINERs (low-ionization nuclear emission-line regions) and low-luminosity Seyfert galaxies obtained with the ASCA satellite. Observed X-ray luminosities are in the range between 4 x 10(exp 39) and 5 x 10(exp 41) ergs/s, which are significantly smaller than that of the "classical" low-luminosity Seyfert 1 galaxy NGC 4051. We found that X-ray luminosities in 2-10 keV of LINERs with broad H.alpha emission in their optical spectra (LINER 1s) are proportional to their Ha luminosities. This correlation strongly supports the hypothesis that the dominant ionizing source in LINER 1s is photoionization by hard photons from low-luminosity AGNs. On the other hand, the X-ray luminosities of most LINERs without broad H.alpha emission (LINER 2s) in our sample are lower than LINER 1s at a given H.alpha luminosity. The observed X-ray luminosities in these objects are insufficient to power their H.alpha luminosities, suggesting that their primary ionizing source is other than an AGN, or that an AGN, if present, is obscured even at energies above 2 keV.

  17. Optimizing integrated luminosity of future hadron colliders

    NASA Astrophysics Data System (ADS)

    Benedikt, Michael; Schulte, Daniel; Zimmermann, Frank

    2015-10-01

    The integrated luminosity, a key figure of merit for any particle-physics collider, is closely linked to the peak luminosity and to the beam lifetime. The instantaneous peak luminosity of a collider is constrained by a number of boundary conditions, such as the available beam current, the maximum beam-beam tune shift with acceptable beam stability and reasonable luminosity lifetime (i.e., the empirical "beam-beam limit"), or the event pileup in the physics detectors. The beam lifetime at high-luminosity hadron colliders is largely determined by particle burn off in the collisions. In future highest-energy circular colliders synchrotron radiation provides a natural damping mechanism, which can be exploited for maximizing the integrated luminosity. In this article, we derive analytical expressions describing the optimized integrated luminosity, the corresponding optimum store length, and the time evolution of relevant beam parameters, without or with radiation damping, while respecting a fixed maximum value for the total beam-beam tune shift or for the event pileup in the detector. Our results are illustrated by examples for the proton-proton luminosity of the existing Large Hadron Collider (LHC) at its design parameters, of the High-Luminosity Large Hadron Collider (HL-LHC), and of the Future Circular Collider (FCC-hh).

  18. Testing and Improving the Luminosity Relations for Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Collazzi, Andrew C.

    2012-01-01

    Gamma Ray Bursts (GRBs) have several luminosity relations where a measurable property of a burst light curve or spectrum is correlated with the burst luminosity. These luminosity relations are calibrated for the fraction of bursts with spectroscopic redshifts and hence the known luminosities. GRBs have thus become known as a type of "standard candle” where standard candle is meant in the usual sense that luminosities can be derived from measurable properties of the bursts. GRBs can therefore be used for the same cosmology applications as Type Ia supernovae, including the construction of the Hubble Diagram and measuring massive star formation rate. The greatest disadvantage of using GRBs as standard candles is that their accuracy is lower than desired. With the recent advent of GRBs as a new standard candle, every effort must be made to test and improve the distance measures. Here, methods are employed to do just that. First, generalized forms of two tests are performed on the luminosity relations. All the luminosity relations pass one of these tests, and all but two pass the other. Even with this failure, redundancies in using multiple luminosity relations allows all the luminosity relations to retain value. Next, the "Firmani relation” is shown to have poorer accuracy than first advertised. It is also shown to be derivable from two other luminosity relations. For these reasons, the Firmani relation is useless for cosmology. The Amati relation is then revisited and shown to be an artifact of a combination of selection effects. Therefore, the Amati relation is also not good for cosmology. Fourthly, the systematic errors involved in measuring a luminosity indicator (Epeak) are measured. The result is an irreducible systematic error of 28%. Finally, the work concludes with a discussion about the impact of the work and the future of GRB luminosity relations.

  19. Galactic X-ray emission from pulsars

    NASA Technical Reports Server (NTRS)

    Harding, A. K.

    1981-01-01

    The contribution of pulsars to the gamma-ray flux from the galactic plane is examined using data from the most recent pulsar surveys. It is assumed that pulsar gamma-rays are produced by curvature radiation from relativistic particles above the polar cap and attenuated by pair production in the strong magnetic and electric fields. Assuming that all pulsars produce gamma-rays in this way, their luminosities can be predicted as a function of period and magnetic field strength. Using the distribution of pulsars in the galaxy as determined from data on 328 pulsars detected in three surveys, the local gamma-ray production spectrum, the longitude profile, and the latitude profile of pulsar gamma-ray flux are calculated. The largest sources of uncertainty in the size of the pulsar contribution are the value of the mean interstellar electron density, the turnover in the pulsar radio luminosity function, and the average pulsar magnetic field strength. A present estimate is that pulsars contribute from 15 to 20 % of the total flux of gamma-rays from the galactic plane.

  20. Does the galaxy-halo connection vary with environment?

    NASA Astrophysics Data System (ADS)

    Dragomir, Radu; Rodríguez-Puebla, Aldo; Primack, Joel R.; Lee, Christoph T.

    2018-05-01

    (Sub)halo abundance matching (SHAM) assumes that one (sub) halo property, such as mass Mvir or peak circular velocity Vpeak, determines properties of the galaxy hosted in each (sub) halo such as its luminosity or stellar mass. This assumption implies that the dependence of galaxy luminosity functions (GLFs) and the galaxy stellar mass function (GSMF) on environmental density is determined by the corresponding halo density dependence. In this paper, we test this by determining from a Sloan Digital Sky Survey sample the observed dependence with environmental density of the ugriz GLFs and GSMF for all galaxies, and for central and satellite galaxies separately. We then show that the SHAM predictions are in remarkable agreement with these observations, even when the galaxy population is divided between central and satellite galaxies. However, we show that SHAM fails to reproduce the correct dependence between environmental density and g - r colour for all galaxies and central galaxies, although it better reproduces the colour dependence on environmental density of satellite galaxies.

  1. Generalized image contrast enhancement technique based on Heinemann contrast discrimination model

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Nodine, Calvin F.

    1994-03-01

    This paper presents a generalized image contrast enhancement technique which equalizes perceived brightness based on the Heinemann contrast discrimination model. This is a modified algorithm which presents an improvement over the previous study by Mokrane in its mathematically proven existence of a unique solution and in its easily tunable parameterization. The model uses a log-log representation of contrast luminosity between targets and the surround in a fixed luminosity background setting. The algorithm consists of two nonlinear gray-scale mapping functions which have seven parameters, two of which are adjustable Heinemann constants. Another parameter is the background gray level. The remaining four parameters are nonlinear functions of gray scale distribution of the image, and can be uniquely determined once the previous three are given. Tests have been carried out to examine the effectiveness of the algorithm for increasing the overall contrast of images. It can be demonstrated that the generalized algorithm provides better contrast enhancement than histogram equalization. In fact, the histogram equalization technique is a special case of the proposed mapping.

  2. Warm Dark Matter and Cosmic Reionization

    DOE PAGES

    Villanueva-Domingo, Pablo; Gnedin, Nickolay Y.; Mena, Olga

    2018-01-10

    In models with dark matter made of particles with keV masses, such as a sterile neutrino, small-scale density perturbations are suppressed, delaying the period at which the lowest mass galaxies are formed and therefore shifting the reionization processes to later epochs. In this study, focusing on Warm Dark Matter (WDM) with masses close to its present lower bound, i.e., around the 3 keV region, we derive constraints from galaxy luminosity functions, the ionization history and the Gunn–Peterson effect. We show that even if star formation efficiency in the simulations is adjusted to match the observed UV galaxy luminosity functions in bothmore » CDM and WDM models, the full distribution of Gunn–Peterson optical depth retains the strong signature of delayed reionization in the WDM model. Furthermore, until the star formation and stellar feedback model used in modern galaxy formation simulations is constrained better, any conclusions on the nature of dark matter derived from reionization observables remain model-dependent.« less

  3. Warm Dark Matter and Cosmic Reionization

    NASA Astrophysics Data System (ADS)

    Villanueva-Domingo, Pablo; Gnedin, Nickolay Y.; Mena, Olga

    2018-01-01

    In models with dark matter made of particles with keV masses, such as a sterile neutrino, small-scale density perturbations are suppressed, delaying the period at which the lowest mass galaxies are formed and therefore shifting the reionization processes to later epochs. In this study, focusing on Warm Dark Matter (WDM) with masses close to its present lower bound, i.e., around the 3 keV region, we derive constraints from galaxy luminosity functions, the ionization history and the Gunn–Peterson effect. We show that even if star formation efficiency in the simulations is adjusted to match the observed UV galaxy luminosity functions in both CDM and WDM models, the full distribution of Gunn–Peterson optical depth retains the strong signature of delayed reionization in the WDM model. However, until the star formation and stellar feedback model used in modern galaxy formation simulations is constrained better, any conclusions on the nature of dark matter derived from reionization observables remain model-dependent.

  4. IRAS far-infrared colours of normal stars

    NASA Technical Reports Server (NTRS)

    Waters, L. B. F. M.; Cote, J.; Aumann, H. H.

    1987-01-01

    The analysis of IRAS observations at 12, 25, 60 and 100 microns of bright stars of spectral type O to M is presented. The objective is to identify the 'normal' stellar population and to characterize it in terms of the relationships between (B-V) and (V-/12/), between (R-I) and (V-/12/), and as a function of spectral type and luminosity class. A well-defined relation is found between the color of normal stars in the visual (B-V), (R-I) and in the IR, which does not depend on luminosity class. Using the (B-V), (V-/12/) relation for normal stars, it is found that B and M type stars show a large fraction of deviating stars, mostly with IR excess that is probably caused by circumstellar material. A comparison of IRAS colors with the Johnson colors as a function of spectral type shows good agreement except for the K0 to M5 type stars. The results will be useful in identifying the deviating stars detected with IRAS.

  5. Warm Dark Matter and Cosmic Reionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villanueva-Domingo, Pablo; Gnedin, Nickolay Y.; Mena, Olga

    In models with dark matter made of particles with keV masses, such as a sterile neutrino, small-scale density perturbations are suppressed, delaying the period at which the lowest mass galaxies are formed and therefore shifting the reionization processes to later epochs. In this study, focusing on Warm Dark Matter (WDM) with masses close to its present lower bound, i.e., around the 3 keV region, we derive constraints from galaxy luminosity functions, the ionization history and the Gunn–Peterson effect. We show that even if star formation efficiency in the simulations is adjusted to match the observed UV galaxy luminosity functions in bothmore » CDM and WDM models, the full distribution of Gunn–Peterson optical depth retains the strong signature of delayed reionization in the WDM model. Furthermore, until the star formation and stellar feedback model used in modern galaxy formation simulations is constrained better, any conclusions on the nature of dark matter derived from reionization observables remain model-dependent.« less

  6. The evolution of the intergalactic medium and the origin of the galaxy luminosity function

    NASA Technical Reports Server (NTRS)

    Valls-Gabaud, David; Blanchard, Alain; Mamon, Gary

    1993-01-01

    The coupling of the Press and Schechter prescription with the CDM scenario and the Hoyle-Rees-Ostriker cooling criterion leads to a galaxy formation scenario in which galaxies are overproduced by a large factor. Although star formation might be suppressed in the smaller halos, a large amount of energy per galactic mass is needed to account for the present number density of galaxies. The evolution of the intergalactic medium (IGM) provides a simple criterion to prevent galaxy formation without requiring feedback, since halos with small virial temperatures are not able to retain the infalling hot gas of the IGM. If the ionizing background has decreased since z is approximately 1 - 2, then this criterion explains the slope of the luminosity function at the faint end. In addition, this scenario predicts two populations of dwarf galaxies, well differentiated in age, gas content, stellar populations, and clustering properties, which can be identified with dE and dIm galaxies.

  7. Formation and evolution of dwarf elliptical galaxies. I. Structural and kinematical properties

    NASA Astrophysics Data System (ADS)

    de Rijcke, S.; Michielsen, D.; Dejonghe, H.; Zeilinger, W. W.; Hau, G. K. T.

    2005-08-01

    This paper is the first in a series in which we present the results of an ESO Large Program on the kinematics and internal dynamics of dwarf elliptical galaxies (dEs). We obtained deep major and minor axis spectra of 15 dEs and broad-band imaging of 22 dEs. Here, we investigate the relations between the parameters that quantify the structure (B-band luminosity L_B, half-light radius R_e, and mean surface brightness within the half-light radius Ie = LB / 2 π R_e^2) and internal dynamics (velocity dispersion σ) of dEs. We confront predictions of the currently popular theories for dE formation and evolution with the observed position of dEs in log LB vs. log σ, log LB vs. log R_e, log LB vs. log I_e, and log Re vs. log Ie diagrams and in the (log σ,log R_e,log I_e) parameter space in which bright and intermediate-luminosity elliptical galaxies and bulges of spirals define a Fundamental Plane (FP). In order to achieve statistical significance and to cover a parameter interval that is large enough for reliable inferences to be made, we merge the data set presented in this paper with two other recently published, equally large data sets. We show that the dE sequences in the various univariate diagrams are disjunct from those traced by bright and intermediate-luminosity elliptical galaxies and bulges of spirals. It appears that semi-analytical models (SAMs) that incorporate quiescent star formation with an essentially z-independent star-formation efficiency, combined with post-merger starbursts and the dynamical response after supernova-driven gas-loss, are able to reproduce the position of the dEs in the various univariate diagrams. SAMs with star-formation efficiencies that rise as a function of redshift are excluded since they leave the observed sequences traced by dEs virtually unpopulated. dEs tend to lie above the FP and the FP residual declines as a function of luminosity. Again, models that take into account the response after supernova-driven mass-loss correctly predict the position of dEs in the (log σ,log R_e,log I_e) parameter space as well as the trend of the FP residual as a function of luminosity. While these findings are clearly a success for the hierarchical-merging picture of galaxy formation, they do not necessarily invalidate the alternative “harassment” scenario, which posits that dEs stem from perturbed and stripped late-type disk galaxies that entered clusters and groups of galaxies about 5 Gyr ago.

  8. Infrared Detection of Very Low Mass Stars.

    NASA Astrophysics Data System (ADS)

    Probst, Ronald George

    We present in this thesis a review of very-low -mass ((TURN)0.1 M(,0)) star research, and results of two observational programs directed at the photometric detection of low mass binary companions in the infrared. Present theoretical desiderata are model atmospheres for very cool dwarf stars and determination of the minimum protostellar mass with all relevant physics included. Luminosities for these stars are well determined, but the effective temperature scale is uncertain and abundance analyses are lacking. Masses are known for very few, and with large relative errors. The luminosity function for M(,v) > 13 is very uncertain. Astrometric methods provide at present the only means of detecting very low mass objects in significant numbers. Completion of the near-star parallax catalogue and measurement of additional low-mass binaries are important observational programs. The potential of photometric selection of red dwarf binaries is explored in Chapter II. Separation of binaries from single stars by color anomalies alone is found impractical. Detection by overluminosity in the HR diagram is hampered by the intrinsic spread of the field star population. However, we find that application of both kinematic and photometric criteria allows binaries to be detected with only moderate contamination by single stars; we discuss several binary suspects selected in this way. Our approach uses an infrared bandpass to provide temperature resolution in the color baseline, and we present JHK photometry for 60 stars, including recent parallax stars with M(,v)>14. We examine the status of the least luminous stars; there is no conclusive evidence that they are not hydrogen-burning objects. Chapter III presents a survey of (TURN)100 white dwarfs at 2 (mu) for infrared excess indicative of low -luminosity cool companions. White dwarf-red dwarf composites are detectable by infared color anomalies down to M(,v)(TURN)21 for the red dwarf component, and our survey is complete to absolute magnitudes on this level. Candidates for astrometric mass determination are suggested. Several stars are found to be composites containing an accretion disk or a hot subdwarf + dK secondary. We find very few new low-luminosity companions to normal white dwarfs. This does not appear to be a selection effect, nor is there reason to believe that all parent systems have been altered or destroyed in the mass loss phase. Our strongly negative result constrains the luminosity function for red dwarf companions to decline steeply past M(,v) (DBLTURN) 13. This may reflect a general decline in the initial mass function for star formation, or a failure of systems with large mass ratios to form or remain bound in the parent star-forming regions.

  9. A STUDY OF RO-VIBRATIONAL OH EMISSION FROM HERBIG Ae/Be STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brittain, Sean D.; Reynolds, Nickalas; Najita, Joan R.

    2016-10-20

    We present a study of ro-vibrational OH and CO emission from 21 disks around Herbig Ae/Be stars. We find that the OH and CO luminosities are proportional over a wide range of stellar ultraviolet luminosities. The OH and CO line profiles are also similar, indicating that they arise from roughly the same radial region of the disk. The CO and OH emission are both correlated with the far-ultraviolet luminosity of the stars, while the polycyclic aromatic hydrocarbon (PAH) luminosity is correlated with the longer wavelength ultraviolet luminosity of the stars. Although disk flaring affects the PAH luminosity, it is notmore » a factor in the luminosity of the OH and CO emission. These properties are consistent with models of UV-irradiated disk atmospheres. We also find that the transition disks in our sample, which have large optically thin inner regions, have lower OH and CO luminosities than non-transition disk sources with similar ultraviolet luminosities. This result, while tentative given the small sample size, is consistent with the interpretation that transition disks lack a gaseous disk close to the star.« less

  10. Millisecond pulsars and the Galactic Center gamma-ray excess: the importance of luminosity function and secondary emission

    NASA Astrophysics Data System (ADS)

    Petrović, Jovana; Serpico, Pasquale D.; Zaharijas, Gabrijela

    2015-02-01

    Several groups of authors have analyzed Fermi LAT data in a region around the Galactic Center finding an unaccounted gamma-ray excess over diffuse backgrounds in the GeV energy range. It has been argued that it is difficult or even impossible to explain this diffuse emission by the leading astrophysical candidates—millisecond pulsars (MSPs). Here we provide a new estimate of the contribution to the excess by a population of yet unresolved MSP located in the bulge of the Milky Way. We simulate this population with the GALPLOT package by adopting a parametric approach, with the range of free parameters gauged on the MSP characteristics reported by the second pulsar catalogue (2PC). We find that the conclusions strongly depend on the details of the MSP luminosity function (in particular, its high luminosity end) and other explicit or tacit assumptions on the MSP statistical properties, which we discuss. Notably, for the first time we study the importance of the possible secondary emission of the MSPs in the Galactic Center, i.e. the emission via inverse Compton losses of electrons injected in the interstellar medium. Differently from a majority of other authors, we find that within current uncertainties a large if not dominant contribution of MSPs to the excess cannot be excluded. We also show that the sensitivities of future instruments or possibly already of the latest LAT data analysis (Pass 8) provide good perspectives to test this scenario by resolving a significant number of MSPs.

  11. Star Formation Rate Distribution in the Galaxy NGC 1232

    NASA Astrophysics Data System (ADS)

    Araújo de Souza, Alexandre; Martins, Lucimara P.; Rodríguez-Ardila, Alberto; Fraga, Luciano

    2018-06-01

    NGC 1232 is a face-on spiral galaxy and a great laboratory for the study of star formation due to its proximity. We obtained high spatial resolution Hα images of this galaxy, with adaptive optics, using the SAM instrument at the SOAR telescope, and used these images to study its H II regions. These observations allowed us to produce the most complete H II region catalog for it to date, with a total of 976 sources. This doubles the number of H II regions previously found for this object. We used these data to construct the H II luminosity function, and obtained a power-law index lower than the typical values found for Sc galaxies. This shallower slope is related to the presence of a significant number of high-luminosity H II regions (log L > 39 dex). We also constructed the size distribution function, verifying that, as for most galaxies, NGC 1232 follows an exponential law. We also used the Hα luminosity to calculate the star formation rate. An extremely interesting fact about this galaxy is that X-ray diffuse observations suggest that NGC 1232 recently suffered a collision with a dwarf galaxy. We found an absence of star formation around the region where the X-ray emission is more intense, which we interpret as a star formation quenching due to the collision. Along with that, we found an excess of star-forming regions in the northeast part of the galaxy, where the X-ray emission is less intense.

  12. The Reliability of [c II] as a Star Formation Rate Indicator

    NASA Astrophysics Data System (ADS)

    De Looze, Ilse; Baes, Maarten; Fritz, Jacopo; Bendo, George J.; Cortese, Luca

    2011-08-01

    We present a calibration of the star formation rate (SFR) as a function of the [C II] 157.74 μ m luminosity for a sample of 24 star-forming galaxies in the nearby universe. In order to calibrate the SFR against the line luminosity, we rely on both GALEX FUV data, which is an ideal tracer of the unobscured star formation, and Spitzer MIPS 24 μ m, to probe the dust-enshrouded fraction of star formation. For this sample of normal star-forming galaxies, the [C II] luminosity correlates well with the star formation rate. However, the extension of this relation to more quiescent (Hα EW ≤ 10 Å) or ultra luminous galaxies (L TIR ≥ 1012 L⊙) should be handled with caution, since these objects show a non-linearity in the L [C II]-to-L FIR ratio as a function of L FIR (and thus, their star formation activity). Two possible scenarios can be invoked to explain the tight correlation between the [C II] emission and the star formation activity on a global galaxy-scale. The first interpretation could be that the [C II] emission from photo dissociation regions arises from the immediate surroundings of actively star-forming regions and contributes a more or less constant fraction on a global galaxy-scale. Alternatively, we consider the possibility that the [C II] emission is associated to the cold interstellar medium, which advocates an indirect link with the star formation activity in a galaxy through the Schmidt law.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisz, Daniel R.; Johnson, Benjamin D.; Conroy, Charlie, E-mail: drw@ucsc.edu

    We present a new technique to estimate the evolution of the very faint end of the UV luminosity function (LF) out to z ∼ 5. Measured star formation histories (SFHs) from the fossil record of Local Group (LG) galaxies are used to reconstruct the LF down to M {sub UV} ∼–5 at z ∼ 5 and M {sub UV} ∼–1.5 at z < 1. Such faint limits are well beyond the current observational limits and are likely to remain beyond the limits of next-generation facilities. The reconstructed LFs, when combined with direct measurements of the LFs at higher luminosity, aremore » well-fit by a standard Schechter function with no evidence of a break to the faintest limits probed by this technique. The derived faint-end slope, α, steepens from ≈ – 1.2 at z < 1 to ≈ – 1.6 at 4 < z < 5. We test the effects of burstiness in the SFHs and find the recovered LFs to be only modestly affected. Incompleteness corrections for the faintest LG galaxies and the (unlikely) possibility of significant luminosity-dependent destruction of dwarf galaxies between high redshift and the present epoch are important uncertainties. These and other uncertainties can be mitigated with more detailed modeling and future observations. The reconstructed faint end LF from the fossil record can therefore be a powerful and complementary probe of the high-redshift faint galaxies believed to play a key role in the reionization of the universe.« less

  14. A New Catalog of H II Regions in M31

    NASA Astrophysics Data System (ADS)

    Azimlu, M.; Marciniak, R.; Barmby, P.

    2011-10-01

    We present a new catalog of H II regions in M31. The full disk of the galaxy (~24 kpc from the galaxy center) is covered in a 2.2 deg2 mosaic of 10 fields observed with the Mosaic Camera on the Mayall 4 m telescope as part of the Local Group Galaxies survey. We used HIIphot, a code for automated photometry of H II regions, to identify the regions and measure their fluxes and sizes. A 10σ detection level was used to exclude diffuse gas fluctuations and star residuals after continuum subtraction. That selection limit may result in missing some faint H II regions, but our catalog of 3691 H II regions is still complete to a luminosity of L Hα = 1034 erg s-1. This is five times fainter than the only previous CCD-based study which contained 967 objects in the NE half of M31. We determined the Hα luminosity function (LF) by fitting a power law to luminosities larger than L Hα = 1036.7 and determined a slope of 2.52 ± 0.07. The in-arm and inter-arm LFs peak at different luminosities but they have similar bright-end slopes. The inter-arm regions are less populated (40% of total detected regions) and constitute only 14% of the total luminosity of L Hα = 5.6 × 1040 erg s-1 (after extinction correction and considering 65% contribution from diffused ionized gas). A star formation rate of 0.44 M sun yr-1 was estimated from the Hα total luminosity; this value is consistent with the determination from the Spitzer 8 μm image. We removed all known and potential planetary nebulae, yet we found a double-peaked LF. The inter-arm older population suggests a starburst between 15 and 20 million years ago. This result is in agreement with UV studies of the star formation history in M31 which found a star formation rate decrease in the recent past. We found a fair spatial correlation between the H II regions and stellar clusters in selected star-forming regions. Most of the matched regions lie within the arm regions.

  15. The X-Ray Luminosity-Mass Relation for Local Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Stanek, R.; Evrard, A. E.; Böhringer, H.; Schuecker, P.; Nord, B.

    2006-09-01

    We investigate the relationship between soft X-ray luminosity and mass for low-redshift clusters of galaxies by comparing observed number counts and scaling laws to halo-based expectations of ΛCDM cosmologies. We model the conditional likelihood of halo luminosity as a lognormal distribution of fixed width, centered on a scaling relation, L~Mpρsc(z), and consider two values for s, appropriate for self-similar evolution or no evolution. Convolving with the halo mass function, we compute expected counts in redshift and flux that, after appropriate survey effects are included, we compare to REFLEX survey data. Counts alone provide only an upper limit on the scatter in mass at fixed luminosity, σlnM<0.4. We argue that the observed, intrinsic variance in the temperature-luminosity relation is directly indicative of mass-luminosity variance and derive σlnM=0.43+/-0.06 from HIFLUGCS data. When added to the likelihood analysis, we derive values p=1.59+/-0.05, lnL15,0=1.34+/-0.09, and σlnM=0.37+/-0.05 for self-similar redshift evolution in a concordance (Ωm=0.3, ΩΛ=0.7, σ8=0.9) universe. The present-epoch intercept is sensitive to power spectrum normalization, L15,0~σ-48, and the slope is weakly sensitive to the matter density, p~Ω1/2m. We find a substantially (factor 2) dimmer intercept and slightly steeper slope than the values published using hydrostatic mass estimates of the HIFLUGCS sample and show that a Malmquist bias of the X-ray flux-limited sample accounts for this effect. In light of new WMAP constraints, we discuss the interplay between parameters and sources of systematic error and offer a compromise model with Ωm=0.24, σ8=0.85, and somewhat lower scatter σlnM=0.25, in which hydrostatic mass estimates remain accurate to ~15%. We stress the need for independent calibration of the L-M relation via weak gravitational lensing.

  16. High levels of absorption in orientation-unbiased, radio-selected 3CR Active Galaxies

    NASA Astrophysics Data System (ADS)

    Wilkes, Belinda J.; Haas, Martin; Barthel, Peter; Leipski, Christian; Kuraszkiewicz, Joanna; Worrall, Diana; Birkinshaw, Mark; Willner, Steven P.

    2014-08-01

    A critical problem in understanding active galaxies (AGN) is the separation of intrinsic physical differences from observed differences that are due to orientation. Obscuration of the active nucleus is anisotropic and strongly frequency dependent leading to complex selection effects for observations in most wavebands. These can only be quantified using a sample that is sufficiently unbiased to test orientation effects. Low-frequency radio emission is one way to select a close-to orientation-unbiased sample, albeit limited to the minority of AGN with strong radio emission.Recent Chandra, Spitzer and Herschel observations combined with multi-wavelength data for a complete sample of high-redshift (1 24.2) = 2.5:1.4:1 in these high-luminosity (log L(0.3-8keV) ~ 44-46) sources. These ratios are consistent with current expectations based on modelingthe Cosmic X-ray Background. A strong correlation with radio orientation constrains the geometry of the obscuring disk/torus to have a ~60 degree opening angle and ~12 degree Compton-thick cross-section. The deduced ~50% obscured fraction of the population contrasts with typical estimates of ~20% obscured in optically- and X-ray-selected high-luminosity samples. Once the primary nuclear emission is obscured, AGN X-ray spectra are frequently dominated by unobscured non-nuclear or scattered nuclear emission which cannot be distinguished from direct nuclear emission with a lower obscuration level unless high quality data is available. As a result, both the level of obscuration and the estimated instrinsic luminosities of highly-obscured AGN are likely to be significantly (*10-1000) underestimated for 25-50% of the population. This may explain the lower obscured fractions reported for optical and X-ray samples which have no independent measure of the AGN luminosity. Correcting AGN samples for these underestimated luminosities would result in flatter derived luminosity functions and potentially change their evolution.

  17. Luminosity Classes of M-Stars in the SAO Catalogue

    NASA Astrophysics Data System (ADS)

    Robertson, T. H.

    1986-08-01

    A list of potential M dwarf stars was compiled from a magnetic-tape version of the Smithsonian Astrophysical Observatory star catalogue (SAO) (Smithsonian Astrophysical Observatory 1966) using an assumed thickness of 600 pc for the galactic plane as suggested by Nunez and Figueras (1983). Calculations of the number of M stars brighter than various limiting magnitudes based on known luminosity functions of dwarf and giant M stars show that the vast majority of sample stars are probably M giant stars rather than M dwarf stars having low transverse velocities. Analyses of the distribution in galactic longitude and latitude as well as the kinematic properties of this sample and of data from other published sources supporting this conclusion are also presented.

  18. Structure and kinematics of the broad-line regions in active galaxies from IUE variability data

    NASA Technical Reports Server (NTRS)

    Koratkar, Anuradha P.; Gaskell, C. Martin

    1991-01-01

    IUE archival data are used here to investigate the structure nad kinematics of the broad-line regions (BLRs) in nine AGN. It is found that the centroid of the line-continuum cross-correlation functions (CCFs) can be determined with reasonable reliability. The errors in BLR size estimates from CCFs for irregularly sampled light curves are fairly well understood. BLRs are found to have small luminosity-weighted radii, and lines of high ionization tend to be emitted closer to the central source than lines of low ionization, especially for low-luminosity objects. The motion of the gas is gravity-dominated with both pure inflow and pure outflow of high-velocity gas being excluded at a high confidence level for certain geometries.

  19. On the derivation of selection functions from redshift survey data

    NASA Technical Reports Server (NTRS)

    Strauss, Michael A.; Yahil, Amos; Davis, Marc

    1991-01-01

    A previously unrecognized effect is described in the derivation of luminosity functions and selection functions from existing redshift survey data, due to binning of quoted magnitudes and diameters. Corrections are made for this effect in the Center for Astrophysics (CfA) and Southern Sky (SSRS) Redshift Surveys. The correction makes subtle but systematic changes in the derived density fields of the CfA survey, especially within 2000 km/s of the Local Group. The effect on the density field of the SSRS survey is negligible.

  20. EPISODIC ACCRETION AT EARLY STAGES OF EVOLUTION OF LOW-MASS STARS AND BROWN DWARFS: A SOLUTION FOR THE OBSERVED LUMINOSITY SPREAD IN H-R DIAGRAMS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baraffe, I.; Chabrier, G.; Gallardo, J.

    2009-09-01

    We present evolutionary models for young low-mass stars and brown dwarfs taking into account episodic phases of accretion at early stages of the evolution, a scenario supported by recent large surveys of embedded protostars. An evolution including short episodes of vigorous accretion followed by longer quiescent phases can explain the observed luminosity spread in H-R diagrams of star-forming regions at ages of a few Myr, for objects ranging from a few Jupiter masses to a few tenths of a solar mass. The gravitational contraction of these accreting objects strongly departs from the standard Hayashi track at constant T{sub eff}. Themore » best agreement with the observed luminosity scatter is obtained if most of the accretion shock energy is radiated away. The obtained luminosity spread at 1 Myr in the H-R diagram is equivalent to what can be misinterpreted as an {approx}10 Myr age spread for non-accreting objects. We also predict a significant spread in radius at a given T{sub eff}, as suggested by recent observations. These calculations bear important consequences for our understanding of star formation and early stages of evolution and on the determination of the initial mass function for young ({<=} a few Myr) clusters. Our results also show that the concept of a stellar birthline for low-mass objects has no valid support.« less

  1. MEASURING LENSING MAGNIFICATION OF QUASARS BY LARGE SCALE STRUCTURE USING THE VARIABILITY-LUMINOSITY RELATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Anne H.; Seitz, Stella; Jerke, Jonathan

    2011-05-10

    We introduce a technique to measure gravitational lensing magnification using the variability of type I quasars. Quasars' variability amplitudes and luminosities are tightly correlated, on average. Magnification due to gravitational lensing increases the quasars' apparent luminosity, while leaving the variability amplitude unchanged. Therefore, the mean magnification of an ensemble of quasars can be measured through the mean shift in the variability-luminosity relation. As a proof of principle, we use this technique to measure the magnification of quasars spectroscopically identified in the Sloan Digital Sky Survey (SDSS), due to gravitational lensing by galaxy clusters in the SDSS MaxBCG catalog. The Palomar-QUESTmore » Variability Survey, reduced using the DeepSky pipeline, provides variability data for the sources. We measure the average quasar magnification as a function of scaled distance (r/R{sub 200}) from the nearest cluster; our measurements are consistent with expectations assuming Navarro-Frenk-White cluster profiles, particularly after accounting for the known uncertainty in the clusters' centers. Variability-based lensing measurements are a valuable complement to shape-based techniques because their systematic errors are very different, and also because the variability measurements are amenable to photometric errors of a few percent and to depths seen in current wide-field surveys. Given the volume data of the expected from current and upcoming surveys, this new technique has the potential to be competitive with weak lensing shear measurements of large-scale structure.« less

  2. Do You See What I See? Exploring the Consequences of Luminosity Limits in Black Hole-Galaxy Evolution Studies

    NASA Astrophysics Data System (ADS)

    Jones, Mackenzie L.; Hickox, Ryan C.; Mutch, Simon J.; Croton, Darren J.; Ptak, Andrew F.; DiPompeo, Michael A.

    2017-07-01

    In studies of the connection between active galactic nuclei (AGNs) and their host galaxies, there is widespread disagreement on some key aspects of the connection. These disagreements largely stem from a lack of understanding of the nature of the full underlying AGN population. Recent attempts to probe this connection utilize both observations and simulations to correct for a missed population, but presently are limited by intrinsic biases and complicated models. We take a simple simulation for galaxy evolution and add a new prescription for AGN activity to connect galaxy growth to dark matter halo properties and AGN activity to star formation. We explicitly model selection effects to produce an “observed” AGN population for comparison with observations and empirically motivated models of the local universe. This allows us to bypass the difficulties inherent in models that attempt to infer the AGN population by inverting selection effects. We investigate the impact of selecting AGNs based on thresholds in luminosity or Eddington ratio on the “observed” AGN population. By limiting our model AGN sample in luminosity, we are able to recreate the observed local AGN luminosity function and specific star formation-stellar mass distribution, and show that using an Eddington ratio threshold introduces less bias into the sample by selecting the full range of growing black holes, despite the challenge of selecting low-mass black holes. We find that selecting AGNs using these various thresholds yield samples with different AGN host galaxy properties.

  3. Lost but not forgotten: intracluster light in galaxy groups and clusters

    NASA Astrophysics Data System (ADS)

    DeMaio, Tahlia; Gonzalez, Anthony H.; Zabludoff, Ann; Zaritsky, Dennis; Connor, Thomas; Donahue, Megan; Mulchaey, John S.

    2018-03-01

    With Hubble Space Telescope imaging, we investigate the progenitor population and formation mechanisms of the intracluster light (ICL) for 23 galaxy groups and clusters at 0.29 ≤ z ≤ 0.89. The colour gradients of the BCG+ICL become bluer with increasing radius out to 53-100 kpc for all but one system, suggesting that violent relaxation after major mergers with the BCG cannot be the dominant source of ICL. The BCG+ICL luminosities and stellar masses are too large for the ICL stars to come from the dissolution of dwarf galaxies alone, given the observed evolution of the faint end of the cluster galaxy luminosity function, implying instead that the ICL grows from the stripping of more massive galaxies. Using the colours of cluster members from the CLASH high-mass sample, we place conservative lower limits on the luminosities of galaxies from which the ICL at r < 100 kpc could originate via stripping. We find that the ICL at 100 kpc has a colour similar to a 1010.0 M⊙ galaxy and that 75 per cent of the total BCG+ICL luminosity at r < 100 kpc is consistent with originating in galaxies with L > 0.2 L* (log(M★ [M⊙])>10.4), assuming conservatively that these galaxies are completely disrupted. We conclude that the tidal stripping of massive galaxies is the likely source of the intracluster light from 10 to 100 kpc for galaxy groups and clusters.

  4. Space Density of Optically Selected Type 2 Quasars

    NASA Astrophysics Data System (ADS)

    Reyes, Reinabelle; Zakamska, Nadia L.; Strauss, Michael A.; Green, Joshua; Krolik, Julian H.; Shen, Yue; Richards, Gordon T.; Anderson, Scott F.; Schneider, Donald P.

    2008-12-01

    Type 2 quasars are luminous active galactic nuclei whose central regions are obscured by large amounts of gas and dust. In this paper, we present a catalog of type 2 quasars from the Sloan Digital Sky Survey, selected based on their optical emission lines. The catalog contains 887 objects with redshifts z < 0.83; this is 6 times larger than the previous version and is by far the largest sample of type 2 quasars in the literature. We derive the [O III]5007 luminosity function (LF) for 108.3 L sun < L [O III] < 1010 L sun (corresponding to intrinsic luminosities up to M[2500 Å] ~= -28 mag or bolometric luminosities up to 4 × 1047 erg s-1). This LF provides robust lower limits to the actual space density of obscured quasars due to our selection criteria, the details of the spectroscopic target selection, and other effects. We derive the equivalent LF for the complete sample of type 1 (unobscured) quasars and determine the ratio of type 2 to type 1 quasar number densities. Our data constrain this ratio to be at least ~1.5:1 for 108.3 L sun < L [O III] < 109.5 L sun at z < 0.3, and at least ~1.2:1 for L [O III] ~ 1010 L sun at 0.3 < z < 0.83. Type 2 quasars are at least as abundant as type 1 quasars in the relatively nearby universe (z <~ 0.8) for the highest luminosities.

  5. Accretion geometry in the persistent Be/X-ray binary RXJ0440.9+4431

    NASA Astrophysics Data System (ADS)

    Ferrigno, C.; Farinelli, R.; Bozzo, E.; Pottschmidt, K.; Klochkov, D.; Kretschmar, P.

    2014-01-01

    The persistent Be/X-ray binary RXJ0440.9+4431 flared in 2010 and 2011 and has been followed by various X-ray facilities (Swift, RXTE, XMM-Newton, and INTEGRAL). We studied the source timing and spectral properties as a function of its X-ray luminosity to investigate the transition from normal to flaring activity. The source spectrum can always be described by a bulk-motion Comptonization model of black body seed photons attenuated by a moderate photoelectric absorption. At the highest luminosity, we measured a curvature of the spectrum, which we attribute to a significant contribution of the radiation pressure in the accretion process. This allows us to estimate that the transition from a bulk-motion-dominated flow to a radiatively dominated one happens at a luminosity of ~ 2 × 1036 erg s-1. The luminosity dependency of the size of the black body emission region is found to be rBB ∝ LX0.39±0.02. This suggests that either matter accreting onto the neutron star hosted in RXJ0440.9+4431 penetrates through closed magnetic field lines at the border of the compact object magnetosphere or that the size of the black-body emitting hotspot is larger than the footprint of the accretion column. This phenomenon can be due to illumination of the surface by a growing column or by a a structure of the neutron star magnetic field more complicated than a simple dipole at least close to the surface.

  6. Computational Modeling Basis in the Photostress Recovery Model (PREMO)

    DTIC Science & Technology

    2014-09-01

    classes of filters, for radial frequency selectivity and for orientation selectivity. Our current implementation accounts for the radial frequency...glare function and its attribution to the components of ocular scatter. Chairman’s Report CIE TC 1-18, Commission de l’Eclairage. 14. Watson, A...radiometric to photometric units to account for the differential spectral sensitivity of the eye. The spectral luminosity function for photopic vision is

  7. The Low-Mass Stellar Initial Mass Function: Ultra-Faint Dwarf Galaxies Revisited

    NASA Astrophysics Data System (ADS)

    Platais, Imants

    2017-08-01

    The stellar Initial Mass Function plays a critical role in the evolution of the baryonic content of the Universe. The form of the low-mass IMF - stars of mass less than the solar mass - determines the fraction of baryons locked up for a Hubble time, and thus indicates how gas and metals are cycled through galaxies. Inferences from resolved stellar populations, where the low-mass luminosity function and associated IMF can be derived from direct star counts, generally favor an invariant and universal IMF. However, a recent study of ultra-faint dwarf galaxies Hercules and Leo IV indicates a bottom-lite IMF, over a narrow range of stellar mass (only 0.55-0.75 M_sun), correlated with the internal velocity dispersion and/or metallicity. We propose to obtain ultra-deep imaging for a significantly closer ultra-faint dwarf, Bootes I, which will allow us to construct the luminosity function down to M_v=+10 (equivalent to 0.35 solar mass). We will also re-analyze the HST archival observations for the Hercules and Leo IV dwarfs using the same updated techniques as for Bootes I. The combined datasets should provide a reliable answer to the question of how variable is the low-mass stellar IMF.

  8. Galaxy And Mass Assembly (GAMA): bivariate functions of Hα star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Gunawardhana, M. L. P.; Hopkins, A. M.; Taylor, E. N.; Bland-Hawthorn, J.; Norberg, P.; Baldry, I. K.; Loveday, J.; Owers, M. S.; Wilkins, S. M.; Colless, M.; Brown, M. J. I.; Driver, S. P.; Alpaslan, M.; Brough, S.; Cluver, M.; Croom, S.; Kelvin, L.; Lara-López, M. A.; Liske, J.; López-Sánchez, A. R.; Robotham, A. S. G.

    2015-02-01

    We present bivariate luminosity and stellar mass functions of Hα star-forming galaxies drawn from the Galaxy And Mass Assembly (GAMA) survey. While optically deep spectroscopic observations of GAMA over a wide sky area enable the detection of a large number of 0.001 < SFRHα (M⊙ yr-1) < 100 galaxies, the requirement for an Hα detection in targets selected from an r-band magnitude-limited survey leads to an incompleteness due to missing optically faint star-forming galaxies. Using z < 0.1 bivariate distributions as a reference we model the higher-z distributions, thereby approximating a correction for the missing optically faint star-forming galaxies to the local star formation rate (SFR) and M densities. Furthermore, we obtain the r-band luminosity functions (LFs) and stellar mass functions of Hα star-forming galaxies from the bivariate LFs. As our sample is selected on the basis of detected Hα emission, a direct tracer of ongoing star formation, this sample represents a true star-forming galaxy sample, and is drawn from both photometrically classified blue and red subpopulations, though mostly from the blue population. On average 20-30 per cent of red galaxies at all stellar masses are star forming, implying that these galaxies may be dusty star-forming systems.

  9. Luminosity correlations in quasars

    NASA Technical Reports Server (NTRS)

    Chanan, G. A.

    1983-01-01

    Simulations are conducted with and without flux thresholds in an investigation of quasar luminosity correlations by means of a Monte Carlo analysis, for various model distributions of quasars in X-rays and optical luminosity. For the case where the X-ray photons are primary, an anticorrelation between X-ray-to-optical luminosity ratio and optical luminosity arises as a natural consequence which resembles observations. The low optical luminosities of X-ray selected quasars can be understood as a consequence of the same effect, and similar conclusions may hold if the X-ray and optical luminosities are determined independently by a third parameter, although they do not hold if the optical photons are primary. The importance of such considerations is demonstrated through a reanalysis of the published X-ray-to-optical flux ratios for the 3CR sample.

  10. Clustering of quasars in SDSS-IV eBOSS: study of potential systematics and bias determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurent, Pierre; Goff, Jean-Marc Le; Burtin, Etienne

    2017-07-01

    We study the first year of the eBOSS quasar sample in the redshift range 0.9< z <2.2 which includes 68,772 homogeneously selected quasars. We show that the main source of systematics in the evaluation of the correlation function arises from inhomogeneities in the quasar target selection, particularly related to the extinction and depth of the imaging data used for targeting. We propose a weighting scheme that mitigates these systematics. We measure the quasar correlation function and provide the most accurate measurement to date of the quasar bias in this redshift range, b {sub Q} = 2.45 ± 0.05 at z-barmore » =1.55, together with its evolution with redshift. We use this information to determine the minimum mass of the halo hosting the quasars and the characteristic halo mass, which we find to be both independent of redshift within statistical error. Using a recently-measured quasar-luminosity-function we also determine the quasar duty cycle. The size of this first year sample is insufficient to detect any luminosity dependence to quasar clustering and this issue should be further studied with the final ∼500,000 eBOSS quasar sample.« less

  11. Coronal Activity in the R CrA T Association

    NASA Technical Reports Server (NTRS)

    Patten, Brian M.; Oliversen, Ronald J. (Technical Monitor)

    2005-01-01

    Brian Patten is the Principal Investigator of the NASA ROSS-ADP project Coronal Activity in the R CrA T Association. For this project we have extracted net counts and variability information for all of the X-ray sources found in 23 archival ROSAT PSPC and HRI images in the region of the R CrA T association. These data have been merged with an extensive database of optical and near-infrared photometry, optical spectroscopy, and parallax data. These data have been used to (1) identify new association members and clarify the membership status of a number of previously suspected members of the association, and (2) derive, for the first time, an accurate coronal luminosity function for the T Tauri members of this T association and make direct comparisons between the coronal luminosity functions for other T associations and those of large clusters. We have used our survey data to assess (a) the importance of the star-formation environment in initial coronal activity levels, (b) the effects of PMS evolution on dynamo activity as a function of mass and age, and (c) the level of contamination by field post-T Tauri stars on association membership surveys.

  12. Clustering of quasars in SDSS-IV eBOSS: study of potential systematics and bias determination

    NASA Astrophysics Data System (ADS)

    Laurent, Pierre; Eftekharzadeh, Sarah; Le Goff, Jean-Marc; Myers, Adam; Burtin, Etienne; White, Martin; Ross, Ashley J.; Tinker, Jeremy; Tojeiro, Rita; Bautista, Julian; Brinkmann, Jonathan; Comparat, Johan; Dawson, Kyle; du Mas des Bourboux, Hélion; Kneib, Jean-Paul; McGreer, Ian D.; Palanque-Delabrouille, Nathalie; Percival, Will J.; Prada, Francisco; Rossi, Graziano; Schneider, Donald P.; Weinberg, David; Yèche, Christophe; Zarrouk, Pauline; Zhao, Gong-Bo

    2017-07-01

    We study the first year of the eBOSS quasar sample in the redshift range 0.9

  13. Mining the Infrared Sky for High-Redshift Quasars

    NASA Astrophysics Data System (ADS)

    Richards, Gordon

    The Spitzer and WISE satellites have opened up new avenues for the study of active galactic nuclei (AGN) by peering through the dust shrouding half (or more) of AGNs. However, despite being more sensitive to shrouded AGNs, current selection methods being used in the mid-IR are still largely blind to the highest redshift quasars-both those that are shrouded and those that are not (and should therefore be easy to find). We describe projects to identify both unobscured (at z>3) and obscured quasars (at z>2) that have heretofore been missed in significant numbers. Finding the high-z obscured quasars in large numbers is crucial for fulfilling the legacy of NASA missions in the IR and X-ray. With these quasars we will be able to perform clustering analyses that break the degeneracy of models describing how black holes can ``feed back" energy to the large-scale host galaxy, significantly influencing its evolution. We will further trace the luminosity function of galaxies undergoing active accretion from low-luminosity AGNs to luminous quasars—probing the growth of the supermassive black holes that we see today in the local universe. Our new insights come about from leveraging new Spitzer data, primarily from the PI's SpitzerIRAC Equatorial Survey (SpIES). The Spitzer data are 2.5 magnitudes deeper than the "AllWISE" survey in a 125 square degree, multiwavelength-rich, equatorial region known as SDSS "Stripe 82". These data are crucial for extending mid-IR investigations to higher redshifts, both for unobscured and obscured sources. The PI's team are among the world's experts in using the proposed machine learning techniques to find both unobscured (type-1) and obscured (type- 2) quasars and in using quasar clustering and luminosity functions to do cutting-edge science. The luminosity function and clustering algorithms are already in place, allowing for timely completion of this project once the multi-wavelength NASA data have been incorporated. This project is directly relevant to our understanding of the evolution of galaxies and to NASA's goal of better understanding the Universe. Moreover, NASA's data archive is crucial to the project: it is only by using data from Spitzer and WISE that will allow us to more fully understand the physics of quasars—by probing them at epochs where they are both most difficult to find, but also the most influential.

  14. Evidence for different accretion regimes in GRO J1008-57

    NASA Astrophysics Data System (ADS)

    Kühnel, Matthias; Fürst, Felix; Pottschmidt, Katja; Kreykenbohm, Ingo; Ballhausen, Ralf; Falkner, Sebastian; Rothschild, Richard E.; Klochkov, Dmitry; Wilms, Jörn

    2017-11-01

    We present a comprehensive spectral analysis of the BeXRB GRO J1008-57 over a luminosity range of three orders of magnitude using NuSTAR, Suzaku, and RXTE data. We find significant evolution of the spectral parameters with luminosity. In particular, the photon index hardens with increasing luminosity at intermediate luminosities in the range 1036-1037 erg s-1. This evolution is stable and repeatedly observed over different outbursts. However, at the extreme ends of the observed luminosity range, we find that the correlation breaks down, with a significance level of at least 3.7σ. We conclude that these changes indicate transitions to different accretion regimes, which are characterized by different deceleration processes, such as Coulomb or radiation breaking. We compare our observed luminosity levels of these transitions to theoretical predications and discuss the variation of those theoretical luminosity values with fundamental neutron star parameters. Finally, we present detailed spectroscopy of the unique "triple peaked" outburst in 2014/15 which does not fit in the general parameter evolution with luminosity. The pulse profile on the other hand is consistent with what is expected at this luminosity level, arguing against a change in accretion geometry. In summary, GRO J1008-57 is an ideal target to study different accretion regimes due to the well-constrained evolution of its broad-band spectral continuum over several orders of magnitude in luminosity.

  15. Characterizing the evolving K -band luminosity function using the UltraVISTA, CANDELS and HUDF surveys

    NASA Astrophysics Data System (ADS)

    Mortlock, Alice; McLure, Ross J.; Bowler, Rebecca A. A.; McLeod, Derek J.; Mármol-Queraltó, Esther; Parsa, Shaghayegh; Dunlop, James S.; Bruce, Victoria A.

    2017-02-01

    We present the results of a new study of the K-band galaxy luminosity function (KLF) at redshifts z ≤ 3.75, based on a nested combination of the UltraVISTA, Cosmic Assembly Near-infrared Deep Legacy Extragalactic Survey and HUDF surveys. The large dynamic range in luminosity spanned by this new data set (3-4 dex over the full redshift range) is sufficient to clearly demonstrate for the first time that the faint-end slope of the KLF at z ≥ 0.25 is relatively steep (-1.3 ≤ α ≤ -1.5 for a single Schechter function), in good agreement with recent theoretical and phenomenological models. Moreover, based on our new data set, we find that a double Schechter function provides a significantly improved description of the KLF at z ≤ 2. At redshifts z ≥ 0.25, the evolution of the KLF is remarkably smooth, with little or no evolution evident at faint (MK ≥ -20.5) or bright magnitudes (MK ≤ -24.5). Instead, the KLF is seen to evolve rapidly at intermediate magnitudes, with the number density of galaxies at MK ≃-23 dropping by a factor of ≃5 over the redshift interval 0.25 ≤ z ≤ 3.75. Motivated by this, we explore a simple description of the evolving KLF based on a double Schechter function with fixed faint-end slopes (α1 = -0.5, α2 = -1.5) and a shared characteristic magnitude (MK^{star }). According to this parametrization, the normalization of the component which dominates the faint end of the KLF remains approximately constant, with φ ^{star }2 decreasing by only a factor of ≃2 between z ≃0 and 3.25. In contrast, the component which dominates the bright end of the KLF at low redshifts evolves dramatically, becoming essentially negligible by z ≃3. Finally, we note that within this parametrization, the observed evolution of MK^{star } between z ≃0 and 3.25 is entirely consistent with MK^{star } corresponding to a constant stellar mass of M⋆ ≃5 × 1010 M⊙ at all redshifts.

  16. Solar diameter measurements for study of Sun climate coupling

    NASA Technical Reports Server (NTRS)

    Hill, H. A.

    1983-01-01

    Changes in solar shape and diameter were detected as a possible probe of variability in solar luminosity, an important climatic driving function. A technique was designed which will allow the calibration of the telescope field, providing a scale for long-term comparison of these and future measurements.

  17. Detection of the Red Giant Branch Stars in the M82 Using the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Madore, B.; Sakai, S.

    1999-01-01

    We present color-magnitude diagrams and luminosity functions or stars in two halo regions of the irregular galaxy in M82, based on F555W and F814W photometry taken with the Hubble Space Telescope and Wide Field Planetary Camera 2.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokosawa, A.

    The first polarized collider where we collide 250-GeV/c beams of 70% polarized protons at high luminosity is under construction. This will allow a determination of the nucleon spin-dependent structure functions over a large range in x and a collection of sufficient W and Z events to investigate extremely interesting spin-related phenomena.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokosawa, A.

    The first polarized collider where one collides 250-GeV/c beams of 70% polarized protons at high luminosity is under construction. This will allow a determination of the nucleon spin-dependent structure functions over a large range in x and a collection of sufficient W and Z events to investigate extremely interesting spin-related phenomena.

  20. The WISSH quasars project. II. Giant star nurseries in hyper-luminous quasars

    NASA Astrophysics Data System (ADS)

    Duras, F.; Bongiorno, A.; Piconcelli, E.; Bianchi, S.; Pappalardo, C.; Valiante, R.; Bischetti, M.; Feruglio, C.; Martocchia, S.; Schneider, R.; Vietri, G.; Vignali, C.; Zappacosta, L.; La Franca, F.; Fiore, F.

    2017-08-01

    Context. Studying the coupling between the energy output produced by the central quasar and the host galaxy is fundamental to fully understand galaxy evolution. Quasar feedback is indeed supposed to dramatically affect the galaxy properties by depositing large amounts of energy and momentum into the interstellar medium (ISM). Aims: In order to gain further insights on this process, we study the spectral energy distributions (SEDs) of sources at the brightest end of the quasar luminosity function, for which the feedback mechanism is assumed to be at its maximum, given their high efficiency in driving powerful outflows. Methods: We modelled the rest-frame UV-to-far-IR SEDs of 16 WISE-SDSS Selected Hyper-luminous (WISSH) quasars at 1.8 < z < 4.6 based on SDSS, 2MASS, WISE and Herschel/SPIRE data. Through an accurate SED-fitting procedure, we separate the different emission components by deriving physical parameters of both the nuclear component (I.e. bolometric and monochromatic luminosities) and the host galaxy (I.e. star formation rate, mass, and temperature of the cold dust). We also use a radiative transfer code to account for the contribution of the quasar-related emission to the far-IR fluxes. Results: Most SEDs are well described by a standard combination of accretion disc plus torus and cold dust emission. However, about 30% of SEDs require an additional emission component in the near-IR, with temperatures peaking at 750 K, which indicates that a hotter dust component is present in these powerful quasars. We measure extreme values of both AGN bolometric luminosity (LBOL > 1047 erg/s) and star formation rate (up to 2000 M⊙/yr) based on the quasar-corrected, IR luminosity of the host galaxy. A new relation between quasar and star formation luminosity is derived (LSF ∝ L0.73QSO) by combining several Herschel-detected quasar samples from z 0 to 4. WISSH quasars have masses ( 108M⊙) and temperatures ( 50 K) of cold dust in agreement with those found for other high-z IR luminous quasars. Conclusions: Thanks to their extreme nuclear and star formation luminosities, the WISSH quasars are ideal targets to shed light on the feedback mechanism and its effect on the evolution of their host galaxies, as well as on the merger-induced scenario that is commonly assumed to explain these exceptional luminosities. Future observations will be crucial to measure the molecular gas content in these systems, probe the effect between quasar-driven outflows and on-going star formation, and reveal merger signatures in their host galaxies.

  1. Why stars become red giants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Applegate, J.H.

    1988-06-01

    It is shown that a radiative envelope in which the Kramers opacity law holds cannot transport a luminosity larger than a critical value, and it is argued that the transition to red giant structure is triggered by the star's luminosity exceeding the critical value. If the Kramers law is used for all temperatures and densities, the radius of the star diverges as the critical luminosity is approached. In real stars the radiative envelope expands as the luminosity increases until the star intersects the Hayashi track. Once on the Hayashi track, luminosities in excess of the critical luminosity can be accommodatedmore » by forcing most of the mass of the envelope into the convection zone. 17 references.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokosawa, A.

    The first polarized collider, where we collide 250 GeV/c beams of 70% polarized protons at high luminosity, is under construction. This will allow a determination of the nuclear spin-dependent structure functions over a large range in x, and a collection of sufficient W and Z events to investigate extremely interesting spin-related phenomena. For these measurements, two major RHIC detectors will be used simultaneously whose functions are complimentary. Expected event rates given in this paper are for the STAR detector.

  3. Chemical modelling of glycolaldehyde and ethylene glycol in star-forming regions

    NASA Astrophysics Data System (ADS)

    Coutens, A.; Viti, S.; Rawlings, J. M. C.; Beltrán, M. T.; Holdship, J.; Jiménez-Serra, I.; Quénard, D.; Rivilla, V. M.

    2018-04-01

    Glycolaldehyde (HOCH2CHO) and ethylene glycol ((CH2OH)2) are two complex organic molecules detected in the hot cores and hot corinos of several star-forming regions. The ethylene glycol/glycolaldehyde abundance ratio seems to show an increase with the source luminosity. In the literature, several surface-chemistry formation mechanisms have been proposed for these two species. With the UCLCHEM chemical code, we explored the different scenarios and compared the predictions for a range of sources of different luminosities with the observations. None of the scenarios reproduce perfectly the trend. A better agreement is, however, found for a formation through recombination of two HCO radicals followed by successive hydrogenations. The reaction between HCO and CH2OH could also contribute to the formation of glycolaldehyde in addition to the hydrogenation pathway. The predictions are improved when a trend of decreasing H2 density within the core region with T≥100 K as a function of luminosity is included in the model. Destruction reactions of complex organic molecules in the gas phase would also need to be investigated, since they can affect the abundance ratios once the species have desorbed in the warm inner regions of the star-forming regions.

  4. Diffuse γ-ray emission from misaligned active galactic nuclei

    DOE PAGES

    Di Mauro, M.; Calore, F.; Donato, F.; ...

    2013-12-20

    Active galactic nuclei (AGNs) with jets seen at small viewing angles are the most luminous and abundant objects in the γ-ray sky. AGNs with jets misaligned along the line of sight appear fainter in the sky but are more numerous than the brighter blazars. Here, we calculate the diffuse γ-ray emission due to the population of misaligned AGNs (MAGNs) unresolved by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Furthermore, a correlation between the γ-ray luminosity and the radio-core luminosity is established and demonstrated to be physical by statistical tests, as well as compatible with uppermore » limits based on Fermi-LAT data for a large sample of radio-loud MAGNs. We constrain the derived γ-ray luminosity function by means of the source-count distribution of the radio galaxies detected by the Fermi-LAT. We finally calculate the diffuse γ-ray flux due to the whole MAGN population. These results demonstrate that MAGNs can contribute from 10% up to nearly the entire measured isotropic gamma-ray background. We evaluate a theoretical uncertainty on the flux of almost an order of magnitude.« less

  5. Extrasolar comets: The origin of dust in exozodiacal disks?

    NASA Astrophysics Data System (ADS)

    Marboeuf, U.; Bonsor, A.; Augereau, J.-C.

    2016-11-01

    Comets have been invoked in numerous studies as a potentially important source of dust and gas around stars, but none has studied the thermo-physical evolution, out-gassing rate, and dust ejection of these objects in such stellar systems. In this paper we investigate the thermo-physical evolution of comets in exo-planetary systems in order to provide valuable theoretical data required to interpret observations of gas and dust. We use a quasi-3D model of cometary nucleus to study the thermo-physical evolution of comets evolving around a single star from 0.1 to 50 AU, whose homogeneous luminosity varies from 0.1 to 70L⊙. This paper provides thermal evolution, physical alteration, mass ejection, lifetimes, and the rate of dust and water gas mass productions for comets as a function of the distance to the star and stellar luminosity. Results show significant physical changes to comets at high stellar luminosities. The mass loss per revolution and the lifetime of comets depend on their initial size, orbital parameters and follow a power law with stellar luminosity. The models are presented in such a manner that they can be readily applied to any planetary system. By considering the examples of the Solar System, Vega and HD 69830, we show that dust grains released from sublimating comets have the potential to create the observed (exo)zodiacal emission. We show that observations can be reproduced by 1 to 2 massive comets or by a large number of comets whose orbits approach close to the star. Our conclusions depend on the stellar luminosity and the uncertain lifetime of the dust grains. We find, as in previous studies, that exozodiacal dust disks can only survive if replenished by a population of typically sized comets renewed from a large and cold reservoir of cometary bodies beyond the water ice line. These comets could reach the inner regions of the planetary system following scattering by a (giant) planet.

  6. The clustering amplitude of X-ray-selected AGN at z ˜ 0.8: evidence for a negative dependence on accretion luminosity

    NASA Astrophysics Data System (ADS)

    Mountrichas, G.; Georgakakis, A.; Menzel, M.-L.; Fanidakis, N.; Merloni, A.; Liu, Z.; Salvato, M.; Nandra, K.

    2016-04-01

    The northern tile of the wide-area and shallow XMM-XXL X-ray survey field is used to estimate the average dark matter halo mass of relatively luminous X-ray-selected active galactic nucleus (AGN) [log {L}_X (2-10 keV)= 43.6^{+0.4}_{-0.4} erg s^{-1}] in the redshift interval z = 0.5-1.2. Spectroscopic follow-up observations of X-ray sources in the XMM-XXL field by the Sloan telescope are combined with the VIMOS Public Extragalactic Redshift Survey spectroscopic galaxy survey to determine the cross-correlation signal between X-ray-selected AGN (total of 318) and galaxies (about 20 000). We model the large scales (2-25 Mpc) of the correlation function to infer a mean dark matter halo mass of log M / (M_{{⊙}} h^{-1}) = 12.50 ^{+0.22} _{-0.30} for the X-ray-selected AGN sample. This measurement is about 0.5 dex lower compared to estimates in the literature of the mean dark matter halo masses of moderate-luminosity X-ray AGN [LX(2-10 keV) ≈ 1042-1043 erg s- 1] at similar redshifts. Our analysis also links the mean clustering properties of moderate-luminosity AGN with those of powerful ultraviolet/optically selected QSOs, which are typically found in haloes with masses few times 1012 M⊙. There is therefore evidence for a negative luminosity dependence of the AGN clustering. This is consistent with suggestions that AGN have a broad dark matter halo mass distribution with a high mass tail that becomes subdominant at high accretion luminosities. We further show that our results are in qualitative agreement with semi-analytic models of galaxy and AGN evolution, which attribute the wide range of dark matter halo masses among the AGN population to different triggering mechanisms and/or black hole fuelling modes.

  7. Liners and Low Luminosity AGN in the ROSAT Database

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; West, Donald K. (Technical Monitor)

    2003-01-01

    This program has led to a series of papers being written and published in the Astrophysical Journal. Together these papers try to explain major parts of the LINER and low luminosity AGN puzzle. One paper ('Accretion Disk Instabilities, Cold Dark Matter Models, and Their Role in Quasar Evolution', Hatziminaoglou E., Siemiginowska A., & Elvis M., 2001, ApJ, 547, 90) describes an analytical model for the evolution of the quasar luminosity function. By combining the Press-Schechter formalism for the masses of initial structures with the luminosity distribution for a population of single mass black holes given by an unstable accretion disk an almost complete end-to-end physics-based model of quasar evolution is produced. In this model black holes spend 75% of their time in a low accretion state (at L(Edd)). This low state population of black holes is likely to be observed as the LINER and low luminosity AGNs in the local universe. Another paper ('Broad Emission Line Regions in AGN: the Link with the Accretion Power', Nicastro F., 2000, ApJ Letters, 530, L65) gives a physical basis for why low state black holes appear as LINERS. By linking the Lightman-Eardley instability in an accretion disk to the ori.gin of a wind that contains the broad emission line cloud material this model explains the large widths seen in these lines as being the Keplerian velocity of the disk at the instability radius. For LINERS the key is that below an accretion rate of 10(exp -3)M(sub Edd)the Lightman-Eardley instability falls within the innermost stable orbit of the disk, and so leaves the entire disk stable. No wind occurs, and so no broad emission lines are seen. Most LINERS are likely to be black holes in this low state. Tests of this model are being considered.

  8. Testing and Improving the Luminosity Relations for Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Collazzi, Andrew

    2011-08-01

    Gamma Ray Bursts (GRBs) have several luminosity relations where a measurable property of a burst light curve or spectrum is correlated with the burst luminosity. These luminosity relations are calibrated for the fraction of bursts with spectroscopic redshifts and hence the known luminosities. GRBs have thus become known as a type of 'standard candle'; where standard candle is meant in the usual sense that their luminosities can be derived from measurable properties of the bursts. GRBs can therefore be used for the same cosmology applications as Type Ia supernovae, including the construction of the Hubble Diagram and measuring massive star formation rate. The greatest disadvantage of using GRBs as standard candles is that their accuracy is lower than desired. With the recent advent of GRBs as a new standard candle, every effort must be made to test and improve the distance measures. Here, several methods are employed to do just that. First, generalized forms of two tests are performed on all of the luminosity relations. All the luminosity relations pass the second of these tests, and all but two pass the first. Even with this failure, the redundancy in using multiple luminosity relations allows all the luminosity relations to retain value. Next, the 'Firmani relation' is shown to have poorer accuracy than first advertised. In addition, it is shown to be exactly derivable from two other luminosity relations. For these reasons, the Firmani relation is useless for cosmology. The Amati relation is then revisited and shown to be an artifact of a combination of selection effects. Therefore, the Amati relation is also not good for cosmology. Fourthly, the systematic errors involved in measuring a popular luminosity indicator (Epeak ) are measured. The result is that an irreducible systematic error of 28% exists. After that, a preliminary investigation into the usefulness of breaking GRBs into individual pulses is conducted. The results of an 'ideal' set of data do not provide for confident results due to large error bars. Finally, the work concludes with a discussion about the impact of the work and the future of GRB luminosity relations.

  9. Relationship between optical and X-ray properties of O-type stars surveyed with the Einstein Observatory

    NASA Technical Reports Server (NTRS)

    Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.; Ramella, M.; Morossi, C.

    1990-01-01

    An X-ray luminosity function is derived for a representative volume-limited sample of O-type stars selected from the catalog of Galactic O stars surveyed with the Einstein Observatory. It was found that, for the stars of this sample which is ten times larger than any previously analyzed, the level of X-ray emission is strongly correlated with bolometric luminosity, confirming previous findings of an Lx-L(bol) relationship (e.g., Harnden et al., 1979; Pallavicini et al., 1981). Correlations between the Lx and the mass loss rate with the wind terminal velocity or with the rotation rate were weak. However, there was a strong correlation with wind momentum flux as well as with the wind kinetic energy flux.

  10. Basic instrumentation for Hall A at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Alcorn, J.; Anderson, B. D.; Aniol, K. A.; Annand, J. R. M.; Auerbach, L.; Arrington, J.; Averett, T.; Baker, F. T.; Baylac, M.; Beise, E. J.; Berthot, J.; Bertin, P. Y.; Bertozzi, W.; Bimbot, L.; Black, T.; Boeglin, W. U.; Boykin, D. V.; Brash, E. J.; Breton, V.; Breuer, H.; Brindza, P.; Brown, D.; Burtin, E.; Calarco, J. R.; Cardman, L. S.; Carr, R.; Cates, G. D.; Cavata, C.; Chai, Z.; Chang, C. C.; Chant, N. S.; Chen, J.-P.; Choi, S.; Chudakov, E.; Churchwell, S.; Coman, M.; Cisbani, E.; Colilli, S.; Colombel, N.; Crateri, R.; Dale, D. S.; Degrande, N.; de Jager, C. W.; De Leo, R.; Deur, A.; Dezern, G.; Diederich, B.; Dieterich, S.; di Salvo, R.; Djawotho, P.; Domingo, J.; Ducret, J.-E.; Dutta, D.; Egiyan, K.; Epstein, M. B.; Escoffier, S.; Esp, S.; Ewell, L. A.; Finn, J. M.; Fissum, K. G.; Folts, E.; Fonvieille, H.; Frois, B.; Frullani, S.; Gao, H.; Gao, J.; Garibaldi, F.; Gasparian, A.; Gavalya, A.; Gayou, O.; Gilad, S.; Gilman, R.; Giuliani, F.; Glamazdin, A.; Glashausser, C.; Gomez, J.; Gorbenko, V.; Gorringe, T.; Gricia, M.; Griffioen, K.; Hamilton, D.; Hansen, J.-O.; Hersman, F. W.; Higinbotham, D. W.; Holmes, R.; Holmgren, H.; Holtrop, M.; d'Hose, N.; Hovhannisyan, E.; Howell, C.; Huber, G. M.; Hughes, E.; Hyde-Wright, C. E.; Ibrahim, H.; Incerti, S.; Iodice, M.; Iommi, R.; Ireland, D.; Jaminion, S.; Jardillier, J.; Jensen, S.; Jiang, X.; Jones, C. E.; Jones, M. K.; Joo, K.; Jutier, C.; Kahl, W.; Kato, S.; Katramatou, A. T.; Kelly, J. J.; Kerhoas, S.; Ketikyan, A.; Khandaker, M.; Khayat, M.; Kino, K.; Kominis, I.; Korsch, W.; Kox, S.; Kramer, K.; Kumar, K. S.; Kumbartzki, G.; Kuss, M.; Lagamba, L.; Laveissière, G.; Leone, A.; LeRose, J. J.; Marie, F.; Levchuk, L.; Leuschner, M.; Lhuillier, D.; Liang, M.; Livingston, K.; Lindgren, R. A.; Liyanage, N.; Lolos, G. J.; Lourie, R. W.; Lucentini, M.; Madey, R.; Maeda, K.; Malov, S.; Manley, D. M.; Margaziotis, D. J.; Markowitz, P.; Marroncle, J.; Martine, J.; Mayilyan, S.; McCarthy, J. S.; McCormick, K.; Mclntyre, J.; McKeown, R. D.; Meekins, D.; van der Meer, R. L. J.; Meziani, Z.-E.; Michaels, R.; Milbrath, B.; Miller, J. A.; Miller, W.; Mitchell, J.; Mougey, J.; Nanda, S.; Nathan, A.; Neyret, D.; Offermann, E. A. J. M.; Papandreou, Z.; Perdrisat, C. F.; Perrino, R.; Petratos, G. G.; Petrosyan, A.; Pierangeli, L.; Platchkov, S.; Pomatsalyuk, R.; Pripstein, D.; Prout, D. L.; Punjabi, V. A.; Pussieux, T.; Quéméner, G.; Ransomez, R. D.; Ravel, O.; Reitz, B.; Roblin, Y.; Roche, R.; Roedelbronn, M.; Rondon-Aramayo, O. A.; Roos, P. G.; Rosner, G.; Rowntree, D.; Rutledge, G. A.; Rutt, P. M.; Rvachev, M.; Sabatavenere, F.; Saha, A.; Saito, T.; Santavenere, F.; Sarty, A. J.; Schneider, W. J.; Segal, J. P.; Serdarevic-Offermann, A.; Shahinyan, A.; Slifer, K.; Smith, T. P.; Soldi, A.; Sorokin, P.; Souder, P.; Spiegel, S. L.; Stevens, M. A.; Strauch, S.; Suleiman, R.; Templon, J. A.; Terasawa, T.; Todor, L.; Tsubota, H.; Ueno, H.; Ulmer, P. E.; Urciuoli, G. M.; Van Hoorebeke, L.; Van de Vyver, R.; van Verst, S.; Vernin, P.; Vlahovic, B.; Voskanyan, H.; Voutier, E.; Walter, R.; Watson, J. W.; Watts, D. P.; Weinstein, L. B.; Wijesooriya, K.; Wojtsekhowski, B.; Xiang, H.; Xiong, F.; Xu, W.; Zainea, D. G.; Zeps, V.; Zhao, J.; Zheng, X.; Zhou, Z.-L.; Zhu, L.; Zolnierczuk, P. A.

    2004-04-01

    The instrumentation in Hall A at the Thomas Jefferson National Accelerator Facility was designed to study electro- and photo-induced reactions at very high luminosity and good momentum and angular resolution for at least one of the reaction products. The central components of Hall A are two identical high resolution spectrometers, which allow the vertical drift chambers in the focal plane to provide a momentum resolution of better than 2×10 -4. A variety of Cherenkov counters, scintillators and lead-glass calorimeters provide excellent particle identification. The facility has been operated successfully at a luminosity well in excess of 10 38 cm-2 s-1. The research program is aimed at a variety of subjects, including nucleon structure functions, nucleon form factors and properties of the nuclear medium.

  11. Constraining the CO intensity mapping power spectrum at intermediate redshifts

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Hamsa

    2018-04-01

    We compile available constraints on the carbon monoxide (CO) 1-0 luminosity functions and abundances at redshifts 0-3. This is used to develop a data driven halo model for the evolution of the CO galaxy abundances and clustering across intermediate redshifts. It is found that the recent constraints from the CO Power Spectrum Survey (z ˜ 3; Keating et al. 2016), when combined with existing observations of local galaxies (z ˜ 0; Keres, Yun & Young 2003), lead to predictions that are consistent with the results of smaller surveys at intermediate redshifts (z ˜ 1-2). We provide convenient fitting forms for the evolution of the CO luminosity-halo mass relation, and estimates of the mean and uncertainties in the CO power spectrum in the context of future intensity mapping experiments.

  12. VizieR Online Data Catalog: Monochromatic conversion factors to LIR & Mdust (Schreiber+, 2018)

    NASA Astrophysics Data System (ADS)

    Schreiber, C.; Elbaz, D.; Pannella, M.; Wang, T.; Ciesla, L.; Franco, M.

    2017-10-01

    These tables contain conversion factors to translate observed fluxes (Sν) or luminosities (ν*Lν) into total infrared luminosity (LIR) and dust mass (Mdust). The conversion factors are provided for the most commonly used ALMA bands (Band 3 to Band 9) and all JWST MIRI broad bands (F777W to F2550W). These factors are tabulated as a function of redshift. For each conversion factor, the tables also provide the logarithmic uncertainty on the conversion (in dex), which reflects the diversity in spectral shape. These data were calibrated on the deep Spitzer and Herschel observations of the CANDELS fields, as well as early ALMA observations. They are therefore valid for galaxies of masses close to 1010Mȯ and above. (3 data files).

  13. Observation of a diffractive contribution to dijet production in proton-proton collisions at s=7TeV

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Marcken, G.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zhu, B.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M., Jr.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Khalil, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Magass, C.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Weber, M.; Bontenackels, M.; Cherepanov, V.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.; Aldaya Martin, M.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Ribeiro Cipriano, P. M.; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.; Autermann, C.; Blobel, V.; Draeger, J.; Enderle, H.; Erfle, J.; Gebbert, U.; Görner, M.; Hermanns, T.; Höing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Mura, B.; Nowak, F.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schröder, M.; Schum, T.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Vanelderen, L.; Barth, C.; Berger, J.; Böser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Katkov, I.; Komaragiri, J. R.; Lobelle Pardo, P.; Martschei, D.; Mueller, S.; Müller, Th.; Niegel, M.; Nürnberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Röcker, S.; Scheurer, A.; Schilling, F.-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Bansal, M.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mehta, P.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Aziz, T.; Ganguly, S.; Guchait, M.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Tosi, S.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; Tabarelli de Fatis, T.; Buontempo, S.; Carrillo Montoya, C. A.; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bellan, P.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Gasparini, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Triossi, A.; Vanini, S.; Zotto, P.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Fanò, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foà, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Sigamani, M.; Soffi, L.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Vilela Pereira, A.; Belforte, S.; Candelise, V.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Heo, S. G.; Kim, T. Y.; Nam, S. K.; Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D. C.; Son, T.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Cho, Y.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Magaña Villalba, R.; Martínez-Ortega, J.; Sánchez-Hernández, A.; Villasenor-Cendejas, L. M.; Carrillo Moreno, S.; Vazquez Valencia, F.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.; Krofcheck, D.; Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.; Ahmad, M.; Ansari, M. H.; Asghar, M. I.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Gokieli, R.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.; Belotelov, I.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Ershov, A.; Gribushin, A.; Khein, L.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Popov, A.; Proskuryakov, A.; Sarycheva, L.; Savrin, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; Codispoti, G.; de Trocóniz, J. F.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; D'Enterria, D.; Dabrowski, A.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Giunta, M.; Glege, F.; Gomez-Reino Garrido, R.; Govoni, P.; Gowdy, S.; Guida, R.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y.-J.; Lenzi, P.; Lourenço, C.; Mäki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Musella, P.; Nesvold, E.; Orimoto, T.; Orsini, L.; Palencia Cortezon, E.; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Rodrigues Antunes, J.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Worm, S. D.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Bäni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Mohr, N.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Ivova Rikova, M.; Millan Mejias, B.; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.; Chang, Y. H.; Chen, K. H.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Singh, A. P.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Cankocak, K.; Levchuk, L.; Bostock, F.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A.-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Hatakeyama, K.; Liu, H.; Scarborough, T.; Charaf, O.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; St. John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Cutts, D.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Miceli, T.; Pellett, D.; Ricci-tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Vasquez Sierra, R.; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.; Akgun, B.; Azzolini, V.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Gaz, A.; Heyburn, B.; Luiggi Lopez, E.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kilminster, B.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.; Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; Malek, M.; O'Brien, C.; Silkworth, C.; Strom, D.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Griffiths, S.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Kenny, R. P., Iii; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Zhukova, V.; Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Wright, D.; Baden, A.; Boutemeur, M.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.; Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Hahn, K. A.; Kim, Y.; Klute, M.; Krajczar, K.; Li, W.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Xie, S.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Cooper, S. I.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Avdeeva, E.; Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.; Baur, U.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Shipkowski, S. P.; Smith, K.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Kubik, A.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Antonelli, L.; Berry, D.; Brinkerhoff, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.; Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Lopes Pegna, D.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Safdi, B.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Acosta, J. G.; Brownson, E.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Ramirez Vargas, J. E.; Zatserklyaniy, A.; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Vidal Marono, M.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Guragain, S.; Parashar, N.; Adair, A.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Damgov, J.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Roh, Y.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Johnston, C.; Kurt, P.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Yohay, R.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sakharov, A.; Anderson, M.; Bachtis, M.; Belknap, D.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.

    2013-01-01

    The cross section for dijet production in proton-proton collisions at s=7TeV is presented as a function of ξ˜, a variable that approximates the fractional momentum loss of the scattered proton in single-diffractive events. The analysis is based on an integrated luminosity of 2.7nb-1 collected with the CMS detector at the LHC at low instantaneous luminosities, and uses events with jet transverse momentum of at least 20 GeV. The dijet cross section results are compared to the predictions of diffractive and nondiffractive models. The low-ξ˜ data show a significant contribution from diffractive dijet production, observed for the first time at the LHC. The associated rapidity gap survival probability is estimated.

  14. Clustering of very luminous infrared galaxies and their environment

    NASA Technical Reports Server (NTRS)

    Gao, YU

    1993-01-01

    The IRAS survey reveals a class of ultraluminous infrared (IR) galaxies (ULIRG's) with IR luminosities comparable to the bolometric luminosities of quasars. The nature, origin, and evolution of ULIRG's are attracting more and more attention recently. Since galaxy morphology is certainly a function of environment, morphological observations show that ULIRG's are interacting/merging galaxies, and some ULIRG's might be the dust-enshrouded quasars (S88) or giant ellipticals, the study of ULIRG's environment and large scale clustering effects should be worthwhile. ULIRG's and very luminous IR galaxies have been selected from the 2Jy IRAS redshift survey. Meanwhile, a catalog of IRAS groups of galaxies has been constructed using a percolation-like algorithm. Therefore, whether ULIRG's and/or VLIRG's have a group environment can be checked immediately. Other aspects of the survey are discussed.

  15. Constraints on submicrojansky radio number counts based on evolving VLA-COSMOS luminosity functions

    NASA Astrophysics Data System (ADS)

    Novak, M.; Smolčić, V.; Schinnerer, E.; Zamorani, G.; Delvecchio, I.; Bondi, M.; Delhaize, J.

    2018-06-01

    We present an investigation of radio luminosity functions (LFs) and number counts based on the Karl G. Jansky Very Large Array-COSMOS 3 GHz Large Project. The radio-selected sample of 7826 galaxies with robust optical/near-infrared counterparts with excellent photometric coverage allows us to construct the total radio LF since z 5.7. Using the Markov chain Monte Carlo algorithm, we fit the redshift dependent pure luminosity evolution model to the data and compare it with previously published VLA-COSMOS LFs obtained on individual populations of radio-selected star-forming galaxies and galaxies hosting active galactic nuclei classified on the basis of presence or absence of a radio excess with respect to the star-formation rates derived from the infrared emission. We find they are in excellent agreement, thus showing the reliability of the radio excess method in selecting these two galaxy populations at radio wavelengths. We study radio number counts down to submicrojansky levels drawn from different models of evolving LFs. We show that our evolving LFs are able to reproduce the observed radio sky brightness, even though we rely on extrapolations toward the faint end. Our results also imply that no new radio-emitting galaxy population is present below 1 μJy. Our work suggests that selecting galaxies with radio flux densities between 0.1 and 10 μJy will yield a star-forming galaxy in 90-95% of the cases with a high percentage of these galaxies existing around a redshift of z 2, thus providing useful constraints for planned surveys with the Square Kilometer Array and its precursors.

  16. NGC628 with SITELLE : I. Imaging Spectroscopy of 4285 HII region candidates.

    NASA Astrophysics Data System (ADS)

    Rousseau-Nepton, L.; Robert, C.; Martin, R. P.; Drissen, L.; Martin, T.

    2018-02-01

    This is the first paper of a series dedicated to nebular physics and the chemical evolution of nearby galaxies by investigating large samples of HII regions with the CFHT imaging spectrograph SITELLE. We present a technique adapted to imaging spectroscopy to identify and extract parameters from 4285 HII region candidates found in the disc of NGC 628. Using both the spatial and spectral capabilities of SITELLE, our technique enables the extraction of the position, dust extinction, velocity, Hα profile, diffuse ionized gas (DIG) background, luminosity, size, morphological type, and the emission line fluxes for individual spaxels and the integrated spectrum for each region. We have produced a well-sampled HII region luminosity function and studied its variation with galactocentric radius and level of the DIG background. We found a slope α of -1.12 ±0.03 with no evidence of a break at high luminosity. Based on the width of the region profile, bright regions are rather compact, while faint regions are seen over a wide range of sizes. The radius function reveals a slope of -1.81 ±0.02. BPT diagrams of the individual spaxels and integrated line ratios confirm that most detections are HII regions. Also, maps of the line ratios show complex variations of the ionisation conditions within HII regions. All this information is compiled in a new catalogue for HII regions. The objective of this database is to provide a complete sample which will be used to study the whole parameter space covered by the physical conditions in active star-forming regions.

  17. Associating Fast Radio Bursts with Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Eftekhari, T.; Berger, E.

    2017-11-01

    The first precise localization of a fast radio burst (FRB) sheds light on the nature of these mysterious bursts and the physical mechanisms that power them. Increasing the sample of FRBs with robust host galaxy associations is the key impetus behind ongoing and upcoming searches and facilities. Here, we quantify the robustness of FRB host galaxy associations as a function of localization area and galaxy apparent magnitude. We also explore the use of FRB dispersion measures to constrain the source redshift, thereby reducing the number of candidate hosts. We use these results to demonstrate that even in the absence of a unique association, a constraint can be placed on the maximum luminosity of a host galaxy as a function of localization and dispersion measure (DM). We find that localizations of ≲ 0.5\\text{'}\\text{'} are required for a chance coincidence probability of ≲ 1 % for dwarf galaxies at z≳ 0.1; if some hosts have luminosities of ˜ {L}\\ast , then localizations of up to ≈ 5\\prime\\prime may suffice at z˜ 0.1. Constraints on the redshift from the DM only marginally improve the association probability unless the DM is low, ≲ 400 pc cm-3. This approach also relies on the determination of galaxy redshifts, which is challenging at z≳ 0.5 if the hosts are dwarf galaxies. Finally, interesting limits on the maximum host luminosity require localizations of ≲ 5\\prime\\prime at z≳ 0.1. Even a few such localizations will explain the nature of FRB progenitors, their possible diversity, and their use as cosmological tools.

  18. Near-infrared Variability of Obscured and Unobscured X-Ray-selected AGNs in the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Sánchez, P.; Lira, P.; Cartier, R.; Pérez, V.; Miranda, N.; Yovaniniz, C.; Arévalo, P.; Milvang-Jensen, B.; Fynbo, J.; Dunlop, J.; Coppi, P.; Marchesi, S.

    2017-11-01

    We present our statistical study of near-infrared (NIR) variability of X-ray-selected active galactic nuclei (AGNs) in the COSMOS field, using UltraVISTA data. This is the largest sample of AGN light curves in YJHKs bands, making it possible to have a global description of the nature of AGNs for a large range of redshifts and for different levels of obscuration. To characterize the variability properties of the sources, we computed the structure function. Our results show that there is an anticorrelation between the structure function A parameter (variability amplitude) and the wavelength of emission and a weak anticorrelation between A and the bolometric luminosity. We find that broad-line (BL) AGNs have a considerably larger fraction of variable sources than narrow-line (NL) AGNs and that they have different distributions of the A parameter. We find evidence that suggests that most of the low-luminosity variable NL sources correspond to BL AGNs, where the host galaxy could be damping the variability signal. For high-luminosity variable NL sources, we propose that they can be examples of “true type II” AGNs or BL AGNs with limited spectral coverage, which results in missing the BL emission. We also find that the fraction of variable sources classified as unobscured in the X-ray is smaller than the fraction of variable sources unobscured in the optical range. We present evidence that this is related to the differences in the origin of the obscuration in the optical and X-ray regimes.

  19. Photometric properties of galaxies in the SDSS

    NASA Astrophysics Data System (ADS)

    Hogg, D. W.; Blanton, M.; SDSS Collaboration

    2001-12-01

    We analyze the number density distribution of galaxy properties in a sample of 8x 104 galaxies from the Sloan Digital Sky Survey, in the redshift range 0.02

  20. Particle content, radio-galaxy morphology, and jet power: all radio-loud AGN are not equal

    NASA Astrophysics Data System (ADS)

    Croston, J. H.; Ineson, J.; Hardcastle, M. J.

    2018-05-01

    Ongoing and future radio surveys aim to trace the evolution of black hole growth and feedback from active galactic nuclei (AGNs) throughout cosmic time; however, there remain major uncertainties in translating radio luminosity functions into a reliable assessment of the energy input as a function of galaxy and/or dark matter halo mass. A crucial and long-standing problem is the composition of the radio-lobe plasma that traces AGN jet activity. In this paper, we carry out a systematic comparison of the plasma conditions in Fanaroff & Riley class I and II radio galaxies to demonstrate conclusively that their internal composition is systematically different. This difference is best explained by the presence of an energetically dominant proton population in the FRI, but not the FRII radio galaxies. We show that, as expected from this systematic difference in particle content, radio morphology also affects the jet-power/radio-luminosity relationship, with FRII radio galaxies having a significantly lower ratio of jet power to radio luminosity than the FRI cluster radio sources used to derive jet-power scaling relations via X-ray cavity measurements. Finally, we also demonstrate conclusively that lobe composition is unconnected to accretion mode (optical excitation class): the internal conditions of low- and high-excitation FRII radio lobes are indistinguishable. We conclude that inferences of population-wide AGN impact require careful assessment of the contribution of different jet subclasses, particularly given the increased diversity of jet evolutionary states expected to be present in deep, low-frequency radio surveys such as the LOFAR Two-Metre Sky Survey.

  1. Luminosity variations of protostars at the Hayashi stage

    NASA Astrophysics Data System (ADS)

    Abdulmyanov, T. R.

    2017-09-01

    In the present paper, the luminosity variations of protostars at the Hayashi stage are considered. According to the density wave model, the luminosity of protostars will have significant variations throughout the Hayashi stage. The initial moments of the formation of protoplanetary rings of the Solar system and the luminosity of the protostar for these moments are obtained.

  2. The Herschel* PEP-HERMES Luminosity Function- I. Probing the Evolution of PACS Selected Galaxies to z approx. equal to 4

    NASA Technical Reports Server (NTRS)

    Gruppioni, Carlotta; Pozzi, F.; Rodighiero, G.; Delvecchio, I.; Berta, S.; Pozzetti, L.; Zamorani, G.; Andreani, P.; Cimatti, A.; Ilbert, O.; hide

    2013-01-01

    We exploit the deep and extended far-IR data sets (at 70, 100 and 160 µm) of the Herschel Guaranteed Time Observation (GTO) PACS Evolutionary Probe (PEP) Survey, in combination with the Herschel Multi-tiered Extragalactic Survey data at 250, 350 and 500 µm, to derive the evolution of the rest-frame 35-, 60-, 90- and total infrared (IR) luminosity functions (LFs) up to z 4.We detect very strong luminosity evolution for the total IR LF (LIR ? (1 + z)(sup 3.55 +/- 0.10) up to z 2, and ? (1 + z)(sup 1.62 +/- 0.51) at 2 less than z less than approximately 4) combined with a density evolution (? (1 + z)(sup -0.57 +/- 0.22) up to z 1 and ? (1 + z)(sup -3.92 +/- 0.34) at 1 less than z less than approximately 4). In agreement with previous findings, the IR luminosity density (?IR) increases steeply to z 1, then flattens between z 1 and z 3 to decrease at z greater than approximately 3. Galaxies with different spectral energy distributions, masses and specific star formation rates (SFRs) evolve in very different ways and this large and deep statistical sample is the first one allowing us to separately study the different evolutionary behaviours of the individual IR populations contributing to ?IR. Galaxies occupying the well-established SFR-stellar mass main sequence (MS) are found to dominate both the total IR LF and ?IR at all redshifts, with the contribution from off-MS sources (=0.6 dex above MS) being nearly constant (20 per cent of the total ?IR) and showing no significant signs of increase with increasing z over the whole 0.8 < z <2.2 range. Sources with mass in the range 10 = log(M/solar mass) = 11 are found to dominate the total IR LF, with more massive galaxies prevailing at the bright end of the high-z (greater than approximately 2) LF. A two-fold evolutionary scheme for IR galaxies is envisaged: on the one hand, a starburst-dominated phase in which the Super Massive Black Holes (SMBH) grows and is obscured by dust (possibly triggered by a major merging event), is followed by an AGN-dominated phase, then evolving towards a local elliptical. On the other hand, moderately star-forming galaxies containing a low-luminosity AGN have various properties suggesting they are good candidates for systems in a transition phase preceding the formation of steady spiral galaxies.

  3. The [CII] 158 μm line emission in high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Lagache, G.; Cousin, M.; Chatzikos, M.

    2018-02-01

    Gas is a crucial component of galaxies, providing the fuel to form stars, and it is impossible to understand the evolution of galaxies without knowing their gas properties. The [CII] fine structure transition at 158 μm is the dominant cooling line of cool interstellar gas, and is the brightest of emission lines from star forming galaxies from FIR through metre wavelengths, almost unaffected by attenuation. With the advent of ALMA and NOEMA, capable of detecting [CII]-line emission in high-redshift galaxies, there has been a growing interest in using the [CII] line as a probe of the physical conditions of the gas in galaxies, and as a star formation rate (SFR) indicator at z ≥ 4. In this paper, we have used a semi-analytical model of galaxy evolution (G.A.S.) combined with the photoionisation code CLOUDY to predict the [CII] luminosity of a large number of galaxies (25 000 at z ≃ 5) at 4 ≤ z ≤ 8. We assumed that the [CII]-line emission originates from photo-dominated regions. At such high redshift, the CMB represents a strong background and we discuss its effects on the luminosity of the [CII] line. We studied the L[CII ]-SFR and L[ CII ]-Zg relations and show that they do not strongly evolve with redshift from z = 4 and to z = 8. Galaxies with higher [CII] luminosities tend to have higher metallicities and higher SFRs but the correlations are very broad, with a scatter of about 0.5 and 0.8 dex for L[ CII ]-SFR and L[ CII ]-Zg, respectively. Our model reproduces the L[ CII ]-SFR relations observed in high-redshift star-forming galaxies, with [CII] luminosities lower than expected from local L[ CII ]-SFR relations. Accordingly, the local observed L[ CII ]-SFR relation does not apply at high-z (z ≳ 5), even when CMB effects are ignored. Our model naturally produces the [CII] deficit (i.e. the decrease of L[ CII ]/LIR with LIR), which appears to be strongly correlated with the intensity of the radiation field in our simulated galaxies. We then predict the [CII] luminosity function, and show that it has a power law form in the range of L[ CII] probed by the model (1 × 107-2 × 109 L⊙ at z = 6) with a slope α = -1. The slope is not evolving from z = 4 to z = 8 but the number density of [CII]-emitters decreases by a factor of 20×. We discuss our predictions in the context of current observational estimates on both the differential and cumulative luminosity functions. The FITS files of the data used in this paper (e.g., M⋆, SFR, ISRF, Zg, L[CII], LIR) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A130

  4. RXJ0440.9+4431: a Persistent Be-x-ray Binary in Outburst

    NASA Technical Reports Server (NTRS)

    Ferrigno, C.; Farinelli, R.; Bozzo, E.; Pottschmidt, K.; Klochkov, D.; Kretschmar, P.

    2013-01-01

    The persistent Be/X-ray binary RXJ0440.9+4431 flared in 2010 and 2011 and has been followed by various X-ray facilities (Swift, RXTE, XMM-Newton, and INTEGRAL).We studied the source timing and spectral properties as a function of its X-ray luminosity to investigate the transition from normal to flaring activity and the dynamical properties of the system. We have determined the orbital period from the long-term Swift/BAT light curve, but our determinations of the spin-period are not precise enough to constrain any orbital solution. The source spectrum can always be described by a bulk-motion Comptonization model of black body seed photons attenuated by a moderate photoelectric absorption. At the highest luminosity, we measured a curvature of the spectrum, which we attribute to a significant contribution of the radiation pressure in the accretion process. This allows us to estimate that the transition from a bulk-motion-dominated flow to a radiatively dominated one happens at a luminosity of approx 2 × 10(exp 36) erg/ s. The luminosity dependency of the size of the black body emission region is found to be r(sub BB) varies as L(sub x) (exp 0.39 +/- 0.02). This suggests that either matter accreting onto the neutron star hosted in RXJ0440.9+4431 penetrates through closed magnetic field lines at the border of the compact object magnetosphere or that the structure of the Neutron star magnetic field is more complicated than a simple dipole close to the surface.

  5. Thermal winds in stellar mass black hole and neutron star binary systems

    NASA Astrophysics Data System (ADS)

    Done, Chris; Tomaru, Ryota; Takahashi, Tadayuki

    2018-01-01

    Black hole binaries show equatorial disc winds at high luminosities, which apparently disappear during the spectral transition to the low/hard state. This is also where the radio jet appears, motivating speculation that both wind and jet are driven by different configurations of the same magnetic field. However, these systems must also have thermal winds, as the outer disc is clearly irradiated. We develop a predictive model of the absorption features from thermal winds, based on pioneering work of Begelman, McKee & Shields. We couple this to a realistic model of the irradiating spectrum as a function of luminosity to predict the entire wind evolution during outbursts. We show that the column density of the thermal wind scales roughly with luminosity, and does not shut off at the spectral transition, though its visibility will be affected by the abrupt change in ionizing spectrum. We re-analyse the data from H1743-322, which most constrains the difference in wind across the spectral transition, and show that these are consistent with the thermal wind models. We include simple corrections for radiation pressure, which allows stronger winds to be launched from smaller radii. These winds become optically thick around Eddington, which may even explain the exceptional wind seen in one observation of GRO J1655-40. These data can instead be fit by magnetic wind models, but similar winds are not seen in this or other systems at similar luminosities. Hence, we conclude that the majority (perhaps all) of current data can be explained by thermal or thermal-radiative winds.

  6. Evolution of the reverberation lag in GX 339-4 at the end of an outburst

    NASA Astrophysics Data System (ADS)

    De Marco, B.; Ponti, G.; Petrucci, P. O.; Clavel, M.; Corbel, S.; Belmont, R.; Chakravorty, S.; Coriat, M.; Drappeau, S.; Ferreira, J.; Henri, G.; Malzac, J.; Rodriguez, J.; Tomsick, J. A.; Ursini, F.; Zdziarski, A. A.

    2017-10-01

    We studied X-ray reverberation lags in the Black hole X-ray binary (BHXRB) GX 339-4 at the end of the 2014-2015 outburst. We analysed data from an XMM-Newton campaign covering the end of the transition from the soft to hard state, and the decrease of luminosity in the hard state. During all the observations we detected, at high frequencies, significant disc variability, responding to variations of the power-law emission with an average time delay of ∼0.009 ± 0.002 s. These new detections of disc thermal reverberation add to those previously obtained and suggest the lag to be always present in hard and hard-intermediate states. Our study reveals a net decrease of lag amplitude as a function of luminosity. We ascribe this trend to variations of the inner flow geometry. A possible scenario implies a decrease of the inner disc truncation radius as the luminosity increases at the beginning of the outburst, followed by an increase of the inner disc truncation radius as the luminosity decreases at the end of the outburst. Finally, we found hints of FeK reverberation (∼3σ significance) during the best quality observation of the XMM monitoring. The lag at the FeK energy has similar amplitude as that of the thermally reprocessed component, as expected if the same irradiated region of the disc is responsible for producing both the thermalized and reflected components. This finding suggests FeK reverberation in BHXRBs to be at the reach of current detectors provided observations of sufficiently long exposure are available.

  7. Flamingos 2 Spectroscopy of Obscured and Unobscured Quasars

    NASA Astrophysics Data System (ADS)

    Ridgway, Susan; Lacy, Mark; Urrutia, Tanya; Petric, Andreea

    2013-08-01

    We will use Flamingos-2 to obtain spectra of luminous AGN and quasars selected in the mid-infrared. Mid-infrared selection is much less biased with respect to obscuration than optical and X-ray techniques, and hence allows for finding obscured (Type-2) quasars as well as Type-1 quasars. Our survey so far has been very successful and has provided an unique opportunity to construct luminosity functions for both Type-1 and Type-2 quasars selected in the same way and covering similar redshifts and luminosities. We have quantifed the change in the obscured fraction with luminosity and redshift for the first time, and find interesting indications that at high redshift the obscured fraction rises, consistent with models for the joint formation of the galaxy and black hole populations. Our samples are, however, still quite incomplete at low fluxes (and therefore lower luminosities at a given redshift), particularly in the southern hemisphere. Near-infrared spectroscopy, such as that we have previously obtained with NIRI at Gemini N, offers us the best possibility of bringing these southern samples to a reasonable completeness level, and will greatly increase the number of high z quasars in our sample. This will allow us to better judge our tantalizing initial results on the redshift evolution of the obscured fraction. In addition, these southern targets can be followed up with ALMA and GEMS/GSAOI to study the morphologies and star-formation properties of the hosts, allowing further exploration of the relationship between the formation of massive bulges and supermassive blackholes in the early universe.

  8. Dusty Quasars at High Redshifts

    NASA Astrophysics Data System (ADS)

    Weedman, Daniel; Sargsyan, Lusine

    2016-09-01

    A population of quasars at z ˜ 2 is determined based on dust luminosities νL ν (7.8 μm) that includes unobscured, partially obscured, and obscured quasars. Quasars are classified by the ratio νL ν (0.25 μm)/νL ν (7.8 μm) = UV/IR, assumed to measure obscuration of UV luminosity by the dust that produces IR luminosity. Quasar counts at rest-frame 7.8 μm are determined for quasars in the Boötes field of the NOAO Deep Wide Field Survey using 24 μm sources with optical redshifts from the AGN and Galaxy Evolution Survey (AGES) or infrared redshifts from the Spitzer Infrared Spectrograph. Spectral energy distributions are extended to far-infrared wavelengths using observations from the Herschel Space Observatory Spectral and Photometric Imaging Receiver (SPIRE), and new SPIRE photometry is presented for 77 high-redshift quasars from the Sloan Digital Sky Survey. It is found that unobscured and obscured quasars have similar space densities at rest-frame 7.8 μm, but the ratio L ν (100 μm)/L ν (7.8 μm) is about three times higher for obscured quasars than for unobscured, so that far-infrared or submillimeter quasar detections are dominated by obscured quasars. We find that only ˜5% of high-redshift submillimeter sources are quasars and that existing 850 μm surveys or 2 mm surveys should already have detected sources at z ˜ 10 if quasar and starburst luminosity functions remain the same from z = 2 until z = 10.

  9. On the Star Formation-AGN Connection at zeta (is) approximately greater than 0.3

    NASA Technical Reports Server (NTRS)

    LaMassa, Stephanie M.; Heckman, T. M.; Ptak, Andrew; Urry, C. Megan

    2013-01-01

    Using the spectra of a sample of approximately 28,000 nearby obscured active galaxies from Data Release 7 of the Sloan Digital Sky Survey (SDSS), we probe the connection between active galactic nucleus (AGN) activity and star formation over a range of radial scales in the host galaxy. We use the extinction-corrected luminosity of the [O iii] 5007A line as a proxy of intrinsic AGN power and supermassive black hole (SMBH) accretion rate. The star formation rates (SFRs) are taken from the MPA-JHU value-added catalog and are measured through the 3 inch SDSS aperture. We construct matched samples of galaxies covering a range in redshifts. With increasing redshift, the projected aperture size encompasses increasing amounts of the host galaxy. This allows us to trace the radial distribution of star formation as a function of AGN luminosity. We find that the star formation becomes more centrally concentrated with increasing AGN luminosity and Eddington ratio. This implies that such circumnuclear star formation is associated with AGN activity, and that it increasingly dominates over omnipresent disk star formation at higher AGN luminosities, placing critical constraints on theoretical models that link host galaxy star formation and SMBH fueling. We parameterize this relationship and find that the star formation on radial scales (is) less than 1.7 kpc, when including a constant disk component, has a sub-linear dependence on SMBH accretion rate: SFR in proportion to solar mass(sup 0.36), suggesting that angular momentum transfer through the disk limits accretion efficiency rather than the supply from stellar mass loss.

  10. Do You See What I See? Exploring the Consequences of Luminosity Limits in Black Hole–Galaxy Evolution Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Mackenzie L.; Hickox, Ryan C.; DiPompeo, Michael A.

    In studies of the connection between active galactic nuclei (AGNs) and their host galaxies, there is widespread disagreement on some key aspects of the connection. These disagreements largely stem from a lack of understanding of the nature of the full underlying AGN population. Recent attempts to probe this connection utilize both observations and simulations to correct for a missed population, but presently are limited by intrinsic biases and complicated models. We take a simple simulation for galaxy evolution and add a new prescription for AGN activity to connect galaxy growth to dark matter halo properties and AGN activity to starmore » formation. We explicitly model selection effects to produce an “observed” AGN population for comparison with observations and empirically motivated models of the local universe. This allows us to bypass the difficulties inherent in models that attempt to infer the AGN population by inverting selection effects. We investigate the impact of selecting AGNs based on thresholds in luminosity or Eddington ratio on the “observed” AGN population. By limiting our model AGN sample in luminosity, we are able to recreate the observed local AGN luminosity function and specific star formation-stellar mass distribution, and show that using an Eddington ratio threshold introduces less bias into the sample by selecting the full range of growing black holes, despite the challenge of selecting low-mass black holes. We find that selecting AGNs using these various thresholds yield samples with different AGN host galaxy properties.« less

  11. Muon Physics at Run-I and its upgrade plan

    NASA Astrophysics Data System (ADS)

    Benekos, Nektarios Chr.

    2015-05-01

    The Large Hadron Collider (LHC) and its multi-purpose Detector, ATLAS, has been operated successfully at record centre-of-mass energies of 7 and TeV. After this successful LHC Run-1, plans are actively advancing for a series of upgrades, culminating roughly 10 years from now in the high luminosity LHC (HL-LHC) project, delivering of order five times the LHC nominal instantaneous luminosity along with luminosity leveling. The final goal is to extend the data set from about few hundred fb-1 expected for LHC running to 3000 fb-1 by around 2030. To cope with the corresponding rate increase, the ATLAS detector needs to be upgraded. The upgrade will proceed in two steps: Phase I in the LHC shutdown 2018/19 and Phase II in 2023-25. The largest of the ATLAS Phase-1 upgrades concerns the replacement of the first muon station of the highrapidity region, the so called New Small Wheel. This configuration copes with the highest rates expected in Phase II and considerably enhances the performance of the forward muon system by adding triggering functionality to the first muon station. Prospects for the ongoing and future data taking are presented. This article presents the main muon physics results from LHC Run-1 based on a total luminosity of 30 fb^-1. Prospects for the ongoing and future data taking are also presented. We will conclude with an update of the status of the project and the steps towards a complete operational system, ready to be installed in ATLAS in 2018/19.

  12. Measurement of the proton structure function F2 ( x, Q2) in the low- x region at HERA

    NASA Astrophysics Data System (ADS)

    Abt, I.; Ahmed, T.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Bärwolff, H.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Biddulph, P.; Binder, E.; Bischoff, A.; Bizot, J. C.; Blobel, V.; Borras, K.; Bosetti, P. C.; Boudry, V.; Bourdarios, C.; Brasse, F.; Braun, U.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Colombo, M.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Danilov, M.; Dann, A. W. E.; Dau, W. D.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; Devel, M.; De Roeck, A.; Dingus, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Drescher, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebbinghaus, R.; Eberle, M.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellis, N. N.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Fensome, I. F.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Flauger, W.; Fleischer, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Fuhrmann, P.; Gabathuler, E.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gellrich, A.; Gennis, M.; Genzel, H.; Gerhards, R.; Godfrey, L.; Goerlach, U.; Goerlich, L.; Goldberg, M.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Greif, H.; Grindhammer, G.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Handschuh, D.; Hanlon, E. M.; Hapke, M.; Harjes, J.; Haydar, R.; Haynes, W. J.; Heatherington, J.; Hedberg, V.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hildesheim, W.; Hill, P.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Huet, Ph.; Hufnagel, H.; Huot, N.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kasarian, S.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kotska, P.; Kotelnikov, S. K.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Langkau, R.; Lanius, P.; Laporte, J. F.; Lebedev, A.; Leuschner, A.; Leverenz, C.; Levonian, S.; Lewin, D.; Ley, Ch.; Lindner, A.; Lindström, G.; Linsel, F.; Lipinski, J.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lüers, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, A.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milone, V.; Monnier, E.; Moreau, F.; Moreels, J.; Morris, J. V.; Müller, K.; Murín, P.; Murray, S. A.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Newton, D.; Neyret, D.; Nguyen, H. K.; Niebergall, F.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Orenstein, S.; Ould-Saada, F.; Pascaud, C.; Patel, G. D.; Peppel, E.; Peters, S.; Phillips, H. T.; Phillips, J. P.; Pichler, Ch.; Pilgram, W.; Pitzl, D.; Prell, S.; Prosi, R.; Rädel, G.; Raupach, F.; Rauschnabel, K.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rudowicz, M.; Ruffer, M.; Rusakov, S.; Rybicki, K.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmitz, W.; Schröder, V.; Schulz, M.; Schwab, B.; Schwind, A.; Scobel, W.; Seehausen, U.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Smolik, L.; Soloviev, Y.; Spitzer, H.; Staroba, P.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stösslein, U.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Taylor, R. E.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Tichomirov, I.; Truöl, P.; Turnau, J.; Tutas, J.; Urban, L.; Usik, A.; Valkar, S.; Valkarova, A.; Vallée, C.; van Esch, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Vick, R.; Villet, G.; Vogel, E.; Wacker, K.; Walker, I. W.; Walther, A.; Weber, G.; Wegener, D.; Wegner, A.; Wellisch, H. P.; Willard, S.; Winde, M.; Winter, G.-G.; Wolff, Th.; Womersley, L. A.; Wright, A. E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Závada, P.; Zeitnitz, C.; Ziaeepour, H.; Zimmer, M.; Zimmermann, W.; Zomer, F.; H1 Collaboration

    1993-10-01

    A measurement of the proton structure function F2 ( x, Q2) is presented with about 1000 neutral current deep inelastic scattering events for Bjorken x in the range x ⋍ 10 -2 - 10 -4and Q 2 > 5 GeV2. The measurement is based on an integrated luminosity of 22.5 nb -1 recorded by the H1 detector in the first year of HERA operation. The structure function F2 ( x, Q2) shows a significant rise with decreasing x.

  13. Hot gas in the cold dark matter scenario: X-ray clusters from a high-resolution numerical simulation

    NASA Technical Reports Server (NTRS)

    Kang, Hyesung; Cen, Renyue; Ostriker, Jeremiah P.; Ryu, Dongsu

    1994-01-01

    A new, three-dimensional, shock-capturing hydrodynamic code is utilized to determine the distribution of hot gas in a standard cold dark matter (CDM) model of the universe. Periodic boundary conditions are assumed: a box with size 85 h(exp -1) Mpc having cell size 0.31 h(exp -1) Mpc is followed in a simulation with 270(exp 3) = 10(exp 7.3) cells. Adopting standard parameters determined from COBE and light-element nucleosynthesis, sigma(sub 8) = 1.05, omega(sub b) = 0.06, and assuming h = 0.5, we find the X-ray-emitting clusters and compute the luminosity function at several wavelengths, the temperature distribution, and estimated sizes, as well as the evolution of these quantities with redshift. We find that most of the total X-ray emissivity in our box originates in a relatively small number of identifiable clusters which occupy approximately 10(exp -3) of the box volume. This standard CDM model, normalized to COBE, produces approximately 5 times too much emission from clusters having L(sub x) is greater than 10(exp 43) ergs/s, a not-unexpected result. If all other parameters were unchanged, we would expect adequate agreement for sigma(sub 8) = 0.6. This provides a new and independent argument for lower small-scale power than standard CDM at the 8 h(exp -1) Mpc scale. The background radiation field at 1 keV due to clusters in this model is approximately one-third of the observed background, which, after correction for numerical effects, again indicates approximately 5 times too much emission and the appropriateness of sigma(sub 8) = 0.6. If we have used the observed ratio of gas to total mass in clusters, rather than basing the mean density on light-element nucleosynthesis, then the computed luminosity of each cluster would have increased still further, by a factor of approximately 10. The number density of clusters increases to z approximately 1, but the luminosity per typical cluster decreases, with the result that evolution in the number density of bright clusters is moderate in this redshift range, showing a broad peak near z = 0.7, and then a rapid decline above redshift z = 3. Detailed computations of the luminosity functions in the range L(sub x) = 10(exp 40) - 10(exp 44) ergs/s in various energy bands are presented for both cluster central regions and total luminosities to be used in comparison with ROSAT and other observational data sets. The quantitative results found disagree significantly with those found by other investigators using semianalytic techniques. We find little dependence of core radius on cluster luminosity and a dependence of temperature on luminosity given by log kT(sub x) = A + B log L(sub x), which is slightly steeper (B = 0.38) than is indicated by observations. Computed temperatures are somewhat higher than observed, as expected, in that COBE-normalized CDM has too much power on the relevant scales. A modest average temperature gradient is found, with temperatures dropping to 90% of central values at 0.4 h(exp -1) Mpc and 70% of central values at 0.9 h(exp -1) Mpc. Examining the ratio of gas to total mass in the clusters normalized to Omega(sub B) h(exp 2) = 0.015, and comparing with observations, we conclude, in agreement with White (1991), that the cluster observations argue for an open universe.

  14. Massive Molecular Outflows and Evidence for AGN Feedback from CO Observations

    DTIC Science & Technology

    2013-11-13

    J. Thomson Avenue, Cambridge CB3 0HE, UK e-mail: c.cicone@mrao.cam.ac.uk 2 Kavli Institute for Cosmology , University of Cambridge, Madingley Road...molecular outflow as a function of AGN luminosity. Theoretical models of AGN feed- back and cosmological simulations predict a coupling efficiency between AGN

  15. VizieR Online Data Catalog: The Seven Sisters DANCe. I. Pleiades (Bouy+, 2015)

    NASA Astrophysics Data System (ADS)

    Bouy, H.; Bertin, E.; Sarro, L. M.; Barrado, D.; Moraux, E.; Bouvier, J.; Cuillandre, J.-C.; Berihuete, A.; Olivares, J.; Beletsky, Y.

    2015-02-01

    Position, proper motion, multi-wavelength ugrizYJHK photometry and membership probability to the Pleiades cluster for 1972245 sources. Present-day system bolometric luminosity and mass-functions of the Pleiades cluster. Empirical sequence of the Pleiades cluster in ugrizYJHK and BT,VT,JHK photometric systems. (7 data files).

  16. High Energy Colliders

    NASA Astrophysics Data System (ADS)

    Palmer, R. B.; Gallardo, J. C.

    INTRODUCTION PHYSICS CONSIDERATIONS GENERAL REQUIRED LUMINOSITY FOR LEPTON COLLIDERS THE EFFECTIVE PHYSICS ENERGIES OF HADRON COLLIDERS HADRON-HADRON MACHINES LUMINOSITY SIZE AND COST CIRCULAR e^{+}e^- MACHINES LUMINOSITY SIZE AND COST e^{+}e^- LINEAR COLLIDERS LUMINOSITY CONVENTIONAL RF SUPERCONDUCTING RF AT HIGHER ENERGIES γ - γ COLLIDERS μ ^{+} μ^- COLLIDERS ADVANTAGES AND DISADVANTAGES DESIGN STUDIES STATUS AND REQUIRED R AND D COMPARISION OF MACHINES CONCLUSIONS DISCUSSION

  17. A model of the 8-25 micron point source infrared sky

    NASA Technical Reports Server (NTRS)

    Wainscoat, Richard J.; Cohen, Martin; Volk, Kevin; Walker, Helen J.; Schwartz, Deborah E.

    1992-01-01

    We present a detailed model for the IR point-source sky that comprises geometrically and physically realistic representations of the Galactic disk, bulge, stellar halo, spiral arms (including the 'local arm'), molecular ring, and the extragalactic sky. We represent each of the distinct Galactic components by up to 87 types of Galactic source, each fully characterized by scale heights, space densities, and absolute magnitudes at BVJHK, 12, and 25 microns. The model is guided by a parallel Monte Carlo simulation of the Galaxy at 12 microns. The content of our Galactic source table constitutes a good match to the 12 micron luminosity function in the simulation, as well as to the luminosity functions at V and K. We are able to produce differential and cumulative IR source counts for any bandpass lying fully within the IRAS Low-Resolution Spectrometer's range (7.7-22.7 microns as well as for the IRAS 12 and 25 micron bands. These source counts match the IRAS observations well. The model can be used to predict the character of the point source sky expected for observations from IR space experiments.

  18. Evolution of colour-dependence of galaxy clustering up to z˜ 1.2 based on the data from the VVDS-Wide survey

    NASA Astrophysics Data System (ADS)

    Świetoń, Agnieszka; Pollo, Agnieszka; VVDS Team

    2014-12-01

    We discuss the dependence of galaxy clustering according to their colours up to z˜ 1.2. For that purpose we used one of the wide fields (F22) from the VIMOS-VLT Deep Survey (VVDS). For galaxies with absolute luminosities close to the characteristic Schechter luminosities M^* at a given redshift, we measured the projected two-point correlation function w_{p}(r_{p}) and we estimated the best-fit parameters for a single power-law model: ξ(r) = (r/r_0)^{-γ} , where r_0 is the correlation length and γ is the slope of correlation function. Our results show that red galaxies exhibit the strongest clustering in all epochs up to z˜ 1.2. Green valley represents the "intermediate" population and blue cloud shows the weakest clustering strength. We also compared the shape of w_p(r_p) for different galaxy populations. All three populations have different clustering properties on the small scales, similarly to the behaviour observed in the local catalogues.

  19. A Database of Young Star Clusters for Five Hundred Galaxies

    NASA Astrophysics Data System (ADS)

    Whitmore, Brad

    2009-07-01

    We propose to use the source lists developed as part of the Hubble Legacy Archive {HLA: Data Release 1 - February 8, 2008} to obtain a large {N 50 galaxies for multi-wavelength, N 500 galaxies for ACS F814W}, uniform {ACS + WFPC2 + NICMOS: DAOphot used for object detection} database of super star clusters in nearby star-forming galaxies in order to address two fundamental astronomical questions: 1} To what degree is the cluster luminosity {and mass} function of star clusters universal ? 2} What fraction of super star clusters are "missing" in optical studies {i.e., are hidden by dust}? This database will also support comparisons with new Monte-Carlo simulations that have independently been developed in the past few years by co-I Larsen and PI Whitmore, and will be used to test the Whitmore, Chandar, Fall {2007} framework designed to understand the demographics of star clusters in all star forming galaxies. The catalogs will increase the number of galaxies with measured mass and luminosity functions by an order of magnitude, and will provide a powerful new tool for comparative studies, both ours and the community's.

  20. Cooling Models for Old White Dwarfs

    NASA Astrophysics Data System (ADS)

    Hansen, Brad M. S.

    1999-08-01

    We present new white dwarf cooling models that incorporate an accurate outer boundary condition based on new opacity and detailed radiative transfer calculations. We find that helium-atmosphere dwarfs cool considerably faster than has previously been claimed, while old hydrogen-atmosphere dwarfs will deviate significantly from blackbody appearance. We use our new models to derive age limits for the Galactic disk. We find that the Liebert, Dahn, & Monet luminosity function yields an age of only 6 Gyr if it is complete to stated limits. However, age estimates of individual dwarfs and the luminosity function of Oswalt et al. are both consistent with disk ages as large as ~11 Gyr. We have also used our models to place constraints on white dwarf dark matter in the Galactic halo. We find that previous attempts using inadequate cooling models were too severe and that direct detection limits allow a halo that is 11 Gyr old. If the halo is composed solely of helium-atmosphere dwarfs, the lower age limit is only 7.5 Gyr. We also demonstrate the importance of studying the cooling sequences of white dwarfs in globular clusters.

  1. Radio and infrared properties of young stars

    NASA Technical Reports Server (NTRS)

    Panagia, Nino

    1987-01-01

    Observing young stars, or more appropriately, pre-main-sequence (PMS) stars, in the infrared and at radio frequencies has the advantage over optical observation in that the heavy extinction associated with a star forming region is only a minor problem, so that the whole region can be studied thoroughly. Therefore, it means being able to: (1) search for stars and do statistical studies on the rate of star formation; (2) determine their luminosity, hence, to study luminosity functions and initial mass functions down to low masses; and (3) to study their spectra and, thus, to determine the prevailing conditions at and near the surface of a newly born star and its relations with the surrounding environment. The third point is of principal interest. The report limits itself to a consideration of the observations concerning the processes of outflows from, and accretion onto, PMS stars and the theory necessary to interpret them. Section 2 discusses the radiative processes relevant in stellar outflows. The main observational results are presented in Section 3. A discussion of the statistical properties of stellar winds from PMS stars are given in Section 4.

  2. Constraining SN feedback: a tug of war between reionization and the Milky Way satellites

    NASA Astrophysics Data System (ADS)

    Hou, Jun; Frenk, Carlos. S.; Lacey, Cedric G.; Bose, Sownak

    2016-12-01

    Theoretical models of galaxy formation based on the cold dark matter cosmogony typically require strong feedback from supernova (SN) explosions in order to reproduce the Milky Way satellite galaxy luminosity function and the faint end of the field galaxy luminosity function. However, too strong a SN feedback also leads to the universe reionizing too late, and the metallicities of Milky Way satellites being too low. The combination of these four observations therefore places tight constraints on SN feedback. We investigate these constraints using the semi-analytical galaxy formation model GALFORM. We find that these observations favour a SN feedback model in which the feedback strength evolves with redshift. We find that, for our best-fitting model, half of the ionizing photons are emitted by galaxies with rest-frame far-UV absolute magnitudes MAB(1500Å) < -17.5, which implies that already observed galaxy populations contribute about half of the photons responsible for reionization. The z = 0 descendants of these galaxies are mainly galaxies with stellar mass M* > 1010 M⊙ and preferentially inhabit haloes with mass Mhalo > 1013 M⊙.

  3. Complete Hard X-Ray Surveys, AGN Luminosity Functions and the X-Ray Background

    NASA Technical Reports Server (NTRS)

    Tueller, Jack

    2011-01-01

    AGN are believed to make up most of the Cosmic X-Ray Background (CXB) above a few keV, but this background cannot be fully resolved at energies less than 10 keV due to absorption. The Swift/BAT and INTEGRAL missions are performing the first complete hard x-ray surveys with minimal bias due to absorption. The most recent results for both missions will be presented. Although the fraction of the CXB resolved by these surveys is small, it is possible to derive unbiased number counts and luminosity functions for AGN in the local universe. The survey energy range from 15-150 keV contains the important reflection and cutoff spectral features dominate the shape of the AGN contribution to the CXB. Average spectral characteristics of survey detected AGN will be presented and compared with model distributions. The numbers of hard x-ray blazars detected in these surveys are finally sufficient to estimate this important component's contribution the cosmic background. Constraints on CXB models and their significance will be discussed.

  4. Galaxy luminosity function: evolution at high redshift

    NASA Astrophysics Data System (ADS)

    Martinet, N.; Durret, F.; Guennou, L.; Adami, C.

    2014-12-01

    There are some disagreements about the abundance of faint galaxies in high redshift clusters. DAFT/FADA (Dark energy American French Team) is a medium redshift (0.4

  5. Galaxy Formation At Extreme Redshifts: Semi-Analytic Model Predictions And Challenges For Observations

    NASA Astrophysics Data System (ADS)

    Yung, L. Y. Aaron; Somerville, Rachel S.

    2017-06-01

    The well-established Santa Cruz semi-analytic galaxy formation framework has been shown to be quite successful at explaining observations in the local Universe, as well as making predictions for low-redshift observations. Recently, metallicity-based gas partitioning and H2-based star formation recipes have been implemented in our model, replacing the legacy cold-gas based recipe. We then use our revised model to explore the high-redshift Universe and make predictions up to z = 15. Although our model is only calibrated to observations from the local universe, our predictions seem to match incredibly well with mid- to high-redshift observational constraints available-to-date, including rest-frame UV luminosity functions and the reionization history as constrained by CMB and IGM observations. We provide predictions for individual and statistical galaxy properties at a wide range of redshifts (z = 4 - 15), including objects that are too far or too faint to be detected with current facilities. And using our model predictions, we also provide forecasted luminosity functions and other observables for upcoming studies with JWST.

  6. The High Luminosity LHC Project

    NASA Astrophysics Data System (ADS)

    Rossi, Lucio

    The High Luminosity LHC is one of the major scientific project of the next decade. It aims at increasing the luminosity reach of LHC by a factor five for peak luminosity and a factor ten in integrated luminosity. The project, now fully approved and funded, will be finished in ten years and will prolong the life of LHC until 2035-2040. It implies deep modifications of the LHC for about 1.2 km around the high luminosity insertions of ATLAS and CMS and relies on new cutting edge technologies. We are developing new advanced superconducting magnets capable of reaching 12 T field; superconducting RF crab cavities capable to rotate the beams with great accuracy; 100 kA and hundred meter long superconducting links for removing the power converter out of the tunnel; new collimator concepts, etc... Beside the important physics goals, the High Luminosity LHC project is an ideal test bed for new technologies for the next hadron collider for the post-LHC era.

  7. Dependence of the Broad Absorption Line Quasar Fraction on Radio Luminosity

    NASA Astrophysics Data System (ADS)

    Shankar, Francesco; Dai, Xinyu; Sivakoff, Gregory R.

    2008-11-01

    We find that the fraction of classical broad absorption line quasars (BALQSOs) among the FIRST radio sources in the Sloan Data Release 3, is 20.5+ 7.3-5.9% at the faintest radio powers detected (L1.4 GHz ~ 1032 erg s-1), and rapidly drops to lesssim8% at L1.4 GHz ~ 3 × 1033 erg s-1. Similarly, adopting the broader absorption index (AI) definition of Trump et al., we find the fraction of radio BALQSOs to be 44+ 8.1-7.8%, reducing to 23.1+ 7.3-6.1% at high luminosities. While the high fraction at low radio power is consistent with the recent near-IR estimates by Dai et al., the lower fraction at high radio powers is intriguing and confirms previous claims based on smaller samples. The trend is independent of the redshift range, the optical and radio flux selection limits, or the exact definition of a radio match. We also find that at fixed optical magnitude, the highest bins of radio luminosity are preferentially populated by non-BALQSOs, consistent with the overall trend. We do find, however, that those quasars identified as AI-BALQSOs but not under the classical definition do not show a significant drop in their fraction as a function of radio power, further supporting independent claims that these sources, characterized by lower equivalent width, may represent an independent class from the classical BALQSOs. We find the balnicity index, a measure of the absorption trough in BALQSOs, and the mean maximum wind velocity to be roughly constant at all radio powers. We discuss several plausible physical models which may explain the observed fast drop in the fraction of the classical BALQSOs with increasing radio power, although none is entirely satisfactory. A strictly evolutionary model for the BALQSO and radio emission phases requires a strong fine-tuning to work, while a simple geometric model, although still not capable of explaining polar BALQSOs and the paucity of FRII BALQSOs, is statistically successful in matching the data if part of the apparent radio luminosity function is due to beamed, non-BALQSOs.

  8. Black Hole and Galaxy Coevolution from Continuity Equation and Abundance Matching

    NASA Astrophysics Data System (ADS)

    Aversa, R.; Lapi, A.; de Zotti, G.; Shankar, F.; Danese, L.

    2015-09-01

    We investigate the coevolution of galaxies and hosted supermassive black holes (BHs) throughout the history of the universe by a statistical approach based on the continuity equation and the abundance matching technique. Specifically, we present analytical solutions of the continuity equation without source terms to reconstruct the supermassive BH mass function from the active galactic nucleus (AGN) luminosity functions. Such an approach includes physically motivated AGN light curves tested on independent data sets, which describe the evolution of the Eddington ratio and radiative efficiency from slim- to thin-disk conditions. We nicely reproduce the local estimates of the BH mass function, the AGN duty cycle as a function of mass and redshift, along with the Eddington ratio function and the fraction of galaxies with given stellar mass hosting an AGN with given Eddington ratio. We exploit the same approach to reconstruct the observed stellar mass function at different redshift from the ultraviolet and far-IR luminosity functions associated with star formation in galaxies. These results imply that the build-up of stars and BHs in galaxies occurs via in situ processes, with dry mergers playing a marginal role at least for stellar masses ≲ 3× {10}11 {M}⊙ and BH masses ≲ {10}9 {M}⊙ , where the statistical data are more secure and less biased by systematic errors. In addition, we develop an improved abundance matching technique to link the stellar and BH content of galaxies to the gravitationally dominant dark matter (DM) component. The resulting relationships constitute a testbed for galaxy evolution models, highlighting the complementary role of stellar and AGN feedback in the star formation process. In addition, they may be operationally implemented in numerical simulations to populate DM halos or to gauge subgrid physics. Moreover, they may be exploited to investigate the galaxy/AGN clustering as a function of redshift, mass, and/or luminosity. In fact, the clustering properties of BHs and galaxies are found to be in full agreement with current observations, thus further validating our results from the continuity equation. Finally, our analysis highlights that (i) the fraction of AGNs observed in the slim-disk regime, where most of the BH mass is accreted, increases with redshift; and (ii) already at z≳ 6 a substantial amount of dust must have formed over timescales ≲ {10}8 yr in strongly star-forming galaxies, making these sources well within the reach of ALMA surveys in (sub)millimeter bands.

  9. Exploring the Overabundance of ULXs in Metal- and Dust-Poor Local Lyman Break Analogs

    NASA Technical Reports Server (NTRS)

    Basu-Zych, Antara R.; Lehmer, Bret; Fragos, Tassos; Hornschemeier, Ann; Yukita, Mihoko; Zezas, Andreas; Ptak, Andy

    2016-01-01

    We have studied high-mass X-ray binary (HMXB) populations within two low-metallicity, starburst galaxies, Haro 11 and VV 114. These galaxies serve as analogs to high-redshift (z greater than 2) Lyman break galaxies and, within the larger sample of Lyman break analogs (LBAs), they are sufficiently nearby (less than 87 Mpc) to be spatially resolved by Chandra. Previous studies of the X-ray emission in LBAs have found that the 2-10 keV luminosity per star formation rate (SFR) in these galaxies is elevated, potentially because of their low metallicities (12 + log[O/H] = 8.3-8.4). Theoretically, the progenitors of XRBs forming in lower metallicity environments lose less mass from stellar winds over their lifetimes, producing more massive compact objects (i.e., neutron stars and black holes), and thus resulting in more numerous and luminous HMXBs per SFR. In this paper, we have performed an in-depth study of the only two LBAs that have spatially resolved 2-10 keV emission with Chandra to present the bright end of the X-ray luminosity distribution of HMXBs (L(sub X) approximately greater than 10(exp 39) erg s(exp -1); ultraluminous X-ray sources, ULXs) in these low-metallicity galaxies, based on eight detected ULXs. Compared with the star-forming galaxy X-ray luminosity function (XLF) presented by Mineo et al., Haro 11 and VV 114 host approximately equal to 4 times more L(sub X) greater than 10(exp 40) erg s(exp -1) sources than expected given their SFRs. We simulate the effects of source blending from crowded lower-luminosity HMXBs using the star-forming galaxy XLF and then vary the XLF normalizations and bright-end slopes until we reproduce the observed point source luminosity distributions. We find that these LBAs have a shallower bright-end slope (gamma(sub 2) = 1.90) than the standard XLF (gamma(sub 2) 2.73). If we conservatively assume that the brightest X-ray source from each galaxy is powered by an accreting supermassive black hole rather than an HMXB and eliminate these sources from consideration, the luminosity distribution becomes poorly constrained but does appear to be consistent with a standard XLF.

  10. Luminosity determination in pp collisions at √{s} = 8 TeV using the ATLAS detector at the LHC

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Verzini, M. J. Alconada; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alstaty, M.; Gonzalez, B. Alvarez; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Santos, S. P. Amor Dos; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Navarro, L. Barranco; Barreiro, F.; da Costa, J. Barreiro Guimarães; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bylund, O. Bessidskaia; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; De Mendizabal, J. Bilbao; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Sola, J. D. Bossio; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Madden, W. D. Breaden; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Urbán, S. Cabrera; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Calvet, T. P.; Toro, R. Camacho; Camarda, S.; Camarri, P.; Cameron, D.; Armadans, R. Caminal; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Bret, M. Cano; Cantero, J.; Cantrill, R.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Gimenez, V. Castillo; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Alberich, L. Cerda; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Barajas, C. A. Chavez; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Moursli, R. Cherkaoui El; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Muiño, P. Conde; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Ortuzar, M. Crispin; Cristinziani, M.; Croft, V.; Crosetti, G.; Donszelmann, T. Cuhadar; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'Onofrio, M.; De Sousa, M. J. Da Cunha Sargedas; Via, C. Da; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Regie, J. B. De Vivie; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duffield, E. M.; Duflot, L.; Duguid, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; Kacimi, M. El; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Giannelli, M. Faucci; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Martinez, P. Fernandez; Perez, S. Fernandez; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Parodi, A. Ferretto; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Castillo, L. R. Flores; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Walls, F. M. Garay; García, C.; Navarro, J. E. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Bravo, A. Gascon; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Costa, J. Goncalves Pinto Firmino Da; Gonella, G.; Gonella, L.; Gongadze, A.; de la Hoz, S. González; Parra, G. Gonzalez; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Ortiz, N. G. Gutierrez; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Correia, A. M. Henriques; Henrot-Versille, S.; Herbert, G. H.; Jiménez, Y. Hernández; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Pena, J. Jimenez; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Rozas, A. Juste; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Kawade, K.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; Rosa, A. La; Navarro, J. L. La Rosa; Rotonda, L. La; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Dortz, O. Le; Guirriec, E. Le; Quilleuc, E. P. Le; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Miotto, G. Lehmann; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.; Sterzo, F. Lo; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Mateos, D. Lopez; Paredes, B. Lopez; Paz, I. Lopez; Solis, A. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Miguens, J. Machado; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Filho, L. Manhaes de Andrade; Ramos, J. Manjarres; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Latour, B. Martin dit; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Fadden, N. C. Mc; Goldrick, G. Mc; Kee, S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Garcia, B. R. Mellado; Melo, M.; Meloni, F.; Menary, S. B.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Theenhausen, H. Meyer Zu; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Sanchez, F. J. Munoz; Quijada, J. A. Murillo; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Garcia, R. F. Naranjo; Narayan, R.; Villar, D. I. Narrias; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Manh, T. Nguyen; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Seabra, L. F. Oleiro; Pino, S. A. Olivares; Damazio, D. Oliveira; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Garzon, G. Otero y.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Aranda, C. Padilla; Pagáčová, M.; Griso, S. Pagan; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Panagiotopoulou, E. St.; Pandini, C. E.; Vazquez, J. G. Panduro; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez, D. Paredes; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Codina, E. Perez; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Astigarraga, M. E. Pozo; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Perez, A. Rodriguez; Rodriguez, D. Rodriguez; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano; Adam, E. Romero; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Tehrani, F. Safai; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Loyola, J. E. Salazar; Salek, D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Martinez, V. Sanchez; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Sanchez, C. A. Solans; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Denis, R. D. St.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Araya, S. Tapia; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Delgado, A. Tavares; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Kate, H. Ten; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Pastor, E. Torró; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ueno, R.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Santurio, E. Valdes; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Ferrer, J. A. Valls; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Vigne, R.; Villa, M.; Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Nedden, M. zur; Zurzolo, G.; Zwalinski, L.

    2016-12-01

    The luminosity determination for the ATLAS detector at the LHC during pp collisions at √{s} = 8 TeV in 2012 is presented. The evaluation of the luminosity scale is performed using several luminometers, and comparisons between these luminosity detectors are made to assess the accuracy, consistency and long-term stability of the results. A luminosity uncertainty of δ L/L = ± 1.9% is obtained for the 22.7 fb^{-1} of pp collision data delivered to ATLAS at √{s} = 8 TeV in 2012.

  11. Luminosity determination in pp collisions at $$\\sqrt{s} = 8$$ TeV using the ATLAS detector at the LHC

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2016-11-28

    The luminosity determination for the ATLAS detector at the LHC during pp collisions atmore » $$\\sqrt{s} = 8$$ TeV in 2012 is presented. The evaluation of the luminosity scale is performed using several luminometers, and comparisons between these luminosity detectors are made to assess the accuracy, consistency and long-term stability of the results. A luminosity uncertainty of $δL/L$= ± 1.9% is obtained for the 22.7fb –1 of pp collision data delivered to ATLAS at $$\\sqrt{s} = 8$$ TeV in 2012.« less

  12. SILVERRUSH. VI. A simulation of Lyα emitters in the reionization epoch and a comparison with Subaru Hyper Suprime-Cam survey early data

    NASA Astrophysics Data System (ADS)

    Inoue, Akio K.; Hasegawa, Kenji; Ishiyama, Tomoaki; Yajima, Hidenobu; Shimizu, Ikkoh; Umemura, Masayuki; Konno, Akira; Harikane, Yuichi; Shibuya, Takatoshi; Ouchi, Masami; Shimasaku, Kazuhiro; Ono, Yoshiaki; Kusakabe, Haruka; Higuchi, Ryo; Lee, Chien-Hsiu

    2018-06-01

    The survey of Lyman α emitters (LAEs) with the Subaru Hyper Suprime-Cam, called SILVERRUSH (Ouchi et al. 2018, PASJ, 70, S13), is producing massive data of LAEs at z ≳ 6. Here we present LAE simulations to compare the SILVERRUSH data. In 1623 comoving Mpc3 boxes, where numerical radiative transfer calculations of reionization were performed, LAEs have been modeled with physically motivated analytic recipes as a function of halo mass. We have examined 23 models depending on the presence or absence of dispersion of halo Lyα emissivity, dispersion of the halo Lyα optical depth, τα, and halo mass dependence of τα. The unique free parameter in our model, a pivot value of τα, is calibrated so as to reproduce the z = 5.7 Lyα luminosity function (LF) of SILVERRUSH. We compare our model predictions with Lyα LFs at z = 6.6 and 7.3, LAE angular auto-correlation functions (ACFs) at z = 5.7 and 6.6, and LAE fractions in Lyman break galaxies at 5 < z < 7. The Lyα LFs and ACFs are reproduced by multiple models, but the LAE fraction turns out to be the most critical test. The dispersion of τα and the halo mass dependence of τα are essential to explain all observations reasonably. Therefore, a simple model of one-to-one correspondence between halo mass and Lyα luminosity with a constant Lyα escape fraction has been ruled out. Based on our best model, we present a formula to estimate the intergalactic neutral hydrogen fraction, x_{H I}, from the observed Lyα luminosity density at z ≳ 6. We finally obtain x_{H I}=0.5_{-0.3}^{+0.1} as a volume-average at z = 7.3.

  13. Luminosity function of [OII] emission-line galaxies in the MassiveBlack-II simulation

    DOE PAGES

    Park, KwangHo; Khandai, Nishikanta; Matteo, Tiziana Di; ...

    2015-09-18

    We examine the luminosity function (LF) of [OII] emission-line galaxies in the high-resolution cosmological simulation MassiveBlack-II (MBII). From the spectral energy distribution of each galaxy, we select a sub-sample of star-forming galaxies at 0.06 ≤ z ≤ 3.0 using the [OII] emission line luminosity L([OII]). We confirm that the specific star formation rate matches that in the Galaxy And Mass Assembly survey. We show that the [OII] LF at z = 1.0 from the MBII shows good agreement with the LFs from several surveys below L([OII]) = 10 43.0 erg s –1 while the low redshifts (z ≤ 0.3) showmore » an excess in the prediction of bright [OII] galaxies, but still displaying a good match with observations below L([OII]) = 10 41.6 erg s –1. Based on the validity in reproducing the properties of [OII] galaxies at low redshift (z ≤ 1), we forecast the evolution of the [OII] LF at high redshift (z ≤ 3), which can be tested by upcoming surveys such as the Hobby-Eberly Telescope Dark Energy Experiment and Dark Energy Spectroscopic Instrument. The slopes of the LFs at bright and faint ends range from –3 to –2 showing minima at z = 2. The slope of the bright end evolves approximately as (z + 1) –1 at z ≤ 2 while the faint end evolves as ~3(z + 1) –1 at 0.6 ≤ z ≤ 2. In addition, a similar analysis is applied for the evolution of [OIII] LFs, which is to be explored in the forthcoming survey Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets. As a result, we show that the auto-correlation function of [OII] and [OIII] emitting galaxies shows a rapid evolution from z = 2 to 1.« less

  14. SILVERRUSH. VI. A simulation of Lyα emitters in the reionization epoch and a comparison with Subaru Hyper Suprime-Cam survey early data

    NASA Astrophysics Data System (ADS)

    Inoue, Akio K.; Hasegawa, Kenji; Ishiyama, Tomoaki; Yajima, Hidenobu; Shimizu, Ikkoh; Umemura, Masayuki; Konno, Akira; Harikane, Yuichi; Shibuya, Takatoshi; Ouchi, Masami; Shimasaku, Kazuhiro; Ono, Yoshiaki; Kusakabe, Haruka; Higuchi, Ryo; Lee, Chien-Hsiu

    2018-05-01

    The survey of Lyman α emitters (LAEs) with the Subaru Hyper Suprime-Cam, called SILVERRUSH (Ouchi et al. 2018, PASJ, 70, S13), is producing massive data of LAEs at z ≳ 6. Here we present LAE simulations to compare the SILVERRUSH data. In 1623 comoving Mpc3 boxes, where numerical radiative transfer calculations of reionization were performed, LAEs have been modeled with physically motivated analytic recipes as a function of halo mass. We have examined 23 models depending on the presence or absence of dispersion of halo Lyα emissivity, dispersion of the halo Lyα optical depth, τα, and halo mass dependence of τα. The unique free parameter in our model, a pivot value of τα, is calibrated so as to reproduce the z = 5.7 Lyα luminosity function (LF) of SILVERRUSH. We compare our model predictions with Lyα LFs at z = 6.6 and 7.3, LAE angular auto-correlation functions (ACFs) at z = 5.7 and 6.6, and LAE fractions in Lyman break galaxies at 5 < z < 7. The Lyα LFs and ACFs are reproduced by multiple models, but the LAE fraction turns out to be the most critical test. The dispersion of τα and the halo mass dependence of τα are essential to explain all observations reasonably. Therefore, a simple model of one-to-one correspondence between halo mass and Lyα luminosity with a constant Lyα escape fraction has been ruled out. Based on our best model, we present a formula to estimate the intergalactic neutral hydrogen fraction, x_{H I}, from the observed Lyα luminosity density at z ≳ 6. We finally obtain x_{H I}=0.5_{-0.3}^{+0.1} as a volume-average at z = 7.3.

  15. THE SUBARU HIGH-z QUASAR SURVEY: DISCOVERY OF FAINT z ∼ 6 QUASARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashikawa, Nobunari; Furusawa, Hisanori; Niino, Yuu

    2015-01-01

    We present the discovery of one or two extremely faint z ∼ 6 quasars in 6.5 deg{sup 2} utilizing a unique capability of the wide-field imaging of the Subaru/Suprime-Cam. The quasar selection was made in (i'-z{sub B} ) and (z{sub B} -z{sub R} ) colors, where z{sub B} and z{sub R} are bandpasses with central wavelengths of 8842 Å and 9841 Å, respectively. The color selection can effectively isolate quasars at z ∼ 6 from M/L/T dwarfs without the J-band photometry down to z{sub R} < 24.0, which is 3.5 mag deeper than the Sloan Digital Sky Survey (SDSS). Wemore » have selected 17 promising quasar candidates. The follow-up spectroscopy for seven targets identified one apparent quasar at z = 6.156 with M {sub 1450} = –23.10. We also identified one possible quasar at z = 6.041 with a faint continuum of M {sub 1450} = –22.58 and a narrow Lyα emission with HWHM =427 km s{sup –1}, which cannot be distinguished from Lyman α emitters. We derive the quasar luminosity function at z ∼ 6 by combining our faint quasar sample with the bright quasar samples by SDSS and CFHQS. Including our data points invokes a higher number density in the faintest bin of the quasar luminosity function than the previous estimate employed. This suggests a steeper faint-end slope than lower z, though it is yet uncertain based on a small number of spectroscopically identified faint quasars, and several quasar candidates still remain to be diagnosed. The steepening of the quasar luminosity function at the faint end does increase the expected emission rate of the ionizing photon; however, it only changes by a factor of approximately two to six. This was found to still be insufficient for the required photon budget of reionization at z ∼ 6.« less

  16. Bayesian inference of galaxy formation from the K-band luminosity function of galaxies: tensions between theory and observation

    NASA Astrophysics Data System (ADS)

    Lu, Yu; Mo, H. J.; Katz, Neal; Weinberg, Martin D.

    2012-04-01

    We conduct Bayesian model inferences from the observed K-band luminosity function of galaxies in the local Universe, using the semi-analytic model (SAM) of galaxy formation introduced in Lu et al. The prior distributions for the 14 free parameters include a large range of possible models. We find that some of the free parameters, e.g. the characteristic scales for quenching star formation in both high-mass and low-mass haloes, are already tightly constrained by the single data set. The posterior distribution includes the model parameters adopted in other SAMs. By marginalizing over the posterior distribution, we make predictions that include the full inferential uncertainties for the colour-magnitude relation, the Tully-Fisher relation, the conditional stellar mass function of galaxies in haloes of different masses, the H I mass function, the redshift evolution of the stellar mass function of galaxies and the global star formation history. Using posterior predictive checking with the available observational results, we find that the model family (i) predicts a Tully-Fisher relation that is curved; (ii) significantly overpredicts the satellite fraction; (iii) vastly overpredicts the H I mass function; (iv) predicts high-z stellar mass functions that have too many low-mass galaxies and too few high-mass ones and (v) predicts a redshift evolution of the stellar mass density and the star formation history that are in moderate disagreement. These results suggest that some important processes are still missing in the current model family, and we discuss a number of possible solutions to solve the discrepancies, such as interactions between galaxies and dark matter haloes, tidal stripping, the bimodal accretion of gas, preheating and a redshift-dependent initial mass function.

  17. Estimation of distances to stars with stellar parameters from LAMOST

    DOE PAGES

    Carlin, Jeffrey L.; Liu, Chao; Newberg, Heidi Jo; ...

    2015-06-05

    Here, we present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star's absolute magnitude. We tailor this technique specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ~5-degree diameter "plate" that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and targetmore » selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within ~20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with ~40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined.« less

  18. Estimation of distances to stars with stellar parameters from LAMOST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlin, Jeffrey L.; Liu, Chao; Newberg, Heidi Jo

    Here, we present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star's absolute magnitude. We tailor this technique specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ~5-degree diameter "plate" that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and targetmore » selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within ~20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with ~40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined.« less

  19. High-redshift Luminous Red Galaxies clustering analysis in SDSS Stripe82

    NASA Astrophysics Data System (ADS)

    Nikoloudakis, N.

    2012-01-01

    We have measured the clustering of Luminous Red Galaxies in Stripe 82 using the angular correlation function. We have selected 130000 LRGs via colour cuts in R-I:I-K with the K band data coming from UKIDSS LAS. We have used the cross-correlation technique of Newman (2008) to establish the redshift distribution of the LRGs as a function of colour cut, cross-correlating the LRGs with SDSS QSOs, DEEP2 and VVDS galaxies. We also used the AUS LRG redshift survey to establish the n(z) at z<1. We then compare the w(theta) results to the results of Sawangwit et al (2010) from 3 samples of SDSS LRGs at lower redshift to measure the dependence of clustering on redshift and LRG luminosity. We have compared the results for luminosity-matched LRG samples with simple evolutionary models, such as those expected from long-lived, passive models for LRGs and for the HOD models of Wake et al (2009) and find that the long-lived model may be a poorer fit than at lower redshifts. We find some evidence for evolution in the LRG correlation function slope in that the 2-halo term appears to flatten in slope at z>1. We present arguments that this is not caused by systematics.

  20. THE GALAXY LUMINOSITY FUNCTIONS DOWN TO M{sub R} = -10 IN THE COMA CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanoi, Hitomi; Komiyama, Yutaka; Yagi, Masafumi

    2012-08-15

    We derived the luminosity function (LF) of dwarf galaxies in the Coma Cluster down to M{sub R} = -10 at three fields located at the center, intermediate, and outskirt of the cluster. The LF (-19 < M{sub R} < -10) shows no significant differences among the three fields. It shows a clear dip at M{sub R} {approx} -13 and is composed of two distinct components of different slopes; the bright component with -19 < M{sub R} < -13 has a flatter slope than the faint component with -13 < M{sub R} < -10 which has a steep slope. The brightmore » component (-19 < M{sub R} < -13) consists mostly of red extended galaxies including few blue galaxies whose colors are typical of late-type galaxies. On the other hand, the faint component (-13 < M{sub R} < -10) consists largely of point-spread-function-like compact galaxies. We found that both these compact galaxies and some extended galaxies are present in the center while only compact galaxies are seen in the outskirt. In the faint component, the fraction of blue galaxies is larger in the outskirt than in the center. We suggest that the dwarf galaxies in the Coma Cluster, which make up the two components in the LF, are heterogeneous with some different origins.« less

Top