Science.gov

Sample records for luminous high-redshift quasars

  1. High Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Elvis, Martin S.

    1996-01-01

    The report for this period includes three papers: 'Associated Absorption at Low and High Redshift'; 'Strong X-ray Absorption in a Broad Absorption Line Quasar: PHL5200'; and 'ASCA and ROSAT X-ray Spectra of High-Redshift Radio-Loud Quasars'. The first gives examples from both low and high redshift for combining information on absorbing material in active galactic nuclei from both x-ray and the UV. The second presents ASCA observations of the z = 1.98 prototype broad absorption line quasar (BALQSO): PHL 5200, detected with both the solid-state imaging spectrometers and the gas imaging spectometers. The third paper presents results on the x-ray properties of 9 high-redshift radio-loud quasars observed by ASCA and ROSAT, including ASCA observations of S5 0014+81 (z = 3.38) and S5 0836+71 (z = 2.17) and ROSAT observations of PKS 2126-158.

  2. A Survey of Luminous High-redshift Quasars with SDSS and WISE. II. the Bright End of the Quasar Luminosity Function at z ≈ 5

    NASA Astrophysics Data System (ADS)

    Yang, Jinyi; Wang, Feige; Wu, Xue-Bing; Fan, Xiaohui; McGreer, Ian D.; Bian, Fuyan; Yi, Weimin; Yang, Qian; Ai, Yanli; Dong, Xiaoyi; Zuo, Wenwen; Green, Richard; Jiang, Linhua; Wang, Shu; Wang, Ran; Yue, Minghao

    2016-09-01

    This is the second paper in a series on a new luminous z ˜ 5 quasar survey using optical and near-infrared colors. Here we present a new determination of the bright end of the quasar luminosity function (QLF) at z ˜ 5. Combining our 45 new quasars with previously known quasars that satisfy our selections, we construct the largest uniform luminous z ˜ 5 quasar sample to date, with 99 quasars in the range of 4.7 ≤ z < 5.4 and -29 < M 1450 ≤ -26.8, within the Sloan Digital Sky Survey (SDSS) footprint. We use a modified 1/V a method including flux limit correction to derive a binned QLF, and we model the parametric QLF using maximum likelihood estimation. With the faint-end slope of the QLF fixed as α = -2.03 from previous deeper samples, the best fit of our QLF gives a flatter bright end slope β = -3.58 ± 0.24 and a fainter break magnitude {M}1450* = -26.98 ± 0.23 than previous studies at similar redshift. Combined with previous work at lower and higher redshifts, our result is consistent with a luminosity evolution and density evolution model. Using the best-fit QLF, the contribution of quasars to the ionizing background at z ˜ 5 is found to be 18%-45% with a clumping factor C of 2-5. Our sample suggests an evolution of radio loud fraction with optical luminosity but no obvious evolution with redshift.

  3. High redshift quasars and high metallicities

    NASA Technical Reports Server (NTRS)

    Ferland, Gary J.

    1997-01-01

    A large-scale code called Cloudy was designed to simulate non-equilibrium plasmas and predict their spectra. The goal was to apply it to studies of galactic and extragalactic emission line objects in order to reliably deduce abundances and luminosities. Quasars are of particular interest because they are the most luminous objects in the universe and the highest redshift objects that can be observed spectroscopically, and their emission lines can reveal the composition of the interstellar medium (ISM) of the universe when it was well under a billion years old. The lines are produced by warm (approximately 10(sup 4)K) gas with moderate to low density (n less than or equal to 10(sup 12) cm(sup -3)). Cloudy has been extended to include approximately 10(sup 4) resonance lines from the 495 possible stages of ionization of the lightest 30 elements, an extension that required several steps. The charge transfer database was expanded to complete the needed reactions between hydrogen and the first four ions and fit all reactions with a common approximation. Radiative recombination rate coefficients were derived for recombination from all closed shells, where this process should dominate. Analytical fits to Opacity Project (OP) and other recent photoionization cross sections were produced. Finally, rescaled OP oscillator strengths were used to compile a complete set of data for 5971 resonance lines. The major discovery has been that high redshift quasars have very high metallicities and there is strong evidence that the quasar phenomenon is associated with the birth of massive elliptical galaxies.

  4. Moderate resolution spectrophotometry of high redshift quasars

    NASA Technical Reports Server (NTRS)

    Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.

    1991-01-01

    A uniform set of photometry and high signal-to-noise moderate resolution spectroscopy of 33 quasars with redshifts larger than 3.1 is presented. The sample consists of 17 newly discovered quasars (two with redshifts in excess of 4.4) and 16 sources drawn from the literature. The objects in this sample have r magnitudes between 17.4 and 21.4; their luminosities range from -28.8 to -24.9. Three of the 33 objects are broad absorption line quasars. A number of possible high redshift damped Ly-alpha systems were found.

  5. Powerful Quasar Outflows at High Redshifts

    NASA Astrophysics Data System (ADS)

    Aljanahi, Sara; Robert Scott Barrows

    2017-01-01

    Powerful quasar outflows can be driven by radiation pressure or radio jets, and they are capable of effecting the evolution of their host galaxies, particularly at high-redshifts (z~2)) when the quasar density peaks. We present a multi-wavelength analysis of 131 quasar outflows at high-redshifts (0.8quasar energy is coupled with the energy being emitted by the radiation pressure from the accretion disk. Three of the quasars are found in the Hubble Space Telescope archives, with two of them showing clear signs of galaxy interactions/mergers, and a fraction of 0.4 show evidence of interactions from SDSS imaging. These combined results suggests that galaxy interactions may be the triggers of enhanced accretion onto the nuclear supermassive black holes of this sample, with the corresponding enhanced radiation pressure driving the outflows. Furthermore, the high-redshift nature of this sample has pushed the systematic study of quasar outflows closer to the epoch in which quasar feedback is likely to have been important in galaxy evolution.

  6. A cosmic web filament revealed in Lyman-α emission around a luminous high-redshift quasar.

    PubMed

    Cantalupo, Sebastiano; Arrigoni-Battaia, Fabrizio; Prochaska, J Xavier; Hennawi, Joseph F; Madau, Piero

    2014-02-06

    Simulations of structure formation in the Universe predict that galaxies are embedded in a 'cosmic web', where most baryons reside as rarefied and highly ionized gas. This material has been studied for decades in absorption against background sources, but the sparseness of these inherently one-dimensional probes preclude direct constraints on the three-dimensional morphology of the underlying web. Here we report observations of a cosmic web filament in Lyman-α emission, discovered during a survey for cosmic gas fluorescently illuminated by bright quasars at redshift z ≈ 2.3. With a linear projected size of approximately 460 physical kiloparsecs, the Lyman-α emission surrounding the radio-quiet quasar UM 287 extends well beyond the virial radius of any plausible associated dark-matter halo and therefore traces intergalactic gas. The estimated cold gas mass of the filament from the observed emission-about 10(12.0 ± 0.5)/C(1/2) solar masses, where C is the gas clumping factor-is more than ten times larger than what is typically found in cosmological simulations, suggesting that a population of intergalactic gas clumps with subkiloparsec sizes may be missing in current numerical models.

  7. Survey For Very High-Redshift Quasars

    NASA Astrophysics Data System (ADS)

    Lemley, S.; MacAlpine, G.

    1997-12-01

    I will present the results from the deep, three color survey for very high redshift quasars. The survey involved direct imaging through Gunn gri filters using a 2048 x 2048 STIS ccd chip and Cerro Tololo's Curtis Scmidt Telescope. Quasar candidates in the range 4.0 < z < 5.4 were selected based on the detection of the Lyman alpha line and the strong drop in the spectrum blueward of this. Because of this response, quasars are clearly located away from the stellar locus on g - r vs. r - i diagrams. Quasar candidates in this redshift range have large values of g - r and small values of r - i. To confirm the candidates as quasars, the multi-fiber spectroscope Hydra, located on the WIYN telescope, was used. To date, spectral confirmation has been completed for ten degrees out of the approximately fifteen square degress of survey area. Several quasars were discovered, and I will present their spectra and information on the viability of this technique.

  8. High Energy Continuum of High Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Elvis, Martin

    2000-01-01

    Discussion with the RXTE team at GSFC showed that a sufficiently accurate background subtraction procedure had now, been derived for sources at the flux level of PKS 2126-158. However this solution does not apply to observations carried out before April 1997, including our observation. The prospect of an improved solution becoming available soon is slim. As a result the RXTE team agreed to re-observe PKS2126-158. The new observation was carried out in April 1999. Quasi-simultaneous optical observations were obtained, as Service observing., at the 4-meter Anglo-Australian Telescope, and ftp-ed from the AAT on 22April. The RXTE data was processed in late June, arriving at SAO in early July. Coincidentally, our collaborative Beppo-SAX observation of PKS2126-158 was made later in 1999, and a GTO Chandra observation (with which we are involved) was made on November 16. Since this gives us a unique monitoring data for a high redshift quasar over a broad pass-band we are now combining all three observations into a single comprehensive study Final publication of the RXTE data will thus take place under another grant.

  9. Infrared/optical energy distributions of high redshifted quasars

    NASA Technical Reports Server (NTRS)

    Soifer, B. T.; Neugebauer, G.; Oke, J. B.; Matthews, K.; Lacy, J. H.

    1982-01-01

    Measurements at 1.2, 1.6 and 2.2 microns were combined with visual spectrophotometry of 21 quasars having redshifts z or = 2.66. The primary result is that the rest frame visual/ultraviolet continua of the high redshift quasars are well described by a sum of a power law continuum with slope of approximately -0.4 and a 3000 A bump. The rest frame visual/ultraviolet continua of these quasars are quite similar to that of 3C273, the archetype of low redshift quasars. There does not appear to be any visual/ultraviolet properties distinguishing high redshift quasars selected via visual or radio techniques.

  10. X-ray spectral evolution of high redshift quasars

    NASA Technical Reports Server (NTRS)

    Bechtold, Jill; Elvis, Martin; Fiore, Fabrizio; Kuhn, Olga; Cutri, Roc M.; Mcdowell, Jonathan C.; Rieke, Marcia; Siemiginowska, Aneta; Wilkes, Belinda J.

    1994-01-01

    At z approx. equals 3, the x-ray spectra of radio-loud and radio-quiet quasars are different. High-redshift radio-quiet quasars either have large absorbing columns, N(sub H), and steeper power law spectral indices, alpha(sub epsilon), than low redshift quasars, or no absorption and similar alpha(sub epsilon)'s. In contrast, the radio-loud quasars at high redshift have substantial absorption and similar alpha(sub epsilon)'s to low redshift quasars. Implications for the interpretation of the evolution of the luminosity function of quasars are discussed. If the absorption arises outside the central engine for both radio-loud and radio-quiet quasars, then radio-quiet quasars differ from the radio-loud quasars in that their emitted power law spectrum has evolved with redshift. We argue that this favors models where quasars are numerous and short-lived, rather than rare and long-lived.

  11. The High-Redshift Clustering of Photometrically Selected Quasars

    NASA Astrophysics Data System (ADS)

    Timlin, John

    2017-01-01

    We present the data from the Spitzer IRAC Equatorial Survey (SpIES) along with our first high-redshift (2.9quasar clustering results using these data. SpIES is a mid-infrared survey covering ~100 square degrees of the Sloan Digital Sky Survey (SDSS) Stripe 82 (S82) field. The SpIES field is optimally located to overlap with the optical data from SDSS and to complement the area of the pre-existing Spitzer data from the Spitzer-HETDEX Exploratory Large-area (SHELA) survey, which adds ~30 square degrees of infrared coverage on S82. Additionally, SpIES probes magnitudes significantly fainter than WISE; depth which is crucial to detect faint, high-redshift quasars. Using the infrared data from SpIES and SHELA, and the deep optical data from SDSS, we employ the multi-dimensional Bayesian selection algorithm outlined in Richards et al. 2015 to identify ~5000 high-redshift quasar candidates in this field. We then combine these candidates with spectroscopically confirmed high-redshift quasars and measure the redshift space correlation function and the projected correlation function. Finally, using these results, we compute the linear bias to try to constrain quasar feedback models akin to those in Hopkins et al. 2007.

  12. Close companions to two high-redshift quasars

    SciTech Connect

    McGreer, Ian D.; Fan, Xiaohui; Bian, Fuyan; Strauss, Michael A.; Haiman, Zoltàn; Richards, Gordon T.; Jiang, Linhua; Schneider, Donald P.

    2014-10-01

    We report the serendipitous discoveries of companion galaxies to two high-redshift quasars. SDSS J025617.7+001904 is a z = 4.79 quasar included in our recent survey of faint quasars in the SDSS Stripe 82 region. The initial MMT slit spectroscopy shows excess Lyα emission extending well beyond the quasar's light profile. Further imaging and spectroscopy with LBT/MODS1 confirms the presence of a bright galaxy (i {sub AB} = 23.6) located 2'' (12 kpc projected) from the quasar with strong Lyα emission (EW{sub 0} ≈ 100 Å) at the redshift of the quasar, as well as faint continuum. The second quasar, CFHQS J005006.6+344522 (z = 6.25), is included in our recent HST SNAP survey of z ∼ 6 quasars searching for evidence of gravitational lensing. Deep imaging with ACS and WFC3 confirms an optical dropout ∼4.5 mag fainter than the quasar (Y {sub AB} = 25) at a separation of 0.''9. The red i {sub 775} – Y {sub 105} color of the galaxy and its proximity to the quasar (5 kpc projected if at the quasar redshift) strongly favor an association with the quasar. Although it is much fainter than the quasar, it is remarkably bright when compared to field galaxies at this redshift, while showing no evidence for lensing. Both systems may represent late-stage mergers of two massive galaxies, with the observed light for one dominated by powerful ongoing star formation and for the other by rapid black hole growth. Observations of close companions are rare; if major mergers are primarily responsible for high-redshift quasar fueling then the phase when progenitor galaxies can be observed as bright companions is relatively short.

  13. Probabilistic Selection of High-redshift Quasars with Subaru/Hyper Suprime-Cam Survey

    NASA Astrophysics Data System (ADS)

    Onoue, Masafusa

    High-redshift quasars are an important probe of the distant Universe. They enable observational studies of the early growth of supermassive blackholes, cosmic reionization, chemical enrichment of host galaxies, and so on. Through pioneering optical and near-infrared wide-area surveys such as the SDSS and the VIKING Survey, about one hundred quasars have been found at z > 6 (e.g., Fan et al. (2006b), Venemans et al. (2013)). However, its current small sample size and the fact that most of them are the most luminous (M 1450 <~ -24) population in this epoch prevents one from constraining statistics on high-redshift quasars, namely quasar luminosity function (QLF), and redshift evolution of IGM neutral fraction. Thus, discovery of large number of z > 6 quasars, especially low-luminous or z > 7 quasars, is highly desired for further understanding of the early universe. We are now starting a new ground-breaking survey of high-redshift (z > 6) quasars using the exquisite imaging data provided by the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP) Survey. Thanks to its extremely wide coverage and its high sensitivity thorough five optical bands (1,400 deg2 to the depth of r ~ 26 in HSC-Wide layer), it is one of the most powerful contemporary surveys that makes it possible for us to increase the number of z > 6 quasars by almost an order of magnitude, i.e., 300 at z ~ 6 and 50 at z ~ 7, based on the current estimate of the QLF at z > 6 by Willott et al. (2010b). One of the biggest challenges in z > 6 quasar candidate selection is contamination of Galactic brown dwarfs, which have the same point-like appearance as and similarly red colors to the quasars. To overcome this issue and maximize the selection efficiency, we apply a double-layered approach to the HSC survey products, namely combination of two probabilistic selections: SED-fitting and Bayesian selection. In particular, we have developed a template SED fitting method optimized to high-redshift quasars

  14. Tracing high redshift cosmic web with quasar systems

    NASA Astrophysics Data System (ADS)

    Einasto, Maret

    2016-10-01

    We study the cosmic web at redshifts 1.0 <= <= 1.8 using quasar systems based on quasar data from the SDSS DR7 QSO catalogue. Quasar systems were determined with a friend-of-friend (FoF) algorithm at a series of linking lengths. At the linking lengths l <= 30 h -1 Mpc the diameters of quasar systems are smaller than the diameters of random systems, and are comparable to the sizes of galaxy superclusters in the local Universe. The mean space density of quasar systems is close to the mean space density of local rich superclusters. At larger linking lengths the diameters of quasar systems are comparable with the sizes of supercluster complexes in our cosmic neighbourhood. The richest quasar systems have diameters exceeding 500h Mpc. Very rich systems can be found also in random distribution but the percolating system which penetrate the whole sample volume appears in quasar sample at smaller linking length than in random samples showing that the large-scale distribution of quasar systems differs from random distribution. Quasar system catalogues at our web pages (http://www.aai.ee/maret/QSOsystems.html) serve as a database to search for superclusters of galaxies and to trace the cosmic web at high redshifts.

  15. Close Companions to Two High-redshift Quasars

    NASA Astrophysics Data System (ADS)

    McGreer, Ian D.; Fan, Xiaohui; Strauss, Michael A.; Haiman, Zoltàn; Richards, Gordon T.; Jiang, Linhua; Bian, Fuyan; Schneider, Donald P.

    2014-10-01

    We report the serendipitous discoveries of companion galaxies to two high-redshift quasars. SDSS J025617.7+001904 is a z = 4.79 quasar included in our recent survey of faint quasars in the SDSS Stripe 82 region. The initial MMT slit spectroscopy shows excess Lyα emission extending well beyond the quasar's light profile. Further imaging and spectroscopy with LBT/MODS1 confirms the presence of a bright galaxy (i AB = 23.6) located 2'' (12 kpc projected) from the quasar with strong Lyα emission (EW0 ≈ 100 Å) at the redshift of the quasar, as well as faint continuum. The second quasar, CFHQS J005006.6+344522 (z = 6.25), is included in our recent HST SNAP survey of z ~ 6 quasars searching for evidence of gravitational lensing. Deep imaging with ACS and WFC3 confirms an optical dropout ~4.5 mag fainter than the quasar (Y AB = 25) at a separation of 0.''9. The red i 775 - Y 105 color of the galaxy and its proximity to the quasar (5 kpc projected if at the quasar redshift) strongly favor an association with the quasar. Although it is much fainter than the quasar, it is remarkably bright when compared to field galaxies at this redshift, while showing no evidence for lensing. Both systems may represent late-stage mergers of two massive galaxies, with the observed light for one dominated by powerful ongoing star formation and for the other by rapid black hole growth. Observations of close companions are rare; if major mergers are primarily responsible for high-redshift quasar fueling then the phase when progenitor galaxies can be observed as bright companions is relatively short. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #12184 and #12493. Observations were also made with the LBT and MMT.

  16. THE FIRST HIGH-REDSHIFT QUASAR FROM Pan-STARRS

    SciTech Connect

    Morganson, Eric; De Rosa, Gisella; Decarli, Roberto; Walter, Fabian; Rix, Hans-Walter; Chambers, Ken; Burgett, William; Flewelling, Heather; Hodapp, Klaus; Kaiser, Nick; Magnier, Eugene; Sweeney, Bill; Waters, Christopher; McGreer, Ian; Fan, Xiaohui; Greiner, Jochen; Price, Paul

    2012-06-15

    We present the discovery of the first high-redshift (z > 5.7) quasar from the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS1 or PS1). This quasar was initially detected as an i{sub P1} dropout in PS1, confirmed photometrically with the SAO Wide-field InfraRed Camera at Arizona's Multiple Mirror Telescope (MMT) and the Gamma-Ray Burst Optical/Near-Infrared Detector at the MPG 2.2 m telescope in La Silla. The quasar was verified spectroscopically with the MMT Spectrograph, Red Channel and the Cassegrain Twin Spectrograph at the Calar Alto 3.5 m telescope. Its near-infrared spectrum was taken at the Large Binocular Telescope Observatory (LBT) with the LBT Near-Infrared Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research. It has a redshift of 5.73, an AB z{sub P1} magnitude of 19.4, a luminosity of 3.8 Multiplication-Sign 10{sup 47} erg s{sup -1}, and a black hole mass of 6.9 Multiplication-Sign 10{sup 9} M{sub Sun }. It is a broad absorption line quasar with a prominent Ly{beta} peak and a very blue continuum spectrum. This quasar is the first result from the PS1 high-redshift quasar search that is projected to discover more than 100 i{sub P1} dropout quasars and could potentially find more than 10 z{sub P1} dropout (z > 6.8) quasars.

  17. X-RAY ABSORPTION OF HIGH-REDSHIFT QUASARS

    SciTech Connect

    Eitan, Assaf; Behar, Ehud E-mail: behar@physics.technion.ac.il

    2013-09-01

    The soft X-ray photoelectric absorption of high-z quasars has been known for two decades, but has no unambiguous astrophysical context. We construct the largest sample to date of 58 high-redshift quasars (z > 0.45) selected from the XMM-Newton archive based on a high photon count criterion (>1800). We measure the optical depth {tau} at 0.5 keV and find that 43% of the quasars show significant absorption. We aim to find which physical parameters of the quasars, e.g., redshift, radio luminosity, radio loudness, or X-ray luminosity, drive their observed absorption. We compare the absorption behavior with redshift with the pattern expected if the diffuse intergalactic medium (IGM) is responsible for the observed absorption. We also compare the absorption with a comparison sample of gamma-ray burst (GRB) X-ray afterglows. Although the z > 2 quasar opacity is consistent with diffuse IGM absorption, many intermediate-z (0.45 < z < 2) quasars are not sufficiently absorbed for this scenario, and are appreciably less absorbed than GRBs. Only 10/37 quasars at z < 2 are absorbed, and only 5/30 radio-quiet quasars are absorbed. We find a weak correlation between {tau} and z, and an even weaker correlation between {tau} and radio luminosity. These findings lead to the conclusion that although a diffuse IGM origin for the quasar absorption is unlikely, the optical depth does seem to increase with redshift, roughly as (1 + z){sup 2.2{+-}0.6}, tending to {tau} Almost-Equal-To 0.4 at high redshifts, similar to the high-z GRBs. This result can be explained by an ionized and clumpy IGM at z < 2, and a cold, diffuse IGM at higher redshift. If, conversely, the absorption occurs at the quasar, and owing to the steep L{sub x} {proportional_to}(1 + z){sup 7.1{+-}0.5} correlation in the present sample, the host column density scales as N{sub H}{proportional_to}L{sub x}{sup 0.7{+-}0.1}.

  18. A Survey for Very High-Redshift Quasars

    NASA Astrophysics Data System (ADS)

    Lemley, Shelley R.

    1995-12-01

    I have been conducting a deep, three color survey for very high redshift quasars and will present information on how my candidates, which are awaiting spectroscopic confirmation, have been selected. The survey involves direct imaging through Gunn gri filters using a 2048 x 2048 STIS ccd chip and Cerro Tololo's Curtis Scmidt Telescope. Quasar candidates in the range 4.2 < z < 5.4 have been selected based on the detection of the Lyman alpha line and the strong drop in the spectrum blueward of this. Because of this response, quasars are clearly located away from the stellar locus on g - r vs. r - i diagrams. Quasar candidates with z ~ 4.5 have large values of g - r and values of r - i near zero. The z>5 candidates have large r - i values and g - r values near zero. Before beginning the survey, test observations using this selection method were made of two known quasars with redshifts of 4.5 and 4.7. The quasars were successfully relocated by the technique and several candidates, which will also be observed for spectroscopic confirmation, were selected from those two fields. To date, 13 square degrees have been surveyed.

  19. HUBBLE SPACE TELESCOPE Imaging of the Host Galaxies of High-RedshiftRadio-loud Quasars

    NASA Astrophysics Data System (ADS)

    Lehnert, Matthew D.; van Breugel, Wil J. M.; Heckman, Timothy M.; Miley, George K.

    1999-09-01

    We present rest-frame UV and Lyα images of spatially resolved structures (``hosts'') around five high-redshift radio-loud quasars obtained with the WFPC2 camera on the Hubble Space Telescope (HST). The quasars were imaged with the PC1 through the F555W (``V''-band) filter, which at the redshifts of the quasars (2.1quasars at high redshift have prominent host galaxies that appeared to have properties similar to those of high-redshift radio galaxies. Our HST observations allow a more detailed investigation of quasar host morphologies and a comparison with similar HST studies of radio galaxies by others. Using several methods to measure and quantify the host properties we find that all five quasars are extended and that this ``fuzz'' contains ~5%-40% of the total continuum flux and 15%-65% of the Lyα flux within a radius of about 1.5". The rest-frame UV luminosities of the hosts are log λPλ~11.9-12.5 Lsolar (assuming no internal dust extinction), comparable to the luminous radio galaxies at similar redshifts and a factor 10 higher than both radio-quiet field galaxies at z~2-3 and the most UV-luminous low-redshift starburst galaxies. The Lyα luminosities of the hosts are log LLyα~44.3-44.9 ergs s-1, which are also similar to the those of luminous high-redshift radio galaxies and considerably larger than the Lyα luminosities of high-redshift field galaxies. To generate the Lyα luminosities of the hosts would require roughly a few percent of the total observed ionizing luminosity of the quasar. The UV continuum morphologies of the hosts appear complex and knotty at the relatively high surface brightness levels of our exposures (about 24 V mag arcsec-2). In two quasars we find evidence for foreground galaxies that confuse the

  20. New quasar surveys with WIRO: Searching for high redshift (z~6) quasar candidates

    NASA Astrophysics Data System (ADS)

    Haze Nunez, Evan; Bassett, Neil; Deam, Sophie; Dixon, Don; Griffith, Emily; Harvey, William Bradford; Lee, Daniel; Lyke, Bradley; Parziale, Ryan; Witherspoon, Catherine; Myers, Adam D.; Findlay, Joseph; Kobulnicky, Henry A.; Dale, Daniel A.

    2017-01-01

    High redshift quasars (z~6) are of great interest to fundamental astronomy due to the information they hold about the early universe. With their low number density in the sky, however, they are elusive objects. Reported here is our search for these high redshift quasars using the Wyoming Infrared Observatory (WIRO) 2.3m telescope. We search for potential candidates that have been detected by surveys such as WISE, which have been mostly redshifted out of the optical. The main emission feature of these quasars (the Lyman-Alpha line at ~1216 Angstroms rest-frame) would be redshifted to the z-band or beyond. This means that the quasars should have very low levels of i-band flux. These objects are known as i-dropouts. By imaging the quasars in the i-band and running photometric analysis on our fields, candidates can be identified or rejected by whether or not they appear in our fields. We also provide an analysis of the colors of our candidate high-redshift quasars.This work is supported by the National Science Foundation under REU grant AST1560461

  1. OUTFLOW AND HOT DUST EMISSION IN HIGH-REDSHIFT QUASARS

    SciTech Connect

    Wang, Huiyuan; Xing, Feijun; Wang, Tinggui; Zhou, Hongyan; Zhang, Kai; Zhang, Shaohua

    2013-10-10

    Correlations of hot dust emission with outflow properties are investigated, based on a large z ∼ 2 non-broad absorption line quasar sample built from the Wide-field Infrared Survey and the Sloan Digital Sky Survey data releases. We use the near-infrared slope and the infrared to UV luminosity ratio to indicate the hot dust emission relative to the emission from the accretion disk. In our luminous quasars, these hot dust emission indicators are almost independent of the fundamental parameters, such as luminosity, Eddington ratio and black hole mass, but moderately dependent on the blueshift and asymmetry index (BAI) and FWHM of C IV lines. Interestingly, the latter two correlations dramatically strengthen with increasing Eddington ratio. We suggest that, in high Eddington ratio quasars, C IV regions are dominated by outflows so the BAI and FWHM (C IV) can reliably reflect the general properties and velocity of outflows, respectively. In low Eddington ratio quasars, on the other hand, C IV lines are primarily emitted by virialized gas so the BAI and FWHM (C IV) become less sensitive to outflows. Therefore, the correlations for the highest Eddington ratio quasars are more likely to represent the true dependence of hot dust emission on outflows and the correlations for the entire sample are significantly diluted by the low Eddington ratio quasars. Our results show that an outflow with a large BAI or velocity can double the hot dust emission on average. We suggest that outflows either contain hot dust in themselves or interact with the dusty interstellar medium or torus.

  2. Mining the Infrared Sky for High-Redshift Quasars

    NASA Astrophysics Data System (ADS)

    Richards, Gordon

    The Spitzer and WISE satellites have opened up new avenues for the study of active galactic nuclei (AGN) by peering through the dust shrouding half (or more) of AGNs. However, despite being more sensitive to shrouded AGNs, current selection methods being used in the mid-IR are still largely blind to the highest redshift quasars-both those that are shrouded and those that are not (and should therefore be easy to find). We describe projects to identify both unobscured (at z>3) and obscured quasars (at z>2) that have heretofore been missed in significant numbers. Finding the high-z obscured quasars in large numbers is crucial for fulfilling the legacy of NASA missions in the IR and X-ray. With these quasars we will be able to perform clustering analyses that break the degeneracy of models describing how black holes can ``feed back" energy to the large-scale host galaxy, significantly influencing its evolution. We will further trace the luminosity function of galaxies undergoing active accretion from low-luminosity AGNs to luminous quasars—probing the growth of the supermassive black holes that we see today in the local universe. Our new insights come about from leveraging new Spitzer data, primarily from the PI's SpitzerIRAC Equatorial Survey (SpIES). The Spitzer data are 2.5 magnitudes deeper than the "AllWISE" survey in a 125 square degree, multiwavelength-rich, equatorial region known as SDSS "Stripe 82". These data are crucial for extending mid-IR investigations to higher redshifts, both for unobscured and obscured sources. The PI's team are among the world's experts in using the proposed machine learning techniques to find both unobscured (type-1) and obscured (type- 2) quasars and in using quasar clustering and luminosity functions to do cutting-edge science. The luminosity function and clustering algorithms are already in place, allowing for timely completion of this project once the multi-wavelength NASA data have been incorporated. This project is directly

  3. Absorption in X-ray spectra of high-redshift quasars

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; Fiore, Fabrizio; Wilkes, Belinda; Mcdowell, Jonathan; Bechtold, Jill

    1994-01-01

    We present evidence that X-ray absorption is common in high-redshift quasars. We have studied six high-redshift (z approximately 3) quasars with the ROSAT Position Sensitive Proportional Counter (PSPC) of which four are in directions of low Galactic N(sub H). Three out of these four show excess absorption, while only three in approximately 50 z approximately less than 0.4 quasars do, indicating that such absorption must be common, but not ubiquitous, at high redshifts, and that the absorbers must lie at z greater than 0.4. The six quasars were: S5 0014+81, Q0420-388, PKS 0438-436, S4 0636+680. PKS 2000-330, PKS 2126-158, which have redshifts between 2.85 and 3.78. PKS 0438-436 and PKS 2126-158 show evidence for absorption above the local Galactic value at better than 99.999% confidence level. If the absorber is at the redshift of the quasar, then values of N(sub H) = (0.86(+0.49, -0.28)) x 10(exp 22) atoms/sq cm for PKS 0438-436, and N(sub H) = (1.45(+1.20, -0.64)) x 10(exp 22) atoms/ sq cm for PKS 2126-158, are implied, assuming solar abundances. The spectrum of S4 0636+680 also suggests the presence of a similarly large absorption column density at the 98% confidence level. This absorption reverses the trend for the most luminous active galactic nuclei (AGN) to have the least X-ray absorption, so a new mechanism is likely to be responsible. Intervening absorption due to damped Lyman(alpha) systems is a plausible cause. We also suggest, as an intrinsic model, that intracluster material, e.g., a cooling flow, around the quasar could account for both the X-ray spectrum and other properties of these quasars. All the quasars are radio-loud and three are gigahertz peaked (two of the three showing absorption). No excess absorption above the Galactic value is seen toward Q0420-388. This quasar has two damped Lyman(alpha) systems at z = 3.08. The limit on the X-ray column density implies a low ionization fraction, N(H I)/N(H) approximately greater than 4 x 10(exp -3) (3

  4. High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data

    SciTech Connect

    Fan, X.; Strauss, M.A.; Schneider, D.P.; Gunn, J.E.; Lupton, R.H.; Yanny, B.; Anderson, S.F.; Anderson, J.E. Jr.; Annis, J.; Bahcall, N.A.; Bakken, J.A.; Bastian, S.; Berman, E.; Boroski, W.N.; Briegel, C.; Briggs, J.W.; Brinkmann, J.; Carr, M.A.; Colestock, P.L.; Connolly, A.J.; Crocker, J.H.; Csabai, I. |; Davis, J.E.; and others

    1999-07-01

    We present photometric and spectroscopic observations of 15 high-redshift quasars (z{gt}3.6) discovered from {approximately}140 deg{sup 2} of five-color ({ital u}{prime}, {ital g}{prime}, {ital r}{prime}, {ital i}{prime}, and {ital z}{prime}) imaging data taken by the Sloan Digital Sky Survey (SDSS) during its commissioning phase. The quasars are selected by their distinctive colors in SDSS multicolor space. Four of the quasars have redshifts higher than 4.6 (z=4.63, 4.75, 4.90, and 5.00, the latter being the highest redshift quasar yet known). In addition, two previously known z{gt}4 objects were recovered from the data. The quasars all have i{sup *} {lt}20 and have luminosities comparable to that of 3C 273. The spectra of the quasars have similar features (strong, broad emission lines and substantial absorption blueward of the Ly{alpha} emission line) seen in previously known high-redshift quasars. Although the photometric accuracy and image quality fail to meet the final survey requirements, our success rate for identifying high-redshift quasars (17 quasars from 27 candidates) is much higher than that of previous multicolor surveys. However, the numbers of high-redshift quasars found is in close accord with the number density inferred from previous surveys. {copyright} {ital {copyright} 1999.} {ital The American Astronomical Society}

  5. Probing the Intergalactic Medium with high-redshift quasars

    NASA Astrophysics Data System (ADS)

    Calverley, Alexander Peter

    2011-11-01

    Clues about the timing of reionization and the nature of the ionizing sources responsible are imprinted in the ionization and thermal state of the IGM. In this thesis, I use high-resolution quasar spectra in conjunction with state-of-the-art hydrodynamical simulations to probe the IGM at high redshift, focusing on the ionization and thermal state of the gas. After reionization, the ionization state of the IGM is set by the intensity of the ultraviolet background (UVB), quantified by the hydrogen photoionization rate, Γ_bkg. At high redshifts this has been estimated by measuring the mean flux in the Lyα forest, and scaling Γ_bkg in simulations such that the simulated mean flux matches the observed value. In Chapter 3 I investigate whether the precision of these estimates can be improved by using the entire flux probability distribution function (PDF) instead of only the mean flux. Although I find it cannot improve the precision directly, the flux PDF can potentially be used to constrain other sources of error in observational estimates of Γ_bkg, and so may increase the precision indirectly. The ionizing output of a quasar will locally dominate over the UVB, and this leads to enhanced transmission bluewards of the quasar Lyα line, known as the proximity effect. In Chapter 4 I present the first measurements of Γ_bkg at z > 5 from the proximity effect. The UVB intensity declines smoothly with redshift over 4.6 < z < 6.4, implying a smooth evolution in the mean free path of ionizing photons. This suggests that reionization ends at z > 6.4. There is a drop in Γ_bkg by roughly a factor of five, which corresponds to a drop in the ionizing emissivity by about a factor of two. Such a redshift evolution in the emissivity cannot continue to much higher redshift without reionization failing to complete, which suggests that reionization cannot have ended much higher than z = 6.4. Estimates of Γ_bkg from the proximity effect and the mean flux are generally discrepant

  6. Infrared to x-ray spectral energy distributions of high redshift quasars

    NASA Technical Reports Server (NTRS)

    Bechtold, Jill; Elvis, Martin; Fiore, Fabrizio; Kuhn, Olga; Cutri, Roc M.; Mcdowell, Jonathan C.; Rieke, Marcia; Siemiginowska, Aneta; Wilkes, Belinda J.

    1994-01-01

    We have observed 14 quasars with z greater than 2.8 with the ROSAT-PSPC, and detected 12 of them, including the z=4.11 quasar 0000-263. We present the first x-ray spectrum of a radio quiet quasar with z greater than 3, 1946+768. Its x-ray spectrum is consistent with a power law with spectral index alpha(sub E)=1.8(sup +2.1, sub -1.4) and no evidence for absorption in excess of the galactic column (alpha(sub E)=1.00(sup +0.28, sub -0.32) assuming N(sub H)=N(sub H)(Gal)). A Position Sensitive Proportional Counter (PSPC) hardness ratio is used to constrain the x-ray spectral properties of the quasars for which there were less than 100 photons detected. For the radio quiet quasars, (alpha(sub E)) approximately equals 1.2, if one assumes that there is no absorption in excess of the galactic column. We combine the x-ray data with new ground based optical and near-IR spectrophotometry obtained at the Steward 2.3 m and Multiple Mirror Telescope, and data from the literature. The spectral energy distributions are compared to those of low redshift objects. For the radio quiet quasars with z greater than 2.5, the mean (alpha(sub ox)) is approximately 1.8. This is larger than the mean for quasars with z less than 2.5, but consistent with the expected value for quasars with the high optical luminosities of the objects in this sample. For the radio-loud quasars, (alpha(sub ox)) is approximately 1.4, independent of redshift. This is smaller than the expected value for the optically luminous, high redshift objects in this sample, if they are mostly GHz peaked radio sources and hence comparable to steep-spectrum, compact radio sources at lower redshift. Finally, we compare the spectral energy distributions of two representative objects to the predicted spectrum of a thin accretion disk in the Kerr geometry, and discuss the uncertainties in deriving black hole masses and mass accretion rates.

  7. Clustering of High Redshift (z>2.9) Quasars from the Sloan Digital Sky Survey

    SciTech Connect

    Shen, Yue; Strauss, Michael A.; Oguri, Masamune; Hennawi, Joseph F.; Fan, Xiaohui; Richards, Gordon T.; Hall, Patrick B.; Schneider, Donald P.; Szalay, Alexander S.; Thakar, Anirudda R.; Berk, Daniel E.Vanden; Anderson, Scott F.; Bahcall, Neta A.; /KIPAC, Menlo Park

    2006-11-30

    We study the two-point correlation function of a uniformly selected sample of 4,428 optically selected luminous quasars with redshift 2.9 {le} z {le} 5.4 selected over 4041 deg{sup 2} from the Fifth Data Release of the Sloan Digital Sky Survey. We fit a power-law to the projected correlation function w{sub p}(r{sub p}) to marginalize over redshift space distortions and redshift errors. For a real-space correlation function of the form {zeta}(r) = (r/r{sub 0}){sup -{gamma}}, the fitted parameters in comoving coordinates are r{sub 0} = 15.2 {+-} 2.7 h{sup -1} Mpc and {gamma} = 2.0 {+-} 0.3, over a scale range 4 {le} r{sub p} {le} 150 h{sup -1} Mpc. Thus high-redshift quasars are appreciably more strongly clustered than their z {approx} 1.5 counterparts, which have a comoving clustering length r{sub 0} {approx} 6.5 h{sup -1} Mpc. Dividing our sample into two redshift bins: 2.9 {le} z {le} 3.5 and z {ge} 3.5, and assuming a power-law index {gamma} = 2.0, we find a correlation length of r{sub 0} = 16.9 {+-} 1.7 h{sup -1} Mpc for the former, and r{sub 0} = 24.3 {+-} 2.4 h{sup -1} Mpc for the latter. Strong clustering at high redshift indicates that quasars are found in very massive, and therefore highly biased, halos. Following Martini & Weinberg, we relate the clustering strength and quasar number density to the quasar lifetimes and duty cycle. Using the Sheth & Tormen halo mass function, the quasar lifetime is estimated to lie in the range 4 {approx} 50 Myr for quasars with 2.9 {le} z {le} 3.5; and 30 {approx} 600 Myr for quasars with z {ge} 3.5. The corresponding duty cycles are 0.004 {approx} 0.05 for the lower redshift bin and 0.03 {approx} 0.6 for the higher redshift bin. The minimum mass of halos in which these quasars reside is 2-3 x 10{sup 12} h{sup -1} M{sub {circle_dot}} for quasars with 2.9 {le} z {le} 3.5 and 4-6 x 10{sup 12} h{sup -1} M{sub {circle_dot}} for quasars with z {ge} 3.5; the effective bias factor b{sub eff} increases with redshift, e.g., b

  8. The Final SDSS High-redshift Quasar Sample of 52 Quasars at z>5.7

    NASA Astrophysics Data System (ADS)

    Jiang, Linhua; McGreer, Ian D.; Fan, Xiaohui; Strauss, Michael A.; Bañados, Eduardo; Becker, Robert H.; Bian, Fuyan; Farnsworth, Kara; Shen, Yue; Wang, Feige; Wang, Ran; Wang, Shu; White, Richard L.; Wu, Jin; Wu, Xue-Bing; Yang, Jinyi; Yang, Qian

    2016-12-01

    We present the discovery of nine quasars at z∼ 6 identified in the Sloan Digital Sky Survey (SDSS) imaging data. This completes our survey of z∼ 6 quasars in the SDSS footprint. Our final sample consists of 52 quasars at 5.7\\lt z≤slant 6.4, including 29 quasars with {z}{AB}≤slant 20 mag selected from 11,240 deg2 of the SDSS single-epoch imaging survey (the main survey), 10 quasars with 20≤slant {z}{AB}≤slant 20.5 selected from 4223 deg2 of the SDSS overlap regions (regions with two or more imaging scans), and 13 quasars down to {z}{AB}≈ 22 mag from the 277 deg2 in Stripe 82. They span a wide luminosity range of -29.0≤slant {M}1450≤slant -24.5. This well-defined sample is used to derive the quasar luminosity function (QLF) at z∼ 6. After combining our SDSS sample with two faint ({M}1450≥slant -23 mag) quasars from the literature, we obtain the parameters for a double power-law fit to the QLF. The bright-end slope β of the QLF is well constrained to be β =-2.8+/- 0.2. Due to the small number of low-luminosity quasars, the faint-end slope α and the characteristic magnitude {M}1450* are less well constrained, with α =-{1.90}-0.44+0.58 and {M}* =-{25.2}-3.8+1.2 mag. The spatial density of luminous quasars, parametrized as ρ ({M}1450\\lt -26,z)=ρ (z=6){10}k(z-6), drops rapidly from z∼ 5 to 6, with k=-0.72+/- 0.11. Based on our fitted QLF and assuming an intergalactic medium (IGM) clumping factor of C = 3, we find that the observed quasar population cannot provide enough photons to ionize the z∼ 6 IGM at ∼90% confidence. Quasars may still provide a significant fraction of the required photons, although much larger samples of faint quasars are needed for more stringent constraints on the quasar contribution to reionization.

  9. Luminous, High-z, Type-2 Quasars are Still Missing

    NASA Astrophysics Data System (ADS)

    Richards, Gordon T.; Hennawi, Joseph F.; Rivera, Angelica

    2017-01-01

    A simple unified model suggests that there should be roughly equal numbers of type-1 (unobscured) and type 2 (obscured) quasars. However, we argue that the expected population of luminous, high-z, type-2 quasars are still missing. While large numbers of type-2 AGNs have now been identified (both via spectroscopy and through color-based arguments in the optical, IR, and X-ray), the vast majority of these are low-luminosity objects at z<1, whereas only handfuls of bonafide type-2 quasars are confirmed at redshifts z~2 with bolometric luminosities that are comparable to the typical luminosity of SDSS type-1 quasars. Although some analyses find the density of high-z, type-2 candidates to be much higher than the type-1 population (at similar bolometric luminosity), our revisiting of the problem through an archival spectroscopic search reveals that the confirmed high-z, type-2 population is only a fraction of the high-z, type-1 quasar population to a depth of WISE W4<8. As most interpretations of the "unified model" predict similar numbers of type-1 and type-2 quasars, this conspicuous lack of luminous type-2 quasars at high-redshift constitutes a major unsolved problem. To uncover these missing type-2 quasars, we explore a candidate selection algorithm that utilizes the sky area of AllWISE, the depth/resolution of large-area Spitzer-IRAC surveys, and optical data from the SDSS.

  10. Extended radio jets in the high-redshift quasars 3C 9 and 280.1

    NASA Astrophysics Data System (ADS)

    Swarup, G.; Sinha, R. P.; Saikia, D. J.

    1982-10-01

    Total intensity and polarization observations made with the VLA at 5 GHz of two high-redshift quasars 3C 9 and 280.1 are presented. They appear to have extended one-sided radio jets, which are the most luminous yet to be reported. The jet in 3C 280.1 which was observed with rather higher resolution is discussed in greater detail. This jet has no prominent hotspot at its end and shows several wiggles along its path. The magnetic field is nearly aligned with the axis of the jet and appears to bend along with it. Several possible explanations for the morphological features of the jet are considered, and it is suggested that they are likely to be due to hydrodynamic instabilities. In this scenario, the observed wiggles in the jet are attributed to the onset of helical modes of large wavelength. The absence of a prominent hotspot at the end of the jet may be understood if the energy in the beam is gradually dissipated in shocks and small-wavelength perturbations.

  11. Intergalactic Helium Absorption toward High-Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Giroux, Mark L.; Fardal, Mark A.; Shull, J. Michael

    1995-01-01

    The recent Hubble Space Telescope (HST) observations of the z(q) = 3.286 quasar Q0302-003 (Jakobsen et at. 1994) and the z(q) = 3.185 quasar Q1935-67 by Tytler (1995) show absorption edges at the redshifted wavelength of He II 304 A. A key goal is to distinguish between contributions from discrete Ly-alpha forest clouds and a smoothly distributed intergalactic medium (IGM). We model the contributions from each of these sources of He II absorption, including the distribution of line Doppler widths and column densities, the 'He II proximity effect' from the quasar, and a self-consistent derivation of the He II opacity of the universe as a function of the spectrum of ionizing sources, with the assumption that both the clouds and the IGM are photoionized. The He II edge can be fully accounted for by He II line blanketing for reasonable distributions of line widths and column densities in the Ly-alpha forest, provided that the ionizing sources have spectral index alpha(s) greater than 1.5, and any He II proximity effect is neglected. Even with some contribution from a diffuse IGM, it is difficult to account for the edge observed by Jakobsen et al. (1994) with a 'hard' source spectrum (alpha(s) less than 1.3). The proximity effect modifies the relative contributions of the clouds and IGM to tau(He II) near the quasar (z approx. less than z(q)) and markedly increases the amount of He II absorption required. This implies, for example, that to account for the He II edge with line blanketing alone, the minimum spectral index alpha(s) must be increased from 1.5 to 1.9. We demonstrate the need for higher resolution observations that characterize the change in transmission as z approaches z(q) and resolve line-free gaps in the continuum. We set limits on the density of the diffuse IGM and suggest that the IGM and Ly-alpha clouds are likely to be a significant repository for dark baryons.

  12. Surveys of Luminous Quasars in the Post-reionization Universe at z=5-6

    NASA Astrophysics Data System (ADS)

    Yang, Jinyi; Wu, Xue-Bing; Fan, Xiaohui; Wang, Feige; McGreer, Ian D.; Bian, Fuyan; Green, Richard F.; Yang, Qian; Jiang, Linhua; Wang, Ran; Yi, Weimin; UHS Team

    2017-01-01

    Quasars at z ~ 5 to 6, the post-reionization epoch, are crucial tools to explore the evolution of intergalactic medium (IGM), quasar evolution and the early super-massive black hole growth. The quasar luminosity function (QLF) and its evolution at z >~ 5 is also needed to estimate the contribution of quasars to the ionizing background during and after the reionization epoch. McGreer et al. (2013) provided the first complete measurement of the z ~ 5 QLF. However, their work focused on faint quasars over a small sky area; there were only 8 quasars with M1450 < -27.3. We have carried out a new quasar survey of luminous quasars at 4.7 < z < 5.4 over 14555 deg^2 with high completeness, selected using a combination of SDSS and WISE optical/NIR colors . Using this luminous z ~ 5 quasar sample, we present a new determination of the z ~ 5 QLF and discuss the evolution model of QLF at high redshift. Based on surveys of luminous quasars at z > 4, previous studies have concluded that the number density evolution steepens at high redshift, such that luminous quasars decline as a population more steeply at higher redshift (z ~ 5.5) than from z=4 to 5. However, quasars at redshifts 5.3 < z < 5.7 have been very challenging to select using conventional color selections, due to their similar optical colors to late-type stars, especially M dwarfs, resulting in a glaring redshift gap in quasar redshift distribution. We have developed a new selection technique for z ~ 5.5 quasars based on optical, near- and mid-infrared photometric data. Up to date, we have constructed an uniform luminous z ~ 5.5 quasar sample with 26 new quasars. Our final completed sample of quasars at z=5-6 will be used to study QLF, evolution model and IGM evolution in the post-deionization universe.

  13. Five New High-Redshift Quasar Lenses from the Sloan Digital Sky Survey

    SciTech Connect

    Inada, Naohisa; Oguri, Masamune; Shin, Min-Su; Kayo, Issha; Strauss, Michael A.; Morokuma, Tomoki; Schneider, Donald P.; Becker, Robert H.; Bahcall, Neta A.; York, Donald G.

    2008-09-08

    We report the discovery of five gravitationally lensed quasars from the Sloan Digital Sky Survey (SDSS). All five systems are selected as two-image lensed quasar candidates from a sample of high-redshift (z > 2.2) SDSS quasars. We confirmed their lensing nature with additional imaging and spectroscopic observations. The new systems are SDSS J0819+5356 (source redshift z{sub s} = 2.237, lens redshift z{sub l} = 0.294, and image separation {theta} = 4.04 inch), SDSS J1254+2235 (z{sub s} = 3.626, {theta} = 1.56 inch), SDSS J1258+1657 (z{sub s} = 2.702, {theta} = 1.28 inch), SDSS J1339+1310 (z{sub s} = 2.243, {theta} = 1.69 cin), and SDSS J1400+3134 (z{sub s} = 3.317, {theta} = 1.74 inch). We estimate the lens redshifts of the latter four systems to be z{sub l} = 0.4-0.6 from the colors and magnitudes of the lensing galaxies. We find that the image configurations of all systems are well reproduced by standard mass models. Although these lenses will not be included in our statistical sample of z{sub s} < 2.2 lenses, they expand the number of lensed quasars which can be used for high-redshift galaxy and quasar studies.

  14. Detecting Relativistic X-Ray Jets in High-redshift Quasars

    NASA Astrophysics Data System (ADS)

    McKeough, Kathryn; Siemiginowska, Aneta; Cheung, C. C.; Stawarz, Łukasz; Kashyap, Vinay L.; Stein, Nathan; Stampoulis, Vasileios; van Dyk, David A.; Wardle, J. F. C.; Lee, N. P.; Harris, D. E.; Schwartz, D. A.; Donato, Davide; Maraschi, Laura; Tavecchio, Fabrizio

    2016-12-01

    We analyze Chandra X-ray images of a sample of 11 quasars that are known to contain kiloparsec scale radio jets. The sample consists of five high-redshift (z ≥ 3.6) flat-spectrum radio quasars, and six intermediate redshift (2.1 < z < 2.9) quasars. The data set includes four sources with integrated steep radio spectra and seven with flat radio spectra. A total of 25 radio jet features are present in this sample. We apply a Bayesian multi-scale image reconstruction method to detect and measure the X-ray emission from the jets. We compute deviations from a baseline model that does not include the jet, and compare observed X-ray images with those computed with simulated images where no jet features exist. This allows us to compute p-value upper bounds on the significance that an X-ray jet is detected in a pre-determined region of interest. We detected 12 of the features unambiguously, and an additional six marginally. We also find residual emission in the cores of three quasars and in the background of one quasar that suggest the existence of unresolved X-ray jets. The dependence of the X-ray to radio luminosity ratio on redshift is a potential diagnostic of the emission mechanism, since the inverse Compton scattering of cosmic microwave background photons (IC/CMB) is thought to be redshift dependent, whereas in synchrotron models no clear redshift dependence is expected. We find that the high-redshift jets have X-ray to radio flux ratios that are marginally inconsistent with those from lower redshifts, suggesting that either the X-ray emissions are due to the IC/CMB rather than the synchrotron process, or that high-redshift jets are qualitatively different.

  15. A supernova origin for dust in a high-redshift quasar.

    PubMed

    Maiolino, R; Schneider, R; Oliva, E; Bianchi, S; Ferrara, A; Mannucci, F; Pedani, M; Sogorb, M Roca

    2004-09-30

    Interstellar dust plays a crucial role in the evolution of the Universe by assisting the formation of molecules, by triggering the formation of the first low-mass stars, and by absorbing stellar ultraviolet-optical light and subsequently re-emitting it at infrared/millimetre wavelengths. Dust is thought to be produced predominantly in the envelopes of evolved (age >1 Gyr), low-mass stars. This picture has, however, recently been brought into question by the discovery of large masses of dust in the host galaxies of quasars at redshift z > 6, when the age of the Universe was less than 1 Gyr. Theoretical studies, corroborated by observations of nearby supernova remnants, have suggested that supernovae provide a fast and efficient dust formation environment in the early Universe. Here we report infrared observations of a quasar at redshift 6.2, which are used to obtain directly its dust extinction curve. We then show that such a curve is in excellent agreement with supernova dust models. This result demonstrates a supernova origin for dust in this high-redshift quasar, from which we infer that most of the dust at high redshifts probably has the same origin.

  16. High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data. II. The Spring Equatorial Stripe

    SciTech Connect

    Fan, Xiaohui; Strauss, Michael A.; Schneider, Donald P.; Gunn, James E.; Lupton, Robert H.; Anderson, Scott F.; Voges, Wolfgang; Margon, Bruce; Annis, James; Bahcall, Neta A.

    2000-01-01

    This is the second paper in a series aimed at finding high-redshift quasars from five-color (u{sup '} g{sup '} r{sup '} i{sup '} z{sup '}) imaging data taken along the Celestial Equator by the Sloan Digital Sky Survey (SDSS) during its commissioning phase. In this paper, we present 22 high-redshift quasars (z>3.6) discovered from {approx}250 deg2 of data in the spring Equatorial Stripe, plus photometry for two previously known high-redshift quasars in the same region of the sky. Our success rate in identifying high-redshift quasars is 68%. Five of the newly discovered quasars have redshifts higher than 4.6 (z=4.62, 4.69, 4.70, 4.92, and 5.03). All the quasars have i{sup *} <20.2 with absolute magnitude - 28.8quasars show unusual emission and absorption features in their spectra, including an object at z=4.62 without detectable emission lines, and a broad absorption line (BAL) quasar at z=4.92. (c) (c) 2000. The American Astronomical Society.

  17. MORPHOLOGY AND SIZE DIFFERENCES BETWEEN LOCAL AND HIGH-REDSHIFT LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Rujopakarn, Wiphu; Rieke, George H.; Eisenstein, Daniel J.; Juneau, Stephanie

    2011-01-10

    We show that the star-forming regions in high-redshift luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and submillimeter galaxies (SMGs) have similar physical scales to those in local normal star-forming galaxies. To first order, their higher infrared (IR) luminosities result from higher luminosity surface density. We also find a good correlation between the IR luminosity and IR luminosity surface density in starburst galaxies across over five orders of magnitude of IR luminosity from local normal galaxies to z {approx} 2 SMGs. The intensely star-forming regions of local ULIRGs are significantly smaller than those in their high-redshift counterparts and hence diverge significantly from this correlation, indicating that the ULIRGs found locally are a different population from the high-redshift ULIRGs and SMGs. Based on this relationship, we suggest that luminosity surface density should serve as a more accurate indicator for the IR emitting environment, and hence the observable properties, of star-forming galaxies than their IR luminosity. We demonstrate this approach by showing that ULIRGs at z {approx} 1 and a lensed galaxy at z {approx} 2.5 exhibit aromatic features agreeing with local LIRGs that are an order of magnitude less luminous, but have similar IR luminosity surface density. A consequence of this relationship is that the aromatic emission strength in star-forming galaxies will appear to increase at z>1 for a given IR luminosity compared to their local counterparts.

  18. Observational Signatures of High-Redshift Quasars and Local Relics of Black Hole Seeds

    NASA Astrophysics Data System (ADS)

    Reines, Amy E.; Comastri, Andrea

    2016-10-01

    Observational constraints on the birth and early evolution of massive black holes come from two extreme regimes. At high redshift, quasars signal the rapid growth of billion-solar-mass black holes and indicate that these objects began remarkably heavy and/or accreted mass at rates above the Eddington limit. At low redshift, the smallest nuclear black holes known are found in dwarf galaxies and provide the most concrete limits on the mass of black hole seeds. Here, we review current observational work in these fields that together are critical for our understanding of the origin of massive black holes in the Universe.

  19. Discovery of high-redshift quasars from Pan-STARRS1

    NASA Astrophysics Data System (ADS)

    Banados, Eduardo; Venemans, B.; Morganson, E.; Decarli, R.; Walter, F.; Chambers, K. C.; Rix, H.; Farina, E.; De Rosa, G.; Pan-STARRS

    2014-01-01

    High-z quasars provide unique information about the evolution of supermassive black holes (SMBHs) and the intergalactic medium (IGM) at early cosmic times. Over the last decade, numerous studies have established a sample of ~60 quasars at 5.5quasars in this redshift range is crucial to further study this important era in the history of the Universe. The Pan-STARRS1 (PS1) 3pi survey represents a fundamental step forward in high-z quasar searches for three reasons: 1) it covers more than two times the area observed with SDSS; 2) it goes significantly deeper than SDSS in the reddest bands where 6 quasars are visible; and 3) the additional y-band enables the search for luminous quasars beyond the SDSS limit, z>6.5. In early 2013, PS1 produced its first 3pi stacked catalog, marking a leap forward in terms of depth and area. Already in 2012 we discovered the first PS1 high-z quasar (Morganson et al 2012). Our aim is to discover a complete sample of 5.7quasars in the 3pi PS1 area, sensitive to a magnitude of z=21.4, i.e. nearly a magnitude deeper than the SDSS quasar search. During 2013, we have so far discovered 8 additional 6 quasars (Bañados et al 2013). The new sample shows a variety of quasars properties, in terms of both luminosities and spectral features. The fraction of weak-line emission quasars found in this work is much higher than in previous studies, implying that the 6 quasar population might be more diverse than previously thought.

  20. A high-redshift IRAS galaxy with huge luminosity - Hidden quasar or protogalaxy?

    NASA Technical Reports Server (NTRS)

    Rowan-Robinson, M.; Broadhurst, T.; Oliver, S. J.; Taylor, A. N.; Lawrence, A.; Mcmahon, R. G.; Lonsdale, C. J.; Hacking, P. B.; Conrow, T.

    1991-01-01

    An emission line galaxy with the enormous far-IR luminosity of 3 x 10 to the 14th solar has been found at z = 2.286. The spectrum is very unusual, showing lines of high excitation but with very weak Lyman-alpha emission. A self-absorbed synchrotron model for the IR energy distribution cannot be ruled out, but a thermal origin seems more plausible. A radio-quiet quasar embedded in a very dusty galaxy could account for the IR emission, as might a starburst embedded in 1-10 billion solar masses of dust. The latter case demands so much dust that the object would probably be a massive galaxy in the process of formation. The presence of a large amount of dust in an object of such high redshift implies the generation of heavy elements at an early cosmological epoch.

  1. The High-Redshift Quasar Luminosity Function from Multi-Epoch Imaging Surveys

    NASA Astrophysics Data System (ADS)

    AlSayyad, Yusra

    Upcoming time-domain imaging surveys such as the LSST will detect over a million high-redshift z > 4 quasars, making complete spectroscopic followup unfeasible. Statistical estimates such as luminosity functions and clustering measurements will require purely photometric methods for classifying quasars, estimating redshifts and estimating selection functions. We validate these methods and constrain the optical, type I quasar luminosity function (QLF) at 3.75 < z < 4.5 for -27.5 < M1450 3.75) and constraint on the characteristic luminosity (M*1450 = -26.7) from a single, uniformly-selected survey at z 4. We used the Sloan Digital Sky Survey (SDSS) repeated imaging of the 275 sq. deg. equatorial region of the sky (-50 < R.A. < +60; -1.26 < Dec. < +1.26), known as Stripe 82, to select a statistical sample of z 4 quasars. We extracted 40 million lightcurves from the imaging using forced photometry on all u, g, r, i, z epochs at the positions of sources detected on a deep i-band co-add. We developed a classification method based on photometric information alone (colors and variability metrics derived from these new multi-band lightcurves), which we validated with a spectroscopically complete 55 sq. deg. sub-region augmented with 102 new spectroscopic observations of quasars at z > 3.4 with i < 22.5. We demonstrate that selection functions for ensemble classifiers can be estimated by building generative models of empirical distributions of quasars previously selected with a diverse set of selection criteria. The z 4 QLF contributes to our understanding of supermassive black hole growth and cosmic reionization of both H I and He II which likely began at z 4 as a result of hard UV emissivity from quasars. The resulting QLF measurement is consistent with the previous lower number densities reported from deep, narrow-field surveys (COSMOS); it is not consistent with higher number densities reported from the NDWFS-DLS and CANDELS GOODS-S fields. In the context of recent 2

  2. Constraints on the Extragalactic Background Light from Gamma-Ray Observations of High-Redshift Quasars

    NASA Astrophysics Data System (ADS)

    Madau, Piero; Phinney, E. Sterl

    1996-01-01

    We propose to use the detectability of energetic y-rays in the 10-200 GeV range from high-redshift quasars to set limits on the energy density and era of formation of the extragalactic background light (EBL) in the near-ultraviolet, optical, and near-infrared portion of the spectrum. We study a variety of EBL models based on recent estimates of the density of starlight at the present epoch, a detailed modeling of the transfer of ionizing radiation through the intergalactic medium and of the spectral energy distribution of young galaxies, and simple parameterizations of the star formation history. We demonstrate that a cosmic background of optical photons which is comparable to the integrated EBL contributed by ordinary galaxies and originates as near-ultraviolet radiation at redshift z ˜ 2 will make the universe optically thick to γ-ray photons above ˜30 GeV through electron-positron pair production. We also show that a detection by the EGRET instrument aboard the Compton Observatory of ≥15 GeV photons from the quasar 1633+382 (Mattox et al. 1993) would rule out models in which a diffuse optical background with an energy density several times in excess that of known galaxies was formed at z ˜ 2 by a new class of sources. The universe to intermediate redshifts is optically thin to pair production below ˜10 GeV.

  3. Weak Line Quasars at High Redshift: Extremely High Accretion Rates or Anemic Broad-line Regions?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad; Trakhtenbrot, Benny; Anderson, Scott F.; Brandt, W. N.; Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Lira, Paulina; Netzer, Hagai; Plotkin, Richard M.; Richards, Gordon T.; Schneider, Donald P.; Strauss, Michael A.

    2010-10-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z = 3.55 and SDSS J123743.08+630144.9 at z = 3.49. In both sources, we detect an unusually weak broad Hβ line and place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black hole mass determinations indicate normalized accretion rates of L/L Edd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ = 1.91+0.24 -0.22, which supports the virial L/L Edd determination in this source. Our results suggest that the weakness of the broad emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad emission line region properties.

  4. Outflows driven by quasars in high-redshift galaxies with radiation hydrodynamics

    NASA Astrophysics Data System (ADS)

    Bieri, Rebekka; Dubois, Yohan; Rosdahl, Joakim; Wagner, Alexander; Silk, Joseph; Mamon, Gary A.

    2017-01-01

    The quasar mode of active galactic nuclei (AGN) in the high-redshift Universe is routinely observed in gas-rich galaxies together with large-scale AGN-driven winds. It is crucial to understand how photons emitted by the central AGN source couple to the ambient interstellar medium to trigger large-scale outflows. By means of radiation-hydrodynamical simulations of idealized galactic discs, we study the coupling of photons with the multiphase galactic gas, and how it varies with gas cloud sizes, and the radiation bands included in the simulations, which are ultraviolet, optical, and infrared (IR). We show how a quasar with a luminosity of 1046 erg s- 1 can drive large-scale winds with velocities of 10^2-10^3 km s^{-1} and mass outflow rates around 103 M⊙ yr- 1 for times of the order of a few million years. IR radiation is necessary to efficiently transfer momentum to the gas via multiscattering on dust in dense clouds. However, IR multiscattering, despite being extremely important at early times, quickly declines as the central gas cloud expands and breaks up, allowing the radiation to escape through low gas density channels. The typical number of multiscattering events for an IR photon is only about a quarter of the mean optical depth from the centre of the cloud. Our models account for the observed outflow rates of ˜500-1000 M⊙ yr- 1 and high velocities of ˜ 103 km s- 1, favouring winds that are energy driven via extremely fast nuclear outflows, interpreted here as being IR radiatively driven winds.

  5. Galaxy Clustering Around Nearby Luminous Quasars

    NASA Technical Reports Server (NTRS)

    Fisher, Karl B.; Bahcall, John N.; Kirhakos, Sofia; Schneider, Donald P.

    1996-01-01

    We examine the clustering of galaxies around a sample of 20 luminous low redshift (z approx. less than 0.30) quasars observed with the Wide Field Camera-2 on the Hubble Space Telescope (HST). The HST resolution makes possible galaxy identification brighter than V = 24.5 and as close as 1 min or 2 min to the quasar. We find a significant enhancement of galaxies within a projected separation of approx. less than 100 1/h kpc of the quasars. If we model the QSO/galaxy correlation function as a power law with a slope given by the galaxy/galaxy correlation function, we find that the ratio of the QSO/galaxy to galaxy/galaxy correlation functions is 3.8 +/- 0.8. The galaxy counts within r less than 15 1/h kpc of the quasars are too high for the density profile to have an appreciable core radius (approx. greater than 100 1/h kpc). Our results reinforce the idea that low redshift quasars are located preferentially in groups of 10-20 galaxies rather than in rich clusters. We see no significant difference in the clustering amplitudes derived from radio-loud and radio-quiet subsamples.

  6. Bayesian Multiscale Analysis of X-Ray Jet Features in High Redshift Quasars

    NASA Astrophysics Data System (ADS)

    McKeough, Kathryn; Siemiginowska, A.; Kashyap, V.; Stein, N.

    2014-01-01

    X-ray emission of powerful quasar jets may be a result of the inverse Compton (IC) process in which the Cosmic Microwave Background (CMB) photons gain energy by interactions with the jet’s relativistic electrons. However, there is no definite evidence that IC/CMB process is responsible for the observed X-ray emission of large scale jets. A step toward understanding the X-ray emission process is to study the Radio and X-ray morphologies of the jet. We implement a sophisticated Bayesian image analysis program, Low-count Image Reconstruction and Analysis (LIRA) (Esch et al. 2004; Conners & van Dyk 2007), to analyze jet features in 11 Chandra images of high redshift quasars (z ~ 2 - 4.8). Out of the 36 regions where knots are visible in the radio jets, nine showed detectable X-ray emission. We measured the ratios of the X-ray and radio luminosities of the detected features and found that they are consistent with the CMB radiation relationship. We derived a range of the bulk lorentz factor (Γ) for detected jet features under the CMB jet emission model. There is no discernible trend of Γ with redshift within the sample. The efficiency of the X-ray emission between the detected jet feature and the corresponding quasar also shows no correlation with redshift. This work is supported in part by the National Science Foundation REU and the Department of Defense ASSURE programs under NSF Grant no.1262851 and by the Smithsonian Institution, and by NASA Contract NAS8-39073 to the Chandra X-ray Center (CXC). This research has made use of data obtained from the Chandra Data Archive and Chandra Source Catalog, and software provided by the CXC in the application packages CIAO, ChIPS, and Sherpa. We thank Teddy Cheung for providing the VLA radio images. Connors, A., & van Dyk, D. A. 2007, Statistical Challenges in Modern Astronomy IV, 371, 101 Esch, D. N., Connors, A., Karovska, M., & van Dyk, D. A. 2004, ApJ, 610, 1213

  7. A simple model to link the properties of quasars to the properties of dark matter haloes out to high redshift

    NASA Astrophysics Data System (ADS)

    Croton, Darren J.

    2009-04-01

    We present a simple model of how quasars occupy dark matter haloes from z = 0 to 5 using the observed mBH-σ relation and quasar luminosity functions. This provides a way for observers to statistically infer host halo masses for quasar observations using luminosity and redshift alone. Our model is deliberately simple and sidesteps any need to explicitly describe the physics. In spite of its simplicity, the model reproduces many key observations and has predictive power: (i) model quasars have the correct luminosity function (by construction) and spatial clustering (by consequence); (ii) we predict high-redshift quasars of a given luminosity live in less massive dark matter haloes than the same luminosity quasars at low redshifts; (iii) we predict a factor of ~5 more 108.5Msolar black holes at z ~ 2 than is currently observed; (iv) we predict a factor of ~20 evolution in the amplitude of the mBH-Mhalo relation between z = 5 and the present day; (v) we expect luminosity-dependent quasar lifetimes of between tQ ~ 107 and 108yr, but which may become as short as 105-6yr for quasars brighter than L* and (vi) while little luminosity-dependent clustering evolution is expected at z <~ 1, increasingly strong evolution is predicted for L > L* quasars at higher redshifts. These last two results arise from the narrowing distribution of halo masses that quasars occupy as the Universe ages. We also deconstruct both `downsizing' and `upsizing' trends predicted by the model at different redshifts and space densities. Importantly, this work illustrates how current observations cannot distinguish between more complicated physically motivated quasar models and our simple phenomenological approach. It highlights the opportunities such methodologies provide.

  8. A high-redshift quasar absorber without C IV. A galactic outflow caught in the act?

    NASA Astrophysics Data System (ADS)

    Fox, Anne; Richter, Philipp

    2016-04-01

    We present a detailed analysis of a very unusual sub-damped Lyman α (sub-DLA) system at redshift z = 2.304 towards the quasar Q 0453-423, based on high signal-to-noise (S/N), high-resolution spectral data obtained with VLT/UVES. With a neutral hydrogen column density of log N(H i) = 19.23 and a metallicity of -1.61 as indicated by [O i/H i] the sub-DLA mimics the properties of many other optically thick absorbers at this redshift. A very unusual feature of this system is, however, the lack of any C iv absorption at the redshift of the neutral hydrogen absorption, although the relevant spectral region is free of line blends and has very high S/N. Instead, we find high-ion absorption from C iv and O vi in another metal absorber at a velocity more than 220 km s-1 redwards of the neutral gas component. We explore the physical conditions in the two different absorption systems using Cloudy photoionisation models. We find that the weakly ionised absorber is dense and metal-poor while the highly ionised system is thin and more metal-rich. The absorber pair towards Q 0453-423 mimics the expected features of a galactic outflow with highly ionised material that moves away with high radial velocities from a (proto)galactic gas disk in which star-formation takes place. We discuss our findings in the context of C iv absorption line statistics at high redshift and compare our results to recent galactic-wind and outflow models.

  9. Discovery of a very Lyman-α-luminous quasar at z = 6.62

    PubMed Central

    Koptelova, Ekaterina; Hwang, Chorng-Yuan; Yu, Po-Chieh; Chen, Wen-Ping; Guo, Jhen-Kuei

    2017-01-01

    Distant luminous quasars provide important information on the growth of the first supermassive black holes, their host galaxies and the epoch of reionization. The identification of quasars is usually performed through detection of their Lyman-α line redshifted to 0.9 microns at z > 6.5. Here, we report the discovery of a very Lyman-α luminous quasar, PSO J006.1240 + 39.2219 at redshift z = 6.618, selected based on its red colour and multi-epoch detection of the Lyman-α emission in a single near-infrared band. The Lyman-α line luminosity of PSO J006.1240 + 39.2219 is unusually high and estimated to be 0.8 × 1012 Solar luminosities (about 3% of the total quasar luminosity). The Lyman-α emission of PSO J006.1240 + 39.2219 shows fast variability on timescales of days in the quasar rest frame, which has never been detected in any of the known high-redshift quasars. The high luminosity of the Lyman-α line, its narrow width and fast variability resemble properties of local Narrow-Line Seyfert 1 galaxies which suggests that the quasar is likely at the active phase of the black hole growth accreting close or even beyond the Eddington limit. PMID:28150701

  10. Discovery of a very Lyman-α-luminous quasar at z = 6.62

    NASA Astrophysics Data System (ADS)

    Koptelova, Ekaterina; Hwang, Chorng-Yuan; Yu, Po-Chieh; Chen, Wen-Ping; Guo, Jhen-Kuei

    2017-02-01

    Distant luminous quasars provide important information on the growth of the first supermassive black holes, their host galaxies and the epoch of reionization. The identification of quasars is usually performed through detection of their Lyman-α line redshifted to 0.9 microns at z > 6.5. Here, we report the discovery of a very Lyman-α luminous quasar, PSO J006.1240 + 39.2219 at redshift z = 6.618, selected based on its red colour and multi-epoch detection of the Lyman-α emission in a single near-infrared band. The Lyman-α line luminosity of PSO J006.1240 + 39.2219 is unusually high and estimated to be 0.8 × 1012 Solar luminosities (about 3% of the total quasar luminosity). The Lyman-α emission of PSO J006.1240 + 39.2219 shows fast variability on timescales of days in the quasar rest frame, which has never been detected in any of the known high-redshift quasars. The high luminosity of the Lyman-α line, its narrow width and fast variability resemble properties of local Narrow-Line Seyfert 1 galaxies which suggests that the quasar is likely at the active phase of the black hole growth accreting close or even beyond the Eddington limit.

  11. Discovery of a very Lyman-α-luminous quasar at z = 6.62.

    PubMed

    Koptelova, Ekaterina; Hwang, Chorng-Yuan; Yu, Po-Chieh; Chen, Wen-Ping; Guo, Jhen-Kuei

    2017-02-02

    Distant luminous quasars provide important information on the growth of the first supermassive black holes, their host galaxies and the epoch of reionization. The identification of quasars is usually performed through detection of their Lyman-α line redshifted to 0.9 microns at z > 6.5. Here, we report the discovery of a very Lyman-α luminous quasar, PSO J006.1240 + 39.2219 at redshift z = 6.618, selected based on its red colour and multi-epoch detection of the Lyman-α emission in a single near-infrared band. The Lyman-α line luminosity of PSO J006.1240 + 39.2219 is unusually high and estimated to be 0.8 × 10(12) Solar luminosities (about 3% of the total quasar luminosity). The Lyman-α emission of PSO J006.1240 + 39.2219 shows fast variability on timescales of days in the quasar rest frame, which has never been detected in any of the known high-redshift quasars. The high luminosity of the Lyman-α line, its narrow width and fast variability resemble properties of local Narrow-Line Seyfert 1 galaxies which suggests that the quasar is likely at the active phase of the black hole growth accreting close or even beyond the Eddington limit.

  12. MILLIMETER OBSERVATIONS OF A SAMPLE OF HIGH-REDSHIFT OBSCURED QUASARS

    SciTech Connect

    Martinez-Sansigre, Alejo; Karim, Alexander; Schinnerer, Eva E-mail: karim@mpia.d

    2009-11-20

    quasars must have higher cool-dust masses and are therefore often found at an earlier evolutionary phase than those of unobscured quasars. For one source at z = 2.767, we detect the CO(3-2) transition, with S{sub CO}DELTAnu = 630 +- 50 mJy km s{sup -1}, corresponding to L{sub CO(3-2)} = 3.2 x10{sup 7} L{sub sun}, or a brightness-temperature luminosity of L'{sub CO(3-2)} = 2.4 x 10{sup 10} K km s{sup -1} pc{sup 2}. For another source at z = 4.17, the lack of detection of the CO(4-3) line suggests the line to have a brightness-temperature luminosity L'{sub CO(4-3)} < 1 x 10{sup 10} K km s{sup -1} pc{sup 2}. Under the assumption that in these objects the high-J transitions are thermalized, we can estimate the molecular gas contents to be M{sub H{sub 2}}=1.9x10{sup 10} M {sub sun} and <8 x 10{sup 9} M{sub sun}, respectively. The estimated gas depletion timescales are tau{sub g} = 4 Myr and <16 Myr, and low gas-to-dust mass ratios of M{sub g}/M {sub d} = 19 and <20 are inferred. These values are at the low end but consistent with those of other high-redshift galaxies.

  13. The Hyperluminous Infrared Quasar 3C 318 and Its Implications for Interpreting Sub-MM Detections of High-Redshift Radio Galaxies

    NASA Technical Reports Server (NTRS)

    Willott, Chris J.; Rawlings, Steve; Jarvis, Matt J.

    1999-01-01

    We present near-infrared spectroscopy and imaging of the compact steep-spectrum radio source 3C 318 which shows it to be a quasar at redshift z = 1.574 (the z = 0.752 value previously reported is incorrect). 3C 318 is an IRAS, ISO and SCUBA source so its new redshift makes it the most intrinsically luminous far-infrared (FIR) source in the 3C catalogue (there is no evidence of strong gravitational lensing effects). Its bolometric luminosity greatly exceeds the 10(exp 13) solar luminosity level above which an object is said to be hyperluminous. Its spectral energy distribution (SED) requires that the quasar heats the dust responsible for the FIR flux, as is believed to be the case in other hyperluminous galaxies, and contributes (at the greater than 10% level) to the heating of the CIA dust responsible for the sub-mm emission. We cannot determine whether a starburst makes an important contribution to the heating of the coolest dust, so evidence for a high star-formation rate is circumstantial being based on the high dust, and hence gas, C-1 mass required by its sub-mm detection. We show that the current sub-mm and FIR data available for the highest-redshift radio galaxies are consistent with SEDs similar to that of 3C 318. This indicates that at least some of this population may be detected in the sub-mm because of dust heated by the quasar nucleus, and that interpreting sub-mm detection as evidence for very high (approx. less than 1000 solar mass/yr) star-formation rates may not always be valid. We show that the 3C318 quasar is slightly reddened (A(sub v) approx. = 0.5), the most likely cause of which is SMC-type dust in the host galaxy. If very distant radio galaxies are reddened in a similar way then we show that only slightly greater amounts of dust could obscure the quasars in these sources. We speculate that the low fraction of quasars amongst the very high redshift (z approx. greater than 3) objects in low-frequency radio-selected samples is the result of

  14. Discovery of extreme [O III] λ5007 Å outflows in high-redshift red quasars

    NASA Astrophysics Data System (ADS)

    Zakamska, Nadia L.; Hamann, Fred; Pâris, Isabelle; Brandt, W. N.; Greene, Jenny E.; Strauss, Michael A.; Villforth, Carolin; Wylezalek, Dominika; Alexandroff, Rachael M.; Ross, Nicholas P.

    2016-07-01

    Black hole feedback is now a standard component of galaxy formation models. These models predict that the impact of black hole activity on its host galaxy likely peaked at z = 2-3, the epoch of strongest star formation activity and black hole accretion activity in the Universe. We used XSHOOTER on the Very Large Telescope to measure rest-frame optical spectra of four z ˜ 2.5 extremely red quasars with infrared luminosities ˜1047 erg s-1. We present the discovery of very broad (full width at half max = 2600-5000 km s-1), strongly blueshifted (by up to 1500 km s-1) [O III] λ5007 Å emission lines in these objects. In a large sample of type 2 and red quasars, [O III] kinematics are positively correlated with infrared luminosity, and the four objects in our sample are on the extreme end in both [O III] kinematics and infrared luminosity. We estimate that at least 3 per cent of the bolometric luminosity in these objects is being converted into the kinetic power of the observed wind. Photo-ionization estimates suggest that the [O III] emission might be extended on a few kpc scales, which would suggest that the extreme outflow is affecting the entire host galaxy of the quasar. These sources may be the signposts of the most extreme form of quasar feedback at the peak epoch of galaxy formation, and may represent an active `blow-out' phase of quasar evolution.

  15. Formation of High-Redshift (z>6) Quasars Driven by Nuclear Starbursts

    NASA Astrophysics Data System (ADS)

    Kawakatu, Nozomu; Wada, Keiichi

    2009-11-01

    Based on the physical model of a supermassive black hole (SMBH) growth via gas accretion in a circumnuclear disk (CND) proposed by Kawakatu & Wada, we describe the formation of high-z (z>6) quasars (QSOs) whose BH masses are M BH>109 M sun. We derive the necessary conditions to form QSOs at z>6 by only gas accretion: (1) a large mass supply with M sup>1010 M sunfrom host galaxies to CNDs, because the final BH mass is only 1%-10% of the total supplied mass from QSO hosts. (2) High star formation efficiency for a rapid BH growth which is comparable to high-z starburst galaxies such as submillimeter galaxies. We also find that if the BH growth is limited by the Eddington accretion, the final BH mass is greatly suppressed when the period of mass supply from hosts, t sup, is shorter than the Eddington timescale. Thus, the super-Eddington growth is required for the QSO formation while t sup, which is determined by the efficiency of angular momentum transfer, is shorter than ~108 yr. The evolution of the QSO luminosity depends on the redshift z i at which accretion onto a seed BH is initiated. In other words, the brighter QSOs at z>6 favor the late growth of SMBHs (i.e., z i ≈ 10) rather than early growth (i.e., z i ≈ 30). For z i ≈ 10, t sup sime 108 yr is shorter than that of the star formation in the CND. Thus, the gas in the CND can accrete onto a BH more efficiently, compared with the case for z i ≈ 30 (or t sup ≈ 109 yr). Moreover, we predict the observable properties and the evolution of QSOs at z>6. In a QSO phase, there should exist a stellar rich massive CND, whose gas mass is about 10% of the dynamical mass inside ~0.1-1 kpc. On the other hand, in a phase where the BH grows (i.e., a proto-QSO phase), the proto-QSO has a gas-rich massive CND whose gas mass is comparable to the dynamical mass. Compared with the observed properties of the distant QSO SDSS J1148+5251 observed at z = 6.42, we predict that SDSS J1148+5251 corresponds to the scenario of the

  16. Errata: A Wide-Field Multicolor Survey for High-Redshift Quasars, Z >= 2.2. III. The Luminosity Function

    NASA Astrophysics Data System (ADS)

    Warren, Stephen J.; Hewett, Paul C.; Osmer, Patrick S.

    1995-01-01

    In the paper "A Wide-Field Multicolor Survey for High-Redshift Quasars, z >= 2.2. III. The Luminosity Function" by Stephen. Warren, Paul C. Hewett and Patrick S. Osmer (ApJ, 421,412 [1994]), two equations should be corrected: On page 419, column one, line 11, the expression following the words "the error,, should have an opening parenthesis just before the integral sign, to read: [{SIGMA} 1/({integral} ρ(z)dV_a_)^2^]^1/2^. On page 421, equation (15) is missing the asterisk (*) in the M_c_^*^ term just prior to (β + 1); that is, the exponent in the second term the denominator should read: 0.4(M_c_ - M_c_^*^)(β + 1). The authors wish to draw these errors to the attention of any readers who will be using the expression and equation.

  17. Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Pérez-Fournon, I.; Balcells, M.; Moreno-Insertis, F.; Sánchez, F.

    2010-08-01

    Participants; Group photograph; Preface; Acknowledgements; 1. Galaxy formation and evolution: recent progress R. Ellis; 2. Galaxies at high redshift M. Dickinson; 3. High-redshift galaxies: the far-infrared and sub-millimeter view A. Franceschini; 4. Quasar absorption lines J. Bechtold; 5. Stellar population synthesis models at low and high redshift G. Bruzual A.; 6. Elliptical galaxies K. C. Freeman; 7. Disk galaxies K. C. Freeman; 8. Dark matter in disk galaxies K. C. Freeman.

  18. Spectral Evolution in High Redshift Quasars from the Final Baryon Oscillation Spectroscopic Survey Sample

    NASA Astrophysics Data System (ADS)

    Jensen, Trey W.; Vivek, M.; Dawson, Kyle S.; Anderson, Scott F.; Bautista, Julian; Bizyaev, Dmitry; Brandt, William N.; Brownstein, Joel R.; Green, Paul; Harris, David W.; Kamble, Vikrant; McGreer, Ian D.; Merloni, Andrea; Myers, Adam; Oravetz, Daniel; Pan, Kaike; Pâris, Isabelle; Schneider, Donald P.; Simmons, Audrey; Suzuki, Nao

    2016-12-01

    We report on the diversity in quasar spectra from the Baryon Oscillation Spectroscopic Survey. After filtering the spectra to mitigate selection effects and Malmquist bias associated with a nearly flux-limited sample, we create high signal-to-noise ratio composite spectra from 58,656 quasars (2.1≤slant z≤slant 3.5), binned by luminosity, spectral index, and redshift. With these composite spectra, we confirm the traditional Baldwin effect (BE, i.e., the anti-correlation of C iv equivalent width (EW) and luminosity) that follows the relation {W}λ \\propto {L}{β w} with slope {β }w=-0.35+/- 0.004, -0.35 ± 0.005, and -0.41 ± 0.005 for z = 2.25, 2.46, and 2.84, respectively. In addition to the redshift evolution in the slope of the BE, we find redshift evolution in average quasar spectral features at fixed luminosity. The spectroscopic signature of the redshift evolution is correlated at 98% with the signature of varying luminosity, indicating that they arise from the same physical mechanism. At a fixed luminosity, the average C iv FWHM decreases with increasing redshift and is anti-correlated with C iv EW. The spectroscopic signature associated with C iv FWHM suggests that the trends in luminosity and redshift are likely caused by a superposition of effects that are related to black hole mass and Eddington ratio. The redshift evolution is the consequence of a changing balance between these two quantities as quasars evolve toward a population with lower typical accretion rates at a given black hole mass.

  19. XMM-Newton analysis of a newly discovered, extremely X-ray luminous galaxy cluster at high redshift

    NASA Astrophysics Data System (ADS)

    Thoelken, S.; Schrabback, T.

    2016-06-01

    Galaxy clusters, the largest virialized structures in the universe, provide an excellent method to test cosmology on large scales. The galaxy cluster mass function as a function of redshift is a key tool to determine the fundamental cosmological parameters and especially measurements at high redshifts can e.g. provide constraints on dark energy. The fgas test as a direct cosmological probe is of special importance. Therefore, relaxed galaxy clusters at high redshifts are needed but these objects are considered to be extremely rare in current structure formation models. Here we present first results from an XMM-Newton analysis of an extremely X-ray luminous, newly discovered and potentially cool core cluster at a redshift of z=0.9. We carefully account for background emission and PSF effects and model the cluster emission in three radial bins. Our preliminary results suggest that this cluster is indeed a good candidate for a cool core cluster and thus potentially of extreme value for cosmology.

  20. A Search for Moderate-redshift Survivors from the Population of Luminous Compact Passive Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Stockton, Alan; Shih, Hsin-Yi; Larson, Kirsten; Mann, Andrew W.

    2014-01-01

    From a search of a ~2400 deg2 region covered by both the Sloan Digital Sky Survey and UKIRT Infrared Deep Sky Survey databases, we have attempted to identify galaxies at z ~ 0.5 that are consistent with their being essentially unmodified examples of the luminous passive compact galaxies found at z ~ 2.5. After isolating good candidates via deeper imaging, we further refine the sample with Keck moderate-resolution spectroscopy and laser guide star adaptive-optics imaging. For four of the five galaxies that so far remain after passing through this sieve, we analyze plausible star-formation histories based on our spectra in order to identify galaxies that may have survived with little modification from the population formed at high redshift. We find two galaxies that are consistent with having formed >~ 95% of their mass at z > 5. We attempt to estimate masses both from our stellar population determinations and from velocity dispersions. Given the high frequency of small axial ratios, both in our small sample and among samples found at high redshifts, we tentatively suggest that some of the more extreme examples of passive compact galaxies may have prolate morphologies. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  1. A search for moderate-redshift survivors from the population of luminous compact passive galaxies at high redshift

    SciTech Connect

    Stockton, Alan; Shih, Hsin-Yi; Larson, Kirsten; Mann, Andrew W. E-mail: hsshih@ifa.hawaii.edu E-mail: amann@ifa.hawaii.edu

    2014-01-10

    From a search of a ∼2400 deg{sup 2} region covered by both the Sloan Digital Sky Survey and UKIRT Infrared Deep Sky Survey databases, we have attempted to identify galaxies at z ∼ 0.5 that are consistent with their being essentially unmodified examples of the luminous passive compact galaxies found at z ∼ 2.5. After isolating good candidates via deeper imaging, we further refine the sample with Keck moderate-resolution spectroscopy and laser guide star adaptive-optics imaging. For four of the five galaxies that so far remain after passing through this sieve, we analyze plausible star-formation histories based on our spectra in order to identify galaxies that may have survived with little modification from the population formed at high redshift. We find two galaxies that are consistent with having formed ≳ 95% of their mass at z > 5. We attempt to estimate masses both from our stellar population determinations and from velocity dispersions. Given the high frequency of small axial ratios, both in our small sample and among samples found at high redshifts, we tentatively suggest that some of the more extreme examples of passive compact galaxies may have prolate morphologies.

  2. Weak-Line Quasars at High Redshift: Extremely High Accretion Rates or Anemic Broad-Line Regions?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad; Trakhtenbrot, B.; Anderson, S. F.; Brandt, W. N.; Diamond-Stanic, A. M.; Fan, X.; Lira, P.; Netzer, H.; Plotkin, R. M.; Richards, G. T.; Schneider, D. P.; Strauss, M. A.

    2011-01-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z=3.55 and SDSS J123743.08+630144.9 at z=3.49. In both sources we detect an unusually weak broad Hβ line and we place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black-hole mass determinations indicate normalized accretion rates of L/LEdd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ=1.91+0.24-0.22which supports the virial L/LEdd determination in this source. Our results suggest that the weakness of the broad-emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad-emission line region properties.

  3. HEAVILY OBSCURED ACTIVE GALACTIC NUCLEI IN HIGH-REDSHIFT LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Treister, Ezequiel; Sanders, David B.; Urry, C. Megan; Cardamone, Carolin N.; Schawinski, Kevin

    2010-10-20

    We take advantage of the rich multiwavelength data available in the Chandra Deep Field South (CDF-S), including the 4 Ms Chandra observations (the deepest X-ray data to date), in order to search for heavily obscured low-luminosity active galactic nuclei (AGNs) among infrared-luminous galaxies. In particular, we obtained a stacked rest-frame X-ray spectrum for samples of galaxies binned in terms of their IR luminosity or stellar mass. We detect a significant signal at E {approx} 1-8 keV, which we interpret as originating from a combination of emission associated with star formation processes at low energies combined with a heavily obscured AGN at E > 5 keV. We further find that the relative strength of this AGN signal decays with decreasing IR luminosity, indicating a higher AGN fraction for more luminous IR sources. Together, these results strongly suggest the presence of a large number of obscured AGNs in IR-luminous galaxies. Using samples binned in terms of stellar mass in the host galaxy, we find a significant excess at E = 6-7 keV for sources with M > 10{sup 11} M {sub sun}, consistent with a large obscured AGN population in high mass galaxies. In contrast, no strong evidence of AGN activity was found for less-massive galaxies. The integrated intensity at high energies indicates that a significant fraction of the total black hole growth, {approx}22%, occurs in heavily obscured systems that are not individually detected in even the deepest X-ray observations. There are also indications that the number of low-luminosity, heavily obscured AGNs does not evolve significantly with redshift, in contrast to the strong evolution seen in higher luminosity sources.

  4. Submillimetre observations of WISE-selected high-redshift, luminous AGN and their surrounding overdense environments

    NASA Astrophysics Data System (ADS)

    Jones, Suzy F.

    2016-08-01

    We present JCMT SCUBA-2 850 μm submillimetre (submm) observations of 10 mid-infrared (mid-IR) luminous active galactic nuclei (AGNs), detected by the Wide-field Infrared Survey Explorer (WISE) all-sky IR survey and 30 that have also been detected by the NVSS/FIRST radio survey. These rare sources are selected by their extremely red mid-IR spectral energy distributions (SEDs). Further investigations show that they are highly obscured, have abundant warm AGN-heated dust and are thought to be experiencing intense AGN feedback. When comparing the number of submm galaxies detected serendipitously in the surrounding 1.5 arcmin to those in blank-field submm surveys, there is a very significant overdensity, of order 3-5, but no sign of radial clustering centred at our primary objects. The WISE-selected AGN thus reside in 10-Mpc-scale overdense environments that could be forming in pre-viralized clusters of galaxies. WISE-selected AGNs appear to be the strongest signposts of high-density regions of active, luminous and dusty galaxies. SCUBA-2 850 μm observations indicate that their submm fluxes are low compared to many popular AGN SED templates, hence the WISE/radio-selected AGNs have either less cold and/or more warm dust emission than normally assumed for typical AGN. Most of the targets have total IR luminosities ≥1013 L⊙, with known redshifts of 20 targets between z ˜ 0.44-4.6.

  5. OBSCURATION BY GAS AND DUST IN LUMINOUS QUASARS

    SciTech Connect

    Usman, S. M.; Murray, S. S.; Hickox, R. C.; Brodwin, M.

    2014-06-10

    We explore the connection between absorption by neutral gas and extinction by dust in mid-infrared (IR) selected luminous quasars. We use a sample of 33 quasars at redshifts 0.7 < z ≲ 3 in the 9 deg{sup 2} Boötes multiwavelength survey field that are selected using Spitzer Space Telescope Infrared Array Camera colors and are well-detected as luminous X-ray sources (with >150 counts) in Chandra observations. We divide the quasars into dust-obscured and unobscured samples based on their optical to mid-IR color, and measure the neutral hydrogen column density N {sub H} through fitting of the X-ray spectra. We find that all subsets of quasars have consistent power law photon indices Γ ≈ 1.9 that are uncorrelated with N {sub H}. We classify the quasars as gas-absorbed or gas-unabsorbed if N {sub H} > 10{sup 22} cm{sup –2} or N {sub H} < 10{sup 22} cm{sup –2}, respectively. Of 24 dust-unobscured quasars in the sample, only one shows clear evidence for significant intrinsic N {sub H}, while 22 have column densities consistent with N {sub H} < 10{sup 22} cm{sup –2}. In contrast, of the nine dust-obscured quasars, six show evidence for intrinsic gas absorption, and three are consistent with N {sub H} < 10{sup 22} cm{sup –2}. We conclude that dust extinction in IR-selected quasars is strongly correlated with significant gas absorption as determined through X-ray spectral fitting. These results suggest that obscuring gas and dust in quasars are generally co-spatial, and confirm the reliability of simple mid-IR and optical photometric techniques for separating quasars based on obscuration.

  6. Clustering analysis of high-redshift luminous red galaxies in Stripe 82

    NASA Astrophysics Data System (ADS)

    Nikoloudakis, N.; Shanks, T.; Sawangwit, U.

    2013-03-01

    We present a clustering analysis of luminous red galaxies (LRGs) in Stripe 82 from the Sloan Digital Sky Survey (SDSS). We study the angular two-point autocorrelation function, w(θ), of a selected sample of over 130 000 LRG candidates via colour-cut selections in izK with the K-band coverage coming from UKIRT (United Kingdom Infrared Telescope) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). We have used the cross-correlation technique of Newman to establish the redshift distribution of the LRGs. Cross-correlating them with SDSS quasi-stellar objects (QSOs), MegaZ-LRGs and DEEP Extragalactic Evolutionary Probe 2 (DEEP2) galaxies, implies an average redshift of the LRGs to be z ≈ 1 with space density, ng ≈ 3.20 ± 0.16 × 10-4 h3 Mpc-3. For θ ≤ 10 arcmin (corresponding to ≈10 h-1 Mpc), the LRG w(θ) significantly deviates from a conventional single power law as noted by previous clustering studies of highly biased and luminous galaxies. A double power law with a break at rb ≈ 2.4 h-1 Mpc fits the data better, with best-fitting scale length, r0, 1 = 7.63 ± 0.27 h-1 Mpc and slope γ1 = 2.01 ± 0.02 at small scales and r0, 2 = 9.92 ± 0.40 h-1 Mpc and γ2 = 1.64 ± 0.04 at large scales. Due to the flat slope at large scales, we find that a standard Λ cold dark matter (Λ CDM) linear model is accepted only at 2-3σ, with the best-fitting bias factor, b = 2.74 ± 0.07. We also fitted the halo occupation distribution (HOD) models to compare our measurements with the predictions of the dark matter clustering. The effective halo mass of Stripe 82 LRGs is estimated as Meff = 3.3 ± 0.6 × 1013 h-1 M⊙. But at large scales, the current HOD models did not help explain the power excess in the clustering signal. We then compare the w(θ) results to the results of Sawangwit et al. from three samples of photometrically selected LRGs at lower redshifts to measure clustering evolution. We find that a long-lived model may be a poorer fit than at lower

  7. X-Ray Properties Of Hyper-Luminous Quasars

    NASA Astrophysics Data System (ADS)

    Piconcelli, Enrico; Martocchia, S.; Zappacosta, L.; Bischetti, M.; Bongiorno, A.; Duras, F.; Fiore, F.; Vietri, G.; Vignali, C.; Lanzuisi, G.; Brusa, M.; Bianchi, S.; Feruglio, C.; The Wissh Collaboration

    2016-10-01

    The systematic exploration of hyper-luminous (log LBol > 47) quasars shining at the golden epoch of AGN activity (i.e. z 2-4) offer the opportunity of overcoming the luminosity bias in the exploration of the accretion phenomenon. The WISE All-Sky Survey allowed to spot the most luminous quasars in the universe. In this talk, we will present the results of our on-going study of the XMM/Chandra/NuSTAR observations of WISE-selected hyper-luminous quasars regardless of the amount of their obscuration (i.e. both blue and heavily reddened). We report on the correlations between the X-ray and Optical, UV and MIR properties, and on the behavior of the X-ray bolometric correction at the brightest end of the luminosity function. We find that WISE-selected hyper-luminous quasars show much lower X/Opt flux and X/MIR luminosity ratios than those of AGN typically studied so far. This "X-ray weakness" can be a key ingredient for accelerating powerful ionized outflows (pervasively detected in the UV/optical band) and, furthermore, radiation-driven winds can be effective in destroying the X-ray corona and quenching the X-ray emission.

  8. The Luminous Polycyclic Aromatic Hydrocarbon Emission Features: Applications to High Redshift Galaxies and Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Shipley, Heath; Papovich, Casey

    2015-08-01

    We provide a new robust star-formation rate (SFR) calibration using the luminosity from polycyclic aromatic hydrogen (PAH) molecules. The PAH features emit strongly in the mid-infrared (mid-IR; 3-19μm), mitigating dust extinction, and they are very luminous, containing 5-10% of the total IR luminosity in galaxies. We derive the calibration of the PAH luminosity as a SFR indicator using a sample of 105 star-forming galaxies covering a range of total IR luminosity, LIR = L(8-1000μm) = 109 - 1012 L⊙ and redshift 0 < z < 0.6. The PAH luminosity correlates linearly with the SFR as measured by the dust-corrected Hα luminosity (using the sum of the Hα and rest-frame 24μm luminosity from Kennicutt et al. 2009), with tight scatter of ~0.15 dex, comparable to the scatter in the dust-corrected Hα SFRs and Paα SFRs. We show this relation is sensitive to galaxy metallicity, where the PAH luminosity of galaxies with Z < 0.7 Z⊙ departs from the linear SFR relationship but in a behaved manor. We derive for this a correction to galaxies below solar metallicity. As a case study for observations with JWST, we apply the PAH SFR calibration to a sample of lensed galaxies at 1 < z < 3 with Spitzer Infrared Spectrograph (IRS) data, and we demonstrate the utility of PAHs to derive SFRs as accurate as those available from any other indicator. This new SFR indicator will be useful for probing the peak of the SFR density of the universe (1 < z < 3) and for studying the coevolution of star-formation and supermassive blackhole accretion contemporaneously in a galaxy.

  9. The Luminous Polycyclic Aromatic Hydrocarbon Emission Features: Applications to High Redshift Galaxies and Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Shipley, Heath V.

    2016-01-01

    For decades, significant work has been applied to calibrating emission from the ultra-violet, nebular emission lines, far-infrared, X-ray and radio as tracers of the star-formation rate (SFR) in distant galaxies. Understanding the exact rate of star-formation and how it evolves with time and galaxy mass has deep implications for how galaxies form. The co-evolution of star-formation and supermassive black hole (SMBH) accretion is one of the key problems in galaxy formation theory. But, many of these SFR indicators are influenced by SMBH accretion in galaxies and result in unreliable SFRs. Utilizing the luminous polycyclic aromatic hydrocarbon (PAH) emission features, I provide a new robust SFR calibration using the luminosity emitted from the PAHs at 6.2μm, 7.7μm and 11.3μm to solve this. The PAH features emit strongly in the mid-infrared (mid-IR; 5-25μm) mitigating dust extinction, containing on average 5-10% of the total IR luminosity in galaxies. I use a sample of 105 star-forming galaxies covering a range of total IR luminosity, LIR = L(8-1000μm) = 109 - 1012 L⊙ and redshift 0 < z < 0.4, with mid-IR spectroscopy from the Spitzer Infrared Spectrograph (IRS), and data covering other SFR indicators (Hα emission and rest-frame 24μm continuum emission). The PAH luminosity correlates linearly with the SFR as measured by the Hα luminosity (corrected for attenuation using the mono-chromatic rest-frame 24μm emission), with a tight scatter of <0.15 dex. The scatter is comparable to that between SFRs derived from the Paα and dust-corrected Hα emission lines. We present a case study in advance of JWST, which will be capable of measuring SFRs (from 8μm rest-frame photometry, i.e. PAHs) in distant galaxies (z ≤ 2) with JWST/MIRI to SFRs as low as ~10 M⊙yr-1, because the PAH features are so bright. We use Spitzer/IRS observations of PAH features in lensed star-forming galaxies at 1 < z < 3 to demonstrate the utility of the PAHs to derive SFRs that agree with

  10. Kiloparsec-scale Dust Disks in High-redshift Luminous Submillimeter Galaxies

    NASA Astrophysics Data System (ADS)

    Hodge, J. A.; Swinbank, A. M.; Simpson, J. M.; Smail, I.; Walter, F.; Alexander, D. M.; Bertoldi, F.; Biggs, A. D.; Brandt, W. N.; Chapman, S. C.; Chen, C. C.; Coppin, K. E. K.; Cox, P.; Dannerbauer, H.; Edge, A. C.; Greve, T. R.; Ivison, R. J.; Karim, A.; Knudsen, K. K.; Menten, K. M.; Rix, H.-W.; Schinnerer, E.; Wardlow, J. L.; Weiss, A.; van der Werf, P.

    2016-12-01

    We present high-resolution (0.″16) 870 μm Atacama Large Millimeter/submillimeter Array (ALMA) imaging of 16 luminous ({L}{IR}˜ 4× {10}12 {L}⊙ ) submillimeter galaxies (SMGs) from the ALESS survey of the Extended Chandra Deep Field South. This dust imaging traces the dust-obscured star formation in these z˜ 2.5 galaxies on ˜1.3 kpc scales. The emission has a median effective radius of R e = 0.″24 ± 0.″02, corresponding to a typical physical size of {R}e= 1.8 ± 0.2 kpc. We derive a median Sérsic index of n = 0.9 ± 0.2, implying that the dust emission is remarkably disk-like at the current resolution and sensitivity. We use different weighting schemes with the visibilities to search for clumps on 0.″12 (˜1.0 kpc) scales, but we find no significant evidence for clumping in the majority of cases. Indeed, we demonstrate using simulations that the observed morphologies are generally consistent with smooth exponential disks, suggesting that caution should be exercised when identifying candidate clumps in even moderate signal-to-noise ratio interferometric data. We compare our maps to comparable-resolution Hubble Space Telescope {H}160-band images, finding that the stellar morphologies appear significantly more extended and disturbed, and suggesting that major mergers may be responsible for driving the formation of the compact dust disks we observe. The stark contrast between the obscured and unobscured morphologies may also have implications for SED fitting routines that assume the dust is co-located with the optical/near-IR continuum emission. Finally, we discuss the potential of the current bursts of star formation to transform the observed galaxy sizes and light profiles, showing that the z˜ 0 descendants of these SMGs are expected to have stellar masses, effective radii, and gas surface densities consistent with the most compact massive ({M}* ˜ 1-2 × 1011 {M}⊙ ) early-type galaxies observed locally.

  11. SPITZER observations of luminous obscured Quasars

    NASA Astrophysics Data System (ADS)

    Bellocchi, E.; Pozzi, F.; Fritz, J.; Comastri, A.; Vignali, C.; Mignoli, M.

    2008-10-01

    Si presentano i risultati di uno studio della distribuzione di energia spettrale (SED) di un campione di sorgenti a z = 0.7-2 selezionate in banda 2-10 keV dalla survey HELLAS2XMM, caratterizzate da luminosita` L_(2-10) keV ~ 10^44 erg/sec e densita` di colonna N_H > 10^22 cm^-2 che le distingue come quasar di tipo II (oscurati). Si sono analizzati i dati ottenuti da Spitzer (4 bande IRAC e MIPS a 24 micron). Le SED sono state modellate utilizzando sia templates empirici di quasar di tipo I (Elvis et al. 1994; Richards et al. 2006) con diversi livelli di estinzione, sia un modello teorico (Fritz et al. 2006) in grado di vincolare i parametri fisici piu` importanti del toro stesso (ad esempio, lo spessore ottico del toro, l'angolo con cui viene osservata la sorgente e il covering factor). Per ciascuna sorgente del campione si e` stimata la luminosita` bolometrica nucleare (10^45-10^47 erg/s) e la correzione bolometrica k_(bol,2-10 keV), definita come il rapporto tra la luminosita` bolometrica e la luminosita` misurata in banda 2-10 keV. Infine, si evidenzia come l'utilizzo dei dati MIPS a 70 e 160 micron sia importante nel vincolare ulteriormente il modello di toro e, di conseguenza, nel fornire una migliore stima della luminosita` infrarossa e bolometrica.

  12. The WISSH Quasars Project: Probing the AGN-Galaxy Coevolution In the Most Luminous Quasars

    NASA Astrophysics Data System (ADS)

    Bischetti, Manuela; Piconcelli, E.; Vietri, G.; Bongiorno, A.; Fiore, F.; Duras, F.; Martocchia, S.; Zappacosta, L.; Brusa, M.; Vignali, C.; Marconi, A.; Cresci, G.; WISSH Collaboration

    2016-10-01

    The WISE/SDSS selected hyper-luminous (WISSH) quasars survey is an extensive multiband observing program (from millimeter wavelengths to hard X rays) to investigate the role of nuclear activity in SMBH-galaxy self-regulated growth via extended outflows. Our ongoing project is designed to accurately constrain both AGN and host galaxy ISM properties in a large sample of 90 broad-line quasars at the brightest end of the AGN luminosity function (L_bol > 1e14 L_sun) and at the peak of their number density (z 2 - 4)I will review the most relevant results obtained to date with emphasis on the discovery of extremely powerful (up to 4% of L_bol) ionized outflows, the relation between AGN properties (obscuration, luminosity and Eddington ratio) and large-scale winds, and the SED of these hyper-luminous quasars.

  13. The Discovery of a High-Redshift Quasar without Emission Lines from Sloan Digital Sky Survey Commissioning Data.

    PubMed

    Fan; Strauss; Gunn; Lupton; Carilli; Rupen; Schmidt; Moustakas; Davis; Annis; Bahcall; Brinkmann; Brunner; Csabai; Doi; Fukugita; Heckman; Hennessy; Hindsley; Ivezic; Knapp; Lamb; Munn; Pauls; Pier; Rockosi; Schneider; Szalay; Tucker; York

    1999-12-01

    We report observations of a luminous unresolved object at redshift z=4.62, with a featureless optical spectrum redward of the Lyalpha forest region, discovered from Sloan Digital Sky Survey commissioning data. The redshift is determined by the onset of the Lyalpha forest at lambda approximately 6800 Å and a Lyman limit system at lambda=5120 Å. A strong Lyalpha absorption system with weak metal absorption lines at z=4.58 is also identified in the spectrum. The object has a continuum absolute magnitude of -26.6 at 1450 Å in the rest frame (h0=0.5, q0=0.5) and therefore cannot be an ordinary galaxy. It shows no radio emission (the 3 sigma upper limit of its flux at 6 cm is 60 µJy), indicating a radio-to-optical flux ratio at least as small as that of the radio-weakest BL Lacertae objects known. It is also not linearly polarized to a 3 sigma upper limit of 4% in the observed I band. Therefore, it is either the most distant BL Lac object known to date, with very weak radio emission, or a new type of unbeamed quasar, whose broad emission line region is very weak or absent.

  14. High-energy properties of the high-redshift flat spectrum radio quasar PKS 2149-306

    NASA Astrophysics Data System (ADS)

    D'Ammando, F.; Orienti, M.

    2016-01-01

    We investigate the γ-ray and X-ray properties of the flat spectrum radio quasar PKS 2149-306 at redshift z = 2.345. A strong γ-ray flare from this source was detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope satellite in 2013 January, reaching on January 20 a daily peak flux of (301 ± 36) × 10-8 ph cm-2 s-1 in the 0.1-100 GeV energy range. This flux corresponds to an apparent isotropic luminosity of (1.5 ± 0.2) × 1050 erg s-1, comparable to the highest values observed by a blazar so far. During the flare the increase of flux was accompanied by a significant change of the spectral properties. Moreover significant flux variations on a 6-h time-scale were observed, compatible with the light crossing time of the event horizon of the central black hole. The broad-band X-ray spectra of PKS 2149-306 observed by Swift-XRT and NuSTAR are well described by a broken power-law model, with a very hard spectrum (Γ1 ˜ 1) below the break energy, at E break = 2.5-3.0 keV, and Γ2 ˜ 1.4-1.5 above the break energy. The steepening of the spectrum below ˜3 keV may indicate that the soft X-ray emission is produced by the low-energy relativistic electrons. This is in agreement with the small variability amplitude and the lack of spectral changes in that part of the X-ray spectrum observed between the two NuSTAR and Swift joint observations. As for the other high-redshift FSRQ detected by both Fermi-LAT and Swift-BAT, the photon index of PKS 2149-306 in hard X-ray is 1.6 or lower and the average γ-ray luminosity higher than 2 × 1048 erg s-1.

  15. Physical properties of luminous dust-poor quasars

    SciTech Connect

    Jun, Hyunsung David; Im, Myungshin E-mail: mim@astro.snu.ac.kr

    2013-12-20

    We identify and characterize a population of luminous, dust-poor quasars at 0 < z < 5 that is photometrically similar to objects previously found at z > 6. This class of active galactic nuclei is known to show little IR emission from dusty structure, but it is poorly understood in terms of number evolution and dependence on physical quantities. To better understand the properties of these quasars, we compile a rest-frame UV to IR library of 41,000 optically selected type 1 quasars with L {sub bol} > 10{sup 45.7} erg s{sup –1}. After fitting the broadband spectral energy distributions (SEDs) with accretion disk and dust components, we find 0.6% of our sample to be hot dust-poor, with rest-frame 2.3 μm to 0.51 μm flux density ratios of –0.5 dex or less. The dust-poor SEDs are blue in the UV-optical and weak in the mid-IR, such that their accretion disks are less obscured and the hot dust emission traces that of warm dust down to the dust-poor regime. At a given bolometric luminosity, dust-poor quasars are lower in black hole mass and higher in Eddington ratio than general luminous quasars, suggesting that they are in a rapidly growing evolutionary state in which the dust-poor phase appears as a short or rare phenomenon. The dust-poor fraction increases with redshift, and possible implications for their evolution are discussed.

  16. MEAN SPECTRAL ENERGY DISTRIBUTIONS AND BOLOMETRIC CORRECTIONS FOR LUMINOUS QUASARS

    SciTech Connect

    Krawczyk, Coleman M.; Richards, Gordon T.; Mehta, Sajjan S.; Vogeley, Michael S.; Gallagher, S. C.; Leighly, Karen M.; Ross, Nicholas P.; Schneider, Donald P.

    2013-05-01

    We explore the mid-infrared (mid-IR) through ultraviolet (UV) spectral energy distributions (SEDs) of 119,652 luminous broad-lined quasars with 0.064 < z < 5.46 using mid-IR data from Spitzer and WISE, near-infrared data from the Two Micron All Sky Survey and UKIDSS, optical data from the Sloan Digital Sky Survey, and UV data from the Galaxy Evolution Explorer. The mean SED requires a bolometric correction (relative to 2500 A) of BC{sub 2500A} =2.75 {+-} 0.40 using the integrated light from 1 {mu}m-2 keV, and we further explore the range of bolometric corrections exhibited by individual objects. In addition, we investigate the dependence of the mean SED on various parameters, particularly the UV luminosity for quasars with 0.5 {approx}< z {approx}< 3 and the properties of the UV emission lines for quasars with z {approx}> 1.6; the latter is a possible indicator of the strength of the accretion disk wind, which is expected to be SED-dependent. Luminosity-dependent mean SEDs show that, relative to the high-luminosity SED, low-luminosity SEDs exhibit a harder (bluer) far-UV spectral slope ({alpha}{sub UV}), a redder optical continuum, and less hot dust. Mean SEDs constructed instead as a function of UV emission line properties reveal changes that are consistent with known Principal Component Analysis trends. A potentially important contribution to the bolometric correction is the unseen extreme UV (EUV) continuum. Our work suggests that lower-luminosity quasars and/or quasars with disk-dominated broad emission lines may require an extra continuum component in the EUV that is not present (or much weaker) in high-luminosity quasars with strong accretion disk winds. As such, we consider four possible models and explore the resulting bolometric corrections. Understanding these various SED-dependent effects will be important for accurate determination of quasar accretion rates.

  17. The WISSH quasars project. I. Powerful ionised outflows in hyper-luminous quasars

    NASA Astrophysics Data System (ADS)

    Bischetti, M.; Piconcelli, E.; Vietri, G.; Bongiorno, A.; Fiore, F.; Sani, E.; Marconi, A.; Duras, F.; Zappacosta, L.; Brusa, M.; Comastri, A.; Cresci, G.; Feruglio, C.; Giallongo, E.; La Franca, F.; Mainieri, V.; Mannucci, F.; Martocchia, S.; Ricci, F.; Schneider, R.; Testa, V.; Vignali, C.

    2017-02-01

    Models and observations suggest that both the power and effects of AGN feedback should be maximised in hyper-luminous (LBol > 1047 erg s-1) quasars, i.e. objects at the brightest end of the AGN luminosity function. In this paper, we present the first results of a multiwavelength observing programme, focusing on a sample of WISE/SDSS selected hyper-luminous (WISSH) broad-line quasars at z ≈ 1.5-5. The WISSH quasars project has been designed to reveal the most energetic AGN-driven outflows, estimate their occurrence at the peak of quasar activity, and extend the study of correlations between outflows and nuclear properties up to poorly investigated, extreme AGN luminosities, i.e. LBol 1047 - 1048 erg s-1. We present near-infrared, long-slit LBT/LUCI1 spectroscopy of five WISSH quasars at z ≈ 2.3 - 3.5, showing prominent [OIII] emission lines with broad (FWHM 1200-2200 km s-1) and skewed profiles. The luminosities of these broad [OIII] wings are the highest measured so far, with L[OIII]broad ≳ 5 × 1044 erg s-1, and reveal the presence of powerful ionised outflows with associated mass outflow rates Ṁ ≳ 1700M⊙ yr-1 and kinetic powers Ėkin ≳ 1045 erg s-1. Although these estimates are affected by large uncertainties because of the use of [OIII] as a tracer of ionised outflows and the very basic outflow model adopted here, these results suggest that in our hyper-luminous targets the AGN is highly efficient at pushing large amounts of ionised gas outwards. Furthermore, the mechanical outflow luminosities measured for WISSH quasars correspond to higher percentages ( 1-3%) of LBol than those derived for AGN with lower LBol. Our targets host very massive (MBH ≳ 2 × 109M⊙) black holes that are still accreting at a high rate (i.e. a factor of 0.4-3 of the Eddington limit). These findings clearly demonstrate that WISSH quasars offer the opportunity to probe the extreme end of both luminosity and supermassive black holes (SMBH) mass functions and revealing

  18. COMPLETE IONIZATION OF THE NEUTRAL GAS: WHY THERE ARE SO FEW DETECTIONS OF 21 cm HYDROGEN IN HIGH-REDSHIFT RADIO GALAXIES AND QUASARS

    SciTech Connect

    Curran, S. J.; Whiting, M. T.

    2012-11-10

    From the first published z {approx}> 3 survey of 21 cm absorption within the hosts of radio galaxies and quasars, Curran et al. found an apparent dearth of cool neutral gas at high redshift. From a detailed analysis of the photometry, each object is found to have a {lambda} = 1216 A continuum luminosity in excess of L {sub 1216} {approx} 10{sup 23} W Hz{sup -1}, a critical value above which 21 cm has never been detected at any redshift. At these wavelengths, and below, hydrogen is excited above the ground state so that it cannot absorb in 21 cm. In order to apply the equation of photoionization equilibrium, we demonstrate that this critical value also applies to the ionizing ({lambda} {<=} 912 A) radiation. We use this to show, for a variety of gas density distributions, that upon placing a quasar within a galaxy of gas, there is always an ultraviolet luminosity above which all of the large-scale atomic gas is ionized. While in this state, the hydrogen cannot be detected or engage in star formation. Applying the mean ionizing photon rate of all of the sources searched, we find, using canonical values for the gas density and recombination rate coefficient, that the observed critical luminosity gives a scale length (3 kpc) similar that of the neutral hydrogen (H I) in the Milky Way, a large spiral galaxy. Thus, this simple yet physically motivated model can explain the critical luminosity (L {sub 912} {approx} L {sub 1216} {approx} 10{sup 23} W Hz{sup -1}), above which neutral gas is not detected. This indicates that the non-detection of 21 cm absorption is not due to the sensitivity limits of current radio telescopes, but rather that the lines of sight to the quasars, and probably the bulk of the host galaxies, are devoid of neutral gas.

  19. Redshifted and Blueshifted Broad Lines in Luminous Quasars

    NASA Astrophysics Data System (ADS)

    McIntosh, D. H.; Rix, H.-W.; Rieke, M. J.; Foltz, C. B.

    1999-06-01

    We have observed a sample of 22 luminous quasars, in the range 2.0<~z<~2.5, at 1.6 μm with the near-infrared (NIR) spectrograph FSPEC on the Multiple Mirror Telescope. Our sample contains 13 radio-loud and nine radio-quiet objects. We have measured the systemic redshifts zsys directly from the strong [O III] λ5007 line emitted from the narrow-line region. From the same spectra, we have found that the nonresonance broad Hβ lines have a systematic mean redward shift of 520+/-80 km s-1 with respect to systemic. Such a shift was not found in our identical analysis of the low-redshift sample of Boroson & Green. The amplitude of this redshift is comparable to half the expected gravitational redshift and transverse Doppler effects and is consistent with a correlation between redshift differences and quasar luminosity. From data in the literature, we confirm that the high-ionization rest-frame ultraviolet broad lines are blueshifted ~550-1050 km s-1 from systemic and that these velocity shifts systematically increase with ionization potential. Our results allow us to quantify the known bias in estimating the ionizing flux from the intergalactic medium JIGMν via the proximity effect. Using redshift measurements commonly determined from strong broad-line species, like Lyα or C IV λ1549, results in an overestimation of JIGMν by factors of ~1.9-2.3. Similarly, corresponding lower limits on the density of baryons Ωb will be overestimated by factors of ~1.4-1.5. However, the low-ionization Mg II λ2798 broad line is within ~50 km s-1 of systemic and thus would be the line of choice for determining the true redshift of 1.0quasars without NIR spectroscopy and z>3.1 objects using NIR spectroscopy. Observations reported here were obtained at the Multiple Mirror Telescope Observatory, a facility operated jointly by the University of Arizona and the Smithsonian Institution.

  20. Constraints on cold dark matter theories from observations of massive x-ray-luminous clusters of galaxies at high redshift

    NASA Technical Reports Server (NTRS)

    Luppino, G. A.; Gioia, I. M.

    1995-01-01

    During the course of a gravitational lensing survey of distant, X-ray selected Einstein Observatory Extended Medium Sensitivity Survey (EMSS) clusters of galaxies, we have studied six X-ray-luminous (L(sub x) greater than 5 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) clusters at redshifts exceeding z = 0.5. All of these clusters are apparently massive. In addition to their high X-ray luminosity, two of the clusters at z approximately 0.6 exhibit gravitationally lensed arcs. Furthermore, the highest redshift cluster in our sample, MS 1054-0321 at z = 0.826, is both extremely X-ray luminous (L(sub 0.3-3.5keV)=9.3 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) and exceedingly rich with an optical richness comparable to an Abell Richness Class 4 cluster. In this Letter, we discuss the cosmological implications of the very existence of these clusters for hierarchical structure formation theories such as standard Omega = 1 CDM (cold dark matter), hybrid Omega = 1 C + HDM (hot dark matter), and flat, low-density Lambda + CDM models.

  1. BLACK HOLE MASS ESTIMATES AND RAPID GROWTH OF SUPERMASSIVE BLACK HOLES IN LUMINOUS z ∼ 3.5 QUASARS

    SciTech Connect

    Zuo, Wenwen; Wu, Xue-Bing; Fan, Xiaohui; Green, Richard; Wang, Ran; Bian, Fuyan

    2015-02-01

    We present new near-infrared (IR) observations of the Hβ λ4861 and Mg II λ2798 lines for 32 luminous quasars with 3.2 < z < 3.9 using the Palomar Hale 200 inch telescope and the Large Binocular Telescope. We find that the Mg II FWHM is well correlated with the Hβ FWHM, confirming itself as a good substitute for the Hβ FWHM in the black hole mass estimates. The continuum luminosity at 5100 Å well correlates with the continuum luminosity at 3000 Å and the broad emission line luminosities (Hβ and Mg II). With simultaneous near-IR spectroscopy of the Hβ and Mg II lines to exclude the influences of flux variability, we are able to evaluate the reliability of estimating black hole masses based on the Mg II line for high redshift quasars. With the reliable Hβ line based black hole mass and Eddington ratio estimates, we find that the z ∼ 3.5 quasars in our sample have black hole masses 1.90 × 10{sup 9} M {sub ☉} ≲ M {sub BH} ≲ 1.37 × 10{sup 10} M {sub ☉}, with a median of ∼5.14 × 10{sup 9} M {sub ☉} and are accreting at Eddington ratios between 0.30 and 3.05, with a median of ∼1.12. Assuming a duty cycle of 1 and a seed black hole mass of 10{sup 4} M {sub ☉}, we show that the z ∼ 3.5 quasars in this sample can grow to their estimated black hole masses within the age of the universe at their redshifts.

  2. Black Hole Mass Estimates and Rapid Growth of Supermassive Black Holes in Luminous z ~ 3.5 Quasars

    NASA Astrophysics Data System (ADS)

    Zuo, Wenwen; Wu, Xue-Bing; Fan, Xiaohui; Green, Richard; Wang, Ran; Bian, Fuyan

    2015-02-01

    We present new near-infrared (IR) observations of the Hβ λ4861 and Mg II λ2798 lines for 32 luminous quasars with 3.2 < z < 3.9 using the Palomar Hale 200 inch telescope and the Large Binocular Telescope. We find that the Mg II FWHM is well correlated with the Hβ FWHM, confirming itself as a good substitute for the Hβ FWHM in the black hole mass estimates. The continuum luminosity at 5100 Å well correlates with the continuum luminosity at 3000 Å and the broad emission line luminosities (Hβ and Mg II). With simultaneous near-IR spectroscopy of the Hβ and Mg II lines to exclude the influences of flux variability, we are able to evaluate the reliability of estimating black hole masses based on the Mg II line for high redshift quasars. With the reliable Hβ line based black hole mass and Eddington ratio estimates, we find that the z ~ 3.5 quasars in our sample have black hole masses 1.90 × 109 M ⊙ <~ M BH <~ 1.37 × 1010 M ⊙, with a median of ~5.14 × 109 M ⊙ and are accreting at Eddington ratios between 0.30 and 3.05, with a median of ~1.12. Assuming a duty cycle of 1 and a seed black hole mass of 104 M ⊙, we show that the z ~ 3.5 quasars in this sample can grow to their estimated black hole masses within the age of the universe at their redshifts.

  3. High-redshift Fermi blazars

    NASA Astrophysics Data System (ADS)

    Ghisellini, G.; Tagliaferri, G.; Foschini, L.; Ghirlanda, G.; Tavecchio, F.; Della Ceca, R.; Haardt, F.; Volonteri, M.; Gehrels, N.

    2011-02-01

    With the release of the first-year Fermi catalogue, the number of blazars detected above 100 MeV lying at high redshift has been largely increased. There are 28 blazars at z > 2 in the `clean' sample. All of them are flat spectrum radio quasars. We study and model their overall spectral energy distribution in order to find the physical parameters of the jet-emitting region, and for all of them, we estimate their black hole masses and accretion rates. We then compare the jet with the accretion disc properties, setting these sources in the broader context of all the other bright γ-ray or hard X-ray blazars. We confirm that the jet power correlates with the accretion luminosity. We find that the high-energy emission peak shifts to smaller frequencies as the observed luminosity increases, according to the blazar sequence, making the hard X-ray band the most suitable for searching the most-luminous and distant blazars.

  4. Hubble Space Telescope Images of Nearby Luminous Quasars. 2; Results for Eight Quasars and Tests of the Detection Sensitivity

    NASA Technical Reports Server (NTRS)

    Bahcall, John N.; Kirhakos, Sofia; Schneider, Donald P.

    1995-01-01

    Observations with the Wide-Field Camera of the Hubble Space Telescope (HST) are presented for eight intrinsically luminous quasars with redshifts between 0.16 and 0.29. These observations, when combined with a similar HST study of the quasar PKS 2349-014, show that luminous nearby quasars exist in a variety of environments. Seven companion galaxies brighter than M(V) = 16.5 (H(sub 0) = 100 km s(sup -1) Mpc(sup -1), Omega(sub 0) = 1.0) lie within a projected distance of 25 kpc of the quasars; three of the companions are located closer than 3'' (6 kpc projected distance) from the quasars, well within the volume that would be enclosed by a typical L* host galaxy. The observed association of quasars and companion galaxies is statistically significant and may he an important element in the luminous-quasar phenomenon. Apparent host galaxies are detected for three of the quasars: PG 1116+215, 3C 273, and PG 1444+407; the hosts have an average absolute magnitude of about 0.6 mag brighter than L*. The agreement between the previously published major-axis directions in ground-based images and in the present HST images of 3C 273 and PG 1444+407 constitutes important evidence supporting the reality of these candidate host galaxies. Upper limits are placed on the visual-band brightnesses of representative galactic hosts for all the quasars. These limits are established by placing galaxy images obtained with HST underneath the quasars and measuring at what faintness level the known galaxies are detected. On average, the HST spirals would have been detected if they were as faint as 1 mag below L*, and the early-type galaxies could have been detected down to a brightness level of about L*, where L* is the Schechter characteristic luminosity of field galaxies. Smooth, featureless galaxy models (exponential disks or de Vaucouleurs profiles) are fitted to the residual light after a best-fitting point source is subtracted from the quasar images. The results show that smooth spiral

  5. A Survey of z>5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z~6

    NASA Astrophysics Data System (ADS)

    Fan, Xiaohui; Narayanan, Vijay K.; Lupton, Robert H.; Strauss, Michael A.; Knapp, Gillian R.; Becker, Robert H.; White, Richard L.; Pentericci, Laura; Leggett, S. K.; Haiman, Zoltán; Gunn, James E.; Ivezić, Željko; Schneider, Donald P.; Anderson, Scott F.; Brinkmann, J.; Bahcall, Neta A.; Connolly, Andrew J.; Csabai, István; Doi, Mamoru; Fukugita, Masataka; Geballe, Tom; Grebel, Eva K.; Harbeck, Daniel; Hennessy, Gregory; Lamb, Don Q.; Miknaitis, Gajus; Munn, Jeffrey A.; Nichol, Robert; Okamura, Sadanori; Pier, Jeffrey R.; Prada, Francisco; Richards, Gordon T.; Szalay, Alex; York, Donald G.

    2001-12-01

    We present the results from a survey of i-dropout objects selected from ~1550 deg2 of multicolor imaging data from the Sloan Digital Sky Survey to search for luminous quasars at z>~5.8. Objects with i*-z*>2.2 and z*<20.2 are selected, and follow-up J-band photometry is used to separate L- and T-type cool dwarfs from high-redshift quasars. We describe the discovery of three new quasars, SDSSp J083643.85+005453.3 (z=5.82), J130608.26+035626.3 (z=5.99), and J103027.10+052455.0 (z=6.28). The quasar SDSSp J083643.85+005453.3 is a radio source with flux of 1.1 mJy at 20 cm. The spectra of all three quasars show strong and broad Lyα+N V emission lines and very strong Lyα forest absorption, with a mean continuum decrement DA>0.90. The ARC 3.5 m spectrum of SDSSp J103027.10+052455.0 shows that over a range of ~300 Å immediately blueward of the Lyα emission, the average transmitted flux is only 0.003+/-0.020 times that of the continuum level, consistent with zero flux over a ~300 Å range of the Lyα forest region and suggesting a tentative detection of the complete Gunn-Peterson trough. The existence of strong metal lines in the quasar spectra suggests early metal enrichment in the quasar environment. The three new objects, together with the previously published z=5.8 quasar SDSSp J104433.04-012502.2, form a complete color-selected flux-limited sample at z>~5.8. We estimate the selection function of this sample, taking into account the estimated variations in the quasar spectral energy distribution, as well as observational photometric errors. We find that at z=6, the comoving density of luminous quasars at M1450<-26.8 (H0=50 km s-1 Mpc-1, Ω=1) is 1.1×10-9 Mpc-3. This is a factor of ~2 lower than that at z~5 and is consistent with an extrapolation of the observed quasar evolution at z<5. Using the current sample, we discuss the constraint on the shape of the quasar luminosity function and the implications for the contribution of quasars to the ionizing background at z

  6. HST Observations of the Luminous IRAS Source FSC10214+4724: A gravitationally Lensed Infrared Quasar

    NASA Technical Reports Server (NTRS)

    Eisenhardt, P. R.; Armus, L.; Hogg, D. W.; Soifer, B. T.; Neugebauer, G.; Werner, M. W.

    1995-01-01

    Observations of a distant object in space with the data being taken by the Hubble Space Telescope (HST) Wide Field Planetary Camera. Scientific examination and hypothesis related to this object which appears to be either an extremely luminous dust embedded quasar, or a representative of a new class of astronomical objects (a primeval galaxy).

  7. UNIFICATION OF LUMINOUS TYPE 1 QUASARS THROUGH C IV EMISSION

    SciTech Connect

    Richards, Gordon T.; Kruczek, Nicholas E.; Deo, Rajesh P.; Kratzer, Rachael M.; Gallagher, S. C.; Hall, Patrick B.; Hewett, Paul C.; Leighly, Karen M.; Shen, Yue

    2011-05-15

    Using a sample of {approx}30,000 quasars from the 7th Data Release of the Sloan Digital Sky Survey, we explore the range of properties exhibited by high-ionization, broad emission lines, such as C IV {lambda}1549. Specifically, we investigate the anti-correlation between continuum luminosity and emission-line equivalent width (the Baldwin Effect (BEff)) and the 'blueshifting' of the high-ionization emission lines with respect to low-ionization emission lines. Employing improved redshift determinations from Hewett and Wild, the blueshift of the C IV emission line is found to be nearly ubiquitous, with a mean shift of {approx}810 km s{sup -1} for radio-quiet (RQ) quasars and {approx}360 km s{sup -1} for radio-loud (RL) quasars. The BEff is present in both RQ and RL samples. We consider these phenomena within the context of an accretion disk-wind model that is modulated by the nonlinear correlation between ultraviolet and X-ray continuum luminosity. Composite spectra are constructed as a function of C IV emission-line properties in an attempt to reveal empirical relationships between different line species and the continuum. Within a two-component disk+wind model of the broad emission-line region (BELR), where the wind filters the continuum seen by the disk component, we find that RL quasars are consistent with being dominated by the disk component, while broad absorption line quasars are consistent with being dominated by the wind component. Some RQ objects have emission-line features similar to RL quasars; they may simply have insufficient black hole (BH) spin to form radio jets. Our results suggest that there could be significant systematic errors in the determination of L{sub bol} and BH mass that make it difficult to place these findings in a more physical context. However, it is possible to classify quasars in a paradigm where the diversity of BELR parameters is due to differences in an accretion disk wind between quasars (and over time); these differences are

  8. MEASUREMENT OF THE BROAD-LINE REGION SIZE IN A LUMINOUS MACHO QUASAR

    SciTech Connect

    Chelouche, Doron; Daniel, Eliran; Kaspi, Shai E-mail: shai@wise.tau.ac.il

    2012-05-10

    We measure the broad emission line region (BLR) size of a luminous, L {approx} 10{sup 47} erg s{sup -1}, high-z quasar using broadband photometric reverberation mapping. To this end, we analyze {approx}7.5 years of photometric data for MACHO 13.6805.324 (z {approx_equal} 1.72) in the B and R MACHO bands and find a time delay of 180 {+-} 40 days in the rest frame of the object. Given the spectral-variability properties of high-z quasars, we associate this lag with the rest-UV iron emission blends. Our findings are consistent with a simple extrapolation of the BLR size-luminosity relation in local active galactic nuclei to the more luminous, high-z quasar population. Long-term spectroscopic monitoring of MACHO 13.6805.324 may be able to directly measure the line-to-continuum time delay and test our findings.

  9. HOST GALAXIES OF LUMINOUS TYPE 2 QUASARS AT z {approx} 0.5

    SciTech Connect

    Liu Xin; Greene, Jenny E.; Strauss, Michael A.; Zakamska, Nadia L.; Krolik, Julian H.; Heckman, Timothy M.

    2009-09-10

    We present deep Gemini GMOS optical spectroscopy of nine luminous quasars at redshifts z {approx} 0.5, drawn from the Sloan Digital Sky Survey type 2 quasar sample. Our targets were selected to have high intrinsic luminosities (M{sub V} < -26 mag) as indicated by the [O III] {lambda}5007 A emission-line luminosity (L[{sub OIII}]). Our sample has a median black hole mass of {approx}10{sup 8.8} M{sub sun} inferred assuming the local M {sub BH}-{sigma}{sub *} relation and a median Eddington ratio of {approx}0.7, using stellar velocity dispersions {sigma}{sub *} measured from the G band. We estimate the contamination of the stellar continuum from scattered quasar light based on the strength of broad H{beta}, and provide an empirical calibration of the contamination as a function of L {sub [OIII]}; the scattered-light fraction is {approx}30% of L{sub 5100} for objects with L {sub [OIII]} = 10{sup 9.5} L{sub sun}. Population synthesis indicates that young poststarburst populations (<0.1 Gyr) are prevalent in luminous type 2 quasars, in addition to a relatively old population (>1 Gyr) which dominates the stellar mass. Broad emission complexes around He II {lambda}4686 A with luminosities up to 10{sup 8.3} L{sub sun} are unambiguously detected in three out of the nine targets, indicative of Wolf-Rayet (WR) populations. Population synthesis shows that {approx}5 Myr poststarburst populations contribute substantially to the luminosities (>50% of L{sub 5100}) of all three objects with WR detections. We find two objects with double cores and four with close companions. Our results may suggest that luminous type 2 quasars trace an early stage of galaxy interaction, perhaps responsible for both the quasar and the starburst activity.

  10. Reverberation Mapping of the most luminous Quasars at z~2-3.

    NASA Astrophysics Data System (ADS)

    Lira, Paulina; Botti, Ismael; Netzer, Hagai; Kaspi, Shai

    2016-08-01

    Reverberation Mapping (RM) provides the only tool to determine Black Holes (BH) masses directly, but so far this method has been applied only to small and intermediate luminosity systems (L<10^46 ergs/s). We are extending these studies by two orders of magnitude, probing the BH-mass of luminous AGN at redshift 2-3, obtaining the measurement of the largest BHs and extending our knowledge of the physics of AGN and their hosts into the most crucial epoch in galaxy evolution. Since 2005 we have been monitoring very luminous Quasars using broad-band imaging with the SMARTS telescopes and in 2007 we started the RM campaign of our most variable targets obtaining spectroscopic follow-up with the du Pont telescope. After 10 years of data gathering we are finally able to report on the RM for Quasar J221516 as well as several other systems that should yield results in the near future.

  11. High redshift blazars .

    NASA Astrophysics Data System (ADS)

    Ghisellini, G.

    Blazars are sources whose jet is pointing at us. Since their jets are relativistic, the flux is greatly amplified in the direction of motion, making blazars the most powerful persistent objects in the Universe. This is true at all frequencies, but especially where their spectrum peaks. Although the spectrum of moderate powerful sources peaks in the ˜GeV range, extremely powerful sources at high redshifts peak in the ˜MeV band. This implies that the hard X-ray band is the optimal one to find powerful blazars beyond a redshift of ˜4. First indications strongly suggest that powerful high-z blazars harbor the most massive and active early black holes, exceeding a billion solar masses. Since for each detected blazars there must exist hundreds of similar, but misaligned, sources, the search for high-z blazars is becoming competitive with the search of early massive black holes using radio-quiet quasars. Finding how the two populations of black holes (one in jetted sources, the other in radio-quiet objects) evolve in redshift will shed light on the growth of the most massive black holes and possibly on the feedback between the central engine and the rest of the host galaxy.

  12. The Most Luminous Object in the Universe: Shrouded Quasar or Proto-Galaxy

    NASA Technical Reports Server (NTRS)

    Heckman, Timothy M.

    1999-01-01

    We have used ASCA to observe the IRAS source FSC 10214+4724, which is identified with a galaxy at a redshift of 2.286. When first discovered, it was believed to be the most luminous object in the universe. Subsequent HST images have established that it is gravitationally-lensed by a foreground cluster. It is still a very powerful object, but not extraordinarily so. Observations at other wavebands have not established whether it is a dust-shrouded quasar or a young, massive galaxy in the process of formation. Since quasars are strong emitters of hard X-rays, while proto-galaxies would not be, and since the opacity of gas and dust is relatively small in the energy regime probed by ASCA (3 to 30 keV in the galaxy rest frame), we undertook these observations to search for a heavily shrouded quasar that might be invisible at lower energies. However, the observations did not detect any emission from this object. This either means that the galaxy is in fact powered by a starburst or that the putative quasar is located behind a very high column density of absorbing gas (N_H > 10(exp 25)/sq cm), so that not even hard X-rays are transmitted. A hidden quasar should be visible in reflected light in X-ray data of higher sensitivity. Observations with NASA's Chandra X-ray Observatory or ESA's XMM are required to settle the matter. No publication resulted from our null result.

  13. Host Galaxies of Luminous Type 2 Quasars at z ~ 0.5

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Zakamska, Nadia L.; Greene, Jenny E.; Strauss, Michael A.; Krolik, Julian H.; Heckman, Timothy M.

    2009-09-01

    We present deep Gemini GMOS optical spectroscopy of nine luminous quasars at redshifts z ~ 0.5, drawn from the Sloan Digital Sky Survey type 2 quasar sample. Our targets were selected to have high intrinsic luminosities (MV < -26 mag) as indicated by the [O III] λ5007 Å emission-line luminosity (L [O III]). Our sample has a median black hole mass of ~108.8 M sun inferred assuming the local M BH-σ* relation and a median Eddington ratio of ~0.7, using stellar velocity dispersions σ* measured from the G band. We estimate the contamination of the stellar continuum from scattered quasar light based on the strength of broad Hβ, and provide an empirical calibration of the contamination as a function of L [O III]; the scattered-light fraction is ~30% of L 5100 for objects with L [O III] = 109.5 L sun. Population synthesis indicates that young poststarburst populations (<0.1 Gyr) are prevalent in luminous type 2 quasars, in addition to a relatively old population (>1 Gyr) which dominates the stellar mass. Broad emission complexes around He II λ4686 Å with luminosities up to 108.3 L sun are unambiguously detected in three out of the nine targets, indicative of Wolf-Rayet (WR) populations. Population synthesis shows that ~5 Myr poststarburst populations contribute substantially to the luminosities (>50% of L 5100) of all three objects with WR detections. We find two objects with double cores and four with close companions. Our results may suggest that luminous type 2 quasars trace an early stage of galaxy interaction, perhaps responsible for both the quasar and the starburst activity. Based, in part, on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada

  14. The LBT/WISSH quasar survey: revealing powerful winds in the most luminous AGN

    NASA Astrophysics Data System (ADS)

    Vietri, Giustina

    2017-01-01

    The systematic, multi-frequency investigation of hyper-luminous quasars shining at the golden epoch of AGN activity offers the unique opportunity of studying the power and the effect of AGN feedback at its extreme.The WISE/SDSS selected hyper-luminous (WISSH) quasar survey is an extensive multi-band observing program (from millimeter wavelengths to hard X rays) designed to accurately probe the role of nuclear activity in SMBH-galaxy self-regulated growth via extended outflows.Our on-going project aims at constraining both AGN and host galaxy ISM and star-formation properties in a large sample of ~ 90 broad-line quasars at the brightest end of the AGN luminosity function (L_bol > 1e14 L_sun), and at the peak of their number density (z ~ 2.5 - 3.5).I will review the most important results of the near-IR spectroscopic follow-up of WISSH quasars (available for ~40% of the total sample) performed with the LUCI at LBT. These observations were carried out to obtain a reliable Hbeta-based estimate of the SMBH masses and a census of the ionized outflows in these hyper-luminous quasars.We found that WISSH AGN are typically powered by highly accreting (0.3-3 Ledd), ten billion solar masses SMBHs, demonstrating that WISSH provides a simple and valuable tool to complete the census of the extreme SMBH population in the universe.We also succeeded in discovering [OIII] emission lines with a broad, skewed profile and exceptional luminosities (> 6e44 erg/s), tracing very powerful ionized outflows (up to ~4% of L_bol) in ~30% of the sample.Remarkably, the remaining 70% of quasars lacks [OIII] emission but shows strong winds traced by 3,000-8,000 km/s blueshifts of the high-ionization (CIV) with respect to low-ionization (Hbeta) broad emission lines, revealing strong radiatively driven winds that dominate the BLR kinematics.I will discuss the possible origins of this intriguing dichotomy which involves fundamental parameters such as bolometric luminosity, SMBH mass, Eddington ratio

  15. Galaxy evolution. Black hole feedback in the luminous quasar PDS 456.

    PubMed

    Nardini, E; Reeves, J N; Gofford, J; Harrison, F A; Risaliti, G; Braito, V; Costa, M T; Matzeu, G A; Walton, D J; Behar, E; Boggs, S E; Christensen, F E; Craig, W W; Hailey, C J; Matt, G; Miller, J M; O'Brien, P T; Stern, D; Turner, T J; Ward, M J

    2015-02-20

    The evolution of galaxies is connected to the growth of supermassive black holes in their centers. During the quasar phase, a huge luminosity is released as matter falls onto the black hole, and radiation-driven winds can transfer most of this energy back to the host galaxy. Over five different epochs, we detected the signatures of a nearly spherical stream of highly ionized gas in the broadband x-ray spectra of the luminous quasar PDS 456. This persistent wind is expelled at relativistic speeds from the inner accretion disk, and its wide aperture suggests an effective coupling with the ambient gas. The outflow's kinetic power larger than 10(46) ergs per second is enough to provide the feedback required by models of black hole and host galaxy coevolution.

  16. The discovery of gas-rich, dusty starbursts in luminous reddened quasars at z ∼ 2.5 with ALMA

    NASA Astrophysics Data System (ADS)

    Banerji, M.; Carilli, C. L.; Jones, G.; Wagg, J.; McMahon, R. G.; Hewett, P. C.; Alaghband-Zadeh, S.; Feruglio, C.

    2017-03-01

    We present ALMA observations of cold dust and molecular gas in four high-luminosity, heavily reddened (AV ∼ 2.5-6 mag) type 1 quasars at z ∼ 2.5 with virial MBH ∼ 1010 M⊙, to test whether dusty, massive quasars represent the evolutionary link between submillimetre-bright galaxies and unobscured quasars. All four quasars are detected in both the dust continuum and in the 12CO(3-2) line. The mean dust mass is 6 × 108 M⊙ assuming a typical high-redshift quasar spectral energy distribution (T = 41 K, β = 1.95 or T = 47 K, β = 1.6). The implied star formation rates are very high - ≳1000 M⊙ yr-1 in all cases. Gas masses estimated from the CO line luminosities cover ∼1-5× 1010(αCO/0.8)M⊙ and the gas depletion time-scales are very short - ∼5-20 Myr. A range of gas-to-dust ratios is observed in the sample. We resolve the molecular gas in one quasar - ULASJ2315+0143 (z = 2.561) - which shows a strong velocity gradient over ∼20 kpc. The velocity field is consistent with a rotationally supported gas disc but other scenarios, e.g. mergers, cannot be ruled out at the current resolution of these data. In another quasar - ULASJ1234+0907 (z = 2.503) - we detected molecular line emission from two millimetre-bright galaxies within 200 kpc of the quasar, suggesting that this quasar resides in a significant overdensity. The high detection rate of both cold dust and molecular gas in these sources, suggests that reddened quasars could correspond to an early phase in massive galaxy formation associated with large gas reservoirs and significant star formation.

  17. C IV and C III] reverberation mapping of the luminous quasar PG 1247+267

    SciTech Connect

    Trevese, D.; Saturni, F. G.; Perna, M.; Dadina, M.

    2014-11-10

    So far the masses of about 50 active galactic nuclei (AGNs) have been measured through the reverberation mapping technique (RM). Most measurements have been performed for objects of moderate luminosity and redshift, based on Hβ, which is also used to calibrate the scaling relation that allows single-epoch (SE) mass determination based on AGN luminosity and the width of different emission lines. Due to the complex structure and gas dynamics of the relevant emission region, the SE masses obtained from the C IV(1549 Å) line show a large spread around the mean values. Direct RM measures of C IV exist for only six AGNs of low luminosity and redshift, and only one luminous quasar. Since 2003, we have collected photometric and spectroscopic observations of PG1247+267, the most luminous quasar ever analyzed for RM. We provide light curves for the continuum and for C IV(1549 Å) and C III](1909 Å), and measures of the reverberation time lags based on the SPEAR method. The sizes of the line emission regions assume a ratio of R {sub C} {sub III]}/R {sub C} {sub IV} ∼ 2, similar to the case of Seyfert galaxies, indicating for the first time a similar ionization stratification in a luminous quasar and low-luminosity nuclei. Due to the relatively small size of the broad line region and the relatively narrow line widths, we estimate a small mass and an anomalously high Eddington ratio. We discuss the possibility that either the shape of the emission region or an amplification of the luminosity caused by gravitational lensing may be partly responsible for the result.

  18. iPTF Discovery of the Rapid “Turn-on” of a Luminous Quasar

    NASA Astrophysics Data System (ADS)

    Gezari, S.; Hung, T.; Cenko, S. B.; Blagorodnova, N.; Yan, Lin; Kulkarni, S. R.; Mooley, K.; Kong, A. K. H.; Cantwell, T. M.; Yu, P. C.; Cao, Y.; Fremling, C.; Neill, J. D.; Ngeow, C.-C.; Nugent, P. E.; Wozniak, P.

    2017-02-01

    We present a radio-quiet quasar at z = 0.237 discovered “turning on” by the intermediate Palomar Transient Factory (iPTF). The transient, iPTF 16bco, was detected by iPTF in the nucleus of a galaxy with an archival Sloan Digital Sky Survey spectrum with weak narrow-line emission characteristic of a low-ionization nuclear emission-line region (LINER). Our follow-up spectra show the dramatic appearance of broad Balmer lines and a power-law continuum characteristic of a luminous ({L}{bol}≈ {10}45 erg s‑1) type 1 quasar 12 yr later. Our photometric monitoring with PTF from 2009–2012 and serendipitous X-ray observations from the XMM-Newton Slew Survey in 2011 and 2015 constrain the change of state to have occurred less than 500 days before the iPTF detection. An enhanced broad Hα/[O iii] λ5007 line ratio in the type 1 state relative to other changing-look quasars also is suggestive of the most rapid change of state yet observed in a quasar. We argue that the >10 increase in Eddington ratio inferred from the brightening in UV and X-ray continuum flux is more likely due to an intrinsic change in the accretion rate of a preexisting accretion disk than an external mechanism such as variable obscuration, microlensing, or the tidal disruption of a star. However, further monitoring will be helpful in better constraining the mechanism driving this change of state. The rapid “turn-on” of the quasar is much shorter than the viscous infall timescale of an accretion disk and requires a disk instability that can develop around a ∼ {10}8 {M}ȯ black hole on timescales less than 1 yr.

  19. A Large, Economical Snapshot Survey of the Most-Luminous Quasars from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    2011-09-01

    We propose to obtain Chandra ACIS-S snapshot exposures of 66 of the most optically luminous quasars found in the Sloan Digital Sky Survey Data Release 7 quasar catalog. Observations of these targets will substantially enlarge the sample of the most-luminous SDSS quasars having complete, sensitive X-ray coverage. Our targets represent the rapid growth phases of the most-massive black holes in the Universe, and these observations will provide the best statistical constraints to date upon the X-ray accretion emission from such growing black holes. They will break luminosity-redshift degeneracies in X-ray vs. optical/UV studies, identify remarkable new objects that provide insight into quasar physics, and reveal the best objects for follow-up X-ray spectroscopy.

  20. The X-Ray and Mid-infrared Luminosities in Luminous Type 1 Quasars

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Ting J.; Hickox, Ryan C.; Goulding, Andrew D.; Stern, Daniel; Assef, Roberto; Kochanek, Christopher S.; Brown, Michael J. I.; Harrison, Chris M.; Hainline, Kevin N.; Alberts, Stacey; Alexander, David M.; Brodwin, Mark; Del Moro, Agnese; Forman, William R.; Gorjian, Varoujan; Jones, Christine; Murray, Stephen S.; Pope, Alexandra; Rovilos, Emmanouel

    2017-03-01

    Several recent studies have reported different intrinsic correlations between the active galactic nucleus (AGN) mid-IR luminosity ({L}{MIR}) and the rest-frame 2–10 keV luminosity (L X) for luminous quasars. To understand the origin of the difference in the observed {L}{{X}}{--}{L}{MIR} relations, we study a sample of 3247 spectroscopically confirmed type 1 AGNs collected from Boötes, XMM-COSMOS, XMM-XXL-North, and the Sloan Digital Sky Survey quasars in the Swift/XRT footprint spanning over four orders of magnitude in luminosity. We carefully examine how different observational constraints impact the observed {L}{{X}}{--}{L}{MIR} relations, including the inclusion of X-ray-nondetected objects, possible X-ray absorption in type 1 AGNs, X-ray flux limits, and star formation contamination. We find that the primary factor driving the different {L}{{X}}{--}{L}{MIR} relations reported in the literature is the X-ray flux limits for different studies. When taking these effects into account, we find that the X-ray luminosity and mid-IR luminosity (measured at rest-frame 6 μ {{m}}, or {L}6μ {{m}}) of our sample of type 1 AGNs follow a bilinear relation in the log–log plane: {log}{L}{{X}}=(0.84+/- 0.03)× {log}{L}6μ {{m}}/{10}45 erg s‑1 + (44.60 ± 0.01) for {L}6μ {{m}}< {10}44.79 erg s‑1, and {log}{L}{{X}}=(0.40+/- 0.03)× {log}{L}6μ {{m}}/{10}45 erg s‑1 + (44.51 ± 0.01) for {L}6μ {{m}} ≥slant {10}44.79 erg s‑1. This suggests that the luminous type 1 quasars have a shallower {L}{{X}}{--}{L}6μ {{m}} correlation than the approximately linear relations found in local Seyfert galaxies. This result is consistent with previous studies reporting a luminosity-dependent {L}{{X}}{--}{L}{MIR} relation and implies that assuming a linear {L}{{X}}{--}{L}6μ {{m}} relation to infer the neutral gas column density for X-ray absorption might overestimate the column densities in luminous quasars.

  1. The host galaxies and black hole-to-galaxy mass ratios of luminous quasars at z≃ 4

    NASA Astrophysics Data System (ADS)

    Targett, Thomas A.; Dunlop, James S.; McLure, Ross J.

    2012-03-01

    Deep K-band imaging of the most luminous z≃ 4 quasars currently offers the earliest possible view of the mass-dominant stellar populations of the host galaxies which house the first supermassive black holes in the Universe. This is because, until the advent of the James Webb Space Telescope, it is not possible to obtain the necessary deep, sub-arcsec resolution imaging at rest-frame wavelengths λrest > 4000 Å at any higher redshift. We here present and analyse the deepest, high-quality KS-band images ever obtained of luminous quasars at z≃ 4, in an attempt to determine the basic properties of their host galaxies less than 1 Gyr after the first recorded appearance of black holes with Mbh > 109 M⊙. To maximize the robustness of our results, we have carefully selected two Sloan Digital Sky Survey quasars at z≃ 4. With absolute magnitudes Mi < -28, these quasars are representative of the most luminous quasars known at this epoch, but they also, crucially, lie within 40 arcsec of comparably bright foreground stars (required for accurate point spread function definition), and have redshifts which ensure line-free KS-band imaging. The data were obtained in excellent seeing conditions (<0.4 arcsec) at the European Southern Observatory on the Very Large Telescope with integration times of ≃5.5 h per source. Via carefully controlled separation of host galaxy and nuclear light, we estimate the luminosities and stellar masses of the host galaxies, and set constraints on their half-light radii. The apparent KS-band magnitudes of the quasar host galaxies are consistent with those of luminous radio galaxies at comparable redshifts, suggesting that these quasar hosts are also among the most massive galaxies in existence at this epoch. However, the quasar hosts are a factor ˜5 smaller (= 1.8 kpc) than the host galaxies of luminous low-redshift quasars. We estimate the stellar masses of the z≃ 4 host galaxies to lie in the range 2-10 × 1011 M⊙, and use the C

  2. Photometric Properties of the Most Massive High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Robertson, Brant; Li, Yuexing; Cox, Thomas J.; Hernquist, Lars; Hopkins, Philip F.

    2007-09-01

    We calculate the observable properties of the most massive high-redshift galaxies in the hierarchical formation scenario where stellar spheroid and supermassive black hole growth are fueled by gas-rich mergers. Combining high-resolution hydrodynamical simulations of the hierarchical formation of a z~6 quasar, stellar population synthesis models, template active galactic nucleus (AGN) spectra, prescriptions for interstellar and intergalactic absorption, and the response of modern telescopes, the photometric evolution of galaxies destined to host z~6 quasars is modeled at redshifts z~4-14. These massive galaxies, with enormous stellar masses of M*~1011.5-1012 Msolar and star formation rates of SFR~103-104 Msolar yr-1 at z>~7, satisfy a variety of photometric selection criteria based on Lyman break techniques, including V-band dropouts at z>~5, i-band dropouts at z>~6, and z-band dropouts at z>~7. The observability of the most massive high-redshift galaxies is assessed and compared with a wide range of existing and proposed photometric surveys, including the Sloan Digital Sky Survey (SDSS), Great Observatories Origins Deep Survey (GOODS)/Hubble Ultra Deep Field (HUDF), National Optical Astronomy Observatory Deep Wide-Field Survey (NDWFS), UKIRT Infared Deep Sky Survey (UKIDSS), Infrared Array Camera (IRAC) Shallow Survey, Ultradeep Visible and Infrared Survey Telescope for Astronomy (VISTA), Dark Universe Explorer (DUNE), Panoramic Survey Telescope and Rapid Response System (Pan-STARRS), Large Synoptic Survey Telescope (LSST), and Supernova/Acceleration Probe (SNAP). Massive stellar spheroids descended from z~6 quasars will likely be detected at z~4 by existing surveys, but owing to their low number densities the discovery of quasar progenitor galaxies at z>7 will likely require future surveys of large portions of the sky (>~0.5%) at wavelengths λ>~1 μm. The detection of rare, starbursting, massive galaxies at redshifts z>~6 would provide support for the

  3. DES J0454–4448: Discovery of the first luminous z ≥ 6 quasar from the Dark Energy Survey

    DOE PAGES

    Reed, S. L.

    2015-10-28

    We present the first results of a survey for high-redshift, z ≥ 6, quasars using izY multicolour photometric observations from the Dark Energy Survey (DES). Here we report the discovery and spectroscopic confirmation of the zAB, YAB = 20.2, 20.2 (M1450 = –26.5) quasar DES J0454–4448 with a redshift of z = 6.09±0.02 based on the onset of the Ly α forest and an H i near zone size of 4.1+1.1–1.2 proper Mpc. The quasar was selected as an i-band drop out with i–z = 2.46 and zAB < 21.5 from an area of ~300 deg2. It is the brightestmore » of our 43 candidates and was identified for spectroscopic follow-up solely based on the DES i–z and z–Y colours. The quasar is detected by WISE and has W1AB = 19.68. The discovery of one spectroscopically confirmed quasar with 5.7 < z < 6.5 and zAB ≤ 20.2 is consistent with recent determinations of the luminosity function at z ~ 6. DES when completed will have imaged ~5000 deg2 to YAB = 23.0 (5σ point source) and we expect to discover 50–100 new quasars with z > 6 including 3–10 with z > 7 dramatically increasing the numbers of quasars currently known that are suitable for detailed studies.« less

  4. DES J0454–4448: Discovery of the first luminous z ≥ 6 quasar from the Dark Energy Survey

    SciTech Connect

    Reed, S. L.

    2015-10-28

    We present the first results of a survey for high-redshift, z ≥ 6, quasars using izY multicolour photometric observations from the Dark Energy Survey (DES). Here we report the discovery and spectroscopic confirmation of the zAB, YAB = 20.2, 20.2 (M1450 = –26.5) quasar DES J0454–4448 with a redshift of z = 6.09±0.02 based on the onset of the Ly α forest and an H i near zone size of 4.1+1.1–1.2 proper Mpc. The quasar was selected as an i-band drop out with i–z = 2.46 and zAB < 21.5 from an area of ~300 deg2. It is the brightest of our 43 candidates and was identified for spectroscopic follow-up solely based on the DES i–z and z–Y colours. The quasar is detected by WISE and has W1AB = 19.68. The discovery of one spectroscopically confirmed quasar with 5.7 < z < 6.5 and zAB ≤ 20.2 is consistent with recent determinations of the luminosity function at z ~ 6. DES when completed will have imaged ~5000 deg2 to YAB = 23.0 (5σ point source) and we expect to discover 50–100 new quasars with z > 6 including 3–10 with z > 7 dramatically increasing the numbers of quasars currently known that are suitable for detailed studies.

  5. A CONSTRAINT ON QUASAR CLUSTERING AT z = 5 FROM A BINARY QUASAR

    SciTech Connect

    McGreer, Ian D.; Fan, Xiaohui; Eftekharzadeh, Sarah; Myers, Adam D.

    2016-03-15

    We report the discovery of a quasar pair at z = 5 separated by 21″. Both objects were identified as quasar candidates using simple color selection techniques applied to photometric catalogs from the Canada–France–Hawaii Telescope (CFHT) Legacy Survey (CFHTLS). Spectra obtained with the MMT present no discernible offset in redshift between the two objects; on the other hand, there are clear differences in the emission line profiles and in the multiwavelength spectral energy distributions that strongly disfavor the hypothesis that they are gravitationally lensed images of a single quasar. Both quasars are surprisingly bright given their proximity (a projected separation of ∼135 kpc), with i = 19.4 and i = 21.4. Previous measurements of the luminosity function demonstrate that luminous quasars are extremely rare at z = 5; the existence of this pair suggests that quasars have strong small-scale clustering at high redshift. Assuming a real-space correlation function of the form ξ(r) ∝ (r/r{sub 0}){sup −2}, this discovery implies a correlation length of r{sub 0} ≳ 20h{sup −1} Mpc, consistent with a rapid strengthening of quasar clustering at high redshift as seen in previous observations and predicted by theoretical models where feedback effects are inefficient at shutting down black hole growth at high redshift.

  6. A Constraint on Quasar Clustering at z = 5 from a Binary Quasar

    NASA Astrophysics Data System (ADS)

    McGreer, Ian D.; Eftekharzadeh, Sarah; Myers, Adam D.; Fan, Xiaohui

    2016-03-01

    We report the discovery of a quasar pair at z = 5 separated by 21″. Both objects were identified as quasar candidates using simple color selection techniques applied to photometric catalogs from the Canada-France-Hawaii Telescope (CFHT) Legacy Survey (CFHTLS). Spectra obtained with the MMT present no discernible offset in redshift between the two objects; on the other hand, there are clear differences in the emission line profiles and in the multiwavelength spectral energy distributions that strongly disfavor the hypothesis that they are gravitationally lensed images of a single quasar. Both quasars are surprisingly bright given their proximity (a projected separation of ˜135 kpc), with i = 19.4 and i = 21.4. Previous measurements of the luminosity function demonstrate that luminous quasars are extremely rare at z = 5 the existence of this pair suggests that quasars have strong small-scale clustering at high redshift. Assuming a real-space correlation function of the form ξ(r) ∝ (r/r0)-2, this discovery implies a correlation length of r0 ≳ 20h-1 Mpc, consistent with a rapid strengthening of quasar clustering at high redshift as seen in previous observations and predicted by theoretical models where feedback effects are inefficient at shutting down black hole growth at high redshift. Observations reported here were obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona.

  7. Mid-infrared luminous quasars in the GOODS-Herschel fields: a large population of heavily obscured, Compton-thick quasars at z ≈ 2

    NASA Astrophysics Data System (ADS)

    Del Moro, A.; Alexander, D. M.; Bauer, F. E.; Daddi, E.; Kocevski, D. D.; McIntosh, D. H.; Stanley, F.; Brandt, W. N.; Elbaz, D.; Harrison, C. M.; Luo, B.; Mullaney, J. R.; Xue, Y. Q.

    2016-02-01

    We present the infrared (IR) and X-ray properties of a sample of 33 mid-IR luminous quasars (νL6 μm ≥ 6 × 1044 erg s-1) at redshift z ≈ 1-3, identified through detailed spectral energy distribution analyses of distant star-forming galaxies, using the deepest IR data from Spitzer and Herschel in the GOODS-Herschel fields. The aim is to constrain the fraction of obscured, and Compton-thick (CT, NH > 1.5 × 1024 cm-2) quasars at the peak era of nuclear and star formation activities. Despite being very bright in the mid-IR band, ≈30 per cent of these quasars are not detected in the extremely deep 2 and 4 Ms Chandra X-ray data available in these fields. X-ray spectral analysis of the detected sources reveals that the majority (≈67 per cent) are obscured by column densities NH > 1022 cm-2; this fraction reaches ≈80 per cent when including the X-ray-undetected sources (9 out of 33), which are likely to be the most heavily obscured, CT quasars. We constrain the fraction of CT quasars in our sample to be ≈24-48 per cent, and their space density to be Φ = (6.7 ± 2.2) × 10-6 Mpc-3. From the investigation of the quasar host galaxies in terms of star formation rates (SFRs) and morphological distortions, as a sign of galaxy mergers/interactions, we do not find any direct relation between SFRs and quasar luminosity or X-ray obscuration. On the other hand, there is tentative evidence that the most heavily obscured quasars have, on average, more disturbed morphologies than the unobscured/moderately obscured quasar hosts, which preferentially live in undisturbed systems. However, the fraction of quasars with disturbed morphology amongst the whole sample is ≈40 per cent, suggesting that galaxy mergers are not the main fuelling mechanism of quasars at z ≈ 2.

  8. High Redshift GRBs

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cannizzo, John K.

    2012-01-01

    The Swift mission has opened a new, high redshift window on the universe. In this review we provide an overview of gamma-ray burst (GRB) science, describe the Swift mission, discuss high-z GRBs and tools for high-z studies, and look forward at future capabilities. A new mission concept - Lobster - is described that would monitor the X-ray sky at order of magnitude higher sensitivity than current missions.

  9. The X-ray luminous cluster underlying the z = 1.04 quasar PKS 1229-021

    NASA Astrophysics Data System (ADS)

    Russell, H. R.; Fabian, A. C.; Taylor, G. B.; Sanders, J. S.; Blundell, K. M.; Crawford, C. S.; Johnstone, R. M.; Belsole, E.

    2012-05-01

    We present a 100 ks Chandra observation studying the extended X-ray emission around the powerful z= 1.04 quasar PKS 1229-021. The diffuse cluster X-ray emission can be traced out to ˜15 arcsec (˜120 kpc) radius and there is a drop in the calculated hardness ratio inside the central 5 arcsec consistent with the presence of a cool core. Radio observations of the quasar show a strong core and a bright, one-sided jet leading to the south-west hotspot and a second hotspot visible on the counter-jet side. Although the wings of the quasar point spread function (PSF) provided a significant contribution to the total X-ray flux at all radii where the extended cluster emission was detected, we were able to accurately subtract the PSF emission using Chandra Ray Tracer and MARX simulations. The resulting steep cluster surface brightness profile for PKS 1229-021 appears similar to the profile for the FR II (Fanaroff-Riley class II) radio galaxy 3C 444, which has a similarly rapid surface brightness drop caused by a powerful shock surrounding the radio lobes. Using a model surface brightness profile based on 3C 444, we estimated the total cluster luminosity for PKS 1229-021 to be LX ~ 2 x 1044 erg/s. We discuss the difficulty of detecting cool-core clusters, which host bright X-ray sources, in high redshift surveys.

  10. The XMM deep survey in the CDF-S. IX. An X-ray outflow in a luminous obscured quasar at z ≈ 1.6

    NASA Astrophysics Data System (ADS)

    Vignali, C.; Iwasawa, K.; Comastri, A.; Gilli, R.; Lanzuisi, G.; Ranalli, P.; Cappelluti, N.; Mainieri, V.; Georgantopoulos, I.; Carrera, F. J.; Fritz, J.; Brusa, M.; Brandt, W. N.; Bauer, F. E.; Fiore, F.; Tombesi, F.

    2015-11-01

    In active galactic nuclei (AGN)-galaxy co-evolution models, AGN winds and outflows are often invoked to explain why super-massive black holes and galaxies stop growing efficiently at a certain phase of their lives. They are commonly referred to as the leading actors of feedback processes. Evidence of ultra-fast (v ≳ 0.05c) outflows in the innermost regions of AGN has been collected in the past decade by sensitive X-ray observations for sizable samples of AGN, mostly at low redshift. Here we present ultra-deep XMM-Newton and Chandra spectral data of an obscured (NH≈ 2 × 1023 cm-2), intrinsically luminous (L2-10 keV≈ 4 × 1044 erg s-1) quasar (named PID352) at z ≈ 1.6 (derived from the X-ray spectral analysis) in the Chandra Deep Field-South. The source is characterized by an iron emission and absorption line complex at observed energies of E ≈ 2-3 keV. While the emission line is interpreted as being due to neutral iron (consistent with the presence of cold absorption), the absorption feature is due to highly ionized iron transitions (FeXXV, FeXXVI) with an outflowing velocity of , as derived from photoionization models. The mass outflow rate - ~2 M⊙ yr-1 - is similar to the source accretion rate, and the derived mechanical energy rate is ~9.5 × 1044 erg s-1, corresponding to 9% of the source bolometric luminosity. PID352 represents one of the few cases where indications of X-ray outflowing gas have been observed at high redshift thus far. This wind is powerful enough to provide feedback on the host galaxy.

  11. THE z = 5 QUASAR LUMINOSITY FUNCTION FROM SDSS STRIPE 82

    SciTech Connect

    McGreer, Ian D.; Fan Xiaohui; Jiang Linhua; Richards, Gordon T.; Strauss, Michael A.; Ross, Nicholas P.; White, Martin; Shen Yue; Schneider, Donald P.; Brandt, W. Niel; Myers, Adam D.; DeGraf, Colin; Glikman, Eilat; Ge Jian; Streblyanska, Alina

    2013-05-10

    We present a measurement of the Type I quasar luminosity function at z = 5 using a large sample of spectroscopically confirmed quasars selected from optical imaging data. We measure the bright end (M{sub 1450} < -26) with Sloan Digital Sky Survey (SDSS) data covering {approx}6000 deg{sup 2}, then extend to lower luminosities (M{sub 1450} < -24) with newly discovered, faint z {approx} 5 quasars selected from 235 deg{sup 2} of deep, coadded imaging in the SDSS Stripe 82 region (the celestial equator in the Southern Galactic Cap). The faint sample includes 14 quasars with spectra obtained as ancillary science targets in the SDSS-III Baryon Oscillation Spectroscopic Survey, and 59 quasars observed at the MMT and Magellan telescopes. We construct a well-defined sample of 4.7 < z < 5.1 quasars that is highly complete, with 73 spectroscopic identifications out of 92 candidates. Our color selection method is also highly efficient: of the 73 spectra obtained, 71 are high-redshift quasars. These observations reach below the break in the luminosity function (M{sub 1450}{sup *}{approx}-27). The bright-end slope is steep ({beta} {approx}< -4), with a constraint of {beta} < -3.1 at 95% confidence. The break luminosity appears to evolve strongly at high redshift, providing an explanation for the flattening of the bright-end slope reported previously. We find a factor of {approx}2 greater decrease in the number density of luminous quasars (M{sub 1450} < -26) from z = 5 to z = 6 than from z = 4 to z = 5, suggesting a more rapid decline in quasar activity at high redshift than found in previous surveys. Our model for the quasar luminosity function predicts that quasars generate {approx}30% of the ionizing photons required to keep hydrogen in the universe ionized at z = 5.

  12. Faint progenitors of luminous z ∼ 6 quasars: Why do not we see them?

    NASA Astrophysics Data System (ADS)

    Pezzulli, Edwige; Valiante, Rosa; Orofino, Maria C.; Schneider, Raffaella; Gallerani, Simona; Sbarrato, Tullia

    2017-04-01

    Observational searches for faint active nuclei at z > 6 have been extremely elusive, with a few candidates whose high-z nature is still to be confirmed. Interpreting this lack of detections is crucial to improve our understanding of high-z supermassive black holes (SMBHs) formation and growth. In this work, we present a model for the emission of accreting black holes (BHs) in the X-ray band, taking into account super-Eddington accretion, which can be very common in gas-rich systems at high-z. We compute the spectral energy distribution for a sample of active galaxies simulated in a cosmological context, which represent the progenitors of a z ∼ 6 SMBH with MBH ∼ 109 M⊙. We find an average Compton-thick fraction of ∼45 per cent and large typical column densities (NH ≳ 1023 cm2). However, faint progenitors are still luminous enough to be detected in the X-ray band of current surveys. Even accounting for a maximum obscuration effect, the number of detectable BHs is reduced at most by a factor of 2. In our simulated sample, observations of faint quasars are mainly limited by their very low active fraction (fact ∼ 1 per cent), which is the result of short, supercritical growth episodes. We suggest that to detect high-z SMBHs progenitors, large area surveys with shallower sensitivities, such as COSMOS Legacy and XMM-LSS+XXL, are to be preferred with respect to deep surveys probing smaller fields, such as Chandra Deep Field South.

  13. High redshift radio galaxies

    NASA Technical Reports Server (NTRS)

    Mccarthy, Patrick J.

    1993-01-01

    High redshift galaxies that host powerful radio sources are examined. An overview is presented of the content of radio surveys: 3CR and 3CRR, 4C and 4C/USS, B2/1 Jy, MG, MRC/1Jy, Parkes/PSR, B3, and ESO Key-Project. Narrow-line radio galaxies in the visible and UV, the source of ionization and excitation of the emission lines, emission-line luminosities, morphology of the line-emitting gas, physical properties and energetics, kinematics of the line-emitting gas, and implications from the emission lines are discussed. The morphologies and environments of the host galaxies, the alignment effect, and spectral energy distributions and ages are also examined.

  14. Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Bauer, F. E.

    2014-10-01

    Recent years have seen tremendous progress in finding and charactering star-forming galaxies at high redshifts across the electromagnetic spectrum, giving us a more complete picture of how galaxies evolve, both in terms of their stellar and gas content, as well as the growth of their central supermassive black holes. A wealth of studies now demonstrate that star formation peaked at roughly half the age of the Universe and drops precariously as we look back to very early times, and that their central monsters apparently growth with them. At the highest-redshifts, we are pushing the boundaries via deep surveys at optical, X-ray, radio wavelengths, and more recently using gamma-ray bursts. I will review some of our accomplishments and failures. Telescope have enabled Lyman break galaxies to be robustly identified, but the UV luminosity function and star formation rate density of this population at z = 6 - 8 seems to be much lower than at z = 2 - 4. High escape fractions and a large contribution from faint galaxies below our current detection limits would be required for star-forming galaxies to reionize the Universe. We have also found that these galaxies have blue rest-frame UV colours, which might indicate lower dust extinction at z > 5. There has been some spectroscopic confirmation of these Lyman break galaxies through Lyman-α emission, but the fraction of galaxies where we see this line drops at z > 7, perhaps due to the onset of the Gunn-Peterson effect (where the IGM is opaque to Lyman-α).

  15. Very high redshift radio galaxies

    SciTech Connect

    van Breugel, W.J.M., LLNL

    1997-12-01

    High redshift radio galaxies (HzRGs) provide unique targets for the study of the formation and evolution of massive galaxies and galaxy clusters at very high redshifts. We discuss how efficient HzRG samples ae selected, the evidence for strong morphological evolution at near-infracd wavelengths, and for jet-induced star formation in the z = 3 800 HzRG 4C41 17

  16. DES J0454-4448: discovery of the first luminous z ≥ 6 quasar from the Dark Energy Survey

    SciTech Connect

    Reed, S. L.; McMahon, R. G.; Banerji, M.; Becker, G. D.; Gonzalez-Solares, E.; Martini, P.; Ostrovski, F.; Rauch, M.; Abbott, T.; Abdalla, F. B.; Allam, S.; Benoit-Levy, A.; Bertin, E.; Buckley-Geer, E.; Burke, D.; Carnero Rosell, A.; da Costa, L. N.; D'Andrea, C.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Cunha, C. E.; Estrada, J.; Evrard, A. E.; Fausti Neto, A.; Finley, D. A.; Fosalba, P.; Frieman, J.; Gruen, D.; Honscheid, K.; James, D.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marshall, J.; Merritt, K.; Miquel, R.; Mohr, J.; Nord, B.; Ogando, R.; Plazas, A.; Romer, K.; Roodman, A.; Rykoff, E.; Sako, M.; Sanchez, E.; Santiago, B.; Schubnell, M.; Sevilla, I.; Smith, C.; Soares-Santos, M.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, D.; Walker, A.; Wechsler, R. H.

    2015-10-28

    We present the first results of a survey for high-redshift, z ≥ 6, quasars using izY multicolour photometric observations from the Dark Energy Survey (DES). Here we report the discovery and spectroscopic confirmation of the zAB, YAB = 20.2, 20.2 (M1450 = -26.5) quasar DES J0454-4448 with a redshift of z = 6.09±0.02 based on the onset of the Ly α forest and an H I near zone size of 4.1+1.1-1.2 proper Mpc. The quasar was selected as an i-band drop out with i-z = 2.46 and zAB < 21.5 from an area of ~300 deg2. It is the brightest of our 43 candidates and was identified for spectroscopic follow-up solely based on the DES i-z and z-Y colours. The quasar is detected by WISE and has W1AB = 19.68. The discovery of one spectroscopically confirmed quasar with 5.7 < z < 6.5 and zAB ≤ 20.2 is consistent with recent determinations of the luminosity function at z ~ 6. DES when completed will have imaged ~5000 deg2 to YAB = 23.0 (5σ point source) and we expect to discover 50–100 new quasars with z > 6 including 3–10 with z > 7 dramatically increasing the numbers of quasars currently known that are suitable for detailed studies.

  17. A luminous quasar at a redshift of z = 7.085.

    PubMed

    Mortlock, Daniel J; Warren, Stephen J; Venemans, Bram P; Patel, Mitesh; Hewett, Paul C; McMahon, Richard G; Simpson, Chris; Theuns, Tom; Gonzáles-Solares, Eduardo A; Adamson, Andy; Dye, Simon; Hambly, Nigel C; Hirst, Paul; Irwin, Mike J; Kuiper, Ernst; Lawrence, Andy; Röttgering, Huub J A

    2011-06-29

    The intergalactic medium was not completely reionized until approximately a billion years after the Big Bang, as revealed by observations of quasars with redshifts of less than 6.5. It has been difficult to probe to higher redshifts, however, because quasars have historically been identified in optical surveys, which are insensitive to sources at redshifts exceeding 6.5. Here we report observations of a quasar (ULAS J112001.48+064124.3) at a redshift of 7.085, which is 0.77 billion years after the Big Bang. ULAS J1120+0641 has a luminosity of 6.3 × 10(13)L(⊙) and hosts a black hole with a mass of 2 × 10(9)M(⊙) (where L(⊙) and M(⊙) are the luminosity and mass of the Sun). The measured radius of the ionized near zone around ULAS J1120+0641 is 1.9 megaparsecs, a factor of three smaller than is typical for quasars at redshifts between 6.0 and 6.4. The near-zone transmission profile is consistent with a Lyα damping wing, suggesting that the neutral fraction of the intergalactic medium in front of ULAS J1120+0641 exceeded 0.1.

  18. Discovery of a Color-selected Quasar at z = 5.50.

    PubMed

    Stern; Spinrad; Eisenhardt; Bunker; Dawson; Stanford; Elston

    2000-04-20

    We present observations of RD J030117+002025, a quasar at z=5.50 discovered from deep, multicolor, ground-based observations covering 74 arcmin2. This is the most distant quasar or active galaxy currently known. The object was targeted as an R-band dropout, with RAB>26.3 (3 sigma limit in a 3&arcsec; diameter region), IAB=23.8, and zAB=23.4. The Keck/Low-Resolution Imaging Spectrometer spectrum shows broad Lyalpha/N v lambda1240 emission and sharp absorption decrements from the highly redshifted hydrogen forests. The fractional continuum depression due to the Lyalpha forest is DA=0.90. RD J030117+002025 is the least luminous high-redshift quasar known (MB approximately -22.7).

  19. The Pan-STARRS1 Distant z > 5.6 Quasar Survey: More than 100 Quasars within the First Gyr of the Universe

    NASA Astrophysics Data System (ADS)

    Bañados, E.; Venemans, B. P.; Decarli, R.; Farina, E. P.; Mazzucchelli, C.; Walter, F.; Fan, X.; Stern, D.; Schlafly, E.; Chambers, K. C.; Rix, H.-W.; Jiang, L.; McGreer, I.; Simcoe, R.; Wang, F.; Yang, J.; Morganson, E.; De Rosa, G.; Greiner, J.; Baloković, M.; Burgett, W. S.; Cooper, T.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Jun, H. D.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Metcalfe, N.; Miller, D.; Schindler, J.-T.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.; Yang, Q.

    2016-11-01

    Luminous quasars at z\\gt 5.6 can be studied in detail with the current generation of telescopes and provide us with unique information on the first gigayear of the universe. Thus far, these studies have been statistically limited by the number of quasars known at these redshifts. Such quasars are rare, and therefore, wide-field surveys are required to identify them, and multiwavelength data are required to separate them efficiently from their main contaminants, the far more numerous cool dwarfs. In this paper, we update and extend the selection for the z˜ 6 quasars presented in Bañados et al. (2014) using the Pan-STARRS1 (PS1) survey. We present the PS1 distant quasar sample, which currently consists of 124 quasars in the redshift range 5.6≲ z≲ 6.7 that satisfy our selection criteria. Of these quasars, 77 have been discovered with PS1, and 63 of them are newly identified in this paper. We present the composite spectra of the PS1 distant quasar sample. This sample spans a factor of ˜20 in luminosity and shows a variety of emission line properties. The number of quasars at z\\gt 5.6 presented in this work almost doubles the previously known quasars at these redshifts, marking a transition phase from studies of individual sources to statistical studies of the high-redshift quasar population, which was impossible with earlier, smaller samples.

  20. NuSTAR and XMM-Newton observations of luminous, heavily obscured, WISE-selected quasars at z ∼ 2

    SciTech Connect

    Stern, D.; Eisenhardt, P. R. M.; Lansbury, G. B.; Alexander, D. M.; Del Moro, A.; Gandhi, P.; Assef, R. J.; Brandt, W. N.; Griffith, R. L.; Ballantyne, D. R.; Baloković, M.; Bridge, C.; Bauer, F. E.; Benford, D.; Blain, A.; Boggs, S. E.; Craig, W. W.; Brightman, M.; Christensen, F. E.; Comastri, A.; and others

    2014-10-20

    We report on a NuSTAR and XMM-Newton program that has observed a sample of three extremely luminous, heavily obscured WISE-selected active galactic nuclei (AGNs) at z ∼ 2 across a broad X-ray band (0.1 – 79 keV). The parent sample, selected to be faint or undetected in the WISE 3.4 μm (W1) and 4.6 μm (W2) bands but bright at 12 μm (W3) and 22 μm (W4), are extremely rare, with only ∼1000 so-called 'W1W2-dropouts' across the extragalactic sky. Optical spectroscopy reveals typical redshifts of z ∼ 2 for this population, implying rest-frame mid-IR luminosities of νL {sub ν}(6 μm) ∼ 6 × 10{sup 46} erg s{sup –1} and bolometric luminosities that can exceed L {sub bol} ∼ 10{sup 14} L {sub ☉}. The corresponding intrinsic, unobscured hard X-ray luminosities are L(2-10 keV) ∼ 4 × 10{sup 45} erg s{sup –1} for typical quasar templates. These are among the most AGNs known, though the optical spectra rarely show evidence of a broad-line region and the selection criteria imply heavy obscuration even at rest-frame 1.5 μm. We designed our X-ray observations to obtain robust detections for gas column densities N {sub H} ≤ 10{sup 24} cm{sup –2}. In fact, the sources prove to be fainter than these predictions. Two of the sources were observed by both NuSTAR and XMM-Newton, with neither being detected by NuSTAR (f {sub 3-24} {sub keV} ≲ 10{sup –13} erg cm{sup –2} s{sup –1}), and one being faintly detected by XMM-Newton (f {sub 0.5-10} {sub keV} ∼ 5 × 10{sup –15} erg cm{sup –2} s{sup –1}). A third source was observed only with XMM-Newton, yielding a faint detection (f {sub 0.5-10} {sub keV} ∼ 7 × 10{sup –15} erg cm{sup –2} s{sup –1}). The X-ray data imply these sources are either X-ray weak, or are heavily obscured by column densities N {sub H} ≳ 10{sup 24} cm{sup –2}. The combined X-ray and mid-IR analysis seems to favor this second possibility, implying the sources are extremely obscured, consistent with Compton

  1. Pushing the Limits: High Redshift Fermi-LAT Blazars

    NASA Astrophysics Data System (ADS)

    Ojha, Roopesh; Gasparrini, Dario; Lott, Benoit; Cutini, Sara; Fermi-LAT Collaboration

    2016-01-01

    High-redshift blazars detected by the Fermi Large Area Telescope (LAT) are of great astrophysical import as they are extreme objects whose energetics remain a mystery. Such blazars are intrinsically interesting since they inform us about the evolution of gamma-ray blazars and are, by definition, some of the more luminous blazars in the LAT sample. They are also an excellent tool to study the EBL and thus the gamma-ray horizon. We present the latest high redshift blazar detections in the LAT and discuss some of their implications.

  2. FAST MOLECULAR OUTFLOWS IN LUMINOUS GALAXY MERGERS: EVIDENCE FOR QUASAR FEEDBACK FROM HERSCHEL

    SciTech Connect

    Veilleux, S.; Meléndez, M.; Sturm, E.; Gracia-Carpio, J.; Contursi, A.; Lutz, D.; Poglitsch, A.; Davies, R.; Genzel, R.; Tacconi, L.; De Jong, J. A.; Fischer, J.; González-Alfonso, E.; Sternberg, A.; Netzer, H.; Hailey-Dunsheath, S.; Verma, A.; Rupke, D. S. N.; Maiolino, R.; Teng, S. H. E-mail: marcio@astro.umd.edu; and others

    2013-10-10

    We report the results from a systematic search for molecular (OH 119 μm) outflows with Herschel/PACS in a sample of 43 nearby (z < 0.3) galaxy mergers, mostly ultraluminous infrared galaxies (ULIRGs) and QSOs. We find that the character of the OH feature (strength of the absorption relative to the emission) correlates with that of the 9.7 μm silicate feature, a measure of obscuration in ULIRGs. Unambiguous evidence for molecular outflows, based on the detection of OH absorption profiles with median velocities more blueshifted than –50 km s{sup –1}, is seen in 26 (70%) of the 37 OH-detected targets, suggesting a wide-angle (∼145°) outflow geometry. Conversely, unambiguous evidence for molecular inflows, based on the detection of OH absorption profiles with median velocities more redshifted than +50 km s{sup –1}, is seen in only four objects, suggesting a planar or filamentary geometry for the inflowing gas. Terminal outflow velocities of ∼–1000 km s{sup –1} are measured in several objects, but median outflow velocities are typically ∼–200 km s{sup –1}. While the outflow velocities show no statistically significant dependence on the star formation rate, they are distinctly more blueshifted among systems with large active galactic nucleus (AGN) fractions and luminosities [log (L{sub AGN}/L{sub ☉}) ≥ 11.8 ± 0.3]. The quasars in these systems play a dominant role in driving the molecular outflows. However, the most AGN dominated systems, where OH is seen purely in emission, show relatively modest OH line widths, despite their large AGN luminosities, perhaps indicating that molecular outflows subside once the quasar has cleared a path through the obscuring material.

  3. Fast Molecular Outflows in Luminous Galaxy Mergers: Evidence for Quasar Feedback from Herschel

    NASA Technical Reports Server (NTRS)

    Veilleux, S.; Melendez, M.; Sturm, E.; Garcia-Carpio, J.; Fischer, J.; Gonzalez-Alfonso, E.; Contursi, A.; Lutz, D.; Poglitsch, A.; Davies, R.; Genzel, R.; Tacconi, L.; deJong, J. A.; Sternberg, A.; Netzer, H.; Hailey-Dunsheath, S.; Verma, A.; Rupke, D. S. N.; Maiolino, R.; Teng, S. H.; Polisensky, E.

    2013-01-01

    We report the results from a systematic search for molecular (OH 119 micron) outflows with Herschel/PACS in a sample of 43 nearby (z < 0.3) galaxy mergers, mostly ultraluminous infrared galaxies (ULIRGs) and QSOs. We find that the character of the OH feature (strength of the absorption relative to the emission) correlates with that of the 9.7 micron silicate feature, a measure of obscuration in ULIRGs. Unambiguous evidence for molecular outflows, based on the detection of OH absorption profiles with median velocities more blueshifted than-50 km/s, is seen in 26 (70%) of the 37 OH-detected targets, suggesting a wide-angle (approx. 145 deg.) outflow geometry. Conversely, unambiguous evidence for molecular inflows, based on the detection of OH absorption profiles with median velocities more redshifted than +50 km/s is seen in only four objects, suggesting a planar or filamentary geometry for the inflowing gas. Terminal outflow velocities of approx. -1000 km/s are measured in several objects, but median outflow velocities are typically approx.-200 km/s-1. While the outflow velocities show no statistically significant dependence on the star formation rate, they are distinctly more blueshifted among systems with large active galactic nucleus (AGN) fractions and luminosities [log (L(sub AGN)/L(sub solar)) => 11.8 +/- 0.3]. The quasars in these systems play a dominant role in driving the molecular outflows. However, the most AGN dominated systems, where OH is seen purely in emission, show relatively modest OH line widths, despite their large AGN luminosities, perhaps indicating that molecular outflows subside once the quasar has cleared a path through the obscuring material.

  4. Coronal properties of the luminous radio-quiet quasar QSO B2202-209

    NASA Astrophysics Data System (ADS)

    Kammoun, E. S.; Risaliti, G.; Stern, D.; Jun, H. D.; Graham, M.; Celotti, A.; Behar, E.; Elvis, M.; Harrison, F. A.; Matt, G.; Walton, D. J.

    2017-02-01

    We present an analysis of the joint XMM-Newton and NuSTAR observations of the radio-quiet quasar QSO B2202-209. Using an optical observation from the Hale Telescope at the Palomar Observatory, we revise the redshift of the source from the previously reported z = 1.77 to z = 0.532, and we estimate the mass of the central black hole, log (MBH/M⊙) = 9.08 ± 0.18. The X-ray spectrum of this source can be well described by a power law of photon index Γ = 1.82 ± 0.05 with E_cut = 152_{-54}^{+103} keV, in the rest frame of the source. Assuming a Comptonization model, we estimate the coronal temperature to be kTe = 42 ± 3 keV and kTe = 56 ± 3 keV for a spherical and a slab geometry, respectively. The coronal properties are comparable to the ones derived for local active galactic nuclei, despite a difference of around one order of magnitude in black hole mass and X-ray luminosity (L2 - 10 = 1.93 × 1045 erg s-1). The quasar is X-ray loud, with an unusually flat observed optical-to-X-ray spectral slope αOX = 1.00 ± 0.02, and has an exceptionally strong optical [O III] line. Assuming that both the X-ray emission and the [O III] line are isotropic, these two extreme properties can be explained by a nearly edge-on disc, leading to a reduction in the observed ultraviolet continuum light.

  5. Hubble Space Telescope Observations of the Luminous IRAS Source FSC 10214+4724: A Gravitationally Lensed Infrared Quasar

    NASA Technical Reports Server (NTRS)

    Eisenhardt, Peter R.; Armus, Lee; Hogg, David W.; Soifer, B. T.; Neugebauer, G.; Werner, Michael W.

    1996-01-01

    With a redshift of 2.3, the IRAS source FSC 10214+4724 is apparently one of the most luminous objects known in the universe. We present an image of FSC 10214+4724 at 0.8 pm obtained with the Hubble Space Telescope (HST) WFPC2 Planetary Camera. The source appears as an unresolved (less then 0.06) arc 0.7 long, with significant substructure along its length. The center of curvature of the arc is located near an elliptical galaxy 1.18 to the north. An unresolved component 100 times fainter than the arc is clearly detected on the opposite side of this galaxy. The most straightforward interpretation is that FSC 10214+4724 is gravitationally lensed by the foreground elliptical galaxy, with the faint component a counter-image of the IRAS source. The brightness of the arc in the HST image is then magnified by approx. 100, and the intrinsic source diameter is approx. 0.0l (80 pc) at 0.25 microns rest wavelength. The bolometric luminosity is probably amplified by a smaller factor (approx. 30) as a result of the larger extent expected for the source in the far-infrared. A detailed lensing model is presented that reproduces the observed morphology and relative flux of the arc and counterimage and correctly predicts the position angle of the lensing galaxy. The model also predicts reasonable values for the velocity dispersion, mass, and mass-to-light ratio of the lensing galaxy for a wide range of galaxy redshifts. A redshift for the lensing galaxy of -0.9 is consistent with the measured surface brightness profile from the image, as well as with the galaxy's spectral energy distribution. The background lensed source has an intrinsic luminosity approx. 2 x 10(exp 13) L(solar mass) and remains a highly luminous quasar with an extremely large ratio of infrared to optical/ultraviolet luminosity.

  6. The real-space clustering of luminous red galaxies around z < 0.6 quasars in the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil; White, Martin; Norberg, Peder; Porciani, Cristiano

    2009-08-01

    We measure the clustering of a sample of photometrically selected luminous red galaxies (LRGs) around a low-redshift (0.2 < z < 0.6) sample of quasars selected from the Sloan Digital Sky Survey Data Release 5. We make use of a new statistical estimator to obtain precise measurements of the LRG autocorrelations and constrain halo occupation distributions for them. These are used to generate mock catalogues which aid in interpreting our quasar-LRG cross-correlation measurements. The cross-correlation is well described by a power law with slope 1.8 +/- 0.1 and r0 = 6 +/- 0.5h-1Mpc, consistent with observed galaxy correlation functions. We find no evidence for `excess' clustering on 0.1Mpc scales and demonstrate that this is consistent with the results of Serber et al. and Strand, Brunner and Myers, when one accounts for several subtleties in the interpretation of their measurements. Combining the quasar-LRG cross-correlation with the LRG autocorrelations, we determine a large-scale quasar bias bQSO = 1.09 +/- 0.15 at a median redshift of 0.43, with no observed redshift or luminosity evolution. This corresponds to a mean halo mass ~ 1012h-1Msolar, Eddington ratios from 0.01 to 1 and lifetimes less than 107yr. Using simple models of halo occupation, these correspond to a number density of quasar hosts greater than 10-3 h3Mpc-3 and stellar masses less than 1011 h-1Msolar. The small-scale clustering signal can be interpreted with the aid of our mock LRG catalogues, and depends on the manner in which quasars inhabit haloes. We find that our small-scale measurements are inconsistent with quasar positions being randomly subsampled from halo centres above a mass threshold, requiring a satellite fraction >25 per cent.

  7. Unveiling high redshift structures with Planck

    NASA Astrophysics Data System (ADS)

    Welikala, Niraj

    2012-07-01

    The Planck satellite, with its large wavelength coverage and all-sky survey, has a unique potential of systematically detecting the brightest and rarest submillimetre sources on the sky. We present an original method based on a combination of Planck and IRAS data which we use to select the most luminous submillimetre high-redshift (z>1-2) cold sources over the sky. The majority of these sources are either individual, strongly lensed galaxies, or represent the combined emission of several submillimetre galaxies within the large beam of Planck. The latter includes, in particular, rapidly growing galaxy groups and clusters. We demonstrate our selection method on the first 5 confirmations that include a newly discovered over-density of 5 submillimetre-bright sources which has been confirmed with Herschel/SPIRE observations and followed up with ground-based observations including VLT/XSHOOTER spectroscopy. Using Planck, we also unveil the nature of 107 high-redshift dusty, lensed submillimetre galaxies that have been previously observed over 940 square degrees by the South Pole Telescope (SPT). We stack these galaxies in the Planck maps, obtaining mean SEDs for both the bright (SPT flux F _{220 GHz} > 20 mJy) and faint (F _{220 GHz} < 20 mJy) galaxy populations. These SEDs and the derived mean redshifts suggest that the bright and faint sources belong to the same population of submillimetre galaxies. Stacking the lensed submillimetre galaxies in Planck also enables us to probe the z~1 environments around the foreground lenses and we obtain estimates of their clustering. Finally, we use the stacks to extrapolate SPT source counts to the Planck HFI frequencies, thereby estimating the contribution of the SPT sources at 220 GHz to the galaxy number counts at 353 and 545 GHz.

  8. Dust in the High Redshift Universe

    NASA Astrophysics Data System (ADS)

    Meurer, G. R.

    2004-05-01

    This paper reviews the dust content of the high redshift (z > 2) universe. Studies of the various ``species'' in the high-z ``zoo'' show that almost all have strong evidence for containing dust. The one exception, where the evidence is not yet convincing, is in quasar absorption line systems, particularly those with low column density. These may not even be associated with galaxies. The high-z galaxy types which do show evidence for dust are all strongly star forming. Hence, as seen locally, star formation and dust in the distant universe are also strongly correlated. It is beyond debate that star formation at z ˜ 3 is dominated by dusty systems who emit most of their bolometric flux in the rest-frame FIR. What is not clear is whether these systems are totally invisible at shorter wavelengths, or whether a large fraction are visible in the rest-frame UV as Lyman Break Galaxies. The issue may not be settled until the sub-mm background is definitively resolved.

  9. A search for gravitational lensing among highly luminous quasars - New results

    NASA Astrophysics Data System (ADS)

    Magain, P.; Remy, M.; Surdej, J.; Swings, J.-P.; Smette, A.

    Images of highly luminous QSOs are analyzed to determine whether the gravitational magnification of the background QSO by matter associated with the foreground galaxies accounts for the excess of galaxies in the fields of distant QSOs. Galaxy detection is increased by utilizing red-filter images, 40 taken with the EFOSC at the ESO 3.6-m telescope and 43 taken with a direct CCD camera at the ESO/MPI 2.2-m telescope. The R-magnitude ranges from 22.5 to 23.0 for the sample, for which the number of galaxies is counted by eye, showing 45 galaxies of radio and optical type. The overdensity found is not as pronounced as that of Fugmann (1988) or that of Webster et al. (1988). A systematic subtraction of the point spread function is also described to investigate the idea that some galaxies responsible for the QSO light magnification are within the inner 3-arcsec circle. The galaxies very close to the line-of-sight are theorized to contribute significantly to the magnification of these QSOs.

  10. Element abundances at high redshift

    NASA Technical Reports Server (NTRS)

    Meyer, David M.; Welty, D. E.; York, D. G.

    1989-01-01

    Abundances of Si(+), S(+), Cr(+), Mn(+), Fe(_), and Zn(+) are considered for two absorption-line systems in the spectrum of the QSO PKS 0528 - 250. Zinc and sulfur are underabundant, relative to H, by a factor of 10 compared to their solar and Galactic interstellar abundances. The silicon-, chromium-, iron-, and nickel-to-hydrogen ratios are less than the solar values and comparable to the local interstellar ratios. A straightforward interpretation is that nucleosynthesis in these high-redshift systems has led to only about one-tenth as much heavy production as in the gas clouds around the sun, and that the amount of the observed underabundances attributable to grain depletion is small. The dust-to-gas ratio in these clouds is less than 8 percent of the Galactic value.

  11. High-redshift galaxy populations.

    PubMed

    Hu, Esther M; Cowie, Lennox L

    2006-04-27

    We now see many galaxies as they were only 800 million years after the Big Bang, and that limit may soon be exceeded when wide-field infrared detectors are widely available. Multi-wavelength studies show that there was relatively little star formation at very early times and that star formation was at its maximum at about half the age of the Universe. A small number of high-redshift objects have been found by targeting X-ray and radio sources and most recently, gamma-ray bursts. The gamma-ray burst sources may provide a way to reach even higher-redshift galaxies in the future, and to probe the first generation of stars.

  12. DENSE MOLECULAR GAS EXCITATION IN NUCLEAR STARBURSTS AT HIGH REDSHIFT: HCN, HNC, AND HCO{sup +}(J = 6{yields}5) EMISSION IN THE z = 3.91 QUASAR HOST OF APM 08279+5255

    SciTech Connect

    Riechers, Dominik A.; Weiss, Axel; Walter, Fabian; Wagg, Jeff

    2010-12-10

    We report the detection of surprisingly strong HCN(J = 6{yields}5), HNC(J = 6{yields}5), and HCO{sup +}(J = 6{yields}5) emission in the host galaxy of the z = 3.91 quasar APM 08279+5255 through observations with the Combined Array for Research in Millimeter-wave Astronomy. HCN, HNC, and HCO{sup +} are typically used as star formation indicators, tracing dense molecular hydrogen gas [n(H{sub 2}) >10{sup 5} cm{sup -3}] within star-forming molecular clouds. However, the strength of their respective line emission in the J = 6{yields}5 transitions in APM 08279+5255 is extremely high, suggesting that they are excited by another mechanism besides collisions in the dense molecular gas phase alone. We derive J = 6{yields}5 line luminosities of L'{sub HCN} = (4.9 {+-} 0.6), L'{sub HNC} = (2.4 {+-} 0.7), and L{sup '}{sub HCO}{sup +}= (3.0{+-}0.6)x10{sup 10} {mu}{sup -1}{sub L} K km s{sup -1} pc{sup 2} (where {mu}{sub L} is the lensing magnification factor), corresponding to L' ratios of {approx}0.23-0.46 relative to CO(J = 1{yields}0). Such high line ratios would be unusual even in the respective ground-state (J = 1{yields}0) transitions, and indicate exceptional, collisionally and radiatively driven excitation conditions in the dense, star-forming molecular gas in APM 08279+5255. Through an expansion of our previous modeling of the HCN line excitation in this source, we show that the high rotational line fluxes are caused by substantial infrared pumping at moderate opacities in a {approx}220 K warm gas and dust component. This implies that standard M{sub dense}/L' conversion factors would substantially overpredict the dense molecular gas mass M{sub dense}. We also find a HCN(J = 6{yields}5)/HCN(J = 5{yields}4) L' ratio greater than 1 (1.36 {+-} 0.31)-however, our models show that the excitation is likely not 'super-thermal', but that the high line ratio is due to a rising optical depth between both transitions. These findings are consistent with the picture that the bulk of

  13. Discovery of an Obscured Broad-Line Region in the High-Redshift Radio Galaxy MRC 2025-218.

    PubMed

    Larkin; McLean; Graham; Becklin; Figer; Gilbert; Levenson; Teplitz; Wilcox; Glassman

    2000-04-10

    This Letter presents infrared spectra taken with the newly commissioned near-infrared spectrometer (NIRSPEC) on the Keck II telescope of the high-redshift radio galaxy MRC 2025-218 (z=2.63). These observations represent the deepest infrared spectra of a radio galaxy to date and have allowed for the detection of Hbeta, [O iii] lambdalambda4959, 5007, [O i] lambda6300, Halpha, [N ii] lambdalambda6548, 6583, and [S ii] lambdalambda6716, 6713. The Halpha emission is very broad (FWHM=9300 km s-1) and luminous (2.6x1044 ergs s-1), and it is very comparable to the line widths and strengths of radio-loud quasars at the same redshift. This strongly supports active galactic nucleus unification models linking radio galaxies and quasars, although we discuss some of the outstanding differences. The line [O iii] lambda5007 is extremely strong and has extended emission with large relative velocities toward the nucleus. We also derive that if the extended emission is due to star formation, each knot has a star formation rate comparable to a Lyman-break galaxy at the same redshift.

  14. Simulating high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Salvaterra, Ruben; Ferrara, Andrea; Dayal, Pratika

    2011-06-01

    Recent observations have gathered a considerable sample of high-redshift galaxy candidates and determined the evolution of their luminosity function (LF). To interpret these findings, we use cosmological SPH simulations including, in addition to standard physical processes, a detailed treatment of the Pop III-Pop II transition in early objects. The simulated high-z galaxies match remarkably well the amplitude and slope of the observed LF in the redshift range 5 < z < 10. The LF shifts towards fainter luminosities with increasing redshift, while its faint-end slope keeps an almost constant value, α≈-2. The stellar populations of high-z galaxies have ages of 100-300 (40-130) Myr at z= 5 (z= 7-8), implying an early (z > 9.4) start of their star formation activity; the specific star formation rate is almost independent of galactic stellar mass. These objects are enriched rapidly with metals and galaxies identified by HST/WFC3 (?) show metallicities ≈0.1 Z⊙ even at z= 7-8. Most of the simulated galaxies at z≈ 7 (noticeably the smallest ones) are virtually dust-free, and none of them has an extinction larger than E(B-V) = 0.01. The bulk (50 per cent) of the ionizing photons is produced by objects populating the faint end of the LF (?), which JWST will resolve up to z= 7.3. Pop III stars continue to form essentially at all redshifts; however, at z= 6 (z= 10) the contribution of Pop III stars to the total galactic luminosity is always less than 5 per cent for ? (?). The typical high-z galaxies closely resemble the GRB host galaxy population observed at lower redshifts, strongly encouraging the use of GRBs to detect the first galaxies.

  15. The Physical Conditions of Atomic Gas at High Redshift

    NASA Astrophysics Data System (ADS)

    Neeleman, Marcel

    In this thesis we provide insight into the chemical composition, physical conditions and cosmic distribution of atomic gas at high redshift. We study this gas in absorption against bright background quasars in absorption systems known as Damped Ly-alpha Systems (DLAs). These systems contain the bulk of the atomic gas at high redshift and are the likely progenitors of modern-day galaxies. In Chapter 2, we find that the atomic gas in DLAs obeys a mass-metallicity relationship that is similar to the mass-metallicity relationship seen in star-forming galaxies. The evolution of this relationship is linear with redshift, allowing for a planar equation to accurately describe this evolution, which provides a more stringent constraint on simulations modeling DLAs. Furthermore, the concomitant evolution of the mass-metallicity relationship of atomic gas and star-forming galaxies suggests an intimate link between the two. We next use a novel way to measure the physical conditions of the gas by using fine-structure line ratios of singly ionized carbon and silicon. By measuring the density of the upper and lower level states, we are able to determine the temperature, hydrogen density and electron density of the gas. We find that the conditions present in this high redshift gas are consistent with the conditions we see in the local interstellar medium (ISM). A few absorbers have higher than expected pressure, which suggests that they probe the ISM of star-forming galaxies. Finally in Chapter 4, we measure the cosmic neutral hydrogen density at redshifts below 1.6. Below this redshift, the Ly-alpha line of hydrogen is absorbed by the atmosphere, making detection difficult. Using the archive of the Hubble Space Telescope, we compile a comprehensive list of quasars for a search of DLAs at redshift below 1.6. We find that the incidence rate of DLAs and the cosmic neutral hydrogen density is smaller than previously measured, but consistent with the values both locally and at

  16. Quasars at Cosmic Dawn: Discoveries and Probes of the Early Universe

    NASA Astrophysics Data System (ADS)

    Wang, Feige; Wu, Xue-Bing; Fan, Xiaohui; Yang, Jinyi; Bian, Fuyan; McGreer, Ian D.; Green, Richard F.; Yang, Qian; Jiang, Linhua; Wang, Ran; DECaLS Team; UHS Team

    2017-01-01

    High redshift quasars, as the most luminous non-transient objects in the early universe, are the most promising tracers to address the history of cosmic reionization and how the origins of super-massive black hole (SMBH) are linked to galaxy formation and evolution. Over the last fifteen years, more than 100 quasars within the first billion years after the Big Bang have been discovered with the highest redshift at 7.1. We have developed a new method to select z>~6 quasars with both high efficiency and high completeness by combing optical and mid-IR Wide-field Infrared Survey Explorer (WISE) photometric data. We have applied this method to SDSS footprint and resulted in the discovery of the most luminous z>6 quasar ever discovered, which hosts a twelve billion solar mass black hole. I will present detailed follow-up observations of the host galaxies and environment of the most luminous quasars using HST, LBT and ALMA, in order to constrain early black hole growth and black hole/galaxy co-evolution at the highest redshift. I will also present initial results from a new quasar survey, which utilizes optical data from DECaLS, which is imaging 6700 deg^2 of sky down to z_AB˜23.0, and neaar-IR data from UHS and UKIDSS, which maps the whole northern sky at Decl.<+60deg. The combination of these datasets allows us to discover quasars at redshift z>~7 and to conduct a complete census of the faint quasar population at z~6.

  17. Calan Tololo Survey: Bright Quasars at High Redshifts

    NASA Astrophysics Data System (ADS)

    Maza, Jose; Ruiz, Maria Teresa; Gonzalez, Luis E.; Wischnjewsky, Marina

    An objective prism survey has been started at Cerro Tololo Inter-American Observatory using the thin UV prism (1,360 Å/mm at Hγ and 1,740 Å/mm at Hβ) on the Curtis Schmidt telescope. Unfiltered baked IIIaJ plates exposed 90 minutes have been obtained for 163 fields. Unwiden spectra taken in good seeing reach B ≅ 19. This survey is an extension of the original Tololo survey (Smith 1975; Smith, Aguirre and Zemelman 1986).

  18. Variability and Spectral Studies of Luminous Seyfert 1 Galaxy Fairall 9. Search for the Reflection Component is a Quasar: RXTE and ASCA Observation of a Nearby Radio-Quiet Quasar MR 2251-178

    NASA Technical Reports Server (NTRS)

    Leighly, Karen M.

    1999-01-01

    Monitoring observations with interval of 3 days using RXTE (X Ray Timing Explorer) of the luminous Seyfert 1 galaxy Fairall 9 were performed for one year. The purpose of the observations were to study the variability of Fairall 9 and compare the results with those from the radio-loud object 3C 390.3. The data has been received and analysis is underway, using the new background model. An observation of the quasar MR 2251-178 was made in order to determine whether or not it has a reflection component. Older background models gave an unacceptable subtraction and analysis is underway using the new background model. The observation of NGC 6300 showed that the X-ray spectrum from this Seyfert 2 galaxy appears to be dominated by Compton reflection.

  19. Gemini long-slit observations of luminous obscured quasars: Further evidence for an upper limit on the size of the narrow-line region

    SciTech Connect

    Hainline, Kevin N.; Hickox, Ryan C.; Greene, Jenny E.; Myers, Adam D.; Zakamska, Nadia L.; Liu, Guilin; Liu, Xin

    2014-05-20

    We examine the spatial extent of the narrow-line regions (NLRs) of a sample of 30 luminous obscured quasars at 0.4 < z < 0.7 observed with spatially resolved Gemini-N GMOS long-slit spectroscopy. Using the [O III] λ5007 emission feature, we estimate the size of the NLR using a cosmology-independent measurement: the radius where the surface brightness falls to 10{sup –15} erg s{sup –1} cm{sup –2} arcsec{sup –2}. We then explore the effects of atmospheric seeing on NLR size measurements and conclude that direct measurements of the NLR size from observed profiles are too large by 0.1-0.2 dex on average, as compared to measurements made to best-fit Sérsic or Voigt profiles convolved with the seeing. These data, which span a full order of magnitude in IR luminosity (log (L {sub 8} {sub μm}/erg s{sup –1}) = 44.4-45.4), also provide strong evidence that there is a flattening of the relationship between NLR size and active galactic nucleus luminosity at a seeing-corrected size of ∼7 kpc. The objects in this sample have high luminosities which place them in a previously under-explored portion of the size-luminosity relationship. These results support the existence of a maximal size of the NLR around luminous quasars; beyond this size, there is either not enough gas or the gas is over-ionized and does not produce enough [O III] λ5007 emission.

  20. Structure of the Universe at Small and High Redshifts

    NASA Astrophysics Data System (ADS)

    Doroshkevich, A.; Turchaninov, V.

    1998-12-01

    The approximate theoretical description of the formation and evolution of the structure of the universe proposed by Demianski and Doroshkevich (1998) is compared with observed and simulated matter distribution at small and high redshifts. It is found that for the CDM-like power spectrum and suitable parameters of the cosmological model the effective matter compression reaches at small redshifts the observed scales Rwall ~20 - 25h^{-1}Mpc with the typical mean separation of wall-like elements DSLSS 50 - 70h^{-1}Mpc. We show that the same theoretical model explains well both the redshift, temperature and NHI distributions of absorption lines observed in the spectra of quasars at redshifts 2 <= z <= 3.5. The models with 0.3 <= Omega_m <= 0.5 give better description of the observed structure parameters.

  1. High-redshift Fermi blazars observed by GROND and Swift

    NASA Astrophysics Data System (ADS)

    Ghisellini, G.; Nardini, M.; Tagliaferri, Greiner, J.; Schady, P.; Rau, A.; Foschini, L.; Tavecchio, F.; Ghirlanda, G.; Sbarrato, T.

    2013-01-01

    We observed five γ-ray-loud blazars at redshift greater than 2 with the X-Ray Telescope (XRT) and the UltraViolet and Optical Telescope (UVOT) on-board the Swift satellite, and the Gamma-Ray burst Optical Near-Infrared Detector (GROND) instrument. These observations were quasi-simultaneous, usually within a few hours. For four of these blazars, the near-IR to UV data show the presence of an accretion disc, and we could reliably estimate its accretion rate and black hole mass. One of them, PKS 1348+007, was found in an extraordinarily high IR-optical state, almost two orders of magnitude brighter than at the epoch of the Sloan Digital Sky Survey observations. For all the five quasars, the physical parameters of the jet-emitting zone, derived by applying a one-zone emission model, are similar to that found for the bulk of other γ-ray-loud quasars. With our observations, we have X-ray data for the full sample of blazars at z > 2 present in the Fermi 2-year (2LAC) catalogue. This allows us to have a rather complete view of the spectral energy distribution of all high-redshift Fermi blazars, and to draw some conclusions about their properties, and especially about the relation between the accretion rate and the jet power.

  2. Expanding the Gamma-ray Universe: High Redshift Fermi-LAT Blazars

    NASA Astrophysics Data System (ADS)

    Ojha, Roopesh; Paliya, Vaidehi; Gasparrini, Dario; Ajello, Marco; Cutini, Sara; Fermi-LAT Collaboration

    2017-01-01

    High-redshift blazars detected by the Fermi Large Area Telescope (LAT) are of great astrophysical import as they are extreme objects whose energetics remain a mystery. Such blazars are intrinsically interesting since they inform us about the evolution of gamma-ray blazars and are, by definition, some of the more luminous blazars in the Fermi-LAT sample. These blazars appear to host very massive black holes and could shed light on the origin and growth of black holes in the early Universe. We present the latest high redshift blazar detections in the LAT and discuss some of their implications.

  3. Constraints on the optical polarization source in the luminous non-blazar quasar 3C 323.1 (PG 1545+210) from the photometric and polarimetric variability

    NASA Astrophysics Data System (ADS)

    Kokubo, Mitsuru

    2017-01-01

    We examine the optical photometric and polarimetric variability of the luminous type 1 non-blazar quasar 3C 323.1 (PG 1545+210). Two optical spectro-polarimetric measurements taken during the periods 1996-98 and 2003 combined with a V-band imaging polarimetric measurement taken in 2002 reveal that (1) as noted in the literature, the polarization of 3C 323.1 is confined only to the continuum emission, that is, the emission from the broad line region is unpolarized; (2) the polarized flux spectra show evidence of a time-variable broad absorption feature in the wavelength range of the Balmer continuum and other recombination lines; (3) weak variability in the polarization position angle (PA) of ˜ 4 deg over a time-scale of 4-6 years is observed; and (4) the V-band total flux and the polarized flux show highly correlated variability over a time-scale of one year. Taking the above-mentioned photometric and polarimetric variability properties and the results from previous studies into consideration, we propose a geometrical model for the polarization source in 3C 323.1, in which an equatorial absorbing region and an axi-asymmetric equatorial electron-scattering region are assumed to be located between the accretion disc and the broad line region. The scattering/absorbing regions can perhaps be attributed to the accretion disc wind or flared disc surface, but further polarimetric monitoring observations for 3C 323.1 and other quasars with continuum-confined polarization are needed to probe the true physical origins of these regions.

  4. SALT Long-slit Spectroscopy of Luminous Obscured Quasars: An Upper Limit on the Size of the Narrow-line Region?

    NASA Astrophysics Data System (ADS)

    Hainline, Kevin N.; Hickox, Ryan; Greene, Jenny E.; Myers, Adam D.; Zakamska, Nadia L.

    2013-09-01

    We present spatially resolved long-slit spectroscopy from the Southern African Large Telescope to examine the spatial extent of the narrow-line regions (NLRs) of a sample of eight luminous obscured quasars at 0.10 < z < 0.43. Our results are consistent with an observed shallow slope in the relationship between NLR size and L [O III], which has been interpreted to indicate that NLR size is limited by the density and ionization state of the NLR gas rather than the availability of ionizing photons. We also explore how the NLR size scales with a more direct measure of instantaneous active galactic nucleus power using mid-IR photometry from the Wide Field Infrared Explorer, which probes warm to hot dust near the central black hole and so, unlike [O III], does not depend on the properties of the NLR. Using our results as well as samples from the literature, we obtain a power-law relationship between NLR size and L 8 μm that is significantly steeper than that observed for NLR size and L [O III]. We find that the size of the NLR goes approximately as L^{1/2}_{8\\,\\mu {m}}, as expected from the simple scenario of constant-density clouds illuminated by a central ionizing source. We further see tentative evidence for a flattening of the relationship between NLR size and L 8 μm at the high-luminosity end, and propose that we are seeing a limiting NLR size of 10-20 kpc, beyond which the availability of gas to ionize becomes too low. We find that L_{[{O\\,{\\scriptsize {III}}}]} \\sim L_{8 \\,\\mu {m}}^{1.4}, consistent with a picture in which the L [O III] is dependent on the volume of the NLR. These results indicate that high-luminosity quasars have a strong effect in ionizing the available gas in a galaxy.

  5. SDSS J163459.82+204936.0: A Ringed Infrared-luminous Quasar with Outflows in Both Absorption and Emission Lines

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Juan; Zhou, Hong-Yan; Jiang, Ning; Wu, Xufen; Lyu, Jianwei; Shi, Xiheng; Shu, Xinwen; Jiang, Peng; Ji, Tuo; Wang, Jian-Guo; Wang, Shu-Fen; Sun, Luming

    2016-05-01

    SDSS J163459.82+204936.0 is a local (z = 0.1293) infrared-luminous quasar with L IR = 1011.91 {L}⊙ . We present a detailed multiwavelength study of both the host galaxy and the nucleus. The host galaxy, appearing as an early-type galaxy in the optical images and spectra, demonstrates violent, obscured star formation activities with SFR ≈ 140 {M}⊙ yr-1, estimated from either the polycyclic aromatic hydrocarbon emission or IR luminosity. The optical to NIR spectra exhibit a blueshifted narrow cuspy component in Hβ, He i λλ5876, 10830, and other emission lines consistently with an offset velocity of ≈900 {km} {{{s}}}-1, as well as additional blueshifting phenomena in high-ionization lines (e.g., a blueshifted broad component of He i λ10830 and the bulk blueshifting of [O iii]λ5007), while there exist blueshifted broad absorption lines (BALs) in Na i D and He i λλ3889, 10830, indicative of the active galactic nucleus outflows producing BALs and emission lines. Constrained mutually by the several BALs in the photoionization simulations with Cloudy, the physical properties of the absorption line outflow are derived as follows: density 104 < n H ≲ 105 cm-3, ionization parameter 10-1.3 ≲ U ≲ 10-0.7 , and column density 1022.5 ≲ N H ≲ 1022.9 cm-2, which are similar to those derived for the emission line outflows. This similarity suggests a common origin. Taking advantages of both the absorption lines and outflowing emission lines, we find that the outflow gas is located at a distance of ˜48-65 pc from the nucleus and that the kinetic luminosity of the outflow is 1044-1046 {erg} {{{s}}}-1. J1634+2049 has a off-centered galactic ring on the scale of ˜30 kpc that is proved to be formed by a recent head-on collision by a nearby galaxy for which we spectroscopically measure the redshift. Thus, this quasar is a valuable object in the transitional phase emerging out of dust enshrouding as depicted by the co-evolution scenario invoking galaxy merger (or

  6. Host galaxies of luminous z ∼ 0.6 quasars: major mergers are not prevalent at the highest AGN luminosities

    NASA Astrophysics Data System (ADS)

    Villforth, C.; Hamilton, T.; Pawlik, M. M.; Hewlett, T.; Rowlands, K.; Herbst, H.; Shankar, F.; Fontana, A.; Hamann, F.; Koekemoer, A.; Pforr, J.; Trump, J.; Wuyts, S.

    2017-04-01

    Galaxy interactions are thought to be one of the main triggers of active galactic nuclei (AGN), especially at high luminosities, where the accreted gas mass during the AGN lifetime is substantial. Evidence for a connection between mergers and AGN, however, remains mixed. Possible triggering mechanisms remain particularly poorly understood for luminous AGN, which are thought to require triggering by major mergers, rather than secular processes. We analyse the host galaxies of a sample of 20 optically and X-ray selected luminous AGN (log(Lbol [erg s-1]) > 45) at z ∼ 0.6 using Hubble Space Telescope Wide Field Camera 3 data in the F160W/H band. 15/20 sources have resolved host galaxies. We create a control sample of mock AGN by matching the AGN host galaxies to a control sample of non-AGN galaxies. Visual signs of disturbances are found in about 25 per cent of sources in both the AGN hosts and control galaxies. Using both visual classification and quantitative morphology measures, we show that the levels of disturbance are not enhanced when compared to a matched control sample. We find no signs that major mergers play a dominant role in triggering AGN at high luminosities, suggesting that minor mergers and secular processes dominate AGN triggering up to the highest AGN luminosities. The upper limit on the enhanced fraction of major mergers is ≤20 per cent. While major mergers might increase the incidence of luminous AGN, they are not the prevalent triggering mechanism in the population of unobscured AGN.

  7. On the Radio and Optical Luminosity Evolution of Quasars

    SciTech Connect

    Singal, J.; Petrosian, V.; Lawrence, A.; Stawarz, L.; /JAXA, Sagamihara /Jagiellonian U., Astron. Observ.

    2011-05-20

    loud quasars, but rather a smooth transition. Also, this efficiency seems higher for the high-redshift and more luminous sources in the considered sample.

  8. STRONG RESPONSE OF THE VERY BROAD H{beta} EMISSION LINE IN THE LUMINOUS RADIO-QUIET QUASAR PG 1416-129

    SciTech Connect

    Wang, J.; Li, Y.

    2011-11-20

    We report new spectroscopic observations performed in 2010 and 2011 for the luminous radio-quiet quasar PG 1416-129. Our new spectra with high quality cover both H{beta} and H{alpha} regions, and show negligible line profile variation within a timescale of one year. The two spectra allow us to study the variability of the Balmer line profile by comparing the spectra with previous ones taken at 10 and 20 years ago. By decomposing the broad Balmer emission lines into two Gaussian profiles, our spectral analysis suggests a strong response to the continuum level for the very broad component, and significant variations in both bulk blueshift velocity/FWHM and flux for the broad component. The new observations additionally indicate flat Balmer decrements (i.e., too strong H{beta} emission) at the line wings, which is hard to reproduce using recent optically thin models. With these observations we argue that a separate inner optically thin emission-line region might not be necessary in the object to reproduce the observed line profiles.

  9. The formation and evolution of high-redshift dusty galaxies

    NASA Astrophysics Data System (ADS)

    Ma, Jingzhe; Gonzalez, Anthony H.; Ge, Jian; Vieira, Joaquin D.; Prochaska, Jason X.; Spilker, Justin; Strandet, Maria; Ashby, Matthew; Noterdaeme, Pasquier; Lundgren, Britt; Zhao, Yinan; Ji, Tuo; Zhang, Shaohua; Caucal, Paul; SPT SMG Collaboration

    2017-01-01

    Star formation and chemical evolution are among the biggest questions in galaxy formation and evolution. High-redshift dusty galaxies are the best sites to investigate mass assembly and growth, star formation rates, star formation history, chemical enrichment, and physical conditions. My thesis is based on two populations of high-redshift dusty galaxies, submillimeter galaxies (SMGs) and quasar 2175 Å dust absorbers, which are selected by dust emission and dust absorption, respectively.For the SMG sample, I have worked on the gravitationally lensed dusty, star-forming galaxies (DSFGs) at 2.8 < z < 5.7, which were first discovered by the South Pole Telescope (SPT) and further confirmed by ALMA. My thesis is focused on the stellar masses and star formation rates of these objects by means of multi-wavelength spectral energy distribution (SED) modelling. The data include HST/WFC3, Spitzer/IRAC, Herschel/PACS, Herschel/SPIRE, APEX/Laboca and SPT. Compared to the star-forming main sequence (MS), these DSFGs have specific SFRs that lie above the MS, suggesting that we are witnessing ongoing strong starburst events that may be driven by major mergers. SPT0346-52 at z = 5.7, the most extraordinary source in the SPT survey for which we obtained Chandra X-ray and ATCA radio data, was confirmed to have the highest star formation surface density of any known galaxy at high-z.The other half of my thesis is focused on a new population of quasar absorption line systems, 2175 Å dust absorbers, which are excellent probes of gas and dust properties, chemical evolution and physical conditions in the absorbing galaxies. This sample was selected from the SDSS and BOSS surveys and followed up with the Echelle Spectrographs and Imager on the Keck-II telescope, the Red & Blue Channel Spectrograph on the Multiple Mirror Telescope, and the Ultraviolet and Visible Echelle Spectrograph onboard the Very Large Telescope. We found a correlation between the presence of the 2175 Å bump and other

  10. Detection of molecular gas in the quasar BR1202 - 0725 at redshift z = 4.69.

    PubMed

    Ohta, K; Yamada, T; Nakanishi, K; Kohno, K; Akiyama, M; Kawabe, R

    1996-08-01

    Although great efforts have been made to locate molecular gas--the material out of which stars form--in the early Universe, there have been only two firm detections at high redshift. Both are gravitationally lensed objects at redshift z approximately = 2.5 (refs 9-14). Here we report the detection of CO emission from the radio-quiet quasar BR1202 - 0725, which is at redshift z = 4.69. From the observed CO luminosity, we estimate that almost 10(11) solar masses of molecular hydrogen are associated with the quasar; this is comparable to the stellar mass of a present-day luminous galaxy. Our results suggest that BR1202 - 0725 is a massive galaxy, in which the gas is largely concentrated in the central region, and that is currently undergoing a large burst of star formation.

  11. Fe Emission And Ionized Excess Absorption in the Luminous Quasar 3C109 With XMM-Newton

    SciTech Connect

    Miniutti, Giovanni; Ballantyne, D.R.; Allen, S.W.; Fabian, A.C.; Ross, R.R.; /Holy Cross Coll.

    2006-06-09

    the line of sight, located at the redshift of 3C 109. The most likely interpretation for the excess absorption is that the line-of-sight is grazing the obscuring torus of unified models, which is consistent with the inclination inferred from the Fe line profile (about 40{sup o}) and with the hybrid radio-galaxy/quasar nature of 3C 109.

  12. Modeling the Dust Properties of z ~ 6 Quasars with ART2—All-Wavelength Radiative Transfer with Adaptive Refinement Tree

    NASA Astrophysics Data System (ADS)

    Li, Yuexing; Hopkins, Philip F.; Hernquist, Lars; Finkbeiner, Douglas P.; Cox, Thomas J.; Springel, Volker; Jiang, Linhua; Fan, Xiaohui; Yoshida, Naoki

    2008-05-01

    The detection of large quantities of dust in z ~ 6 quasars by infrared and radio surveys presents puzzles for the formation and evolution of dust in these early systems. Previously, Li et al. showed that luminous quasars at zgtrsim 6 can form through hierarchical mergers of gas-rich galaxies, and that these systems are expected to evolve from starburst through quasar phases. Here, we calculate the dust properties of simulated quasars and their progenitors using a three-dimensional Monte Carlo radiative transfer code, ART2 (All-wavelength Radiative Transfer with Adaptive Refinement Tree). ART2 incorporates a radiative equilibrium algorithm which treats dust emission self-consistently, an adaptive grid method which can efficiently cover a large dynamic range in both spatial and density scales, a multiphase model of the interstellar medium which accounts for the observed scaling relations of molecular clouds, and a supernova-origin model for dust which can explain the existence of dust in cosmologically young objects. By applying ART2 to the hydrodynamic simulations of Li et al., we reproduce the observed spectral energy distribution (SED) and inferred dust properties of SDSS J1148+5251, the most distant Sloan quasar. We find that the dust and infrared emission are closely associated with the formation and evolution of the quasar host. The system evolves from a cold to a warm ultraluminous infrared galaxy (ULIRG) owing to heating and feedback from stars and the active galactic nucleus (AGN). Furthermore, the AGN activity has significant implications for the interpretation of observation of the hosts. Our results suggest that vigorous star formation in merging progenitors is necessary to reproduce the observed dust properties of z ~ 6 quasars, supporting a merger-driven origin for luminous quasars at high redshifts and the starburst-to-quasar evolutionary hypothesis.

  13. Accessing the population of high-redshift Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Ghirlanda, G.; Salvaterra, R.; Ghisellini, G.; Mereghetti, S.; Tagliaferri, G.; Campana, S.; Osborne, J. P.; O'Brien, P.; Tanvir, N.; Willingale, D.; Amati, L.; Basa, S.; Bernardini, M. G.; Burlon, D.; Covino, S.; D'Avanzo, P.; Frontera, F.; Götz, D.; Melandri, A.; Nava, L.; Piro, L.; Vergani, S. D.

    2015-04-01

    Gamma Ray Bursts (GRBs) are a powerful probe of the high-redshift Universe. We present a tool to estimate the detection rate of high-z GRBs by a generic detector with defined energy band and sensitivity. We base this on a population model that reproduces the observed properties of GRBs detected by Swift, Fermi and CGRO in the hard X-ray and γ-ray bands. We provide the expected cumulative distributions of the flux and fluence of simulated GRBs in different energy bands. We show that scintillator detectors, operating at relatively high energies (e.g. tens of keV to the MeV), can detect only the most luminous GRBs at high redshifts due to the link between the peak spectral energy and the luminosity (Epeak-Liso) of GRBs. We show that the best strategy for catching the largest number of high-z bursts is to go softer (e.g. in the soft X-ray band) but with a very high sensitivity. For instance, an imaging soft X-ray detector operating in the 0.2-5 keV energy band reaching a sensitivity, corresponding to a fluence, of ˜10-8 erg cm-2 is expected to detect ≈40 GRBs yr-1 sr-1 at z ≥ 5 (≈3 GRBs yr-1 sr-1 at z ≥ 10). Once high-z GRBs are detected the principal issue is to secure their redshift. To this aim we estimate their NIR afterglow flux at relatively early times and evaluate the effectiveness of following them up and construct usable samples of events with any forthcoming GRB mission dedicated to explore the high-z Universe.

  14. Stars and gas in high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Pettini, Max

    Recent advances in instrumentation and observing techniques have made it possible to begin to study in detail the stellar populations and the interstellar media of galaxies at redshift z=3, when the universe was still in its "teen years". In keeping with the theme of this conference, I show how our knowledge of local star-forming regions can be applied directly to these distant galaxies to deduce their ages, metallicities, initial mass function, and masses. I also discuss areas where current limitations in stellar astrophysics have a direct bearing on the interpretation of the data being gathered, at an ever increasing rate, on the high redshift universe.

  15. GLAST observation of high-redshift GRBs

    SciTech Connect

    Bissaldi, Elisabetta; Longo, Francesco; Barbiellini, Guido; Calura, Francesco; Matteucci, Francesca; Omodei, Nicola

    2007-07-12

    We compare predicted Type Ib/c supernova (SNIb/c) rates with the observed long-duration Gamma-Ray-Burst (GRB) rates both locally and as a function of redshift, by assuming different star formation histories in galaxies of different morphological types. Due to the high star formation in spheroids at high redshift, we predict a large number of GRBs beyond z > 7. Moreover, based on our studies and on the current LAT performance, an estimate of the detection possibility of this burst population is presented.

  16. The radio-optical correlation in steep-spectrum quasars

    NASA Astrophysics Data System (ADS)

    Serjeant, Stephen; Rawlings, Steve; Lacy, Mark; Maddox, Stephen J.; Baker, Joanne C.; Clements, Dave; Lilje, Per B.

    1998-03-01

    Using complete samples of steep-spectrum quasars, we present evidence for a correlation between radio and optical luminosity which is not caused by selection effects, nor caused by an orientation dependence (such as relativistic beaming), nor a by-product of cosmic evolution. We argue that this rules out models of jet formation in which there are no parameters in common with the production of the optical continuum. This is arguably the most direct evidence to date for a close link between accretion onto a black hole and the fuelling of relativistic jets. The correlation also provides a natural explanation for the presence of aligned optical/radio structures in only the most radio-luminous high-redshift galaxies.

  17. High Resolution Science with High Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Windhorst, R.

    I will first review high resolution science that has been done with the Hubble Space Telescope on high redshift galaxies Next I will review the capabilities of the 6 5 meter James Webb Space Telescope JWST which is an optimized infrared telescope that can deploy automatically in space slated for launch to a halo L2 orbit in 2013 I will outline how the JWST can go about measuring First Light Reionization and Galaxy Assembly building on lessons learned from the Hubble Space Telescope I will show what more nearby galaxies observed in their restframe UV--optical light may look like to JWST at high redshifts Last I will summarize the Generation-X mission concept for an X-ray telescope designed to study the very early universe with 1000-times greater sensitivity than current facilities Gen-X will study the first generations of stars and black holes in the epoch z 10-20 the evolution of black holes and galaxies from high z to the present the chemical evolution of the universe and the properties of matter under extreme conditions This requires an effective area of 100 m 2 at 1 keV an angular resolution of 0 1 HPD over 0 1-10 keV

  18. High-redshift blazar identification for Swift J1656.3-3302

    NASA Astrophysics Data System (ADS)

    Masetti, N.; Mason, E.; Landi, R.; Giommi, P.; Bassani, L.; Malizia, A.; Bird, A. J.; Bazzano, A.; Dean, A. J.; Gehrels, N.; Palazzi, E.; Ubertini, P.

    2008-03-01

    We report on the high-redshift blazar identification of a new gamma-ray source, Swift J1656.3-3302, detected with the BAT imager onboard the Swift satellite and the IBIS instrument on the INTEGRAL satellite. Follow-up optical spectroscopy has allowed us to identify the counterpart as an R˜ 19 mag source that shows broad Lyman-α, Si iv, He ii, C iv, and C iii] emission lines at redshift z = 2.40 ± 0.01. Spectral evolution is observed in X-rays when the INTEGRAL/IBIS data are compared to the Swift/BAT results, with the spectrum steepening when the source gets fainter. The 0.7-200 keV X-ray continuum, observed with Swift/XRT and INTEGRAL/IBIS, shows the power law shape typical of radio loud (broad emission line) active galactic nuclei (with a photon index Γ ˜ 1.6) and a hint of spectral curvature below ~2 keV, possibly due to intrinsic absorption (NH ˜ 7× 10 22 cm-2) local to the source. Alternatively, a slope change (Δ Γ ˜ 1) around 2.7 keV can describe the X-ray spectrum equally well. At this redshift, the observed 20-100 keV luminosity of the source is ~1048 erg s-1 (assuming isotropic emission), making Swift J1656.3-3302 one of the most X-ray luminous blazars. This source is yet another example of a distant gamma-ray loud quasar discovered above 20 keV. It is also the farthest object, among the previously unidentified INTEGRAL sources, whose nature has been determined a posteriori through optical spectroscopy. Partly based on X-ray observations with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic and Poland, and with the participation of Russia and the USA, and on optical observations collected at ESO (La Silla, Chile) under programme 079.A-0171(A).

  19. Flamingos 2 Spectroscopy of Obscured and Unobscured Quasars

    NASA Astrophysics Data System (ADS)

    Ridgway, Susan; Lacy, Mark; Urrutia, Tanya; Petric, Andreea

    2013-08-01

    We will use Flamingos-2 to obtain spectra of luminous AGN and quasars selected in the mid-infrared. Mid-infrared selection is much less biased with respect to obscuration than optical and X-ray techniques, and hence allows for finding obscured (Type-2) quasars as well as Type-1 quasars. Our survey so far has been very successful and has provided an unique opportunity to construct luminosity functions for both Type-1 and Type-2 quasars selected in the same way and covering similar redshifts and luminosities. We have quantifed the change in the obscured fraction with luminosity and redshift for the first time, and find interesting indications that at high redshift the obscured fraction rises, consistent with models for the joint formation of the galaxy and black hole populations. Our samples are, however, still quite incomplete at low fluxes (and therefore lower luminosities at a given redshift), particularly in the southern hemisphere. Near-infrared spectroscopy, such as that we have previously obtained with NIRI at Gemini N, offers us the best possibility of bringing these southern samples to a reasonable completeness level, and will greatly increase the number of high z quasars in our sample. This will allow us to better judge our tantalizing initial results on the redshift evolution of the obscured fraction. In addition, these southern targets can be followed up with ALMA and GEMS/GSAOI to study the morphologies and star-formation properties of the hosts, allowing further exploration of the relationship between the formation of massive bulges and supermassive blackholes in the early universe.

  20. Morphologies at High Redshift from Galaxy Zoo

    NASA Astrophysics Data System (ADS)

    Masters, Karen; Melvin, Tom; Simmons, Brooke; Willett, Kyle; Lintott, Chris

    2015-08-01

    I will present results from Galaxy Zoo classification of galaxies observed in public observed frame optical HST surveys (e.g. COSMOS, GOODS) as well as in observed frame NIR with (ie. CANDELS). Early science results from these classifications have investigated the changing bar fraction in disc galaxies as a function of redshift (to z~1 in Melvin et al. 2014; and at z>1 in Simmons et al. 2015), as well as how the morphologies of galaxies on the red sequence have been changing since z~1 (Melvin et al. in prep.). These unique dataset of quantitative visual classifications for high redshift galaxies will be made public in forthcoming publications (planned as Willett et al. for Galaxy Zoo Hubble, and Simmons et al. for Galaxy Zoo CANDELS).

  1. SCUBA Observations of High Redshift Radio Galaxies

    SciTech Connect

    Reuland, M; Rottgering, H; van Breugel, W

    2003-03-11

    High redshift radio galaxies (HzRGs) are key targets for studies of the formation and evolution of massive galaxies.The role of dust in these processes is uncertain. We have therefore observed the dust continuum emission from a sample of z > 3 radio galaxies with the SCUBA bolometer array. We confirm and strengthen the result found by Archibald et al. (1), that HzRGs are massive starforming systems and that submillimeter detection rate appears to be primarily a strong function of redshift. We also observed HzRG-candidates that have so far eluded spectroscopic redshift determination. Four of these have been detected, and provide evidence that they may be extremely obscured radio galaxies, possibly in an early stage of their evolution.

  2. High-Redshift Astrophysics Using Every Photon

    NASA Astrophysics Data System (ADS)

    Breysse, Patrick; Kovetz, Ely; Rahman, Mubdi; Kamionkowski, Marc

    2017-01-01

    Large galaxy surveys have dramatically improved our understanding of the complex processes which govern gas dynamics and star formation in the nearby universe. However, we know far less about the most distant galaxies, as existing high-redshift observations can only detect the very brightest sources. Intensity mapping surveys provide a promising tool to access this poorly-studied population. By observing emission lines with low angular resolution, these surveys can make use of every photon in a target line to study faint emitters which are inaccessible using traditional techniques. With upcoming carbon monoxide experiments in mind, I will demonstrate how an intensity map can be used to measure the luminosity function of a galaxy population, and in turn how these measurements will allow us to place robust constraints on the cosmic star formation history. I will then show how cross-correlating CO isotopologue lines will make it possible to study gas dynamics within the earliest galaxies in unprecedented detail.

  3. Quasar Outflows and Black Hole Masses

    NASA Astrophysics Data System (ADS)

    Coatman, Liam; Hewett, Paul; Banerji, Manda; Richards, Gordon; Hennawi, Joseph; Prochaska, Jason X.

    2016-08-01

    Black-hole masses are crucial to understanding the physics of the connection between quasars and their host galaxies and measuring cosmic black hole-growth. At high redshift, z > 2, black hole masses are normally derived using the velocity-width of the CIV broad emission line, based on the assumption that the observed velocity-widths arise from virial-induced motions. In many quasars, the CIV-emission line exhibits significant blue asymmetries ('blueshifts') with the line centroid displaced by up to thousands of km/s to the blue. These blueshifts almost certainly signal the presence of strong outflows, most likely originating in a disc wind. Using both archival data and new observations, we have obtained near-infrared spectra, including the Ha and/or Hb emission lines, for ~400 luminous (L_Bol = 45.5-48.5 erg/s) SDSS quasars, at redshifts 1.5 < z < 4, with CIV emission lines spanning the full-range of blueshifts present in the population. A strong correlation between CIV-velocity width and blueshift is found and, at large blueshifts, >2000 km/s, the velocity-widths appear to be dominated by non-virial motions. Using the Ha/Hb emission to provide black hole masses free from non-virial contributions, we are able to derive a quantitative correction to the CIV-based black-hole masses as a function of blueshift. This correction reduces the scatter between Ha/Hb and CIV velocity widths to just ~0.1 dex. Without the correction, black hole masses would be overestimated by a factor of nine at the largest blueshifts. With a suitable systemic redshift-estimation algorithm, this correction can be straightforwardly applied based only on information contained in the rest-frame UV spectra.

  4. Constraining the cosmic evolution of supermassive black holes with statistical quasar samples

    NASA Astrophysics Data System (ADS)

    Shen, Yue

    One of the fundamental questions in cosmology is how galaxies with different physical properties form and evolve across cosmic time. Supermassive black holes (SMBHs), believed to reside in the center of almost every massive galaxy, not only tell part of the story of galaxy formation, but may also influence the formation and evolution of the galaxy during their coevolution, as inferred from several correlations between the black hole mass and bulge properties observed in the local universe. Facilitated by modern dedicated surveys in different wavelength bands, the study of SMBHs has now entered an era of statistical investigations. In this thesis I study the statistical properties of optically-selected quasars, the luminous counterparts of SMBHs, across a wide redshift range (0.5 [Special characters omitted.] z [Special characters omitted.] 5), using large spectroscopic samples from the Sloan Digital Sky Survey (SDSS). The first two chapters deal with the spatial clustering properties of quasars, with focuses on the high redshift (z [Special characters omitted.] 3) population (chapter 1), and on the dependence of clustering on physical properties of quasars such as luminosity, color, etc. (chapter 2). These clustering analyses, which become available only very recently, provide valuable information about the occupations of quasars within dark matter halos, and have important implications for the growth and evolution of SMBHs within the standard hierarchical structure formation paradigm. The third chapter presents black hole mass estimates and Eddington ratios of quasars measured from their optical spectra, based on the virial black hole mass estimators. Some comparisons between different virial estimators and potential biases are also discussed in chapter 3. In the final chapter, I present a simple, observationally motivated framework for the cosmic growth and evolution of SMBHs. Adopting the merger hypothesis of quasar triggering mechanism and halo merger rate from

  5. A search for gravitationally lensed water masers in dusty quasars and star-forming galaxies

    NASA Astrophysics Data System (ADS)

    McKean, J. P.; Impellizzeri, C. M. V.; Roy, A. L.; Castangia, P.; Samuel, F.; Brunthaler, A.; Henkel, C.; Wucknitz, O.

    2011-02-01

    Luminous extragalactic water masers are known to be associated with active galactic nuclei and have provided accurate estimates for the mass of the central supermassive black hole and the size and structure of the circumnuclear accretion disc in nearby galaxies. To find water maser systems at much higher redshifts, we have begun a survey of known gravitationally lensed quasars and star-forming galaxies. In this paper, we present a search for 22 GHz (rest-frame) water masers towards five dusty, gravitationally lensed quasars and star-forming galaxies at redshifts between 2.3 and 2.9 with the Effelsberg radio telescope and the Expanded Very Large Array (EVLA). Our observations do not find any new definite examples of high-redshift water maser galaxies, suggesting that large reservoirs of dust and gas are not a sufficient condition for powerful water maser emission. However, we do find the tentative detection of a water maser system in the active galaxy IRAS 10214+4724 at redshift 2.285. Our survey has now doubled the number of gravitationally lensed galaxies and quasars that have been searched for high-redshift water maser emission. We also present an updated analysis of the high-redshift water maser luminosity function that is based on the results presented here and from the only cosmologically distant (z > 1) water maser galaxy found thus far, MG J0414+0534 at redshift 2.64. By comparing with the water maser luminosity function locally and at moderate redshifts, we find that there must be some evolution in the luminosity function of water maser galaxies at high redshifts. By assuming a moderate evolution [(1 +z)4] in the water maser luminosity function, we find that blind surveys for water maser galaxies are only worthwhile with extremely high sensitivity like that of the planned Square Kilometre Array (Phase 2), which is scheduled to be completed by 2020. However, instruments like the EVLA and MeerKAT will be capable of detecting water maser systems similar to the

  6. A NEOWISE Survey of Quasars in the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Fan, Xiaohui

    Luminous quasars at high redshift provide direct probes of the evolution of supermassive black holes (BHs) and intergalactic medium (IGM) at early cosmic time. More than 100 quasars have now been discovered at z>6, with the highest redshift at z=7.1. Detections of such objects indicate the existence of billion solar mass BHs merely a few hundred Myrs after the first star formation in the universe, challenging the theory of BH growth and BH-galaxy coevolution at early epoch. Absorption spectra of the highest redshift quasars reveal complete Gunn-Peterson absorption from an increasing neutral IGM, marking the end of the reionization epoch at z>6. Combined with observations of CMB polarization and high-redshift Ly alpha galaxies, current data strongly suggest a peak of reionization activity and emergence of the earliest galaxies and AGNs at 7quasars has been challenging: only one quasar has been discovered at z>7, and a handful at z>6.5. In this ADAP program, we will carry out the first comprehensive survey of z>=7 quasars, using a WISE-based selection algorithm, deep mid-IR photometry from coadded NEOWISE data and deep optical and near-IR photometry from new wide-field imaging surveys. We will select and follow-up quasar candidates over >20,000 deg^2 of high galactic latitude sky, aiming at finding 10-15 quasars at z>=7 in the next three years. There are two main technical components of our program. (1) WISE-based quasar selection. We have developed a highly successful selection method by combining WISE and optical/near-IR photometry to search for luminous quasars at z = 4.5-6.5, resulted in the discovery of the first known supermassive black holes with 10 billion solar mass BHs in the early universe. We will expand and optimize the algorithm for the redshift range of 6.5 < z < 8. (2) Deep coadded NEOWISE photometry. NEOWISE will quadruple the exposure time in W1 and W2 bands compared to that of ALLWISE catalog used by previous quasar search; however, only single

  7. Chandra and XMM-Newton Observations of the First Quasars: X-Rays from the Age of Cosmic Enlightenment

    NASA Astrophysics Data System (ADS)

    Vignali, C.; Brandt, W. N.; Schneider, D. P.; Anderson, S. F.; Fan, X.; Gunn, J. E.; Kaspi, S.; Richards, G. T.; Strauss, Michael A.

    2003-06-01

    We report on Chandra and XMM-Newton observations of a sample of 13 quasars at z~4.7-5.4 mostly taken from the Sloan Digital Sky Survey (SDSS). The present sample complements previous X-ray studies of z>=4 quasars, in which the majority of the objects are optically more luminous and at lower redshifts. All but two of our quasars have been detected in the X-ray band, thus doubling the number of z>=4.8 X-ray-detected quasars. The two nondetections are likely to be due to a short exposure time (SDSSp J033829.31+002156.3) and to the presence of intrinsic absorption (SDSSp J173744.87+582829.5). We confirm and extend to the highest redshifts the presence of a correlation between AB1450(1+z) magnitude and soft X-ray flux for z>=4 quasars and the presence of a steeper optical-to-X-ray spectral energy distribution (parameterized by αox) for high-luminosity, high-redshift quasars than for lower luminosity, lower redshift quasars. The second effect is likely due to the known anticorrelation between αox and rest-frame 2500 Å luminosity, whose significance is confirmed via partial correlation analysis. The joint ~2.5-36 keV rest-frame spectrum of the z>4.8 SDSS quasars observed thus far by Chandra is well parameterized by a power law with photon index Γ=1.84+0.31-0.30; this photon index is consistent with those of z~0-3 quasars and that obtained from joint spectral fitting of z~4.1-4.5 optically luminous Palomar Digital Sky Survey quasars. No evidence for widespread intrinsic X-ray absorption has been found (NH<~4.0×1022 cm-2 on average at 90% confidence). We also obtained Hobby-Eberly Telescope (HET) photometric observations for eight of our target quasars. None of these shows significant (greater than 30%) optical variability over the time interval of a few years (in the observed frame) between the SDSS and HET observations.

  8. Feedback in high redshift radio galaxies

    NASA Astrophysics Data System (ADS)

    De Breuck, Carlos; Nesvadba, Nicole; Lehnert, Matthew; Best, Philip

    High redshift radio galaxies are among the best objects to study AGN feedback in action, as they are among the most massive galaxies (1011 - 1012 M ) hosting powerful radio-loud AGN. I will present near-infrared imaging spectroscopy of a sample of over 50 radio galaxies at 2 < z < 5 using SINFONI at the VLT. We identify kpc-sized outflows of few x 1010 M of ionized gas, located along the radio source axis. Velocity fields are consistent with bipolar outflows, with total velocity offsets of 1000 km/s. FWHMs 1000 km/s suggest strong turbulence. The geometry is consistent with the radio source driving these outflows. Over the lifetime of the radio source (˜ 107 yr), these outflows can eject up to 1011 M of gas out of the gravitational potential of the host galaxy. Such mass loss would be sufficient to terminate star formation within the host galaxy. I will also present results from an ongoing follow-up programme to study the molecular gas in these high z radio galaxies using the IRAM interferometer. In several sources, we find a remarkable deficit in cold molecular relative to ionized gas, which may imply that significant fractions of the interstellar medium of these galaxies are participating in the winds.

  9. A Periodically Varying Luminous Quasar at z = 2 from the Pan-STARRS1 Medium Deep Survey: A Candidate Supermassive Black Hole Binary in the Gravitational Wave-Driven Regime

    NASA Astrophysics Data System (ADS)

    Liu, Tingting; Gezari, Suvi

    2015-08-01

    Supermassive black hole binaries (SMBHBs) should be an inevitable consequence of the hierarchical growth of massive galaxies through mergers, and the strongest sirens of gravitational waves (GWs) in the cosmos. And yet, their direct detection has remained elusive due to the compact (sub-parsec) orbital separations of gravitationally bound SMBHBs. Here we exploit a theoretically predicted signature of a SMBHB in the time domain: periodic variability caused by a mass accretion rate that is modulated by the binary's orbital motion. We report our first significant periodically varying quasar detection from the systematic search in the Pan-STARRS1 (PS1) Medium Deep Survey, a result recently accepted for publication in The Astrophysical Journal Letters. Our SMBHB candidate, PSO J334.2028+01.4075, is a luminous radio-loud quasar at z = 2.060, with extended baseline photometry from the Catalina Real-Time Transient Survey, as well as archival spectroscopy from the FIRST Bright Quasar Survey. The observed period (542 ± 15 days) and estimated black hole mass (log(MBH/M⊙) = 9.97 ± 0.50), correspond to an orbital separation of 7+8-4 Schwarzschild radii (~ 0.006+0.007-0.003 pc), assuming the rest-frame period of the quasar variability traces the orbital period of the binary. This SMBHB candidate, discovered at the peak redshift for SMBH mergers, is in a physically stable configuration for a circumbinary accretion disk, and within the regime of GW-driven orbital decay. Our search with PS1 is a benchmark study for the exciting capabilities of LSST, which will have orders of magnitude larger survey power, and will potentially pinpoint the locations of thousands of SMBHBs in the variable night sky.

  10. A Periodically Varying Luminous Quasar at z = 2 from the Pan-STARRS1 Medium Deep Survey: A Candidate Supermassive Black Hole Binary in the Gravitational Wave-driven Regime

    NASA Astrophysics Data System (ADS)

    Liu, Tingting; Gezari, Suvi; Heinis, Sebastien; Magnier, Eugene A.; Burgett, William S.; Chambers, Kenneth; Flewelling, Heather; Huber, Mark; Hodapp, Klaus W.; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Tonry, John L.; Wainscoat, Richard J.; Waters, Christopher

    2015-04-01

    Supermassive black hole binaries (SMBHBs) should be an inevitable consequence of the hierarchical growth of massive galaxies through mergers and the strongest sirens of gravitational waves (GWs) in the cosmos. Yet, their direct detection has remained elusive due to the compact (sub-parsec) orbital separations of gravitationally bound SMBHBs. Here, we exploit a theoretically predicted signature of an SMBHB in the time domain: periodic variability caused by a mass accretion rate that is modulated by the binary’s orbital motion. We report our first significant periodically varying quasar detection from the systematic search in the Pan-STARRS1 (PS1) Medium Deep Survey. Our SMBHB candidate, PSO J334.2028+01.4075, is a luminous radio-loud quasar at z = 2.060, with extended baseline photometry from the Catalina Real-Time Transient Survey, as well as archival spectroscopy from the FIRST Bright Quasar Survey. The observed period (542 ± 15 days) and estimated black hole mass (log ({{M}BH}/{{M}⊙ })=9.97+/- 0.50) correspond to an orbital separation of 7-4+8 Schwarzschild radii (˜ 0.006-0.003+0.007 pc), assuming the rest-frame period of the quasar variability traces the orbital period of the binary. This SMBHB candidate, discovered at the peak redshift for SMBH mergers, is in a physically stable configuration for a circumbinary accretion disk and within the regime of GW-driven orbital decay. Our search with PS1 is a benchmark study for the exciting capabilities of LSST, which will have orders of magnitude larger survey power and will potentially pinpoint the locations of thousands of SMBHBs in the variable night sky.

  11. The first detection of [OIII] emission from high-redshift damped Lyman-α galaxies

    NASA Astrophysics Data System (ADS)

    Weatherley, S. J.; Warren, S. J.; Møller, P.; Fall, S. M.; Fynbo, J. U.; Croom, S. M.

    2005-04-01

    We present the detection of [OIII] emission lines from the galaxies responsible for two high-redshift z > 1.75 damped Lyman-α (DLA) absorption lines. We find two sources of [OIII] emission corresponding to the z= 1.92 DLA absorber towards the quasar Q2206-1958, and we also detect [OIII] emission from the galaxy responsible for the z= 3.10 DLA absorber towards the quasar 2233.9+1381. These are the first detections of rest-frame optical emission lines from high-redshift DLA galaxies. Unlike the Lyα line, the [OIII] line provides a measure of the systemic velocity of the galaxy. We compare the [OIII] redshifts with the velocity profile of the low-ionization metal lines in these two absorbers, with the goal of distinguishing between the model of Prochaska and Wolfe of DLA absorbers as large rapidly rotating cold thick discs, and the standard hierarchical cold dark matter model of structure formation, in which DLAs arise in protogalactic fragments. We find some discrepancies with the predictions of the former model. Furthermore, the image of the DLA galaxy towards Q2206-1958 shows a complex disturbed morphology, which is more in accord with the hierarchical picture. We use the properties of the rest-frame optical emission lines to further explore the question posed by Møller et al.: are high-redshift DLA galaxies Lyman-break galaxies (LBGs) selected by gas cross-section? The measured velocity dispersions of the DLA galaxies are in agreement with this picture, while the data on the [OIII] luminosities and the velocity differences between the Lyα and [OIII] lines are inconclusive, as there are insufficient LBG measurements overlapping in luminosity. Finally, we estimate the star formation rates in these two DLA galaxies, using a variety of diagnostics, and include a discussion of the extent to which the [OIII] line is useful for this purpose.

  12. A long-term space astrophysics research program: The evolution of the quasar continuum

    NASA Technical Reports Server (NTRS)

    Elvis, M.

    1993-01-01

    The research program supported by this grant now has great momentum. Numerous papers are in progress, and a strong multi-wavelength observing program is rapidly accumulating data on samples of high redshift quasars across the spectrum. ROSAT spectra of quasars continue to yield surprises. Of four z = 3 quasars with X-ray spectra, three show strong absorption. This contrasts strongly with the situation for luminous AGN at low redshifts where fewer than 1 in 20 show X-ray absorption. A new site for this absorption is probably needed, either around the quasar (e.g. in a cluster cooling flow) or along the line of sight (e.g. in a Damped Lyman-alpha system). The unabsorbed quasar allows limits on the physical conditions in a damped Lyman-alpha cloud to be calculated, and will allow a X-ray Gunn-Peterson test to be applied that will limit the fraction of the closure mass in an intergalactic medium. The X-ray spectral indices of these z = 3 quasars show no change from those of similar objects at low z, suggesting that 'short-lifetime' models apply. Eight other z = 3-4 quasars have been detected and their energy distributions from X-rays to Infrared (using new infrared spectrographs) have been compiled. These are now being compared with the low z continua from the 'Atlas of Quasar Energy Distributions' to search for evolutionary changes. The discovery of a likely warm absorber in 3C351 made recognition of another example simple. Also, modeling of the conditions in the absorber in 3C351 using the OVI absorption line from HST and the high ionization emission lines, suggests that the broad line region is indeed the origin of the warm absorber in this quasar, and by extension, others. Warm absorbers can now be used as a new diagnostic of this region. The X-ray spectrum of a 'Red Quasar', 3C212, has a cut-off spectrum, which could be fitted by an absorbed power-law, or more remarkably, by an unabsorbed black body. Using our quasi-simultaneous optical data and photoionization

  13. Hubble space telescope/cosmic origins spectrograph observations of the quasar Q0302–003: Probing the He II reionization epoch and QSO proximity effects

    SciTech Connect

    Syphers, David; Shull, J. Michael

    2014-03-20

    Q0302–003 (z = 3.2860 ± 0.0005) was the first quasar discovered that showed a He II Gunn-Peterson trough, a sign of incomplete helium reionization at z ≳ 2.9. We present its Hubble Space Telescope/Cosmic Origins Spectrograph far-UV medium-resolution spectrum, which resolves many spectral features for the first time, allowing study of the quasar itself, the intergalactic medium, and quasar proximity effects. Q0302–003 has a harder intrinsic extreme-UV spectral index than previously claimed, as determined from both a direct fit to the spectrum (yielding α{sub ν} ≈ –0.8) and the helium-to-hydrogen ion ratio in the quasar's line-of-sight proximity zone. Intergalactic absorption along this sightline shows that the helium Gunn-Peterson trough is largely black in the range 2.87 < z < 3.20, apart from ionization due to local sources, indicating that helium reionization has not completed at these redshifts. However, we tentatively report a detection of nonzero flux in the high-redshift trough when looking at low-density regions, but zero flux in higher-density regions. This constrains the He II fraction to be about 1% in the low-density intergalactic medium (IGM) and possibly a factor of a few higher in the IGM as a whole, suggesting helium reionization has progressed substantially by z ∼ 3.1. The Gunn-Peterson trough recovers to a He II Lyα forest at z < 2.87. We confirm a transmission feature due to the ionization zone around a z = 3.05 quasar just off the sightline, and resolve the feature for the first time. We discover a similar such feature possibly caused by a luminous z = 3.23 quasar further from the sightline, which suggests that this quasar has been luminous for >34 Myr.

  14. A SIMPLE MODEL FOR QUASAR DEMOGRAPHICS

    SciTech Connect

    Conroy, Charlie; White, Martin

    2013-01-10

    We present a simple model for the relationship between quasars, galaxies, and dark matter halos from 0.5 < z < 6. In the model, black hole (BH) mass is linearly related to galaxy mass, and galaxies are connected to dark matter halos via empirically constrained relations. A simple 'scattered' light bulb model for quasars is adopted, wherein BHs shine at a fixed fraction of the Eddington luminosity during accretion episodes, and Eddington ratios are drawn from a lognormal distribution that is redshift independent. This model has two free, physically meaningful parameters at each redshift: the normalization of the M {sub BH}-M {sub gal} relation and the quasar duty cycle; these parameters are fit to the observed quasar luminosity function (LF) over the interval 0.5 < z < 6. This simple model provides an excellent fit to the LF at all epochs and also successfully predicts the observed projected two-point correlation of quasars from 0.5 < z < 2.5. It is significant that a single quasar duty cycle at each redshift is capable of reproducing the extant observations. The data are therefore consistent with a scenario wherein quasars are equally likely to exist in galaxies, and therefore dark matter halos, over a wide range in masses. The knee in the quasar LF is a reflection of the knee in the stellar-mass-halo-mass relation. Future constraints on the quasar LF and quasar clustering at high redshift will provide strong constraints on the model. In the model, the autocorrelation function of quasars becomes a strong function of luminosity only at the very highest luminosities and will be difficult to observe because such quasars are so rare. Cross-correlation techniques may provide useful constraints on the bias of such rare objects. The simplicity of the model allows for rapid generation of quasar mock catalogs from N-body simulations that match the observed LF and clustering to high redshift.

  15. Changing Look Quasars

    NASA Astrophysics Data System (ADS)

    Green, Paul J.; MacLeod, Chelsea; Anderson, Scott F.; Eracleous, Michael; Ruan, John J.; Runnoe, Jessie C.; Graham, Matthew J.

    2017-01-01

    Accretion onto black holes (BH) illuminates fascinating physics from the stellar mass BHs in Galactic X-ray binaries (XRBs) to the supermassive black holes (SMBH) in Seyferts and quasars. Alas, BH accretion regions are too compact to be spatially resolved. Temporal changes in XRB spectral states have gone a long way to unravel the accretion physics in XRBs, and suggest powerful theoretical and observational analogies to quasars. However, simple mass scaling to SMBHs suggests impractically long timescales (millenia) for accretion state transitions in quasars. However, large spectral state changes in quasars have now been detected that both inform and invigorate debates about accretion theory and the nature of historical quasar classes (e.g., Type 1 vs Type 2). In the last couple of years, a dozen luminous "changing-look quasars" (CLQs) were discovered to exhibit strong, persistent changes in luminosity, accompanied by the dramatic emergence or disappearance of broad emission-line (BEL) components. The availability of repeat spectroscopy for large samples of quasars provided by Sloan Digital Sky Survey (SDSS) and its ongoing Time Domain Spectroscopic Survey (TDSS) now extend this rare and remarkable phenomenon to regimes of luminosity and redshift that overlap the huge cosmological samples of quasars in the SDSS. We review the current understanding of these events, and upcoming possibilities for their detection, characterization and modeling.

  16. C IV emission-line properties and systematic trends in quasar black hole mass estimates

    NASA Astrophysics Data System (ADS)

    Coatman, Liam; Hewett, Paul C.; Banerji, Manda; Richards, Gordon T.

    2016-09-01

    Black hole masses are crucial to understanding the physics of the connection between quasars and their host galaxies and measuring cosmic black hole-growth. At high redshift, z ≳ 2.1, black hole masses are normally derived using the velocity width of the C IV λ λ1548, 1550 broad emission line, based on the assumption that the observed velocity widths arise from virial-induced motions. In many quasars, the C IV emission line exhibits significant blue asymmetries (`blueshifts') with the line centroid displaced by up to thousands of km s-1 to the blue. These blueshifts almost certainly signal the presence of strong outflows, most likely originating in a disc wind. We have obtained near-infrared spectra, including the Hα λ6565 emission line, for 19 luminous (LBol = 46.5-47.5 erg s-1) Sloan Digital Sky Survey quasars, at redshifts 2 < z < 2.7, with C IV emission lines spanning the full range of blueshifts present in the population. A strong correlation between C IV velocity width and blueshift is found and, at large blueshifts, >2000 km s-1, the velocity widths appear to be dominated by non-virial motions. Black hole masses, based on the full width at half-maximum of the C IV emission line, can be overestimated by a factor of 5 at large blueshifts. A larger sample of quasar spectra with both C IV and H β, or Hα, emission lines will allow quantitative corrections to C IV-based black hole masses as a function of blueshift to be derived. We find that quasars with large C IV blueshifts possess high Eddington luminosity ratios and that the fraction of high-blueshift quasars in a flux-limited sample is enhanced by a factor of approximately 4 relative to a sample limited by black hole mass.

  17. SDSS J013127.34–032100.1: A NEWLY DISCOVERED RADIO-LOUD QUASAR AT z = 5.18 WITH EXTREMELY HIGH LUMINOSITY

    SciTech Connect

    Yi, Wei-Min; Bai, Jin-Ming; Zhang, Ju-jia; Wang, Fang; Wang, Jian-Guo; Fan, Yu-Feng; Chang, Liang; Wang, Chuan-Jun; Lun, Bao-Li; Wang, Feige; Wu, Xue-Bing; Yang, Jinyi; Ho, Luis C.; Zuo, Wenwen; Yang, Qian; Ai, Yanli; Fan, Xiaohui; Brandt, William N.; Kim, Minjin; Wang, Ran; and others

    2014-11-10

    Very few of the z > 5 quasars discovered to date have been radio-loud, with radio-to-optical flux ratios (radio-loudness parameters) higher than 10. Here we report the discovery of an optically luminous radio-loud quasar, SDSS J013127.34–032100.1 (J0131–0321 in short), at z = 5.18 ± 0.01 using the Lijiang 2.4 m and Magellan telescopes. J0131–0321 has a spectral energy distribution consistent with that of radio-loud quasars. With an i-band magnitude of 18.47 and a radio flux density of 33 mJy, its radio-loudness parameter is ∼100. The optical and near-infrared spectra taken by Magellan enable us to estimate its bolometric luminosity to be L {sub bol} ∼ 1.1 × 10{sup 48} erg s{sup –1}, approximately 4.5 times greater than that of the most distant quasar known to date. The black hole mass of J0131–0321 is estimated to be 2.7 × 10{sup 9} M {sub ☉}, with an uncertainty up to 0.4 dex. Detailed physical properties of this high-redshift, radio-loud, potentially super-Eddington quasar can be probed in the future with more dedicated and intensive follow-up observations using multi-wavelength facilities.

  18. Weak hard X-ray emission from broad absorption line quasars: evidence for intrinsic X-ray weakness

    SciTech Connect

    Luo, B.; Brandt, W. N.; Scott, A. E.; Alexander, D. M.; Gandhi, P.; Stern, D.; Teng, S. H.; Arévalo, P.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Farrah, D.; Hailey, C. J.; Harrison, F. A.; Koss, M.; Ogle, P.; Puccetti, S.; Saez, C.; and others

    2014-10-10

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z < 1.3. However, their rest-frame ≈2 keV luminosities are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index (Γ{sub eff} ≈ 1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (≳ 33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.

  19. The Evolution of Metals and Dust in the High-Redshift Universe (z greater than 6)

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2007-01-01

    Dusty hyperluminous galaxies in the early universe provide unique environments for studying the role of massive stars in the formation and destruction of dust. At redshifts above approx. 6, when the universe was less than approx. 1 Gyr old, dust could have only condensed in the explosive ejecta of Type-II supernovae (SNe), since most of the progenitors of the AGB stars, the major alternative source of interstellar dust, did not have time to evolve off the main sequence. I will present analytical models for the evolution of the gas, dust, and metals in high redshift galaxies, with a special application to SDSS J1148+5251, a hyperluminous quasar at $z = 6.4$. I will also discuss possible star formation scenarios consistent with observational constraints on the dust and gas content of this object.

  20. Awakening of The High-Redshift Blazar CGRaBS J0809+5341

    NASA Astrophysics Data System (ADS)

    Paliya, Vaidehi S.; Parker, M. L.; Stalin, C. S.; Fabian, A. C.; Ramya, S.; Covino, S.; Tagliaferri, G.; Sahayanathan, S.; Ravikumar, C. D.

    2015-04-01

    CGRaBS J0809+5341, a high-redshift blazar at z = 2.144, underwent a giant optical outburst on 2014 April 19 when it brightened by ˜5 mag and reached an unfiltered apparent magnitude of 15.7 mag. This implies an absolute magnitude of -30.5 mag, making it one of the brightest quasars in the universe. This optical flaring triggered us to carry out observations during the decaying part of the flare covering a wide energy range using the Nuclear Spectroscopic Telescope Array, Swift, and ground-based optical facilities. For the first time, the source is detected in γ-rays by the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope. A high optical polarization of ˜10% is also observed. Using the Sloan Digital Sky Survey spectrum, the accretion disk luminosity and black hole mass are estimated as 1.5 × 1045 erg s-1 and 108.4 M⊙, respectively. Using a single zone leptonic emission model, we reproduce the spectral energy distribution of the source during the flaring activity. This analysis suggests that the emission region is probably located outside the broad-line region, and the jet becomes radiatively efficient. We also show that the overall properties of CGRaBS J0809+5341 seem to not be in agreement with the general properties observed in high-redshift blazars up to now.

  1. AWAKENING OF THE HIGH-REDSHIFT BLAZAR CGRaBS J0809+5341

    SciTech Connect

    Paliya, Vaidehi S.; Stalin, C. S.; Parker, M. L.; Fabian, A. C.; Ramya, S.; Covino, S.; Tagliaferri, G.; Sahayanathan, S.; Ravikumar, C. D.

    2015-04-20

    CGRaBS J0809+5341, a high-redshift blazar at z = 2.144, underwent a giant optical outburst on 2014 April 19 when it brightened by ∼5 mag and reached an unfiltered apparent magnitude of 15.7 mag. This implies an absolute magnitude of −30.5 mag, making it one of the brightest quasars in the universe. This optical flaring triggered us to carry out observations during the decaying part of the flare covering a wide energy range using the Nuclear Spectroscopic Telescope Array, Swift, and ground-based optical facilities. For the first time, the source is detected in γ-rays by the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope. A high optical polarization of ∼10% is also observed. Using the Sloan Digital Sky Survey spectrum, the accretion disk luminosity and black hole mass are estimated as 1.5 × 10{sup 45} erg s{sup −1} and 10{sup 8.4} M{sub ⊙}, respectively. Using a single zone leptonic emission model, we reproduce the spectral energy distribution of the source during the flaring activity. This analysis suggests that the emission region is probably located outside the broad-line region, and the jet becomes radiatively efficient. We also show that the overall properties of CGRaBS J0809+5341 seem to not be in agreement with the general properties observed in high-redshift blazars up to now.

  2. Detectability of cold streams into high-redshift galaxies by absorption lines

    NASA Astrophysics Data System (ADS)

    Goerdt, Tobias; Dekel, Avishai; Sternberg, Amiel; Gnat, Orly; Ceverino, Daniel

    2012-08-01

    Cold gas streaming along the dark matter filaments of the cosmic web is predicted to be the major source of fuel for disc buildup, violent disc instability and star formation in massive galaxies at high redshift. We investigate to what extent such cold gas is detectable in the extended circumgalactic environment of galaxies via Lyα absorption and selected low-ionization metal absorption lines. We model the expected absorption signatures using high-resolution zoom-in adaptive mesh refinement cosmological simulations. In the post-processing, we distinguish between self-shielded gas and unshielded gas. In the self-shielded gas, which is optically thick to Lyman continuum radiation, we assume pure collisional ionization for species with an ionization potential greater than 13.6 eV. In the optically-thin, unshielded gas, these species are also photoionized by the metagalactic radiation. In addition to absorption of radiation from background quasars, we compute the absorption line profiles of radiation emitted by the galaxy at the centre of the same halo. We predict the strength of the absorption signal for individual galaxies without stacking. We find that the Lyα absorption profiles produced by the streams are consistent with observations of absorption and emission Lyα profiles in high-redshift galaxies. Due to the low metallicities in the streams, and their low covering factors, the metal absorption features are weak and difficult to detect.

  3. Mean and extreme radio properties of quasars and the origin of radio emission

    SciTech Connect

    Kratzer, Rachael M.; Richards, Gordon T.

    2015-02-01

    We investigate the evolution of both the radio-loud fraction (RLF) and (using stacking analysis) the mean radio loudness of quasars. We consider how these properties evolve as a function of redshift and luminosity, black hole (BH) mass and accretion rate, and parameters related to the dominance of a wind in the broad emission-line region. We match the FIRST source catalog to samples of luminous quasars (both spectroscopic and photometric), primarily from the Sloan Digital Sky Survey. After accounting for catastrophic errors in BH mass estimates at high redshift, we find that both the RLF and the mean radio luminosity increase for increasing BH mass and decreasing accretion rate. Similarly, both the RLF and mean radio loudness increase for quasars that are argued to have weaker radiation line driven wind components of the broad emission-line region. In agreement with past work, we find that the RLF increases with increasing optical/UV luminosity and decreasing redshift, while the mean radio loudness evolves in the exact opposite manner. This difference in behavior between the mean radio loudness and the RLF in L−z may indicate selection effects that bias our understanding of the evolution of the RLF; deeper surveys in the optical and radio are needed to resolve this discrepancy. Finally, we argue that radio-loud (RL) and radio-quiet (RQ) quasars may be parallel sequences, but where only RQ quasars at one extreme of the distribution are likely to become RL, possibly through slight differences in spin and/or merger history.

  4. ALMA Examines a Distant Quasar Host

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-04-01

    The dust continuum (top) and the [CII] emission (bottom) maps for the region around J1120+0641. [Adapted from Venemans et al. 2017]A team of scientists has used the Atacama Large Millimeter/submillimeter Array (ALMA) to explore the host galaxy of the most distant quasar known. Their observations may help us to build a picture of how the first supermassive black holes in the universe formed and evolved.Faraway Monsters and Their GalaxiesWe know that quasars the incredibly luminous and active centers of some distant galaxies are powered by accreting, supermassive black holes. These monstrous powerhouses have been detected out to redshifts of z 7, when the universe was younger than a billion years old.Though weve observed over a hundred quasars at high redshift, we still dont understand how these early supermassive black holes formed, or whether the black holes and the galaxies that host them co-evolved. In order to answer questions like these, however, we first need to gather information about the properties and behavior of various supermassive black holes and their host galaxies.A team of scientists led by Bram Venemans (Max-Planck Institute for Astronomy, Germany) recently used the unprecedented sensitivity and angular resolution of ALMA as well as the Very Large Array and the IRAM Plateau de Bure Interferometer to examine the most distant quasar currently known, J1120+0641, located at a redshift of z = 7.1.A High-Resolution LookThe teams observations of the dust and gas emission from the quasars host galaxy revealed a number of intriguing things:The red and blue sides of the [CII] emission line are shown here as contours, demonstrating that theres no ordered rotational motion of the gas on kpc scales. [Adapted from Venemans et al. 2017]The majority of the galaxys emission is very compact. Around 80% of the observed flux came from a region of only 11.5 kpc in diameter.Despite the fact that the 2.4-billion-solar-mass black hole at the galaxys center is accreting at

  5. Local analogs of high-redshift galaxies: Interstellar medium conditions

    NASA Astrophysics Data System (ADS)

    Bian, Fuyan; Kewley, Lisa J.; Dopita, Michael A.; Juneau, Stephanie

    2017-03-01

    Local analog galaxies play an important role in understanding the properties of high-redshift galaxies. We present a method to select a type of local analog that closely resembles the ionized interstellar medium conditions in high-redshift galaxies. These galaxies are selected based on their locations in the [O III]/Hβ versus [N II]/Hα nebular emission-line diagnostic diagram. The ionization parameters and electron densities in these analogs are comparable to those in z ~= 2 - 3 galaxies, but higher than those in normal SDSS galaxies by ~= 0.6 dex and ~= 0.9 dex, respectively. We find that the high sSFR and SFR surface density can enhance the electron densities and the ionization parameters, but still cannot fully explain the difference in ISM condition between nearby galaxies and the local analogs/high-redshift galaxies.

  6. THE AzTEC/SMA INTERFEROMETRIC IMAGING SURVEY OF SUBMILLIMETER-SELECTED HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Younger, Joshua D.; Fazio, Giovanni G.; Huang Jiasheng; Ashby, Matthew L. N.; Gurwell, Mark A.; Petitpas, Glen R.; Wilner, David J.; Yun, Min S.; Wilson, Grant W.; Scott, Kimberly S.; Austermann, Jason; Perera, Thushara; Peck, Alison B.; Hughes, David H.; Aretxaga, Itziar; Kim, Sungeun; Lowenthal, James D.

    2009-10-10

    We present results from a continuing interferometric survey of high-redshift submillimeter galaxies (SMGs) with the Submillimeter Array, including high-resolution (beam size approx2 arcsec) imaging of eight additional AzTEC 1.1 mm selected sources in the COSMOS field, for which we obtain six reliable (peak signal-to-noise ratio (S/N) >5 or peak S/N >4 with multiwavelength counterparts within the beam) and two moderate significance (peak S/N >4) detections. When combined with previous detections, this yields an unbiased sample of millimeter-selected SMGs with complete interferometric follow up. With this sample in hand, we (1) empirically confirm the radio-submillimeter association, (2) examine the submillimeter morphology-including the nature of SMGs with multiple radio counterparts and constraints on the physical scale of the far infrared-of the sample, and (3) find additional evidence for a population of extremely luminous, radio-dim SMGs that peaks at higher redshift than previous, radio-selected samples. In particular, the presence of such a population of high-redshift sources has important consequences for models of galaxy formation-which struggle to account for such objects even under liberal assumptions-and dust production models given the limited time since the big bang.

  7. The Most Luminous Heavily Obscured Quasars Have a High Merger Fraction: Morphological Study of WISE-selected Hot Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Fan, Lulu; Han, Yunkun; Fang, Guanwen; Gao, Ying; Zhang, Dandan; Jiang, Xiaoming; Wu, Qiaoqian; Yang, Jun; Li, Zhao

    2016-05-01

    Previous studies have shown that Wide-field Infrared Survey Explorer-selected hyperluminous, hot dust-obscured galaxies (Hot DOGs) are powered by highly dust-obscured, possibly Compton-thick active galactic nuclei (AGNs). High obscuration provides us a good chance to study the host morphology of the most luminous AGNs directly. We analyze the host morphology of 18 Hot DOGs at z ˜ 3 using Hubble Space Telescope/WFC3 imaging. We find that Hot DOGs have a high merger fraction (62 ± 14%). By fitting the surface brightness profiles, we find that the distribution of Sérsic indices in our Hot DOG sample peaks around 2, which suggests that most Hot DOGs have transforming morphologies. We also derive the AGN bolometric luminosity (˜1014 L ⊙) of our Hot DOG sample by using IR spectral energy distributions decomposition. The derived merger fraction and AGN bolometric luminosity relation is well consistent with the variability-based model prediction. Both the high merger fraction in an IR-luminous AGN sample and relatively low merger fraction in a UV/optical-selected, unobscured AGN sample can be expected in the merger-driven evolutionary model. Finally, we conclude that Hot DOGs are merger-driven and may represent a transit phase during the evolution of massive galaxies, transforming from the dusty starburst-dominated phase to the unobscured QSO phase.

  8. Cosmology with AGN: can we use quasars as standard candles?

    NASA Astrophysics Data System (ADS)

    Risaliti, G.

    2016-06-01

    The non-linear relation between X-ray and UV luminosity in quasars can be used to estimate their distance. Recently, we have shown that despite the large dispersion of the relation, a Hubble Diagram made of large samples of quasars can provide unique constraints on cosmology at high redshift. Furthermore, the dispersion of the relation is heavily affected by measurement errors: until now we have used serendipitous X-ray observations, but dedicated observations would significantly increase the precision of the distance estimates. I discuss the future role of XMM in this new field, showing (1) the fundamental contribution of the Serendipitous Source Catalogue and of large surveys, and (2) the breakthrough advancements we may achieve with the observation of a large number of SDSS quasars at high redshift: every 12-15 quasars observed at z~3 would be equivalent to discovering a supernova at that redshift.

  9. High-z X-ray Obscured Quasars in Galaxies with Extreme Mid-IR/Optical Colors

    NASA Astrophysics Data System (ADS)

    Piconcelli, E.; Lanzuisi, G.; Fiore, F.; Feruglio, C.; Vignali, C.; Salvato, M.; Grappioni, C.

    2009-05-01

    Extreme Optical/Mid-IR color cuts have been used to uncover a population of dust-enshrouded, mid-IR luminous galaxies at high redshifts. Several lines of evidence point towards the presence of an heavily absorbed, possibly Compton-thick quasar at the heart of these systems. Nonetheless, the X-ray spectral properties of these intriguing sources still remain largely unexplored. Here we present an X-ray spectroscopic study of a large sample of 44 extreme dust-obscured galaxies (EDOGs) with F24 μm/FR>2000 and F24 μm>1.3 mJy selected from a 6 deg2 region in the SWIRE fields. The application of our selection criteria to a wide area survey has been capable of unveiling a population of X-ray luminous, absorbed z>1 quasars which is mostly missed in the traditional optical/X-ray surveys performed so far. Advances in the understanding of the X-ray properties of these recently-discovered sources by Simbol-X observations will be also discussed.

  10. Quasar target selection fiber efficiency

    SciTech Connect

    Newberg, H.; Yanny, B.

    1996-05-01

    We present estimates of the efficiency for finding QSOs as a function of limiting magnitude and galactic latitude. From these estimates, we have formulated a target selection strategy that should net 80,000 QSOs in the north galactic cap with an average of 70 fibers per plate, not including fibers reserved for high-redshift quasars. With this plan, we expect 54% of the targets to be QSOs. The North Galactic Cap is divided into two zones of high and low stellar density. We use about five times as many fibers for QSO candidates in the half of the survey with the lower stellar density as we use in the half with higher stellar density. The current plan assigns 15% of the fibers to FIRST radio sources; if these are not available, those fibers would be allocated to lower probability QSO sources, dropping the total number of QSOs by a small factor (5%). We will find about 17,000 additional quasars in the southern strips, and maybe a few more at very high redshift. Use was made of two data sets: the star and quasar simulated test data generated by Don Schneider, and the data from UJFN plate surveys by Koo (1986) and Kron (1980). This data was compared to results from the Palomar-Green Survey and a recent survey by Pat Osmer and collaborators.

  11. Mapping metals at high redshift with far-infrared lines

    NASA Astrophysics Data System (ADS)

    Pallottini, A.; Gallerani, S.; Ferrara, A.; Yue, B.; Vallini, L.; Maiolino, R.; Feruglio, C.

    2015-10-01

    Cosmic metal enrichment is one of the key physical processes regulating galaxy formation and the evolution of the intergalactic medium (IGM). However, determining the metal content of the most distant galaxies has proven so far almost impossible; also, absorption line experiments at z ≳ 6 become increasingly difficult because of instrumental limitations and the paucity of background quasars. With the advent of Atacama Large Millimeter/submillimeter Array (ALMA), far-infrared emission lines provide a novel tool to study early metal enrichment. Among these, the [C II] line at 157.74 μm is the most luminous line emitted by the interstellar medium of galaxies. It can also resonant scatter comic microwave background (CMB) photons inducing characteristic intensity fluctuations (ΔI/ICMB) near the peak of the CMB spectrum, thus allowing to probe the low-density IGM. We compute both [C II] galaxy emission and metal-induced CMB fluctuations at z ˜ 6 by using adaptive mesh refinement cosmological hydrodynamical simulations and produce mock observations to be directly compared with ALMA Band 6 data (νobs ˜ 272 GHz). The [C II] line flux is correlated with MUV as log (F_peak/μ Jy)= -27.205 -2.253 M_UV -0.038 M_UV^2. Such relation is in very good agreement with recent ALMA observations of MUV < -20 galaxies by e.g. Maiolino et al. and Capak et al. We predict that a MUV = -19 (MUV = -18) galaxy can be detected at 4σ in ≃40 (2000) h, respectively. CMB resonant scattering can produce ≃ ± 0.1 μJy/beam emission/absorptions features that are very challenging to be detected with current facilities. The best strategy to detect these signals consists in the stacking of deep ALMA observations pointing fields with known MUV ≃ -19 galaxies. This would allow to simultaneously detect both [C II] emission from galactic reionization sources and CMB fluctuations produced by z ˜ 6 metals.

  12. Galaxy-wide outflows in z ~ 1.5 luminous obscured quasars revealed through near-IR slit-resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Perna, M.; Brusa, M.; Cresci, G.; Comastri, A.; Lanzuisi, G.; Lusso, E.; Marconi, A.; Salvato, M.; Zamorani, G.; Bongiorno, A.; Mainieri, V.; Maiolino, R.; Mignoli, M.

    2015-02-01

    Aims: The co-evolution of galaxies and supermassive black holes (SMBHs) requires that some sort of feedback mechanism is operating during the active galactic nuclei (AGN) phases. AGN driven winds are the most likely candidates for such feedback mechanism, but direct observational evidence of their existence and of their effects on the host galaxies are still scarce and their physical origin is still hotly debated. Methods: X-Shooter observations of a sample of X-ray selected, obscured quasars at z ~ 1.5, selected on the basis of their observed red colors and X-ray-to-optical flux ratio, have shown the presence of outflowing ionized gas identified by broad [OIII] emission lines in 6 out of 8 objects, confirming the efficiency of the selection criteria. Here we present slit-resolved spectroscopy for the two brightest sources, XID2028 and XID5321, to study the complex emission and absorption line kinematics. Results: We detect outflow extended out to ~10 kpc from the central black hole, both as blueshifted and redshifted emission. Interestingly, we also detect kpc scale outflows in the [OII] emission lines and in the neutral gas component, traced by the sodium D and magnesium absorption lines, confirming that a substantial amount of the outflowing mass is in the form of neutral gas. Conclusions: The measured gas velocities and the outflow kinetic powers, inferred under reasonable assumptions on the geometry and physical properties of these two systems, favor an AGN origin for the observed winds.

  13. Quasar Metallicities and Host Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Leah, Simon E.; Hamann, F. W.

    2006-12-01

    From studies of galaxies in the local Universe we find the masses of the galactic spheroidal component corresponds with the mass of the central supermassive black hole (SMBH). This relation is known as the M(gal) M(BH) relation, and suggests a close relationship between the formation of the galaxy and the black hole. We study the metallicities near quasars at high redshift to observe this formation process in action. Associated absorption lines (AALs) provide us with a unique tool for this study, because these lines have a high probability of forming close to the quasar. Most of the work so far, using the emission lines, suggests that quasar environments are typically metal rich, with gas-phase metallicities near solar or higher at all observed redshifts. However, other independant abundance checks, such as AALs, are essential in order to confirm these results. We use very high resolution echelle spectra from VLT-UVES for 8 high redshift (z of 2 to z of 4.6) quasars, selected to contain candidate intrinsic absorbers, and ecompassing a typical rest-frame spectral range from approximatly 900 Angstroms to 2500 Angstroms, designed to include at least Lyman alpha and C IV spectral features. We perform one of the first analyses of absorption line metallicities in high redshift quasars and present lower limits on column densities, as well as estimates for the absorber locations relative to the quasar. We place rough estimates on the abundances where possible. We find covering fractions which vary with velocity, and a significant fraction of absorption lines which exhibit variability, indicating their intrinsic nature. Saturated lines inhibit concrete abundance analysis, but present excellent opportunities for future research proposals.

  14. Quasar Metallicities and Host Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Simon, Leah; Hamann, F.

    2007-12-01

    From studies of galaxies in the local Universe we find the masses of the galactic spheroidal component corresponds with the mass of the central supermassive black hole (SMBH). This relation is known as the M(gal) - M(BH) relation, and suggests a close relationship between the formation of the galaxy and the black hole. We study the metallicities near quasars at high redshift to observe this formation process in action. Associated absorption lines (AALs) provide us with a unique tool for this study, because these lines have a high probability of forming close to the quasar. Most of the work so far, using the emission lines, suggests that quasar environments are typically metal rich, with gas-phase metallicities near solar or higher at all observed redshifts. However, other independent abundance checks, such as AALs, are essential in order to confirm these results. We use very high resolution echelle spectra from VLT-UVES, Keck-HIRES and Magellan-MIKE for 18 high redshift (z of 2 to z of 4.6) quasars, selected to contain candidate intrinsic absorbers, and encompassing a typical rest-frame spectral range from approximately 900 Angstroms to 2500 Angstroms, designed to include at least Lyman alpha and C IV spectral features. We perform one of the first analyses of absorption line metallicities in high redshift quasars and present column densities, as well as estimates for the absorber locations relative to the quasar. We place solid limits on the C/H abundances, and find a wide range of values, from one hundredth solar to several times solar. We find covering fractions which vary with velocity, indicating the intrinsic nature of the absorbing gas. Saturated lines inhibit concrete abundance analysis in some systems, but are still useful for placing limits based on Gaussian fits to the lines.

  15. Strong magnetic fields in normal galaxies at high redshift.

    PubMed

    Bernet, Martin L; Miniati, Francesco; Lilly, Simon J; Kronberg, Philipp P; Dessauges-Zavadsky, Miroslava

    2008-07-17

    The origin and growth of magnetic fields in galaxies is still something of an enigma. It is generally assumed that seed fields are amplified over time through the dynamo effect, but there are few constraints on the timescale. It was recently demonstrated that field strengths as traced by rotation measures of distant (and hence ancient) quasars are comparable to those seen today, but it was unclear whether the high fields were in the unusual environments of the quasars themselves or distributed along the lines of sight. Here we report high-resolution spectra that demonstrate that the quasars with strong Mg II absorption lines are unambiguously associated with larger rotation measures. Because Mg ii absorption occurs in the haloes of normal galaxies along the sightlines to the quasars, this association requires that organized fields of surprisingly high strengths are associated with normal galaxies when the Universe was only about one-third of its present age.

  16. Detectability of Gravitational Waves from High-Redshift Binaries.

    PubMed

    Rosado, Pablo A; Lasky, Paul D; Thrane, Eric; Zhu, Xingjiang; Mandel, Ilya; Sesana, Alberto

    2016-03-11

    Recent nondetection of gravitational-wave backgrounds from pulsar timing arrays casts further uncertainty on the evolution of supermassive black hole binaries. We study the capabilities of current gravitational-wave observatories to detect individual binaries and demonstrate that, contrary to conventional wisdom, some are, in principle, detectable throughout the Universe. In particular, a binary with rest-frame mass ≳10^{10}M_{⊙} can be detected by current timing arrays at arbitrarily high redshifts. The same claim will apply for less massive binaries with more sensitive future arrays. As a consequence, future searches for nanohertz gravitational waves could be expanded to target evolving high-redshift binaries. We calculate the maximum distance at which binaries can be observed with pulsar timing arrays and other detectors, properly accounting for redshift and using realistic binary waveforms.

  17. Detectability of Gravitational Waves from High-Redshift Binaries

    NASA Astrophysics Data System (ADS)

    Rosado, Pablo A.; Lasky, Paul D.; Thrane, Eric; Zhu, Xingjiang; Mandel, Ilya; Sesana, Alberto

    2016-03-01

    Recent nondetection of gravitational-wave backgrounds from pulsar timing arrays casts further uncertainty on the evolution of supermassive black hole binaries. We study the capabilities of current gravitational-wave observatories to detect individual binaries and demonstrate that, contrary to conventional wisdom, some are, in principle, detectable throughout the Universe. In particular, a binary with rest-frame mass ≳1010M⊙ can be detected by current timing arrays at arbitrarily high redshifts. The same claim will apply for less massive binaries with more sensitive future arrays. As a consequence, future searches for nanohertz gravitational waves could be expanded to target evolving high-redshift binaries. We calculate the maximum distance at which binaries can be observed with pulsar timing arrays and other detectors, properly accounting for redshift and using realistic binary waveforms.

  18. Searching for Extreme High Redshift Galaxies with HST Grism Spectroscopy

    NASA Astrophysics Data System (ADS)

    Weaver, John R.; Maseda, Michael

    2017-01-01

    With ever increasing capability, we are now able to push galaxy evolution studies to extreme high redshift (z>6). At these early times, the first galaxies begin forming stars but some of their light is quickly absorbed by the neutral intergalactic medium. The result is that the La line of hydrogen is lost. But, with the recent upgrades to HST, we can now utilize the unique multiplexing capacity of slitless grism spectroscopy to explore large samples of candidate systems. By taking near-IR spectra for for every object in the field-of-view simultaneously, we can begin searching for galaxies with a favorable circumgalactic gas distribution where La emission may be obtained. In this study we build on the work of 3D-HST to search for extreme high redshift galaxies (6high redshift galaxies. Follow-up of confirmed candidates will strengthen existing samples of distant galaxies and constrain properties of the early universe.

  19. A Catalog of Candidate High-redshift Blazars for GLAST

    SciTech Connect

    Arias, Tersi M.; /SLAC /San Francisco State U.

    2006-09-27

    High-redshift blazars are promising candidates for detection by the Gamma-ray Large Area Space Telescope (GLAST). GLAST, expected to be launched in the Fall of 2007, is a high-energy gamma-ray observatory designed for making observations of celestial gamma-ray sources in the energy band extending from 10 MeV to more than 200 GeV. It is estimated that GLAST will find several thousand blazars. The motivations for measuring the gamma-ray emission from distant blazars include the study of the high-energy emission processes occurring in these sources and an indirect measurement of the extragalactic background light. In anticipation of the launch of GLAST we have compiled a catalog of candidate high-redshift blazars. The criteria for sources chosen for the catalog were: high radio emission, high redshift, and a flat radio spectrum. A preliminary list of 307 radio sources brighter than 70mJy with a redshift z {ge} 2.5 was acquired using data from the NASA Extragalactic Database. Flux measurements of each source were obtained at two or more radio frequencies from surveys and catalogs to calculate their radio spectral indices {alpha}. The sources with a flat-radio spectrum ({alpha} {le} 0.5) were selected for the catalog, and the final catalog includes about 200 sources.

  20. High-redshift major mergers weakly enhance star formation

    NASA Astrophysics Data System (ADS)

    Fensch, J.; Renaud, F.; Bournaud, F.; Duc, P.-A.; Agertz, O.; Amram, P.; Combes, F.; Di Matteo, P.; Elmegreen, B.; Emsellem, E.; Jog, C. J.; Perret, V.; Struck, C.; Teyssier, R.

    2017-02-01

    Galaxy mergers are believed to trigger strong starbursts. This is well assessed by observations in the local Universe. However, the efficiency of this mechanism has poorly been tested so far for high-redshift, actively star-forming, galaxies. We present a suite of pc-resolution hydrodynamical numerical simulations to compare the star formation process along a merging sequence of high- and low-redshift galaxies, by varying the gas mass fraction between the two models. We show that, for the same orbit, high-redshift gas-rich mergers are less efficient than low-redshift ones at producing starbursts; the star formation rate excess induced by the merger and its duration are both around 10 times lower than in the low gas fraction case. The mechanisms that account for the star formation triggering at low redshift - the increased compressive turbulence, gas fragmentation, and central gas inflows - are only mildly, if not at all, enhanced for high gas fraction galaxy encounters. Furthermore, we show that the strong stellar feedback from the initially high star formation rate in high-redshift galaxies does not prevent an increase of the star formation during the merger. Our results are consistent with the observed increase of the number of major mergers with increasing redshift being faster than the respective increase in the number of starburst galaxies.

  1. Finding high-redshift voids using Lyman α forest tomography

    NASA Astrophysics Data System (ADS)

    Stark, Casey W.; Font-Ribera, Andreu; White, Martin; Lee, Khee-Gan

    2015-11-01

    We present a new method of finding cosmic voids using tomographic maps of Lyα forest flux. We identify cosmological voids with radii of 2-12 h-1 Mpc in a large N-body simulation at z = 2.5, and characterize the signal of the high-redshift voids in density and Lyα forest flux. The void properties are similar to what has been found at lower redshifts, but they are smaller and have steeper radial density profiles. Similarly to what has been found for low-redshift voids, the radial velocity profiles have little scatter and agree very well with the linear theory prediction. We run the same void finder on an ideal Lyα flux field and tomographic reconstructions at various spatial samplings. We compare the tomographic map void catalogues to the density void catalogue and find good agreement even with modest-sized voids (r > 6 h-1 Mpc). Using our simple void-finding method, the configuration of the ongoing COSMOS Lyman Alpha Mapping And Tomography Observations (CLAMATO) survey covering 1 deg2 would provide a sample of about 100 high-redshift voids. We also provide void-finding forecasts for larger area surveys, and discuss how these void samples can be used to test modified gravity models, study high-redshift void galaxies, and to make an Alcock-Paczynski measurement. To aid future work in this area, we provide public access to our simulation products, catalogues, and sample tomographic flux maps.

  2. Investigating the Local and High Redshift Universe With Deep Survey Data and Ground-Based Spectroscopy

    NASA Astrophysics Data System (ADS)

    Masters, Daniel Charles

    Large multiwavelength surveys are now driving the frontiers of astronomical research. I describe results from my work using data from two large astronomical surveys: the Cosmic Evolution Survey (COSMOS), which has obtained deep photometric and spectroscopic data on two square degrees of the sky using many of the most powerful telescopes in the world, and the WFC3 Infrared Spectroscopic Parallels (WISP) Survey, which uses the highly sensitive slitless spectroscopic capability of the Hubble Space Telescope Wide Field Camera 3 to detect star-forming galaxies over most of the universe's history. First I describe my work on the evolution of the high-redshift quasar luminosity function, an important observational quantity constraining the growth of the supermassive black holes in the early universe. I show that the number density of faint quasars declines rapidly above z ˜ 3. This result is discussed in the context of cosmic reionization and the coevolution of galaxies and their central black holes. Next I present results of a multi-year campaign of near-infrared spectroscopy with FIRE, a world-class near-infrared spectrometer on the Magellan Baade 6.5 meter telescope in Chile, targeting emission-line galaxies at z ˜ 2 discovered with the Hubble Space Telescope. Our results showed that the typical emission-line galaxy at this redshift has low-metallicity, low dust obscuration, high ionization parameter, and little evidence for significant active galactic nucleus (AGN) contribution to the emission lines. We also find evidence that high redshift star-forming galaxies have enhanced nitrogen abundances. This result has interesting implications for the nature of the star formation in such galaxies -- in particular, it could mean that a large fraction of such galaxies harbor substantial populations of Wolf-Rayet stars, which are massive, evolved stars ejecting large amounts of enriched matter into the interstellar medium. Finally, I will discuss the discovery of three

  3. Quasar microlensing

    NASA Astrophysics Data System (ADS)

    Schmidt, R. W.; Wambsganss, J.

    2010-09-01

    Quasar microlensing deals with the effect of compact objects along the line of sight on the apparent brightness of the background quasars. Due to the relative motion between quasar, lenses and observer, the microlensing magnification changes with time which results in uncorrelated brightness variations in the various images of multiple quasar systems. The amplitudes of the signal can be more than a magnitude with time scales of weeks to months to years. The effect is due to the “granular” nature of the gravitational microlenses—stars or other compact objects in the stellar mass range. Quasar microlensing allows to study the quasar accretion disk with a resolution of tens of microarcseconds, hence quasar microlensing can be used to explore an astrophysical field that is hardly accessible by any other means. Quasar microlensing can also be used to study the lensing objects in a statistical sense, their nature (compact or smoothly distributed, normal stars or dark matter) as well as transverse velocities. Quasar microlensing light curves are now being obtained from monitoring programs across the electromagnetic spectrum from the radio through the infrared and optical range to the X-ray regime. Recently, spectroscopic microlensing was successfully applied, it provides quantitative comparisons with quasar/accretion disk models. There are now more than a handful of systems with several-year long light curves and significant microlensing signal, lending to detailed analysis. This review summarizes the current state of the art of quasar microlensing and shows that at this point in time, observational monitoring programs and complementary intense simulations provide a scenario where some of the early promises of quasar microlensing can be quantitatively applied. It has been shown, e.g., that smaller sources display more violent microlensing variability, first quantitative comparison with accretion disk models has been achieved, and quasar microlensing has been used to

  4. Local Analogs for High-redshift Galaxies: Resembling the Physical Conditions of the Interstellar Medium in High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Bian, Fuyan; Kewley, Lisa J.; Dopita, Michael A.; Juneau, Stephanie

    2016-05-01

    We present a sample of local analogs for high-redshift galaxies selected in the Sloan Digital Sky Survey (SDSS). The physical conditions of the interstellar medium (ISM) in these local analogs resemble those in high-redshift galaxies. These galaxies are selected based on their positions in the [O iii]/Hβ versus [N ii]/Hα nebular emission-line diagnostic diagram. We show that these local analogs share similar physical properties with high-redshift galaxies, including high specific star formation rates (sSFRs), flat UV continuums, and compact galaxy sizes. In particular, the ionization parameters and electron densities in these analogs are comparable to those in z ≃ 2-3 galaxies, but higher than those in normal SDSS galaxies by ≃0.6 dex and ≃0.9 dex, respectively. The mass-metallicity relation (MZR) in these local analogs shows -0.2 dex offset from that in SDSS star-forming galaxies at the low-mass end, which is consistent with the MZR of the z˜ 2{--}3 galaxies. We compare the local analogs in this study with those in other studies, including Lyman break analogs (LBA) and green pea (GP) galaxies. The analogs in this study share a similar star formation surface density with LBAs, but the ionization parameters and electron density in our analogs are higher than those in LBAs by factors of 1.5 and 3, respectively. The analogs in this study have comparable ionization parameters and electron densities to the GP galaxies, but our method can select galaxies in a wider redshift range. We find the high sSFR and SFR surface density can increase the electron density and ionization parameters, but still cannot fully explain the difference in ISM condition between nearby galaxies and the local analogs/high-redshift galaxies.

  5. Ionised outflows in z ~ 2.4 quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Carniani, S.; Marconi, A.; Maiolino, R.; Balmaverde, B.; Brusa, M.; Cano-Díaz, M.; Cicone, C.; Comastri, A.; Cresci, G.; Fiore, F.; Feruglio, C.; La Franca, F.; Mainieri, V.; Mannucci, F.; Nagao, T.; Netzer, H.; Piconcelli, E.; Risaliti, G.; Schneider, R.; Shemmer, O.

    2015-08-01

    Aims: Outflows driven by active galactic nuclei (AGN) are invoked by galaxy evolutionary models to quench star formation and to explain the origin of the relations observed locally between super-massive black holes and their host galaxies. We here aim to detect extended ionised outflows in luminous quasars, where we expect the highest activity both in star formation and in black-hole accretion. Currently, there are only a few studies based on spatially resolved observations of outflows at high redshift, z > 2. Methods: We analysed a sample of six luminous (L > 1047 erg/s) quasars at z ~ 2.4, observed in H-band using the near-IR integral field spectrometer SINFONI at the VLT. We performed a kinematic analysis of the [Oiii] emission line at λ = 5007 Å. Results: We detect fast, spatially extended outflows in five out of six targets. [Oiii]λ5007 has a complex gas kinematic, with blue-shifted velocities of a few hundreds of km s-1 and line widths up to 1500 km s-1. Using the spectroastrometric method, we infer a size of the ionised outflows of up to ~2 kpc. The properties of the ionised outflows, mass outflow rate, momentum rate, and kinetic power, are correlated with the AGN luminosity. The increase in outflow rate with increasing AGN luminosity is consistent with the idea that a luminous AGN pushes away the surrounding gas through fast outflows that are driven by radiation pressure, which depends on the emitted luminosity. Conclusions: We derive mass outflow rates of about 6-700 M⊙ yr-1 for our sample, which are lower than those observed in molecular outflows. The physical properties of ionised outflows show dependences on AGN luminosity that are similar to those of molecular outflows, but indicate that the mass of ionised gas is lower than that of molecular outflows. Alternatively, this discrepancy between ionised and molecular outflows could be explained with different acceleration mechanisms. Based on Observations collected at the European Organisation for

  6. GRB afterglows: Dust extinction properties from the low to high redshift universe

    NASA Astrophysics Data System (ADS)

    Zafar, Tayyaba

    2016-11-01

    Long-duration Gamma-ray bursts (GRBs) are excellent probes to study dust extinction due to their occurrence in star-forming regions and having simple synchrotron emission spectra. Inclusion of spectroscopic data to the GRB X-ray to the infrared spectral energy distribution (SED) could better define the continuum and confirm extinction feature. A preliminary SED analysis of GRB afterglows targeted with the VLT/X-Shooter spectrograph finds that all the 60% of extinguished bursts fit-well with featureless extinction curves. The longer wavelength coverage from ultraviolet to the near-infrared of X-Shooter helps to derive individual extinction curves and determine the total-to-selective extinction, RV precisely, suggesting extinction curves steeper (with a mean of RV = 2.66 ± 0.10) than the Small Magellanic Cloud. Moreover, addition of more data to the study of dust-to-metals ratios in GRB afterglows, quasar absorbers, and multiply lensed galaxies still shows the dust-to-metals ratios close to the Galactic value (with a mean value of log - 21.2cm-2mag-1), hinting short time delay between metals and dust formation. Such studies demonstrate the strength of using GRB afterglows to study dust origin and its properties the from low to high redshift Universe.

  7. GISMO, a 2 mm Bolometer Camera Optimized for the Study of High Redshift Galaxies

    NASA Technical Reports Server (NTRS)

    Staguhn, J.

    2007-01-01

    The 2mm spectral range provides a unique terrestrial window enabling ground based observations of the earliest active dusty galaxies in the universe and thereby allowing a better constraint on the star formation rate in these objects. We present a progress report for our bolometer camera GISMO (the Goddard-IRAM Superconducting 2-Millimeter Observer), which will obtain large and sensitive sky maps at this wavelength. The instrument will be used at the IRAM 30 m telescope and we expect to install it at the telescope in 2007. The camera uses an 8 x 16 planar array of multiplexed TES bolometers, which incorporates our recently designed Backshort Under Grid (BUG) architecture. GISMO will be very efficient at detecting sources serendipitously in large sky surveys. With the background limited performance of the detectors, the camera provides significantly greater imaging sensitivity and mapping speed at this wavelength than has previously been possible. The major scientific driver for the instrument is to provide the IRAM 30 m telescope with the capability to rapidly observe galactic and extragalactic dust emission, in particular from high-zeta ULI RGs and quasar s, even in the summer season. The instrument will fill in the SEDs of high redshift galaxies at the Rayleigh-Jeans part of the dust emission spectrum, even at the highest redshifts. Our source count models predict that GISMO will serendipitously detect one galaxy every four hours on the blank sky, and that one quarter of these galaxies will be at a redshift of zeta 6.5.

  8. Bulge Growth Through Disc Instabilities in High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Bournaud, Frédéric

    The role of disc instabilities, such as bars and spiral arms, and the associated resonances, in growing bulges in the inner regions of disc galaxies have long been studied in the low-redshift nearby Universe. There it has long been probed observationally, in particular through peanut-shaped bulges (Chap. 14 10.1007/978-3-319-19378-6_14"). This secular growth of bulges in modern disc galaxies is driven by weak, non-axisymmetric instabilities: it mostly produces pseudobulges at slow rates and with long star-formation timescales. Disc instabilities at high redshift (z > 1) in moderate-mass to massive galaxies (1010 to a few 1011 M⊙ of stars) are very different from those found in modern spiral galaxies. High-redshift discs are globally unstable and fragment into giant clumps containing 108-9 M⊙ of gas and stars each, which results in highly irregular galaxy morphologies. The clumps and other features associated to the violent instability drive disc evolution and bulge growth through various mechanisms on short timescales. The giant clumps can migrate inward and coalesce into the bulge in a few 108 years. The instability in the very turbulent media drives intense gas inflows toward the bulge and nuclear region. Thick discs and supermassive black holes can grow concurrently as a result of the violent instability. This chapter reviews the properties of high-redshift disc instabilities, the evolution of giant clumps and other features associated to the instability, and the resulting growth of bulges and associated sub-galactic components.

  9. Planck intermediate results. XXXIX. The Planck list of high-redshift source candidates

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Burigana, C.; Butler, R. C.; Calabrese, E.; Catalano, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Flores-Cacho, I.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Nati, F.; Natoli, P.; Nesvadba, N. P. H.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Welikala, N.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-12-01

    The Planck mission, thanks to its large frequency range and all-sky coverage, has a unique potential for systematically detecting the brightest, and rarest, submillimetre sources on the sky, including distant objects in the high-redshift Universe traced by their dust emission. A novel method, based on a component-separation procedure using a combination of Planck and IRAS data, has been validated and characterized on numerous simulations, and applied to select the most luminous cold submillimetre sources with spectral energy distributions peaking between 353 and 857 GHz at 5' resolution. A total of 2151 Planck high-z source candidates (the PHZ) have been detected in the cleanest 26% of the sky, with flux density at 545 GHz above 500 mJy. Embedded in the cosmic infrared background close to the confusion limit, these high-z candidates exhibit colder colours than their surroundings, consistent with redshifts z > 2, assuming a dust temperature of Txgal = 35 K and a spectral index of βxgal = 1.5. Exhibiting extremely high luminosities, larger than 1014L⊙, the PHZ objects may be made of multiple galaxies or clumps at high redshift, as suggested by a first statistical analysis based on a comparison with number count models. Furthermore, first follow-up observations obtained from optical to submillimetre wavelengths, which can be found in companion papers, have confirmed that this list consists of two distinct populations. A small fraction (around 3%) of the sources have been identified as strongly gravitationally lensed star-forming galaxies at redshift 2 to 4, while the vast majority of the PHZ sources appear as overdensities of dusty star-forming galaxies, having colours consistent with being at z > 2, and may be considered as proto-cluster candidates. The PHZ provides an original sample, which is complementary to the Planck Sunyaev-Zeldovich Catalogue (PSZ2); by extending the population of virialized massive galaxy clusters detected below z < 1.5 through their SZ

  10. Imaging the host galaxies of high-redshift radio-quiet QSOs

    NASA Technical Reports Server (NTRS)

    Lowenthal, James D.; Heckman, Timothy M.; Lehnert, Matthew, D.; Elias, J. H.

    1995-01-01

    short timescales. This is consistent with the general trend at low redshifts that radio-loud QSOs are found in giant elliptical galaxies while radio-quiet QSOs are found in less luminous disk galaxies. It also suggests that the processes responsible for the spectacular properties of radio-loud AGNs at high redshifts might not be generally relevent to the (far more numerous) radio-quiet population.

  11. UV Properties and Evolution of High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Buzzoni, Alberto

    I assess the problem of morphological and photometric evolution of high-redshift galaxies in the ultraviolet wavelength range. My discussion will partly rely on a new set of template galaxy models, in order to infer the expected changes along the Hubble morphological sequence at the different cosmic epochs. The impact of evolution on the faint-end galaxy luminosity function at z~1 and beyond will also be evaluated and briefly discussed. See http://www.merate.mi.astro.it/~eps/home.html for more info and model retrieval.

  12. Discovery of two broad absorption line quasars at redshift about 4.75 using the Lijiang 2.4 m telescope

    NASA Astrophysics Data System (ADS)

    Yi, WeiMin; Wu, XueBing; Wang, FeiGe; Yang, JinYi; Yang, Qian; Bai, JinMing

    2015-09-01

    The ultraviolet broad absorption lines have been seen in the spectra of quasars at high redshift, and are generally considered to be caused by outflows with velocities from thousands kilometers per second to one tenth of the speed of light. They provide crucial implications for the cosmological structures and physical evolutions related to the feedback of active galactic nuclei (AGNs). Recently, through a dedicated program of optically spectroscopic identifications of selected quasar candidates at redshift 5 by using the Lijiang 2.4 m telescope, we discovered two luminous broad absorption line quasars (BALQSOs) at redshift about 4.75. One of them may even have the potentially highest absorption Balnicity Index (BI) ever found to date, which is remarkably characterized by its deep, broad absorption lines and sub-relativistic outflows. Further physical properties, including the metal abundances, variabilities, evolutions of the supermassive black holes (SMBH) and accretion disks associated with the feedback process, can be investigated with multi-wavelength follow-up observations in the future.

  13. Spatially Resolved Emission of a High-redshift DLA Galaxy with the Keck/OSIRIS IFU

    NASA Astrophysics Data System (ADS)

    Jorgenson, Regina A.; Wolfe, Arthur M.

    2014-04-01

    We present the first Keck/OSIRIS infrared IFU observations of a high-redshift damped Lyα (DLA) galaxy detected in the line of sight to a background quasar. By utilizing the Laser Guide Star Adaptive Optics to reduce the quasar point-spread function to FWHM ~ 0.''15, we were able to search for and map the foreground DLA emission free from the quasar contamination. We present maps of the Hα and [O III] λλ5007, 4959 emission of DLA 2222-0946 at a redshift of z ~ 2.35. From the composite spectrum over the Hα emission region, we measure a star formation rate of 9.5 ± 1.0 M ⊙ yr-1 and a dynamical mass of M dyn = 6.1 × 109 M ⊙. The average star formation rate surface density is langΣSFRrang = 0.55 M ⊙ yr-1 kpc-2, with a central peak of 1.7 M ⊙ yr-1 kpc-2. Using the standard Kennicutt-Schmidt relation, this corresponds to a gas mass surface density of Σgas = 243 M ⊙ pc-2. Integrating over the size of the galaxy, we find a total gas mass of M gas = 4.2 × 109 M ⊙. We estimate the gas fraction of DLA 2222-0946 to be f gas ~ 40%. We detect [N II] λ6583 emission at 3σ significance with a flux corresponding to a metallicity of 75% solar. Comparing this metallicity with that derived from the low-ion absorption gas ~6 kpc away, ~30% solar, indicates possible evidence for a metallicity gradient or enriched in/outflow of gas. Kinematically, both Hα and [O III] emission show relatively constant velocity fields over the central galactic region. While we detect some red and blueshifted clumps of emission, they do not correspond with rotational signatures that support an edge-on disk interpretation. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  14. Spatially resolved emission of a high-redshift DLA galaxy with the Keck/OSIRIS IFU

    SciTech Connect

    Jorgenson, Regina A.; Wolfe, Arthur M.

    2014-04-10

    We present the first Keck/OSIRIS infrared IFU observations of a high-redshift damped Lyα (DLA) galaxy detected in the line of sight to a background quasar. By utilizing the Laser Guide Star Adaptive Optics to reduce the quasar point-spread function to FWHM ∼ 0.''15, we were able to search for and map the foreground DLA emission free from the quasar contamination. We present maps of the Hα and [O III] λλ5007, 4959 emission of DLA 2222–0946 at a redshift of z ∼ 2.35. From the composite spectrum over the Hα emission region, we measure a star formation rate of 9.5 ± 1.0 M {sub ☉} yr{sup –1} and a dynamical mass of M {sub dyn} = 6.1 × 10{sup 9} M {sub ☉}. The average star formation rate surface density is (Σ{sub SFR}) = 0.55 M {sub ☉} yr{sup –1} kpc{sup –2}, with a central peak of 1.7 M {sub ☉} yr{sup –1} kpc{sup –2}. Using the standard Kennicutt-Schmidt relation, this corresponds to a gas mass surface density of Σ{sub gas} = 243 M {sub ☉} pc{sup –2}. Integrating over the size of the galaxy, we find a total gas mass of M {sub gas} = 4.2 × 10{sup 9} M {sub ☉}. We estimate the gas fraction of DLA 2222–0946 to be f {sub gas} ∼ 40%. We detect [N II] λ6583 emission at 3σ significance with a flux corresponding to a metallicity of 75% solar. Comparing this metallicity with that derived from the low-ion absorption gas ∼6 kpc away, ∼30% solar, indicates possible evidence for a metallicity gradient or enriched in/outflow of gas. Kinematically, both Hα and [O III] emission show relatively constant velocity fields over the central galactic region. While we detect some red and blueshifted clumps of emission, they do not correspond with rotational signatures that support an edge-on disk interpretation.

  15. Quasar H II Regions During Cosmic Reionization

    SciTech Connect

    Alvarez, Marcelo A.; Abel, Tom; /KIPAC, Menlo Park

    2007-03-30

    Cosmic reionization progresses as HII regions form around sources of ionizing radiation. Their average size grows continuously until they percolate and complete reionization. We demonstrate how this typical growth can be calculated around the largest, biased sources of UV emission such as quasars by further developing an analytical model based on the excursion set formalism. This approach allows us to calculate the sizes and growth of the HII regions created by the progenitors of any dark matter halo of given mass and redshift with a minimum of free parameters. Statistical variations in the size of these pre-existing HII regions are an additional source of uncertainty in the determination of very high redshift quasar properties from their observed HII region sizes. We use this model to demonstrate that the transmission gaps seen in very high redshift quasars can be understood from the radiation of only their progenitors and associated clustered small galaxies. The fit requires the epoch of overlap to be at z = 5.8 {+-} 0.1. This interpretation makes the transmission gaps independent of the age of the quasars observed. If this interpretation were correct it would raise the prospects of using radio interferometers currently under construction to detect the epoch of reionization.

  16. Identifying high-redshift gamma-ray bursts with RATIR

    SciTech Connect

    Littlejohns, O. M.; Butler, N. R.; Cucchiara, A.; Watson, A. M.; Lee, W. H.; Richer, M. G.; De Diego, J. A.; Georgiev, L.; González, J.; Román-Zúñiga, C. G.; Kutyrev, A. S.; Troja, E.; Gehrels, N.; Moseley, H.; Klein, C. R.; Fox, O. D.; Bloom, J. S.; Prochaska, J. X.; Ramirez-Ruiz, E.

    2014-07-01

    We present a template-fitting algorithm for determining photometric redshifts, z {sub phot}, of candidate high-redshift gamma-ray bursts (GRBs). Using afterglow photometry, obtained by the Reionization and Transients InfraRed (RATIR) camera, this algorithm accounts for the intrinsic GRB afterglow spectral energy distribution, host dust extinction, and the effect of neutral hydrogen (local and cosmological) along the line of sight. We present the results obtained by this algorithm and the RATIR photometry of GRB 130606A, finding a range of best-fit solutions, 5.6 < z {sub phot} < 6.0, for models of several host dust extinction laws (none, the Milky Way, Large Magellanic Clouds, and Small Magellanic Clouds), consistent with spectroscopic measurements of the redshift of this GRB. Using simulated RATIR photometry, we find that our algorithm provides precise measures of z {sub phot} in the ranges of 4 < z {sub phot} ≲ 8 and 9 < z {sub phot} < 10 and can robustly determine when z {sub phot} > 4. Further testing highlights the required caution in cases of highly dust-extincted host galaxies. These tests also show that our algorithm does not erroneously find z {sub phot} < 4 when z {sub sim} > 4, thereby minimizing false negatives and allowing us to rapidly identify all potential high-redshift events.

  17. Bimodal star formation - Constraints from galaxy colors at high redshift

    NASA Technical Reports Server (NTRS)

    Wyse, Rosemary F. G.; Silk, Joseph

    1987-01-01

    The possibility that at early epochs the light from elliptical galaxies is dominated by stars with an initial mass function (IMF) which is deficient in low-mass stars, relative to the solar neighborhood is investigated. V-R colors for the optical counterparts of 3CR radio sources offer the most severe constraints on the models. Reasonable fits are obtained to both the blue, high-redshift colors and the redder, low-redshift colors with a model galaxy which forms with initially equal star formation rates in each of two IMF modes: one lacking low-mass stars, and one with stars of all masses. The net effect is that the time-integrated IMF has twice as many high-mass stars as the solar neighborhood IMF, relative to low mass stars. A conventional solar neighborhood IMF does not simultaneously account for both the range in colors at high redshift and the redness of nearby ellipticals, with any single star formation epoch. Models with a standard IMF require half the stellar population to be formed in a burst at low redshift z of about 1.

  18. DUST ATTENUATION IN HIGH REDSHIFT GALAXIES: 'DIAMONDS IN THE SKY'

    SciTech Connect

    Scoville, Nick; Capak, Peter; Steinhardt, Charles; Faisst, Andreas; Kakazu, Yuko; Li, Gongjie

    2015-02-20

    We use observed optical to near-infrared spectral energy distributions (SEDs) of 266 galaxies in the COSMOS survey to derive the wavelength dependence of the dust attenuation at high redshift. All of the galaxies have spectroscopic redshifts in the range z = 2-6.5. The presence of the C IV absorption feature, indicating that the rest-frame UV-optical SED is dominated by OB stars, is used to select objects for which the intrinsic, unattenuated spectrum has a well-established shape. Comparison of this intrinsic spectrum with the observed broadband photometric SED then permits derivation of the wavelength dependence of the dust attenuation. The derived dust attenuation curve is similar in overall shape to the Calzetti curve for local starburst galaxies. We also see the 2175 Å bump feature which is present in the Milky Way and Large Magellanic Cloud extinction curves but not seen in the Calzetti curve. The bump feature is commonly attributed to graphite or polycyclic aromatic hydrocarbons. No significant dependence is seen with redshift between sub-samples at z = 2-4 and z = 4-6.5. The 'extinction' curve obtained here provides a firm basis for color and extinction corrections of high redshift galaxy photometry.

  19. Broad Absorption Line Quasars and Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Wills, B. J.

    2009-12-01

    Luminous QSOs are signposts to galaxy evolution. Local supermassive black holes are the faded relics of quasars in their heyday at redshifts ˜2. Relationships between the masses of these local supermassive black holes and their host galaxy bulges reveal an intimate link, fundamental to galaxy evolution: the newly evolving galaxy fuels the seed black hole through its accretion disk and by loss of angular momentum and energy in the form of outflowing winds. As the central engine approaches Eddington luminosities, winds drive away dusty gas, revealing a luminous QSO and halting star formation in the galaxy bulge. Relativistic winds are manifested in powerful radio jets in ˜10% of quasars, and sub-relativistic winds are revealed by broad blueshifted absorption troughs in the “broad absorption line” (BAL) quasars. Historically, BALs avoid powerful radio quasars. Here we examine the BALs to investigate this inverse connection.

  20. The Co-Formation of Spheroids and Quasars Traced in their Clustering

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Lidz, Adam; Hernquist, Lars; Coil, Alison L.; Myers, Adam D.; Cox, Thomas J.; Spergel, David N.

    2007-06-01

    We compare observed clustering of quasars and galaxies as a function of redshift, mass, luminosity, and color/morphology, to constrain models of quasar fueling and the co-evolution of spheroids and supermassive black holes (BHs). High-redshift quasars are shown to be drawn from the progenitors of local early-type galaxies, with the characteristic quasar luminosity L* reflecting a characteristic mass of ``active'' BH/host populations at each epoch. Evolving observed high-z quasar clustering to z=0 predicts a trend of clustering in ``quasar remnants'' as a function of stellar mass identical to that observed for early types. However, quasar clustering does not simply reflect observed early (or late) type populations; at each redshift, quasars cluster as an ``intermediate'' population. Comparing with the age of elliptical stellar populations as a function of mass reveals that this ``intermediate'' population represents those ellipticals undergoing or terminating their final significant star formation activity at the given epoch. Assuming that quasar triggering is associated with the formation/termination epoch of ellipticals predicts quasar clustering at all observed redshifts without any model dependence or assumptions about quasar light curves, lifetimes, or accretion rates. This is not true for disks or quasar halos; i.e., quasars do not generically trace star formation or halo assembly. Quasar clustering at all redshifts is consistent with ~4×1012 h-1 Msolar, similar to group scales. This supports scenarios in which major mergers dominate the bright, high-redshift quasar populations. We show how improved clustering measurements can be used to constrain lower luminosity AGN fueling and whether or not accretion/star formation can ``shut down'' at z>3.

  1. Are there two types of quasars.

    NASA Technical Reports Server (NTRS)

    Chiu, B. C.; Morrison, P.; Sartori, L.

    1973-01-01

    Two types of quasars are postulated: type I, the vast majority of quasars, which are highly luminous and cosmologically distant, as shown by their redshifts; type II, a dwarf branch, that are products of a few remarkable explosions in nearby galaxies. It is shown that this hypothesis is consistent with redshift statistics and suggests a possible interpretation of such objects as BL Lac and OJ 287.

  2. What BOSS has taught us about Quasars.

    NASA Astrophysics Data System (ADS)

    Ross, Nicholas; SDSS-III BOSS Quasar Science Working Group

    2015-01-01

    This talk presents science highlights from the SDSS-III BOSS Quasar Survey, which has obtained spectra for over 300,000 quasars, 200,000 of which are at redshift z>2. Using this dataset, new measurements of the luminosity function have been made, with the faint end of the luminosity function now measured to z~5. New clustering results from DR12 are presented, and the weak luminosity dependence of quasar clustering at z~0.5 is also discussed.New studies of the broad absorption line (BAL) quasar population have also been performed, with a sample of BAL quasars from the original SDSS being re-observed. These new data have shown the disappearance of CIV BAL troughs and indeed the transformation of BAL QSOs to non-BAL QSOs. BAL disappearance, and emergence, events appear to be extremes of general BAL variability, and have shed light on accretion-disk wind models.We highlight the discovery of new classes of quasars including: a population of broad-line Mg II emitters found in a passive galaxy sample; objects with extremely red optical-to-mid infrared colors; objects with very curious UV line (LyA:NV) ratios and potentially the long-sought after high-redshift Type 2 Quasar population.Finally, we describe two new dedicated programs, one focusing on reverberation mapping, the other on X-ray selected quasars.A full list of papers connected to the BOSS Quasar Survey is given at: http://www.sdss3.org/science/publications.php

  3. Relativistic jet feedback in high-redshift galaxies - I. Dynamics

    NASA Astrophysics Data System (ADS)

    Mukherjee, Dipanjan; Bicknell, Geoffrey V.; Sutherland, Ralph; Wagner, Alex

    2016-09-01

    We present the results of 3D relativistic hydrodynamic simulations of interaction of active galactic nucleus jets with a dense turbulent two-phase interstellar medium, which would be typical of high-redshift galaxies. We describe the effect of the jet on the evolution of the density of the turbulent interstellar medium (ISM). The jet-driven energy bubble affects the gas to distances up to several kiloparsecs from the injection region. The shocks resulting from such interactions create a multiphase ISM and radial outflows. One of the striking result of this work is that low-power jets (Pjet ≲ 1043 ergs-1), although less efficient in accelerating clouds, are trapped in the ISM for a longer time and hence affect the ISM over a larger volume. Jets of higher power drill through with relative ease. Although the relativistic jets launch strong outflows, there is little net mass ejection to very large distances, supporting a galactic fountain scenario for local feedback.

  4. The High Redshift Universe Seen Through the Eyes of ALMA

    NASA Astrophysics Data System (ADS)

    Wiklind, Tommy

    2012-07-01

    The Atacama Large Millimeter/submm Array (ALMA) is an interferometric telescope currently under construction on the Chajnantor Plateau in northern Chile. It is situated at an altitude of 5000m, in one of the driest places in the world. The combination of the meteorological conditions, increased total collecting area and the use of state-of-the-art receivers means that the fully operational ALMA is a factor 10-1000 more sensitive than existing facilities, depending on the wavelength. When completed in 2013, ALMA will consists of 66 antennas, with maximum baselines of up to 15 km and it will be able to observe at wavelengths from 10 millimeter to ~350micron. ALMA will be able to provide an angular resolution of ~0.05 arcseconds. ALMA is still under construction, but has started producing science in an 'Early Science' phase. The goal with ALMA has from the beginning been to provide very high sensitivity as well as an angular resolution matching that of space based optical observatories such as the HST. One of three main drivers when designing ALMA has been the ability to study the high redshift universe. The main reason behind this is that almost half of the integrated background radiation comes from the far-infrared wavelength regime. This emission is interpreted as originating from dust re-radiated stellar emission in high redshift galaxies. Interstellar dust is almost invariably associated with molecular gas, that can be studied using molecular rotational transitions. The shape of the dust spectral energy distribution ensures that the observed flux at a fixed wavelength long-ward of the far-infrared peak (about 100micron) remains more or less constant over a redshift range z=1-10. This aspect makes dust continuum emission extraordinarily important for studying galaxies and Active Galactic Nuclei at high redshift. Through observations of line emission from molecular transitions it is possible to study the associated molecular gas distribution and its kinematics. The

  5. Radio-loud high-redshift protogalaxy canidates in Bootes

    SciTech Connect

    Croft, S; van Breugel, W; Brown, M J; de Vries, W; Dey, A; Eisenhardt, P; Jannuzi, B; Rottgering, H; Stanford, S A; Stern, D; Willner, S P

    2007-07-20

    We used the Near Infrared Camera (NIRC) on Keck I to obtain K{sub s}-band images of four candidate high-redshift radio galaxies selected using optical and radio data in the NOAO Deep Wide-Field Survey in Bootes. Our targets have 1.4 GHz radio flux densities greater than 1 mJy, but are undetected in the optical. Spectral energy distribution fitting suggests that three of these objects are at z > 3, with radio luminosities near the FR-I/FR-II break. The other has photometric redshift z{sub phot} = 1.2, but may in fact be at higher redshift. Two of the four objects exhibit diffuse morphologies in K{sub s}-band, suggesting that they are still in the process of forming.

  6. OPTIMAL MASS CONFIGURATIONS FOR LENSING HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Wong, Kenneth C.; Zabludoff, Ann I.; Ammons, S. Mark; Keeton, Charles R.

    2012-06-20

    We investigate the gravitational lensing properties of lines of sight containing multiple cluster-scale halos, motivated by their ability to lens very high redshift (z {approx} 10) sources into detectability. We control for the total mass along the line of sight, isolating the effects of distributing the mass among multiple halos and of varying the physical properties of the halos. Our results show that multiple-halo lines of sight can increase the magnified source-plane region compared to the single cluster lenses typically targeted for lensing studies and thus are generally better fields for detecting very high redshift sources. The configurations that result in optimal lensing cross sections benefit from interactions between the lens potentials of the halos when they overlap somewhat on the sky, creating regions of high magnification in the source plane not present when the halos are considered individually. The effect of these interactions on the lensing cross section can even be comparable to changing the total mass of the lens from 10{sup 15} M{sub Sun} to 3 Multiplication-Sign 10{sup 15} M{sub Sun }. The gain in lensing cross section increases as the mass is split into more halos, provided that the lens potentials are projected close enough to interact with each other. A nonzero projected halo angular separation, equal halo mass ratio, and high projected halo concentration are the best mass configurations, whereas projected halo ellipticity, halo triaxiality, and the relative orientations of the halos are less important. Such high-mass, multiple-halo lines of sight exist in the Sloan Digital Sky Survey.

  7. MASSIVE CLUMPS IN LOCAL GALAXIES: COMPARISONS WITH HIGH-REDSHIFT CLUMPS

    SciTech Connect

    Elmegreen, Bruce G.; Elmegreen, Debra Meloy; Dewberry, J.; Putko, J.; Teich, Y.; Popinchalk, M.; Sanchez Almeida, J.; Munoz-Tunon, C.

    2013-09-01

    Local UV-bright galaxies in the Kiso survey include clumpy systems with kiloparsec-size star complexes that resemble clumpy young galaxies in surveys at high redshift. We compare clump masses and underlying disks in several dozen galaxies from each of these surveys to the star complexes and disks of normal spirals. Photometry and spectroscopy for the Kiso and spiral sample come from the Sloan Digital Sky Survey. We find that the largest Kiso clumpy galaxies resemble Ultra Deep Field (UDF) clumpies in terms of the star formation rates, clump masses, and clump surface densities. Clump masses and surface densities in normal spirals are smaller. If the clump masses are proportional to the turbulent Jeans mass in the interstellar medium, then for the most luminous galaxies in the sequence of normal:Kiso:UDF, the turbulent speeds and surface densities increase in the proportions 1.0:4.7:5.0 and 1.0:4.0:5.1, respectively, for fixed restframe B-band absolute magnitude. For the least luminous galaxies in the overlapping magnitude range, the turbulent speed and surface density trends are 1.0:2.7:7.4 and 1.0:1.4:3.0, respectively. We also find that while all three types have radially decreasing disk intensities when measured with ellipse-fit azimuthal averages, the average profiles are more irregular for UDF clumpies (which are viewed in their restframe UV) than for Kiso galaxies (viewed at g-band), and major axis intensity scans are even more irregular for the UDF than Kiso galaxies. Local clumpy galaxies in the Kiso survey appear to be intermediate between UDF clumpies and normal spirals.

  8. NEARBY CLUMPY, GAS RICH, STAR-FORMING GALAXIES: LOCAL ANALOGS OF HIGH-REDSHIFT CLUMPY GALAXIES

    SciTech Connect

    Garland, C. A.; Pisano, D. J.; Rabidoux, K.; Low, M.-M. Mac; Kreckel, K.; Guzmán, R. E-mail: djpisano@mail.wvu.edu E-mail: mordecai@amnh.org E-mail: guzman@astro.ufl.edu

    2015-07-10

    Luminous compact blue galaxies (LCBGs) have enhanced star formation rates (SFRs) and compact morphologies. We combine Sloan Digital Sky Survey data with H i data of 29 LCBGs at redshift z ∼ 0 to understand their nature. We find that local LCBGs have high atomic gas fractions (∼50%) and SFRs per stellar mass consistent with some high-redshift star-forming galaxies (SFGs). Many local LCBGs also have clumpy morphologies, with clumps distributed across their disks. Although rare, these galaxies appear to be similar to the clumpy SFGs commonly observed at z ∼ 1–3. Local LCBGs separate into three groups: (1) interacting galaxies (∼20%); (2) clumpy spirals (∼40%); and (3) non-clumpy, non-spirals with regular shapes and smaller effective radii and stellar masses (∼40%). It seems that the method of building up a high gas fraction, which then triggers star formation, is not the same for all local LCBGs. This may lead to a dichotomy in galaxy characteristics. We consider possible gas delivery scenarios and suggest that clumpy spirals, preferentially located in clusters and with companions, are smoothly accreting gas from tidally disrupted companions and/or intracluster gas enriched by stripped satellites. Conversely, as non-clumpy galaxies are preferentially located in the field and tend to be isolated, we suggest clumpy, cold streams, which destroy galaxy disks and prevent clump formation, as a likely gas delivery mechanism for these systems. Other possibilities include smooth cold streams, a series of minor mergers, or major interactions.

  9. Local Turbulent Disks: analogs of high-redshift vigorously star-forming disks and laboratories for galaxy assembly?

    NASA Astrophysics Data System (ADS)

    Damjanov, Ivana

    2012-10-01

    Kinematical investigations at redshifts 1high-redshift galaxies exhibit very high internal velocity dispersions. Dynamical data collected with integral field spectrographs {IFS} suggest that the level of rotational support in these systems follows a trend in mass, with compact dispersion-dominated Lyman Break Galaxies at lower stelar masses and large dynamically unstable turbulent disks at stellar masses larger than 10^10 solar masses. The high velocity dispersion of these young disks results in a large characteristic scale for star-forming clusters thereby also explaining their 'clump cluster' morphology. Galaxies like these were thought to be absent from the local Universe. As part of a IFS campaign to observe the most H-alpha luminous galaxies in SDSS, we have discovered a sample of very rare objects seemingly identical to these high-z turbulent disks. In this proposal we seek imaging in H-alpha of thirteen local disk galaxies in our sample, using the ACS tunable-wavelength ramp filters. Our goal is to measure the size distribution of the star-forming complexes in these objects, with ten times the typical physical resolution of HST observations of high-z galaxies, in order to test the idea that they are indeed dynamically unstable turbulent disks caught in the process of formation. In synergy with existing high resolution HST imaging of the local analogs of low-mass dispersion-dominated galaxies at high redshift {Lyman Break Analogs}, our proposed observations of the local counterparts to large turbulent disks at high redshift will help to paint a complete picture of local analogs of high-z star-forming galaxies.

  10. Deep imaging of high redshift QSO fields below the Lyman limit. II - Number counts and colors of field galaxies

    NASA Technical Reports Server (NTRS)

    Steidel, Charles C.; Hamilton, Donald

    1993-01-01

    We present an analysis of the number counts and colors of faint galaxies to about 26.5 mag in the fields of two high Galactic latitude, very-high-redshift QSOs. We concentrate on the general properties of the field galaxies at faint magnitudes. In particular, we readdress the faint galaxy number counts and colors as a function of apparent magnitude and we reexamine the possible contribution of very-high-redshift galaxies to the faint samples. We find that the number counts to R = 26 are well fitted by the relation log N(m) = 0.31R + C. The G-band counts for the same galaxies are consistent with the same slope fainter than G about 23.5, but exhibit a much steeper slope at brighter magnitudes. At R = 25.5, the differential number counts have reached about 1.2 x 10 exp 5/sq deg; the same surface density of galaxies is reached at G = 26.5. We confirm the existence of a gradual 'blueing' trend of the field galaxies toward fainter apparent magnitude; however, the blueing trend appears to extend only as faint as G about 24, fainter than which both the (G-R) and (U sub n-G) colors appear to level off. The mean colors of faint galaxies are considerably redder than flat spectrum. There are essentially no objects to R = 26 which have spectral energy distributions which are bluer than flat spectrum. The potential contribution of very-high-redshift galaxies may have been underestimated in previous analyses; the current data are consistent with the same population of relatively luminous galaxies at z about 3 as exist at z about 0.7.

  11. Quasars Probing Quasars. IV. Joint Constraints on the Circumgalactic Medium from Absorption and Emission

    NASA Astrophysics Data System (ADS)

    Hennawi, Joseph F.; Prochaska, J. Xavier

    2013-03-01

    We have constructed a sample of 29 close projected quasar pairs where the background quasar spectrum reveals absorption from optically thick H I gas associated with the foreground quasar. These unique sightlines allow us to study the quasar circumgalactic medium (CGM) in absorption and emission simultaneously, because the background quasar pinpoints large concentrations of gas where Lyα emission, resulting from quasar-powered fluorescence, resonant Lyα scattering, and/or cooling radiation, is expected. A sensitive search (1σ surface-brightness limits of SB_{Ly\\alpha } \\simeq 3{\\; \\times \\; 10^{-18}}\\,erg\\,s^{-1\\,cm^{-2}\\,arcsec^{-2}}) for diffuse Lyα emission in the environments of the foreground (predominantly radio-quiet) quasars is conducted using Gemini/GMOS and Keck/LRIS slit spectroscopy. We fail to detect large-scale ~100 kpc Lyα emission, either at the location of the optically thick absorbers or in the foreground quasar halos, in all cases except a single system. We interpret these non-detections as evidence that the gas detected in absorption is shadowed from the quasar UV radiation due to obscuration effects, which are frequently invoked in unified models of active galactic nuclei. Small-scale R <~ 50 kpc extended Lyα nebulosities are detected in 34% of our sample, which are likely the high-redshift analogs of the extended emission-line regions (EELRs) commonly observed around low-redshift (z < 0.5) quasars. This may be fluorescent recombination radiation from a population of very dense clouds with a low covering fraction illuminated by the quasar. We also detect a compact high rest-frame equivalent width (W Lyα > 50 Å) Lyα-emitter with luminosity L Lyα = 2.1 ± 0.32 × 1041 erg s-1 at small impact parameter R = 134 kpc from one foreground quasar, and argue that it is more likely to result from quasar-powered fluorescence, than simply be a star-forming galaxy clustered around the quasar. Our observations imply that much deeper

  12. QUASARS PROBING QUASARS. IV. JOINT CONSTRAINTS ON THE CIRCUMGALACTIC MEDIUM FROM ABSORPTION AND EMISSION

    SciTech Connect

    Hennawi, Joseph F.; Prochaska, J. Xavier

    2013-03-20

    We have constructed a sample of 29 close projected quasar pairs where the background quasar spectrum reveals absorption from optically thick H I gas associated with the foreground quasar. These unique sightlines allow us to study the quasar circumgalactic medium (CGM) in absorption and emission simultaneously, because the background quasar pinpoints large concentrations of gas where Ly{alpha} emission, resulting from quasar-powered fluorescence, resonant Ly{alpha} scattering, and/or cooling radiation, is expected. A sensitive search (1{sigma} surface-brightness limits of SB{sub Ly{alpha}}{approx_equal}3 Multiplication-Sign 10{sup -18} erg s{sup -1} cm{sup -2} arcsec{sup -2}) for diffuse Ly{alpha} emission in the environments of the foreground (predominantly radio-quiet) quasars is conducted using Gemini/GMOS and Keck/LRIS slit spectroscopy. We fail to detect large-scale {approx}100 kpc Ly{alpha} emission, either at the location of the optically thick absorbers or in the foreground quasar halos, in all cases except a single system. We interpret these non-detections as evidence that the gas detected in absorption is shadowed from the quasar UV radiation due to obscuration effects, which are frequently invoked in unified models of active galactic nuclei. Small-scale R {approx}< 50 kpc extended Ly{alpha} nebulosities are detected in 34% of our sample, which are likely the high-redshift analogs of the extended emission-line regions (EELRs) commonly observed around low-redshift (z < 0.5) quasars. This may be fluorescent recombination radiation from a population of very dense clouds with a low covering fraction illuminated by the quasar. We also detect a compact high rest-frame equivalent width (W{sub Ly{alpha}} > 50 A) Ly{alpha}-emitter with luminosity L{sub Ly{alpha}} = 2.1 {+-} 0.32 Multiplication-Sign 10{sup 41} erg s{sup -1} at small impact parameter R = 134 kpc from one foreground quasar, and argue that it is more likely to result from quasar-powered fluorescence

  13. Line and continuum variability of two intermediate-redshift, high-luminosity quasars

    NASA Astrophysics Data System (ADS)

    Trevese, D.; Paris, D.; Stirpe, G. M.; Vagnetti, F.; Zitelli, V.

    2007-08-01

    Context: It has been shown that the luminosity of active galactic nuclei and the size of their broad line region obey a simple relation of the type R_BLR=a Lγ, from faint Seyfert nuclei to bright quasars, allowing single-epoch determination of the central black hole mass M_BH= b Lγ Δ^2_Hβ from their luminosity L and width of Hβ emission line. Adopting this mass determination for cosmological studies requires the extrapolation to high redshift and luminosity of a relation whose calibration relies so far on reverberation mapping measurements performed for L ⪉ 1046 erg s-1 and redshift z ⪉ 0.4. Aims: We initiated a campaign for the spectrophotometric monitoring of a few luminous, intermediate redshift quasars whose apparent magnitude, V < 15.7, allows observations with a 1.8 m telescope, aimed at proving that emission lines vary and respond to continuum variations even for luminosities ⪆1047 erg s-1, and determining eventually their M_BH from reverberation mapping. Methods: We have repeatedly performed simultaneous spectrophotometric observations of quasars and reference stars to determine relative variability of continuum and emission lines. We describe the observations and methods of analysis. Results: For the quasars PG 1634+706 and PG 1247+268 we obtain light-curves respectively for CIII] (λλ1909 Å), MgII(λλ2798 Å) and for CIV(λλ1549 Å), CIII] (λλ1909 Å) emission lines with the relevant continua. During 3.2 years of observation, in the former case no continuum variability was detected and the evidence for line variability is marginal, while in the latter case both continuum and line variability are detected with high significance and the line variations appear correlated with continuum variations. Conclusions: The detection of the emission line variability in a quasar with L ~ 1047 erg s-1 encourages the continuation of the monitoring campaign which should provide a black hole mass estimate in another 5-6 years, constraining the mass

  14. The coevolution of supermassive black holes and massive galaxies at high redshift

    SciTech Connect

    Lapi, A.; Raimundo, S.; Aversa, R.; Cai, Z.-Y.; Celotti, A.; De Zotti, G.; Danese, L.; Negrello, M.

    2014-02-20

    We exploit the recent, wide samples of far-infrared (FIR) selected galaxies followed up in X-rays and of X-ray/optically selected active galactic nuclei (AGNs) followed up in the FIR band, along with the classic data on AGNs and stellar luminosity functions at high redshift z ≳ 1.5, to probe different stages in the coevolution of supermassive black holes (BHs) and host galaxies. The results of our analysis indicate the following scenario: (1) the star formation in the host galaxy proceeds within a heavily dust-enshrouded medium at an almost constant rate over a timescale ≲ 0.5-1 Gyr and then abruptly declines due to quasar feedback, over the same timescale; (2) part of the interstellar medium loses angular momentum, reaches the circum-nuclear regions at a rate proportional to the star formation, and is temporarily stored in a massive reservoir/proto-torus wherefrom it can be promptly accreted; (3) the BH grows by accretion in a self-regulated regime with radiative power that can slightly exceed the Eddington limit L/L {sub Edd} ≲ 4, particularly at the highest redshifts; (4) for massive BHs, the ensuing energy feedback at its maximum exceeds the stellar one and removes the interstellar gas, thus stopping the star formation and the fueling of the reservoir; (5) afterward, if the latter has retained enough gas, a phase of supply-limited accretion follows, exponentially declining with a timescale of about two e-folding times. We also discuss how the detailed properties and the specific evolution of the reservoir can be investigated via coordinated, high-resolution observations of star-forming, strongly lensed galaxies in the (sub-)mm band with ALMA and in the X-ray band with Chandra and the next-generation X-ray instruments.

  15. THE POPULATION OF HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI IN THE CHANDRA-COSMOS SURVEY

    SciTech Connect

    Civano, F.; Elvis, M.; Hao, H.; Brusa, M.; Comastri, A.; Zamorani, G.; Gilli, R.; Mignoli, M.; Salvato, M.; Capak, P.; Kakazu, Y.; Masters, D.; Fiore, F.; Ikeda, H.; Kartaltepe, J. S.; Miyaji, T.; Puccetti, S.; Shankar, F.; Silverman, J.; Vignali, C.

    2011-11-10

    We present the high-redshift (3 3. Eighty-one sources are selected in the 0.5-2 keV band, fourteen are selected in the 2-10 keV and six in the 0.5-10 keV bands. We sample the high-luminosity (log L{sub (2-10keV)} > 44.15 erg s{sup -1}) space density up to z {approx} 5 and a fainter luminosity range (43.5 erg s{sup -1} < log L{sub (2-10keV)} < 44.15 erg s{sup -1}) than previous studies, up to z = 3.5. We weighted the contribution to the number counts and the space density of the sources with photometric redshift by using their probability of being at z > 3. We find that the space density of high-luminosity AGNs declines exponentially at all the redshifts, confirming the trend observed for optically selected quasars. At lower luminosity, the measured space density is not conclusive, and a larger sample of faint sources is needed. Comparisons with optical luminosity functions and black hole formation models are presented together with prospects for future surveys.

  16. The hard X-ray luminosity function of high-redshift (3 < z ≲ 5) active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Vito, F.; Gilli, R.; Vignali, C.; Comastri, A.; Brusa, M.; Cappelluti, N.; Iwasawa, K.

    2014-12-01

    We present the hard-band (2-10 keV) X-ray luminosity function (HXLF) of 0.5-2 keV band selected active galactic nuclei (AGN) at high redshift. We have assembled a sample of 141 AGN at 3 < z ≲ 5 from X-ray surveys of different size and depth, in order to sample different regions in the LX - z plane. The HXLF is fitted in the range log LX ˜ 43-45 with standard analytical evolutionary models through a maximum likelihood procedure. The evolution of the HXLF is well described by a pure density evolution, with the AGN space density declining by a factor of ˜10 from z = 3 to 5. A luminosity-dependent density evolution model, which, normally, best represents the HXLF evolution at lower redshift, is also consistent with the data, but a larger sample of low-luminosity (log LX < 44), high-redshift AGN is necessary to constrain this model. We also estimated the intrinsic fraction of AGN obscured by a column density log NH ≥ 23 to be 0.54 ± 0.05, with no strong dependence on luminosity. This fraction is higher than the value in the Local Universe, suggesting an evolution of the luminous (LX > 1044 erg s-1) obscured AGN fraction from z = 0 to z > 3.

  17. Understanding the dark matter-light connection at high redshifts

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung-Soo

    Deep, wide-field surveys have enhanced our understanding of galaxy formation and its close connection to the large-scale structures of dark matter in the universe. At high redshifts ( z > 2), in particular, where it is not possible to observe dark matter structures in other methods such as gravitational lensing or galaxy rotation curves, study of galaxy clustering provides a unique view into the formation of galaxies in large look-back times. In this thesis, I present a clustering study of star-forming galaxies at high redshifts ( z ~ 3- 5), observed and selected from two of the deepest multi-wavelength photometric data to date. First, I show that the UV luminosity (or star formation rate) of these galaxies scales closely with the degree of spatial clustering at all cosmic epochs probed from these surveys. In conjunction with the current, well- established theoretical framework of cold dark matter cosmology, this implies that star formation rate is primarily determined by the total mass of the virialized dark matter structures, or dark matter halos. In addition, I show that the measures of galaxy correlation function exhibits a strong upturn on small scales, which cannot be explained with the clustering of halos hosting these galaxies alone. This strongly suggests that multiple galaxies can share a single massive dark matter halo. A simple scaling law between the number of galaxy occupants and halo mass is sufficient to successfully reproduce the observed shape of the correlation function. However, there is uncertainty in drawing physical parameters of the halo-galaxy association which depends on the assumed form of the scaling law, or the halo occupation distribution (HOD). Physical interpretations are further exacerbated by the unknown degree of "fairness" that color-selected galaxies represent. I present an alternative approach which requires precise measurements of both the luminosity function and correlation function (of various luminosity thresholds). By

  18. THE REDSHIFT DISTRIBUTION OF INTERVENING WEAK Mg II QUASAR ABSORBERS AND A CURIOUS DEPENDENCE ON QUASAR LUMINOSITY

    SciTech Connect

    Evans, Jessica L.; Churchill, Christopher W.; Nielsen, Nikole M.; Klimek, Elizabeth S.; Murphy, Michael T.

    2013-05-01

    We have identified 469 Mg II {lambda}{lambda}2796, 2803 doublet systems having W{sub r} {>=} 0.02 A in 252 Keck/High Resolution Echelle Spectrometer and UVES/Very Large Telescope quasar spectra over the redshift range 0.1 < z < 2.6. Using the largest sample yet of 188 weak Mg II systems (0.02 A {<=}W{sub r} < 0.3 A), we calculate their absorber redshift path density, dN/dz. We find clear evidence of evolution, with dN/dz peaking at z {approx} 1.2, and that the product of the absorber number density and cross section decreases linearly with increasing redshift; weak Mg II absorbers seem to vanish above z {approx_equal} 2.7. If the absorbers are ionized by the UV background, we estimate number densities of 10{sup 6}-10{sup 9} Mpc{sup -3} for spherical geometries and 10{sup 2}-10{sup 5} Mpc{sup -3} for more sheetlike geometries. We also find that dN/dz toward intrinsically faint versus bright quasars differs significantly for weak and strong (W{sub r} {>=} 1.0 A) absorbers. For weak absorption, dN/dz toward bright quasars is {approx}25% higher than toward faint quasars (10{sigma} at low redshift, 0.4 {<=} z {<=} 1.4, and 4{sigma} at high redshift, 1.4 < z {<=} 2.34). For strong absorption the trend reverses, with dN/dz toward faint quasars being {approx}20% higher than toward bright quasars (also 10{sigma} at low redshift and 4{sigma} at high redshift). We explore scenarios in which beam size is proportional to quasar luminosity and varies with absorber and quasar redshifts. These do not explain dN/dz's dependence on quasar luminosity.

  19. The Redshift Distribution of Intervening Weak Mg II Quasar Absorbers and a Curious Dependence on Quasar Luminosity

    NASA Astrophysics Data System (ADS)

    Evans, Jessica L.; Churchill, Christopher W.; Murphy, Michael T.; Nielsen, Nikole M.; Klimek, Elizabeth S.

    2013-05-01

    We have identified 469 Mg II λλ2796, 2803 doublet systems having Wr >= 0.02 Å in 252 Keck/High Resolution Echelle Spectrometer and UVES/Very Large Telescope quasar spectra over the redshift range 0.1 < z < 2.6. Using the largest sample yet of 188 weak Mg II systems (0.02 Å <=Wr < 0.3 Å), we calculate their absorber redshift path density, dN/dz. We find clear evidence of evolution, with dN/dz peaking at z ~ 1.2, and that the product of the absorber number density and cross section decreases linearly with increasing redshift; weak Mg II absorbers seem to vanish above z ~= 2.7. If the absorbers are ionized by the UV background, we estimate number densities of 106-109 Mpc-3 for spherical geometries and 102-105 Mpc-3 for more sheetlike geometries. We also find that dN/dz toward intrinsically faint versus bright quasars differs significantly for weak and strong (Wr >= 1.0 Å) absorbers. For weak absorption, dN/dz toward bright quasars is ~25% higher than toward faint quasars (10σ at low redshift, 0.4 <= z <= 1.4, and 4σ at high redshift, 1.4 < z <= 2.34). For strong absorption the trend reverses, with dN/dz toward faint quasars being ~20% higher than toward bright quasars (also 10σ at low redshift and 4σ at high redshift). We explore scenarios in which beam size is proportional to quasar luminosity and varies with absorber and quasar redshifts. These do not explain dN/dz's dependence on quasar luminosity.

  20. The Identification of Z-dropouts in Pan-STARRS1: Three Quasars at 6.5< z< 6.7

    NASA Astrophysics Data System (ADS)

    Venemans, B. P.; Bañados, E.; Decarli, R.; Farina, E. P.; Walter, F.; Chambers, K. C.; Fan, X.; Rix, H.-W.; Schlafly, E.; McMahon, R. G.; Simcoe, R.; Stern, D.; Burgett, W. S.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Magnier, E. A.; Metcalfe, N.; Morgan, J. S.; Price, P. A.; Tonry, J. L.; Waters, C.; AlSayyad, Y.; Banerji, M.; Chen, S. S.; González-Solares, E. A.; Greiner, J.; Mazzucchelli, C.; McGreer, I.; Miller, D. R.; Reed, S.; Sullivan, P. W.

    2015-03-01

    Luminous distant quasars are unique probes of the high-redshift intergalactic medium (IGM) and of the growth of massive galaxies and black holes in the early universe. Absorption due to neutral hydrogen in the IGM makes quasars beyond a redshift of z≃ 6.5 very faint in the optical z band, thus locating quasars at higher redshifts requires large surveys that are sensitive above 1 micron. We report the discovery of three new z\\gt 6.5 quasars, corresponding to an age of the universe of \\lt 850 Myr, selected as z-band dropouts in the Pan-STARRS1 survey. This increases the number of known z\\gt 6.5 quasars from four to seven. The quasars have redshifts of z = 6.50, 6.52, and 6.66, and include the brightest z-dropout quasar reported to date, PSO J036.5078 + 03.0498 with {{M}1450}=-27.4. We obtained near-infrared spectroscopy for the quasars, and from the Mg ii line, we estimate that the central black holes have masses between 5 × 108 and 4 × 109 {{M}⊙ } and are accreting close to the Eddington limit ({{L}Bol}/{{L}Edd}=0.13-1.2). We investigate the ionized regions around the quasars and find near-zone radii of {{R}NZ}=1.5-5.2 proper Mpc, confirming the trend of decreasing near-zone sizes with increasing redshift found for quasars at 5.7\\lt z\\lt 6.4. By combining RNZ of the PS1 quasars with those of 5.7\\lt z\\lt 7.1 quasars in the literature, we derive a luminosity-corrected redshift evolution of {{R}NZ,corrected}=(7.2+/- 0.2)-(6.1+/- 0.7)× (z-6) Mpc. However, the large spread in RNZ in the new quasars implies a wide range in quasar ages and/or a large variation in the neutral hydrogen fraction along different lines of sight. Based in part on observations collected at the European Southern Observatory, Chile, programs 179.A-2010, 092.A-0150, 093.A-0863, and 093.A-0574, and at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC). This paper

  1. A K{sub S} AND IRAC SELECTION OF HIGH-REDSHIFT EXTREMELY RED OBJECTS

    SciTech Connect

    Wang, Wei-Hao; Barger, Amy J.; Cowie, Lennox L.

    2012-01-10

    In order to find the most extreme dust-hidden high-redshift galaxies, we select 196 extremely red objects in the K{sub S} and Infrared Array Camera (IRAC) bands (KIEROs, [K{sub s} - 4.5 {mu}m]{sub AB} > 1.6) in the 0.06 deg{sup 2} Great Observatories Origins Deep Surveys-North (GOODS-N) region. This selection avoids the Balmer breaks of galactic spectra at z < 4 and picks up red galaxies with strong dust extinction. The photometric redshifts of KIEROs are between 1.5 and 5, with {approx}70% at z {approx} 2-4. KIEROs are very massive, with M{sub *} {approx} 10{sup 10}-10{sup 12} M{sub Sun }. They are optically faint and usually cannot be picked out by the Lyman break selection. On the other hand, the KIERO selection includes approximately half of the known millimeter and submillimeter galaxies in the GOODS-N. Stacking analyses in the radio, millimeter, and submillimeter all show that KIEROs are much more luminous than average 4.5 {mu}m-selected galaxies. Interestingly, the stacked fluxes for Advanced Camera for Surveys (ACS)-undetected KIEROs in these wave bands are 2.5-5 times larger than those for ACS-detected KIEROs. With the stacked radio fluxes and the local radio-FIR correlation, we derive mean infrared luminosities of (2-7) Multiplication-Sign 10{sup 12} L{sub Sun} and mean star formation rates (SFRs) of 400-1200 M{sub Sun} yr{sup -1} for KIEROs with redshifts. We do not find evidence of a significant subpopulation of passive KIEROs. The large stellar masses and SFRs imply that KIEROs are z > 2 massive galaxies in rapid formation. Our results show that a large sample of dusty ultraluminous sources can be selected in this way and that a large fraction of high-redshift star formation is hidden by dust.

  2. Radio Selected Clusters of Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Wing, Joshua; Blanton, Elizabeth

    2010-08-01

    Previous studies have shown that three-component radio sources exhibiting some degree of bending between components are likely to be found in galaxy clusters. Often this radio emission is associated with a cD type galaxy at the center of a cluster. We have cross-correlated the Sloan Digital Sky Survey (SDSS) with samples selected from the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) catalog and measured the richness of the cluster environments surrounding three- component sources exhibiting both bent and straight lobes. This has lead to the discovery and classification of a large number of galaxy clusters out to a redshift of z ~ 0.5. For both bent- and straight- lobed sources without an optical counterpart it is likely that the radio emission is associated with a galaxy fainter than m_r=22 (the limiting magnitude of the SDSS) and at a redshift higher than z~0.8. We propose to observe a small sub-sample of these sources with the FLAMINGOS instrument on the Mayall 4-m telescope in an attempt to discover if these sources are located in high redshift (z≳0.8) galaxy clusters. In our visually-selected bent radio source sample, 78% of sources with counterparts in the SDSS are associated with clusters.

  3. The problematic growth of dust in high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Ferrara, A.; Viti, S.; Ceccarelli, C.

    2016-11-01

    Dust growth via accretion of gas species has been proposed as the dominant process to increase the amount of dust in galaxies. We show here that this hypothesis encounters severe difficulties that make it unfit to explain the observed UV and IR properties of such systems, particularly at high redshifts. Dust growth in the diffuse ISM phases is hampered by (a) too slow accretion rates, (b) too high dust temperatures, and (c) the Coulomb barrier that effectively blocks accretion. In molecular clouds these problems are largely alleviated. Grains are cold (but not colder than the CMB temperature, TCMB ≈ 20 K at redshift z = 6). However, in dense environments accreted materials form icy water mantles, perhaps with impurities. Mantles are immediately (≲1 yr) photo-desorbed as grains return to the diffuse ISM at the end of the cloud lifetime, thus erasing any memory of the growth. We conclude that dust attenuating stellar light at high-z must be ready-made stardust largely produced in supernova ejecta.

  4. The Ultimate Multiwavelength Quasar Survey (ROSES-2011)

    NASA Astrophysics Data System (ADS)

    Richards, Gordon

    Our objective is to create the ultimate multi-wavelength quasar catalog by combining moderatelydeep, wide-field data in the NASA archives (from GALEX, 2MASS, Spitzer, and WISE) with public optical imaging data from the Sloan Digital Sky Survey. This catalog will extend from deep samples with signficant multi-wavelength coverage in a small area (e.g., SDSS "Stripe 82"), to shallower samples over a larger area with less multiwavelength coverage. Our efforts are a crucial step to bridging between existing spectroscopic surveys and future photometric surveys. Using this catalog, we will investigate the clustering and luminosity function of faint (i »21-23), high-redshift (z > 2.5) quasars in order to break degeneracies between different models of "feedback" from active galactic nuclei (AGN). Our approach is unique in its application of a Bayesian quasar selection algorithm that has been demonstrated to out-perform standard methods and that has been tested on multi-wavelength data. Once quasars have been identified, we will apply our existing photometric redshift algorithms. Richards and Myers are among the world's experts in finding quasars and using their clustering and luminosity function to do cutting-edge science. Quasar clustering analysis will make use of the team's existing algorithms, which are designed to handle the inherently photometric nature of the quasar sample. The quasar luminosity function algorithms are already in place, allowing for timely completion of this project once the multi-wavelength NASA data have been incorporated. As with all quasar catalogs that represent the next generation in improvements, this multi-wavelength quasar catalog will have an impact that extends far beyond our own science goals. This time is ripe for the construction of such a catalog as only in the past year has this dataset covered such a large range of wavelengths and area. In terms of our own science, understanding the form of AGN feedback and the extent to which it

  5. Strongly time-variable ultraviolet metal-line emission from the circum-galactic medium of high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Sravan, Niharika; Faucher-Giguère, Claude-André; van de Voort, Freeke; Kereš, Dušan; Muratov, Alexander L.; Hopkins, Philip F.; Feldmann, Robert; Quataert, Eliot; Murray, Norman

    2016-11-01

    We use cosmological simulations from the Feedback In Realistic Environments project, which implement a comprehensive set of stellar feedback processes, to study ultraviolet (UV) metal-line emission from the circum-galactic medium of high-redshift (z = 2-4) galaxies. Our simulations cover the halo mass range Mh ˜ 2 × 1011-8.5 × 1012 M⊙ at z = 2, representative of Lyman break galaxies. Of the transitions we analyse, the low-ionization C III (977 Å) and Si III (1207 Å) emission lines are the most luminous, with C IV (1548 Å) and Si IV (1394 Å) also showing interesting spatially extended structures. The more massive haloes are on average more UV-luminous. The UV metal-line emission from galactic haloes in our simulations arises primarily from collisionally ionized gas and is strongly time variable, with peak-to-trough variations of up to ˜2 dex. The peaks of UV metal-line luminosity correspond closely to massive and energetic mass outflow events, which follow bursts of star formation and inject sufficient energy into galactic haloes to power the metal-line emission. The strong time variability implies that even some relatively low-mass haloes may be detectable. Conversely, flux-limited samples will be biased towards haloes whose central galaxy has recently experienced a strong burst of star formation. Spatially extended UV metal-line emission around high-redshift galaxies should be detectable by current and upcoming integral field spectrographs such as the Multi Unit Spectroscopic Explorer on the Very Large Telescope and Keck Cosmic Web Imager.

  6. The search for and investigation of large quasar groups

    NASA Astrophysics Data System (ADS)

    Komberg, B. V.; Kravtsov, A. V.; Lukash, V. N.

    1996-10-01

    Recently, it was suggested that large concentrations or groups of quasars may trace sites of enhanced matter density at medium and high redshifts, analogous to the way in which galaxy clusters trace them in nearby space. We checked existing quasar data for the presence of such groups. Large quasar groups (LQGs) were identified using a well-known cluster analysis technique and the following selection criteria: (i) an LQG must contain at least 10 quasars; (ii) the number density of quasars in a group must exceed that of the background by at least a factor of 2; (iii) the majority of quasars in a group must have reliable redshifts. Our final list contains 12 such groups, including one reported previously. It was found that most of the quasars in these groups come from deep homogeneous surveys. Further analysis of the spatial distribution of quasars in these surveys shows that: (i) the probability that the detected groups are random is rather small (generally a few per cent); (ii) their sizes range from ~70 to ~160 h^-1 Mpc, which is comparable to the sizes of nearby rich superclusters; (iii) the detected groups all have redshifts 0.5quasar groups and superclusters can be evolutionarily related. We argue that quasar groups could be a common feature of the spatial distribution of medium-redshift quasars, and that the quasars in groups may belong to concentrations of young galaxy clusters and groups (distant superclusters) and hence be biased tracers of the large-scale structure of matter distribution in the early Universe. Theoretical implications, as well as other observations needed to test this point, are discussed.

  7. Quasar Lifetimes and Black Hole Spins

    NASA Astrophysics Data System (ADS)

    Rafiee, Alireza; Hall, P. B.

    2007-12-01

    Wang et al. (2006) estimated a high average radiative efficiency of 30% to 35% for quasars (actively accreting black holes) at moderate redshift, strongly suggesting that all supermassive black holes are rotating very rapidly. Their method for determining radiative efficiencies has two advantages: it deals with changes in quantities rather than absolutes and it is independent of obscured sources. However, we have investigated the reliability of the assumptions made by Wang et al. and have found that their method is not independent of quasar lifetimes. Nonetheless, given constraints on quasar lifetimes, their method can be used to constrain quasar radiative efficiencies and black hole spins. Conversely, the range of radiative efficiencies possible for the full range of black hole spins can be used to constrain the average lifetimes of quasars (assuming that luminous quasars are not powered by radiatively inefficient accretion flows). We will present interrelated constraints on quasar lifetimes, Eddington ratios and radiative efficiencies (black hole spins) from a statistically complete sample of SDSS quasars with black hole mass estimates from Mg II. PBH and AR are supported in part by NSERC.

  8. Resolving the properties of massive, high-redshift starbursts

    NASA Astrophysics Data System (ADS)

    Simpson, James Matthew

    2015-06-01

    . Finally, I present observations of two far-infrared-bright quasars, a potential transition stage in the evolution of SMGs. By considering the gas and black hole properties of these sources I show that they are consistent with the evolutionary scenario where far-infrared bright quasars represent a short phase in the transformation of a starburst dominated SMGs into an unobscured quasar.

  9. The Nature of Weak-Line Quasars at Low Redshift

    NASA Astrophysics Data System (ADS)

    Brandt, W. N.

    2010-09-01

    The SDSS has uncovered a remarkable class of radio-quiet quasars with no or extremely weak optical/UV emission lines. These have now been studied fairly well at high redshift (z = 2-6), but not at low redshift. We propose exploratory Chandra observations of 11 optically bright weak-line quasars (WLQs) at low redshift (z = 0.40-2.02) that will clarify the nature of this population. Specifically, we will determine if these low-redshift WLQs have "anemic" BLRs, or if instead they have relativistically boosted optical/UV/X-ray continua. The anemic-BLR explanation is favored for high-redshift WLQs, and we will determine if our targets represent the z < 2 extension of this population. We will also assess if WLQs show X-ray evidence for high Eddington-normalized accretion rates.

  10. The premature formation of high-redshift galaxies

    SciTech Connect

    Melia, Fulvio

    2014-05-01

    Observations with WFC3/IR on the Hubble Space Telescope and the use of gravitational lensing techniques have facilitated the discovery of galaxies as far back as z ∼ 10-12, a truly remarkable achievement. However, this rapid emergence of high-z galaxies, barely ∼200 Myr after the transition from Population III star formation to Population II, appears to be in conflict with the standard view of how the early universe evolved. This problem has much in common with the better known (and probably related) premature appearance of supermassive black holes at z ≳ 6. It is difficult to understand how ∼10{sup 9} M {sub ☉} black holes could have appeared so quickly after the big bang without invoking non-standard accretion physics and the formation of massive seeds, neither of which is seen in the local universe. In earlier work, we showed that the appearance of high-z quasars could instead be understood more reasonably in the context of the R {sub h} = ct universe, which does not suffer from the same time compression issues as ΛCDM does at early epochs. Here, we build on that work by demonstrating that the evolutionary growth of primordial galaxies was consistent with the current view of how the first stars formed, but only with the timeline afforded by the R {sub h} = ct cosmology. We also show that the growth of high-z quasars was mutually consistent with that of the earliest galaxies, though it is not yet clear whether the former grew from 5-20 M {sub ☉} seeds created in Population III or Population II supernova explosions.

  11. Through BAL Quasars Brightly

    NASA Technical Reports Server (NTRS)

    Chartas, George

    2003-01-01

    We report on an observation of the broad absorption line (BAL) quasar PG 1115+080 performed with the XMM-Newton observatory. Spectral analysis reveals the second case of a relativistic X-ray-absorbing outflow in a BAL quasar. The first case was revealed in a recent observation of APM 08279+5255 with the Chandra X-Ray Observatory. As in the case of APM 08279+5255, the observed flux of PG 1115+080 is greatly magnified by gravitational lensing. The relatively high redshift (z=1.72) of the quasar places the redshifted energies of resonant absorption features in a sensitive portion of the XMM- Newton spectral response. The spectrum indicates the presence of complex low-energy absorption in the 0.2-0.6 keV observed energy band and high-energy absorption in the 2-5 keV observed energy band. The high-energy absorption is best modeled by two Gaussian absorption lines with rest-frame energies of 7.4 and 9.5 keV. Assuming that these two lines axe produced by resonant absorption due to Fe XXV, we infer that the X-ray absorbers are outflowing with velocities of approx. 0.10c and approx. 0.34c respectively. We have detected significant variability of the energies and widths of the X-ray BALs in PG 1115+080 and APM 08279+5255 over timescales of 19 and 1.8 weeks (proper time), respectively. The BAL variability observed from APM 08279+5255 supports our earlier conclusion that these absorbers are most likely launched at relatively small radii of less than 10(exp 16)(Mbh/M8)(sup 1/2) cm. A comparison of the ionization properties and column densities of the low-energy and high-energy absorbers indicates that these absorbers are likely distinct; however, higher spectral resolution is needed to confirm this result. Finally, we comment on prospects for constraining the kinematic and ionization properties of these X-ray BALs with the next generation of X-ray observatories.

  12. Parsec-scale radio structures in Quasars

    NASA Astrophysics Data System (ADS)

    Coldwell, G.; Paragi, Z.; Gurvits, L.

    Very Long Baseline Interferometry (VLBI) con su nueva extensión para el radio telescopio orbital, VSOP/HALCA, ofrece una incomparable resolución angular alcanzando escalas de milisegundos y submilisegundos de arco a longitudes de onda de centímetros. En este trabajo presentamos observaciones y análisis de estructuras en radio, en escalas de parsec, para 3 radio fuentes extragalácticas de la muestra de VSOP Survey y 1 quasar, 1442+101, del proyecto `VSOP High Redshift'.

  13. FRONTIER FIELDS: HIGH-REDSHIFT PREDICTIONS AND EARLY RESULTS

    SciTech Connect

    Coe, Dan; Bradley, Larry; Zitrin, Adi

    2015-02-20

    The Frontier Fields program is obtaining deep Hubble and Spitzer Space Telescope images of new ''blank'' fields and nearby fields gravitationally lensed by massive galaxy clusters. The Hubble images of the lensed fields are revealing nJy sources (AB mag > 31), the faintest galaxies yet observed. The full program will transform our understanding of galaxy evolution in the first 600 million years (z > 9). Previous programs have yielded a dozen or so z > 9 candidates, including perhaps fewer than expected in the Ultra Deep Field and more than expected in shallower Hubble images. In this paper, we present high-redshift (z > 6) number count predictions for the Frontier Fields and candidates in three of the first Hubble images. We show the full Frontier Fields program may yield up to ∼70 z > 9 candidates (∼6 per field). We base this estimate on an extrapolation of luminosity functions observed between 4 < z < 8 and gravitational lensing models submitted by the community. However, in the first two deep infrared Hubble images obtained to date, we find z ∼ 8 candidates but no strong candidates at z > 9. We defer quantitative analysis of the z > 9 deficit (including detection completeness estimates) to future work including additional data. At these redshifts, cosmic variance (field-to-field variation) is expected to be significant (greater than ±50%) and include clustering of early galaxies formed in overdensities. The full Frontier Fields program will significantly mitigate this uncertainty by observing six independent sightlines each with a lensing cluster and nearby blank field.

  14. STAR FORMATION IN HIGH-REDSHIFT CLUSTER ELLIPTICALS

    SciTech Connect

    Wagner, Cory R.; Brodwin, Mark; Snyder, Gregory F.; Gonzalez, Anthony H.; Mancone, Conor L.; Stanford, S. A.; Alberts, Stacey; Pope, Alexandra; Stern, Daniel; Eisenhardt, Peter R. M.; Zeimann, Gregory R.; Chary, Ranga-Ram; Dey, Arjun; Moustakas, John

    2015-02-20

    We measure the star formation rates (SFRs) of massive (M {sub *} > 10{sup 10.1} M {sub ☉}) early-type galaxies (ETGs) in a sample of 11 high-redshift (1.0 < z < 1.5) galaxy clusters drawn from the IRAC Shallow Cluster Survey (ISCS). We identify ETGs visually from Hubble Space Telescope imaging and select likely cluster members as having either an appropriate spectroscopic redshift or red-sequence color. Mid-infrared SFRs are measured using Spitzer 24 μm data for isolated cluster galaxies for which contamination by neighbors, and active galactic nuclei, can be ruled out. Cluster ETGs show enhanced specific star formation rates (sSFRs) compared to cluster galaxies in the local universe, but have sSFRs more than four times lower than that of field ETGs at 1 < z < 1.5. Relative to the late-type cluster population, isolated ETGs show substantially quenched mean SFRs, yet still contribute 12% of the overall star formation activity measured in 1 < z < 1.5 clusters. We find that new ETGs are likely being formed in ISCS clusters; the fraction of cluster galaxies identified as ETGs increases from 34% to 56% from z ∼ 1.5 → 1.25. While the fraction of cluster ETGs that are highly star-forming (SFR ≥ 26 M {sub ☉} yr{sup –1}) drops from 27% to 10% over the same period, their sSFRs are roughly constant. All these factors taken together suggest that, particularly at z ≳ 1.25, the events that created these distant cluster ETGs—likely mergers, at least among the most massive—were both recent and gas-rich.

  15. The growth efficiency of high-redshift black holes

    NASA Astrophysics Data System (ADS)

    Pacucci, Fabio; Volonteri, Marta; Ferrara, Andrea

    2015-09-01

    The observational evidence that Super-Massive Black Holes (M• ˜ 109-10 M⊙) are already in place less than 1 Gyr after the big bang poses stringent time constraints on the growth efficiency of their seeds. Among proposed possibilities, the formation of massive (˜103-6 M⊙) seeds and/or the occurrence of super-Eddington (dot{M}>dot{M}_{Edd}) accretion episodes may contribute to the solution of this problem. In this work, using a set of astrophysically motivated initial conditions, we analytically and numerically investigate the accretion flow on to high-redshift (z ˜ 10) black holes to understand the physical requirements favouring rapid and efficient growth. Our model identifies a `feeding-dominated' accretion regime and a `feedback-limited' one, the latter being characterized by intermittent (duty cycles D ≲ 0.5) and inefficient growth, with recurring outflow episodes. We find that low-mass seeds (≲103-4 M⊙) evolve in the feedback-limited regime, while more massive seeds (≳105-6 M⊙) grow very rapidly as they are found in the feeding-dominated regime. In addition to the standard accretion model with a fixed matter-energy conversion factor (ɛ = 0.1), we have also explored slim disc models, appropriate for super-Eddington accretion, where radiation is trapped in the disc and the radiative efficiency is reduced (ɛ ≲ 0.04), which may ensure a continuous growth with dot{M} ≫ dot{M}_{Edd} (up to {˜ } 300 dot{M}_{Edd} in our simulations). Under these conditions, outflows play a negligible role and a black hole can accrete 80-100 per cent of the gas mass of the host halo (˜107 M⊙) in ˜10 Myr, while in feedback-limited systems we predict that black holes can accrete only up to ˜15 per cent of the available mass.

  16. THE SUDDEN DEATH OF THE NEAREST QUASAR

    SciTech Connect

    Schawinski, Kevin; Virani, Shanil; Megan Urry, C.; Natarajan, Priyamvada; Coppi, Paolo; Evans, Daniel A.; Keel, William C.; Manning, Anna; Lintott, Chris J.; Kaviraj, Sugata; Bamford, Steven P.; Jozsa, Gyula I. G.; Garrett, Michael; Van Arkel, Hanny; Gay, Pamela; Fortson, Lucy

    2010-11-20

    Galaxy formation is significantly modulated by energy output from supermassive black holes at the centers of galaxies which grow in highly efficient luminous quasar phases. The timescale on which black holes transition into and out of such phases is, however, unknown. We present the first measurement of the shutdown timescale for an individual quasar using X-ray observations of the nearby galaxy IC 2497, which hosted a luminous quasar no more than 70,000 years ago that is still seen as a light echo in 'Hanny's Voorwerp', but whose present-day radiative output is lower by at least two, and more likely by over four, orders of magnitude. This extremely rapid shutdown provides new insight into the physics of accretion in supermassive black holes and may signal a transition of the accretion disk to a radiatively inefficient state.

  17. Quasar Absorption in the UV: Probing the Intergalactic Medium

    NASA Technical Reports Server (NTRS)

    Weinberg, David; Katz, Neal

    1998-01-01

    The purpose of this project is to model the low-redshift Lyman-alpha forest and exploration of the relation between Lyman-alpha absorbers and galaxies. This paper shows that the simulation models that are so successful at explaining properties of the high-redshift forest also account for the most important results of observational studies of the low-redshift forest, from HST (especially the Quasar Absorption Line Key Project) and ground-based follow-up.

  18. THERMAL AND RADIATIVE ACTIVE GALACTIC NUCLEUS FEEDBACK HAVE A LIMITED IMPACT ON STAR FORMATION IN HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Roos, Orianne; Juneau, Stéphanie; Bournaud, Frédéric; Gabor, Jared M.

    2015-02-10

    The effects of active galactic nuclei (AGNs) on their host galaxies depend on the coupling between the injected energy and the interstellar medium (ISM). Here, we model and quantify the impact of long-range AGN ionizing radiation—in addition to the often considered small-scale energy deposition—on the physical state of the multi-phase ISM of the host galaxy and on its total star formation rate (SFR). We formulate an AGN spectral energy distribution matched with observations, which we use with the radiative transfer (RT) code Cloudy to compute AGN ionization in a simulated high-redshift disk galaxy. We use a high-resolution (∼6 pc) simulation including standard thermal AGN feedback and calculate RT in post-processing. Surprisingly, while these models produce significant AGN-driven outflows, we find that AGN ionizing radiation and heating reduce the SFR by a few percent at most for a quasar luminosity (L {sub bol} = 10{sup 46.5} erg s{sup –1}). Although the circumgalactic gaseous halo can be kept almost entirely ionized by the AGN, most star-forming clouds (n ≳ 10{sup 2} {sup –} {sup 3} cm{sup –3}) and even the reservoirs of cool atomic gas (n ∼ 0.3-10 cm{sup –3})—which are the sites of future star formation (SF; 100-200 Myr), are generally too dense to be significantly affected. Our analysis ignores any absorption from a putative torus, making our results upper limits on the effects of ionizing radiation. Therefore, while the AGN-driven outflows can remove substantial amounts of gas in the long term, the impact of AGN feedback on the SF efficiency in the interstellar gas in high-redshift galaxies is marginal, even when long-range radiative effects are accounted for.

  19. The accelerated build-up of the red sequence in high-redshift galaxy clusters

    NASA Astrophysics Data System (ADS)

    Cerulo, P.; Couch, W. J.; Lidman, C.; Demarco, R.; Huertas-Company, M.; Mei, S.; Sánchez-Janssen, R.; Barrientos, L. F.; Muñoz, R. P.

    2016-04-01

    We analyse the evolution of the red sequence in a sample of galaxy clusters at redshifts 0.8 < z < 1.5 taken from the HAWK-I Cluster Survey (HCS). The comparison with the low-redshift (0.04 < z < 0.08) sample of the WIde-field Nearby Galaxy-cluster Survey (WINGS) and other literature results shows that the slope and intrinsic scatter of the cluster red sequence have undergone little evolution since z = 1.5. We find that the luminous-to-faint ratio and the slope of the faint end of the luminosity distribution of the HCS red sequence are consistent with those measured in WINGS, implying that there is no deficit of red galaxies at magnitudes fainter than M_V^{ast } at high redshifts. We find that the most massive HCS clusters host a population of bright red sequence galaxies at MV < -22.0 mag, which are not observed in low-mass clusters. Interestingly, we also note the presence of a population of very bright (MV < -23.0 mag) and massive (log (M*/M⊙) > 11.5) red sequence galaxies in the WINGS clusters, which do not include only the brightest cluster galaxies and which are not present in the HCS clusters, suggesting that they formed at epochs later than z = 0.8. The comparison with the luminosity distribution of a sample of passive red sequence galaxies drawn from the COSMOS/UltraVISTA field in the photometric redshift range 0.8 < zphot < 1.5 shows that the red sequence in clusters is more developed at the faint end, suggesting that halo mass plays an important role in setting the time-scales for the build-up of the red sequence.

  20. The essential signature of a massive starburst in a distant quasar.

    PubMed

    Solomon, P; Vanden Bout, P; Carilli, C; Guelin, M

    2003-12-11

    Observations of carbon monoxide emission in high-redshift (zeta > 2) galaxies indicate the presence of large amounts of molecular gas. Many of these galaxies contain an active galactic nucleus powered by accretion of gas onto a supermassive black hole, and a key question is whether their extremely high infrared luminosities result from the active galactic nucleus, from bursts of massive star formation (associated with the molecular gas), or both. In the Milky Way, high-mass stars form in the dense cores of interstellar molecular clouds, where gas densities are n(H2) > 10(5) cm(-3) (refs 1, 2). Recent surveys show that virtually all galactic sites of high-mass star formation have similarly high densities. The bulk of the cloud material traced by CO observations, however, is at a much lower density. For galaxies in the local Universe, the HCN molecule is an effective tracer of high-density molecular gas. Here we report observations of HCN emission from the infrared-luminous 'Cloverleaf' quasar (at a redshift zeta = 2.5579). The HCN line luminosity indicates the presence of 10 billion solar masses of very dense gas, an essential feature of an immense starburst, which contributes, together with the active galactic nucleus it harbours, to its high infrared luminosity.

  1. Towards a comprehensive picture of powerful quasars, their host galaxies and quasar winds at z ˜ 0.5

    NASA Astrophysics Data System (ADS)

    Wylezalek, Dominika; Zakamska, Nadia L.; Liu, Guilin; Obied, Georges

    2016-03-01

    Luminous type-2 quasars in which the glow from the central black hole is obscured by dust are ideal targets for studying their host galaxies and the quasars' effect on galaxy evolution. Such feedback appears ubiquitous in luminous obscured quasars where high-velocity-ionized nebulae have been found. We present rest-frame yellow-band (˜5000 Å) observations using the Hubble Space Telescope (HST) for a sample of 20 luminous quasar host galaxies at 0.2 < z < 0.6 selected from the Sloan Digital Sky Survey. For the first time, we combine host galaxy observations with geometric measurements of quasar illumination using blue-band HST observations and [O III] integral field unit observations probing the quasar winds. The HST images reveal bright merger signatures in about half the galaxies; a significantly higher fraction than in comparison inactive ellipticals. We show that the host galaxies are primarily bulge-dominated, with masses close to M*, but belong to <30 per cent of elliptical galaxies that are highly star forming at z ˜ 0.5. Ionized gas signatures are uncorrelated with faint stellar discs (if present), confirming that the ionized gas is not concentrated in a disc. Scattering cones and [O III] ionized gas velocity field are aligned with the forward scattering cones being co-spatial with the blue-shifted side of the velocity field, suggesting the high-velocity gas is indeed photo-ionized by the quasar. Based on the host galaxies' high star formation rates and bright merger signatures, we suggest that this low-redshift outbreak of luminous quasar activity is triggered by recent minor mergers. Combining these novel observations, we present new quasar unification tests, which are in agreement with expectations of the orientation-based unification model for quasars.

  2. The evolution of the quasar continuum

    NASA Technical Reports Server (NTRS)

    Elvis, M.

    1992-01-01

    We now have in hand a large data base of Roentgen Satellite (ROSAT), optical, and IR complementary data. We are in the process of obtaining a large amount of the International Ultraviolet Explorer (IUE) data for the same quasar sample. For our complementary sample at high redshifts, where the UV was redshifted into the optical, we have just had approved large amounts of observing time to cover the quasar continuum in the near-IR using the new Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) array spectrographs. Ten micron, optical, and VLA radio, data also have approved time. An ISO US key program was approved to extend this work into the far-IR, and the launch of ASTRO-D (early in 1993) promises to extend it to higher energy X-rays.

  3. Quasars as tracers of cosmic flows

    NASA Astrophysics Data System (ADS)

    Modzelewska, J.; Czerny, B.; Bilicki, M.; Hryniewicz, K.; Krupa, M.; Petrogalli, F.; Pych, W.; Kurcz, A.; Udalski, A.

    2016-10-01

    Quasars, as the most luminous persistent sources in the Universe, have broad applications for cosmological studies. In particular, they can be employed to directly measure the expansion history of the Universe, similarly to SNe Ia. The advantage of quasars is that they are numerous, cover a broad range of redshifts, up to z = 7, and do not show significant evolution of metallicity with redshift. The idea is based on the relation between the time delay of an emission line and the continuum, and the absolute monochromatic luminosity of a quasar. For intermediate redshift quasars, the suitable line is Mg II. Between December 2012 and March 2014, we performed five spectroscopic observations of the QSO CTS C30.10 (z = 0.900) using the South African Large Telesope (SALT), supplemented with photometric monitoring, with the aim of determining the variability of the line shape, changes in the total line intensity and in the continuum. We show that the method is very promising.

  4. Seeking the epoch of maximum luminosity for dusty quasars

    SciTech Connect

    Vardanyan, Valeri; Weedman, Daniel; Sargsyan, Lusine E-mail: dweedman@isc.astro.cornell.edu

    2014-08-01

    Infrared luminosities νL{sub ν}(7.8 μm) arising from dust reradiation are determined for Sloan Digital Sky Survey (SDSS) quasars with 1.4 quasar Gpc{sup –3} having νL{sub ν}(7.8 μm) > 10{sup 46.6} erg s{sup –1} for all 2 quasars first reached their maximum luminosity has not yet been identified at any redshift below 5. The most ultraviolet luminous quasars, defined by rest frame νL{sub ν}(0.25 μm), have the largest values of the ratio νL{sub ν}(0.25 μm)/νL{sub ν}(7.8 μm) with a maximum ratio at z = 2.9. From these results, we conclude that the quasars most luminous in the ultraviolet have the smallest dust content and appear luminous primarily because of lessened extinction. Observed ultraviolet/infrared luminosity ratios are used to define 'obscured' quasars as those having >5 mag of ultraviolet extinction. We present a new summary of obscured quasars discovered with the Spitzer Infrared Spectrograph and determine the infrared luminosity function of these obscured quasars at z ∼ 2.1. This is compared with infrared luminosity functions of optically discovered, unobscured quasars in the SDSS and in the AGN and Galaxy Evolution Survey. The comparison indicates comparable numbers of obscured and unobscured quasars at z ∼ 2.1 with a possible excess of obscured quasars at fainter luminosities.

  5. An empirical SFR estimator for high redshift galaxies:

    NASA Astrophysics Data System (ADS)

    Arnouts, Stephane

    2015-08-01

    At high redshift, most of the SFR indicators are limited to the most massive galaxies (Far-IR, radio) and out of reach of optical spectroscopy (Halpha). The UV continuum is the only one available at all redshifts and for galaxies within a large range of mass. The main question is then to properly account for dust absorption. The SED fitting are always limited in the choice of popular attenuation laws (if not only one, starburst) which relies on the slope of the UV continuum. The alternative is to measure the net budget between the absorbed vs un-absorbed UV light i.e. the infrared excess (IRX= Lir/Luv).By using the deep 24 micron in the COSMOS field, we have observed a remarkable behaviour of IRX stripes within the (NUV-r)o vs (r-K)o color diagram which can be used to derive robust SFR estimates just with the Luv, Lr and Lk luminosities (Arnouts et al, 2013). We have shown that we can explain the correlation if we consider a two component models for the birth clouds and the ISM and also a complete model for galaxy inclination to explain the extrem IRX values. We are now extended the method with Herschel data at higher redshift (z~2) and lower masses (M~10^8Mo) by using stacking techniques and find that the IRX-NUVrK correlation persists (Le Floc’h , in prep). This method allows us to derive an accurate SFR for each individual galaxy based on its location in the NUVrK diagram and with no assumption on dust attenuation law, a main caveat for SED fitting technique.We investigated the behavior of the scatter of the SFR-Mass in GOODS and COSMOS fields and find that both SFR (Lir+Luv) or SFR(NUVrK) estimatesare consistent (Ilbert et al., 2015). Finally will investigate the dust-free UV luminosity functions in between 0

  6. High Redshift Radio Galaxies at Low Redshift, and Some Other Issues

    NASA Astrophysics Data System (ADS)

    Antonucci, Robert

    Cygnus A is the only high redshift radio galaxy at low redshift, that is it's the only nearby object with radio power in the range of the high redshift 3C objects. It is clear now that this is somewhat misleading in that Cyg A is an overachiever in the radio, and that its actual bolometric luminosity is much more modest than this would indicate. (This point has been explored and generalized in Barthel and Arnaud 1996; also see Carilli and Barthel 1996 for a detailed review of Cyg A). But the energy content of the lobes is famously large. There is a whole history of attempts to show that Cygnus A fits the Unified Model, and our particular contribution was detecting an apparent broad MgII line with the HST (Antonucci, Kinney and Hurt 1994, which includes references to previous work). The spectral signal-to-noise ratio (SNR) was less than amazing; furthermore an unflagged dead diode took out ~12 Å from the line profile; and there was an uncertain ``noise" contribution from confusing narrow lines (gory details in Antonucci 1994). One of the referees of our paper - the favorable one - stated that ``only a mother could love that line." Thus we reobserved it with somewhat better SNR and with the bad diode flagged, and the old and new data are presented to the same scale in Figure 1. Most of the bins are within the combined 1 σ statistical errors, and the many statistically significant wiggles are almost all present in NGC1068 as well (Antonucci, Hurt and Miller 1994). The point is that the errors are believable, and that the continuum should be set low. I believe the MgII line is there and is broader than we thought originally. (A detailed discussion of the spectrum is in prep.) In the 1994 paper we also stated that the polarization in the UV (F320W FOC filter) is ~6 %, and perpendicular to the radio axis, indicating that there is a fairly large contribution from scattered light from a quasar in this region. This is consistent with the scenario of Jackson and Tadhunter

  7. Formation of the first stars and quasars

    NASA Astrophysics Data System (ADS)

    Haiman, Z.

    We examine various observable signatures of the first generation of stars and low-luminosity quasars, including the metal enrichment, radiation background, and dust opacity/emission that they produce. We calculate the formation history of collapsed baryonic halos, based on an extension of the Press-Schechter formalism, incorporating the effects of pressure and H2-dissociation. We then use the observed CH ratio at z=3 in the Lyman-α forest clouds to obtain an average the star formation efficiency in these halos. Similarly, we fit the efficiency of black-hole formation, and the shape of quasar light curves, to match the observed quasar luminosity function (LF) between z=2-4, and use this fit to extrapolate the quasar LF to faint magnitudes and high redshifts. To be consistent with the lack of faint point-sources in the Hubble Deep Field, we impose a lower limit of ~ 75 km s-1 for the circular velocities of halos harboring central black holes. We find that in a λCDM model, stars reionize the IGM at zreion=9-13, and quasars at z=12. Observationally, zreion can be measured by the forthcoming MAP and Planck Surveyor satellites, via the damping of CMB anisotropies by ~10% on small angular scales due to electron scattering. We show that if reionization occurs later, at 5 <~ zreion <~ 10, then it can be measured from the spectra of individual sources. We also find that the Next Generation Space Telescope will be able to directly image about 1-40 star clusters, and a few faint quasars, from z > 10 per square arcminute. The amount of dust produced by the first supernovae has an optical depth of τ=0.1-1 towards high redshift sources, and the reprocessed UV flux of stars and quasars distorts the cosmic microwave background radiation (CMB) by a Compton y-parameter comparable to the COBE limit, y ~ 1.5 × 10-5.

  8. The evolution of high-redshift massive black holes

    NASA Astrophysics Data System (ADS)

    Volonteri, Marta; Habouzit, Melanie; Pacucci, Fabio; Tremmel, Michael

    Massive black holes (MBHs) are nowadays recognized as integral parts of galaxy evolution. Both the approximate proportionality between MBH and galaxy mass, and the expected importance of feedback from active MBHs in regulating star formation in their host galaxies point to a strong interplay between MBHs and galaxies. MBHs must form in the first galaxies and be fed by gas in these galaxies, with continuous or intermittent inflows that, at times, can be larger than the Eddington rate. Feedback from supernovae and from the MBHs themselves modulates the growth of the first MBHs. While current observational data only probe the most massive and luminous MBHs, the tip of the iceberg, we will soon be able to test theoretical models of MBH evolution on more ``normal'' MBHs: the MBHs that are indeed relevant in building the population that we observe in local galaxies, including our own Milky Way.

  9. Luminous supernovae.

    PubMed

    Gal-Yam, Avishay

    2012-08-24

    Supernovae, the luminous explosions of stars, have been observed since antiquity. However, various examples of superluminous supernovae (SLSNe; luminosities >7 × 10(43) ergs per second) have only recently been documented. From the accumulated evidence, SLSNe can be classified as radioactively powered (SLSN-R), hydrogen-rich (SLSN-II), and hydrogen-poor (SLSN-I, the most luminous class). The SLSN-II and SLSN-I classes are more common, whereas the SLSN-R class is better understood. The physical origins of the extreme luminosity emitted by SLSNe are a focus of current research.

  10. Star formation and mass assembly in high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Santini, P.; Fontana, A.; Grazian, A.; Salimbeni, S.; Fiore, F.; Fontanot, F.; Boutsia, K.; Castellano, M.; Cristiani, S.; de Santis, C.; Gallozzi, S.; Giallongo, E.; Menci, N.; Nonino, M.; Paris, D.; Pentericci, L.; Vanzella, E.

    2009-09-01

    Aims: The goal of this work is to infer the star formation properties and the mass assembly process of high redshift (0.3 ≤ z < 2.5) galaxies from their IR emission using the 24 μm band of MIPS-Spitzer. Methods: We used an updated version of the GOODS-MUSIC catalog, which has multiwavelength coverage from 0.3 to 24 μm and either spectroscopic or accurate photometric redshifts. We describe how the catalog has been extended by the addition of mid-IR fluxes derived from the MIPS 24 μm image. We compared two different estimators of the star formation rate (SFR hereafter). One is the total infrared emission derived from 24 μm, estimated using both synthetic and empirical IR templates. The other one is a multiwavelength fit to the full galaxy SED, which automatically accounts for dust reddening and age-star formation activity degeneracies. For both estimates, we computed the SFR density and the specific SFR. Results: We show that the two SFR indicators are roughly consistent, once the uncertainties involved are taken into account. However, they show a systematic trend, IR-based estimates exceeding the fit-based ones as the star formation rate increases. With this new catalog, we show that: a) at z>0.3, the star formation rate is correlated well with stellar mass, and this relationship seems to steepen with redshift if one relies on IR-based estimates of the SFR; b) the contribution to the global SFRD by massive galaxies increases with redshift up to ≃ 2.5, more rapidly than for galaxies of lower mass, but appears to flatten at higher z; c) despite this increase, the most important contributors to the SFRD at any z are galaxies of about, or immediately lower than, the characteristic stellar mass; d) at z≃ 2, massive galaxies are actively star-forming, with a median {SFR} ≃ 300 M_⊙ yr-1. During this epoch, our targeted galaxies assemble a substantial part of their final stellar mass; e) the specific SFR (SSFR) shows a clear bimodal distribution. Conclusions

  11. The Extended High A(V) Quasar Survey: Searching for Dusty Absorbers toward Mid-infrared-selected Quasars

    NASA Astrophysics Data System (ADS)

    Krogager, J.-K.; Fynbo, J. P. U.; Heintz, K. E.; Geier, S.; Ledoux, C.; Møller, P.; Noterdaeme, P.; Venemans, B. P.; Vestergaard, M.

    2016-11-01

    We present the results of a new spectroscopic survey for dusty intervening absorption systems, particularly damped Lyα absorbers (DLAs), toward reddened quasars. The candidate quasars are selected from mid-infrared photometry from the Wide-field Infrared Survey Explorer combined with optical and near-infrared photometry. Out of 1073 candidates, we secure low-resolution spectra for 108 using the Nordic Optical Telescope on La Palma, Spain. Based on the spectra, we are able to classify 100 of the 108 targets as quasars. A large fraction (50%) is observed to have broad absorption lines (BALs). Moreover, we find six quasars with strange breaks in their spectra, which are not consistent with regular dust reddening. Using template fitting, we infer the amount of reddening along each line of sight ranging from A(V) ≈ 0.1 to 1.2 mag (assuming a Small Magellanic Cloud extinction curve). In four cases, the reddening is consistent with dust exhibiting the 2175 Å feature caused by an intervening absorber, and for two of these, an Mg ii absorption system is observed at the best-fit absorption redshift. In the rest of the cases, the reddening is most likely intrinsic to the quasar. We observe no evidence for dusty DLAs in this survey. However, the large fraction of BAL quasars hampers the detection of absorption systems. Out of the 50 non-BAL quasars, only 28 have sufficiently high redshift to detect Lyα in absorption.

  12. The Extreme Ultraviolet Variability of Quasars

    NASA Astrophysics Data System (ADS)

    Punsly, Brian; Marziani, Paola; Zhang, Shaohua; Muzahid, Sowgat; O'Dea, Christopher P.

    2016-10-01

    We study the extreme ultraviolet (EUV) variability (rest frame wavelengths 500-920 Å) of high-luminosity quasars using Hubble Space Telescope (HST) (low to intermediate redshift sample) and Sloan Digital sky Survey (SDSS) (high redshift sample) archives. The combined HST and SDSS data indicates a much more pronounced variability when the sampling time between observations in the quasar rest frame is \\gt 2× {10}7 {{s}} compared to \\lt 1.5× {10}7 s. Based on an excess variance analysis, for time intervals \\lt 2× {10}7 {{s}} in the quasar rest frame, 10% of the quasars (4/40) show evidence of EUV variability. Similarly, for time intervals \\gt 2× {10}7 {{s}} in the quasar rest frame, 55% of the quasars (21/38) show evidence of EUV variability. The propensity for variability does not show any statistically significant change between 2.5× {10}7 {{s}} and 3.16× {10}7 {{s}} (1 year). The temporal behavior is one of a threshold time interval for significant variability as opposed to a gradual increase on these timescales. A threshold timescale can indicate a characteristic spatial dimension of the EUV region. We explore this concept in the context of the slim disk models of accretion. We find that for rapidly spinning black holes, the radial infall time to the plunge region of the optically thin surface layer of the slim disk that is responsible for the preponderance of the EUV flux emission (primarily within 0-7 black hole radii from the inner edge of the disk) is consistent with the empirically determined variability timescale.

  13. Fluctuations in the high-redshift Lyman-Werner background: close halo pairs as the origin of supermassive black holes

    NASA Astrophysics Data System (ADS)

    Dijkstra, Mark; Haiman, Zoltán; Mesinger, Andrei; Wyithe, J. Stuart B.

    2008-12-01

    The earliest generation of stars and black holes must have established an early `Lyman-Werner' background (LWB) at high redshift, prior to the epoch of reionization. Because of the long mean free path of photons with energies hν < 13.6eV, the LWB was nearly uniform. However, some variation in the LWB is expected due to the discrete nature of the sources, and their highly clustered spatial distribution. In this paper, we compute the probability distribution function (PDF) of the LW flux that irradiates dark matter (DM) haloes collapsing at high redshift (z ~ 10). Our model accounts for (i) the clustering of DM haloes, (ii) Poisson fluctuations in the number of corresponding star-forming galaxies and (iii) scatter in the LW luminosity produced by haloes of a given mass (calibrated using local observations). We find that >99 per cent of the DM haloes are illuminated by an LW flux within a factor of 2 of the global mean value. However, a small fraction, ~10-8 to 10-6, of DM haloes with virial temperatures Tvir >~ 104 K have a close luminous neighbour within <~10 kpc, and are exposed to an LW flux exceeding the global mean by a factor of >20, or to J21,LW > 103 (in units of 10-21 erg s-1 Hz-1 sr-1 cm-2). This large LW flux can photodissociate H2 molecules in the gas collapsing due to atomic cooling in these haloes, and prevent its further cooling and fragmentation. Such close halo pairs therefore provide possible sites in which primordial gas clouds collapse directly into massive black holes (MBH ~ 104-6Msolar), and subsequently grow into supermassive (MBH >~ 109Msolar) black holes by z ~ 6.

  14. Dissecting High-Redshift Galaxies with GRBs: Three Hosts at z 6 Observed with HST

    NASA Astrophysics Data System (ADS)

    McGuire, J. T. W.

    2016-10-01

    The first detection of three GRB hosts at z 6 is presented, along with their comparison to Lyman-break galaxies, potential star formation histories and a brief look at their impact on the high-redshift galaxy luminosity function.

  15. Quantitative comparison between Type Ia supernova spectra at low and high redshifts: A case study

    SciTech Connect

    Supernova Cosmology Project; Nugent, Peter E; Garavini, G.; Folatelli, G.; Nobili, S.; Aldering, G.; Amanullah, R.; Antilogus, P.; Astier, P.; Blanc, G.; Bronder, J.; Burns, M.S.; Conley, A.; Deustua, S. E.; Doi, M.; Fabbro, S.; Fadeyev, V.; Gibbons, R.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hook, I.; Howell, D. A.; Kashikawa, N.; Kim, A. G.; Kowalski, M.; Kuznetsova, N.; Lee, B. C.; Lidman, C.; Mendez, J.; Morokuma, T.; Motohara, K.; Nugent, P. E.; Pain, R.; Perlmutter, S.; Quimby, R.; Raux, J.; Regnault, N.; Ruiz-Lapuente, P.; Sainton, G.; Schahmaneche, K.; Smith, E.; Spadafora, A. L.; Stanishev, V.; Thomas, R. C.; Walton, N. A.; Wang, L.; Wood-Vasey, W. M.; Yasuda, N.

    2008-03-24

    We develop a method to measure the strength of the absorption features in type Ia supernova (SN Ia) spectra and use it to make a quantitative comparisons between the spectra of type Ia supernovae at low and high redshifts. In this case study, we apply the method to 12 high-redshift (0.212 = z = 0.912) SNe Ia observed by the Supernova Cosmology Project. Through measurements of the strengths of these features and of the blueshift of theabsorption minimum in Ca ii H&K, we show that the spectra of the high-redshift SNe Ia are quantitatively similar to spectra of nearby SNe Ia (z< 0.15). One supernova in our high redshift sample, SN 2002fd at z = 0.279, is found to have spectral characteristics that are associated with peculiar SN 1991T/SN 1999aa-like supernovae.

  16. Using Quasar Pairs to put Constraints on Cosmological Parameters

    NASA Astrophysics Data System (ADS)

    Johnson, Louis; Pâris, Isabelle

    2017-01-01

    For the last five billion years the universe has been expanding in size at an increasing rate. With modern technology we are able to observe objects at very high redshift, which were created in the early universe. Being able to analyze and observe these objects allows us to put specific constraints on the universe (age, size, dark matter fraction…etc). Looking at the spectra of highly redshifted objects, such as quasars, we can see a series of absorption lines called the Lyman alpha forest. The angular correlation in the Lyman alpha spectra of quasar pairs allows us to measure the size of the absorbing objects. This works best at very small-scale (below one arcmin). The most recent use of this method consisted of 32 quasar pairs and only two of those had a sky separation below 1 arcmin (Coppolani et al., 2006). The sample size that is used in this work is from the SDSS-III DR12. This catalog has over 1500 quasar pairs below two arcmin separation, giving us much lower error bars, and therefore putting much better constraints on the cosmological parameters that can be inferred from the correlation function.

  17. Confronting X-Ray Emission Models with theHighest-Redshift Kiloparsec-Scale Jets: The z = 3.89 Jet in Quasar 1745+624

    SciTech Connect

    Cheung, C.C.; Stawarz, L.; Siemiginowska, A.; /Harvard-Smithsonian Ctr. Astrophys.

    2006-06-28

    A newly identified kiloparsec-scale X-ray jet in the high-redshift z=3.89 quasar 1745+624 is studied with multi-frequency Very Large Array, Hubble Space Telescope, and Chandra X-ray imaging data. This is only the third large-scale X-ray jet beyond z > 3 known and is further distinguished as being the most luminous relativistic jet observed at any redshift, exceeding 10{sup 45} erg/s in both the radio and X-ray bands. Apart from the jet's extreme redshift, luminosity, and high inferred equipartition magnetic field (in comparison to local analogues), its basic properties such as X-ray/radio morphology and radio polarization are similar to lower-redshift examples. Its resolved linear structure and the convex broad-band spectral energy distributions of three distinct knots are also a common feature among known powerful X-ray jets at lower-redshift. Relativistically beamed inverse Compton and ''non-standard'' synchrotron models have been considered to account for such excess X-ray emission in other jets; both models are applicable to this high-redshift example but with differing requirements for the underlying jet physical properties, such as velocity, energetics, and electron acceleration processes. One potentially very important distinguishing characteristic between the two models is their strongly diverging predictions for the X-ray/radio emission with increasing redshift. This is considered, though with the limited sample of three z > 3 jets it is apparent that future studies targeted at very high-redshift jets are required for further elucidation of this issue. Finally, from the broad-band jet emission we estimate the jet kinetic power to be no less than 10{sup 46} erg/s, which is about 10% of the Eddington luminosity corresponding to this galaxy's central supermassive black hole mass M{sub BH} {approx}> 10{sup 9} M{sub {circle_dot}} estimated here via the virial relation. The optical luminosity of the quasar core is about ten times over Eddington, hence the

  18. Probing Pre-Galactic Metal Enrichment with High-Redshift Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Wang, F. Y.; Bromm, Volker; Greif, Thomas H.; Stacy, Athena; Dai, Z. G.; Loeb, Abraham; Cheng, K. S.

    2012-01-01

    We explore high-redshift gamma-ray bursts (GRBs) as promising tools to probe pre-galactic metal enrichment. We utilize the bright afterglow of a Population III (Pop III) GRB exploding in a primordial dwarf galaxy as a luminous background source, and calculate the strength of metal absorption lines that are imprinted by the first heavy elements in the intergalactic medium (IGM). To derive the GRB absorption line diagnostics, we use an existing highly resolved simulation of the formation of a first galaxy which is characterized by the onset of atomic hydrogen cooling in a halo with virial temperature approximately greater than10(exp 4) K.We explore the unusual circumburst environment inside the systems that hosted Pop III stars, modeling the density evolution with the self-similar solution for a champagne flow. For minihalos close to the cooling threshold, the circumburst density is roughly proportional to (1 + z) with values of about a few cm(exp -3). In more massive halos, corresponding to the first galaxies, the density may be larger, n approximately greater than100 cm(exp -3). The resulting afterglow fluxes are weakly dependent on redshift at a fixed observed time, and may be detectable with the James Webb Space Telescope and Very Large Array in the near-IR and radio wavebands, respectively, out to redshift z approximately greater than 20. We predict that the maximum of the afterglow emission shifts from near-IR to millimeter bands with peak fluxes from mJy to Jy at different observed times. The metal absorption line signature is expected to be detectable in the near future. GRBs are ideal tools for probing the metal enrichment in the early IGM, due to their high luminosities and featureless power-law spectra. The metals in the first galaxies produced by the first supernova (SN) explosions are likely to reside in low-ionization stages (C II, O I, Si II and Fe II). We show that, if the afterglow can be observed sufficiently early, analysis of the metal lines may

  19. The ISO View of Palomar-Green Quasars

    NASA Technical Reports Server (NTRS)

    Haas, M.; Klaas, U.; Mueller, S. A. H.; Bertoldi, F.; Camenzind, M.; Chini, R.; Krause, O.; Lemke, D.; Meisenheimer; Richards, P. J.

    2003-01-01

    Mining the ISO data archive we provide the complete ISO view of PG quasars containing 64 infrared spectral energy distributions between 5 and 200 mu m. About half of the sample was supplemented by MAMBO and SCUBA (sub-)millimeter data. Since the PG quasars were selected optically, the high infrared detection rate of more than 80% suggests that every quasar possesses luminous to hyper-luminous dust emission with dust masses comparable to Seyferts and ultra-luminous IR galaxies (ULIRGs). The gas to-dust mass ratio (of those sources where CO measurements are available in the literature) is consistent with the galactic value providing further evidence for the thermal nature of the IR emission of radio quiet quasars. The SEDs represent templates of unprecedented detail and sensitivity. We suggest that the diversity of the SEDs reflects largely the evolution of the dust distribution, and we propose a classification of the SED shapes as well as an evolutionary scheme in which this variety can be understood. During the evolution the surrounding dust redistributes, settling more and more into a torus/disk like configuration, while the SEDs show an initial FIR bump, then an increasing MIR emission and a steeper near- to mid-infrared slope, both of which finally also decrease. Regarding cosmic evolution, our hyper-luminous quasars in the "local" universe at z=l do not show the hyper-luminous (LFIR >? 10(exp 13) L(sub sun)) starburst activity inferred for z=4 quasars detected in several (sub-)millimeter surveys. In view of several caveats this difference should be established further, but it already suggests that in the early dense universe stronger merger events led to more powerful starbursts accompanying the quasar phenomenon, while at later cosmic epochs any coeval starbursts obviously do not reach that high power and are outshone by the AGN. Additional information is included in the original extended abstract.

  20. Twin Quasars Tango And It's No Mirage

    NASA Astrophysics Data System (ADS)

    2002-03-01

    Scientists have unraveled a longstanding mystery about a rare double quasar system 11 billion light years from Earth using NASA's Chandra X-ray Observatory. These "twin" quasars, previously thought to be an optical illusion, were instead probably created by merging galaxies and may have been more common in the dense universe soon after the Big Bang. "When galaxies interact or merge, they become more active and luminous and can excite quasar activity in their centers," said Paul Green of the Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass., who led the research team. "The quasars that make up these nearly identical twins appear to have been hatched in the same nest." The Chandra data show that the quasars - luminous galaxies powered by central supermassive black holes - are not mirror images caused by a cosmic phenomenon known as a "gravitational lens." Rather, these two quasars are distinct objects that were probably spawned when their host galaxies collided, energizing the flow of gas onto their central black holes. Quasar pairs that are seen close to one another on the sky and are at the same distance from Earth often turn out to be an illusion as part of a gravitationally lensed system. In these cases, the image of a single quasar has been split into two or more images as its light has been bent and focused on its way to Earth by the gravity of an intervening massive object like a galaxy, or a cluster of galaxies. Usually, the intervening mass shows up as a fainter galaxy or cluster of galaxies seen between or among the quasar images, confirming the cause of the illusion. The quasar pair Q2345+007 A, B was thought to be such an illusion because of the remarkably similar patterns of the light, or spectra, from the pair at both optical and ultraviolet wavelengths. Quasar Pair Q2345+007A,B X-ray/Optical Composite However, almost two decades after its discovery by optical astronomers, the identification of enough intervening material to "split" the

  1. FIRST-2MASS RED QUASARS: TRANSITIONAL OBJECTS EMERGING FROM THE DUST

    SciTech Connect

    Glikman, Eilat; Urrutia, Tanya; Lacy, Mark; Djorgovski, S. George; Mahabal, Ashish; Myers, Adam D.; Ross, Nicholas P.; Petitjean, Patrick; Ge, Jian; Schneider, Donald P.; York, Donald G.

    2012-09-20

    We present a sample of 120 dust-reddened quasars identified by matching radio sources detected at 1.4 GHz in the Faint Images of the Radio Sky at Twenty Centimeters survey with the near-infrared Two Micron All Sky Survey catalog and color-selecting red sources. Optical and/or near-infrared spectroscopy provide broad wavelength sampling of their spectral energy distributions that we use to determine their reddening, characterized by E(B - V). We demonstrate that the reddening in these quasars is best described by Small-Magellanic-Cloud-like dust. This sample spans a wide range in redshift and reddening (0.1 {approx}< z {approx}< 3, 0.1 {approx}< E(B - V) {approx}< 1.5), which we use to investigate the possible correlation of luminosity with reddening. At every redshift, dust-reddened quasars are intrinsically the most luminous quasars. We interpret this result in the context of merger-driven quasar/galaxy co-evolution where these reddened quasars are revealing an emergent phase during which the heavily obscured quasar is shedding its cocoon of dust prior to becoming a 'normal' blue quasar. When correcting for extinction, we find that, depending on how the parent population is defined, these red quasars make up {approx}< 15%-20% of the luminous quasar population. We estimate, based on the fraction of objects in this phase, that its duration is 15%-20% as long as the unobscured, blue quasar phase.

  2. Observational Cosmology Using Absorption Lines in Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Aghaee, A.

    2016-09-01

    Distant, highly luminous quasars are important cosmological probes for a variety of astrophysical questions: the first generation of galaxies, the star formation history and metal enrichment in the early Universe, the growth of the first super massive black holes (SMBHs), the role of feedback from quasars and SMBHs in galaxy evolution, the epoch of reionization, etc. In addition, they are used as background illuminating source that reveal any object located by chance on the line of sight. I will present our group works in these issues that can be done using absorption lines in the quasar spectra.

  3. Luminous presence

    NASA Astrophysics Data System (ADS)

    Dawson, Paula

    2008-02-01

    The Luminous Presence project examines the use of standard film language in the framing, angle and of points of view of holographic subjects though eight digital holographic stereograms; seven 25 x 25 cm, Hail, Water, Rain, Snow, Sun, Text, Imprint and 1.5 x 1 m, Luminous Presences i. However, before embarking on a discussion of how filmic language can be used in digital holograms it is first important to explain why this line of investigation could be fruitful. Undoubtedly several of the compositional practices which sprung up and evolved throughout the development of the diverse forms of the holographic medium have contributed to a unique hologram pictorial language, however it is well known that the reading of visual imagery of any type relies a great deal on the viewer's knowledge of and experience of other images .The lens-recorded imagery of film is a far more familiar language than that of holograms and the correlation between certain filmic pictorial conventions and emotional responses are well documented and understood. ii . In short the language of film contains a highly nuanced vocabulary of shot types and lens types (which may be criticised as being formulaic) yet are effective in lending emotion to figures.

  4. Dark-ages reionization and galaxy-formation simulation - VII. The sizes of high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Liu, Chuanwu; Mutch, Simon J.; Poole, Gregory B.; Angel, P. W.; Duffy, Alan R.; Geil, Paul M.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2017-03-01

    We investigate high-redshift galaxy sizes using a semi-analytic model constructed for the Dark-ages Reionization And Galaxy-formation Observables from Numerical Simulation project. Our fiducial model, including strong feedback from supernovae and photoionization background, accurately reproduces the evolution of the stellar mass function and ultraviolet (UV) luminosity function. Using this model, we study the size-luminosity relation of galaxies and find that the effective radius scales with UV luminosity as Re ∝ L0.25 at z ∼ 5-9. We show that recently discovered very luminous galaxies at z ∼ 7 and 11 lie on our predicted size-luminosity relations. We find that a significant fraction of galaxies at z > 8 will not be resolved by James Webb Space Telescope, but Giant Magellan Telescope will have the ability to resolve all galaxies in haloes above the atomic cooling limit. We show that our fiducial model successfully reproduces the redshift evolution of average galaxy sizes at z > 5. We also explore galaxy sizes in models without supernova feedback. The no-supernova feedback models produce galaxy sizes that are smaller than observations. We therefore confirm that supernova feedback plays an important role in determining the size-luminosity relation of galaxies and its redshift evolution during reionization.

  5. Quasar feedback and the origin of radio emission in radio-quiet quasars

    NASA Astrophysics Data System (ADS)

    Zakamska, Nadia L.; Greene, Jenny E.

    2014-07-01

    We analyse Sloan Digital Sky Survey spectra of 568 obscured luminous quasars. The [O III] λ5007 Å emission line shows blueshifts and blue excess, indicating that some of the narrow-line gas is undergoing an organized outflow. The velocity width containing 90 per cent of line power ranges from 370 to 4780 km s-1, suggesting outflow velocities up to ˜2000 km s-1, and is strongly correlated with the radio luminosity among the radio-quiet quasars. We propose that radio emission in radio-quiet quasars is due to relativistic particles accelerated in the shocks within the quasar-driven outflows; star formation in quasar hosts is insufficient to explain the observed radio emission. The median radio luminosity of the sample of νLν[1.4 GHz] = 1040 erg s-1 suggests a median kinetic luminosity of the quasar-driven wind of Lwind = 3 × 1044 erg s-1, or about 4 per cent of the estimated median bolometric luminosity Lbol = 8 × 1045 erg s-1. Furthermore, the velocity width of [O III] is positively correlated with mid-infrared luminosity, which suggests that outflows are ultimately driven by the radiative output of the quasar. Emission lines characteristic of shocks in quasi-neutral medium increase with the velocity of the outflow, which we take as evidence of quasar-driven winds propagating into the interstellar medium of the host galaxy. Quasar feedback appears to operate above the threshold luminosity of Lbol ˜ 3 × 1045 erg s-1.

  6. The Lyman-continuum photon production efficiency in the high-redshift Universe

    NASA Astrophysics Data System (ADS)

    Wilkins, Stephen M.; Feng, Yu; Di-Matteo, Tiziana; Croft, Rupert; Stanway, Elizabeth R.; Bouwens, Rychard J.; Thomas, Peter

    2016-05-01

    The Lyman-continuum photon production efficiency (ξion) is a critical ingredient for inferring the number of photons available to reionize the intergalactic medium. To estimate the theoretical production efficiency in the high-redshift Universe we couple the BlueTides cosmological hydrodynamical simulation with a range of stellar population synthesis models. We find Lyman-continuum photon production efficiencies of log10(ξion/erg-1 Hz) ≈ 25.1-25.5 depending on the choice of stellar population synthesis model. These results are broadly consistent with recent observational constraints at high-redshift though favour a model incorporating the effects of binary evolution.

  7. The SFR of high redshift galaxies: mid-IR vs SED fitting

    NASA Astrophysics Data System (ADS)

    Santini, P.; Fontana, A.; Grazian, A.

    2009-05-01

    In this work we compare two distinct techniques to estimate the star formation rate (SFR) in high redshift galaxies: mid-infrared emission and SED fitting analysis. We used the multiwavelength GOODS-MUSIC catalog to estimate the total infrared luminosity, which is a SFR indicator arising from dust reprocessed emission, and the star formation rate from the overall SED shape using the 14 bands photometry. We will apply the two methods to a couple of physical topics: the selection of a sample of quiescent galaxies at high redshift and the measure of the star formation rate.

  8. SDSS J094604.90+183541.8: A GRAVITATIONALLY LENSED QUASAR AT z = 4.8

    SciTech Connect

    McGreer, Ian D.; Fan Xiaohui; Bian Fuyan; Farnsworth, Kara; Hall, Patrick B.; Inada, Naohisa; Oguri, Masamune; Strauss, Michael A.; Schneider, Donald P.

    2010-08-15

    We report the discovery of a gravitationally lensed quasar identified serendipitously in the Sloan Digital Sky Survey (SDSS). The object, SDSS J094604.90+183541.8, was initially targeted for spectroscopy as a luminous red galaxy, but the SDSS spectrum has the features of both a z = 0.388 galaxy and a z = 4.8 quasar. We have obtained additional imaging that resolves the system into two quasar images separated by 3.''06 and a bright galaxy that is strongly blended with one of the quasar images. We confirm spectroscopically that the two quasar images represent a single-lensed source at z = 4.8 with a total magnification of 3.2, and we derive a model for the lensing galaxy. This is the highest redshift lensed quasar currently known. We examine the issues surrounding the selection of such an unusual object from existing data and briefly discuss implications for lensed quasar surveys.

  9. Investigating the Gas Kinematics of High-Redshift Active Galactic Nuclei with Double-Peaked Narrow Emission Lines

    NASA Astrophysics Data System (ADS)

    Barrows, Robert S.; Stern, D.; Lacy, C. H. S.; Kennefick, J.; Kennefick, D.; Seigar, M.

    2012-05-01

    Pairs of supermassive black holes (SMBHs) are a natural consequence of galaxy mergers, and these systems are observable when both SMBHs are accreting as active galactic nuclei (AGN). Observational evidence for these AGN pairs (dual AGN) has dramatically increased recently through a combination of spectroscopic selection of candidates from double-peaked optical emission lines and follow-up morphological data. The primary motivation for compiling a sample of dual AGN is for their use in tracing galaxy mergers and in constraining the link between galaxy mergers and AGN enhancement. Therefore, this phenomenon should be investigated at higher redshifts when galaxy mergers were more frequent. Motivated by our detailed analysis of a candidate dual AGN at a relatively high redshift (z=1.175), we have compiled a sample of analogous sources at z>0.80 identified from double-peaked UV emission lines in the Sloan Digital Sky Survey (SDSS). The double-peaked profile can be mimicked by gas-kinematics around a single AGN, including large-scale outflows, which are known to affect the velocity profiles of high-ionization UV emission lines. Through emission line diagnostics, we have taken advantage of access to rest-frame UV emission lines in SDSS quasar spectra, allowing us to investigate the kinematics of the ionized gas. In particular, for each of these sources we have put constraints on the likelihood of a correlation between peak velocity-offset and ionization potential. Such tests will aid in determining which double-peaked emission line sources are most likely the result of an outflow and which are strong dual AGN candidates. This study will both increase the sample size of candidate dual AGN for follow-up observations and extend the sample to higher redshifts.

  10. The Argo simulation - I. Quenching of massive galaxies at high redshift as a result of cosmological starvation

    NASA Astrophysics Data System (ADS)

    Feldmann, Robert; Mayer, Lucio

    2015-01-01

    Observations show a prevalence of high-redshift galaxies with large stellar masses and predominantly passive stellar populations. A variety of processes have been suggested that could reduce the star formation in such galaxies to observed levels, including quasar mode feedback, virial shock heating, or galactic winds driven by stellar feedback. However, the main quenching mechanisms have yet to be identified. Here we study the origin of star formation quenching using Argo, a cosmological, hydrodynamical zoom-in simulation that follows the evolution of a massive galaxy at z ≥ 2. This simulation adopts the same subgrid recipes of the Eris simulations, which have been shown to form realistic disc galaxies, and, in one version, adopts also a mass and spatial resolution identical to Eris. The resulting galaxy has properties consistent with those of observed, massive (M* ˜ 1011 M⊙) galaxies at z ˜ 2 and with abundance matching predictions. Our models do not include active galactic nuclei (AGN) feedback indicating that supermassive black holes likely play a subordinate role in determining masses and sizes of massive galaxies at high-z. The specific star formation rate (sSFR) of the simulated galaxy matches the observed M*-sSFR relation at early times. This period of smooth stellar mass growth comes to a sudden halt at z = 3.5 when the sSFR drops by almost an order of magnitude within a few hundred Myr. The suppression is initiated by a levelling off and a subsequent reduction of the cool gas accretion rate on to the galaxy, and not by feedback processes. This `cosmological starvation' occurs as the parent dark matter halo switches from a fast collapsing mode to a slow accretion mode. Additional mechanisms, such as perhaps radio mode feedback from an AGN, are needed to quench any residual star formation of the galaxy and to maintain a low sSFR until the present time.

  11. Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs): New z > 6 Quasar Survey with Subaru/HSC

    NASA Astrophysics Data System (ADS)

    Matsuoka, Yoshiki; SHELLQs Collaboration

    2017-01-01

    Quasars at high redshift are an important and unique probe of the distant Universe, for understanding the origin and progress of cosmic reionization, the early growth of supermassive black holes, and the evolution of quasar host galaxies and their dark matter halos, among other topics. We are currently carrying out a new spectroscopic survey, called SHELLQs (Subaru High-z Exploration of Low-Luminosity Quasars), to search for low-luminosity quasars at z > 6. By exploiting the exquisite imaging data produced by the Subaru Hyper Suprime-Cam (HSC) survey, we aim to probe quasar luminosities down to M1450 ~ -22 mag, i.e., below the classical threshold between quasars and Seyfert galaxies. Candidate selection is performed by combining several photometric approaches including a Bayesian probabilistic algorithm. A large spectroscopic observing program is underway, using Subaru/FOCAS, GTC/OSIRIS, and Gemini/GMOS; in particular, SHELLQs has been approved as a Subaru intensive program to use 20 nights in the coming four semesters. As of August 2016, we have discovered ~40 quasars and bright galaxies at z ~ 6 and beyond, from the first 100 deg2 of the HSC survey (Matsuoka et al. 2016, ApJ, 828, 26). Surprisingly, we are starting to see the steep rise of the luminosity function of high-z galaxies, compared with that of quasars, at magnitudes fainter than M1450 ~ -22 mag or zAB ~ 24 mag. Multi-wavelength follow-up studies of the discovered objects as well as further survey observations are ongoing.

  12. A Periodically Varying Luminous Quasar at z = 2 from the Pan-STARRS1 Medium Deep Survey: A Candidate Supermassive Black Hole Binary in the Gravitational Wave-Driven Regime

    NASA Astrophysics Data System (ADS)

    Liu, Tingting; Gezari, Suvi

    Supermassive black hole binaries (SMBHBs) should be an inevitable consequence of the hierarchical growth of massive galaxies through mergers and the strongest sirens of gravitational waves (GWs) in the cosmos. Yet, their direct detection has remained elusive due to the compact (sub-parsec) orbital separations of gravitationally bound SMBHBs. Here we exploit a theoretically predicted signature of SMBHBs in the time domain. We have begun a systematic search for SMBHB candidates in the Pan-STARRS1 Medium Deep Survey (MDS) and reported our first significant detection of such a candidate from our pilot study of MD09 in Liu et al. (2015). Our candidate PSO J334.2028+01.4075 has a detected period of 542 days, varying persistently over the available baseline. From its archival spectrum, we estimated the black hole mass of the z = 2.06 quasar to be ~1010 M⊙. The inferred ~7 R s binary separation therefore puts this candidate in the regime of GW-dominated orbital decay, opening up the exciting possibility of finding GW sources detectable by pulsar timing arrays (PTAs) in a wide-field optical synoptic survey.

  13. ON THE EFFECT OF THE COSMIC MICROWAVE BACKGROUND IN HIGH-REDSHIFT (SUB-)MILLIMETER OBSERVATIONS

    SciTech Connect

    Da Cunha, Elisabete; Groves, Brent; Walter, Fabian; Decarli, Roberto; Rix, Hans-Walter; Weiss, Axel; Bertoldi, Frank; Carilli, Chris; Daddi, Emanuele; Sargent, Mark; Maiolino, Roberto; Riechers, Dominik; Smail, Ian

    2013-03-20

    Modern (sub-)millimeter interferometers enable the measurement of the cool gas and dust emission of high-redshift galaxies (z > 5). However, at these redshifts the cosmic microwave background (CMB) temperature is higher, approaching, and even exceeding, the temperature of cold dust and molecular gas observed in the local universe. In this paper, we discuss the impact of the warmer CMB on (sub-)millimeter observations of high-redshift galaxies. The CMB affects the observed (sub-)millimeter dust continuum and the line emission (e.g., carbon monoxide, CO) in two ways: (1) it provides an additional source of (both dust and gas) heating and (2) it is a non-negligible background against which the line and continuum emission are measured. We show that these two competing processes affect the way we interpret the dust and gas properties of high-redshift galaxies using spectral energy distribution models. We quantify these effects and provide correction factors to compute what fraction of the intrinsic dust (and line) emission can be detected against the CMB as a function of frequency, redshift, and temperature. We discuss implications on the derived properties of high-redshift galaxies from (sub-)millimeter data. Specifically, the inferred dust and molecular gas masses can be severely underestimated for cold systems if the impact of the CMB is not properly taken into account.

  14. RUNAWAY STARS AND THE ESCAPE OF IONIZING RADIATION FROM HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Conroy, Charlie; Kratter, Kaitlin M.

    2012-08-20

    Approximately 30% of all massive stars in the Galaxy are runaways with velocities exceeding 30 km s{sup -1}. Their high speeds allow them to travel {approx}0.1-1 kpc away from their birthplace before they explode at the end of their several Myr lifetimes. At high redshift, when galaxies were much smaller than in the local universe, runaways could venture far from the dense inner regions of their host galaxies. From these large radii, and therefore low column densities, much of their ionizing radiation is able to escape into the intergalactic medium. Runaways may therefore significantly enhance the overall escape fraction of ionizing radiation, f{sub esc}, from small galaxies at high redshift. We present simple models of the high-redshift runaway population and its impact on f{sub esc} as a function of halo mass, size, and redshift. We find that the inclusion of runaways enhances f{sub esc} by factors of Almost-Equal-To 1.1-8, depending on halo mass, galaxy geometry, and the mechanism of runaway production, implying that runaways may contribute 50%-90% of the total ionizing radiation escaping from high-redshift galaxies. Runaways may therefore play an important role in reionizing the universe.

  15. Spectra of High-Redshift Type Ia Supernovae and a Comparison withtheir Low-Redshift Counterparts

    SciTech Connect

    Hook, I.M.; Howell, D.A.; Aldering, G.; Amanullah, R.; Burns,M.S.; Conley, A.; Deustua, S.E.; Ellis, R.; Fabbro, S.; Fadeyev, V.; Folatelli, G.; Garavini, G.; Gibbons, R.; Goldhaber, G.; Goobar, A.; Groom, D.E.; Kim, A.G.; Knop, R.A.; Kowalski, M.; Lidman, C.; Nobili, S.; Nugent, P.E.; Pain, R.; Pennypacker, C.R.; Perlmutter, S.; Ruiz-Lapuente,P.; Sainton, G.; Schaefer, B.E.; Smith, E.; Spadafora, A.L.; Stanishev,V.; Thomas, R.C.; Walton, N.A.; Wang, L.; Wood-Vasey, W.M.

    2005-07-20

    We present spectra for 14 high-redshift (0.17 < z < 0.83) supernovae, which were discovered by the Supernova Cosmology Project as part of a campaign to measure cosmological parameters. The spectra are used to determine the redshift and classify the supernova type, essential information if the supernovae are to be used for cosmological studies. Redshifts were derived either from the spectrum of the host galaxy or from the spectrum of the supernova itself. We present evidence that these supernovae are of Type Ia by matching to spectra of nearby supernovae. We find that the dates of the spectra relative to maximum light determined from this fitting process are consistent with the dates determined from the photometric light curves, and moreover the spectral time-sequence for SNe Type Ia at low and high redshift is indistinguishable. We also show that the expansion velocities measured from blueshifted Ca H&K are consistent with those measured for low-redshift Type Ia supernovae. From these first-level quantitative comparisons we find no evidence for evolution in SNIa properties between these low- and high-redshift samples. Thus even though our samples may not be complete, we conclude that there is a population of SNe Ia at high redshift whose spectral properties match those at low redshift.

  16. CO Linewidths and the Black Hole - Bulge Relationship for High Redshift QSOs

    NASA Astrophysics Data System (ADS)

    Menezes, K. L.; Shields, G. A.; Massart, C. A.; vanden Bout, P.

    2005-10-01

    Supermassive black holes in galactic nuclei have masses MBH related to the mass and velocity dispersion σ* of the host galaxy. We examine the MBH - σ* in high redshift QSOs, deriving MBH from the broad emission-line widths and σ* from the radio CO lines. At redshifts z = 4 to 6, gigantic black holes appear to exist in relatively modest galaxies.

  17. DISCOVERY OF A RADIO-SELECTED z {approx} 6 QUASAR

    SciTech Connect

    Zeimann, Gregory R.; Becker, Robert H.; Hodge, Jacqueline A.; Stanford, Spencer A.; White, Richard L.; Richards, Gordon T.

    2011-07-20

    We present the discovery of only the second radio-selected z {approx} 6 quasar. We identified SDSS J222843.54+011032.2 (z = 5.95) by matching the optical detections of the deep Sloan Digital Sky Survey Stripe 82 with their radio counterparts in the Stripe 82 Very Large Array Survey. We also matched the Canadian-France-Hawaiian Telescope Legacy Survey Wide with the Faint Images of the Radio Sky at Twenty cm survey but have yet to find any z {approx} 6 quasars in this survey area. The discovered quasar is optically faint, z = 22.3 and M{sub 1450} {approx} -24.5, but radio bright, with a flux density of f{sub 1.4GHz,peak} = 0.31 mJy and a radio loudness of R {approx} 1100 (where R {identical_to} f{sub 5GHz}/f{sub 2500}). The i - z color of the discovered quasar places it outside the color selection criteria for existing optical surveys. We conclude by discussing the need for deeper wide-area radio surveys in the context of high-redshift quasars.

  18. Probing Quasar Winds Using Intrinsic Narrow Absorption Lines

    NASA Astrophysics Data System (ADS)

    Culliton, Christopher S.; Charlton, Jane C.; Eracleous, Michael; Roberts, Amber; Ganguly, Rajib; Misawa, Toru; Muzahid, Sowgat

    2017-01-01

    Quasar outflows are important for understanding the accretion and growth processes of the central black hole. Furthermore, outflows potentially have a role in providing feedback to the galaxy, and halting star formation and infall of gas. The geometry and density of these outflows remain unknown, especially as a function of ionization and velocity. Having searched ultraviolet spectra at both high redshift (VLT/UVES; 1.4quasar. We identify intrinsic NALs with a wide range of properties, including ejection velocity, coverage fraction, and ionization level. We also consider the incidence of intrinsic absorbers as a function of quasar properties (optical, radio and X-ray fluxes), and find that radio properties and quasar orientation are influential in determining if a quasar is likely to host an intrinsic system. We find that there is a continuum of properties within the intrinsic NAL sample, rather than discrete families, ranging from partially covered CIV systems with black Lya and with a separate low ionization gas phase to partially covered NV systems with partially covered Lya and without detected low ionization gas. Additionally, we construct a model describing the spatial distributions, geometries, and varied ionization structures of intrinsic NALs.

  19. LOW-IONIZATION OUTFLOWS IN HIGH EDDINGTON RATIO QUASARS

    SciTech Connect

    Marziani, Paola; Sulentic, Jack W.; Plauchu-Frayn, Ilse; Del Olmo, Ascension

    2013-02-20

    The broad Mg II {lambda}2800 doublet has been frequently studied in connection with its potentially important role as a virial estimator of black hole mass in high-redshift quasars. An important task, therefore, is the identification of any line components that are likely related to broadening by non-virial motions. High signal-to-noise median composite spectra (binned in the {sup f}our-dimensional eigenvector 1'' context of Sulentic et al.) were constructed for the brightest 680 Sloan Digital Sky Survey Data Release 7 quasars in the 0.4 {<=} z {<=} 0.75 range where both Mg II {lambda}2800 and H{beta} are recorded in the same spectra. Composite spectra representing 90% of the quasars confirm previous findings that FWHM(Mg II {lambda}2800) is about 20% narrower than FWHM(H{beta}). The situation is clearly different for the most extreme (Population A) sources, which are the highest Eddington radiators in the sample. In the median spectra of these sources, FWHM Mg II {lambda}2800 is equal to or greater than FWHM(H{beta}) and shows a significant blueshift relative to H{beta}. We interpret the Mg II {lambda}2800 blueshift as the signature of a radiation-driven wind or outflow in the highest accreting quasars. In this interpretation, the Mg II {lambda}2800 line width-affected by blueshifted emission-is unsuitable for virial mass estimation in Almost-Equal-To 10% of quasars.

  20. Discovery of a z = 6.1 Radio-Loud Quasar in the NDWFS

    SciTech Connect

    McGreer, I D; Becker, R H; Helfand, D J; White, R L

    2006-07-24

    From examination of only 4 deg{sup 2} of sky in the NOAO Deep Wide-Field Survey (NDWFS) region, we have identified the first radio-loud quasar at a redshift z > 6. The object, FIRST J1427385+331241, was discovered by matching the FLAMEX IR survey to FIRST survey radio sources with NDWFS counterparts. One candidate z > 6 quasar was found, and spectroscopy with the Keck II telescope confirmed its identification, yielding a redshift z = 6.12. The object is a Broad Absorption Line (BAL) quasar with an optical luminosity of M{sub B} {approx} -26.9 and a radio-to-optical flux ratio {approx} 60. Two Mg II absorptions systems are present at redshifts of z = 2.18 and z = 2.20. We briefly discuss the implications of this discovery for the high-redshift quasar population.

  1. The Rest-frame Submillimeter Spectrum of High-redshift, Dusty, Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Spilker, J. S.; Marrone, D. P.; Aguirre, J. E.; Aravena, M.; Ashby, M. L. N.; Béthermin, M.; Bradford, C. M.; Bothwell, M. S.; Brodwin, M.; Carlstrom, J. E.; Chapman, S. C.; Crawford, T. M.; de Breuck, C.; Fassnacht, C. D.; Gonzalez, A. H.; Greve, T. R.; Gullberg, B.; Hezaveh, Y.; Holzapfel, W. L.; Husband, K.; Ma, J.; Malkan, M.; Murphy, E. J.; Reichardt, C. L.; Rotermund, K. M.; Stalder, B.; Stark, A. A.; Strandet, M.; Vieira, J. D.; Weiß, A.; Welikala, N.

    2014-04-01

    We present the average rest-frame spectrum of high-redshift dusty, star-forming galaxies from 250 to 770 GHz. This spectrum was constructed by stacking Atacama Large Millimeter/submillimeter Array (ALMA) 3 mm spectra of 22 such sources discovered by the South Pole Telescope and spanning z = 2.0-5.7. In addition to multiple bright spectral features of 12CO, [C I], and H2O, we also detect several faint transitions of 13CO, HCN, HNC, HCO+, and CN, and use the observed line strengths to characterize the typical properties of the interstellar medium of these high-redshift starburst galaxies. We find that the 13CO brightness in these objects is comparable to that of the only other z > 2 star-forming galaxy in which 13CO has been observed. We show that the emission from the high-critical density molecules HCN, HNC, HCO+, and CN is consistent with a warm, dense medium with T kin ~ 55 K and n_{H_2} \\gtrsim 10^{5.5} cm-3. High molecular hydrogen densities are required to reproduce the observed line ratios, and we demonstrate that alternatives to purely collisional excitation are unlikely to be significant for the bulk of these systems. We quantify the average emission from several species with no individually detected transitions, and find emission from the hydride CH and the linear molecule CCH for the first time at high redshift, indicating that these molecules may be powerful probes of interstellar chemistry in high-redshift systems. These observations represent the first constraints on many molecular species with rest-frame transitions from 0.4 to 1.2 mm in star-forming systems at high redshift, and will be invaluable in making effective use of ALMA in full science operations.

  2. The rest-frame submillimeter spectrum of high-redshift, dusty, star-forming galaxies

    SciTech Connect

    Spilker, J. S.; Marrone, D. P.; Aguirre, J. E.; Aravena, M.; Ashby, M. L. N.; Béthermin, M.; Bothwell, M. S.; Brodwin, M.; Carlstrom, J. E.; Crawford, T. M.; Chapman, S. C.; De Breuck, C.; Gullberg, B.; Fassnacht, C. D.; Gonzalez, A. H.; Greve, T. R.; Hezaveh, Y.; Holzapfel, W. L.; and others

    2014-04-20

    We present the average rest-frame spectrum of high-redshift dusty, star-forming galaxies from 250 to 770 GHz. This spectrum was constructed by stacking Atacama Large Millimeter/submillimeter Array (ALMA) 3 mm spectra of 22 such sources discovered by the South Pole Telescope and spanning z = 2.0-5.7. In addition to multiple bright spectral features of {sup 12}CO, [C I], and H{sub 2}O, we also detect several faint transitions of {sup 13}CO, HCN, HNC, HCO{sup +}, and CN, and use the observed line strengths to characterize the typical properties of the interstellar medium of these high-redshift starburst galaxies. We find that the {sup 13}CO brightness in these objects is comparable to that of the only other z > 2 star-forming galaxy in which {sup 13}CO has been observed. We show that the emission from the high-critical density molecules HCN, HNC, HCO{sup +}, and CN is consistent with a warm, dense medium with T {sub kin} ∼ 55 K and n{sub H{sub 2}}≳10{sup 5.5} cm{sup –3}. High molecular hydrogen densities are required to reproduce the observed line ratios, and we demonstrate that alternatives to purely collisional excitation are unlikely to be significant for the bulk of these systems. We quantify the average emission from several species with no individually detected transitions, and find emission from the hydride CH and the linear molecule CCH for the first time at high redshift, indicating that these molecules may be powerful probes of interstellar chemistry in high-redshift systems. These observations represent the first constraints on many molecular species with rest-frame transitions from 0.4 to 1.2 mm in star-forming systems at high redshift, and will be invaluable in making effective use of ALMA in full science operations.

  3. THE QSO HE 0450-2958: SCANTILY DRESSED OR HEAVILY ROBED? A NORMAL QUASAR AS PART OF AN UNUSUAL ULIRG

    SciTech Connect

    Jahnke, Knud; Elbaz, David; Pantin, Eric; Lagage, Pierre-Olivier; Letawe, Geraldine; Chantry, Virginie

    2009-08-01

    and BH accretion are spatially disjoint. This relation can either only be maintained averaging over a longer timescale ({approx}<500 Myr) and/or the bulge has to grow by redistribution of pre-existing stars. (6) Systems similar to HE 0450-2958 with spatially disjoint ULIRG-strength star formation and quasar activity might be common at high redshifts but at z < 0.43 we only find <4% (3/77) candidates for a similar configuration.

  4. The Atacama Cosmology Telescope: Cross-Correlation of Cosmic Microwave Background Lensing and Quasars

    NASA Technical Reports Server (NTRS)

    Sherwin, Blake D; Das, Sudeep; Haijian, Amir; Addison, Graeme; Bond, Richard; Crichton, Devin; Devlin, Mark J.; Dunkley, Joanna; Gralla, Megan B.; Halpern, Mark; Hill, J. Colin; Hincks, Adam D.; Hughes, John P.; Huffenberger, Kevin; Hlozek, Renee; Kosowsky, Arthur; Louis, Thibaut; Marriage, Tobias A.; Marsden, Danica; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael D.; Page, Lyman A.; Reese. Erik D.; Sehgal, Neelima; Sievers, Jon; Sifon, Cristobal; Spergel, David N.; Staggs, Suzanne T.; Switzer, Eric R.; Wollack, Ed.

    2012-01-01

    We measure the cross-correlation of Atacama cosmology telescope cosmic microwave background (CMB) lensing convergence maps with quasar maps made from the Sloan Digital Sky Survey DR8 SDSS-XDQSO photometric catalog. The CMB lensing quasar cross-power spectrum is detected for the first time at a significance of 3.8 sigma, which directly confirms that the quasar distribution traces the mass distribution at high redshifts z > 1. Our detection passes a number of null tests and systematic checks. Using this cross-power spectrum, we measure the amplitude of the linear quasar bias assuming a template for its redshift dependence, and find the amplitude to be consistent with an earlier measurement from clustering; at redshift z ap 1.4, the peak of the distribution of quasars in our maps, our measurement corresponds to a bias of b = 2.5 +/- 0.6. With the signal-to-noise ratio on CMB lensing measurements likely to improve by an order of magnitude over the next few years, our results demonstrate the potential of CMB lensing crosscorrelations to probe astrophysics at high redshifts.

  5. Rest-frame Optical Spectra and Black Hole Masses of 3 < z < 6 Quasars

    NASA Astrophysics Data System (ADS)

    Jun, Hyunsung David; Im, Myungshin; Lee, Hyung Mok; Ohyama, Youichi; Woo, Jong-Hak; Fan, Xiaohui; Goto, Tomotsugu; Kim, Dohyeong; Kim, Ji Hoon; Kim, Minjin; Lee, Myung Gyoon; Nakagawa, Takao; Pearson, Chris; Serjeant, Stephen

    2015-06-01

    We present the rest-frame optical spectral properties of 155 luminous quasars at 3.3 < z < 6.4 taken with the AKARI space telescope, including the first detection of the Hα emission line as far out as z ∼ 6. We extend the scaling relation between the rest-frame optical continuum and the line luminosity of active galactic nuclei (AGNs) to the high-luminosity, high-redshift regime that has rarely been probed before. Remarkably, we find that a single log-linear relation can be applied to the 5100 Å and Hα AGN luminosities over a wide range of luminosity (1042 < L5100 < 1047 ergs s-1) or redshift (0 < z < 6), suggesting that the physical mechanism governing this relation is unchanged from z = 0 to 6, over five decades in luminosity. Similar scaling relations are found between the optical and the UV continuum luminosities or line widths. Applying the scaling relations to the Hβ black hole (BH) mass (MBH) estimator of local AGNs, we derive the MBH estimators based on the Hα, Mg ii, and C iv lines, finding that the UV-line-based masses are overall consistent with the Balmer-line-based, but with a large intrinsic scatter of 0.40 dex for the C iv estimates. Our 43 MBH estimates from Hα confirm the existence of BHs as massive as ∼ 1010 M⊙ out to z ∼ 5 and provide a secure footing for previous results from Mg ii-line-based studies that a rapid MBH growth has occurred in the early universe.

  6. SDSS J1254+0846: A BINARY QUASAR CAUGHT IN THE ACT OF MERGING

    SciTech Connect

    Green, Paul J.; Cox, Thomas J.; Aldcroft, Thomas L.; Myers, Adam D.; Barkhouse, Wayne A.; Mulchaey, John S.; Bennert, Vardha N.

    2010-02-20

    We present the first luminous, spatially resolved binary quasar that clearly inhabits an ongoing galaxy merger. SDSS J125455.09+084653.9 and SDSS J125454.87+084652.1 (SDSS J1254+0846 hereafter) are two luminous z = 0.44 radio-quiet quasars, with a radial velocity difference of just 215 km s{sup -1}, separated on the sky by 21 kpc in a disturbed host galaxy merger showing obvious tidal tails. The pair was targeted as part of a complete sample of binary quasar candidates with small transverse separations drawn from SDSS DR6 photometry. We present follow-up optical imaging which shows broad, symmetrical tidal arm features spanning some 75 kpc at the quasars' redshift. Previously, the triggering of two quasars during a merger had only been hypothesized but our observations provide strong evidence of such an event. SDSS J1254+0846, as a face-on, pre-coalescence merger hosting two luminous quasars separated by a few dozen kpc, provides a unique opportunity to probe quasar activity in an ongoing gas-rich merger. Numerical modeling suggests that the system consists of two massive disk galaxies prograde to their mutual orbit, caught during the first passage of an active merger. This demonstrates rapid black hole growth during the early stages of a merger between galaxies with pre-existing bulges. Neither of the two luminous nuclei show significant intrinsic absorption by gas or dust in our optical or X-ray observations, illustrating that not all merging quasars will be in an obscured, ultraluminous phase. We find that the Eddington ratio for the fainter component B is rather normal, while for the A component L/L{sub Edd} is quite (>3sigma) high compared to quasars of similar luminosity and redshift, possibly evidence for strong merger-triggered accretion. More such mergers should be identifiable at higher redshifts using binary quasars as tracers.

  7. Constraining the population of radio-loud active galactic nuclei at high redshift with the power spectrum of the 21 cm Forest

    NASA Astrophysics Data System (ADS)

    Ewall-Wice, Aaron; Dillon, Joshua S.; Mesinger, Andrei; Hewitt, Jacqueline N.

    2014-06-01

    The 21 cm forest, the absorption by the intergalactic medium (IGM) towards a high redshift radio-loud source, is a probe of the thermal state of the IGM. To date, the literature has focused on line-of-sight spectral studies of a single quasar known to have a large redshift. We instead examine many sources in a wide field of view, and show that the imprint from the 21 cm forest absorption of these sources is detectible in the power spectrum. The properties of the power spectrum can reveal information on the population of the earliest radio loud sources that may have existed during the pre-reionization epoch at z>10.Using semi-numerical simulations of the IGM and a semi-empirical source population, we show that the 21 cm forest dominates, in a distinctive region of Fourier space, the brightness temperature power spectrum that many contemporary experiments aim to measure. In particular, the forest dominates the diffuse emission on smaller spatial scales along the line of sight. Exploiting this separation, one may constrain the IGM thermal history, such as heating by the first X-ray sources, on large spatial scales and the absorption of radio loud active galactic nuclei on small ones.Using realistic simulations of noise and foregrounds, we show that planned instruments on the scale of the Hydrogen Epoch of Reionization Array (HERA) with a collecting area of one tenth of a square kilometer can detect the 21cm forest in this small spatial scale region with high signal to noise. We develop an analytic toy model for the signal and explore its detectability over a large range of thermal histories and potential high redshift source scenarios.

  8. The Similarity of Luminosity in Quasar Doppelganger Pairs

    NASA Astrophysics Data System (ADS)

    Brotherton, Michael S.; Rochais, Thomas Bernard; Singh, Vikram; Chick, William T.; Maithil, Jaya; Sutter, Jessica; Shang, Zhaohui

    2017-01-01

    Quasars, the accreting supermassive black holes at the centers of galaxies, are among the most luminous objects in the universe and in principle ideal for use as so-called "standard candles" with applications in cosmology. Despite possessing a number of spectral features long known to correlate with luminosity, quasars have failed to realize their potential. We have employed spectral principal component analysis to identify more than 1000 quasar pairs from the Sloan Digital Sky Survey with virtually identical ultraviolet spectra, which we call doppelgangers, in order to understand the limits of determining luminosity from spectral features alone. While the majority of doppelgangers have very similar luminosity, there exists a surprisingly large scatter and objects with identical spectra can differ in luminosity by factors of four or larger. We offer some possible physical explanations for this large variance and how it quantifies the problem of ever using quasars as standard candles based on spectral features.

  9. Quasar Rain

    NASA Astrophysics Data System (ADS)

    Elvis, Martin

    2015-01-01

    Velocity resolved reverberation mapping (VRRM) has shown clear evidence for inflows in the broad emission line (BEL) region of active galactic nuclei: redshifted BELs at zero lag (AGNs, e.g. Arp 151, Bentz et al. 2010; Grier et al. 2013). While radiative transfer in rotating disks can give shorter red side lags than blue, a zero lag has to be along our line of sight, so it is hard to escape infall. The BEL region is normally considered to be rotating or in outflow so this result is a surprise. Infalling BEL gas cannot fall far without the need to lose angular momentum for accreting gas producing an accretion disk.I suggest that quasar continuum irradiation induced cooling instabilities (Chakravorty et al 2009; Krolik, McKee & Tarter 1981) lead to dense BEL clouds condensing out of the semi-ubiquitous warm absorber (WA) outflows found in AGNs and that these clouds may produce a VRRM inflow signature.Unlike WA gas, dense high column density BEL clouds are hard to accelerate with radiation pressure (Risaliti & Elvis 2010; Mushotzky, Solomon & Strittmatter 1972). BEL clouds will thus stall in the outflow and begin to fall back toward the central black hole after a dynamical time, 'raining out' of the WA medium. If these BEL clouds condense out before these outflows reach escape velocity [v(esc)] then this inflow can potentially produce the observed VRRM signature. As the clouds fall back in they will be moving on elliptical orbits supersonically through the WA gas with Mach number ~(2000 km/s)/(100km/s) ~20. This will produce comet-like structures with narrow opening angles, as seen in asymmetric X-ray absorbing 'eclipses' (Maiolino et al. 2010). They will survive only a few months, as required to avoid forming a disk. For this picture to work the condensation time must be less than the acceleration time to v(esc) and the destruction time must be longer than the dynamical time.

  10. Damped Ly alpha absorbers at high redshift: Large disks or galactic building blocks?

    NASA Technical Reports Server (NTRS)

    Haehnelt, Martin G.; Steinmetz, Matthias; Rauch, Michael

    1997-01-01

    The nature of the physical structures giving rise to damped Lyman alpha absorption systems (DLAS) at high redshifts is investigated. The proposal that rapidly rotating large disks are the only viable explanation for the observed asymmetric profiles of low ionization absorption lines is examined. Using hydrodynamic simulations of galaxy formation, it is demonstated that irregular protogalactic clumps can reproduce the observed velocity width distribution and asymmetries of the absorption profiles equally well. The velocity broadening in the simulated clumps is due to a mixture of rotation, random motions, infall and merging. The observed velocity width correlates with the virial velocity for the dark matter halo of the forming protogalactic clump. The typical virial velocity of the halos required to lead to the DLAS population is approximately 100 km/s. It is concluded that the evidence that DLAS at high redshift are related to large, rapidly rotating disks, is not compelling.

  11. The Black Hole-Bulge Relationship for QSOs at High Redshift

    NASA Astrophysics Data System (ADS)

    Shields, G. A.; Menezes, K. L.; Massart, C. A.; Vanden Bout, P.

    2006-04-01

    We examine the black hole mass-galaxy bulge relationship in high-redshift QSOs. Black hole masses are derived from broad emission lines, and the host galaxy stellar velocity dispersion σ* is estimated from the widths of the radio CO emission lines. At redshifts z>3, the CO line widths are narrower than expected for the black hole mass, indicating that these giant black holes reside in undersized bulges by an order of magnitude or more. The largest black holes (MBH>109 Msolar) evidently grow rapidly in the early universe without commensurate growth of their host galaxies. CO line widths offer a unique opportunity to study AGN host galaxy dynamics at high redshift.

  12. From Nearby Low Luminosity AGN to High Redshift Radio Galaxies: Science Interests with Square Kilometre Array

    NASA Astrophysics Data System (ADS)

    Kharb, P.; Lal, D. V.; Singh, V.; Bagchi, J.; Ishwara Chandra, C. H.; Hota, A.; Konar, C.; Wadadekar, Y.; Shastri, P.; Das, M.; Baliyan, K.; Nath, B. B.; Pandey-Pommier, M.

    2016-12-01

    We present detailed science cases that a large fraction of the Indian AGN community is interested in pursuing with the upcoming Square Kilometre Array (SKA). These interests range from understanding low luminosity active galactic nuclei in the nearby Universe to powerful radio galaxies at high redshifts. Important unresolved science questions in AGN physics are discussed. Ongoing low-frequency surveys with the SKA pathfinder telescope GMRT, are highlighted.

  13. Astrophysical dynamos and the growth of magnetic fields in high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Rieder, Michael; Teyssier, Romain

    2015-08-01

    The origin and evolution of magnetic fields in the Universe is still an open question. Observations of galaxies at high-redshift give evidence for strong galactic magnetic fields even in the early Universe which are consistently measured at later times up to the present age. However, primordial magnetic fields and seed field generation by battery processes cannot explain such high field strengths, suggesting the presence of a rapid growth mechanism in those high-redshift galaxies and subsequent maintenance against decay. Astrophysical dynamo theory provides efficient means of field amplification where even weak initial fields can grow exponentially on sufficiently fast timescales, driving the conversion of kinetic energy into magnetic energy. We investigate the role which feedback mechanisms play in the creation of the turbulence necessary for dynamos to operate. Performing magnetohydrodynamic simulations of cooling halos of dwarf and Milky Way-like high-redshift progenitors, we compare the magnetic field evolution of weak seed fields with various topologies and stellar feedback mechanisms. We find that strong feedback can drive galactic gas turbulence which gives rise to velocity fields with fast exponential magnetic field growth. The simulations display a high gas fraction and a clumpy morphology with kinematics resembling Kolmogorov turbulence and magnetic energy spectra as predicted by Kazantsev dynamo theory. Magnetic fields reach equipartition with $\\mu$G field strength. In a final quiescent phase where feedback is turned off, gas turbulence is reduced and a quadrupole symmetry is observed in the magnetic field. These findings support the theory of rapid magnetic field amplification inside high-redshift galaxies, when the Universe was still young.

  14. UV Spectroscopy of Type Ia Supernovae at Low- andHigh-Redshift

    SciTech Connect

    Nugent, Peter

    2005-04-20

    In the past three years two separate programs were initiated to study the restframe UV properties of Type Ia Supernovae. The low-redshift study was carried out using several ground-based facilities coupled with HST/STIS observations. The high-redshift program is an offshoot of the CFHT Legacy Survey and uses Keck/LRIS to obtain spectra. Here we present the preliminary results from each program and their implications for current cosmology measurements.

  15. The X-ray properties of high redshift, optically selected QSOs. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Anderson, S. F.

    1985-01-01

    In order to study the X-ray properties of high redshift QSOs, grism/grens plates covering 17 deg. of sky previously imaged to very sensitive X-ray flux levels with the Einstein Observatory were taken. Following optical selection of the QSO, the archived X-ray image is examined to extract an X-ray flux detection or a sensitive upper limit.

  16. GALAXY CLUSTERS AT HIGH REDSHIFT AND EVOLUTION OF BRIGHTEST CLUSTER GALAXIES

    SciTech Connect

    Wen, Z. L.; Han, J. L.

    2011-06-10

    Identification of high-redshift clusters is important for studies of cosmology and cluster evolution. Using photometric redshifts of galaxies, we identify 631 clusters from the Canada-France-Hawaii Telescope (CFHT) wide field, 202 clusters from the CFHT deep field, 187 clusters from the Cosmic Evolution Survey (COSMOS) field, and 737 clusters from the Spitzer Wide-area InfraRed Extragalactic Survey (SWIRE) field. The redshifts of these clusters are in the range 0.1 {approx}< z {approx}< 1.6. Merging these cluster samples gives 1644 clusters in the four survey fields, of which 1088 are newly identified and more than half are from the large SWIRE field. Among 228 clusters of z {>=} 1, 191 clusters are newly identified, and most of them from the SWIRE field. With this large sample of high-redshift clusters, we study the color evolution of the brightest cluster galaxies (BCGs). The r' - z' and r{sup +} - m{sub 3.6{mu}m} colors of the BCGs are consistent with a stellar population synthesis model in which the BCGs are formed at redshift z{sub f} {>=} 2 and evolved passively. The g' - z' and B - m{sub 3.6{mu}m} colors of the BCGs at redshifts z > 0.8 are systematically bluer than the passive evolution model for galaxies formed at z{sub f} {approx} 2, indicating star formation in high-redshift BCGs.

  17. Lyman Break Analogs: Constraints on the Formation of Extreme Starbursts at Low and High Redshift

    NASA Technical Reports Server (NTRS)

    Goncalves, Thiago S.; Overzier, Roderik; Basu-Zych, Antara; Martin, D. Christopher

    2011-01-01

    Lyman Break Analogs (LBAs), characterized by high far-UV luminosities and surface brightnesses as detected by GALEX, are intensely star-forming galaxies in the low-redshift universe (z approximately equal to 0.2), with star formation rates reaching up to 50 times that of the Milky Way. These objects present metallicities, morphologies and other physical properties similar to higher redshift Lyman Break Galaxies (LBGs), motivating the detailed study of LBAs as local laboratories of this high-redshift galaxy population. We present results from our recent integral-field spectroscopy survey of LBAs with Keck/OSIRIS, which shows that these galaxies have the same nebular gas kinematic properties as high-redshift LBGs. We argue that such kinematic studies alone are not an appropriate diagnostic to rule out merger events as the trigger for the observed starburst. Comparison between the kinematic analysis and morphological indices from HST imaging illustrates the difficulties of properly identifying (minor or major) merger events, with no clear correlation between the results using either of the two methods. Artificial redshifting of our data indicates that this problem becomes even worse at high redshift due to surface brightness dimming and resolution loss. Whether mergers could generate the observed kinematic properties is strongly dependent on gas fractions in these galaxies. We present preliminary results of a CARMA survey for LBAs and discuss the implications of the inferred molecular gas masses for formation models.

  18. A distortion of very-high-redshift galaxy number counts by gravitational lensing.

    PubMed

    Wyithe, J Stuart B; Yan, Haojing; Windhorst, Rogier A; Mao, Shude

    2011-01-13

    The observed number counts of high-redshift galaxy candidates have been used to build up a statistical description of star-forming activity at redshift z ≳ 7, when galaxies reionized the Universe. Standard models predict that a high incidence of gravitational lensing will probably distort measurements of flux and number of these earliest galaxies. The raw probability of this happening has been estimated to be ∼0.5 per cent (refs 11, 12), but can be larger owing to observational biases. Here we report that gravitational lensing is likely to dominate the observed properties of galaxies with redshifts of z ≳ 12, when the instrumental limiting magnitude is expected to be brighter than the characteristic magnitude of the galaxy sample. The number counts could be modified by an order of magnitude, with most galaxies being part of multiply imaged systems, located less than 1 arcsec from brighter foreground galaxies at z ≈ 2. This lens-induced association of high-redshift and foreground galaxies has perhaps already been observed among a sample of galaxy candidates identified at z ≈ 10.6. Future surveys will need to be designed to account for a significant gravitational lensing bias in high-redshift galaxy samples.

  19. Searching for the Progenitors of High-redshift Compact Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Williams, Christina; Giavalisco, M.; Cassata, P.; Guo, Y.

    2012-05-01

    High-redshift galaxy surveys have revealed a population of very massive and already evolved early-type galaxies at z > 1, which appear to be ultra-compact in size relative to local galaxies of similar stellar mass. The compactness and stellar masses of these galaxies, which are already in place at high-redshift, pose challenges for theories in which mergers drive the evolution of galaxies. We investigate the properties of Lyman Break Galaxies at z > 3 in CANDELS, among whom must be the progenitor population of these ultra-compact early-type galaxies, to assess the extent to which they were also ultra-compact while building up their stellar mass. Since merging and accretion generally increase the size of galaxies, the progenitors of the ultra-compact ellipticals must be compact star-forming galaxies themselves. Using rest-frame optical imaging from HST and SED fitting, we study the evolution in the mass-radius relation using their morphologies and stellar masses. We also discuss the implications that these ultra-compact star-forming galaxies have on theories of galaxy evolution and the quenching of star-formation at high-redshift.

  20. Studies of Resolved Stellar Clumps in High-Redshift Galaxy Analogs

    NASA Astrophysics Data System (ADS)

    Messa, Matteo Maria; Adamo, Angela; Östlin, Göran; Hayes, Matthew; Melinder, Jens

    2015-08-01

    The Lyman-alpha reference sample (LARS) is a sample of 14 local high-redshift analogues observed with the Hubble Space Telescope (HST). These local galaxies (z = 0.028 - 0.19) have been selected to have moderately high EW(Hα) to ensure the selection of star-forming systems and far UV luminosities ranging from log(LFUV) = 9.2 to 10.7 LSUN, comparable to those of high-redshift Lyα emitters and Lyman Break Galaxies. The survey is providing fundamental insights into Lyα emission process, allowing the investigation of Lyα radiation transport and photon escape.In this poster, we present the statistical study of the spatially resolved stellar cluster complexes and of the main star-forming regions of the LARS sample. The exquisite multiband HST coverage and the proximity of the galaxies of the sample allow us to derive the physical properties of these stellar clumps, such as ages, masses, extinction, and sizes. Using the UV fluxes, we constraint which fraction of the current star formation is condensed in these compact regions. We try to quantify their contribution to the total ionizing photon budget derived from total Hα fluxes. The properties of these cluster complexes are compared to clump properties detected in high-redshift galaxies.

  1. Seeding High Redshift QSOs by Collisional Runaway in Primordial Star Clusters

    NASA Astrophysics Data System (ADS)

    Katz, Harley; Sijacki, Debora; Haehnelt, Martin

    2015-08-01

    The formation and evolution of high mass galaxies across cosmic time is believed to be fundamentally related to the activity and growth of their constituent supermassive black holes. Such black holes with masses of over a billion solar masses were in place in galaxies when the Universe was less than ten percent of its current age, leaving in doubt whether known mechanisms of forming black holes could be responsible for seeding these massive objects and posing the question of how such objects impacted the early Universe. We study a channel, whereby the runaway stellar collisions in high redshift, metal poor, star clusters result in very massive stars of up to ~1000 M⊙, which can then directly collapse into intermediate mass black holes. We present novel, high resolution, hydrodynamical, zoom-in simulations, with non-equilibrium cooling to follow the detailed chemical properties, collapse, and evolution of a pair high redshift dwarf galaxies which subsequently produce a metal enriched, dense, gaseous clump. We then use the spatial configuration of this flattened, asymmetrical birth cloud to set the initial conditions for simulations of an initially non-spherical star cluster with a direct summation code. We find that, for a variety of different parameters, collisional runaway is a promising mechanism to produce large numbers of high redshift seeds required for the formation of super massive black holes by z=6.

  2. Detecting Massive, High-Redshift Galaxy Clusters Using the Thermal Sunyaev-Zel'dovich Effect

    NASA Astrophysics Data System (ADS)

    Adams, Carson; Steinhardt, Charles L.; Loeb, Abraham; Karim, Alexander; Staguhn, Johannes; Erler, Jens; Capak, Peter L.

    2017-01-01

    We develop the thermal Sunyaev-Zel'dovich (SZ) effect as a direct astrophysical measure of the mass distribution of dark matter halos. The SZ effect increases with cosmological distance, a unique astronomical property, and is highly sensitive to halo mass. We find that this presents a powerful methodology for distinguishing between competing models of the halo mass function distribution, particularly in the high-redshift domain just a few hundred million years after the Big Bang. Recent surveys designed to probe this epoch of initial galaxy formation such as CANDELS and SPLASH report an over-abundance of highly massive halos as inferred from stellar ultraviolet (UV) luminosities and the stellar mass to halo mass ratio estimated from nearby galaxies. If these UV luminosity to halo mass relations hold to high-redshift, observations estimate several orders of magnitude more highly massive halos than predicted by hierarchical merging and the standard cosmological paradigm. Strong constraints on the masses of these galaxy clusters are essential to resolving the current tension between observation and theory. We conclude that detections of thermal SZ sources are plausible at high-redshift only for the halo masses inferred from observation. Therefore, future SZ surveys will provide a robust determination between theoretical and observational predictions.

  3. Were Progenitors of Local L* Galaxies Lyα Emitters at High Redshift?

    NASA Astrophysics Data System (ADS)

    Yajima, Hidenobu; Li, Yuexing; Zhu, Qirong; Abel, Tom; Gronwall, Caryl; Ciardullo, Robin

    2012-08-01

    The Lyα emission has been observed from galaxies over a redshift span z ~ 0-8.6. However, the evolution of high-redshift Lyα emitters (LAEs), and the link between these populations and local galaxies, remains poorly understood. Here, we investigate the Lyα properties of progenitors of a local L* galaxy by combining cosmological hydrodynamic simulations with three-dimensional radiative transfer calculations using the new ART2 code. We find that the main progenitor (the most massive one) of a Milky-Way-like galaxy has a number of Lyα properties close to those of observed LAEs at z ~ 2-6, but most of the fainter ones appear to fall below the detection limits of current surveys. The Lyα photon escape fraction depends sensitively on a number of physical properties of the galaxy, such as mass, star formation rate, and metallicity, as well as galaxy morphology and orientation. Moreover, we find that high-redshift LAEs show blueshifted Lyα line profiles characteristic of gas inflow, and that the Lyα emission by excitation cooling increases with redshift, and becomes dominant at z >~ 6. Our results suggest that some observed LAEs at z ~ 2-6 with luminosity of L Lyα ~ 1042-1043 erg s-1 may be similar to the main progenitor of the Milky Way at high redshift, and that they may evolve into present-day L* galaxies.

  4. VIMOS Ultra-Deep Survey (VUDS): IGM transmission towards galaxies with 2.5 < z < 5.5 and the colour selection of high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Thomas, R.; Le Fèvre, O.; Le Brun, V.; Cassata, P.; Garilli, B.; Lemaux, B. C.; Maccagni, D.; Pentericci, L.; Tasca, L. A. M.; Zamorani, G.; Zucca, E.; Amorin, R.; Bardelli, S.; Cassarà, L.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Ilbert, O.; Paltani, S.; Pforr, J.; Ribeiro, B.; Schaerer, D.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vanzella, E.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; Cuby, J. G.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.

    2017-01-01

    The observed UV rest-frame spectra of distant galaxies are the result of their intrinsic emission combined with absorption along the line of sight produced by the inter-galactic medium (IGM). Here we analyse the evolution of the mean IGM transmission Tr(Lyα) and its dispersion along the line of sight for 2127 galaxies with 2.5 < z < 5.5 in the VIMOS Ultra Deep Survey (VUDS). We fitted model spectra combined with a range of IGM transmission to the galaxy spectra using the spectral fitting algorithm GOSSIP+. We used these fits to derive the mean IGM transmission towards each galaxy for several redshift slices from z = 2.5 to z = 5.5. We found that the mean IGM transmission defined as Tr(Lyα) = e- τ (with τ as the HI optical depth) is 79%, 69%, 59%, 55%, and 46% at redshifts 2.75, 3.22, 3.70, 4.23, and 4.77, respectively. We compared these results to measurements obtained from quasar lines of sight and found that the IGM transmission towards galaxies is in excellent agreement with quasar values up to redshift z 4. We found tentative evidence for a higher IGM transmission at z ≥ 4 compared to results from QSOs, but a degeneracy between dust extinction and IGM prevents us from firmly concluding whether the internal dust extinction for star-forming galaxies at z > 4 takes a mean value significantly in excess of E(B-V) > 0.15. Most importantly, we found a large dispersion of IGM transmission along the lines of sight towards distant galaxies with 68% of the distribution within 10 to 17% of the median value in δz = 0.5 bins, similar to what is found on the lines of sight towards QSOs. We demonstrate that taking this broad range of IGM transmission into account is important when selecting high-redshift galaxies based on their colour properties (e.g. LBG or photometric redshiftselection) because failing to do so causes a significant incompleteness in selecting high-redshift galaxy populations. We finally discuss the observed IGM properties and speculate that the broad

  5. Camera for Quasars in Early Universe (CQUEAN)

    NASA Astrophysics Data System (ADS)

    Park, Won-Kee; Pak, Soojong; Im, Myungshin; Choi, Changsu; Jeon, Yiseul; Chang, Seunghyuk; Jeong, Hyeonju; Lim, Juhee; Kim, Eunbin

    2012-08-01

    We describe the overall characteristics and the performance of an optical CCD camera system, Camera for Quasars in Early Universe (CQUEAN), which has been used at the 2.1 m Otto Struve Telescope of the McDonald Observatory since 2010 August. CQUEAN was developed for follow-up imaging observations of red sources such as high-redshift quasar candidates (z ≳ 5), gamma-ray bursts, brown dwarfs, and young stellar objects. For efficient observations of the red objects, CQUEAN has a science camera with a deep-depletion CCD chip, which boasts a higher quantum efficiency at 0.7–1.1 μm than conventional CCD chips. The camera was developed in a short timescale () and has been working reliably. By employing an autoguiding system and a focal reducer to enhance the field of view on the classical Cassegrain focus, we achieve a stable guiding in 20 minute exposures, an imaging quality with FWHM≥0.6‧‧ over the whole field (4.8‧ × 4.8‧), and a limiting magnitude of z = 23.4 AB mag at 5-σ with 1 hr total integration time. This article includes data taken at the McDonald Observatory of The University of Texas at Austin.

  6. A SPECTACULAR OUTFLOW IN AN OBSCURED QUASAR

    SciTech Connect

    Greene, Jenny E.; Zakamska, Nadia L.; Smith, Paul S.

    2012-02-10

    SDSS J1356+1026 is a pair of interacting galaxies at redshift z = 0.123 that hosts a luminous obscured quasar in its northern nucleus. Here we present two long-slit Magellan LDSS-3 spectra that reveal a pair of symmetric {approx}10 kpc size outflows emerging from this nucleus, with observed expansion velocities of {approx}250 km s{sup -1} in projection. We present a kinematic model of these outflows and argue that the deprojected physical velocities of expansion are likely {approx}1000 km s{sup -1} and that the kinetic energy of the expanding shells is likely 10{sup 44-45} erg s{sup -1}, with an absolute minimum of >10{sup 42} erg s{sup -1}. Although a radio counterpart is detected at 1.4 GHz, it is faint enough that the quasar is considered to be radio quiet by all standard criteria, and there is no evidence of extended emission due to radio lobes, whether aged or continuously powered by an ongoing jet. We argue that the likely level of star formation is insufficient to power the observed energetic outflow and that SDSS J1356+1026 is a good case for radio-quiet quasar feedback. In further support of this hypothesis, polarimetric observations show that the direction of quasar illumination is coincident with the direction of the outflow.

  7. The Pan-STARRS1 z>6 quasar survey: More than 100 quasars within the first Gyr of the universe

    NASA Astrophysics Data System (ADS)

    Walter, Fabian; Banados, Eduardo; Venemans, Bram; Decarli, Roberto; Farina, Emanuele; Mazzucchelli, Chiara; Fan, Xiaohui; Chambers, Kenneth C.

    2016-01-01

    Quasars are the most luminous non-transient sources in the Universe. As such, they are ideal probes of the redshift range z=6-7, a critical phase in cosmic history, when the Universe is emerging from the dark ages. Over the last three years we have exploited the Pan-STARRS1 survey, more than doubling the number of known z>5.5 quasars (tripling the number of z>6 quasars in the southern sky, and discovering 4 of the 9 quasars known at z>6.5). This seach significantly extended the sampled parameter space in terms of quasar luminosities and redshift coverage. Pioneering studies already demostrate the intrumental role of QSOs in probing the very early phases of galaxy formation and black hole growth within 1 Gyr from the Big Bang: a) billion solar masses black holes are already in place, b) they are surrounded by massive reservoirs of cold gas, and c) the neutral fraction of the intergalactic medium rapidly drops after z~6, thus marking the end of the epoch of reionization. Our significantly enlarged sample marks the transition phase from studies of individual sources to statistical studies of the high-z quasar population. We present some of the comprehensive multiwavelength characterization of the high-z quasar population and their environment (our on-going efforts include deep NIR spectroscopy, ALMA, NOEMA, HST, Spitzer, and JVLA observations).

  8. DISCLOSING THE RADIO LOUDNESS DISTRIBUTION DICHOTOMY IN QUASARS: AN UNBIASED MONTE CARLO APPROACH APPLIED TO THE SDSS-FIRST QUASAR SAMPLE

    SciTech Connect

    Balokovic, M.; Smolcic, V.; Ivezic, Z.; Zamorani, G.; Schinnerer, E.; Kelly, B. C.

    2012-11-01

    We investigate the dichotomy in the radio loudness distribution of quasars by modeling their radio emission and various selection effects using a Monte Carlo approach. The existence of two physically distinct quasar populations, the radio-loud and radio-quiet quasars, is controversial and over the last decade a bimodal distribution of radio loudness of quasars has been both affirmed and disputed. We model the quasar radio luminosity distribution with simple unimodal and bimodal distribution functions. The resulting simulated samples are compared to a fiducial sample of 8300 quasars drawn from the SDSS DR7 Quasar Catalog and combined with radio observations from the FIRST survey. Our results indicate that the SDSS-FIRST sample is best described by a radio loudness distribution which consists of two components, with (12 {+-} 1)% of sources in the radio-loud component. On the other hand, the evidence for a local minimum in the loudness distribution (bimodality) is not strong and we find that previous claims for its existence were probably affected by the incompleteness of the FIRST survey close to its faint limit. We also investigate the redshift and luminosity dependence of the radio loudness distribution and find tentative evidence that at high redshift radio-loud quasars were rarer, on average louder, and exhibited a smaller range in radio loudness. In agreement with other recent work, we conclude that the SDSS-FIRST sample strongly suggests that the radio loudness distribution of quasars is not a universal function, and that more complex models than presented here are needed to fully explain available observations.

  9. Possible evolution of supermassive black holes from FRI quasars

    NASA Astrophysics Data System (ADS)

    Kim, Matthew I.; Christian, Damian J.; Garofalo, David; D'Avanzo, Jaclyn

    2016-08-01

    We explore the question of the rapid buildup of black hole mass in the early universe employing a growing black hole mass-based determination of both jet and disc powers predicted in recent theoretical work on black hole accretion and jet formation. Despite simplified, even artificial assumptions about accretion and mergers, we identify an interesting low probability channel for the growth of one billion solar mass black holes within hundreds of millions of years of the big bang without appealing to super Eddington accretion. This result is made more compelling by the recognition of a connection between this channel and an end product involving active galaxies with FRI radio morphology but weaker jet powers in mildly sub-Eddington accretion regimes. While FRI quasars have already been shown to occupy a small region of the available parameter space for black hole feedback in the paradigm, we further suggest that the observational dearth of FRI quasars is also related to their connection to the most massive black hole growth due to both these FRIs high redshifts and relative weakness. Our results also allow us to construct the AGN (active galactic nucleus) luminosity function at high redshift, that agree with recent studies. In short, we produce a connection between the unexplained paucity of a given family of AGNs and the rapid growth of supermassive black holes, two heretofore seemingly unrelated aspects of the physics of AGNs.

  10. X-ray emission from high-redshift miniquasars: self-regulating the population of massive black holes through global warming

    NASA Astrophysics Data System (ADS)

    Tanaka, Takamitsu; Perna, Rosalba; Haiman, Zoltán.

    2012-10-01

    Observations of high-redshift quasars at z ≳6 imply that supermassive black holes (SMBHs) with masses M≳109 M were in place less than 1 Gyr after the big bang. If these SMBHs assembled from 'seed' BHs left behind by the first stars, then they must have accreted gas at close to the Eddington limit during a large fraction (>rsim 50 per cent) of the time. A generic problem with this scenario, however, is that the mass density in M ˜ 106 M⊙ SMBHs at z ˜ 6 already exceeds the locally observed SMBH mass density by several orders of magnitude; in order to avoid this overproduction, BH seed formation and growth must become significantly less efficient in less massive protogalaxies through some form of feedback, while proceeding unabated in the most massive galaxies that formed first. Using Monte Carlo realizations of the merger and growth history of BHs, we show that X-rays from the earliest accreting BHs can provide such a feedback mechanism, on a global scale. Our calculations paint a self-consistent picture of BH-made climate change, in which the first miniquasars - among them the ancestors of the z ˜ 6 quasar SMBHs - globally warm the intergalactic medium and suppress the formation and growth of subsequent generations of BHs. We present two specific models with global miniquasar feedback that provide excellent agreement with recent estimates of the z = 6 SMBH mass function. For each of these models, we estimate the rate of BH mergers at z > 6 that could be detected by the proposed gravitational-wave observatory eLISA/NGO.

  11. Powerful Winds in Extreme RBS quasars (POWER)

    NASA Astrophysics Data System (ADS)

    Piconcelli, Enrico

    2013-10-01

    This proposal aims at studying powerful outflows in ultra-luminous (log Lx >45) Radio-Quiet Quasars (RQQ). We propose to observe four objects extracted from a luminosity limited sample in the ROSAT Bright Survey for a full orbit (130 ks) each. Both models and observations suggest that the efficiency of driving energetic outflows increases with the AGN luminosity. Therefore, our targets are potentially the best objects to hunt for very powerful outflows expected in the AGN/galaxy feedback scenario. Our observations represent the first attempt ever to obtain deep, high-resolution-driven spectroscopy of a representative sample of RQQ in this high-luminosity regime.

  12. Swift multi-wavelength observations of the high-redshift Blazar S5 0836+710 (4C 71.07)

    NASA Astrophysics Data System (ADS)

    Vercellone, Stefano; Romano, Patrizia; Raiteri, Claudia Maria; Acosta Pulido, Jose; Villata, Massimo; Carnerero Martin, Maria Isabel

    2016-04-01

    We present the preliminary results of a year-long Swift monitoring campaign of the high-redshift (z=2.172) flat-spectrum radio quasar (FSRQ) S5 0836+710 (4C 71.07). The campaign, based on one observation per month, 5 ks each observation, for 12 months, allowed us to investigate the synchrotron and nuclear emission contributions to the optical-UV frequency range of its spectral energy distribution and the X-ray spectral variations along a baseline of a year. We obtained a high-accuracy determination of UVOT magnitudes, an X-ray photon index with an uncertainty of the order of 5%, and well-sampled light curves both in the optical-UV and X-ray energy bands to study their possible modulations and correlations. Our study allowed us to exploit the unique Swift capabilities in terms of both simultaneous energy coverage and schedule flexibility. The Swift monitoring campaign was supported by observations by the GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT) Collaboration, which provided radio, near-infrared, and optical photometric data as well as optical polarimetry. Moreover, a spectroscopic monitoring was obtained at the William Herschel Telescope (WHT) and the Nordic Optical Telescope (NOT). All these observations will allow us to obtain a comprehensive picture of the jet as well as of the nuclear source emission.

  13. The fate of high redshift massive compact galaxies in dense environments

    SciTech Connect

    Kaufmann, Tobias; Mayer, Lucio; Carollo, Marcella; Feldmann, Robert; /Fermilab /Chicago U., KICP

    2012-01-01

    Massive compact galaxies seem to be more common at high redshift than in the local universe, especially in denser environments. To investigate the fate of such massive galaxies identified at z {approx} 2 we analyse the evolution of their properties in three cosmological hydrodynamical simulations that form virialized galaxy groups of mass {approx} 10{sup 13} M{sub {circle_dot}} hosting a central massive elliptical/S0 galaxy by redshift zero. We find that at redshift {approx} 2 the population of galaxies with M{sub *} > 2 x 10{sup 10} M{sub {circle_dot}} is diverse in terms of mass, velocity dispersion, star formation and effective radius, containing both very compact and relatively extended objects. In each simulation all the compact satellite galaxies have merged into the central galaxy by redshift 0 (with the exception of one simulation where one of such satellite galaxy survives). Satellites of similar mass at z = 0 are all less compact than their high redshift counterparts. They form later than the galaxies in the z = 2 sample and enter the group potential at z < 1, when dynamical friction times are longer than the Hubble time. Also, by z = 0 the central galaxies have increased substantially their characteristic radius via a combination of in situ star formation and mergers. Hence in a group environment descendants of compact galaxies either evolve towards larger sizes or they disappear before the present time as a result of the environment in which they evolve. Since the group-sized halos that we consider are representative of dense environments in the {Lambda}CDM cosmology, we conclude that the majority of high redshift compact massive galaxies do not survive until today as a result of the environment.

  14. Why do high-redshift galaxies show diverse gas-phase metallicity gradients?

    NASA Astrophysics Data System (ADS)

    Ma, Xiangcheng; Hopkins, Philip F.; Feldmann, Robert; Torrey, Paul; Faucher-Giguère, Claude-André; Kereš, Dušan

    2017-01-01

    Recent spatially resolved observations of galaxies at z ˜ 0.6-3 reveal that high-redshift galaxies show complex kinematics and a broad distribution of gas-phase metallicity gradients. To understand these results, we use a suite of high-resolution cosmological zoom-in simulations from the Feedback in Realistic Environments (FIRE) project, which include physically motivated models of the multi-phase ISM, star formation, and stellar feedback. Our simulations reproduce the observed diversity of kinematic properties and metallicity gradients, broadly consistent with observations at z ˜ 0-3. Strong negative metallicity gradients only appear in galaxies with a rotating disk, but not all rotationally supported galaxies have significant gradients. Strongly perturbed galaxies with little rotation always have flat gradients. The kinematic properties and metallicity gradient of a high-redshift galaxy can vary significantly on short time-scales, associated with starburst episodes. Feedback from a starburst can destroy the gas disk, drive strong outflows, and flatten a pre-existing negative metallicity gradient. The time variability of a single galaxy is statistically similar to the entire simulated sample, indicating that the observed metallicity gradients in high-redshift galaxies reflect the instantaneous state of the galaxy rather than the accretion and growth history on cosmological time-scales. We find weak dependence of metallicity gradient on stellar mass and specific star formation rate (sSFR). Low-mass galaxies and galaxies with high sSFR tend to have flat gradients, likely due to the fact that feedback is more efficient in these galaxies. We argue that it is important to resolve feedback on small scales in order to produce the diverse metallicity gradients observed.

  15. Galaxy formation in the Planck cosmology - III. The high-redshift universe

    NASA Astrophysics Data System (ADS)

    Clay, Scott J.; Thomas, Peter A.; Wilkins, Stephen M.; Henriques, Bruno M. B.

    2015-08-01

    We present high-redshift predictions of the star formation rate distribution function (SFRDF), UV luminosity function (UVLF), galactic stellar mass function (GSMF), and specific star formation rates (sSFRs) of galaxies from the latest version of the Munich semi-analytic model L-GALAXIES. We find a good fit to both the shape and normalization of the SFRDF at z = 4-7, apart from a slight underprediction at the low-SFR end at z = 4. Likewise, we find a good fit to the faint number counts for the observed UVLF at brighter magnitudes our predictions lie below the observations, increasingly so at higher redshifts. At all redshifts and magnitudes, the raw (unattenuated) number counts for the UVLF lie above the observations. Because of the good agreement with the SFR we interpret our underprediction as an overestimate of the amount of dust in the model for the brightest galaxies, especially at high redshift. While the shape of our GSMF matches that of the observations, we lie between (conflicting) observations at z = 4-5, and underpredict at z = 6-7. The sSFRs of our model galaxies show the observed trend of increasing normalization with redshift, but do not reproduce the observed mass dependence. Overall, we conclude that the latest version of L-GALAXIES, which is tuned to match observations at z ≤ 3, does a fair job of reproducing the observed properties of galaxies at z ≥ 4. More work needs to be done on understanding observational bias at high redshift, and upon the dust model, before strong conclusions can be drawn on how to interpret remaining discrepancies between the model and observations.

  16. A Hungry Quasar Caught in the Act

    NASA Astrophysics Data System (ADS)

    2001-05-01

    The VLT Secures Spectacular Image of Distant Gravitational Interaction Summary A new image of a distant quasar (the luminous core of an "active" galaxy) shows that it is engaged in a gravitational battle with its neighbouring galaxies . It also provides information on how supermassive black holes present in the center of quasars are fed. Using the FORS2 multi-mode instrument at the ESO 8.2-m VLT KUEYEN telescope on Paranal (Chile), a team of German astronomers [1] obtained a spectacular image of the close and complex environment of the distant quasar "HE 1013-2136", located some 10 billion light-years away [2]. The remarkable structures revealed in this photo lend support to the hypothesis that quasar activity is connected to gravitational interaction between galaxies, already at this early epoch of the Universe (about 5 billion years after the Big Bang). PR Photo 20a/01 : A VLT image of the Quasar HE 1013-2136 . PR Photo 20b/01 : A sharpened version of the same image. Feeding the Black Hole "Quasars" (Quasi-Stellar Objects) were first discovered by Dutch-American astronomer Maarten Schmidt in 1963 as distant, energetic objects of star-like appearance. Since then, more than 15,000 quasars have been found and we now know that they are the luminous cores at the heart of distant galaxies. Such "Active Galactic Nuclei (AGN)" are thought to host Supermassive Black Holes of up to one billion solar masses at their centres. Black Holes represent the densest possible state of matter; if the Earth were to become one, it would measure no more than a few millimetres across. The Black Hole in a galaxy gobbles up the gas and dust of its host, a process that efficiently powers the luminous core that we observe as a point-like "quasar". A Black Hole must be continuously fed to remain active. During an active phase of typically 100 million years, the Black Hole in a quasar swallows material with a total weight of up to 10 solar masses every year. This may be predominantly in the

  17. No Overdensity of Lyman-Alpha Emitting Galaxies around a Quasar at z ∼ 5.7

    NASA Astrophysics Data System (ADS)

    Mazzucchelli, C.; Bañados, E.; Decarli, R.; Farina, E. P.; Venemans, B. P.; Walter, F.; Overzier, R.

    2017-01-01

    Bright quasars, observed when the universe was less than one billion years old (z > 5.5), are known to host massive black holes (∼109 M⊙) and are thought to reside in the center of massive dark matter overdensities. In this picture, overdensities of galaxies are expected around high-redshift quasars. However, observations based on the detection of Lyman-break galaxies (LBGs) around these quasars do not offer a clear picture: this may be due to the uncertain redshift constraints of LBGs, which are solely selected through broadband filters. To circumvent such uncertainties, we here perform a search for Lyman-alpha emitting galaxies (LAEs) in the field of the quasar PSO J215.1512–16.0417 at z ∼ 5.73, through narrowband deep imaging with FORS2 at the Very Large Telescope. We study an area of 37 arcmin2, i.e., ∼206 comoving Mpc2 at the redshift of the quasar. We find no evidence of an overdensity of LAEs in the quasar field with respect to blank-field studies. Possible explanations for these findings may be that our survey volume is too small, or that the strong ionizing radiation from the quasar hinders galaxy formation in its immediate proximity. Another possibility is that these quasars are not situated in the dense environments predicted by some simulations.

  18. Molecular gas in the halo fuels the growth of a massive cluster galaxy at high redshift.

    PubMed

    Emonts, B H C; Lehnert, M D; Villar-Martín, M; Norris, R P; Ekers, R D; van Moorsel, G A; Dannerbauer, H; Pentericci, L; Miley, G K; Allison, J R; Sadler, E M; Guillard, P; Carilli, C L; Mao, M Y; Röttgering, H J A; De Breuck, C; Seymour, N; Gullberg, B; Ceverino, D; Jagannathan, P; Vernet, J; Indermuehle, B T

    2016-12-02

    The largest galaxies in the universe reside in galaxy clusters. Using sensitive observations of carbon monoxide, we show that the Spiderweb galaxy-a massive galaxy in a distant protocluster-is forming from a large reservoir of molecular gas. Most of this molecular gas lies between the protocluster galaxies and has low velocity dispersion, indicating that it is part of an enriched intergalactic medium. This may constitute the reservoir of gas that fuels the widespread star formation seen in earlier ultraviolet observations of the Spiderweb galaxy. Our results support the notion that giant galaxies in clusters formed from extended regions of recycled gas at high redshift.

  19. Long-Term Multiwavelength Studies of High-Redshift Blazar 0836+710

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Akyuz, A.; Donato, D.; Perkins, J. S.; Larsson, S.; Sokolovsky, K.; Fuhrmann, L.; Kurtanidze, O.

    2012-01-01

    Following gamma-ray flaring activity of high-redshift (z=2.218) blazar 0836+710 in 2011, we have assembled a long-term multiwavelength study of this object. Although this source is monitored regularly by radio telescopes and the Fermi Large Area Telescope, its coverage at other wavelengths is limited. The optical flux appears generally correlated with the gamma-ray flux, while little variability has been seen at X-ray energies. The gamma-ray/radio correlation is complex compared to some other blazars. As for many blazars, the largest variability is seen at gamma-ray wavelengths.

  20. Molecular gas in the halo fuels the growth of a massive cluster galaxy at high redshift

    NASA Astrophysics Data System (ADS)

    Emonts, B. H. C.; Lehnert, M. D.; Villar-Martín, M.; Norris, R. P.; Ekers, R. D.; van Moorsel, G. A.; Dannerbauer, H.; Pentericci, L.; Miley, G. K.; Allison, J. R.; Sadler, E. M.; Guillard, P.; Carilli, C. L.; Mao, M. Y.; Röttgering, H. J. A.; De Breuck, C.; Seymour, N.; Gullberg, B.; Ceverino, D.; Jagannathan, P.; Vernet, J.; Indermuehle, B. T.

    2016-12-01

    The largest galaxies in the universe reside in galaxy clusters. Using sensitive observations of carbon monoxide, we show that the Spiderweb galaxy—a massive galaxy in a distant protocluster—is forming from a large reservoir of molecular gas. Most of this molecular gas lies between the protocluster galaxies and has low velocity dispersion, indicating that it is part of an enriched intergalactic medium. This may constitute the reservoir of gas that fuels the widespread star formation seen in earlier ultraviolet observations of the Spiderweb galaxy. Our results support the notion that giant galaxies in clusters formed from extended regions of recycled gas at high redshift.

  1. Molecular gas in the host galaxy of a quasar at redshift z = 6.42.

    PubMed

    Walter, Fabian; Bertoldi, Frank; Carilli, Chris; Cox, Pierre; Lo, K Y; Neri, Roberto; Fan, Xiaohui; Omont, Alain; Strauss, Michael A; Menten, Karl M

    2003-07-24

    Observations of molecular hydrogen in quasar host galaxies at high redshifts provide fundamental constraints on galaxy evolution, because it is out of this molecular gas that stars form. Molecular hydrogen is traced by emission from the carbon monoxide molecule, CO; cold H2 itself is generally not observable. Carbon monoxide has been detected in about ten quasar host galaxies with redshifts z > 2; the record-holder is at z = 4.69 (refs 1-3). Here we report CO emission from the quasar SDSS J114816.64 + 525150.3 (refs 5, 6) at z = 6.42. At that redshift, the Universe was only 1/16 of its present age, and the era of cosmic reionization was just ending. The presence of about 2 x 1010 M\\circ of H2 in an object at this time demonstrates that molecular gas enriched with heavy elements can be generated rapidly in the youngest galaxies.

  2. PHL 1092: A narrow-line quasar emerging from the darkness

    NASA Astrophysics Data System (ADS)

    Gallo, Luigi

    2013-10-01

    The radio quiet, narrow line quasar, PHL1092 exhibits the extreme behaviour associated with 1H0707 and IRAS13224, but at a high redshift (z=0.396) and with high luminosity (~10^45 erg/s). From a short, bright state observation of PHL1092 we discovered a super soft excess, possible relativistically broadened FeL and K emission, high radiative efficiency, and possible high velocity outflow. Follow up observations between 2008-10 caught the quasar in a deep minimum that could be attributed to disruption of the corona. We will monitor PHL1092 with Swift to catch the quasar emerging from its current low-flux state so that we can study the bright state of the AGN with a triggered 130ks XMM observation.

  3. Discovery of 16 New z ∼ 5.5 Quasars: Filling in the Redshift Gap of Quasar Color Selection

    NASA Astrophysics Data System (ADS)

    Yang, Jinyi; Fan, Xiaohui; Wu, Xue-Bing; Wang, Feige; Bian, Fuyan; Yang, Qian; McGreer, Ian D.; Yi, Weimin; Jiang, Linhua; Green, Richard; Yue, Minghao; Wang, Shu; Li, Zefeng; Ding, Jiani; Dye, Simon; Lawrence, Andy

    2017-04-01

    We present initial results from the first systematic survey of luminous z ∼ 5.5 quasars. Quasars at z ∼ 5.5, the post-reionization epoch, are crucial tools to explore the evolution of intergalactic medium, quasar evolution, and the early super-massive black hole growth. However, it has been very challenging to select quasars at redshifts 5.3 ≤ z ≤ 5.7 using conventional color selections, due to their similar optical colors to late-type stars, especially M dwarfs, resulting in a glaring redshift gap in quasar redshift distributions. We develop a new selection technique for z ∼ 5.5 quasars based on optical, near-IR, and mid-IR photometric data from Sloan Digital Sky Survey (SDSS), UKIRT InfraRed Deep Sky Surveys—Large Area Survey (ULAS), VISTA Hemisphere Survey (VHS), and Wide Field Infrared Survey Explorer. From our pilot observations in the SDSS-ULAS/VHS area, we have discovered 15 new quasars at 5.3 ≤ z ≤ 5.7 and 6 new lower redshift quasars, with SDSS z band magnitude brighter than 20.5. Including other two z ∼ 5.5 quasars already published in our previous work, we now construct a uniform quasar sample at 5.3 ≤ z ≤ 5.7, with 17 quasars in a ∼4800 square degree survey area. For further application in a larger survey area, we apply our selection pipeline to do a test selection by using the new wide field J-band photometric data from a preliminary version of the UKIRT Hemisphere Survey (UHS). We successfully discover the first UHS selected z ∼ 5.5 quasar.

  4. Probabilistic Selection of High-redshfit Quasars with Subaru / Hyper Suprime-Cam Survey

    NASA Astrophysics Data System (ADS)

    Onoue, Masafusa

    2015-08-01

    High-redshift quasrs are an important probe of the distant Universe. They enable observational studies of the early growth of supermassive blackholes, cosmic reionization, chemical enrichment of host galaxies, and so on. We are now starting a new ground-breaking survey of high-redsfhit quasars (z>6) using the exquisite imaging data provided by the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP) Survey. With the extremely wide-area coverage and high sensitivity thorugh five optical bands (1,400 deg2 to the depth of r~26 in Wide layer), it is one of the most powerful contemporary surveys that makes it possible for the HSC-AGN collaboration to increase the number of z>6 quasars by almost an order of magnitude, i.e., 300 at z~6 and 50 at z~7 based on the current estimate of the QLF at z>6 (Willott et al. 2010).One of the biggest challenges in the candidate selection is the significant contamination of Galactic brown dwarfs, which have the same point-like appearance as and similarly red colors to z>6 quasars. To overcome this issue, we have developed template SED fitting method optimized to high-redshift quasars selection for constructing the largest z>6 quasar sample with the HSC survey. Since 500 deg2 of the footprints of the HSC survey overlaps with the VISTA/VIKING survey, it is expected that z>6 quasars, with characteristic large Lyman break and flat red-continuum in its SED, can be separated out from contaminating sources by applying SED fitting with multi-wavelength photometric data. In practice, its application with 27 photometric bands to the COSMOS quasars at 3quasars are correctly classified with small dispersion σΔz/(1+z)=0.01 and as low as η=2.5% outlier rate.In our poster, we present the detailed evaluation of the efficiency of our strategy, and also the progress of our z>6 quasar search with the first-year data products of the HSC survey, which results in extracting several promising candidates

  5. Detecting the integrated Sachs-Wolfe effect with high-redshift 21-cm surveys

    NASA Astrophysics Data System (ADS)

    Raccanelli, Alvise; Kovetz, Ely; Dai, Liang; Kamionkowski, Marc

    2016-04-01

    We investigate the possibility of detecting the integrated Sachs-Wolfe (ISW) effect by cross-correlating 21-cm surveys at high redshifts with galaxies in a way similar to the usual CMB-galaxy cross-correlation. The high-redshift 21-cm signal is dominated by CMB photons that travel freely without interacting with the intervening matter, and hence its late-time ISW signature should correlate extremely well with that of the CMB at its peak frequencies. Using the 21-cm temperature brightness instead of the CMB would thus be a further check of the detection of the ISW effect, measured by different instruments at different frequencies and suffering from different systematics. We also study the ISW effect on the photons that are scattered by HI clouds. We show that a detection of the unscattered photons is achievable with planned radio arrays, while one using scattered photons will require advanced radio interferometers, either an extended version of the planned Square Kilometre Array or futuristic experiments such as a lunar radio array.

  6. VLP - High-Redshift AGNs and the X-SERVS Survey

    NASA Astrophysics Data System (ADS)

    Brandt, W.

    2016-06-01

    In the first part of this talk, I will review how X-ray observations of high-redshift AGNs at z = 4-7 have played a critical role in understanding their basic demographics as well as their physical processes; e.g., accretion rates, jet emission, X-ray absorption by nuclear material and winds. Since 2000, XMM-Newton and Chandra have provided new X-ray detections for more than 120 such objects, and well-defined samples of z > 4 AGNs now allow reliable basic X-ray population studies. I will point out key remaining areas of uncertainty, highlighting where further XMM-Newton and Chandra observations can advance understanding. I will then describe the X-SERVS project which aims to go ``beyond COSMOS'' via a 12 deg^2 survey of three prime sky regions: W-CDF-S, XMM-LSS, and ELAIS-S1. The X-SERVS survey will allow outstanding studies of the detected AGNs and groups/clusters by powerfully leveraging multiple intensive radio-to-UV surveys: ATLAS/HerMES/SERVS/VIDEO/DES/HSC/PS1MD/VOICE/CSI/PRIMUS. We aim to dramatically advance studies of SMBH growth across the full range of cosmic environments, links between SMBH accretion and star formation, exceptional AGNs at high redshifts, protoclusters, etc. The targeted X-SERVS fields will have extraordinary legacy value as MOONS massive spectroscopy fields, prime ALMA fields, and DES/LSST deep-drilling fields.

  7. The Main Sequences of Star-forming Galaxies and Active Galactic Nuclei at High Redshift

    NASA Astrophysics Data System (ADS)

    Mancuso, C.; Lapi, A.; Shi, J.; Cai, Z.-Y.; Gonzalez-Nuevo, J.; Béthermin, M.; Danese, L.

    2016-12-01

    We provide a novel, unifying physical interpretation on the origin, average shape, scatter, and cosmic evolution for the main sequences of star-forming galaxies and active galactic nuclei (AGNs) at high redshift z≳ 1. We achieve this goal in a model-independent way by exploiting: (i) the redshift-dependent star formation rate functions based on the latest UV/far-IR data from HST/Herschel, and related statistics of strong gravitationally lensed sources; (ii) deterministic evolutionary tracks for the history of star formation and black hole accretion, gauged on a wealth of multiwavelength observations including the observed Eddington ratio distribution. We further validate these ingredients by showing their consistency with the observed galaxy stellar mass functions and AGN bolometric luminosity functions at different redshifts via the continuity equation approach. Our analysis of the main sequence for high-redshift galaxies and AGNs highlights that the present data are consistently interpreted in terms of an in situ coevolution scenario for star formation and black hole accretion, envisaging these as local, time-coordinated processes.

  8. The search for high-redshift supernovae and the image reduction

    NASA Astrophysics Data System (ADS)

    Kim, Matthew Yongsok

    1999-11-01

    The absolute peak magnitudes of Type Ia supernovae are tightly bound and their small variation shows a strong correlation with their lightcurve widths and spectral features. This correlation can be used to calibrate Type Ia supernovae peak magnitudes, making Type Ia supernovae one of the most powerful cosmological distance indicators. The Supernova Cosmology Project has developed a new search technique for detecting Type Ia supernovae at high redshift and found more than 70 supernovae at 0.3 < z < 1.2. We have used these high-redshift Type Ia supernovae to measure the cosmological parameters, ΩM, and ΩΛ , of the standard big bang model. By analyzing the redshift-apparent brightness relationship on a sample of the first 42 supernovae at 0.3 < z < .85, we have succeeded in putting a significant constraint, on the cosmological parameters. In this paper, I will discuss our supernova detection technique and the image reduction process we have used in our project.

  9. Dust Formation, Evolution, and Obscuration Effects in the Very High-Redshift Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Staguhn, Johannes; Arendt, Richard G.; Kovacs, Attila; Su, Ting; Benford, Dominic J.

    2014-01-01

    The evolution of dust at redshifts z > or approx. 9, and consequently the dust properties, differs greatly from that in the local universe. In contrast to the local universe, core collapse supernovae (CCSNe) are the only source of thermally-condensed dust. Because of the low initial dust-to-gas mass ratio, grain destruction rates are low, so that CCSNe are net producers of interstellar dust. Galaxies with large initial gas mass or high mass infall rate will therefore have a more rapid net rate of dust production comported to galaxies with lower gas mass, even at the same star formation rate. The dust composition is dominated by silicates, which exhibit a strong rise in the UV opacity near the Lyman break. This "silicate-UV break" may be confused with the Lyman break, resulting in a misidentification of a galaxies' photometric redshift. In this paper we demonstrate these effects by analyzing the spectral energy distribution (SED) of MACS1149-JD, a lensed galaxy at z = 9.6. A potential 2mm counterpart of MACS1149-JD has been identified with GISMO. While additional observations are required to corroborate this identification, we use this possible association to illustrate the physical processes and the observational effects of dust in the very high redshift universe. Subject headings: galaxies: high-redshift - galaxies: evolution - galaxies: individual (MACS1149- JD) - Interstellar medium (ISM), nebulae: dust, extinction - physical data and processes: nuclear reactions, nucleosynthesis, abundances.

  10. Distance Estimates for High Redshift Clusters SZ and X-Ray Measurements

    NASA Technical Reports Server (NTRS)

    Joy, Marshall K.

    1999-01-01

    I present interferometric images of the Sunyaev-Zel'dovich effect for the high redshift (z $ greater than $ 0.5) galaxy clusters in the \\emph(Einstein) Medium Sensitivity Survey: MS0451.5-0305 (z = 0.54), MS0015.9+1609 (z = 0.55), MS2053.7-0449 (z = 0.58), MS1 137.5+6625 (z = 0.78), and MS 1054.5-0321 (z = 0.83). Isothermal $\\beta$ models are applied to the data to determine the magnitude of the Sunyaev-Zel'dovich (S-Z) decrement in each cluster. Complementary ROSAT PSPC and HRI x-ray data are also analyzed, and are combined with the S-Z data to generate an independent estimate of the cluster distance. Since the Sunyaev-Zel'dovich Effect is invariant with redshift, sensitive S-Z imaging can provide an independent determination of the size, shape, density, and distance of high redshift galaxy clusters; we will discuss current systematic uncertainties with this approach, as well as future observations which will yield stronger constraints.

  11. Understanding the Physical Conditions in Local Analogs of High-Redshift Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Spiewak, Renée; Erb, Dawn; Tremonti, Christina A.; Berg, Danielle

    2016-01-01

    Observations of strong nebular emission lines in high-redshift galaxies (z~2) can be illuminated through the use of analogous local galaxies (z<0.4), for which many more emission lines can be measured. The observed offset in the "BPT" ([N II]λ6584/Hα vs. [O III]λ5007/Hβ) nebular diagnostic diagram between the locus of high redshift galaxies and that of typical local galaxies indicates a change in the physical conditions of the galaxies with redshift; the cause of this offset is unknown, but it may be associated with the ionization parameter, the hardness of the ionizing spectrum, or the N/O abundance ratio. To study the offset, we have selected a sample of local galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey Data Release 12 (SDSS-III/BOSS DR12), which occupies the same space in the [N II]λ6584/Hα vs. [O III]λ5007/Hβ diagnostic diagram as the z~2 sample. Using a suite of >50 different emission lines, most of which are unavailable in analyses of higher redshift galaxies, and a novel method of improving the spectrophotometric calibration of BOSS data, we investigate the metallicity, ionization state, and abundance ratios of this offset sample in order to shed light on the physical conditions in galaxies in the early universe.

  12. Broadband and Narrowband Search for z < 1 Analogs of High Redshift Star Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Rosenwasser, Benjamin; Barger, Amy J.; Wold, Isak; Lauchlan Cowie, Lennox

    2017-01-01

    Studies of high redshift (z > 6) galaxies rely on extreme broadband colors from Spitzer/IRAC to select samples of low-mass star forming galaxies. These broadband excess searches are biased towards galaxies with the strongest emission lines, and the extent to which existing studies miss fainter galaxies with lower star formation rates remains unknown. Using both broadband (BB) and narrowband (NB) imaging from the HyperSuprimeCam (HSC) and SuprimeCam (SC) on the Subaru Telescope, we have performed a search for z < 1 strong emission line galaxies, which are analogs of the high redshift population. The search was performed over roughly 4 square degrees centered on the COSMOS field, and the narrowband filters allow us to probe fainter emission lines than the broadband searches. We carried out spectral followup of our BB excess and NB excess samples using WIYN/Hydra to measure redshifts and line ratios in order to understand the biases in the different selection techniques. We also investigate the rest frame UV properties of our sample using data from GALEX. This study demonstrates the effectiveness of using broadband colors to select intermediate redshift emission line galaxies.

  13. THE MID-INFRARED ENVIRONMENTS OF HIGH-REDSHIFT RADIO GALAXIES

    SciTech Connect

    Galametz, Audrey; Stern, Daniel; De Breuck, Carlos; Vernet, Joeel; Hatch, Nina; Mayo, Jack; Miley, George; Rettura, Alessandro; Seymour, Nick; Adam Stanford, S.

    2012-04-20

    Taking advantage of the impressive sensitivity of Spitzer to detect massive galaxies at high redshift, we study the mid-infrared environments of powerful, high-redshift radio galaxies at 1.2 < z < 3. Galaxy cluster member candidates were isolated using a single Spitzer/IRAC mid-infrared color criterion, [3.6]-[4.5] > -0.1 (AB), in the fields of 48 radio galaxies at 1.2 < z < 3. Using a counts-in-cell analysis, we identify a field as overdense when 15 or more red IRAC sources are found within 1' (i.e., 0.5 Mpc at 1.2 < z < 3) of the radio galaxy to the 5{sigma} flux density limits of our IRAC data (f{sub 4.5} = 13.4 {mu}Jy). We find that radio galaxies lie preferentially in medium to dense regions, with 73% of the targeted fields denser than average. Our (shallow) 120 s data permit the rediscovery of previously known clusters and protoclusters associated with radio galaxies as well as the discovery of new promising galaxy cluster candidates at z > 1.2.

  14. The high-redshift galaxy population in hierarchical galaxy formation models

    NASA Astrophysics Data System (ADS)

    Kitzbichler, M. G.; White, S. D. M.

    2007-03-01

    We compare observations of the high-redshift galaxy population to the predictions of the galaxy formation model of Croton et al. and De Lucia & Blaizot. This model, implemented on the Millennium Simulation of the concordance Lambda cold dark matter cosmogony, introduces `radio mode' feedback from the central galaxies of groups and clusters in order to obtain quantitative agreement with the luminosity, colour, morphology and clustering properties of the present-day galaxy population. Here we construct deep light cone surveys in order to compare model predictions to the observed counts and redshift distributions of distant galaxies, as well as to their inferred luminosity and mass functions out to redshift 5. With the exception of the mass functions, all these properties are sensitive to modelling of dust obscuration. A simple but plausible treatment agrees moderately well with most of the data. The predicted abundance of relatively massive (~M*) galaxies appears systematically high at high redshift, suggesting that such galaxies assemble earlier in this model than in the real Universe. An independent galaxy formation model implemented on the same simulation matches the observed mass functions slightly better, so the discrepancy probably reflects incomplete or inaccurate galaxy formation physics rather than problems with the underlying cosmogony.

  15. Imaging of Three Possible Low-redshift Analogs to High-redshift Compact Red Galaxies

    NASA Astrophysics Data System (ADS)

    Shih, Hsin-Yi; Stockton, Alan

    2011-05-01

    As part of a larger program to identify and characterize possible low-redshift analogs to massive compact red galaxies found at high redshift, we have examined the morphologies of three low-redshift compact galaxies drawn from the sample of Trujillo et al. Using deeper and higher resolution images, we have found faint and relatively extensive outer structures in addition to the compact cores identified in the earlier measurements. One object appears to have a small companion that may be involved in an ongoing minor merger of the sort that could be responsible for building up the outer parts of these galaxies. The ages of the dominant stellar populations in these objects are found to be around 2-4 Gyr, in good agreement with the previous estimates. The presence of diffuse outer structures in these galaxies indicates that truly compact and massive red galaxies are exceedingly rare at low redshift. The relatively young stellar populations suggest that the accretion of the extensive outer material must occur essentially universally on relatively short timescales of a few billion years or less. These results confirm and extend previous suggestions that the driving mechanism behind the size evolution of high-redshift compact galaxies cannot be highly stochastic processes such as major mergers, which would inevitably leave a non-negligible fraction of survivors at low redshift.

  16. CLASH: EXTREME EMISSION-LINE GALAXIES AND THEIR IMPLICATION ON SELECTION OF HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Huang, Xingxing; Wang, Junxian; Shu, Xinwen; Zheng, Wei; Ford, Holland; Lemze, Doron; Moustakas, John; Van der Wel, Arjen; Zitrin, Adi; Frye, Brenda L.; Bartelmann, Matthias; Benítez, Narciso; Infante, Leopoldo; and others

    2015-03-01

    We utilize the Cluster Lensing And Supernova survey with Hubble observations of 25 clusters to search for extreme emission-line galaxies (EELGs). The selections are carried out in two central bands: F105W (Y {sub 105}) and F125W (J {sub 125}), as the flux of the central bands could be enhanced by the presence of [O III] λλ4959, 5007 at redshifts of ∼0.93-1.14 and 1.57-1.79, respectively. The multiband observations help to constrain the equivalent widths (EWs) of emission lines. Thanks to cluster lensing, we are able to identify 52 candidates down to an intrinsic limiting magnitude of 28.5 and to a rest-frame [O III] λλ4959, 5007 EW of ≅ 3700 Å. Our samples include a number of EELGs at lower luminosities that are missed in other surveys, and the extremely high EW can only be found in such faint galaxies. These EELGs can mimic a dropout feature similar to that of high-redshift galaxies and contaminate the color-color selection of high-redshift galaxies when the signal-to-noise ratio is limited or the band coverage is incomplete.

  17. Using Bayesian Evidence to Deduce the Dust-Attenuation Law at High Redshift

    NASA Astrophysics Data System (ADS)

    Salmon, Brett W.; Papovich, Casey J.; Finkelstein, Steven L.; Closson Ferguson, Henry; Long, James; CANDELS

    2016-01-01

    Although the nature of dust attenuation affects nearly all aspects of galaxy evolution, very little is known about the form of the dust-attenuation law in the distant Universe. Dust enshrouds and obscures UV star formation, convoluting our understanding of galaxy evolution at high redshift. Recent literature has recognized how the inferred physical properties of distant galaxies can be influenced by the non-universality of their attenuation curve shape. In this talk, I will present a Bayesian method to quantitatively constrain the dust-attenuation curve in high-redshift star-forming galaxies. This method is tested on galaxies at z~2 where we have CANDELS UV-to-optical photometry and Spitzer/Herschel IR luminosities. We find that the dust law implied from using only UV/optical data to calculate the full posterior probability densities supports the observed IR luminosities as predicted by that dust law. This method shows promise to deduce the shape of the attenuation curve at higher redshifts (z>4), as supported by our experiments using mock data from a semi-analytic model with qualities like those of the CANDELS GOODS fields.

  18. Discovery of Eight z ∼ 6 Quasars in the Sloan Digital Sky Survey Overlap Regions

    NASA Astrophysics Data System (ADS)

    Jiang, Linhua; McGreer, Ian D.; Fan, Xiaohui; Bian, Fuyan; Cai, Zheng; Clément, Benjamin; Wang, Ran; Fan, Zhou

    2015-06-01

    We present the discovery of eight quasars at z∼ 6 identified in the Sloan Digital Sky Survey (SDSS) overlap regions. Individual SDSS imaging runs have some overlap with each other, leading to repeat observations over an area spanning >4000 deg2 (more than one-fourth of the total footprint). These overlap regions provide a unique data set that allows us to select high-redshift quasars more than 0.5 mag fainter in the z band than those found with the SDSS single-epoch data. Our quasar candidates were first selected as i-band dropout objects in the SDSS imaging database. We then carried out a series of follow-up observations in the optical and near-IR to improve photometry, remove contaminants, and identify quasars. The eight quasars reported here were discovered in a pilot study utilizing the overlap regions at high galactic latitude (|b|\\gt 30{}^\\circ ). These quasars span a redshift range of 5.86\\lt z\\lt 6.06 and a flux range of 19.3\\lt {{z}AB}\\lt 20.6 mag. Five of them are fainter than {{z}AB}=20 mag, the typical magnitude limit of z∼ 6 quasars used for the SDSS single-epoch images. In addition, we recover eight previously known quasars at z∼ 6 that are located in the overlap regions. These results validate our procedure for selecting quasar candidates from the overlap regions and confirming them with follow-up observations, and they provide guidance to a future systematic survey over all SDSS imaging regions with repeat observations.

  19. THE MOST LUMINOUS GALAXIES DISCOVERED BY WISE

    SciTech Connect

    Tsai, Chao-Wei; Eisenhardt, Peter R. M.; Stern, Daniel; Moustakas, Leonidas A.; Wu, Jingwen; Wright, Edward L.; Assef, Roberto J.; Blain, Andrew W.; Bridge, Carrie R.; Sayers, Jack; Benford, Dominic J.; Leisawitz, David T.; Cutri, Roc M.; Masci, Frank J.; Yan, Lin; Griffith, Roger L.; Jarrett, Thomas H.; Lonsdale, Carol J.; Petty, Sara M.; Stanford, S. Adam; and others

    2015-06-01

    We present 20 Wide-field Infrared Survey Explorer (WISE)-selected galaxies with bolometric luminosities L{sub bol} > 10{sup 14} L{sub ☉}, including five with infrared luminosities L{sub IR} ≡ L{sub (rest} {sub 8–1000} {sub μm)} > 10{sup 14} L{sub ☉}. These “extremely luminous infrared galaxies,” or ELIRGs, were discovered using the “W1W2-dropout” selection criteria which requires marginal or non-detections at 3.4 and 4.6 μm (W1 and W2, respectively) but strong detections at 12 and 22 μm in the WISE survey. Their spectral energy distributions are dominated by emission at rest-frame 4–10 μm, suggesting that hot dust with T{sub d} ∼ 450 K is responsible for the high luminosities. These galaxies are likely powered by highly obscured active galactic nuclei (AGNs), and there is no evidence suggesting these systems are beamed or lensed. We compare this WISE-selected sample with 116 optically selected quasars that reach the same L{sub bol} level, corresponding to the most luminous unobscured quasars in the literature. We find that the rest-frame 5.8 and 7.8 μm luminosities of the WISE-selected ELIRGs can be 30%–80% higher than that of the unobscured quasars. The existence of AGNs with L{sub bol} > 10{sup 14} L{sub ☉} at z > 3 suggests that these supermassive black holes are born with large mass, or have very rapid mass assembly. For black hole seed masses ∼10{sup 3} M{sub ☉}, either sustained super-Eddington accretion is needed, or the radiative efficiency must be <15%, implying a black hole with slow spin, possibly due to chaotic accretion.

  20. Tracing dark energy with quasars

    NASA Astrophysics Data System (ADS)

    Šredzińska, Justyna; Czerny, Bożena; Bilicki, M.; Hryniewicz, K.; Krupa, M.; Kurcz, A.; Marziani, P.; Pollo, A.; Pych, W.; Udalski, A.

    2016-06-01

    The nature of dark energy, driving the accelerated expansion of the Universe, is one of the most important issues in modern astrophysics. In order to understand this phenomenon, we need precise astrophysical probes of the universal expansion spanning wide redshift ranges. Quasars have recently emerged as such a probe, thanks to their high intrinsic luminosities and, most importantly, our ability to measure their luminosity distances independently of redshifts. Here we report our ongoing work on observational reverberation mapping using the time delay of the Mg II line, performed with the South African Large Telescope (SALT). The concept of dark energy was introduced in the process of understanding the evolution of the Universe. This is one of the most interesting topic in modern astronomy followed by the discovery of the accelerated expansion of the Universe. Precise measurement of this effect is a key to understand the nature of this medium, and we need good probes to do that. Quasars appears as an ideal candidate for this purpose as these objects are highly luminous and detected in wide range of redshift. From Big Bang to present time a lot of things happened and we are able to see amazing structures of galaxies and stars. In the beginning of Universe everything was blurred in space and the concept of dark energy was introduced in the process of understanding its evolution. The discovery of the accelerated expansion of the Universe gives us possibility to define new interesting topics in modern astronomy. Although there are some theoretical explanation for the existence of dark energy, yet it has remained the biggest puzzle among the astronomers and physicist.

  1. A hyperluminous z=2.50 quasar caught in the radiative feedback phase

    NASA Astrophysics Data System (ADS)

    Mcmahon, Richard

    2012-10-01

    We have recently discovered a z=2.50 heavily reddened (Av=6) hyperluminous K[Vega]=16.15) broad lined Type 1 quasar: ULAS J1234+0907 (Banerji et al, 2012, MNRAS in press). This quasar is the most intrinsically luminous quasar at z=2 known. We propose to obtain an X-ray spectrum with XMM-Newton in order to investigate the physical properties of the absorbing material in an effort to understand its physical properties and test models of radiative feedback in AGN during the main epoch of galaxy formation and accretion activity in the Universe.

  2. Photoelectric spectrophotometry of OQ 172 and OH 471. [spectral energy distributions for red shift quasars

    NASA Technical Reports Server (NTRS)

    Oke, J. B.

    1974-01-01

    Absolute spectral energy distributions for the large redshift quasars OQ 172 and OH 471 are discussed along with similar data for two other quasars 4C05.34 and PHL 957. Assuming cosmological redshifts, OQ 172 and OH 471 are not as luminous as PHL 957. If these quasars are basically similar and if radiative processes dominate, the strength of Ly alpha and the behavior of the continuum at the Lyman limit strongly suggest that these objects consist of a central ionizing source surrounded by discrete clouds, filaments or a gaseous structure such as a disk. This gaseous matter does not cover the whole solid angle surrounding the source.

  3. Buried Quasars in Ultra-luminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    2004-01-01

    We were awarded l00kS of INTEGRAL spacecraft time (Priority A) to observe the ultraluminous infrared galaxy (ULIG) Mrk 2273 in order to measure the integrated flux of the 20-1003 KeV gamma-Ray emission, and to use this information to search for the presence of an highly obscured active galactic nucleus (AGN). With this observation we hope to be able to better assess the role of AGN in the complete class of ULIGs and therefore to better constrain their contribution to the hard X-ray and soft gamma-ray backgrounds. Our Priority A 100 kS observation of Mrk 273 was successfully carried out during revolution #73 using 4 separate exposures with the IBIS camera during May, 2003. Our IBIS observations of Mrk 273 were successfully executed, and the source was properly centered in the Field-of-view of the detectors. We are still in the process of interpreting the IBIS gamma-ray data.

  4. Duodenal luminal nutrient sensing

    PubMed Central

    Rønnestad, Ivar; Akiba, Yasutada; Kaji, Izumi; Kaunitz, Jonathan D

    2016-01-01

    The gastrointestinal mucosa is exposed to numerous chemical substances and microorganisms, including macronutrients, micronutrients, bacteria, endogenous ions, and proteins. The regulation of mucosal protection, digestion, absorption and motility is signaled in part by luminal solutes. Therefore, luminal chemosensing is an important mechanism enabling the mucosa to monitor luminal conditions, such as pH, ion concentrations, nutrient quantity, and microflora. The duodenal mucosa shares luminal nutrient receptors with lingual taste receptors in order to detect the five basic tastes, in addition to essential nutrients, and unwanted chemicals. The recent ‘de-orphanization’ of nutrient sensing G protein-coupled receptors provides an essential component of the mechanism by which the mucosa senses luminal nutrients. In this review, we will update the mechanisms of and underlying physiological and pathological roles in luminal nutrient sensing, with a main focus on the duodenal mucosa. PMID:25113991

  5. Optical Spectra of Jet-Gas Interactions in CSS Quasars

    NASA Astrophysics Data System (ADS)

    Gelderman, Richard

    We present recent results from optical spectroscopic studies of luminous Compact Steep-Spectrum (CSS) quasars. Spatially resolved optical spectra have been obtained with HST/STIS and CFHT/MOS-ARGUS. The forbidden emission lines exhibit broad line profiles with comples substructure which is consistent with multiple velocity components. Evidence is presented which suggests that the observed kinematic and ionization properties may be explained by the expansion of a relatively young radio jet through a dense interstellar medium.

  6. Effect of primordial non-Gaussianities on the far-UV luminosity function of high-redshift galaxies: implications for cosmic reionization

    NASA Astrophysics Data System (ADS)

    Chevallard, Jacopo; Silk, Joseph; Nishimichi, Takahiro; Habouzit, Melanie; Mamon, Gary A.; Peirani, Sébastien

    2015-01-01

    Understanding how the intergalactic medium (IGM) was reionized at z ≳ 6 is one of the big challenges of current high-redshift astronomy. It requires modelling the collapse of the first astrophysical objects (Pop III stars, first galaxies) and their interaction with the IGM, while at the same time pushing current observational facilities to their limits. The observational and theoretical progress of the last few years have led to the emergence of a coherent picture in which the budget of hydrogen-ionizing photons is dominated by low-mass star-forming galaxies, with little contribution from Pop III stars and quasars. The reionization history of the Universe therefore critically depends on the number density of low-mass galaxies at high redshift. In this work, we explore how changes in the cosmological model, and in particular in the statistical properties of initial density fluctuations, affect the formation of early galaxies. Following Habouzit et al. (2014), we run five different N-body simulations with Gaussian and (scale-dependent) non-Gaussian initial conditions, all consistent with Planck constraints. By appealing to a phenomenological galaxy formation model and to a population synthesis code, we compute the far-UV galaxy luminosity function down to MFUV = -14 at redshift 7 ≤ z ≤ 15. We find that models with strong primordial non-Gaussianities on ≲ Mpc scales show a far-UV luminosity function significantly enhanced (up to a factor of 3 at z = 14) in low-mass galaxies. We adopt a reionization model calibrated from state-of-the-art hydrodynamical simulations and show that such scale-dependent non-Gaussianities leave a clear imprint on the Universe reionization history and electron Thomson scattering optical depth τe. Although current uncertainties in the physics of reionization and on the determination of τe still dominate the signatures of non-Gaussianities, our results suggest that τe could ultimately be used to constrain the statistical properties

  7. The Formation, Evolution, and Multi-Band Properties of z ˜ 6 Quasars and Their Galaxy Progenitors

    NASA Astrophysics Data System (ADS)

    Li, Y.; Hernquist, L.; Fazio, G.

    2008-10-01

    We model the formation, evolution, and multi-band properties of quasars at z ˜ 6, by combining hydrodynamic simulations (Li et al. 2007) with radiative transfer calculations using ART^2 -- All-wavelength Radiative Transfer with Adaptive Refinement Tree (Li et al. 2008). Our model shows that luminous quasars at z ˜ 6 can form through hierarchical galaxy mergers in the LCDM cosmology, and our calculations reproduce a number of observations of z ˜ 6 quasars, including the black hole masses, dust properties, and multi-wavelength SEDs and luminosities. We find that SMBHs grow via gas accretion under Eddington limit, without invoking exotic process. The quasar host obeys the Magorrian relation observed locally as a result of coeval growth of the SMBH and its host galaxy. Furthermore, the quasar systems evolve from cold to warm ULIRGs as they transform from a starburst to a quasar.

  8. Quasars: A Progress Report.

    ERIC Educational Resources Information Center

    Weedman, Daniel

    1988-01-01

    Reports on some of the discoveries over the last quarter century regarding quasars including spectra and energy sources, formation and evolution, and cosmological probes. Describes some of the fundamental mysteries that remain. (CW)

  9. Supermassive Black Hole Mass and Spiral Galaxy Pitch Angle at Intermediate to High Redshift

    NASA Astrophysics Data System (ADS)

    Hughes, John A.; Barrows, R. S.; Berrier, J. C.; Davis, B. L.; Kennefick, D.; Kennefick, J. D.; Lacy, C. H. S.; Seigar, M. S.; Shields, D. W.; Zoldak, K. A.

    2012-01-01

    A possible correlation between spiral galaxy pitch angle (P) and the mass of the central supermassive black hole (SMBH) of the galaxy (M) was reported (Seigar et al. 2008) from a sample of 27 nearby galaxies. Here we investigate the extension of this result to intermediate and high redshifts. We have selected AGN showing spiral structure in their host galaxies from the GOODS fields and from a sample of AGN with reverberation mapping SMBH mass estimates. After careful measure of the pitch angle of these galaxies, we compare the mass found from the M-P relation to that reported from reverberation mapping or estimated from their MgII profiles. By extending the sample to higher redshift, we demonstrate how the M-P relationship can be used to estimate the mass of SMBHs in the center of galaxies with imaging data alone, a useful tool in the study of galaxy evolution.

  10. VizieR Online Data Catalog: KMOS AGN Survey at High redshift (KASHz) (Harrison+, 2016)

    NASA Astrophysics Data System (ADS)

    Harrison, C. M.; Alexander, D. M.; Mullaney, J. R.; Stott, J. P.; Swinbank, A. M.; Arumugam, V.; Bauer, F. E.; Bower, R. G.; Bunker, A. J.; Sharples, R. M.

    2016-08-01

    KASHz is designed to ultimately obtain spatially resolved emission-line kinematics of ~(100-200) high-redshift (z~0.6-3.6) AGN. For our target selection we make use of deep X-ray surveys performed in extragalactic fields (COSMOS, see Scoville et al., 2007, Cat. J/ApJS/171/1; CDF-S, see Giacconi et al. 2001ApJ...551..624G and Xue et al., 2011, Cat. J/ApJS/195/10 (CDFS); UDS, SXDS: see Furusawa et al. 2008, Cat. J/ApJS/176/1 (UDS) and SSA22, see Steidel et al. 1998ApJ...492..428S). (1 data file).

  11. High redshift signatures in the 21 cm forest due to cosmic string wakes

    SciTech Connect

    Tashiro, Hiroyuki; Sekiguchi, Toyokazu; Silk, Joseph E-mail: toyokazu.sekiguchi@nagoya-u.jp

    2014-01-01

    Cosmic strings induce minihalo formation in the early universe. The resultant minihalos cluster in string wakes and create a ''21 cm forest'' against the cosmic microwave background (CMB) spectrum. Such a 21 cm forest can contribute to angular fluctuations of redshifted 21 cm signals integrated along the line of sight. We calculate the root-mean-square amplitude of the 21 cm fluctuations due to strings and show that these fluctuations can dominate signals from minihalos due to primordial density fluctuations at high redshift (z∼>10), even if the string tension is below the current upper bound, Gμ < 1.5 × 10{sup −7}. Our results also predict that the Square Kilometre Array (SKA) can potentially detect the 21 cm fluctuations due to strings with Gμ ≈ 7.5 × 10{sup −8} for the single frequency band case and 4.0 × 10{sup −8} for the multi-frequency band case.

  12. High-Redshift Clusters form NVSS: The TexOx Cluster (TOC) Survey

    SciTech Connect

    Croft, S; Rawlings, S; Hill, G J

    2003-02-11

    The TexOx Cluster (TOC) Survey uses overdensities of radiosources in the NVSS to trace clusters of galaxies. The links between radiosources and rich environments make this a powerful way to find clusters which may potentially be overlooked by other selection techniques. By including constraints from optical surveys, TOC is an extremely efficient way to find clusters at high redshift. One such field, TOC J0233.3+3021, contains at least one galaxy cluster (at z {approx} 1.4) and has been detected using the Sunyaev-Zel'dovich (SZ) effect. Even in targeted deep optical observations, however, distinguishing the cluster galaxies from the background is difficult, especially given the tendency of TOC to select fields containing multiple structures at different redshifts.

  13. A Detailed Study of Two Optically Selected, High-Redshift Clusters of Galaxies

    NASA Technical Reports Server (NTRS)

    Lubin, Lori M.

    2000-01-01

    We are obtaining detailed X-ray spectral and structural data for two distant, optically-selected clusters of galaxies which are known X-ray emitters, CL1324+3011 at z = 0.76 and CL,1604+4304 at z = 0.90. These observations will allow us to place accurate constraints on the temperature, surface-brightness profile, and mass fraction of the intracluster medium in rich, optically-selected clusters at very high redshift. The two target clusters are the most well-studied systems at z greater than 0.7 in the optical and infrared regimes; therefore, with the addition of the XMM data, we plan to study the specifies of the relationship between the X-ray and optical properties and their implications for galaxy and cluster evolution.

  14. Gamma-ray bursts: cosmic rulers for the high-redshift universe?

    PubMed

    Speirits, Fiona C; Hendry, Martin A; Gonzalez, Alejandro

    2007-05-15

    The desire to extend the Hubble Diagram to higher redshifts than the range of current Type 1a Supernovae observations has prompted investigation into spectral correlations in gamma-ray bursts (GBRs), in the hope that standard candle-like properties can be identified. In this paper, we discuss the potential of these new 'cosmic rulers' and highlight their limitations by investigating the constraints that current data can place on an alternative Cosmological model in the form of Conformal Gravity. By fitting current Type 1a Supernovae and GRB data to the predicted luminosity distance redshift relation of both the standard Concordance Model and the Conformal Gravity, we show that currently neither model is strongly favoured at high redshift. The scatter in the current GRB data testifies to the further work required if GRBs are to cement their place as effective probes of the cosmological distance scale.

  15. Probing the EBL evolution at high redshifts using 22 GRBs detected with the Fermi-LAT

    NASA Astrophysics Data System (ADS)

    Amitbhai Desai, Abhishek; Ajello, Marco; Omodei, Nicola; Hartmann, Dieter; Fermi-LAT Collaboration

    2017-01-01

    The extragalactic background light (EBL) is the collective emission of all the stars and galaxies over the history of the universe. The most efficient method to study the EBL is through the imprint it leaves via photon-photon annihilation in the spectra of distant gamma-ray sources. Here we present a combined analysis of a sample of 22 Gamma Ray Bursts (GRBs) detected by Fermi Large Area Telescope. GRBs are short-lived, bright, high-energy sources detected up to very high redshifts. This allows us to probe the EBL at much higher redshifts than before. We report the first constrain on the EBL when the Universe was one fourth of its present age (z=1.8). This will be discussed in the context of the generation of the UV-optical background and the star-formation activity of the Universe.

  16. Infrared-faint radio sources in the SERVS deep fields. Pinpointing AGNs at high redshift

    NASA Astrophysics Data System (ADS)

    Maini, A.; Prandoni, I.; Norris, R. P.; Spitler, L. R.; Mignano, A.; Lacy, M.; Morganti, R.

    2016-12-01

    Context. Infrared-faint radio sources (IFRS) represent an unexpected class of objects which are relatively bright at radio wavelength, but unusually faint at infrared (IR) and optical wavelengths. A recent and extensive campaign on the radio-brightest IFRSs (S1.4 GHz≳ 10 mJy) has provided evidence that most of them (if not all) contain an active galactic nuclei (AGN). Still uncertain is the nature of the radio-faintest IFRSs (S1.4 GHz≲ 1 mJy). Aims: The scope of this paper is to assess the nature of the radio-faintest IFRSs, testing their classification and improving the knowledge of their IR properties by making use of the most sensitive IR survey available so far: the Spitzer Extragalactic Representative Volume Survey (SERVS). We also explore how the criteria of IFRSs can be fine-tuned to pinpoint radio-loud AGNs at very high redshift (z > 4). Methods: We analysed a number of IFRS samples identified in SERVS fields, including a new sample (21 sources) extracted from the Lockman Hole. 3.6 and 4.5 μm IR counterparts of the 64 sources located in the SERVS fields were searched for and, when detected, their IR properties were studied. Results: We compared the radio/IR properties of the IR-detected IFRSs with those expected for a number of known classes of objects. We found that IR-detected IFRSs are mostly consistent with a mixture of high-redshift (z ≳ 3) radio-loud AGNs. The faintest ones (S1.4 GHz 100 μJy), however, could be also associated with nearer (z 2) dust-enshrouded star-burst galaxies. We also argue that, while IFRSs with radio-to-IR ratios >500 can very efficiently pinpoint radio-loud AGNs at redshift 2 < z < 4, lower radio-to-IR ratios ( 100-200) are expected for higher redshift radio-loud AGNs.

  17. A WISE Search for the Most Massive High-Redshift Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Gonzalez, Anthony

    We propose a comprehensive program to detect and characterize the most massive galaxy clusters at z>1 over half the sky. The foundation for this program is the Preliminary Release data from the NASA Wide-field Infrared Survey Explorer (WISE). WISE is an all-sky infrared survey mission for which the first 23,600 sq. deg. of data are publicly available, providing images and photometric catalogs at 3.4, 4.6, 12, and 22 microns. The shortest wavelength band achieves a 5-sigma depth of 50 microJansky, which is sufficient to detect L* galaxies out to a z~1 (8 Gyr lookback time). Our team has developed a modified version of a cluster detection algorithm developed by Papovich (2008) that employs color selection in the two bluest bands (3.4 and 4.6 microns) to isolate galaxies at z>1 and identify galaxy clusters as overdensities of galaxies brighter than L*. The technique has been been tested using WISE data for a small (3,000 sq. deg.) subfield and optimized to enable an efficient search over the full Preliminary Release area. Within this subfield we find candidates that appear comparable to the most massive z>1 systems known. As a continuation of this pilot study, we propose to conduct a search over the full PR area (excluding the galactic plane) for high-redshift clusters. We will use multiwavelength observations of known and newly confirmed clusters to understand the mass and redshift selection function. The cluster sample resulting from this program is designed to be optimal for investigations of the Gaussianity of the initial density perturbations after inflation, the evolution of massive galaxies in the most overdense environments during their epoch of star formation and mass assembly, and the high-redshift Universe by employing the clusters as gravitational telescopes.

  18. COSMIC RAYS CAN DRIVE STRONG OUTFLOWS FROM GAS-RICH HIGH-REDSHIFT DISK GALAXIES

    SciTech Connect

    Hanasz, M.; Kowalik, K.; Wóltański, D.; Lesch, H.; Naab, T.; Gawryszczak, A.

    2013-11-10

    We present simulations of the magnetized interstellar medium (ISM) in models of massive star-forming (40 M {sub ☉} yr{sup –1}) disk galaxies with high gas surface densities (Σ{sub gas} ∼ 100 M {sub ☉} pc{sup –2}) similar to observed star-forming high-redshift disks. We assume that type II supernovae deposit 10% of their energy into the ISM as cosmic rays (CRs) and neglect the additional deposition of thermal energy or momentum. With a typical Galactic diffusion coefficient for CRs (3 × 10{sup 28} cm{sup 2} s{sup –1}), we demonstrate that this process alone can trigger the local formation of a strong low-density galactic wind maintaining vertically open field lines. Driven by the additional pressure gradient of the relativistic fluid, the wind speed can exceed 10{sup 3} km s{sup –1}, much higher than the escape velocity of the galaxy. The global mass loading, i.e., the ratio of the gas mass leaving the galactic disk in a wind to the star formation rate, becomes of order unity once the system has settled into an equilibrium. We conclude that relativistic particles accelerated in supernova remnants alone provide a natural and efficient mechanism to trigger winds similar to observed mass-loaded galactic winds in high-redshift galaxies. These winds also help in explaining the low efficiencies for the conversion of gas into stars in galaxies, as well as the early enrichment of the intergalactic medium with metals. This mechanism may be at least of similar importance to the traditionally considered momentum feedback from massive stars and thermal and kinetic feedback from supernova explosions.

  19. A new method to search for high-redshift clusters using photometric redshifts

    SciTech Connect

    Castignani, G.; Celotti, A.; Chiaberge, M.; Norman, C.

    2014-09-10

    We describe a new method (Poisson probability method, PPM) to search for high-redshift galaxy clusters and groups by using photometric redshift information and galaxy number counts. The method relies on Poisson statistics and is primarily introduced to search for megaparsec-scale environments around a specific beacon. The PPM is tailored to both the properties of the FR I radio galaxies in the Chiaberge et al. sample, which are selected within the COSMOS survey, and to the specific data set used. We test the efficiency of our method of searching for cluster candidates against simulations. Two different approaches are adopted. (1) We use two z ∼ 1 X-ray detected cluster candidates found in the COSMOS survey and we shift them to higher redshift up to z = 2. We find that the PPM detects the cluster candidates up to z = 1.5, and it correctly estimates both the redshift and size of the two clusters. (2) We simulate spherically symmetric clusters of different size and richness, and we locate them at different redshifts (i.e., z = 1.0, 1.5, and 2.0) in the COSMOS field. We find that the PPM detects the simulated clusters within the considered redshift range with a statistical 1σ redshift accuracy of ∼0.05. The PPM is an efficient alternative method for high-redshift cluster searches that may also be applied to both present and future wide field surveys such as SDSS Stripe 82, LSST, and Euclid. Accurate photometric redshifts and a survey depth similar or better than that of COSMOS (e.g., I < 25) are required.

  20. An Increasing Stellar Baryon Fraction in Bright Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Finkelstein, Steven L.; Song, Mimi; Behroozi, Peter; Somerville, Rachel S.; Papovich, Casey; Milosavljević, Miloš; Dekel, Avishai; Narayanan, Desika; Ashby, Matthew L. N.; Cooray, Asantha; Fazio, Giovanni G.; Ferguson, Henry C.; Koekemoer, Anton M.; Salmon, Brett; Willner, S. P.

    2015-12-01

    Recent observations have shown that the characteristic luminosity of the rest-frame ultraviolet (UV) luminosity function does not significantly evolve at 4 < z < 7 and is approximately {M}{UV}*˜ -21. We investigate this apparent non-evolution by examining a sample of 173 bright, MUV < -21 galaxies at z = 4-7, analyzing their stellar populations and host halo masses. Including deep Spitzer/IRAC imaging to constrain the rest-frame optical light, we find that {M}{UV}* galaxies at z = 4-7 have similar stellar masses of log(M/M⊙) = 9.6-9.9 and are thus relatively massive for these high redshifts. However, bright galaxies at z = 4-7 are less massive and have younger inferred ages than similarly bright galaxies at z = 2-3, even though the two populations have similar star formation rates and levels of dust attenuation for a fixed dust-attenuation curve. Matching the abundances of these bright z = 4-7 galaxies to halo mass functions from the Bolshoi ΛCDM simulation implies that the typical halo masses in ˜ {M}{{UV}}* galaxies decrease from log(Mh/M⊙) = 11.9 at z = 4 to log(Mh/M⊙) = 11.4 at z = 7. Thus, although we are studying galaxies at a similar stellar mass across multiple redshifts, these galaxies live in lower mass halos at higher redshift. The stellar baryon fraction in ˜ {M}{{UV}}* galaxies in units of the cosmic mean Ωb/Ωm rises from 5.1% at z = 4 to 11.7% at z = 7; this evolution is significant at the ˜3σ level. This rise does not agree with simple expectations of how galaxies grow, and implies that some effect, perhaps a diminishing efficiency of feedback, is allowing a higher fraction of available baryons to be converted into stars at high redshifts.

  1. A Highly Doppler Blueshifted Fe-K Emission Line in the High-Redshift QSO PKS 2149-306.

    PubMed

    Yaqoob; George; Nandra; Turner; Zobair; Serlemitsos

    1999-11-01

    We report the results from an ASCA observation of the high-luminosity, radio-loud quasar PKS 2149-306 (redshift 2.345), covering the approximately 1.7-30 keV band in the quasar frame. We find the source to have a luminosity approximately 6x1047 ergs s-1 in the 2-10 keV band (quasar frame). We detect an emission line centered at approximately 17 keV in the quasar frame. Line emission at this energy has not been observed in any other active galaxy or quasar to date. We present evidence rejecting the possibility that this line is the result of instrumental artifacts or a serendipitous source. The most likely explanation is blueshifted Fe-K emission (the equivalent width is EW approximately 300+/-200 eV, quasar frame). Bulk velocities of the order of 0.75c are implied by the data. We show that Fe-K line photons originating in an accretion disk and Compton scattering off a leptonic jet aligned along the disk axis can account for the emission line. Curiously, if the emission-line feature recently discovered in another quasar (PKS 0637-752, z=0.654) at 1.6 keV in the quasar frame is due to blueshifted O vii emission, the Doppler blueshifting factor in both quasars is similar ( approximately 2.7-2.8).

  2. SMA observations on faint submillimeter galaxies with S {sub 850} < 2 mJy: Ultra dusty low-luminosity galaxies at high redshift

    SciTech Connect

    Chen, Chian-Chou; Cowie, Lennox L.; Barger, Amy J.; Williams, Jonathan P.; Wang, Wei-Hao

    2014-07-01

    We obtained Submillimeter Array (SMA) observations of eight faint (intrinsic 850 μm fluxes < 2 mJy) submillimeter galaxies (SMGs) discovered in SCUBA images of the massive lensing cluster fields A370, A2390, and A1689 and detected five. In total, we obtain five SMA detections, all of which have de-lensed fluxes <1 mJy with estimated total infrared luminosities 10{sup 10}-10{sup 12} L {sub ☉}, comparable to luminous infrared galaxies and normal star-forming galaxies. Based on the latest number counts, these galaxies contribute ∼70% of the 850 μm extragalactic background light and represent the dominant star-forming galaxy population in the dusty universe. However, only 40{sub −16}{sup +30}% of our faint SMGs would be detected in deep optical or near-infrared surveys, which suggests many of these sources are at high redshifts (z ≳ 3) or extremely dusty, and they are not included in current star formation history estimates.

  3. Scheduled discoveries of 7+ high-Redshift supernovae: First cosmology results and bounds on q{sub 0}

    SciTech Connect

    Perlmutter, S., FNAL

    1998-09-01

    Our search for high-redshift Type Ia supernovae discovered, in its first years, a sample of seven supernovae. Using a ``batch`` search strategy, almost all were discovered before maximum light and were observed over the peak of their light curves. The spectra and light curves indicate that almost all were Type Ia supernovae at redshifts z = 0.35 - 0.5. These high-redshift supernovae can provide a distance indicator and ``standard clock`` to study the cosmological parameters q{sub 0} , {Lambda}, {Omega}{sub 0} , and H{sub 0}. This presentation and the following presentations of Kim et al. (1996), Goldhaber et al. (1996), and Pain et al. (1996) will discuss observation strategies and rates, analysis and calibration issues, the sources of measurement uncertainty, and the cosmological implications, including bounds on q{sub 0} , of these first high-redshift supernovae from our ongoing search.

  4. A physical model for the evolving ultraviolet luminosity function of high redshift galaxies and their contribution to the cosmic reionization

    SciTech Connect

    Cai, Zhen-Yi; Lapi, Andrea; Bressan, Alessandro; De Zotti, Gianfranco; Danese, Luigi; Negrello, Mattia

    2014-04-10

    We present a physical model for the evolution of the ultraviolet (UV) luminosity function of high-redshift galaxies, taking into account in a self-consistent way their chemical evolution and the associated evolution of dust extinction. Dust extinction is found to increase fast with halo mass. A strong correlation between dust attenuation and halo/stellar mass for UV selected high-z galaxies is thus predicted. The model yields good fits of the UV and Lyman-α (Lyα) line luminosity functions at all redshifts at which they have been measured. The weak observed evolution of both luminosity functions between z = 2 and z = 6 is explained as the combined effect of the negative evolution of the halo mass function; of the increase with redshift of the star formation efficiency due to the faster gas cooling; and of dust extinction, differential with halo mass. The slope of the faint end of the UV luminosity function is found to steepen with increasing redshift, implying that low luminosity galaxies increasingly dominate the contribution to the UV background at higher and higher redshifts. The observed range of the UV luminosities at high z implies a minimum halo mass capable of hosting active star formation M {sub crit} ≲ 10{sup 9.8} M {sub ☉}, which is consistent with the constraints from hydrodynamical simulations. From fits of Lyα line luminosity functions, plus data on the luminosity dependence of extinction, and from the measured ratios of non-ionizing UV to Lyman-continuum flux density for samples of z ≅ 3 Lyman break galaxies and Lyα emitters, we derive a simple relationship between the escape fraction of ionizing photons and the star formation rate. It implies that the escape fraction is larger for low-mass galaxies, which are almost dust-free and have lower gas column densities. Galaxies already represented in the UV luminosity function (M {sub UV} ≲ –18) can keep the universe fully ionized up to z ≅ 6. This is consistent with (uncertain) data

  5. Quasar induced galaxy formation: a new paradigm?

    NASA Astrophysics Data System (ADS)

    Elbaz, D.; Jahnke, K.; Pantin, E.; Le Borgne, D.; Letawe, G.

    2009-12-01

    Aims: We discuss observational evidence that quasars play a key role in the formation of galaxies, starting from the detailed study of the quasar HE0450-2958 and extending the discussion to a series of converging evidence that radio jets may trigger galaxy formation. Methods: We use mid infrared imaging with VISIR at the ESO-VLT to model the mid to far infrared energy distribution of the system and the stellar population of the companion galaxy using optical VLT-FORS spectroscopy. The results are combined with optical, CO, radio continuum imaging from ancillary data. Results: The direct detection with VISIR of the 7 kpc distant companion galaxy of HE0450-2958 allows us to spatially separate the sites of quasar and star formation activity in this composite system made of two ultra-luminous infrared galaxies (ULIRGs), where the quasar generates the bulk of the mid infrared light and the companion galaxy powered by star formation dominates in the far infrared. No host galaxy has yet been detected for this quasar, but the companion galaxy stellar mass would bring HE0450-2958 in the local M{BH} - Mstar^bulge relation if it were to merge with the QSO. This is bound to happen because of their close distance (7 kpc) and low relative velocity ( 60-200 km s-1). We conclude that we may be witnessing the building of the M{BH} - Mstar^bulge relation, or at least of a major event in that process. The star formation rate ( 340 M⊙ yr-1), age (40-200 Myr) and stellar mass ( [5-6]×1010 M⊙) are consistent with jet-induced formation of the companion galaxy. We suggest that HE0450-2958 may be fueled by fresh material from cold gas accretion from intergalactic filaments. We map the projected galaxy density surrounding the QSO as a potential tracer of intergalactic filaments and discuss a putative detection. Comparison to other systems suggest that an inside-out formation of quasar host galaxies and jet-induced galaxy formation may be a common process. Two tests are proposed for

  6. The z~4 Quasar Luminosity Function: Implications for supermassive black hole growth, reionization, and future time domain surveys

    NASA Astrophysics Data System (ADS)

    AlSayyad, Yusra; Connolly, Andrew J.; McGreer, Ian D.; Ivezic, Zeljko; Fan, Xiaohui; LSST Data Management

    2017-01-01

    Upcoming time-domain imaging surveys such as the LSST will detect over a million high-redshift (z > 4) quasars, making complete spectroscopic followup unfeasible. Statistical estimates such as luminosity functions and clustering measurements will require purely photometric methods for classifying objects, estimating redshifts and estimating selection functions. We develop these methods and constrain the optical, type I quasar luminosity function (QLF) at 3.75 < z < 4.5 for -27.5 < M1450 < -23.5. Using the Sloan Digital Sky Survey (SDSS) repeated imaging of the 275 sq. deg. equatorial region of the sky (50 < R.A. < +60; -1.26 < Dec. < +1.26) known as Stripe 82, we extracted 40 million new lightcurves using the LSST data management software and selected a statistical sample of z~4 quasars based on colors and variability metrics. We confirmed these using a spectroscopically complete 55 sq. deg. sub-region augmented with 102 new spectroscopic observations of quasars at z > 3.4 with i < 22.5. We present the first variability-selected QLF measurement at high redshift (z > 3.75) and constraint on the characteristic luminosity M*1450 = -26.7 from a single, uniformly-selected survey at z~4.

  7. Testing quasar unification: radiative transfer in clumpy winds

    NASA Astrophysics Data System (ADS)

    Matthews, J. H.; Knigge, C.; Long, K. S.; Sim, S. A.; Higginbottom, N.; Mangham, S. W.

    2016-05-01

    Various unification schemes interpret the complex phenomenology of quasars and luminous active galactic nuclei (AGN) in terms of a simple picture involving a central black hole, an accretion disc and an associated outflow. Here, we continue our tests of this paradigm by comparing quasar spectra to synthetic spectra of biconical disc wind models, produced with our state-of-the-art Monte Carlo radiative transfer code. Previously, we have shown that we could produce synthetic spectra resembling those of observed broad absorption line (BAL) quasars, but only if the X-ray luminosity was limited to 1043 erg s-1. Here, we introduce a simple treatment of clumping, and find that a filling factor of ˜0.01 moderates the ionization state sufficiently for BAL features to form in the rest-frame UV at more realistic X-ray luminosities. Our fiducial model shows good agreement with AGN X-ray properties and the wind produces strong line emission in, e.g., Lyα and C IV 1550 Å at low inclinations. At high inclinations, the spectra possess prominent LoBAL features. Despite these successes, we cannot reproduce all emission lines seen in quasar spectra with the correct equivalent-width ratios, and we find an angular dependence of emission line equivalent width despite the similarities in the observed emission line properties of BAL and non-BAL quasars. Overall, our work suggests that biconical winds can reproduce much of the qualitative behaviour expected from a unified model, but we cannot yet provide quantitative matches with quasar properties at all viewing angles. Whether disc winds can successfully unify quasars is therefore still an open question.

  8. Dusty Star Forming Galaxies and Supermassive Black Holes at High Redshifts: In- Situ Coevolution

    NASA Astrophysics Data System (ADS)

    Mancuso, Claudia

    2016-10-01

    We have exploited the continuity equation approach and the star-formation timescales derived from the observed 'main sequence' relation (Star Formation Rate vs Stellar Mass), to show that the observed high abundance of galaxies with stellar masses ≥ a few 10^10 M⊙ at redshift z ≥ 4 implies the existence of a galaxy population featuring large star formation rates (SFRs) ψ ≥ 10^2 M⊙ yr^-1 in heavily dust-obscured conditions. These galaxies constitute the high-redshift counterparts of the dusty star-forming population already surveyed for z ≤ 3 in the Far-InfraRed (FIR) band by the Herschel space observatory. We work out specific predictions for the evolution of the corresponding stellar mass and SFR functions out to z ∼10, elucidating that the number density at z ≤ 8 for SFRs ψ ≥ 30 M⊙ yr^-1 cannot be estimated relying on the UltraViolet (UV) luminosity function alone, even when standard corrections for dust extinction based on the UV slope are applied. We compute the number counts and redshift distributions (including galaxy-scale gravitational lensing) of this galaxy population, and show that current data from AzTEC-LABOCA, SCUBA-2 and ALMA-SPT surveys are already digging into it. We substantiate how an observational strategy based on a color preselection in the far-IR or (sub-)mm band with Herschel and SCUBA-2, supplemented by photometric data via on-source observations with ALMA, can allow to reconstruct the bright end of the SFR functions out to z ≤ 8. In parallel, such a challenging task can be managed by exploiting current UV surveys in combination with (sub-)mm observations by ALMA and NIKA2. The same could be done with radio observations by SKA and its precursors. In particular we have worked out predictions for the radio counts of star-forming galaxies down to nJy levels, along with redshift distributions down to the detection limits of the phase 1 Square Kilometer Array MID telescope (SKA1-MID) and of its precursors. To do that we

  9. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  10. NIR brightening of the Quasar [HB89] 0133+476

    NASA Astrophysics Data System (ADS)

    Carrasco, L.; Luna, A.; Escobedo, G.; Mayya, D. Y.; Carraminana, A.

    2012-11-01

    We have observed a recent NIR brightening of the high redshift quasar HB890133+476 (z=0.856), a gamma ray source 1FGL J0137.0+4751. On October 23th,2012, epoch JD2456223.903056, we determined its flux in the H band to be 13.921 +/- 0.05. That is 0.9 magnitudes brighter than flux we had determined a month ago on epoch JD2456196.970671 H = 14.807 +/- 0.06. Observations were carried out with the 2.1m telescope of the Guillermo Haro Observatory operated by the National Institute for Astrophysics, Optics and Electronics (Mexico), equipped with the instrument CANICA a NIR camera.

  11. THE CANADA-FRANCE HIGH-z QUASAR SURVEY: NINE NEW QUASARS AND THE LUMINOSITY FUNCTION AT REDSHIFT 6

    SciTech Connect

    Willott, Chris J.; Crampton, David; Hutchings, John B.; Schade, David; Delorme, Philippe; Reyle, Celine; Albert, Loic; Bergeron, Jacqueline; Omont, Alain; Delfosse, Xavier; Forveille, Thierry; McLure, Ross J.

    2010-03-15

    We present discovery imaging and spectroscopy for nine new z {approx} 6 quasars found in the Canada-France High-z Quasar Survey (CFHQS) bringing the total number of CFHQS quasars to 19. By combining the CFHQS with the more luminous Sloan Digital Sky Survey sample, we are able to derive the quasar luminosity function from a sample of 40 quasars at redshifts 5.74 < z < 6.42. Our binned luminosity function shows a slightly lower normalization and flatter slope than found in previous work. The binned data also suggest a break in the luminosity function at M {sub 1450} {approx} -25. A double power-law maximum likelihood fit to the data is consistent with the binned results. The luminosity function is strongly constrained (1{sigma} uncertainty <0.1 dex) over the range -27.5 < M {sub 1450} < -24.7. The best-fit parameters are {phi}(M*{sub 1450}) = 1.14 x 10{sup -8} Mpc{sup -3} mag{sup -1}, break magnitude M*{sub 1450} = -25.13, and bright end slope {beta} = -2.81. However, the covariance between {beta} and M*{sub 1450} prevents strong constraints being placed on either parameter. For a break magnitude in the range -26 < M*{sub 1450} < -24, we find -3.8 < {beta} < -2.3 at 95% confidence. We calculate the z = 6 quasar intergalactic ionizing flux and show it is between 20 and 100 times lower than that necessary for reionization. Finally, we use the luminosity function to predict how many higher redshift quasars may be discovered in future near-IR imaging surveys.

  12. Constraining the minimum luminosity of high redshift galaxies through gravitational lensing

    SciTech Connect

    Mashian, Natalie; Loeb, Abraham E-mail: aloeb@cfa.harvard.edu

    2013-12-01

    We simulate the effects of gravitational lensing on the source count of high redshift galaxies as projected to be observed by the Hubble Frontier Fields program and the James Webb Space Telescope (JWST) in the near future. Taking the mass density profile of the lensing object to be the singular isothermal sphere (SIS) or the Navarro-Frenk-White (NFW) profile, we model a lens residing at a redshift of z{sub L} = 0.5 and explore the radial dependence of the resulting magnification bias and its variability with the velocity dispersion of the lens, the photometric sensitivity of the instrument, the redshift of the background source population, and the intrinsic maximum absolute magnitude (M{sub max}) of the sources. We find that gravitational lensing enhances the number of galaxies with redshifts z∼> 13 detected in the angular region θ{sub E}/2 ≤ θ ≤ 2θ{sub E} (where θ{sub E} is the Einstein angle) by a factor of ∼ 3 and 1.5 in the HUDF (df/dν{sub 0} ∼ 9 nJy) and medium-deep JWST surveys (df/dν{sub 0} ∼ 6 nJy). Furthermore, we find that even in cases where a negative magnification bias reduces the observed number count of background sources, the lensing effect improves the sensitivity of the count to the intrinsic faint-magnitude cut-off of the Schechter luminosity function. In a field centered on a strong lensing cluster, observations of z∼> 6 and z∼> 13 galaxies with JWST can be used to infer this cut-off magnitude for values as faint as M{sub max} ∼ -14.4 and -16.1 mag (L{sub min} ≈ 2.5 × 10{sup 26} and 1.2 × 10{sup 27} erg s{sup −1} Hz{sup −1}) respectively, within the range bracketed by existing theoretical models. Gravitational lensing may therefore offer an effective way of constraining the low-luminosity cut-off of high-redshift galaxies.

  13. First detection of CO in a high-redshift damped Lyman-α system

    NASA Astrophysics Data System (ADS)

    Srianand, R.; Noterdaeme, P.; Ledoux, C.; Petitjean, P.

    2008-05-01

    We present the first detection of carbon monoxide (CO) in a damped Lyman-α system (DLA) at z_abs = 2.41837 toward SDSS J143912.04+111740.5. We also detected H2 and HD molecules. The measured total column densities (in log units) of H i, H2, and CO are 20.10±0.10, 19.38±0.10, and 13.89±0.02, respectively. The molecular fraction, f = 2N(H2)/(N(H i)+2N(H2)) = 0.27^+0.10-0.08, is the highest among all known DLAs. The abundances relative to solar of S, Zn, Si, and Fe are -0.03±0.12, +0.16±0.11, -0.86±0.11, and -1.32±0.11, respectively, indicating a high metal enrichment and a depletion pattern onto dust-grains similar to the cold ISM of our Galaxy. The measured N(CO)/N(H2) = 3×10-6 is much less than the conventional CO/H2 ratio used to convert the CO emission into gaseous mass but is consistent with what is measured along translucent sightlines in the Galaxy. The CO rotational excitation temperatures are higher than those measured in our Galactic ISM for similar kinetic temperature and density. Using the C i fine structure absorption lines, we show that this is a consequence of the excitation being dominated by radiative pumping by the cosmic microwave background radiation (CMBR). From the CO excitation temperatures, we derive T_CMBR = 9.15±0.72 K, while 9.315±0.007 K is expected from the hot big-bang theory. This is the most precise high-redshift measurement of T_CMBR and the first confirmation of the theory using molecular transitions at high redshift. Based on observations carried out at the European Southern Observatory (ESO), under programme 278.A-5062 with the UVES echelle spectrograph installed at the ESO Very Large Telescope (VLT), unit Kueyen, on Mount Paranal in Chile.

  14. The KMOS AGN Survey at High redshift (KASHz): the prevalence and drivers of ionized outflows in the host galaxies of X-ray AGN

    NASA Astrophysics Data System (ADS)

    Harrison, C. M.; Alexander, D. M.; Mullaney, J. R.; Stott, J. P.; Swinbank, A. M.; Arumugam, V.; Bauer, F. E.; Bower, R. G.; Bunker, A. J.; Sharples, R. M.

    2016-02-01

    We present the first results from the KMOS (K-band Multi-Object Spectrograph) AGN (active galactic nuclei) Survey at High redshift (KASHz), a VLT/KMOS integral-field spectroscopic (IFS) survey of z ≳ 0.6 AGN. We present galaxy-integrated spectra of 89 X-ray AGN (L2-10 keV = 1042-1045 erg s-1), for which we observed [O III] (z ≈ 1.1-1.7) or Hα emission (z ≈ 0.6-1.1). The targets have X-ray luminosities representative of the parent AGN population and we explore the emission-line luminosities as a function of X-ray luminosity. For the [O III] targets, ≈50 per cent have ionized gas velocities indicative of gas that is dominated by outflows and/or highly turbulent material (i.e. overall line widths ≳600 km s-1). The most luminous half (i.e. LX > 6 × 1043 erg s-1) have a ≳2 times higher incidence of such velocities. On the basis of our results, we find no evidence that X-ray obscured AGN are more likely to host extreme kinematics than unobscured AGN. Our KASHz sample has a distribution of gas velocities that is consistent with a luminosity-matched sample of z < 0.4 AGN. This implies little evolution in the prevalence of ionized outflows, for a fixed AGN luminosity, despite an order-of-magnitude decrease in average star formation rates over this redshift range. Furthermore, we compare our Hα targets to a redshift-matched sample of star-forming galaxies and despite a similar distribution of Hα luminosities and likely star formation rates, we find extreme ionized gas velocities are up to ≈10 times more prevalent in the AGN-host galaxies. Our results reveal a high prevalence of extreme ionized gas velocities in high-luminosity X-ray AGN and imply that the most powerful ionized outflows in high-redshift galaxies are driven by AGN activity.

  15. Gamma-Ray Bursts from the Swift Burst Alert Telescope: Instrumental Sensitivity and Implication on the High-Redshift GRBs

    NASA Astrophysics Data System (ADS)

    Lien, A.; Sakamoto, T.; Barthelmy, S. D.; Baumgartner, W. H.; Cannizzo, J. K.; Chen, K.; Collins, N. R.; Cummings, J. R.; Gehrels, N.; Graziani, C.; Krimm, H. A.; Markwardt, C. B.; Palmer, D. M.; Stamatikos, M.; Troja, E.; Ukwatta, T. N.

    2016-10-01

    We present the analyses of the Swift/BAT GRBs for the past 11years. In particular, we discuss the instrumental sensitivity and selection effects of the BAT GRB detections, and its implication on the observations of high-redshift bursts.

  16. THE GEOMETRY EFFECTS OF AN EXPANDING UNIVERSE ON THE DETECTION OF COOL NEUTRAL GAS AT HIGH REDSHIFT

    SciTech Connect

    Curran, S. J.

    2012-03-20

    Recent high-redshift surveys for 21 cm absorption in damped Ly{alpha} absorption systems (DLAs) take the number of published searches at z{sub abs} > 2 to 25, the same number as at z{sub abs} < 2, although the detection rate at high redshift remains significantly lower (20% compared to 60%). Using the known properties of the DLAs to estimate the unknown profile widths of the 21 cm non-detections and including the limits via a survival analysis, we show that the mean spin temperature/covering factor degeneracy at high redshift is, on average, double that of the low-redshift sample. This value is significantly lower than the previous factor of eight for the spin temperatures and is about the same factor as in the angular diameter distance ratios between the low- and high-redshift samples. That is, without the need for the several pivotal assumptions, which lead to an evolution in the spin temperature, we show that the observed distribution of 21 cm detections in DLAs can be accounted for by the geometry effects of an expanding universe. That is, as yet there is no evidence of the spin temperature of gas-rich galaxies evolving with redshift.

  17. HIghZ: A search for HI absorption in high-redshift radio galaxies

    NASA Astrophysics Data System (ADS)

    Allison, J.; Callingham, J.; Sadler, E.; Wayth, R.; Curran, S.; Mahoney, E.

    2017-01-01

    We will use the unique low-frequency spectral capability of the MWA to carry out a pilot survey for neutral gas in the interstellar medium of the most distant (z>5) radio galaxies in the Universe. Through detection of the HI 21-cm line in absorption we aim to place stringent lower limits on the source redshift, confirming its location in the early Universe. Our sample makes use of the excellent wide-band spectral information available from the recently completed MWA GLEAM survey, from which we have selected a sample of ultra-steep peaked-spectrum radio sources that have a spectral turnover below 300 MHz. These sources should be ideal candidates for high-redshift compact radio galaxies since they have (a) spectral peaks that turnover below 1GHz and (b) very steep (alpha < -1.0) spectral indices that are consistent with the high density environments expected for radio galaxies in the early Universe. Using the MWA, we aim to verify this hypothesis through the detection of significant column densities of cold HI. This pathfinder project will provide important technical information that will inform future absorption surveys both with the MWA and, ultimately, the SKA-LOW telescope.

  18. H-ATLAS: a candidate high redshift cluster/protocluster of star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Clements, D. L.; Braglia, F.; Petitpas, G.; Greenslade, J.; Cooray, A.; Valiante, E.; De Zotti, G.; O'Halloran, B.; Holdship, J.; Morris, B.; Pérez-Fournon, I.; Herranz, D.; Riechers, D.; Baes, M.; Bremer, M.; Bourne, N.; Dannerbauer, H.; Dariush, A.; Dunne, L.; Eales, S.; Fritz, J.; Gonzalez-Nuevo, J.; Hopwood, R.; Ibar, E.; Ivison, R. J.; Leeuw, L. L.; Maddox, S.; Michałowski, M. J.; Negrello, M.; Omont, A.; Oteo, I.; Serjeant, S.; Valtchanov, I.; Vieira, J. D.; Wardlow, J.; van der Werf, P.

    2016-09-01

    We investigate the region around the Planck-detected z = 3.26 gravitationally lensed galaxy HATLAS J114637.9-001132 (hereinafter HATLAS12-00) using both archival Herschel data from the H-ATLAS survey and using submm data obtained with both LABOCA and SCUBA2. The lensed source is found to be surrounded by a strong overdensity of both Herschel-SPIRE sources and submm sources. We detect 17 bright (S870 > ˜7 mJy) sources at >4σ closer than 5 arcmin to the lensed object at 850/870 μm. 10 of these sources have good cross-identifications with objects detected by Herschel-SPIRE which have redder colours than other sources in the field, with 350 μm flux >250 μm flux, suggesting that they lie at high redshift. Submillimeter Array (SMA) observations localise one of these companions to ˜1 arcsec, allowing unambiguous cross identification with a 3.6 and 4.5 μm Spitzer source. The optical/near-IR spectral energy distribution of this source is measured by further observations and found to be consistent with z > 2, but incompatible with lower redshifts. We conclude that this system may be a galaxy cluster/protocluster or larger scale structure that contains a number of galaxies undergoing starbursts at the same time.

  19. Constraining high-redshift X-ray sources with next generation 21-cm power spectrum measurements

    NASA Astrophysics Data System (ADS)

    Ewall-Wice, Aaron; Hewitt, Jacqueline; Mesinger, Andrei; Dillon, Joshua S.; Liu, Adrian; Pober, Jonathan

    2016-05-01

    We use the Fisher matrix formalism and seminumerical simulations to derive quantitative predictions of the constraints that power spectrum measurements on next-generation interferometers, such as the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometre Array (SKA), will place on the characteristics of the X-ray sources that heated the high-redshift intergalactic medium. Incorporating observations between z = 5 and 25, we find that the proposed 331 element HERA and SKA phase 1 will be capable of placing ≲ 10 per cent constraints on the spectral properties of these first X-ray sources, even if one is unable to perform measurements within the foreground contaminated `wedge' or the FM band. When accounting for the enhancement in power spectrum amplitude from spin temperature fluctuations, we find that the observable signatures of reionization extend well beyond the peak in the power spectrum usually associated with it. We also find that lower redshift degeneracies between the signatures of heating and reionization physics lead to errors on reionization parameters that are significantly greater than previously predicted. Observations over the heating epoch are able to break these degeneracies and improve our constraints considerably. For these two reasons, 21-cm observations during the heating epoch significantly enhance our understanding of reionization as well.

  20. Dust Formation, Evolution, and Obscuration Effects in the Very High-Redshift Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Staguhn, Johannes; Arendt, Richard G.; Kovacks, Attila; Su, Ting; Benford, Dominic J.

    2014-01-01

    The evolution of dust at redshifts z > or approx. 9, and consequently the dust properties, differs greatly from that in the local universe. In contrast to the local universe, core collapse supernovae (CCSNe) are the only source of thermally-condensed dust. Because of the low initial dust-togas mass ratio, grain destruction rates are low, so that CCSNe are net producers of interstellar dust. Galaxies with large initial gas mass or high mass infall rate will therefore have a more rapid net rate of dust production comported to galaxies with lower gas mass, even at the same star formation rate. The dust composition is dominated by silicates, which exhibit a strong rise in the UV opacity near the Lyman break. This "silicate-UV break" may be confused with the Lyman break, resulting in a misidentification of a galaxies' photometric redshift. In this paper we demonstrate these effects by analyzing the spectral energy distribution (SED) of MACS1149-JD, a lensed galaxy at z = 9.6. A potential 2mm counterpart of MACS1149-JD has been identified with GISMO. While additional observations are required to corroborate this identification, we use this possible association to illustrate the physical processes and the observational effects of dust in the very high redshift universe.

  1. The gas distribution in the high-redshift cluster MS 1054-0321

    NASA Astrophysics Data System (ADS)

    Mirakhor, M. S.; Birkinshaw, M.

    2016-04-01

    We investigate the gas mass distribution in the high-redshift cluster MS 1054-0321 using Chandra X-ray and One Centimetre Receiver array Sunyaev-Zel'dovich (SZ) effect data. We use a superposition of offset β-type models to describe the composite structure of MS 1054-0321. We find gas mass fractions f_{gas}^{X {-}ray} = 0.087_{-0.001}^{+0.005} and f_{gas}^SZ=0.094_{-0.001}^{+0.003} for the (main) eastern component of MS 1054-0321 using X-ray or SZ data, but f_{gas}^{X {-}ray}=0.030_{-0.014}^{+0.010} for the western component. The gas mass fraction for the eastern component is in agreement with some results reported in the literature, but inconsistent with the cosmic baryon fraction. The low-gas mass fraction for the western component is likely to be a consequence of gas stripping during the ongoing merger. The gas mass fraction of the integrated system is 0.060_{-0.009}^{+0.004}: we suggest that the missing baryons from the western component are present as hot diffuse gas which is poorly represented in existing X-ray images. The missing gas could appear in sensitive SZ maps.

  2. The high-redshift gamma-ray burst GRB 140515A

    DOE PAGES

    Melandri, A.; Bernardini, M. G.; D'Avanzo, P. D.; ...

    2015-09-09

    High-redshift gamma-ray bursts (GRBs) offer several advantages when studying the distant Universe, providing unique information about the structure and properties of the galaxies in which they exploded. Spectroscopic identification with large ground-based telescopes has improved our knowledge of this kind of distant events. We present the multi-wavelength analysis of the high-zSwift GRB GRB 140515A (z = 6.327). The best estimate of the neutral hydrogen fraction of the intergalactic medium towards the burst is xHI ≤ 0.002. The spectral absorption lines detected for this event are the weakest lines ever observed in GRB afterglows, suggesting that GRB 140515A exploded in amore » very low-density environment. Its circum-burst medium is characterised by an average extinction (AV ~ 0.1) that seems to be typical of z ≥ 6 events. The observed multi-band light curves are explained either with a very hard injected spectrum (p = 1.7) or with a multi-component emission (p = 2.1). In the second case a long-lasting central engine activity is needed in order to explain the late time X-ray emission. Furthermore, the possible origin of GRB 140515A in a Pop III (or in a Pop II star with a local environment enriched by Pop III) massive star is unlikely.« less

  3. The high-redshift gamma-ray burst GRB 140515A

    SciTech Connect

    Melandri, A.; Bernardini, M. G.; D'Avanzo, P. D.; Sanchez-Ramirez, R.; Nappo, F.; Nava, L.; Japelj, J.; de Ugarte Postigo, A.; Oates, S.; Campana, S.; Covino, S.; D'Elia, V.; Ghirlanda, G.; Gafton, E.; Ghisellini, G.; Gnedin, N.; Goldoni, P.; Gorosabel, J.; Libbrecht, T.; Malesani, D.; Salvaterra, R.; Thone, C. C.; Vergani, S. D.; Xu, D.; Tagliaferri, G.

    2015-09-09

    High-redshift gamma-ray bursts (GRBs) offer several advantages when studying the distant Universe, providing unique information about the structure and properties of the galaxies in which they exploded. Spectroscopic identification with large ground-based telescopes has improved our knowledge of this kind of distant events. We present the multi-wavelength analysis of the high-zSwift GRB GRB 140515A (z = 6.327). The best estimate of the neutral hydrogen fraction of the intergalactic medium towards the burst is xHI ≤ 0.002. The spectral absorption lines detected for this event are the weakest lines ever observed in GRB afterglows, suggesting that GRB 140515A exploded in a very low-density environment. Its circum-burst medium is characterised by an average extinction (AV ~ 0.1) that seems to be typical of z ≥ 6 events. The observed multi-band light curves are explained either with a very hard injected spectrum (p = 1.7) or with a multi-component emission (p = 2.1). In the second case a long-lasting central engine activity is needed in order to explain the late time X-ray emission. Furthermore, the possible origin of GRB 140515A in a Pop III (or in a Pop II star with a local environment enriched by Pop III) massive star is unlikely.

  4. DUST FORMATION, EVOLUTION, AND OBSCURATION EFFECTS IN THE VERY HIGH-REDSHIFT UNIVERSE

    SciTech Connect

    Dwek, Eli; Benford, Dominic J.; Staguhn, Johannes; Su, Ting; Arendt, Richard G.; Kovacks, Attila

    2014-06-20

    The evolution of dust at redshifts z ≳ 9, and consequently the dust properties, differs greatly from that in the local universe. In contrast to the local universe, core collapse supernovae (CCSNe) are the only source of thermally condensed dust. Because of the low initial dust-to-gas mass ratio, grain destruction rates are low, so that CCSNe are net producers of interstellar dust. Galaxies with large initial gas mass or high mass infall rate will therefore have a more rapid net rate of dust production compared to galaxies with lower gas mass, even at the same star formation rate. The dust composition is dominated by silicates, which exhibit a strong rise in the UV opacity near the Lyman break. This ''silicate-UV break'' may be confused with the Lyman break, resulting in a misidentification of a galaxy's photometric redshift. In this Letter we demonstrate these effects by analyzing the spectral energy distribution of MACS1149-JD, a lensed galaxy at z = 9.6. A potential 2 mm counterpart of MACS1149-JD has been identified with GISMO. While additional observations are required to corroborate this identification, we use this possible association to illustrate the physical processes and the observational effects of dust in the very high-redshift universe.

  5. The discovery of high-redshift supernovae and their cosmological implications

    SciTech Connect

    Kim, Alex G.

    1997-09-01

    In this thesis the author discusses the methodology for doing photometry from procedure of extracting supernova counts from images that contain combined supernova plus galaxy flux, to standard star calibration, to additional instrumental corrections that arise due to the multiple telescopes used for observations. He discusses the different sources of photometric error and their correlations, and the construction of the covariance matrix for all the points in the light curve. He then describes the K corrections which account for the redshifting of spectra that are necessary to compare the photometry of the high-redshift data with those from nearby (z < 0.1) supernovae. Finally, he uses the first seven of the supernovae to test the hypothesis that they live in an under-dense bubble where the locally measured Hubble constant differs significantly from the true Hubble constant. He also uses the data to place limits on the value of the Hubble constant. Discussions of several other important aspects of the data analysis are or will be included in other papers. These topics include a description of how the covariance matrix is used to generate light-curve fits, a discussion of non-photometric systematic errors that also effect the measurements, and a discussion of the application of the supernovae to address other scientific/cosmological problems.

  6. Fluctuations in radiation backgrounds at high redshift and the first stars

    NASA Astrophysics Data System (ADS)

    Holzbauer, Lauren Nicole

    The first stars to light up our universe are as yet unseen, but there have been many attempts to elucidate their properties. The characteristics of these stars (`Population/Pop III' stars) that we do know lie mostly within theory; they formed out of metal-free hydrogen and helium gas contained in dark matter minihalos at redshifts z 20-30. The extent to which Pop III star formation reached into later times is unknown. Current and near future instruments are incapable of resolving individual Pop III stars. Consequently, astronomers must devise creative means with which to indirectly predict and measure and their properties. In this thesis, we will investigate a few of those means. We use a new method to model fluctuations of the Lyman-Werner (LW) and Lyman-alpha radiation backgrounds at high redshift. At these early epochs the backgrounds are symptoms of a universe newly lit with its first stars. LW photons (11.5-13.6 eV) are of particular interest because they dissociate molecular hydrogen, the primary coolant in the first minihalos that is necessary for star formation. By using a variation of the `halo model', which describes the spatial distribution and clustering of halos, we can efficiently generate power spectra for these backgrounds. Spatial fluctuations in the LW and (indirectly) the Lyman-alpha BG can tell us about the transition from primordial star formation to a more metal-enriched mode that marks the beginning of the second generation of stars in our Universe. The Near Infrared Background (NIRB) has for some time been considered a potential tool with which to indirectly observe the first stars. Ultraviolet (UV) emission from these stars is redshifted into the NIR band, making the NIRB amenable for hunting Pop III stellar signatures. There have been several measurements of the NIRB and subsequent theoretical studies attempting to explain them in recent years. Though controversial, residual levels of the mean NIRB intensity and anisotropies have been

  7. The Origin and Evolution of Interstellar Dust in the Local and High-Redshift Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2011-01-01

    In this talk I will begin by reviewing our current state of knowledge regarding the origin and evolution of dust in the local solar neighborhood. Using chemical evolution models, I will discuss their many different input parameters and their uncertainties. An important consequence of these models is the delayed injection of dust from AGB stars, compared to supernova-condensed dust, into the interstellar medium. I will show that these stellar evolutionary effects on dust composition are manifested in the infrared spectra of local galaxies. The delayed production of dust in AGB stars has also important consequences for the origin of the large amount of dust detected in high-redshift galaxies, when the universe was less that - 1 Gyr old. Supernovae may have been the only viable dust sources in those galaxies. Recent observations of SN1987a show a significant mass of dust in the ejecta of this SN. Is that production rate high enough to account for the observed dust mass in these galaxies? If not, what are the alternative viable sources of dust, and how do they depend on the nature of the galaxy (starburst or AGN) and its star formation history.

  8. The Origin and Evolution of Interstellar Dust in the Local and High-redshift Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2012-01-01

    In this talk I will begin by reviewing our current state of knowledge regarding the origin and evolution of dust in the local solar neighborhood. using chemical evolution models, I will discuss their many different input parameters and their uncertainties. An important consequence of these models is the delayed injection of dust from AGB stars, compared to supernova-condensed dust, into the interstellar medium. I will show that these stellar evolutionary effects on dust composition are manifested in the infrared spectra of local galaxies. The delayed production of dust in AGB stars has also important consequences for the origin of the large amount of dust detected in high-redshift galaxies, when the universe was less that approx. 1 Gyr old. Supernovae may have been the only viable dust sources in those galaxies. Recent observations of sN1987a show a significant mass of dust in the ejecta of this SN. Is that production rate high enough to account for the observed dust mass in these galaxies? If not, what are the alternative viable sources of dust, and how do they depend on the nature of the galaxy (starburst or AGN) and its star formation history .

  9. Inflow velocities of cold flows streaming into massive galaxies at high redshifts

    NASA Astrophysics Data System (ADS)

    Goerdt, Tobias; Ceverino, Daniel

    2015-07-01

    We study the velocities of the accretion along streams from the cosmic web into massive galaxies at high redshift with the help of three different suites of AMR hydrodynamical cosmological simulations. The results are compared to free-fall velocities and to the sound speeds of the hot ambient medium. The sound speed of the hot ambient medium is calculated using two different methods to determine the medium's temperature. We find that the simulated cold stream velocities are in violent disagreement with the corresponding free-fall profiles. The sound speed is a better albeit not always correct description of the cold flows' velocity. Using these calculations as a first order approximation for the gas inflow velocities vinflow = 0.9 vvir is given. We conclude from the hydrodynamical simulations as our main result that the velocity profiles for the cold streams are constant with radius. These constant inflow velocities seem to have a `parabola-like' dependency on the host halo mass in units of the virial velocity that peaks at Mvir = 1012 M⊙ and we also propose that the best-fitting functional form for the dependency of the inflow velocity on the redshift is a square root power-law relation: v_inflow ∝ √{z + 1} v_vir.

  10. Physical properties of high-redshift WFC3 galaxies at z=7-10

    NASA Astrophysics Data System (ADS)

    Nagamine, Kentaro

    2010-09-01

    Over the past decade, large samples of Ly-break galaxies {LBGs} have been assembled at z=3-6. The observers are now pushing the forefront of galaxy formation study into the range of z=7-9 utilizing the new data from the WFC3 camera. However, due to the faintness of the sources at these redshifts, it is difficult to derive the physical parameters such as stellar mass and star formation histories of the candidate galaxies. Therefore, it would be helpful to obtain predictions on these quantities from theoretical models using self-consistent, cosmological hydrodynamic simulations of galaxy formation. In the proposed work, we will examine the physical properties of high-redshift star-forming galaxies at z=7-10 using cosmological hydrodynamic simulations. In the first step, we will develop a model for estimating the variable extinction values of individual galaxies based on their metal column densities. We will also examine the spectro-photometric properties, stellar masses, star formation histories, and spatial correlations, and provide feedback to the WFC3 observations. The second step of our project is to perform the radiative transfer calculations of stellar radiation from high-z galaxies using the Authentic Radiative Transfer {ART} code. This exact RT calculation will allow us to check the accuracy of our earlier results from part {1}, and to develop a better model of dust distribution in cosmological simulations.

  11. Radio Jet Feedback and Star Formation in Heavily Obscured, Hyperluminous Quasars at Redshifts ˜ 0.5-3. I. ALMA Observations

    NASA Astrophysics Data System (ADS)

    Lonsdale, Carol J.; Lacy, M.; Kimball, A. E.; Blain, A.; Whittle, M.; Wilkes, B.; Stern, D.; Condon, J.; Kim, M.; Assef, R. J.; Tsai, C.-W.; Efstathiou, A.; Jones, S.; Eisenhardt, P.; Bridge, C.; Wu, J.; Lonsdale, Colin J.; Jones, K.; Jarrett, T.; Smith, R.

    2015-11-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) 870 μm (345 GHz) data for 49 high-redshift (0.47 < z < 2.85), luminous (11.7\\lt {log}({L}{{bol}}/{L}⊙ )\\lt 14.2) radio-powerful active galactic nuclei (AGNs), obtained to constrain cool dust emission from starbursts concurrent with highly obscured radiative-mode black hole (BH) accretion in massive galaxies that possess a small radio jet. The sample was selected from the Wide-field Infrared Survey Explorer with extremely steep (red) mid-infrared colors and with compact radio emission from NVSS/FIRST. Twenty-six sources are detected at 870 μm, and we find that the sample has large mid- to far-infrared luminosity ratios, consistent with a dominant and highly obscured quasar. The rest-frame 3 GHz radio powers are 24.7\\lt {log}({P}\\text{3.0 GHz}/{{{W}} {Hz}}-1)\\lt 27.3, and all sources are radio-intermediate or radio-loud. BH mass estimates are 7.7 < log(MBH/M⊙) < 10.2. The rest-frame 1-5 μm spectral energy distributions are very similar to the “Hot DOGs” (hot dust-obscured galaxies), and steeper (redder) than almost any other known extragalactic sources. ISM masses estimated for the ALMA-detected sources are 9.9 < log (MISM/M⊙) < 11.75 assuming a dust temperature of 30 K. The cool dust emission is consistent with star formation rates reaching several thousand M⊙ yr-1, depending on the assumed dust temperature, but we cannot rule out the alternative that the AGN powers all the emission in some cases. Our best constrained source has radiative transfer solutions with approximately equal contributions from an obscured AGN and a young (10-15 Myr) compact starburst.

  12. Searching for Galaxy Overdensities in the Fields of 10 z>6 Quasars

    NASA Astrophysics Data System (ADS)

    Bradli, Jaclyn C.; Walter, Fabian; Venemans, Bram; Decarli, Roberto; Zschaechner, Laura

    2016-01-01

    The highest-redshift quasars (z>6) host supermassive black holes (MBH > 1e9 M⊙) and presumably reside in massive host galaxies located in some of the largest galaxy overdensities at early cosmic epochs. However, optical searches for such overdensities have so far been inconclusive. One caveat is that the sources could be too faint in optical wavelengths, so while overdensities may be present, they must be detected at a longer wavelength regime. The Atacama Large Millimeter Array (ALMA) now provides the sensitivity and resolution required to detect and resolve faint sources at very high redshift (z>5-6). Instead of blind surveys, the data we present are observations of known bright quasars from the ALMA archive. Examining the sidelines of these quasars and comparing them with the number count of sources in blind surveys enables us to learn whether quasars are present in galaxy overdensities or if their environments are indistinguishable from a blank field. We use ALMA cycle 0, 1 and 2 data to map the vicinity of ten quasars at z>6 in the continuum at ~1.2mm, tracing the far infrared dust emission, to perform an independent search for companions around the quasars. We also examine the presence of the [CII] line in these fields. We compare the number density of such sources to 'blank field' studies to see if there is evidence for an overdensity of sources in the immediate vicinity of the quasars. Either outcome ('overdensity' or 'no overdensity') would have important implications for early structure formation. Preliminary results show there is an excess of positive flux in these fields, and there is a total of a few (<10) +5σ detections in the ten fields, but further work to estimate the number of spurious detections is necessary.

  13. THE COLOR VARIABILITY OF QUASARS

    SciTech Connect

    Schmidt, Kasper B.; Rix, Hans-Walter; Knecht, Matthias; Hogg, David W.; Shields, Joseph C.; Maoz, Dan; Bovy, Jo

    2012-01-10

    We quantify quasar color variability using an unprecedented variability database-ugriz photometry of 9093 quasars from Sloan Digital Sky Survey (SDSS) Stripe 82, observed over 8 years at {approx}60 epochs each. We confirm previous reports that quasars become bluer when brightening. We find a redshift dependence of this blueing in a given set of bands (e.g., g and r), but show that it is the result of the flux contribution from less-variable or delayed emission lines in the different SDSS bands at different redshifts. After correcting for this effect, quasar color variability is remarkably uniform, and independent not only of redshift, but also of quasar luminosity and black hole mass. The color variations of individual quasars, as they vary in brightness on year timescales, are much more pronounced than the ranges in color seen in samples of quasars across many orders of magnitude in luminosity. This indicates distinct physical mechanisms behind quasar variability and the observed range of quasar luminosities at a given black hole mass-quasar variations cannot be explained by changes in the mean accretion rate. We do find some dependence of the color variability on the characteristics of the flux variations themselves, with fast, low-amplitude, brightness variations producing more color variability. The observed behavior could arise if quasar variability results from flares or ephemeral hot spots in an accretion disk.

  14. Massive star-forming host galaxies of quasars on Sloan digital sky survey stripe 82

    SciTech Connect

    Matsuoka, Yoshiki; Strauss, Michael A.; Price, Ted N. III; DiDonato, Matthew S.

    2014-01-10

    The stellar properties of about 800 galaxies hosting optically luminous, unobscured quasars at z < 0.6 are analyzed. Deep co-added Sloan Digital Sky Survey (SDSS) images of the quasars on Stripe 82 are decomposed into nucleus and host galaxy using point spread function and Sérsic models. The systematic errors in the measured galaxy absolute magnitudes and colors are estimated to be less than 0.5 mag and 0.1 mag, respectively, with simulated quasar images. The effect of quasar light scattered by the interstellar medium is also carefully addressed. The measured quasar-to-galaxy ratio in total flux decreases toward longer wavelengths, from ∼8 in the u band to ∼1 in the i and z bands. We find that the SDSS quasars are hosted exclusively by massive galaxies (stellar mass M {sub star} > 10{sup 10} M {sub ☉}), which is consistent with previous results for less luminous narrow-line (obscured) active galactic nuclei (AGNs). The quasar hosts are very blue and almost absent on the red sequence, showing stark contrast to the color-magnitude distribution of normal galaxies. The fact that more powerful AGNs reside in galaxies with higher star-formation efficiency may indicate that negative AGN feedback, if it exists, is not concurrent with the most luminous phase of AGNs. We also find positive correlation between the mass of supermassive black holes (SMBHs; M {sub BH}) and host stellar mass, but the M {sub BH}-M {sub star} relation is offset toward large M {sub BH} or small M {sub star} compared to the local relation. While this could indicate that SMBHs grow earlier than do their host galaxies, such an argument is not conclusive, as the effect may be dominated by observational biases.

  15. The mass-metallicity relation of absorption selected high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Christensen, Lise; Møller, P.; Rhodin, Henrik; Krogager, Jens-Kristian; Fynbo, Johan P. U.

    2017-03-01

    Strong absorption lines in quasar spectra primarily probe low-mass galaxies and detecting these in emission has previously been difficult. Dedicated surveys for the host galaxies of damped Lyman-α (DLA) systems have often resulted in non-detections and upper limits. Targeting the most metal-rich absorbers has proven to be a viable method, because these galaxies are brighter. By combining DLA metallicities and deriving host galaxy stellar masses, we find that metal-rich DLAs (with >10% solar metallicity) and their host galaxies follow the same redshift-dependent scaling relation between stellar mass and metallicity as luminosity-selected galaxies. We derive a prediction for an absorber galaxy mass that depends on the DLA metallicity.

  16. METALLICITY AND QUASAR OUTFLOWS

    SciTech Connect

    Wang, Huiyuan; Zhou, Hongyan; Wang, Tinggui; Yuan, Weimin

    2012-06-01

    Correlations of the outflow strength of quasars, as measured by the blueshift and asymmetry index (BAI) of the C IV line, with intensities and ratios of broad emission lines, based on composite quasar spectra built from the Sloan Digital Sky Survey, are investigated. We find that most of the line ratios of other ions to C IV increase prominently with BAI. These behaviors can be well understood in the context of increasing metallicity with BAI. The strength of the dominant coolant, C IV line, decreases, and weak collisionally excited lines increase with gas metallicity as a result of the competition between different line coolants. Using Si IV+O IV]/C IV as an indicator of gas metallicity, we present, for the first time, a strong correlation between the metallicity and the outflow strength of quasars over a wide range of 1.7-6.9 times solar abundance. Our result implies that metallicity plays an important role in the formation of quasar outflows, likely by affecting outflow acceleration. This effect may have a profound impact on galaxy evolution via momentum feedback and chemical enrichment.

  17. Lyman alpha emitting galaxies at high redshift: Direct detection of young galaxies in a young universe

    NASA Astrophysics Data System (ADS)

    Dawson, Steven Arthur

    An early result of galaxy formation theory was the prediction that the copious ionizing radiation produced in nascent galaxies undergoing their first starbursts should in turn produce a strong Lya emission line. We report on our efforts to detect and characterize primeval galaxies by searching for this expected Lya signature with two observational techniques: serendipitous slit spectroscopy, and narrowband imaging selection. In Part I, we describe our serendipitous slit spectroscopy survey of the Hubble Deep Field and its environs, which resulted in a catalog of 74 spectroscopic redshifts spanning 0.10 < z < 5.77, including a galaxy cluster at z = 0.85 and five galaxies at z > 5. Follow-up observations at higher resolution resulted in the additional serendipitous detection of a strong Lya-emitting galaxy at z = 5.190 (ES1). At the time of its discovery, ES1 was one of only nine known galaxies at z > 5, and was the sixth most distant known galaxy. The unprecedented spectral purity of the observation offers evidence for a galaxy-scale outflow with a. velocity of v > 300 km s -1 , consistent with wind speeds observed in powerful local starbursts (typically 10 2 to 10 3 km s -1 ), and with simulations of the late- stage evolution of Lya emission in star-forming systems. Our final serendipitous detection is the remarkable source CXOHDFN J123635.6+621424, which is both the highest redshift known spiral galaxy, and a rare example of a high redshift, hard X-ray-emitting Type II AGN. Significantly, all of these results were acquired with no direct allocation of telescope time. In Part II, we report on our implementation of narrowband imaging selection, with which we traded redshift coverage for survey volume, focusing on the systematic study of galaxies at a particular epoch in favor of chasing that rare, most-distant object. This effort resulted in a catalog of 76 z [approximate] 4.5 Lya-emitting galaxies spectroscopically-confirmed in campaigns of Keck/LRIS and Keck

  18. A Quasar Turns On

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    The intermediate Palomar Transient Factory (iPTF) has discovered a quasar the brightly-shining, active nucleus of a galaxy abruptly turning on in what appears to be the fastest such transition ever seen in such an object.A Rapid TransitionQuasars are expected to show variations in brightness on timescales of hours to millions of years, but its not often that we get to study their major variability in real time! So far, weve discovered only a dozen changing-look quasars active galactic nuclei that exhibit major changes in their spectral class and brightness between observations. Roughly half of these were quasars that turned on and half were quasars that turned off, generally on timescales of maybe 5 or 10 years.The dramatic change in spectrum of iPTF 16bco between the archival SDSS data from 2004 (bottom) and the follow-up spectroscopy from Keck 2+DEIMOS in 2016 (top). [Adapted from Gezari et al. 2017]In June 2016, however, a team of scientists led by Suvi Gezari (University of Maryland) discovered iPTF 16bco, a nuclear transient that wasnt there the last time Palomar checked in 2012. A search through archival Sloan Digital Sky Survey and GALEX data in addition to some follow-up X-ray imaging and spectroscopic observations told the team what they needed to know: iPTF 16bco is a quasar that only just turned on within the 500 days preceding the iPTF observations.This source, in fact, is a 100-million-solar-mass black hole located at the center of a galaxy at a redshift of z= 0.237. In just over a year, the source changed classification from a galaxy with weak narrow-line emission to a quasar with characteristic strong, broad emission lines and a ten-fold increase in continuum brightness! What caused this sudden transition?Instabilities at Fault?iPTF 16bco and the other known changing-look quasars with disappearing (red circles) and appearing (blue circles) broad-line emission. [Adapted from Gezari et al. 2017]Gezari and collaborators used the large number of recent

  19. The superluminous supernova PS1-11ap: bridging the gap between low and high redshift

    NASA Astrophysics Data System (ADS)

    McCrum, M.; Smartt, S. J.; Kotak, R.; Rest, A.; Jerkstrand, A.; Inserra, C.; Rodney, S. A.; Chen, T.-W.; Howell, D. A.; Huber, M. E.; Pastorello, A.; Tonry, J. L.; Bresolin, F.; Kudritzki, R.-P.; Chornock, R.; Berger, E.; Smith, K.; Botticella, M. T.; Foley, R. J.; Fraser, M.; Milisavljevic, D.; Nicholl, M.; Riess, A. G.; Stubbs, C. W.; Valenti, S.; Wood-Vasey, W. M.; Wright, D.; Young, D. R.; Drout, M.; Czekala, I.; Burgett, W. S.; Chambers, K. C.; Draper, P.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Magnier, E. A.; Metcalfe, N.; Price, P. A.; Sweeney, W.; Wainscoat, R. J.

    2014-01-01

    We present optical photometric and spectroscopic coverage of the superluminous supernova (SLSN) PS1-11ap, discovered with the Pan-STARRS1 Medium Deep Survey at z = 0.524. This intrinsically blue transient rose slowly to reach a peak magnitude of Mu = -21.4 mag and bolometric luminosity of 8 × 1043 erg s-1 before settling on to a relatively shallow gradient of decline. The observed decline is significantly slower than those of the SLSNe-Ic which have been the focus of much recent attention. Spectroscopic similarities with the lower redshift SN2007bi and a decline rate similar to 56Co decay time-scale initially indicated that this transient could be a candidate for a pair instability supernova (PISN) explosion. Overall the transient appears quite similar to SN2007bi and the lower redshift object PTF12dam. The extensive data set, from 30 d before peak to 230 d after, allows a detailed and quantitative comparison with published models of PISN explosions. We find that the PS1-11ap data do not match these model explosion parameters well, supporting the recent claim that these SNe are not pair instability explosions. We show that PS1-11ap has many features in common with the faster declining SLSNe-Ic, and the light-curve evolution can also be quantitatively explained by the magnetar spin-down model. At a redshift of z = 0.524, the observer-frame optical coverage provides comprehensive rest-frame UV data and allows us to compare it with the SLSNe recently found at high redshifts between z = 2 and 4. While these high-z explosions are still plausible PISN candidates, they match the photometric evolution of PS1-11ap and hence could be counterparts to this lower redshift transient.

  20. An empirical model for the galaxy luminosity and star formation rate function at high redshift

    NASA Astrophysics Data System (ADS)

    Mashian, Natalie; Oesch, Pascal A.; Loeb, Abraham

    2016-01-01

    Using the most recent measurements of the ultraviolet (UV) luminosity functions (LFs) and dust estimates of early galaxies, we derive updated dust-corrected star formation rate functions (SFRFs) at z ˜ 4-8, which we model to predict the evolution to higher redshifts, z > 8. We employ abundance matching techniques to calibrate a relation between galaxy star formation rate (SFR) and host halo mass Mh by mapping the shape of the observed SFRFs at z ˜ 4-8 to that of the halo mass function. The resulting scaling law remains roughly constant over this redshift range. We apply the average SFR-Mh relation to reproduce the observed SFR functions at 4 ≲ z ≲ 8 and also derive the expected UV LFs at higher redshifts. At z ˜ 9 and z ˜ 10 these model LFs are in excellent agreement with current observed estimates. Our predicted number densities and UV LFs at z > 10 indicate that James Webb Space Telescope will be able to detect galaxies out to z ˜ 15 with an extensive treasury sized program. We also derive the redshift evolution of the star formation rate density (SFRD) and associated reionization history by galaxies. Models which integrate down to the current HUDF12/XDF detection limit (MUV ˜ -17.7 mag) result in a SFRD that declines as (1 + z)-10.4 ± 0.3 at high redshift and fail to reproduce the observed cosmic microwave background electron scattering optical depth, τ ≃ 0.066, to within 1σ. On the other hand, we find that the inclusion of galaxies with SFRs well below the current detection limit (MUV < -5.7 mag) leads to a fully reionized universe by z ˜ 6.5 and an optical depth of τ ≃ 0.054, consistent with the recently derived Planck value at the 1σ level.

  1. The Great Observatories Origins Deep Survey High Redshift Search for Supernovae

    NASA Astrophysics Data System (ADS)

    Strolger, L.-G.; Riess, A. G.; Dahlen, T.; GOODS SN Searchers; HHZS Team

    2003-05-01

    We have recently concluded the Hubble Higher-z Supernova Team's search for high redshift supernovae in conjunction with the Great Observatories Origins Deep Survey (GOODS). Using the Advanced Camera for Surveys (ACS), we have surveyed ˜170 sq. arcmin fields about the CDF-S and HSF-N on five epochs each, with ˜45 day baselines. These deep observations have allowed us to discover ˜40 supernovae in the range of 0.2=1. A cosmic evolution of SN Ia luminosity or ``grey dust'' would cause SNe Ia to be systematically fainter at higher-z and thus show a different sign and shape on the Hubble diagram. We are also investigating the rate of SNe at /line{z}˜=0.8-1.0, the relation to the local rates, comparisons of host environments to low redshift host environments, and the implications of each to SN progenitors, star formation rate history, and possibly to cosmology.

  2. Characterization and Modeling of Contamination for Lyman Break Galaxy Samples at High Redshift

    NASA Astrophysics Data System (ADS)

    Vulcani, Benedetta; Trenti, Michele; Calvi, Valentina; Bouwens, Rychard; Oesch, Pascal; Stiavelli, Massimo; Franx, Marijn

    2017-02-01

    The selection of high-redshift sources from broadband photometry using the Lyman-break galaxy (LBG) technique is a well established methodology, but the characterization of its contamination for the faintest sources is still incomplete. We use the optical and near-IR data from four (ultra)deep Hubble Space Telescope legacy fields to investigate the contamination fraction of LBG samples at z∼ 5{--}8 selected using a color–color method. Our approach is based on characterizing the number count distribution of interloper sources, that is, galaxies with colors similar to those of LBGs, but showing detection at wavelengths shorter than the spectral break. Without sufficient sensitivity at bluer wavelengths, a subset of interlopers may not be properly classified, and contaminate the LBG selection. The surface density of interlopers in the sky gets steeper with increasing redshift of LBG selections. Since the intrinsic number of dropouts decreases significantly with increasing redshift, this implies increasing contamination from misclassified interlopers with increasing redshift, primarily by intermediate redshift sources with unremarkable properties (intermediate ages, lack of ongoing star formation and low/moderate dust content). Using Monte-Carlo simulations, we estimate that the CANDELS deep data have contamination induced by photometric scatter increasing from ∼ 2 % at z∼ 5 to ∼ 6 % at z∼ 8 for a typical dropout color ≥slant 1 mag, with contamination naturally decreasing for a more stringent dropout selection. Contaminants are expected to be located preferentially near the detection limit of surveys, ranging from 0.1 to 0.4 contaminants per arcmin2 at {J}125 = 30, depending on the field considered. This analysis suggests that the impact of contamination in future studies of z> 10 galaxies needs to be carefully considered.

  3. RED-SEQUENCE GALAXIES AT HIGH REDSHIFT BY THE COMBO-17+4 SURVEY

    SciTech Connect

    Nicol, Marie-Helene; Meisenheimer, Klaus; Wolf, Christian; Tapken, Christian E-mail: meise@mpia.de E-mail: ctapken@aip.de

    2011-01-20

    We investigate the evolution of the galaxy population since redshift 2 with a focus on the color bimodality and mass density of the red sequence. We obtain precise and reliable photometric redshifts up to z = 2 by supplementing the optical survey COMBO-17 with observations in four near-infrared bands on 0.2 deg{sup 2} of the COMBO-17 A901-field. Our results are based on an H-band-selected catalog of 10,692 galaxies complete to H = 21fm7. We measure the rest-frame color (U{sub 280}-V) of each galaxy, which across the redshift range of our interest requires no extrapolation and is robust against moderate redshift errors by staying clear of the 4000 A break. We measure the color-magnitude relation of the red sequence as a function of look-back time from the peak in a color-error-weighted histogram, and thus trace the galaxy bimodality out to z {approx_equal} 1.65. The (U{sub 280}-V) of the red sequence is found to evolve almost linearly with look-back time. At high redshift, we find massive galaxies in both the red and the blue population. Red-sequence galaxies with log M{sub *}/M{sub sun}>11 increase in mass density by a factor of {approx}4 from z {approx} 2 to 1 and remain nearly constant at z < 1. However, some galaxies as massive as log M{sub *}/M{sub sun} = 11.5 are already in place at z {approx} 2.

  4. The Progenitors of the Compact Early-type Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Williams, Christina C.; Giavalisco, Mauro; Cassata, Paolo; Tundo, Elena; Wiklind, Tommy; Guo, Yicheng; Lee, Bomee; Barro, Guillermo; Wuyts, Stijn; Bell, Eric F.; Conselice, Christopher J.; Dekel, Avishai; Faber, Sandra M.; Ferguson, Henry C.; Grogin, Norman; Hathi, Nimish; Huang, Kuang-Han; Kocevski, Dale; Koekemoer, Anton; Koo, David C.; Ravindranath, Swara; Salimbeni, Sara

    2014-01-01

    We use GOODS and CANDELS images to identify progenitors of massive (M > 1010 M ⊙) compact early-type galaxies (ETGs) at z ~ 1.6. Because merging and accretion increase the size of the stellar component of galaxies, if the progenitors are among known star-forming galaxies, these must be compact themselves. We select candidate progenitors among compact Lyman-break galaxies at z ~ 3 on the basis of their mass, star-formation rate (SFR), and central stellar density, and we find that these account for a large fraction of, and possibly all, compact ETGs at z ~ 1.6. We find that the average far-UV spectral energy distribution (SED) of the candidates is redder than that of the non-candidates, but the optical and mid-IR SED are the same, implying that the redder UV of the candidates is inconsistent with larger dust obscuration and consistent with more evolved (aging) star formation. This is in line with other evidence suggesting that compactness is a sensitive predictor of passivity among high-redshift massive galaxies. We also find that the light distribution of both the compact ETGs and their candidate progenitors does not show any extended "halos" surrounding the compact "core,"both in individual images and in stacks. We argue that this is generally inconsistent with the morphology of merger remnants, even if gas rich, as predicted by N-body simulations. This suggests that the compact ETGs formed via highly dissipative, mostly gaseous accretion of units whose stellar components are very small and undetected in the Hubble Space Telescope images, with their stellar mass assembling in situ, and that they have not experienced any major merging until the epoch of observations at z ~ 1.6.

  5. The progenitors of the compact early-type galaxies at high redshift

    SciTech Connect

    Williams, Christina C.; Giavalisco, Mauro; Lee, Bomee; Cassata, Paolo; Tundo, Elena; Conselice, Christopher J.; Wiklind, Tommy; Guo, Yicheng; Barro, Guillermo; Faber, Sandra M.; Koo, David C.; Bell, Eric F.; Dekel, Avishai; Ferguson, Henry C.; Grogin, Norman; Koekemoer, Anton; Hathi, Nimish; Huang, Kuang-Han; Kocevski, Dale; and others

    2014-01-01

    We use GOODS and CANDELS images to identify progenitors of massive (M > 10{sup 10} M {sub ☉}) compact early-type galaxies (ETGs) at z ∼ 1.6. Because merging and accretion increase the size of the stellar component of galaxies, if the progenitors are among known star-forming galaxies, these must be compact themselves. We select candidate progenitors among compact Lyman-break galaxies at z ∼ 3 on the basis of their mass, star-formation rate (SFR), and central stellar density, and we find that these account for a large fraction of, and possibly all, compact ETGs at z ∼ 1.6. We find that the average far-UV spectral energy distribution (SED) of the candidates is redder than that of the non-candidates, but the optical and mid-IR SED are the same, implying that the redder UV of the candidates is inconsistent with larger dust obscuration and consistent with more evolved (aging) star formation. This is in line with other evidence suggesting that compactness is a sensitive predictor of passivity among high-redshift massive galaxies. We also find that the light distribution of both the compact ETGs and their candidate progenitors does not show any extended 'halos' surrounding the compact 'core,' both in individual images and in stacks. We argue that this is generally inconsistent with the morphology of merger remnants, even if gas rich, as predicted by N-body simulations. This suggests that the compact ETGs formed via highly dissipative, mostly gaseous accretion of units whose stellar components are very small and undetected in the Hubble Space Telescope images, with their stellar mass assembling in situ, and that they have not experienced any major merging until the epoch of observations at z ∼ 1.6.

  6. EXPLORING THE CHEMICAL LINK BETWEEN LOCAL ELLIPTICALS AND THEIR HIGH-REDSHIFT PROGENITORS

    SciTech Connect

    Leja, Joel; Van Dokkum, Pieter G.; Momcheva, Ivelina; Nelson, Erica; Brammer, Gabriel; Skelton, Rosalind E.; Whitaker, Katherine E.; Andrews, Brett H.; Franx, Marijn; Patel, Shannon G.; Kriek, Mariska; Van der Wel, Arjen; Bezanson, Rachel; Conroy, Charlie; Förster Schreiber, Natascha

    2013-12-01

    We present Keck/MOSFIRE K-band spectroscopy of the first mass-selected sample of galaxies at z ∼ 2.3. Targets are selected from the 3D-Hubble Space Telescope Treasury survey. The six detected galaxies have a mean [N II]λ6584/Hα ratio of 0.27 ± 0.01, with a small standard deviation of 0.05. This mean value is similar to that of UV-selected galaxies of the same mass. The mean gas-phase oxygen abundance inferred from the [N II]/Hα ratios depends on the calibration method, and ranges from 12+log(O/H){sub gas} = 8.57 for the Pettini and Pagel calibration to 12+log(O/H){sub gas} = 8.87 for the Maiolino et al. calibration. Measurements of the stellar oxygen abundance in nearby quiescent galaxies with the same number density indicate 12+log(O/H){sub stars} = 8.95, similar to the gas-phase abundances of the z ∼ 2.3 galaxies if the Maiolino et al. calibration is used. This suggests that these high-redshift star forming galaxies may be progenitors of today's massive early-type galaxies. The main uncertainties are the absolute calibration of the gas-phase oxygen abundance and the incompleteness of the z ∼ 2.3 sample: the galaxies with detected Hα tend to be larger and have higher star formation rates than the galaxies without detected Hα, and we may still be missing the most dust-obscured progenitors.

  7. Giant clumps in the FIRE simulations: a case study of a massive high-redshift galaxy

    NASA Astrophysics Data System (ADS)

    Oklopčić, Antonija; Hopkins, Philip F.; Feldmann, Robert; Kereš, Dušan; Faucher-Giguère, Claude-André; Murray, Norman

    2017-02-01

    The morphology of massive star-forming galaxies at high redshift is often dominated by giant clumps of mass ˜108-109 M⊙ and size ˜100-1000 pc. Previous studies have proposed that giant clumps might have an important role in the evolution of their host galaxy, particularly in building the central bulge. However, this depends on whether clumps live long enough to migrate from their original location in the disc or whether they get disrupted by their own stellar feedback before reaching the centre of the galaxy. We use cosmological hydrodynamical simulations from the FIRE (Feedback in Realistic Environments) project which implement explicit treatments of stellar feedback and interstellar medium physics to study the properties of these clumps. We follow the evolution of giant clumps in a massive (M* ˜ 1010.8 M⊙ at z = 1), discy, gas-rich galaxy from redshift z ≳ 2 to z = 1. Even though the clumpy phase of this galaxy lasts over a gigayear, individual gas clumps are short-lived, with mean lifetime of massive clumps of ˜20 Myr. During that time, they turn between 0.1 per cent and 20 per cent of their gas into stars before being disrupted, similar to local giant molecular clouds. Clumps with M ≳ 107 M⊙ account for ˜20 per cent of the total star formation in the galaxy during the clumpy phase, producing ˜1010 M⊙ of stars. We do not find evidence for net inward migration of clumps within the galaxy. The number of giant clumps and their mass decrease at lower redshifts, following the decrease in the overall gas fraction and star formation rate.

  8. Exploring the Chemical Link Between Local Ellipticals and Their High-Redshift Progenitors

    NASA Technical Reports Server (NTRS)

    Leja, Joel; Van Dokkum, Pieter G.; Momcheva, Ivelina; Brammer, Gabriel; Skelton, Rosalind E.; Whitaker, Katherine E.; Andrews, Brett H.; Franx, Marijn; Kriek, Mariska; Van Der Wel, Arjen; Bezanson, Rachel; Conroy, Charlie; Schreiber, Natascha Foerster; Nelson, Erica; Patel, Shannon G.

    2013-01-01

    We present Keck/MOSFIRE K-band spectroscopy of the first mass-selected sample of galaxies at z approximately 2.3. Targets are selected from the 3D-Hubble Space Telescope Treasury survey. The six detected galaxies have a mean [N II]lambda6584/H-alpha ratio of 0.27 +/- 0.01, with a small standard deviation of 0.05. This mean value is similar to that of UV-selected galaxies of the same mass. The mean gas-phase oxygen abundance inferred from the [N II]/Halpha ratios depends on the calibration method, and ranges from 12+log(O/H)(sub gas) = 8.57 for the Pettini & Pagel calibration to 12+log(O/H)(sub gas) = 8.87 for the Maiolino et al. calibration. Measurements of the stellar oxygen abundance in nearby quiescent galaxies with the same number density indicate 12+log(O/H)(sub stars) = 8.95, similar to the gas-phase abundances of the z approximately 2.3 galaxies if the Maiolino et al. calibration is used. This suggests that these high-redshift star forming galaxies may be progenitors of today's massive early-type galaxies. The main uncertainties are the absolute calibration of the gas-phase oxygen abundance and the incompleteness of the z approximately 2.3 sample: the galaxies with detected Ha tend to be larger and have higher star formation rates than the galaxies without detected H-alpha, and we may still be missing the most dust-obscured progenitors.

  9. Galaxy Evolution at High Redshift: Obscured Star Formation, GRB Rates, Cosmic Reionization, and Missing Satellites

    NASA Astrophysics Data System (ADS)

    Lapi, A.; Mancuso, C.; Celotti, A.; Danese, L.

    2017-01-01

    We provide a holistic view of galaxy evolution at high redshifts z ≳ 4, which incorporates the constraints from various astrophysical/cosmological probes, including the estimate of the cosmic star formation rate (SFR) density from UV/IR surveys and long gamma-ray burst (GRBs) rates, the cosmic reionization history following the latest Planck measurements, and the missing satellites issue. We achieve this goal in a model-independent way by exploiting the SFR functions derived by Mancuso et al. on the basis of an educated extrapolation of the latest UV/far-IR data from HST/Herschel, and already tested against a number of independent observables. Our SFR functions integrated down to a UV magnitude limit MUV ≲ ‑13 (or SFR limit around 10‑2 M⊙ yr‑1) produce a cosmic SFR density in excellent agreement with recent determinations from IR surveys and, taking into account a metallicity ceiling Z ≲ Z⊙/2, with the estimates from long GRB rates. They also yield a cosmic reionization history consistent with that implied by the recent measurements of the Planck mission of the electron scattering optical depth τes ≈ 0.058 remarkably, this result is obtained under a conceivable assumption regarding the average value fesc ≈ 0.1 of the escape fraction for ionizing photons. We demonstrate via the abundance-matching technique that the above constraints concurrently imply galaxy formation becoming inefficient within dark matter halos of mass below a few 108 M⊙ pleasingly, such a limit is also required so as not to run into the missing satellites issue. Finally, we predict a downturn of the Galaxy luminosity function faintward of MUV ≲ ‑12, and stress that its detailed shape, to be plausibly probed in the near future by the JWST, will be extremely informative on the astrophysics of galaxy formation in small halos, or even on the microscopic nature of the dark matter.

  10. Radiative transfer in a clumpy universe: The colors of high-redshift galaxies

    NASA Technical Reports Server (NTRS)

    Madau, Piero

    1995-01-01

    We assess the effects of the stochastic attenuation produced by intervening QSO absorption systems on the broadband colors of galaxies at cosmological distances. We compute the H I opacity of a clumpy universe as a function of redshift, including scattering in resonant lines, such as Lyman alpha, Lyman beta, Lyman gamma, and higher order members, and Lyman-continuum absorption. Both the numerous, optically thin Lyman-alpha forest clouds and the rarer, optically thick Lyman limit systems are found to contribute to the obscuration of background sources. We study the mean properties of primeval galaxies at high redshift in four broad optical passbands, U(sub n), B, G, and R. Even if young galaxies radiated a significant amount of ionizing photons, the attenuation due to the accumulated photoelectric opacity along the path is so severe that sources beyond z approximately 3 will drop out of the U(sub n) image together. We also show that the observed B-R color of distant galaxies can be much redder than expected from a stellar population. At z approximately 3.5, the blanketing by discrete absorption lines in the Lyman series is so effective that background galaxies appear, on average, 1 mag fainter in B. By z approximately 4, the observed B magnitude increment due to intergalactic absorption exceeds 2 mag. By modeling the intrinsic UV spectral energy distribution of star-forming galaxies with a stellar population synthesis code, we show that the (B-R)(sub AB) approximately 0 criterion for identifying 'flat-spectrum,' metal-producing galaxies is biased against objects at z greater than 3. The continuum blanketing from the Lyman series produces a characteristic staircase profile in the transmitted power. We suggest that this cosmic Lyman decrement might be used as a tool to identify high-z galaxies.

  11. The Quest for Dusty Star-forming Galaxies at High Redshift z ≳ 4

    NASA Astrophysics Data System (ADS)

    Mancuso, C.; Lapi, A.; Shi, J.; Gonzalez-Nuevo, J.; Aversa, R.; Danese, L.

    2016-06-01

    We exploit the continuity equation approach and “main-sequence” star formation timescales to show that the observed high abundance of galaxies with stellar masses ≳ a few 1010 M ⊙ at redshift z ≳ 4 implies the existence of a galaxy population featuring large star formation rates (SFRs) ψ ≳ 102 M ⊙ yr-1 in heavily dust-obscured conditions. These galaxies constitute the high-redshift counterparts of the dusty star-forming population already surveyed for z ≲ 3 in the far-IR band by the Herschel Space Observatory. We work out specific predictions for the evolution of the corresponding stellar mass and SFR functions out to z ˜ 10, determining that the number density at z ≲ 8 for SFRs ψ ≳ 30 M ⊙ yr-1 cannot be estimated relying on the UV luminosity function alone, even when standard corrections for dust extinction based on the UV slope are applied. We compute the number counts and redshift distributions (including galaxy-scale gravitational lensing) of this galaxy population, and show that current data from the AzTEC-LABOCA, SCUBA-2, and ALMA-SPT surveys are already addressing it. We demonstrate how an observational strategy based on color preselection in the far-IR or (sub-)millimeter band with Herschel and SCUBA-2, supplemented by photometric data from on-source observations with ALMA, can allow us to reconstruct the bright end of the SFR functions out to z ≲ 8. In parallel, such a challenging task can be managed by exploiting current UV surveys in combination with (sub-)millimeter observations by ALMA and NIKA2 and/or radio observations by SKA and its precursors.

  12. THE FAINT END OF THE CLUSTER-GALAXY LUMINOSITY FUNCTION AT HIGH REDSHIFT

    SciTech Connect

    Mancone, Conor L.; Baker, Troy; Gonzalez, Anthony H.; Ashby, Matthew L. N.; Snyder, Greg; Stanford, Spencer A.; Brodwin, Mark; Eisenhardt, Peter R. M.; Stern, Daniel; Wright, Edward L.

    2012-12-20

    We measure the faint-end slope of the galaxy luminosity function (LF) for cluster galaxies at 1 < z < 1.5 using Spitzer IRAC data. We investigate whether this slope, {alpha}, differs from that of the field LF at these redshifts, and with the cluster LF at low redshifts. The latter is of particular interest as low-luminosity galaxies are expected to undergo significant evolution. We use seven high-redshift spectroscopically confirmed galaxy clusters drawn from the IRAC Shallow Cluster Survey to measure the cluster-galaxy LF down to depths of M* + 3 (3.6 {mu}m) and M* + 2.5 (4.5 {mu}m). The summed LF at our median cluster redshift (z = 1.35) is well fit by a Schechter distribution with {alpha}{sub 3.6{mu}m} = -0.97 {+-} 0.14 and {alpha}{sub 4.5{mu}m} = -0.91 {+-} 0.28, consistent with a flat faint-end slope and is in agreement with measurements of the field LF in similar bands at these redshifts. A comparison to {alpha} in low-redshift clusters finds no statistically significant evidence of evolution. Combined with past studies which show that M* is passively evolving out to z {approx} 1.3, this means that the shape of the cluster LF is largely in place by z {approx} 1.3. This suggests that the processes that govern the buildup of the mass of low-mass cluster galaxies have no net effect on the faint-end slope of the cluster LF at z {approx}< 1.3.

  13. Probing the Physical Properties of High-Redshift Lyman-Alpha Emitters with Spitzer

    NASA Astrophysics Data System (ADS)

    Finkelstein, Keely; Finkelstein, Steven; Rhoads, James E.; Malhotra, Sangeeta

    2015-08-01

    Abstract: Studies of Lyman Alpha emitting galaxies (LAEs) offer insight into an understanding of early galaxies and the build-up of galaxies at early times. To better understand these objects and constrain their stellar properties, we have observed a sample of 162 z=4.5 and 14 z=5.7 LAEs with deep Spitzer IRAC 3.6 and 4.5 micron imaging from the Spitzer Lyman Alpha Survey. This is by far the largest sample of high-redshift LAEs imaged with Spitzer, which probes rest-frame optical wavelengths at these redshifts, dramatically improving constraints on the stellar masses and star-formation rates. By fitting the spectral energy distributions of individual LAEs using ground-based optical, HST near-IR, and Spitzer mid-IR imaging, we show that our sample of LAEs has a wide range of stellar properties. For individual LAEs detected with IRAC, stellar mass ranges from 5x10^8 - 10^11 solar masses. In addition, we find a correlation between stellar mass and star formation rate (SFR), similar to trends measured at lower redshift (e.g. Noeske et al. 2007; Daddi et al. 2007). However for this sample of higher redshift LAEs, the LAE sequence is elevated compared to continuum-selected galaxies at the same redshift, meaning that for a given stellar mass, the LAEs tend to have higher star formation rates. However, a subset of massive LAEs sits on the continuum-selected galaxy trend, tentatively implying that there may be two mechanisms for Lyman alpha escape.

  14. Far Infrared Spectroscopy of the Nearby Analogues of High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Hayes, Matthew

    2014-10-01

    We propose far infrared emission line spectroscopy of a sample of 23 local star-forming galaxies, drawn from the Lyman alpha Reference Sample (LARS), for which we have unrivalled high-resolution imaging and spectroscopy from HST, and 21cm HI observations from VLA+GMRT. Moreover the galaxies are selected as the close analogues of the high-redshift Lyman-break galaxies and Spitzer+Herschel selected galaxies found in extragalactic deep fields. The science goal of LARS is to determine what governs the escape of Lyman alpha (Lya) photons from galaxies, and thereby aid interpretation of high-z observations where Lya is the most used spectral probe. However given its clean selection and multiwavelength nature, LARS can equally well improve our understanding of FIR line observations of high-z galaxies. The target emission lines in this proposal are [CII], [OI], and [OIII] at 158, 63, and 88 micron, respectively. The motivations are that these lines: 1. are of increasing interest at high-z as new sensitive submm/radio interferometers come online 2. are proposed quantitative tracers of star formation rates, but their utility must be proven in appropriately analogous well-studied galaxies 3. when combined with models of photodissociation regions, enable estimates of the density and mass of PDR gas and provide vital constraints on our Lya radiative transfer models of galaxies. 4. provide uniquely robust estimates of nebular extinction and metallicity when combined with our optical IFU data. Astrophysical applications are many, especially when combined with the array of existing data. Specifically they will provide vital constraints on ISM structure, that are required for understanding the emission of the cosmologically vital Lya emission line. Moreover, SFR calibrations will be tested in star forming environments that resemble those of early galaxies and the legacy value of the sample is hard to overstate.

  15. The near-to-mid infrared spectrum of quasars

    NASA Astrophysics Data System (ADS)

    Hernán-Caballero, Antonio; Hatziminaoglou, Evanthia; Alonso-Herrero, Almudena; Mateos, Silvia

    2016-12-01

    We analyse a sample of 85 luminous (log (νLν(3 μm)/erg s-1) > 45.5) quasars with rest frame ˜2-11 μm spectroscopy from AKARI and Spitzer. Their high luminosity allows a direct determination of the near-infrared quasar spectrum free from host galaxy emission. A semi-empirical model consisting of a single template for the accretion disc and two blackbodies for the dust emission successfully reproduces the 0.1-10 μm spectral energy distributions (SEDs). Excess emission at 1-2 μm over the best-fitting model suggests that hotter dust is necessary in addition to the ˜1200 K blackbody and the disc to reproduce the entire near-infrared spectrum. Variation in the extinction affecting the disc and in the relative strength of the disc and dust components accounts for the diversity of individual SEDs. Quasars with higher dust-to-disc luminosity ratios show slightly redder infrared continua and less prominent silicate emission. We find no luminosity dependence in the shape of the average infrared quasar spectrum. We generate a new quasar template that covers the rest-frame range 0.1-11 μm, and separate templates for the disc and dust components. Comparison with other infrared quasar composites suggests that previous ones are less reliable in the 2-4 μm range. Our template is the first one to provide a detailed view of the infrared emission on both sides of the 4 μm bump.

  16. Locating star-forming regions in quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Young, J. E.; Eracleous, M.; Shemmer, O.; Netzer, H.; Gronwall, C.; Lutz, Dieter; Ciardullo, R.; Sturm, Eckhard

    2014-02-01

    We present a study of the morphology and intensity of star formation in the host galaxies of eight Palomar-Green quasars using observations with the Hubble Space Telescope. Our observations are motivated by recent evidence for a close relationship between black hole growth and the stellar mass evolution in its host galaxy. We use narrow-band [O II]λ3727, Hβ, [O III]λ5007 and Paα images, taken with the Wide Field Planetary Camera 2 and NICMOS instruments, to map the morphology of line-emitting regions, and, after extinction corrections, diagnose the excitation mechanism and infer star-formation rates. Significant challenges in this type of work are the separation of the quasar light from the stellar continuum and the quasar-excited gas from the star-forming regions. To this end, we present a novel technique for image decomposition and subtraction of quasar light. Our primary result is the detection of extended line-emitting regions with sizes ranging from 0.5 to 5 kpc and distributed symmetrically around the nucleus, powered primarily by star formation. We determine star-formation rates of the order of a few tens of M⊙ yr-1. The host galaxies of our target quasars have stellar masses of the order of 1011 M⊙ and specific star-formation rates on a par with those of M82 and luminous infrared galaxies. As such they fall at the upper envelope or just above the star-formation mass sequence in the specific star formation versus stellar mass diagram. We see a clear trend of increasing star-formation rate with quasar luminosity, reinforcing the link between the growth of the stellar mass of the host and the black hole mass found by other authors.

  17. The Quasar Fraction in Low-Frequency Selected Complete Samples and Implications for Unified Schemes

    NASA Technical Reports Server (NTRS)

    Willott, Chris J.; Rawlings, Steve; Blundell, Katherine M.; Lacy, Mark

    2000-01-01

    Low-frequency radio surveys are ideal for selecting orientation-independent samples of extragalactic sources because the sample members are selected by virtue of their isotropic steep-spectrum extended emission. We use the new 7C Redshift Survey along with the brighter 3CRR and 6C samples to investigate the fraction of objects with observed broad emission lines - the 'quasar fraction' - as a function of redshift and of radio and narrow emission line luminosity. We find that the quasar fraction is more strongly dependent upon luminosity (both narrow line and radio) than it is on redshift. Above a narrow [OII] emission line luminosity of log(base 10) (L(sub [OII])/W) approximately > 35 [or radio luminosity log(base 10) (L(sub 151)/ W/Hz.sr) approximately > 26.5], the quasar fraction is virtually independent of redshift and luminosity; this is consistent with a simple unified scheme with an obscuring torus with a half-opening angle theta(sub trans) approximately equal 53 deg. For objects with less luminous narrow lines, the quasar fraction is lower. We show that this is not due to the difficulty of detecting lower-luminosity broad emission lines in a less luminous, but otherwise similar, quasar population. We discuss evidence which supports at least two probable physical causes for the drop in quasar fraction at low luminosity: (i) a gradual decrease in theta(sub trans) and/or a gradual increase in the fraction of lightly-reddened (0 approximately < A(sub V) approximately < 5) lines-of-sight with decreasing quasar luminosity; and (ii) the emergence of a distinct second population of low luminosity radio sources which, like M8T, lack a well-fed quasar nucleus and may well lack a thick obscuring torus.

  18. Host Galaxies of z=4 Quasars

    NASA Astrophysics Data System (ADS)

    McLeod, Kim K.; Bechtold, J.

    2010-01-01

    We have undertaken a project to investigate the host galaxies and environments of a sample of quasars at z 4. In this paper, we describe deep near-infrared imaging of 34 targets using the Magellan I and Gemini North telescopes. We discuss in detail special challenges of distortion and nonlinearity that must be addressed when performing PSF subtraction with data from these telescopes and their IR cameras, especially in very good seeing. We derive black hole masses from emission-line spectroscopy, and we calculate accretion rates from our Ks-band photometry, which directly samples the rest-frame B for these objects. We introduce a new isophotal diameter technique for estimating host galaxy luminosities. We report the detection of four host galaxies on our deepest, sharpest images, and present upper limits for the others. We find that if host galaxies passively evolve such that they brighten by 2 magnitudes or more in the rest-frame B band between the present and z=4, then high-z hosts are less massive at a given black hole mass than are their low-z counterparts. We argue that the most massive hosts plateau at < 10L*. We estimate the importance of selection effects on this survey and the subsequent limitations of our conclusions. These results are in broad agreement with recent semi-analytical models for the formation of luminous quasars and their host spheroids by mergers of gas-rich galaxies, with significant dissipation, and self-regulation of black hole growth and star-formation by the burst of merger-induced quasar activity.

  19. The luminosity function of quasars

    NASA Technical Reports Server (NTRS)

    Pei, Yichuan C.

    1995-01-01

    We propose a new evolutionary model for the optical luminosity function of quasars. Our analytical model is derived from fits to the empirical luminosity function estimated by Hartwick and Schade and Warren, Hewett, and Osmer on the basis of more than 1200 quasars over the range of redshifts 0 approximately less than z approximately less than 4.5. We find that the evolution of quasars over this entire redshift range can be well fitted by a Gaussian distribution, while the shape of the luminosity function can be well fitted by either a double power law or an exponential L(exp 1/4) law. The predicted number counts of quasars, as a function of either apparent magnitude or redshift, are fully consistent with the observed ones. Our model indicates that the evolution of quasars reaches its maximum at z approximately = 2.8 and declines at higher redshifts. An extrapolation of the evolution to z approximately greater than 4.5 implies that quasars may have started their cosmic fireworks at z(sub f) approximately = 5.2-5.5. Forthcoming surveys of quasars at these redshifts will be critical to constrain the epoch of quasar formation. All the results we derived are based on observed quasars and are therefore subject to the bias of obscuration by dust in damped Ly alpha systems. Future surveys of these absorption systems at z approximately greater than 3 will also be important if the formation epoch of quasars is to be known unambiguously.

  20. A POPULATION OF DUST-RICH QUASARS AT z {approx} 1.5

    SciTech Connect

    Dai, Y. Sophia; Elvis, Martin; Huang Jiasheng; Fazio, Giovanni; Trichas, Markos; Bergeron, Jacqueline; Omont, Alain; Bock, Jamie; Vieira, Joaquin D.; Cooray, Asantha; Hatziminaoglou, Evanthia; Ibar, Edo; Magdis, Georgios E.; Rigopoulou, Dimitra; Oliver, Seb J.; Page, Mathew J.; Symeonidis, Myrto; Perez-Fournon, Ismael; Roseboom, Isaac G.; Scott, Douglas; and others

    2012-07-01

    We report Herschel SPIRE (250, 350, and 500 {mu}m) detections of 32 quasars with redshifts 0.5 {<=}z < 3.6 from the Herschel Multi-tiered Extragalactic Survey (HerMES). These sources are from a MIPS 24 {mu}m flux-limited sample of 326 quasars in the Lockman Hole Field. The extensive multi-wavelength data available in the field permit construction of the rest-frame spectral energy distributions (SEDs) from ultraviolet to the mid-infrared for all sources, and to the far-infrared (FIR) for the 32 objects. Most quasars with Herschel FIR detections show dust temperatures in the range of 25-60 K, with a mean of 34 K. The FIR luminosities range from 10{sup 11.3} to 10{sup 13.5} L{sub Sun }, qualifying most of their hosts as ultra- or hyper-luminous infrared galaxies. These FIR-detected quasars may represent a dust-rich population, but with lower redshifts and fainter luminosities than quasars observed at {approx}1 mm. However, their FIR properties cannot be predicted from shorter wavelengths (0.3-20 {mu}m, rest frame), and the bolometric luminosities derived using the 5100 A index may be underestimated for these FIR-detected quasars. Regardless of redshift, we observed a decline in the relative strength of FIR luminosities for quasars with higher near-infrared luminosities.

  1. Development of SED Camera for Quasars in Early Universe (SQUEAN)

    NASA Astrophysics Data System (ADS)

    Kim, Sanghyuk; Jeon, Yiseul; Lee, Hye-In; Park, Woojin; Ji, Tae-Geun; Hyun, Minhee; Choi, Changsu; Im, Myungshin; Pak, Soojong

    2016-11-01

    We describe the characteristics and performance of a camera system, Spectral energy distribution Camera for Quasars in Early Universe (SQUEAN). It was developed to measure SEDs of high-redshift quasar candidates (z ≳ 5) and other targets, e.g., young stellar objects, supernovae, and gamma-ray bursts, and to trace the time variability of SEDs of objects such as active galactic nuclei (AGNs). SQUEAN consists of an on-axis focal plane camera module, an autoguiding system, and mechanical supporting structures. The science camera module is composed of a focal reducer, a customizable filter wheel, and a CCD camera on the focal plane. The filter wheel uses filter cartridges that can house filters with different shapes and sizes, enabling the filter wheel to hold 20 filters of 50 mm × 50 mm size, 10 filters of 86 mm × 86 mm size, or many other combinations. The initial filter mask was applied to calibrate the filter wheel with high accuracy, and we verified that the filter position is repeatable at much less than one pixel accuracy. We installed and tested 50 nm medium bandwidth filters of 600-1050 nm and other filters at the commissioning observation in 2015 February. We found that SQUEAN can reach limiting magnitudes of 23.3-25.3 AB mag at 5σ in a one-hour total integration time.

  2. PROBING HIGH-REDSHIFT GALAXY FORMATION AT THE HIGHEST LUMINOSITIES: NEW INSIGHTS FROM DEIMOS SPECTROSCOPY

    SciTech Connect

    Lee, Kyoung-Soo; Dey, Arjun; Cooper, Michael C.; Reddy, Naveen; Jannuzi, Buell T.

    2013-07-01

    We present Keck DEIMOS spectroscopic observations of the most UV-luminous star-forming galaxies at redshifts 3.2 < z < 4.6. Our sample, selected in the Booetes field of the NOAO Deep Wide-Field Survey, contains galaxies with luminosities of L* {approx}< L{sub UV} {approx}< 7 L* and is one of the largest samples to date of the most UV-luminous galaxies at these redshifts. Our spectroscopic data confirm 41 candidates as star-forming galaxies at 3.2 < z < 4.6 and validate the relatively clean selection of the photometric candidates with a contamination rate of 11%-28%. We find that the fraction of Ly{alpha} emitting galaxies increases with decreasing UV luminosity. None of the 12 galaxies with M{sub UV} < -22 (i.e., L{sub UV} > 3 L*) exhibit strong Ly{alpha} emission. We find strong evidence of large-scale outflows, transporting the neutral/ionized gas in the interstellar medium away from the galaxy. Galaxies exhibiting both interstellar absorption and Ly{alpha} emission lines show a significant offset between the two features, with a relative velocity of 200-1150 km s{sup -1}. We find tentative evidence that this measure of the outflow velocity increases with UV luminosity and/or stellar mass. The luminosity- and mass-dependent outflow strengths suggest that the efficiency of feedback and enrichment of the surrounding medium depend on these galaxy parameters. We also stack the individual spectra to construct composite spectra of the absorption-line-only and Ly{alpha}-emitting subsets of the UV luminous galaxies at z {approx_equal} 3.7. The composite spectra are very similar to those of lower-redshift and lower-luminosity Lyman break galaxy (LBG) samples, but with some subtle differences. Analyses of the composite spectra suggest that the UV luminous LBGs at z {approx_equal} 3.7 may have a higher covering fraction of absorbing gas, and may be older (or have had more prolonged star formation histories) than their lower-redshift and lower-luminosity counterparts. In

  3. A PARAMETRIC STUDY OF POSSIBLE SOLUTIONS TO THE HIGH-REDSHIFT OVERPRODUCTION OF STARS IN MODELED DWARF GALAXIES

    SciTech Connect

    White, Catherine E.; Somerville, Rachel S.; Ferguson, Henry C.

    2015-02-01

    Both numerical hydrodynamic and semi-analytic cosmological models of galaxy formation struggle to match observed star formation histories of galaxies in low-mass halos (M {sub H} ≲ 10{sup 11} M {sub ☉}), predicting more star formation at high redshift and less star formation at low redshift than observed. The fundamental problem is that galaxies' gas accretion and star formation rates are too closely coupled in the models: the accretion rate largely drives the star formation rate. Observations point to gas accretion rates that outpace star formation at high redshift, resulting in a buildup of gas and a delay in star formation until lower redshifts. We present three empirical adjustments of standard recipes in a semi-analytic model motivated by three physical scenarios that could cause this decoupling: (1) the mass-loading factors of outflows driven by stellar feedback may have a steeper dependence on halo mass at earlier times, (2) the efficiency of star formation may be lower in low-mass halos at high redshift, and (3) gas may not be able to accrete efficiently onto the disk in low-mass halos at high redshift. These new recipes, once tuned, better reproduce the evolution of f {sub *}≡ M {sub *}/M {sub H} as a function of halo mass as derived from abundance matching over redshifts z = 0 to 3, though they have different effects on cold gas fractions, star formation rates, and metallicities. Changes to gas accretion and stellar-driven winds are promising, while direct modification of the star formation timescale requires drastic measures that are not physically well motivated.

  4. The Cycle of Dust in the Milky Ways: Clues from the High-Redshift and the Local Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2008-01-01

    Massive amount of dust has been observed at high-redshifts when the universe was a mere 900 Myr old. The formation and evolution of dust is there dominated by massive stars and interstellar processes. In contrast, in the local universe lower mass stars, predominantly 2-5 Msun AGB stars, play the dominant role in the production of interstellar dust. These two extreme environments offer fascinating clues about the evolution of dust in the Milky Way galaxy

  5. Tests of the Accelerating Universe with Near-Infrared Observations of a High-Redshift Type IA Supernova

    NASA Astrophysics Data System (ADS)

    Riess, Adam G.; Filippenko, Alexei V.; Liu, Michael C.; Challis, Peter; Clocchiatti, Alejandro; Diercks, Alan; Garnavich, Peter M.; Hogan, Craig J.; Jha, Saurabh; Kirshner, Robert P.; Leibundgut, B.; Phillips, M. M.; Reiss, David; Schmidt, Brian P.; Schommer, Robert A.; Smith, R. Chris; Spyromilio, J.; Stubbs, Christopher; Suntzeff, Nicholas B.; Tonry, John; Woudt, Patrick; Brunner, Robert J.; Dey, Arjun; Gal, Roy; Graham, James; Larkin, James; Odewahn, Steve C.; Oppenheimer, Ben

    2000-06-01

    We have measured the rest-frame B-, V-, and I-band light curves of a high-redshift type Ia supernova (SN Ia), SN 1999Q (z=0.46), using the Hubble Space Telescope (HST) and ground-based near-infrared detectors. A goal of this study is the measurement of the color excess, EB-I, a sensitive indicator of interstellar or intergalactic dust, which could affect recent cosmological measurements from high-redshift SNe Ia. Our observations disfavor a 30% opacity of SN Ia visual light by dust as an alternative to an accelerating universe. This statement applies to both Galactic-type dust (rejected at the 3.4 σ confidence level) and grayer dust (grain size >0.1 μm, rejected at the 2.3-2.6 σ confidence level) as proposed by Aguirre. The rest-frame I-band light curve shows the secondary maximum 1 month after the B maximum typical of nearby SNe Ia of normal luminosity, providing no indication of evolution as a function of redshift out to z~0.5. An expanded set of similar observations could improve the constraints on any contribution of extragalactic dust to the dimming of high-redshift SNe Ia.

  6. ACCOUNTING FOR COSMIC VARIANCE IN STUDIES OF GRAVITATIONALLY LENSED HIGH-REDSHIFT GALAXIES IN THE HUBBLE FRONTIER FIELD CLUSTERS

    SciTech Connect

    Robertson, Brant E.; Stark, Dan P.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; McLeod, Derek

    2014-12-01

    Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ∼35% at redshift z ∼ 7 to ≳ 65% at z ∼ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.

  7. Powerful Activity in the Bright Ages. I. A Visible/IR Survey of High Redshift 3C Radio Galaxies and Quasars

    NASA Astrophysics Data System (ADS)

    Hilbert, B.; Chiaberge, M.; Kotyla, J. P.; Tremblay, G. R.; Stanghellini, C.; Sparks, W. B.; Baum, S.; Capetti, A.; Macchetto, F. D.; Miley, G. K.; O'Dea, C. P.; Perlman, E. S.; Quillen, A.

    2016-07-01

    We present new rest-frame UV and visible observations of 22 high-z (1 < z < 2.5) 3C radio galaxies and QSOs obtained with the Hubble Space Telescope's Wide Field Camera 3 instrument. Using a custom data reduction strategy in order to assure the removal of cosmic rays, persistence signal, and other data artifacts, we have produced high-quality science-ready images of the targets and their local environments. We observe targets with regions of UV emission suggestive of active star formation. In addition, several targets exhibit highly distorted host galaxy morphologies in the rest frame visible images. Photometric analyses reveal that brighter QSOs generally tend to be redder than their dimmer counterparts. Using emission line fluxes from the literature, we estimate that emission line contamination is relatively small in the rest frame UV images for the QSOs. Using archival VLA data, we have also created radio map overlays for each of our targets, allowing for analysis of the optical and radio axes alignment.

  8. Weak Emission-line Quasars in the Context of a Modified Baldwin Effect

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad

    2016-01-01

    Based on spectroscopic data for a sample of high-redshift quasars, I will show that the anti-correlation between the rest-frame equivalent width (EW) of the C IV λ1549 broad-emission line and the Hβ-based Eddington ratio extends across the widest possible ranges of redshift (0 < z < 3.5) and bolometric luminosity(~1044 < L < ~1048 erg s-1). Given this anti-correlation, hereby referred to as a modified Baldwin effect (MBE), weak emission line quasars (WLQs), typically showing EW(C IV) < ~10 Å, are expected to have extremely high Eddington ratios (L/LEdd > ~4). I will present new near-infrared spectroscopy of the broad Hβ line, as well as complementary EW(C IV) information, for all WLQs for which such information is currently available, nine sources in total. I will show that while four of these WLQs can be accommodated by the MBE, the otherfive deviate significantly from this relation, at the > ~3σ level, by exhibiting C IV lines much weaker than predicted from their Hβ-based Eddington ratios. Assuming the supermassive black hole masses in all quasars can be determined reliably using the single-epoch Hβ-method, these results indicate that EW(C IV)cannot depend solely on the Eddington ratio. I will briefly discuss a strategy for further investigation into the roles that basic physical properties play in controlling the relative strengths of broad-emission lines in quasars.

  9. Reconciling the Stellar and Nebular Spectra of High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Steidel, Charles C.; Strom, Allison L.; Pettini, Max; Rudie, Gwen C.; Reddy, Naveen A.; Trainor, Ryan F.

    2016-08-01

    We present a combined analysis of rest-frame far-UV (FUV; 1000-2000 Å) and rest-frame optical (3600-7000 Å) composite spectra formed from very deep Keck/LRIS and Keck/MOSFIRE observations of a sample of 30 star-forming galaxies with z=2.40+/- 0.11, selected to be broadly representative of the full KBSS-MOSFIRE spectroscopic survey. Since the same massive stars are responsible for the observed FUV continuum and for the excitation of the observed nebular emission, a self-consistent stellar population synthesis model should simultaneously match the details of the FUV stellar+nebular continuum and—when inserted as the excitation source in photoionization models—predict all observed nebular emission line ratios. We find that only models including massive star binaries, having low stellar metallicity ({Z}* /{Z}⊙ ≃ 0.1) but relatively high nebular (ionized gas-phase) abundances ({Z}{{neb}}/{Z}⊙ ≃ 0.5), can successfully match all of the observational constraints. We show that this apparent discrepancy is naturally explained by highly super-solar O/Fe (≃ 4{--}5 {({{O}}/{Fe})}⊙ ), expected for a gas whose enrichment is dominated by the products of core-collapse supernovae. While O dominates the physics of the ionized gas (and thus the nebular emission lines), Fe dominates the extreme-UV (EUV) and FUV opacity and controls the mass-loss rate from massive stars, resulting in particularly dramatic effects for massive stars in binary systems. This high nebular excitation—caused by the hard EUV spectra of Fe-poor massive stars—is much more common at high redshift (z≳ 2) than low redshift due to systematic differences in the star formation history of typical galaxies. Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W.M. Keck Foundation.

  10. AN OBSERVED LINK BETWEEN ACTIVE GALACTIC NUCLEI AND VIOLENT DISK INSTABILITIES IN HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Bournaud, Frederic; Juneau, Stephanie; Le Floc'h, Emeric; Mullaney, James; Daddi, Emanuele; Duc, Pierre-Alain; Elbaz, David; Salmi, Fadia; Dekel, Avishai; Dickinson, Mark

    2012-09-20

    We provide evidence for a correlation between the presence of giant clumps and the occurrence of active galactic nuclei (AGNs) in disk galaxies. Giant clumps of 10{sup 8}-10{sup 9} M{sub Sun} arise from violent gravitational instability in gas-rich galaxies, and it has been proposed that this instability could feed supermassive black holes (BHs). We use emission line diagnostics to compare a sample of 14 clumpy (unstable) disks and a sample of 13 smoother (stable) disks at redshift z {approx} 0.7. The majority of clumpy disks in our sample have a high probability of containing AGNs. Their [O III] {lambda}5007 emission line is strongly excited, inconsistent with low-metallicity star formation (SF) alone. [Ne III] {lambda}3869 excitation is also higher. Stable disks rarely have such properties. Stacking ultra sensitive Chandra observations (4 Ms) reveals an X-ray excess in clumpy galaxies, which confirms the presence of AGNs. The clumpy galaxies in our intermediate-redshift sample have properties typical of gas-rich disk galaxies rather than mergers, being in particular on the main sequence of SF. This suggests that our findings apply to the physically similar and numerous gas-rich unstable disks at z > 1. Using the observed [O III] and X-ray luminosities, we conservatively estimate that AGNs hosted by clumpy disks have typical bolometric luminosities of the order of a few 10{sup 43} erg s{sup -1}, BH growth rates m-dot{sub BH}{approx}10{sup -2} M{sub Sun} yr{sup -1}, and that these AGNs are substantially obscured in X-rays. This moderate-luminosity mode could provide a large fraction of today's BH mass with a high duty cycle (>10%), accretion bursts with higher luminosities being possible over shorter phases. Violent instabilities at high redshift (giant clumps) are a much more efficient driver of BH growth than the weak instabilities in nearby spirals (bars), and the evolution of disk instabilities with mass and redshift could explain the simultaneous downsizing of

  11. A Very Hot, High Redshift Cluster of Galaxies: More Trouble for Omega(0) = 1

    NASA Technical Reports Server (NTRS)

    Donahue, Megan; Voit, G. Mark; Gioia, Isabella; Luppino, Gerry; Hughes, John P.; Stocke, John T.

    1998-01-01